

1

Fundamentals of
Computer Design 1
And now for something completely different.

Monty Python’s Flying Circus

1.1 Introduction 1

1.2 The Task of a Computer Designer 3

1.3 Technology and Computer Usage Trends 6

1.4 Cost and Trends in Cost 8

1.5 Measuring and Reporting Performance 18

1.6 Quantitative Principles of Computer Design 29

1.7 Putting It All Together: The Concept of Memory Hierarchy 39

1.8 Fallacies and Pitfalls 44

1.9 Concluding Remarks 51

1.10 Historical Perspective and References 53

Exercises 60
ry. In
ollars
emo-

This
 used
ical
puter
 elec-
bout
t tech-

 to
ustry.
f the
ore

igher
Computer technology has made incredible progress in the past half centu
1945, there were no stored-program computers. Today, a few thousand d
will purchase a personal computer that has more performance, more main m
ry, and more disk storage than a computer bought in 1965 for $1 million.
rapid rate of improvement has come both from advances in the technology
to build computers and from innovation in computer design. While technolog
improvements have been fairly steady, progress arising from better com
architectures has been much less consistent. During the first 25 years of
tronic computers, both forces made a major contribution; but beginning in a
1970, computer designers became largely dependent upon integrated circui
nology. During the 1970s, performance continued to improve at about 25%
30% per year for the mainframes and minicomputers that dominated the ind
The late 1970s saw the emergence of the microprocessor. The ability o
microprocessor to ride the improvements in integrated circuit technology m
closely than the less integrated mainframes and minicomputers led to a h
rate of improvement—roughly 35% growth per year in performance.

1.1 Introduction

2

Chapter 1 Fundamentals of Computer Design

uced
eing

puter
with a
am-
n of
d the

ssible
es, in
t in the
f over

This growth rate, combined with the cost advantages of a mass-prod
microprocessor, led to an increasing fraction of the computer business b
based on microprocessors. In addition, two significant changes in the com
marketplace made it easier than ever before to be commercially successful
new architecture. First, the virtual elimination of assembly language progr
ming reduced the need for object-code compatibility. Second, the creatio
standardized, vendor-independent operating systems, such as UNIX, lowere
cost and risk of bringing out a new architecture. These changes made it po
to successively develop a new set of architectures, called RISC architectur
the early 1980s. Since the RISC-based microprocessors reached the marke
mid 1980s, these machines have grown in performance at an annual rate o
50%. Figure 1.1 shows this difference in performance growth rates.

FIGURE 1.1 Growth in microprocessor performance since the mid 1980s has been substantially higher than in ear-
lier years. This chart plots the performance as measured by the SPECint benchmarks. Prior to the mid 1980s, micropro-
cessor performance growth was largely technology driven and averaged about 35% per year. The increase in growth since
then is attributable to more advanced architectural ideas. By 1995 this growth leads to more than a factor of five difference
in performance. Performance for floating-point-oriented calculations has increased even faster.

0

50

100

150

200

250

300

350

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

Year

1.58x per year

1.35x per year

SUN4

MIPS
R2000

MIPS
R3000

IBM
Power1

HP
9000

IBM Power2

DEC Alpha

DEC Alpha

DEC Alpha

 SPECint rating

1.2 The Task of a Computer Designer

3

nifi-
mple,
IBM
d in
n of-
ance
n in-

icro-
 Work-
ustry.
m
 Main-
um-
being

ssor
th ar-
ais-
1—a
 com-

icro-
gy is

com-
ossi-
of a
bser-

style

con-
tions
 this
timu-

what
imize
ects,
ple-
sign,

The effect of this dramatic growth rate has been twofold. First, it has sig
cantly enhanced the capability available to computer users. As a simple exa
consider the highest-performance workstation announced in 1993, an
Power-2 machine. Compared with a CRAY Y-MP supercomputer introduce
1988 (probably the fastest machine in the world at that point), the workstatio
fers comparable performance on many floating-point programs (the perform
for the SPEC floating-point benchmarks is similar) and better performance o
teger programs for a price that is less than one-tenth of the supercomputer!

Second, this dramatic rate of improvement has led to the dominance of m
processor-based computers across the entire range of the computer design.
stations and PCs have emerged as major products in the computer ind
Minicomputers, which were traditionally made from off-the-shelf logic or fro
gate arrays, have been replaced by servers made using microprocessors.
frames are slowly being replaced with multiprocessors consisting of small n
bers of off-the-shelf microprocessors. Even high-end supercomputers are
built with collections of microprocessors.
 Freedom from compatibility with old designs and the use of microproce
technology led to a renaissance in computer design, which emphasized bo
chitectural innovation and efficient use of technology improvements. This ren
sance is responsible for the higher performance growth shown in Figure 1.
rate that is unprecedented in the computer industry. This rate of growth has
pounded so that by 1995, the difference between the highest-performance m
processors and what would have been obtained by relying solely on technolo
more than a factor of five. This text is about the architectural ideas and ac
panying compiler improvements that have made this incredible growth rate p
ble. At the center of this dramatic revolution has been the development
quantitative approach to computer design and analysis that uses empirical o
vations of programs, experimentation, and simulation as its tools. It is this
and approach to computer design that is reflected in this text.

Sustaining the recent improvements in cost and performance will require
tinuing innovations in computer design, and the authors believe such innova
will be founded on this quantitative approach to computer design. Hence,
book has been written not only to document this design style, but also to s
late you to contribute to this progress.

The task the computer designer faces is a complex one: Determine
attributes are important for a new machine, then design a machine to max
performance while staying within cost constraints. This task has many asp
including instruction set design, functional organization, logic design, and im
mentation. The implementation may encompass integrated circuit de

1.2 The Task of a Computer Designer

4

Chapter 1 Fundamentals of Computer Design

th a
logic

thors
 the
ore

of the
n set
g in-

-
ry be-
e im-
. The

h as
ssing
ted)
e but

ailed
 ma-
early
tion.
d in

tion,

ents
 what
ments
ften
 ma-
 set
nt an
ss of
 that

rizes
 Many
rs.
t must
urse,
rfor-
packaging, power, and cooling. Optimizing the design requires familiarity wi
very wide range of technologies, from compilers and operating systems to
design and packaging.

In the past, the term computer architecture often referred only to instruction
set design. Other aspects of computer design were called implementation, often
insinuating that implementation is uninteresting or less challenging. The au
believe this view is not only incorrect, but is even responsible for mistakes in
design of new instruction sets. The architect’s or designer’s job is much m
than instruction set design, and the technical hurdles in the other aspects
project are certainly as challenging as those encountered in doing instructio
design. This is particularly true at the present when the differences amon
struction sets are small (see Appendix C).

In this book the term instruction set architecture refers to the actual programmer
visible instruction set. The instruction set architecture serves as the bounda
tween the software and hardware, and that topic is the focus of Chapter 2. Th
plementation of a machine has two components: organization and hardware
term organization includes the high-level aspects of a computer’s design, suc
the memory system, the bus structure, and the internal CPU (central proce
unit—where arithmetic, logic, branching, and data transfer are implemen
design. For example, two machines with the same instruction set architectur
different organizations are the SPARCstation-2 and SPARCstation-20. Hardware
is used to refer to the specifics of a machine. This would include the det
logic design and the packaging technology of the machine. Often a line of
chines contains machines with identical instruction set architectures and n
identical organizations, but they differ in the detailed hardware implementa
For example, two versions of the Silicon Graphics Indy differ in clock rate an
detailed cache structure. In this book the word architecture is intended to cover
all three aspects of computer design—instruction set architecture, organiza
and hardware.

Computer architects must design a computer to meet functional requirem
as well as price and performance goals. Often, they also have to determine
the functional requirements are, and this can be a major task. The require
may be specific features, inspired by the market. Application software o
drives the choice of certain functional requirements by determining how the
chine will be used. If a large body of software exists for a certain instruction
architecture, the architect may decide that a new machine should impleme
existing instruction set. The presence of a large market for a particular cla
applications might encourage the designers to incorporate requirements
would make the machine competitive in that market. Figure 1.2 summa
some requirements that need to be considered in designing a new machine.
of these requirements and features will be examined in depth in later chapte

Once a set of functional requirements has been established, the architec
try to optimize the design. Which design choices are optimal depends, of co
on the choice of metrics. The most common metrics involve cost and pe

1.2 The Task of a Computer Designer

5

 per-
nt that
some
sing
ost/

der is
e to

erfor-
act of

ost/
ds in
s not
 The

tion

n-

2)

mance. Given some application domain, the architect can try to quantify the
formance of the machine by a set of programs that are chosen to represe
application domain. Other measurable requirements may be important in
markets; reliability and fault tolerance are often crucial in transaction proces
environments. Throughout this text we will focus on optimizing machine c
performance.

In choosing between two designs, one factor that an architect must consi
design complexity. Complex designs take longer to complete, prolonging tim
market. This means a design that takes longer will need to have higher p
mance to be competitive. The architect must be constantly aware of the imp
his design choices on the design time for both hardware and software.

In addition to performance, cost is the other key parameter in optimizing c
performance. In addition to cost, designers must be aware of important tren
both the implementation technology and the use of computers. Such trend
only impact future cost, but also determine the longevity of an architecture.
next two sections discuss technology and cost trends.

Functional requirements Typical features required or supported

Application area Target of computer

General purpose Balanced performance for a range of tasks (Ch 2,3,4,5)

Scientific High-performance floating point (App A,B)

Commercial Support for COBOL (decimal arithmetic); support for databases and transac
processing (Ch 2,7)

Level of software compatibility Determines amount of existing software for machine

At programming language Most flexible for designer; need new compiler (Ch 2,8)

Object code or binary compatible Instruction set architecture is completely defined—little flexibility—but no i
vestment needed in software or porting programs

Operating system requirements Necessary features to support chosen OS (Ch 5,7)

Size of address space Very important feature (Ch 5); may limit applications

Memory management Required for modern OS; may be paged or segmented (Ch 5)

Protection Different OS and application needs: page vs. segment protection (Ch 5)

Standards Certain standards may be required by marketplace

Floating point Format and arithmetic: IEEE, DEC, IBM (App A)

I/O bus For I/O devices: VME, SCSI, Fiberchannel (Ch 7)

Operating systems UNIX, DOS, or vendor proprietary

Networks Support required for different networks: Ethernet, ATM (Ch 6)

Programming languages Languages (ANSI C, Fortran 77, ANSI COBOL) affect instruction set (Ch

FIGURE 1.2 Summary of some of the most important functional requirements an architect faces . The left-hand col-
umn describes the class of requirement, while the right-hand column gives examples of specific features that might be
needed. The right-hand column also contains references to chapters and appendices that deal with the specific issues.

6

Chapter 1 Fundamentals of Computer Design

rvive
acter-
and in
 may
n ar-

 suc-

sed
nges
rent
om

ve a
rtant
 their
 a fac-
a rate
oth
logy
owth
oned.

lace-
d in a
ther
ary

ed,
ram
uded
rma-
 sys-
ent
ontin-
nts in

ndix
s is

If an instruction set architecture is to be successful, it must be designed to su
changes in hardware technology, software technology, and application char
istics. The designer must be especially aware of trends in computer usage
computer technology. After all, a successful new instruction set architecture
last decades—the core of the IBM mainframe has been in use since 1964. A
chitect must plan for technology changes that can increase the lifetime of a
cessful machine.

Trends in Computer Usage

The design of a computer is fundamentally affected both by how it will be u
and by the characteristics of the underlying implementation technology. Cha
in usage or in implementation technology affect the computer design in diffe
ways, from motivating changes in the instruction set to shifting the payoff fr
important techniques such as pipelining or caching.

