
Building Firewalls
with

OpenBSD and PF

Coming soon from devGuide.net

The OpenBSD Gazetteer by Jacek Artymiak
Building Virtual Private Networks with FreeBSD, NetBSD, OpenBSD,
Linux, Apple Mac OS X, and Microsoft Windows by Jacek Artymiak
The FreeBSD Gazetteer by Jacek Artymiak
The NetBSD Gazetteer by Jacek Artymiak
Scripting Caligari trueSpace with Python by Jacek Artymiak
Scripting Adobe Photoshop with JavaScript by Jacek Artymiak

You will find more information under this address:

http://www.devguide.net

Building Firewalls
with

OpenBSD and PF
Jacek Artymiak

Second Edition

Lublin

Building Firewalls with OpenBSD and PF
by Jacek Artymiak

Published by:
devGuide.net Jacek Artymiak

email: openbsdpf-ed-02@devguide.net
www: http://www.devguide.net

Copyright © 2003 Jacek Artymiak

All rights reserved. No part of this pubication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior
consent of the publisher.

First edition 2003
Second edition 2003

Printed in Poland

03 10 9 8 7 6 5 4 3 2 1

ISBN: 83-916651-1-9

The author and the publisher disclaim any and all liability for the use of
information and programs contained in this book.

All trademarks mentioned in this book are the sole property of their owners.

Sowa - Print on demand
http://www.sowadruk.pl
phone: +48 (22) 431-81-40

To Gosia

Table of Contents

Preface 1

0.1 Acknowledgments 3

Chapter 1: Introduction 5

1.1 Why Do We Need to Secure Our Networks 5
1.2 Why Do We Need Firewalls 7
1.3 Why Open Source Software 7
1.4 Why OpenBSD and pf 9
1.5 Cryptography and Law 11
1.6 How This Book Is Organized 12
1.7 Typographic Conventions Used in This Book 14
1.8 Staying in Touch with the OpenBSD Community 14
1.9 Getting in Touch with the Author 15

Chapter 2: Firewall Designs 17

2.1 Define Your Local Packet Filtering Policy 17
2.2 What Is a ‘Firewall’? 18
2.3 What Firewalls Are Not 19
2.4 Hardware vs. Software Firewalls 19
2.5 Firewalls Great and Small 20
2.5.1 Screened Host 20
2.5.2 Screened LAN or Screened LAN Segment 22
2.5.3 Bastion Host 24
2.5.4 Demilitarized Zone (DMZ) 25
2.5.5 Large-Scale LANs 27
2.6 Invisible Hosts and Firewalls 27
2.6.1 Filtering Bridge 28
2.6.2 Network Address Translation (NAT) 30
2.7 Additional Functionality 30

Table of Contents ix

Chapter 3: Installing OpenBSD 33

3.1 Software Requirements 33
3.1.1 Buy Official OpenBSD CD-ROM Sets 34
3.1.2 Additional Software Requirements 35
3.2 Hardware Requirements 36
3.2.1 Which Hardware Platform Should You Choose? 36
3.2.2 Motherboard 38
3.2.3 BIOS 39
3.2.4 Processor 39
3.2.5 Memory 41
3.2.6 Disk Space 42
3.2.7 Network Interfaces 43
3.2.8 Communicating with Your Computer During Installation 46
3.2.9 How Are You Going to Install OpenBSD? 48
3.2.10 Tape Drives 49
3.2.11 Debugging Hardware 49
3.2.12 Other Requirements 49
3.2.13 When in Trouble, Use the Manual 50
3.3 Downloading OpenBSD 50
3.4 Preparing Installation Media 51
3.5 Installing OpenBSD 52
3.6 Securing Your Firewall Hardware 65

Chapter 4: Configuring OpenBSD 67

4.1 User Management 67
4.1.1 Adding Users 67
4.1.2 Letting Users Do As Root Does (su) 68
4.1.3 Changing the User Password 69
4.1.4 Giving Users Limited Access to Root Privileges (sudo) 69
4.1.5 Removing Users 70
4.2 Hardening OpenBSD 70
4.2.1 Disabling Non-Essential Services 70
4.2.2 Patching 71
4.2.3 When a Patch Is Not Enough 76
4.3 Configuring Networking 76
4.3.1 More Than One Address on a Single Interface (Aliases) 78
4.3.2 Pf Configuration Options 80
4.3.3 Bridge Configuration Options 81

x

4.3.4 IP Forwarding 84
4.3.5 Fixing FTP 85
4.3.6 Taking Control of ARP 89
4.4 Automated System Reboot 95
4.5 Swap Encryption 95
4.6 Working with Securelevels 96
4.7 Setting Time and Date 97
4.8 Configuring the Kernel to Solve Hardware Problems 97
4.8.1 Make a Copy of the Old Kernel 98
4.8.2 User Kernel Config (UKC) 98
4.8.3 Brain Transplants for OpenBSD 101
4.9 Adding and Compiling Software 101
4.10 Configuring Disks 102
4.10.1 RAID 102

Chapter 5: /etc/pf.conf 103

5.1 Inside pf.conf 103
5.1.1 Changing the pf.conf Section Order 105
5.1.2 Breaking Long Lines into Smaller Pieces 105
5.1.3 Grouping Rule Elements into Lists ({}) 105
5.2 Macros 106
5.3 Tables (table) 107
5.4 Anchors (anchor, nat-anchor, rdr-anchor, binat-anchor) 109
5.5 Common Components Found in pf Rules 110
5.5.1 Directions (in, out) 110
5.5.2 Interfaces (on) 110
5.5.3 Address Families (inet, inet6) 111
5.5.4 Protocols (proto) 111
5.5.5 Addresses (from, to, any, all) 112
5.5.6 Dynamic Assignment of Addresses 115
5.5.7 Ports (port) 116
5.5.8 Ports (port) 118
5.6 Tools for Writing and Editing pf.conf 119
5.6.1 Why Not Edit pf.conf on Another Machine? 119
5.6.2 Syntax Highlighting 119
5.6.3 GUI Tools for Writing Rulesets with a Mouse 120
5.6.4 Scripting pf.conf 120
5.7 Managing pf.conf Versions with CVS 120

Table of Contents xi

Chapter 6: Packet Normalization ... 125

6.1 Implementing Packet Normalization (scrub) 125
6.1.1 Scrub Rule Syntax 125
6.2 Fine-Tuning Scrub Rules 127
6.2.1 Pf Options (limit frags, timeout frags) 128
6.2.2 Scrub Rule Options 128
6.3 Who’s Sending All Those Malformed Packets? 131

Chapter 7: Packet Redirection 133

7.1 Security Applications 133
7.2 Expanding the IPv4 Address Space 134
7.2.1 Does IPv6 Make NAT redundant? 136
7.2.2 What Problems Does NAT Cause? 136
7.3 NAT Rules 137
7.3.1 Hiding Hosts Behind a Single Address with nat Rules 138
7.3.2 Redirecting Packets to Other Addresses and Ports (rdr) 145
7.3.3 Forcing Everyone to Use a Web Cache 150
7.3.4 Other Uses of rdr Rules 150
7.3.5 binat 150
7.4 Proxy ARP 153

Chapter 8: Packet Filtering ... 155

8.1 The Anatomy of a Filtering Rule 155
8.1.1 What Is pf Supposed to Do (block, pass)? 156
8.1.2 Return to Sender (return-icmp, return-rst) 157
8.1.3 Inbound or Outbound (in, out)? 160
8.1.4 To Log or Not to Log (log, log-all)? 160
8.1.5 Finishing Early (quick) 161
8.1.6 Network Interface Names (on)? 162
8.1.7 Routing Options (fastroute, reply-to, route-to, dup-to) 162
8.1.8 IP Addressing Familes: IPv4 (inet) or IPv6 (inet6)? 164
8.1.9 Protocols (proto)? 165
8.1.10 Source Address (from, any, all)? 165
8.1.11 Source Port (port)? 166
8.1.12 Sender’s Operating System (os)? 168
8.1.13 Destination IP address (to, any, all) 169
8.1.14 Destination Port (port) 170

xii

8.1.15 User and Group Access Control (user, group) 170
8.1.16 TCP Flags (flags) 171
8.1.17 ICMP Packets 172
8.1.18 Stateful Filtering (keep state, modulate state, synproxy state) ... 173
8.1.19 IP Options (allow-opts) 179
8.1.20 Labels (label) 180
8.2 Antispoof Rules 180
8.3 Filtering Rules for Redirected Packets 181

Chaper 9: Dynamic Rulesets 185

9.1 Designig an Automated Firewall 185

Chaper 10: Bandwidth Shaping and Load Balancing 191

10.1 Load Balancing 191
10.1.1 Implementing Load Balancing 193
10.2 Bandwidth Shaping 195
10.2.1 The Anatomy of a Scheduler Rule 196
10.2.2 The Anatomy of a Queue Rule 197
10.2.3 Assigning Queues to Packet Filtering Rules 199
10.2.4 Priority Queuing (PRIQ) 199
10.2.5 Class-Based Queuing (CBQ) 206
10.2.6 Hierarchical Fair Service Curve (HFSC) 213
10.2.7 Queuing Incoming Packets 218
10.2.8 Which Scheduler is Best? 218

Chapter 11: Logging and Log Analysis 221

11.1 Enabling Packet Logging 222
11.2 Log Analysis 222
11.3 Which Packets Do You Want to Capture? 224
11.4 The Secret Life of Logs 226
11.5 Bandwidth and Disk Space Requirements 229
11.6 Logging on a Bridge (Span Ports) 232

Chapter 12: Using authpf 233

12.1 Configuring authpf 233
12.2 Configuring sshd 234

Table of Contents xiii

12.3 Configuring Login Shell 234
12.4 Writing pf Rules for authpf 235
12.i5 Authenticating User Joe 235

Chapter 13: Using spamd 239

13.1 Configuring spamd 239

Chapter 14: Ruleset Optimization 245

14.1 The pf Optimization Checklist 245
14.2 Pf Optimization Options 246

Chapter 15: Testing Your Firewall 249

15.1 Pencil Test 249
15.2 Checking Host Availability 250
15.2.1 When Ping Cannot Help 252
15.3 Discovering Open Ports on Remote Hosts 253
15.4 Testing Network Performance 253
15.5 Are packets passing through pf? 256
15.6 Additional tools 258

Chapter 16: Firewall Management 259

16.1 General Operations 259
16.2 Pfctl Output Control Options 259
16.3 Managing Rulesets 260
16.4 Managing Macros 260
16.5 Managing Tables 260
16.6 Managing pf Options 262
16.7 Managing Queues 262
16.8 Managing Packet Redirection Rules 262
16.9 Managing Packet Filtering Rules 263
16.10 Managing Anchors 263
16.11 Managing States 264
16.12 Managing Operating System Fingerprints 265
16.13 Statistics 265
16.14 Additional Tools for Managing pf 266

xiv

Appendix A: Manual Pages ... 267

A.1 Using the OpenBSD Manual 267
A.1.1 Reading the OpenBSD Manual Pages on the Web 268
A.2 Pages Related to pf 268
A.3 Other Pages of Interest 269

Appendix B: Rules for Poplar (and Less Popular) Services 271

B.1 Dealing with ICMP 273
B.2 Fixing FTP 276
B.3 Template Rules for Services Using TCP and UDP 276
B.4 Adapting the Template for Other Services 283

Appendix C: Rule Templates for Typical Firewall Configurations 287

C.1 Bastion Host 287
C.2 Bastion Host II (Some Access Allowed) 288
C.3 Screened Host/LAN (Public IP Addresses) 289
C.4 Screened LAN (Some Access Allowed) 290
C.5 NAT + Screened LAN 292
C.6 NAT + Screened LAN + DMZ 293
C.7 Invisible Bridge 295

Appendix D: Helping OpenBSD and PF 297

D.1 Buy Official CD-ROMs, T-Shirts, and Posters 297
D.2 Make Small, but Regular Donations 298
D.3 Hire Developers of OpenBSD and Pf 299
D.4 Donate Hardware 300
D.5 Spare Some of Your Precious Time 300
D.6 Spread the Word 301
D.7 Attend Training Seminars 301
D.8 Encourage People to Buy this Book 301

Bibliography 303

Index 307

About this Book

Table of Contents xv

Preface

Why I Wrote This Book

When I first started using OpenBSD sometime in 1999, it certainly wasn’t
because I wanted to write a book about it. All I needed was a stable server
for my home network, something I could configure and forget about. I tried
all obvious suspects: FreeBSD, NetBSD, OpenBSD, and four or five dif-
ferent Linux distributions, My choice was OpenBSD, because it installed
without problems, was easy to configure, and did not have the infuriating
problems with NFS that plagued me on Linux at that time. FreeBSD and
NetBSD lost their race at the installation stage, after they failed to re-
cognize some pieces of the hardware I was using. It wasn’t a high-tech lab
test, I just needed a stable server. OpenBSD behaved well, did not require
much of my attention and was doing its job.

Then, sometime in 2000, I was asked to help secure a network, which was
coming under an increasingly heavy barrage of attacks and was getting
broken into approximately twice a month. The first thing we did was se-
cure the hosts exposed to the outside world as much as the operating system
allowed, but the rest of the job was going to be the responsibility of a fi-
rewall. I did some research and found out that many people recommended
OpenBSD as the best solution for this job. Knowing it doesn’t cost a penny
to install, I quickly put OpenBSD on four firewall hosts guarding points of
contact with the outside world and watched them in action. Attacks didn’t
stop, but none of them was successful. OpenBSD has earned its keep. And
that’s how it’s been for the last three years.

Of course, OpenBSD is only one of many components of the security setup
used at that site, but it is proving to be the most significant one. Over the
last three years, that network has undergone significant changes in hardware
and software, many security solutions were tried and discarded, yet Open-
BSD is still running those four firewalls as well as some web servers, mail
servers, DNS, DHCP, and NIDS.

2 Preface: Why I Wrote This Book

One of my jobs is freelance technical writing, so it wasn’t long before I
got an idea that it might be useful to help promote the tools I use and like.
I quickly wrote an article about installing and configuring OpenBSD and
Daren Reed’s ipfilter, the firewall that shipped with OpenBSD before May
2001. The article was published in February 2002 on the O’Reilly & Asso-
ciates Network’s ONLamp.com and became the first in the series now
known under the name of Securing Small Networks with OpenBSD, avail-
able at:

http://www.onlamp.com/pub/ct/58

The word ‘small’ used in the title of that series is a little misleading, be-
cause OpenBSD is capable of meeting the demands of all kinds of net-
works, large and small. It was used because I wanted to help administrators
of small and underfunded networks secure their installations with Open-
BSD. Some of that material made its way into this book.

When I wrote my first article for ONLamp.com in late 2001, I only wanted
to write a tutorial that would help others protect their networks with
OpenBSD and ipfilter. It was meant to be something to help people get ip-
filter working in a relatively short time. There were no plans for additional
articles. I foolishly assumed that it would be all that was needed. Unfortu-
nately for me, by the time that first article was published, the OpenBSD
project abandoned ipfilter for Daniel Hartmeier’s pf. I got a lot of mail
telling me in more or less civilized ways that my article was a worthless bag
of bits. So, I quickly wrote an update, which was promptly published on
ONLamp.com.

After ONLamp.com published the second article, I received a lot of positive
feedback, bug reports, and suggestions that I should write a book about
OpenBSD. To tell the truth, I did not want to write a book on that subject,
because I knew that the market was too small to be considered profitable by
trade computer book publishers. But, as the number of requests for the
book grew, I sat down and wrote a proposal, which I later submitted to a
few good publishers. My proposal was turned down by everyone, which
convinced me that a book on OpenBSD would not sell. Of course, the real
reason could just as well be the weaknesses in my proposal. Either way, I
was not interested in pursuing this further and put the whole thing on hold.

Section 0.1: Acknowledgments 3

Then, in late 2002, I received an email message from a venerable academic
publisher interested in publishing a book about OpenBSD. Unfortunately,
we couldn’t agree on the terms of the contract. By the time our talks broke
down, I had a sizeable part of the manuscript ready for editing. I could for-
get it and move to other projects, but I felt it was too good to be trashed. I
decided to risk it and announced The OpenBSD Gazetteer. As I was work-
ing towards the end of the manuscript, I could see that it was becoming too
long for a single book. I had to split it into two books. Building Firewalls
with OpenBSD and PF is the first book, The OpenBSD Gazetteer is the
second. That way I can make sure that both books are not overly expensive,
that they are delivered on time, and that they can be quickly updated.

The first edition of Building Firewalls with OpenBSD and PF was so po-
pular that I had to quickly start work on the second edition, which would
cover the changes made to the OpenBSD operating system and pf between
releases 3.3 and 3.4. I also wanted to respond to the requests and sug-
gestions made by the readers of the first edition. I hope that this new
edition lives up to your expectations.

0.1 Acknowledgments

This book wouldn’t exist if I had not met many great people who continue
to support and encourage me along the way. First and foremost I wish to
thank the OpenBSD user community for their support, and for challenging
me with interesting questions, suggestions, and critique. Without them
swamping me with requests to write a book about OpenBSD, this little
tome would not be in your hands today. One of the most active members of
the OpenBSD community supporting my efforts is Leonard Jacobs, who de-
voted a lot of his precious time to help me make this edition better than the
first one. Thank you, Leonard!

Whenever I publish something on the Internet, I usually do it with the help
of these great people: Chris Coleman (DaemonNews), chromatic (O’Reilly
Networks), Tim O’Reilly (O’Reilly & Associates), Jose Nazario (OpenBSD
Journal), and editors at various BSD news sites and forums. Thank you!

My special thanks must go to Theo de Raadt, Daniel Hartmeier, Artur
Grabowski, Jason L. Wright, Miod Vallat, Dale Rahn, Nick Holland, Wim

4 Preface: Why I Wrote This Book

Vandeputte (kd85.com), Austin Hook (The Computer Shop of Calgary),
and other OpenBSD developers, evangelists and supporters, without whose
hard work we wouldn’t be able to enjoy OpenBSD, OpenSSH, and pf.

I also wish to thank doctors Joanna Markiewicz and Witalis Misiewicz who
keep their watchful eyes on my health and make sure I don’t dump core
before my time.

Last, but not least I want to thank my dear wife, Malgosia, who patiently
puts up with my non-standard working hours, deadlines that move ev-
erything else aside, and the growing farm of computer hardware. Without
her support and understanding I’d nev er hav e written this book.

Jacek Artymiak
Lublin, Poland
October 2003

Chapter 1

Introduction

What this book is about. What information you’ll find on
its pages. How to keep in touch with the author of this
book, the developer of pf, and the OpenBSD community.

This book explains how to build, configure, and manage IP packet firewalls
using commodity hardware, the OpenBSD operating system, and Daniel
Hartmeier’s pf packet filter. Its intended audience are network and security
administration professionals and the users of the OpenBSD operating
system. The material presented in this book requires basic knowledge of
TCP/IP networking and Unix. Readers unfamiliar with either or both of
these topics ought to consult [Stevens 1994], [Wright, Stevens 1994],
[Stevens 1994a], and [Frisch 2002]. Links to online bookstores selling
these and other titles mentioned in this book can be found at the following
address:

http://www.devguide.net/books/openbsdfw-02-ed/

1.1 Why Do We Need to Secure Our Networks

The reasons for securing computers and networks against attacks are in
many ways similar to the reasons for securing ourselves and our property
in the real world. The likely suspects, the problems they cause, and the
protection mechanisms we use to defend ourselves are often quite alike, it
doesn’t matter that we are dealing with 1s and 0s. In an ideal world, there
would be no need for fences, gates, or locks, because the good side of the
human nature and the laws of our society would be enough to protect our-
selves, our privacy, and our property.

Unfortunately, we are not living in such a world nor we are likely to create
one on this planet or anywhere else, at least not anytime soon. The fact that
a small, but nevertheless noticeable through their actions, percentage of this
world’s population breaks laws, steals our belongings, trespasses on our

6 Chapter 1: Introduction

property, and invades our privacy means that we must protect ourselves, our
loved ones, and all that we hold valuable. And so we raise fences, buy
padlocks, fit our homes and business premises with burglar alarms, and pay
bodyguards to ensure our safety, or to at least make us feel a little safer.

Things are no different in the networked world. Just like the real world
around us, the Internet gives people with malicious intent plenty of oppor-
tunities to perform their questionable activities. Even though a vast
majority of the people and the companies connected to the Internet mean no
harm to anyone and just want to get on with their business, there are people
who take a certain kind of pride in wreaking havoc online, stealing infor-
mation or disrupting network services. Some even turned it into a way to
make a living. They can spy on our communications, break into computers
and networks, block connections between machines, destroy data, falsify
records, and bring whole systems to a halt. Their motives are almost
always the same: money, the need to have something to brag about, the
attraction of a difficult challenge, ideology, rev enge, or plain curiosity.

Modern network technology gives attackers many ways to amplify the
power of their actions by using numerous compromised low-profile hosts to
launch attacks against selected high-profile sites. Equipped with automated
cracking tools and access to hundreds of compromised hosts, a single
person can potentially cause damage on a scale comparable to an attack on
a nuclear power plant or an oil refinery. And just as attacks on oil refineries
can create shortages of oil and raise costs of transport, attacks against
certain hosts on the Internet can slow down or cut off large portions of the
Internet damaging sales, communications or, in some cases, endangering
human lives. Of course, not all attacks are visible and discussed on CNN.
Instead of destroying things, someone may prefer to break into a network
and listen to communications, copy classified files, or change essential
records. Such covert operations can result in more damage than a mass-
scale attack on the Internet infrastructure. They are also more profitable to
an attacker than the 5 minutes of fame he (or she) gets on the global news
networks.

Even though many corporate, university, or home networks can have little
end value for an attacker, their sole ability to send packets on the Internet
can be worth a lot to someone who wants to break into them and use com-
promised hosts to launch an escalated Distributed Denial of Service
(DDoS) attack against other, more valuable hosts. Owners of computers

Section 1.2: Why Do We Need Firewalls 7

and networks connected to the Internet have a responsibility to keep their
network protected against external and internal attacks. If they don’t take
necessary precautions, they could be held responsible for damage done to
somebody else’s site. Taking all possible preventive steps is no longer an
option, but an obligation, which quite likely will soon be enforced by laws
declared by parliaments and governments around the world.

As usual, the best way to fight such attacks is through prevention. To avoid
problems and to keep the bad guys out, many org anizations invest large
sums of money into security software, hardware, training, and auditing.
This book shows how to sav e some of that cash using firewalls built with
top quality free open source security software.

1.2 Why Do We Need Firewalls

Firewalls are one of the most essential tools in the security professionals’
toolbox. Due to the nature of the work they perform, firewalls are the first
line of defense against external attacks. They consist of a mixture of
hardware and software placed at strategic points on the network, usually
somewhere near the points of contact with other networks. Their basic
purpose is to look at packets passing through them and letting those packets
pass or blocking them according to the packet filtering policy implemented
in the form of a list of packet filtering rules.

Over the last few years, firewalls acquired additional functionality and can
perform much more than just plain packet filtering. Packet normalization,
Network Address Translation (NAT), stateful filtering, packet logging,
support for spam filters, dynamic rulesets, and other additional advanced
functionality are now standard on many firewall products.

Although they are no silver bullet that magically fixes all problems, their
ability to scrutinize, redirect, modify, and log packets make firewalls an
ideal network security, audit, forensic, as well as management tool.

1.3 Why Open Source Software

Like almost all things in life, good security costs money. It has to be that
way, because there are simply not enough skilled security specialists to look
after all networks that need their attention. Organizations with deep

8 Chapter 1: Introduction

pockets can afford to employ well-paid professional staff who provide
better protection for their networks than organizations with tiny or non-
existent IT security budgets. This is not always the case, but exceptions to
this rule should not be used to justify cuts in spending on IT security.

An unfortunate result of low supply and high demand is the migration of
highly skilled personnel to clients who can meet their salary requirements.
This leaves a lot of small and underfunded networks in the hands of less ex-
perienced administrators, who might not know how to design, configure,
and monitor these networks’ safety mechanisms leaving them vulnerable to
attacks from unscrupulous people looking for inside information, free
warez storage, zombie hosts for DDoS attacks, or systems they can simply
make inoperable for the sheer fun of doing it.

But even a fat wad of cash does not always solve all problems for large
companies. Restricted by commercial licenses and limited by the size of
their security budgets, even the giants of IT often cannot afford as high
levels of protection as they would like to hav e. Fortunately, many good se-
curity products are now available for free and can be implemented using
commodity hardware components and commodity free open source
software (the word free is important here, as not all open source software is
free of licensing traps).

Using free open source software makes more sense today than ever, not
only because there are plenty of high-quality open source IT security tools,
but because those who learn them now, will be sought after tomorrow. The
world is entering the era of software commoditization. It will bring the cost
of purchase of many tools to $0.00 and raise the salaries of people who
know how to use these tools. The funds saved in that way can be moved to
training, purchases of specialist books (like this one), and better hardware,
which too can be built using commodity, off-the-shelf components, instead
of expensive commercial black boxes that often run modified versions of
free software anyway.

With so much high-quality free open source software available now and
ev en more coming in the future, the race between commercial and free open
source firewall software will soon be over, just as it happened in the fields
of HTTP servers (Apache), electronic mail distribution (sendmail, postfix,
qmail, and zmailer), server-side scripting (PHP, Perl, Python, Tcl),
databases (MySQL, PostgreSQL), and many other segments of the market.

Section 1.4: Why OpenBSD and pf 9

As Christopher Koch wrote in his recent CIO magazine article, ‘Any CIO
without an open source strategy in 2003 will be paying too much for IT in
2004.’ The full text of his article is available at the following address:

http://www.cio.com/archive/031503/opensource.html

Open source has another advantage: it levels the playing field, because
ev erybody is using the same tools, and in the case of security, it giv es ev-
eryone the same high level of protection. Although it might seem to be
against the interests of the big players, giving the same tools to the little
guys is actually good for both sides. It makes sense when you think about
it on a different level of selfishness. When the small guys can deploy top-
quality software to better protect their networks they will be less likely used
as launch pads for attacks against the rich guys’ networks.

1.4 Why OpenBSD and pf

Why should you use OpenBSD and pf to protect your network? There are
many reasons legal, financial, and technical.

As for the technical reasons, the first one is quite obvious; if you want to
use Daniel Hartmeier’s pf packet filter, you need to install OpenBSD, be-
cause it is closely integrated with that particular operating system. This
will soon cease to be the only option, as ports to FreeBSD and NetBSD are
already in the works, though it will be some time before they are fully inte-
grated with those other operating systems.

The next technical reason is the maturity of the BSD code base. There’s
over 25 years of development stored in that code since BSD was born in
1976. That’s a lot of experience in operating systems design stored in those
CVS archive, all available for free. As the BSD source code matures, it be-
comes more stable thanks to the system development model, which for all
free BSD systems is less dynamic than the development model of other free
operating system like Linux. You always know who is responsible for
what, and new code, although always welcome, is never accepted into the
CVS tree without thorough review.

Then, there is the obsession with security that the OpenBSD team is famous
for. Every new release of OpenBSD, published at regular 6-month interval,
delivers important security enhancements, which later find their way into

10 Chapter 1: Introduction

other operating systems. The source code undergoes periodic audits and
the project constantly develops and integrates new security and crypto-
graphy tools, often well ahead of other free and commercial operating
system developers. For example, the OpenBSD team was the first to ship a
working implementation of IPSec. Recent additions of propolice, systrace,
WˆX, and a non-executable stack greatly improve the overall security of the
system. The coming full PROT_ implementation will make it even more
secure. If you are not sure OpenBSD is a good choice, just for the fun of
watching their reactions, ask your operating system vendor’s representa-
tives about these features.

The OpenBSD project is also closely affiliated with the OpenSSH project,
which develops a free and open source implementation of the SSH1 and
SSH2 protocols that you may have already used. While many other free
and commercial operating systems often include similar security tools, the
ease of use, the compactness, and the close integration of every component
make OpenBSD a much better choice for security applications than Free-
BSD, NetBSD, or Linux.

As for the pf packet filter, it is a modern, solid piece of security software
that grows in functionality every month. It offers many features unavailable
on commercial firewalls. IPv4 and IPv6 packet filtering, NAT , stateful fil-
tering, packet normalization, dynamic rulesets, bandwidth shaping (inte-
grated ALTQ), load balancing, packet logging, spam filtering, and support
for user authentication on the firewall are only a few items on the list of its
standard features. If there is something one would want a firewall to do, it
is probably already implemented in pf, or it will be there in the next release.
Over the last two years, pf has earned excellent reputation for its ease of ad-
ministration, richness of options, stability, and performance. And, since pf
is running on top of a secure operating system, you can create your own
custom solutions not possible with commercial hardware or software fire-
walls. You can be sure that the next months and years will bring many
useful add-ons for pf.

Another good reason for choosing OpenBSD and pf is the freedom to con-
figure them as you like. You are no longer restricted by limited functionali-
ty, complex licensing schemes, or fees. No less useful will be the availa-
bility of OpenBSD and pf for many hardware platforms, including i386,
Sparc, Sparc Ultra, Alpha, and others. And, if you would like to hav e
OpenBSD or pf ported to another hardware platform, all you have to do is

Section 1.5: Cryptography and Law 11

download the code and get to work, or hire the OpenBSD developers to do
it for you. (It’s a win-win situation. You will get they tools you want, and
the OpenBSD developers will get funds they need to keep on doing their
great work for the world wide community.)

As for the legal reasons for using OpenBSD and pf, you should read the
BSD license. Unlike 99.999% of licenses, this one is a pleasure to read. It
makes OpenBSD truly free software, because it is not yet another GPL-
style viral licensing, but a business-friendly set of rules that anyone can un-
derstand in 15 seconds. (This is not to say that GPL is useless, but some
businesses cannot use software licensed under its terms.)

The following is not intended as a legal advice, but if you need to
convince your boss or company lawyer to use OpenBSD, try to bring to
their attention the fact that the BSD license lets anyone use the sources of
the software licensed under its terms for any purpose, including making
money with it. Such code can be merged with software licensed under any
terms, free or commercial, as long as you acknowledge the copyright of the
author(s) who created that code. It means that you can safely integrate
OpenBSD and pf into your existing network without fear of violating some
obscure licensing term. You can even package OpenBSD and pf and sell it
or embed it in your expensive black box hardware. Also, because Open-
BSD and pf are free (as in freedom and as in beer), you can install and use
them on as many machines as you like. This will surely impress your ac-
countants, lawyers, and bank managers.

1.5 Cryptography and Law

OpenBSD ships with strong free open source cryptographic software. Be-
fore you download or export it in any way, always check appropriate local
and foreign cryptographic laws. You can start your search with the Crypto
Law Survey page maintained by Bert Jaap-Koops:

http://rechten.kub.nl/koops/cryptolaw/ (Crypto Law Survey)

When in any doubt, always consult lawyers with expertise in crypto
import/export laws. Some countries consider cryptography a weapon and
punish people and companies using it as if they were smuggling weapons,
when it is done without the approval of appropriate bodies.

12 Chapter 1: Introduction

1.6 How This Book Is Organiz ed

The main text of this book is divided into sixteen chapters and four appen-
dices.

Chapter 1, Introduction is this introduction, which tries to explain why we
need to protect the computers and the networks we’re in charge of, why we
should use OpenBSD and pf, and how to keep in touch with the OpenBSD
project, developers, and the author of this book.

Chapter 2, Fire wall Designs presents popular firewall configurations and
discusses their uses, pros and cons. Every design is illustrated with a
diagram, and some less obvious designs are discussed as well.

Chapter 3, Installing OpenBSD discusses basic hardware and software
requirements that must be met to let OpenBSD and pf do their job. Also
discussed are factors that affect firewall performance and ways to improve
it.

Chapter 4, Configuring OpenBSD explains how to configure IP networking,
routing, kernel, and system startup scripts. The readers will also learn
about user management, system hardening, patching, and installing addi-
tional software,

Chapter 5, /etc/pf.conf introduces the reader to the structure of the pf config-
uration file, pf.conf and explains the use of macros in pf rules. Of
additional interest are sections on tools for editing pf.conf and a short
course in CVS.

Chapter 6, Pack et Normalization explains why it is a good security practice
to normalize fragmented packets, how it is done with pf, and how it helps
improve the accuracy of reports generated by Network Intrusion Detection
Systems (NIDS).

Chapter 7, Pack et Redirection shows when and how packet redirection is
used in Network Address Translation, Virtual Private Networks, network
administration and some of the firewall designs discussed in Chapter 2,
Fire wall Designs.

Chapter 8, Pack et Filtering dives deep into the subject of packet filtering.

Section 1.6: How This Book Is Organized 13

Rules, options, flags, shortcuts, and everything else that has to do with
packet filtering is covered there.

Chapter 9, Dynamic Rulesets discusses two important recent additions to pf:
tables and anchors, and their use in creating dynamic rulesets.

Chapter 10, Bandwidth Shaping and Load Balancing walks the reader
through the maze of the Alternative Queuing system (ALTQ), which was
recently integrated with pf. You will find there tips for defining ALTQ
queues and load balancing rules. Read this chapter if you want to keep
MP3 downloaders at bay or when you need to implement load balancing on
your servers or external connections to the Internet.

Chapter 11, Logging and Log Analysis is a description of various ap-
proaches to packet logging and analysis that can be implemented using pf
and other free open source tools.

Chapter 12, Using authpf describes the authpf authenticating gateway user
shell. This part of the pf package provides an additional level of security,
especially handy when you are working with wireless networks.

Chapter 13, Using spamd explains how spamd can be used with pf to make
spammers’ ways less profitable.

Chapter 14, Ruleset Optimization explores various methods of ruleset opti-
mization, from brute force to more streamlined rulesets.

Chapter 15, Testing Your Firewall walks the reader through the process of
firewall testing and ruleset debugging.

Chapter 16, Fire wall Management discusses the many facets of firewall
management and tools that help.

Appendix A, Manual Pages contains a list of manual pages related to pf
with short descriptions of their contents. Also included are tips on using
the system manual.

Appendix B, Rules for Popular (and Less Popular) Services, a quick refer-
ence for ruleset writers.

14 Chapter 1: Introduction

Appendix C, Rule Templates for Typical Firewall Configurations is a
starting point for constructing practical implementations of designs de-
scribed in Chapter 2, Fire wall Designs.

Appendix D, Helping OpenBSD and PF contains ideas for helping the good
guys who gav e us OpenBSD and pf.

1.7 Typographic Conventions Used in This Book

The right hand symbol (+) is used to mark the beginning of a line that was
too long and had to be broken into shorter pieces to fit on a printed page.
For example:

http://www.devguide.net/
+ books/
+ openbsdfw-02-ed/

is the equivalent of:

http://www.devguide.net/books/openbsdfw-02-ed/

Another thing that you may notice often in this book are words ending with
a number enclosed in a pair or parentheses. These are references to relevant
OpenBSD manual pages and the sections they belong to. For example,
when you see pf(4), it is a reference to the manual page for pf from section
4 of the OpenBSD manual. If you wanted to display it, you’d use this
command:

$ man 4 pf

Appendix A, Manual Pages contains essential tips on
using the OpenBSD manual as well as a list of manual
pages that you should start learning from.

1.8 Staying in Touch with the OpenBSD Community

The OpenBSD community has several meeting places on the Web. The fol-
lowing list mentions a few of those that make good starting points.

Section 1.9: Getting in Touch with the Author 15

http://www.openbsd.org (the official site of the project)
http://www.openbsd.org/mail.html (mailing lists)
http://www.benzedrine.cx (the home of pf)
http://www.deadly.org (The OpenBSD Journal)
http://www.kd85.com (all things OpenBSD in Europe)
http://www.onlamp.com/bsd (BSD DevCenter on the O’Reilly Network)
http://www.onlamp.com/pub/ct/58

(Securing Small Networks with OpenBSD by Jacek Artymiak)
http://www.bsdnewsletter.com (news from the world of BSD)
http://www.daemonnews.org (news from the world of BSD)
http://www.devguide.net

(publishers of books for the OpenBSD community)

1.9 Getting in Touch with the Author

Important updates, corrections, and announcements related to this book are
posted on the Web at the following address:

http://www.devguide.net/books/openbsdfw-02-ed/

If you would like to be kept updated on what Jacek’s doing, be the first to
hear about updates or new editions of this book, subscribe to the jacek-obsd
mailing list:

http://www.artymiak.com/mailman/listinfo/jacek-obsd

Bug reports, questions, and comments about this book should be sent to:

openbsdpf-ed-02@devguide.net

If you like this book, let others know about it!

16

Chapter 2

Firewall Designs

In this chapter we take a look at various firewall imple-
mentations and their applications in the real world. Also
discussed are site security policies, as well as advantages
and potential security risk of each fire wall design.

There are literally dozens, if not hundreds, of ways to deploy firewalls on
your network. Which one you choose depends on your site’s security po-
licy, network layout, usage patterns, and financial resources. But before
you start assembling the firewall, define exactly what you want it to do.

2.1 Define Your Local Packet Filtering Policy

One of the elements of the written site security policy ought to be a chapter
describing the local packet filtering policy. It can be as simple as saying
‘‘We do not allow any traffic from the outside, unless it is in response to the
requests sent from hosts on our LAN,’’ or it can be a thick book of rules de-
tailing what kind of traffic goes in or out; or, it can be anything in between,
depending on the local and international laws, your organization’s needs,
and the patterns of network usage, and many other factors that influence the
process of establishing these rules. The only requirement is that you have it
in writing, approved, stick to it, and revise it periodically as well as in
response to new threats, attacks, and changes in network configuration.
That way you’ll be less likely to invent excuses to be lazy and not im-
plement it. Another very important reason to have these rules in writing
and approved by your superiors, or even audited by third parties, are the re-
quirements of insurers who expect that such rules exist and are properly
written, implemented, and audited. Also, if you are ever taken to court, an
official piece of paper is a good thing to have. Of course, no matter what
your site security policy says, your goal is always the same: achieving max-
imum protection from attacks originating from the outside and from the in-
side of your network while providing convenient access to various services.

18 Chapter 2: Firewall Designs

Although it may not seem very polite to view your local users as potential
attackers, and you might be right trusting them, at the same time you cannot
be completely sure that someone, somehow hasn’t broken into their com-
puters in order to launch an attack against other sites or to spy on internal
communications.

While you are planning various ways to keep intruders at bay, yet another
important goal is to wisely use your security budget in order to save re-
sources for handling emergencies and for the things that are not available
for free like books, training, consulting, or hardware.

Once your site’s security and firewall policies are stated in writing, you
must implement them in practice, and review them periodically to accom-
modate changes in your network, your needs, and the threats that your
network is facing.

Site security policies are a broad topic and we do not
have enough space in this book to cover them in detail,
but there are books that can help. For example, an ex-
cellent discussion of security policies and other network
and system administration issues can be found in [Limon-
celli, Hogan 2002].

2.2 What Is a ‘Firewall’?

Generally speaking, a firewall is a method of protecting hosts and networks
connected to other hosts and networks against attacks (we define attacks as
attempts to gain unauthorized access to your network, disruption of ser-
vices, listening to or altering communications, stealing data or software, al-
tering data or software) from the outside and from the inside. We use the
word ‘firewall’ when we speak about various network configurations build
for that purpose, although it is also used to describe software products and
hardware devices also known as ‘packet filters’ that sit between two or
more hosts or networks and filter packets according to a set of rules written
by the person who oversees their operation.

What packet filters are good at is matching packets’ headers and payload
against a set of rules that establish packet filtering policies. Everything else
that packet filters do builds on top of that basic functionality.

Section 2.3: What Firewalls Are Not 19

2.3 What Firewalls Are Not

The wrong way to think about firewalls is to assume that they are some sort
of magic silver bullet that automatically provides full protection to any host
or network that uses them. Of course, they can control who connects to
what, but they cannot prevent information leakage if someone places classi-
fied documents on your company’s web server or copies the latest sales fig-
ures to a disk and sells it to your competition. Having said that, firewalls
can log traffic passing in and out of them, which makes it easy to find out
just how that secret memo found its way to the competition, or which host
was compromised by the attacker. An even more sophisticated packet filter
could look at the payload of each packet (such solutions are already avail-
able) and silently inform appropriate law enforcement authorities when it
detects certain keywords indicating that classified documents are being sent
outside the company.

When you are implementing a firewall, you should also
think of a larger picture: physical site and network secu-
rity, user education, and proper hardening of all hosts
protected with the firewall, as well as the firewall itself.
(Host hardening involves turning off non-essential ser-
vices, applying patches, enforcing the use of secure
passwords, and using secure user authentication.)

2.4 Hardware vs. Software Firewalls

Marketing people often talk about software fire walls and hardware
firewalls, as if they were two different species. According to the glossy
marketing literature published by various vendors, software firewalls are ap-
plications you install on top of an operating system, while hardware
firewalls are these magic boxes that you plug between your router and your
network. In reality, there is no such thing as a software or hardware
firewall, because they all are packet filters implemented using a mixture of
hardware and code. The software might be saved on an EPROM chip en-
cased in a nice plastic box with little connectors sticking out of it, but the
hardware alone won’t work if there is no software to drive it. So, when
someone speaks of a hardware firewall, they are talking about a piece of
software sold together with a specialized piece of hardware that runs that
particular packet filtering software.

20 Chapter 2: Firewall Designs

2.5 Firewalls Great and Small

We will now discuss various popular firewall designs used in all kinds of
network installations, large and small. Please note that there usually are
many ways to implement these designs and there may be certain risks asso-
ciated with these implementations. These differences are also discussed to
help you decide what you need. Sample templates for each design are pro-
vided in Appendix C, Rule Templates for Typical Firewall Configurations.

2.5.1 Screened Host

A screened host is a machine protected from external attacks with a packet
filter. It implements a very simple and secure firewall policy:

• No inbound packets pass through the packet filter unless they arrive in re-
sponse to the requests sent from the screened host.

(a)

Internet

router

packet filter

screened
host

(b)

Internet

router

screened
host with

packet filter

Figure 2.1: A screened host can be protected with a separate packet filter (a) or it
can run packet filtering software itself (b).

Such hosts can be connected directly to the Internet or they can be a part of
a Local Area Network (LAN). That way of limiting access from the out-
side is usually employed to protect workstations, desktop PCs, or laptops
used at home, in a small office, or on the road. The packet filter can be (a)

Section 2.5: Firewalls Great and Small 21

an external device plugged between the host and the rest of the network or
(b) it can be implemented purely in software running on the screened host.

In design (a) the packet filter can be a special purpose device running
packet filtering software, or it can be a separate computer running packet
filtering software on top of some operating system, such as the OpenBSD/pf
duo. Protecting laptops in that way can be a little problematic, because the
weight and the size of a separate packet filter device make it too incon-
venient to carry around, so design (b) is a good compromise. Design (a)
can be further enhanced with the use of OpenBSD and pf(4) configured as
an ‘invisible’ filtering bridge (discussed later in this chapter, and in Chapter
4, Configuring OpenBSD).

Design (b) requires the use of packet filtering software written specifically
for the operating system running on the screened host. Therefore, if one
wants to use design (b) and run pf(4), there is no other choice but to run
OpenBSD, or one of the systems that pf(4) has been ported to.

When a change of the operating system is not an option,
design (a) with the packet filter as a separate piece of
hardware ought to be used.

Separating the packet filter from the protected host in the way it is done in
design (a) is a more secure solution, because it prevents avoids the situation
when a software failure in the packet filter or in the operating system of the
screened host automatically gives the attacker access to that host.

Range Network/Mask
10.0.0.0 to 10.255.255.255 10/8

172.16.0.0 to 172.31.255.255 172.16/12
192.168.0.0 to 192.168.255.255 172.168/16

Table 2.1: Private IPv4 addresses as defined in [RFC 1918].

In both designs, the screened hosts must use public IP addresses unless they
are on a LAN segment that uses private IP addresses. When the packet
filter in design (a) is not configured as a filtering bridge, it will also need to
have a routable public IP address unless the packet filter and the screened
host are on a LAN segment that uses private IP addresses. If you are short

22 Chapter 2: Firewall Designs

of public IPv4 addresses, you will need to configure the packet filter as a
filtering bridge or assign the public address to the packet filter and config-
ure it to perform Network Address Translation (NAT) before it performs fil-
tering. In that case, the screened host has a private IPv4 address from the
range defined in [RFC 1918] and shown in Table 2.1. Of course, the prob-
lem of not enough IP addresses should not appear when you are using IPv6,
which has a much wider address space. If you need to use NAT with
IPv6, use site-local addresses FEC0/10 through FEFF/10 (see Chapter 5,
/etc/pf.conf).

When the screened host has more than one network inter-
face, it will need to be protected with packet filters at all
points of contact with the outside world, or it will be
quickly broken into.

2.5.2 Screened LAN or Screened LAN Segment

When your needs grow and you connect two or more computers together,
you are starting to build a LAN. And when you want to connect your LAN
to the Internet or other networks, you must decide how you are going to
protect it. One popular design is a screened LAN or a screened LAN
segment. A screened LAN is in many ways similar to the screened host
described in the previous section. It even implements a similar firewall
policy:

• All inbound packets are blocked unless they are sent in response to re-
quests sent from the hosts on the screened LAN.

There are three possible implementation scenarios: the LAN can be pro-
tected with (a) a separate dedicated device (a boxed packet filter or a com-
puter running packet filter software); (b) it can be a collection of screened
hosts; or (c) it can be a mixture of (a) and (b).

Obviously, solution (a) is easier to manage, but it provides a single point of
failure and does not provide as high a level of protection against attacks
launched from the internal hosts against their neighbors on the same LAN.
The internal security of design (a) can be increased a little bit, if you use an
Ethernet switch instead of a hub to connect the hosts on the screened LAN.
This will make it more difficult to spy on communications, but it does not
solve all internal security problems associated with that design.

Section 2.5: Firewalls Great and Small 23

Internet

router

packet filter

hub/switchjoe

ann

terry

fiona marc

julia

don

sarah

Figure 2.2: A screened LAN or a screened LAN segment protected with a separate
packet filter.

Someone might say that an important advantage of design (a) is its lower
cost, compared to design (b), but that argument may not be as strong when
free software like OpenBSD and pf(4) is used to implement the firewall and
when the company policy explicitly states that each host must be protected
by a separate packet filter. This is not as unreasonable as it sounds, a failure
of the packet filter in design (a) exposes all hosts on the LAN it protects,
while a failure of a single packet firewall in design (b) compromises only
one host, assuming that the other hosts on the same network do not trust
each other and do not accept inbound connections without secure authenti-
cation and authorization.

When the screened LAN has more than one network inter-
face connecting it to the outside world, it will need to be
protected with packet filters at all points of contact with
the outside world, or you will not be able to protect it at
all. This policy must be strictly enforced and users
cannot add any network interfaces on their own.

24 Chapter 2: Firewall Designs

Internet

router

hub/switchpfjoe

pfann

pfterry

pffiona pf marc

juliapf

pf don

sarahpf

Figure 2.3: A screened LAN or a screened LAN segment can be a collection of
screened hosts.

The IPv4 addressing issues for the screened LAN are similar to those for a
screened host; every host must have a public IPv4 address unless the
screened LAN is a part of a larger network that uses private IPv4 addresses
or unless you choose design (a) and configure the packet filter to perform
NAT. And don’t forget to assign IPv4 addresses to the firewalls in design
(b), unless you configure them as filtering bridges. NAT will help you
make better use of your IPv4 address pool and rise the level of security of
your LAN. Using it is not obligatory, but if it doesn’t cost you a dime, why
not use it? Again, IPv6 addressing makes the shortage of IPv4 addresses
irrelevant, but it will still be a some time before everyone switches to IPv6.

2.5.3 Bastion Host

The design of a bastion host is similar to that of a screened host. The only
differences between them are the configuration of the packet filter and the
kind of services such host is running. Typical candidates for bastion hosts
are all kinds of Internet and intranet servers: DNS, FTP, HTTP, NNTP,
SMTP, etc. The packet filter protecting a bastion host implements a less se-
cure policy than the packet filter protecting a screened host:

• Some inbound connections to selected services are permitted.

Section 2.5: Firewalls Great and Small 25

• Outbound connections can pass through the packet filter only when they
are required to ensure proper functioning of the bastion host, or to serve
incoming connections.

(a)

Internet

router

packet filter

bastion
host

(b)

Internet

router

bastion
host with

packet filter

Figure 2.4: A bastion host can be protected with a separate packet filter (a) or it can
run packet filtering software itself (b).

Since the bastion host is fully or partially exposed to the outside world, it is
extremely important that it will be well-protected against attacks. The
packet filter is only one half of the whole solution, the other half is proper
configuration, hardening, and monitoring of the bastion host. In particular,
it should not be running non-essential services that provide another way in
for the unwanted visitors. Ideally, one bastion host should be running only
one kind of publicly accessible service, i.e. DNS or HTTP or FTP, but not
FTP and SMTP and NNTP. The simpler the overall configuration, the
easier to manage and the more secure it will be.

The IPv4/IPv6 addressing issues for a bastion host are identical as those for
the screened host.

2.5.4 Demilitarized Zone (DMZ)

It is quite common for a LAN connected to the Internet to start exposing
some of its resources to the outside world, be it an HTTP server, and FTP
store, or an NNTP site. This creates all kinds of security hazards that the

26 Chapter 2: Firewall Designs

network and the firewall have to cope with. If you have plans to offer
external access to some services, isolate them in a Demilitarized Zone
(DMZ).

The DMZ design consists of at least one, more often two or more LAN seg-
ments, one screened and one with bastion hosts. The simplest DMZ design
needs three network interfaces, one connecting the packet filter to the out-
side world, one connecting the packet filter to the screened LAN segment,
and one connecting the packet filter to the DMZ segment.

The packet filter must have rules that implement the following policy:

• Hosts on the screened LAN have access to the outside world.
• Hosts on the screened LAN have limited access to the bastion hosts in the

DMZ.
• External hosts have limited access to the bastion hosts in the DMZ.
• Bastion hosts in the DMZ do not have access to the screened LAN

segment.
• Bastion hosts in the DMZ have limited access to the outside world.
• External hosts do not have access to the screened LAN segment.

Internet

router

packet filter

hub/switchjoe

ann

terry

fiona marc

julia

don

sarah

hub/switch

NNTP

SMTP

HTTP

FTP

(DMZ)

(Screened LAN)

Figure 2.5: A screened LAN and a DMZ segment.

Section 2.6: Invisible Hosts and Firewalls 27

IPv4/IPv6 issues and the need to secure all external interfaces mentioned in
previous designs also apply in the DMZ design. The filtering bridge and
NAT configurations also have their place in this kind of design.

Although the DMZ design is slightly more complex, it is a
bad idea to save money by placing publicly accessible
servers in the screened LAN and configuring the packet
firewall to let inbound traffic in. When one host becomes
compromised, all other hosts on that LAN are also at risk.
When someone breaks into an HTTP web server running
in the DMZ LAN segment, it will only pose some danger
to the bastion hosts in the DMZ, but not to the hosts in the
screened LAN. You can protect hosts in the DMZ with
separate packet filters, in order to raise the level of their
security even higher. Such solutions may be required for
high-profile sites.

2.5.5 Large-Scale LANs

Large scale LANs are usually configured as a mixture of variations of all
four designs mentioned in the earlier sections, connected to a high-speed
backbone. Each host and LAN segment connected to the backbone must be
protected with its own local firewall and these must be designed in such a
way that they form a coherent large-scale firewall. It is a huge logistical
problem and the trend to put everyone and everything on the Internet will
only make it worse. For ideas on how to build, manage, and protect large-
scale LANs refer to [Cheswick, Bellovin, Rubin 2003], [Dooley 2002],
[Frish 2002], [Limoncelli, Hogan 2002], and [Yuan, Strayer 2001].

2.6 Invisible Hosts and Firewalls

The dramatic growth in the number of hosts connected to the Internet
caused a shortage of IPv4 addresses. To solve that problem, researchers de-
signed the next generation of IP called IPng or, more recently, IPv6. How-
ev er, the simple expansion of the IP address space, although useful for net-
work architects and administrators, does not change much from the point of
view of security. (OK, this is only partially true, because IPv6 does include
some handy security enhancements, but we cannot use them yet due to low
proliferation of IPv6 networks.)

28 Chapter 2: Firewall Designs

Tw o interesting solutions that lower the number of IP addresses needed to
implement a firewall while providing additional security are: filtering
bridge and NAT.

2.6.1 Filtering Bridge

An Ethernet bridge is a device that connects two network segments. It is a
close relative of an Ethernet switch, which actually evolved from early Eth-
ernet bridge designs. A nice feature of both of these devices is their lack of
need for a separate IP address. This is handy from the point of view of se-
curity, because a device without an IP address is invisible to other hosts on
the network and cannot become the target of an attack. Although you can
buy a good hardware bridge or switch for a modest amount of money, it is
beneficial in some situations to implement it using an ordinary PC equipped
with a bunch of Ethernet cards or other types of network interfaces, running
OpenBSD and pf(4). Such machine will be able to do what bridges and
switches do as well as packet filtering, packet logging, load balancing,
bandwidth shaping and much more, in IPv4 and IPv6. Such setup is also
call a filtering bridge.

The only tiny problem is the other side of the bridge’s invisibility. It has no
IP address, so how do you log on and manage it? Well, when the bridge is
sitting in your office or server room, you could add a monitor and a
keyboard, or a serial console to it, but that is not very convenient, although
very safe, provided that the physical access to the console is well-secured.
A better solution is to add another Ethernet card not used in the bridge set-
up and connect it to your network management workstation.

Be careful! By doing this you could be creating a back-
door way to break into the bridge.

However, if you design a separate network management LAN properly sep-
arated from the LAN you manage (a screened LAN with multiple connec-
tions to the main LAN, all protected from external access) it will be quite
secure. Various designs are possible, Figure 2.6 shows one that could be an
inspiration in your own search for security without sacrificing the ease of
management. Information on how to configure a filtering bridge with
OpenBSD and pf(4) is provided in Appendix C, Rule Templates for Typical
Fire wall Configurations.

Section 2.6: Invisible Hosts and Firewalls 29

Internet

router
a.a.a.a

b.b.b.b

filtering bridge
no IP address

no IP address

hub/switch

(Screened LAN #1)

Internet

router
c.c.c.c

d.d.d.d

filtering bridge
no IP address

no IP address

hub/switch

(Screened LAN #2)

(Screened LAN #3)

hub/switch

no IP address
filtering bridge
no IP address

router
e.e.e.e

f.f.f.f

Internet

(Screened LAN #4)

hub/switch

no IP address
filtering bridge
no IP address

router
g.g.g.g

h.h.h.h

Internet

admin. LAN: hub/switch
admin.

workstation
10.1.1.1

10.1.1.210.1.1.3

10.1.1.4 10.1.1.5

Figure 2.6: Four separate screened LANs protected with filtering bridges. The
bridges are connected to an isolated administration LAN 10.1.1.0/24 (in bold).

