

FREE ONLINE EDITION

If you like the book, please support

the author and InfoQ by

purchasing the printed book:

http://www.lulu.com/content/1371834

(only $24.95)

Brought to you

Courtesy of

This book is distributed for free on InfoQ.com, if
you have received this book from any other

source then please support the author and the
publisher by registering on InfoQ.com.

Visit the homepage for this book at:

http://www.infoq.com/minibooks/composite-software-construction

Composite Software
Construction

Understanding SOA in the

Context of a Programming Model

Jean-Jacques Dubray

© 2007 C4Media Inc
All rights reserved.

C4Media, Publisher of InfoQ.com.

This book is part of the InfoQ Enterprise Software Development series
of books.

For information or ordering of this or other InfoQ books, please contact
books@c4media.com.

No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recoding, scanning or otherwise except as
permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the
Publisher.

Designations used by companies to distinguish their products are
often claimed as trademarks. In all instances where C4Media Inc. is
aware of a claim, the product names appear in initial Capital or ALL
CAPITAL LETTERS. Readers, however, should contact the
appropriate companies for more complete information regarding
trademarks and registration.

Managing Editor: Diana Plesa
Cover art: Dixie Press
Composition: Dixie Press

Library of Congress Cataloguing-in-Publication Data:

ISBN: 978-1-4357-0266-0

Printed in the United States of America

Acknowledgements
I would like to extend my permanent gratitude to Clayton Locke, Oka-

san, Kojo-san, Satish Maripuri, Gopal Nagarajan, Martin Eigner, Ev

Jordan, Frank Pritt, Jennifer Shettleroe, Michael Bechauf, Henning

Blohm, Karl Gouverneur and Dave Green for giving me their trust and the

freedom to make SOA a part of my life for the last 10 years.

I also would like to dedicate this book to the few hundreds of people that

passionately contributed to the SOA standards with integrity and

ingenuity. Without their hearts and minds no progress would have been

possible. This book is the fruit of all the passionate discussions I had with

them and I feel privileged to have met so many of you (I can only name a

few, please do not be offended if you do not see your name:

Tim Berners-Lee, David Connelly, Patrick Gannon, Jon Bozak,

Monica Martin, Dale Moberg, John Yunker, Jamie Clark, Sally

St-Amand, Eric Newcomer, Martin Chapman, Stephen White, Bill

Jones, Michael zur Muehlen, Roger Costello, Claus von Riegen,

Colleen Evans, Jeanne Backer, Umit Yalcinap, Paul Brown, John

Evdemon, Kevin Liu, Mike Edwards, Martin Reapple, Chris

Ferris, David Frankel, David Orchard, Yuzo Fujishima, Gunter

Stuhec, Robert Haugen, Tony Blazej, Paul Armond, Conrad Bock,

Antoine Lonjon, Jean-Jacques Moreaux, Gregor Hohpe, Richard

Veryad, Dave McComb, Philip Wainewright, David Webber, Fred

Cummins, Nenad Ivezic, Francisco Curbera, David Chappell,

Chris Kurt, Robert Glushko, Andy Roberts, Frank Leyman, Bill

McCarthy, Todd Boyle, Dave Linthicum, Jeff Sutherland, Oliver

Sims, Sanjiva Weerawarana, Satish Tate, Radovan Janecek,

Philip Merick, Jeff Schneider, Kurt Kanaskie, Nigel King, Roman

Stanek, Stefan Tilkov, Pim van der Eijk, Chris Bussler, Asuman

Dojac, Fabio Casati, Vincenzo d’Andrea, Mike Papazoglou, Ugo

Corda, Mark Crawford, Layna Fisher, Marlon Dumas, Akhil

Kumar, Mike Marin, Mark Baker, Doug Bunting, Mark Little,

Mike Lehmann, Francis McCabe…

This section would not be complete without thanking Boris Lublinsky,

Jacques Serra, Jeff Schneider and Stefan Tilkov for ongoing discussions

and their help in reviewing the draft. Many of their comments and

encouragements made this book far better than it would have been.

NoMagic has provided me with temporary MagicDraw licenses for UML

diagrams. I also would like to thank Floyd Marinescu and Stefan Tilkov

for giving me the opportunity to be a contributor to InfoQ.com by

publishing this book and many of my ramblings.

Contents

FOREWORD i

INTRODUCTION 1

SOFTWARE CONSTRUCTION BEST PRACTICES IN 2007 5

The Software Construction Machine 5

The economics of IT 10

Transforming the economics of IT 15

Challenges created by inefficient software construction 16

THE COMPOSITE INFORMATION SYSTEM VISION 19

Composite Solutions are assembled from existing assets 19

Mediation 23

New programming concepts: messages, orchestration and assemblies 23

Loosely coupled coordination agents 26

State alignment between software agents 26

Logical View of the Composite Application Model 28

SO WHAT IS CHANGING? 33

Achieve Business and IT alignment by design 33

Operate assets at the point of lowest cost 36

Deliver Continuous improvements 37

Govern your assets 40

Design towards the strategy and Goals 40

Compose requirements 41

Select your assets 42

Think Contract and Quality of Service 42

Define Policies 42

Federate 42

Assemble 43

Certify 43

Publish 43

Provision 43

Think Threat 44

Summary 44

SOA AND WEB SERVICES AS A KEY ENABLER OF THE

COMPOSITE PROGRAMMING MODEL 47

Object Orientation, Models and Runtimes 47

Integration and Composite Solutions 49

Service Orientation 53

The web services stack and the composite application vision 66

A COMPOSITE PROGRAMMING MODEL 71

Service Metamodel 71

Resource metamodel 74

Assembly Metamodel 75

Packages 77

Example 77

WSPER and Process Orientation 91

WSPER’s Architecture 92

DESIGNING SERVICES FOR REUSE 95

Improving User Productivity 96

Normalized interactions 97

Business Entity lifecycles 100

Decisions 102

Service Enablement 103

Business Entity Schema Design Guidelines 105

Service Operation Design Guidelines 107

HOW DO WE START A COMPOSITE SOFTWARE

FACTORY? 117

Inhibitors and risks 117

The Composite Application Program 119

Composite Software Maturity Model 122

Expected Benefits 123

CONCLUSION 129

INDEX 131

ABOUT THE AUTHOR 133

END NOTES 135

Table of Figures

Figure 1. The Software Construction Machine .. 5

Figure 2. A Typical Data Model In Modern It ... 10

Figure 3. Organizations Pass The Negative Roi Point As Information

Systems Are “Denormalized”.. 13

Figure 4. The Gap Between The Business Needs And Delivered

Scope Widens .. 13

Figure 5. Changing The Economics Of It: Consolidate Or Replace

Redundant Systems ... 14

Figure 6. Changing The Economics Of It: Increase Value Of

Existing Assets .. 14

Figure 7. Changing The Economics Of It: Reduce Cost 15

Figure 8. The Economics Of Shared Assets... 16

Figure 9. Aspects Of The Application Model Becomes Loosely

Coupled ... 20

Figure 10. Oasis Ebbp Business Transaction Protocol............................. 27

Figure 11. Logical View Of The Composite Application Model............. 29

Figure 12. Business Model Lifecycle.. 35

Figure 13. Software As A Service (Saas) Taxonomy............................... 37

Figure 14. Soa Delivers Better Business And It Alignment Through

Continuous Improvement .. 38

Figure 15. Monitor Process First, Automate Areas With Highest Roi..... 39

Figure 16. Automate First, Then Take Control Of The Business

Process... 39

Figure 17. Line Of Sight Methodology.. 41

Figure 18. Composite Requirements .. 41

Figure 19. Composite Application Delivery Model 45

Figure 20 Object Orientation Metamodel .. 47

Figure 21 From Modeling Language To Runtime 49

Figure 22. The 3 Types Of Integration... 50

Figure 23. Enterprise Integration Pattern (Source Gregor Hohpe)........... 51

Figure 24. Leveraging Integration Patterns In Service

Implementations .. 52

Figure 25. Message Handling Patterns (Source Gregor Hohpe,

Enterpriseintegrationpattern.Com) .. 52

Figure 26. Message Handling Patterns And Service Implementations 53

Figure 27. Soa Standard Enable Agents-To-Agents Communication

In 3 Types Of Scenarios .. 56

Figure 28. The Soa Specification Stack ... 57

Figure 29. Xml Documents Support The Context Of Business

Process Instances ... 59

Figure 30. Context Management Service ... 61

Figure 31. Activity Lifecycle Service .. 62

Figure 32. The Three Types Of Coordination.. 63

Figure 33. Gap Analysis Between The Composite Application

Architecture And The Web Services Stack 68

Figure 34 Wsper's Service Metamodel .. 72

Figure 35. Resource Metamodel .. 75

Figure 36. Assembly Metamodel ... 76

Figure 37. Application Entity Data Model... 78

Figure 38. Application Entity State Machine... 79

Figure 39. Some Of The Operations Of The Application Service

Surface... 86

Figure 40. Representation Of The Job Application Assembly................. 90

Figure 41. Job Application Business Process In Relation To Tasks,

Events And Services.. 92

Figure 42. Wsper's Architecture... 93

Figure 43. Services Invoked From The Presentation Layer Augment

User Productivity... 97

Figure 44. Service Interfaces As Normalized Interactions With

Systems Of Record.. 98

Figure 45. The Customer-Order Relationship.. 99

Figure 46. The Job Application Data Model.. 99

Figure 47. Elements Of A Business Object In A Service Oriented

Architecture... 100

Figure 48. Job Application Service Implementation (Pseudo Bpel

Notation).. 101

Figure 49. Service Enablement Architecture ... 103

Figure 50. A Typical Service Implementation 104

Figure 51 Ws-At 2pc Transaction Scenario ... 111

Figure 52 Establishment Of A Composite Application Delivery

Practice.. 119

Figure 53. Composite Application Delivery Model............................... 120

Figure 54. Primary Responsibilities Of The Delivery Groups............... 121

Figure 55. Governance Activities At The Enterprise, Service And

Solution Levels.. 122

Figure 56 An Example Of A Technology And Organizational

Maturity Model ... 123

Figure 57 Impact Of Composite Applications On The Ability For An

Organization To Innovate.. 127

Foreword
Service Oriented Architecture (SOA) is often viewed as an IT savior.
Whatever problems exist today, whether it is prolonged development
cycles, poor overall quality of code, inability to meet current and future
business requirements, etc. all of them are promised to be solved by
advances of SOA.

SOA itself has been around for at least a decade or so, and it has made
enormous progress during this time, especially in the areas of technical
aspects of services interactions, including service communications,
security, orchestration, service level agreements (SLA) support and so on.
The bulk of SOA publications are focusing on the topics of designing and
building services and making them communicate with each other, while
each and every software vendor is busy inventing and implementing its
own version of a SOA platform. On the other hand little, if anything, is
happening with designing enterprise solutions using SOA. For most of IT
shops it is still business as usual – design and development is revolving
around specific applications. Although many of them have proclaimed a
successful transition to SOA, in reality, services usage is limited to either
purely system integration or application distribution. As a result, services
design and implementation is centered on applications, rather than
enterprise concerns, thus severely limiting potential advantages of SOA,
most importantly service reuse. At the end of the day such approach leads
to creation of familiar applications silos, build with new technologies.
This inability to show significant improvements and cost savings leads
many organizations to start questioning the importance and advantages of
SOA.

As it often happens, the issue here is not with SOA itself, but rather with
its usage by different people and organizations. The expected benefits
from SOA usage can only be achieved when it is used at the enterprise
level for the construction of enterprise-wide composite solutions. The
challenge though, as the scope of SOA implementation grows, is the use
of an overwhelming number of new technologies and concepts, which
requires new approaches to virtually all IT function, including enterprise
architecture, requirements gathering, governance, programming models,
etc.

In his small in size, but huge in the amount of information book, Jean-
Jacques takes us on a fascinating journey from today’s software
development and delivery practices to the state of the art SOA
implementations. Welcome to the journey.

Boris Lublinsky

Chicago, August 2007

1
Introduction

“Connectivity” has been at the foundation of human innovation and

progress for the last five thousand years. Transportation and

Communication infrastructures have enabled a specialization and

composition of human activities empowering each economic agent to use

and contribute the best of its abilities. In the last hundred years, this

movement has accelerated with new transportation means and today

vertical industrial conglomerates have all but disappeared under the

economic pressure of an agile, layered and dynamic fabric of enterprises

of all sizes offering composable services to each other. Indeed, this fabric

is itself creating tremendous competitive strains on its constituents by

globally propagating innovations and optimizations. These permanent

threats have created a need to continuously re-engineer enterprise

processes such as design, sourcing, production, delivery, marketing and

support. Furthermore, technological advances have shown their ability to

wipe out century old industries within a few years. In this now global

fabric, an enterprise must secure a decisive capacity to innovate, adapt

and optimize or else, one of its competitors will quickly gain the ability to

sell an equivalent product in its markets to its customers.

Paradoxically, the advent of the richest and fastest communication

network combined with the use of the most powerful computers and high

levels of automation have revealed a crying lack of adaptability of IT

organizations, hindering new business models and relationships, while

slowing enterprise productivity gains. As a result, IT, one of the major

vectors of change for the past thirty years, can no longer be perceived as

much as a competitive differentiator since the costs and risks of delivering

new solutions make it difficult to follow the business cycles of an

organization.

In the last five years, the Software Industry has started a major evolution

of the concepts and technologies used to build information systems to

both adapt to the “Connected World” and restore IT’s leadership in

driving business value. The foundation of this evolution is “Service

Oriented Architecture” and its flagship is “composition”, i.e. the ability to

build assets that can be reused in contexts unknown at the time they were

designed. Asset reuse and composition are expected to improve the

COMPOSITE SOFTWARE CONSTRUCTION

2

response time and the cost of developing or adapting solutions while

restoring the enterprise’s ability to innovate, adapt and optimize.

Technologies seek to achieve composition at the hardware level, with the

concept of grid computing1, and at the software level in several

dimensions as user interface, business process and information

composition.

Service Oriented Architecture means a lot of things to a lot of people, yet

most people would not leverage SOA as a new way of building

information systems. In this book we take a different look at SOA, we are

looking at defining a service oriented programming model –a composite

programming model-, not just as an architectural style. We address the

question of “how do we build an information system from a set of

services regardless of where they operate and who controls them?” The

reason why this question is so important is because in 2007 the value of a

solution is not longer defined by its intrinsic capabilities, data model and

business logic, but above all by its ability to leverage functionality and

data wherever they are within and outside the enterprise’s boundaries.

You will not find here a detailed discussion on how to use SOAP, WSDL,

or BPEL, but rather how they fit together. I actually assume that you have

a basic understanding of these specifications. There are many excellent

books2,3 available on the topic.

You will neither find the description of a service lifecycle or governance

processes, nor detailed service design guidelines. I will be focusing

instead on understanding how to assemble services into a composite

information system and which design patterns are important to create

reusable services.

Section 1 is about understanding where we are today. I take a quick look

at the best practices in information system construction in 2007 and how

they shaped IT over the last 15 years. This section starts introducing the

rationale for composite solutions and provides a series of questions to

help understand if they are right for you.

In section 2, we will start painting the “Composite Solution” vision and

evaluate which assets can be reused and composed into new solutions and

how.

Section 3 is about understanding how asset reuse impacts the software

construction process. What is changing?

INTRODUCTION

3

In section 4 we will take a look at Object Orientation, Integration

Technologies, the concepts of Service Orientation and the Web Services

technologies and how they apply to a Composite Programming Model.

Not surprisingly, there is still a gap between these concepts and

technologies and what is needed to establish a fully functioning composite

programming model. So Section 5 spends some time looking at wsper, a

service oriented, process centric, model driven composite programming

model. I will also discuss how Business Process Management relates to

the programming model and we will take a concrete example to illustrate

its concepts.

Section 6 focuses on Service Design for reuse. I will share some of the

design considerations and patterns that help constructing reusable IT

assets.

Finally, in section 7, we will take a look at how to get started with a

Composite Solution Factory.

2
Software Construction best

 practices in 2007

The Software Construction Machine
For the last 40 years, software construction principles emerged directly

from computer science labs with little consideration for the specific needs

of information systems with a notable exception, the invention of

Relational Database Management Systems.

Figure 1 features a simplified representation of the conceptual

(requirements), logical (architecture and abstractions) and physical

(technologies) views of modern information system construction.

Composite

Services

Requirements Technologies

User

Activities

Business

Processes

Business

Objects

Events

Services

Fetch

Save
Delete

Archive

Compute
Act

RDBMS

Data Access Layer

Model Oriented

Business Logic

Action Oriented

Business Logic

Controller Oriented

Business Logic

Presentation

Oriented

Business

Logic

Model

Oriented

Business

Logic

JavaScript,
HTML
Applets

O/R Mapping

Stored procedures
SQL

JSP
Servlet
SFSB

MDB
SLSB
EB
Spring

Concepts

Abstractions

Model

View

Controller

Object

Orientation

Entity

Relationship

S
e

rv
ic

e

O
ri

e
n

ta
ti

o
n XML

XSD
WSDL

SOAP
WS-*
BEPL

Figure 1. The Software Construction Machine

The software construction process starts with the definition of a set of
requirements which are organized along the lines of functional and non
functional requirements. However, and even today, requirements are captured
with little formalism, they are usually a series of textual descriptions of what the

COMPOSITE SOFTWARE CONSTRUCTION

6

system is supposed to accomplish and how it behaves, without consideration for
existing systems and most importantly for future usage of the systems or the
elements of the system.

Even when well defined business concepts such as user activities,

decisions, business processes, events, business objects, services… are

defined using formalisms (such as UML activity, class, use case,

implementation, communication or state diagrams) these definitions can

rarely be understood by key business stakeholders or even business

analysts. This results in fuzzy specifications which often need to be

amended during the software construction process as users start

visualizing the behaviour of the system.

 As the construction process continues, the architecture, the concepts and the
technologies with which we construct systems are grossly misaligned with each
other and with the way we can translate or use textual (or formal) descriptions
into executable artefacts. All along the way, this situation creates opportunity
for miscommunication and misunderstandings while making the overall
process extremely inefficient and requiring numerous implementation patterns
to avoid misusing technologies or combinations of technologies.

The architect is mostly concerned with creating a series of layers to

facilitate both the implementa-tion and deployment processes while

realizing non functional requirements such as security, scalability and fail-

over. This state-of-the-art layering typically requires that the logic which

represents atomic business concepts such as a business object or business

process be scattered across several layers. Some attempts have been made

to address this issue with the introduction of a “business component”

concept4,5 but they remain dependent on the current languages,

programming models and technologies. One problem is that some

business object validation rules need to be coded both at the presentation

layer as part of particular screens (not even at the user activity level) and

within the Data Access Layer. This is because the user needs instant

feedback for mundane data entry errors and a server round trip is not

practical. Some other validation rules need to be coded deeper in the

architecture –hence in different technologies– because they can only be

validated by comparing the data entry to other values held by the system,

often depending on the action being invoked. Similarly, business process

implementations are decomposed across the data, data access, action and

controller layers in order to manage the business process instance’s

context, not to mention when a “business process level” controller is also

in charge of implementing the screen flow to manage user activities as a

unit of work with respect to the business process. This scattering process

is devastating for the system’s quality in terms of being able to meet the

requirements, deadlines and expectation with regards to creating systems

SOFTWARE CONSTRUCTION BEST PRACTICES IN 2007

7

which can be changed easily. The pain is at its highest when your system

needs to be changed on a short notice or a new release needs to be created

to meet a large set of new requirements.

That’s not all, if we now take a look at how a developer sees system

construction, he or she is armed with a series of concepts, patterns and

with a very large collection of disparate technologies that somehow need

to fit within the layers of the architecture. Service Orientation has been

thrown in the mix without much thought on its impact on the application

architecture. As a mater of fact, for many, Service Orientation is a concept

that can easily be reified in Object Orientation (Figure 1). The tragedy of

modern software construction is that these few concepts with which a

developer parses the requirements feature a heavy mismatch between

them while the multitude of task specific languages have added to the

misery. The ubiquitous Model-View-Controller pattern6 (invented in the

70s) requires that “views” be constructed from the model to be

represented in user interfaces, yet, object orientation is noticeably

stubborn for not being able to easily create and transport views from a

graph of objects to represent information in a way that can be consumed

by the MVC view. SQL on the other hand is very efficient at creating

some of the (flat) views that are needed by a particular user interface or

operation. If your system is distributed and you absolutely wanted to use

objects to transport your data, it would mean that each tier along the way

would need a class library to “parse” the serialized data to be able to do

something with it, creating maintenance, test and deployment nightmares

and technology coupling to across tiers. The reality is that most

developers do not use “objects” to directly carry data representations,

even though they use object oriented distributed technologies such as

CORBA, EJB, RMI and .NET Remoting with the familiar “Data Transfer

Object” pattern.

The mismatches between these aspects and phases of software

construction have driven most products or open source projects to focus

organically on improving task level developer productivity while

providing a platform that more or less can address standard non-functional

requirements such as scalability, availability, security…

Yet, few software vendors are looking at simplifying the way we build
information systems from requirement to deployment. I would argue that the
profusion of technologies and the rate at which they are produced and evolved
hinder even more the development of information systems.

COMPOSITE SOFTWARE CONSTRUCTION

8

Charles Simony – the only cosmonaut developer– compares the current

software construction process to an encryption process where for example

MVC is a great technical pattern, but a poor information system

construction pattern

The abstract foundation of all modern application models, the

“Model-View-Controller” pattern -invented in 1978 at Xerox PARC

by Trygve Reenskaug– is poorly aligned with the conceptual level of

software construction:

MVC does not provide explicit user activity boundaries: the code is

“unaware” of when a user activity starts, ends or reaches any other

intermediary states. When a user activity spans more than one view,

which is now almost mandatory, the developer needs to implement ad

hoc state machines to manage the navigation between the different

subviews, creating a coupling between several controllers. This

particular problem has far reaching consequences, for instance if we

consider a user activity based security model.

Similarly, a presentation layer developed with this pattern cannot

interact natively with an explicit business process definition because

MVC is following an “Event Condition Action” model that does not

tie natively to the process definition. Implementations require

dedicated code spanning multiple controllers that act together to

perform business processes which makes them difficult to manage,

monitor, change or compose within and across applications.

At the model level, the pattern does not provide a conceptual

framework to create meaningful and reusable domain abstractions.

Rather than representing a specific business entity, domain objects are

often created to support specific views directly bound to the physical

data model. As a result MVC model objects often couple the user

interface and the physical data structure, not to mention when they

blend in business process context elements.

The MVC pattern is an excellent technical pattern that can be applied

successfully to implement GUI based frameworks and infrastructures

but it is being misused to implement business semantics (business

objects, processes and tasks). If you add the variety of technologies

involved in its implementation (HTML, JavaScript, Servlets, EJBs,

SQL…). It makes it difficult to re-use views, controllers and models

outside the context for which they were designed.

SOFTWARE CONSTRUCTION BEST PRACTICES IN 2007

9

400 pages of requirements turn into anywhere from 400,000 to 4 million

lines of code, limiting traceability and coverage verification.

At the risk of being censored or bashed or both, I would like to express

that this software construction machine is insane. Who would believe

after looking at the machine this way that the assets produced can be

changed easily when the requirements changes or evolve? Or could

potentially be reused in other information systems? Now, don’t get me

wrong, this machine is good –maybe good enough– at producing

infrastructure software assets, I am arguing here that this machine is

absolutely terrible at producing information systems so critical to our

economy. The misalignment between the business and IT is not just a

communication problem; it is growing because IT cannot build the

systems that the business needs for a reasonable cost, and here is why.

This programming model leads to systems that are not:

• Flexible – when a requirement changes during implementation,

vast amounts of code need to be changed and cannot be changed

easily

• Maintainable – when new requirements are added over time, the

programming model makes it hard to evolve existing systems

• Reusable – Capable of producing assets which can be reused in

other systems.

Reuse is both necessary and hard to achieve. It is just as much a technical

problem, as it is a discipline that requires governance processes to bring

all potential parties to the design table. On the technical front,

infrastructure software vendors focused on code composition rather than

asset composition. Their libraries can be reused widely and often; yet, the

assets produced with the utilization of these libraries cannot be reused

across projects creating the need to duplicate assets. In turn it creates the

need for integration to replicate data and state across these duplicate

assets, while struggling to ensure consistent instance identity and security

models.