Trends in software technology and how programs will use the machine ha
long-term impact on the instruction set architecture. One of the most impo
software trends is the increasing amount of memory used by programs and
data. The amount of memory needed by the average program has grown by
tor of 1.5 to 2 per year! This translates to a consumption of address bits at
of approximately 1/2 bit to 1 bit per year. This rapid rate of growth is driven b
by the needs of programs as well as by the improvements in DRAM techno
that continually improve the cost per bit. Underestimating address-space gr
is often the major reason why an instruction set architecture must be aband
(For further discussion, see Chapter 5 on memory hierarchy.)

Another important software trend in the past 20 years has been the rep
ment of assembly language by high-level languages. This trend has resulte
larger role for compilers, forcing compiler writers and architects to work toge
closely to build a competitive machine. Compilers have become the prim
interface between user and machine.

In addition to this interface role, compiler technology has steadily improv
taking on newer functions and increasing the efficiency with which a prog
can be run on a machine. This improvement in compiler technology has incl
traditional optimizations, which we discuss in Chapter 2, as well as transfo
tions aimed at improving pipeline behavior (Chapters 3 and 4) and memory
tem behavior (Chapter 5). How to balance the responsibility for effici
execution in modern processors between the compiler and the hardware c
ues to be one of the hottest architecture debates of the 1990s. Improveme
compiler technology played a major role in making vector machines (Appe
B) successful. The development of compiler technology for parallel machine
likely to have a large impact in the future.

1.3 Technology and Computer Usage Trends

1.3 Technology and Computer Usage Trends

7

re of
tion
men-

ut
e less
is a
. De-
iring
cuss

ru-
bout
es. In

idth;
ccess
fer-
s per
m-
nol-

y
nsity
t disk
me.
ntral

ssor
ve or
sign
uffi-

en de-
g in
rfor-
ate at

steps.
of the
tech-
ads to
Trends in Implementation Technology

To plan for the evolution of a machine, the designer must be especially awa
rapidly occurring changes in implementation technology. Three implementa
technologies, which change at a dramatic pace, are critical to modern imple
tations:

■ Integrated circuit logic technology—Transistor density increases by abo
50% per year, quadrupling in just over three years. Increases in die size ar
predictable, ranging from 10% to 25% per year. The combined effect
growth rate in transistor count on a chip of between 60% and 80% per year
vice speed increases nearly as fast; however, metal technology used for w
does not improve, causing cycle times to improve at a slower rate. We dis
this further in the next section.

■ Semiconductor DRAM—Density increases by just under 60% per year, quad
pling in three years. Cycle time has improved very slowly, decreasing by a
one-third in 10 years. Bandwidth per chip increases as the latency decreas
addition, changes to the DRAM interface have also improved the bandw
these are discussed in Chapter 5. In the past, DRAM (dynamic random-a
memory) technology has improved faster than logic technology. This dif
ence has occurred because of reductions in the number of transistor
DRAM cell and the creation of specialized technology for DRAMs. As the i
provement from these sources diminishes, the density growth in logic tech
ogy and memory technology should become comparable.

■ Magnetic disk technology—Recently, disk density has been improving b
about 50% per year, almost quadrupling in three years. Prior to 1990, de
increased by about 25% per year, doubling in three years. It appears tha
technology will continue the faster density growth rate for some time to co
Access time has improved by one-third in 10 years. This technology is ce
to Chapter 6.

These rapidly changing technologies impact the design of a microproce
that may, with speed and technology enhancements, have a lifetime of fi
more years. Even within the span of a single product cycle (two years of de
and two years of production), key technologies, such as DRAM, change s
ciently that the designer must plan for these changes. Indeed, designers oft
sign for the next technology, knowing that when a product begins shippin
volume that next technology may be the most cost-effective or may have pe
mance advantages. Traditionally, cost has decreased very closely to the r
which density increases.

These technology changes are not continuous but often occur in discrete
For example, DRAM sizes are always increased by factors of four because
basic design structure. Thus, rather than doubling every 18 months, DRAM
nology quadruples every three years. This stepwise change in technology le

8

Chapter 1 Fundamentals of Computer Design

ly im-
ould
0s, it
ting

e was
rtain

t on a

ed—
nce.
 low-

omput-
ause
 Yet an
 make
n de-
ithout
es on
rcises
 basic

ct of
ome
 fac-

 with-
ying

dure.
 will
ove

f the
long
own

thresholds that can enable an implementation technique that was previous
possible. For example, when MOS technology reached the point where it c
put between 25,000 and 50,000 transistors on a single chip in the early 198
became possible to build a 32-bit microprocessor on a single chip. By elimina
chip crossings within the processor, a dramatic increase in cost/performanc
possible. This design was simply infeasible until the technology reached a ce
point. Such technology thresholds are not rare and have a significant impac
wide variety of design decisions.

Although there are computer designs where costs tend to be ignor
specifically supercomputers—cost-sensitive designs are of growing importa
Indeed, in the past 15 years, the use of technology improvements to achieve
er cost, as well as increased performance, has been a major theme in the c
er industry. Textbooks often ignore the cost half of cost/performance bec
costs change, thereby dating books, and because the issues are complex.
understanding of cost and its factors is essential for designers to be able to
intelligent decisions about whether or not a new feature should be included i
signs where cost is an issue. (Imagine architects designing skyscrapers w
any information on costs of steel beams and concrete.) This section focus
cost, specifically on the components of cost and the major trends. The Exe
and Examples use specific cost data that will change over time, though the
determinants of cost are less time sensitive.

Entire books are written about costing, pricing strategies, and the impa
volume. This section can only introduce you to these topics by discussing s
of the major factors that influence cost of a computer design and how these
tors are changing over time.

The Impact of Time, Volume, Commodization,
and Packaging

The cost of a manufactured computer component decreases over time even
out major improvements in the basic implementation technology. The underl
principle that drives costs down is the learning curve—manufacturing costs de-
crease over time. The learning curve itself is best measured by change in yield—
the percentage of manufactured devices that survives the testing proce
Whether it is a chip, a board, or a system, designs that have twice the yield
have basically half the cost. Understanding how the learning curve will impr
yield is key to projecting costs over the life of the product. As an example o
learning curve in action, the cost per megabyte of DRAM drops over the
term by 40% per year. A more dramatic version of the same information is sh

1.4 Cost and Trends in Cost

1.4 Cost and Trends in Cost

9

me.
s, the
llars.
roject-
rrent
RAM

in Figure 1.3, where the cost of a new DRAM chip is depicted over its lifeti
Between the start of a project and the shipping of a product, say two year
cost of a new DRAM drops by a factor of between five and 10 in constant do
Since not all component costs change at the same rate, designs based on p
ed costs result in different cost/performance trade-offs than those using cu
costs. The caption of Figure 1.3 discusses some of the long-term trends in D
cost.

FIGURE 1.3 Prices of four generations of DRAMs over time in 1977 dollars, showing the learning curve at work. A
1977 dollar is worth about $2.44 in 1995; most of this inflation occurred in the period of 1977–82, during which the value
changed to $1.61. The cost of a megabyte of memory has dropped incredibly during this period, from over $5000 in 1977 to
just over $6 in 1995 (in 1977 dollars)! Each generation drops in constant dollar price by a factor of 8 to 10 over its lifetime.
The increasing cost of fabrication equipment for each new generation has led to slow but steady increases in both the start-
ing price of a technology and the eventual, lowest price. Periods when demand exceeded supply, such as 1987–88 and
1992–93, have led to temporary higher pricing, which shows up as a slowing in the rate of price decrease.

0

10

20

30

40

50

60

70

80

19
78

19
79

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

16 KB

64 KB

256 KB
1 MB

4 MB

16 MB

Final chip cost

Year

 Dollars per
 DRAM chip

10

Chapter 1 Fundamentals of Computer Design

ffect
arning
fac-

anufac-
 cost
s the

 thus
 in-

es
 gro-
, and
iness

PCs.
ighly
d sell-
et has
 to

 the
rs of

rcuit
dard
sys-
t that
on of
under-
 ap-

asic

t of a

sting
aging

st
Volume is a second key factor in determining cost. Increasing volumes a
cost in several ways. First, they decrease the time needed to get down the le
curve, which is partly proportional to the number of systems (or chips) manu
tured. Second, volume decreases cost, since it increases purchasing and m
turing efficiency. As a rule of thumb, some designers have estimated that
decreases about 10% for each doubling of volume. Also, volume decrease
amount of development cost that must be amortized by each machine,
allowing cost and selling price to be closer. We will return to the other factors
fluencing selling price shortly.

Commodities are products that are sold by multiple vendors in large volum
and are essentially identical. Virtually all the products sold on the shelves of
cery stores are commodities, as are standard DRAMs, small disks, monitors
keyboards. In the past 10 years, much of the low end of the computer bus
has become a commodity business focused on building IBM-compatible
There are a variety of vendors that ship virtually identical products and are h
competitive. Of course, this competition decreases the gap between cost an
ing price, but it also decreases cost. This occurs because a commodity mark
both volume and a clear product definition. This allows multiple suppliers
compete in building components for the commodity product. As a result,
overall product cost is lower because of the competition among the supplie
the components and the volume efficiencies the suppliers can achieve.

Cost of an Integrated Circuit

Why would a computer architecture book have a section on integrated ci
costs? In an increasingly competitive computer marketplace where stan
parts—disks, DRAMs, and so on—are becoming a significant portion of any
tem’s cost, integrated circuit costs are becoming a greater portion of the cos
varies between machines, especially in the high-volume, cost-sensitive porti
the market. Thus computer designers must understand the costs of chips to
stand the costs of current computers. We follow here the U.S. accounting
proach to the costs of chips.

While the costs of integrated circuits have dropped exponentially, the b
procedure of silicon manufacture is unchanged: A wafer is still tested and
chopped into dies that are packaged (see Figures 1.4 and 1.5). Thus the cos
packaged integrated circuit is

Cost of integrated circuit =

In this section, we focus on the cost of dies, summarizing the key issues in te
and packaging at the end. A longer discussion of the testing costs and pack
costs appears in the Exercises.

Cost of die + Cost of testing die + Cost of packaging and final te

Final test yield

1.4 Cost and Trends in Cost

11

FIGURE 1.4 Photograph of an 8-inch wafer containing Intel Pentium microprocessors. The die size is 480.7 mm2

and the total number of dies is 63. (Courtesy Intel.)

FIGURE 1.5 Photograph of an 8-inch wafer containing PowerPC 601 microprocessors. The die size is 122 mm2. The
number of dies on the wafer is 200 after subtracting the test dies (the odd-looking dies that are scattered around). (Courtesy
IBM.)

12

Chapter 1 Fundamentals of Computer Design

first
 per-

ensi-

 the

es
hery

s
 (

es-
r the

es
rsely
g:

t be
 unit
1995,
pend-
lier).

 lev-
ul-

To learn how to predict the number of good chips per wafer requires
learning how many dies fit on a wafer and then learning how to predict the
centage of those that will work. From there it is simple to predict cost:

The most interesting feature of this first term of the chip cost equation is its s
tivity to die size, shown below.

The number of dies per wafer is basically the area of the wafer divided by
area of the die. It can be more accurately estimated by

The first term is the ratio of wafer area (πr2) to die area. The second compensat
for the “square peg in a round hole” problem—rectangular dies near the perip
of round wafers. Dividing the circumference (πd) by the diagonal of a square die i
approximately the number of dies along the edge. For example, a wafer 20 cm≈ 8
inch) in diameter produces 1-cm dies.

E X A M P L E Find the number of dies per 20-cm wafer for a die that is 1.5 cm on a side.