30 Chapter 2: Firewall Designs

2.6.2 Network Address Translation (NAT)

NAT is used to hide real IP addresses of hosts connected to a NAT device
and to redirect packets to arbitrarily chosen addresses and/or ports. That
simple functionality can be used in many creative ways in network security
and administration.

Although NAT is often associated with firewalls, such as pf(4), it is a totally
independent mechanism. The fact that it is integrated with many packet
filters is merely a proof of its good fit. You can learn more about NAT from
Chapter 7, Pack et Redirection.

2.7 Additional Functionality

Although all firewalls are based on packet filtering, often combined with
NAT, this is not all that OpenBSD and pf(4) are capable of. The following
list mentions many additional functions that OpenBSD and pf(4) can be
configured to perform:

• Proxy — when you use OpenBSD and pf(4) in your firewall, it is also
possible to run FTP, WWW (Squid), and other proxies, such as: totd,
tinyproxy, proxy-suite, jftpgw, or balance on the same computer. (Try
doing that with your ‘hardware firewall’.) You’ll find them in the Open-
BSD packages and ports collections as well as on the Internet. Adding
software to OpenBSD is described in Chapter 4, Configuring OpenBSD.

• Pack et logger — as crackers increase their activities on the Internet and
various intranets, the number of organizations that record all traffic
passing in and out of their networks will grow. Military and many gov-
ernment agencies have been doing this for many years, as have large
financial institutions, corporations, and other organizations storing and
processing sensitive information. With OpenBSD and pf(4), packet
logging can be easily added to any of the firewall designs described
earlier in this chapter. Apart from being able to perform packet filtering
and redirection, pf(4) can be used as a packet logging and analysis station,
either in conjunction with filtering and/or redirection or as a separate
module. You can learn more about logging from Chapter 11, Logging
and Log Analysis.

• Network Intrusion Detection Systems (NIDS) — a more advanced way to
monitor traffic passing through the firewall is with some sort of a Network
Intrusion Detection System (NIDS), such as snort (available in the

Section 2.7: Additional Functionality 31

OpenBSD packages and ports collections). This book does not describe
snort as this is a subject for another book, but the subject of pf(4) cooper-
ation with NIDS returns on many of its pages.

• Failover, load balancing, Quality of Service (QoS) — with pf(4) config-
ured to do NAT and ALTQ (recently integrated with pf(4)) it is possible to
create custom failover, load balancing, and Quality of Service (QoS) con-
figurations. This is something we discuss in Chapter 10, Bandwidth
Shaping and Load Balancing.

• User authentication — an additional layer of security can be built into
each of the firewall designs discussed in this chapter with the use of
authpf(8), the authenticating gateway user shell. This is particularly im-
portant for securing wireless networks. You can learn more about it from
Chapter 12, Using authpf(8).

32

Chapter 3

Installing OpenBSD

In this chapter we discuss various ways to obtain Open-
BSD, basic system hardware and software requirements,
and the process of installing OpenBSD on a typical PC-
compatible computer.

Since pf(4) is closely integrated with the OpenBSD kernel, the easiest way
to obtain it is to install the OpenBSD operating system. Until recently it
was also the only choice, but that changed after pf had been ported to
FreeBSD and NetBSD. However, since these ports have yet to undergo
thorough testing in production environment, they are not described in this
chapter. Of course, as soon as they are accepted for wide use by the Free-
BSD and NetBSD user communities, the process of installing them will be
covered in future editions of this book. The rest of the information present-
ed in this book applies to pf(4) running on FreeBSD, NetBSD, OpenBSD,
or any other system that pf is ported to in the meantime. Readers interested
in finding out more about the FreeBSD or the NetBSD port are invited to
visit these pages:

http://pf4freebsd.love2party.net/ (FreeBSD port)
http://foo.unix.se/joelw/pflkm.html (NetBSD port)

3.1 Software Requirements

To begin your adventure with OpenBSD and pf, you will need a copy of the
OpenBSD operating system, version 3.4 or later. It can be obtained in sev-
eral ways. The recommended way is to purchase the official OpenBSD
CD-ROM set from the online store:

http://www.openbsd.org/orders.html (the offical OpenBSD online store)
http;//www.kd85.com (kd85.com, the official European distributor)

34 Chapter 3: Installing OpenBSD

You can also download it from the project’s official FTP server or one of its
many mirrors scattered around the globe. If you decide to download the
system, try to use the nearest mirror. That way you will put less strain on
the official OpenBSD server. Using a mirror may be the only option around
May 1 and November 1, when new releases of the system are being made
available for download to the wild wide world and the official FTP server is
swamped with requests.

ftp.openbsd.org (the official OpenBSD FTP server)
http://www.openbsd.org/ftp.html (various mirrors)

If you want to download OpenBSD, but don’t know where
to start, you will find step-by-step instructions later in this
chapter.

3.1.1 Buy Official OpenBSD CD-ROM Sets

Many users purchase original OpenBSD CD-ROM sets even when they
download the same software for free from the Internet. This is no charity,
but a smart investment in your own future, in the tools you use to make
money. If you want the OpenBSD project to continue publishing two re-
leases of their great software a year, then a small contribution in the form of
a purchase of the official CD-ROM set is a good way to help it happen.

A purchase of the official CD-ROM set is also a good way to prove that the
software you or your company use is legal. And, believe it or not, it may
help in dealings with tax authorities. Users in various countries report that
tax and software auditors grow suspicious, when you cannot show them the
invoice, the license, the CD-ROMs, and the box that the software came in.
As you can see a few dollars paid to the project can save you a lot of hassle.
That’s why businesses pay for official boxed releases of Linux, FreeBSD,
and NetBSD even though the same software is available for free. Why not
do the same with OpenBSD?

For more suggestions on how you can help the project see
Appendix D, Helping the OpenBSD Project near the end
of this book. The PDF version of that appendix is also
available on this book’s website. You are free to copy it
or link to it.

Section 3.1: Software Requirements 35

3.1.2 Additional Software Requirements

What other software, besides a copy of OpenBSD itself, you will need to
install OpenBSD depends on the way you obtained it and the hardware you
have at your disposal:

• A copy of another operating system running on another computer. If the
machine that you will be installing OpenBSD on has a CD-ROM drive
which it can boot from and you have a bootable OpenBSD CD-ROM (like
the official OpenBSD CD-ROM set), then you need no other software. In
some cases, you will need another computer that you can use to create a
boot floppy disk. The boot disk will be needed in three cases: when you
want to install the system from a non-bootable CD-ROM, when a
bootable CD-ROM won’t boot, or when you want to install OpenBSD
over a network (another computer, LAN, or the Internet). Boot floppies
can be created under Linux, OpenBSD, FreeBSD, NetBSD, or any other
Unix; or you can use one of the recent versions of Microsoft Windows
(95, 98, Me, NT, 2000, or XP). While it might be possible to create boot
floppies under the old operating system before you replace it with Open-
BSD, it should be your last resort, because it is difficult and often impos-
sible to recover the old system once you get beyond the disk formatting
stage during installation. You’ll learn how to create them later in this
chapter. If you decide to install the system over a network or from an-
other computer (using two Ethernet cards and a crossover cable), you will
need that other computer’s operating system to run an FTP, HTTP, or NFS
server, or the installation script will not be able to download it to the
target machine. Again, this can be some flavor of Unix, Apple Mac OS
X, Microsoft Windows, or something else, capable of serving FTP, HTTP,
or NFS.

• Hardware configuration utilities, drivers. You should download all avail-
able configuration utilities for your computer, disks, controller cards, net-
work interface cards, and the actual chips that these cards use. When the
card manufacturer does not offer these on their web site, have a look at
the chips’ markings and go to the chip manufacturer’s site.

• A DOS boot disk. (This applies to i386 machines.) You’ll need it if you
want to use the configuration utilities for network cards, RAID con-
trollers, or other hardware. The procedure is simple: boot from the DOS
disk and then run the configuration program (some floppy disk swapping
will be required). When you do not have a copy of a DOS boot disk, you

36 Chapter 3: Installing OpenBSD

can use the rescue disk for Microsoft Windows 95, 98, or Me. Since it is
unclear what Microsoft thinks of using MS-DOS or Windows boot disks
to configure computers in order to install other operating systems, the
readers should either obtain a legitimate copy of MS-DOS or MS
Windows that you will use for that purpose, or buy a copy of PC-DOS
from IBM, or better still download FreeDOS, a free DOS clone:

http://www.ibm.com/software/os/dos/ (IBM PC-DOS)
http://www.freedos.org (Fr eeDOS)

Once you have DOS in one form or another, make a boot disk, remove all
unnecessary files from it, and replace them with the configuration utilities
to avoid constant shuffling of the system and utility floppies.

3.2 Hardware Requirements

The computer that you will install OpenBSD on must be one of the archi-
tectures supported by OpenBSD and any devices that it is equipped with
must also be supported by the system. Otherwise, some devices will not be
visible to the system or, in rare cases, they may prevent OpenBSD from
working at all (that can be cured with some kernel tweaking described in
Chapter 4, Configuring OpenBSD). The list of hardware supported by each
release of OpenBSD can be found in the HARDWARE file located in the
root directory of that release, e.g. if you are downloading OpenBSD 3.4
from the official FTP server, you will find it in /pub/OpenBSD/3.4/HARD-
WARE. Note that this list is not exhaustive, because some companies li-
cense their hardware to others or make their products compatible with those
that are widely accepted as de facto standards, like the famous Novell
NE2000 Ethernet network card. Speaking of network cards (and other de-
vices), you should always look for compatibility with the chipset on the
card or on the mainboard, not necessarily with the name printed on the box
that the component in question came in.

3.2.1 Which Hardware Platform Should You Choose?

The first hardware choice you need to make is about the hardware architec-
ture you want to run OpenBSD on. As of release 3.4 there are ten to choose
from, some more popular than others, but if it is the first time you are

Section 3.2: Hardware Requirements 37

installing OpenBSD, then the obvious choice is i386, aka. the PC. It is
recommended for first-time users of OpenBSD, because most people
use it and there is much greater chance of finding a helping hand when
things go wrong with the hardware/operating system interactions. Later,
when you are comfortable with using OpenBSD in production environment,
you should consider other hardware architectures, not because it is cool, but
because it is highly advisable for security reasons.

That’s right. Maintaining hardware platforms diversity is
a good security practice, because the majority of rogue
software that targets hardware is written with the i386 ar-
chitecture in mind. This is less of an issue for a stan-
dalone, tightly secured firewall, but if you were running a
DNS or web server on the same machine that you run
your firewall on (not a good security practice, but un-
avoidable at times), then simply switching to another
platform would make such server less vulnerable to those
attacks that exploit the weaknesses in the i386 architec-
ture. This is not to say that there are no weak points in
other hardware arc hitectures, but their lower popularity
means that there are not so many people actively looking
for them and writing software tools that exploit them. Se-
curity through diversity is a good practice.

You should note though that not all hardware architectures may be suitable
for your needs. Running OpenBSD on an ancient Apple Macintosh with a
Motorola 680x0 CPU does have a certain ‘geek’ appeal, but using even the
fastest of them as a packet filter on a high-speed link is not a good idea.
Conversely, a decommissioned 300MHz Alpha workstation might be just
the right thing. If you are interested in exploring this subject further, the
latest list of supported architectures can be found on the OpenBSD Plat-
forms page:

http://www.openbsd.org/plat.html (OpenBSD Platforms)

Another good place to ask for help are the misc and ports mailing lists. To
find out how to subscribe to them, visit the Mailing Lists page:

http://www.openbsd.org/mail.html (OpenBSD Mailing Lists)

38 Chapter 3: Installing OpenBSD

Architecture Port Location INSTALL files
Digital Alpha alpha 3.4/alpha INSTALL.alpha

Hewlett-Packard hp300 3.4/hp300 INSTALL.hp300
HP 9000/300 and 400

workstations
Hewlett-Packard hppa 3.4/hppa INSTALL.hppa

PA-RISC
Intel i386 i386 3.4/i386 INSTALL.i386

INSTALL.ata
INSTALL.chs
INSTALL.dbr

INSTALL.linux
INSTALL.mbr

INSTALL.os2br
INSTALL.pt

Apple Macintosh mac68k 3.4/mac68k INSTALL.mac86k
(Motorola 680x0)
Apple Macintosh macppc 3.4/macppc INSTALL.macppc

(Power PC)
Motorola VME 680x0 mve68k 3.4/mve68k INSTALL.mve68k

motherboards
Sun SPARC sparc 3.4/sparc INSTALL.sparc

Sun UltraSPARC sparc64 3.4/sparc64 INSTALL.sparc64
Digital VAX vax 3.4/vax INSTALL.vax

Note that OpenBSD does not currently support Symmetric
Multi-Processing (SMP). Only one processor is used on machines

with more than one CPU.

Table 3.1: Hardware architectures supported by OpenBSD.

3.2.2 Motherboard

The motherboard in the machine you choose need not be an over-clocker’s
dream. Look for stable, server-grade products and avoid cheap all-in-one
units with integrated sound, video, and other bells and whistles. If you
want to use pf for logging packets, make sure the motherboard is equipped
with a fast ATA interface, at least ATA/66. This will not be an issue if you
decide to use a SCSI disk, as these will use separate PCI (not ISA, they are

Section 3.2: Hardware Requirements 39

too slow) SCSI interface cards (although you can buy good motherboards
with built-in SCSI interfaces). Another handy feature is dual BIOS or
BIOS with write protection, just in case someone messes with this essential
part of the system.

3.2.3 BIOS

Make sure that access to the BIOS can be protected with passwords and
check if you can disable booting from external devices like the floppy disc
after you install OpenBSD on the hard disk. A good BIOS ought to allow
the administrator to protect access to its settings with a password. An ev en
better BIOS design may use passwords to block Ctrl+Alt+Del keys, the
reset key, or even the power switch.

3.2.4 Processor

Unlike 3D graphics, or other math-intensive tasks, bossing TCP packets
around requires relatively little processor power. For example, a certain
very famous manufacturer of packet filters and routers uses Motorola 680x0
CPUs running at 20MHz! They are plenty enough for a packet filter, be-
cause they run in an environment optimized for that particular task. Packet
filters implemented on top of a general-purpose operating system require
more power, though not as much as many other pieces of networking soft-
ware.

Just how many CPU cycles your firewall machine will need depends on
several factors:

• The speed of the networks that the firewall is connected to. The faster
they are, the more packets they’ll move per second. The speed of the fire-
wall machine must be enough to keep up with the fastest of them, other-
wise your firewall will be loosing you plenty of money in unused, but
paid for, bandwidth. Assuming that the network interfaces you are using
can handle the speed the networks work at, you can be certain that a
100MHz Pentium can cope with 10Mbps of traffic. This rule is not set in
stone and will depend on several other factors, but it is a good starting
point.

• The length and the complexity of the firewall ruleset. Every packet
passing through the firewall is matched against all rules (except for NAT
rules, where the first rule wins) and every additional rule increases the

40 Chapter 3: Installing OpenBSD

total time it takes to check every packet. Although it may be only a few
milliseconds per packet, it will quickly add up, when you multiply it by
the number of packets passing through a busy link. You can decrease that
time using the optimization techniques described in Chapter 14, Ruleset
Optimization.

• Running Network Intrusion Detection System (NIDS) software. Intrusion
detection is something that requires a lot of power because it is a huge
database job that must be done very quickly. If you run an NIDS package
like snort on the firewall machine, make sure you buy the fastest machine
you can afford, because the signature database will grow very quickly as
will the time it takes to match every packet. Solutions to this problem
are: outsourcing the NIDS jobs to another machine (or a farm of
machines, read about it in Chapter 10, Bandwidth Shaping and Load Bal-
ancing) on the network, signature database optimization, adding RAM,
writing more generic signatures that can be matched more quickly.

• Running additional software. When you run a web server, or any other
additional software, plan to use a faster CPU. This may not be such a
huge problem, if you are running pf on your OpenBSD workstation for
the sole purpose of protecting that single machine. It will be an issue if
you are implementing a firewall running heavy proxy software, such as
Squid.

• Stateful filtering. This is something that will make your firewall work
faster, because once the initial packet passes through the firewall, all other
packets that belong to the same connection can pass without going
through the whole packet/ruleset matching procedure. Try to use stateful
filtering whenever possible and safe to do so. For more information refer
to Chapter 8, Pack et Filtering and read the section that describes the
keep state and modulate state keywords.

• quick rules. Proper use of the quick keyword can shorten the time it
takes pf to perform packet matching. You will learn more about this
keyword from Chapter 8, Pack et Filtering.

• Pack et logging. Writing and rotating logs takes time. Even though it is
mostly the job of the I/O subsystem, the CPU is involved in it as well, and
that takes time away from packet filtering. You can cure this by dele-
gating packet logging to another machine whose sole purpose is packet
logging. For more information refer to Chapter 11, Logging and Log
Analysis.

• Bandwidth shaping, Quality of Service (QoS), load balancing. Priori-
tizing packets requires additional CPU time, so if you want to use it, plan
for a faster CPU (and lots of RAM).

Section 3.2: Hardware Requirements 41

If all of the above seems to be vague, well, it is for a good reason. You
must decide for yourself how much CPU power you’ll need. A simple
packet filter setup with NAT will happily handle 10Mbps of traffic with
a 100MHz processor, 100Mbps of traffic will need a faster CPU, in the
200MHz range, although at that network speed other components like the
system bus, the mainboard, and the network interfaces will play a more sig-
nificant role.

A good rule of thumb is to bump the speed of the CPU up 100MHz every
time one of the features mentioned on the list on the facing page is added.
It is an extremely inaccurate rule, because some services like NIDS or
proxy servers also need more memory, but it gives you a rough idea of what
to expect.

Another important thing to remember is the lack of support for Symmetric
MultiProcessor (SMP) architectures, which should be available in the near
future, but for now OpenBSD cannot use more than one processor.

3.2.5 Memory

This one is easy. Choose the fastest memory you can buy and buy as much
of it as you can afford. The minimum amount of RAM required to run
OpenBSD is 24MB–32MB, which is quite enough for simple rulesets, but
the more the better. For filtering and NAT alone, pf is unlikely to need
more than 64MB. However, if you are planning to run some kind of proxy
software like Squid, you should plan for at least 128MB or 64MB plus
twice the amount of RAM that other software needs, just to be sure there is
no need to swap RAM to disk. Swapping is always expensive and slows
down the whole system, especially when the system is using ATA disks.
Additional functionality like bandwidth shaping or running NIDS (or any
other software beyond the basic system services) on the same machine, re-
quires more RAM, and another 128MB is the minimum amount of memory
required to avoid swapping.

In any case, you should plan for as much RAM as is necessary to avoid
swapping, which has a negative effect on network performance. For exam-
ple, if you notice that your network is periodically ‘choking,’ check if it
could be because the firewall host is busy with some disk I/O operations,
like swapping or rotating logs. Chapter 15, Testing Your Firewall contains
help on monitoring system and network performance.

42 Chapter 3: Installing OpenBSD

3.2.6 Disk Space

Modern operating systems occupy enormous amounts of space on disk and
we’ve grown used to the idea that all systems need huge disks to run. This
is not true in case of OpenBSD, which can function very well in limited
disk space, well under 1GB, which will most likely remain unused unless
you plan to save pf logs (see Chapter 11, Logging and Log Analysis).

Which disks should you use, ATA or SCSI? This is not such a huge issue
with pf, because the only time you will need access to disks is when you
load the system, load the pf ruleset, and write logs to disk. The only I/O in-
tensive action is writing logs, and ATA/66 should be plenty enough for that,
ev en if you are logging traffic on a 100Mbps link. Of course, the faster the
better. If you decide to use SCSI disks, check if the motherboard has a
built-in SCSI interface and if it is missing, buy a SCSI interface card. Make
sure that the disks are compatible with the interface card. As for the drives
themselves, ATA or SCSI, go for those with higher RPM ratings, lower seek
times, and larger cache memories.

When you plan to run NIDS or WWW proxy, get SCSI drives rated
7,200RPM or faster. In this case, it may also be a good idea to run some
sort of Redundant Array of Inexpensive Disks (RAID, discussed in Chapter
4, Configuring OpenBSD), which could be implemented in hardware, or
software. Some server-grade motherboards come with simple RAID imple-
mentations on-board. These usually won’t offer all of the features of a
separate dedicated RAID setup, but may be good enough for your purposes,
so it pays to investigate this option, because simplicity is better than top
efficiency achieved at the cost of high complexity.

Large disk support. When the hard disk will not boot, even though the
system installation went fine, you will need to make it bootable using the
hard disk or computer manufacturer’s configuration utilities. Sometimes,
particularly when dealing with machines with old BIOS, your system might
not correctly recognize the disk’s size. That should not affect the OpenBSD
installation, and you can simply make the disk bootable after you install
OpenBSD on it, using utilities downloaded from the disk or computer man-
ufacturer’s Web site. These tools might only be available from the major
companies’ sites, so it pays to buy new and used hardware made by those
that are still around, like Dell, Fujitsu, HP, IBM, Intel, Maxtor, Seagate,
Samsung, or Toshiba. Start your search on their support sites.

Section 3.2: Hardware Requirements 43

If you are still having problems, read the INSTALL documents appropriate
for your platform, where you will find detailed descriptions of various ways
to solve problems with large disks. On the i386 platform, additional infor-
mation about large disks can be found in INSTALL.ata, INSTALL.chs,
INSTALL.dbr, INSTALL.mbr, INSTALL.pt, and INSTALL.os2br.

3.2.7 Network Interfaces

The computer you want to run pf on needs to have at least one (preferably,
two) network interface, otherwise it will not be able to do much as a
firewall. Although you could experiment with writing filtering rules for
lo0 (the local interface, found in each Unix), it is not much fun and not
that helpful. The interface connecting the computer running pf with the
outside world can be an old dial-up modem, an ISDN terminal, a DSL box,
an Ethernet card, a wireless transmitter, or anything else that can transmit
and receive TCP/IP traffic.

While most of these devices are pretty standard, some may not be supported
by OpenBSD. Wireless cards and the so-called ‘winmodems’ (modems
with proprietary drivers written for the Microsoft Windows operating
system) are the common culprits, because their manufacturers try to keep
the technical details under wraps, to keep their secrets from the com-
petition. Developers of free software like OpenBSD cannot get access to
this information without signing some sort of a Non-Disclosure Agreement
(NDA), which prevents public release of the source code written using the
information they are given access to. And so this makes it impossible for
developers working on free software to write drives for such devices. This
is a fairly common behavior for manufacturers of any new kind of device
that appears on the market. Things usually get more civilized after a year
or two, when there is more competition on the market and the manufac-
turers decide to open their specification in order to gain more support for
their products. Before that happens, the solution is to use those devices that
are supported. The list of compatible hardware can be found in the HARD-
WARE file mentioned earlier in this chapter.

Apart from choosing a compatible network interface, you will also need to
find one that matches the speed of your connection to other networks and
the needs of the hosts or networks you are protecting. Another important
factor will be your budget. Let’s look at a few popular ways to connect
computers.

44 Chapter 3: Installing OpenBSD

Dial-up modems offer the lowest connection speeds and the least reliable
service, but they are still in use at many homes and businesses. It is gen-
erally inadvisable to use them for connecting more than a couple of
machines, but if there is no alternative, they’re better than nothing, even
with their maximum speeds of 56Kbps. A more reliable and faster, but
often outrageously expensive type of network interface is an ISDN modem.
They are still popular in Europe and the USA, especially in the creative
services and publishing industry, but their days are numbered with the
arrival of inexpensive DSL technology.

Various types of DSL modems work at much higher speeds (often under
10Mbps) and are generally more reliable than ordinary dial-up modems,
although not as much as Ethernet cards nor are they as fast. DSL services
are available in many speeds and at different prices, so it pays to shop
around for the best price/performance deal. When you check the specifi-
cations, make sure you find out what are the uplink (transfers from your
network to the outside world) and the downlink (transfers from the outside
world to your network) speeds you are being offered. A low uplink speed
may negatively affect availability of your in-house web server to the outside
world. DSL uplink speeds are always lower than downlink speeds, which
are important when you want to provide Internet access to a larger number
of people on your LAN.

Another thing to check before you sign on the dotted line,
are the clauses that forbid the user to connect more than
one computer via a single DSL modem or forbid the use
of NAT. If it is expressly forbidden, then you should
probably forget about this provider and find someone who
offers better terms, because there are no good reasons for
such clauses.

Yet another trap often found in DSL agreements are
transfer limits, which are used to extract additional cash
from subscribers who transfer large amounts of data. By
using such clauses telecommunication companies admit
that their networks do not have the capacity required to
handle concurrent transfers at maximum speeds that the
DSL modem they are selling are capable of. Much like
banks, which cannot pay back all of your money when
they go bankrupt.

Section 3.2: Hardware Requirements 45

Ethernet cards are by far the most reliable and the fastest of network in-
terfaces available today. They come in three speeds: 10Mbps, 100Mbps
(Fast Ethernet), and 1000Mbps (Gigabit Ethernet). These interfaces are
especially recommended for firewalls, because they are essentially a plug-
and-forget type of device. Of course, not all Ethernet cards are created
equal. There are some caveats that affect performance of the whole system
and you should make sure that you do not create a bottleneck. First of all,
forget the old ISA cards that you can buy a truckload for a dollar. They
slow down the whole system and are not worth the trouble they cause.
Always use PCI cards, and make sure that all cards you use work at
100Mbps. Older, 10Mbps cards can be used with 100Mbps equipment if it
is marked 10/100Mpbs, but if you mix 10Mbps and 100Mbps cards on the
same network segment you will slow down all devices on that segment to
10Mbps, unless you use a switch (some people use the name ‘bridge’)
instead of a hub. Using switches is good for your network performance and
security. Even though they are slightly more expensive than hubs, switches
are almost always a better choice. The only time when a hub is more useful
than a switch is when you want to monitor all traffic on a network segment
using a single machine (hubs send packets to every host on the same
network segment, switches only send packets to their destination hosts so
others cannot see them). But remember, if you can use a hub to listen to
communications, others can do it too so use it only as a temporary test tool
and replace it with a switch as soon as you are done. Why make the bad
guy’s jobs easier?

Another good decision is to use cards and switches that perform advanced
buffering of data. They are usually more expensive and come mostly from
big-name manufacturers like Intel or 3Com, but they are well worth their
price.

Also, it is well worth investing in cards that are faster than the networks you
will be connecting your firewall to. So, if a network segment works at
10Mbps, use a 10/100Mpbs card, and if it works at 100Mbps, use a Gigabit
Ethernet card. And yes, 10Gbps cards are in the works too.

Whatever speed your Ethernet cards are working at, always use twisted pair
cables for 10BASE-T, 100BASE-TX, or 1000BASE-T Ethernet (with RJ-45
plugs). Make sure that the cables you use are Category 5 (Cat 5) products.
Do not use thin coaxial cables (10BASE2), which are old, unreliable, and
can waste many hours of your precious time when you are trying to debug

46 Chapter 3: Installing OpenBSD

them. A single failure in a coaxial installation leaves all computers con-
nected to the same cable without access to the network, while a failure of a
single twisted-pair cable disconnects only one machine. When you enter
the realm of Gigabit Ethernet, you may also need to use fiber cables to min-
imize signal loss and maximize bandwidth. This will no longer be a small
network, but pf can handle these without problems. These and other issues
faced by administrators of large networks are discussed in [Dooley 2002]
and [Limoncelli, Hogan 2002].

The latest incarnation of Ethernet devices—wireless cards and access points
work at lower speeds and are more susceptible to signal loss than copper or
fiber cables. Try to use them only at those points in your network where
there is absolutely no other way to connect hosts or network segments.
And yes, OpenBSD does support PCMCIA cards, so you can protect your
ad hoc WiFi network with pf just fine (remember to use authpf(8), as
described in Chapter 12, Using authpf).

If you want to learn more about Ethernet, read [Spurgeon 2000]. For addi-
tional information about WiFi consult [Potter, Fleck 2002] and [Gast 2002].

3.2.8 Communicating with Your Computer During Installation

There are two ways to communicate with your computer during instal-
lation; you can use a keyboard and a monitor connected directly to the
computer or you can use a text terminal connected to the computer’s serial
port.

If the machine you will be installing OpenBSD on has a DIN or PS/2
keyboard connector and a VGA or an SVGA video card, then all you need
to see what is happening during installation is a standard VGA or SVGA
monitor and a matching keyboard. This is the most convenient option on
i386 machines although there are exceptions like the PC/104 or
PC/104-Plus Single Board Computer (SBC) embedded systems, which may
be configured to do without keyboards or video cards:

http://www.pc104.org (PC/104 & PC/104-Plus information site)

Other hardware platforms (e.g. Sun Sparc or Alpha workstations and
servers) usually let the operator control the machine via the serial port.
These machines offer full access to all settings, BIOS and hardware, and

Section 3.2: Hardware Requirements 47

don’t need to be connected to keyboards or monitors, which is very con-
venient in data centers or everywhere else where space is at a premium. To
install OpenBSD on such machines, you will have to find either a text
terminal (they sell used for around $20 on eBay) or a laptop equipped with
a serial interface (RS232) and a text terminal emulator, and connect one of
these devices to the serial port on the target machine.

Access to BIOS or hardware settings via the serial port is less common on
PC desktops or laptops, and not even all servers offer it as a standard
feature. This can be fixed with cards like the PC Weasel or the PC Weasel
2000 available from Middle Digital, Inc., or the J1 card from Enidan Tech-
nologies, Ltd.

http://www.realweasel.com (Middle Digital, Inc.)
http://www.enidan.com (Enidan Technologies, Ltd.)

Before you connect to the serial port make, sure you have the right cable as
not all manufacturers use the standard 9-pin RS232 connector (it may be
marked as COM1, COM2, serial, terminal, or console). Also, make sure
that the gender of the plugs on the cable matches the gender of the con-
nectors on the target machine.

Another thing to look out for are the transmission settings, which should be
listed in the target machine’s manual, or somewhere on the outside of the
machine’s case. When you cannot find them, use the standard 9600 8N1
settings (that’s 9600bps, 8 Data Bits, No Parity, 1 Stop Bit). If you are
looking for a good terminal emulator (and an SSH client at the same time)
for Microsoft Windows, try Simon Tatham’s PuTTY:

http://www.chiark.greenend.org.uk/˜sgtatham/putty/ (PuTTY)

The software is free, but watch out for crypto laws in your
country. If you are unsure wether or not you are allowed
to use it, follow the advice in Chapter 1, Introduction.

If you are running Linux, BSD, or a commercial implementation Unix,
you’ll find plenty of free terminal emulators, all you have to do is search the
relevant package and port repositories:

http://www.openbsd.org/ports.html (OpenBSD)

48 Chapter 3: Installing OpenBSD

http://www.netbsd.org/Documentation/software/ (NetBSD)
http://www.freebsd.org/ports/index.html (FreeBSD)
http://rpmfind.net/Linux/RPM/ (RPM-based Linux)
http://www.debian.org/distrib/packages (Debian GNU/Linux)
http://www.slackware.com/pb/ (Slackware Linux)
http://hpux.cs.utah.edu (Hewlett-Packard HP-UX)
http://www.rge.com/pub/systems/aix/bull/ (IBM AIX)
http://freeware.sgi.com (SGI IRIX)
http://www.sunfreeware.com (Sun Microsystems Solaris Operating System)

3.2.9 How Are You Going to Install OpenBSD?

Another hardware issue to think about is just how OpenBSD will be loaded
onto the target machine’s hard disk. When you install OpenBSD for the
first time, choose a computer with a storage device that will make system
installation painless. A floppy disk drive will be sufficient, if you can plug
your computer to local LAN, or to the Internet in order to download the
system software; a CD-ROM drive will be enough when you want to install
OpenBSD from a bootable CD-ROM disc (yet another reason to buy the
official CD-ROM set); you will need both if you are installing from a non-
bootable CD-ROM disc. The CD-ROM drive can be either an ATA or a
SCSI device.

On some hardware platforms it may also be possible to boot from an
attached external ZIP drive, tape or network, but it is less common and
depends on the manufacturer or BIOS settings. Support for such instal-
lation procedures is typically found on PCs, workstations, or servers aimed
at a higher-end market. Check your computer’s manual to see if it possible.
You will also have to take care of creating a bootable ZIP cartridge, or tape.
The INSTALL files for each hardware platform contain useful hints, when
such installation procedures are possible. When in doubt, ask on the misc
or the ports mailing lists, or use your favorite web search engine to dig for
clues. Useful answers to these problems can often be found in Linux
HOWTO documents located at this address:

http://www.tldp.org (The Linux Documentation Project)

Another good place to ask for help are mailing lists serving the NetBSD
community, who are used to working with unusual configurations:

http://www.netbsd.org/MailingLists/ (the NetBSD mailing lists)

Section 3.2: Hardware Requirements 49

3.2.10 Tape Drives

If you plan to log all traffic passing through the firewall, you will have to
store it externally so it doesn’t fill all of the available disk space on the
firewall host. It will be necessary to invest in a fast tape drive, preferably a
SCSI unit. You will need to add it to the machine collecting logs, either the
one that’s running pf or a separate logging station. For more information
about logging and the log storage space requirements refer to Chapter 11,
Logging and Log Analysis.

3.2.11 Debugging Hardware

When hardware plays tricks, it is usually due to the problems with drivers,
which can often be debugged in three ways: (a) using different hardware
supported by OpenBSD, (b) editing the kernel (described in Chapter 4,
Configuring OpenBSD), (c) fixing the driver for the offending piece of
hardware (for advanced users only). Good sources of information are
INSTALL files (see Table 3.1) for the platform you are using, Linux
HOWTOs, the OpenBSD mailing lists, and the NetBSD mailing lists.

Sometimes a good book on hardware will be needed, such as [Rosenthal
2003]. Its author, Morris Rosenthal, provides a free boot sequence de-
bugging flowchart, which might be worth investigating:

http://www.fonerbooks/poster.pdf (boot sequence debugging flowchart)

3.2.12 Other Requirements

There are some other bits and pieces that should be considered, when you
are building a firewall:

• Connection to the Internet — essential if you want to connect your
network to the Internet, or when you want to install OpenBSD from the
Internet; optional, if you have OpenBSD on CD-ROM, tape, ZIP, or on a
server on your local network.

• Uninterruptible Power Supply (UPS) — for the firewall, internal hosts,
and all network equipment (routers, switches, hubs, bridges, printers, etc.)
OpenBSD has support for Advanced Power Management, see apm(4) and
apmd(8).

• Optical links to external networks — used to galvanically separate

50 Chapter 3: Installing OpenBSD

networks. Use them, if you do not want a stray lightning to fry your
LAN.

• Cables — network cables to connect the firewall to the outside world.

3.2.13 When in Trouble , Use the Manual

When you have a problem with a particular device, you should always
check the OpenBSD manual page for that device. Of course, you will not
have access to these pages before you install the system itself, but there is a
solution in the form of the online access to the manual pages located at the
following address:

http://www.openbsd.org/cgi-bin/man.cgi (OpenBSD Manual)

The online help system can be used to access all manual pages from the
past all the way to the latest incarnations of OpenBSD. If you are unsure
what you are looking for, check the Apropos option and you will get a list
of the closest matches. The system is simple, works, and there is no excuse
for not using it. Once you have OpenBSD installed and working, use the
manual pages that came with it. For hints on using the system manual
available on the command line, refer to Appendix A: Manual Pages.

3.3 Downloading OpenBSD

The easiest way to download OpenBSD is with an FTP client that can copy
whole directories such as ncftp, or with the good old wget (available for
many popular operating systems):

http://www.ncftpd.com/ncftp/ (ncftp)
http://www.wget.org (wget)

If you have trouble finding wget binaries for your system,
use your favorite web search engine to locate them.

You need to point your FTP client at /pub/OpenBSD/3.4 and copy the direc-
tory that contains the binaries for your hardware platform (see Table 3.1).
If you use wget, use the following command to download OpenBSD 3.4 for
i386:

$ wget --passive-ftp -r ftp://ftp.example.org/pub/

+ OpenBSD/3.4/i386

Section 3.4: Preparing Installation Media 51

Once you have the right binaries, download the tools directory that contains
utilities for writing floppy disk images under MS-DOS and Microsoft
Windows. They can be used to write any kind of floppy disk images, not
just for the i386 platform.

$ wget --passive-ftp -r ftp://ftp.example.org/pub/

+ OpenBSD/3.4/tools

Note that you need to replace ftp://ftp.example.org/... with the URL
pointing to the directory you wish to download from the chosen FTP server.
The list of all currently available mirrors is published at the OpenBSD FTP
page:

http://www.openbsd.org/ftp.html (OpenBSD Mirrors)

3.4 Preparing Installation Media

When you are not using a bootable CD-ROM, you will have to use a boot
floppy to start installation, the rest of the OS will be installed from a CD-
ROM, tape, network, or however you choose to do it. The necessary
utilities are located in the tools directory (see previous section). If you are
using MS-DOS or Microsoft 95/98/Me write floppy images with
rawrite.exe:

C:\openbsd> rawrite.exe floppy34.fs a:

On Microsoft Windows NT/2000/XP, use ntrw.exe:

C:\openbsd> ntrw floppy34.fs a:

On BSD, Linux, and Unix, use dd(1):

$ dd if=floppy34.fs of=/dev/fd0 bs=36b

The location of the floppy disk device (/dev/fd0) may be
different on your machine, check your system manual.

If you are not having much luck with floppy34.fs, use floppyB34.fs (contains
SCSI, Gigabit Ethernet, and RAID drivers), or floppyC34.fs (CardBus and
PCMCIA drivers, particularly useful for installing OpenBSD on laptops).

52 Chapter 3: Installing OpenBSD

3.5 Installing OpenBSD

Armed with a bootable CD-ROM, or a boot floppy disk, insert one of these
devices into the appropriate drive and reboot the machine. This is what you
should see on your screen (the actual messages may differ slightly):

reading boot.......

probing: pc0 com0 com1 pci mem[639K 31M a20=on]

disk: fd0 hd0

>> OpenBSD/i386 BOOT 1.29

boot>

The boot> prompt gives you a chance to type boot parameters, which you
probably won’t need in most cases. You can wait a few seconds for the
next stage of the boot process to begin, or hit the Enter/Return key to
start it right away:

booting fd0a:/bsd: 1339392+1871872+

A list of devices on blue background follows.

If something goes wrong here, you will have a few
options: try other boot disks, remove the offending piece
of hardware (check output to see which device was the
culprit), or disable the offending device’s driver in the
kernel (see Chapter 4, Configuring OpenBSD). Also, if
the computer won’t boot from the floppy disk or the CD-
ROM, you may have to go into the BIOS to change boot
device settings. It is quite possible that your computer is
set up to boot from the hard disk and skips the floppy and
the CD-ROM drives. You can go into the BIOS if you
press one of the special keys on the keyboard. To learn
which key is that special one, reset the computer and the
watch messages that show up on screen soon after the
memory test. Typical choices are Ins, Del, F2, F10,
etc.

When all goes well, you should get to this point:

erase ˆ?, werase ˆW, kill ˆU, intr ˆC, status ˆT

(I)nstall, (U)pgrade, or (S)hell? i

Section 3.5: Installing OpenBSD 53

Press the I key on the keyboard and then hit the Enter/Return key.
You should see a welcome message after which the system will ask you to
choose the terminal type used in the rest of the installation process. If you
have no specific preferences, different from the default vt220, just hit the
Enter/Return key:

Terminal type? [vt220] vt220

Next, you will have a chance to select your preferred keyboard encoding. If
you’d rather use the default US encoding, press the N key, then hit the En-
ter/Return key. Otherwise, press the Y key, hit the Enter/Return
key, and follow the instructions displayed on the screen:

Do you wish to select a keyboard encoding? [n] n

The next important message you see should be a warning about making
backup copies of data on the hard disk(s). This is the last chance to stop the
installation and make backups. No need to make them? Press the Y key,
then hit the Enter/Return key:

Proceed with install? [n] y

You should see a notice starting with the following message, ending with a
list of available hard disks:

Cool! Let’s get to it...

...

Available disks are: wd0, wd1.

Which one is the root disk (or ’done’) [wd0]

If you have only one hard disk, simply hit the Enter/Return key. Oth-
erwise type the name of the disk you wish to boot OpenBSD from and hit
the Enter/Return key.

If you do not see all disks you have installed in your
machine, you might need to try the floppy image with the
SCSI disk drivers; for PCMCIA disks try the boot floppy
with the PCMCIA drivers.

Next, you will be given a chance to decide how much space on the chosen

54 Chapter 3: Installing OpenBSD

hard disk you wish to use for OpenBSD. We will not discuss sharing the
same disk with other operating systems, because it is not a good practice to
use such configurations on production firewall machines. Type yes and hit
the Enter/Return key:

Do you want to use *all* of wd0 for OpenBSD? [no] yes

and you will enter the hard disk label editor (the OpenBSD version of MS-
DOS FDISK, but much more powerful and useful). The disk label editor is
not likely to win the best user interface category award, but it is functional.
The first thing you need to do is display the current disk layout. To do that,
type p and hit the Enter/Return key:

Initial label editor

> p

What you will see is a list of various parameters. The most important ones
are:

...

bytes/sector:

total sectors:

...

With these, you can now find out the total capacity of the disk:

capacity(bytes) = bytes/sector × total sectors

OpenBSD needs a minimum of two partitions: one for the / filesystem and
one for swap. This is the easiest choice, but not the safest one. A much
better way is to split your disks into more partitions, so you can implement
more robust security controls over the filesystem. For example, some
partitions like /home, /tmp, or /var ought to be mounted in such way that
they cannot be used to compromise the system by exploiting the set-user-ID
(suid) and the set-group-ID (sgid) file options (see chmod(1)) or by filling
the filesystem with garbage. The solution to the first problem are two
handy mount(8) options: nodev and nosuid. The nodev option
prevents the system from interpreting character or special device nodes
(like the sensitive /dev/kmem). Similarly, the nosuid options disables the
set-user-ID and the set-group-ID file flags (see chmod(1)). These options

Section 3.5: Installing OpenBSD 55

are stored in /etc/fstab (see fstab(5)), and you can display current settings
with the mount(8) command once you install the system. If you start cre-
ating more than just a single / partition during the installation stage, the
installer will add these options to /etc/fstab automatically. It is possible to
edit that file manually after you install the system.

You might wonder if it wouldn’t be possible to just create a single / parti-
tion and set its options to nodev and nosuid. The answer is no, because
some parts of the filesystem must have dev or suid options set. As for
the problem of filling up the filesystem, dividing the disk into several parti-
tions will automatically ensure that this is taken care of (partitions cannot
grow without reformatting the drive).

Your disk could be divided into the following partitions (you will find
instructions on how it’s done on the following pages):

/

/home

/tmp

/usr

/usr/local

/var

/var/log

/var/mail

When you are setting up a logging firewall, you may also
want to add another partition (or a separate disk) to store
firewall logs. Storing them on a separate partition is
good for security, because that way logs cannot fill the
whole available space on the filesystem.

The partition table printed on the screen may look similar to this one (when
the disk is new and has never been formatted):

> p

...

16 partitions:

size offset fstype [fsize bsize cpg]

c: 3329424 0 unused 0 0

56 Chapter 3: Installing OpenBSD

When you are reformatting a previously formatted disk, you could some-
thing similar to the following output:

> p

...

16 partitions:

size offset fstype [fsize bsize cpg]

a: 3206956 63 4.2BSD 1024 8192 16

b: 119381 3207019 swap

c: 3329424 0 unused 0 0

When you see partitions other than c (you cannot delete it, because it rep-
resents the whole disk), you will need to delete them before creating new
ones. To delete a partition, type d and hit the Enter/Return key. You
will be asked to type the letter representing the unwanted partition. Repeat
this process for all existing partitions, except c.

Next, you will need to add at least two partitions (more if you want to use
the nodev and nosuid options discussed earlier).

To add a new partition, type a and hit the Enter/Return key. You will
then have to answer a few questions about the partition symbol (a through
p, except c, start with a), partition offset, partition size, filesystem type, and
mount point. A partition creation session looks like this:

> a

partition: [a]

offset: [63]

size: [3326337] 2000000

FS type: [4.2BSD]

mount point: [none] /

Partition offset. The number of the first free sector that can be a start of the
next partition. For the first partition, it is usually 63. Accept it. For other
partitions, the installer will suggest appropriate values based on the size of
the previous partition. Simply accept these values, unless you have very
important reasons to change them. (Note that this parameter is measured in
sectors, not bytes.)

Partition size. This value must be lower than the total number of sectors
available on disk in order to accommodate the swap partition and any other

Section 3.5: Installing OpenBSD 57

partitions you may want to create (on OpenBSD, just like on any other
Unix, each directory, or filesystem, can be mounted on a different partition).

In the example on the facing page, the total number of free sectors on the
disk is 3326337, out of which we cut 200000 for the / (root) filesystem.

The best way to start computing the size of partitions is to compute the size
of the swap space, which should be at least twice the amount of RAM you
have installed in your computer (in bytes). Then, divide that number by the
number of bytes/sector for your disk and subtract the result from the total
number of free sectors. (Note that this parameter too is measured in
sectors, not bytes.)

The calculations required to change GB or MB values to bytes/sector are
quite simple (suppose our machine has 128MB of RAM, and a 10GB hard
disk):

total capacity = 10GB = 10240MB
swap = 2 × RAM = 2 × 128MB = 256MB
/ = 1GB = 1024MB
/home = 512MB
/tmp = 2GB = 2048MB
/usr = 1GB = 1024MB
/usr/local = 1GB = 1024MB
/var = 1GB = 1024MB
/var/log = 3GB = 3072MB
/var/mail = 256MB

Assuming that our disk has 1024 bytes per sector, the results (in sectors) are
as follows:

swap = 256MB =
256 × 1024 × 1024 bytes

1024 bytes/sector
= 262144

/ = 1GB = 1024MB =
1024 × 1024 × 1024 bytes

1024 bytes/sector
= 1048576

/home = 512MB =
512 × 1024 × 1024 bytes

1024 bytes/sector
= 524288

58 Chapter 3: Installing OpenBSD

/tmp = 2GB = 2048MB =
2048 × 1024 × 1024 bytes

1024 bytes/sector
= 2097152

/usr = 1GB = 1024MB =
1024 × 1024 × 1024 bytes

1024 bytes/sector
= 1048576

/usr/local = 1GB = 1024MB =
1024 × 1024 × 1024 bytes

1024 bytes/sector
= 1048576

/var = 1GB = 1024MB =
1024 × 1024 × 1024 bytes

1024 bytes/sector
= 1048576

/var/log = 1GB = 1024MB =
1024 × 1024 × 1024 bytes

1024 bytes/sector
= 1048576

/var/mail = 256MB =
256 × 1024 × 1024 bytes

1024 bytes/sector
= 262144

These values are not set in stone and, depending on your particular system
configuration and needs, you may run out of space in one of these partitions
or have plenty of free space lying unused. How can you find out just how
big each partition ought to be? Start with the above template and install all
software that you will use on the firewall. Use du(8) to find out how much
space is left in each partition, e.g.: du -k /usr/local shows the
number of kilobytes used in /usr/local. When one of the partitions is filled
above 75% of its total capacity, it might be a good idea to reinstall the
system and adjust the size of that partition at the cost of another one that is
filled well under its total capacity. If it is still too tight, you might consider
moving the swap partition to another disk. Another good candidate for
relocation is /var/log. In either case, make sure that the second disk is
plugged into a separate controller or the overall disk performance will
decrease.

Partition filesystem type. For all non-swap partitions that value should be
4.2BSD. For swap partitions, use swap.

Mount point. The main (root) partition must be mounted under /, the swap
partition does not have a mount point. When you plan to add additional
partitions, their mount points are full paths that point to the directories that
will be assigned to them. For example, if you are creating a separate
partition for /usr/local, its mount point will be /usr/local.

Section 3.5: Installing OpenBSD 59

You can check what partitions you created with the p command. When you
are happy with your choices, use the q command. To prevent accidental
damage, the installation script will ask you to confirm your choices:

> q

Write new label?: [y] y

The root filesystem will be mounted on wd0a.

wd0b will be used for swap space

Done - no available disks found.

You have configured the following partitions and mount points:

wd0a /

You can now start formatting the disk. The time it takes to finish this oper-
ation is directly proportional to the disk’s capacity. Type y and hit the En-
ter/Return key. The disk starts spinning and you can make yourself a
cup of tea and relax, you are getting close to having a fresh copy of Open-
BSD to play with.

When all goes well, you should see the installation procedure ask you for
the host name. Type it in and hit the Enter/Return key:

System hostname? (short form, e.g. ’foo’) firewall

Next, you will be asked if you want to configure network services. You can
skip that stage and do it later (see Chapter 4, Configuring OpenBSD), but if
you do that you will not be able to install OpenBSD over the network and
no FTP, HTTP, or NFS installation methods will be available.

If you decide to configure the network, type y and hit the Enter/Return
key:

Configure the network? [y] y

The next piece of information that you see on screen should be the list of
available interfaces:

Available interfaces are: rl0 rl1

60 Chapter 3: Installing OpenBSD

The example on the previous page shows two interface cards, if you have
more cards installed, but they are not recognized, you may need to config-
ure them later on. Or, you could try alternative boot floppies with support
for Gigabit Ethernet or PCMCIA cards, if that’s what you are using.

Next, you need to tell the installation script which interface you wish to
initialize. The order in which you initialize multiple interfaces does not
matter as long as you configure them with proper settings that match the
physical network layout:

Which one do you wish to initialize? (or ’done’) [rl0] rl0

The next step is symbolic name assignment. The installation procedure
suggest the host name you used earlier, but you can change it now or later
(the information you enter here will be stored in /etc/hosts, all you have to
do is edit it:

Symbolic (host) name for rl0? [firewall] firewall

Next, you may set optional parameters for the interfaces. In the example
below, the script is asking which type of media will be used to transmit
packets (twisted pair, thin coaxial cable, or autoselect—the card will deter-
mine this automatically):

The default media for rl0 is

media: Ethernet autoselect (none)

Do you want to change the default media? [n]

It is usually OK to accept the default values, but when you run into trouble
and you don’t know which parameters are applicable to your card or what
they mean, check the online OpenBSD man pages (the URL was given
earlier in this chapter). It is possible to change these parameters later, they
are stored in the hostname.* files, e.g. the hostname file for the rl0 inter-
face is /etc/hostname.rl0. For more information refer to Chapter 4, Config-
uring OpenBSD.

In the next step, you must assign a valid IP address to the interface, or you
may type dhcp if you want the DHCP (see dhcp(8)) server on your
network to assign the address automatically. It is not a good idea to assign
the address of the firewall via DHCP, so either use a legal public IP address

Section 3.5: Installing OpenBSD 61

that you own, or use one of the private IP addresses (see Table 2.1). The
address can be an IPv4 or an IPv6 number. After that, you will need to type
in the netmask (see Chapter 5, /etc/pf.conf):

IP address for rl0 (or ’dhcp’) 192.168.255.10

...

Netmask? [255.255.255.0]

The information you enter here will be stored in /etc/hostname.* and
/etc/hosts, and can be changed afterwards.

After all interfaces have been configured, you should see these messages:

Done - no available interfaces found.

...

DNS domain name? (e.g. ’bar.com’) [my.domain] example.com

You may now supply the DNS domain name for the firewall host (you can
change it later, it is stored in /etc/hosts). This part may be omitted, if you
do not have your own domain, or when you plan to configure your firewall
as a bridge, in which case it will not matter as such hosts are invisible. It is
OK to just hit the Enter/Return key at this point or use any name you
like as long as it doesn’t clash with the host or domain names used on your
network or on the external networks.

Next, you will be asked to supply the address of the DNS name server on
your network. If the machine you are installing OpenBSD on will act as a
basic firewall or a bridge, it will not need to use a DNS server, but there are
exception: you need to use a DNS server, if you want to install OpenBSD
over a network, but don’t know the IP addresses of FTP, HTTP, or NFS
servers you will use for that purpose. When OpenBSD is stored on your
own internal servers, use the address of your local DNS server; when you
install OpenBSD from an external server, like one of the public FTP
mirrors, use the address of your ISP’s DNS server.

DNS name server? (IP address or ’none’) [none] 192.168.1.1

Whatever DNS information you supply here will be saved in /etc/re-
solv.conf. You can then enable access to the DNS server:

Use the nameserver now? [y] y

62 Chapter 3: Installing OpenBSD

Once you are done with the DNS server configuration, you need to add the
default route (the address of the default gateway that the firewall will send
packets to). If you want that to be set up via DHCP, enter dhcp. Another
option is to leave that information out, in which case you should type
none. That last choice will not let you install OpenBSD over the network
from external networks. You can later add the gateway’s address to
/etc/mygate:

Default route? (IP address, ’dhcp’ or ’none’) 192.168.255.3

Once you are done, you’ll be given a chance to edit network information
with ed(1). You probably don’t want to do it, so hit the Enter/Return
key and proceed with the installation leaving changes to the network
configuration until later:

Edit hosts with ed? [n] n

...

Do you want to do any manual network configuration? [n] n

You are getting close to the start of the system installation stage, and now is
time to set the superuser (root) account password:

Password for root account? (will not echo)

Password for root account? (again)

The password must be given twice. Once that is done, you can begin the
installation of the operating system components. The installation program
will give you several choices of software locations:

Sets can be located on a (m)ounted

filesystem, a (c)drom, (d)isk, or (t)ape device;

or a (f)tp, (n)fs or (h)ttp server.

Where are the install sets? (or ’done’)

Choose the option that best matches your setup. The following discussion
focuses on the installation over HTTP, which is a popular choice for
machines without a CD-ROM drive. The FTP or NFS installation proce-
dures are similar and will not be covered here to save space.

Section 3.5: Installing OpenBSD 63

What you need to begin is an HTTP server that stores the following Open-
BSD 3.4 files for your hardware platform:

bsd

bsd.rd

base34.tgz

etc34.tgz

comp34.tgz

man34.tgz

game34.tgz

The server itself does not need to be running OpenBSD, of course. All you
need to make it work is place the files listed above in a publicly accessible
directory and that that firewall host can connect to the server.