If there was only one take away from this book, I would want it to be that “IT

Assets must be constructed in such a way that they can be reused”. This is

easier said than done, and the goal of this book is to go beyond awareness and

offer an architecture, a programming model, a set of guidelines and a delivery

organization that promotes asset reuse. But before we do that, let’s first look

at how reuse impacts IT’s ability to support the business.

COMPOSITE SOFTWARE CONSTRUCTION

10

The economics of IT
There is no better place to understand the inability to reuse assets than

looking at the enterprise data model. Software construction has been

productive enough and therefore cost effective enough to create a

landscape where the data model of any given organization is

“denormalized” and spreads across many systems. As an illustration,

Figure 2 represents the attributes of business entities such as Customer,

Order, Bill of Material… in different functional systems (ERP, CRM,

SCM,…). This type of representation was first introduced by Dave

McComb7. I am not arguing here for building solutions from a common

database. Physical “denormalization” has benefits in terms of

performance. I am really talking about the unnecessary spread and

duplication of data attributes.

The major consequence of the lack of re-usability of IT asset is that it has

been more cost effective to develop new systems and integrate them with

one another, rather than carefully designing each system for potential re-

use. This is a run-away system which can only stop when the costs of

integration, operation and maintenance of all these systems overrun the IT

budget. At this point the enterprise can no longer innovate, adapt and

optimize.

Order

Customer

Product

BOM

Employee

Invoice

Figure 2. A Typical Data Model in Modern IT

SOFTWARE CONSTRUCTION BEST PRACTICES IN 2007

11

In many organizations, Figure 2 is substantially larger due to

geographically dispersed organizations, mergers and acquisitions...

Furthermore, these systems are built over periods of time during which

infrastructure technologies evolves, creating a de facto broad and complex

technology landscape.

Figure 3 summarizes the plausible trends of cost and value of adding new

systems to an IT organization versus the number of systems in a given IT

organization (this figure is not based on real data but I believe we can all

agree on the trends depicted here). At first the value increases rapidly

because organizations automate high value business processes. Over time,

the value doesn’t increase as much because lower value processes are

automated. It also becomes too costly to match all business needs (Figure

4). Business customers are often promised a v2.0, but it rarely happens

because of the business value is usually lower and IT resources are always

directed towards higher ROI. Overall, the complexity of adding these new

systems remains constant but the cost increases because of the integration

needed to replicate data and state to other systems of record.

It may also happen that adding yet another system could potentially

decrease the value of existing systems: it is not uncommon to find

information workers that utilize many applications to perform their day-

to-day activities. This often lowers productivity because they need to

switch context

COMPOSITE SOFTWARE CONSTRUCTION

12

Application-centric architecture creates islands of data and automation

Today's enterprise IT architecture is often viewed as a collection of applications.
Design, development, enhancements, and maintenance of software systems revolve
around applications. This approach leads to creation of segregated silos within the
enterprise architecture, resulting in expensive and inflexible IT systems. Each
application is built for a single purpose (such as loan origination, claim management,
and so on), with its own data stores and for a single set of users. As a result, it
implements only a subset of the enterprise functions, using and producing only a subset
of the enterprise data, and typically without concerns about other processing within the
enterprise. These silos manifest themselves as islands of data and islands of
automation.

With islands of data, each has its own meaning or definition of enterprise objects. For
example, while in one application "price" defines the net price, in another application
the same term also includes sales taxes. Even if an object such as "address" has the
same meaning in two applications, one of them can define it as a set of address lines
while another one treats it as street address, city, state, ZIP, and country. Both cases
create semantic dissonance between applications.

Each has information that overlaps with the contents of another island. For example,
applications dealing with the management of health and dental claims also store the
demographics information for the insured. At the same time, a customer relationship
management (CRM) application contains both insured addresses and demographics.
This duplication creates integrity issues.

None can provide a complete picture of the enterprise data. For example, a mortgage
management application doesn't contain information about the borrower's loans from
other lines of business. Creating a unified view of the enterprise data requires
integrating information from multiple sources.

Each island of automation focuses on a limited set of activities within the enterprise
(see Resources [6]). For example, the health claim management application deals only
with the processing of health claims, without considering the role and place of these
activities in the overall enterprise business process. This requires users to "application
hop" to perform their work, thus impacting their productivity.

There is duplication between business processes contained within different islands. For
example, an insurance company can have several claim-processing systems as a result
of a merger or acquisition. This requires synchronization of changes between multiple
applications, ensuring consistency of processes and business rules, supporting these
processes.

The effects of islands of data and automation are invisible at the individual application
level. However, they cause significant problems at the enterprise level, most notably
with information fidelity and business process fragmentation.

B. Lublinsky, “Defining SOA as an architectural style” , DeveloperWorks, 2007,
http://www.ibm.com/developerworks/architecture/library/ar-soastyle/

SOFTWARE CONSTRUCTION BEST PRACTICES IN 2007

13

which increases the risk of inconsistencies between similar data inputs,

increases training costs, lowers customer satisfaction... A company

reaches this point when the cost of integration becomes prohibitive itself.

This is when it relies on users to “finish” the integration between systems.

Number of
Systems10 100 1000

Cost

Value

11

Integration Cost

Unrealized
innovation

Figure 3. Organizations pass the negative ROI point as information systems are

“denormalized”

The reason why IT yields less and less competitive advantage is because

most organizations have reached the cross over point and have entered a

situation where their financial margins can no longer be improved by IT

projects. Even though many organizations still find innovative ways to

improve their business or respond to competitive threats, the costs, risks

and complexity of the existing IT landscape prevents most of the projects

to go forward, or when they go forward the scope delivered in these

projects becomes significantly less when compared to the business needs.

(Figure 4).

Business
needs

Solution
Scope

Delivered

Implementation
Projects

time

Phase 1

Phase 2

Phase 3

Misalignment
Business / IT

Unrealized value

Figure 4. The gap between the business needs and delivered scope widens

COMPOSITE SOFTWARE CONSTRUCTION

14

There are three options from there. The first one is to consolidate or

replace redundant systems to diminish the cost of change (Figure 5).

Number of
Systems10 100 1000

Cost

Value

11

Figure 5. Changing the economics of IT: consolidate or replace redundant systems

The second option is to increase the value of existing assets at constant

cost. The simplest and most natural way to increase the value of existing

assets is to reuse them in new solutions.

Number of
Systems10 100 1000

Cost

Value

11

Increasing value of
existing systems
through reuse and
Flexible changes

Figure 6. Changing the economics of IT: increase value of existing assets

The third option is to reduce cost which is achieved by outsourcing entire

systems and operations, as well as custom development activities.

SOFTWARE CONSTRUCTION BEST PRACTICES IN 2007

15

Number of

Systems10 100 1000

Cost

Value

11

Costs need to be
Decreased significantly
To achieve a measurable

effect

Figure 7. Changing the economics of IT: reduce cost

There is no perfect strategy and most companies will create a blend of

consolidation, replacement, reuse and cost reduction that fits their

objectives. Consolidating and replacing IT assets with assets that cannot

be reused (option 1) is probably the least sensible strategy because

inevitably the same causes will lead to the same effect. It is not by

pushing the development and operations activities outside your

organization either that your response to the needs to innovate, adapt or

optimize might all the sudden become adequate: larger projects have an

increased risk of failure or somehow cut scope exponentially as they get

closer to the delivery date. When push comes to shove first mover

advantage will almost always be the one that differentiates winners from

losers, and that cannot be achieved by outsourcing.

As we will see all along this book, Service Oriented Architecture and a

Composite Programming Model will help with all aspects of the strategy:

consolidation, replacement, reuse and cost reduction.

Transforming the economics of IT
The question today is not if we need to fix the “software construction

machine” but how soon can we do it. Nicholas Carr struggled with the

imperative style of his statement “IT doesn’t matter” in his seminal article

in the Harvard Business Review8 which shocked the establishment. He

almost apologized transforming the statement into a question “Does IT

matter?” when he published his latest book. The reality is that we must

create technologies and information system construction processes such

that “IT shouldn’t matter”. In this day and age where humanity is about to

face its greatest and direst challenges, software vendors should sell

COMPOSITE SOFTWARE CONSTRUCTION

16

technologies and solutions which foster innovation, agility9 and

optimization not hinder them.

The only way to achieve this objective is by changing fundamentally the

programming model towards composition and focused on the production

of composable –therefore reusable– assets.

Figure 8 represents the ROI of two projects which are composed of a set

of services, processes, decisions and human tasks. Each project

individually can provide some return on investment. However, if we have

the possibility to reuse assets such as services, decisions, process

components and human tasks across two projects the combined ROI of

the projects may become several times higher. The great news is that the

ROI keeps increasing each time the assets are reused in new solutions.

Even better, when these assets are enhanced without breaking their

contract with their consumers, all solutions that used them benefit from

these enhancements without significant cost or delays.

Services

Services

Process

Project 1 Project 2

Process

Tasks

ROI

ROI Project 2ROI

Project 1 ROI

Shared Assets

ROI

ROI of both
Projects

combined

Benefit

Cost

Cost

Benefit

S
h

a
re

d
 A

ss
e

ts

Tasks

Decision

Decision

Figure 8. The economics of shared assets

Challenges created by inefficient
software construction
I provide here a series of question that should help you decide whether

your organization is ready for changing its programming model:

What is the percentage of your IT budget dedicated to?

• Innovate

• Respond to competitive threats

SOFTWARE CONSTRUCTION BEST PRACTICES IN 2007

17

• Optimize existing business processes

• All the other activities

What is the percentage of projects requested by the business that cannot
be accommodated each year?

What is the financial impact on your organization of not being able to
deliver these projects?

What is the percentage of data that is considered to be incorrect (due to
redundant entries, not enough validation…)? How is the bottom line
impacted?

What is the percentage of your processes and activities which are out of
compliance? What would be the financial impact on your organization if
this was ever to become an issue?

What is the percentage of your processes that run on old, unsupported
technologies?

What is the percentage of your systems that can no longer be changed
without introducing significant risk since most of the developers have
moved on to other projects or left the company?

What is the cost to your organization to maintain certain teams just to be
able to change some systems?

What is the average number of systems you need to change in order to
address the needs of typical solutions?

What is the cost to your organization of not being able to leverage 3rd
party capabilities (business logic, data…) due to the difficulty of
integrating with existing applications?

What is the smallest size project your organization can address in a cost
effective way?

What is the cost to your organization of not being able to adopt
technologies that exhibit lower production costs?

How efficient are the processes that identify potential optimization across
your organization (discovery, measurement, prioritization, planning…)?

The reality is that no IT organization would be able to change
significantly the answers to these questions without changing the
architecture and programming model with which they construct
information systems and solve business problems.

3
The Composite Information

System Vision

Composite Solutions are assembled from
existing assets

A composite programming model is a programming model where

solutions can be built by assembling existing assets which may participate

in any number of solutions.

Asset reuse can happen either at implementation time (library, object),

deployment time (component) or at runtime (service).

 An asset can only be reused if its context of utilization can be defined

independently of the asset itself. This sentence looks trivial, yet most

information systems are designed as silos where systems of record and the

processes that interact with them are tightly coupled preventing the reuse

of these systems of record in new business processes. The coupling is so

tight that the context of business process instances is often stored in the

same tables as the content of business entity instances managed by the

system of record. Ultimately, architects and developers implement a

common data access layer between the business process context and the

business entity content. As a result, these silos become hard to change on

a short notice due to a change in requirements or maintain over time as the

business needs evolve. Worse, the popular design pattern is to actually

COMPOSITE SOFTWARE CONSTRUCTION

20

consider that the state of a business entity is part of the business process

context.

The mere fact that an arbitrary number of assets can reuse another asset at

runtime has profound consequences on the programming model. The

traditional aspects of solution architecture may and most likely will

become loosely coupled (Figure 9). This means that for instance the assets

in which information is captured, computed, manipulated or provided may

have been designed independently of each other and of the assets where

information is recorded permanently.

Capture

Record

AnalyzeVisualize

InformCompute

Search

Navigate

Activity

Start

Act

Figure 9. Aspects of the application model becomes loosely coupled

A great candidate for a service is the Tax Calculation Service

A “CalculateSalesTax” service should be designed to be used in the

context of an Order, Invoice, Quote, … as well as across different

legal boundaries (county, state, country) and any number of

industries. From an IT operations perspective, it would be more

efficient for the enterprise to “outsource” such service from existing

business applications since the maintenance and management

becomes shared across a large number of companies which otherwise

would have to upgrade their systems each time sales tax regulations

would change in their geographical and commercial areas of

operations.

This of course works well because it is an “autonomous” business

function, but the same remains true say of a “Purchase Order” service

capable of being the system of record of purchase orders regardless of

the procurement business processes that consume it.

THE COMPOSITE INFORMATION SYSTEM VISION

21

In addition, the services that compose the solution may:

• Live in independent technology stacks and be secured differently

• Scale differently

• Respond to arbitrary invocations from any other services, as part

of different solutions

• Be replaced by another service without recompiling or even

stopping the “system”

• Communicate via messages rather than using connections

Being loosely coupled also introduces a wide array of constraints:

• Interactions need to be contractually defined and evolved in such

a way as not breaking the existing or any other solution sharing

the same assets

• Changes to the “system” such as a data update cannot happen in
isolation since all these services are autonomous. Some argue that

these data updates may not even always be consistent10

• Concurrent invocations must be supported, while it is impractical

to impose some form of serialization constraint.

• Security and privacy measures need to be designed accordingly

• Service should always be ready to start a new activity with one of

their consumers

• Appropriate policies need to be in place to make sure a “solution”

is “operational”

• Failure and Recovery become more complex

 Another key differentiator of a composite programming model is the notion
of “activity” which becomes pervasive. Service requests may come from
different types of activity as the activity defines and manages the context of
utilization of the service. Activities, i.e. interaction between services, must
have a precise lifecycle. In the case of objects or components, the client
controls their entire lifecycle, while, a service consumer controls the
lifecycle of the activity, not the lifecycle of the service itself. For short lived
interactions such as notifications or requests/response, the activity is
implicit, for more complex interactions, the activity needs to be explicit
with possibly a context of interaction associated to it. The context may
either be shared, managed by the service provider or by the service
consumer. Contrary to a popular belief, services are rarely “stateless”: as
they participate in activities, they need to actively manage their share of the
context.

COMPOSITE SOFTWARE CONSTRUCTION

22

Because interactions between elements of the programming model are

explicit (and defined contractually) it becomes easier to detect and

propagate events, especially as messages get exchanged. Today, most

communication infrastructures implement an Interceptor Pattern11 which

enables the definition of events from the content of a message. The

content of several messages may even be correlated to produce a

“complex event”.

A composite programming model has also interesting consequences in

terms of “application boundaries”: there are no visible technical or

physical boundaries, only logical ones. A composite programming model

typically exhibits a federated and collaborative point of usage where users

can initiate, work on and complete any number of user activities

irrespective of the information services or business processes they

participate in. This point of usage can even be different for different users

and support clients of any type (mobile, desktop…) more easily. In other

words, different user activity containers may implement the same user

tasks.

A composite solution is easier to evolve because of its factoring. Changes

internal to the services are typically invisible to consuming solutions

provided the new version of the service performs its contract as it did

before (semantically, technically and operationally). Because of XML and

XML Schema12, services may also be designed to enable forward

compatibility. Similarly, changes in activity definitions should have fewer

Information Services come in four types

• Record

o Manage business entity lifecycle

• Inform
o validate address

o check credit report

o check supplier inventory

• Compute

o sales tax calculation service

• Act
o Process purchase order

o Reserve inventory, order parts from suppliers,

schedule production, send advance shipping notice,

provision shipping,…

o Usually transactional behavior

THE COMPOSITE INFORMATION SYSTEM VISION

23

side effects since they and their context are clearly separated from the

implementation of the services themselves.

A composite solution exhibits little or no need for integration because it is

not based on its own system of record. Information services are typically

normalized such that when an activity needs to “update customer

information” the business logic involved in updating all systems of record

that hold customer information is not replicated in the activity definition.

We will come back on this design pattern in section 6.

Mediation
No matter how well crafted a service can be, it can only be reused when

other services are capable of communicating and exchanging information

with it.

Hence when two services have been designed independently the

probability of them being able to communicate readily is close to zero.

Even if they were designed originally to communicate and exchange

information, over time, these services have independent lifecycles which

will lead them to a point where forwards compatibility cannot be

supported which means that they will not be able to directly exchange

information because the contract they once shared has been broken by a

newer version of one or both services.

Mediation needs to be built in the service container architecture or within

an autonomous –composable– mediation infrastructure.

Wherever possible, services should leverage common communication

transport and protocols, common information syntaxes and common

semantics to minimize the impact of mediation. As a form of mediation,

they often need to expose multiple endpoints to accommodate the variety

of transports, protocols, syntaxes and semantics to support multiple

consumers and or implement several versions concurrently.

New programming concepts: messages,
orchestration and assemblies

Scalable implementations (in terms of numbers of consumers) can only be

achieved using a message based communication mechanism, as opposed to

connection based. But that’s not the only benefit of a message based

communication mechanism. It also supports sophisticated interactions

between services. They can easily exchange events, notifications,

request/response or any arbitrary number of message exchanges in a peer-to-

peer fashion if the unit of work they perform requires it. For instance sending

a letter may happen with a simple notification (one way message exchange)

COMPOSITE SOFTWARE CONSTRUCTION

24

between the sender and the post office and the post office and the receiver, or

request/response if a return receipt is required or even a more complex pattern

which would enable the sender to query the post office about where the letter

is when this letter is mailed as registered.

Current programming models do not accommodate these scenarios because

their interactions are usually polarized (client � server). Even though the

MVC pattern requires that the view be updated when the model changes, in

practice, this almost never happens. Surely, almost anything can be

implemented in almost any programming language, but the question is how

simple this can be made. The complexity of achieving such a simple

capability in a traditional application model is staggering.

Since “message” interchanges are not well supported by current programming

models, they do not offer any facility to manage the context of message

exchanges either. There is a growing need to make the “message” a primary

concept of a programming language and enable the runtime facility of these

programming languages to provide standard correlation mechanisms to

associate a message with a particular unit of work and manage the context

persistence automatically, just like traditional programming environment can

manage memory allocation and garbage collection without developer

assistance.

Orchestration languages have emerged to fill this gap. The first one, XLang13,

was published around 1999 by Microsoft. It was shortly followed by the

development of BPML14 by the BPMI consortium (which is now part of the

OMG) and by WSFL15 which was developed by IBM. Today there is a

standard orchestration language, WS-BPEL16 dedicated to the composition

and orchestration of web services. More recently, a new technology neutral

initiative, wsper17 was announced and aims at providing an abstract SOA

framework based on a programming language which includes orchestration

concepts at its core.

Erlang

Erlang is a programming language that was invented 15 years ago at

Ericson’s Computer Science Lab which decompose a solution into

(OS) processes which communicate by asynchronous message

passing.

http://www.erlang.org/white_paper.html

THE COMPOSITE INFORMATION SYSTEM VISION

25

The concept of “Assembly” is an important aspect of asset composition.

Assets, which are autonomous software agents, need to participate –i.e. be

assembled– in several different solutions which individually define a context

of utilization. A service implementation should be able to know in which

assembly it performs based on a correlation mechanism. The service

container should be capable of exchanging messages with other services

utilizing the assembly definitions as an end point resolution mechanism. This

is an alternative to traditional routing patterns supported by Enterprise

Service Buses. Of course, it does not preclude orchestration languages to be

able to deal with the exchanges of end point references as part of a message

exchange.

This new class of programming languages has its own formalism:

Pi-Calculus

The ubiquity of TCP/IP and the Internet has enabled many systems

to communicate with their environment with great ease. Such

interactive systems are actually becoming the norm. Surprisingly,

most of the work to model these categories of systems has started

fairly recently when compared to the theory of sequential

algorithmic processes (λ -calculus) which is the abstract foundation

of all modern programming languages.

The λ-calculus theory is about modeling systems which have no or

little interactions with their environment. On the contrary, the  -

calculus theory developed by Robin Milner in the late 1980s is

about modeling concurrent communicating systems. This theory

also takes into account the notion of "mobility" which can either be

physical or, as in the case of B2B, virtual (movement of links

between systems). I think we can actually relate the mobility to the

notion of "change": change of business partner, business document

format, capabilities, etc – any modification of an existing

relationship between two companies may be associated with

mobility.

J.J. Dubray “Automata, State, Actions and Interactions”,

http://www.ebpml.org/pi-calculus.htm

COMPOSITE SOFTWARE CONSTRUCTION

26

Loosely coupled coordination agents
An arbitrary set of services composed into a solution may not be able to

perform just by itself the actions necessary to achieve the goal set forth by

their unit of work without some level of coordination. For instance, the

traditional technical services found in an application container or as a

library need now to be implemented as coordination agents, i.e. a service

which role is to coordinate the interactions of other services. Some

common coordination patterns include:

• Event management via publish/subscribe

• Transaction Management

• Trust

• Analytics

• …

State alignment between software agents
The notion of state and state alignment is crucial to composite units of

work18. When a service (as a peer) notifies or requires state changes to

another service, we need to make sure that at the end of the interaction,

the states of each service are aligned.

There is a common misconception that says that “all you need is Reliable

Messaging”. Aside from the fact that the WS-RM specification came very

late in the WS technology stack, let's explore why it is not enough.

The OASIS ebXML Business Process specification created the Business

Transaction Protocol (Figure 10) to achieve state alignment and non

repudiation.

Both, request and response are followed by two signals

ReceiptAckknowledgement and AcceptanceAcknowledgement.

THE COMPOSITE INFORMATION SYSTEM VISION

27

Requesting

Agent

Responding

Agent

Request

Response

Receipt Acknowledgment

Receipt Acknowledgment

Acceptance Acknowledgment

Acceptance Acknowledgment

Figure 10. OASIS ebBP Business Transaction Protocol

A signal is a specialized message type. Signals have a format specified by

the specification as such they should not entail any interpretation or

processing error. This means that once the Reliable Messaging

infrastructure tells you the signal got to the other side, it is unambiguously

known that this side will be able to interpret the signal and will not

possibly generate validation errors.

A “Receipt” means that the receiver of the message not only got the

message (as it would be indicated by Reliable Messaging), but this

State Alignment in the real world

Let me illustrate the point with a personal experience. Recently my

credit card company claimed that my account was delinquent even

though I had signed up for a full monthly automatic payment. I called

them to figure out what had happened, and the agent told me that they

had sent me an email recently specifying that my 6 month period trial

of online statements was over and I had to confirm I wanted to

continue receiving online statement. It just happened that in the email

they were notifying me that they would also interrupt the automatic

payment if I did not confirm my online statement option (just as if the

two were even remotely related).

This little anecdote shows that RM is not enough. The credit card

company assumed that I got the message (otherwise the message

would have bounced back) and that I had both read it and understood

it, not to mention, they expected my memory span to be reach 6

months…

COMPOSITE SOFTWARE CONSTRUCTION

28

message was valid with respect to the expected schema. When non-

repudiation is required (for B2B scenarios), the receipt is generally

signed. In this case, the semantics of the signal are such that the receiving

party cannot claim that it did not receive a valid message. Now, it still

does not mean that the receiver was able to process that message or

effectively did so. Many reasons could prevent the message to be

processed: some of its content violates application business rules (not

defined in schema), the system might be down ... Once processed, the

application or an intermediary (in charge of processing the message)

instructs the communication infrastructure to issue the

AcceptanceAcknowledgement signal to the sender. This acceptance signal

is called a non-substantive response, because it does not indicate what the

response will be. It is just here to indicate that not only the message was

received, that it was valid, but that the receiver was able to act on the

message and effectively did so. Only then, can we claim that both sides

are guaranteed to have their state aligned.

Logical View of the Composite
Application Model
A composite programming model targets three aspects of software

construction that have remained out of reach with traditional models:

• Leverage the business design information

• Support its evolution as efficiently as possible

• Be able to leverage existing assets rather than systematically

building new ones

The goal of such model is to provide a solution architecture that is

flexible, adaptable, and highly productive enabling a rapid and continuous

alignment between the business and IT.