A N S W E R The total die area is 2.25 cm2. Thus

■

But this only gives the maximum number of dies per wafer. The critical qu
tion is, What is the fraction or percentage of good dies on a wafer number, o
die yield? A simple empirical model of integrated circuit yield, which assum
that defects are randomly distributed over the wafer and that yield is inve
proportional to the complexity of the fabrication process, leads to the followin

where wafer yield accounts for wafers that are completely bad and so need no
tested. For simplicity, we’ll just assume the wafer yield is 100%. Defects per
area is a measure of the random and manufacturing defects that occur. In
these values typically range between 0.6 and 1.2 per square centimeter, de
ing on the maturity of the process (recall the learning curve, mentioned ear
Lastly, α is a parameter that corresponds roughly to the number of masking
els, a measure of manufacturing complexity, critical to die yield. For today’s m
tilevel metal CMOS processes, a good estimate is α = 3.0.

Cost of die Cost of wafer
Dies per wafer Die yield×
---=

Dies per wafer π Wafer diameter/2()2×
Die area

---= π Wafer diameter×
2 Die area×

---–

3.14 100 3.14 20 1.41⁄×()–× 269=

Dies per wafer π 20 2⁄()2×
2.25

------------------------------= π 20×
2 2.25×

------------------------– 314
2.25
---------- 62.8

2.12
----------– 110= =

Die yield Wafer yield 1 Defects per unit area Die area×
α

--+ 
  α–

×=

1.4 Cost and Trends in Cost

13

ul-
-cm

cm

 cm

r sev-
ount

 This

 3–4
d wa-

ie

t is

ufac-

o

ower

ctions

st be
in after
tion to
E X A M P L E Find the die yield for dies that are 1 cm on a side and 1.5 cm on a side,
assuming a defect density of 0.8 per cm2.

A N S W E R The total die areas are 1 cm2 and 2.25 cm2. For the smaller die the yield is

For the larger die, it is

■

The bottom line is the number of good dies per wafer, which comes from m
tiplying dies per wafer by die yield. The examples above predict 132 good 12

dies from the 20-cm wafer and 26 good 2.25-cm2 dies. Most high-end micro-
processors fall between these two sizes, with some being as large as 2.75 2 in
1995. Low-end processors are sometimes as small as 0.8 cm2, while processors
used for embedded control (in printers, automobiles, etc.) are often just 0.52.
(Figure 1.22 on page 63 in the Exercises shows the die size and technology fo
eral current microprocessors.) Occasionally dies become pad limited: the am
of die area is determined by the perimeter rather than the logic in the interior.
may lead to a higher yield, since defects in empty silicon are less serious!

Processing a 20-cm-diameter wafer in a leading-edge technology with
metal layers costs between $3000 and $4000 in 1995. Assuming a processe
fer cost of $3500, the cost of the 1-cm2 die is around $27, while the cost per d
of the 2.25-cm2 die is about $140, or slightly over 5 times the cost for a die tha
2.25 times larger.

What should a computer designer remember about chip costs? The man
turing process dictates the wafer cost, wafer yield, α, and defects per unit area, s
the sole control of the designer is die area. Since α is typically 3 for the advanced
processes in use today, die costs are proportional to the fourth (or higher) p
of the die area:

Cost of die = f (Die area4)

The computer designer affects die size, and hence cost, both by what fun
are included on or excluded from the die and by the number of I/O pins.

Before we have a part that is ready for use in a computer, the part mu
tested (to separate the good dies from the bad), packaged, and tested aga
packaging. These steps all add costs. These processes and their contribu
cost are discussed and evaluated in Exercise 1.8.

Die yield 1 0.8 1×
3

----------------+ 
  3–

0.49= =

Die yield 1 0.8 2.25×
3

------------------------+ 
  3–

0.24= =

14

Chapter 1 Fundamentals of Computer Design

 cost
units
its
 very

ories
ove-

gh in
eak-

 from
hitec-
nges

Distribution of Cost in a System: An Example

To put the costs of silicon in perspective, Figure 1.6 shows the approximate
breakdown for a color desktop machine in the late 1990s. While costs for
like DRAMs will surely drop over time from those in Figure 1.6, costs for un
whose prices have already been cut, like displays and cabinets, will change
little. Furthermore, we can expect that future machines will have larger mem
and disks, meaning that prices drop more slowly than the technology impr
ment.

The processor subsystem accounts for only 6% of the overall cost. Althou
a mid-range or high-end design this number would be larger, the overall br
down across major subsystems is likely to be similar.

Cost Versus Price—Why They Differ and By How Much

Costs of components may confine a designer’s desires, but they are still far
representing what the customer must pay. But why should a computer arc
ture book contain pricing information? Cost goes through a number of cha

System Subsystem Fraction of total

Cabinet Sheet metal, plastic 1%

Power supply, fans 2%

Cables, nuts, bolts 1%

Shipping box, manuals 0%

Subtotal 4%

Processor board Processor 6%

DRAM (64 MB) 36%

Video system 14%

I/O system 3%

Printed circuit board 1%

Subtotal 60%

I/O devices Keyboard and mouse 1%

Monitor 22%

Hard disk (1 GB) 7%

DAT drive 6%

Subtotal 36%

FIGURE 1.6 Estimated distribution of costs of the components in a low-end, late
1990s color desktop workstation assuming 100,000 units. Notice that the largest single
item is memory! Costs for a high-end PC would be similar, except that the amount of memory
might be 16–32 MB rather than 64 MB. This chart is based on data from Andy Bechtolsheim
of Sun Microsystems, Inc. Touma [1993] discusses workstation costs and pricing.

1.4 Cost and Trends in Cost

15

 a de-
cost
 rela-
ct on
een
e low
. Fur-
 price.
ation-
 the
hat

or as a
ffer-
tplace
ge 16
osed,

 in-
 and
uring
ost.
ically

 gross

-
It in-
ales,
etax
st and

old.
ding

 have
ower.
mail,
ducts

often

s that
f the
ant to
istri-
ce.
before it becomes price, and the computer designer should understand how
sign decision will affect the potential selling price. For example, changing
by $1000 may change price by $3000 to $4000. Without understanding the
tionship of cost to price the computer designer may not understand the impa
price of adding, deleting, or replacing components. The relationship betw
price and volume can increase the impact of changes in cost, especially at th
end of the market. Typically, fewer computers are sold as the price increases
thermore, as volume decreases, costs rise, leading to further increases in
Thus, small changes in cost can have a larger than obvious impact. The rel
ship between cost and price is a complex one with entire books written on
subject. The purpose of this section is to give you a simple introduction to w
factors determine price and typical ranges for these factors.

The categories that make up price can be shown either as a tax on cost
percentage of the price. We will look at the information both ways. These di
ences between price and cost also depend on where in the computer marke
a company is selling. To show these differences, Figures 1.7 and 1.8 on pa
show how the difference between cost of materials and list price is decomp
with the price increasing from left to right as we add each type of overhead.

Direct costs refer to the costs directly related to making a product. These
clude labor costs, purchasing components, scrap (the leftover from yield),
warranty, which covers the costs of systems that fail at the customer’s site d
the warranty period. Direct cost typically adds 20% to 40% to component c
Service or maintenance costs are not included because the customer typ
pays those costs, although a warranty allowance may be included here or in
margin, discussed next.

The next addition is called the gross margin, the company’s overhead that can
not be billed directly to one product. This can be thought of as indirect cost.
cludes the company’s research and development (R&D), marketing, s
manufacturing equipment maintenance, building rental, cost of financing, pr
profits, and taxes. When the component costs are added to the direct co
gross margin, we reach the average selling price—ASP in the language of
MBAs—the money that comes directly to the company for each product s
The gross margin is typically 20% to 55% of the average selling price, depen
on the uniqueness of the product. Manufacturers of low-end PCs generally
lower gross margins for several reasons. First, their R&D expenses are l
Second, their cost of sales is lower, since they use indirect distribution (by
phone order, or retail store) rather than salespeople. Third, because their pro
are less unique, competition is more intense, thus forcing lower prices and
lower profits, which in turn lead to a lower gross margin.

List price and average selling price are not the same. One reason for this i
companies offer volume discounts, lowering the average selling price. Also, i
product is to be sold in retail stores, as personal computers are, stores w
keep 40% to 50% of the list price for themselves. Thus, depending on the d
bution system, the average selling price is typically 50% to 75% of the list pri

16 Chapter 1 Fundamentals of Computer Design
FIGURE 1.7 The components of price for a mid-range product in a workstation com-
pany. Each increase is shown along the bottom as a tax on the prior price. The percentages
of the new price for all elements are shown on the left of each column.

FIGURE 1.8 The components of price for a desktop product in a personal computer
company. A larger average discount is used because of indirect selling, and a lower gross
margin is required.

Gross
margin

Direct costs

Component
costs

Component
costs

Component
costs100%

75%

25%

Average
selling

price

List
price

Add 33% for
direct costs

Add 100% for
gross margin

Add 50% for
average discount

Direct costs

Component
costs37.5% 25%

12.5% 8.3%

50%

33.3%

33.3%

Direct costs

Gross
margin

Average
discount

Gross
margin

Direct costs

100%
75%

56% 31%

25% 19% 10%

25% 14%

45%

Average
selling

price

List
price

Direct costs

Component
costs

Component
costs

Component
costs

Average
discount

Gross
margin

Direct costs

Component
costs

Add 33% for
direct costs

Add 33% for
gross margin

Add 80% for
average discount

1.4 Cost and Trends in Cost 17

le to
 case,
be-
profit
ntly,
mplex

to one
btain

% (in
ir in-

and
com-
age is

ed-
anies.
hus
ould

erent
of the

 cost-
velop.
s, the
tain a
hines

aller

ingle

ate-
o

een
r-
n. In

d cost/
com-
ction

 next
As we said, pricing is sensitive to competition: A company may not be ab
sell its product at a price that includes the desired gross margin. In the worst
the price must be significantly reduced, lowering gross margin until profit
comes negative! A company striving for market share can reduce price and
to increase the attractiveness of its products. If the volume grows sufficie
costs can be reduced. Remember that these relationships are extremely co
and to understand them in depth would require an entire book, as opposed
section in one chapter. For example, if a company cuts prices, but does not o
a sufficient growth in product volume, the chief impact will be lower profits.

Many engineers are surprised to find that most companies spend only 4
the commodity PC business) to 12% (in the high-end server business) of the
come on R&D, which includes all engineering (except for manufacturing
field engineering). This is a well-established percentage that is reported in
panies’ annual reports and tabulated in national magazines, so this percent
unlikely to change over time.

The information above suggests that a company uniformly applies fix
overhead percentages to turn cost into price, and this is true for many comp
But another point of view is that R&D should be considered an investment. T
an investment of 4% to 12% of income means that every $1 spent on R&D sh
lead to $8 to $25 in sales. This alternative point of view then suggests a diff
gross margin for each product depending on the number sold and the size
investment.

Large, expensive machines generally cost more to develop—a machine
ing 10 times as much to manufacture may cost many times as much to de
Since large, expensive machines generally do not sell as well as small one
gross margin must be greater on the big machines for the company to main
profitable return on its investment. This investment model places large mac
in double jeopardy—because there are fewer sold and they require larger R&D
costs—and gives one explanation for a higher ratio of price to cost versus sm
machines.

The issue of cost and cost/performance is a complex one. There is no s
target for computer designers. At one extreme, high-performance design spares
no cost in achieving its goal. Supercomputers have traditionally fit into this c
gory. At the other extreme is low-cost design, where performance is sacrificed t
achieve lowest cost. Computers like the IBM PC clones belong here. Betw
these extremes is cost/performance design, where the designer balances cost ve
sus performance. Most of the workstation manufacturers operate in this regio
the past 10 years, as computers have downsized, both low-cost design an
performance design have become increasingly important. Even the super
puter manufacturers have found that cost plays an increasing role. This se
has introduced some of the most important factors in determining cost; the
section deals with performance.