The first question that you will have to answer is the one about the address
of the HTTP proxy. When there is no proxy to go through, type none and
hit the Enter/Return:

HTTP/FTP proxy URL? (e.g. ’http://proxy:8080’, or ’none’)

[none] none

Then, you will be given a chance to see a list of HTTP servers on the
Internet that you can use to install the system from. This will be a slow
option, a local HTTP server is both more convenient and faster. If you want
to see the list of available HTTP server that store OpenBSD binaries, type
y, otherwise type n to use another, local or external HTTP server of your
choice (you’ll have to know its IP address):

Do you want to see a list of potential http servers? [n] n

Hit the Enter/Return key. Another parameter is the HTTP server’s IP
address:

Server IP address, or hostname? [192.168.255.1] 192.168.255.7

Finally, you need to supply the directory in which the files are residing,
e.g.:

Server directory? [/] /openbsd/i386/

64 Chapter 3: Installing OpenBSD

After you hit the Enter/Return key, you’ll see a list of packages, some
of which are optional, others essential. (This is the place where you will
finally arrive at no matter which installation method you choose.) Selected
packages are marked with x. To select/deselect a package type its name
and hit the Enter/Return key. Only the most essential packages have
been selected below, but if it is the first time you ar installing OpenBSD,
you should add man34.tgz:

[x] bsd

[] bsd.rd

[x] base34.tgz

[x] etc34.tgz

[] comp34.tgz

[] man34.tgz

[] game34.tgz

After all is done, answer y to the following question:

Ready to install sets? [y] y

Answer n to the question about running the X Windows System. Running
it on a firewall machine is not a good idea, unless you are planning to con-
figure your OpenBSD workstation as a bastion host (see Chapter 2, Fire wall
Designs):

Do you expect to run the X Window System? [y] n

...

Saving configuration files...done.

...

Generating initial host.random file...done.

The last stage in the installation process is setting the local time zone:

What timezone are you in? (’?’ for list) [US/Pacific]

...

Setting local time zone to ’NZ’...done.

...

Making all device nodes...done.

...

CONGRATULATIONS! ...

Section 3.6: Securing Your Firewall Hardware 65

After all is done, you will be able to restart the system:

halt

Then, restart the system with Ctrl+Alt+Del or a hardware reset button.

3.6 Securing Your Firewall Hardware

Remember that what is convenient during installation, is also yet another
way for someone unauthorized to mess with your computer, so make sure
you disable booting from all external storage devices except the hard disk.

Don’t forget to protect access to BIOS settings with a password. If your
computer’s BIOS does not allow it, power your computer down after
installing OpenBSD and disconnect or completely remove floppy disk
drives, CD-ROMs and other devices that can be used to boot your computer
using software other than what you installed.

66

Chapter 4

Configuring OpenBSD

In this chapter we will discuss configuring OpenBSD for
pf, performance, and security. Also discussed are user
management and installing additional software from
ports and packages.

Once OpenBSD completes its first reboot cycle, you will be able to log in
as root using the password created during the system installation stage.
There are a few things that you can do now—add ordinary user account,
configure networking, pf, routing, add software, and patch the system.

4.1 User Management

Although you can do everything as root, it is nev er a good idea, because
the system assumes that you know what you are doing and will not prevent
you from doing stupid things like erasing the whole filesystem or over-
writing /bsd with garbage. You are the superuser after all, with all benefits
and responsibilities it brings! The long history of stupid mistakes that
required installing stuff from scratch convinces us that doing everything as
root is dangerous and irresponsible. Let’s see what you can do to help
you save your system from your mistakes.

4.1.1 Adding Users

Every time you log on as root from the console, OpenBSD will remind
you that it is not a good thing to do. (Another constant reminder is the #
prompt, displayed in place of the $ prompt shown to ordinary users.) To
avoid these reminders, create an ordinary user account that you will use to
log on the firewall then ‘become’ root, if necessary. But the constant
nagging is not the only reason to create an ordinary user account, without it
you will not be able to log on your firewall via SSH (logging on as root
over SSH is blocked by default and it should stay that way).

68 Chapter 4: Configuring OpenBSD

Logging as root is disabled, when the following entry is
present /etc/ssh/sshd_config:

#PermitRootLogin yes

If you ever need to enable it (always a bad idea), remove
the hash character (#) from that line and restart the
sshd(8) daemon with:

kill -HUP ‘cat /var/run/sshd.pid’

Adding a new user is simple, use adduser(8) and answer the questions you
see on the screen. The first time you use it, the system will ask you a few
questions related to the general settings that will be applied to all newly
created accounts. Your answers are stored in /etc/adduser.conf and can be
changed at any time.

4.1.2 Letting Users Do As Root Does (su)

How does an ordinary user become root? With su(1), but access to that
command is limited to those users who belong to the wheel group. To add
a user to wheel either type wheel when adduser(8) asks you about the
groups you’d like to invite the newly created user to. Another way is to edit
/etc/group:

vi /etc/group

and (assuming the name of the new user is joe) change:

wheel:*:0:root

to:

wheel:*:0:root,joe

To sav e changes, press the Esc key, then type :x, and hit the Enter/Re-
turn key. Afterwards, when you want to become root, type:

$ su

Section 4.1: User Management 69

Hit the Enter/Return key and type in the root password you gav e
during installation. Congratulations! You are now the superuser root,
with all of the powers and the responsibilities. To drop back to ordinary
user status, type exit and hit the Enter/Return key. For more infor-
mation, read the su(1) manual and remember not to give access to su(1) to
anyone who asks. Ideally, you should only give it to the administrator that
takes over the management of your machine. Junior administrators who are
helping you, should only be given access to a few essential commands via
sudo(8) discussed later in this chapter.

4.1.3 Changing the User Password

Users and administrators can change passwords with passwd(1). You can
only change your own password, unless you have root privileges, in
which case you can change passwords for anyone on the system. The new
password will need to be given twice:

passwd joe

4.1.4 Giving Users Limited Access to Root Privileges (sudo)

Adding a user to wheel lets him or her become root, but that still doesn’t
prevent stupid mistakes. A better way to do it is through sudo(8), which
limits access to commands owned by root via settings stored in /etc/su-
doers. Unlike other system configuration files, /etc/sudoers ought to be
edited with a special tool, called visudo(8). Only users with root privi-
leges can use that command.

For example, to let joe run pfctl(8), add the following line to /etc/sudoers:

joe firewall = /sbin/pfctl

To sav e changes, press Esc, then type :x, and hit the Enter/Return
key. Then, to use pfctl(8), type something like this:

$ sudo pfctl -s rules

You will be asked to type your password (for user joe, not root).

70 Chapter 4: Configuring OpenBSD

Be careful with how much privileges you give to an ordi-
nary user. Never, ever given anyone ALL : ALL,
: /usr/bin/su, or : /usr/sbin/visudo rights.

Access to sudo(8) and su(1) is independent of each other. For more infor-
mation read the manual pages for su(1), sudo(8), visudo(8) and sudoer(5).

4.1.5 Removing Users

Users can be removed with rmuser(8), e.g.:

rmuser joe

Again, you need to have root privileges to do that.

4.2 Hardening OpenBSD

Although OpenBSD is very secure in its default configuration, there are a
few things that you can do to make it even safer, like disabling non-essen-
tial services or patching the system. Doing these things is essential before
and after putting any system in production use regardless of its purpose and
security track record.

4.2.1 Disabling Non-Essential Services

OpenBSD does not run many services enabled by default, but a few of these
exists and should be disabled unless you really need them on a firewall. On
OpenBSD 3.4 these services are: ident(1), comsat(8), daytime, and time. To
disable them, open /etc/inetd.conf in a text editor and put # at the beginning
of these lines:

ident stream tcp nowait _identd

+ /usr/libexec/identd identd -el

ident stream tcp6 nowait _identd

+ /usr/libexec/identd identd -el

127.0.0.1:comsat dgram udp wait root

+ /usr/libexec/comsat comsat

[::1]:comsat dgram udp6 wait root

+ /usr/libexec/comsat comsat

Section 4.2: Hardening OpenBSD 71

daytime stream tcp nowait root internal

daytime stream tcp6 nowait root internal

time stream tcp nowait root internal

time stream tcp6 nowait root internal

If you want to be 100% sure that the firewall exposes no
unwanted services to the outside world, use the nmap(1)
port scanner (available in OpenBSD ports and packages)
and aim it at your firewall host. Be careful with this tool
and never install it on the firewall itself. Also, watch out
who you are aiming it at. Port scanning can get you in
trouble if you do it on hosts that you do not control, so
don’t try it outside of your network or you may encounter
serious legal problems. Not every administrator has time
to find out who is scanning her or his network.

4.2.2 Patching

Patching the system is something that any OpenBSD administrator ought to
do as soon as patches are available, because leaving your system unpatched
is simply asking for trouble.

Applying patches to a firewall running OpenBSD is a bit different than
doing the same on a workstation, because the firewall must not be loaded
with the compiler toolbox (comp34.tgz) or the source code. There is just
too much possible risk. The solution is to keep a separate machine for
compiling modified binaries, which will later be transferred to the produc-
tion machine. What is usually done be hand or by a custom script, may
soon be automated by debardage, a very promising tool from sysfive.com:

http://debardage.sysfive.org (debardage home)

Patch announcements are posted to announce and security-announce
mailing lists. If you do not yet subscribe to these lists, do it now. Doing
this will help you track patches released from the moment you subscribe,
but you also need to check if there were any patches released before you
subscribed. Also, the announcements are just that—announcements; you
need to download the patches yourself. The list of patches for the current
and previous releases of OpenBSD can be found on the Errata page:

http://www.openbsd.org/errata.html (OpenBSD Errata)

72 Chapter 4: Configuring OpenBSD

The OpenBSD team only supports the latest two releases
of the system. For example, after OpenBSD 3.4 was re-
leased, patches are only issued for OpenBSD 3.4 and 3.3,
but not for OpenBSD 3.2 or earlier releases. This policy
forces you to upgrade, which a good thing if you really
are serious about security.

To apply patches, you will need to install the OpenBSD compiler tools
(comp34.tgz) and the OpenBSD sources for the same release as the one you
are running on the firewall, not the machine you are building patches on.
These are the same as the sources that have been used to build that partic-
ular release of OpenBSD, not the CURRENT sources held in CVS. For the
3.4 release, you need to to get the OPENBSD_3_4 branch of the source
code repository. Strictly speaking, the patches are in CVS, but extracting
them from there would take uninitiated users too much time and effort.

The official archives of sources for each release are available on the original
OpenBSD CD-ROMs or online from many OpenBSD FTP mirror servers
(see Chapter 3, Installing OpenBSD). If you are downloading them with
ftp(1), they are always available in the top directory for the release you are
using. For OpenBSD 3.4, descend into pub/OpenBSD/3.4 and download
these files:

XF4.tar.gz

ports.tar.gz

src.tar.gz

sys.tar.gz

Next, move the source archives to the /usr/src directory:

mv XF4.tar.gz /usr/src

mv ports.tar.gz /usr/src

mv src.tar.gz /usr/src

mv sys.tar.gz /usr/src

cd /usr/src

and unpack them with:

tar -zxvf *.tar.gz

Section 4.2: Hardening OpenBSD 73

Once you have the OpenBSD sources, you will need to download the
patches. The latest set of patches is always available on the FTP mirror
servers in the subdirectories of the pub/OpenBSD/patches directory. For
example, if you are looking for patches for OpenBSD 3.4, you will find
them in pub/OpenBSD/patches/3.4. Download the 3.4.tar.gz archive into
your home directory and unpack it:

tar -zxvf 3.4.tar.gz

You will now hav e a directory named 3.4 with the following subdirectories:

alpha/

amiga/

common/

hp300/

i386/

m68k/

mac68k/

macppc/

mvme68k/

ports/

sparc/

sparc64/

vax/

Out of these subdirectories, only three are of interest to us: common
(contains patches for all hardware platforms), ports (contains patches for
the ports collection, applicable to all hardware platforms), and the subdi-
rectory containing patches applicable to the hardware platform you use.
For Intel x86 machines, you need the patches from i386.

As you can see, when you list them, they are numbered in the order they are
released, and that’s the order you should apply them in. This is important,
because the same file may be patched more than once.

Every patch comes with detailed instructions on how you should apply it,
so the first step is reading them:

Note that the author is using patches for OpenBSD 3.1 in
this example, because there were no patches for Open-

74 Chapter 4: Configuring OpenBSD

BSD 3.4 released at the time this book was sent to the
printers. You should never patch sources of one release
of OpenBSD with patches for another release.

less /home/joe/3.1/common/004_sshbsdauth.patch

Fix a bug in the BSD_AUTH access control handling

Apply by doing:

cd /usr/src

patch -p0 < 004_sshbsdauth.patch

cd usr.bin/ssh

make obj

make cleandir

make depend

make && make install

...

As you can see, we are told to change the present working directory to
/usr/src and apply this patch with:

patch -p0 < /home/joe/3.1/common/004_sshbsdauth.patch

Hmm... Looks like a unified diff to me...

The text leading up to this was:

|Fix a bug in the BSD_AUTH access control handling

|

|Apply by doing:

| cd /usr/src

| patch -p0 < 004_sshbsdauth.patch

| cd usr.bin/ssh

| make obj

| make cleandir

| make depend

| make && make install

|

|Index: usr.bin/ssh/auth.c

|===

|RCS file: /cvs/src/usr.bin/ssh/auth.c,v

|retrieving revision 1.41

Section 4.2: Hardening OpenBSD 75

|diff -u -r1.41 auth.c

|--- usr.bin/ssh/auth.c 19 Mar 2002 15:31:47 -0000 1.41

|+++ usr.bin/ssh/auth.c 22 May 2002 20:28:25 -0000

Patching file usr.bin/ssh/auth.c using Plan A...

Hunk #1 succeeded at 410.

done

$

What happens next depends on the commands listed in the Apply by doing:
section. In case of 004_sshbsdauth.patch for OpenBSD 3.1 shown above,
we need to execute some additional commands to create new binaries from
patched sources:

$ cd usr.bin/ssh

make obj

make cleandir

make depend

make && make install

Now you need to stop all related processes (ssh/sshd in this case) processes
and restart them to make sure that the system and users use new binaries:

kill -HUP ‘cat /var/run/sshd.pid’

Sometimes a full reboot will be required for the changes to have effect, in
that case, restart the system with:

reboot

Once you are happy that everything is working fine, you can copy new bi-
naries to the production machine.

How do we know which binaries have been modified? The output from
make install contains a list of binaries and other files changed during com-
pilation. Make a list of their locations, ownership, and access rights. Use
scp(1) to copy them to the production machine. Then, log on the produc-
tion machine, become superuser with su(1), replace old binaries with the
new ones, and restart the relevant processes. (You must stop them first;
merely restarting them with kill -HUP may not be enough.) A system

76 Chapter 4: Configuring OpenBSD

reboot is not out of place in case of more extensive changes. Of course, it
needs to be done at times when it will cause the least inconvenience to
users. Use your own judgment to decide what needs to be done and when
is the best time to do it.

You do not have to apply all patches. Patches issued for
hardware platforms you do not use or for ports you do
not install can be ignored. All others ought to be applied
as soon as you learn about them.

4.2.3 When a Patch Is Not Enough

There is another way to ‘patch’ the system, you can update the source of the
system and ports via CVS and recompile everything. This will be neces-
sary, if you are using binaries with statically-linked libraries (the library
code and the actual program binary are glued together). When the same
library is also available in dynamic form, you need to rebuild the library
and the program that links it statically, even if the patch was issued for
the library and not for the program. You will find the necessary information
on these pages:

http://www.openbsd.org/anoncvs.html (OpenBSD AnonCVS)
http://www.openbsd.org/faq/upgrade-minifaq.html (Upgrading OpenBSD)

4.3 Configuring Networking

OpenBSD comes with most network services needed to run a firewall con-
figured out of the box, all you have to do are some minor tweaks. Most of
this is done during the installation stage, but may have to be fine-tuned be-
fore the machine is put into production use.

• Hostname. Stored in /etc/myname, the hostname lets us use identifiers
which are easier to remember that IP addresses. The contents of /etc/my-
name is a short hostname, e.g. firewall instead of the full name, e.g.
firewall.example.com. You can always check the full hostname
and the short hostname with hostname(1):

$ hostname

firewall.example.com

Section 4.3: Configuring Networking 77

$ hostname -s

firewall

• Host name database. Stored in /etc/hosts. A text file that stores host
names, addresses, and aliases. Used when a Domain Name System (DNS)
server is unavailable. Contains host names and addresses in the following
format:

::1 localhost.prv.example.com localhost

127.0.0.1 localhost.prv.example.com localhost

hostname and address on the private network

10.2.7.2 firewall.prv.example.com firewall

hostname and address on the DMZ network

10.3.8.2 dmzfw.dmz.example.com dmzfw

gateway

192.168.3.6 gateway.example.com gate7

In the early days of the Internet, /etc/hosts contained addresses and names
of all hosts that existed at that time, nowadays it is used to store the names
and addresses assigned to the host it is located on, or the hosts that are not
in DNS, like some experimental machines that you do not want people to
be able to find too easily. On a firewall, /etc/hosts will usually contain the
localhost address (127.0.0.1 for IPv4 or ::1 for IPv6) and one
name/address/alias triple for each network it is connected to. In the
example above, the firewall is connected to three networks, one private
LAN segment, one DMZ LAN segment, and one external network.

• Network name database. Stored in /etc/networks. That file is yet another
remnant from the early days of Internet before DNS. It still comes in
handy when you do not use DNS. If you decide to use /etc/networks, add
network addresses on separate lines, e.g.:

example.com 192.168.3 company

prv.example.com 10.2.7 private

dmz.example.com 10.3.8 dmz

Note that the network addresses are shorter than the host addresses. You
can learn more about IP addresses from Chapter 3, /etc/pf.conf. The
format of information contained in this file is described in networks(5).

78 Chapter 4: Configuring OpenBSD

• DNS Resolver. Stored in /etc/resolv.conf. If you want the firewall to make
use of DNS (not run DNS, that’s a different thing), add the addresses of
the DNS servers you want the firewall to query to that file. The general
format of /etc/resolv.conf is shown below (for more information, read the
man page for resolv.conf(5)):

lookup file bind

nameserver 10.5.3.8

nameserver 10.78.11.5

• Interface configuration. Stored in /etc/hostname.*. Basic data required to
configure network interfaces is stored in hostname.* files whose names
end with the name of the interface, e.g. if the firewall has three Realtek
Ethernet cards, the address and configuration information (see the manual
page for ifconfig(8)) for these cards will be stored in hostname.rl0, host-
name.rl1, and hostname.rl2. These files are parsed by /etc/netstart, when
the system starts up. The file format for these files is described in host-
name.if(5), and additional information about configuring them can be
found in ifconfig(8).

• Gateway. Stored in /etc/mygate. Every network segment has its own
gateway to the world, the address where all packets not destined to hosts
outside the same network segment are being sent to. It is a common mis-
take to confuse the gateway for the segment with the gateway for the
firewall. When you are configuring firewalls using designs where Open-
BSD and pf are also routing packets (Figures 2.1(a), 2.2, 2.3, 2.4(a), and
2.5), the gateway address for local hosts behind pf is the local address of
the machine that pf is running on, and the gateway address for the firewall
is its external address.

In Figure 4.1, when the packet filter is not configured as an invisible fil-
tering bridge, hosts on the private network are all configured with gateway
address d.d.d.d and the firewall is configured with gateway address c.c.c.c.
When the packet filter is configured as an invisible filtering bridge, hosts on
the private network are all configured with gateway address b.b.b.b.

4.3.1 More Than One Address on a Single Interface (Aliases)

Although not used very often on small networks, aliasing is quite common
on larger nets where a single machine acts as a firewall for more than one
host with a public IP address. In such cases, it is necessary to assign more

Section 4.3: Configuring Networking 79

Internet

a.a.a.a
router

b.b.b.b

c.c.c.c
packet filter

d.d.d.d

hub/switchjoe

ann

terry

fiona marc

julia

don

sarah

Figure 4.1: A screened LAN or a screened LAN segment protected with a separate
packet filter.

than one IP address to a single interface. You can do it by hand with
ifconfig(8), e.g.:

ifconfig rl1 alias 10.3.5.7

Such changes will not be permanent, so if you want them to survive the
next reboot, you must add them to the interface configuration file:

vi hostname.rl1

inet 192.168.255.11 255.255.255.0 NONE

inet 10.3.5.7 255.255.255.0 NONE

When you want to add an IPv6 address to hostname.*, precede it with
inet6 instead of inet.

80 Chapter 4: Configuring OpenBSD

To check the list of addresses assigned to an interface, use:

ifconfig rl1

rl1: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST>

+ mtu 1500

address: 00:e0:4c:81:52:2f

media: Ethernet autoselect (none)

status: active

inet 192.168.2.11 netmask 0xffffff00 broadcast

+ 192.168.2.255

inet 10.3.5.7 netmask 0xffffff00 broadcast

+ 10.3.5.255

To check all interfaces, use:

ifconfig -a

Aliasing is often used together with binat and rdr rules described in
Chapter 7, Pack et Redirection.

4.3.2 Pf Configuration Options

Once you finish configuring your firewall and you are ready to put it into
production use, you should tell OpenBSD to run pf automatically at system
startup. The startup scripts are already configured, and all you have to do is
set two variables. Open /etc/rc.conf, locate this line:

pf=NO

and change it to:

pf=YES

Another parameter found in /etc/rc.conf and related to pf is the location of
the pf ruleset that will be loaded at system startup:

pf_rules=/etc/pf.conf

If you feel you need to change it, replace /etc/pf.conf with something else,
but make sure it is owned by root, belongs to the wheel group and that

Section 4.3: Configuring Networking 81

only root has read/write privileges. This can be enforced with:

chown root file

chgrp wheel file

chmod 0600 file

The last pf parameter found in /etc/rc.conf, pflogd_flags=, is related to
the pflogd(8) daemon and allows you to set some flags. You will find more
information about it in Chapter 11, Logging and Log Analysis.

The changes you make to /etc/rc.conf will not be put into use until the next
system reboot. To enable pf, use the pfctl(8) utility as described in Chapter
16, Fire wall Management.

4.3.3 Bridge Configuration Options

An OpenBSD bridge setup is a functional equivalent of an Ethernet
learning switch (or an Ethernet bridge, for those who were around the time
this name was more popular). As was already mentioned in Chapter 2,
Fire wall Designs, a bridge based on OpenBSD and mixed with pf, is a very
practical and secure firewall solution because of its ‘invisibility’ to the
outside world.

Bridge configuration is very simple and you should not have problems
understanding it. From the point of view of the person configuring
networking, a bridge is a group of interfaces known under a common name
like bridge0. It is similar to a list of address aliases assigned to a single
network interface. However, unlike those aliases, a bridge has no IP
address.

This is a problem when you want to log on the bridge,
which you can always do from the console, or over a
separate interface with an IP address that you can
connect to from another machine.

Bridge configuration files are stored in /etc/bridgename.* files, e.g. the con-
figuration for babylon will be stored in /etc/bridgename.babylon.

Is it possible to configure more than one separate bridge on the same
machine? Yes, but each interface can belong to at most one bridge. So, if

82 Chapter 4: Configuring OpenBSD

you have a system with 6 network interfaces, you could configure it in the
following ways:

• a single 6-point bridge
• a single 5-point bridge and a single ‘visible’ interface for logging on the

bridge machine over a network
• two separate 3-point bridges
• three separate 2-point bridges
• one 2-point bridge, one 3-point bridge, and one ‘visible’ interface for

logging on the bridge machine over a network
• an x-point bridge (where x is between 2 and 4) and two or more ’visible’

interfaces or any other combination.

Of course, simple bridges only need two interfaces, and will be enough in
many situations. If you decide to add another ‘visible’ interface to the
bridge machine, make sure it is not accessible in any way from ordinary
hosts. It should only be accessible from a separate administration network,
ideally not connected to the outside world for maximum security. Figure
2.6 is a good example of how such configuration could look like.

A bridge can be created by hand with brconfig(8), e.g. the following
command creates and activates bridge babylon made from two interfaces:
rl0 and rl1:

brconfig babylon add rl0 add rl1 up

You can later add another interface to the bridge with:

brconfig babylon add ne2

To remove an interface from the bridge, use:

brconfig babylon delete rl0

To disable the bridge, use:

brconfig babylon down

The changes you make to the bridge will only last for as long as the
system’s running. To make them permanent, write an /etc/bridgename.*

Section 4.3: Configuring Networking 83

file, it will be automatically parsed by /etc/netstart.

An /etc/bridgename.* file is a list of commands like these:

add rl0

add rl1

add ne2

up

There are six things you need to watch out for when you are using bridges:

• not all interfaces can be used to configure bridges. Some (very few) cards
won’t work.

• interfaces added to a bridge work in promiscuous mode, which puts addi-
tional load on the CPU. See Chapter 15, Testing Your Firewall for perfor-
mance-related tips.

• when you are writing pf rules, you must remember that packets are
matched on both interface, the one that packets arrive at and the one the
packets leave from. This is not a problem for a 2-point bridge, simply
write rules for one interface and pass all inbound and outbound traffic on
another. But care must be taken when your bridge has more than two in-
terfaces.

• remember that your bridge will forward all protocols, IP, IPX, Apple Talk,
etc., so if you only want to process IPv4 and IPv6, add the blocknoip
command to /etc/bridgename.* files for every interface, e.g.:

blocknoip rl0

blocknoip rl1

blocknoip ne2

• the ‘visible’ interface used for administration purposes will be seen not
only on the administration segment, but also on other segments and you
must write pf rules that disable access to it from all networks except the
administration segment. For more information consult Chapter 8, Pack et
Filtering. Another way to protect it from unauthorized access would be to
use authpf(8) to dynamically load rules that allow administrators access
the bridge (see Chapter 12, Using authpf). Yet another way is to not use a
visible interface, but log on the bridge via a serial console.

• bridge configuration is simple and it works almost out of the box, but
when it doesn’t there are a few things that you can do to make it work the

84 Chapter 4: Configuring OpenBSD

second time. First of all, edit /etc/hostname.* files for every interface
used in a bridge and remove all line that start with inet, inet6, or
alias. Next, reboot the system and check if everything is working.
When one of the hosts behind the bridge cannot communicate with the
rest of the world, ping it from another host and if you receive error mes-
sages, check the routing table on the target host with route(8). You might
have forgotten to change the routes from the old gateway address to the
new one (the bridge has no IP address, hence the packets cannot be sent to
it). To check if everything is working, ping the broadcast address (form
the host you changed the routing table on), you’ll find it with:

ifconfig rl1 | grep broadcast

inet 10.1.1.1 netmask 0xffffff00 broadcast 10.1.1.255

ping 10.1.1.255

To make the new route permanent, add it to /etc/netstart.

Apart from letting pf to do the filtering of packets, bridges build with
OpenBSD can filter packets based on their Ethernet addresses, also known
as hardware addresses or Medium Access Control (MAC) addresses. This
topic is covered later in this chapter, when we discuss ARP requests. If you
are interested in logging packets passing through a bridge, read Chapter 11,
Logging and Log Analysis.

You can learn more about bridges from bridge(4), bridgename.if(5), and
brconfig(8).

4.3.4 IP Forwarding

When pf is supposed to do NAT or work as a filtering bridge, OpenBSD
must be configured to perform packet forwarding. You switch it on by
changing the value of the net.inet.ip.forwarding option:

sysctl -w net.inet.ip.forwarding=1

net.inet.ip.forwarding: 0 -> 1

That change will not survive the next reboot, so you also need to edit
/etc/sysctl.conf and change:

#net.inet.ip.forwarding=1

Section 4.3: Configuring Networking 85

to:

net.inet.ip.forwarding=1

When you want to do the same for IPv6 packets, repeat the above for
net.inet6.ip6.forwarding.

4.3.5 Fixing FTP

One of the most common problems with firewalls is their handling of
protocols that need to open more than one connection to communicate with
another host. Such solutions are popular in peer-to-peer protocols, the
H.323 multimedia communication protocol, and the good old File Transfer
Protocol (FTP).

Multiple ports opened to serve the same connections are something that
most firewalls can’t handle properly on their own. Stateless firewalls don’t
work well with most of them (if at all); stateful firewalls (like pf) handle
them a little better, but often break them. Both need additional help in the
form of proxy software, available for free on the Internet or from the
firewall manufacturer.

FTP is a good example of how protocols needing more than one connection
can be made to work through firewalls, and how good proxy software can
be used to control connections and fix problems that arise.

There are two modes that FTP clients and servers can work in: active and
passive. The active mode, which is the default behavior of FTP, needs two
connections, one for control (sending commands to the FTP serve) and one
for data (file) transfers. The first connection is initiated by the client and
can be traced by the firewall, but the second connection is initiated by the
server and, from the point of view of the packet filter, looks like a connec-
tion attempt from the outside and will not be let through, because there is
no information about its relation to the first connection. That’s why we
need proxy software. The idea behind proxies is simple, they capture con-
nection attempts to external FTP servers and make the real connections on
behalf of internal clients from the firewall host. The firewall accept connec-
tions initiated by external servers on a certain range of ports that the FTP
proxy is listening to and the proxy passes those external connections to the
internal client initiating the original connection. Both the FTP client and

86 Chapter 4: Configuring OpenBSD

the FTP server communicate with the FTP proxy, without talking directly to
each other. If all of this seems to be unnecessarily complicated, remember
that it is the price that we pay for better security and convenience. Once
configured, the proxy will work transparently and you will never need to
worry about its presence. On top of that, a good proxy can limit access to
external FTP servers, which helps prevent sensitive information leakage.

Fortunately for us, pf comes with its own ftp-proxy(8), which looks like an
ordinary FTP server to the FTP clients running on the private LAN segment
and passes their requests through the firewall to external FTP servers that
do the real work.

To enable ftp-proxy(8), add the following line to /etc/inetd.conf:

127.0.0.1:8021 stream tcp nowait root

+ /usr/libexec/ftp-proxy ftp-proxy

The next step is the addition of a couple of rules to /etc/pf.conf:

Add this rule to the NAT section:

rdr on $prv_if proto tcp from any to any port 21 -> \

127.0.0.1 port 8021

Add this rule to the packet filtering section:

pass in on $ext_if inet proto tcp from any to $ext_if \

port > 49151 keep state

The $prv_if and $ext_if codes are references to macros defining the names
of the private and the external interfaces (see Chapter 5, /etc/pf.conf). As
you will notice, both the /etc/inetd.conf and the rdr rules use the same port
8021, which may be changed to a different port when 8021 is not available,
just make sure it is higher than 1023.

The default range of ports that ftp-proxy(8) will listen on for data connec-
tions is between 49152 and 65535, but you can change it with the -m and
-M options. Additionally, you may have to add the rule that lets packets out
of the internal network segment ($prv_ad) to the world. (You can skip this,
if such rule is already present in /etc/pf.conf):

pass out on $ext_if inet proto tcp from $prv_ad to any \

keep state

Section 4.3: Configuring Networking 87

Then, restart inetd(8):

kill -HUP ‘cat /var/run/inetd.pid‘

and reload pf rules:

pfctl -F all

pfctl -f /etc/pf.conf

The configuration of ftp-proxy(8) is described in its manual, so there is not
much point rewriting it here. Default settings are good and can be safely
used in most cases. When you run into problems with Network Address
Translation (NAT), have a closer look at the description of the -n option.
Another handy option is -A, which allows users to log on remote FTP
servers as anonymous users, which usually means that they only get limited
download privileges. This is enough for most non-technical users.

There is a way to connect to some servers without using
ftp-proxy(8). Some FTP clients and servers can work in
passive mode, which only needs one connection for data
and control. A lot of FTP servers can detect problems
with firewalls and switch to passive mode automatically.
When automatic passive mode negotiation is not avail-
able, you can often do it by hand. Modern FTP clients
and servers allow you to switch to passive mode with the
passive command.

Such solution, while usable, and better than nothing, is
not perfect. You will still not be able to connect to many
FTP servers, which is particularly noticeable when you
try to browse FTP sites with a web browser—it will hang
for a long time before returning an error message.

Another problem with FTP are FTP servers sitting behind a firewall. They
will most likely be located in a DMZ segment and will have a private IP.
So, how does one reach an FTP server hidden so well? With re verse ftp-
proxy(8) of course. You run it on the firewall host and make it wait for
connections to port 21. When they arrive, they will be redirected to the
FTP server in the DMZ and everything will work as if the server was di-
rectly accessible on the Internet.

88 Chapter 4: Configuring OpenBSD

Unfortunately, ftp-proxy(8) does not support it out of the box. You need to
build your own version of ftp-proxy(8). Don’t worry it is not as scary as it
sounds. You’ll have to download OpenBSD sources (to another machine),
update them to the latest version of OpenBSD (-rOPENBSD_3_4), apply
the ftp-proxy-reverse.diff patch, and build a new ftp-proxy(8) binary. Scary?
Only at the first sight. To begin, download src.tar.gz from /pub/Open-
BSD/3.4 (you’ll find the list of mirror servers in Chapter 3, Installing
OpenBSD). Once you have it, download the ftp-proxy-reverse.diff patch
from:

http://www.benzedrine.cx/ftp-proxy-reverse.diff (re verse ftp-proxy patch)

Then, issue these commands:

$ su

cd /usr

tar -zxvf /home/joe/src.tar.gz

setenv CVS_RSH ssh

setenv CVSROOT the string that you put here is one of CVSROOT values

found on http://www.openbsd.org/anoncvs.html

cvs -q get -rOPENBSD_3_4

cd /usr/src/libexec/ftp-proxy

patch < /home/joe/ftp-proxy-reverse.diff

make

cp /usr/libexec/ftp-proxy /usr/libexec/ftp-proxy.old

cp /usr/obj/libexec/ftp-proxy/ftp-proxy

+ /usr/libexec/ftp-proxy

What you will get is a new binary that can redirect FTP clients to FTP
servers using private IP addresses hidden behind a firewall.

To enable ftp-proxy(8), add the following line to /etc/inetd.conf:

a.b.c.d:21 stream tcp nowait root

+ /usr/libexec/ftp-proxy ftp-proxy -R 10.1.1.4:21

Let’s explain a few things: a.b.c.d is the address of the external interface
at which connection attempt from FTP clients will arrive; 21 is the standard
FTP port number; 10.1.1.4 is the address of the internal host running
the FTP server on port 21. When you want to run the FTP server on a

Section 4.3: Configuring Networking 89

higher port (> 1024), change the port number for the internal server, e.g.:

a.b.c.d:21 stream tcp nowait root

+ /usr/libexec/ftp-proxy ftp-proxy -R 10.1.1.4:8021

If you want to learn more about FTP, consult [RFC 959] and [Stevens
1994].

4.3.6 Taking Control of ARP

Contrary to popular belief IP addresses are not enough for TCP/IP packets
to reach their destinations. Another piece of information required to make
it happen is the destination’s Ethernet Media Access Control (MAC)
address, sometimes called the Ethernet address or the hardware address.
They are used by hosts, routers, and bridges to pass IP packets from one
point on the network to another. Unlike IP addresses, which are assigned
by the administrator, Ethernet addresses are assigned by the network inter-
face card manufacturers. Every Ethernet network interface card in the
world has a unique 6-byte number burned into its PROM chip and that
number is its’ Ethernet address. You can can find out what it is on your ma-
chine with ifconfig(8):

ifconfig rl0

rl0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST>

+ mtu 1500

address: 00:00:1c:d7:4d:06

...

The Ethernet address is displayed as a string of six hex numbers separated
with a colon(:).

Because Ethernet addresses cannot be used on the Internet (routing would
be a nightmare), there must be a way to translate between the IP address
space and the Ethernet address space. That is the job of the Address Reso-
lution Protocol (ARP) [RFC 826]. The way it works is quite simple. Sup-
pose that the gateway your internal network is connected to receives a
packet whose destination address is 10.1.1.32. If requests for the same
address have been received in the last few minutes, there is a chance that
the IP/Ethernet address pair is still stored inside the ARP cache; when this
is not a case, ARP will broadcast a message asking who has this address.

90 Chapter 4: Configuring OpenBSD

A ‘broadcast’ is a message sent to all machines on the
same network segment.

Such messages are being listened to by all machine on the same network
segment and the one that has an interface to which you assign the IP
address of 10.1.1.32 will send its IP/Ethernet address information to the
gateway who will store it in its cache. The machine answering
the gateway’s call will store the gateway’s IP/Ethernet information and both
will communicate with each other without sending ARP requests
unless there’s been a long period of inactivity between them and one of
them removes the IP/Ethernet information from its cache. You can watch
ARP in action with tcpdump(8):

tcpdump -n -e arp

tcpdump: listening on rl0

16:55:11.548546 0:40:25:e3:40:af ff:ff:ff:ff:ff:ff 0806 60: arp

+ who-has 10.1.1.32 tell 10.1.1.1

16:55:11.549173 0:41:26:e4:41:af 0:40:25:e3:40:af 0806 60: arp

+ reply 10.1.1.32 is-at 0:41:26:e4:41:af

There might be a long time before you see anything, but eventually you
should start seeing output similar to the one shown above.

ARP essentially run on autopilot, which is why many young administrators
often do not know that it exists. Which is a pity, because there are a few
tricks that can make network management easier as well as making your
network more secure.

The first feature of ARP that can come handy in everyday network adminis-
tration routine is the ability to change the MAC address of the interface.
Why would you want to do it? There are two popular cases: failover solu-
tions (when one machine is taking over the responsibilities of another and
must have the other machine’s IP and MAC addresses to cause the least
havoc on the network) and dealing with ISPs who filter MAC addresses and
are slow or unwilling to change their filter rules when you change the
network interface card that connects your network to their routers. The so-
lution is to assign the old MAC to the new interface. Contrary to what
you’d expect, you cannot do it with ifconfig(8), but must download and
build a separate tool called sea. Fortunately, it is quite easy to do. Down-
load the sea.c source code:

Section 4.3: Configuring Networking 91

$ lynx -dump

+ http://www.devguide.net/books/openbsdfw-02-ed/sea.c > sea.c

build sea:

gcc -Wall -o sea sea.c -lkvm

boot OpenBSD into single-user mode:

reboot

boot> boot -s

run sea:

./sea rl0 00:00:00:00:00:01

Do not use the 00:00:00:00:00:01 address on your
network. It is just an example. Use the old card’s MAC
address instead and do not use the old card on another
host on the same network segment, unless you change it’s
MAC address as well. Two interfaces with the same MAC
address is asking for trouble.

Check that the interface is reconfigured properly:

ifconfig rl0 | grep address

If all is working fine, add the sea command to /etc/netstart to make sure
that the new MAC address is assigned automatically on every system
reboot. Next, restart the system:

reboot

Not all cards allow you to change their MAC address, but
they are in minority.

What if you wanted to do as your ISP does and also filter packets based on
their MAC addresses? It is not possible with pf, but you can do it, if you
configure your host as a bridge (see earlier sections in this chapter), because
the MAC address filtering code is a part of the bridge code base, instead of

92 Chapter 4: Configuring OpenBSD

being a part of the pf code (this is no accident, there are good reasons for
this).

There two kinds of rules for MAC address filtering: block or pass.
Their syntax is simple: every rule starts with the rule keyword followed
by:

• action keyword: block or pass
• direction keyword: in or out
• interface name: the on keyword followed by the name of the interface the

rule will apply to.
• source MAC address: the src keyword followed by the MAC address of

the interface the rule will apply to. This part is optional.
• destination MAC address: the dst keyword followed by the MAC ad-

dress of the interface the rule will apply to. This part is optional.

The rules can be added with brconfig(8) or the can be
listed in the appropriate /etc/bridgename.* file.

For example, the following rule blocks all inbound traffic on rl0:

rule block in on rl0

This rule will pass all outbound traffic on ne1:

rule pass out on ne1

What if you wanted to block outbound traffic from just a few interfaces?
Use the following rules (ne1 is the external interface in this example):

rule block out on ne1

rule pass out on ne1 src 00:00:00:00:00:01

rule pass out on ne1 src 00:00:00:00:00:02

rule pass out on ne1 src 00:00:00:00:00:03

Please note that the last matching rule wins, hence the
global block or pass rule should be listed before more
specific rules. Also worth remembering is the fact that

Section 4.3: Configuring Networking 93

src and dst sections are optional and independent of
each other; you can have either, or both, of them in your
rules, if that’s what you need.

Another layer of defense is based on ARP is static ARP. As you might
suspect, static ARP does not allow automatic ARP cache updates. How
could it be useful? Suppose that someone takes over one of the hosts on
your internal network, or plugs his laptop into a free connector on a hub or
switch, to hijack the communications of another host on the same network
segment. All he has to do is assign an IP number used by the target host to
the host he is in control of (it is useful if the target other host is crashed or
powered down, that can be arranged) and ping a few addresses on the same
segment. Since all other hosts do not have the rouge machine’s MAC
address in their ARP caches, the hacker will ping a series of hosts, which
will cause them to update their ARP caches. In a matter of seconds, the
rouge machine is being recognized as the old host and can talk to other
hosts as if nothing has happened. The attacker uses the very mechanism
that makes ARP so useful—the automated discovery and learning of the
Ethernet addresses. What can you do to prevent it?

First of all, you should be using a switch and not a hub. This makes
network sniffing a lot more difficult. It isn’t fool-proof (there are tools that
turn switches into hubs by flooding them with requests that the switch
cannot handle). Next, you supply the gateway machine with the static
IP/Ethernet address information for all machines on the network segment in
question and turn ARP off (the interface should have the NOARP flag
turned on):

ifconfig rl0 -arp

ifconfig rl0

rl0: flags=88c3<UP,BROADCAST,RUNNING,NOARP,SIMPLEX,MULTICAST>

mtu 1500

arp -d -a

arp -s 10.1.1.32 0:41:26:e4:41:af permanent

arp -s 10.1.1.33 0:41:26:e4:41:b0 permanent

arp -s 10.1.1.34 0:41:26:e4:41:b1 permanent

arp -s 10.1.1.35 0:41:26:e4:41:b2 permanent

Be careful! Disabling ARP and clearing the ARP cache
is the best way to loose network connection. Do it from a

94 Chapter 4: Configuring OpenBSD

script or from the console, where you have full control
over the system.

You can use static ARP on every host on the same network segment as well.
Their ARP caches only need to store the IP/Ethernet information for the
gateway.

If you want the static ARP configuration to happen automatically at every
system restart, place the arp commands in /etc/netstart and add the -arp
command to the appropriate /etc/hostname.* file.

The gateway will now only send and accept packets to/from the MAC ad-
dresses it has in its ARP cache, the cache will not be altered dynamically.
It is a double-edged sword; when you change the network interface on one
of the hosts, you will have to update the ARP caches entry for that host on
the gateway, or the gateway will not be able to communicate with that host.
You could also change the MAC address of the interface on that host to the
address of the old interface.

On a related subject, when you are using OpenBSD configured as a bridge,
you can prevent bridge table poisoning with the -learn and discover
commands placed in the /etc/bridgename.* file for every interface that be-
longs to the bridge.

For example, to set up static entries in the bridge table for hosts connected
to the bridge via ne1, ne2, and ne3, use:

flush

-learn ne1 static ne1 01:23:45:67:89:ab

-discover ne1

-learn ne2 static ne2 01:23:45:67:89:ac

-discover ne2

-learn ne3 static ne3 01:23:45:67:89:ad

-discover ne3

Is such protection strong? Not really, attackers can
change their hosts’ MAC addresses as easily as you can
but, it does prevent stupid mistakes and makes it a little
more difficult to break through your defenses. The best

Section 4.4: Automated System Reboot 95

level of protection can be achieved when you combine pf,
MAC address filtering, authentication, encryption, and
some kind of NIDS.

4.4 Automated System Reboot

A system ‘panic’ is a an unforeseen event that causes system halt. The sys-
tem drops to the debugger and waits for the operator to take care of the
problem and reboot the machine, which is not always the desired behavior
for a firewall, especially when the firewall is managed remotely. A better
solution would be for the system to reboot itself. This can be done if you
change ddb.panic to 0:

systcl -w ddb.panic=0

Then, make this change permanents in /etc/sysctl.conf and change:

#ddb.panic=0

to

ddb.panic=0

4.5 Swap Encryption

Another level of security, desired on workstation and servers, is swap en-
cryption. This is less necessary on a firewall, but if you have some CPU
cycles to spare, set vm.swapencrypt.enable to 1:

systcl -w vm.swapencrypt.enable=1

Then, make this change permanents in /etc/sysctl.conf and change:

#vm.swapencrypt.enable=1

to

vm.swapencrypt.enable=1

96 Chapter 4: Configuring OpenBSD

4.6 Working with Securelevels

Securelevels define different kernel security levels at which certain actions
are permitted or not. There are four securelevels identified with numbers
-1, 0, 1, and 2. The higher the securelevel of the kernel, the lower the privi-
leges granted by the kernel.

To change a secure level, use sysctl(8), e.g.:

sysctl -w kern.securelevel=2

Permanent changes to that value should be recorded in /etc/rc.securelevel:

securelevel=2

While you might be tempted to raise the default securelevel to 2 (the default
value is 1) it is not always a good idea. Although you gain greater security,
you also loose flexibility of administration, as some changes can only be
undone if you put the operating system in single-user mode and you need to
reboot the machine with:

boot> boot -s

Then, you can undo the changes that are forbidden under lower securelevels
or in multi-user mode.

On a firewall, the most important securelevels are 1 and 2 and they:

• Securelevel 1. It is impossible to remove schg and sappnd flags (see
chflags(1)) without booting into single-user mode. Imagine that you set
schg on /etc/rc.conf, /etc/pf.conf, or /etc/rc.securelevel—every change
would require booting into single-user mode. Secure? Yes, but not con-
venient.

• Securelevel 2. It is not possible to make changes to NAT or filtering rules
with pfctl(8).

This is only a part of the things that change under different securelevels, but
they are most often of concern to firewall administrators. For more infor-
mation about securelevels, read securelevel(7).

Section 4.7: Setting Time and Date 97

4.7 Setting Time and Date

It is an old joke that in Unix, when you want to check time, you use date(1).
But checking time and date is not the only thing you can do with this tool, it
is also possible to set time and date. You must have root privileges to do
it, though.

Read date(1) for more information. For more accurate time measurement,
use NTP.

4.8 Configuring the Kernel to Solve Hardware Problems

When trying different configuration options doesn’t help, there are four
ways to solve hardware problems in OpenBSD:

1. replace the offending piece of hardware with one that is supported by
OpenBSD

2. use the configuration utilities provided by the manufacturer to tweak
hardware,

3. edit the OpenBSD kernel
4. build a new kernel.

When (1) and (2) fail, (3) and (4) are your last resorts. The last option is
only possible when you already have OpenBSD installed on the target or
backup machine. It is described in Section 5 of the OpenBSD FAQ, so we’ll
not dwell on it here.

http://www.openbsd.org/faq/index.html (OpenBSD F.A.Q.)

Let’s dwell on option (3). Although configuring the kernel is not difficult, it
is one of the less-known procedures, often thought of a some kind of magic.
In reality, there is no magic behind this, although editing the kernel may in-
deed seem like doing brain surgery while the patient is half-asleep. How-
ev er, there may be times when you just have to edit the kernel no matter
how much you fear it, simply to get the system to start at all. Not that it
happens often, but when it does, you need to know what to do. The first
thing you need to do when you are having problems with hardware, is re-
moval of all non-essential hardware like sound, radio/TV, network, RAID,
SCSI controller, and other cards. ISA cards are common culprits and if you

98 Chapter 4: Configuring OpenBSD

are using any, chances are that they are causing problems. Try to remove
them and boot OpenBSD in a bare configuration with an IDE hard disk,
then if all goes well, add devices one at a time and watch messages dis-
played at boot time and in system logs (/var/log/messages).

rl0 at pci0 dev 6 function 0 "Realtek 8139" rev 0x10: irq 12

address 00:00:1c:d7:4d:06

Messages like the one above will tell you where you should look for prob-
lems, e.g. things like IRQ numbers and device names can later be used to
find information related to the cause of the trouble.

4.8.1 Make a Copy of the Old Kernel

Before you start editing the kernel, you should make a copy of the old
kernel file:

cp /bsd /bsd.old

This may not always be possible (e.g. when you are in-
stalling OpenBSD), in which case you can be excused for
not making a copy, but remember to be careful.

4.8.2 User Kernel Config (UKC)

The User Kernel Config (UKC) is a tool for making changes to the Open-
BSD kernel without rebuilding it from source. You can enter UKC in two
ways:

1. at boot time, from the boot prompt:

boot> boot -cs

2. while the system’s running, as user root (the modified kernel will be
written to /bsd.fix):

config -e -o /bsd.fix /bsd

Once you enter the UKC, you should see the following message:

Section 4.8: Configuring the Kernel to Solve Hardware Problems 99

OpenBSD 3.4 (GENERIC) #44: Sat Mar 29 13:22:05 MST 2003

deraadt@i386.openbsd.org:/usr/src/sys/arch/i386/com-

pile/GENERIC

Enter ’help’ for information

ukc>

Out of many options available in UKC, the following are most important:

• list — shows the current kernel configuration. Displays many pages of
information. Enter/Return scrolls pages forward. Most devices listed
here have their own manual pages, where you can learn about them (just
remember to remove the numeric suffix, when you try man device-
name or apropos devicename).

• show — displays all device entries with the given attribute, e.g. if you are
hunting down a troublesome ISA card, try looking for devices that use the
same memory port or IRQ:

ukc> show irq 10

148 ne1 at isa0 port 0x300 size 0 iomem -1 iosiz 0 irq 10 drq

-1 drq2 -1 flags 0x0

151 we1 at isa0 port 0x300 size 0 iomem 0xcc000 iosiz 0 irq

10 drq -1 drq2 -1 flags 0x0

166 sp0 at pss0 port 0x530 size 0 iomem -1 iosiz 0 irq 10 drq

0 flags 0x0

167 wss0 at isa0 port 0x530 size 0 iomem -1 iosiz 0 irq 10

drq 0 drq2 -1 flags 0x0

ukc> show port 0x300

148 ne1 at isa0 port 0x300 size 0 iomem -1 iosiz 0 irq 10 drq

-1 drq2 -1 flags 0x0

151 we1 at isa0 port 0x300 size 0 iomem 0xcc000 iosiz 0 irq

10 drq -1 drq2 -1 flags 0x0

154 el0 at isa0 disable port 0x300 size 0 iomem -1 iosiz 0

irq 9 drq -1 drq2 -1 flags 0x0

162 mpu* at isa0 port 0x300 size 0 iomem -1 iosiz 0 irq -1

drq -1 drq2 -1 flags 0x0

When you find devices using the same memory port and/or IRQ, you will
have to either change or disable one of them (see below) or run manufac-
turer’s configuration utilities to change the memory port and/or IRQ
settings in the device’s BIOS.

100 Chapter 4: Configuring OpenBSD

• find — look for device. You can display whole families of devices,
when you omit the number, e.g.:

ukc> find ne

95 ne* at pci* dev -1 function -1 flags 0x0

96 ne* at pcmcia* function -1 irq -1 flags 0x0

147 ne0 at isa0 port 0x240 size 0 iomem -1 iosiz 0 irq 9 drq

-1 drq2 -1 flags 0x0

148 ne1 at isa0 port 0x300 size 0 iomem -1 iosiz 0 irq 10 drq

-1 drq2 -1 flags 0x0

149 ne2 at isa0 port 0x280 size 0 iomem -1 iosiz 0 irq 9 drq

-1 drq2 -1 flags 0x0

212 ne* at isapnp0 port -1 size 0 iomem -1 iosiz 0 irq -1 drq

-1 flags 0x0

ukc> find ne2

149 ne2 at isa0 port 0x280 size 0 iomem -1 iosiz 0 irq 9 drq

-1 drq2 -1 flags 0x0

• add — adds a new device as a clone of another device. Simply follow
the instructions you see on screen. When you want to add a driver for a
device not included in the kernel, you will have to rebuild the kernel as in-
structed in config(8) and in section 5 of the OpenBSD FAQ:

http://www.openbsd.org/faq/index.html

• change device — changes device parameters, like IRQ, memory
port, or flags. Use this command after you change card settings to sync
them with the kernel.

• disable device — disables device.
• enable device — enables device.

After you make changes to the kernel, you can save them with quit.

If you had to make changes to the kernel just to boot the system (and en-
tered UKC with boot> boot -cs), remember to enter UKC again with:

config -e -o /bsd.new /bsd

Then, repeat all the changes you made to the kernel, save them with quit,
and run these commands:

Section 4.9: Adding and Compiling Software 101

cp /bsd /bsd.old

mv /bsd.new /bsd

reboot

When you make a mistake or get lost, you can always
abandon editing without making changes permanent with
the exit command.

4.8.3 Brain Transplants for OpenBSD

What if the hardware problems are so severe that your machine refuses to
boot and you cannot enter UKC? When editing the kernel on the same ma-
chine is out of question, you can do it on another machine (it must use the
same version of OpenBSD and the same hardware platform, unless you
plan to cross compile for another platform).

Use the following command to edit the current kernel and write the modi-
fied version to /bsd.new, leaving the original intact:

config -e -o /bsd.new /bsd

Then, once you are done, you can transfer the kernel to another device.
There are many ways to do it, you can boot the target from a floppy, mount
the hard disk and copy the new image to the hard disk, or you can install the
target’s hard disk on another computer, mount it, and then copy the new
kernel to it.

4.9 Adding and Compiling Software

There are two ways to add software to the basic OpenBSD system: ports
and packages.

Ports are compiled from source while packages are pre-compiled binaries.
Although ports are more advanced and more flexible, keeping source code
and compiler tools on the firewall is not a good idea. You need another ma-
chine to build them and transfer finished binaries to the firewall. For addi-
tional information, see Section 5 of the OpenBSD F.A.Q.

102 Chapter 4: Configuring OpenBSD

If you decide to install a package, download it from the packages directory
for your chosen hardware platform, e.g. /pub/OpenBSD/3.4/packages/i386.

To install the packages, use pkg_add(1), e.g. to install nmap:

pkg_add nmap-x.xx.tgz

4.10 Configuring Disks

Hard disk configuration is done with fdisk(8), newfs(8), disklabel(8),
mount(8), and fsck(8).

The procedure required to add a new disk to the system, after the system is
installed and running, is quite simple:

• put a new drive into the machine running OpenBSD.
• start the system.
• run disklabel(8) on the new disk drive, its device name is displayed in

output generated with dmesg(8).
• after you crate partitions with disklabel(8), run newfs(8) to create file

systems on the new disk.
• modify /etc/fstab (read fstab(5) and mount(8)) so the system knows which

point the new disk should be mounted at.
• reboot the system with reboot(8).