THE COMPOSITE INFORMATION SYSTEM VISION

29

Delivery Services

Enterprise Services

events
B

u
s
in

e
s
s

S
e

rv
ic

e
s

Collect analytics

S
e

c
u

rity

Metadata

Repository

Registry

sso

Federation Orchestration Transformation Decis ion

Bus iness Object

sso

Web
services

Authn, Authz, Encryp, Sig

Initiate, assign

Invoke

Any Device
(wireless, voice,…)

M
a

n
a

g
e

m
e

n
t &

 M
o

n
ito

rin
g

Te
c
h

n
ic

a
l S

e
rv

ic
e

s

L
o
g
g
in
g

P
u
b
/S
u
b

T
ra
n
s
a
c
tio
n

C
o
n
te
x
t

A
L
S

C
o
o
rd
in
a
to
r

D
e
c
is
io
n

Invoke complete

Task

capture

search

navigate

visualize

Analyze

Start

Integration

A
n
a
ly
tic
s
 E
n
g
in
e

C
o
m
p
le
x
 E
v
e
n
t P
ro
c
e
ssin

g

Business Process

Engine

B2B

Gateway

OAGIS
EDI
…

Figure 11. Logical View of the Composite Application Model

The layers of a composite application model are quite different from the

layers of a traditional application model based on Java EE19 or .Net20. A

composite solution does not require having all layers in place to operate,

though over time, as the level of maturity grows, most composite

application runtime will be using a set of technical services, analytics

services, security services and management and monitoring services.

The model is factored around three key concepts: task, process and

service which each live in a different layer.

Delivery Services
User interactions are all performed within a task. A task represents a unit

of work and can be standalone or participate in one or many business

process definitions. “Search for customer record” is a type of stand-alone

task which invokes services that help locate a customer record based on

some information such as account number, telephone, address… A

”Customer” service might have operations such as

getCustomerByAccountNumber, getCustomerByPhoneNumber… which

all can be invoked from the task based on the information provided by the

customer. Once the task is complete, i.e. the customer record has been

found, different business processes may be initiated: change address,

cancel account, add features…

COMPOSITE SOFTWARE CONSTRUCTION

30

Tasks are managed by a task engine which is also responsible for

rendering the user interaction in various technologies if appropriate.

Business Process Engine
The business process engine layer is at the heart of composite solutions.

Business process definitions hold the solution’s business logic which

brings together a set of tasks and services to perform a specific goal. This

is where the context of utilization of services is defined.

In a thesis published in 200721, Jungmin Ju retraces the history of

business process definition standards. This history is long and complex,

and not yet fully matured. Today, technologies are at a point where

composite solutions can be built but it will still require several years of

research to reach the full expressivity and flexibility needed to define and

deploy enterprise class processes without the need to write code.

Enterprise Services
The enterprise services layer is where the core of work happens in a

composite solution. These services are orchestrated by the business

process layer or directly invoked from the delivery services layer (i.e.

tasks). For instance a task “Update Customer Information” could very

well be designed to simply invoke the “Update Customer Information”

service. This operation invocation might generate events when specific

elements of customer information get updated and need to trigger some

business processes or simply other service invocations.

The enterprise services layer assumes that services are built from existing

systems and applications, not necessarily from scratch. This is why the

enterprise services layer is represented with a series of capabilities (data

federation, orchestration, transformation, transaction, rules,…) and an

integration layer acting as a container for adapters and connectors to

legacy system.

The way the layer is represented does not convey the fact that services can

be implemented in various technologies and in different service containers

based on the capabilities needed. Service containers may actually be

nested to compose their capabilities (if performance is satisfactory). From

the perspective of a composite programming model, an “Enterprise

Service Bus”22 is simply a service container. The programming model

itself does not mandate a proprietary communication mechanism as long

as secured, transacted, reliable message exchanges can be achieved

between the different elements of the architecture using Web Services

protocols. However, it is likely that vendors will build composite

THE COMPOSITE INFORMATION SYSTEM VISION

31

application platforms on top of ESBs as they already implement most of

the capabilities to deliver composite solutions.

Analytics Services
Because services, tasks and processes are loosely coupled they perform

collaborative work by exchanging messages over standard transport

mechanism and communication protocols. This environment represents an

ideal substrate to collect analytics over the content of these messages. The

advantages over traditional OLAP / Data Warehouse architecture is less

integration required and near “real-time” detection of business events

since it does not depend on ETL processes which typically happen later at

night or even with a lower frequency.

Technical Services
Technical services support the operations of task, process and service

interactions. They offer logging, transaction, publish/subscribe…

capabilities. They are often based on the coordinator pattern discussed in

the Loosely Coupled Coordination Agent paragraph.

Security Services
Security services are paramount to the healthy operation of composite

solutions and represent quite a complex problem to solve generically. A

composite application relies on single sign on capabilities and principal

identity propagation that enable services to operate on the behalf of the

user with respect to the back end systems.

The business process layer help secure service invocation by controlling

the context of a service invocation. However, it may also introduce some

complexity as a service invocation performed by a process instance may

not have a clear “user” associated to it. For instance, several people may

have contributed to collect a customer information update. It is also not

often desirable to specify the granularity of a service operation based on

user interactions. This kind of coupling would result in less flexibility as

this service is invoked by other types of business processes.

Complex Event Processing

Some products offer “Complex Event Processing” capabilities using

this new approach. CEP is particularly successful for fraud detection

mechanisms which sometimes need to correlate several message

exchanges and require instant response to block account transfers.

COMPOSITE SOFTWARE CONSTRUCTION

32

Management and Monitoring
While a composite application model is expected to solve a lot of the

shortcomings of traditional application models, it also introduces some

complexities. For instance, managing and monitoring the health of a set of

composite solutions is quite complex. If a service becomes unavailable,

what are the composite solutions which are impacted? Which business

processes? Which tasks? How do we put work on hold until the service

comes back? A composite application infrastructure requires a

management capability that can stop and restart any elements of the

solution without creating exceptions.

B2B Services
B2B services act as a gateway that implements additional capabilities

seamlessly in terms of security, reliability, non repudiation… This

gateway enables tasks, processes and services to communicate with the

service interface exposed by business partners.

4
So what is changing?

Today’s technologies, tools, methodologies and industry mindset are still

based on a “build and integrate” approach. In this section we are going to

take a look at how the concept of Composite Solutions introduces several

paradigm shifts in software construction.

Achieve Business and IT alignment by design
Innovative companies have started to create a function focused on

“business architecture”. In fact, all businesses have a business design that

describes how they operate whether this design is documented or not. The

business architecture includes blueprints that describe how work is

performed, information and goods are exchanged and ultimately value is

created. It contains:

• An abstract information model

• The business processes

• The organizational structure of the people and assets

• The rules and policies that are associated with the decisions the

business takes.

• The business’ near-term and long-term goals and objectives

• The economic and market influences that affect how that

business achieves its goals

Even informal business processes or exception handling contribute to

describe how the business functions and responds to customer or supplier

requests, opportunities, competition…

Many of those who have documented their business design have trouble

keeping it up to date with what they actually practice. This is the

challenge for funding such a project. Business processes evolve as

businesses respond to shifts in the marketplace, regulations, or product

innovations. This evolution usually happens without reflecting those

changes in the formal design of the business and often without changing

the systems that support it. This is a common problem in most companies.

At that point employees often design the processes “around the systems”

COMPOSITE SOFTWARE CONSTRUCTION

34

because there is simply no budget to keep the business model and systems

synchronized. At this point, sticky notes flourish around computer

monitors to capture the context of these “new” processes.

A Composite programming model needs to offer a number of capabilities

that establish a holistic relationship between the business and IT:

• A formalism and language for capturing the business design

• A methodology for translating the business design into a set of

runtime artifacts

• An infrastructure for hosting these artifacts that is as flexible as

well as capable of leveraging information assets and business

functions wherever they are hosted

• A place for retaining the correlation between the business design

and the implementation that can be used to identify and fix

failures to achieve the goals supported by the business design

• A means by which we can manage and monitor the system to

ensure these goals are met.

Composite solutions must enable an organization to evolve the company

business model at a lower cost, risk and project length.

The Composite programming model that we have described in the

previous section is process centric, model driven and service oriented. It is

process-centric, because processes are at the core of business models and

the starting point of any innovation, adaptation or optimization. Service

Oriented because, to lower cost, IT needs to reuse and leverage rather than

constantly build new systems of record that require significant integration

projects. Finally, this application model needs to be model driven to

achieve new delivery productivity levels by enabling a direct translation

of business requirements into implementation artifacts, with the goal of

significantly lowering the development time and skills needed to build or

change functionality. Tools don’t improve productivity because they are

“graphical”, it is rather the adequation between the formalism they use to

create executable artifacts and the requirement space in which solutions

are specified which is the main driver behind development productivity

gains.

To support a composite programming model, we need to develop a

coherent set of tools and a repository where reusable assets that suit a

particular purpose can be queried and found. We also need to select and

deploy a composite application infrastructure which can now be procured

from a few vendors or assembled from different vendors. We also need to

SO WHAT IS CHANGING?

35

establish a new set of software construction processes that spans project

inception to solution operations (Figure 12) and drives new business

designs from the business teams to the delivery and operations teams.

These processes loop back to the business teams by providing operational

metrics and accurate representations of the work being performed.

57

LOB1

As-Operating
Model

As-Required
Model

Design Time Runtime

Composite

Solution Delivery

LOB2

Accurate “current state”
definitions

Instant operational
feedback

As-Is
Model

As-Assembled
Model

Composite Application

Platform

Tools

Services

Processes

Tasks

Business Activity Monitoring

& Business Intelligence

As-Deployed
Model

Decisions

Registry & Repository

Innovate,

Adapt & Optimize

Figure 12. Business Model Lifecycle

COMPOSITE SOFTWARE CONSTRUCTION

36

Operate assets at the point of lowest cost
… not just solutions. The ability to reuse assets at runtime creates the

opportunity to move these assets where their cost of operation is lowest.
Composite solutions and services offer new levels of outsourcing, unlike
traditional application models which require that an entire solution be
outsourced.

In a composite programming model, services, processes (subprocesses),
decision and tasks can be outsourced or sourced independently while the
enterprise retains control over the entire solution’s operation. Any
combination is possible. A process can use tasks performed by outsourced
personnel or invoked services that are operated outside the organization. I
call this approach “right-sourcing” because it enables the enterprise to
achieve the best ratio of strategic ownership over cost of operation.

Right-sourcing is about organizing and consuming assets, on-demand,
wherever it is most cost effective to build, operate and maintain them.
Assets which are common across an industry or even several industries
are the best candidates for being right sourced. Figure 13 shows a
taxonomy of assets which can be outsourced. The outsourcing of entire
solutions cannot create as much unique value for the enterprise and lower
the operational costs because the competition can acquire them as well.
Furthermore, once a process is outsourced entirely, the enterprise

The 4 capabilities the business would die for (that IT cannot provide

today)

• Build solutions rapidly with small size projects

• Be able to visualize the business design in operation without

complex “current-state” projects

• Be able to gain operational intelligence without complex

measurement projects

• Be able to change the solution by changing the business

design

I argue that the last capability is antagonist to the first three because it

leads to simplistic programming models which are not well suited to

meet the needs of the business. There is no need to transform your

business users into developers except in very constrained cases when

the parameterization of the business logic needs to change often.

The business can achieved far greater benefits if the first three

capabilities where delivered consistently by IT.

SO WHAT IS CHANGING?

37

typically looses the ability to strategically direct the 10 or 20% of the
solution that could create a competitive differentiator. Today’s outsourced
solutions based on a Software as a Service (SaaS) model are likely to
become over time a set of enterprise, industry and business services in a
composite solution model. New competitive differentiators will come
from the ability to retain the strategic assets and combine them with
industry standard services. Right-sourcing is no longer focused on “core”

and “non-core” processes like the traditional outsourcing model23, it is
rather focused on achieving the best possible competitive differentiators at
the lowest cost.

Enterprise Services

On Demand Solutions

IndustryServices

Business Services

O
p

e
ra

tio
n

a
l C

o
s

t S
a

v
in

g
s

Unique Value

Outsourcing

Right sourcing
CRM

ERP

PRM

Customer

Order

Product

SalesTax

GeoServices

Quote

D&B

Address

Tracking
Messaging

Auction

Figure 13. Software as a Service (SaaS) Taxonomy

A global sales tax calculation service operated by a third party could be
used instead of updating this component within each system in every
company each time a tax rate changes. Similarly, credit check, address
validation… services which rely on large databases that are updated daily
might be better off “right-sourced”.

Deliver Continuous improvements
…not just projects. The key promises of a composite programming model
are to:

• Enable smaller projects focused on ROI, i.e. “just in time

implementation”,

• Deliver business functionality faster

• Enable continuous improvement to meet business needs

COMPOSITE SOFTWARE CONSTRUCTION

38

A composite application model is expected to deliver solutions faster with

smaller size projects because it is:

• Service oriented therefore assets can be reused,

• Model driven hence a large percentage of the requirements can be

met with less code

• Process centric. Processes are one of the hardest concepts to code

and test because they are complex finite state machines and they

change frequently during the implementation as the scope of the

“full process” (including exceptions) is discovered.

Traditional Application Model Composite Applications

Business
needs

Delivered
Solution
Scope

Business
needs

Continuous Improvement
Phases

Implementation
Projects

Delivered
Solution
Scope

Figure 14. SOA delivers better business and IT alignment through continuous

improvement

In addition, the programming model enable solutions to automate areas of

highest ROI first as services, often with surgical precision. For instance, a

project might start by developing a solution to simply monitor the

operational metrics of a process (Figure 15). Once the automation areas

that exhibit the highest ROI are identified, specific projects can be scoped

to target these areas individually, leveraging the process implementation

that was put in place initially.

SO WHAT IS CHANGING?

39

Figure 15. Monitor process first, automate areas with highest ROI

Figure 16. Automate first, then take control of the business process

Alternatively, projects might start by automating a task first and leave the

rest of the process alone, and later augment the solution with full process

management and monitoring (Figure 16).

Overall, a composite programming model, because it is process centric,

enables continuous improvements with a lower cost and risk while

targeting areas of highest ROI, achieving a higher degree of alignment

between the business and IT.

COMPOSITE SOFTWARE CONSTRUCTION

40

Govern your assets
… don’t just manage them individually. An organization cannot build

reusable assets without planning and involving the current and future

consumers in the specification and design of these assets. Whether it is

about the security model, the performance, scalability, high availability or

the interface design (semantics, schema and operations), all decisions

need to be made not just for the present but projected into the future.

Similarly, when an asset needs to be changed, the dependencies need to be

analyzed and several versions of a service may be required to run

concurrently to serve consumers which cannot be upgraded to a new

version being deployed.

It is beyond the scope of this book to discuss the best service governance

strategies in terms of organization and processes. This starts to be a

mature field with many solutions provided by Infrastructure Software

Vendors. These solutions are most often based on a repository and a

service registry24.

Many companies will start their service oriented architecture effort with

different goals, budgets, expertise,… In any case, services need to be

governed as early as possible in their lifecycle.. Design for reuse is likely

to add cost to any given project because the service needs to be designed

with not just the requirement of a given project, but also taking into

account the needs of future projects. When creating reusable assets, my

recommendation is to initiate individual projects or subprojects tasked to

deliver just services while other projects deliver solutions consuming

these services. These services projects should be planned ahead of the

consumers to avoid being on the critical path.

Design towards the strategy and Goals
… not just requirements. The composite programming model enables a

more direct association between solutions, the assets that compose these

solutions, and the goals and strategy of the enterprise. In other words, the

factoring of composite solutions and the metrics captured (or resulting

from a simulation) can be directly related to the business goals.

In a composite programming model, the information flow and workflow

are explicit, while the value flow can easily be computed via the analytics

engine. Overall, traceability can be established from the enterprise goals

and strategy to the project lifecycle from specification to design to

operation and to the assets involved.

SO WHAT IS CHANGING?

41

Processes

Services

Applications

Technologies

Business Goals Line of Sight

Information
Flow

Value Flow

Business Entities

Work Flow

Business Strategy

Organization

Decision

Figure 17. Line of Sight Methodology

Compose requirements
…not just assets. Solutions follow a large set of constraints which can be

expressed at the industry level (or country level), at the enterprise level, at

the business area level or process area level. It is only then that solution

specific requirements can be expressed (Figure 18).

By definition, reusable assets should be designed without solution specific

requirements while, solution specific requirements should focus on the

assembly of these assets into business processes, and the construction of

solution specific assets.

Industry Specific

Business Area Specific

Enterprise Specific

Process Area Specific

Solution Specific

Requirements

&

Specifications

Compliance
&

Standards

Patterns
&

Practices

These requirements
and Specifications

potentially apply to

several solutions

Figure 18. Composite Requirements

COMPOSITE SOFTWARE CONSTRUCTION

42

Select your assets
…don’t just write specifications. A new, critical, activity is appearing in

the construction processes: the selection of assets, which was often done

at the infrastructure level in the past as enterprise architects would specify

the list of preferred libraries, frameworks and technologies.

In a mature service oriented architecture, the solution architect will be

focusing on selecting the appropriate services with the help of a query-

able service registry and defining the corresponding service level

agreements with the asset owners to support the new solution.

Think Contract and Quality of Service
…not just Functionality. Service consumers and providers are tied

through a contract which often includes service level agreements that

define the quality of service expected during the interactions. The contract

can only be finalized when both consumers and providers are identified.

Even simple services which expose a technical contract that can be

considered unilateral need to set up specific authorizations and provision

new resources for additional consumers.

As the number of consumers grows, it is expected that contract

management will need to be automated to facilitate the onramp of new

consumers.

Define Policies
…not just Rules. A policy is an assertion that describes one or more

characteristics of the elements of a system. As elements of a composite

application are assembled, policies can be matched and validated to make

sure the assembly will perform according to the specifications. A policy

framework supports a looser-coupling between the assets of a composite

application because it allows for finding compatible matches that will

enable the elements to work collaboratively.

Federate
…don’t just expose systems integration points. Composite Solutions

enable user interface, process and information federation. In a traditional

–monolithic– application model, user interfaces tend to be duplicated

across solutions because there is no possible way to reuse tasks or user

interface components in another solution. Similarly, processes cannot be

composed because they are not explicit and rely on ad hoc

implementations that require specific integration to link processes living

in different solutions. Information federation is also achieved via costly

SO WHAT IS CHANGING?

43

duplication of data structures and the use of replication/synchronization

technologies (such as ETL).

It is only recently that Enterprise Information Integration (EII)

technologies provided solutions to create a logical RDBMS on top of

physical RDBMS. This technology is a great enabler of normalized

service interfaces. The composite programming model is about bringing

all necessary information and process touch points to the users to perform

their tasks.

Assemble
…don’t just implement. The concept of assemblies is the keystone of

composite solution architecture as services are bound to units of work.

Ideally, an assembly mechanism should allow the same service to

participate in multiple assemblies. This can represent a challenge in terms

of endpoint reference management and often requires the help of the

service container. It was not until November 2005 that the first service

assembly specification, SCA (Service Component Architecture) was

published25 as a draft which became a specification in 2007.

Certify
…don’t just test. A service oriented architecture looks a little bit like a

telecommunication network: you can never take it down entirely –nor do

you want too–and you can never replicate it entirely either to perform

tests prior to making changes to it. As you introduce new equipments or

replace older ones, you need to go through a certification process (based

on service level agreements for instance) to make sure that the equipment

will not cause dramatic effect to the network.

A similar approach is required for building a service oriented architecture

and avoid creating disruptions in composite solutions.

Publish
…don’t just document. As new assets get introduced in a service oriented

architecture, we need to publish information about them to a central

registry24 such that potential consumers can look for them based on a

taxonomy and a set of characteristics.

Provision
…don’t just deploy. As new composite solutions are being built, the

services they consume need to be provisioned based on their expected

usage.

COMPOSITE SOFTWARE CONSTRUCTION

44

Think Threat
…not just Security. Monolithic application architectures are relatively

easy to secure because they expose a well defined boundary materialized

by a connection based API, few infrastructure elements and a simple

topology compatible with a DMZ. Their database connections are

dedicated and secured behind the DMZ. Once the code is protected

against usual security flaws (SQL injection, Scripting and Buffer overrun)

and as long as a user is identified with enough confidence, you are pretty

much done.

In composite solution, there is a lot more to think about, and all the

potential threats identified in the Microsoft’s STRIDE model26 need to be

considered since services and elements of the composite application

model exchange messages over standard protocols without the privacy of

a dedicated connection and often well beyond the firewall:

• Spoofing identity — An unauthorized user impersonating a valid

user of the application

• Tampering with data — An attacker illegally changing or

destroying data

• Repudiability — The ability of a user to deny that he or she

performed an action

• Information disclosure — Sensitive data released to users or to

locations that should not have access to it

• Denial of service — Acts of sabotage that make applications

unavailable to users

• Elevation of privilege — A user illegally gaining an unacceptably

high level of access to the application

Data privacy introduces some important concerns too. Privacy policies

need to be put in place to make sure that the consumer of some

information does not break the guidelines for the data being exchanged27

set forth by the service provider.

Summary
As we have seen, the changes introduced by composite applications in the

software construction process are profound (Figure 19) and add some

overhead to the construction process, undoubtedly. This overhead can be

largely compensated by an improved communication and alignment

between the business and IT as the solution design and implementation

SO WHAT IS CHANGING?

45

reflect and clearly link the evolution of solutions during a given cycle (as-

is through as-deployed).

In the next section we are going to provide an introduction to the

programming model via the concepts developed for Service Oriented

Architecture and Web Services.

Requirements

Specification

Construction

Operation

As-Is As-Specified As-Designed As-Built

Governance

Selection

Assembly

Provisioning

Management

& Monitoring

As-DeployedAs-Envisioned

Accountability

Figure 19. Composite Application Delivery Model

5
SOA and Web Services as a key enabler

of the composite programming model

Object Orientation, Models and Runtimes
Object Orientation has been a way of life for many of us since the mid to

late 80s and really became wide spread a decade later after the mid 90s. In

2007 it is all but impossible to write code that is not “object oriented”.

The success of object orientation is due to its metamodel which is

elegantly simple (Figure 20) and is well suited to decompose28 and model

the behavior of complex event driven physical systems. For instance, it

has been extremely powerful to construct graphical user interfaces.

Figure 20 Object Orientation Metamodel

COMPOSITE SOFTWARE CONSTRUCTION

48

An object oriented run-time manages the lifecycle of instances based on

the rules defined in the metamodel and provides some ancillary services

such as code access security or garbage collection. A compiler would

simply translate artifacts of the model (i.e. class definitions) into

executable code linking it with the OO runtime libraries. Over time the

needs of the developers have grown and runtimes have evolved to provide

a large number of technical services. The architecture of web applications

has introduced a separation between the runtime and the applications with

the introduction of the application server and concepts such as “hot-

deployments”29.

Despite its formidable success, some concepts have remained challenging

for object orientation. For instance, concurrency is not part of traditional

object oriented runtimes, this is still an operating system level concept

(which is often abstracted by object oriented API): threads need to be

managed manually30, and synchronization is the only way to deal with

concurrent requests. If true concurrency is needed, an application server is

required. Similarly, concepts like state or identify of an object are not

generally part of the metamodel or the runtime. It is only relatively

recently that Java and C# added the concept of events to an OO

runtime31. Up until then events where handled by the runtime which

would invoke the appropriate method on a specific instance. Historically,

runtimes have also been extremely opaque offering no visibility on the

operation of the application itself. It is only recently with the

generalization of virtual machines and aspect Oriented Programming that

some level of visibility has been possible by adding a data collector on

selected method invocations for instance.

Objects have also failed to become flexible data containers as part of the

programming model. For instance, you cannot query easily a graph of

objects, nor create specific views (as another graph of objects) or

transform a graph of objects into another with different class structures.

Microsoft introduced the concept of the “DataSet” which is based on an

Entity Relationship model. At about the same time the Java community

created the Service Data Object specification (SDO) which serve a similar

purpose but is based on the Hypergraph Data Model32 instead of Entity-

Relationship.

Sure object orientation is flexible enough, so much so that you can create

all kinds of semantics within your application (such as a DataSet), in

essence unconsciously expanding the metamodel and the runtime

capabilities, but this is not necessarily a good thing since it does not

enforce the separation between “business logic” and “runtime services”. It

SOA AND WEB SERVICES AS A KEY ENABLER

49

also creates maintenance nightmare when these API change even by a tiny

bit.

Figure 21 shows the basic ingredients of system construction: an

application is a model which conforms to a metamodel with a certain

number of code artifacts associated to it. The artifacts are written in a

programming language the syntax of which combines elements of the

metamodel and a series of standard control structures33. An application is

deployed in a runtime. Both models and metamodels may be described

using a modeling language (typically UML or proprietary alternatives).