18 Chapter 1 Fundamentals of Computer Design

 com-
 while
pletes

ed to
rest-

e of
here
r the

ship

that
num-

erfor-
terms
e

sure-
least
 time)

oted
 have
puter

haied
hey
liable
l pro-
asured
When we say one computer is faster than another, what do we mean? The
puter user may say a computer is faster when a program runs in less time,
the computer center manager may say a computer is faster when it com
more jobs in an hour. The computer user is interested in reducing response
time—the time between the start and the completion of an event—also referr
as execution time. The manager of a large data processing center may be inte
ed in increasing throughput—the total amount of work done in a given time.

In comparing design alternatives, we often want to relate the performanc
two different machines, say X and Y. The phrase “X is faster than Y” is used
to mean that the response time or execution time is lower on X than on Y fo
given task. In particular, “X is n times faster than Y” will mean

 =

Since execution time is the reciprocal of performance, the following relation
holds:

n = = =

The phrase “the throughput of X is 1.3 times higher than Y” signifies here
the number of tasks completed per unit time on machine X is 1.3 times the
ber completed on Y.

Because performance and execution time are reciprocals, increasing p
mance decreases execution time. To help avoid confusion between the
increasing and decreasing, we usually say “improve performance” or “improv
execution time” when we mean increase performance and decrease execution
time.

Whether we are interested in throughput or response time, the key mea
ment is time: The computer that performs the same amount of work in the
time is the fastest. The difference is whether we measure one task (response
or many tasks (throughput). Unfortunately, time is not always the metric qu
in comparing the performance of computers. A number of popular measures
been adopted in the quest for a easily understood, universal measure of com
performance, with the result that a few innocent terms have been shang
from their well-defined environment and forced into a service for which t
were never intended. The authors’ position is that the only consistent and re
measure of performance is the execution time of real programs, and that al
posed alternatives to time as the metric or to real programs as the items me

1.5 Measuring and Reporting Performance

Execution timeY
Execution timeX
-- n

Execution timeY
Execution timeX
--

1
PerformanceY

1
PerformanceX

PerformanceX
PerformanceY

1.5 Measuring and Reporting Performance 19

sign.

t we

g
 over-
ram
one

ime
 time

ested

rns

time is
me that
e in
any
rating
NIX)
 be-

de on
perat-
um of

ance

per-
have eventually led to misleading claims or even mistakes in computer de
The dangers of a few popular alternatives are shown in Fallacies and Pitfalls,
section 1.8.

Measuring Performance

Even execution time can be defined in different ways depending on wha
count. The most straightforward definition of time is called wall-clock time, re-
sponse time, or elapsed time, which is the latency to complete a task, includin
disk accesses, memory accesses, input/output activities, operating system
head—everything. With multiprogramming the CPU works on another prog
while waiting for I/O and may not necessarily minimize the elapsed time of
program. Hence we need a term to take this activity into account. CPU time rec-
ognizes this distinction and means the time the CPU is computing, not including
the time waiting for I/O or running other programs. (Clearly the response t
seen by the user is the elapsed time of the program, not the CPU time.) CPU
can be further divided into the CPU time spent in the program, called user CPU
time, and the CPU time spent in the operating system performing tasks requ
by the program, called system CPU time.

These distinctions are reflected in the UNIX time command, which retu
four measurements when applied to an executing program:

90.7u 12.9s 2:39 65%

User CPU time is 90.7 seconds, system CPU time is 12.9 seconds, elapsed
2 minutes and 39 seconds (159 seconds), and the percentage of elapsed ti
is CPU time is (90.7 + 12.9)/159 or 65%. More than a third of the elapsed tim
this example was spent waiting for I/O or running other programs or both. M
measurements ignore system CPU time because of the inaccuracy of ope
systems’ self-measurement (the above inaccurate measurement came from U
and the inequity of including system CPU time when comparing performance
tween machines with differing system codes. On the other hand, system co
some machines is user code on others, and no program runs without some o
ing system running on the hardware, so a case can be made for using the s
user CPU time and system CPU time.

In the present discussion, a distinction is maintained between perform
based on elapsed time and that based on CPU time. The term system performance
is used to refer to elapsed time on an unloaded system, while CPU performance
refers to user CPU time on an unloaded system. We will concentrate on CPU
formance in this chapter.

20 Chapter 1 Fundamentals of Computer Design

 mix
es
cal
opti-

ark

e the
e user

 are in
 ma-
 per-
rams
f pre-

nt
prob-
AD

an se-

from
 Lin-
ernel
ed to
s for

 of
gram.
cause
f such

-
rge set

arks.
Choosing Programs to Evaluate Performance

Dhrystone does not use floating point. Typical programs don’t …

Rick Richardson, Clarification of Dhrystone (1988)

This program is the result of extensive research to determine the instruction
of a typical Fortran program. The results of this program on different machin
should give a good indication of which machine performs better under a typi
load of Fortran programs. The statements are purposely arranged to defeat
mizations by the compiler.

H. J. Curnow and B. A. Wichmann [1976], Comments in the Whetstone Benchm

A computer user who runs the same programs day in and day out would b
perfect candidate to evaluate a new computer. To evaluate a new system th
would simply compare the execution time of her workload—the mixture of pro-
grams and operating system commands that users run on a machine. Few
this happy situation, however. Most must rely on other methods to evaluate
chines and often other evaluators, hoping that these methods will predict
formance for their usage of the new machine. There are four levels of prog
used in such circumstances, listed below in decreasing order of accuracy o
diction.

1. Real programs—While the buyer may not know what fraction of time is spe
on these programs, she knows that some users will run them to solve real
lems. Examples are compilers for C, text-processing software like TeX, and C
tools like Spice. Real programs have input, output, and options that a user c
lect when running the program.

2. Kernels—Several attempts have been made to extract small, key pieces
real programs and use them to evaluate performance. Livermore Loops and
pack are the best known examples. Unlike real programs, no user would run k
programs, for they exist solely to evaluate performance. Kernels are best us
isolate performance of individual features of a machine to explain the reason
differences in performance of real programs.

3. Toy benchmarks—Toy benchmarks are typically between 10 and 100 lines
code and produce a result the user already knows before running the toy pro
Programs like Sieve of Eratosthenes, Puzzle, and Quicksort are popular be
they are small, easy to type, and run on almost any computer. The best use o
programs is beginning programming assignments.

4. Synthetic benchmarks—Similar in philosophy to kernels, synthetic bench
marks try to match the average frequency of operations and operands of a la
of programs. Whetstone and Dhrystone are the most popular synthetic benchm

1.5 Measuring and Reporting Performance 21

n 1.8
e any-
oved
hetic
nch-

rfor-
s re-
d in
gineer-
ms,

f these
 not
 rules

to try
. Of
arks.
y one
pecial-
mark
ance

he re-
ferent

y be
s the
erfor-
 from
vinn,
l see
n, we
gura-
d in
cum-
ong
A description of these benchmarks and some of their flaws appears in sectio
on page 44. No user runs synthetic benchmarks, because they don’t comput
thing a user could want. Synthetic benchmarks are, in fact, even further rem
from reality because kernel code is extracted from real programs, while synt
code is created artificially to match an average execution profile. Synthetic be
marks are not even pieces of real programs, while kernels might be.

Because computer companies thrive or go bust depending on price/pe
mance of their products relative to others in the marketplace, tremendou
sources are available to improve performance of programs widely use
evaluating machines. Such pressures can skew hardware and software en
ing efforts to add optimizations that improve performance of synthetic progra
toy programs, kernels, and even real programs. The advantage of the last o
is that adding such optimizations is more difficult in real programs, though
impossible. This fact has caused some benchmark providers to specify the
under which compilers must operate, as we will see shortly.

Benchmark Suites

Recently, it has become popular to put together collections of benchmarks
to measure the performance of processors with a variety of applications
course, such suites are only as good as the constituent individual benchm
Nonetheless, a key advantage of such suites is that the weakness of an
benchmark is lessened by the presence of the other benchmarks. This is es
ly true if the methods used for summarizing the performance of the bench
suite reflect the time to run the entire suite, as opposed to rewarding perform
increases on programs that may be defeated by targeted optimizations. In t
mainder of this section, we discuss the strengths and weaknesses of dif
methods for summarizing performance.

Benchmark suites are made of collections of programs, some of which ma
kernels, but many of which are typically real programs. Figure 1.9 describe
programs in the popular SPEC92 benchmark suite used to characterize p
mance in the workstation and server markets.The programs in SPEC92 vary
collections of kernels (nasa7) to small, program fragments (tomcatv, ora, al
swm256) to applications of varying size (spice2g6, gcc, compress). We wil
data on many of these programs throughout this text. In the next subsectio
show how a SPEC92 report describes the machine, compiler, and OS confi
tion, while in section 1.8 we describe some of the pitfalls that have occurre
attempting to develop the benchmark suite and to prevent the benchmark cir
vention that makes the results not useful for comparing performance am
machines.

22 Chapter 1 Fundamentals of Computer Design

to

el
.

d
on

ces.

g

ory.

l

ion,
Benchmark Source Lines of code Description

espresso C 13,500 Minimizes Boolean functions.

li C 7,413 A lisp interpreter written in C that solves the 8-queens problem.

eqntott C 3,376 Translates a Boolean equation into a truth table.

compress C 1,503 Performs data compression on a 1-MB file using Lempel-Ziv
coding.

sc C 8,116 Performs computations within a UNIX spreadsheet.

gcc C 83,589 Consists of the GNU C compiler converting preprocessed files in
optimized Sun-3 machine code.

spice2g6 FORTRAN 18,476 Circuit simulation package that simulates a small circuit.

doduc FORTRAN 5,334 A Monte Carlo simulation of a nuclear reactor component.

mdljdp2 FORTRAN 4,458 A chemical application that solves equations of motion for a mod
of 500 atoms. This is similar to modeling a structure of liquid argon

wave5 FORTRAN 7,628 A two-dimensional electromagnetic particle-in-cell simulation use
to study various plasma phenomena. Solves equations of motion
a mesh involving 500,000 particles on 50,000 grid points for 5 time
steps.

tomcatv FORTRAN 195 A mesh generation program, which is highly vectorizable.

ora FORTRAN 535 Traces rays through optical systems of spherical and plane surfa

mdljsp2 FORTRAN 3,885 Same as mdljdp2, but single precision.

alvinn C 272 Simulates training of a neural network. Uses single precision.

ear C 4,483 An inner ear model that filters and detects various sounds and
generates speech signals. Uses single precision.

swm256 FORTRAN 487 A shallow water model that solves shallow water equations usin
finite difference equations with a 256 × 256 grid. Uses single
precision.

su2cor FORTRAN 2,514 Computes masses of elementary particles from Quark-Gluon the

hydro2d FORTRAN 4,461 An astrophysics application program that solves hydrodynamica
Navier Stokes equations to compute galactical jets.

nasa7 FORTRAN 1,204 Seven kernels do matrix manipulation, FFTs, Gaussian eliminat
vortices creation.

fpppp FORTRAN 2,718 A quantum chemistry application program used to calculate two
electron integral derivatives.

FIGURE 1.9 The programs in the SPEC92 benchmark suites. The top six entries are the integer-oriented programs,
from which the SPECint92 performance is computed. The bottom 14 are the floating-point-oriented benchmarks from which
the SPECfp92 performance is computed.The floating-point programs use double precision unless stated otherwise. The
amount of nonuser CPU activity varies from none (for most of the FP benchmarks) to significant (for programs like gcc and
compress). In the performance measurements in this text, we use the five integer benchmarks (excluding sc) and five FP
benchmarks: doduc, mdljdp2, ear, hydro2d, and su2cor.