When there are problems with disks, run fsck(8) on the problematic disk,
that’s what the system does automatically after crash.

4.10.1 RAID

The use of RAID on a firewall is not required unless you are planning to log
all traffic passing through a very fast link. If you decide to do it, you will
have two choices: implement it in hardware with a RAID controller sup-
ported by OpenBSD, or implement it in software, using OpenBSD tool.
You will find all necessary information in raid(4) and raidctl(8).

Chapter 5

/etc/pf.conf

In this chapter we learn what /etc/pf.conf is, how it is
structured, and what tools can be used to make writing
and managing it a little easier. A short course in CVS is
provided for those who may not know how to use it. Also
discussed are syntax rules for macros, addresses, address
families, ports, protocols, tables, and anchors.

Once you define your firewall policy and choose the firewall design that
best matches it, you must describe what you want using the language that
pf(4) understands. That description is called a ruleset. As you will no
doubt notice, a lot of pages in this book are devoted to creating rulesets, so
it is a good idea to learn some basics.

5.1 Inside pf.conf

Pf(4) rulesets are plain ASCII (see ascii(7)) text files. They are written
according to the syntax rules described in pf.conf(5). The default ruleset is
located in /etc/pf.conf, but it can be changed, if you wish so. Rulesets are
managed with pfctl(8), which checks their syntax before loading them into
memory. When you are testing different rulesets, you can use the pfctl(8)
-f option to load the chosen ruleset, e.g.:

pfctl -f /home/joe/pf-test-2.conf

Once you are happy with one particular ruleset, you can either copy it to
/etc/pf.conf or configure your system to load that ruleset directly from its
present location (see Chapter 4, Configuring OpenBSD). Just make sure
that the ownership and the permissions for the new ruleset are set to:

chown root:wheel /home/joe/pf-test-2.conf

chmod 0600 /home/joe/pf-test-2.conf

104 Chapter 5: /etc/pf.conf

Pfctl(8) is described in Chapter 16, Fire wall Management.

Although pf.conf does not have to be stored in /etc, we’ll
refer to it using its default name and location to avoid
confusion. If you want to choose a different name and/or
location for this file, consult Chapter 4, Configuring
OpenBSD for instructions on how to modify /etc/rc.conf.

The pf(4) configuration file is divided into several sections, all of which are
optional, but when they do appear in pf.conf, they must be listed in the
expected order, with the exception of macros and tables that can be defined
anywhere (but before they are used for the first time). The order of these
sections in pf.conf is as follows:

• Macro definitions — the equivalent of global variables. Very handy when
you are writing template ruleset that will use similar rules applied to dif-
ferent interfaces or address ranges. Macro definitions can appear any-
where in pf.conf as long as they are listed before they are used for the first
time. More information on this subject is given later in this chapter.

• Tables — collections of host and network addresses used to construct dy-
namic rulesets and to speed up the process of packet/address matching.
More information on this subject is given later in this chapter and in
Chapter 9, Dynamic Rulesets.

• Options — global settings that affect all rules. There is no separate
chapter devoted to them. Each option is discussed in connection with its
behavior and the rules it affects.

• Scrub rules — packet normalization rules. Described in Chapter 6,
Pack et Normalization.

• Pack et queuing rules — Alternative Queuing (ALTQ) rules. You need
them when you want to implement bandwidth shaping, Quality of Ser-
vice, or load balancing on your network. These rules are described in
Chapter 10, Bandwidth Shaping.

• Pack et redirection rules — implement Network Address Translation
(NAT), redirection, masquerading, managing changes in network layout,
and ‘expanding’ the shrinking IPv4 address space. Discussed in Chapter
7, Pack et Redirection.

• Pack et filtering rules — implement your packet filtering policy. De-
scribed in Chapter 8, Pack et Filtering.

Section 5.1: Inside pf.conf 105

You will find an empty pf.conf template (template-pf.conf) on this book’s
companion web site:

http://www.devguide.net/books/openbsdfw-02-ed/index.html

5.1.1 Changing the pf.conf Section Order

The order of pf.conf sections (as well as correct rule syntax) is checked by
pfctl(8) before loading the ruleset into memory. When errors are found,
they are reported and the ruleset is not loaded into memory. It is possible
to override the section order if you really want to, but there seems to
be little advantage in doing so. If you really want to try it, add the set
require-order no option to your ruleset in the options section.

5.1.2 Breaking Long Lines into Smaller Pieces

When pf(4) rules grow longer than the width of the text editor window, they
become difficult to read. You can fix that by breaking them into shorter
pieces, if you end each line with a backslash (\), as in:

block in on $ext_if from any to \

$ext_ad

which is the equivalent of:

block in on $ext_if from any to $ext_ad

5.1.3 Grouping Rule Elements into Lists ({})

It is possible to compact several rules into one if you group several
elements in braces, e.g. the following three lines:

block in on rl0 all

block in on rl1 all

block in on ne0 all

can be replaced with one line:

block in on {rl0, rl1, ne0} all

106 Chapter 5: /etc/pf.conf

5.2 Macros

Pf(4) rulesets can quickly become complex and difficult to debug. One way
to shorten the time you spend hunting for errors is to use macros in place of
real names of network interfaces, addresses, protocols, ports, and other
repetitive information found in filter rules.

Life is much simpler with macros; they not only help avoid stupid mistakes,
but also make it easier to adapt existing rulesets to changes in hardware
configuration. For example, if you use macros in place of interface names,
the only change you will need to make to the ruleset after changing a net-
work card in your firewall is a simple edit of the macro definition.

Macro names must start with a letter from the a-zA-Z range of the lower
part of the ASCII set and may contain letters (from the same range), digits
(0-9), and underscores (). Macro names may not be keywords used in
pf(4) rules. The string that the macro expands to must be enclosed in a pair
of double quotes ("). When you’re referring to a macro, precede its name
with a dollar sign ($), as in:

##

macro definitions

#---

ext_if: the name of the external interface

ext_if = "ne2"

ext_ad: the address of the external interface

ext_ad = "e.e.e.e/32"

www_ad: the address of the HTTP server residing in

the DMZ

www_ad = "w.w.w.w/32"

##

NAT rules: "rdr", "nat", "binat"

#---

packets arriving on the external interface ($ext_if)

arriving from any source (from any) and sent to the

external address ($ext_ad) to port 80 (port 80) will

be redirected to the the HTTP server residing in

the DMZ and listening for connections on port 8080

(-> $dmz_ad port 8080)

Section 5.3: Tables (table) 107

rdr on $ext_if proto tcp from any to $ext_ad port 80 \

-> $dmz_ad port 8080

For simplicity and security, macros are not expanded recursively, so the fol-
lowing notation is not legal:

ext_if = "ne0"

dmz_if = "ne1"

prv_if = "ne3"

all_if = "{$ext_if, $dmz_if, $prv_if}"

A proper definition of all_if would be:

all_if = "{ne0, ne1, ne2}"

It is possible to redefine a macro while pf(4) is running, without reloading
the whole ruleset, as it is explained in Chapter 16, Fire wall Management.

5.3 Tables (table)

Tables are collections of IP addresses. They are similar to groups of host
and network addresses listed in braces, but more efficient. Another differ-
ence is the fact that you can add or remove addresses to and from a table at
will. Also, macros can store other information or names, while tables are
used solely for addresses. Their syntax is simple, each table definition
starts with the table keyword followed by table name (in <>), table op-
tions (optional), and a list of addresses in braces:

table <DMZ> persist {192.168.34.10/24}

table <myLANs> persist {10.0.200.1/24, 10.0.12.2/24}

References to tables use their names, e.g.:

block in on ne0 from any to <myLANs> port 25

pass in on ne0 from any to <DMZ> port 25

It is OK to group tables in braces:

block in on ne0 from any to {<DMZ>, <myLANs>} port 25

108 Chapter 5: /etc/pf.conf

It is also OK to define an empty table:

table <spammers> persist

Why define an empty table? Because it is possible to load, remove and
modify tables with pfctl(8) while pf(4) is running, without the need to
reload the whole ruleset, and without flushing the ruleset. This feature is
used in dynamic rulesets described in Chapter 9, Dynamic Rulesets.

Table options have the following meaning:

• const — once the table has been created, it cannot be modified or re-
moved, you will need to boot OpenBSD into single-user mode and do the
changes by hand (see Chapter 4, Configuring OpenBSD for explanation of
securelevels). This option is handy when you want another layer of pro-
tection, but makes table management a pain.

• persist — table won’t be removed when there are no rules that refer to it.
This prevents automatic removal of tables after rules that refer to them are
flushed from memory and lets you define an empty table that you will
populate later on. You can still modify that table with pfctl(8) (see Chap-
ter 16, Fire wall Management).

Tables can be used in place of lists of addresses and macros defining lists of
addresses. For example, the following constructs are similar in effect, but
tables are evaluated faster (the gains in speed will be more noticeable for
longer lists of addresses):

address group, and ...

myLANs = "{10.0.200.1/24, 10.0.12.2/24}"

pass out on ne1 from $myLANs to any

... the equivalent table

table <myLANs> persist {10.0.200.1/24, 10.0.12.2/24}

pass out on ne1 from <myLANs> to any

If, instead of listing addresses in brackets, you’d like to hav e them automat-
ically loaded by pf(4) from one or more files, use the file keyword:

table <myLANs> persist file "/etc/spammers" \

file "/etc/openrelays" \

file "/root/scanners" \

file "/root/idiots"

Addresses in these files must be given one per line, e.g.:

Section 5.4: Anchors (anchor, nat-anchor, rdr-anchor, binat-anchor) 109

192.168.255.1

192.168.255.2

192.168.255.3

Any line that begin with # will be ignored. It is OK to use hostnames, their
names will be resolved into IP addresses when pfctl(8) loads them into
memory, e.g (it is possible that a single hostname will be resolved into more
than one IP address, if that’s what DNS reports):

192.168.255.1

www.example.com

mail.example.com

Tables cannot be used in rdr rule’s redirect target addresses (except for
round-robin pools), although you can still use them as source or desti-
nation addresses in these rules (see Chapter 7, Pack et Redirection). Also,
they cannot be used in the routing options of filtering rules (see Chapter 8,
Pack et Filtering).

5.4 Anchors (anchor, nat-anchor, rdr-anchor, binat-anchor)

Anchors are used to mark points at which you can inject additional rules
into the main ruleset that’s already loaded into memory. Like tables, these
rulesets can be modified while pf(4) is running. Each anchor can contain
several separate sections, each with it’s own name, independent of others.
The names of these sections do not have to be pre-defined in the main
ruleset. When you define more than one section in a single anchor, they are
evaluated in the alphabetic order.

Only the main ruleset can contain anchors. The names of anchors ought to
be unique and cannot be reserved names used in pf(4) rules. There are four
types of anchors, used to load four different kinds of rules:

• nat-anchor abc — used to mark the place that you can add more
nat rules to. The name of the anchor is abc.

• rdr-anchor abc — used to mark the place that you can add more
rdr rules to. The name of the anchor is abc.

• binat-anchor abc — used to mark the place that you can add more
binat rules to. The name of the anchor is abc.

110 Chapter 5: /etc/pf.conf

• anchor abc — used to mark the place that you can add more filter
rules to. The name of the anchor is abc.

You will find more information about anchors in Chapter 9, Dynamic
Rulesets; Chapter 12, Using authpf, and Chapter 16, Fire wall Management.

5.5 Common Components Found in pf Rules

Every pf(4) rule is made of several parts, some obligatory and some option-
al. We will now discuss common parts found in many pf(4) rules. Those
parts that are more specific parts are discussed in other chapters, where it is
appropriate.

5.5.1 Directions (in, out)

The direction keywords (in, out) match inbound (in) and outbound
(out) packets. Users new to pf(4) often get this wrong and we’ll be
returning to this subject in the following chapters.

The key to proper use of these keywords is remembering that the direction
the packets are traveling in is relative to the firewall machine. Imagine that
you are sitting inside the firewall and you should have no problem deciding
which packets are inbound and which ones are outbound. It is not OK to
group both keyword on the same line, as in:

block in all

block out all

cannot be replaced with:

block {in, out} all

5.5.2 Interfaces (on)

Every pf(4) rule needs to be assigned to a specific interface. The name of
the interface should be listed after the on keyword, as in:

block in on rl0 all

It is OK to group several interface names on the same line, as in:

Section 5.5: Common Components Found in pf Rules 111

block in on {rl0, rl1, ne0} all

If you are unsure what interfaces are available on your machine use the fol-
lowing commands:

$ dmesg

$ ifconfig -a

When dmesg(8) shows interfaces missing from the ifconfig(8) output, you
need to configure those that are missing. To do that, consult Chapter 4,
Configuring OpenBSD. If pfctl(8) complains about the interface name,
check the spelling, then check if that interface is properly configured, when
you run ifconfig(8), as in:

$ ifconfig rl0

And if you do not see UP in the flags field, then the interface is not initi-
ated at system startup. It may be missing its /etc/hostname.* file or there
may be a problem with the hardware or kernel configuration. See if
Chapter 4, Configuring OpenBSD will help. When the status field is not
active, you need to check if the cables are connected. You will find ad-
ditional help on that subject in Chapter 3, Installing OpenBSD and Chapter
4, Configuring OpenBSD.

5.5.3 Address Families (inet, inet6)

Pf(4) can match packets with IPv4 and IPv6 addresses. When you want to
match either of these address families, use one (or both) of these keywords:
inet (IPv4), inet6 (IPv6). The use of these keywords is optional. A lot
of the area covered by the address families is also covered by constructs
used to define addresses of hosts and networks (address notation, tables).
Not all rules apply to both address families, but that’s something that will
be brought to your attention later in this book.

5.5.4 Protocols (proto)

It is often necessary to block or pass certain protocols. This can be
achieved with the proto keyword followed by the protocol name or the
number of the chosen protocol. The list of protocol names and numbers is
stored in /etc/protocols. For example, to block UDP packets on the external
interface, you’d use:

112 Chapter 5: /etc/pf.conf

block in on ne0 proto udp all

It is also OK to group protocols:

block in on ne0 proto {udp, tcp} all

Note that you cannot use protocol ip (number 0), pfctl(8) won’t allow it.
The latest list of protocols and their numbers can be found at:

http://www.iana.org/assignments/protocol-numbers (IANA protocols)

5.5.5 Addresses (from, to, any, all, no-route)

One of the most important sections in every pf(4) rule are addresses. There-
fore, it is a good idea to spend now some time discussing address notation:

• IPv4 addresses — Every IPv4 address has a length of 32 bits. It is written
as a group of four integers joined with dots, e.g. 10.0.3.1 to make it more
convenient to remember and write. Every address is divided into two
parts: network and host. The relationship between these two parts is in-
versely proportional: the shorter the network address the more hosts on
the same network can be connected without routing, or the more subnets
it can be divided into. How do you know which bits in the address belong
to the network part and which belong to the host part? Use a netmask.
For example, if you see something like 10.0.3.7/24 it is a notation des-
cribing a network whose address is 10.0.3 and which has 256 unique host
IPv4 addresses. This notation is often called Classless Inter-Domain
Routing (CIDR). The /24 suffix is the netmask and contains the number
of bits in the address that describe its network part, so in this example we
know that the network part of 10.0.3.7 is made of the first 24 bits and the
host addresses are created using the remaining 8 bits. The first 24 bits in
the example address do not change, so there is another way to think of
netmasks as numbers that define how many initial bits in an IPv4 address
remain unmodified.

The number of hosts that can have addresses on a given network is calcu-
lated using the following formula:

hosts = 232−netmask − 2

Section 5.5: Common Components Found in pf Rules 113

For our example network address, the result is:

hosts = 232−24 − 2 = 254

The netmask can be any integer between 0 and 32, although some of its
values have a special meaning: 0 is a shortcut for all networks, not very
useful in practical applications; 31 is a funny network, because it has only
two addresses, but cannot contain any real hosts, because two addresses
on each network are always reserved; finally, 32 is an address of a single
host. Hosts with addresses on the network with the same netmask are
said to belong to the same: subnet, network segment, or broadcast domain
(because packets sent to the broadcast address are received by all of these
hosts).

• IPv6 addresses — The IPv6 addresses have a length of 128 bits and use a
slightly different notation. First of all, because the addresses are longer,
they use hex notation instead of decimal notation and are divided into 8
pairs separated with colons instead of dots, e.g.:

FEC0:A702:0000:0000:0000:448A:0000:0005

As you can see, even with this notation, an IPv6 address is quite long.
However, there is a trick that makes it possible to compress parts with 0s,
as in:

FEC0:A702::448A:0000:0005

The :: symbol that replaces 0s may only be use once to avoid ambiguity.
Other than that, IPv6 addresses work just like IPv4 addresses, and they
too use netmasks e.g.:

FEC0:A702::448A:0000:0005/64

The formula used to compute the number of hosts on a network is a bit
different for IPv6 addresses, because the netmask can be longer (0–128
bits).

hosts = 2128−netmask − 2

The above information about IPv6 addresses ought to be enough to get
you started, but if you crave more, refer to [RFC 2373].

114 Chapter 5: /etc/pf.conf

Both types of addresses can be grouped in braces or listed in tables (both
constructs are described in this chapter). Because pf(4) can check the
source and the destination addresses of packets it looks at, there are special
keywords that you put in front of addresses to tell pf(4) which ones are
source (from) and which ones are destination (to), e.g.:

match packets with source address 10.0.1.3/24 and

destination address 192.168.23.4/18

... from 10.0.1.3/24 to 192.168.23.4/18 ...

There are also two shortcuts for telling pf(4) to match all addresses:

match packets with any source address and destination

address 192.168.23.4/18

... from any to 192.168.23.4/18 ...

match packets with source address 10.0.1.3/24 and any

destination address

... from 10.0.1.3/24 to any ...

match packets with and source and any destination

addresses

... from any to any ...

The last example can be written in an even shorter form:

... all ...

Another shortcut is the no-route keyword, which matches addresses,
which have no routes defined at the time they are matched. This particular
keyword won’t be of much use if your firewall has a default route defined
(it won’t match any packets). Its usefulness will be visible on finely-tuned
filtering bridges that control packet flow between network segments that do
not need to communicate with the outside world directly and don’t need a
catch-all default route. A sample rule using no-route could look like
this:

block all outbound packets with destination IP addresses for

which no routes exist.

block out on ne1 from any to no-route

It doesn’t matter if you are using IPv4 or IPv6 addresses, the syntax stays
the same.

Section 5.5: Common Components Found in pf Rules 115

5.5.6 Dynamic Assignment of Addresses (hostname, (if), :broadcast, :network)

When you use a PPP device like the good old analog or DSL modem, the IP
address of the interface this device is connected to will be assigned via
DHCP in a more or less random way. Since there is no way of knowing
which address will be assigned when you log on, this creates an interesting
problem. Unless OpenBSD is configured as an invisible filtering bridge
(see Chapter 4, Configuring OpenBSD, pf(4) must know the address of each
interface mentioned in its ruleset. If it is missing, the ruleset won’t load.
Fortunately, there is a way out of this with the (interface) notation which
tells pf(4) to adjust the address in parentheses whenever the address of the
interface changes. So, instead of writing:

redirect all packets sent to port 80 on the external

interface to the internal HTTP server listening on port 8080

ext_if = "tun0"

ext_ad = "10.3.4.6"

rdr on $ext_if from any to $ext_ad port 80 \

-> 192.168.55.13 port 8080

you could write:

redirect all packets sent to port 80 on the external

interface to the internal HTTP server listening on port 8080

ext_if = "tun0"

rdr on $ext_if from any to ($ext_if) port 80 \

-> 192.168.55.13 port 8080

You could also write the name of the interface without parentheses, e.g.:

rdr on $ext_if from any to $ext_if port 80 \

-> 192.168.55.13 port 8080

OpenBSD 3.4 introduced an interesting extension to this notation in the
form of the :broadcast and :network keywords, which expand into
the broadcast addresses assigned to the given interface, or the addresses of
networks assigned to the given interface:

block out on ne1 from any to ne1:broadcast

pass in on ne1 from ne1:networks to any

116 Chapter 5: /etc/pf.conf

Note that if you use the expanded interface notation, you should not put in-
terface name and modifiers inside parentheses. For example, the following
rule is not correct:

pass in on ne1 from (ne1:networks) to any

Always check what these rules will expand into with:

sudo pfctl -f testfile ; sudo pfctl -s rules

Another trick of similar nature is to use the name of the host. For example,
if your firewall host’s name is fw0, you could write the following rule
blocking access to the host via interface ne1:

block in on ne1 from any to fw0

Interface names and hostname are not interchangeable. To see that they can
result in different sets of rules consider the following rules:

(replace ne1 and fw0 with the name of the interface and host

used in your machine)

rule 1:

pass in on ne1 from any to fw0

rule 2

pass in on ne1 from any to ne1

Load rule 1 and check how it was translated with:

sudo pfctl -f testfile ; sudo pfctl -s rules

Then, replace rule 1 with rule 2 and do the same. If you see rules that you
did not expect (like IPv6 rules), write rules that block them. To make the
ruleset more efficient, use the quick keyword in those blocking rules, see
Chapter 8, Pack et Filtering.

5.5.7 Por ts (por t)

An even finer degree of control than source or destination address matching
can be achieved with port matching. Ports are used to connect to various

Section 5.5: Common Components Found in pf Rules 117

services, for example, when you are sending mail to someone, your mail is
delivered to port 25 (smtp) on the recipient’s mail server.

Ports can be specified in NAT and filtering rules, in numeric or mnemonic
form. The list of ports and service found at those ports is stored in /etc/ser-
vices.

Port names and numbers are listed after the port keyword, e.g.:

... port 25 ...

When you use ports in your rules, list them after the port keyword, and
use the proto keyword to specify protocols matched by these rules,
otherwise pfctl(8) will complain when you try to load them, e.g.:

... proto tcp from any to 192.168.12.63/32 port \

{25, 80} ...

... proto {tcp, udp} from 10.0.0.5/12 port 20001 \

to any port domain ...

Ports can be listed in groups as shown in the section on macro writing, but
you can also define numeric ranges of ports with the following operators:

• = x — equal to x, port number must be equal to x.
• != x — not equal to x, port number must not be equal to x.
• < x — less than x, port number must be lower than x.
• <= x — less than or equal to x, port number must be lower or equal to x.
• > x — greater than x, port number must be higher than x.
• >= x — greater than or equal to x, port number must be higher or equal

to x.
• x >< y — greater than x and less than y, port number must be between
x and y.

• x <> y — less than x and greater than y, rev erse of x >< y.

If you don’t find the information you are looking for in /etc/services, try
this:

http://www.iana.org/assignments/port-numbers (IANA port numbers)

118 Chapter 5: /etc/pf.conf

5.5.8 Tags (tag, tagg ed)

One of the latest additions to the pf(4) box of tricks is its ability to mark
packets with ‘tags’ that inform other rules that certain packets have been
matched by the previous rule. This introduces yet another level of protec-
tion in addition to addresses, ports, protocols, interface names, and
direction specifications.

How would you use it? Why would you use it? To double check that the
packets passing through the firewall have been sent by trusted clients and to
make sure that packets by a certain rule have been processed by an earlier
rule. Think of the following rules, which passe all outbound packets that
enter the firewall on its internal interface through the external interface to
the wide world:

pass in on $int_if from any to any

pass out on $ext_if from any to any

These rules do not take into account the possibility of someone who has
access to the firewall host sending packets (spoofed or legitimate) from the
firewall itself. If you wanted to ensure that only those packets that enter the
firewall through the internal interface can pass through its external inter-
face, you’d change your rules to:

block in on $int_if all

pass in on $int_if from $int_if:network to any tag PRVNET \

keep state

block out on $ext_if all

pass out on $ext_if tagged PRVNET keep state

Note that the tag keyword is used to mark packets, while the tagged
keyword is used to check packets for tags. The tags themselves are text
strings. It is possible to do a negative match with the ! modifier. For ex-
ample, the following rule will not match packets marked with tags:

pass out on $ext_if tagged ! PRVNET keep state

There are a few things to remember when using tags:

• tags are used internally, i.e. you cannot tag packets on one host and write
tagged rules for them on another host.

• tags are used in packet redirection and filtering rules.

Section 5.6: Tools for Writing and Editing pf.conf 119

• rules that use tag or tagged keywords must also use keep state.
• any packet can have only one tag assigned to it at any giv en time.
• once a packet is marked with a tag, it will retain it even if it matches other

rules without the tag keyword.
• when a tagged packet matches another rule that uses the tag keyword, its

tag will change to that of the new matching rule.

5.6 Tools for Writing and Editing pf.conf

In the long-time Unix tradition of keeping things simple, the only tool
needed to create or edit pf.conf is a plain text editor. Which one should you
choose? The choice is yours, and as long as it can read and save plain
ASCII, it will do just fine. For example, the author of this book uses vi(1).
Granted, it is not the most intuitive of text editors, but like it or not, vi(1) is
available on all default OpenBSD installations, and you will need to learn it
sooner or later. Those who want to make learning vi(1) less painful are well
advised to buy a copy of [Lamb, Robbins 1998].

What if you can’t stand vi(1)? OpenBSD comes with another default editor,
mg(1), a simple clone of Emacs. But mg(1) is not that much more intuitive
than vi(1). Is there something else you could use to edit pf.conf?

Sure, other alternatives exist, but they must be installed from the packages
collection. Some of them are vi(1) or Emacs clones, but if you are looking
for something different, try ee, jed, joe, nano, pico, or wily. Hav e fun, ex-
periment, and see which one you like most. Fortunately, they are all free
software, so you can try them and switch from one to another without
spending a dime. Instructions on how to install software from the packages
collection are given in Chapter 4, Configuring OpenBSD.

5.6.1 Why Not Edit pf.conf on Another Machine?

Of course, nobody’s saying that you must edit pf.conf on the firewall. If
you really cannot stand editing in text mode, then by all means use what-
ev er text editor you like on your desktop or laptop, and transfer your ruleset
to the firewall machine using scp(1) afterwards.

5.6.2 Syntax Highlighting

If you use a text editor with syntax highlighting, like vim of XEmacs search
the Web for pf.conf syntax modes. Files for other editors may also be avail-
able.

120 Chapter 5: /etc/pf.conf

5.6.3 GUI Tools for Writing Rulesets with a Mouse

Recently, some brave dev elopers wrote ‘clickable’ GUI applications for
easy ruleset creation. They look promising and may evolve into some very
interesting tools. To hav e a wider appeal, GUI pf.conf configurators must
provide additional value to the administrators. For example, a GUI-based
ruleset tester/simulator and an integration with CVS would be nice to have.
Knowing the worldwide open source software community, it won’t be long
before such tools are available.

5.6.4 Scripting pf.conf

When you have to manage more than one firewall, or when you need to dy-
namically adjust firewall rulesets, it pays to learn scripting tools like shell,
AWK, Perl, Tcl, or Python. You will find plenty of free information avail-
able online. If you prefer to learn from books, Addison-Wesley, Prentice-
Hall, and O’Reilly & Associates publish very good general-purpose pro-
gramming books as well as more specialist titles targeted specifically to
system administrators.

5.7 Managing pf.conf Versions with CVS

Pf(4) rules change quite often when you are fine-tuning the firewall and it is
a good idea to keep a track of the changes you make with cvs(1). While
many people think of it as a programmer’s tool, CVS is not limited to
storing source code of programs and scripts. Any kind of file, text or binary
can be stored in CVS.

Working with CVS is quite easy. The CVS repository can reside anywhere
you choose. You could create a CVS repository of pf.conf files in /root on
the firewall machine, but a more secure solution would be to keep it on the
computer you usually work on. When the repository is kept up to date and
well-commented, you will quickly create a collection of rules that you will
be able to go back to when you need to add a new firewall, or change the
existing network configuration. If you are managing more than one fire-
wall, create separate repositories for each machine’s pf.conf.

To create a repository, first create a directory where all your firewall reposi-
tories will be held, e.g.:

$ mkdir ˜/cvs

Section 5.7: Managing pf.conf Versions with CVS 121

Next, create a temporary directory into which you’ll import the initial ver-
sion of pf.conf from host fw0:

$ mkdir ˜/tmppfconf

This could be anywhere, but it’s probably most convenient to create it in
your home directory. Just in case you asked, the name of the repository and
the name of the directory where CVS keeps repositories are two different
things.

Then, change the present working directory to this new directory you’ve
just created, export the CVSROOT environment variable (used by all CVS
commands; must contain the path to the CVS repository), and initialize
your new CVS repository:

$ cd ˜/tmppfconf

$ export CVSROOT=/usr/joe/cvsdir

$ cvs init

Before you copy /etc/pf.conf to the machine that you will keep its CVS his-
tory on, copy it to the ordinary user’s home directory and change its privi-
leges (the following procedure assumes that you are logged as an ordinary
user on the firewall host and that user joe belongs to group wheel, see
Chapter 4, Configuring OpenBSD for more information):

$ su

cp ./etc/pf.conf /home/joe/

chmod 0660 /home/joe/pf.conf

exit

You can now log off the firewall host and copy pf.conf from the firewall
with scp to ˜/tmppfconf and commit (add) it to the repository:

$ cd ˜/tmppfconf

$ scp joe@fw0.example.com:/home/joe/pf.conf ˜/tmppfconf/

$ cvs import -m ’Initial configuration of fw0.’ fw0 joe start

The pf.conf that you have just imported into the CVS repository will be
stored in the fw0 module (when you download configuration files from
other hosts, place them in the temporary directory and import with a

122 Chapter 5: /etc/pf.conf

module name that’s different from fw0). To begin working with it, do the
following:

$ cd ..

$ cvs co fw0

$ cd fw0

Every time you make changes to pf.conf, use the following command to
store them in the CVS repository, so you will have a trace of the changes
you’ve done and will be able to go back to earlier versions of pf.conf:

$ cvs ci -m ’Added NAT rules for the DMZ.’ ./pf.conf

In the future, when you want to checkout the last revision from the reposi-
tory, use:

$ cvs co pf.conf

What if you want to checkout one of the revisions committed to the reposi-
tory before the last one? Use the -r option followed by the number of the
revision, as in:

$ cvs co -r 1.17 pf.conf

If you want to see the repository log for a file, use this command:

$ cvs log pf.conf

When you want to transfer a modified version of pf.conf to the firewall host,
do the following:

$ scp ./pf.conf joe@fw0.example.com:/home/joe/pf.conf

Then, log on the firewall and:

$ cd /home/joe

$ su

cp ./pf.conf /etc/pf.conf

Section 5.7: Managing pf.conf Versions with CVS 123

chmod 0600 ./etc/pf.conf

And reload the ruleset with pfctl(8).

This is only a short intro to CVS, you can learn more from cvs(1). And if
you really want to get into CVS (as you should) read [Vesperman 2003]. A
very good (and free) CVS manual can be found at:

http://www.cvshome.org (CVS home)

124

Chapter 6

Packet Normalization

In this chapter you will learn how pf(4) can help you nor-
malize malformed packets that may be sent with mali-
cious intent to or from your network.

Not all packets sent over the Internet are well-formed, which may cause
problems to hosts or routers running TCP/IP stacks that cannot properly
handle fragmentation. This can happen by accident, or it may be done on
purpose. When you network receives or sends malformed packets, they are
more than likely to be sent by someone trying to compromise your network.
It may not always be the case, somewhere on the Internet someone might
have just misconfigured a router, but if you have no way of getting in touch
with the administrator, you will have to take preventive action anyway.

Why would someone want to use packet fragmentation? One reason is to
exploit errors in TCP/IP implementations, another is to bypass or slow
down your Network Intrusion Detection System (NIDS). Yet another
reason could be an attempt at launching a Denial of Service (DoS) attack.
Crackers using packet fragmentation send multiple copies of rogue packets
fragmented in different ways, hoping that your NIDS will not be able to
match them against its signature database.

The solution to weak TCP/IP stack implementations and NIDS flooding is
capturing rogue packets before they reach their destination and reas-
sembling them into well-formed packets. These have a much higher chance
of being properly handled by the destination host’s TCP/IP code and of
being quickly matched against your NIDS signature database. Then, as-
suming that you keep the signature database current, your NIDS ought to
catch most attack attempts before they succeed.

126 Chapter 6: Packet Normalization

6.1 Implementing Packet Normalization (scrub)

The process of packet reassembly and normalization performed by pf(4) is
called scrubbing. It is performed for all packets matching scrub rules.
These rules are evaluated by pf(4) before packet queuing, redirection, and
filtering rules (see Chapter 10, Bandwidth Shaping; Chapter 7, Pack et Redi-
rection; Chapter 8, Pack et Filtering).

You can scrub incoming or outgoing packets, but which ones should you
scrub? There are two schools of thought. One claims that it is enough to
scrub only inbound packets (i.e. those arriving at the external interface from
the outside of your network). The other claims that all packets that match
in rules on all interfaces (inbound packets sent from the outside and out-
bound packets sent from your network) ought to be scrubbed. While the
paranoid mind eagerly gravitates toward the second solution, remember that
each rule carries an additional cost in CPU cycles and memory usage. Not
that these are some enormous burdens, but they might add up rather quickly
on a busy corporate network, even if OpenBSD and pf(4) are running on a
very fast machine. On the other hand, even though you trust your users,
how can you be sure that their computers have not been compromised?
There is no one-size-fits-all solution, and you must determine what you
need. Whatever you choose, pf(4) is there to help you.

6.1.1 Scrub Rule Syntax

Scrub rules have a very simple syntax. Each rule starts with the scrub
keyword followed by:

• The direction keyword (in or out). Specifies if the rule matches
inbound or outbound packets. These keywords are also discussed in
Chapter 5, /etc/pf.conf.

• The packet logging switch (log). This part of a scrub rule is optional.
You can read more about it in Chapter 11, Logging and Log Analysis.

• The name of the interface(s) to which it applies (on followed by the inter-
face name). This part is optional and may be omitted, if the rule applies
to all interfaces.

• Address family specification (inet or inet6). Currently, pf(4) reas-
sembles only IPv4 packets. IPv6 fragments are discarded, so it makes lit-
tle sense to include these in your rules, even though pfctl(8) parses them
without complaining.

Section 6.2: Fine-Tuning Scrub Rules 127

• Addresses of source/destination hosts (or all, if the rule applies to pack-
ets sent from or to any address, which is a handy shortcut). Host address
notation is discussed in Chapter 5, /etc/pf.conf. (Note that scrub rules do
not use the port keyword).

• Scrub options. Described later in this chapter.

The following examples show a few rules without scrub options:

##

macro definitions

#---

ext_if -- the name of the firewall’s external

interface

ext_if = "ne1"

dmz_ad -- the DMZ network address

dmz_ad = "192.168.255.1/24"

##

scrub rules: "scrub"

#---

example 1: scrub all incoming packets on all

interfaces

scrub in all

example 2: scrub all packets on all interfaces

scrub in all

scrub out all

example 3: scrub all incoming packets on the external

interface sent from any address to the DMZ

segment

scrub in on $ext_if from any to $dmz_ad

6.2 Fine-Tuning Scrub Rules

The are two ways to fine-tune scrub rules, with pf(4) options and with
scrub rule options. The former appear in the options section, while the
latter are listed as a part of the scrub rule you want them to modify. You
could think of them as global and local variables.

128 Chapter 6: Packet Normalization

6.2.1 Pf Options (limit frags, timeout frags)

The limit frags n option sets hard limits on the number of memory
pools used by the packet filter for packet reassembly. It tells pf(4) how
much memory it can use to store packet fragments. The default value is
5000, but you can adjust it up or down. Lower values of limit frags
result in more dropped connections, but use less memory. Administrators
use this option to avoid performance hits and to prevent attacks aimed at
overwhelming the firewall’s resources. The rule setting the limit
frags option must be listed in the options section of /etc/pf.conf, like in
this example:

##

options: "set"

#---

limit the number of fragments kept in memory to 30000

set limit frags 30000

You can check the current limits with the following command:

$ sudo pfctl -s memory

states hard limit 10000

frags hard limit 5000

Another important general option is timeout frag, which tells pf(4)
how long it should store unassembled fragments, before they are flushed
from memory.

6.2.2 Scrub Rule Options

The process of packet normalization can be further refined with the fol-
lowing scrub rule options:

• fragment reassemble — reassemble fragmented packets. This is
the default behavior and this option can be omitted. Fragments are held
in memory until all pieces of the original packet have been collected. You
can set a limit on the number of fragments kept in memory with the
limit frags option. Use this option when you use Network Address
Translation (NAT). This is the recommended way to scrub packets, use it
together with reassemble tcp.

Section 6.2: Fine-Tuning Scrub Rules 129

• fragment crop — track and pass fragments without reassembling
packets, drop duplicate fragments and crop overlaps. This algorithm uses
a lot less memory than fragment reassemble, but does not work
with NAT .

• fragment drop-ovl — drop all duplicate and overlapping fragments
and their further corresponding fragments. This approach is more aggres-
sive than fragment crop, and may result in more terminated connec-
tion, but it is also more secure. If you are not running an NIDS, then this
algorithm could be used instead of fragment reassemble. It too
does not work with NAT .

• max-mss m — set the Maximum Segment Size for packets matching the
rule to m bytes. Packets scrubbed with the rule where this option is used
will have a MSS less or equal to the give value. The size of the resulting
IP packet will be longer by 40 bytes, so check that the MSS you set is less
than MTU for the network that packet will travel through or fragmenta-
tion will occur again. Typical values of MSS and MTU for Ethernet are
1460 and 1500. If you want to adjust MTU for a chosen interface, you
can do it with ifconfig(8). Although conventional wisdom suggests that
the larger the MMS the better the network performance, this is not always
the case. [Stevens 1994] and [Wright, Stevens 1994] explain the link be-
tween MSS and network performance.

• min-ttl n — set the minimum Time-To-Live for the matching packets
to n hops. TTL is an integer value (0–255) decremented by each router
that IP packets pass through. The longer the TTL, the longer the packet
will circulate inside the network. This modifier is only useful for fine-
tuning your network’s performance. And then only when you know what
you are doing. In most cases, you will want to increase the TTL of
packets, when some of them are not reaching their targets. You could also
use it to limit the number of hops they do on the network so they do not
leave it, for example. TTL will not be a problem for small installations,
but may be an issue in large corporate, government, or educational
networks. For more information about TTL, read [Stevens 1994] and
[Wright, Stevens 1994].

• no-df — clear the don’t-fragment (DF) bit in the IP flags field. Packets
with DF unset can be fragmented along their way by other routers. You
will need this option, if the packets your network is sending to other
networks need to pass though routers that cannot handle large packets, or
when routers on your network have the same problem with the packets
sent from the outside. Use this option when you want to successfully
scrub NFS and other packets that have the DF bit set. When this options

130 Chapter 6: Packet Normalization

is used, it also advisable to use the random-id options.
• random-id — replace IP identification fields with random values.

Makes it more difficult to count hosts hidden behind a NAT box. This is
done increasingly often by DSL providers who do not want their cus-
tomers to use more than one computer per one DSL modem. Of course,
the same technique is used by people interested in finding out the real
layout of the network hidden behind NAT . This options is good for secu-
rity, but remember that it only works with outbound packets (out rules).

• reassemble tcp — normalize TCP connections in the following
way: neither side of a TCP connection can reduce the TTL of IP packets
(TTL will be raised automatically); TCP packets’ timeout values will be
modulated in a random fashion to avoid detection. Unlike other scrub
rules, rules that use this option may be written without the direction
keywords (in, out), in which case they apply to both directions.

The above options, with the exception of random-id, are mostly of
interest to administrators of large networks. Their use and the way they
affect performance of networks is best described in [Stevens 1994] and
[Wright, Stevens 1994], which should be required reading for all adminis-
trators of TCP/IP networks.

The following examples illustrate the use of scrub options:

##

macro definitions

#---

ext_if -- the name of the firewall’s external

interface

ext_if = "ne1"

src_ad -- the address of the firewall’s external

interface

src_ad = "s.s.s.s/32"

dmz_ad = "d.d.d.d/24"

##

options: "set"

#---

limit the number of fragments kept in memory to 30000

set limit frags 10000

Section 6.3: Who’s Sending All Those Malformed Packets? 131

##

scrub rules: "scrub"

#---

example 1: scrub all outbound packets departing from

the external interface and replace their

IP identification numbers with random

values

scrub out on $ext_if all random-id

example 2: scrub all inbound packets arriving on the

external interface, clear their DF flags,

set TTL to 100, set MSS to 1460, use

fragment reassemble

scrub in on $ext_if all \

no-df min-ttl 100 max-mss 1460 fragment reassemble

example 3: scrub all outbound packets departing from

the external interface, clear their DF

flags, set TTL to 10, set MSS to 1460, use

fragment crop

scrub out on $ext_if all \

no-df min-ttl 10 max-mss 1460 fragment crop

example 4: scrub all inbound packets arriving on the

external interface trying to reach hosts

in the DMZ segment, clear their DF flags,

set TTL to 10, set MSS to 1460, use

fragment drop-ovl

scrub in on $ext_if from $src_ad to $dmz_ad \

no-df min-ttl 100 max-mss 1460 fragment drop-ovl

6.3 Who’s Sending All Those Malformed Packets?

To find out where all those malformed packets could be coming from, log
packets matching scrub rules and then use traceroute(8) or traceroute6(8)
(for IPv6 traffic) to locate the possible source of malformed packets. Be
careful and do not blame the source host for sending malformed packets on
the basis of the content of the source IP address field alone. It may have
nothing to do with this. Packets may be getting mangled somewhere

132 Chapter 6: Packet Normalization

between the source host and your network, when they are passing through
one of the many routers. The results displayed by traceroute(8) or tracer-
oute6(8) will help you locate points at which this could be happening. Your
next step could be a polite email to the administrators overseeing those
routers asking them to look into the matter.

For more information about pf(4) logs, read Chapter 11, Logging ang Log
Analysis.

Additional sources of information on the subject of packet fragmentation
are [RFC 815], [Wright, Stevens 1994], [Handley, Paxson, Kreibich 2001],
and [Malan, Watson, Jahanian, Howell 2000].

Chapter 7

Packet Redirection

In this chapter you will learn how Network Address
Tr anslation (NAT) works, what it is useful for, and how to
write pf(4) NAT rules.

Network Address Translation (NAT) is a method of redirecting (for-
warding) packets between addresses and ports. NAT’s main applications
are security and network management. As implemented in pf(4), NAT
works for both IPv4 and IPv6 addresses, even though IPv6 removes some
need for using NAT .

This technique, also known as masquerading (for those who speak Linux)
is implemented in the form of a set of packet redirection rules that pf(4)
checks for every packet it receives.

7.1 Security Applications

The numeric addressing of hosts on IP networks is both a benefit and a
danger. Obviously, without some form of addressing, hosts would never
find themselves on the Internet. But the same address can also be used to
detect the layout of the network of an organization that someone is inte-
rested in spying on, breaking into, or disabling its communications. It is
just like a street address. When someone knows where you live, they can
find you, break in, make noise to distract you, or spy on you.

NAT provides the equivalent of a P.O. Box for IP networks. For example,
instead of exposing a DNS or an HTTP server to the world under a public
IP address, we can give its public address to the NAT device and configure
it to redirect packets to the real server with a private IP address sitting be-
hind NAT . How does this increase the security of servers hidden behind
NAT? Well, many popular network services like DNS, SMTP, or HTTP are
using lower TCP/UDP ports (0–1023), which servers like sendmail, or
apache can bind to when they run with root privileges. Since the user

134 Chapter 7: Packet Redirection

root is a superuser with full access to all resources, when someone finds a
way to break into the system via an exploit in one of the servers listening on
lower ports, they can take control of the whole system. But what if the
server was listening on a higher port (1024–65535) and running as an ordi-
nary user with severely limited privileges? Sure, that would help, but your
web browser won’t know which port the HTTP server is listening on, be-
cause it always expects to find it at port 80. You can re-configure your own
web browser, but how will you convince the rest of the world to do the
same? That’s where NAT helps. Simply give your NAT device the public
address of your HTTP server and configure it to redirect all packets sent to
port 80 on that address to a higher port (e.g. 8080) on the HTTP server
hidden behind NAT . The HTTP server may have a private IP address and if
you put it inside a DMZ, it will be quite secure. Just remember to configure
the HTTP server to listen for connections on port 8080.

Configuring servers to run in a chroot(2) jail will also help, although the
chroot(2) environment is often difficult to configure. In the event of a
break-in the intruder will have very little space to play his/her tricks. As
chance would have it, OpenBSD comes with apache configured in chroot
by default.

Another use of NAT in security is hiding the real number and addresses of
hosts on your LAN behind a single address. Although there are techniques
for discovering that information, it is difficult without access to the link that
your network connects to the outside world. So far, the main users of host
counting techniques are telecom companies trying to prevent users from
connecting more hosts to their DSL boxes than is permitted by their user
agreements.

If you would like to make host counting more difficult for
those who are too nosy, read about the random-id
option in Chapter 6, Packet Normalization.

7.2 Expanding the IPv4 Address Space

The IPv4 address space is limited to 2ˆ32 unique numbers. It used to be
plenty enough in the early days of the Internet, but the IPv4 address space
quickly became a scarce resource after the Internet boom that started
around 1994. Facing a real threat of running out of IP addresses many
people thought of the same thing and decided that the IP address space

Section 7.2: Expanding the IPv4 Address Space 135

ought to be expanded to give every possible device connected to the In-
ternet its own unique number. What sounded simple in theory, became dif-
ficult to implement in practice, because it would require changes to all de-
vices using TCP/IP. Not a problem for your PC running OpenBSD, but an
impossible task when your device is traveling though space or when it is
buried under the sea bed. In a way, it is similar to changing engines in all
cars in the world at the same time, while they are cruising at 60mph. This
and other reasons account for slow adoption of IPv6 (formerly known as
IPng).

The good news is that IPv6 is no longer light years away.
Far from it. The recent decisions of the US government
and military requiring a move to IPv6 look like the boost
that is needed to finally convince people to switch to IPv6.
And, yes, OpenBSD and pf(4) work with IPv6 just fine.

NAT comes to the rescue, when you are running out of public IPv4 ad-
dresses by allowing you to use private IPv4 addresses [RFC 1918] on your
LAN while you expose only a single public address to the outside world.

The idea is very simple: assign a single public IPv4 address to the NAT box
and then assign private IPv4 to the hosts behind it. All packets sent from
those hosts have their source address rewritten and appear to be coming
from the NAT host, which stores information required to pass responses
from the external hosts back to the internal ones. Since the hosts behind
NAT hav e no public IP addresses, they cannot be reached from the outside,
which is a good thing from the point of view of security.

A variation of this technique is bi-directional NAT. It works just like ordi-
nary NAT , but each host behind NAT with a private IPv4 address is bound
to a single public IPv4 address assigned to the external interface on the
NAT device (this is possible with ifconfig(8) aliases described in Chapter 4,
Configuring OpenBSD). This technique is used in Virtual Private Network
(VPN) designs, which do not cooperate too well with NAT [Yuan, Strayer
2001], [Cheswick, Bellovin, Rubin 2003].

Both NAT configurations can be used with IPv6 ad-
dressing. Hosts behind NAT should use FEC0/10 through
FEFF/10 (site-local) addresses as defined in [RFC 2373].
If you are using OpenBSD and pf, you can redirect IPv4

136 Chapter 7: Packet Redirection

and IPv6 traffic on the same machine, together or inde-
pendently of each other.

Another thing worth remembering is that the use of public
IP addresses on the NAT’s external interface and the use
of private IP addresses for hosts behind NAT are not obli-
gatory and you may configure your NAT using any mix-
ture of private and public addresses you need.

Also, some hosts behind NAT configured with OpenBSD
and pf(4) can use regular NAT while others use bi-direc-
tional NAT. It is all up to you.

7.2.1 Does IPv6 Make NAT redundant?

This is one of the questions people are often asking when they hear that
NAT was an in-flight fix to the problem of IPv4 running out of address
space. ‘Surely, if IPv6 gives every device on Earth and in the Universe their
own address, we will no longer need NAT . Right?’ they say. Yes and no.
NAT will still have its place and will be used for packet redirection al-
though it may find a new niche as an elegant solution to load balancing
problems, such as those discussed in Chapter 10, Bandwidth Shaping and
Load Balancing.

7.2.2 What Problems Does NAT Cause?

Handy as it is, NAT often breaks VPN and there is not much you can do
about it, because all VPN solutions that check the integrity of packets will
immediately drop connections after they discover that the source or the
target address has changed. There are workarounds for this problem, but
none of them can really be recommended for use with VPNs. However,
considering the dynamics of Open Source, someone will come up with a
solution to this problem soon.

Another problem is bad cooperation of NAT with bridge configurations,
such as those described in Chapter 4, Configuring OpenBSD. This is
caused by the fact that the bridge makes changes to packets before they are
seen pf(4) and this confuses pf(4). The solution to this problem is very
simple—use two separate machines, one doing NAT , another configured as
a bridge.

Section 7.3: NAT Rules 137

Internet

router

OpenBSD:
pf + bridge

OpenBSD:
pf + NAT

hub/switchjoe

ann

terry

fiona marc

julia

don

sarah

Figure 7.1: A solution to the bridge/NAT incompatibility problem.

7.3 NAT Rules

There are three kinds of NAT rules:

1. nat — translation between groups of internal addresses and a single
external address.

2. rdr — address and port redirection.
3. binat — bidirectional translation between one internal address and

one external address.

If you plan to use NAT , you must first enable IP forwarding in the Open-
BSD kernel. You can learn how to do it from Chapter 4 Configuring
OpenBSD.

Unlike packet filtering rules, packet redirection rules are matched using the
‘first matching rule wins’ algorithm, which means that you must always put

138 Chapter 7: Packet Redirection

more specific rules before more general ones. For example, consider these
two rules: (1) redirect all traffic sent to port 80 from the outside to port
8080 on your HTTP server sitting in the DMZ, (2) redirect all traffic sent to
port 80 from your boss’ home machine to port 8888 on your HTTP server
sitting in the DMZ. Unless rule (2) is placed before rule (1), it will never be
matched and all traffic will be redirected as per rule (1).

7.3.1 Hiding Hosts Behind a Single Address with nat Rules

NAT rules perform network address translation for groups of internal hosts,
with private addresses hidden behind a firewall, which access the outside
world through a single interface with one public IP. (The external interface
could have more IP addresses assigned to it.) This not only solves the
problem of connecting more than one host through a single interface, but it
also hides the details of your internal network’s layout, the number of hosts,
and other information that the intruder may find useful. Hosts with private
IP addresses hidden behind NAT are not reachable from the outside, all the
outside world sees is a single public IP address (e.e.e.e in Figure 7.2).

The magic is possible because the firewall keeps a record of who sent what
and where, so it can send replies to the right host. To do that it must keep a
table of sorts and mark packets it sends to the Internet. This marking
allows attackers to deduct how many hosts are hidden behind the firewall
and gives them an idea of what might be going on behind it, provided they
can capture that traffic. It is also used by companies selling DSL access to
the Internet to find out who’s breaching their contracts. (Some DSL access
providers forbid their customers to use NAT , and impose penalties on those
who use it. If your provider does this, consider switching to another.) The
latest versions of pf(4) can fool these detection systems, as described in
Chapter 6, Pack et Normalization.

NAT rules have the following syntax:

• The no switch. Tells pf(4) to not perform network address translation. It
is used to selectively turn redirection off for certain users or types of con-
nections. This part is optional.

• The nat keyword. This part is required.
• The pass keyword. This part is optional. When you use it, the packet is

sent to the destination host without matching it against the packet filtering
rules.

Section 7.3: NAT Rules 139

Internet

router

e.e.e.e
pf + NAT

a.a.a.7

hub/switcha.a.a.1

a.a.a.2

a.a.a.3

a.a.a.4 a.a.a.5

a.a.a.6

a.a.a.7

a.a.a.8

Figure 7.2: All connections to the outside world sent from a.a.a.a/24 hosts appear to
be originating from e.e.e.e/32.

• The name of the interface or the list of interfaces. Starts with the on
keyword. You need to tell pf(4) which interface each nat rule applies to,
so this part is required.

• The name of the IP address family. Possible values are inet (for IPv4
addresses) or inet6 (for IPv6 addresses). This part is required if the tar-
get address (listed after ->) expands to more than one address family; this
happens when you use the hostname or the interfae name in place of a
single IPv4 or IPv6 address.

• Protocol specification. Discussed in Chapter 5, /etc/pf.conf.
• Source host(s) addresses and ports. These are addresses and ports you

want to do NAT for. Addresses are discussed in Chapter 5, /etc/pf.conf.
• Ta g marker. You can mark packets translated with nat for a double-

check filtering with the tag keyword followed by the identifier string.
Such packets can later be matched with the tagged keyword. This part
is optional. For more information on this subject, consult Chapter 5,
/etc/pf.conf.

• Targ et host(s) addresses and ports. These are addresses and ports that

140 Chapter 7: Packet Redirection

packets are sent to by source hosts. This syntax is used very rarely. Ad-
dresses are discussed in Chapter 5, /etc/pf.conf.

• External address used to perform NAT on.
• Pool options. Discussed in Chapter 10, Bandwidth Shaping and Load

Balancing.
• The static-port option. This is optional, when you use it, NAT does

not modify the source port of translated packets. It may help you with
VPN setups and those connections that somehow break when you pipe
them through nat rules. This part is optional.

How do you connect your private network to the outside world? It’s quite
simple, actually:

##

macro definitions

#---

ext_if -- the name of the firewalls’s external

interface

ext_if = "ne1"

ext_ad -- the public IPv4 address assigned to the

firewall’s external interface

ext_ad = "e.e.e.e/32"

prv_ad -- the range of private IPv4 addresses

assigned to hosts on the screened LAN

prv_ad = "p.p.p.p/24"

nat_proto -- NAT-ed protocols

nat_proto = "{tcp, udp, icmp}"

##

NAT rules: "rdr", "nat", "binat"

#---

nat on $ext_if inet proto $nat_proto \

from $prv_ad to any -> $ext_ad

When it is time to add a new network segment, modify the macros:

##

macro definitions

#---

Section 7.3: NAT Rules 141

ext_if -- the name of the firewalls’s external

interface

ext_if = "ne1"

ext_ad -- the public IPv4 address assigned to the

firewall’s external interface

ext_ad = "e.e.e.e/32"

prv1_ad -- the range of private IPv4 addresses

assigned to hosts on the screened LAN #1

prv1_ad = "p.p.1.p/24"

prv2_ad -- the range of private IPv4 addresses

assigned to hosts on the screened LAN #2

prv2_ad = "p.p.2.p/24"

nat_proto -- NAT-ed protocols

nat_proto = "{tcp, udp, icmp}"

##

NAT rules: "rdr", "nat", "binat"

#---

nat on $ext_if inet proto $nat_proto from \

{$prv1_ad, $prv2_ad} to any -> $ext_ad

Shouldn’t we use the names of the interfaces that connect our private
networks to the firewall? No, we want the outside world to see all connec-
tions originating from the firewall’s external IP address and that address is
assigned to the firewall’s external interface. Those two pieces of informa-
tion must match.