In a composite programming model, a new reflective <<uses>>

relationship appears at the application model element (as opposed a <<

synchronize>> relationship in a traditional application model) (Figure 21).

As we have seen in the previous section, this seemingly simple change

creates tectonic changes in the programming concepts, software

architecture and construction processes.

Figure 21 From Modeling Language to Runtime

Integration and Composite Solutions
Since Object Oriented Programming cannot help us directly, let’s turn our

attention to Integration technologies which have long been a critical

function of all modern IT organizations which have often dedicated

specialized teams to deliver this kind of projects. Since the mid-90s these

technologies have slowly evolved from being batch oriented to support

real-time34 integration.

<<uses>>

COMPOSITE SOFTWARE CONSTRUCTION

50

EAI

EII ETL

Figure 22. The 3 types of integration

There are three main types of system-to-system integration (Figure 22):

EAI, Enterprise Application Integration facilitates the integration of

solutions via their integration API which is used to synchronize data and

processes with other solutions.

EII, Enterprise Information Integration is used to federate disparate data

sources (mainly relational). EII infrastructures enable the construction of

logical (or virtual) databases capable of processing and dispatching

queries to several physical databases, assembling results sets into a single

result set and, if necessary, filtering this result set before returning it to the

requestor.

ETL, Extract Transform & Load is used to synchronize large amounts of

data between two or more data stores.

In general, both EII and ETL bypass all the business logic included the

one in the Data Access Layer (DAL) that is otherwise invoked via the

integration API of solutions.

Gregor Hohpe35 has created a formal integration metamodel that

summarizes all system-to-system interactions independent of the type of

integration infrastructure (EAI, EII, ETL).

SOA AND WEB SERVICES AS A KEY ENABLER

51

File Transfer Applications produce files of shared data for others to consume, and

consume files that others have produced.

Remote
Procedure
Call

Applications expose some of its procedures so that they can be

invoked remotely, and have applications invoke those to run behavior
and exchange data

Orchestration Applications invoke an orchestration system and exchange data with

other application via calls made on their behalf

Messaging Applications connect to a common messaging system, and exchange

data and invoke behavior using messages

Virtual
Database

Applications data is federated in a virtual database and exchange data

based on a logical data schema

Shared
Database

Applications store the data they wish to share in a common database

Figure 23. Enterprise Integration Pattern (Source Gregor Hohpe,

EnterpriseIntegrationPattern.com)

The only enterprise application integration patterns which intersects with

SOA are “remote procedure call” and “orchestration”. However all the

EAI patterns, can and should be leveraged at the service implementation

level when service implementations need to talk back-end systems.

If we look back at Figure 2 which features a prototypical data model in

large IT organization, the creation of reusable assets is often going to

happen along the lines of business object components (Figure 24). These

services are classified as “enterprise services” in our taxonomy (Figure

13).

The general design guideline for enterprise services is that the interface

should expose “normalized” interactions that isolate the service consumer

from the details of updating every single system of record that manages

corresponding business entity information.

EAI patterns can help implement these normalized interfaces. For instance

a virtual database pattern could be used to implement an “update

Customer Data” operation when multiple systems of record need to be

updated and little or no business logic need to be invoked during the

update. Similarly, a “purchase order” service would typically use the

messaging or orchestration pattern to update purchase order systems.

COMPOSITE SOFTWARE CONSTRUCTION

52

0

2

4

6

8

10

Order

Customer

Virtual
DB

Orchestration

Figure 24. Leveraging integration patterns in service implementations

Gregor Hohpe also categorizes the message handling patterns in an

integration infrastructure (Figure 25).

Messaging
Channel

How does one application exchange a message with another? Types of

channels includes point-to-point and publish-subscribe.

WS technologies enable us to use an HTTP based channel

Message
Endpoint

How does an application connect to a messaging channel to send and

receive messages?

WS technologies provide end-point capabilities in all technologies (.Net,

Java, Legacy,…)

Message How can two applications connected by a message channel exchange a

piece of information?

WS technologies use XML, a technology neutral syntax

Pipes and
Filters

How can systems using different data formats communicate with each

other using messaging?

WS infrastructure provide hooks to create processing pipelines and

filters (e.g. WCF)

Message
Translator

How can systems using different data formats communicate with each

other using message

XML provides native transformation technologies, IBM WebSphere

Process Server and Message Broker provide also native robust
transformation technologies

Figure 25. Message Handling Patterns (source Gregor Hohpe,

EnterpriseIntegrationPattern.com)

SOA AND WEB SERVICES AS A KEY ENABLER

53

These message handling patterns should also be leveraged at the service

implementation level.

0

2

4

6

8

10

Order

Service
Consumer

Customer

Remote Call

Figure 26. Message Handling Patterns and Service Implementations

Service orientation also leverages specific patterns such as the operation

pattern (of which RPC is a particular case), the service discovery pattern,

the dynamic routing pattern… which will be detailed in section 6.

Integration technologies like Object Orientation are perfectly good

technologies to implement services but they offer little help if any as the

foundation of a composite programming model. This is not surprising the

<<synchronize>> relationship is conceptually very different from the

<<uses>> one (Figure 21).

Service Orientation

A brief history of Service Orientation

Ever since Middleware36 was invented, people have been developing

reusable runtime assets. I would like to argue that Service Orientation

really started the day someone got the idea of sending XML over HTTP37

even though it is fair to argue that network accessible reusable runtime

assets were built well before that time. I think, it is fair to say that the

pioneers behind this kind of service orientation were BowStreet (bought

by IBM) and webMethods (bought by Software A.G.). BowStreet was ten

years ahead of its time. It had actually developed a complete composite

COMPOSITE SOFTWARE CONSTRUCTION

54

programming model around the concepts of services, XML and XSLT by

1998, while webMethods was focusing on leveraging XML services for

B2B integration and marketplaces. By 1999 the whole industry had

caught up with some of these ideas and two stacks of standards, initially

competing, were initiated: ebXML38 and Web Services39. ebXML

established very quickly a secure, reliable and transactional message

exchange capability while optimizing the establishment of relationship

between business partners via the concepts of:

• Collaboration partner profile which defined the capabilities of a

partner (transport, security and collaborations supported)

• Collaboration partner agreement which defined the capabilities

two partners will use from their respective profiles to collaborate

• Collaboration definition which defined the sequence of message

exchanges for a collaboration between 2 or more business parties,

as well as a non repudiable business transaction protocol to

ensure the integrity of business transactions

• Registry and repository which hosted the CPP, CPA and

Collaboration definitions

By contrast, the Web Services stack focused on SOAP, WSDL and UDDI

only (without support for security, reliability and transactionality). SOAP

was a transport independent message exchange protocol. SOAP was

adopted by ebXML in 2001 which layered security, reliable messaging

and transaction protocols on top of it. It is not until 2004 that security

extensions were added to SOAP (WS-Security), and we had to wait until

the summer of 2007 to get an interoperable Web Service Transaction

capability, as well as a reliable message exchange specification… six

years after ebXML published its first iteration of the specification.

The two stacks focused on solving very different problems: ebXML was

definitely a B2B40 standard focusing on lowering the cost of doing e-

commerce and enabling smaller business partners to participate in

electronic data interchange (EDI) which at the time required costly

software and used of proprietary networks (Value Added Networks –

VANs). The vision was to leverage XML and the Web to exchange

information. The web services stack was focused on establishing

interoperability capabilities between different technologies. At the time,

this was a matter of life and death for Microsoft which had not been

successful with its “DNA” initiative and was about to roll out .Net which

has to work with other technologies to get a foot in the door of IT

organizations. 2001 was also when the value of a given system started to

be defined by its ability to integrate readily with its environment in

SOA AND WEB SERVICES AS A KEY ENABLER

55

addition to just its functionality. This is also when people started to realize

the need for commoditized integration capabilities.

In addition, and in parallel the BPMI consortium, founded in 2000,

focused on a new concept: an orchestration programming language. It was

initially confused with the field of “Business Process Management” and

still today, the dominant orchestration language, WS-BPEL which just

released its v2.0, is still called a “Business Process Execution Language”.

In reality it is a programming language that can be used to implement

services which interact with other services in a stateful way as we will see

later. The confusion originates from the fact that a couple of constructs of

the programming language look like some of the constructs used to model

business processes. I hope section 5 will help you clarify the relationship

between BPM and SOA and the position, albeit central, of WS-BPEL

within a service oriented architecture.

In 2005, IBM and BEA introduced a new standard: Service Component

Architecture (SCA) which, in combination with Service Data Object

(SDO), greatly augmented the concepts of service orientation by adding

an “assembly mechanism” to assemble services (service components,

a.k.a as modules) into units of work. Web Services can participate in an

assembly, alongside with a POJO41.

This short history of Service Orientation demonstrates how chaotic the

evolution of the stack of standards was over the last 10 years, squashed

between B2B, BPM and interoperability. As of 2007, ebXML has become

a mature technology but with little support from the big 4 infrastructure

software vendors42. The Web Services stack is just complete with a good

level of support for interoperability across all vendors. SCA just

completed its v1.0 release, in record time, and is gaining some traction in

the industry, except for Microsoft who seem to ignore how essential an

assembly mechanism is to SOA and composite solution (but not so

essential for achieving interoperability of course).

So even in 2007, and despite all the energy spent by dozens of standard

working groups and hundreds of contributors, Service Orientation is still

ill defined, and is still missing a service oriented programming model.

Even the academic community, which started the first international

conference on Service Oriented Computing43 in 2003, has not funded a

lot of research activity in this direction. Before detailing a proposal for

such a programming model, let’s parse the SOA standards and see how

they relate to each other in the context of a composite programming

model.

COMPOSITE SOFTWARE CONSTRUCTION

56

The SOA Standard Stack
SOA specifications from SOAP to SCA have been designed to enable

software agents to communicate as peers in 3 types of scenarios (Figure

27). The first scenario supports peer software agents exchanging messages

securely, reliably in a technology neutral way.

The second scenario is focused on formalizing the interactions between

software agents. These interactions44 are called services and require the

definition of a service interface.

Finally, a large set of specifications is dedicated to the definition and

performance of units of work (a.k.a activity) by 2 or more software

agents. There is an important category of activities which is called

“service composition” that helps expose new services from existing

services.

Exchange messages

Provide and/or consume services

Work cooperatively to perform a unit of work

A1 A2

A
SpAc

A3

A1 Sp

A3A4

Ac

Sp1

Sp2

Composition

Figure 27. SOA standard enable agents-to-agents communication in 3 types of

scenarios

The corresponding specifications that are required to support these

scenarios are represented Figure 28 .

Other representations of the specification stack have been published

here45,46,47,48 but few representations are concerned with assembling

these specifications into a coherent programming model. Actually, these

specifications were developed individually by different groups of people,

across several standard organizations, under the pressures of divergent

political agenda. The fact that a programming model could emerge from

such a scattered working process is almost pure luck since none of the

major software vendors driving the specifications had made it goal. In

SOA AND WEB SERVICES AS A KEY ENABLER

57

fact, this stack is remarkably innovative. Having been part of many

working groups I can assure you that every inch of innovation was hardly

fought against scores of “old-guardists” who were pushing decades old

ideas throughout the stack. The most ludicrous of all was the constant

attempt to reify service orientation behind object orientation.

So before we detail at how the stack works and how it relates the

composite application vision detailed in the section 2 (Figure 11), let’s

explore for a second how innovative this stack is.

M
e

s
s

a
g

e
S

e
rv

ic
e

A
c

tiv
ity

Transport

Runtime Design time

Packaging Syntax

Protocol

Addressing

Reliability

S
e

c
u

rity

M
a

n
a

g
e

m
e

n
t

A
c

c
e

s
s

ib
ility, i1

8
n

, P
3

P
…

S
e

m
a

n
tic

P
o

lic
y

Definition

Registry

MEP

Context

Activity Lifecycle

Coordination

Transaction

Orchestration

Choreography

User activity WS-RP, BPEL4People

WS-CDL

WS-BPEL

WS-BA/AT

W
S

-C
O

O
R

UDDI

W
S

D
L

WS-RX

WS-Addr.

SOAP

SOAP

HTTP…

XML, XML Schema

W
S

-S
e
c
u

rity, W
S

-S
e

c
u

rity
P

o
lic

y, W
S

-T
ru

s
t, W

S
-F

e
d
e

ra
tio

n
, S

A
M

L

W
S

-D
M

W
S

-P
o

lic
y, W

S
-P

o
lic

y
A

s
s
e

rtio
n

R
D

F
, O

W
L

, C
C

T
S

Resource WS-ResourceFramework, SDO

Event WS-Notification

Assembly SCA

Figure 28. The SOA specification Stack

Extensible Data Structures
At the message level, the most innovative technology has been the XML

standard stack which literally pulled message interchanges from the dark

ages. XML is not just a technology neutral data format supported by a

wide array of parsers. XML is the key to enable loosely coupled

interactions between software agents. XML allows two agents to interact

COMPOSITE SOFTWARE CONSTRUCTION

58

without requiring any agent to fully understand the structure of the

message exchanged. This concept is entirely supported by XML Schema

which allows for “open” (a.k.a. variable) content12,49 and wildcards50

when validating a document. Because well-formed XML documents

contain both data structure (metadata) and data, they can be semantically

accessible without the need for an interface: using XPath, a software agent

can extract the elements it needs to perform its work. If the interaction

requires a more rigid structure, there is still the possibility to easily

transform an XML format into a consumable one using XSLT, either on

the sender or receiver side, or leveraging the services of an intermediary.

 But the wonders of XML’s extensibility do not stop here. Well-formed

XML documents are extensible, that is, data structure and data may be

added without compromising the integrity of the initial document. This

capability is critical in achieving both forwards and backwards

compatibility when services are versioned51. This approach offers several

benefits. One of the most innovative is the ability to evolve a business

object instance. Unlike object-oriented or component-based

implementations, XML instances can evolve from one schema to another

or even hold structured data they were not specifically designed to hold,

and can share any part of it. This makes them both flexible and adaptive.

This notion of an “Extensible Object Model”52 makes XML a key

enabling technology in the construction of business process engine. The

reason is because XML documents represent very naturally the business

object representations (a.k.a views) that are part of the context of business

process instances. With XML there is no need to create specialized

database schemas to support specific business process definitions (as

shown in Figure 29). XML business objects can embed traces of service

interactions within the object itself without breaking the relationship

between the document and the other services. In a traditional application

model, the service would have to keep this information in a private store.

In the event that another service wanted to access not only the information

contained in the business object, but also this particular trace, the services

would have to be integrated in the back-end to synchronize the object

state. While this scenario remains manageable in a departmental

infrastructure, it would be virtually impossible to synchronize the state in

B2B scenarios where thousands of business partner systems that could

potentially require access to this information.

This idea was first productized by eXcelon which commercialized a

business process engine leveraging an XML database53.

SOA AND WEB SERVICES AS A KEY ENABLER

59

The extensibility of XML was only preserved after a long battle at the

W3C. For some time SOX54 (Schema for Object Oriented XML) was the

leading candidate to define the concepts in XML Schema. Fortunately,

this is now history and there is no turning back. The next version of XML

Schema (v1.1) is pushing extensibility further based on the feedback of

the v1.0 users. By the way, the use of XML to implement the context of

business process instances is now a leading pattern.

Business

Process

Engine

Transformation

Engine

Service

A

Service

B

Service

C

Service

D

Customer
Business
Object

Profile

Demographics

History

Request

Response

The request is created
via a projection of the
Customer business object

The response is attached
to the customer business
Object without specific

knowledge from the object

1

2

A new request is created via
projection of the data structure
(using XSLT) and contains the

XML fragment returned by
Service A

3

Figure 29. XML documents support the context of business process instances

I will not talk much about the transport layer in the context of the

programming model because the trend in the industry is to become

transport agnostic and select the appropriate transport at deployment time

rather than implementation time. This trend was started by Microsoft with

their popular service container WCF (Windows Communication

Foundations). The Java community published a couple of years later the

Service Component Architecture (SCA) which targets the same concepts.

In the B2B world, the transport layer is critical because it has to be

common to all partners to avoid costly intermediation. Again, from a

Composite Programming Model perspective, B2B communications occur

over specialized transport, via a B2B gateway. Should you need more

information on B2B transports, Mark Yader and David Webber provide a

great review in this presentation55.

COMPOSITE SOFTWARE CONSTRUCTION

60

Injection of Dependencies
At the service layer, the innovation came from WSDL which enabled two

software agents to interact without ever needing to exchange any kind of

binary file. All that was needed was a machine readable service definition

with the WSDL syntax. Of course, this is also possible because of XML

and SOAP, but at the end of day, in 1999, that was innovative as

compared to CORBA or DCOM. The second innovation has lost a bit of

thunder since the generalization of the “Dependency Injection” pattern56.

A service definition is designed to declare both inbound and outbound

operations. Outbound operations point to dependent services which

reference needs to be injected for every type of unit of work. This is again

departing considerably from object orientation concepts which by no

means provide a declaration of the references needed by an object. An

object interface only exposes inbound operations. The Spring

framework57 was created to exploit this capability in the Object oriented

world.

Sadly enough, WSDL was and is still designed with a flaw that prevents

the usage of outbound operations and references. WSDL does not separate

the bindings of an interaction from the interaction definition itself which

prevents the support of multiple consumers when a description contains

outbound operations. ebXML does this by separating the collaboration

profiles from a collaboration agreement. This is a major problem because

usually the interface description is specified well before one knows who is

going to be a consumer of the service. Tragically, at the WS-

Interoperability consortium, the decision was made to forbid outbound

operations, rather than asking the W3C to fix this flaw. It was only the

SCA specification that solved this issue, enabling peer services to be

assembled in arbitrary units of work, not just client/server interactions.

Coordination
The third major innovation of the standard stack is the concept of

“coordination” and two specializations of this concept named

“orchestration”58 and “choreography”59,60. Coordination technologies

are critical because they enable a loose coupling between the software

agents and they enable the composition61 of software agents into complex

activities which is essential for reuse.

A generic coordination framework was first and best described by the

WS-CAF specification62 (Web Service Composite Application

Framework). It is unfortunate that this working group decided to stop its

activities after the WS-TX specification was released because its

SOA AND WEB SERVICES AS A KEY ENABLER

61

architecture had far-reaching benefits well beyond web service

transactions.

WS-CAF defined generically the concept of coordination as a set of

loosely coupled services:

• A context management service

• An activity lifecycle management service

• A coordination service

As a set of services interact with each other, they often need a “context

management” facility. Figure 30 represent an interaction between 4

services. It may happen that S3 requires the knowledge of the interaction

between S1 and S4, while S1 and S2 were never designed (and generally

cannot be modified) to carry this information.

S1

S2

S3
CTX

Service

S4

Figure 30. Context Management Service

WS-CAF’s proposed implementation of the context service could be done

physically via a specific context agent, or virtually by carrying the context

at the SOAP header level.

COMPOSITE SOFTWARE CONSTRUCTION

62

The second element of a generic coordination service is the activity

lifecycle service (Figure 31). An ALS demarcates the units of work (at the

instance level) performed by a set of services. Services are typically

designed to perform an arbitrary number of activity instances

simultaneously. Both a generic context and ALS service can help simplify

their design such that each service implementation does not have to

duplicate this functionality in a proprietary way.

S1

S2

S3

CTX

Service

S4

ALS

Service

Figure 31. Activity Lifecycle Service

All kinds of coordinator agents (not just the one implementing a

transaction protocol) can leverage these services to coordinate the

activities between services. There are three types of coordination (Figure

32) based on the relationships between the services themselves and the

coordinator.

Are web services stateless?

Web Services interactions as defined by WSDL are inherently

stateless. There is neither a correlation mechanism to associate

incoming request with existing sessions nor explicit session

mechanisms to keep a context between interactions.

It does not mean that services MUST be stateless. Stateless

interactions are always preferable when possible. Session management

is particularly critical when you secure your service and a consumer

makes repeated invocations to the service. The WS-

SecureConversation was developed to avoid incurring the cost of

authentication each time,

SOA AND WEB SERVICES AS A KEY ENABLER

63

A B

Binary relationship

• Context and Activity are most often implicit
• Self-coordination

Hub

A

B

C

D

E

F

Hub and Spoke relationship

• Context and Activity are handled by the hub
• Coordination is handled by the hub exclusively

Coordinator

CTX

A

B

C

D

E

F

ALS
Multi party peer-to-peer relationship

• Context and Activity are explicit
• Context, ALS and Coordination are handled by

the fabric

Figure 32. The three types of coordination

Orchestration is yet another innovative concept which is now

implemented as part of the WS-BPEL specification63. The key advance

brought by orchestration is the introduction of the “message” as a primary

construct of the programming model.

COMPOSITE SOFTWARE CONSTRUCTION

64

Up until know, computer science has been mostly focused on algorithms (data and
control structures) while the construction of distributed systems relied on operating
system level building blocks available through APIs in the programming model.
There no specific constructs to deal with message exchanges. Because interprocess
communication was the exception, this model was kind of working. Today, this
simplistic model pushes the burden of dealing with issues such as state management
(including state alignment), exception handling, concurrency or security for instance
on the programmer.

State management alone can quickly become a nightmare if you consider that large
organizations have hundreds of thousands, if not millions, of process instances
routinely waiting for a message coming from the completion of an activity. These
processes are of course running concurrently. Yet, no mainstream programming
language ever tackled the problem of providing the semantics and a runtime to
facilitate this kind of implementation for the developers.

Orchestration vs Choreography

An orchestration specifies the behavior of a participant in a choreography,
while a choreography is concerned with describing the message interchanges
between participants. Participants of a choreography are peers, there is no
center of control.

A choreography definition can be used at design time by a participant to verify
that its internal behavior will enable it to participate appropriately in the
choreography. It can also be used to generate the service interface and an
abstract orchestration that only contains the message exchange activities
(receive, send, invoke) that support the interface. This abstract orchestration
can be used to weave in internal activities to support the choreography.

At run-time, the choreography definition can be used to verify that everything
is proceeding according to plan. It can also be used unilaterally to detect
exceptions (a message was expected but not received, or help a participant in
preventing it sending messages in the wrong order or at the wrong time).

Orchestration

Choreography

Message exchange:

Transition:

SOA AND WEB SERVICES AS A KEY ENABLER

65

Is WS-BPEL a programming language?

David Chappell provides a very interesting viewpoint:

D. Chappell, “Why BPEL is like bytecode?”,

http://www.davidchappell.com/blog/2006/05/why-bpel-is-like-

bytecode

People tend to think of BPEL as a programming

language. The expectation is that a developer writes

process logic in BPEL just as she writes object-

oriented logic in a language such as Java. But unlike

Java and every other mainstream programming

language, BPEL is defined using XML. Accordingly,

it was designed to be generated by tools, not written

directly by developers. Whatever BPEL aficionados

believe, masses of developers are never going to work

directly in a complex XML-based language.

In fact, as an executable language, BPEL's primary

goal is to provide a portable description of logic. Isn't

this exactly what Java bytecode strives to do? BPEL

focuses on process logic, while bytecode takes on a

broader problem space. Yet the two are quite

analogous: both are tool-generated languages

(bytecode by a Java compiler, BPEL by some

graphical process design tool) and both can

potentially foster portability.

The way I would like to interpret Dave’s comment is that he is not just

talking about developers writing in XML using a BPEL syntax, he is

rather expressing that even if you use tools, BPEL is not the right

level to write your business logic. Yes, it is executable but you need

better abstractions to write your business logic, this code will then be

compiled in BPEL. My interpretation is supported by the semantic

difference between BPMN (the business Process Modeling Notation)

and WS-BPEL.

P. Giner “Bridging the Gap between BPMN and WS-BPEL. M2M

Transformations in Practice”,

http://wise.vub.ac.be/MDWE2007/downloads/giner.pdf

COMPOSITE SOFTWARE CONSTRUCTION

66

In all, Service Orientation creates a dramatic departure from traditional

programming concepts, even though these technologies were “just”

invented to facilitate B2B message interchange and commoditize

integration across technology boundaries. Service Orientation relies on

specific technologies which cannot be emulated easily by older distributed

computing concepts, let alone existed decades ago. You often hear that

SOA does not require web services, well this is as true as object

orientation doesn’t require object oriented programming languages and

runtimes. Sure enough, most object oriented concepts can be emulated in

C or Pascal, but at the cost of writing an Object Oriented runtime

yourself.