1.5 Measuring and Reporting Performance 23

 re-
ntific
rmar-
l op-
 test,

of exe-
 com-
eft to
n of
m,
ll of
have
upli-
puter

ma-
 opti-
fp92
are,
actual

dors
hese
s or
e the

ent.
gs for
s the

 this

n the
 one is
ce ca-

t is un-
ently
n.
Reporting Performance Results

The guiding principle of reporting performance measurements should be repro-
ducibility—list everything another experimenter would need to duplicate the
sults. Compare descriptions of computer performance found in refereed scie
journals to descriptions of car performance found in magazines sold at supe
kets. Car magazines, in addition to supplying 20 performance metrics, list al
tional equipment on the test car, the types of tires used in the performance
and the date the test was made. Computer journals may have only seconds
cution labeled by the name of the program and the name and model of the
puter—spice takes 187 seconds on an IBM RS/6000 Powerstation 590. L
the reader’s imagination are program input, version of the program, versio
compiler, optimizing level of compiled code, version of operating syste
amount of main memory, number and types of disks, version of the CPU—a
which make a difference in performance. In other words, car magazines
enough information about performance measurements to allow readers to d
cate results or to question the options selected for measurements, but com
journals often do not!

A SPEC benchmark report requires a fairly complete description of the
chine, the compiler flags, as well as the publication of both the baseline and
mized results. As an example, Figure 1.10 shows portions of the SPEC
report for an IBM RS/6000 Powerstation 590. In addition to hardware, softw
and baseline tuning parameter descriptions, a SPEC report contains the
performance times, shown both in tabular form and as a graph.

The importance of performance on the SPEC benchmarks motivated ven
to add many benchmark-specific flags when compiling SPEC programs; t
flags often caused transformations that would be illegal on many program
would slow down performance on others. To restrict this process and increas
significance of the SPEC results, the SPEC organization created a baseline per-
formance measurement in addition to the optimized performance measurem
Baseline performance restricts the vendor to one compiler and one set of fla
all the programs in the same language (C or FORTRAN). Figure 1.10 show
parameters for the baseline performance; in section 1.8, Fallacies and Pitfalls,
we’ll see the tuning parameters for the optimized performance runs on
machine.

Comparing and Summarizing Performance

Comparing performance of computers is rarely a dull event, especially whe
designers are involved. Charges and countercharges fly across the Internet;
accused of underhanded tactics and the other of misleading statements. Sin
reers sometimes depend on the results of such performance comparisons, i
derstandable that the truth is occasionally stretched. But more frequ
discrepancies can be explained by differing assumptions or lack of informatio

24 Chapter 1 Fundamentals of Computer Design

eri-

tely,
t over
ro-

 jour-
is an
We would like to think that if we could just agree on the programs, the exp
mental environments, and the definition of faster, then misunderstandings would
be avoided, leaving the networks free for scholarly discourse. Unfortuna
that’s not the reality. Once we agree on the basics, battles are then fough
what is the fair way to summarize relative performance of a collection of p
grams. For example, two articles on summarizing performance in the same
nal took opposing points of view. Figure 1.11, taken from one of the articles,
example of the confusion that can arise.

Hardware Software

Model number Powerstation 590 O/S and version AIX version 3.2.5

CPU 66.67 MHz POWER2 Compilers and version C SET++ for AIX C/C++ version 2.1
XL FORTRAN/6000 version 3.1

FPU Integrated Other software See below

Number of CPUs 1 File system type AIX/JFS

Primary cache 32KBI+256KBD off chip System state Single user

Secondary cache None

Other cache None

Memory 128 MB

Disk subsystem 2x2.0 GB

Other hardware None

SPECbase_fp92 tuning parameters/notes/summary of changes:

FORTRAN flags: -O3 -qarch=pwrx -qhsflt -qnofold -bnso -BI:/lib/syscalss.exp

C flags: -O3 -qarch=pwrx -Q -qtune=pwrx -qhssngl -bnso -bI:/lib/syscalls.exp

FIGURE 1.10 The machine, software, and baseline tuning parameters for the SPECfp92 report on an IBM RS/6000
Powerstation 590. SPECfp92 means that this is the report for the floating-point (FP) benchmarks in the 1992 release (the
earlier release was renamed SPEC89) The top part of the table describes the hardware and software. The bottom describes
the compiler and options used for the baseline measurements, which must use one compiler and one set of flags for all the
benchmarks in the same language. The tuning parameters and flags for the tuned SPEC92 performance are given in Figure
1.18 on page 49. Data from SPEC [1994].

Computer A Computer B Computer C

Program P1 (secs) 1 10 20

Program P2 (secs) 1000 100 20

Total time (secs) 1001 110 40

FIGURE 1.11 Execution times of two programs on three machines. Data from Figure I
of Smith [1988].

1.5 Measuring and Reporting Performance 25

how-
rs A,

xecu-

f the
s, the
d on

al exe-
Using our definition of faster than, the following statements hold:

A is 10 times faster than B for program P1.

B is 10 times faster than A for program P2.

A is 20 times faster than C for program P1.

C is 50 times faster than A for program P2.

B is 2 times faster than C for program P1.

C is 5 times faster than B for program P2.

Taken individually, any one of these statements may be of use. Collectively,
ever, they present a confusing picture—the relative performance of compute
B, and C is unclear.

Total Execution Time: A Consistent Summary Measure
The simplest approach to summarizing relative performance is to use total e
tion time of the two programs. Thus

B is 9.1 times faster than A for programs P1 and P2.

C is 25 times faster than A for programs P1 and P2.

C is 2.75 times faster than B for programs P1 and P2.

This summary tracks execution time, our final measure of performance. I
workload consisted of running programs P1 and P2 an equal number of time
statements above would predict the relative execution times for the workloa
each machine.

An average of the execution times that tracks total execution time is the arith-
metic mean

where Timei is the execution time for the ith program of a total of n in the work-
load. If performance is expressed as a rate, then the average that tracks tot
cution time is the harmonic mean

where Ratei is a function of 1/ Timei, the execution time for the ith of n programs
in the workload.

1
n
--- Timei

i 1=

n

∑

n

1
Ratei

i 1=

n

∑

26 Chapter 1 Fundamentals of Computer Design

ad?
y the
d for

 pro-

0%
ork-
ight-
and
 This

 with
load
-
 defi-
Weighted Execution Time
The question arises: What is the proper mixture of programs for the worklo
Are programs P1 and P2 in fact run equally in the workload as assumed b
arithmetic mean? If not, then there are two approaches that have been trie
summarizing performance. The first approach when given an unequal mix of
grams in the workload is to assign a weighting factor wi to each program to indi-
cate the relative frequency of the program in that workload. If, for example, 2
of the tasks in the workload were program P1 and 80% of the tasks in the w
load were program P2, then the weighting factors would be 0.2 and 0.8. (We
ing factors add up to 1.) By summing the products of weighting factors
execution times, a clear picture of performance of the workload is obtained.
is called the weighted arithmetic mean:

where Weighti is the frequency of the ith program in the workload and Timei is the
execution time of that program. Figure 1.12 shows the data from Figure 1.11
three different weightings, each proportional to the execution time of a work
with a given mix. The weighted harmonic mean of rates will show the same rela
tive performance as the weighted arithmetic means of execution times. The
nition is

 A B C W(1) W(2) W(3)

Program P1 (secs) 1.00 10.00 20.00 0.50 0.909 0.999

Program P2 (secs) 1000.00 100.00 20.00 0.50 0.091 0.001

Arithmetic mean:W(1) 500.50 55.00 20.00

Arithmetic mean:W(2) 91.91 18.19 20.00

Arithmetic mean:W(3) 2.00 10.09 20.00

FIGURE 1.12 Weighted arithmetic mean execution times using three weightings. W(1) equally weights the programs,
resulting in a mean (row 3) that is the same as the unweighted arithmetic mean. W(2) makes the mix of programs inversely
proportional to the execution times on machine B; row 4 shows the arithmetic mean for that weighting. W(3) weights the
programs in inverse proportion to the execution times of the two programs on machine A; the arithmetic mean is given in the
last row. The net effect of the second and third weightings is to “normalize” the weightings to the execution times of programs
running on that machine, so that the running time will be spent evenly between each program for that machine. For a set of
n programs each taking Timei on one machine, the equal-time weightings on that machine are

.

Weighti Timei×
i 1=

n

∑

1

Weighti
Ratei

i 1=

n

∑

w i
1

Timei
1

Timej
--------------- 

 

j 1=

n

∑×

--=

1.5 Measuring and Reporting Performance 27

nor-
of the
arks,

ment
 pro-
nce

tic or

a-
o

s the
 exe-

e, the
ig-
ns of
Normalized Execution Time and the Pros and Cons
of Geometric Means
A second approach to unequal mixture of programs in the workload is to
malize execution times to a reference machine and then take the average
normalized execution times. This is the approach used by the SPEC benchm
where a base time on a VAX-11/780 is used for reference. This measure
gives a warm fuzzy feeling, because it suggests that performance of new
grams can be predicted by simply multiplying this number times its performa
on the reference machine.

Average normalized execution time can be expressed as either an arithme
geometric mean. The formula for the geometric mean is

where Execution time ratioi is the execution time, normalized to the reference m
chine, for the ith program of a total of n in the workload. Geometric means als
have a nice property for two samples Xi and Yi:

 = Geometric mean

As a result, taking either the ratio of the means or the mean of the ratios yield
same result. In contrast to arithmetic means, geometric means of normalized
cution times are consistent no matter which machine is the reference. Henc
arithmetic mean should not be used to average normalized execution times. F
ure 1.13 shows some variations using both arithmetic and geometric mea
normalized times.

Normalized to A Normalized to B Normalized to C

A B C A B C A B C

Program P1 1.0 10.0 20.0 0.1 1.0 2.0 0.05 0.5 1.0

Program P2 1.0 0.1 0.02 10.0 1.0 0.2 50.0 5.0 1.0

Arithmetic mean 1.0 5.05 10.01 5.05 1.0 1.1 25.03 2.75 1.0

Geometric mean 1.0 1.0 0.63 1.0 1.0 0.63 1.58 1.58 1.0

Total time 1.0 0.11 0.04 9.1 1.0 0.36 25.03 2.75 1.0

FIGURE 1.13 Execution times from Figure 1.11 normalized to each machine. The arithmetic mean performance varies
depending on which is the reference machine—in column 2, B’s execution time is five times longer than A’s, while the re-
verse is true in column 4. In column 3, C is slowest, but in column 9, C is fastest. The geometric means are consistent inde-
pendent of normalization—A and B have the same performance, and the execution time of C is 0.63 of A or B (1/1.58 is
0.63). Unfortunately, the total execution time of A is 10 times longer than that of B, and B in turn is about 3 times longer
than C. As a point of interest, the relationship between the means of the same set of numbers is always harmonic mean ≤
geometric mean ≤ arithmetic mean.

n

Execution time ratioi
i 1=

n

∏

Geometric meanXi()
Geometric mean Yi()
--

X i

Y i
----- 

 

28 Chapter 1 Fundamentals of Computer Design

te to
d not
rtic-
lized
e in-

. If a
 were
hted
st in-
etric

s is
they
gest

same,
 ev-
ution

faster
 fast-
t
 exe-
ized
ork-

ariz-
rages
arks

at are
t the
ll re-
ners

,000
econd
e first
e but

an re-

s ac-
g so
he rel-
at
e in-
ecific
 and
Because the weightings in weighted arithmetic means are set proportiona
execution times on a given machine, as in Figure 1.12, they are influence
only by frequency of use in the workload, but also by the peculiarities of a pa
ular machine and the size of program input. The geometric mean of norma
execution times, on the other hand, is independent of the running times of th
dividual programs, and it doesn’t matter which machine is used to normalize
situation arose in comparative performance evaluation where the programs
fixed but the inputs were not, then competitors could rig the results of weig
arithmetic means by making their best performing benchmark have the large
put and therefore dominate execution time. In such a situation the geom
mean would be less misleading than the arithmetic mean.