Just like rdr rules, nat rules allow us to use the no and ! modifiers be-
fore interface names and private host addresses. These operators have
many useful applications. For example, when you translate addresses on
two or more network segments, as shown above, the hosts from different
segments cannot communicate with each other. To solve that, you must add
another two rules before the main NAT rule:

##

macro definitions

#---

ext_if -- the name of the firewalls’s external

interface

ext_if = "ne1"

142 Chapter 7: Packet Redirection

ext_ad -- the public IPv4 address assigned to the

firewall’s external interface

ext_ad = "e.e.e.e/32"

prv1_ad -- the range of private IPv4 addresses

assigned to hosts on the screened LAN #1

prv1_ad = "p.p.1.p/24"

prv2_ad -- the range of private IPv4 addresses

assigned to hosts on the screened LAN #2

prv2_ad = "p.p.2.p/24"

nat_proto -- NAT-ed protocols

nat_proto = "{tcp, udp, icmp}"

##

NAT rules: "rdr", "nat", "binat"

#---

no nat on $ext_if inet proto $nat_proto \

from $prv1_ad to $prv2_ad

no nat on $ext_if inet proto $nat_proto \

from $prv2_ad to $prv1_ad

nat on $ext_if inet proto $nat_proto \

from {$prv1_ad, $prv2_ad} to any -> $ext_ad

The no nat rules match packets before they are matched by the nat rule
and so communication between the two local network segments is enabled.

It is also possible to limit their scope to IPv4 or IPv6 packets (inet and
inet6, respectively).

Not all is rosy with NAT , of course. It changes the source ports in IP
packets, which some applications complain about, although this is not such
a huge problem. A more serious danger is a real possibility of running out
of ports on the external address. While 65535 ports is enough for a single
host, there is a real possibility that it will run out when the same number of
ports is shared among several dozens of hosts behind NAT as they will all
use ports associated with the firewall’s external IP address.

The solution is to assign two or more public IP addresses to the external in-
terface using the ifconfig(8) alias option or, to make changes permanent,

Section 7.3: NAT Rules 143

store that information in the appropriate /etc/hostname.* file. You’ll find
the necessary instructions in Chapter 4, Configuring OpenBSD. Then, you
can write two separate NAT rules that translate addresses of two different
network segments on two different external addresses, even though these
addresses are assigned to the same external interface on the firewall:

##

macro definitions

#---

ext_if -- the name of the firewalls’s external

interface

ext_if = "ne1"

ext1_ad -- the first public IPv4 address assigned to

the firewall’s external interface

ext1_ad = "e.e.e.e/32"

ext2_ad -- the second public IPv4 address assigned to

the firewall’s external interface

ext2_ad = "e.e.e.f/32"

prv1_ad -- the range of private IPv4 addresses

assigned to hosts on the screened LAN #1

prv1_ad = "p.p.1.p/24"

prv2_ad -- the range of private IPv4 addresses

assigned to hosts on the screened LAN #2

prv2_ad = "p.p.2.p/24"

nat_proto -- NAT-ed protocols

nat_proto = "{tcp, udp, icmp}"

##

NAT rules: "rdr", "nat", "binat"

#---

no nat $ext_if inet proto $nat_proto \

from $prv1_ad to $prv2_ad

no nat $ext_if inet proto $nat_proto \

from $prv2_ad to $prv1_ad

nat on $ext_if inet proto $nat_proto \

from $prv1_ad to any -> $ext1_ad

nat on $ext_if inet proto $nat_proto \

from $prv2_ad to any -> $ext2_ad

144 Chapter 7: Packet Redirection

What if you cannot get another public IP address? There is not much you
can do about that, but you can try to divide the available port space between
competing LAN segments:

nat on $ext_if inet proto $nat_proto from $prv1_ad to any \

-> $ext1_ad port 10000:20000

nat on $ext_if inet proto $nat_proto from $prv2_ad to any \

-> $ext2_ad port 20001:30000

Another issue that is sometimes problematic is the assignment of source
ports. Pf(4) does it in a random way, which not all applications like. You
can solve that with a NAT proxy rule that looks like this:

nat on $ext_if inet proto $nat_proto from $prv1_ad port 22 \

to any -> $ext1_ad port 8022

What if you wanted to map ports in a one-to-one fashion, 1024 to 1024,
30000 to 30000, etc.? Use the asterisk notation:

nat on $ext_if inet proto $nat_proto \

from $prv1_ad port 1024:65535 to any -> $ext1_ad port 1024:*

Such specific rules go between no nat and nat rules.

It is also possible to turn off source port modifications in nat rules with the
static-port option placed at the very end of such rule:

nat on $ext_if inet proto $nat_proto from $prv1_ad port 22 \

to any -> $ext1_ad static-port

or:

nat on $ext_if inet proto $nat_proto from $prv1_ad \

to any -> $ext1_ad static-port

NAT rules are often used together with matching packet filtering that either
block or pass packets after they are redirected with nat, e.g.:

NAT internal hosts on the external interface ext_if

nat on $ext_if inet proto tcp from $prv_ad to any -> ($ext_if)

Section 7.3: NAT Rules 145

block connections to port 25 on any external host

block out on $ext_if inet proto tcp \

from ($ext_if) to any port 25

You could replace these rules with a single NAT/pass rule (use the pass
keyword):

nat pass on $ext_if inet proto tcp \

from $prv_ad to any port != 25 -> ($ext_if)

Another important tool that binds NAT rules with filter rules are tags. You
can read more about them in Chapter 5, /etc/pf.conf. Please note that the
pass and tag keywords don’t mix. If you use the pass keyword in a
nat rule and tag packets, then the packet filtering section will be skipped
and the tagged keyword will be redundant. Keep this in mind when you
wonder why some rules don’t match packets or when you get lost and feel
overwhelemed by the complexity of your ruleset (a clear sign that you ov-
erengineered your ruleset).

Additional information about the NAT/filtering interactions can be found in
Chapter 8, Pack et Filtering.

The nat rules can be replaced with other nat rules from an external
source while pf(4) is running. To use that feature, you’ll have to use
anchors. They are especially useful in authorization with authpf(8) and you
can read more about them in Chapter 9, Dynamic Rulesets, and Chapter 12,
Using authpf.

7.3.2 Redirecting Packets to Other Addresses and Por ts (rdr)

The rdr rules are written using the following syntax:

• The no switch. Tells pf(4) to not perform packet redirection. It is used to
selectively turn redirection off for certain users or types of connections.
This part is optional.

• The rdr keyword. This part is required.
• The pass keyword. This part is optional. When you use it, the packet is

sent to the destination host without matching it against the packet filtering
rules.

• The name of the interface or a list of interfaces. Starts with the on

146 Chapter 7: Packet Redirection

keyword. You need to tell pf(4) which interface each rdr rule applies to,
so this part is required.

• The name of the IP address family. Possible values are inet (for IPv4
addresses) or inet6 (for IPv6 addresses). This part is required if the tar-
get address (listed after ->) expands to more than one address family; this
happens when you use the hostname or the interface name in place of a
single IPv4 or IPv6 address.

• Protocol specification. Discussed in Chapter 5, /etc/pf.conf.
• Redirected host(s) addresses and ports. These are addresses and ports

you want to redirect. Addresses are discussed in Chapter 5, /etc/pf.conf.
• Ta g marker. You can mark packets translated with rdr for a double-

check filtering with the tag keyword followed by the identifier string.
Such packets can later be matched with the tagged keyword. This part
is optional. For more information on this subject, consult Chapter 5,
/etc/pf.conf.

• Targ et host(s) addresses and ports. These are addresses and ports that
packets will be redirected to. Addresses are discussed in Chapter 5,
/etc/pf.conf.

• Pool options. Discussed in Chapter 10, Bandwidth Shaping and Load
Balancing.

The rdr rules redirect packets from one port to another. A classic example
of using traffic redirection is an HTTP server sitting in a DMZ, yet acces-
sible to hosts outside your network as shown in Figure 7.3. Ordinarily, such
server must listen on port 80, and the machine it runs on must be directly
accessible to external hosts. This setup is not very safe, so you might con-
sider moving the server behind a firewall, into a DMZ network segment.

However, if you do that, the HTTP server is inaccessible, because it has no
public IP address and it’s the firewall that receives requests sent to the that
server instead.

The firewall must redirect these packets to the HTTP server residing inside
the DMZ network segment. This is accomplished with the following NAT
rule:

##

macro definitions

#---

ext_if -- the name of the firewall’s external

interface

ext_if = "ne1"

Section 7.3: NAT Rules 147

Internet

router

e.e.e.e:80
packet filter

p.p.p.p

(Screened LAN)

d.d.d.d hub/switch

NNTP

SMTP

HTTP

FTP

(DMZ)
w.w.w.w:8080

Figure 7.3: Rdr rules divert packets received by the firewall to the hosts hidden in
the DMZ segment

ext_ad -- the public IPv4 address assigned to the

firewall’s external interface

ext_ad = "e.e.e.e/32"

www_ad -- the private IPv4 address assigned to the

HTTP server in the DMZ

www_ad = "w.w.w.w/32"

##

NAT rules: "rdr", "nat", "binat"

#---

rdr on $ext_if inet proto tcp \

from any to $ext_ad port 80 -> $www_ad port 8080

The above rule redirects all TCP (proto tcp) packets arriving at the
firewall’s external address e.e.e.e/32 (on $ext_if), originating
from any source address (from any) and destined to the HTTP server lis-
tening on port 80 (to $ext_ad port 80) to the address of the real
HTTP server located in the DMZ at w.w.w.w/32 (-> $www_ad). The
server listens on port 8080 (port 8080). That port is unprivileged, and
the attacker has less chance of breaking things, should the server be com-
promised. As you will soon discover, when you try this rule in practice, it

148 Chapter 7: Packet Redirection

works for connections made from the outside to your web server, but not
from your private screened LAN. This obstacle is easily removed by
adding another rule:

##

macro definitions

#---

ext_if -- the name of the firewalls’s external

interface

ext_if = "ne1"

prv_if -- the name of the firewalls’s screened LAN

interface

prv_if = "ne2"

ext_ad -- the public IPv4 address assigned to the

firewall’s external interface

ext_ad = "e.e.e.e/32"

prv_ad -- the range of private IPv4 addresses

assigned to hosts on the screened LAN

prv_ad = "p.p.p.p/24"

www_ad -- the private IPv4 address assigned to the

HTTP server in the DMZ

www_ad = "w.w.w.w/32"

##

NAT rules: "rdr", "nat", "binat"

#---

rdr on $ext_if inet proto tcp \

from any to $ext_ad port 80 -> $www_ad port 8080

rdr on $prv_if inet proto tcp \

from $prv_ad to $ext_ad port 80 -> $www_ad port 8080

The second rule sets up redirection for packets sent from the screened LAN
to the HTTP server residing in the DMZ. You can rewrite the above ruleset
in the following way (notice that the interface names are now in curly
braces):

##

macro definitions

#---

Section 7.3: NAT Rules 149

ext_if -- the name of the firewalls’s external

interface

ext_if = "ne1"

prv_if -- the name of the firewalls’s screened LAN

interface

prv_if = "ne2"

ext_ad -- the public IPv4 address assigned to the

firewall’s external interface

ext_ad = "e.e.e.e/32"

prv_ad -- the range of private IPv4 addresses

assigned to hosts on the screened LAN

prv_ad = "p.p.p.p/24"

www_ad -- the private IPv4 address assigned to the

HTTP server in the DMZ

www_ad = "w.w.w.w/32"

##

NAT rules: "rdr", "nat", "binat"

#---

rdr on {$ext_if, $prv_if} inet proto tcp \

from any to $ext_ad port 80 -> $www_ad port 8080

The last rule will be expanded into two, and when you check it with
pfctl(8), you will see the following output:

$ sudo pfctl -s nat

rdr on ne1 inet proto tcp from any to e.e.e.e port www ->

+ w.w.w.w port 8080

rdr on ne2 inet proto tcp from any to e.e.e.e port www ->

+ w.w.w.w port 8080

The rdr rules can use the pass keyword to skip the packet filtering stage
and send the redirected packets straight to the target host. Note that the
pass and tag keywords don’t mix. If you use the pass keyword in an
rdr rule and tag packets, then the packet filtering section will be skipped
and the tagged keyword will be redundant.

150 Chapter 7: Packet Redirection

7.3.3 Forcing Everyone to Use a Web Cache

What if you wanted to redirect all queries to port 80 on all addresses to a
web cache? Return to an earlier setup with two separate rules and change
the second rule:

##

macro definitions

#---

ext_if -- the name of the firewalls’s external

interface

ext_if = "ne1"

prv_if -- the name of the firewalls’s screened LAN

interface

prv_if = "ne2"

prv_ad -- the range of private IPv4 addresses

assigned to hosts on the screened LAN

prv_ad = "p.p.p.p/24"

ch_ad -- the private IPv4 address assigned to the

HTTP cache server

ch_ad = "w.w.w.w/32"

##

NAT rules: "rdr", "nat", "binat"

#---

rdr on $prv_if inet proto tcp \

from $prv_ad to any port 80 -> $ch_ad port 1080

In the example above, the web cache listens on port 1080. Note that this
technique of forcing everyone on the internal network to connect to the
Web through the cache server is controversial, and you must not impose it
on your users without careful thought. For more information consult
[Wessels 2001].

What if you want to bypass the cache yourself? Use the no modifier, as in:

##

macro definitions

#---

...

Section 7.3: NAT Rules 151

boss_ad -- the address of the privileged user who can

bypass the HTTP cache.

boss_ad = "p.p.p.b/24"

##

NAT rules: "rdr", "nat", "binat"

#---

no rdr on $prv_if inet proto tcp \

from $boss_ad to any port 80

rdr on $prv_if inet proto tcp \

from $prv_ad to any port 80 -> $ch_ad port 1080

As you can see, the no modifier makes the -> ... part of the rule unnec-
essary (and such rules do not parse, as they do not make sense). Always list
exceptions to general NAT rules before these rules, or the exceptions won’t
be matched.

Another useful modifier is !, which negates the values (interface names,
source and target addresses) it precedes:

rdr on ! ne1 inet proto tcp from ! s.s.s.s/32 to \

! e.e.e.e/32 port 80 -> d.d.d.d/32 port 8080

The above rule redirects all IPv4 TCP packets arriving on any interface
except ne1 from any address except s.s.s.s/32 and destined to any
address except e.e.e.e/32.

7.3.4 Other Uses of rdr Rules

The rdr rules are very handy because they can be used to configure prox-
ies, redirect traffic from a dead host to a backup host, and so on. For exam-
ple, the FTP proxy setup described in Chapter 4, Configuring OpenBSD
uses them, as does spamd(8) described in Chapter 12, Using spamd.

7.3.5 binat

The last of the three NAT rules are binat rules, which bind an external
public address to an internal private address. VPN setups often use this
bidirectional translation, and it can provide additional security for hosts ex-
posing public services. Their syntax follows these rules:

152 Chapter 7: Packet Redirection

• The no switch. Tells pf(4) to not perform packet redirection between two
addresses bound by the binat rule it begins. It is used to selectively
turn redirection off for certain source or target addresses (ports have no
meaning in binat rules). This part is optional.

• The binat keyword. This part is required.
• The pass keyword. This part is optional. When you use it, the packet is

sent to the destination host without matching it against the packet filtering
rules.

• The name of the interface on which binding occurs. Starts with the on
keyword. You need to tell pf(4) which interface each binat rule applies
to, so this part is required.

• The name of the IP address family. Possible values are inet (for IPv4
addresses) or inet6 (for IPv6 addresses). This part is required if the
target address (listed after ->) expands to more than one address family;
this happens when you use the hostname or the interface name in place of
a single IPv4 or IPv6 address.

• Protocol specification. Discussed in Chapter 5, /etc/pf.conf.
• Internal address. This is the address of the internal host you want to do

bidirectional mapping for. Addresses are discussed in Chapter 5,
/etc/pf.conf.

• Ta g marker. You can mark packets translated with binat for a double-
check filtering with the tag keyword followed by the identifier string.
Such packets can later be matched with the tagged keyword. This part
is optional. For more information on this subject, consult Chapter 5,
/etc/pf.conf.

• External address. This is the external address bound to the matching in-
ternal address with the given binat rule. Addresses are discussed in
Chapter 5, /etc/pf.conf.

These rules are similar to rdr rule, but they do not allow such fine degree
of control, in particular it is not possible to redirect ports. While the fol-
lowing rule set works with rdr rules, it is not possible with binat rules.

rdr on $ext_if inet proto tcp from any to $ext_ad port 22 \

-> 192.168.1.1 port 1022

rdr on $ext_if inet proto tcp from any to $ext_ad port 25 \

-> 192.168.1.2 port 1025

rdr on $ext_if inet proto tcp from any to $ext_ad port 53 \

-> 192.168.1.3 port 1053

rdr on $ext_if inet proto tcp from any to $ext_ad port 80 \

-> 192.168.1.4 port 8080

Section 7.4: Proxy ARP 153

Compare it with binat rules:

binat on $ext_if inet proto tcp from 192.168.1.37 to any \

-> $ext_ad_1

binat on $ext_if inet proto tcp from 192.168.1.38 to any \

-> $ext_ad_2

binat on $ext_if inet proto tcp from 192.168.1.54 to any \

-> $ext_ad_3

As you can see, every internal address must have its own equivalent ex-
ternal address. They can all be bound to the same external interface,
though. If you want to know more, consult the ifconfig(8) man page (look
for information about aliases).

Again, no and ! modifiers are allowed, as are address class modifiers
(inet and inet6), and pass or tag keywords (the interactions between
them are similar to those in nat and rdr rules).

Binat rules can bite you when you least expect it. They
are bi-directional. Packets sent from internal hosts ap-
pear to be sent from the public external IP address and
the packets arriving from the external hosts appear on the
inside to be coming from the internal hosts, which can get
messy. A combination of rdr and nat are a better
choice in a vast majority of cases.

Whatever NAT rules you write, remember two things:

• do not try to redirect packets to the same interface they arrive on, it will
not work (routing options for filter rules may help you here, see Chapter
8, Pack et Filtering);

• do not redirect to the local interface on the firewall (127.0.0.1), because it
creates a potential security risk (we break this rule with spamd, but such
decisions should not be taken lightly).

7.4 Proxy ARP

Proxy ARP is sometimes thought of as an equivalent of NAT , but it is not an
exact match. You can use it to connect two network segments and the
proxy ARP host will answer requests for the host hiding behind it, but there

154 Chapter 7: Packet Redirection

will not be true NAT happening and packets sent from private addresses
will not have their IP source address or port numbers changed.

Enabling proxy ARP is easy, the intermediate host that acts as a proxy has
static ARP entries in its ARP cache that inform it that the address of the
host hiding behind it (the internal host) is bound to the proxy host’s external
interface. No enable two-way communication, the administrator sets up
routes that tell the proxy host where it should send the packets it receives.
Static ARP and routing are discussed in Chapter 4, Configuring OpenBSD.

Chapter 8

Packet Filtering

Pack et filtering is something pf(4) does exceptionally
well. No matter what configuration of OpenBSD and
pf(4) you use, there is always a bit of packet filtering to
be done.

Packet filtering rules, if present in pf.conf are examined after scrub rules
(see Chapter 6, Pack et Normalization) and NAT rules (see Chapter 7, Pack et
Redirection). There are three kinds of packet filtering rules:

• block — block matching packets.
• pass — let matching packets through.
• antispoof — a special case of block rules.

8.1 The Anatomy of a Filtering Rule

Packet filtering rules, just like other pf(4) rules, are written using special-
ized grammar, similar to that of NAT rules, but capable of describing much
finer detail:

• The action (block or pass) keyword. Indicates what action will be
taken when a matching packet is found. This part is required.

• The direction (in or out) keyword. Decides which packets are matched,
inbound or outbound. This part is required.

• The log (log or log-all) keyword. Tells pf(4) to log matching
packets. This part is optional.

• The quick keyword. Tells pf(4) to not evaluate other filtering rules once
a matching packet is found. This part is optional.

• The interface name(s). This part is optional, but rarely omitted. When it
is missing, the rules apply to all interfaces, which is rarely desired.

• Routing options. These options can be use to fine-tune routing of packets,
logging, etc. This part is optional.

• Address family (IPv4 and/or IPv6). This part is optional.

156 Chapter 8: Packet Filtering

• Protocol name(s). This part is optional.
• Source host address and port number (optional). This part is optional.
• Targ et host address and port number (optional). This part is optional.
• Options. This part is optional.

The large number of keywords and their possible configurations make them
a bit overwhelming for a beginner, but there is a method behind this
madness. The following guide should make them easier to digest.

8.1.1 What Is pf Supposed to Do (block, pass)?

The block or pass keywords tell pf(4) what to do with the packet that
matches all conditions listed after either block or pass (we are leaving
the antispoof keyword aside until the end of this chapter, but think of it
as a special case of block rules). These keywords are required and either
of them must be used at the beginning of every filtering rule. To block all
inbound and outbound packets, use:

block in all

block out all

The opposite would be pass rules that let all traffic in and out of the
firewall:

pass in all

pass out all

With such rules in place, all traffic can move freely in or out of the firewall.
Both policies are too general for practical use, but they are handy for
explaining the basics.

As a general rule, the more conditions you list after pass or block the
more specific the rule will be. Conversely the less conditions you use,
the more general the rule will be. As you will see later on, it is always a
good idea to start your packet filtering section with a set of:

block in all

block out all

Section 8.1: The Anatomy of a Filtering Rule 157

It is safer to block all traffic first and only open those routes that are
absolutely necessary later. Apart from being a safer way to write pf(4)
rulesets, such an approach greatly simplifies the ruleset, which is good, be-
cause simple rulesets are easier to debug and put less stress on the firewall.
Therefore, the shorter the ruleset, the shorted the time it takes to evaluate it.

Unlike NAT rules, where the first matching rule wins and the packet is
translated according to that particular rule, filtering rules are evaluated until
there are no more matching rules, and the last matching rule wins. Suppose
you have four hosts and you wanted to do NAT just for three of them, you’d
need to use the no nat rule excluding one of these hosts form NAT before
the nat rule that applies to the other three hosts. Things are dif-
ferent with filtering rules, if you wanted to block outbound packets sent
from one of hosts on your LAN, you’d need to list the block rule after the
pass rule.

8.1.2 Return to Sender (drop, return-icmp, return-icmp6, return-rst, return)

A plain block rule drops all matching packets without sending any kind of
notification back to the host that tried to initiate the connection. Silently
dropping all unwanted packets is a good security practice, because the fire-
wall does not have to waste its own resources on sending redundant infor-
mation, and because ‘silent’ firewalls are harder to scan and fingerprint.
(Broadly speaking, scanning is the process of looking for open ports that
the attacker could use to break into your firewall or network, while finger-
printing is the process of identifying the operating system or other software
running on the scanned host.)

However, as with all general rules, there are exceptions. One of these is
sending the ICMP destination-unreachable message to hosts
trying to connect to port 113 (auth). It is quite safe to do so and is consid-
ered to be good net citizenship. Returning that message helps some ser-
vices, such as sendmail, complete connections faster, without waiting for
connections to port 113 to time out.

This can be achieved with a rule that begins with:

##

macro definitions

#---

158 Chapter 8: Packet Filtering

ext_if -- the name of the firewall’s external

interface

ext_if = "ne1" # ext_ad -- the address of the firewall’s exter-

nal

interface

ext_ad = "e.e.e.e/32"

##

packet filtering rules: "antispoof", "block", "pass"

#---

block all inbound connections

block in all

block all inbound connections to port 113 (auth)

and return ICMP destination-unreachable

block return-icmp in quick on $ext_if proto tcp \

from any to $ext_ad port auth

allow inbound connections to port 25 (smtp)

pass in quick on $ext_if \

from any to $ext_ad port smtp

You can add the ICMP message number or name after the return-icmp
keyword, although it is optional and only required in special cases. Note
that return-icmp works for IPv4 packets, IPv6 ICMP messages will be
send when you use the return-icmp6 keyword. ICMP and ICMP6 are
documented on the icmp(4) and icmp6(4) pages of the OpenBSD manual.
For more information about ICMP, read [RFC 792]; if you want to learn
how it works in practice, and how it is implemented, especially on BSD
systems, consult [Wright, Stevens 1994].

Another possibility is to answer unwanted packets with the TCP RST reply.
This is achieved with the return-rst keyword, which can be followed
by an integer number defining the TTL (time to live) value for the
returned packet as in (note that TTL value is enclosed in parentheses and
must be listed after the ttl keyword):

##

macro definitions

#---

ext_if -- the name of the firewall’s external

interface

ext_if = "ne1"

Section 8.1: The Anatomy of a Filtering Rule 159

ext_ad -- the address of the firewall’s external

interface

ext_ad = "e.e.e.e/32"

##

packet filtering rules: "antispoof", "block", "pass"

#---

block return-rst in quick on $ext_if proto tcp \

from any to $ext_ad port auth

or:

block return-rst (ttl 100) quick in on $ext_if proto tcp \

from any to $ext_ad port auth

Note the use of the proto keyword, which limits the scope of the rules
shown in this section to TCP; you could also use proto udp to limit
these rules to UDP packets; or, you could combine them with proto
{tcp, udp}. You must specify these protocols (one of them or both, as
needed) when you also specify ports (port).

The return-rst keyword applies to TCP packets. Should you want
something more, use the return keyword, which returns TCP RST for
TCP packets and ICMP destination-unreachable for UDP and
other packets:

block return quick in on $ext_if \

from any to $ext_ad

For completeness, there is also the drop keyword, which tell pf(4) to
silently drop connections without sending any error messages. It is used
when you override the default block policy (silently drop all blocked
packets with the set block-policy return option (behavior iden-
tical to return).

##

options: set

#---

answer blocked TCP packets with TCP RSP and

blocked UDP with ICMP destination-unreachable

set block-policy return

160 Chapter 8: Packet Filtering

##

packet filtering rules: "antispoof", "block", "pass"

#---

block and drop packets (override set block-policy

return)

block drop in quick on $ext_if proto tcp \

from any to $ext_ad port auth

Please note that the keyword described in this section are optional. Another
important thing to remember is their incompatibility with bridge(4).

8.1.3 Inbound or Outbound (in, out)?

The next required keyword that appears after either the block (followed
by optional drop, return-icmp, return-icmp6, return-rst,
or return keywords) or the pass keyword is the direction keyword.
There are two direction keywords you can use: in or out. They are
known to cause some confusion, especially when the firewall is equipped
with more than one network interface, and when NAT rules are used along
with filtering rules.

The key to understanding when a packet matches either the in or the out
rule is remembering that these directions are relative to the firewall itself. If
a packet is sent from an external host to the firewall, it matches the in rule
on the firewall’s external interface; when it is sent from the firewall itself, it
matches the out on the external interface. Similarly, packets sent from in-
ternal hosts to the firewall and destined to external hosts will match in
rules on the interface connecting your private network segment to the
firewall and out rules on the firewall’s external interface.

8.1.4 To Log or Not to Log (log, log-all)?

You can tell pf(4) to log packets matching certain rules to the pflog0 in-
terface. From there, they are picked up by pflogd(8) and stored in rotated
log files located in /var/log.

To start packet logging, use the log or the log-all keywords. The dif-
ference between them lies in the way they work with rules that contain
either keep state or modulate state rules (more on these later); log
logs only the state-making packets, while log-all logs all packets. If

Section 8.1: The Anatomy of a Filtering Rule 161

you use stateful filtering and want to capture all packets that match the log
rule, use log-all, otherwise, use log.

Although the firewall does not need to be implemented on the latest, fastest
machine you can get, the more traffic you log and the heavier the traffic that
passes through the firewall’s interface, the faster the hardware you use the
better. This is especially true for the disks that must store the data. As you
will learn later in this chapter, when we discuss the dup-to keyword, you
can duplicate packets and send them to a different interface, where a dedi-
cated packet logging machine can sit, listen, store, and analyze traffic. If
you use dup-to for logging, then log, and log-all are redundant.
Similarly, if you use span hosts on a bridge, the log or log-all
keywords may not be necessary. See Chapter 11, Logging and Log
Analysis for more information on this subject.

8.1.5 Finishing Early (quick)

Unlike NAT (nat, binat, rdr) rules, which are processed in the ‘first
matching rule wins’ fashion, packet filtering is done in the ‘last matching
rule wins’ way. While it is possible to carefully structure your ruleset in a
way that avoids letting unwanted packets through, it is more convenient and
simpler to put rules that you want to process faster (like very specific
blocking rules) at the top of the packet filtering section of the ruleset and
add the quick keyword to such rules. Whenever this keyword is used,
pf(4) will execute the matching rule and will not try to match the packet
against the rest of the ruleset. This saves some processing time, which
quickly adds up on a busy link.

The quick keyword is added after the log or log-all keywords, or, in
the absence of these keywords, after the in or out direction keywords:

pass in log-all quick on $ext_if proto tcp from any \

to $ext_ad port 80

or:

pass in quick on $ext_if proto tcp from any \

to $ext_ad port 80

Typical applications of quick rules include quickly blocking addresses of

162 Chapter 8: Packet Filtering

problematic sites and blocking packets with spoofed addresses.

Be careful when you are using quick in rulesets loaded
with anchors. When used in an anchor ruleset, the
quick keyword in the anchor finishes evaluation of both
the named and the main ruleset.

8.1.6 Network Interface Names (on)?

While the packet filtering rules grammar allows us to write general rules
that apply to all interfaces, we can seldom write a good ruleset without
adding rules for specific interfaces. The name of the interface is given after
the on keyword that appears after the quick keyword. The following ex-
amples show a few possible variations of keywords that appear before on:

block in on $ext_if

block in log-all on $ext_if

block in log-all quick on $ext_if

If you forgot the name of the interface, check the output of
dmesg | less. When OpenBSD is not recognizing
your network interface, read Chapter 4, Configuring
OpenBSD for kernel modification tips. Note that if you
are using a device connected to the serial interface (like a
modem), such device may not be listed in dmesg output,
but should still be recognized by the system. When you
are not sure what name your network card falls under in
OpenBSD, check the list displayed by the apropos
driver command.

8.1.7 Routing Options (fastroute , reply-to, route-to, dup-to)

Ordinarily, packets examined by pf(4) are routed according to the entries in
the firewall’s routing table, which is what we want in most cases. You can
always check the routing table with:

$ route show

(The same command is used to modify the routing tables, see route(4)).

Section 8.1: The Anatomy of a Filtering Rule 163

However, there might be times when you will want to bypass the routing
table or to duplicate packets for intrusion detection or logging purposes.
The following four keywords allow us to influence packet routing:

• fastroute — use the routing table.
• route-to — bypass the routing table and route matching packets

through the interface whose name must be given after the route-to
keyword. The name of the interface may be followed by the IP address of
the host that should receive packets, when the IP address is used. The
name and the address must be enclosed in parentheses, as in:

pass in on $ext_if route-to ($int_if $int_ad) all

pass in on $ext_if route-to $int_if all

• dup-to — create a copy of each matching packet, bypass the routing
table and route the copied packet through the interface whose name must
be given after the dup-to keyword. The name of the interface may be
followed by the IP address of the host that is supposed to receive the
copies, when the IP address is used. The name and the address must be
enclosed in parentheses. The original packet is routed using entries in the
routing table (as if fastroute was used).

• reply-to — routes replies to packet matching the rules that use this
keyword through another interface. This lets you implement symmetric
routing enforcement with state rules (keep state, modulate
state), if you have two external interfaces.

The dup-to keyword is very useful for setting up a separate packet log-
ging or intrusion detection system host. Simply add this rule to
/etc/pf.conf on the firewall:

ext_if -- external interface on the firewall

log_if -- interface connecting the loging station

pass in on $ext_if dup-to $log_if all

pass out on $ext_if dup-to $log_if all

Then, run pf(4) on the logging host with the following rule:

ext_if -- external interface on the logging station

block in log on $ext_if all

164 Chapter 8: Packet Filtering

How do you log on the logging host? Add a rule that allows connections to
port SSH:

ext_if -- external interface on the logging station

log_keeper -- the address of the logging station

block in log on $ext_if all

block return-icmp in log quick on $ext_if proto tcp \

from any to $log_keeper port auth

pass in log on $ext_if from any to $log_keeper port ssh

If you want to fine-tune logging parameters, read Chapter 11, Logging and
Log Analysis.

Letting another host take care of logging or analysis of packets is a good
thing, because it moves the additional load placed on the firewall’s re-
sources to another host. It makes logging complex setups like those de-
scribed in Chapter 11, Logging and Log Analysis, unnecessary, while
making the whole process of logging simpler and more stable. Of course,
to create such setup you will need another machine and an additional
network interface on the firewall (it’s best to put the logging/analysis ma-
chine on a separate segment, or you will slow down the internal network by
as much as 50%).

The dup-to, reply-to, and route-to keywords can be followed by
target address pools (bitmask, random, round-robin, source-
hash, static-port. You can read more about these options in Chapter
10, Bandwidth Shaping and Load Balancing.

8.1.8 IP Addressing Familes: IPv4 (inet) or IPv6 (inet6)

Pf(4) can filter packets with IPv4 (inet) and IPv6 (inet6) addresses.
You select the addressing family with the inet (IPv4) or inet6 (IPv6)
keywords. If you plan on dealing with IPv4 traffic only, add these rules for
ev ery interface on the firewall:

block in quick inet6 all

block out quick inet6 all

or, you could write:

Section 8.1: The Anatomy of a Filtering Rule 165

block in all

pass in inet4 all

pass out inet4 all

8.1.9 Protocols (proto)

Another layer of filtering is filtering by protocol name or number. This is
done with an addition of the proto keyword followed by the name(s) or
number(s) of protocols that the packets are formed in accordance with. The
list of protocols can be found in /etc/protocols.

For example, if you want to let in only TCP packets, use this rule:

pass in quick on $ext_if proto tcp

Almost all popular services use TCP. You should block
UDP packets sent to servers that only use TCP, because
such packets are almost never legitimate traffic. If you do
not know which protocol is used by which services, check
/etc/protocols. The latest and the freshest listings are al-
ways in the IANA’s online database:

http://www.iana.org/assignments/protocol-numbers

8.1.10 Source Address (from, any, all)

Source address filtering is typically used to stop two kinds of packets:
those originating from hosts with legal IP addresses that we do not want to
accept traffic from, and those that carry spoofed source ad-
dresses. In the first case, you will want to block packets from legal IP
addresses if they’re giving you so much trouble that you’d rather not accept
traffic from them. In the second case, you ought to block packets with
spoofed source addresses for your own safety as they will never be legiti-
mate traffic. The following rule blocks packets with spoofed source
addresses sent from external hosts and arriving on the firewall’s external
interface:

$block_ads = \

{10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16, \

224.0.0.0/4, 240.0.0.0/5, 127.0.0.0/8, 0.0.0.0}

block in quick on $ext_if from $block_ads

166 Chapter 8: Packet Filtering

Conversely, we can specify addresses of hosts that we want to accept traffic
from, as in:

block in quick on $ext_if from ! $allow_ads to any

Note the exclamation mark (!), which negates the value
that follows it, so the rule above reads ‘block incoming
packets (and don’t match them against other filtering
rules) arriving on the external interface send from all IP
addresses except $allow_ad and destined for any host.’

There are two shortcuts that you can use to specify wider ranges of IP ad-
dresses. One is the any keyword, which when placed after from or to,
matches any source (from any) or target (to any) address:

block in quick on $log_if from any to $log_ad

block in quick on $ext_if from $blockIPs to any

The second shortcut is the all keyword which replaces from any to
any. The following two rules are synonymous:

block in on $ext_if from any to any

block in on $ext_if all

When you decide to use from you must also use to, and
vice versa.

Source address specification is a required part of any packet filtering rule,
ev en if you use an all-encompassing any or all shortcuts.

8.1.11 Source Por t (por t)

For a finer degree of control, we can block or pass packets sent from a spe-
cific port on the interface from which the matching packets were sent. The
port specification is listed after the source address specification and is
marked with the port keyword, as in:

block in on $ext_if proto tcp from any port 80

The port 80 notation is equivalent to port = 80. Other possible oper-
ators are <, >, <=, >=, !=, <>, and ><:

Section 8.1: The Anatomy of a Filtering Rule 167

block packets destined for port 80

block in on $ext_if proto tcp from any to \

$dmz_www_ad port = 80

block packets destined for all ports except port 80

block in on $ext_if proto tcp from any to \

$dmz_www_ad port != 80

block packets destined for ports lower than port 80

block in on $ext_if proto tcp from any to \

$dmz_www_ad port < 80

block packets destined for ports lower than and equal

to port 80

block in on $ext_if proto tcp from any to \

$dmz_www_ad port <= 80

block packets destined for ports higher than

block in on $ext_if proto tcp from any \

to $dmz_www_ad port > 80

block packets destined for ports higher than and equal

to port 80

block in on $ext_if proto tcp from any to \

$dmz_www_ad port >= 80

block packets destined for ports higher than port 80

and lower than port 1024

block in on $ext_if proto tcp from any to \

$dmz_www_ad port 80 >< 1024

block packets destined for ports lower than port 80

and higher than port 1024

block in on $ext_if proto tcp from any to \

$dmz_www_ad port 80 <> 1024

Specifying port numbers makes sense only for those protocols that carry
source port information (like TCP or UDP). That is why you need to use
the proto keyword when you use the port keyword. Otherwise, pfctl(8)
will complain and refuse to load rules.

168 Chapter 8: Packet Filtering

Port numbers and the names of services that use them are
listed in /etc/services. The latest version of that list is
available from:

http://www.iana.org/assignments/port-numbers

8.1.12 Sender’s Operating System (os)

A new addition to pf(4) introduced in OpenBSD 3.4 is the ability to use the
operating system fingerprint database stored in /etc/pf.os. That database is a
plain text file with one entry per line. You select fingerprints using three
fields: operating system name, operating system version, and sub-
type/patchlevel.

To use this feature add the os keyword followed by the fingerprint para-
meters after the source port number specification, or (when port number in-
formation is missing, right after the source address). For example, if you
wanted to match connections from Microsoft Windows, you would write:

pass in on $ext_if proto tcp from any os "Windows"

A more specific rule, matching connections from Microsoft Windows 2000
hosts, would be:

pass in on $ext_if proto tcp from any os "Windows 2000"

And, if you wanted to be even more specific, you could match packets from
Microsoft Windows 2002 Service Pack 4 (SP4):

pass in on $ext_if proto tcp from any os "Windows 2000 SP4"

What if you wanted to be ‘creative’ and used "Windows SP4?" It won’t
match. Check it for yourself, write such rule and load it with:

pfctl -f ./test-os

And check what pfctl(8) reports. When it finds a matching entry in
/etc/pf.os, you will see something like:

pass in on ne1 proto tcp from any os "Windows 2000 SP4"

Section 8.1: The Anatomy of a Filtering Rule 169

If there is no matching entry, you will see:

pass in on ne1 proto tcp from any os "nomatch"

Always check if the os rules resolve to the signatures you specified, or you
may be scratching your head wondering what is going on with them.

There are a few things you need to be aware of when you use this feature:

• operating system fingerprinting is not an exact science, and should not be
though of as a security tool. It can be useful in fine-tuning rules that regu-
late the flow of packets (some hosts can connect to one host, while they
cannot connect to another).

• it works for TCP connections only, so add the proto tcp keywords to
such rules.

• the match is done on the TCP SYN packet (sent at teh time when the re-
mote host attempts to establish a new connection). Therefore, when you
load os rules into memory, they will do nothing to existing connections.

• when you add a on rule to your ruleset, pf(4) automatically loads
/etc/pf.os into memory. You can view its contents with:

pfctl -so

• for matching operating systems without entries in /etc/pf.os, use the un-
known string, e.g:

pass in on ne1 proto tcp from any os "unknown"

Pf(4) expects to find the fingerprint database in /etc/pf.os, but you can
change it with the following option:

set fingerprints "/etc/pf.os-special-modifications"

8.1.13 Destination IP address (to, any, all)

Destination address filtering is typically used to pass only those packets that
are destined to addresses where there are servers listening for connections,
for example:

pass in on $ext_if from any to $dmz_www_ad

170 Chapter 8: Packet Filtering

All syntax rules for source addresses discussed earlier are applicable to des-
tination addresses. Destination address specification is a required part of
any packet filtering rule, even if you use an all-encompassing any or all
shortcuts.

8.1.14 Destination Por t (por t)

The destination port specification follows the destination address specifica-
tion. All rules that apply to source ports, apply to destination ports. Of
course, both are independent. You will probably use destination ports more
often than source ports, as such rules are usually used to only let those
packets through that are destined to ports where appropriate servers are lis-
tening, for example:

pass in on $ext_if proto tcp from any to \

$ext_www_ad port $ext_www_port

pass in on $ext_if proto tcp from any to \

$ext_smtp_ad port $ext_smtp_port

pass in on $ext_if proto tcp from any to \

$ext_ftp_ad port $ext_ftp_port

Ports (source or target) only make sense for TCP or UDP protocols, so if
pfctl(8) complains about your rules, check if you narrowed your rules to
TCP or UDP.

8.1.15 User and Group Access Control (user, group)

One very handy feature of pf(4) is its ability to filter packets based on the
names of the users and groups who own the sockets on which packets are
sent or received. The user and group IDs can be given in form of names or
numbers and it is possible to specify ranges and lists of IDs. When you list
ranges, it is possible to construct them using the operators described earlier
in the section on source ports:

pass out on $ext_if proto {tcp, udp} \

from any to any user joe keep state

pass out on $ext_if proto {tcp, udp} \

from any to any user > 10000 group users keep state

Section 8.1: The Anatomy of a Filtering Rule 171

The user and group names are effective names, which may not be the same
as the real name (as is the case with setuid and setgid processes). If you are
having problems with these rules, remember that the user and group IDs are
stored at the time a socket is created and they are not updated when the pro-
cess creating a socket drops privileges (e.g., after a process binds to a privi-
leged port as root, and then drops root privileges), so it may be that you
need to use root ID in a rule instead of an unprivileged users’s ID. Try
this when you hit a stumbling block with rules user or group

In case of outgoing connections, the user IDs will match the user that
opened the connection from the firewall itself. Similarly, for incoming con-
nections, the user IDs will match the user that opened the socket for listen-
ing on the firewall. It is not possible to match usernames on connections
forwarded with NAT rules. In case of forwarded connections, user or group
IDs can match (or not match) a special username unknown. In this case,
only two operators are allowed: = and !=.

User and group rules can only be used with TCP and
UDP protocols.

User and group names are used in ftp-proxy(8) setup described in Chapter
4, Configuring OpenBSD. Another application of user/group keywords is
user authentication described in Chapter 12, Using authpf.

8.1.16 TCP Flags (flags)

TCP packet headers contain a flag field which plays an important role in the
process of establishing, maintaining, and closing connections. Flags are
important from the point of view of security, because some attackers abuse
the three-way-handshake mechanism and other uses of TCP flags in denial
of service (DOS) attacks (see CERT Advisories [CERT-1996.21] and
[CERT-2000.21]) and other types of attacks aimed at hosts connected to the
Internet.

As of OpenBSD 3.4, pf(4) recognizes the following TCP header flags:

• (S)YN: synchronize sequence numbers.
• (A)CK: acknowledge.
• (R)ST: reset.

172 Chapter 8: Packet Filtering

• (F)IN: finish.
• (P)USH: push.
• (U)RG: urgent pointer.
• (E)CE: (ECN-Echo) explicit congestion notification echo.
• C(W)R: congestion window reduced.

The syntax for this portion of filtering rules is as follows: the flags
keyword is followed by two lists of flags separated with a slash (/); the first
is a list of flags from the second list that must be set. Those flags not on the
first list must be unset. Flags not listed on the second list are ignored, and
those flags from the second list missing from the first list may or may not
be set:

FIN must be set, ignore the rest

block in proto tcp all flags F/F

FIN must be unset, ignore the rest

block in all flags /F

FIN must be set, the rest must be unset

block in all flags F

FIN must be set, ACK must be unset, ignore the rest

block in all flags F/FA

FIN and ACK must be unset, ignore the rest

block in all flags /FA

TCP flags are described in [RFC 761] and [RFC 793]. A far more detailed
discussion of TCP flags can be found in [Wright, Stevens 1994] Note that
[Wright, Stevens 1994] does not describe the ECE and CWR flags, as these
were added to the TCP header after it was published. For more information
on ECE and CWR read [RFC 3168], [RFC 3168], and [RFC 3360].

The flags keyword makes sense only for TCP (proto tcp) packets.

8.1.17 ICMP Packets

Bogus ICMP packets are another way attackers can make your site inoper-
able, which is why pf(4) has special syntax for dealing with these useful,
but potentially dangerous packets. For more information about the havoc
ICMP packets can wreak read this paper:

http://www.giac.org/practical/gsec/DeokJo_Jeon_GSEC.pdf

Section 8.1: The Anatomy of a Filtering Rule 173

Additional information on that subject can be found in [CERT-1996.26].

ICMPv4 packets are matched by the icmp-type keyword, while ICMP
IPv6 are matched by the ipv6-icmp-type keyword. Both keywords are
followed by the ICMP type number and the ICMP code number, separated
with the code keyword.

For example, if you wanted the firewall to receive and reply to ping re-
quests, you’d use the following rule:

pass in inet proto icmp icmp-type 8 code 0 keep state

The equivalent rule for IPv6 would be:

pass in inet6 proto icmpv6 icmpv6-icmp-type 8 code 0 keep state

Explanations of ICMPv4 message types and codes can be found in [RFC
792], while ICMPv6 message types and codes are discussed in [RFC 2463].

8.1.18 Stateful Filtering (keep state, modulate state, synproxy state)

Pf(4) is a stateful packet filter, which means that it is capable of keeping
track of the state of connections. Stateful filtering has the following advan-
tages:

• makes packet processing faster
• makes writing rulesets easier
• makes connections safer

The basic principle behind stateful filtering is simple. When the initial
packet makes the connection on the firewall, the packet filter will create an
entry in its state table for that connection. All subsequent packets that be-
long to the connection for which an entry in the state table exist will be let
through without matching them against the whole ruleset. State tables are
checked before the filter begins evaluating filtering rules.

The packet filter decides if a packet belongs to a connection for which a
state exists by checking the packet’s sequence number stored in the TCP
header. When the sequence number falls out of a narrow window, the
packet is dropped. This mechanism prevents spoofed packet injection into

174 Chapter 8: Packet Filtering

an established connection. Stateful inspection of packets is turned on with
the keep state keywords placed near the end of a filtering rule (before
queue lists, see Chapter 10, Bandwidth Shaping and Load Balancing):

pass out on $ext_if proto TCP all keep state

To keep memory usage under control, information about connections is re-
moved from the state table after connections are closed or after they time
out.

(By the way, when you use nat/binat/rdr rules, you are already using
stateful filtering, as these rules create states automatically.)

There are two schools of thought about state creation. Some administrators
insist that only packets with the SYN flag (i.e., the packets that initialize the
connection) can create state. Others say that any packet ought to be able to
create state, because such rules allow existing connections to create state
and continue after the state tables are flushed with pfctl -F state or
after the firewall is rebooted. Rules that create state only for packets with
the SYN flag set will not be able to create state for existing connections.

The following rules allow all departing TCP packets to create state. As for
inbound packets, only those sent to port 80 will be able to create state:

pass in proto tcp all port 80 keep state

pass out proto tcp all keep state

If you want to limit packets that can create state to those that have the SYN
flag set, add the flags S/SA condition, as in:

pass in proto tcp all port 80 flags S/SA keep state

pass out proto tcp all flags S/SA keep state

What about UDP or ICMP packets? Can pf(4) create state for these as
well? Yes, it can. With UDP packets, which do not carry sequence num-
bers, the filter matches them to states using only address and port informa-
tion.

As for ICMP, these are treated differently depending on their category.
ICMP error messages that refer to TCP or UDP packets are matched against

Section 8.1: The Anatomy of a Filtering Rule 175

states for connections they refer to. As such they do not require separate
rules, the packet filter will take care of this automatically. ICMP queries
(like ping(8)) may need their own separate rules, like:

pass out inet proto icmp all icmp-type echoreq keep state

Initial sequence numbers, if chosen carelessly, can be used in dangerous at-
tacks that exploit the fact that some TCP stacks use easily predictable val-
ues for initial sequence numbers. For more information about these attacks
read [CERT VU#498440] or [Farrow 2003].

Pf(4) can prevent these attacks with the modulate state rule. To turn
it on, use modulate state instead of keep state:

pass in proto tcp all port 80 flags S/SA keep state

pass out proto tcp all flags S/SA keep state

becomes:

pass in proto tcp all port 80 flags S/SA modulate state

pass out proto tcp all flags S/SA modulate state

The advantage of using modulate state is a higher level of security
achieved by a more random initial sequence number chosen for connections
that match such rules. Remember that modulate state can only be
used with TCP connections. For other connections use keep state.

Another variant of stateful filtering is SYNPROXY. The idea behind this
kind of state rule is to complete the TCP connection initialization hand-
shake on behalf of both sides and once that is completed, pass packets back
and forth. The synproxy state rules implement both keep state
and modulate state features and only work with TCP connections:

pass in proto tcp all port 80 flags S/SA synproxy state

SYNPROXY rules prevent SYN floods, a particularly nasty type of attack.

The behavior of the state engine can be controlled with global options ap-
plicable to all rules, and with local options specified on a per-rule basis.
These options are: limit states and timeout.

176 Chapter 8: Packet Filtering

The limit states n option set hard limits on the number of memory
pools used by pf(4) to store state table entries. If you set this option, pf(4)
will store only n state table entries. Administrators use this option to avoid
performance hits and to prevent attacks from overwhelming the firewall’s
resources. This option must be listed in the options section of /etc/pf.conf.

You can change these limits at will, but to reset them to their unlimited
state, you have to comment out or remove set limit states rules in
/etc/pf.conf, and reboot your firewall machine.

The timeout option rule adjusts the expiration time of stateful connec-
tions. These rules only apply to packets matching stateful connections.
The general syntax of this rule is set timeout protocol.connec-
tionstate timeout, for example:

##

options: "set"

ex. 1 sets timeout of the stateful connection to 20

seconds after receiving the first packet from the host

initializing this connection.

set timeout tcp.first 20

ex. 2 sets timeout of the stateful connection to 20

seconds after receiving the first packet from the host

initializing this connection, then, if the connection

is established, every packet that matches the

established state of a TCP connection resets the

timeout of the TCP connection it is a part of to 10

seconds. This is very aggressive, and will result in

a high percentage of lost valid connections on slow

links.

set timeout tcp.first 20

set timeout tcp.established 10

ex. 3 same as ex. 2, but both rules have been combined

on a single line (the order of protocol.state rules is

not relevant)

set timeout { tcp.first 20, tcp.established 10 }

Section 8.1: The Anatomy of a Filtering Rule 177

Example 1 above sets a very aggressive rule. If the connection is not estab-
lished in 20 seconds, it will be dropped. In example 2, the connection will
be dropped if the firewall does not receive a packet that is a part of the es-
tablished TCP connection in 10 seconds. This is a very aggressive setting.

The protocol.connectionstate pair can be one of these values:

• tcp.first
• tcp.opening
• tcp.established
• tcp.closing
• tcp.finwait
• tcp.closed

These settings are static (you need to reload the rules that use them to
change their values), but you can make them adaptive with:

• adaptive.start — when the number of states exceeds this value,
pf(4) begins linear scaling of all timeout values.

• adaptive.end — when the number of states exceeds this value, pf(4)
sets all timeout values to 0, which expires them.

The formula used in linear scaling takes the following values: adap-
tive.start, adaptive.end, the current number of states stored in
memory:

adaptive. end − number of states
adaptive. end − adaptive. start

= scaling factor

So, if you set the following options (they can be set globally, in the options
section, or on a per-rule basis):

set timeout {adaptive.start 5000, adaptive.end 20000}

and the number of states is 8500, the timeout values will be scaled down to
the following fraction of their initial values:

20000 − 8500
20000 − 5000

=
11500
15000

= 0. 77 (77%)

178 Chapter 8: Packet Filtering

To learn more about the TCP connection state transition cycle, consult
[RFC 761], and if you are still looking for more information, read [Stevens
1994, 1:240-242] and [Wright, Stevens 1994, 2:805-807].

It is possible to control other protocols, like UDP, or ICMP, but the number
of protocol.state matches is more limited:

• udp.first
• udp.single
• udp.multiple

• icmp.first
• icmp.error

• other.first
• other.single
• other.multiple

The other keyword is a catch-all category for protocols which are neither
TCP, UDP, nor ICMP.

The last timeout option, interval specifies the interval between flushing
expired states.

##

options: "set"

set timeout interval 20

set timeout frags 20

Because optimization rules reset various global
timeout settings, you should always list optimiza-
tion rules before your timeout settings.

Each keep state or modulate state can have its own set of op-
tions. These options are:

• max n — the maximum number (n) of concurrent states that can be cre-
ated for this rule. See the earlier discussion of the limit states op-
tion

Section 8.1: The Anatomy of a Filtering Rule 179

• timeout: timeout values for states created with this rule. See the earlier
description of the timeout option.

A rule using state options could look like this:

pass in proto tcp all port 80 flags S/SA modulate \

state (max 1000, tcp.established 120, tcp.closing 10)

8.1.19 IP Options (allow-opts)

IP options are blocked by default, which is good from the point of view of
security. If you want to allow them, you explicitly state your wish with the
allow-opts keyword:

##

macro definitions

#---

ext_if -- the name of the firewall’s external

interface

ext_if = "ne1"

##

packet filtering rules: "antispoof", "block", "pass"

#---

pass in on $ext_if all allow-opts

In practice there is very little need for allowing these options, save for spe-
cial application, as they may be used by attackers to mess with your
network, or with other hosts on the Internet (in such cases, you might end
up being accused of deliberate wrongdoing, if you enable these options and
it results in problems for other hosts). IP options do have their legitimate
uses, but if you don’t explicitly need them, do not use allow-opts.

If you’re curious, read [RFC 791] and [RFC 1108]. For
a more detailed discussion, refer to [Wright, Stevens
1994] where you will find details of operation and imple-
mentation of IP options processing in BSD systems.