Without reflecting deeply on these concepts and their impact, it is almost

impossible to construct a service oriented architecture appropriately. I

strongly refute the idea that people were building service oriented

architectures 30 years ago, because they were not, none of the concepts

detailed in this section existed in any way shape or form, let alone in a

commercial product. And, if you needed on more proof that Object

Orientation will be of no help to build composite software, please take a

look at why OSGi64 had to introduce the concept of “modules” (a.k.a

bundles) which has the granularity of a Jar and very strict visibility rules

as a key enabler of composite software.

Web Services technologies however require the definition of a robust

reference architecture, a methodology and a framework to encapsulate the

idiosyncrasies of the specifications and help leverage best practices. The

sheer number of technologies involved demand a rigorous approach and

training to reduce the immediate risk of failing service and composite

solution implementation projects, but and most importantly, reduce the

risk of not being able to evolve services as the number of deployed

services and consumers grows to the point of being unmanageable.

The web services stack and the composite
application vision
Figure 33 associates the composite application architecture to the

specifications of the web services stack. Not surprisingly, the coverage at

the technical level is good because the stack was designed to enable a set

of software agents (services, processes, tasks, analytics engine…) to

exchange messages securely, reliably and transactionally as well as

assembling them into units of work.

However, at the programming model level, the gap is a lot wider.

Business process definitions are not well represented by WS-BPEL.

SOA AND WEB SERVICES AS A KEY ENABLER

67

BPEL is an orchestration language. It is unfortunate that its name contains

“Business Process” because in itself it does not contain organizational

information or the concept of “user tasks”: the BPEL4PEOPLE65

specifications had to be developed separately from WS-BPEL to

introduce this concept as the working group was not unanimous about

introducing these concepts in the core programming language.

Even at the technical level, the stack itself exhibits some shortcomings.

WSDL 1..1 and even WSDL 2.0 do not offer a binding mechanism that

supports outbound operations. So it is likely that WS-I will continue

forbidding outbound operations for the foreseeable future. WSDL does

not offer interface composition mechanisms either. It is possible to

modularize a service interface by declaring that it extends 2 or more

interface definitions using the WSDL 2.0 inheritance concept, which

simplifies the management of large numbers service definitions (with

WSDL 1.1 people had to use aggregation tools such as WPTA66). But

the lack of a true interface composition mechanism means that WSDL

definitions cannot be broken into the different roles that a service would

play in an assembly and manage the relationship with each service

independently. Two services associated in a unit of work will see each

other entire interface. This creates issues for composite solutions at the

service versioning and binding levels. When something changes in a

service, you want to be able do an impact analysis that will tell quickly

and precisely which related services are impacted. Interface composition

would have simplified this problem as the minimal number of services

would be impacted as a new version of an interface gets published. You

may also want to be able to bind services independently of each other, i.e.

establish binary agreements (with different SLAs) between any 2 pair of

services.

COMPOSITE SOFTWARE CONSTRUCTION

68

Delivery Services

Enterprise Services

events
B

u
s
in

e
s
s

S
e

r
v

ic
e

s

Collect analytics

S
e

c
u

r
it

y

Metadata

Repository

Registry

sso

Federation Orchestration Transformation Decision

Bus iness Object

sso

Web
services

Authn, Authz, Encryp, Sig

Initiate, assign

Invoke

Any Device
(wireless, voice,…)

M
a

n
a

g
e

m
e

n
t
 &

 M
o

n
it

o
r
in

g

T
e

c
h

n
ic

a
l S

e
r
v

ic
e

s

L
o
g
g
in
g

P
u
b
/
S
u
b

T
r
a
n
s
a
c
t
io
n

C
o
n
t
e
x
t

A
L
S

C
o
o
r
d
in
a
to
r

D
e
c
is
io
n

Invoke complete

Task

capture

search

navigate

visualize

Analyze

Start

Integration

A
n
a
ly
t
ic
s
 E
n
g
in
e

C
o
m
p
le
x
 E
v
e
n
t
 P
r
o
c
e
s
s
in
g

Business Process

Engine

B2B

Gateway

OAGIS
EDI
…

WSBPEL XSLT WSCOOR

BPEL4PEOPLE

W
S

C
O

O
R

W
S

-B
A

/
A

T
W

S
-
N

o
t
if

ic
a

tio
n

UDDI

SDO

WS-RF

W
S
-
S
e

c
u

r
it

y

W
S

D
L

W
S

-D
M

S
C

A

W
S

-
P

o
lic

y

CCTS

WS-RM

WS-Addressing

WS-RX

WS-Security

SOAP

SDO

WSBPEL WS-CDL

ebXML

Figure 33. Gap analysis between the composite application architecture and the web

services stack

SOA AND WEB SERVICES AS A KEY ENABLER

69

Event definitions are not explicit in WSDL. WS-Notification67 specifies

the interfaces of notification consumers and providers but these interfaces

have to be added manually to each service interface using the inheritance

mechanism of WSDL 2.0 (which is not supported by 1.1)

The web services stack does not offer a business object concept at all.

Service descriptions do not offer any way to specify that an operation

message type contains a representation of a business object. Core

specifications such as XML and XML Schema or newer specifications

such as SDO do not allow for defining by themselves a full business

object concept. They are rather technologies used to transport data. Even

complemented with the WS-ResourceFramework specification68, many

concepts are still missing.

Not to mention the intricacies associated with the utilization of seemingly

simple specifications such as WS-Notification69. When Microsoft

launched WCF (Windows Communication Foundation) it touted that

secure, reliable and transactional web service invocations could be

achieved with a few lines of code and a small configuration snippet while

a few years earlier, the same result would have required over 50,000 lines

of code using the first generation of the Microsoft service container.

However, WCF, which probably offers today the simplest Web Service

Interface inheritance vs interface composition

[…] new to WSDL 2.0 is the concept of interface inheritance.

According to [Anne Thomas] Manes, this "imposes an unreasonable

constraint that doesn't correlate to real world services. There are valid

reasons for multiple interfaces for services and it makes it easier for

tooling." She said the working group was not unanimous on this issue.

"A majority of the Working Group saw the benefits afforded by this

approach – the simplicity of the model, the simplifications it extends to

bindings and the clarification of the role of WSDL," [Charles] Barreto

said. "Even though there still are a number of WSDL users who feel

that some means of stitching disparate interfaces together is a

requirement, this approach confuses the use of WSDL in a manner that

persists today. The role of WSDL is not to define service composition,

but resources."

C. Frye “WSDL 2.0: Web Services’ Lighting Rod Standard”,

http://searchwebservices.techtarget.com/originalContent/0,289142,sid2

6_gci1165063,00.html

COMPOSITE SOFTWARE CONSTRUCTION

70

programming model, does not address the “Activity” layer (Figure 28)

except for the WS-TX specification and within the Services layer, WCF

does not implement the concept of resources (WS-ResourceFramework)

or SCA assemblies.

Even though the SOA standard stack, including the Web Services stack is

close to delivering a programming model, the vendor interests are so

divergent that it would be elusive to think that the stack will evolve

naturally towards a programming model. So, if we want to further

understand how to build composite solutions from this set of disparate,

albeit innovative, concepts, I suggest that we go up a level and take a look

at specifying a composite programming model. This approach is a lot

more concrete than trying to go through all specifications and provide

guidelines on how to use them individually or in combination with other

specifications. Here, our intend it to define a programming model which

artifacts can be compiled into SOA standard artifacts such as XML

Schemas, WSDLs, or BPELs and deployed in today’s service oriented

infrastructures.

I have started an initiative to define this programming model as a formal

specification called wsper (“whisper”)70.

Don’t get me wrong…

I am not saying that the Web Services specification stack is useless or

poorly designed. Sure here and there things could have been a little bit

better. The stack itself does not have any product managers, it is rather

a collection of vendors and sometimes individuals that decide to add a

specification here and there to fill a particular gap, in a very specific

context.

I am arguing here that the intent of the stack was never to create a

programming model in any way, yet the technologies that emerged

from the stack have sketched the foundation of a very innovative

programming model, so why not go all the way? There is nothing

sacred about Object Orientation and current programming models.

6
A Composite Programming Model

In this section we describe a new programming model, a composite

programming model, dedicated to the construction of composite

information systems. This programming model is called “wsper” which

stands for Web, Service, Process, Event, Resource, which are some of the

key ingredients of the language. Wsper is based on three main concepts:

service, resource and assembly. A service manages the instance(s) of a

resource type, while an assembly composes services into solutions.

Service Metamodel

Interfaces
Figure 34 introduces wsper’s service metamodel. It is related to but differs

from WSDL. For instance, a service may expose multiple interfaces while

these interfaces can be redefined either by extension or restriction

mechanisms. The set of service interfaces is called the “surface” of a

service. Unlike a class, a service can only expose operations via an

interface definition. An interface itself does not have private operations.

Interfaces may either be declared public or private. We will see later that a

private interface cannot expose any of its operation as part of a component

within an assembly. Typically interfaces are defined along the boundaries

of the roles that may interact with the service. However, this is not a

constraint, but rather a guideline. An interface may interact with as many

roles as necessary as part of an assembly.

COMPOSITE SOFTWARE CONSTRUCTION

72

Figure 34 Wsper's service metamodel

Operations
As we have seen, one important distinction between an Object Oriented

interface and a Service Oriented Interface is that outbound operations are

explicit. In the OO metamodel, properties of type class provide a hint of

the possible outbound operations that will be invoked, but they are not

explicitly called out. Furthermore, object orientation couples the

arguments and signature of a method when classes cooperate as part of a

unit of work, which creates a thigh coupling between the two classes and

leads to the utilization of the adapter pattern. In a Service Oriented

Architecture, services are by definition designed in isolation, this is why,

as we will see later, wsper’s assembly mechanism implements a loosely

coupled relationship between services using a concept of connectors

(which implements data mapping for instance).

Wsper associates the parts of an operation invocation to a resource via the

concept of resource representation. This mechanism is not restrictive in

A COMPOSITE PROGRAMMING MODEL

73

any way, it is simply designed to keep track of resource representations to

provide advanced runtime services in terms of notification and replication

if and when the corresponding resources change. Faults follow the WSDL

semantics.

It is important to note that the service model does not provide any

reference injection mechanism for outbound operations. References are

defined and resolved either in the assembly definition or at runtime when

appropriate.

Wsper specifies two additional types of operations: query and event

notification (labeled event in the metamodel). Queries are difficult to map

to service interfaces. One approach would be use to “Query-by-Example”

(QBE) operations as necessary, another would be to specify a query

language (hopefully not a new one) as part of the application model,

associate a unique and standard query operation to the service interface

which takes a query as an argument and make the service providers

responsible for the implementation of this operation. Since in wsper the

resources that are managed by a service are explicitly defined, the service

consumer would have all the information necessary to formulate queries.

Wsper’s event notification concept is designed to annotate some

operations71 such that they are able to leverage the runtime’s eventing

infrastructure. Some people have tried to create a separate concept “EDA”

(Event Driven Architecture72) because the WSDL metamodel could not

handle this type of scenarios. The reality is that it is totally unjustified to

create a dedicated “architecture” just to be able to deal with events. The

event notification endpoints references can be managed just as well by the

runtime following a dependency injection pattern, injecting the event

coordinator.

An event is the occurrence of a particular state. Since the notion of state is

explicit in wsper, an event must be associated to a resource state. The

event notification is automatically emitted by the runtime as the resource

reaches this new state.

Implementation
Wsper supports both service implementations and operation

implementations. This is again a major departure from Object Orientation

which does not have any related concept. A service implementation,

separate from operation implementation, is necessary because the units of

work performed by a service are often stateful as we will see in the

example later in this section, especially when a service manages the

lifecycle of the instances of a business entity. In this case, the service

COMPOSITE SOFTWARE CONSTRUCTION

74

needs to weave together a set of operation invocations that together

advance the lifecycle of the resource instances. In this case, the operations

are subsumed to represent the message exchanges between this service

and the other services. Wsper provides a programming language that

supports both service and operation implementations. The language is

borrowing some of its control structures from orchestration languages

such as WS-BPEL or BPML but more importantly tie together the notion

of resource, state and service. In object oriented programming models, the

concept of “service implementation” spanning multiple methods would

have to be implemented manually by defining a correlation mechanism to

direct a message to the correct object instance and by managing the state

that spans several method invocations.

Tasks
Tasks refer to human tasks. From an architecture perspective they behave

like a service which exposes a surface. However their behavior from a

runtime perspective differs since there are specific operations associated

to the task lifecycle or concepts such as “task handoff”.

The surface of a task is not restricted to a single in-out operation. On the

contrary, tasks should be able to invoke operations to perform queries,

lookups… as well as exhibit a lifecycle that spans several operation

invocations within the assembly.

Flow
A flow defines the behavior of a particular service interface. This is a

concept similar to abstract BPEL.

Resource metamodel
A resource, in the wsper metamodel sense, is a type (it should be called

ResourceType). Many instances may conform to a resource type. A

resource instance is a persisted set of data uniquely identifiable. A service

typically manages the collection of instances of a resource type. Some

resource types may only have one instance.

Resource types maybe unstructured, semi-structured or structured. A

structured resource type is called an entity. The structure is described

following the SDO metamodel. In addition, an entity may have one or

more state machines. The state machine describes the possible states of an

entity instance lifecycle. Transitions describe the possible state changes

allowed during the instance lifecycle. Actions may be associated to a

transition and guarded via a condition. An instance can be in multiple

states simultaneously.

A COMPOSITE PROGRAMMING MODEL

75

Figure 35. Resource Metamodel

Assembly Metamodel
Wsper’s assembly mechanism is related to the one of the Service

Component Architecture specification. An assembly is made of a series of

components. Assemblies and components are units that can be deployed

in a runtime environment. A component represents the deployment of a

service in a runtime. In the wsper programming language a “service” is at

the same level as a “class” in an Object Oriented programming language.

COMPOSITE SOFTWARE CONSTRUCTION

76

Figure 36. Assembly Metamodel

A component is composed of one or more services wired together via a

set of connectors. A component exposes a contract which is a subset of

the surface of its services. An assembly does not expose any surface while

every component’s surface must be connected for an assembly to be

deployable. A connector relates two operations of complementary

message exchange pattern (MEP). Optionally a mapping definition

between the arguments can be specified to be deployed appropriately.

In wsper, an assembly may be associated to a flow that describes the

sequence of messages exchanged by all components. This type of flow is

commonly referred to as a choreography, which typically maps to a

business process. A choreography itself is not a business process

definition.

A COMPOSITE PROGRAMMING MODEL

77

Packages
Model elements are defined in packages.

Packages utilize declaratively other packages, and of course packages are

structured in a familiar nested structure. The “uses” concept is defined to

avoid circular references. When a package uses another package it cannot

be used itself by this package or any of its parents. A package may use

any artifact declared in one of its parent.

Example

Scenario: a job application system
The job application system allows a candidate to create and submit an

application. The reviewer would then review the application and request

interviews if the candidate is selected. Interviewer should be able to

provide their feedback. If the candidate is accepted, an offer should be

sent and if the candidate accepts it, his information should be passed to

the hiring system.

Create

Application

Review

Application
Interview Offer

Hire

?
Hired

The main entity in this application is the Application entity which

contains all the relevant job application information about the candidate.

COMPOSITE SOFTWARE CONSTRUCTION

78

Entity Definitions

Figure 37. Application Entity Data Model

The corresponding state machine of the application entity is represented in

Figure 38.

A COMPOSITE PROGRAMMING MODEL

79

Figure 38. Application Entity State Machine

In this section we use a syntax that was designed as part of wsper’s

primer73 and that is non normative, it is used to illustrate the concepts of

the language.

entity application

{

 element application

 {

 string positionPostingId;

 string positionTitle;

 enum positionClassification { "Direct Hire", "Referal"};

 enum positionSchedule {"Full Time","Part Time", "Contract"};

 element shift

 {

 string id;

 enum name { "Morning","Afternoon","Day","Night"};

 time startTime;

 time endTime;

 bool exempt;

 }

 element supplier

 {

 string id;

 string name;

 enum role { "Recruiter", "Website"} ;

COMPOSITE SOFTWARE CONSTRUCTION

80

 element contact

 {

 element telephone, fax : org.un.ccts.phoneNumber;

 }

 }

 //The candidate element is open content

 open element candidate

 {

 string personName;

 string preferredPositionId;

 element employmentHistory[0..n]

 {

 element employerOrg

 {

 string employerOrgName;

 element employerContactInfo

 {

 element locationSummary : location;

 string organizationName;

 }

 }

 string positionType;

 string title;

 string description;

 date startDate;

 date endDate;

 }

 element educationHistory[0..n]

 {

 enum schoolType {"University","Community College",

 "TechnicalUniversity","HighSchool"}

 element school

 {

 string name;

 element locationSummary : location;

 }

 string degree;

 boolean graduated;

 string major;

 string minor;

 string description;

 date startDate;

 date endDate;

 }

 }

 element reviewer[1..n]

 {

 string reviewerId;

 element interview[1..n]

 {

 string location;

 datetime dateAndTime;

 }

 string reviewerName;

 string review;

 int score;

A COMPOSITE PROGRAMMING MODEL

81

 bool pass;

 }

 element offer

 {

 float annualSalary;

 float bonus;

 float stockGrant;

 bool retirementPlan;

 bool pensionPlan;

 bool medical;

 element relocationAssistance

 {

 bool provided;

 float amount;

 }

 int daysOff;

 int sickDays;

 }

 }

 machine lifecycle

 {

 protected start state created;

 protected state submitted;

 protected state reviewed;

 protected fault state canceled;

 protected fault state rejected;

 local state interviewScheduled;

 protected state offered;

 protected state accepted;

 protected fault state refused;

 protected end state hired;

 transition(created,submitted);

 transition(created,canceled);

 transition(submitted,canceled);

 transition(submitted,reviewed);

 transition(reviewed,rejected);

 transition(reviewed,interviewScheduled);

 transition(interviewScheduled,rejected);

 transition(interviewScheduled,offered);

 transition(offered,refused);

 transition(offered,hired);

 }

}

Service Definitions

The service definition contains both the service surface definition as well

as the implementation of the service and/or its operation. There is no need

to declare abstract interfaces for 3rd party components and services since

the surface of a service interacting with these other services should have

the corresponding interface defined within its definition.

COMPOSITE SOFTWARE CONSTRUCTION

82

Surface

The job “application” service surface is composed of several interfaces:

a. The main interface which specifies the operations that control the

job application lifecycle

b. A scheduler interface that is used to schedule interviews

c. A background check interface that is used during the review

process to check the background of the candidate using an

external service

d. The employee interface which supports the interactions with the

recruiter and interviewers

e. The Data Access Service (DAS) interface, which is private,

which means that none of its operation can be exposed at the

component surface level. These operations need to be wired

within a component between two services.

package org.wsper.demo.hr.application

{

 uses {

 package org.wsper.demo.util;

 }

service application manages application

{

 public interface application

 {

 Operation confirm create(application):invalidApplication(application)

 {

 MEP = In-Out;

 requires = {das.validate,das.update};

 }

 operation confirm update(application):invalidApplication(application)

 {

 MEP = In-Out;

 requires = {das.validate,das.update};

 }

 operation confirm process(application):invalidApplication(application)

 {

 MEP = In-Out;

 requires = {das.validate,das.update};

 }

 operation confirm offer(application):invalidApplication(application)

 {

 MEP = Out-In;

 }

 operation confirm acceptOffer(application):invalidApplication

 (application)

A COMPOSITE PROGRAMMING MODEL

83

 {

 MEP = In-Out;

 requires = {das.validate,das.update};

 }

 operation confirm cancel(application):invalidApplication(application)

 {

 MEP = In-Out;

 requires = {das.validate,das.update};

 }

 operation confirm reject(application)

 {

 MEP = Out-In;

 }

 query application[0..n] get() : invalidQuery();

 event newApplication(application)

 {

 MEP = Out;

 application.lifecycle.state = created;

 }

 event applicationCanceled(application)

 {

 MEP = Out;

 application.lifecycle.state = canceled;

 }

 event offerAccepted(application)

 {

 MEP = Out;

 application.lifecycle.state = accepted;

 }

 event offerAccepted(application.offer)

 {

 MEP = Out;

 }

 fault invalidApplication(application)

 {

 }

 }

 public interface scheduler

 {

 operation meeting scheduleInterview(meeting) :

 invalidMeetingRequest(meeting)

 {

 MEP = Out-In;

 }

 fault invalidMeetingNotice(meeting)

 {

 }

 }

COMPOSITE SOFTWARE CONSTRUCTION

84

 public interface background

 {

 operation background check(background): invalidBackground(background),
 backgroundDoesNotMatch(background)

 {

 MEP = Out-In;

 }

 fault invalidBackground(background)

 {

 }

 fault backgroundDoesNotMatch(background)

 {

 }

 }

 public interface employee

 {

 operation application processApplicationReview(application):

 invalidApplication(application)

 {

 MEP = In-Out;

 }

 operation confirm processReview(application):

 invalidReview(application)

 {

 MEP = In-Out;

 requires = {das.validate, das.update};

 }

 operation confirm processOffer(application) :

 invalidOffer(application)

 {

 MEP = In-Out;

 requires = {das.validate, das.update};

 }

 operation confirm rejectCandidate(application) :
 invalidApplication(application)

 {

 MEP = In-Out;

 requires = {das.validate, das.update};

 }

 operation confirm hireApplicant(application) :
 invalidCandidate(application)

 {

 MEP = Out-In;

 }

 fault invalidReview()

 {

 }

 fault invalidCandidate(application)

 {

 }

A COMPOSITE PROGRAMMING MODEL

85

 fault invalidOffer(application)

 {

 }

 fault invalidApplication(application)

 {

 }

 }

 private interface das()

 {

 operation application create(application) :

 invalidApplication(application)

 {

 MEP = Out-In;

 }

 operation application update(application) :

 invalidApplication(application)

 {

 MEP = Out-In;

 }

 operation application markDelete(application) :

 invalidApplication(application)

 {

 MEP = Out-In;

 }

 operation application archive(application) :

 invalidApplication(application)

 {

 MEP = Out-In;

 }

 query application[0..n] get()

 {

 MEP = Out-In;

 }

 fault invalidApplication(application)

 {

 }

 }

 //Service Implementation goes here

}

}

COMPOSITE SOFTWARE CONSTRUCTION

86

Application
Service

Create
Application

Submit
Application

Cancel
Application

Submit
Review

Schedule
Interview

HireSubmit
Offer

Reject
Application

Accept
Offer

New
Application

Event

Offer
Accepted

Event

Archive
queryByID

queryByExample

Load Application

Confirm Application

Process Application

Validate Application

Confirm Application

Review Application

Request Interview?

Rejected

Cancel Application

Application Rejected

Process Schedule

Show Schedule

Load Feedback

Request Offer?

Rejected

Cancel Application Load Offer

Process Offer

Offer Accepted?

Rejected

Accepted

Accepted

Accepted

Receive Acceptance Offer Rejected

Hire Candidate

Application Service

Figure 39. Some of the operations of the application service surface

Implementation

Wsper’s programming language is state based. States are explicit

constructs of the language and are used to control the flow of messages.

Paradoxically, state management has been totally ignored by mainstream

programming languages, yet this is possibly the hardest code to write,

debug and change. This is especially true when the state has to be

persisted over long periods of time. State management is also critical

when dealing with concurrency74.

This is yet another difference between Object Orientation and Service

Orientation in the context of dealing with concurrency. I would like to

encourage you to read this reference74 from V. Akhmechet which offers a

refreshing view on concurrency and object orientation using message

passing.

This is the implementation of the Application Service using wsper. It is

using the on(state) construct which is enabled when the resource is in a

particular state. As the service implementation receives messages the code

can change the state in which the resource is.