The strong drawback to geometric means of normalized execution time
that they violate our fundamental principle of performance measurement—
do not predict execution time. The geometric means from Figure 1.13 sug
that for programs P1 and P2 the performance of machines A and B is the
yet this would only be true for a workload that ran program P1 100 times for
ery occurrence of program P2 (see Figure 1.12 on page 26). The total exec
time for such a workload suggests that machines A and B are about 50%
than machine C, in contrast to the geometric mean, which says machine C is
er than A and B! In general there is no workload for three or more machines tha
will match the performance predicted by the geometric means of normalized
cution times. Our original reason for examining geometric means of normal
performance was to avoid giving equal emphasis to the programs in our w
load, but is this solution an improvement?

An additional drawback of using geometric mean as a method for summ
ing performance for a benchmark suite (as SPEC92 does) is that it encou
hardware and software designers to focus their attention on the benchm
where performance is easiest to improve rather than on the benchmarks th
slowest. For example, if some hardware or software improvement can cu
running time for a benchmark from 2 seconds to 1, the geometric mean wi
ward those designers with the same overall mark that it would give to desig
that improve the running time on another benchmark in the suite from 10
seconds to 5000 seconds. Of course, everyone interested in running the s
program thinks of the second batch of designers as their heroes and th
group as useless. Small programs are often easier to “crack,” obtaining a larg
unrepresentative performance improvement, and the use of geometric me
wards such behavior more than a measure that reflects total running time.

The ideal solution is to measure a real workload and weight the program
cording to their frequency of execution. If this can’t be done, then normalizin
that equal time is spent on each program on some machine at least makes t
ative weightings explicit and will predict execution time of a workload with th
mix. The problem above of unspecified inputs is best solved by specifying th
puts when comparing performance. If results must be normalized to a sp
machine, first summarize performance with the proper weighted measure
then do the normalizing.

1.6 Quantitative Principles of Computer Design 29

ce, we
 and

t ob-
s two

is to
t case
w to
gher if
 rare
 of-
 when
um-
mon
ut if
or-

this
 per-
alled

com-
 per-
ion is

ar
 a ma-
Now that we have seen how to define, measure, and summarize performan
can explore some of the guidelines and principles that are useful in design
analysis of computers. In particular, this section introduces some importan
servations about designing for performance and cost/performance, as well a
equations that we can use to evaluate design alternatives.

Make the Common Case Fast

Perhaps the most important and pervasive principle of computer design
make the common case fast: In making a design trade-off, favor the frequen
over the infrequent case. This principle also applies when determining ho
spend resources, since the impact on making some occurrence faster is hi
the occurrence is frequent. Improving the frequent event, rather than the
event, will obviously help performance, too. In addition, the frequent case is
ten simpler and can be done faster than the infrequent case. For example,
adding two numbers in the CPU, we can expect overflow to be a rare circ
stance and can therefore improve performance by optimizing the more com
case of no overflow. This may slow down the case when overflow occurs, b
that is rare, then overall performance will be improved by optimizing for the n
mal case.

We will see many cases of this principle throughout this text. In applying
simple principle, we have to decide what the frequent case is and how much
formance can be improved by making that case faster. A fundamental law, c
Amdahl’s Law, can be used to quantify this principle.

Amdahl’s Law

The performance gain that can be obtained by improving some portion of a
puter can be calculated using Amdahl’s Law. Amdahl’s Law states that the
formance improvement to be gained from using some faster mode of execut
limited by the fraction of the time the faster mode can be used.

Amdahl’s Law defines the speedup that can be gained by using a particul
feature. What is speedup? Suppose that we can make an enhancement to
chine that will improve performance when it is used. Speedup is the ratio

Speedup =

Alternatively,

Speedup =

1.6 Quantitative Principles of Computer Design

Performance for entire task using the enhancement when possible

Performance for entire task without using the enhancement

Execution time for entire task without using the enhancement

Execution time for entire task using the enhancement when possible

30 Chapter 1 Fundamentals of Computer Design

e en-

nce-

 be

al can
call

much
 pro-
en-
of the
 sec-
lue,

ll be
spent
Speedup tells us how much faster a task will run using the machine with th
hancement as opposed to the original machine.

Amdahl’s Law gives us a quick way to find the speedup from some enha
ment, which depends on two factors:

1. The fraction of the computation time in the original machine that can
converted to take advantage of the enhancement—For example, if 20
seconds of the execution time of a program that takes 60 seconds in tot
use an enhancement, the fraction is 20/60. This value, which we will
Fractionenhanced, is always less than or equal to 1.

2. The improvement gained by the enhanced execution mode; that is, how
faster the task would run if the enhanced mode were used for the entire
gram—This value is the time of the original mode over the time of the
hanced mode: If the enhanced mode takes 2 seconds for some portion
program that can completely use the mode, while the original mode took 5
onds for the same portion, the improvement is 5/2. We will call this va
which is always greater than 1, Speedupenhanced.

The execution time using the original machine with the enhanced mode wi
the time spent using the unenhanced portion of the machine plus the time
using the enhancement:

Execution timenew = Execution timeold ×

The overall speedup is the ratio of the execution times:

Speedupoverall = =

E X A M P L E Suppose that we are considering an enhancement that runs 10 times fast-
er than the original machine but is only usable 40% of the time. What is
the overall speedup gained by incorporating the enhancement?

A N S W E R Fractionenhanced = 0.4

Speedupenhanced = 10

Speedupoverall = = ≈ 1.56

■

1 Fractionenhanced–()
Fractionenhanced

Speedupenhanced
--+

 
 
 

Execution timeold

Execution timenew
-- 1

1 Fractionenhanced–()
Fractionenhanced

Speedupenhanced
--------------------------------------+

--

1

0.6 0.4
10
-------+

--------------------- 1
0.64

1.6 Quantitative Principles of Computer Design 31

 im-
ance
. An
 for
l of 1

e
t is in

lts

 im-
ance.
t. We
wing

 and
 the
n the
Amdahl’s Law expresses the law of diminishing returns: The incremental
provement in speedup gained by an additional improvement in the perform
of just a portion of the computation diminishes as improvements are added
important corollary of Amdahl’s Law is that if an enhancement is only usable
a fraction of a task, we can’t speed up the task by more than the reciproca
minus that fraction.

A common mistake in applying Amdahl’s Law is to confuse “fraction of tim
converted to use an enhancement” and “fraction of time after enhancemen
use.” If, instead of measuring the time that we could use the enhancement in a
computation, we measure the time after the enhancement is in use, the resu
will be incorrect! (Try Exercise 1.2 to see how wrong.)

Amdahl’s Law can serve as a guide to how much an enhancement will
prove performance and how to distribute resources to improve cost/perform
The goal, clearly, is to spend resources proportional to where time is spen
can also use Amdahl’s Law to compare two design alternatives, as the follo
Example shows.

E X A M P L E Implementations of floating-point (FP) square root vary significantly in
performance. Suppose FP square root (FPSQR) is responsible for 20% of
the execution time of a critical benchmark on a machine. One proposal is
to add FPSQR hardware that will speed up this operation by a factor of
10. The other alternative is just to try to make all FP instructions run faster;
FP instructions are responsible for a total of 50% of the execution time.
The design team believes that they can make all FP instructions run two
times faster with the same effort as required for the fast square root. Com-
pare these two design alternatives.

A N S W E R We can compare these two alternatives by comparing the speedups:

SpeedupFPSQR = = = 1.22

SpeedupFP = = = 1.33

Improving the performance of the FP operations overall is better because
of the higher frequency. ■

In the above Example, we needed to know the time consumed by the new
improved FP operations; often it is difficult to measure these times directly. In
next section, we will see another way of doing such comparisons based o

1

1 0.2–() 0.2
10
-------+

----------------------------------- 1
0.82

1

1 0.5–() 0.5
2.0
-------+

----------------------------------- 1
0.75

32 Chapter 1 Fundamentals of Computer Design

parate
s, we
le to
tually

These

ra-
then

e can

on

ets
.
 de-

s fit

arac-
unt.
 A
me.
use of an equation that decomposes the CPU execution time into three se
components. If we know how an alternative affects these three component
can determine its overall performance effect. Furthermore, it is often possib
build simulators that measure these components before the hardware is ac
designed.

The CPU Performance Equation

Most computers are constructed using a clock running at a constant rate.
discrete time events are called ticks, clock ticks, clock periods, clocks, cycles, or
clock cycles. Computer designers refer to the time of a clock period by its du
tion (e.g., 2 ns) or by its rate (e.g., 500 MHz). CPU time for a program can
be expressed two ways:

or

CPU time =

In addition to the number of clock cycles needed to execute a program, w
also count the number of instructions executed—the instruction path length or in-
struction count (IC). If we know the number of clock cycles and the instructi
count we can calculate the average number of clock cycles per instruction (CPI):

CPI =

This CPU figure of merit provides insight into different styles of instruction s
and implementations, and we will use it extensively in the next four chapters

By transposing instruction count in the above formula, clock cycles can be
fined as IC × CPI. This allows us to use CPI in the execution time formula:

or

CPU time =

Expanding the first formula into the units of measure shows how the piece
together:

 = = CPU time

As this formula demonstrates, CPU performance is dependent upon three ch
teristics: clock cycle (or rate), clock cycles per instruction, and instruction co
Furthermore, CPU time is equally dependent on these three characteristics:
10% improvement in any one of them leads to a 10% improvement in CPU ti

CPU time CPU clock cycles for a program Clock cycle time×=

CPU clock cycles for a program
Clock rate

CPU clock cycles for a program
IC

CPU time IC CPI Clock cycle time××=

IC CPI×
Clock rate

Instructions
Program

---------------------------- Clock cycles
Instruction

------------------------------ Seconds
Clock cycle
----------------------------×× Seconds

Program

1.6 Quantitative Principles of Computer Design 33

ion
acter-

ove
 the

total

st in-

e fre-
tice,
Unfortunately, it is difficult to change one parameter in complete isolat
from others because the basic technologies involved in changing each char
istic are also interdependent:

■ Clock cycle time—Hardware technology and organization

■ CPI—Organization and instruction set architecture

■ Instruction count—Instruction set architecture and compiler technology

Luckily, many potential performance improvement techniques primarily impr
one component of CPU performance with small or predictable impacts on
other two.

Sometimes it is useful in designing the CPU to calculate the number of
CPU clock cycles as

CPU clock cycles =

where ICi represents number of times instruction i is executed in a program and

CPIi represents the average number of clock cycles for instruction i. This form can

be used to express CPU time as

and overall CPI as

The latter form of the CPI calculation multiplies each individual CPIi by the frac-

tion of occurrences of that instruction in a program. CPIi should be measured and

not just calculated from a table in the back of a reference manual since it mu
clude cache misses and any other memory system inefficiencies.

Consider our earlier example, here modified to use measurements of th
quency of the instructions and of the instruction CPI values, which, in prac
are easier to obtain.

E X A M P L E Suppose we have made the following measurements:

Frequency of FP operations = 25%
Average CPI of FP operations = 4.0
Average CPI of other instructions = 1.33
Frequency of FPSQR= 2%
CPI of FPSQR = 20

CPIi ICi×
i 1=

n

∑

CPU time CPIi ICi×
i 1=

n

∑ 
 
 

Clock cycle time×=

CPI

CPIi ICi×
i 1=

n

∑
Instruction count
-- CPIi

ICi

Instruction count
-- 

 ×
i 1=

n

∑= =

34 Chapter 1 Fundamentals of Computer Design

ance
ersus
ure
s re-
duct
ince
, the
Assume that the two design alternatives are to reduce the CPI of FPSQR
to 2 or to reduce the average CPI of all FP operations to 2. Compare these
two design alternatives using the CPU performance equation.