The allow-opts keyword can only be used in pass rules.

180 Chapter 8: Packet Filtering

8.1.20 Labels (label)

Labels are used to mark rules for which pf(4) will keep separate statistics.
You can display these stats with pfctl(1). A label is added with the label
keyword followed by a text string. Labels are placed at the very end of
rules:

pass in on rl0 all label "incoming"

pass out on rl0 all label "departing"

To view statistics, use:

$ sudo pfctl -s labels

incoming 85 26 2024

departing 86 56 6960

When you add a lot of labels and want to see stats for just one label, use:

$ sudo pfctl -s labels | grep incoming

incoming 85 26 2024

The numbers that follow the labels are the number of positive rule matches,
packets, and bytes.

Labels can contain pre-defined macros:

• $srcaddr — source IP address. This is the source IP address listed
after the from keyword in the rule, not the packet’s source address, so if
you use from any and label "from $srcaddr" in the same rule
you’ll see a message similar to from any 86 56 6960.

• $dstaddr: destination IP address.
• $srcport: source port.
• $dstport: destination port.
• $proto: protocol name.
• $if: interface name.
• $nr: rule number.

8.2 Antispoof Rules

Source address spoofing is used to sneak packets past firewalls by setting
their source addresses to the address assigned to one of the firewall’s inter-

Section 8.3: Filtering Rules for Redirected Packets 181

faces. Such packets ought to be dropped immediately, as they cannot be le-
gitimate.

To help you quickly write secure anti-spoof rules, pf(4) defines a special
antispoof keyword rule, that has the following syntax:

• The antispoof keyword. This part is required.
• The log keyword, if you want to log packets caught by this rule. This

part is optional.
• The quick keyword, if you want to shorten the time taken to evaluate the

whole ruleset. When you use that keyword, place antispoof rules at
the beginning of the ruleset. This part is optional.

• The for keyword followed by the name of the interface for which pf(4)
will generate anti-spoof rules. It is a common mistake to use on instead
of for, so watch out for this. It is OK to list more than one interface in
braces here, or to refer to a macro. This part is required.

• The addressing family, either inet for IPv4 or inet6 for IPv6. This
part is optional.

For example, if you wanted to write anti-spoof rules for interface ne1, you’d
use:

antispoof for ne1

8.3 Filtering Rules for Redirected Packets

The problem of filtering redirected packets comes up over and over again in
questions that the author receives from new users of pf(4). How does one
write rules that match redirected packets? Well, the main thing to rem-
ember when you are designing your ruleset and plan to use NAT or port/in-
terface redirection, is to design your filtering rules to match packets after
NATing and redirection, or you will waste a lot of time debugging the rule-
set and scratching your head wondering what’s wrong with your design and
its implementation.

The rules of the road are quite simple (inbound and outbound qualifiers are
relative to the firewall host):

• rdr rules. Packets sent by hosts other than the firewall itself, are
matched by block in or pass in rules on the same interface you use

182 Chapter 8: Packet Filtering

in the rdr rule, e.g.:

redirect all packets sent from the internal private

network ($prv_ad) to port 80 on any address arriving

at the interface connecting the private network with

the firewall ($prv_if) to port 8080 on the cache

server whose address is $ch_ad

rdr on $prv_if proto tcp from $prv_ad \

to any port 80 -> $ch_ad port 8080

pass in on $prv_if proto tcp from $prv_ad \

to $ch_ad port 8080

• nat rules. Packets sent from NAT ed hosts appear as outbound packets on
the firewall interface used in nat rules. Their source address and source
port are changed to those of the firewall’s interface. Therefore, they are
matched by block out or pass out rules on that interface, e.g.:

NAT hosts in the private network ($prv_ad) on the

interface connecting the firewall to the Internet

($ext_if) using the firewall’s external address

($ext_ad)

nat on $ext_if from $prv_ad to any -> $ext_ad

pass out on $ext_if proto tcp from $ext_ad to any

• binat rules. Packets sent from internal hosts appear as outbound pack-
ets on the interface used in binat rules. Their source address is changed
to the external address used in the binat rule. Therefore, they are
matched by block out or pass out rules on the interface used in the
binat rule. Packets sent from external hosts appear as inbound packets
on the interface used in binat rules. Their target address is changed to
the internal address used in the binat rule. Therefore, they are matched
by block in or pass in rules on the interface used in the binat
rule.

###

workstation_int -- the internal IP address of the

binat-ed workstation

Section 8.3: Filtering Rules for Redirected Packets 183

workstation_ext -- the external IP address of the

binat-ed workstation

binat on $ext_if from $workstation_int to any \

-> $workstation_ext

pass in on $ext_if proto tcp from any \

to $workstation_int

pass out on $ext_if proto tcp \

from $workstation_ext to any

184

Chapter 9

Dynamic Rulesets

In case you haven’t noticed, the days of static network
layout are over. The world around us is changing at an
increasingly higher rate and so do the networks we man-
age. Our jobs are more and more similar to fixing planes
while they are in the air. Fortunately, pf(4) is there to
help us manage constant change.

One of the greatest challenges in network administration is managing and
securing networks whose layout changes, often in an unorderly manner.
Wireless Ethernet, telecommuting users, mergers and acquisitions, tempo-
rary alliances, etc. are all having a great impact on the networks we man-
age. It is very difficult to design and manage firewalls that can keep up
with these changes. Fortunately, pf(4) is an advanced packet filter that can
help administrators manage change and automate a lot of work. And be-
cause it runs of top of OpenBSD, it is possible to build advanced configura-
tions that run on autopilot most of the time. Knowing how to build such
systems requires knowledge of Unix, scripting, pf(4), and other networking
and security tools. In this chapter we will focus on those features of pf(4)
that make it possible to build firewalls that adapt to change.

9.1 Designing an Automated Firewall

An automated firewall can adapt to changes in the local and the external en-
vironment. Changes to the firewall configuration can be periodic or dynam-
ic, caused by unpredictable events.

Periodic changes are made with commands and scripts called from cron(8),
which can be configured to run pfctl(8) jobs like loading a different ruleset
at different times of day (you can edit cron(8) jobs with crontab(1)). Such
systems are not very flexible, but have their place. They are used to grant
access to certain hosts at different times of day/night. Or they can be used
to redirect connections from one host to another, while the first one is going

186 Chapter 9: Dynamic Rulesets

through a backup routine. Such solutions are relatively rigid, with little
space for the unpredictable.

More flexible solutions are those designed to react to dynamic, unpre-
dictable events. These ev ents can be friendly or unfriendly. A friendly
ev ent could be an attempt by one of the authorized users to log on the
firewall to authenticate herself/himself. Such solutions are described in
Chapter 12, Using authpf. An unfriendly event could be a port scan done
on your firewall by the attacker looking for a way into your network. If
such attempt was registered by your NIDS, the IP address of such host
could be automatically added to the list of banned hosts, from which all
connections are blocked. Such actions could be done automatically,
without human intervention. One interesting project that lets snort (a very
popular NIDS) automatically update pf(4) rulesets is snort2pf:

http://www.unix-geek.info/snort2pf.txt (snort2pf)

Both kinds of automation require custom solutions as this territory is large-
ly uncharted. Since each firewall is different, administrators write their own
scripts that perform such tasks. Readers interested in building such solu-
tions ought to have a good working knowledge of Unix and the following
features of pf(4):

• The (interface) notation. This simple notation solves the problem of
not knowing the address assigned to the interface mentioned in a rule. In-
stead of giving an IP address, use something like (ne1), if the interface
you will assign the IP address to is called ne1. When the name of the in-
terface is stored in a macro, use the name of the macro in place of the
name of the interface, e.g. ($ext_if). This particular feature is used in
ev ery ruleset where one or more addresses are assigned dynamically with
DHCP. Of course, it can also be used when addresses are assigned stati-
cally. Remember to use the inet or inet6 keywords to specify which
protocol should be filtered by your rules, as some interfaces resolve to
more than one IP address class.

• The hostname notation. Similar to the (interface) notation, sub-
stitutes the hostname into address number. The inet or inet6
keywords might have to be used in such rules too.

• The :broadcast notation. Expands into the broadcast address, see
Chapter 4, Configuring OpenBSD. The inet or inet6 keywords might
have to be used in such rules too.

Section 9.1: Designing an Automated Firewall 187

• The :network notation. Expands into the network addresses, see
Chapter 4, Configuring OpenBSD. The inet or inet6 keywords might
have to be used in such rules too.

• Macros. As described in Chapter 5, /etc/pf.conf, macros can be used to
store names of interfaces, protocols, services, addresses and other bits of
information that may be used in more than one rule and it is handy to be
able to change all of them by editing the macro instead of editing the
whole ruleset. You can change a macro definition in a ruleset loaded into
memory with this command:

pfctl -D macro=value

For example, if you wanted to write a script that automatically switches
from one interface to another in the event of a failure of the first interface,
your script could call ping(1) with the -I option to force pings through sep-
arate interfaces, and when the results are different than 0, your script would
call route(8) to change the default route. Then, the script would call
pfctl(8) to redefine the macro that stores the name of the external interface
and the macro that stores the address of the interface, e.g.:

pfctl -D ext_if=ne2

pfctl -D ’ext_ad=192.168.25.34’

(Do not precede the macro name with $ when you redefine it.)
• Tables. Tables are special kinds of structures designed for more efficient
storage of addresses, similar to macros in the way they are defined and
used, but reserved for addresses only. They evaluate faster than equivalent
macros or lists of addresses in braces. Tables can be empty at the time they
are loaded into memory, and you can populate them later. Changes to
tables can be done by hand or via scripts run by the user root, or by users
who are given the permission to run pfctl(8) via sudo(8). It is possible to
define more than one table, and they can be accessed separately (but they
cannot have sections, like anchors). You can find out more about managing
tables in Chapter 16, Fire wall Management. A good example of using
tables can be found in Chapter 13, Using spamd.
• Anchors. These structures allow us to write skeleton rulesets that change
as we wish, without the need to reload the whole ruleset, or to restart pf(4).
Need to change the NAT rules without changing packet filtering rules? No
problem! Need to add or remove a filtering rule? Again, no problem!

188 Chapter 9: Dynamic Rulesets

What you need to do is quite simple. Just add one of the following com-
mands at points where you would like to be able to insert additional rules:

• nat-anchor anchorname. Marks the place where you can insert
nat rules. The anchorname parameter is used to identify the insertion
point. There can be more than one nat-anchor in your ruleset and
they will be evaluated in the order they appear in the main ruleset.

• rdr-anchor anchorname. Marks the place where you can insert
rdr rules. The anchorname parameter is used to identify the insertion
point. There can be more than one rdr-anchor in your ruleset and
they will be evaluated in the order they appear in the main ruleset.

• binat-anchor anchorname. Marks the place where you can insert
binat rules. The anchorname parameter is used to identify the insertion
point. There can be more than one binat-anchor in your ruleset and
they will be evaluated in the order they appear in the main ruleset.

• anchor anchorname. Marks the place where you can insert block,
pass, and antispoof rules. The anchorname parameter is used to
identify the insertion point. There can be more than one anchor in your
ruleset and they will be evaluated in the order they appear in the main
ruleset.

It is even possible to define a ruleset that consists of just four (or less)
anchor points:

nat-anchor anchorname

rdr-anchor anchorname

binat-anchor anchorname

anchor anchorname

Then you could add, remove or modify named rulesets (lists of pf(4) rules)
to these anchor points by hand, or with a script. Details can be found in
Chapter 16, Fire wall Management.

Anchors have two important features: they are not recursive, i.e. it is not al-
lowed to have anchor definitions in named rulesets; and, they can have sec-
tions, which are evaluated in the alphabetic order (the anchors themselves
are evaluated in the orders they appear in the ruleset), as in:

Section 9.1: Designing an Automated Firewall 189

anchor ziggy

... section: ann

... section: dee

... section: zebedee

...

anchor john

... section: olo

... section: makumba

...

If you added a new section ara to anchor john, it would be evaluated before
olo, but after evaluating the whole of ziggy.

Commands used to modify the named rulesets and anchors are described in
Chapter 16, Fire wall Management.

A very powerful feature of anchor anchors is pre-filtering, which controls
when the rules loaded at anchor points will be evaluated. Allowed test are:
direction (in or out), interface name (on), address family (inet or
inet6), protocol names (proto), source/destination address/port (from,
to, port), e.g.:

anchor ziggy will be evaluated only when packets match

the filtering conditions listed after anchor ziggy

anchor ziggy in on ne1 inet proto tcp \

from any port 80 to any port > 1023

190

Chapter 10

Bandwidth Shaping
and Load Balancing

Which packets are more important than others? How
load balancing can help busy sites. How to keep your
users from clogging your T1 link.

Load balancing and bandwidth shaping are two solutions for avoiding net-
work congestion. Pf(4) implements them via ‘pool options’ enhancements
to Network Address Translation (NAT) rules and via integration of the Al-
ternative Queuing (ALTQ) mechanisms. Although similar in purpose, load
balancing and bandwidth shaping are two different animals. The former is
used mainly to evenly spread the load placed on busy hosts, such as HTTP
servers, over multiple physical hosts, while the latter is used for shaping
outbound traffic and limiting (in some way) inbound traffic.

10.1 Load Balancing

The purpose of load balancing is to more or less equally distribute packets
among two or more hosts or links. While load balancing is a new addition
to pf(4), the concept itself is not new, certainly not to those readers who
used the round robin load distribution offered by the named(8) DNS server:

www.example.com. 60 IN A a.a.a.a

www.example.com. 60 IN A a.a.a.b

www.example.com. 60 IN A a.a.a.c

www.example.com. 60 IN A a.a.a.d

When bind receives queries for www.example.com, it will return the follow-
ing sets of addresses:

a.a.a.a a.a.a.b a.a.a.c a.a.a.d

192 Chapter 10: Bandwidth Shaping and Load Balancing

x.f.b.r

f.e.s.q

a.e.q.y

r.t.h.w

t.y.w.b

f.r.j.w

pf w/load balancing
a.a.a.a port 80

.1:8080

.2:8080

.3:8080

.4:8080

.5:8080

.6:8080

Figure 10.1: Load Balancing Implemented with pf(4).

then:

a.a.a.b a.a.a.c a.a.a.d a.a.a.a

then:

a.a.a.c a.a.a.d a.a.a.a a.a.a.b

then:

a.a.a.d a.a.a.a a.a.a.b a.a.a.c

then:

a.a.a.a a.a.a.b a.a.a.c a.a.a.d

then:

a.a.a.a a.a.a.b a.a.a.c a.a.a.d

and so on ...

By serving a different reply each time it is asked for the address of www.ex-
ample.com, named ev enly distributes the load among four separate HTTP
servers, all serving the same contents by sending clients to each one in turn.
As the result of that, all servers should be receiving a quarter of the hits sent
to www.example.com each.

Section 10.1: Load Balancing 193

Pf(4) load balancing works along similar principles to the DNS round robin
method, but there are four main differences between them:

• No need to edit the DNS records. Pf-based load balancing is transparent.
• More flexibility, better control. In pf(4), it is possible to use different load

distribution algorithms for different classes of addresses, protocols, or
ports.

• Speed. DNS round-robin is slower than pf-based load distribution.
• Conservation of IP address space. When you are running a publicly ac-

cessible web server and want to use round-robin DNS, you will have to
use public IP addresses. No such need with pf(4), just put as many web
servers as you like in a DMZ (see Chapter 2, Fire wall Designs) and they
will all be accessible under the same single public IP address.

10.1.1 Implementing Load Balancing

Load balancing can be implemented with nat and rdr rules only (see
Chapter 7, Pack et Redirection); binat rules, due to their nature cannot be
used in load balancing, because they bind exactly two IP addresses.

You can select the load balancing method that best matches your needs with
these keywords:

• round-robind — used to implement the round-robin algorithm. It is
the only algorithm allowed when more than one redirection target address
is used, so we can write:

rdr on ne0 proto tcp from any to $ext_ad port 80 \

-> { 10.1.1.1/24 } round-robin

and:

rdr on ne0 proto tcp from any to $ext_ad port 80 \

-> { 10.1.1.1/24, 192.168.22.5/8, 10.34.2.76 } round-robin

and:

rdr on ne0 proto tcp from any to $ext_ad port 80 \

-> { 10.1.1.45, 192.168.22.5, 10.34.2.76 } round-robin

194 Chapter 10: Bandwidth Shaping and Load Balancing

• random — selects host addresses in a random fashion using the specified
netblock instead of a list of different addresses like round-robin. A net-
block is a network address written using the address/netmask notation de-
scribed in Chapter 5, /etc/pf.conf. For example, the following rule ran-
domly redirects packets to 8 addresses in the 10.4.3.6/29 netblock:

rdr on ne0 proto tcp from any to $ext_ad port 80 \

-> 10.4.3.6/29 random

What if you do not have 8 hosts in that network? You can assign more
than one address to these host’s interfaces bearing in mind that you cannot
assign the same address to two interfaces. It is done with the ifconfig(8)
alias option. When you do that, you will also have to configure the
servers on these hosts to listen on additional addresses. That arrangement
breaks the randomness of the solution, therefore, the hosts you add addi-
tional addresses to must be the ones that offer best performance.

• source-hash — when you use round-robin or random, pf(4)
may redirect connections from the same source host to a different destina-
tion, which is not always desirable. If you wanted the same source host to
connect to the same target host, use source-hash, which selects the
destination address in a random way and associates it with the source ad-
dress, all subsequent connections from the same source address will be
redirected to the same target:

rdr on ne0 proto tcp from any to $ext_ad port 80 \

-> 10.4.3.6/29 source-hash

Initial assignments are random, unless you specify a hash value:

rdr on ne0 proto tcp from any to $ext_ad port 80 \

-> 10.4.3.6/29 source-hash hashstringcanbeanystring

• bitmask — not load balancing as such, maps addresses in nat on a
one-to-one basis, but doesn’t do bi-directional translation. Both netblocks
must be of equal size:

redirect connections:

from 192.168.1.1 to 10.4.3.1

from 192.168.1.2 to 10.4.3.2

from 192.168.1.3 to 10.4.3.3

Section 10.2: Bandwidth Shaping 195

and so on ...

nat on ne0 proto tcp from 192.168.1/24 to any \

-> 10.4.3/24 bitmask

Unfortunately, round-robin and random address as-
signments break some protocols like SSL, which you may
find unacceptable. The solution is to use source-hash
bitmask translation.

The rdr shown above are suitable for inbound connections or for redi-
recting ports on outbound connections to multiple proxies. What if you had
two links to the Internet and wanted them to be evenly utilized by internal
hosts for connections to the Internet? It is possible, but you will have to use
the source-hash option in nat rules. In this case, the addresses of the
external interfaces must belong to the same netblock, e.g.:

nat on $ext_if from 10.3.3.1/24 to any \

-> 192.168.23.34/31 source-hash

Another possibility would be to use the reply-to routing option (see
Chapter 8, Pack et Filtering) for sending replies through a different inter-
face.

When you use pool options with nat rules, the static-port option will
let you turn off port reassignments done by these rules.

10.2 Bandwidth Shaping

Bandwidth shaping in OpenBSD is done with ALTQ, which is a part of the
KAME project.

http://www.kame.net (KAME, home of ALTQ)

ALTQ is particularly effective when you want to ensure that certain packets
are more important than others and are processed faster. The solution used
by ALTQ to manage bandwidth is based on modifying the default ‘first-in,
first-out’ packet processing mechanism implemented in the BSD TCP/IP
stack, which processes packets in the order they arrive. In ALTQ, packets
are assigned to queues (lists of packets) with different priority. Packets in

196 Chapter 10: Bandwidth Shaping and Load Balancing

queues with higher priority are processed before packets in queues with
lower priority, which are held in memory until no packets are left in queues
with higher priority.

Queues can be managed using several algorithms (schedulers) offered by
ALTQ. OpenBSD 3.4 currently supports three schedulers: Priority Queuing
(PRIQ), Class-Based Queuing (CBQ), and Hierarchical Fair Service Curve
(HFSC). The main difference between them is the way they handle packets
and bandwidth. PRIQ manages bandwidth by processing packets according
to their priority levels. The higher the level, the faster such packets will be
processed. CBQ allows queues to be arranged into complex trees of
varying priority and bandwidth, as does HFSC, which gives the admini-
strator an even finer degree of control over queue trees. In both cases,
queue definitions start with a single scheduler rule and a list of queue defi-
nition rules.

10.2.1 The Anatomy of a Parent Rule

All queue definitions start with a single rule that defines the parent queue:

• The altq keyword. Marks the start of the parent queue definition. There
can be only one parent queue assigned to any single interface. This part is
required.

• Interface specification. The on keyword followed by the name of the in-
terface to which you are assigning the parent queue. This part is required.

• Scheduler. Can be set to: priq (PRIQ), cbq (CBQ), or hfsc (HFSC).
Selects the scheduler used on the parent queue. This part is required.

• Maximum available bandwidth. The bandwidth keyword followed by
a number which ends with one of the following suffixes: b (bits per
second), Kb (kilobits per second), Mb (megabits per second), or Gb
(gigabits per second). This value is the maximum available bandwidth
provided by the interface on which we are defining queues. It is OK to
use a lower value (say, 10Mb instead of 100Mb,) but assigning a higher
value will not help (you cannot make make the interface work faster than
the hardware allows). This part is optional, if you omit it, pfctl(8) will try
to automatically use the interface speed, if it can determine it, otherwise it
will complain.

• Queue length limit. The qlimit keyword followed by an integer
number. The value of this parameter tells ALTQ how many packets can
be held in the queue. The default value is 50. You can increase it, if con-

Section 10.2: Bandwidth Shaping 197

nections are timing out too often (see also Chapter 14, Ruleset Optimiza-
tion for information about state timeout values). This part is optional.

• Token bucket regulator. The tbrsize keyword followed by a number of
bytes that tell ALTQ how quickly it should send packets. This part is op-
tional and may be omitted, ALTQ will automatically adjust it to the
optimal level.

• The list of queues. The queue keyword followed by a list of child
queues in braces. Each queue name must be unique, but you do not need
to list the default queue here (it is required anyway). The names of
queues can be anything you want, as long as you do not use reserved pf(4)
keywords. This part is required.

The following are examples of parent queue definitions:

define a parent queue and give it a total of 45Mb of

bandwidth to manage; define four child queues: ssh, www,

other (default), ctrl (control); managed with PRIQ

altq on $ext_if priq bandwidth 45Mb \

queue{ssh, www, other, ctrl}

define a parent queue with a bandwidth of 45Mb and six child

queues: accounting, developers, managers, users, other

(default), ctrl (control); managed with CBQ

altq on $ext_if cbq bandwidth 45Mb \

queue{accounting, developers, managers, users, other, ctrl}

define a parent queue with a bandwidth of 45Mb and six child

queues: accounting, developers, managers, users, other

(default), ctrl (control); managed with HFSC

altq on $ext_if hfsc bandwidth 45Mb \

queue{accounting, developers, managers, users, other, ctrl}

10.2.2 The Anatomy of a Queue Rule

Once you define the parent queues, it is time to define child queues attached
to each parent queue:

• The queue keyword. Marks the start of a child queue definition. This
part is required.

• Queue bandwidth. The bandwidth keyword followed by the maximum

198 Chapter 10: Bandwidth Shaping and Load Balancing

bandwidth available to the child queue. It can be defined in bits (b),
kilobits (Kb), megabits (Mb), gigabits (Gb), or percentage (%) of the
immediate parent queue of the current queue. This part is required, but
not available in PRIQ.

• Queue priority. The priority keyword followed by an integer number
(0-15 in PRIQ queues, 0-7 in CBQ queues). The higher value of that ar-
gument, the higher the priority of the queue (15 is the highest priority in
PRIQ, 7 in CBQ, 0 is the lowest priority in both). This part is required.

• Scheduler options. The name of the scheduler followed by a scheduler
option in parentheses. These options can be one of the following:

∗ borrow — (only in CBQ and HFSC) current queue can borrow band-
width from its parent queue when the parent is not utilizing its own
bandwidth in full.

∗ default — every parent queue must have a single default child queue
which manages packets that do not belong to other child queues.

∗ ecn — packets in this queue are scheduled using Explicit Congestion
Notification (ECN), described in [RFC 3168]. In short, ECN is an ex-
tension of RED, which enables routers to notify the client and the server
that the network is slowing down due to congestion.

∗ red — packets are scheduled using Random Early Detection (RED).
When you use it, packets will be dropped proportionately to the length
of the queue. Packets in longer queues are dropped earlier than packets
in short queues. In practice, this means that communications like in-
stant messaging, ssh, telnet, or HTTP will become more responsive,
while long FTP or HTTP downloads will become even more slower.

∗ rio — packets are scheduled using RED IN/OUT. To enable it, you
must enable RIO and rebuild the kernel. To do this, you should the fol-
lowing line to your kernel configuration file:

option ALTQ_RIO

For more information about rebuilding kernel, read Upgrade-MiniFAQ:

http://www.openbsd.org/faq/upgrade-minifaq.html (Upgrade-MiniFAQ)

This part is optional.

• The list of child queues. The list of child queues of the current queue, in
braces. Each queue name must be unique. This part is optional in CBQ
or HFSC, not allowed in PRIQ (there is only one level of child queues).

Section 10.2: Bandwidth Shaping 199

10.2.3 Assigning Queues to Packet Filtering Rules

Once you define the parent queue and its child queues, you will have to
assign packets matched by various pass filtering rules. This is done with
the queue keyword placed at the very end of a filtering rule, e.g.:

pass out quick on $ext_if from any to any queue users

It is allowed to list the names of two queues, e.g.:

pass out quick on $ext_if from any to any queue (users, admins)

When you list two queues, the second one will be used when:

• matching packets have their TOS set to lowdelay.
• matching TCP ACK packets with no data payload.

Packets not caught by rules assigning them to other queues will be automat-
ically assigned to the default queue.

10.2.4 Priority Queuing (PRIQ)

The PRIQ scheduler uses a simple flat bandwidth division model, where
you divide the bandwidth into smaller slices with different priority. It is an
effective way to implement a simple queuing policy like ‘ssh connections
are more important than http and nttp connections,’ or ‘connections from
the research department are more important than connections from the li-
brary, but both are less important than connections from the network admin-
istrators.’

Let’s see how one could implement the following policy:

• DNS queries have the highest priority.
• connections to SSH and TELNET servers have lower priority than DNS

queries.
• connections to various mail servers (SMTP, POP2, POP3, IMAP, IMAP3,

POP3S) have lower priority than connections to SSH and TELNET
servers.

• connections to WWW servers (HTTP, HTTPS) have lower priority than
connections to Mail servers.

200 Chapter 10: Bandwidth Shaping and Load Balancing

• all other connections have the lowest, default priority.

A sample ruleset based on the PRIQ scheduler giving different priorities to
different types of services that users connect to is shown below:

MACROS

external interface

ext_if = "ne1"

PARENT QUEUE DEFINITION

define a PRIQ parent queue: bandwidth 45Mb, and

five child queues: dns, ssh, www, mail, other (default)

altq on $ext_if priq bandwidth 45Mb \

queue{dns, ssh, www, mail, other}

CHILD QUEUE DEFINITIONS

DNS lookups are given the highest priority, because we

need them done asap

queue dns priority 14 priq(red)

SSH connections are given one of the highest priorities,

because they are often used for administrative purposes

queue ssh priority 13 priq(red)

mail connections are given lower priority than SSH, but

higher than HTTP/HTTPS, because we want to send/receive our

mail as quickly as possible

queue mail priority 12 priq(red)

HTTP/HTTPS connections are given lower priority, because they

are not as time-sensitive as the other queues

queue www priority 11 priq(red)

other connections are assigned to the default queue

queue other priority 10 priq(default)

FILTERING RULES ASSIGNED TO QUEUES

packets sent to port 53 (DNS) will be assigned to the dns

queue, (note the use of keep state, instead of synproxy

state or modulate state, as UDP packets can only be

filtered with keep state

pass out quick on $ext_if inet proto udp \

from any to any port 53 keep state queue dns

pass out quick on $ext_if inet proto tcp \

Section 10.2: Bandwidth Shaping 201

queue other
priority 1

queue www
priority 11

queue mail
priority 12

queue ssh
priority 13

queue dns
priority 14

ext_if

outside world

Figure 10.2: PRIQ-based ALTQ packet queuing setup for different external services.

from any to any port 53 synproxy state queue dns

packets sent to port 22 (SSH), 23 (TELNET) will be assigned

to the ssh queue

pass out quick on $ext_if inet proto tcp \

from any to any port {22, 23} synproxy state queue ssh

packets sent to port 25 (SMTP), 109 (POP2), 110 (POP3),

143 (IMAP), 220 (IMAP3), 995 (POP3S) will be assigned to

the mail queue

pass out quick on $ext_if inet proto tcp \

from any to any port {25, 109, 110, 143, 220, 995} \

synproxy state queue mail

202 Chapter 10: Bandwidth Shaping and Load Balancing

packets sent to port 80 (HTTP), 443 (HTTPS) will be assigned

to the www queue

pass out quick on $ext_if inet proto tcp \

from any to any port {80, 443} synproxy state queue www

What if you wanted to give different priorities to connections initiated from
different internal hosts?

• packets sent from hosts used by administrators have the highest priority.
• packets sent from hosts used by the accounts department have lower pri-

ority than packets sent from the hosts used by administrators.
• packets sent from hosts used by programmers have lower priority than

packets sent from the hosts used by the accounts department.
• packets sent from hosts used by ordinary users have lower priority than

packets sent from the hosts used by the programmers.
• all other connections have the lowest, default priority.

A sample ruleset based on the PRIQ scheduler giving different priorities to
outbound connections from different internal hosts is shown on the next
page:

MACROS

external interface

ext_if = "ne1"

administrators’ machines

admins_ad = "{a.a.a.a, a.a.a.b}"

accounts’ machines

accounts_ad = "{a.a.a.c, a.a.a.d, a.a.a.e}"

coders’ machines

coders_ad = "{a.a.a.f, a.a.a.g, a.a.a.h}"

users’ machines

users_ad = "{a.a.a.i, a.a.a.j, a.a.a.k}"

PARENT QUEUE DEFINITION

define a PRIQ parent queue: bandwidth 45Mb, and

five child queues: admins, accounts, coders, users

others (default)

altq on $ext_if priq bandwidth 45Mb \

queue{admins, accounts, coders, users, others}

Section 10.2: Bandwidth Shaping 203

CHILD QUEUE DEFINITIONS

admins get the higest priority

queue admins priority 14 priq(red)

the accounts department

queue accounts priority 13 priq(red)

coders

queue coders priority 12 priq(red)

ordinary users

queue users priority 11 priq(red)

others

queue others priority 10 priq(default)

FILTERING RULES ASSIGNED TO QUEUES

admins

pass out quick on $ext_if inet proto tcp \

from $admins_ad to any synproxy queue admins

pass out quick on $ext_if inet proto udp \

from $admins_ad to any keep state queue admins

accounts

pass out quick on $ext_if inet proto tcp \

from $accounts_ad to any synproxy state queue accounts

pass out quick on $ext_if inet proto udp \

from $accounts_ad to any keep state queue accounts

coders

pass out quick on $ext_if inet proto tcp \

from $coders_ad to any synproxy state queue coders

pass out quick on $ext_if inet proto udp \

from $coders_ad to any keep state queue coders

users

pass out quick on $ext_if inet proto tcp \

from $users_ad to any synproxy state queue users

pass out quick on $ext_if inet proto udp \

from $users_ad to any keep state queue users

The above ruleset assumes that internal hosts have routable public
addresses. What if you used NAT , which hides all hosts behind a single in-
terface and sends all packets to the outside world with a source address of
the firewall’s external interface? You can still differentiate between hosts, if
you define which ports can be used by each host:

204 Chapter 10: Bandwidth Shaping and Load Balancing

MACROS

external interface

ext_if = "ne1"

administrators’ machines

admins_ad = "{a.a.a.a, a.a.a.b}"

accounts’ machines

accounts_ad = "{a.a.a.c, a.a.a.d, a.a.a.e}"

coders’ machines

coders_ad = "{a.a.a.f, a.a.a.g, a.a.a.h}"

users’ machines

users_ad = "{a.a.a.i, a.a.a.j, a.a.a.k}"

PARENT QUEUE DEFINITION

define a PRIQ parent queue: bandwidth 45Mb, and

five child queues: admins, accounts, coders, users

others (default)

altq on $ext_if priq bandwidth 45Mb \

queue{admins, accounts, coders, users, others}

CHILD QUEUE DEFINITIONS

admins get the higest priority

queue admins priority 14 priq(red)

the accounts department

queue accounts priority 13 priq(red)

coders

queue coders priority 12 priq(red)

ordinary users

queue users priority 11 priq(red)

others

queue others priority 10 priq(default)

NAT RULES

admins

nat on $ext_if inet proto {tcp, udp} \

from a.a.a.a to any -> ($ext_if) port 1024:6888

nat on $ext_if inet proto {tcp, udp} \

from a.a.a.b to any -> ($ext_if) port 6889:12753

accounts

nat on $ext_if inet proto {tcp, udp} \

from a.a.a.c to any -> ($ext_if) port 12754:18618

Section 10.2: Bandwidth Shaping 205

nat on $ext_if inet proto {tcp, udp} \

from a.a.a.d to any -> ($ext_if) port 18619:24483

nat on $ext_if inet proto {tcp, udp} \

from a.a.a.e to any -> ($ext_if) port 24484:30348

coders

nat on $ext_if inet proto {tcp, udp} \

from a.a.a.f to any -> ($ext_if) port 30349:36213

nat on $ext_if inet proto {tcp, udp} \

from a.a.a.g to any -> ($ext_if) port 36214:42078

nat on $ext_if inet proto {tcp, udp} \

from a.a.a.h to any -> ($ext_if) port 42079:47943

users

nat on $ext_if inet proto {tcp, udp} \

from a.a.a.i to any -> ($ext_if) port 47944:53808

nat on $ext_if inet proto {tcp, udp} \

from a.a.a.j to any -> ($ext_if) port 53809:59673

nat on $ext_if inet proto {tcp, udp} \

from a.a.a.k to any -> ($ext_if) port 59674:65535

FILTERING RULES ASSIGNED TO QUEUES

admins

pass out quick on $ext_if inet proto {tcp, udp} \

from ($ext_if) port 1024 >< 6888 to any queue admins

pass out quick on $ext_if inet proto {tcp, udp} \

from ($ext_if) port 6889 >< 12753 to any queue admins

accounts

pass out quick on $ext_if inet proto {tcp, udp} \

from ($ext_if) port 12754 >< 18618 to any queue admins

pass out quick on $ext_if inet proto {tcp, udp} \

from ($ext_if) port 18619 >< 24483 to any queue admins

pass out quick on $ext_if inet proto {tcp, udp} \

from ($ext_if) port 24484 >< 30348 to any queue admins

coders

pass out quick on $ext_if inet proto {tcp, udp} \

from ($ext_if) port 30349 >< 36213 to any queue admins

pass out quick on $ext_if inet proto {tcp, udp} \

from ($ext_if) port 36214 >< 42078 to any queue admins

pass out quick on $ext_if inet proto {tcp, udp} \

from ($ext_if) port 42079 >< 47943 to any queue admins

users

206 Chapter 10: Bandwidth Shaping and Load Balancing

pass out quick on $ext_if inet proto {tcp, udp} \

from ($ext_if) port 47944 >< 53808 to any queue admins

pass out quick on $ext_if inet proto {tcp, udp} \

from ($ext_if) port 53809 >< 59673 to any queue admins

pass out quick on $ext_if inet proto {tcp, udp} \

from ($ext_if) port 59674 >< 65535 to any queue admins

As you can see, PRIQ rules don’t allow you to define how much bandwidth
will be assigned to each child queue, it merely lets you control child queue
priority. If you would like to hav e better control over bandwidth usage, use
CBQ or HFSC.

10.2.5 Class-Based Queuing (CBQ)

The CBQ scheduler allows a finer degree of control over bandwidth. You
can decide not only what priority each queue has, but also how much
bandwidth can be used by each queue. Queues can be arranged in several
levels of child queues. On top of that, it is possible to
define queues that borrow bandwidth from parent queues. With these fea-
tures, it becomes possible to implement policies like ‘accounting must have
at least 1Mb of bandwidth, developers may not use more than 2Mb, and
managers may not use over 1Mb, but the boss must have at least 200Kb.’

The best way to learn CBQ is to start with a simple configuration. Suppose
you want to share the bandwidth between two network segments connected
to the firewall, and the firewall is doing NAT translation:

MACROS

external interface

ext_if = "ne1"

DMZ interface

dmz_if = "ne2"

private interface

prv_if = "ne3"

PARENT QUEUE DEFINITION

define a CBQ parent queue with 45Mb of the total bandwidth

and three child queues: dmznet (hosts in the DMZ),

prvnet (hosts in the private segment),

Section 10.2: Bandwidth Shaping 207

queue prvnet
bandwidth

45% of parent

queue dmznet
bandwidth

50% of parent

ext_if
parent queue
5% reserve

outside world

Figure 10.3: Dividing bandwidth between two internal network segments with CBQ.

others (default, connections from the firewall itself)

altq on $ext_if cbq bandwidth 45Mb \

queue{dmznet, prvnet, others}

CHILD QUEUE DEFINITIONS

give the outbound traffic from the DMZ 50% of parent

bandwidth

queue dmznet bandwidth 50% priority 6 cbq(red)

give the outbound traffic from the private network 49Mb of

bandwidth

queue prvnet bandwidth 45% priority 6 cbq(red)

give the outbound traffic from the firewall host itself

queue others bandwidth 5% priority 5 cbq(default)

PACKET TRANSLATION

Add NAT rules with clearly defined port ranges, so we know

where the outbound packets are coming from (NAT will change

their source address, and we’ll need to use port numbers to

know who’s who

Turn NAT off for connections between the private network

and the DMZ segment

208 Chapter 10: Bandwidth Shaping and Load Balancing

no nat on $ext_if inet proto {tcp, udp} \

from $dmz_if:network to $prv_if:network

no nat on $ext_if inet proto {tcp, udp} \

from $prv_if:network to $dmz_if:network

do NAT between the DMZ network segment and the outside

world

nat on $ext_if inet proto {tcp, udp} \

from $dmz_if:network to any -> $ext_if port 1024:32255

do NAT between the private network segment and the outside

world

nat on $ext_if inet proto {tcp, udp} \

from $prv_if:network to any -> $ext_if port 32256:65535

PACKET FILTERING RULES BOUND TO QUEUES

pass out quick on $ext_if inet proto {tcp, udp} \

from ($ext_if) port 1024 >< 32255 to any queue dmznet

pass out quick on $ext_if inet proto {tcp, udp} \

from ($ext_if) port 32256 >< 65535 to any queue prvnet

The ruleset shown above shows a basic implementation of packet queuing
that imposes bandwidth limits on outbound packets sent from the DMZ and
the private network segments. No advanced packet queuing is done for
these networks. Notice that the parent queue uses 50% of the interface
bandwidth. This is to leave some bandwidth for the incoming connections,
otherwise the users on the private network segment may use up all of the
available bandwidth.

Let’s see how that ruleset could be expanded into a more complex queue
tree that implements the following packet queuing policy:

• the parent queue uses 50% of the total available bandwidth.
• the DMZ segment uses 50% of the parent queue bandwidth. Packets are

queued using the CBQ scheduler without specifying bandwidth alloca-
tion, but with specified priority (like PRIQ, but we cannot use more than
one scheduler, and the range of priority levels is smaller: 0 to 7).

• the private segment uses 49% of the parent queue bandwidth.
• each of the n private hosts gets 1/nth of the parent queue’s bandwidth

(25% for each of the four hosts in this segment).
• packet queueing for each private host is done in a way similar to the

queueing policy for DMZ hosts.

Section 10.2: Bandwidth Shaping 209

Here’s a sample implementation of such policy:

MACROS

external interface

ext_if = "ne1"

DMZ interface

dmz_if = "ne2"

private interface

prv_if = "ne3"

PARENT QUEUE DEFINITION

define a CBQ parent queue: bandwidth 45Mb, and

three child queues: dmznet (hosts in the DMZ),

prvnet (hosts in the private segment),

others (default)

altq on $ext_if cbq bandwidth 45Mb \

queue{dmznet, prvnet, others}

CHILD QUEUE DEFINITIONS

give the outbound traffic from the DMZ 50% of bandwidth

queue dmznet bandwidth 50% priority 6 cbq(red) \

queue(dns, ssh, www, mail)

give the outbound traffic from the private network 49% of

bandwidth

queue prvnet bandwidth 49% priority 5 cbq(red) \

queue(host1, host2, host3, host4)

give the outbound traffic from the firewall host itself

queue others bandwidth 1% priority 4 cbq(default)

CHILD QUEUE DEFINITIONS: (for dmznet)

queue dns priority 6 cbq(red, borrow)

queue ssh priority 5 cbq(red, borrow)

queue mail priority 4 cbq(red, borrow)

queue www priority 3 priq(red, borrow)

CHILD QUEUE DEFINITIONS: (for prvnet)

queue host1 bandwidth 25% priq(red) {dns1, ssh1, mail1, www1}

queue host2 bandwidth 25% priq(red) {dns2, ssh2, mail2, www2}

queue host3 bandwidth 25% priq(red) {dns3, ssh3, mail3, www3}

queue host4 bandwidth 25% priq(red) {dns4, ssh4, mail4, www4}

210 Chapter 10: Bandwidth Shaping and Load Balancing

CHILD QUEUE DEFINITIONS: (for host1)

queue dns1 priority 6 cbq(red, borrow)

queue ssh1 priority 5 cbq(red, borrow)

queue mail1 priority 4 cbq(red, borrow)

queue www1 priority 3 cbq(red, borrow)

CHILD QUEUE DEFINITIONS: (for host2)

queue dns2 priority 6 cbq(red, borrow)

queue ssh2 priority 5 cbq(red, borrow)

queue mail2 priority 4 cbq(red, borrow)

queue www2 priority 3 cbq(red, borrow)

CHILD QUEUE DEFINITIONS: (for host3)

queue dns3 priority 6 cbq(red, borrow)

queue ssh3 priority 5 cbq(red, borrow)

queue mail3 priority 4 cbq(red, borrow)

queue www3 priority 3 cbq(red, borrow)

CHILD QUEUE DEFINITIONS: (for host4)

queue dns4 priority 6 cbq(red, borrow)

queue ssh4 priority 5 cbq(red, borrow)

queue mail4 priority 4 cbq(red, borrow)

queue www4 priority 3 cbq(red, borrow)

NAT RULES

no nat on $ext_if from $dmz_if:network to $prv_if:network

no nat on $ext_if from $prv_if:network to $dmz_if:network

nat on $ext_if from $dmz_if:network to any \

-> ($ext_if) port 1024:32255

nat on $ext_if from $prv_if:network to any \

-> ($ext_if) port 32256:40574

nat on $ext_if from $prv_if:network to any \

-> ($ext_if) port 40575:48893

nat on $ext_if from $prv_if:network to any \

-> ($ext_if) port 48894:57212

nat on $ext_if from $prv_if:network to any \

-> ($ext_if) port 57213:65535

FILTERING RULES ASSIGNED TO QUEUES: (for dmznet)

pass out quick on $ext_if inet proto {tcp, udp} \

from ($ext_if) port 1024 >< 32255 to any port 53 queue dns

Section 10.2: Bandwidth Shaping 211

queue other1
priority 1

queue www1
priority 11

queue mail1
priority 12

queue ssh1
priority 13

queue dns1
priority 14

queue host1
bandwidth
25% prvnet

queue other2
priority 1

queue www2
priority 11

queue mail2
priority 12

queue ssh2
priority 13

queue dns2
priority 14

queue host2
bandwidth
25% prvnet

queue other3
priority 1

queue www3
priority 11

queue mail3
priority 12

queue ssh3
priority 13

queue dns3
priority 14

queue host3
bandwidth
25% prvnet

queue other4
priority 1

queue www4
priority 11

queue mail4
priority 12

queue ssh4
priority 13

queue dns4
priority 14

queue host4
bandwidth
25% prvnet

queue prvnet
bandwidth

49% of total

queue other
priority 1

queue www
priority 11

queue mail
priority 12

queue ssh
priority 13

queue dns
priority 14

queue dmznet
bandwidth

50% of total

ext_if
parent queue

outside world

Figure 10.4: A more complex arrangement of queues.

pass out quick on $ext_if inet proto tcp \

from ($ext_if) port 1024 >< 32255 to any port {22, 23} \

queue ssh

pass out quick on $ext_if inet proto tcp \

from ($ext_if) port 1024 >< 32255 to any \

port {25, 109, 110, 143, 220, 995} queue mail

212 Chapter 10: Bandwidth Shaping and Load Balancing

pass out quick on $ext_if inet proto tcp \

from ($ext_if) port 1024 >< 32255 to any port {80, 443} \

queue www

FILTERING RULES ASSIGNED TO QUEUES: (for host1)

pass out quick on $ext_if inet proto {tcp, udp} \

from ($ext_if) port 32256 >< 40574 to any port 53 queue dns1

pass out quick on $ext_if inet proto tcp \

from ($ext_if) port 32256 >< 40574 to any port {22, 23} \

queue ssh1

pass out quick on $ext_if inet proto tcp \

from ($ext_if) port 32256 >< 40574 to any \

port {25, 109, 110, 143, 220, 995} queue mail1

pass out quick on $ext_if inet proto tcp \

from ($ext_if) port 32256 >< 40574 to any port {80, 443} \

queue www1

FILTERING RULES ASSIGNED TO QUEUES: (for host2)

pass out quick on $ext_if inet proto {tcp, udp} \

from ($ext_if) port 40575 >< 48893 to any port 53 queue dns2

pass out quick on $ext_if inet proto tcp \

from ($ext_if) port 40575 >< 48893 to any port {22, 23} \

queue ssh2

pass out quick on $ext_if inet proto tcp \

from ($ext_if) port 40575 >< 48893 to any \

port {25, 109, 110, 143, 220, 995} queue mail2

pass out quick on $ext_if inet proto tcp \

from ($ext_if) port 40575 >< 48893 to any port {80, 443} \

queue www2

FILTERING RULES ASSIGNED TO QUEUES: (for host3)

pass out quick on $ext_if inet proto {tcp, udp} \

from ($ext_if) port 48894 >< 57212 to any port 53 queue dns3

pass out quick on $ext_if inet proto tcp \

from ($ext_if) port 48894 >< 57212 to any port {22, 23} \

queue ssh3

pass out quick on $ext_if inet proto tcp \

from ($ext_if) port 48894 >< 57212 to any \

port {25, 109, 110, 143, 220, 995} queue mail3

pass out quick on $ext_if inet proto tcp \

Section 10.2: Bandwidth Shaping 213

from ($ext_if) port 48894 >< 57212 to any port {80, 443} \

queue www3

FILTERING RULES ASSIGNED TO QUEUES: (for host4)

pass out quick on $ext_if inet proto {tcp, udp} \

from ($ext_if) port 57213 >< 65535 to any port 53 queue dns4

pass out quick on $ext_if inet proto tcp \

from ($ext_if) port 57213 >< 65535 to any port {22, 23} \

queue ssh4

pass out quick on $ext_if inet proto tcp \

from ($ext_if) port 57213 >< 65535 to any \

port {25, 109, 110, 143, 220, 995} queue mail4

pass out quick on $ext_if inet proto tcp \

from ($ext_if) port 57213 >< 65535 to any port {80, 443} \

queue www4

10.2.6 Hierarchical Fair Service Curve (HFSC)

The HFSC scheduler offers similar features to CBQ, but enhances the ad-
ministrator’s toolbox with the ability to define two types of packet sched-
ulers: real-time and link-share. When real-time scheduling isn’t used or no
packets can be scheduled using this algorithm, link-share takes over. When
more bandwidth is available, queues will use it, unless you place a cap on
the bandwidth. The HFSC behavior is controlled with these parameters:

• realtime — controls the minimum bandwidth required for the queue.
When more bandwidth is available, it will be used unless you use the
upperlimit parameter. Packets are scheduled using the real-time
scheduling algorithm first. When no packets are legible for real-time
scheduling, or when you do not use real-time scheduling, HFSC will use
link-share packet scheduling. This parameter is optional.

• linkshare — sets the minimum ‘share’ of the parent queue bandwidth
for the current queue. When more bandwidth is available, it will be used
unless you use the upperlimit parameter. If you also use the real-
time parameter, it will take precedence over linkshare. This param-
eter must be used in HFSC queue definitions, or you must use the band-
width keyword in the queue definition, before the hfsc() field, or
pfctl(8) will complain. The simplest HFSC setup is shown later in this
section.

• upperlimit — set the maximum bandwidth allowed for the queue.

214 Chapter 10: Bandwidth Shaping and Load Balancing

HFSC will automatically apply this limit to whatever scheduler it is using.
When you use this parameter in your queue definition, remember that it
must be greater or equal to the limits defined in realtime and
linkshare. This parameter is optional.

Each of these parameters can be followed by a single numeric value that de-
fines the amount of bandwidth that the queue can use, or it can be followed
by a triple of service curve parameters that define: (a) the initial level of
bandwidth (m1), (b) time delay (d, measured in milliseconds), and (c) the
level to which bandwidth will be adjusted after that time (m2). These pa-
rameters define the so-called service curve, which can be convex or con-
cave, with the exception of the realtime parameter, which must be
convex. A concave service curve is created, when the m1 parameter is
lower than m2. A convex curve is created when m1 is higher than m2. It is
also possible to define a flat service curve when m1 is equal to m2. This
can be replaced with a single value (m1 and d are omitted).

Although it is possible to define priorities of queues with the priority
keyword (see sections describing PRIQ and CBQ), just like CBQ, HFSC
will not really make much use of it. The influence of that parameter over
the final result is not huge and you can omit it to simplify your ruleset.

Another keyword that is largely redundant in queues that use HFSC, is
bandwidth. There is really one case when it is handy, a simple HFSC
queue configuration with a single level of queues, when bandwidth
values are used as single-parameter linkshare settings:

altq on $ext_if hfsc bandwidth 45Mb \

queue{dns, ssh, www, mail, other}

queue dns bandwidth 20%

queue ssh bandwidth 20%

queue mail bandwidth 20%

queue www bandwidth 20%

queue other hfsc(default)

is the equivalent of:

altq on $ext_if hfsc bandwidth 45Mb \

queue{dns, ssh, www, mail, other}

Section 10.2: Bandwidth Shaping 215

queue dns hfsc(linkshare 20%)

queue ssh hfsc(linkshare 20%)

queue mail hfsc(linkshare 20%)

queue www hfsc(linkshare 20%)

queue other hfsc(default)

That was a simple example, let’s see if we can come up with something
more complex:

PARENT QUEUE DEFINITION

altq on $ext_if hfsc bandwidth 45Mb \

queue{dmznet, prvnet, others}

CHILD QUEUE DEFINITIONS

backlogs that last less than 10 seconds get 50% or more

of the total available bandwidth, after 10 seconds, that lim-

it

goes up to 65% of the total available bandwidth

queue dmznet hfsc(linkshare (50% 10000 65%))

backlogs that last less than 5 seconds get 50% or more

of the total available bandwidth, after 5 seconds, that limit

goes down to 25% of the total available bandwidth

queue prvnet hfsc(linkshare (40% 5000 25%))

queue others hfsc(default)

The first important thing to remember is that the sum of the values of pa-
rameters of the same kind (e.g. the initial levels of bandwidth of the
linkshare limit) must not exceed the total bandwidth available for the
current level of queues. The default queue does not take part in this count.
You can express these limits in the same units as those used with the
bandwidth keyword (%, b, Kb, Mb, Gb).

In the previous example, the 45Mb of bandwidth assigned to the parent
queue represents to 100% percent of the available bandwidth. It is divided
into three queues: dmznet (takes at least 50% of the total), prvnet (takes
at least 40% of bandwidth), and others (takes whatever’s left). After the
dmznet queue has been backlogged for more than 10 seconds, the HFSC
scheduler will start increasing the amount of available bandwidth up to 65%
of the total. When more bandwidth is available, it will be used, but that
65% is guaranteed (as is the initial 50%). When backlog disappears, the

216 Chapter 10: Bandwidth Shaping and Load Balancing

scheduler will slowly release the additional bandwidth and go back to 50%.
Why increase bandwidth for this queue? To avoid backlogs and handle in-
creased demand for bandwidth. Suppose there’s a mail server, or an FTP
server sitting in the DMZ and their patters on usage shown that there is an
increase in demand near 10:00am and 4:00pm. A rule with two bandwidth
levels will take care of this automatically, without tying up the additional
bandwidth for the rest of the day. If you closely at the previous ruleset you
will notice that the bandwidth allocated to that queue will be decreased
after the backlog persists for 5 seconds. Why? To make room for the in-
creased demand for bandwidth for the dmznet queue and to prevent users
on the prvnet from hogging too much bandwidth.