A COMPOSITE PROGRAMMING MODEL

87

implementation

{

 application app << receive(application.create,yes)

 {

 //validate & update are invoked automatically;

 //In case application is invalid, we return to the point

 //where we are waiting to receive the request

 retry = true; //retry is true by default

 app.lifecycle.state is created;

 } reply >> confirm(app) || invalidApplication(app);

 on (app.lifecycle.state is created)

 {

 xor flow

 {

 repeat

 {

 app << receive(application.update)

 {

 } reply >> confirm(app) || invalidApplication(app);

 } until (app.lifecycle.state != created);

 app << receive(application.process)

 {

 app.lifecycle.state is submitted;

 } reply >> confirm(app) || invalidApplication(app);

 app << receive(application.cancel)

 {

 app.lifecycle.state is canceled;

 } reply >> confirm(app) || invalidApplication(app);

 }

 }

 on (app.lifecycle.state is submitted)

 {

 xor flow

 {

 app << receive(application.process)

 {

 app.lifecycle.state is reviewed;

 } reply >> confirm(app) ;

 app << receive(application.cancel)

 {

 app.lifecycle.state is canceled;

 } reply >> confirm(app) || invalidApplication(app);

 }

 }

 on(app.lifecycle.state is reviewed)

 {

 or flow

 {

 app << receive(application.reject)

 {

 app.lifecycle.state is rejected;

 } reply >> confirm(app) ;

 app << receive(application.process)

 {

 try

 {

COMPOSITE SOFTWARE CONSTRUCTION

88

 app || backgroundDoesNotMatch(app) <<

 invoke(background.check) >> app;

 foreach(interviewer in app.reviewer)

 {

 app << invoke(scheduler.scheduleInterview)>>

 app;

 }

 confirm(app) << invoke(das.update) >> app;

 app.lifecycle.state is

 interviewScheduled;

 } catch(backgroundDoesNotMatch(app))

 {

 app.lifecycle.state is rejected;

 }

 } reply >> confirm(app) ;

 app << receive(application.cancel)

 {

 app.lifecycle.state is canceled;

 } reply >> confirm(app) || invalidApplication(app);

 }

 }

 on(app.lifecycle.state is interviewScheduled) {

 or flow

 {

 forany(interviewer in app.reviewer)

 {

 app << receive(employee.processReview(app))

 {

 } reply >> confirm(app) | invalidApplication(app);

 }

 app << receive(application.cancel)

 {

 app.lifecycle.state is canceled;

 } reply >> confirm(app) || invalidApplication(app);

 app << receive(employee.rejectCandidate)

 {

 app.lifecycle.state is rejected;

 } reply >> confirm(app) || invalidApplication(app);

 app << receive(employee.processOffer)

 {

 app << invoke(application.offer) >> app;

 app.lifecycle.state is offered;

 } reply >> confirm(app) || invalidApplication(app);

 }

 }

 on(app.lifecycle.state is offered)

 {

 xor flow

 {

 app << receive(application.acceptOffer)

 {

 app.lifecycle.state is accepted;

 } reply >> confirm(app) || invalidApplication(app);

 app << receive(application.cancel)

 {

 app.lifecycle.state is refused;

A COMPOSITE PROGRAMMING MODEL

89

 } reply >> confirm(app) || invalidApplication(app);

 }

 }

 on(app.lifecycle.state is accepted)

 {

 confirm(app) << invoke(employee.hireApplicant) >>

 app.candidate;

 app.lifecycle.state is hired;

 }

 on(app.lifecycle.state in {canceled,rejected,refused})

 {

 terminate();

 }

}

Component and Assembly definitions

We define here an application component as being a composition between

the application and the scheduler service.

component application composes application, scheduler

{

 public interface application;

 public interface employee

 public interface background

 connector(application.scheduleInterview,schedule.schedule

Meeting)

{

 //The map can be defined programmatically

 //or later at deployment time.

 map(application,meeting) =

file(“/wsper/demo/hr/application/app_mee.xslt”);

}

}

The Job Application assembly is represented Figure 40 and the wsper’s

assembly definition is features on the next page.

COMPOSITE SOFTWARE CONSTRUCTION

90

Candidate
Service

Application
Service

Employee
Service

Calendar
Service

Create
Application

Submit
Application

Hire

Interviewer

Role

Recruiter

Role

Schedule
Interview

Submit
Review

Submit
Offer

Offer
Acceptance

Review
Application

Figure 40. Representation of the Job Application Assembly

package org.wsper.demo.hr.assembly

{

 uses {

 package org.wsper.demo.hr.application;

 package org.wsper.demo.hr.candidate;

 package org.wsper.demo.util;

 }

assembly

{

 component application;

 component candidate implements candidate

 component employee implements employee, recruiter, interviewer

 {

 public restricted interface employee

 {

 operation hire(person, employee);

 }

 public interface recruiter;

 public interface interviewer;

 }

 //Canditate -> Application

 connector(candidate.createApplication,application.createAppli

 cation);

 connector(candidate.updateApplication,application.updateAppli

 cation);

 connector(candidate.submitApplication,application.submitAppli

 cation);

 connector(candidate.createApplication,application.createAppli

 cation);

A COMPOSITE PROGRAMMING MODEL

91

 connector(candidate.cancelApplication,application.cancelAppli

 cation);

 connector(candidate.searchApplication,application.getApplication);

 //Application -> Employee

 connector(employee.createInterviewReport,application.reviewAppli

 cation);

 connector(employee.submitInterviewReport,application.createAppli

 cation);

 connector(employee.reviewApplication,application.reviewAppli

 cation);

 connector(employee.updateInterviewReport,application.createAppli

 cation);

 connector(employee.applicationCanceled,application.appli

 cationCanceled);

 connector(employee.hire,application.hireApplicant);

}

}

WSPER and Process Orientation
So far the Job Application business process definition is not explicitly

apparent in wsper. This is because wsper does not yet enable the

specification of business process definitions. The initial work focused on

getting service implementation right on the foundation of a stateful

orchestration language. The working group will investigate later whether

business process definitions can be implemented readily with the

language or if they require specific constructs. It has long been believed

that there is an isomorphic relationship between business process

metamodels and orchestration languages. Personally, I am not yet

convinced this is true. The main problem I see is that the proposed

approach does not create a separation between business entity services

and the process definition. Instead, it requires creating an overall

orchestration definition that includes the process definition and all the

business entity services that participate in the process. This is not

necessarily a good coupling. IBM is, to the best of my knowledge, the

furthest advanced in this area75. However there is not yet and official

transformation between BPMN76 and BPEL.

Figure 41 represents a potential view of the Job Application process based

on the BPMN notation. It has been simplified and does not features an

exception path other than the application could be rejected after the

review by the recruiter or after the interview. It does not account for

timeouts or cancellations. The offer cannot be refused either.

What is striking is that the Application Service and the Application events

are not apparent in the process definition while the boundaries of the

COMPOSITE SOFTWARE CONSTRUCTION

92

solution human tasks (in blue) do not match precisely the activities

defined in the process. Process definitions typically represent the point of

view of user(s) performing activities. This point of view and their

underlying units of work rarely reflect how a system is used or even

constructed. Actually, over time, processes change but systems rarely do.

The outcome of the system(s) is to make sure that this process executes as

specified. In most cases, you should expect having a developer translating

process definitions into user tasks, service invocations and service

interactions. The automation of this development task is still in heavy

research mode and is not critical to start building composite solutions.

Created Submitted

Reviewed Interviewed Offered

Hired

Figure 41. Job Application Business Process In Relation to Tasks, Events and Services

WSPER’s Architecture
Wsper’s goal is to create an application model where business logic can

be captured in platform independent artifacts.

Wsper’s application model aims at being implemented on top of existing

Service Oriented Infrastructures (SOI). A wsper implementation is

typically a compiler which compiles the platform independent artifacts

into platform specific artifacts. This compiler would typically embed the

best practices that are defined today around XML Schema, WSDL or

BPEL design. This approach should lower dramatically the barrier of

entry for new developers. I do not believe that the barrier of entry should

be brought down to the level of Object Orientation. Sure, it is great to be

able to expose some methods of a class as service operations, but forcing

the development of composite solutions to adopt this model is a recipe for

disaster. On the other hand of the spectrum, letting developers loose with

A COMPOSITE PROGRAMMING MODEL

93

the thousands of pages of SOA specifications is also a recipe for disaster

even if they are taught best practices to avoid some of the pitfalls.

Wsper aims at being syntax independent and all syntaxes produced to

write wsper artifacts should be produced from wsper’s metamodel, i.e. be

isomorphic from each other.

Service

Resource

Assembly

WSDL

SCML

WSBPEL

Deployment

Descriptor

P
la
tf
o
rm
 I
n
d
e
p
e
n
d
e
n
t
A
rt
if
a
ct
s

P
la
tf
o
rm
 S
p
e
ci
fi
c
A
rt
if
a
ct
s

SOI

Task
Container

Process
Container

Service
Container

S
e

cu
ri

ty

A
L

S

E
ve

n
t

M
a

n
a

g
e

m
e

n
t

&
 M

o
n

it
o

ri
n

g

Business

Model

WSPER

Meta

model

Syntax Specific Specification

Figure 42. Wsper's Architecture.

7
Designing Services for Reuse

In this section, we are going to explore some of the design consideration

for identifying and creating reusable services. The literature is full of

recommendations on the topic, but the one that stood out for me was the

comprehensive SAP Enterprise Service Design Guide77 with a detailed

list of service identification indicators.

I am going to focus on services that can help improve user productivity

and enterprise services which can be harvested by service enabling

existing service of records. I will also provide a series of recommendation

on message type design, operations (with a focus on message exchange

patterns) and finally I will introduce the notion of a business envelope as

an important design pattern for SOA and composite solutions.

A good starting point when you try to get your hands around the service

concept is to take look at physical services that you use day to day are a

great analogy to think about service oriented design. At the post office for

instance when we mail a letter, we exercise some of the key concepts of

service orientation:

• Context independence – you don’t pay a different price if you

mail an invoice, an order, a simple letter, … i.e. the post office

doesn’t know anything about the context in which you mail a

document. The more context independent you are, the more

likely you will be able to expand the number of consumers

• Quality of Service – A service may offer different QoS: express,

air mail, registered, return receipt… Each quality of service may

open up different consumer opportunities

• Service composition – New services can be offered on top of a

shipping service (e.g. mail order, imagine if every widget

company had to create and operate their own shipping service).

• Abstraction – We don’t know how the service is implemented

(collection, …). After all, you don’t have to call for pick up,

reserve trucks, plains and mailmen do deliver a letter !

COMPOSITE SOFTWARE CONSTRUCTION

96

• No need for integration – No need to go through a complex
customer integration to ship a letter. It is your choice to provide a
return address, that’s as far as customer integration goes.

• Availability – It is there no matter what (and no need to reserve
its usage,…)

At the information system level, service orientation aims at creating
abstractions of existing systems of records that in turn will be composed
into new solutions. For instance you can think of wanting to have a
“Document Management Service” rather than a “Document Management
System”. With a service interface, most processes and existing
applications can leverage document centric functionality rather than
forcing users to use two systems to perform a single task (an application
and document management system).

Improving User Productivity
When trying to identify new services, a good lead is to look for user

inefficiencies. How many applications are necessary to perform tasks

within your organization? The answer is likely to be several (internal or

external) applications per task. This leads to higher training cost, data

quality issues, poor morale… In a composite programming model the task

engine enables users to invoke any service from a particular task, in

essence achieving a first level of federation, directly at the presentation

layer.

Figure 43 looks back at our Job Application example from section 5 and
list a series of services that can be invoked from the recruiter task
reviewing the application to decide whether to invite this candidate for an
interview or not:

• A Google search service would be invoked automatically from
the task (as a pre-action) and display the results for a search on
the candidate name and phone number for instance

• An ADP78 background check could also be requested by the
recruiter after reviewing the resume (or automatically as a post-
action of the task if the outcome is positive)

• An Outlook scheduling service could also be invoked by the
recruiter once he or she has selected the interviewers. The goal of
this service is to schedule interviews. Once Outlook has found
the ideal schedule, it will invoke the webex service that sets up a
webex session if some attendees are remote

• After the phone screening interviews are complete, the recruiter
should be able to invoke an Expedia service which based on the
location of the candidate and the day of the interview will
schedule the candidate trip

DESIGNING SERVICES FOR REUSE

97

Employee.create

Review Application Task

Google.search

Expedia.trip

Outlook.schedule

Application

Employee.relocate

ATT.register
ADP.register

Employee

ADP.check

Employee.hire

webEx.setMeeting

Candidate

Figure 43. Services invoked from the presentation layer augment user productivity

This trend has already started outside a formal traditional programming

model. Mashups79,80,81 have become extremely popular and bring

heterogeneous functionality into a single point of usage.

Normalized interactions
Services are also a great concept to implement normalized interaction

with information system. Most business objects within an organization

span multiple systems. When a given solution needs to update, say some

customer properties, it has to update multiple systems (Figure 44). In a

traditional application model, the solution will update a system of record

(or several systems of record) and the changes will percolate to others via

an EAI backbone.

A large class of services should be designed as a façade to the enterprise’s

systems of record. Over time, this gives a much better chance to retire one

or more of those systems.

This pattern combined with a composite application model provides a

great benefit and introduces a couple of issues. The tremendous benefit is

that the business process context is no longer coupled to the business

object system of record. In a traditional model, there is only one data store

and this context is often implemented by sharing the same tables as the

business object itself. The system of record is left with the management of

the state(s) of the business object instances, guided by its intrinsic state

COMPOSITE SOFTWARE CONSTRUCTION

98

machine (independent of any business process). This coupling alone could

be responsible for 50-60% of the inefficiencies associated to information

system construction.

0

5

10

Order

Customer

Order

Service

Customer

Service

Figure 44. Service Interfaces as Normalized Interactions with Systems of Record

The normalized interaction pattern introduces a couple of issues though.

First and foremost is the management of relationships between the

business objects. Data is relational in nature, there is nothing we can do

about it. This statement compromises the principle of autonomy of the

services. When I call the “getOrderByNumber” operation of the Purchase

Order service, how does the service provide customer or product

information as part of the order (Figure 45)? Does it invoke a customer

service before returning the order data? Does it cache this information?

Does it tap directly in the customer systems of record within its

implementation? Does it push the responsibility further to get that data? Is

it using a Just-In-Time replication mechanism? Well the answer is

probably, all of the above, depending on the performance and scalability

that you are looking for. The ER model supports82 only one type of

relationship based on the primary key-foreign key mechanism. From

there, two types of navigable relationships can be derived (1-to-many and

many-to-many). However these logical types do not make particular

distinctions between the different types of containment relations:

aggregation and composition.

DESIGNING SERVICES FOR REUSE

99

Customer Order

Customer-Order
Association

Customer
Service

Order
Service

Figure 45. The Customer-Order relationship

It is recommended to choose a coarse granularity when it comes to

business entity services such as the one we used for the Application

business object in section 5 which contains application, candidate, and

position information. If we go back to our job application example from

the last section, there is no particular reason to create an application

service and a candidate service because they both have roughly the same

lifecycle (Figure 46). When the candidate is hired, the application’s

candidate information is projected to the employee service.

Candidate

Application

1 0..n

Employee

recruiter

hire

interview

Interview

Position

1

interviewer

1..n
Role

Figure 46. The Job Application Data Model

COMPOSITE SOFTWARE CONSTRUCTION

100

The second issue is the related to the elements that make up a business
object data structure (Figure 47). In object orientation there is no specific
distinction between identity, content and state, it is the responsibility of
the developer to know whether this property represents the object identity
or not, or understand in which state the object is). On the other hand, ER
clearly identifies the concept of identify since it is an essential constituent
to realize relationships. Because OO was designed for a “closed process”
environment it was thought to be an advantage to hide the notion of
identity to the developer.

Business

Object

Identity

Content

State

Location(s)

Replication

Privacy

Specific to SOA and Composite

Applicationsas Application
Boundaries Disappear

Figure 47. Elements of a business object in a service oriented architecture

In a connected world, identity is crucial to find a record or decide whether
two records are really one and the same. Similarly, OO and ER do not
make the concept of state explicit. The developer is left to constantly
create ad hoc state machines. In a connected system the notion of state
and state alignment is critical compared to a closed process, where states
are of course aligned by default. But that’s not it, in a connected system, a
resource must also keep track of the locations of its representations and
the replication policies, and of course consumer of a business object
record must have an idea of the location of the master record. Automatic
notification and/or replications should be triggered to the different
locations in case its state changes. Finally, a resource definition should
allow for privacy policies such that the consumers of the information have
an indication either at the resource type or resource instance levels of how
they should share the information they just consumed.

Business Entity lifecycles
Another type of service is the one that manages business object lifecycle
(which itself almost always need to implement the normalized interaction
pattern). In our example this corresponds to the Job Application Service

DESIGNING SERVICES FOR REUSE

101

(Figure 48). The implementation is typically in WS-BPEL and manages
all the interaction with human tasks and the systems of records.

Create
Application

Submit
Application

Cancel
Application

Notify
Schedule

Reject
Application

Send
Offer

Load Application

Confirm Application

Process Application

Validate Application

Confirm Application

Review Application

Request Interview?

Rejected

Cancel Application

Application Rejected

Process Schedule

Show Schedule

Load Feedback

Request Offer?

Rejected

Cancel Application Load Offer

Process Offer

Offer Accepted?

Rejected

Accepted

Accepted

Accepted

Receive Acceptance Offer Rejected

Hire Candidate

Application Service

Figure 48. Job Application Service Implementation (Pseudo BPEL notation)

CRUD Operations
CRUD operations are typically implemented with the Normalized
Interaction pattern. Except for queries, they are rarely exposed as is to a
service consumer. Generally the CRUD operation consumers are the
business entity lifecycle services.

They often need to consume the identity of the principal which is
currently requesting the create, update or delete.

• Create – They are usually associated to the lifecycle of the
business entity so they would extremely rarely be independent
operations

COMPOSITE SOFTWARE CONSTRUCTION

102

• Read – Business entities need to be retrieved

o Query by IDs, often in relation to work items or
navigation

o Query by examples to find a particular business entity
instance (and its lifecycle)

• Update – Operations that update the state of an object (and
trigger a state transition) are associated to the business entity
lifecycle operations. Operations that purely update the content of
the business entity may be independent operations

• Delete – Pure “delete” operations are extremely rare in business,
Often closes the lifecycle of a business entity (its state cannot be
changed)

o Marked delete

o Ready for archiving

Events
An event represents the occurrence of a given “state”. In the job
application example, states include:

• Application submitted

• Application rejected

• Offer Accepted

Potentially all state transitions will lead to an event. I’d like to make the
point again that in reality, there is no difference between Service Oriented

Architecture and Event Driven Architecture83, they are part of the same
programming model.

In general it is not necessary to publish all possible events, only the one
that are relevant to the business should be published. Events enable even
looser coupling mechanisms because independent business processes may
be triggered by an event. Otherwise we would have to specify a single
business process encompassing several subprocess definitions, making it
hard to change and maintain. However the use of events makes it just a
“tiny bit” more difficult to understand the overall behavior of the system

Decisions
Business rules engines have established themselves as a major piece of IT

infrastructure of the last 15 years. Their role is likely to increase as part of

a new discipline within IT: Enterprise Decision Management84. Complex
and critical decision points within a task, process or business object
should be externalized (and reused as part of a normalization process) as
much as possible.

DESIGNING SERVICES FOR REUSE

103

Service Enablement
Existing or new resources can be exposed as services following this

service enablement architecture (Figure 49).

Service invocation is usually wrapped in both a technical envelope
(SOAP) which enables the secure, reliable, transactional message
exchange and a business envelope which provide context to the request. If
you were to service enable a resource, you would need:

• An endpoint to listen on incoming messages (a service can
expose multiple endpoints, listening on different transports)

• An activation framework that decides how to process a request
from a threading perspective

• A security framework that decides whether the request is
authenticated and authorized and perform decryption services

• A context management service which performs correlation and
dehydration/hydration services

• A Quality of Service facility which monitors requests, responses
and resources

• A connection management facility to deal with connectivity to
resources: RDBMS, existing systems, or other services (web
services, SCA,…)

Connector

• Transaction

• Security

• Invocation framework

Business Logic

Pipeline

Rules

State Machine

Orchestration

Transformation

Data Federation

Transaction

Java / C#

Web

services

Context

• correlation

•dehydration

QoS

•Instrumentation

Security

•Authentication

•Authorization

•Confidentiality

Activation

•Threading,

Technical

Envelope

Business

Envelope

Endpoint

• message

listener

• reliability

Technical

Envelope

Business

Envelope

Context

• correlation

•hydration

Security

•Authentication

•Authorization

•Confidentiality

Endpoint

• message

sender

• reliability

Figure 49. Service Enablement Architecture

COMPOSITE SOFTWARE CONSTRUCTION

104

You may not be familiar with the concept of hydration (and dehydration).
This is a fancy term, part of the WS-BPEL jargon, that relates to the fact
that when a process instance is inactive for some time, the process engine
usually “dehydrates” the instance by storing it on a permanent media
(rather than keeping it in memory for extended periods of time, days,
weeks…). Hydration is the opposite and consists at retrieving the process
instance when a message correlated to it is received.

The business logic itself can potentially be expressed in many different
ways and any combination of (Figure 50):

• Traditional programming languages: Java, C#, … this is mostly
used to simple request processes

• Orchestration (WS-BPEL) or state machines, which are used for
composite services and the implementation of services that
involve a long running sequence of operation

• Transformation: to translate an incoming request in a format
understandable by the resource

• Data federation (EII): when multiple resources need to be
invoked to perform the service

• Transaction logic: to compensate for failure

• Rules and Decisions: for routing purposes for instance

• …

A service container offers all these capabilities more or less packaged
with a set of tools to facilitate the enablement process, the deployment
and minimize the dependencies of the business logic on all the other
aspects of the service (security, transaction, reliability,…)

API or
Query Language

consumer

Service
Interface

Service

Implementation

Figure 50. A Typical service implementation

DESIGNING SERVICES FOR REUSE

105

Business Entity Schema Design Guidelines
There are several XML Schema Design Patterns approaches for schema

design85,86:

• Venetian Blind

• Garden of Eden

• Hybrid (Venetian Eden)

In the Venetian Blind pattern, all global-level components in a schema are

defined as a type except the root. The Garden of Eden pattern in addition

requires that all elements must be defined globally.

The open applications group recommends87 using the Hybrid XML

Schema Design Pattern which is based on the following key principles:

1. Global types and elements are used to represent reusable

constructs that have sufficient semantics independent of the

context in which they are used.

2. Local types and elements are used to represent constructs that

are only meaningful within a specific context.

3. All classes are expressed as complexTypes in the XML Schema.

4. All attributes of a class are declared as local xsd:element within

the corresponding xsd:complexType.

5. Classes associated through aggregation (e.g. Party, BuyerParty)

are globally declared as an xsd:element and referenced in the

aggregating element.

6. Classes associated through composition (e.g.

PurchaseOrderHeader and PurchaseOrderLine) are locally

declared as xsd:element elements within the xsd:complexType of

the PurchaseOrder. A Composition ASBIE is defined as a

specialized type of ASBIE that represents a composition

relationship between the associating ABIE and the associated

ABIE.

7. Generalization associations indicate classes that inherit the

source class. This is represented in XML Schema using

complexType derivation by extension.

This pattern supports well data binding strategies at the presentation and

data level layers.

This is typically the kind of concepts which can be implemented behind

an abstract framework such as wsper from a business object definition. No

COMPOSITE SOFTWARE CONSTRUCTION

106

one should have to deal with the intricacies of XML Schema. XML

Schema is well designed, but is we extend David Chappell’s train of

thought on WS-BPEL, this is again at the byte code level.

Loose coupling is not just about using a common syntax and protocols, it

is also about creating and managing a set of shared semantics. A schema

design architecture would be useless if every schema designer could use,

invent and reinvent its own semantics at will. Dave Linthicum provided a

set of recommendations88 on service construction centered on the idea of

the using abstraction layer vs. a common information model, materialized

by “shared schemas” across service interfaces:

1. You need to face the data first and define a common data or

abstraction layer so that the services are not bound to a

particular schema, but enjoy the use of the data nonetheless. I

would not push a common schema as much as an abstraction

layer.

2. The abstracted or common model should be tested like any other

component.

3. Don't focus as much on force fitting a data model as agreement

across the service domains, and leverage a schema mapping

layer to provide choices in the future and agility down at the data

layer

David’s experience shows that relying on a common set of schemas may

prove to be inflexible when designing service interfaces because it will

prevent these services to evolve separately.

It would be naïve to think that consumers will always be in the position to

adopt the point of view of the provider or that both the provider and the

consumer can always adopt the same point of view. Even if this were true

today, overtime, the consumer and provider may not be in the position to

evolve at the same time towards a newer version of the interface.