A N S W E R First, observe that only the CPI changes; the clock rate and instruction
count remain identical. We start by finding the original CPI with neither en-
hancement:

We can compute the CPI for the enhanced FPSQR by subtracting the
cycles saved from the original CPI:

We can compute the CPI for the enhancement of all FP instructions the
same way or by summing the FP and non-FP CPIs. Using the latter gives
us

Since the CPI of the overall FP enhancement is lower, its performance will
be better. Specifically, the speedup for the overall FP enhancement is

Happily, this is the same speedup we obtained using Amdahl’s Law on
page 31. ■

It is often possible to measure the constituent parts of the CPU perform
equation. This is a key advantage for using the CPU performance equation v
Amdahl’s Law in the above example. In particular, it may be difficult to meas
things such as the fraction of execution time for which a set of instructions i
sponsible. In practice this would probably be computed by summing the pro
of the instruction count and the CPI for each of the instructions in the set. S
the starting point is often individual instruction count and CPI measurements
CPU performance equation is incredibly useful.

CPIoriginal CPIi
ICi

Instruction count
-- 

 ×
i 1=

n

∑=

4 25%×() 1.33 75%×() 2.0=+=

CPIwith new FPSQR CPIoriginal 2% CPIold FPSQR CPI–
of new FPSQR only

()×–=

2.0 2% 20 2–()×– 1.64= =

CPInew FP 75% 1.33×() 25% 2.0×() 1.5=+=

Speedupnew FP

CPU timeoriginal

CPU timenew FP

IC Clock cycle CPIoriginal××
IC Clock cycle CPInew FP××
---= =

CPIoriginal

CPInew FP
------------------------ 2.00

1.5
---------- 1.33= = =

1.6 Quantitative Principles of Computer Design 35

 mea-
tools
for de-

urse,
gn in

uch
ted,
ine a
 they
ther
 con-
. So,
atever
nging
 CPU

ier to
ave a
t be-
ot a
odern
 For
lli-

 mea-
t in-
unt,

ter-
e em-
antial
vide
simu-
urate-
rating
than
 the
imu-

oach,
Measuring the Components of CPU Performance
To use the CPU performance equation to determine performance, we need
surements of the individual components of the equation. Building and using
to measure aspects of a design is a large part of a designer’s job—at least
signers who base their decisions on quantitative principles!

To determine the clock cycle, we need only determine one number. Of co
this is easy for an existing CPU, but estimating the clock cycle time of a desi
progress is very difficult. Low-level tools, called timing estimators or timing veri-
fiers, are used to analyze the clock cycle time for a completed design. It is m
more difficult to estimate the clock cycle time for a design that is not comple
or for an alternative for which no design exists. In practice, designers determ
target cycle time and estimate the impact on cycle time by examining what
believe to be the critical paths in a design. The difficulty is that control, ra
than the data path of a processor, often turns out to be the critical path, and
trol is often the last thing to be done and the hardest to estimate timing for
designers rely heavily on estimates and on their experience and then do wh
is needed to try to make their clock cycle target. This sometimes means cha
the organization so that the CPI of some instructions increases. Using the
performance equation, the impact of this trade-off can be calculated.

The other two components of the CPU performance equation are eas
measure. Measuring the instruction count for a program can be done if we h
compiler for the machine together with tools that measure the instruction se
havior. Of course, compilers for existing instruction set architectures are n
problem, and even changes to the architecture can be explored using m
compiler organizations that provide the ability to retarget the compiler easily.
new instruction sets, developing the compiler early is critical to making inte
gent decisions in the design of the instruction set.

Once we have a compiled version of a program that we are interested in
suring, there are two major methods we can apply to obtain instruction coun
formation. In most cases, we want to know not only the total instruction co
but also the frequency of different classes of instructions (called the instruction
mix). The first way to obtain such data is an instruction set simulator that in
prets the instructions. The major drawbacks of this approach are speed (sinc
ulating the instruction set is slow) and the possible need to implement subst
infrastructure, since to handle large programs the simulator will need to pro
support for operating system functions. One advantage of an instruction set
lator is that it can measure almost any aspect of instruction set behavior acc
ly and can also potentially simulate systems programs, such as the ope
system. Typical instruction set simulators run from 10 to 1000 times slower
the program might, with the performance depending both on how carefully
simulator is written and on the relationship between the architectures of the s
lated machine and host machine.

The alternative approach uses execution-based monitoring. In this appr
the binary program is modified to include instrumentation code, such as a counter

36 Chapter 1 Fundamentals of Computer Design

. It is
ver-
h in-
m is

e exe-
itec-

r the
a sim-
y effi-
ment

ssor
t may
ulti-
ever,
ese

ierar-
n the
 aver-
easur-

use-
mpo-
is is
tions

verage
uc-

 least
mory

 us-
l the
 in-

ith the
ll CPI
ple
vior
ula-

ced
ces-
in every basic block. The program is run and the counter values are recorded
then simple to determine the instruction distribution by examining the static
sion of the code and the values of the counters, which tell us how often eac
struction is executed. This technique is obviously very fast, since the progra
executed, rather than interpreted. Typical instrumentation code increases th
cution time by 1.1 to 2.0 times. This technique is even usable when the arch
tures of the machine being simulated and the machine being used fo
simulator differ. In such a case, the program that instruments the code does
ple translation between the instruction sets. This translation need not be ver
cient—even a sloppy translation will usually lead to a much faster measure
system than complete simulation of the instruction set.

Measuring the CPI is more difficult, since it depends on the detailed proce
organization as well as the instruction stream. For very simple processors, i
be possible to compute a CPI for every instruction from a table and simply m
ply these values by the number of instances of each instruction type. How
this simplistic approach will not work with most modern processors. Since th
processors were built using techniques such as pipelining and memory h
chies, instructions do not have simple cycle counts but instead depend o
state of the processor when the instruction is executed. Designers often use
age CPI values for instructions, but these average CPIs are computed by m
ing the effects of the pipeline and cache structure.

To determine the CPI for an instruction in a modern processor, it is often
ful to separate the component arising from the memory system and the co
nent determined by the pipeline, assuming a perfect memory system. Th
useful both because the simulation techniques for evaluating these contribu
are different and because the memory system contribution is added as an a
to all instructions, while the processor contribution is more likely to be instr
tion specific. Thus, we can compute the CPI for each instruction, i, as

In the next section, we’ll see how memory system CPI can be computed, at
for simple memory hierarchies. Chapter 5 discusses more sophisticated me
hierarchies and performance modeling.

The pipeline CPI is typically modeled by simulating the pipeline structure
ing the instruction stream. For simple pipelines, it may be sufficient to mode
performance of each basic block individually, ignoring the cross basic block
teractions. In such cases, the performance of each basic block, together w
frequency counts for each basic block, can be used to determine the overa
as well as the CPI for each instruction. In Chapter 3, we will examine sim
pipeline structures where this approximation is valid. Since the pipeline beha
of each basic block is simulated only once, this is much faster than a full sim
tion of every instruction execution. Unfortunately, in our exploration of advan
pipelining in Chapter 4, we’ll see that full simulations of the program are ne
sary to estimate the performance of sophisticated pipelines.

CPIi Pipeline CPIi Memory system CPIi+=

1.6 Quantitative Principles of Computer Design 37

n set
th a
hen
stand
Using the CPU Performance Equations: More Examples
The real measure of computer performance is time. Changing the instructio
to lower the instruction count, for example, may lead to an organization wi
slower clock cycle time that offsets the improvement in instruction count. W
comparing two machines, you must look at all three components to under
relative performance.

E X A M P L E Suppose we are considering two alternatives for our conditional branch
instructions, as follows:

CPU A: A condition code is set by a compare instruction and followed
by a branch that tests the condition code.

CPU B: A compare is included in the branch.

On both CPUs, the conditional branch instruction takes 2 cycles, and all
other instructions take 1 clock cycle. On CPU A, 20% of all instructions
executed are conditional branches; since every branch needs a compare,
another 20% of the instructions are compares. Because CPU A does not
have the compare included in the branch, assume that its clock cycle time
is 1.25 times faster than that of CPU B. Which CPU is faster? Suppose
CPU A’s clock cycle time was only 1.1 times faster?

A N S W E R Since we are ignoring all systems issues, we can use the CPU perfor-
mance formula:

since 20% are branches taking 2 clock cycles and the rest of the instruc-
tions take 1 cycle each.The performance of CPU A is then

Clock cycle timeB is 1.25 × Clock cycle timeA, since A has a clock rate that
is 1.25 times higher. Compares are not executed in CPU B, so 20%/80%
or 25% of the instructions are now branches taking 2 clock cycles, and the
remaining 75% of the instructions take 1 cycle. Hence,

Because CPU B doesn’t execute compares, ICB = 0.8 × ICA. Hence, the
performance of CPU B is

CPIA 0.20 2× 0.80 1×+ 1.2= =

CPU timeA ICA 1.2 Clock cycle timeA××=

CPIB 0.25 2 0.75 1×+× 1.25= =

CPU timeB ICB CPIB Clock cycle timeB××=

0.8 ICA× 1.25 1.25 Clock cycle timeA×()××=

1.25 ICA Clock cycle timeA××=

38 Chapter 1 Fundamentals of Computer Design

tant
rtant

le of
 the
racy
ts ac-

suite
nsible
igure

 as to

ar fu-

ogether
Under these assumptions, CPU A, with the shorter clock cycle time, is
faster than CPU B, which executes fewer instructions.

If CPU A were only 1.1 times faster, then Clock cycle timeB is
, and the performance of CPU B is

With this improvement CPU B, which executes fewer instructions, is now
faster. ■

Locality of Reference

While Amdahl’s Law is a theorem that applies to any system, other impor
fundamental observations come from properties of programs. The most impo
program property that we regularly exploit is locality of reference: Programs tend
to reuse data and instructions they have used recently. A widely held ru
thumb is that a program spends 90% of its execution time in only 10% of
code. An implication of locality is that we can predict with reasonable accu
what instructions and data a program will use in the near future based on i
cesses in the recent past.

To examine locality, 10 application programs in the SPEC92 benchmark
were measured to determine what percentage of the instructions were respo
for 80% and for 90% of the instructions executed. The data are shown in F
1.14.

Locality of reference also applies to data accesses, though not as strongly
code accesses. Two different types of locality have been observed. Temporal lo-
cality states that recently accessed items are likely to be accessed in the ne
ture. Figure 1.14 shows one effect of temporal locality. Spatial locality says that
items whose addresses are near one another tend to be referenced close t
in time. We will see these principles applied in the next section.

1.10 Clock cycle timeA×

CPU timeB ICB CPIB Clock cycle timeB××=

0.8 ICA× 1.25 1.10 Clock cycle time A×()××=

1.10 ICA Clock cycle time A××=

1.7 Putting It All Together: The Concept of Memory Hierarchy 39

ter,
apter,
tten-

 sim-
olo-

ajor
levels

emo-
igner
ories

ime,
In the Putting It All Together sections that appear near the end of every chap
we show real examples that use the principles in that chapter. In this first ch
we discuss a key idea in memory systems that will be the sole focus of our a
tion in Chapter 5.

To begin, let’s look at a simple axiom of hardware design: Smaller is faster.
Smaller pieces of hardware will generally be faster than larger pieces. This
ple principle is particularly applicable to memories built from the same techn
gy for two reasons. First, in high-speed machines, signal propagation is a m
cause of delay; larger memories have more signal delay and require more
to decode addresses. Second, in most technologies we can obtain smaller m
ries that are faster than larger memories. This is primarily because the des
can use more power per memory cell in a smaller design. The fastest mem
are generally available in smaller numbers of bits per chip at any point in t
and they cost substantially more per byte.

FIGURE 1.14 This plot shows what percentage of the instructions are responsible for
80% and for 90% of the instruction executions. The total bar height indicates the fraction of
the instructions that account for 90% of the instruction executions while the dark portion indi-
cates the fraction of the instructions responsible for 80% of the instruction executions. For ex-
ample, in compress about 9% of the code accounts for 80% of the executed instructions and
16% accounts for 90% of the executed instructions. On average, 90% of the instruction execu-
tions comes from 10% of the instructions in the integer programs and 14% of the instructions
in the FP programs. The programs are described in more detail in Figure 1.9 on page 22.