As mentioned before, it is OK to use the linkshare parameter with the
realtime parameter in the same queue, HFSC will automatically choose
the one that will do a better job. You can use the same parameters for both,
but some administrators differ them slightly. It’s your choice, use whatever
works best in your particular case, but remember that the service curve for
realtime must be convex. In other words, when you use that parameter,
you can only define a decrease the amount of available bandwidth over
time. If you want to define an increase, use the linkshare parameter:

PARENT QUEUE DEFINITION

altq on $ext_if hfsc bandwidth 45Mb \

queue{dmznet, prvnet, others}

CHILD QUEUE DEFINITIONS

backlogs that last less than 10 seconds get 50% or more

of the total available bandwidth, after 10 seconds, that

limit goes up to 65% of the total available bandwidth

queue dmznet hfsc(linkshare (50% 10000 65%))

backlogs that last less than 5 seconds get 50% or more

of the total available bandwidth, after 5 seconds, that

limit goes down to 25% of the total available bandwidth

queue prvnet \

hfsc(realtime (40% 5000 25%) linkshare (40% 5000 25%))

queue others hfsc(default)

As was already mentioned, you can define a concave service curve for the
linkshare parameter to decrease the amount of bandwidth available to
some users and prevent thm hogging too much bandwidth. A much better

Section 10.2: Bandwidth Shaping 217

way is to place hard limits on the amount of bandwidth used by each queue,
use the upperlimit parameter:

PARENT QUEUE DEFINITION

altq on $ext_if hfsc bandwidth 45Mb \

queue{dmznet, prvnet, others}

CHILD QUEUE DEFINITIONS

backlogs that last less than 10 seconds get 50% or more

of the total available bandwidth, after 10 seconds, that lim-

it

goes up to 65% of the total available bandwidth

queue dmznet hfsc(linkshare (50% 10000 65%) \

upperlimit (60% 10000 75%))

backlogs that last less than 5 seconds get 50% or more

of the total available bandwidth, after 5 seconds, that limit

goes down to 25% of the total available bandwidth

queue prvnet hfsc(realtime (35% 5000 20%) \

linkshare (35% 5000 20%) upperlimit (40% 5000 25%))

queue others hfsc(default)

Although you can define child queues of other queues in a way similar to
CBQ child queues, there is an important difference between them in the
way you specify the percentage of bandwidth available to the parent that a
child can use. While CBQ uses a ‘proportional’ method, HFSC uses a
‘subtractive’ method. To see how it works in practice, compare the fol-
lowing rules, which divide bandwidth in the same way, yet the percentage
notation is different:

CBQ

altq on $ext_if cbq bandwidth 20Mb \

queue{dmznet, prvnet, others}

prvnet gets 8Mb

queue prvnet bandwidth 40% queue{host1, host2}

host1 gets 4Mb

queue host1 bandwidth 50%

host2 gets 4Mb

queue host2 bandwidth 50%

218 Chapter 10: Bandwidth Shaping and Load Balancing

HFSC

altq on $ext_if hfsc bandwidth 20Mb \

queue{dmznet, prvnet, others}

prvnet gets 8Mb

queue prvnet hfsc(linkshare 40%) queue{host1, host2}

host1 gets 4Mb

queue host1 hfsc(linkshare 20%)

host2 gets 4Mb

queue host2 hfsc(linkshare 20%)

10.2.7 Queuing Incoming Packets

ALTQ does a very good job of queuing outbound packets, but what about
inbound packets? Although it is possible to create queues for inbound con-
nections, they will be truly helpful when they are matched by bandwidth
limits imposed before packets reach your network. This can be done by
your ISP, who must configure their routers to limit the incoming traffic to a
preset level. Otherwise, ALTQ will not be of much help, because once the
packets arrive on the external interface, it is already too late to stop them as
they already used the bandwidth.

What you can do, is add ALTQ queues and pass out rules for interfaces
connection the firewall host to the internal network segments. However,
these limits will only work for connections initiated by external hosts. Con-
nections initiated by inside hosts and NAT -ed will not match those pass
out rules, because they will be passed without checking thanks to the state
mechanism invoked by the NAT rules (nat, binat, or rdr). This is why
some users will be able to use all of the available bandwidth even if you set
hard limits, these limits apply to outbound packets, not inbound ones. The
solution is to put a router before the firewall, it can be an OpenBSD box
configured as a bridge (see Chapter 4, Configuring OpenBSD) and imp-
lement ALTQ/filtering rules on the inerface connecting the bridge to the
firewall.

10.2.8 Which Scheduler Is Best?

There is no easy answer, but you can use the following guide to decide
which ALTQ scheduler is more appropriate in your particular case:

Section 10.2: Bandwidth Shaping 219

• when all you need is set up queue priorities (some services, users, or hosts
are more important than others), use PRIQ.

• when you want to divide bandwidth into smaller slices, with guaranteed
minimum levels, use CBQ.

• when you want to do everythig you can do with CBQ, but also want the
queues to be able to adjust to changes in traffic patterns, use HFSC.

• when you want to place upper limits on bandwidth usage, use HFSC.

Do not expect ALTQ to be 100% accurate. It does a
splendid job of queuing packets, but you must remember
that TCP traffic does not flow like water from a tap, nor it
is a easily divisible. Also, ALTQ works best when there is
a backlog, for situations of interface underutilization,
ALTQ does not have much to do. When you run into
problems, always try to simplify your queue layout. Too
much complexity is always bad for performance. Some-
times the solution will be a change of hardware (main-
board, processor, or network card); other times it will be
fine-tuning of the TBR parameter. Experiment, but not
too much, remember that ALTQ is not a cure for a
clogged network severly lacking bandwidth.

220

Chapter 11

Logging and Log Analysis

In this chapter we will discus using pf(4) for packet
logging, arc hiving, and analysis.

Although it may not seem as exciting as packet redirection or filtering, one
of the most important features of pf(4) is its ability to log packets passing in
and out of the firewall’s interfaces. While many do not see this as espe-
cially interesting, it has become one of the essential features that firewalls
are judged on and approved for use. Because of the rise in break-in at-
tempts and various clandestine activities on the Internet, logs have become
crucial pieces of evidence in trails, detective work, and active defense.

Many org anizations, military and government agencies being among the
most obvious and earliest users of this functionality, already log all traffic
as a part of their active monitoring, evidence gathering, and analysis activi-
ties. Banks, large corporations, even universities use it as well. Even re-
search departments at large corporations doing cutting-edge work are often
monitored to prevent or detect information leakage.

It may not be long before all networks connected to the Internet will actu-
ally be required to keep logs of all traffic passing through their external
interfaces. People have already been charged on the evidence found in
firewall logs, so it is important to learn how to use them.

There is another side to recording, analysis, and ar-
chiving of firewall logs—they will inevitably contain a
mixture of private data that belongs to employees with
more or less classified company data. This is a potential
legal trap. Once you touch private data (and it is very
hard to tell when you do without examining it), you will
enter a very dangerous area with plenty of potential for
getting sued for invasion of privacy. You must therefore
have clear and consequently enforced policy for log

222 Chapter 11: Logging and Log Analysis

gathering, storage, and removal. Such policy must be
both a set of written procedures for the security personnel
who have access to firewall logs as well as in the form of
a legal document. Do not rely on your own judgment in
these matters and hire a lawyer who will draft a policy
according to your organization’s policies, requirements,
and the laws under which you operate.

In the rest of this chapter we will focus on technical details, leaving the
legal issues to the lawyers.

11.1 Enabling Packet Logging

Packet logging is always on, but packets are only sent to logs, when they
match a rule with the log keyword (see Chapter 8, Pack et Filtering).
Therefore, all we have to do to capture some packets is to edit /etc/pf.conf
and put the log keyword after either the in or out keywords in block,
pass, or anitspoof rules. For example:

block all incoming packets

block in on $ext_if all

becomes:

block and log all incoming packets

block in log on $ext_if all

You can add the log or log-all keywords to any
packet filtering rule.

11.2 Log Analysis

Packet logging is a good network administration practice, because it lets us
spot problems with communication and early signs of break-in attempts. Of
course, logging packets alone won’t help; we need to learn how to analyze
and manage log files generated by pf(4).

Because pf(4) log files are stored in a binary format unfit for viewing with
human eyes, we need a tool that will translate them into plain text. That

Section 11.2: Log Analysis 223

tool is the venerable tcpdump(8) utility, one of the essential network moni-
toring programs. We can use it to watch pf(4) logs in real time with:

tcpdump -n -e -ttt -i pflog0

The system should reply with:

tcpdump: WARNING: pflog0: no IPv4 address assigned

tcpdump: listening on pflog0

You can ignore the warning, tcpdump(8) prints it, because the pflog0 in-
terface does not have an IP address, which it doesn’t need, and wait for
packets to fall into your carefully planted honey pot. It is quite likely that
you will not see any packets at all, for a long time. What went wrong?
Nothing, actually. You are lucky and your firewall is not a target of a port
scan or a cracking attempt. A series of repeated attempts to connect to un-
available ports is a sign that somebody might be trying to probe your ma-
chine for open ports. They are not necessarily trying to break in (they may
be network researchers, or even your ISP), but you should be alert and if
such attempts occur frequently, you might need to investigate them more
closely. Howev er, before you raise an alarm and call the authorities, make
sure that these attempted connections are not responses to your own con-
nection attempts!

It’s a good feeling to know that all is quiet on the blocked ports, but you’d
probably like to see some action, if only to check that everything is working
as it should. All right, open /etc/pf.conf again and add the log keyword to
the pass out rules for the external interface. For example:

allow TCP IPv4 connections to the outside world,

keep state

pass out on $ext_if inet proto tcp all flags S/SA \

synproxy state

pass out on $ext_if inet proto { udp, icmp } all \

keep state

becomes:

allow and log TCP IPv4 connections to the outside

world, keep state

224 Chapter 11: Logging and Log Analysis

pass out log on $ext_if inet proto tcp all flags S/SA \

synproxy state

pass out log on $ext_if inet proto { udp, icmp } all \

keep state

Save the changes and replace the old pf(4) ruleset with the new one:

pfctl -F all ; pfctl -f /etc/pf.conf

Then, run tcpdump(8) again, and point your web browser to any external
page. Now you should see a stream of packets.

11.3 Which Packets Do You Want to Capture?

Why do some packets get written to /var/log/pflog and some do not? It all
boils down to the way pf(4) works.

Packets are written to /var/log/pflog, when the last rule they match includes
the log keyword. Packets not caught by rules with the log keyword
won’t be logged. Therefore, if you want to capture all traffic, you need to
add the log keyword to all block, pass, antispoof, in and out
rules in your /etc/pf.conf, sav e for the lo0 loopback device. On the flip
side, if you want to limit logging to a smaller group of packets, add the log
or log-all keywords only to those rules that catch the packets you want
to log. For example, to log all inbound packets sent to your networks from
the outside, add the log keyword to all antispoof, pass in and
block in rules for the external interface.

Three special cases we have not discussed yet are the keep state, mod-
ulate state, and synproxy state rules. We hav e a choice of us-
ing either of the log or log-all keywords here, depending on which
packets we want to log. The log keyword will only log those packets that
make state, while log-all will log all packets.

But if we are really concerned about security, shouldn’t we be logging all
packets arriving and leaving on all interfaces on the firewall? Ideally, yes,
because that is the only way to ensure that you know what goes on over the
boundary between your network and the rest of the world. But in such
cases, you need to construct an efficient system for automated log analysis
and management. Log files grow fast and take up a lot of storage space;
there is little point in gathering more data than you can analyze.

Section 11.3: Which Packets Do You Want to Capture? 225

OK, suppose that you decide to log all traffic on all interfaces. The first
thing you need to do is turn global logging on by adding the log or log-
all keywords (where appropriate) to every rule for every interface on the
firewall (ne0, ne1, tun0, or whatever the names of the interfaces that you
are telling pf(4) to monitor are). Load those new rules into pf(4), as de-
scribed earlier in this chapter, and check that the packets are being logged
into /var/log/pflog with:

/usr/sbin/tcpdump -r /var/log/pflog

If all goes well, you are now monitoring all traffic passing, and attempting
to pass, through the firewall. There is a lot of data to munch through, and if
you are to manage it, you need to learn how to use tcpdump(8). The man
page for tcpdump provides plenty of information, so instead of repeating it
all, we’re going to mention only a few tricks.

Probably the greatest feature of tcpdump(8) are its rich options and expres-
sions. and expressions. For example, to display packets stored in a file in a
more compact way, use:

tcpdump -q -r /var/log/pflog

or, if you wanted to read packets straight from an interface, use:

tcpdump -q -i ne0

To display only packets related to a specific port, use:

tcpdump -r /var/log/pflog port 80

To display only packets related to a specific host, use:

tcpdump -r /var/log/pflog host chumbawamba

To display only packets related to a specific network (or network segment),
use:

tcpdump -r /var/log/pflog net xxx.xxx.xxx.xxx

Additional expressions allow us to filter packets by their destination and

226 Chapter 11: Logging and Log Analysis

protocol (see man tcpdump for details). An even more elaborate filtering
can be achieved by combining tcpdump(8) expressions, e.g.:

tcpdump -r /var/log/pflog "host chumbawamba and port 80"

or:

tcpdump -q -1 ne0 "host chumbawamba and port 80"

Remember that you can safely experiment with filtering expressions, be-
cause they do not affect the contents of /var/log/pflog. Try different
tcpdump(8) options and expressions and try to make sense of them with the
help of the man page.

So, if all went well, you should have now a steady flow of packet data to
plow through. OK, but how do you manage that flood of information? The
answer to that is automation. Watching pf(4) logs can be exciting for the
first few hours, but it soon becomes a boring activity best left to the ma-
chines. But first we need to know how OpenBSD manages pf(4) logs.

11.4 The Secret Life of Logs

The pf(4) packet logging mechanism uses the standard system logger
daemon syslogd(8) to store packet information in /var/log/pflog. The
/var/log directory is the place where the system stores most of the important
system logs: authlog, daemon, maillog, messages, secure, or wtmp.

Just like maillog or messages, pflog is rotated to make sure that the logs
don’t bring the system to its knees by filling the filesystem. Log rotation is
the job of the newsyslog(8) command that runs every hour as a cron(8) job.

You can check this with crontab -l -u root, which should display
the crontab(1) entry for the user root (you need to be logged in as root,
or the system won’t let you do this). Somewhere at the top of the list you
should see these lines:

rotate log files every hour, if necessary

0 * * * * /usr/bin/newsyslog

When newsyslog is run it will check the size of /var/log/pflog and, if neces-

Section 11.4: The Secret Life of Logs 227

sary, rename it, create an empty /var/log/pflog, and compress the old
/var/log/pflog with gzip(1). The name of the archived log begins with the
original log filename and ends with the 0.gz suffix. So, /var/log/pflog be-
comes /var/log/pflog.0.gz and syslogd(8) can begin filling up /var/log/pflog
again. The whole cycle repeats every hour, and when newsyslog(8) decides
that /var/log/pflog is ready to be archived again, it will rename
/var/log/pflog.0.gz to /var/log/pflog.1.gz and repeat the steps described
earlier.

At any giv en point in time, your firewall will store up to four pflog archives.
When a new archive is created, the archive with the highest number
(pflog.3.gz) is overwritten with the younger archive, (pflog.2.gz). You can
check the times when they were created in the following way:

ls -l /var/log/pflog*

-rw------- 1 root wheel 268582 May 27 11:37 pflog

-rw------- 1 root wheel 1993502 May 27 10:59 pflog.0.gz

-rw------- 1 root wheel 1220902 May 27 10:00 pflog.1.gz

-rw------- 1 root wheel 1625010 May 27 08:58 pflog.2.gz

-rw------- 1 root wheel 1334018 May 27 08:00 pflog.3.gz

On firewalls servicing busy networks, the best we can hope for is a four-
hour snapshot of the traffic. If we want to extend that time, we have two
choices: either modify the newsyslog entry in crontab, or edit the
/etc/newsyslog.conf entry for pflog.

Editing crontab allows us to only change the delay between consecutive
newsyslog runs; the longer the delay, the larger the logs and their archives
will be. The procedure is quite simple. Do (as root):

crontab -e -u root

and change:

rotate log files every hour, if necessary

0 * * * * /usr/bin/newsyslog

to:

rotate log files every two hours, if necessary

0-23/2 * * * /usr/bin/newsyslog

228 Chapter 11: Logging and Log Analysis

Then press Esc and type :x followed by a hit on the Enter/Return key
on your keyboard. Cron(8) will run newsyslog(8) ev ery two hours, keeping
an eight-hour snapshot of the traffic. (Changing the value of the hour field
to 0-23/6 would give us a 24-hour snapshot of the traffic. For additional in-
formation on cron read man cron, man crontab, and man 5
crontab.) The files will be larger, but there will still be a limit on the
number of pflog archives kept in /var/log.

If you want to change the number of archives newsyslog keeps in /var/log,
or increase their size without affecting all other logs, you need to get famil-
iar with /etc/newsyslog.conf, the configuration file for newsyslog(8). Open
/etc/newsyslog.conf in a text editor (vi(1) will do nicely) and locate the fol-
lowing lines:

logfilename owner.group mode ngen size time [ZB]

/var/log/pflog 600 3 250 * ZB /var/run/pflogd.pid

As you can see, the owner.group field is empty, which means that the
archives of pflog will be owned by the user running newsyslog(8) (typically
root). You could consider changing the owner and the group to a different
user, if you have plans to automate the downloading of pflogs to another
workstation for later analysis. Why not just log in as root and download
the archives? Because you cannot be sure that your network is internally
secure unless you have control over all machines on it. And even then,
there is (however remote) a possibility that you may download rogue code
that snoops on your network. But it is better to leave that setting alone and
write a script that copies the archives to another place, changing its owner
and permissions.

The mode field specifies the write, read, and execute privileges. The de-
fault 600 (owner can read and write) is a good choice and should be left
alone. The highest number a log archive can have is set in the ngen field.
The default value is 3, which tells newsyslog(8) to keep at most 4 (0 - 3)
pflog archives. If you wanted to keep more, say 24 archives, you’d need to
set it to 23. This increases the time required to complete the whole proce-
dure of log rotation, so do not go overboard.

The size field defines the minimum size (in kilobytes) of the log file that
qualifies it for archiving. The default setting is 250 kilobytes. Increasing
its value will result in longer delays between log rotations; decreasing it

Section 11.5: Bandwidth and Disk Space Requirements 229

will result in more frequent rotation of logs, quite possibly at every new-
syslog(8) run. Next we encounter the time field, set by default to *, which
tells newsyslog(8) to ignore it. Should you set it to 1, it will rotate pflog, if
the last log rotation was done one or more hours ago. This setting overrides
the values in the size field. The [ZB] flags field and the pid file options
should be left alone (you can learn more about them from man new-
syslog).

OK. So now you know how the operating system keeps an eye on the logs
so they don’t cause trouble. What if you want to archive them for longer
than newsyslog(8) settings allow? There are two solutions: one is to write a
script that runs 10-15 minutes after newsyslog(8) and checks to see if the
scripts have been rotated, then stores them in a safe place (possibly on an-
other machine); the other is to set up a log monitoring station on a separate
local network segment (not the one used by ordinary users, nor the DMZ
segment). Such station ought to have two Ethernet cards: one for receiving
packets sent to it by rules that use the dup-to keywords (see Chapter 8,
Pack et Filtering); another for the system administrator to log on the logging
station. The logging station ought to be running pf(4) with a ruleset that
blocks and logs all inbound packets. A script running at regular intervals
can check for new archived logs, mark them with a time stamp and move to
another location on the logging station or write them to a CD-R, tape, or an-
other external storage device.

Why go to such lengths? Well, if you are running a network where you
store or process highly valuable information, or you run a site that may be-
come a target of an attack because of the content it serves, you should not
take chances. If you store logs on the firewall or on another machine on the
network protected by that firewall and your defenses are compromised, ma-
licious hackers will want to cover their steps and remove the information
about their visit from the system and pf(4) logs.

11.5 Bandwidth and Disk Space Requirements

How big a log partition or disk should be? That largely depends on the
amount of data you want to store. The upper limit can be computed using
this formula:

max. speed of the interface (Mbps) × 24 × 3600
8

230 Chapter 11: Logging and Log Analysis

So, if you wanted to compute the amount of space needed to store logs ar-
riving on a 100Mbps interface on the monitoring station over a period of 24
hours, you’d need a rather large partition or disk (note that 1MB is assumed
to be 1024KB, not 1000KB):

100 × 24 × 3600
8

= 1080000MB = 1055GB = 1. 1TB

Wo w! That’s a lot of data to play with! You might have a problem, be-
cause you cannot buy a 1.1 TB disk today although there are news of
200GB disks, so that day may be nearer than one might think. But don’t
worry. If you absolutely need that kind of capacity, you can build or buy a
RAID array to handle it. Another problem is disk subsystem bandwidth. If
your disk cannot write information fast enough, the performance of the
firewall and the network connection suffers. Suddenly, the performance of
the I/O subsystem begins to affect the performance of an otherwise very ca-
pable firewall machine.

In practice, you are unlikely to saturate such link, at least on a small or
medium sized network, because (a) the firewall machine probably cannot
send data fast enough, (b) the monitoring station cannot receive data at that
rate, and (c) the traffic on your network does not reach the 100Mbps limit.

But even if it was nearer 600GB, we’d still have a problem. We can solve it
in several ways:

• Use a RAID array to store data. A pure brute force hardware/software
solution. May be necessary on high-risk sites or when logs are monitored
in real-time by NIDS software, which can take some automated actions.

• Keep less data on the disk by moving it to a tape, CD-R or CD-RW. Re-
quires fast and automated backup hardware. Expensive.

• Log less data. Not possible in all cases.
• Use separate logging stations for each subnet. Spreads the load, increas-

es complexity.

The first solution is based on a hardware, simply buy enough disks to hold
as much data as you need and configure them in a way that suits your needs
(man raidctl for more information or look it up in [Artymiak, 2000]).

The second solution still requires a large disk, but not as large as 1.1TB. If
your firewall was really receiving 1.1TB of data in a day, it would require a

Section 11.5: Bandwidth and Disk Space Requirements 231

modest 44GB of data in an hour. A 100GB disk could, therefore, hold the
current log plus data from the last hour. That old log ought to be written to
an external storage device before the current log closes and is rotated. That
should not be a problem, if you own a fast tape streamer capable of re-
cording up to 44GB of data per hour. Other storage media, such as CD-R,
CD-RW, DVD-R, or optical disks are just not fast enough or cannot hold
enough data. But this is theory and one cannot realistically expect a small
or medium sized network to have such resources. And they probably do not
have to, because the amount of traffic logged will be much lower. How
much? Well, the answer to that question has to be found by the admini-
strator who will watch the amount of traffic on the monitoring station’s in-
terface over a period of a few weeks.

A far less expensive, and much saner, solution for those networks that do
not need to log all traffic, is optimization of the pf(4) logging setup. Instead
of logging all traffic on all interfaces, you can only log traffic entering and
leaving the external interface. That should be good enough for catching
most of the interesting traffic and will make log analysis and storage more
manageable.

To see how much storage space we’ll need this time, we’ll use our magic
formula again, using a fast ADSL modem as an example. Suppose it is a 7
(downlink) / 3 (uplink) Mbps model:

7 × 24 × 3600
8

= 75600MB = 74GB

Now, 74GB of data per day is certainly more manageable than 1.1TB. Fur-
thermore, the external interface is never working at 100% of its maximum
transfer rate, and we can safely assume that we need a paltry 40GB (or less)
of space to store uncompressed traffic logged over a period of 24 hours. A
100GB disk will hold two days worth of data plus enough space for another
12 hours. That is enough data to get a very good view of suspicious activi-
ties. Also, 40GB is well within capacity of inexpensive modern DDS/DAT
streamers.

What’s more, if we tell pf(4) to log only incoming packets, we further de-
crease the amount of space needed to log traffic. Just how much of a saving
it will be depends on the patterns of usage of our network. If the amount of
outbound traffic passing though the external interface is a significant

232 Chapter 11: Logging and Log Analysis

portion of the overall traffic on that interface, the savings might be substan-
tial; otherwise, they might not be noticeable.

1.6 Logging on a Bridge (Span Por ts)

When you run your OpenBSD box, you can easily log traffic passing
through it to an external machine with span ports, a feature of bridge(4),
which lets you configure one of the interfaces to transmit a copy of every
packet received by the bridge.

You can configure an interface as a span port with the following command
added to the appropriate /etc/bridgename.if file:

addspan rl2

For more information, consult brconfig(8) and bridgename.if(5), and
Chapter 4, Configuring OpenBSD.

Chapter 12

Using authpf

In this chapter we’ll discuss authpf(8), the authenticating
gateway shell that offers an elegant solution to the
problem of making sure that the users behind the firewall
really are who say they are .

The problem of user authentication is a complex one, not only because it is
a technological challenge, but also because it must be done in a way that
will cause the least user rebellion against the system.

One-time user authentication on the computer he or she is working at is not
good enough, especially when users are mobile and often disable password
protection or use weak passwords. If you write a ruleset that is based solely
on IP addresses or port numbers, your firewall may fail quickly when one of
the machines it is protecting falls into wrong hands or is otherwise broken
into. One of the methods for making sure this doesn’t happen is user au-
thentication done on the firewall implemented with pf(4) and authpf(8). It
is quite simple, each user who wants to connect to the firewall, must log on
the firewall via ssh(1). When the authentication is successful, the firewall
loads a ruleset (via anchors) that allows that user access to the network.
Every user can have a separate ruleset, limiting them in what they can do.
This solution is used to secure wireless networks, which are particularly
vulnerable to host identity theft, but it is also being used increasingly often
on ‘wired’ networks to add another layer of defense.

Every user whom you want to authenticate must have an
account on the firewall and a copy of an SSH client on its
computer before they can log on.

12.1 Configuring authpf

• /etc/authpf/authpf.conf — the authpf(8) configuration file. Contains the
name of the anchors where redirection and filtering rules are loaded into.

234 Chapter 12: Using authpf

The default name is authpf, but you can change it to something else:

anchor=userrules

If you want to leave the default setting, use:

touch /etc/authpf/authpf.conf

• /etc/authpf/authpf.allow — contains the list of user names allowed to au-
thenticate on the firewall, one name per line.

• /etc/authpf/banned/ — not a file but a directory, which contain the list of
user who are banned from accessing the firewall. To ban user joe, use:

touch /etc/authpf/banned/joe

To let him use the firewall again, use:

rm /etc/authpf/banned/joe

• /etc/authpf/authpf.message — the message displayed upon successful au-
thentication.

• /etc/authpf/authpf.problem — the message displayed upon authentication
failure.

12.2 Configuring sshd

Add the following lines to /etc/ssh/sshd_config:

Protocol 2

ClientAliveInterval 15

ClientAliveCountMax 3

This will make sure that users are logged off the firewall after 60 seconds of
inactivity.

12.3 Configuring Login Shell

To successfully authenticate a user on the firewall, you must change her/his
shell to authpf(8). Do it with vipw(8):

Section 12.4: Writing pf Rules for authpf 235

vipw

and change the last field from something like /bin/sh to
/usr/sbin/authpf.

If you want to limit access to system resources, read loging.conf(5).

12.4 Writing pf Rules for authpf

Rules for authenticating users reside in /etc/authpf/users/, e.g. rules for
joe reside in /etc/authpf/users/joe/authpf.rules. Users for whom such rule-
sets do not exist have their rules set to those from /etc/authpf/authpf.rules.

To load those rulesets into the main ruleset, /etc/pf.conf must contain the
following anchors placed in relevant places:

nat-anchor authpf

rdr-anchor authpf

binat-anchor authpf

anchor authpf

Writing rulesets for authenticating users is like writing other named
rulesets, but there are two important additions, in the form of the
$user_ip macro, which expands to the IP address of the host that the
user authenticated from, and the $user_id macro that expands to the
name of the user authenticating on the firewall (see Chapter 8, Pack et Fil-
tering for more information about filtering with user names. This allows us
to write rules that are bound to users, not hosts.

12.5 Authenticating User Joe

Let’s walk through a simple example, in which we’ll create an authen-
tication setup for use joe who will be allowed to connect to external HTTP
servers. We assume that user joe already has an ordinary user account. If
you do not kow how to do it, read Chapter 4, Configuring OpenBSD.

Create /etc/authpf/authpf.conf:

touch /etc/authpf/authpf.conf

236 Chapter 12: Using authpf

Add user joe to /etc/authpf/authpf.allow:

echo "joe" >> /etc/authpf/authpf.allow

Create a welcome message:

echo "Where are you going with that NIC in your hand?" >

/etc/authpf/authpf.message

Create a message displayed when there are problems with authentication:

echo "I’m sorry Dave ..." > /etc/authpf/authpf.problem

Configure sshd(8) (see section 12.2).

Configure login shell (see section 12.3).

Clear pf(4) ruleset:

pftcl -F all

Create a directory for joe’s ruleset:

mkdir -p /etc/authpf/users/joe

Create a new ruleset for joe. We add only add a filtering rule, you can
create as many rules as you like, just remember to not use the quick
keyword. Read Chapter 5, /etc/pf.conf and Chapter 9, Dynamic Rulesets for
more information about limits of anchor rulesets:

The /etc/pf.conf ruleset will contain the following rules:

ext_if = "ne1"

int_if = "ne2"

nat-anchor authpf

rdr-anchor authpf

binat-anchor authpf

block in on $ext_if all

block out on $ext_if all

Section 12.5: Authenticating User Joe 237

allow connections to SSH on the internal interface (otherwise

joe, residing in the private network segment will not be able

to connect and authenticate.

pass in on $int_if inet proto tcp \

from any to ($int_if) port 22 flags S/SA synproxy state

anchor authpf

Make a copy of /etc/pf.conf:

cp /etc/pf.conf /etc/pf.conf.old

Open /etc/pf.conf and edit it, so it contains rules similar to those shown
earlier.

Save /etc/pf.conf (press Esc, type :x and hit the Enter/Return key).

Reload the ruleset (this is best done from the console and not over the
network, if you make a mistake you might cut yourself off the line):

pftcl -F all ; pfctl -f /etc/pf.conf

Create a ruleset for joe:

vi /etc/authpf/users/joe/authpf.rules

And type this:

MACROS

ext_if = "ne1"

allow user joe to connect to HTTP servers

pass out on $ext_if inet proto tcp \

from $user_ip to any port 80 flags S/SA synproxy state

Save joe’s ruleset (press Esc, type :x and hit the Enter/Return key).

Use an SSH client (command-line or window-based) to connect to the
firewall from one of the machines on the private network. You should see
the following message:

238 Chapter 12: Using authpf

Hello, joe, You are authenticated from host "192.168.32.12"

Where are you going with that NIC in your hand?

That’s it! You can now repeat this process for other users.

Later on, when you want to see who’s authenticating on your firewall, use:

ps -ax | grep authpf

25487 p1 Is+ 0:00:04 -authpf: joe@192.168.32.12 (authpf)

Chapter 13

Using spamd

In this chapter we get to know one particularly interesting
anti-spam tool, spamd(8).

There are two ways to fight spam: passive and active. The passive way is to
accept all mail and then filter it to remove spam. While you can certainly
achieve good results with modern Bayesian spam filters, this method does
not do much to deter spammers and will cost you more and more in the
long run. When spammers look at logs, they will see that their mail was ac-
cepted by your host and they will assume that it is OK with you to send
more spam your way. More spam means more work for filters, which will
use more CPU cycles, further slowing down your communication with the
outside world.

The active way of fighting spam involves keeping a list of IP addresses of
hosts known to send spam and reject connections from these hosts to port
25. While very efficient, this method has one tiny fault, it is a quick way to
inform spammers that your host won’t accept connections from their
servers and can be removed from their list. They will try to deliver their
payload from a different IP, or go after other hosts (or both).

An even better way to deter spammers is to make it expensive for them to
deliver mail by slowing down their mail delivery software. This is exactly
what spamd(8) does. It uses the SMTP specification [RFC 2821] to inject
spam back into the sender’s mail queue by sending the 450 Requested
mail action not taken: mailbox unavailable error
message. This method is very effective as it uses standard communication
protocol, to which all mailers must adhere.

13.1 Configuring spamd

Spamd(8) is designed to co-exist with all mail daemons, and to cause the
least trouble to the system administrator. Because it never accepts mail

240 Chapter 13: Using spamd

from spammers, the load it places on the system is negligible and because
it’s job is very well-defined, configuring it is a breeze.

Out of all options listed in spamd(8), the two that are most important are:

• -p port — specifies which port should spamd(8) listen for connections
on. This cannot be port 25, since that is where the real sendmail(8) or
other MTA is listening on. Choose one on of the higher ports that are not
used for anything else, like 8025, 8125, etc.

• -c connections — the maximum number of concurrent connections
accepted by spamd(8). The default is 200, but you can adjust it up or
down, as you wish.

Other options are explained in spamd(8) and we are not going to dwell on
them here. If you are not sure which ones you need, let spamd(8) use the
defaults.

You can start spamd(8) from the command line:

spamd -p 8025 -c 200

Or, to start spamd(8) automatically at system startup add the following line
to /etc/rc.local:

spamd -p 8025 -c 200

Because spamd(8) is not listening on port 25, pf(4) must redirect connec-
tions from spammers’ hosts to the port defined with the -p option (in our
case, 8025). The list of spammer’s addresses will be held in the <spamd>
table, that can be updated while pf(4) and spamd(8) are running.

The contents of /etc/pf.conf will differ depending on where the MTA is
running. If you are new to pf(4) and spamd(8) start with these simple
rulesets. First, we assume that the MTA is running on the firewall host. It
listens on port 25, as all MTAs do:

MACROS

ext_if = "ne1"

Tables

table <spamd> persist

Section 13.1: Configuring spamd 241

NAT rules

redirect connections from spammers to spamd, all legitimate

connections will not be redirected

rdr on $ext_if inet proto tcp \

from <spamd> to ($ext_if) port 25 -> 127.0.0.1 port 8025

block all incoming connections

block in on $ext_if all

pass redirected connections to spamd listening on the local

loop interface (lo0)

pass in on lo0 inet proto tcp \

from <spamd> to 127.0.0.1 port 8025

pass legitimate connections to port 25 on the

external interface

pass in on $ext_if inet proto tcp \

from any to ($ext_if) port 25 flags S/SA synproxy state

The ruleset will look differently if you want to redirect connections to port
25 to the MTA running on another host.

MACROS

ext_if = "ne1"

here, we assume that the MTA is running on a machine

located in the DMZ and connected to the DMZ interface

$dmz_if = "ne2"

mta_ad = "192.168.24.63"

mta_pt = "1025"

Tables

table <spamd> persist

NAT rules

redirect connections from spammers to spamd

rdr on $ext_if inet proto tcp \

from <spamd> to ($ext_if) port 25 -> 127.0.0.1 port 8025

redirect all legitimate connections to the real MTA

rdr on $ext_if inet proto tcp \

from any to ($ext_if) port 25 -> $mta_ad port $mta_pt

block all incoming connections

block in on $ext_if all

pass redirected connections to spamd listening on the local

242 Chapter 13: Using spamd

loop interface (lo0)

pass in on lo0 inet proto tcp \

from <spamd> to 127.0.0.1 port 8025

pass out on $dmz_if inet proto tcp \

from any to $mta_ad port $mta_pt flags S/SA synproxy state

Copy one of the above rulesets and make modifications necessary to make
it work on your machine (change addresses, port numbers, interface names,
etc.), save it and reload with:

pfctl -F all ; pfctl -f /etc/pf.conf

You are now set and can begin populating the spamd table, either by hand,
or via a script: To test the new setup, run spamd(8):

spamd -p 8025 -c 200

Next, add the address of the host from which you will try to connect to port
25 on the firewall:

pfctl -t spamd -T add 192.168.23.11

Then, try to connect from that host (it’s address will be different from the
one given above, and the address of the firewall will be different from the
one given below):

telnet 192.168.2.1 25

You should see a message appearing very slowly in the terminal window.
That is a sign that spamd(8) is working.

Next, remove the address of the test host from <spamd>:

pfctl -t spamd -T delete 192.168.23.11

Then, try to connect from that host (it’s address will be different from the
one given above, and the address of the firewall will be different from the
one given below):

telnet 192.168.2.1 25

Section 13.1: Configuring spamd 243

You should now see a banner of the MTA waiting for delivery of mail.

Once it is running, spamd(8) is designed to be configurable in-flight, and
comes with a configuration utility, spamd-setup(8) which sends config-
uration directives and makes changes to the spamd table automatically. It
does its magic by parsing the spamd.conf(5) configuration file located in
/etc/spamd.conf, retrieving blacklists (lists of addresses known to send
spam), and removing addresses from whitelists (addresses that we never
want to put on a blacklist, even if they manage to get on some blacklist).
Then, it sends the data in the format understood by spamd(8) to the port
that the daemon is listening on.

Spamd-setup(8) must be run from root account or form another user’s
account as long as it has access to run it via sudo(8). It’s best to run spamd-
setup at regular intervals from cron(8).

244

Chapter 14

Ruleset Optimization

Every CPU cycle counts. Here are a few ideas on how to
save them.

The job of a firewall administrator does not stop once the rules are working
and the firewall is doing its job. Another, quite often forgotten step, is the
optimization of firewall rules.

The aim of optimization is to make your firewall do its job in shorter time
and using less CPU time and memory. While such problems may seem
distant to small network administrator, they are very familiar to admin-
istrators of busy networks where every delay is magnified and perceived by
the users as a slow or unreliable connection.

14.1 The pf Optimization Checklist

Pf(4) does a very good job of automatically optimizing rulesets, but you can
help it in various ways:

• Write clean rules. It’s as obvious as that, but often forgotten. Simple,
short rules are not only easier to understand, but also easier for pf(4) to
optimize and more efficient.

• Learn to use the quick keyword. This little keyword can greatly speed
up the process of ruleset evaluation. Think about it, if your packet fil-
tering section contains 100 rules, but most of the traffic is matched by the
first rule and not the other 99 rules, then the time required to parse these
rules is wasted. If you add the quick keyword to the first rule, then you
will save a lot of CPU time and speed up your firewall at no cost. For
more information see Chapter 8, Pack et Filtering.

• Learn to use the pass keyword in NAT rules. Its’ job is similar to the
quick keyword in packet filtering rules. It skips the packet filtering sec-
tion and passes packets directly to the destination address.

• Change the order of rules. Another trick, related to the previous idea is

246 Chapter 14: Ruleset Optimization

changing the order of the rules in the packet filtering section. If you use
rules with the quick keyword, put them before those without the quick
keyword.

• Use tables instead of lists of addresses. Tables are more efficient than
lists of addresses. Read Chapter 5, /etc/pf.conf and Chapter 9, Dynamic
Rulesets.

• Do not use ppp packet filtering. Although ppp comes with its own packet
filter, which you can use for filtering dial-up connections (that includes
various DSL devices as well as analog modems, or digital ISDN
modems), pf(4) will be a much safer solution.

• Use bridge packet filtering. If possible, configure your firewall as an in-
visible filtering bridge. It is a very secure solution. Consult Chapter 4,
Configuring OpenBSD.

• Outsource logging. Send logs to another machine. Read Chapter 11,
Logging and Log Analysis.

• Upgrade your network hardware. Yup, faster cards, hubs, switches, and
better cabling might help.

• Use bandwidth shaping. This might require a faster machine with more
RAM, but with ALTQ you will be able to control patterns of usage of
your network. More information in Chapter 10, Bandwidth Shaping and
Load Balancing.

• Re-design your network. When your firewall cannot keep up with the
growth of your network, it doesn’t necessarily mean that it’s the fault of
pf(4). For example, when a NAT -ing firewall starts to clog the network,
you might be running out of ports on the external interface (for a solution,
read Chapter 7, Pack et Redirection. On other times, visitors to your web
site might be getting too many ‘server busy’ responses. If that is the case,
you might want to consider adding another HTTP server and impleme-
nting load balancing.

• Upgrade your hardware. When all else fails, upgrade the machine you
run OpenBSD and pf(4) on. Pay careful attention to the efficiency of all
subsystems: disks, system bus, memory, and network cards. The pro-
cessor speed is not the only, and not the most important parameter here.

14.2 Pf Optimization Options

The optimization rule controls the packet filter engine optimization
options. The old optimization options -O found in earlier version of have
been replaced with the optimization algorithm rule. There are six
values of the algorithm argument:

Section 14.2: Pf Optimization Options 247

• default — as its name says, it’s the default optimization algorithm.
• normal — same as default.
• high-latency — used for high-latency links, such as satellite links.

Expires idle connections later than default.
• satellite same as high-latency.
• aggressive — expires idle connections earlier than default; using

less memory and CPU time while possibly dropping some legitimate con-
nections.

• conservative — tries to avoid dropping any legitimate connections at
the expense of increased memory usage and CPU utilization.

Don’t forget to reload the new options after changing the
optimization algorithm.

Before you rush to enable these optimization rules, you should know that
these algorithms make a difference in special cases like high-latency con-
nections, or very busy corporate, government, or education networks.
Small networks and networks with low traffic will see no noticeable perfor-
mance improvements.

The optimization rule is a shortcut for quickly setting a bunch of
timeout rules. If none of them seem to work in your particular setup,
consider adjusting the timeout values yourself, as described in Chapter 8,
Pack et Filtering.

248

Chapter 15

Testing Your Firewall

Is you firewall working as it should, or are there some
strange communication problems? Why that small
change you made suddenly cut you off? In this chapter
we’ll learn how to test the firewall, how to monitor it, and
where to look for information.

Testing your ruleset is a multi-stage process. It is never too early to begin
testing your firewall, and it certainly is not a good idea to put an untested
firewall straight into production use.

15.1 Pencil Test

The first test of your firewall must be done before you start mucking around
with hardware and pf(4). It should be done with a pen or a pencil and a
piece of paper. Simply draw boxes (hosts) and connect them with arrows,
each marked with service and protocol names or port numbers that are al-
lowed to pass through the firewall, and think what rules need to be used.
The picture doesn’t hav e to be pretty, but it ought to be clear enough to be
understood without ripping your head apart. Once you have your firewall
diagram, write filtering/NAT/ALTQ and other rules down on another piece
of paper. You do not need to use pf(4) syntax, plain English will work just
fine. After you’re done, try to read these rules and follow the paths on the
diagram, checking if the rules you are using will actually work in your
mind. It is even better to ask a colleague to do it for you, because he or she
will have a fresh mind and will be able to spot design flaws quicker than
yourself. When you find something that doesn’t quite work, revise your
rules and repeat the process again. If you don’t understand something, refer
to other parts of this book, the pf.conf(5) man page, and the reference mate-
rial listed in Bibliography.

After you are confident you know what you want pf(4) to do, begin writing
the ruleset, one rule at a time. Start with general rules with the broadest

250 Chapter 15: Testing Your Firewall

scope and add more specific ones after you get the general setup working.

Every time you want to make a change, make a copy of the old ruleset:

cp /etc/pf.conf /etc/pf.conf.old

Make changes to /etc/pf.conf and save them. Then, flush the old ruleset
from memory and reload the new one. To make sure that you don’t get cut
off, when you are testing your new ruleset without physical access to the
firewall machine, use the following command:

pfctl -F all

pfctl -f /etc/pf.conf ; sleep 10 ; pfctl -f /etc/pf.conf-old

Then, check if the new rules are working fine. When they are, add a new
rule and repeat that procedure again. (If you need more time to perform
checks, increase the value of the sleep(1) argument from 10 seconds to 20
or 30.) Should things go wrong, the previously working version of the
ruleset will be loaded automatically and you will be saved the incon-
venience of having to walk or drive to the machine to make changes from
the console.

When all is working fine, commit the new ruleset to CVS (for a short
course in CVS, see Chapter 5, /etc/pf.conf):

cvs ci -m ’Added spamd rules’ /etc/pf.conf

OK, but how do you know that the rules are working as they should? Read
on.

15.2 Checking Host Availability

The simplest, yet one of the more effective testing tools is the humble
ping(8). Provided you configured pf(4) to pass ping requests and replies
(see Appendix B), you should be able to use ping(8) to perform the follow-
ing checks:

• Is the firewall host up and running? Simply ping the firewall, e.g. when
the firewall is located at 192.168.15.7 (the address assigned to the inter-
face it connects to the LAN segment you are sending pings with), do:

Section 15.2: Checking Host Availability 251

$ ping 192.168.15.7

If you want to send tst packets through a specific interface, give ping(8)
the address of that interface:

$ ping -I 192.168.15.1 192.168.15.7

Let it run for a few seconds, press Ctrl+C, and read statistics printed on
screen, have a look at the percentage of packet loss. When that value is
0%, you have a perfect connection, when it is equal to 100% there is no
connection to the firewall or all packets are being dropped. Values in-be-
tween indicate that the network or the firewall is heavily loaded and some
packets are being lost, but the firewall is up and running.

• Are hosts on the other side of the firewall running? When the firewall is
configured to let responses to ping datagrams pass back to the sender, you
can send pings to check other hosts, on other LAN segments, in the DMZ,
or on the outside of the firewall. Results are interpreted in the same way
as the results of sending pings to the firewall, but a 100% loss of packets
does not necessarily indicate that the firewall is down. It may be dropping
packets because that’s how the pf(4) is configured. Therefore, another
check is required in such cases, because the firewall may pass responses
to pings sent from the firewall itself, but not from the hosts protected by
that firewall. To do it, log on the firewall and ping the same hosts again.
The interpretation of results is the same as for the firewall test, but again,
a 100% packet loss may be simply a confirmation that pings are not being
let through the firewall, because that’s how pf(4) has been configured and
it’s just doing its job. Yet another possibility could be that the hosts you
are trying to ping is dropping the packets you send it on purpose, to
prevent DoS attacks. In such case, you need to check if other hosts on the
outside respond to pings. When they don’t there may be a problem with
your connection to the Internet.

Be careful with sending pings to external hosts. If you
swamp them with requests, you may trigger their NIDS
and someone might be thinking they caught a dangerous
villain. A couple of pings sent their way will not get you
in trouble, but if you start ping(8) and go to make a
coffee, don’t be surprised to get a call from the other
side’s administrator. Should you have really bad luck,
you might get legal action started against you, so use

252 Chapter 15: Testing Your Firewall

ping(8) sparingly. (The same goes for traceroute(8),
mtr(8), or other similar tools.)

15.2.1 When Ping Cannot Help

When ping(8) says that the host you are trying to reach is down, there is a
possibility that it is configured to ignore your pings. In such case, try con-
necting to one of the ports on that server with telnet(1).

For example, to check if the remote server is up and running, try:

$ telnet www.example.com 80

You can replace the hostname with an IP address and you can replace the
port number with the service name (see /etc/services):

$ telnet 10.5.45.2 http

When these attempts are unsuccessful, you may assume that:

• Pf(4) may be blocking packets. Try connecting to other hosts with pf(4)
turned off. When that helps, check /etc/pf.conf for offending rules.

• The routing is not set up properly. Assuming that pf(4) is configured to
let all packets pass and that NAT is configured correctly, if used at all, it is
possible that the routing information is not correct. Check if the gateway
address on the local hosts points to the internal interface on the firewall,
or when the firewall is working as an invisible filtering bridge—to the
host that acts as the gateway for the local LAN segment. Another thing to
check is the gateway address on the firewall or the gateway host. See
Chapter 4, Configuring OpenBSD for more information.

• The target host is down. In that case, restart the host, if you have the right
to do so and can do it, or wait until its administrators do it. Depending on
your circumstances, it may be appropriate to let them know there is
trouble.

• You are blocked by a fire wall on the other side. Do they hav e a reason to
block you? Get in touch with their administrator and ask.

• There is a problem with the network equipment. Check cables, hubs,
switches, routers, power plugs.

Section 15.3: Discovering Open Ports on Remote Hosts 253

15.3 Discovering Open Por ts on Remote Hosts

When you are at a loss and cannot connect to a server over a network, there
is a tool that can help, but you need to be very careful with it. It is called
nmap, and can be found in OpenBSD packages.

Nmap is, among other things, a port scanner. It uses clever tricks to dis-
cover which ports are open on a target machine, does fingerprinting
(discovers which version and which operating system the remote host is
running) and can be your last chance of finding out, if the host you are
trying to check does allow some kind of connections, without going there
and checking it yourself.

Do not forget that it is possible to have more than one IP
address assigned to a single interface (with the ifconfig(8)
alias option). In that case, run nmap on every IP
address you are interested in!

Because nmap is so powerful, it is an ideal tool for network administrators
and security specialists. Unfortunately, it is also used by people with less
friendly intentions, who use it to learn about remote hosts they wish to
break into. Therefore, it is very important that you do not scan hosts that
you do not manage or do not have the permission to scan. If you let nmap
loose on other people’s hosts you will get yourself in serious legal trouble.

15.4 Testing Network Performance

When the network is slowing down, the reasons for that could be numerous
and you will have to do some detective work to get to the source of the
problem.

• The local network is overloaded. To test that hypothesis, ping various
hosts on the local network and see what time values they return. If they
are in hundreds of milliseconds, you may have a problem with your local
network segment. Somewhere, something’s wrong. The target hosts
could be overloaded, the cabling may be damaged, someone might be
downloading huge files (put them on a diet, use ALTQ to limit
bandwidth). Or, someone might be messing with your network. Monitor
the situation, and if the problems don’t disappear, get to work.

254 Chapter 15: Testing Your Firewall

Be careful, when you decide that the solution is an
upgrade of network cards to something more speedy,
you might suddenly overload the firewall host or the
external link, or both. Often an upgrade in one LAN
segment causes a trickle-down effect and requires un-
planned upgrades to the rest of the infrastructure.

• The firewall host is overloaded. The machine that worked fine two
months ago might suddenly slow down. Why? You are probably asking
too much from it. Did you switch on packet logging? Did you add more
hosts behind the firewall? Did you start serving WWW from the DMZ?
Did you start using ALTQ for bandwidth shaping? Did you install snort
on the firewall host? Positive answers to these questions mean that you
get what you deserve for putting additional load on the firewall host
without checking if it can handle it. Periodic slowdowns usually mean
that the firewall does not have enough CPU power, memory (most likely),
or that there is a problem with the I/O subsystem. So, which one is it,
Doc? For a quick diagnosis of how the processor is coping, use
uptime(1):

$ uptime

Check the load averages reported by uptime(1). When they are equal to 1
or higher, either the processor is overloaded or there is a shortage of
memory, or both.

Uptime(1) also reports the time that elapsed since the
last system restart. If you notice that it is constantly
low, it may be a sign that you are having problems with
the system or the hardware that cause frequent reboots.
It is something you should investigate.

For a more accurate information about the processor and the memory, use
vmstat(8):

$ vmstat -c 10

The first three columns (r, b, w) ought to be 0, they may be temporarily
greater than 0, but if such situations persist they are a sign of trouble.
When column r is greater than 0, the processor is overloaded; when

Section 15.4: Testing Network Performance 255

column b is greater than 0, there is probably a problem with the I/O sub-
system (the disk are too slow, happens when you do extensive logging);
and when w is greater than 0 your machine is short of memory and has to
swap to disk. In all cases, the network connections will be affected. Pay
particular attention to swapping, as it severely degrades the firewall per-
formance. Often adding more memory will have a much better effect
than a faster processor, disk, RAID, or a faster network card.

Yet another performance indicator reported by vmstat(8) is the amount of
time the processor is idle (cpu id). The higher that value, the better, but
it cannot be 100% idle all the time, of course. There are two schools of
thinking about that indicator. Some say that a 10%–20% reserve is OK,
while others say that it ought to be at most 50%. When the load is
applied evenly, it is OK for the processor to be quite busy (10% idle), but
when the load is bursty, the CPU ought to be idle at 50% or more. An-
other popular system performance measuring tool is top(1), which has its
critics, who claim that it places additional load on the system and blurs
the overall picture of system performance. While it is true, it displays a
lot of useful information about the system. It can be run in interactive
mode:

$ top

or in batch mode:

$ top -b

(If you long for a simple, visual interface in text mode, try systat(1).)

Another important tool for monitoring performance is netstat(1), used to
check parameters of the network connections, interfaces, and so on. To
use it, type:

$ netstat

Watch out for high values of the Recv-Q queue and the Send-Q queue.
When Recv-Q is constantly high, your host may be having problems
with processing packets it receives. High values of Send-Q may indicate
that the external hosts may be having problems processing packets fast
enough. To make netstat(1) work faster disable name lookups, with:

256 Chapter 15: Testing Your Firewall

$ netstat -n

To check the status of a particular network interface, use:

$ netstat -n -I rl0

The most important information, from the point of view of performance
are values of Ierrs (inbound packet errors), Oerrs (outbound packet
errors), and Colls (collisions, low values are OK, values above 15% in-
dicate that there may be a need to split the busy segment into a smaller
one.

• The external link or the internal link on the firewall is overloaded. Run
netstat(8) on the firewall, check stats for interfaces and see if you can spot
the source of the problem.

• The external networks are overloaded. When the local network and the
firewall are not overtaxed, the problem may lie on the outside. Run
traceroute(8), traceroute6(8), or mrtg (must be installed from packages,
see Chapter 4, Configuring OpenBSD) and see what they report. Pf(4)
must be configured to let traceroute(8) work (see Appendix B). When
problems persist, it may be time to change your ISP to someone with bet-
ter links or to buy more bandwidth.

• The external hosts are overloaded. Try to connect to a remote host using
telnet(1), your browser, or other clients that the remote machine serves
and compare response times with other similar hosts. When problems
persist, get in touch with the administrator of the remote system.

15.5 Are packets passing through PF?

How do you know if packets are passing through the firewall? Ping(8),
traceroute(8), telnet(1), or other simple tools might not always help. When
you encounter such problems, try tcpdump(8). You can use it to display
packets arriving at a selected interface, to write packets to a file, and to filter
packets.

For example, the following command displays all packets arriving and
leaving the ne0 interface:

tcpdump -i ne0

If you wanted to write them to a file, you’d use:

Section 15.5: Are packets passing through PF? 257

tcpdump -i ne0 -w ne0-capture

And if you wanted to read them later on, you’d use:

tcpdump -r ne0-capture

Depending on your preferences, tcpdump(8) output can be made less
verbose (-q) or more verbose (-vv). For faster operation, you might want
to turn IP address to name translation with -n.

The real fun begins, when you use tcpdump(8) expressions. Expressions
are used to filter packets and display only those that we are interested in,
e.g. (displays packets sent from host whose address is 10.3.4.6):

tcpdump -i ne0 src host 10.3.4.6

(displays packets sent to or from port 25):

tcpdump -i ne0 port 25

You can run tcpdump on the firewall and the hosts surrounding it and watch
the output of tcpdump(8) for specific information. For example, if you
wanted to know if your ruleset is letting packets from a certain host pass,
use src host. similarly, the same parameter can help when you want to
make sure that packets from a certain host do not pass through the firewall,
when you see them, it is a sign that the ruleset ought to be adjusted.

When problems you are experiencing are difficult to spot, you might use
ethereal (found in ports and packages), which makes tcpdump’s output
easier to understand. Should that fail, you may need to do some detective
work, and for that you will use the -w option, which writes packets to a file.
Later, with the help of tcpreplay That technique will be used in many cases,
but tcpdump(8) can also help measure network performance Another useful
debugging technique is turning packet filtering off and replacing it with
packet logging.

Then, after you captured some traffic, use tcpreplay (it’s in the ports and
packages) to send that traffic again. The captured packets can be sliced and
pasted with tcpslice (also in packages). Other tools of interest are: tcptrace,
tcpstat, and tcpshow.

258 Chapter 15: Testing Your Firewall

15.6 Additional tools

It is impossible to list and describe all network and security tools that
OpenBSD comes with. The following list ought to direct you in your
search, and help you quickly find the tool you are looking for. Please note
that even if some tool you are looking for is not available in the ports or
packages collection, it is probably available in source form on the Internet
and can be built using the OpenBSD compiler tools. Be careful with code
downloaded from the Internet and always download it from trusted sites.

• Scanning, fingerprinting tools: angst, arirang, cgichk, ettercap, firewalk,
ndiff, nmap, p0f, portscanner, queso, scanssh, siphon, sniffit, smbsniff,
strobe, whisker, xprobe.