Even though mediation is not explicit in the W3C’s web service

architecture89, SOA practitioners have long ago used it systematically to

achieve a higher level of loose coupling and enable separate evolutions

between the consumers and providers. Whichever mediation mechanism

you use: publish/subscribe, orchestration, polymorphic interface… it will

always result in using transformations from the consumer schema to the

provider schema and back. These transformations may be performed by a

coordinator or on premises in the consumer or provider service container.

DESIGNING SERVICES FOR REUSE

107

Since these transformations are inevitable, the question becomes, how can

you minimize their impact at design-time and run-time? Incidentally, if

you were to use a common information model independent of the provider

and consumer interface and still want to achieve loose coupling, you

would incur the cost of two transformations, not to mention that you still

need to transform your message format into a data set consumable by the

implementation of the provider and consumer.

The first steps towards more manageable transformations, is to capture the

semantics of the information contained in your messages and derive

consumer and provider interfaces from these semantics. This is what Dave

calls an “abstraction layer” or others call a canonical data model90 or an

ontology. In this abstraction layer, the structure is less important than the

normalization of the semantics. This problem is not new, David

Webber91, way back in 1998 had introduced the concept of bizcodes, to

normalize diverging names XML formats and deal elegantly with

localization. More recently, the UN/CEFACT has developed a set of

standards to help with the management of semantics and data format: the

Core Component Technical Specification92,93; one of the concepts being

the notion of “context” whereby you can manage the common parts of a

schema across 8 dimensions (for instance, it helps manage the

commonality between a purchase order in the automotive industry in

Germany and a purchase order in the semi-conductor industry in the

USA).

Semantics have to be managed precisely under strict governance

processes and tested. Traceability to physical artifacts such as a service

interface definitions or a database schemas is key to develop a successful

ontology.

Service Operation Design Guidelines
Each interface to a service describes one or more service operations that

can be performed by the service. For extremely simple services, there may

only be one operation. Most services have several operations. Enterprise

services are often a gateway to functionality provided by existing systems.

Their granularity and the operations they can expose depend heavily on

the systems of record they encapsulate.

The most important design rule in a Service Oriented Architecture is to

create operations that can participate in as many business processes as

possible. Actually, this simple rule epitomizes the main difference

between EAI and SOA: even though web-services can be created from an

integration API, these APIs most often expose the points at which the

COMPOSITE SOFTWARE CONSTRUCTION

108

process(es) need to be synchronized with the one of other applications.

This leaves a large class of potentially reusable services embedded with

the system itself inaccessible via this process synchronization API.

One of the key consideration when designing an operation is the choice of

the message exchange patterns which implements the operation. In the

following three sub-sections we will review the WSDL 2.0 message

patterns (MEPs), the transactional MEPs from the WS-TX specification

and the business MEPs from the ebBP specification.

Message Exchange Patterns

WSDL 2.094 was designed with an extensible set of message exchange

patterns as opposed to WSDL 1.1. which only supports a fixed set. The

MEPs model typical message exchanges between software agents from

the point of view of the server (the first agent which receives a message).

They specify the direction, sequencing and cardinality of the messages.

MEPs can be specified between any number of nodes, not just two. In

practice I have not seen people defining their own MEPs but this is

definitely a direction people will go since it will improve the reusability of

complex services.

Examples of WSDL 2.0 MEPs95,96 can be found in the table below.

Pattern/Criteria Short Description
In-only

Exactly one message received from a node in the “In”

direction. This pattern uses no fault rule.

Robust In-Only

Exactly one message received from a node in the “In”

direction. This pattern uses a Message Triggers Fault

rule.

In-Out

Exactly two messages, in order, received by a node

where the direction is “In” and sent by the same node

where direction is “Out”. This pattern uses a Fault

Replace Message rule.
In-Optional-

Out

One or two messages, in order, received from some

node in the “In” direction and optionally sent by the

same node in the “Out” direction. The pattern uses a

Message Triggers Fault rule.

Out-Only

Exactly one message sent to a node in the “Out”

direction. This pattern uses no fault rule.

DESIGNING SERVICES FOR REUSE

109

Robust Out-

Only

Exactly one message sent to a node in the “Out”

direction. This pattern uses a Message Triggers Fault

rule.

Out-In

Exactly two messages, in order, sent to a node where

the direction is “Out” and received from the same node

where direction is “in”. This pattern uses a Fault

Replace Message rule.

Out-Optional-

in

One or two messages, in order, sent from some node in

the “Out” direction and optionally received by the same

node in the “In” direction. The pattern uses a Message

Triggers Fault rule.

Fault rules

For each message, WSDL 2.0 specifies three possible fault rules:

Fault Replaces Message

Any message after the first in the pattern MAY be replaced with a fault

message, which MUST have identical cardinality and direction. The fault

message MUST be delivered to the same target node as the message it

replaces.

Message Triggers Fault

Any message, including the first one, MAY trigger a fault message in

response. Each recipient MAY generate a fault message, and MUST

generate no more than one fault for each triggering message. Each fault

message has direction the reverse of its triggering message. The fault

message MUST be delivered to the originator of the message which

triggered it. If there is no path to this node, the fault MUST be discarded.

No Faults

No faults may be generated.

Transactional Message Exchange Patterns
Transaction protocols represent the message interchange between the

transaction coordinator and transaction participants. The three distributed

transaction protocol categories are97:

• Provisional-Final: do the application work but mark it as

provisional. If told to confirm, mark the provisional work as

COMPOSITE SOFTWARE CONSTRUCTION

110

final. If told to cancel, delete the provisional work or mark it

cancelled.

• ACID is just a version of Provisional-Final where the Provisional

effects are invisible.

o Provisional effects in a business transaction may be

made visible.

o The ACID Isolation requirement does imply locking,

which is not suitable for long-running transactions or

those involving autonomous participants.

• Validate-Do: validate that the application work could be done,

and do it if told to confirm. If told to cancel, no application work

has been done anyway.

• Do-Compensate: immediately do the application work as if it is

final, and later undo if told to cancel. If told to confirm, the

application work has already been done.

A transaction protocol can be decomposed in two elements:

• A state alignment protocol

• A transaction scenario

One of the key requirements of a transaction protocol is that the state

between the coordinator and all the participants be aligned, even when

messages cannot be exchanged via the utilization of timeouts.

A state alignment protocol is mandatory to monitor the execution of

actions. It specifies a message exchange pattern between the two parties

exchanging requests for action. In order to guarantee state alignment, all

requests for action must be followed by a status notification indicating

where the processing of the action of successful or failed.

A state alignment protocol is reusable across any number of requests for

action and should contain:

• One or more Message exchange patterns (In, In-Out,…)

• One or more signals (confirm) and their signification (success,

failure, types of failures,…)

• Timeouts if appropriate (may be overridden by the transaction

scenario specification)

• Transport quality of service (QoS) (e.g. Reliable Delivery)

DESIGNING SERVICES FOR REUSE

111

A state alignment protocol can be used to specify transaction scenarios,

decoupling in essence the scenario specification from the need to always

achieve state alignment.

A transaction scenario will specify which patterns are used to send the

protocol specific requests for action or status notifications. In some cases,

the signals are also specified at this level as a configuration of the

template though it is not a recommended practice.

To minimize the number of messages exchanges, you may combine the

state alignment protocol with the transaction scenario. This is what WS-

TX has done with the WS-AtomicTransaction protocol which is aligned

with a two phase commit protocol:

Prepare Rollback

RollbackCommitAborted

Read-only

Aborted

AbortedPrepared

Committed Message from

the coordinator

to the participant

Figure 51 WS-AT 2PC Transaction Scenario

This transaction scenario98 is composed of three requests for action

(Figure 51) all sent by the coordinator to participants: Prepare, Commit

and Rollback, all implemented using a notification. The participant may

respond to these notifications with different signals (prepared, committed,

aborted, read only). If you look at the state machine of this protocol, you

will see that at any moment in time the state of the transaction is perfectly

known to the participants and coordinator.

COMPOSITE SOFTWARE CONSTRUCTION

112

Operation Business Patterns
In a composite solution, every operation should be annotated with one of

the following business operations99:

Pattern/Criteria Short Description Example Use Case

Notification A formal information

exchange between parties.

A seller notify its buyer of

an incoming shipment by

sending an Advance Ship

Notice (ASN).

Information

Distribution

An informal information

exchange between parties

A Seller notifies its Buyers

of the release of a new

product line that become

part of an product catalog.

As each Buyer retains a

copy of the product

catalog, they may

acknowledge receipt.

Without non-repudiation,

Information Distribution

may be difficult to prove

authorship and adherence.

Request-

Response

A request and response

where no residual obligation

is created (for example, a

request for price and

availability). The

request/response activity

pattern shall be used for

interactions when a

consumer requests

information that a service

provider already has and

when the request for

information requires a

complex interdependent set

of results.

A Buyer asks a Seller in a

request for the price and

availability of a particular

product. This request does

not result in the responding

party allocating product for

future purchase. The Seller

queries its inventory and

other applications to

provide a sufficient

response by checking their

Supply Chain Management

and Inventory systems. The

Seller has to calculate the

current price based on

availability, its Suppliers'

details, etc. Most often, the

Request-Response does not

involve a simple Yes/No

answer from the

responding party.

DESIGNING SERVICES FOR REUSE

113

Request-

Confirm

Used where a service

consumer requests

confirmation about its

status with respect to

previous conversations

or a provider’s

business rules.

A Buyer requests from a Seller if it

is still authorized to sell certain

product. The Buyer expects a

confirmation

response. A response does not

equate to an obligation, although

further action could subsequently

occur. A previous contract may or

may not have existed between the

parties. The Seller confirms he is

still authorized to sell the product.

Typically, the Request-Confirm

involves a simple Yes/No answer

from the responding party.

Query

Response

Used by a service

consumer for an

information query that

service provider

already has.

A Buyer asks a Seller in a request

for the price and availability of a

particular product. This request does

not result in the responding party

allocating product for future

purchase. The Seller maintains a

online product catalog of products

and can provide the Buyer a

response without complex

constraints or backend processing.

Transaction Formal obligation

between the service

consumer and provider

A buyer requests a product or

service in a specific time delivered

to a pre-determined location from a

Seller. Accepting the obligation, the

Seller agrees and commits to

delivery to complete a business

transaction. The parties may have a

pre-existing agreement to exchange

goods and payment.

These business operation types will be implemented with similar

transaction and MEPs and will lead to similar exception handling.

Overtime it would be possible to automate some aspect of the service

definition and implementation.

COMPOSITE SOFTWARE CONSTRUCTION

114

Message type Schema Design Guidelines
Another aspect of operation design is of course the design of the operation

message types. There have been long discussions on the merits of

operation schema design ever since SOAP and WSDL were published.100

It looks like the industry has standardized on the wrapped document-

literal pattern which consists of a root element that name the operation

(since WS-I Basic Profile forbids the utilization of the SOAP action to

identify an operation) and the sub elements contains the payload of the

message.

My recommendation is to construct each message with a business

envelope that follows some of the guidelines of the Open Applications

Group’s Business Object Document (BOD) architecture101 by using:

• A BOD Envelope – identifies the Verb, Noun, revision and

runtime environment (Test or Production in which the BOD

instance is to be used.). The BOD is comprised of :

o An Application Area – communicates information that

can be used by the infrastructure to communicate the

message.

o A Data Area –carries the business specific payload or

data communicated by the BOD.

• Verbs – Verb identifies the action being performed on the

specific Noun of the BOD.

• Nouns – identify the business specific data that is being

communicated (i.e. PurchaseOrder, SalesOrder, Quote, Route,

Shipment, etc.) They are comprised of Components, which are

described below.

o Components –are extensible building blocks of a Noun.

They are comprised of compounds and fields, which are

described below. Components are extensible.

o Compounds – are basic, shared building blocks that are

used by all BODs (i.e. Name, Address, Quantity,

Amount, etc.). They are extensible through contextual

use but not with additional fields (i.e. OrderedQuantity,

ShippedQuantity, BackOrderedQuantity).

o Fields – are the lowest level elements defined in OAGIS.

Fields are fundamental elements that are used to create

Compounds and Components. (i.e. Description, Name,

etc.).

DESIGNING SERVICES FOR REUSE

115

The root element must be unique for every information exchange. The

root element is constructed following this pattern:

<VerbName><NounName>

The list of verbs used by the OAGIS is limited to the following:

• Acknowledge

• Cancel

• Change

• Confirm

• Get

• Sync

• Show

• Update

• Load

• Post

• Process

• Respond

In practice, I find it hard to limit the operations name to these verbs. There

are additional semantics that I would like to convey with other verbs.

Often the operation names look odd depending on the noun. However, I

would really recommend managing your list of verbs to be as small as

possible and stick to it because it will allow you in the future to add

aspects to these types of operations. This guideline is of course inspired

from the REST theory of Roy Fielding102,103.

The nouns typically correspond to the business entity to which the

operation applies.

The Open Applications Group’s Application Area101 consists of:

• Sender – which identifies characteristics and control identifiers

that relate to the application that created the Business Object

Document. The sender area can indicate the logical location of

the application and/or database server, the application, and the

task that was processing to create the BOD.

• CreationDateTime – which is the date time stamp that the given

instance of the Business Object Document was created. This date

must not be modified during the life of the Business Object

Document

COMPOSITE SOFTWARE CONSTRUCTION

116

• BODID – which provides a place to carry a Globally Unique

Identifier (GUID) that will make each Business Object Document

instance uniquely identifiable.

The application area is typically used in combination of technical services

(such as transaction logging, exception handling, re-sending, reporting…)

and conveys information that is typically not found in a SOAP header.

The Data Area is where the payload of the message is carried. This is why

a design such as the BOD is often referred to as a business envelope.

8
How do we start a composite

software factory?

Inhibitors and risks
Inhibitors and risks are naturally associated with the adoption of such a

broad concept and its enabling technologies. Every organization is

different and the guidelines provided here are very general.

I recommend not to start with a large big bang enterprise architecture

initiative, you need to test the waters first and get comfortable with the

concepts and understand how they apply to your organization’s

technologies and processes. Only then, after deploying several services in

production and building a few composite solutions that you would start an

enterprise-wide program. A composite solution program benefits from

having derived the business architecture and having a compelling set of

business goals and derived the strategy to achieve them. The program,

IMHO, needs to be established at the level of solution delivery. Therefore

I will not address selling this type of initiative at the senior management

level, because this is irrelevant. It is a mistake to think that service

oriented architecture and composite solutions should be communicated

and understood by senior management104. They are at the same level as

Java EE and .Net and require a deep background to understand the far

reaching implications they could potentially have on the company. How

would you want them to understand how a “Customer” service is used and

reused if they don’t have a deep technical background? The risk is really

that throwing a silver bullet could backfire if the benefits are marginal or

simply did not meet the expectations of a senior manager. And, let me be

clear, the benefits will be by definition marginal until you finish putting in

place the new technologies and processes that are required to deliver

composite solutions and of course finish training and retaining enough

resources to make these projects successful. This is why you should apply

the Agile principles as often as possible, “only build what you need,

nothing more”. The business needs results not ideas, and we technologists

have a bunch of ideas.

COMPOSITE SOFTWARE CONSTRUCTION

118

Composite Solutions (and Service Oriented Architecture) should remain

under the umbrella of your delivery organization and managed with the

help of enterprise architecture, not higher. Ultimately the risk of your

delivery organization not wanting to adopt this approach cannot be

mitigated. If they are happy building pure Java EE or .Net based solutions

and using their favorite 90s integration platform, there is no reason to

deploy a Composite Solution Platform or a Service Oriented Architecture.

Technically, the main risk is the fragmentation of “the big picture” where

technology choices are made tactically without achieving the degree of

coherence that is needed to ensure that all aspects of the reference

architecture work seamlessly together. An Agile approach need to be

complemented by a precise management of the Composite Solution

Platform maturity model, and guided by the projects an organization

delivers. Inherently, you should be ready to accept the risk of delivery

delays due to the construction of the infrastructure.

A change of this magnitude does require a senior manager champion who

is going to make sure that the initiative is funded and staffed

appropriately. It also requires dedicated enterprise architecture and

delivery resources to help growing the knowledge of the delivery team

and avoid having to train new resources all the time. Without this

commitment, a composite solution platform cannot be built and solutions

cannot be delivered. Initially, it is recommended to create a center of

excellence to help establish a critical mass of trained resources and avoid

competing with other projects for resources. Over time, the existing

delivery organization should be given control of composite solution

delivery.

Another important inhibitor is the impact on project ROI of the lack of

trained resources, infrastructure components and business services (that

could potentially be consumed in composite applications). To mitigate

this risk, an organization needs to define and put in place mechanisms (as

part of the governance processes for instance) by which infrastructure

investments can be planned globally but triggered locally by the needs of

specific projects and solutions. Projects alone cannot be held accountable

for delivering infrastructure elements, shared services or even resource

training.

HOW DO WE START A COMPOSITE SOFTWARE FACTORY?

119

The Composite Application Program
Figure 52 represents the major activities that are associated to the

development of a Composite Solution delivery capability.

Business Strategy

IT Strategy

Vendor Selection Define Standards Methodology

Training

Assess IT

SOA Governance

Set up Organization

Composite Platform

Solution Validation

Design

Implementation

Deployment

Collect Metrics

Business Landscaping

Business Process

Service Identification

Entity Identification

Outsourcing Right-sourcing

Enterprise

Architecture

Solution

Delivery

Business Process
Innovation

Enterprise

Strategy Validation

Figure 52 Establishment of a Composite Application Delivery Practice

At the top, the business and IT strategy strongly influence (and fund) the

road map of the composite solution platform capabilities. They also

influence which composite solutions and enterprise services are built first.

The enterprise architecture group is in charge of establishing the

composite application platform, the governance council as well as

defining the roles and training of the delivery teams.

Typically, a “business process innovation” group will be set up to

translate the business strategy in actionable project. This group is usually

mapping and refining the company’s business model which includes

processes, services and business entities (reference data model). This

group should be staffed by modeling expert to help create assets that can

be more readily consumed by delivery groups

Figure 53 represent a possible organization of composite solution delivery

teams. It shows that the delivery team interacts with the service librarian

COMPOSITE SOFTWARE CONSTRUCTION

120

to identify existing services which can be reused (with or without

changes) by the solution.

If new services need to be delivered they have to go through a governance

process to validate the specification of the service, identify the owner(s)

of the service and its funding model.

Composite

Solution

Delivery

Back-end Integration

Delivery

Service

Governance

Propose

Service

Candidates

Initiate

Enterprise Service

Implementation

• Implement mediation

• Implement legacy

connectors and adaptors

• Develop service specification

• Implement service connector

and adapters

• Evaluate Service

Candidates

• Fund and initiate

Enterprise Service

implementation

• Manage SLAs and

priorities

B2B

Delivery

• Implement B2B integration

Delegate

Backend

Integration

Delegate

B2B

Integration

Tasks

Processes

Services

Service

Registry
Discover

Services

Delegate

Service

Implementation
Service

Delivery

Entities

Decisions

Figure 53. Composite Application Delivery Model

Because of the specialization of skills it is recommended that the service

implementation team delegate B2B and back end integration to dedicated

teams, possibly organized as a center of excellence. Similarly, you might

already have in place an enterprise application integration team that would

be responsible for the service implementation back-end connectivity, as

well as any modification to the back-end systems.

Figure 54 represent the primary responsibilities of the delivery groups in

the context of this proposed delivery organization. The primary owner of

the service specifications should be the service delivery teams. The main

reason is that the skills that are required to design good, modular and

versionable message types are difficult to acquire. Over time these skills

could be transferred to the solution delivery team.

HOW DO WE START A COMPOSITE SOFTWARE FACTORY?

121

Composite

Solution

Delivery

Service

Delivery

B2B

Integration

Delivery

Back-end

Integration

Delivery

Service

Governance

Service Specification

Implement Service

Connectors

and Adaptors

Evaluate service

candidates

Customize legacy code

Primary owner

Contributor

Figure 54. Primary responsibilities of the delivery groups

Finally, Figure 55 displays the activities of the governance council at the

enterprise, service and solution level. SOA governance is part of and must

comply with the broad IT governance activities. SOA Governance is

related to Data Governance via the entity representations embedded in

operations message types. This is why a Reference Data Model (not a

Common Information Model) is represented on the figure. SOA

Governance should enforce the compliance of service message types with

the RDM semantics.

Beyond a pure compliance role, the SOA governance105 is driving the

design, ownership and funding model of services to promote reuse. This

organization should enforce that the design of a service will support the

operations of potential consumers in the future. It should also help fund

additional functionality that is not directly used by initial consumers but

will be important for future consumers.

COMPOSITE SOFTWARE CONSTRUCTION

122

D
a

ta
 G

o
v

e
r
n

a
n

c
e

Enterprise Service

Evaluate

Service Proposal

Direct

Service Design

Direct

Policy Design

Solution

Direct

Change

Management

Manage

Service

Metadata

Direct

Issue

Resolution

Reference Data Model

Registry and Repository

IT
 G

o
v

e
r
n

a
n

c
e Evaluate & Direct

SOA Compliance

Evaluate

Business Model

Manage

Service Planning

Figure 55. Governance activities at the enterprise, service and solution levels

Composite Software Maturity Model

A maturity model is typically composed of four phases106,107,108:

Education – IT is learning the foundational principles and technologies of

Composite Applications and SOA. Learning can include experimental

projects ranging from prototypes to small-scale service deployments. Note

that ROI won’t be recognized if you deploy during this phase; the target is

not clearly defined and benefits may not be understood until after the fact.

Establishment – IT collaborates with business units and senior

management. Having gathered the necessary knowledge, IT defines and

builds the architecture to support current and future composite solution

strategies.

 Execution – By using the knowledge gained from establishing the

architecture, applying lessons learned, and understanding the cost benefits

to mitigate risk, IT can execute a strategy and be confident in its ability to

predict outcomes.

Optimization – Having successfully executed a strategy, the technology

is embraced by IT and business units. Benefits are realized, risks are

managed, and Composite Solutions are part of your problem solving

toolbox. At this point, senior management should be well equipped to

respond to change, unconstrained by technology.

HOW DO WE START A COMPOSITE SOFTWARE FACTORY?

123

Figure 56 An example of a Technology and Organizational Maturity Model

Expected Benefits
From a business perspective, the benefits are multi-fold, even though they
all sound like cliché.

Improved ROI Reusability of assets and improve factoring of the
programming model targets directly the ROI of solution
delivery, either by lowering the cost of delivery or
delivering more features for the same cost

Scope project
for ROI

A composite application model enables to scope
process automation more efficiently and focus initial
development on higher ROI elements without
compromising the completeness of the delivery. Such
programming model is well suited to support iterative
improvements as prescribed by Lean Six Sigma

methodologies109

Time-to-market Reusability of assets and improve factoring of the
programming model reduces significantly the
development cycles and improve the ability to innovate

Flexibility The factoring of a service oriented, process centric and
model driven composite programming model greatly
improve the capacity to adapt and optimize solutions

Lower risks A simplified programming model lowers the risk of not
delivering the solution on time, or at all

Lower
knowledge
barrier

A simplified programming model lowers significantly
the need to train IT staff in an otherwise heteroclite
technology stack

COMPOSITE SOFTWARE CONSTRUCTION

124

New Buy vs
Build paradigm

Today, IT is faced with build vs buy decisions which are
made at the solution level. A composite programming
model offers a new level of granularity and enable an IT
organization to retain control over strategic aspect of the
solution (processes for instance) while sourcing non core
elements from third parties (system of record). An
organization can now decide to buy processes, services,
business object models independently.

Better factoring
of the solution
itself

A composite application model offers better
opportunities to hand-off work back and forth with
outsourcing partners, offering more options achieve
optimal business models

Reuse of
legacy systems

Legacy systems wrapped behind services can be reused
in new solutions without the need to duplicate or change
the business logic the implement

Improved
consolidation
capabilities

As services are often factored to expose a normalized
interface to a series of legacy systems, this presents an
opportunity to consolidate legacy systems without
disrupting the composite solutions that leverage their
business logic

From a delivery perspective we can expect that several roles will benefit

from a composite programming model.

Enterprise

Architect

A common programming model, defined as an abstract

framework, supported by an enterprise wide

implementation helps enforce the utilization of IT

standards since they are usually hidden from the

developers. It also help evolve these standards without

breaking existing solutions

Solution

Architect

Its work is not cluttered by the need to follow countless

recommendations specific to a particular technology.

The programming model is naturally aligned with

business requirements

Business

Analyst

The programming model is a lot more aligned with the

formalism employed to specify requirements

Operational metrics which are more naturally collected

help the dialog with the business to decide the best

course for the evolution of the solution

Application

programmer

Developers focus on the business logic not on the

intricacies of web service specifications

Alleviates the need to learn a large number of standard

technical services (transformation, security,…)

HOW DO WE START A COMPOSITE SOFTWARE FACTORY?

125

The development of complex state machine to match

business process definition is no longer needed. This is

the part of the code that is hardest to write and QA

Quality

Analyst

The factoring enables QA to focus on more manageable

elements of the solution (service, process, task,…)

Reused services require minimum testing

A more natural path between process definition and

process implementation reduces the number of defects

(State Machines are the hardest elements to test)

If we look at the cost structure of delivering solution, we can expect

important cost savings and quality improvements in the development area.

COMPOSITE SOFTWARE CONSTRUCTION

126

Typical Delivery

Costs

% of total

cost

Changes in Total Cost of

Ownership

Suggested benefit

Governance 10% • Much lower cost of

EA compliance

• 80% savings

can be achieved

with the use of an

abstract framework

like WSPER

Development 40% • Improved

communication between

the business and the

delivery team reduces the

analysis effort

• Lower design and

implementation cost

because of the utilization

of a framework and a

better alignment between

programming model and

requirement specifications

• Lower QA costs

• 60% reduction in

the requirements

phase

• Overall, 30% in

design and

implementation

phases. Typically

design and

implementation can

be lowered by 90%

for business

processes alone

• 50% reduction

Maintenance 20% • Solutions can be

changed with much less

disruption because of the

factoring of the

application model

• 50% reduction

Operation 30% • The use of a single

delivery infrastructure

(process engine, service

container, task engine,…)

enables the reuse of

infrastructure assets across

solutions

• Lower administration

cost due to the

standardization of the

solution architecture based

on a framework

• 20% reduction in

license and

hardware cost

• 50% reduction in

administration costs

HOW DO WE START A COMPOSITE SOFTWARE FACTORY?

127

These numbers can have a dramatic impact on an organization’s ability to

innovate. Conservatively, if we consider that the productivity of solution

delivery can increase on average by a factor of 2.5 and that the budget for

innovation could increase by a factor of 4 as a result of Composite

Applications providing better consolidation capabilities, reuse of existing

assets and lower operational costs, we can estimate that the capacity to

innovate can increase by a factor of 10 (Figure 57). Again, I would not

necessarily sale these numbers to senior management because they will

hold you responsible for it. They are featured here to help you manage

your progress and define your own metrics.

60%

30%

10%

35-40%

20-25%

40% Innovation

Consolidation

Operation

IT budget split

Budget 4X

Productivity 2.5X

10X

Figure 57 Impact of Composite Applications on the ability for an organization to

innovate

9
Conclusion

“Business is complicated,” says Jon Bosak110 of Sun Microsystems.

“Any solution that doesn’t reflect that complexity is not a real solution.”

Information systems and their underlying infrastructure have grown to a

point of extreme technical complexity making them difficult to manage,

evolve, or replace deepening the divide between IT and the business.

After having served as the engine behind productivity gains and new

business models, information systems have now become an obstacle to

innovation and change. While web applications have greatly simplified

the way employees, customers, and partners access data to perform

complex tasks in self-service mode, the monolithic architecture of

traditional programming models keeps creating silos that cannot

repurpose this information for new consumption scenarios.

After almost ten years of hard work, the Web Services specification stack

is finally complete as of June 2007. Along the, way this work has spurred

an unprecedented level of innovation even though its primary objective

was only to achieve interoperability between otherwise incompatible

programming models and technologies which had eluded past distributed

computing models.

Some vendors have chosen to bolt these innovations onto their core

Object Oriented runtime, while others have already started developing a

sophisticated model driven, service oriented, process centric composite

programming model. This programming model is bound to change

dramatically the economics of IT and create new opportunities to

innovate, adapt and optimize at a level never seen before. The

combination of asset reuse, as well as the ability to “right-source” assets

from their point of lowest operational cost will create a wide-spread

adoption of composite solutions across all industries. The success of

mashups at the presentation layer is just an indication of what’s yet to

come at the process and information layers.

This book strived to give you a new perspective on SOA, web services,

programming models, model driven architecture and tools. The goal was

to demonstrate that massive productivity gains can still be achieved by

rationalizing the programming model of information systems and by

COMPOSITE SOFTWARE CONSTRUCTION

130

helping developers implement business requirements more readily

without transforming, hopelessly, business users into developers.

The development of composite solutions is not simple. It requires major

paradigm shifts across all IT functions, the adoption of a large footprint of

new technologies, new skills and a stringent discipline. This change can

only happen within and with the cooperation of the delivery organization.

A change of this magnitude requires new levels of abstraction. Without

them, developers will be challenged by the sheer number of technologies

and best practices they have to deal with in the delivery process. I

sincerely hope this book will help you leverage and direct your

investments in your Service Oriented Architecture and build the

foundation of your Composite Solution Platform.

Jean-Jacques Dubray

Seattle, October 2007

Index
A

activity lifecycle service, 62

Analytics, 26, 31

architect, 6, 42

assembly, 25, 41, 42, 43, 55, 71, 72,

73, 74, 75, 76, 89, 90

B

B2B, 28, 54, 55, 58, 59, 120

business object, 6, 58, 69, 124

C

choreography, 60, 76, 135

context, 6, 11, 19, 21, 24, 25, 30, 58,

59, 61, 62, 86, 95, 103, 105, 120

coordination, 26, 60, 61, 62

coordinator, 31, 62, 73, 109, 110, 111

D

delivery, 1, 30, 34, 35, 113, 117, 118,

119, 120, 121, 123, 124, 126, 127

Denial of service, 44

E

EAI, 50, 107

ebXML, 26, 54, 55, 60, 133

EDI, 54

EII, 43, 50, 104

Elevation of privilege, 44

ESB, 31

ETL, 31, 43, 50

G

governance, 40, 119, 120, 121

I

innovation, 1, 16, 34, 57, 60, 119,

127, 129

Integration, 43, 49, 51

interface, 2, 40, 42, 51, 56, 58, 60, 67,

71, 73, 74, 82, 83, 84, 85, 89, 90,

96, 107, 124

M

Management, 5, 26, 32, 55, 61, 96,

112

Maturity, 122, 123

message, 24, 27, 52, 54, 57, 63, 69,

74, 76, 103, 108, 109, 110, 114

Message Exchange Patterns, 109

metadata, 58

Monitoring, 32

O

Object Orientation, 47, 73, 86

orchestration, 23, 24, 30, 51, 55, 60,

67, 74

P

policy, 42

Q

quality of service, 42, 95, 110

R

ReourceFramework, 70

repository, 34, 54

Repudiability, 44

Resource, 74, 75

COMPOSITE SOFTWARE CONSTRUCTION

132

S

SCA, 43, 55, 56, 59, 60, 103

Schema, 58, 59, 69, 105, 114, 135

SDO, 69, 74

Security, 31, 44, 54

Service Enablement, 103

signal, 27, 28

SOAP, 2, 54, 56, 60, 61, 103

Spoofing, 44

state, 6, 9, 26, 28, 38, 58, 64, 73, 74,

78, 81, 83, 86, 87, 88, 89, 104,

110, 111, 124

strategy, 15, 40, 119, 122

T

Threat, 44

Transaction, 26, 27, 54, 104, 109,

111, 113

transport, 7, 23, 31, 54, 59

U

UDDI, 54

UML, 6, 49

W

WCF, 59, 69

WS-BPEL, 24, 55, 63, 66, 74, 104,

135

WS-CAF, 60, 61, 133

WSDL, 2, 54, 60, 67, 71, 73

Wsper, 71, 72, 73, 75, 92, 93

X

XML, 53, 54, 57, 58, 59, 60, 69, 105,

135

XPath, 58

About The Author
Jean-Jacques Dubray is a SOA Enterprise Architect in a large financial

institution. He started working on SOA in 1998 at NEC Systems

Laboratories. Since then, he has architected three composite application

frameworks at eXcelon, Eigner and Attachmate.

He has contributed to various SOA specifications as an editor of the

OASIS ebXML Business Process specification and a co-author of the

Service Component Architecture, Service Data Object and wsper. He has

contributed to the OAGIS, BPML, WS-CAF, WS-TX and WS-CDL

working groups.

He is a contributor to InfoQ.com and the creator of ebpml.org,

flashreader.org and resustain.org

He earned a Ph.D. from the Faculty of Science of Luminy (Marseilles,

France), home of the Prolog Programming language, where he taught an

Object Oriented Programming class. He received his B.Sc. and M.Sc.

from the Ecole Centrale de Lyon (Ecully, France).

He lives near Seattle where he enjoys hiking, kayaking, gardening and

playing soccer or music with his kids. Even though Washington wines are

quite an experience, his favourite is still a simple Patrimonio Rosé

(chilled) from the island of Corsica where his family is from.

End Notes

1
 M. Ellsworth “Grid Computing Takes Off in the Enterprise”,

http://www.ud.com/company/news/news_2003/05012003_enterprisear

chitect.pdf
2
 E. Newcomer et al “Understanding SOA with Web Services”, Addison

Wesley, 2006
3
 J. McGovern et al “Enterprise Service Oriented Architectures: Concepts,

Challenges, Recommendations”, Springer, 2006
4
 P. Herzum et al “Business Component Factory”,

http://www.componentfactory.org/
5
 J. Sutherland “Why I love the OMG”,

http://jeffsutherland.com/papers/StandardView/LoveOMG.htm
6
 T. Reenskaug, ‘The Model-View-Controller (MVC) Its Past and

Present’, JavaZONE, Oslo, 2003,

http://heim.ifi.uio.no/~trygver/2003/javazone-jaoo/MVC_pattern.pdf
7
 Dave McComb, Semantic Arts, Private Communication, 2004

8
 Nicholas Carr, “IT Doesn’t Matter”, republished at

http://www.roughtype.com/archives/2007/01/it_doesnt_matte.php
9
 P. Herzum et al “Business Component Factory”,

http://www.componentfactory.org/ “
10

 J. Löwy,

http://files.skyscrapr.net/users/arcast/rr/ARCastTVRR20070711-

LowyWSAT.mp3
11

 R. Bosák Ostrava, “Interceptor Design Pattern “,

http://dailydevelopment.blogspot.com/2007/04/interceptor-design-

pattern.html
12

 David Orchard, “Guide to Versioning XML Languages using new

XML Schema 1.1 features”, http://www.w3.org/TR/xmlschema-

guide2versioning/#openContent
13

 XLang, http://www.ebpml.org/xlang.htm
14

 BPML, http://www.ebpml.org/bpml_1_0_june_02.htm
15

 WSFL, http://www.ebpml.org/wsfl.htm
16

 WS-BPEL,

http://www.eclipse.org/tptp/platform/documents/design/choreography
17

 J.J. Dubray, “WSPER: An Abstract SOA Framework”, 2007,

http://www.wsper.org/primer.html
18

 D. Longworth “Sending an unmistakeable message”,

LooselyCoupled.com

http://www.looselycoupled.com/stories/2003/message-infr0528.html
19

 Sun Microsystems, “Java 2 Platform, Enterprise Edition Overview”,

http://java.sun.com/j2ee/appmodel.html
20

 Microsoft, “.Net Framework 3.0 Programming Model: Feature Area

Overviews”, http://msdn2.microsoft.com/en-us/library/ms717447.aspx

COMPOSITE SOFTWARE CONSTRUCTION

136

21

 Jungmin Ju, “The state-of-the-art of business process modeling and

execution”, Ph.D. Thesis, 2007,

http://iisl.postech.ac.kr/publication/thesis/2007_jjm.pdf
22

 D. Chappell “Using the ESB Service

Container”,http://www.onjava.com/pub/a/onjava/excerpt/esb_ch6/inde

x.html
23

 G. Moore’s “Living on the fault line”,

http://www.businessweek.com/2000/00_35/b3696079.htm
24

 B. Lublinsky “Explore the role of service repositories and registries in

SOA”, DeveloperWorks,

http://www.ibm.com/developerworks/library/ar-servrepos/index.html
25

 SCA Specifications,

http://www.osoa.org/display/Main/Service+Component+Architecture+

Specifications
26

 http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/vsent7/html/vxconDesigningForSecurability.asps
27

 B. Lublinsky “Supporting Policies in

SOA”,http://www.ibm.com/developerworks/webservices/library/ws-

support-soa/
28

 B. Lublinsky, “Defining SOA as an architectural

style”,http://www.ibm.com/developerworks/library/ar-soastyle/
29

 D. Panda, “Hot deployment, How hot is it?”,

http://radio.weblogs.com/0135826/2004/05/17.html#a30
30

 G. Hamilton, “Multithreaded toolkits: A failed dream?”,

http://weblogs.java.net/blog/kgh/archive/2004/10/multithreaded_t.html
31

 M. Zahn, “Delegates and Events in

C#”,http://www.akadia.com/services/dotnet_delegates_and_events.htm

l
32

 M. Boyd, “Comparing and Transforming Between Data Models via an

Intermediate Hypergraph Data Model”,http://www.arc-

mind.com/whitepapers/SpringIntroduction.pdf
33

 Wikipedia, “Control Flow”, http://en.wikipedia.org/wiki/Control_flow
34

 I. Ankorion, “Change Data Capture – Efficient ETL for Real-Time

BI”,http://www.dmreview.com/editorial/dmreview/print_action.cfm?art

icleId=1016326
35

 Gregor Hohpe et al, “Enterprise Integration Patterns” Addison-Wesley,

ISBN-10: 0321200683
36

 D. Bakken, “Middleware”,

http://www.eecs.wsu.edu/~bakken/middleware-article-bakken.pdf
37

 D. Winer “Bio”,http://en.wikipedia.org/wiki/Dave_Winer
38

 Wikipedia “ebXML”, http://en.wikipedia.org/wiki/EbXML
39

 D. Box, “A brief history of SOAP”,

http://webservices.xml.com/pub/a/ws/2001/04/04/soap.html

END NOTES

137

40

 M. Bernauer et al “Comparing WSDL-based and ebXML-based

approaches for B2B protocol specifications”. ICSOC 2003,

http://www.big.tuwien.ac.at/research/publications/2003/1103-slides.pdf
41

 POJO: Plain Old Java Object
42

 BEA, IBM, Oracle, Microsoft (in alphabetical order)
43

 ICSOC, http://www.icsoc.org
44

 Alistair Barros et al “Service Interaction Patterns”,

http://sky.fit.qut.edu.au/~dumas/ServiceInteractionPatterns/patterns.ht

ml
45

 InnoQ, “Web Services Standards as of Q1 2007”,

http://www.innoq.com/soa/ws-standards/poster/
46

 M. Papazoglou et al “A Survey of Web service technologies”,

Technical Report, University of Trento,

http://eprints.biblio.unitn.it/archive/00000586/
47

 M. Leroux Bustamente “Making Sense of all these Crazy Web Service

Standards”. InfoQ, http://www.infoq.com/articles/ws-standards-wcf-

bustamante
48

 F. Leyman, “Jump Onto the Bus”, Keynote, ICSOC 2003,

http://www.unitn.it/convegni/download/icsoc03/keynote/P_Leymann.p

df
49

 R. Costello “Creating Variable Content Container Elements”,

http://www.xfront.org/variablecontentcontainer.pdf
50

 http://www.w3.org/TR/xmlschema-guide2versioning/#wildcard
51

 B. Lublinsky “Versioning in SOA”, http://msdn2.microsoft.com/en-

us/arcjournal/bb491124.aspx
52

 J.J. Dubray et al “An eXtensible Object Model for Business-to-Business

eCommerce Systems”, OOPSLA 1999,

http://jeffsutherland.com/oopsla99/Dubray/dubray.html
53

 J.J. Dubray et al “An XML information server for advanced B2B

architectures”, http://www.gca.org/papers/xmleurope2000/pdf/s25-

03.pdf
54

 Andrew Davidson “Schema For Object Oriented XML”, W3C Note,

http://www.w3.org/TR/NOTE-SOX/
55

 M. Yader et al “The Battle to Transport XML Business

Documents”,http://drrw.net/presentations/XML2002%20Baltimore/XM

L2002.ZIP
56

 Martin Fowler, “Inversion of Control Containers and the Dependency

Injection Pattern”, http://www.martinfowler.com/articles/injection.html
57

 Rod Johnson et al, Interface21, http://www.springframework.org/
58

 G. Hohpe, “Let’s have a conversation”,

http://dsonline.computer.org/portal/site/dsonline/menuitem.9ed3d9924a

eb0dcd82ccc6716bbe36ec/index.jsp?&pName=dso_level1&path=dsonl

ine/2007/06&file=w3tow.xml&xsl=article.xsl&

COMPOSITE SOFTWARE CONSTRUCTION

138

59

 J.J. Dubray, “WS-Choreography Definition Language”,

http://www.ebpml.org/ws_-_cdl.htm
60

 G. Hohpe, “Conversation between loosely coupled systems”.

http://www.infoq.com/presentations/hohpe-soa-conversations
61

 B. Lublinsky, “Service Composition”,

http://www.infoq.com/articles/lublinsky-soa-composition
62

 WS-CAF, OASIS, http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=ws-caf
63

 C. Barreto, “WS-BPEL v2.0 Primer”, http://www.oasis-

open.org/committees/download.php/23974/wsbpel-v2.0-primer.pdf
64

 OSGi Consortium, http://www.osgi.org
65

 J. McKendrick, “Do we need this animal called BPEL4People”,

http://www.webservices.org/weblog/joe_mckendrick/do_we_need_this

_animal_called_bpel4people
66

 A. da Silva “Simplify WSDL Composition with the ETTK WSDL Port

Type Aggregator”,

http://www.ibm.com/developerworks/webservices/library/ws-

simplewsdl/
67

 S. Graham “Publish-Subscribe Notification for Web services”,

http://www.ibm.com/developerworks/library/ws-pubsub/WS-

PubSub.pdf
68

 M. Humphrey, “An Early Evaluation of WSRF and WS-Notification

via WSRF.NET”,

http://www.cs.virginia.edu/~gsw2c/WSRFdotNet/wsrf_Grid2004.pdf
69

 M. Weaver “Using WS-Notification”,

http://www.ibm.com/developerworks/grid/library/gr-ws-not/
70

 http://www.wsper.org
71

 A. Rotem-Gal-Oz “Bridging the gap between BI and SOA”,

http://www.infoq.com/articles/BI-and-SOA
72

 R. Schulte “The Growing Role of Events in Enterprise Applications”,

2003 http://www.gartner.com/DisplayDocument?doc_cd=116129
73

 J.J. Dubray “WSPER: An Abract SOA Framework”,

http://www.wsper.org/primer.html
74

 V. Akhmechet “Erlang Style Concurrency”,

http://www.defmacro.org/ramblings/concurrency.html
75

 R. Kong “Transform WebSphere Business Modeler process Models to

BPEL”,

www.ibm.com/developerworks/websphere/library/techarticles/0504_ko

ng/0504_kong.html
76

 S. White et al “Business Process Modeling Notation Specification

v1.0”,

http://www.bpmn.org/Documents/OMG%20Final%20Adopted%20BP

MN%201-0%20Spec%2006-02-01.pdf

END NOTES

139

77

 “Enterprise Service Design Guide”, SAP,

https://www.sdn.sap.com/irj/servlet/prt/portal/prtroot/docs/library/uuid/

943e83e5-0601-0010-acb5-b16258f5f20a
78

 ADP is a US corporation that provides employers with employee

background checks
79

 G. Terrill “Are Mashups EAI 2.0”, InfoQ.com 2007,

http://www.infoq.com/news/2007/08/mashups-eai-2
80

 M. Matsumura “SOA meets Web 2.0 at SOA executive forum”,

InfoQ.com, http://www.infoq.com/news/SOA-Meets-Web-2.0-Panel-

at-Infow
81

 J.J. Dubray “A Mashup to help young multilingual children learn how

to read”, http://www.flashreader.org/tour.aspx
82

 I am referring to the implementation level, not the logical level, the

semantics of containment (aggregation, composition) are implemented

at the DAL level, not within the ER implementation itself.
83

 R. Schulte, “The Growing Role of Events in Enterprise Applications”,

http://www.gartner.com/DisplayDocument?doc_cd=116129
84

 J. Taylor, “Enterprise Decision Management Blog”,

http://www.edmblog.com/weblog/
85

 R. Costello “Global vs Local”,

http://www.xfront.com/GlobalVersusLocal.html
86

 S. Hu, “XML Schema considerations for WSDL design in conformation

with WS-I Basic Profile “,

http://www.ibm.com/developerworks/webservices/library/ws-soa-

xmlwsdl.html
87

 OASIS 9.0 Naming and Design Rules,

http://www.openapplications.org/downloads/oagis/loadfrm90NDR.htm
88

 D. Linthicum “Using a Common Data Model with SOA”,

http://weblog.infoworld.com/realworldsoa/archives/2007/07/using_a_c

ommon.html
89

 D. Booth, “Web Services Architecture”, http://www.w3.org/TR/ws-

arch/#service_oriented_model
90

 J. van Hoof “How to mediate semantics in an EDA”, http://soa-

eda.blogspot.com/2007/04/how-to-mediate-semantics-in-eda.html
91

 D. Webber. “Bizcodes: Empowering the Internet”,

http://www.touchbriefings.com/pdf/967/46.pdf
92

 SAP Developer Network, “UN/CEFACT Core Components Technical

Specification”,

https://www.sdn.sap.com/irj/sdn?rid=/webcontent/uuid/1baa57f9-0a01-

0010-1684-c42a08982294
93

 G. Stuhec “How to Solve the Business Standards Dilemma – The CCTS

Standards Stack”,

COMPOSITE SOFTWARE CONSTRUCTION

140

https://www.sdn.sap.com/irj/sdn/go/portal/prtroot/docs/library/uuid/30d

35ece-5c67-2910-64aa-cb331726ee1c
94

 J.J. Moreau “What’s new in WSDL 2.0”,

http://www.idealliance.org/papers/dx_xmle04/slides/moreau.pdf
95

 R. Chinnici “WSDL v 2.0 Part 2: Adjuncts”, W3C,

http://www.w3.org/TR/wsdl20-extensions/
96

 A. Lewis “WSDL v2.0: Additional MEPs”,W3C,

http://www.w3.org/TR/2007/NOTE-wsdl20-additional-meps-

20070626/
97

 Choreology, “The Business Transaction Management Spectrum”

http://www.choreology.com/standards/standards_btm_spectrum.htm
98

 E. Newcomer et al “WS-AtomicTransaction”, http://docs.oasis-

open.org/ws-tx/wstx-wsat-1.1-spec-os.pdf
99

 J.J. Dubray et al “OASIS ebBP Specification v2.0.4”, http://docs.oasis-

open.org/ebxml-bp/2.0.4/ebxmlbp-v2.0.4-Spec-cs-en.pdf
100

 R. Butek “Which style of WSDL should I use?”

,http://www.ibm.com/developerworks/webservices/library/ws-

whichwsdl/
101

 Open Applications Group Development Methodology,

http://www.openapplications.org/downloads/developmentmethodology/

2006%20OAGi%20Development%20Methodology.pdf
102

 Wikipedia, “REpresentational State Transfer”,

http://en.wikipedia.org/wiki/Representational_State_Transfer
103

 R. Costello, “Buiding a Web Service the REST way”,

http://www.xfront.com/REST-Web-Services.html
104

 H. Wilms “Selling SOA to the business”,

http://www.infoq.com/news/2007/08/selling-soa
105

 W. Keller “SOA Governance – Long term SOA Implementation and

Management”, http://www.infoq.com/articles/keller-soa-governance
106

 J.J. Dubray, “Fundamentals of Service Orientation”, Attachmate 2005,

http://www.attachmate.com/NR/rdonlyres/C44FE6A5-E23F-4FEC-

8A3B-5FA24A083A5D/0/050003_Fund_of_SO.pdf
107

 S. Tilkov “SOA Maturity Models”,

http://www.infoq.com/news/2007/02/soa-maturity-models
108

 S. Inaganti, “SOA Maturity Model”

http://www.bptrends.com/publicationfiles/04-07-ART-

The%20SOA%20MaturityModel-Inagantifinal.pdf
109

 Lean Advisors Inc. “Lean Six Sigma Program “,

http://www.leanadvisors.com/lean_sixsigma_implementation.cfm
110

 Jon Bosak, ebXML mailing list, 2001