• Scanning, fingerprinting detection tools: aide, courtney, portsentry, smur-
flog, snort, scanlogd, task.

• Network Intrusion Detection Systems (NIDS): libnids, snort.
• Protocol analysis tools: arpwatch, ethereal, parse, pcapmerge, ssldump,

tcpdump.
• Network utilities: aggregate, arping, ctrace, dlint, fping, hping, libnet,

nemesis, netpipes, ngrep, socket, tcpcat , tcpflow, tcplist, tcpreen.
• Network performance monitoring tools: http_load, http_ping, iperf, ipfm,

mtr, mrtg, netperf, netpipe, oproute, top, tcpbalst, trafd, trafshow, ttcp.

Chapter 16

Firewall Management

Firewalls built with OpenBSD and pf are specialized Unix systems and as
such they are managed just like any other Unix-class system. A lot of
concepts are similar, but there are a few differences, due to the fact that
pf(4) is a complex piece of software and has its own management tool,
pfctl(8).

16.1 General Operations

• Enable pf(4):

pfctl -e

• Disable pf(4):

pfctl -d

• Enable pf(4) and load the ruleset stored in /etc/pf.conf:

pfctl -e -f /etc/pf.conf

16.2 Pfctl Output Control Options

• Suppress informational messages. Display error and warning messages
only. Option -q. Can be used with other options.

• Be more verbose. Display additional information. Option -v. Can be
used with other options.

• Be even more verbose. Display more information. Option -vv. Can be
used with other options.

260 Chapter 16: Firewall Management

16.3 Managing Rulesets

• Load the whole ruleset from a file:

pfctl -f /etc/pf.conf

• Parse the ruleset stored in a file but don’t load it. Good for ruleset de-
bugging purposes:

pfctl -n -f /etc/pf.conf

• Load rules, or the whole ruleset from standard input (STDIN). Replace
the name of the file with -, e.g.:

echo "block in all" | pfctl -f -

• Flush everything:

pfctl -F all

16.4 Managing Macros

• Define (or override) a macro:

pfctl -D macro=value

e.g.:

pfctl -D ext_if=ne0

When the value of the macro contains characters that may be interpreted
by the shell, enclose everything after -D in single quotes:

pfctl -D ’locals={192.168.22.32, 192.168.22.33}’

16.5 Managing Tables

• Load only table definitions for a file:

pfctl -T load -f /etc/pf.conf

Section 16.5: Managing Tables 261

• Create an empty table. Works like adding an address to an existing table:

pfctl -t sometable -T add 192.168.23.2

• Add a new address to a table:

pfctl -t sometable -T add 192.168.23.3

• Delete an address from a table:

pfctl -t sometable -T delete 192.168.23.3

• Replace addresses from a table with address list loaded from a file:

pfctl -t sometable -T replace -f addresses

• Display the list of all tables:

pfctl -s Tables

• Display addresses in a table:

pfctl -t sometable -T show

• Check if the given address matches a table:

pfctl -t sometable -T test 192.168.23.3

• Check if the given addresses match a table:

pfctl -t sometable -T test -f addresses

• Clear all statistics for a table:

pfctl -t sometable -T zero

• Kill a table:

pfctl -t sometable -T kill

262 Chapter 16: Firewall Management

• Flush all addresses from a table:

pfctl -t sometable -T flush

16.6 Managing pf Options

• Load only options from a file:

pfctl -O -f /etc/pf.conf

16.7 Managing Queues

• Load only queue definitions from a file:

pfctl -A -f /etc/pf.conf

• Display queue definitions:

pfctl -s queue

• Display queue definitions and per-queue statistics:

pfctl -v -s queue

• Display and update queue definitions and per-queue statistics. Updates
are displayed every 5 seconds:

pfctl -vv -s queue

• Flush queue definitions:

pfctl -F queue

16.8 Managing Packet Redirection Rules

• Load only packet redirection rules from a file:

pfctl -N -f /etc/pf.conf

Section 16.8: Managing Packet Redirection Rules 263

• Display currently loaded packet redirection rules:

pfctl -s nat

• Flush packet redirection rule definitions:

pfctl -F nat

16.9 Managing Packet Filtering Rules

• Load only filter rules from a file:

pfctl -R -f /etc/pf.conf

• Display filtering rule definitions:

pfctl -s rules

• Display filtering rule definitions and per-rule statistics:

pfctl -v -s rules

• Flush filtering rule definitions:

pfctl -F rules

16.10 Managing Anchors

• Load rules into anchor xyz:

pfctl -a xyz -f somerules

• Load rules into named ruleset abc of anchor xyz:

pfctl -a xyz:abc -f somerules

• Display NAT rules form named ruleset abc of anchor xyz:

pfctl -s nat -a xyz:abc

264 Chapter 16: Firewall Management

Other modifiers allowed in -F are: all, queue, rules, state, info,
and tables.

• Display currently loaded anchors:

pfctl -s Anchors

• Display currently loaded named rulesets in an anchor:

pfctl -s Anchors -a someanchor

• Flush all rules from anchor xyz:

pfctl -F all -a xyz

Other modifiers allowed in -F are: nat, queue, rules, state, info,
and tables.

• Flush all rules from ruleset abc of anchor xyz:

pfctl -F all -a xyz:abc

Other modifiers allowed in -F are: nat, queue, rules, state, info,
and tables.

16.11 Managing States

• Display all states:

pfctl -s state

• Perform DNS lookups on displayed states. Add the -r option when you
are using the -s state option.

• Kill all states originating from host abc:

pfctl -k abc

• Kill all states originating from host abc to host xyz:

Section 16.11: Managing States 265

pfctl -k abc -k xyz

• Flush states:

pfctl -F states

• Display changes to the state table via pfsync(4):

ifconfig pfsync0 up

tcpdump -s1500 -evtni pfsync0

16.12 Managing Operating System Fingerprints

• Display all loaded operating system fingerprints:

pfctl -s osfp

• Flush all loaded operating system fingerprints:

pfctl -F osfp

16.13 Statistics

• Display all stats:

pfctl -s all

• Display filter information (statistics and counters):

pfctl -s info

• Display current pool memory hard limits:

pfctl -s memory

• Display global timeouts:

pfctl -s timeouts

266 Chapter 16: Firewall Management

• Display statistics for rules with labels:

pfctl -s labels

16.14 Additional Tools for Managing pf

Although pfctl(8) is the best tool for managing pf(4), there are a few addi-
tional items you should know about, because they can greatly help you in
you everyday work:

• pfstat — collects and plots pf(4) statistics.

http://benzedrine.cx/pfstat.html (pfstat)

• pftop — similar to top(1) or ntop, displays basic pf(4) stats.

http://www.eee.metu.edu.fr/˜canacar/pftop/ (pftop)

• fwanalog — parses pf(4) logs and translates them into Analog format.

http://www.tud.at/programm/fwanalog (fwanalog)

Appendix A

Manual Pag es

Unlike online help distributed with other operating systems, the OpenBSD
manual pages truly are the best source of information related to almost
ev ery component of this fine piece of software.

A.1 Using the OpenBSD Manual

The OpenBSD system manual is available from the command line, all you
have to do is type the man command followed by the name of man page:

$ man dhcp

As you might have noticed, this book contains names of many manual
pages that end with a number enclosed in parentheses. That number indi-
cates the section number the page in question belongs to, e.g. ls(1) is a
reference to the manual page for the ls command stored in section 1. Such
notation is used, because there may exist more than one page with the same
name. To specify which page you want to see, precede the name of the
page with the section number:

$ man 1 ls

What if you don’t know which page contains the information you are
looking for, let alone the section number? Use the apropos(1) command:

$ apropos dhcp

dhclient(8) - Dynamic Host Configuration Protocol

+ (DHCP) Client

dhclient-script(8) - DHCP client network configuration

+ script

dhclient.conf(5) - DHCP client configuration file

dhclient.leases(5) - DHCP client lease database

268 Appendix A: Manual Pages

dhcp(8) - configuring OpenBSD for DHCP

dhcp-options(5) - Dynamic Host Configuration Protocol

+ options

dhcpd(8) - Dynamic Host Configuration Protocol Server

dhcpd.conf(5) - dhcpd configuration file

dhcpd.leases(5) - DHCP client lease database

When apropos(1) returns more results that can fit on a single screen, use
this set of commands:

$ apropos dhcp | less

What if the page you read did not answer your questions? Have a look at
the pages in the SEE ALSO section found near the end of almost every
manual page and at the pages referred to in the main text of the page you
are reading.

The truly determined can use the following command to dig deeper into the
bowels of the manual:

$ grep -r bridge /usr/share/man/

What you’ll see is a list of lines showing the names of files where the
bridge keyword was found. The numbers at the end of the file names
shown in the output are the manual section numbers.

A.1.1 Reading the OpenBSD Manual Pag es on the Web

It is possible to read the OpenBSD manual pages online with your browser,
which is very handy when you don’t hav e OpenBSD up and running, or
when you saved disk space and did not install the man34.tgz. They are
available on the following page:

http://www.openbsd.org/cgi-bin/man.cgi (OpenBSD Manual)

A.2 Pag es Related to PF

There are several manual pages describing pf and its components:

• authpf(8) — the authenticating gateway user shell. Discussed in Chapter
12, Using authpf.

Section A.2: Pages Related to PF 269

• pf(4) — Daniel Hertmeier’s Packet Filter.
• pf.conf(5) — a long description of the pf configuration file.
• pf.os(5) — description of the format of the operating systems’ fingerprint

database.
• pfctl(8) — the pf management tool. Discussed in Chapter 16, Fire wall

Management.
• pflogd(8) — the pf logging daemon. Discussed in Chapter 11, Logging

and Log Analysis.
• pfsync(4) — the pf states table logging interface. Discussed in Chapter

15, Testing Your Firewall.
• spamd(8) — the anti-spam daemon. Discussed in Chapter 13, Using

spamd.
• spamd-setup(8) — the tool for parsing and loading spammer’s addresses.

Discussed in Chapter 13, Using spamd.
• spamd.conf(5) — spamd(8) configuration file syntax. Discussed in

Chapter 13, Using spamd.

A.3 Other Pag es of Interest

The following pages are good starting points when you are learning the
OpenBSD operating system or the pf packet filter:

• afterboot(8) — things you need to do after installing OpenBSD.
• bpf(4) — the Berkeley Packet Filter.
• intro(4) — a concise introduction to special files and devices.
• intro(7) — a list of most important pages in section 7 (miscellaneous).
• intro(8) — a short description of the contents of section 8 (system man-

agement).
• networking(8) — a concise introduction to the OpenBSD networking

facilities. Since the topic is huge, it is only a general overview, but
nonetheless useful. If you are looking for specific answers, read other
pages related to devices, protocols, services, and tools. Still lost? Read
[Stevens 1994].

270

Appendix B

Rules for Popular
(and Less Popular)

Ser vices

So, you want to know how to write a rule for service x?
Is there a table of rules you can use? The answers are
here.

Writing a rule for a service begins with a look at the contents of /etc/ser-
vices. When you find a name and a matching port number, you have most
of the information you need to write your rule. If the service is not listed in
/etc/services, it may be listed in this file:

http://www.iana.org/assignments/port-numbers

When you find them there, use the port number, not the name of the service.
Note that the port numbers are not guaranteed to be what you expect them
to be, because administrators are free to configure them as they wish, al-
though ports lower than 1024 tend to be quite stable.

Another important piece of information is the transport protocol used,
which often is TCP or UDP. UDP-based services are often problematic and
care must be taken when you are dealing with them. The rule here is to use
TCP unless you explicitly need UDP.

• I want to block connections from external hosts to a specific port on the
host running pf(4). Start with (remember to use the proto keyword fol-
lowed by tcp, or udp, or both). This is important, because ports are
Only defined in TCP and UDP protocols; ICMP, RSVP, and others that do
not use TCP or UDP for transport do not use ports:

272 Appendix B: Rules for Popular (and Less Popular) Services

if -- the interface on which packets arrive

block both TCP and UDP IPv4

block in on $if inet proto {tcp, udp} \

from any to ($if) port $blocked_port

block both TCP and UDP IPv6

block in on $if inet6 proto {tcp, udp} \

from any to ($if) port $blocked_port

• I want to pass connections from certain external hosts to a specific port
on the firewall, but block them from other hosts. Start with:

if -- the interface on which packets arrive

block both TCP and UDP IPv4

block in on $if inet proto {tcp, udp} \

from any to ($if) port $blocked_port

pass in on $if inet proto {tcp, udp} from $OK_address \

to ($if) port $blocked_port

block both TCP and UDP IPv6

block in on $if inet6 proto {tcp, udp} \

from any to ($if) port $blocked_port

pass in on $if inet6 proto {tcp, udp} from $OK_address \

to ($if) port $blocked_port

When you only want to pass IPv4 packets, remove the
pass ... inet6 rule.

• I want to redirect connections from external hosts from one port to
another.

ext_if -- the external interface

rdr in on $ext_if inet \

from any to ($ext_if) port $target_ports \

-> $target_host $redirected_port

rdr in on $ext_if inet6 \

from any to ($ext_if) port $target_ports \

-> $target_host $redirected_port

• I want to redirect connections from internal hosts to proxy.

ext_if -- the external interface

273

int_if -- the internal interface

rdr in on $int_if \

from any to any port $target_port \

-> $proxy_host $redirected_port

• How do find out which ports are opened by a particular piece of
software? Consult the relevant documentation, but if that doesn’t help, do
some detective work. Run the software, then run nmap on the hosts
running that software. Also, run tcpdump(8) on the firewall host and filter
out traffic to and from the host running that software.

• Why some protocols need two or more ports? Some protocols are just de-
signed that way, for better or worse. They usually open two connections
at different ports, one for data and one for control. In such cases, it is dif-
ficult to write filtering rules for them, unless you can know the numbers
of these ports beforehand. What you can do is proxy them like you proxy
the FTP described in Chapter 4, Configuring OpenBSD

• What’s the difference between nat and rdr proxy? The main difference
is the fact that rdr rules do not change the source address of a packet.

• I tried everything, and still don’t get it. Read the protocol specification.
Use nmap and tcpdump(8). Ask around, no shame in learning.

B.1 Dealing with ICMP

The Internet Control Message Protocol (ICMP) is a very important tool for
IP network diagnostics. Tools like ping(8) use it to find out whether the
host you are trying to ping is running, down, or rejecting connections;
routers use it to perform some automatic administrative tasks, etc. Unfortu-
nately, ICMP is being abused by hackers, and it is often advised to block it,
which makes tools like ping(8) inoperable.

Rather than completely block it, you could let some types of ICMP re-
sponses pass through your firewall, with some caution. The following rules
are for a screened network firewall configuration.

• Echo Request & Echo Reply — let administrators ping (send Echo
Request and accept Echo Reply) external hosts:

274 Appendix B: Rules for Popular (and Less Popular) Services

prv_if -- the interface that private hosts connect

to the firewall

pass in on $prv_if inet proto icmp \

from $admin_hosts \

to any icmp-type 8 code 0 keep state

• Echo Request & Echo Reply — let private hosts ping (send Echo Request
and accept Echo Reply) the firewall host:

prv_if -- the interface that private hosts connect

to the firewall

pass in on $prv_if inet proto icmp \

from $prv_if:network \

to ($prv_if) icmp-type 8 code 0 keep state

• Echo Request & Echo Reply — let your ISP network ping (send Echo
Request and accept Echo Reply) the firewall host:

ext_if -- the interface that firewall host connects

to the outside world

pass in on $ext_if inet proto icmp \

from $ISP_net_address \

to ($ext_if) icmp-type 8 code 0 keep state

• Destination Unreachable — block outbound Destination Unreachable
messages except for Fragmentation Needed, pass inbound Destination
Unreachable messages:

ext_if -- the interface that firewall host connects

to the outside world

prv_if -- the interface that private hosts connect

to the firewall

pass in on $ext_if inet proto icmp \

from any \

to any icmp-type 3

pass out on $ext_if inet proto icmp \

from any \

to any icmp-type 3 code 4 keep state

pass in on $prv_if inet proto icmp \

from prv_if:network \

to any icmp-type 3

275

pass out on $prv_if inet proto icmp \

from any \

to prv_if:network icmp-type 3 code 4 keep state

• Source Quench — pass inbound and outbound packets:

ext_if -- the interface that the firewall host connects

to the outside world

prv_if -- the interface that private hosts connect

to the firewall host

pass in on $ext_if inet proto icmp \

all \

icmp-type 4 keep state

pass in on $prv_if inet proto icmp \

all \

icmp-type 4 keep state

• Time Exceeded — pass inbound and outbound packets:

ext_if -- the interface that the firewall host connects

to the outside world

prv_if -- the interface that private hosts connect

to the firewall host

pass in on $ext_if inet proto icmp \

all \

icmp-type 11 keep state

pass in on $prv_if inet proto icmp \

all \

icmp-type 11 keep state

• Parameter Problem — pass inbound and outbound packets:

ext_if -- the interface that the firewall host connects

to the outside world

prv_if -- the interface that private hosts connect

to the firewall host

pass in on $ext_if inet proto icmp \

all \

icmp-type 12 keep state

276 Appendix B: Rules for Popular (and Less Popular) Services

pass in on $prv_if inet proto icmp \

all \

icmp-type 12 keep state

B.2 Fixing FTP

FTP and other protocols that open two or more connections are always
problematic, because they need proxy software to operate correctly through
the firewall.

A solution to FTP client access to external servers is shown in Chapter 4,
Configuring OpenBSD. What about FTP servers? You need to know which
ports does the server open for connections besides port 21. In case of
ftpd(8) the are in range 49152 through 65535, while the Windows 2000
FTP server opens ports 5000 through 65534. When the server is running on
the same host as pf(4), use:

pass in on $ext_if proto tcp from any \

to any port 21 keep state

pass in on $ext_if proto tcp from any \

to any port > 49151 keep state

When the FTP server is running in a DMZ, use the re verse ftp-proxy
solution described in Chapter 4, Configuring OpenBSD.

B.3 Template Rules for Services Using TCP and UDP

The long ruleset presented later in this chapter contains examples of rules
for passing or blocking certain services based on TCP. It is also very easy
to adapt them to filter services using UDP, although we generally block it
when it is not absolutely necessary, for safety. These example were written
for a few typical firewall configurations described in Chapter 2, Fire wall
Designs. The service filtered in these rules is the Secure Shell (SSH). SSH
servers are listening on port 22,and that’s the assumption the ruleset is
based on.

Adapting rules for other TCP services is very easy and
often involves a mere change of the target port number.
More information about doing this can be found in the
next section of this appendix.

277

A word of warning. Do not apply the examples blindly, but choose only
those rules that you need. For example, if you block all incoming connec-
tions, but want to pass connections to port 22 originating on the outside of
the firewall, choose the pass rule for the screened host/LAN or the one for
the bastion host.

All of these rules fit nicely into the more general rulesets presented in Ap-
pendix C.

Bastion Host

a lone host connected directly to the Internet or LAN

macros for the bastion host:

ext_if -- the name of the interface connecting the bastion

host to other (external) hosts

ext_if = "ne1"

filtering rules for the bastion host:

-- allow connections from the bastion host to external hosts

on port 22 (SSH)

note: to let IPv6 packets pass, copy the following rule and

change inet to inet6

pass out on $ext_if inet proto tcp \

from ($ext_if) port > 1023 \

to any port 22 \

flags S/SA modulate state

-- allow connections from external hosts to the bastion host

on port 22 (SSH)

note: to let IPv6 packets pass, copy the following rule and

change inet to inet6

pass in on $ext_if inet proto tcp \

from any port > 1023 \

to ($ext_if) port 22 \

flags S/SA modulate state

-- block connections from the bastion host to external hosts

on port 22 (SSH)

note: you need two rules to block IPv4 and IPv6 packets, if

you use the ($ext_if) notation instead of the numeric

address, and the $ext_if interface has both IPv4 and

IPv6 addresses.

block out on $ext_if inet proto {tcp, udp} \

from ($ext_if) \

to any port 22

278 Appendix B: Rules for Popular (and Less Popular) Services

block out on $ext_if inet6 proto {tcp, udp} \

from ($ext_if) \

to any port 22

-- block connections from external hosts to the bastion host

on port 22 (SSH)

note: you need two rules to block IPv4 and IPv6 packets, if

you use the ($ext_if) notation instead of the numeric

address, and the $ext_if interface has both IPv4 and

IPv6 addresses.

block in on $ext_if inet proto {tcp, udp} \

from any \

to ($ext_if) port 22

block in on $ext_if inet6 proto {tcp, udp} \

from any \

to ($ext_if) port 22

Screened Host/LAN

the firewall has public IP addresses assigned to its

interfaces, the private hosts also have public IP addresses

macros for the screened host/LAN:

ext_if -- the name of the interface connecting the firewall

to external hosts, the Internet, the outside world

ext_if = "ne1"

prv_if -- the name of the interface connecting the firewall

to the private (internal) host(s)

prv_if = "ne1"

filtering rules for the screeened host(s):

-- allow connections from the private host(s) to external

hosts on port 22 (SSH)

note: private hosts can connect to the firewall’s port 22

too

pass in on $prv_if inet proto tcp \

from $prv_if:network port > 1023 \

to any port 22

pass out on $ext_if inet proto tcp \

from $prv_if:network port > 1023 \

to any port 22 \

flags S/SA modulate state

-- allow connections from external hosts to the private

279

host(s) on port 22 (SSH)

pass in on $ext_if inet proto tcp \

from any port > 1023 \

to $prv_if:network port 22

flags S/SA modulate state

pass out on $prv_if inet proto tcp \

from any port > 1023 \

to $prv_if:network port 22

-- block connections from the private host(s) to external

hosts on port 22 (SSH), also block connections to port 22

on the firewall host

note: you need two rules to block IPv4 and IPv6 packets, if

you use the :network notation instead of the numeric

address, and the $ext_if interface has both IPv4 and

IPv6 addresses.

block in on $prv_if inet proto {tcp, udp} \

from $prv_if:network \

to any port 22

block in on $prv_if inet6 proto {tcp, udp} \

from $prv_if:network \

to any port 22

-- block connections from external hosts to the private

host(s) on port 22 (SSH)

note: you need two rules to block IPv4 and IPv6 packets, if

you use the :network notation instead of the numeric

address, and the $ext_if interface has both IPv4 and

IPv6 addresses.

block in on $ext_if inet proto {tcp, udp} \

from any \

to $prv_if:network port 22

block in on $ext_if inet6 proto {tcp, udp} \

from any \

to $prv_if:network port 22

-- allow connections from external hosts to the firewall

on port 22 (SSH)

pass in on $ext_if inet proto tcp \

from any port > 1023 \

to ($ext_if) port 22

flags S/SA modulate state

280 Appendix B: Rules for Popular (and Less Popular) Services

pass out on $prv_if inet proto tcp \

from any port > 1023 \

to ($ext_if) port 22

-- block connections from external hosts to the firewall

on port 22 (SSH)

note: you need two rules to block IPv4 and IPv6 packets, if

you use the ($ext_if) notation instead of the numeric

address, and the $ext_if interface has both IPv4 and

IPv6 addresses.

block in on $ext_if inet proto {tcp, udp} \

from any \

to ($ext_if) port 22

block in on $ext_if inet6 proto {tcp, udp} \

from any \

to ($ext_if) port 22

-- allow connections from the private hosts to the firewall

on port 22 (SSH)

pass in on $prv_if inet proto tcp \

from $prv_if:network port > 1023 \

to ($prv_if) port 22

flags S/SA modulate state

-- block connections from private hosts to the firewall

on port 22 (SSH)

note: you need two rules to block IPv4 and IPv6 packets, if

you use the ($ext_if) notation instead of the numeric

address, and the $ext_if interface has both IPv4 and

IPv6 addresses.

block in on $prv_if inet proto {tcp, udp} \

from $prv_if:network \

to ($prv_if) port 22

block in on $prv_if inet6 proto {tcp, udp} \

from $prv_if:network \

to ($prv_if) port 22

Invisible Bridge

the firewall has no IP addresses assigned to its

interfaces, the private hosts have public IP addresses

macros for the screened host/LAN:

281

ext_if -- the name of the interface connecting the firewall

to external hosts, the Internet, the outside world

ext_if = "ne1"

prv_if -- the name of the interface connecting the firewall

to the private (internal) host(s)

prv_if = "ne1"

prv_ad -- the addresses of the private hosts

prv_ad = "{x.x.x.a, x.x.x.b, ...}"

filtering rules for the screeened host(s):

-- allow connections from the private host(s) to external

hosts on port 22 (SSH)

pass out on $ext_if inet proto tcp \

from $prv_ad port > 1023 \

to any port 22 \

flags S/SA modulate state

-- allow connections from external hosts to the private

host(s) on port 22 (SSH)

pass in on $ext_if inet proto tcp \

from any port > 1023 \

to $prv_ad port 22

flags S/SA modulate state

-- block connections from the private host(s) to external

hosts on port 22 (SSH)

note: you need two rules to block IPv4 and IPv6 packets, if

you use the :network notation instead of the numeric

address, and the $ext_if interface has both IPv4 and

IPv6 addresses.

block out on $ext_if inet proto {tcp, udp} \

from $prv_ad \

to any port 22

block out on $ext_if inet6 proto {tcp, udp} \

from $prv_ad \

to any port 22

-- block connections from external hosts to the private

host(s) on port 22 (SSH)

note: you need two rules to block IPv4 and IPv6 packets, if

you use the :network notation instead of the numeric

address, and the $ext_if interface has both IPv4 and

282 Appendix B: Rules for Popular (and Less Popular) Services

IPv6 addresses.

block in on $ext_if inet proto {tcp, udp} \

from any \

to $prv_ad port 22

block in on $ext_if inet6 proto {tcp, udp} \

from any \

to $prv_ad port 22

NAT + Screened Host/LAN

the firewall has public a IP addresse assigned to its

external interface, the private hosts also have no public IP

addresses

macros for the screened host/LAN:

ext_if -- the name of the interface connecting the firewall

to external hosts, the Internet, the outside world

ext_if = "ne1"

prv_if -- the name of the interface connecting the firewall

to the private (internal) host(s)

prv_if = "ne1"

NAT rules for the NAT + Screened Host/LAN setup:

-- NAT connections from the private host(s) to external

hosts on port 22 (SSH)

nat on $ext_if inet proto tcp \

from $prv:network port > 1023 \

to any port 22 \

-> ($ext_if)

filtering rules for the NAT + Screened Host/LAN setup:

-- allow connections from the private host(s) to external

hosts on port 22 (SSH)

pass out on $ext_if inet proto tcp \

from $prv_if:network port > 1023 \

to any port 22 \

flags S/SA modulate state

-- allow connections from external hosts to the firewall

on port 22 (SSH)

pass in on $ext_if inet proto tcp \

from any port > 1023 \

to ($ext_if) port 22

flags S/SA modulate state

283

-- block connections from external hosts to the firewall

on port 22 (SSH)

note: you need two rules to block IPv4 and IPv6 packets, if

you use the ($ext_if) notation instead of the numeric

address, and the $ext_if interface has both IPv4 and

IPv6 addresses.

block in on $ext_if inet proto {tcp, udp} \

from any \

to ($ext_if) port 22

block in on $ext_if inet6 proto {tcp, udp} \

from any \

to ($ext_if) port 22

-- allow connections from the private hosts to the firewall

on port 22 (SSH)

pass in on $prv_if inet proto tcp \

from $prv_if:network port > 1023 \

to ($prv_if) port 22

flags S/SA modulate state

-- block connections from private hosts to the firewall

on port 22 (SSH)

note: you need two rules to block IPv4 and IPv6 packets, if

you use the ($ext_if) notation instead of the numeric

address, and the $ext_if interface has both IPv4 and

IPv6 addresses.

block in on $prv_if inet proto {tcp, udp} \

from $prv_if:network \

to ($prv_if) port 22

block in on $prv_if inet6 proto {tcp, udp} \

from $prv_if:network \

to ($prv_if) port 22

B.4 Adapting the Template for Other Services

You can use the rules presented in the previous section for other TCP-based
protocols. In most cases, all you have to so is change the port number from
22 to something else:

• Auth (auth, port 113)
• HyperText Transfer Protocol (www port 80)
• HyperText Transfer Protocol Proxy (no single name or port, typically

284 Appendix B: Rules for Popular (and Less Popular) Services

8008, 8080)
• Internet Message Access Protocol, v2 (imap, port 143)
• Internet Message Access Protocol, v3 (imap3, port 220)
• Lightweight Directory Access Protocol (ldap3, port 389)
• Lightweight Directory Access Protocol over SSL (ldap3, port 636)
• Line Printer Spooler (LPD) (printer, port 515)
• IMAP over TLS/SSL (imaps, 993)
• Microsoft Global Catalog (msft-gc, port 3268)
• Microsoft Global Catalog with LDAP/SSL (msft-gc-ssl, port 3269)
• MySQL (mysql, port 3306)
• IMAP over TLS/SSL (imaps, 993)
• IRC Server (irc-serv, 529)
• PostgreSQL (postgresql, port 5432)
• Post Office Protocol, v2 (pop2, port 109)
• Post Office Protocol, v3 (pop3, port 110)
• Post Office Protocol, v3 over TLS/SSL (pop3s, port 995)
• QuickTime (rtsp port 554, 7070)
• RealAudio (rtsp port 554, 7070)
• Secure HyperText Transfer Protocol (https port 443)
• Simple Mail Transfer Protocol (smtp, port 25)
• Usenet News Transfer Protocol (nntp, port 119)
• WHOIS (whois, port 43) — allow only connections to external hosts, do

not run whois services on your network.
• X Font Service (font-service, port 7100)
• X Window Server (x11, port 6000-6063) — use tunnellng to secure this

service.

All rules are for IPv4 traffic (inet), if you want to adapt them to IPv6
traffic, either change inet to inet6 (if you don’t want to pass/block IPv4
packets), or duplicate them changing inet to inet6.

When you want to adapt these rules to services that use TCP and UDP,
simply copy the relevant pass rule and change proto tcp to proto
udp and change modulate state to keep state. This will be
needed in the case of Domain Name System (domain, port 53), which us-
es both TCP and UDP.

Should you want to adapt these rules to services that use UDP and not TCP,
change proto tcp to proto udp and change modulate state to
keep state in the. the relevant pass rule. This trick will work for the

285

Network Time Protocol (ntp, port 123), Trivial FTP (tftp, port 69),
Simple Network Management Protocol (snmp port 161, snmp-trap port
162), and the X Display Management Control Protocol (xdmcp port 177).

Block rules can remain unchanged, unless you want to make them more
specific, in which case you need to delete either tcp or udp as needed.

286

Appendix C

Rule Templates
for

Typical Firewall Configurations

The following are starting points for firewall rulesets implementing firewall
designs described in Chapter 2, Fire wall Designs.

C.1 Bastion Host

A bastion host is a lone host connected to the Internet or a LAN. It is
running pf(4) for protection from the external threats and does not allow
any inbound connections unless they are in response to its own outbound
connections. An example of a bastion host would be a machine connected
to the Internet via a xDSL modem.

Macros

ext_if -- the interface to the outside world

ext_if="ne0"

Options

set require-order yes

set block-policy drop

set optimization normal

set loginterface none

Normalize packets

scrub in all

scrub out all

Filter packets

block all incoming connections sent from the outside

288 Appendix C: Rule Templates for Typical Firewall Configurations

log all blocked packets

block in log all

pass all connections originating from the screened

host

pass out quick on $ext_if inet \

from ($ext_if) to any flags S/SA keep state

anitspoof rule on the external interface

antispoof for $ext_if

C.2 Bastion Host II (Some Access Allowed)

A bastion host in this example is a lone host connected to the Internet or a
LAN. It is running pf(4) for protection from the external threats and does
allow some inbound connections. An example of this kind of a bastion host
would be a WWW and mail server connected to the Internet via an xDSL
modem. SSH connections are allowed for administrative purposes.

Macros

ext_if -- the interface to the outside world

ext_if="ne0"

Options

set require-order yes

set block-policy drop

set optimization normal

set loginterface none

Normalize packets

scrub in all

scrub out all

Filter packets

block all incoming connections sent from the outside

log all blocked packets

block in log all

pass all connections originating from the bastion

host

pass out quick on $ext_if inet \

from ($ext_if) to any flags S/SA keep state

289

pass all connections originating from external hosts to

port 80 (WWW) on the bastion host

pass in quick on $ext_if inet proto tcp \

from ($ext_if) \

to ($ext_if) port 80 \

flags S/SA synproxy state

pass all connections originating from external hosts to

port 22 (SSH) on the bastion host

pass in quick on $ext_if inet proto tcp \

from ($ext_if) \

to ($ext_if) port 22 \

flags S/SA synproxy state

pass all connections originating from external hosts to

port 25 (SMTP) on the bastion host

pass in quick on $ext_if inet proto tcp \

from ($ext_if) \

to ($ext_if) port 25 \

flags S/SA synproxy state

anitspoof rule on the external interface

antispoof for $ext_if

C.3 Screened Host/LAN (Public IP Addresses)

A screened host or LAN is a setup with the firewall host (the machine
running pf(4)) sitting between the outside world and the screened hosts. In
this example, the firewall’s external and private interfaces are assumed to
have public IP addresses. The private hosts are also assumed to have public
IP addresses. No inbound connections are allowed unless they are in re-
sponse to the outbound connections from the screened LAN or the firewall
itself. The firewall doubles as a router. An example of such setup would be
a private network with no external access allowed.

Macros

ext_if -- the interface to the outside world

ext_if="ne0"

prv_if -- the interface to the private hosts

prv_if="ne1"

prv_hosts -- the list of addresses of hosts on the

screened LAN

290 Appendix C: Rule Templates for Typical Firewall Configurations

prv_hosts = "{x.x.x.1, x.x.x.10, x.x.x.5}"

Options

set require-order yes

set block-policy drop

set optimization normal

set loginterface none

Normalize packets

scrub in all

scrub out all

Filter packets

block all incoming connections sent from the outside

log all blocked packets

block in log all

pass all connections originating from the firewall and

the screened LAN

pass out quick on $ext_if inet \

from ($ext_if) to any flags S/SA modulate state

pass all connections originating from the screened LAN

pass in quick on $prv_if inet from $prv_hosts to any flags S/SA

anitspoof rule on the external interface

antispoof for $ext_if

anitspoof rule on the private interface

antispoof for $prv_if

C.4 Screened LAN (Some Access Allowed)

A screened host or LAN is a setup with the firewall host (the machine
running pf(4)) sitting between the outside world and the screened hosts. In
this example, the firewall’s external and private interfaces are assumed to
have public IP addresses. The private hosts are also assumed to have public
IP addresses. Some inbound connections are allowed. The firewall doubles
as a router. An example of such network would be a company network
with a WWW and mail servers opened to the world and external SSH con-
nections allowed for administrative purposes.

Macros

291

ext_if -- the interface to the outside world

ext_if="ne0"

prv_if -- the interface to the private hosts

prv_if="ne1"

prv_hosts -- the list of addresses of hosts on the

screened LAN

prv_hosts = "{x.x.x.1, x.x.x.10, x.x.x.5}"

prv_www -- the address of host running the HTTP server

prv_www = "x.x.x.1"

prv_smtp -- the address of host running the SMTP server

prv_smtp = "x.x.x.10"

Options

set require-order yes

set block-policy drop

set optimization normal

set loginterface none

Normalize packets

scrub in all

scrub out all

block all incoming connections sent from the outside

log all blocked packets

block in log all

pass all connections originating from the firewall

and the screened LAN

pass out quick on $ext_if inet \

from ($ext_if) to any flags S/SA modulate state

pass all connections originating from the screened LAN

pass in quick on $prv_if inet from $prv_hosts to any flags S/SA

pass all connections originating from external hosts to

port 80 (WWW) on one of the internat hosts

pass in quick on $ext_if inet proto tcp \

from ($ext_if) \

to $prv_www port 80 \

flags S/SA synproxy state

pass all connections originating from external hosts to

port 22 (SSH) on all internal hosts

292 Appendix C: Rule Templates for Typical Firewall Configurations

pass in quick on $ext_if inet proto tcp \

from ($ext_if) \

to $prv_ad port 22 \

flags S/SA synproxy state

pass all connections originating from external hosts to

port 25 (SMTP) on one of the internal hosts

pass in quick on $ext_if inet proto tcp \

from ($ext_if) \

to $prv_smtp port 25 \

flags S/SA synproxy state

anitspoof rule on the external interface

antispoof for $ext_if

anitspoof rule on the private interface

antispoof for $prv_if

C.5 NAT + Screened LAN

This configuration is similar to a screened LAN with public IP addresses,
but only the external interface on the firewall has a public IP address. Pri-
vate hosts have private IP addresses. No inbound connections are passed
unless they are in response to outbound connections from the firewall or the
screened LAN. The firewall doubles as a router. An example of such con-
figuration would be a private network hidden behind a single IP address.

Macros

ext_if -- the interface to the outside world

ext_if="ne0"

prv_if -- the interface to the private hosts

prv_if="ne1"

prv_hosts -- the list of addresses of hosts on the

screened LAN

prv_hosts = "{192.168.1.1, 192.168.1.10, 10.3.1.5}"

Options

set require-order yes

set block-policy drop

set optimization normal

set loginterface none

293

Normalize packets

scrub in all

scrub out all

Translate packets

nat on $ext_if inet proto {tcp, udp} \

from $prv_hosts to any -> ($ext_if)

Filter packets

block all incoming connections sent from the outside

log all blocked packets

block in log all

pass all connections originating from the firewall

pass out quick on $ext_if \

from ($ext_if) to any flags S/SA modulate state

pass all connections originating from the screened LAN

pass in quick on $prv_if from $prv_hosts to any flags S/SA

anitspoof rule on the external interface

antispoof for $ext_if

anitspoof rule on the private interface

antispoof for $prv_if

C.6 NAT + Screened LAN + DMZ

An extension of NAT + Screened LAN, this configuration allows external
connections to be passed into a separate DMZ segment where publicly ac-
cessibile servers reside.

Macros

ext_if -- the interface to the outside world

ext_if="ne0"

prv_if -- the interface to the private hosts

prv_if="ne1"

dmz_if -- the interface to the DMZ

dmz_if="ne2"

prv_hosts -- the list of addresses of hosts on the

screened LAN

prv_hosts = "{192.168.1.1, 192.168.1.10, 10.3.1.5}"

294 Appendix C: Rule Templates for Typical Firewall Configurations

dmz_hosts -- the list of addresses of hosts in the

DMZ

dmz_hosts = "{192.168.2.1/32, 192.168.2.2/32, 192.168.2.3}"

dmz_www -- the address of the WWW server in the DMZ

dmz_www = "192.168.2.1/32"

dmz_smtp -- the address of the SMTP server in the DMZ

dmz_smtp = "192.168.2.2/32"

dmz_dns -- the address of the DNS server in the DMZ

dmz_dns = "192.168.2.3/32"

Options

set require-order yes

set block-policy drop

set optimization normal

set loginterface none

Normalize packets

scrub in all

scrub out all

Translate packets

nat for the private hosts

nat on $ext_if inet from $prv_hosts to any -> ($ext_if)

nat for the DMZ hosts

nat on $ext_if inet from $dmz_hosts to any -> ($ext_if)

redirect connections to port 80 (HTTP) to DMZ

rdr on $ext_if inet proto tcp \

from any to ($ext_if) port 80 -> $dmz_www

redirect connections to port 25 (SMTP) to DMZ

rdr on $ext_if inet proto tcp \

from any to ($ext_if) port 25 -> $dmz_smtp

redirect connections to port 53 (DNS) to DMZ

rdr on $ext_if inet proto {tcp, udp} \

from any to ($ext_if) port 53 (DNS) -> $dmz_dns

Filter packets

block all incoming connections sent from the outside

log all blocked packets

block in log all

pass all connections originating from the firewall

295

pass out quick on $ext_if inet \

from ($ext_if) to any flags S/SA modulate state

pass all connections originating from the screened LAN

pass in quick on $prv_if from $prv_hosts to any flags S/SA

pass all connections originating from the DMZ

pass in quick on $dmz_if from $dmz_hosts to any flags S/SA

pass all connections to the WWW host in the DMZ

pass in on $ext_if from any to $dmz_www \

port 80 flags S/SA synproxy state

pass all connections to the SMTP host in the DMZ

pass in on $ext_if from any to $dmz_smtp \

port 25 flags S/SA synproxy state

pass all connections to the DNS host in the DMZ

pass in on $ext_if from any to $dmz_dns \

port 53 flags S/SA keep state

anitspoof rule on the external interface

antispoof for $ext_if

anitspoof rule on the private interface

antispoof for $prv_if

C.7 Invisible Bridge

An invisible bridge is a host with no IP addresses assigned to it. Its general
configuration is similar to the screened host/LAN setup, but the invisibility
means that it cannot be easily hacked (there’s no address to send malicious
packets to).

Macros

ext_if -- the interface to the outside world

ext_if="ne0"

prv_if -- the interface to the private hosts

prv_if="ne1"

prv_hosts -- the list of addresses of hosts on the

screened LAN

prv_hosts = "{x.x.x.1, x.x.x.10, x.x.x.5}"

Options

set require-order yes

set block-policy drop

296 Appendix C: Rule Templates for Typical Firewall Configurations

set optimization normal

set loginterface none

Normalize packets

scrub in all

scrub out all

Filter packets

block all incoming connections sent from the outside

log all blocked packets

block in log on $ext_if all

pass all connections originating from the screened LAN

pass out quick on $ext_if inet \

from $prv_hosts to any flags S/SA modulate state

anitspoof rule on the external interface

antispoof for $ext_if

anitspoof rule on the private interface

antispoof for $prv_if

Appendix D

Helping OpenBSD and PF

Although OpenBSD and pf are free software, the world around us is a place
where most things need to be paid for. Just like everyone else, developers
working on OpenBSD and pf must pay for their food, hardware, electricity,
Internet access, and many other goods and services they use in everyday
life. They are people like you and me, and like all of us they will continue
working on their projects for as long as long as they feel an incentive to do
so. And there is really no better incentive than a fistful of green ones.
What these guys need is financial security and a steady flow of cash, be-
cause the human mind works best when it does not have to think of earning
money to keep itself alive and warm. So, by helping the OpenBSD project,
you are helping developers focus on improving the quality of their code in-
stead of chasing jobs and worrying about paying bills. This is good for all
users of OpenBSD.

If you are still not convinced that paying developers of free software is
something you should do, think about it in a slightly different way. A more
selfish way. When you pay these bright people you are, in a way, securing
your own future, because by giving them money you are making sure they
will keep on improving the tools you get for free. The long term effects of
your donations will be better tools for you, and better tools translate into se-
rious saving and increases in revenue to your business. The good news is
that you do not need to donate outrageously large amounts of money and
you can do it online, with a credit card or from your PayPal account.

D.1 Buy Official CD-ROMs, T-Shir ts, and Posters

There are several ways you can donate money to the OpenBSD project.
One of the most popular ways to do it are purchases of the official Open-
BSD CD-ROM sets published twice a year at the time of release of each
new version of the OpenBSD operating system, in May and October (of
course, there is nothing wrong with purchases made at other times). Apart
from the official CD-ROM sets, the OpenBSD project sells t-shirts and

298 Appendix D: Helping OpenBSD and PF

other collectible items that help fund it. To make a purchase, visit the
Ordering page, where you will be able to place your order online, or find
addresses of your official local distributors:

http://www.openbsd.org/orders.html (the official OpenBSD online store)
http://www.kd85.com (kd85.com, the official European distributor)

Beware of freeloaders who will sell you OpenBSD on
CD-ROM for very low prices. They sell what everyone
can download for free from ftp.openbsd.org and do not
donate any money to the project. This hurts the whole
OpenBSD ecosystem and takes money away from the
developers.

A purchase of the official OpenBSD CD-ROM set can help you in dealings
with tax authorities and software auditors. They always ask for invoices
and licenses, which you can provide, if you buy OpenBSD directly from the
OpenBSD project or its official distributors.

D.2 Make Small, but Regular Donations

If you cannot afford the official CD-ROM set, then by all means download
the latest release for free, but remember to make a donation to the project.
You can do it online with a credit card or via PayPal, the instructions are on
the Donations page:

http://www.openbsd.org/donations.html (OpenBSD Donations)

A particularly cost-effective way of helping the project without you budget
ev en noticing it is making small, but regular contributions. Let’s do some
simple math. Suppose you make a monthly donation of $5. It is not a par-
ticularly huge amount of money, but if you multiply it by the number of
months in a year, it translates into $60—still not a huge pile of cash. How-
ev er, if only 1,000 people make such small, but regular contributions, the
project will suddenly have an additional $60,000 to distribute to developers.
Of course, you can choose to contribute more, as long as you can afford it.
Remember that the point here is not to spend your life’s savings, but to
choose an amount that you will be able to contribute regularly without even
noticing.

Section D.3: Hire Developers of OpenBSD and PF 299

An added bonus of making donations to the OpenBSD
project is the fact that, apart from funding the devel-
opment of your favorite software, you can also make
yourself famous. After you make a donation, your name
goes on the list on the Donations page and the whole
world knows that you are one of the good guys who
support OpenBSD. If good karma is not enough, you can
add a link to your page and get free advertising. Of
course, if you prefer to remain anonymous, that can be
arranged too.

If you would like to send a check or arrange other forms of funding, you
should get in touch with Theo de Raadt (the leader of the OpenBSD
project). You will find the necessary details on the Project Goals page:

http://www.openbsd.org/goals.html (OpenBSD Project Goals)

The donations you make to the OpenBSD project may not be tax de-
ductible, but they could be written off as business costs. When in doubt,
consult you accountant or tax advisor.

D.3 Hire Developers of OpenBSD and PF

If you are looking for people with deep knowledge of Unix, OpenBSD,
SSH, pf, or network security, consider hiring developers of OpenBSD,
OpenSSH, or pf. These people have a very intimate knowledge of the
system and the Open Source software tools, and they may save you a lot of
time and money. The developers of OpenBSD and pf are scattered around
the world, and they may be living near you, or willing to relocate. Some of
them may be willing to telecommute, if traveling or relocation are not pos-
sible.

How do you find them? There are several ways, depending on how open
you want to be about it. The most obvious way is to check the CVS reposi-
tory of the OpenBSD project and see who’s working on which part of the
system. Or, you could join the misc or tech mailing lists. To join, visit the
Mailing lists page:

http://www.openbsd.org/mail.html

300 Appendix D: Helping OpenBSD and PF

Note that not all people who post to misc are OpenBSD developers, but you
will be able to find pointers to the right people, if you ask. The
tech mailing list is reserved for technical discussion, which means that the
signal-to-noise ratio is higher and it is easier to find the people you are
looking for there. Should you prefer to keep a low profile, you can always
write to Theo de Raadt to direct you to the right person. His address can be
found on the Project Goals page:

http://www.openbsd.org/goals.html (OpenBSD Project Goals)

If you prefer to go straight to the people you want to reach, you can always
find them on the Web. For example, Daniel Hartmeier’s site would be the
best place to look for information about getting in touch with him:

http://www.benzedrine.cx (Daniel Hartmeier, developer of pf)

Links to other developers’ and consultants’ sites can be found at dmoz.org:

http://dmoz.org/Computers/Software/Operating_Systems/Unix/BSD/
+ OpenBSD/Personalities/

Others can be found with Google, simply search for: openbsd developer

http://www.google.com (Google)

D.4 Donate Hardware

Another way to help the OpenBSD project is through donations or leases of
hardware. The benefits are obvious—the more silicon to test OpenBSD on,
the better. Howev er, before you send your old server farm north to Canada,
check what the project needs first. The list of current hardware requests is
published on the Hardware wanted page:

http://www.openbsd.org/want.html (OpenBSD Hardware Wanted)

D.5 Spare Some of Your Precious Time

If you are an able C programmer, you can help by pitching in and giving a
hand with maintenance of existing code or by contributing your own code.

Section D.6: Spread the Word 301

Remember though that this is a long-term commitment and requires regular
participation in the core development activities.

D.6 Spread the Word

Yet another way to help OpenBSD is by spreading the word about it. As
long as you don’t do it like a zealot, you will find plenty of ears willing to
hear the gospel. Be polite, patient, and open to questions. Learn to accept
criticism. Remember that you only have one chance to make a good first
impression and whatever memories you leave in the minds of the
people you speak to will likely be generalized and applied to the OpenBSD
community as a whole.

If you want to have something to give away at user meetings, to your
friends, or to your clients, print this appendix and and pass it on to your
friends and clients. To help you preserve your copy of this book, the whole
appendix is available in PDF format at:

http://www.devguide.net/books/openbsdfw-02-ed/

Feel free to link to this document from your sites or pages. The more
people learn how to help the OpenBSD project, the better.

D.7 Attend Training Seminars

The author of this book organizes pf training seminars in Europe. If you are
interested in attending or would like him to do a training session in your
offices, write to jacek@devguide.net.

A percentage of the income derived from these seminars goes straight to the
OpenBSD project.

D.8 Encourage People to Buy this Book

You may not know it, but you already helped the OpenBSD project when
you bought this book. The author donates at least 1 USD to the project
from the sale of every copy of this book. If you like this book, recommend
it to your friends.

302 Appendix D: Helping OpenBSD and PF

This and other OpenBSD books written by Jacek Artymiak are available
from devGuide.net and the following distributors and bookstores:

http://www.devguide.net (devGuide.net)
http://www.openbsd.org/orders.html (the official OpenBSD online store)
http://www.kd85.com (kd85.com, the official European distributor)
http://www.lehmanns.de (Lehmanns Fachbuchhandlung GmbH)
http://www.lmz.at (Lehrmittelzentrum Technik GmbH-LMZ)

Bibliography

The RFC documents mentioned in this book are not listed here to save
space. They are available at the RFC-Editor webpage:

http://www.rfc-editor.org

CERT Vulnerability notes and Advisories are available at:

http://www.cert.org

Artymiak 2003.
Jacek Artymiak. The OpenBSD Gazetteer. Lublin: devGuide.net, 2003.

Cheswick, Bellovin, Rubin 2003.
William R. Cheswick, Steven M. Bellovin, and Aviel D. Rubin. Fi-
re walls and Internet Security. Boston: Addison-Wesley, 2003.

Dooley 2002.
Kevin Dooley. Designing Large-Scale LANs. Sebastopol: O’Reilly &
Associates, 2002.

Farrow 2003.
Rik Farrow. Sequence Number Attacks. Downloaded from:
http://www.networkcomputing.com/unixworld/security/001.txt.html,
2003.

Frisch 2002.
Æleen Frisch. Essential System Administration. Sebastopol: O’Reilly
& Associates, 2002.

Gast 2002.
Matthew Gast. 802.11 Wireless Networks: The Definitive Guide. Se-
bastopol: O’Reilly & Associates, 2002.

304 Bibliography

Handley, Paxson 2001.
Mark Handley, Vern Paxson, and Christian Kreibich. Network Intrusion
Detection: Evasion, Traffic Normalization, and End-to-End Protocol
Semantics. Downloaded from:
http://www.icir.org/vern/papers/norm-usenix-sec-01-html/, 2001.

Lamb, Robbins 1998.
Linda Lamb and Arnold Robbins. Learning the vi Editor. Sebastopol:
O’Reilly & Associates, 1998.

Limoncelli, Hogan 2002.
Thomas A. Limoncelli and Christine Hogan 2002. The Practice of
System and Network Administration. Boston: Addison-Wesley, 2002.

Malan, Watson, Jahanian, Howell 2000.
G. Robert Malan, David Watson, Farnam Jahanian and Paul Howell.
Tr ansport and Application Protocol Scrubbing. Tel Aviv: IEEE
Infocom, 2002. Downloaded from:
http://www.ieee-infocom.org/2000/papers/340.ps

Potter, Fleck 2002.
Bruce Potter and Bob Fleck. 802.11 Security. Sebastopol: O’Reilly &
Associates, 2002.

Rosenthal 2003.
Morris Rosenthal. Computer Repair with Diagnostic Flowcharts. 2003

Wessels 2001.
Duane Wessels. Web Caching. Sebastopol: O’Reilly & Associates,
2001.

Wright, Stevens 1994.
Gary R. Wright and W. Richard Stevens. TCP/IP Illustrated, Volume 2:
The Implementation. Boston: Addison-Wesley, 1994.

Spurgeon 2000.
Charles E. Spurgeon. Ethernet: The Definitive Guide. Sebastopol:
O’Reilly & Associates, 2000.

Bibliography 305

Stevens 1994.
W. Richard Stevens. TCP/IP Illustrated, Volume 1: The Protocols.
Boston: Addison-Wesley, 1994.

Stevens 1994a.
W. Richard Stevens. TCP/IP Illustrated, Volume 3: TCP for Transac-
tions, HTTP, NNTP, and the UNIX® Domain Protocols. Boston:
Addison-Wesley, 1994.

Vesperman 2003.
Jennifer Vesperman 2003. Essential CVS. Sebastopol: O’Reilly & As-
sociates, 2003.

Yuan, Strayer 2001.
Ruixi Yuan and W. Timothy Strayer. Virtual Private Networks: tech-
nologies and solutions. Boston: Addison-Wesley, 2001.

Zwicky, Cooper, Chapman 2000.
Elizabeth D. Zwicky, Simon Cooper, and D. Brent Chapman. Building
Internet Firewalls. Sebastopol: O’Reilly & Associates, 2000.

306

Index

308 : Index

About this Book

Like many other books about Unix systems, this one too was created using
standard open source tools born in the Unix environment and available for
many popular commercial and free implementations of Unix.

The manuscript was created on a variety of computers running OpenBSD
and Mac OS X. As he always does, the author used the vi(1) text editor to
create and edit the manuscript. Every source file that this book was created
from is stored in a CVS repository. Spelling was (hopefully) improved with
the help of the immortal ispell(1).

The layout of this book was implemented in groff(1), a free implementation
of troff (originally by Joseph F. Ossanna) written by James Clark and
currently maintained by Werner Lemberg. Fonts used in this book are as
standard as they get and come from the default set of fonts found in every
implementation of groff(1). All line art was created using gpic(1), while
tables and equations were typeset with tbl(1) and eqn(1). Final PostScript
and PDF files were generated with groff(1), gs(1), and gv(1).

The ‘packet storm’ cover image was generated using Caligari trueSpace, a
commercial 3d graphics and animation package. The source 3d objects
used to render the final image were generated by an obscenely short Python
script running in the Python interpreter built into Caligari trueSpace. After
rendering, the image was transfered to Adobe Photoshop and incorporated
into the final cover design.