1.7 Putting It All Together:
The Concept of Memory Hierarchy

0%

10%

20%

30%

40%

50%

60%

co
m

pr
es

s

eq
nt

ot
t

es
pr

es
so gc
c li

do
du

c

ea
r

hy
dr

o2
d

m
dl

jd
p

su
2c

or

SPEC benchmark

Fraction of the
 program

40 Chapter 1 Fundamentals of Computer Design

s in
and
nolo-
uch as
r in-
e in-
s do

ry are
iques
mea-
apter

ed is
e fast
s, we
maller
most
lower)
o em-
emo-
power
ion is
n-
mory
The important exception to the smaller-is-faster rule arises from difference
power consumption. Designs with higher power consumption will be faster
also usually larger. Such power differences can come from changes in tech
gy, such as the use of ECL versus CMOS, or from a change in the design, s
the use of static memory cells rather than dynamic memory cells. If the powe
crease is sufficient, it can overcome the disadvantage arising from the siz
crease. Thus, the smaller-is-faster rule applies only when power difference
not exist or are taken into account.

Increasing memory bandwidth and decreasing the time to access memo
both crucial to system performance, and many of the organizational techn
we discuss will focus on these two metrics. How can we improve these two
sures? The answer lies in combining the principles we discussed in this ch
together with the rule that smaller is faster.

The principle of locality of reference says that the data most recently us
very likely to be accessed again in the near future. Making the common cas
suggests that favoring accesses to such data will improve performance. Thu
should try to keep recently accessed items in the fastest memory. Because s
memories will be faster, we want to use smaller memories to try to hold the
recently accessed items close to the CPU and successively larger (and s
memories as we move farther away from the CPU. Furthermore, we can als
ploy more expensive and higher-powered memory technologies for those m
ries closer to the CPU, because they are much smaller and the cost and
impact is lessened by the small size of the memories. This type of organizat
called a memory hierarchy. Figure 1.15 shows a multilevel memory hierarchy, i
cluding typical sizes and speeds of access. Two important levels of the me
hierarchy are the cache and virtual memory.

FIGURE 1.15 These are the levels in a typical memory hierarchy. As we move farther
away from the CPU, the memory in the level becomes larger and slower. The sizes and ac-
cess times are typical for a low- to mid-range desktop machine in late 1995. Figure 1.16
shows the wider range of values in use.

Memory
busCPU

Register
reference

C
a
c
h
e

Cache
reference

Registers
Memory

Memory
reference

I/O devices

Disk
memory

reference

I/O bus

Size:
Speed:

200 B
5 ns

64 KB
10 ns

32 MB
100 ns

2 GB
5 ms

1.7 Putting It All Together: The Concept of Memory Hierarchy 41

ost
 in the
 in

 the
 the
seful.
 the

mem-
k. A
se, or

emo-
he

es an

 faults
 CPU
e and

in the
end
tailed
A cache is a small, fast memory located close to the CPU that holds the m
recently accessed code or data. When the CPU finds a requested data item
cache, it is called a cache hit. When the CPU does not find a data item it needs
the cache, a cache miss occurs. A fixed-size block of data, called a block, contain-
ing the requested word is retrieved from the main memory and placed into
cache. Temporal locality tells us that we are likely to need this word again in
near future, so placing it in the cache where it can be accessed quickly is u
Because of spatial locality, there is high probability that the other data in
block will be needed soon.

The time required for the cache miss depends on both the latency of the
ory and its bandwidth, which determines the time to retrieve the entire bloc
cache miss, which is handled by hardware, usually causes the CPU to pau
stall, until the data are available.

Likewise, not all objects referenced by a program need to reside in main m
ry. If the computer has virtual memory, then some objects may reside on disk. T
address space is usually broken into fixed-size blocks, called pages. At any time,
each page resides either in main memory or on disk. When the CPU referenc
item within a page that is not present in the cache or main memory, a page fault oc-
curs, and the entire page is moved from the disk to main memory. Since page
take so long, they are handled in software and the CPU is not stalled. The
usually switches to some other task while the disk access occurs. The cach
main memory have the same relationship as the main memory and disk.

Figure 1.16 shows the range of sizes and access times of each level
memory hierarchy for machines ranging from low-end desktops to high-
servers. Chapter 5 focuses on memory hierarchy design and contains a de
example of a real system hierarchy.

Level 1 2 3 4

Called Registers Cache Main memory Disk storage

Typical size < 1 KB < 4 MB < 4 GB > 1 GB

Implementation technology Custom memory with
multiple ports,
CMOS or BiCMOS

On-chip or off-
chip CMOS
SRAM

CMOS DRAM Magnetic disk

Access time (in ns) 2–5 3–10 80–400 5,000,000

Bandwidth (in MB/sec) 4000–32,000 800–5000 400–2000 4–32

Managed by Compiler Hardware Operating system Operating
system/user

Backed by Cache Main memory Disk Tape

FIGURE 1.16 The typical levels in the hierarchy slow down and get larger as we move away from the CPU. Sizes
are typical for a large workstation or small server. The implementation technology shows the typical technology used for
these functions. The access time is given in nanoseconds for typical values in 1995; these times will decrease over time.
Bandwidth is given in megabytes per second, assuming 64- to 256-bit paths between levels in the memory hierarchy. As we
move to lower levels of the hierarchy, the access times increase, making it feasible to manage the transfer less responsively.

42 Chapter 1 Fundamentals of Computer Design

ierar-
e can
rfor-
stem

 hi-
ue is
sure-
n to

or a

emo-

dle a
e will
ns.
Performance of Caches: The Basics

Because of locality and the higher speed of smaller memories, a memory h
chy can substantially improve performance. There are several ways that w
look at the performance of a memory hierarchy and its impact on CPU pe
mance. Let’s start with an example that uses Amdahl’s Law to compare a sy
with and without a cache.

E X A M P L E Suppose a cache is 10 times faster than main memory, and suppose that
the cache can be used 90% of the time. How much speedup do we gain
by using the cache?

A N S W E R This is a simple application of Amdahl’s Law.

Speedup =

Speedup =

Speedup = ≈ 5.3

Hence, we obtain a speedup from the cache of about 5.3 times. ■

In practice, we do not normally use Amdahl’s Law for evaluating memory
erarchies. Most machines will include a memory hierarchy, and the key iss
really how to design that hierarchy, which depends on more detailed mea
ments. An alternative method is to expand our CPU execution time equatio
account for the number of cycles during which the CPU is stalled waiting f
memory access, which we call the memory stall cycles. The performance is then
the product of the clock cycle time and the sum of the CPU cycles and the m
ry stall cycles:

This equation assumes that the CPU clock cycles include the time to han
cache hit, and that the CPU is stalled during a cache miss. In Chapter 5, w
analyze memory hierarchies in more detail, examining both these assumptio

1

1 % of time cache can be used–() % of time cache can be used
Speedup using cache

--+

1

1 0.9–() 0.9
10
-------+

1
0.19

CPU execution time CPU clock cycles Memory stall cycles+() Clock cycle×=

1.7 Putting It All Together: The Concept of Memory Hierarchy 43

s and

d: We
mber
 each

ires a
s

of ac-

rmine
. The
e will
The number of memory stall cycles depends on both the number of misse
the cost per miss, which is called the miss penalty:

The advantage of the last form is that the components can be easily measure
already know how to measure IC (instruction count), and measuring the nu
of memory references per instruction can be done in the same fashion, since
instruction requires an instruction access and we can easily decide if it requ
data access. The component Miss rate is simply the fraction of cache accesse
that result in a miss (i.e., number of accesses that miss divided by number
cesses). Miss rates are typically measured with cache simulators that take atrace
of the instruction and data references, simulate the cache behavior to dete
which references hit and which miss, and then report the hit and miss totals
miss rate is one of the most important measures of cache design, but, as w
see in Chapter 5, not the only measure.

E X A M P L E Assume we have a machine where the CPI is 2.0 when all memory ac-
cesses hit in the cache.The only data accesses are loads and stores, and
these total 40% of the instructions. If the miss penalty is 25 clock cycles
and the miss rate is 2%, how much faster would the machine be if all in-
structions were cache hits?

A N S W E R First compute the performance for the machine that always hits:

Now for the machine with the real cache, first we compute memory stall
cycles:

where the middle term (1 + 0.4) represents one instruction access and 0.4
data accesses per instruction. The total performance is thus

The performance ratio is the inverse of the execution times:

Memory stall cycles Number of misses Miss penalty×=

IC Misses per instruction Miss penalty××=

IC Memory references per instruction Miss rate× Miss penalty××=

CPU execution time CPU clock cycles Memory stall cycles+() Clock cycle×=

IC CPI× 0+() Clock cycle×=

IC 2.0 Clock cycle××=

Memory stall cycles IC Memory references per instruction Miss rate× Miss penalty××=

IC 1 0.4+() 0.02 25×××=

IC 0.7×=

CPU execution timecache IC 2.0× IC 0.7×+() Clock cycle×=

2.7 IC Clock cycle××=

44 Chapter 1 Fundamentals of Computer Design

lain
. We
r-

n-
hese
n.

ong

hine
ime.

ed as
ing.
by a
. The

IPS
The machine with no cache misses is 1.35 times faster. ■

The purpose of this section, which will be found in every chapter, is to exp
some commonly held misbeliefs or misconceptions that you should avoid
call such misbeliefs fallacies. When discussing a fallacy, we try to give a counte
example. We also discuss pitfalls—easily made mistakes. Often pitfalls are ge
eralizations of principles that are true in a limited context. The purpose of t
sections is to help you avoid making these errors in machines that you desig

Fallacy: MIPS is an accurate measure for comparing performance am
computers.

One alternative to time as the metric is MIPS, or million instructions per second.
For a given program, MIPS is simply

MIPS = =

Some find this rightmost form convenient since clock rate is fixed for a mac
and CPI is usually a small number, unlike instruction count or execution t
Relating MIPS to time,

Execution time =

Since MIPS is a rate of operations per unit time, performance can be specifi
the inverse of execution time, with faster machines having a higher MIPS rat

The good news about MIPS is that it is easy to understand, especially
customer, and faster machines means bigger MIPS, which matches intuition
problem with using MIPS as a measure for comparison is threefold:

■ MIPS is dependent on the instruction set, making it difficult to compare M
of computers with different instruction sets.

■ MIPS varies between programs on the same computer.

■ Most importantly, MIPS can vary inversely to performance!

1.8 Fallacies and Pitfalls

CPU execution timecache

CPU execution time
--- 2.7 IC Clock cycle××

2.0 IC Clock cycle××
--=

1.35=

Instruction count

Execution time × 106

Clock rate

CPI × 106

Instruction count

MIPS × 106

1.8 Fallacies and Pitfalls 45

tion-
oat-
ing
time
c-
erall
The classic example of the last case is the MIPS rating of a machine with op
al floating-point hardware. Since it generally takes more clock cycles per fl
ing-point instruction than per integer instruction, floating-point programs us
the optional hardware instead of software floating-point routines take less
but have a lower MIPS rating. Software floating point executes simpler instru
tions, resulting in a higher MIPS rating, but it executes so many more that ov
execution time is longer.

We can even see such anomalies with optimizing compilers.

E X A M P L E Assume we build an optimizing compiler for the load-store machine for
which the measurements in Figure 1.17 have been made. The compiler
discards 50% of the arithmetic logic unit (ALU) instructions, although it
cannot reduce loads, stores, or branches. Ignoring systems issues and
assuming a 2-ns clock cycle time (500-MHz clock rate) and 1.57 unopti-
mized CPI, what is the MIPS rating for optimized code versus unoptimized
code? Does the ranking of MIPS agree with the ranking of execution time?

A N S W E R We know that CPIunoptimized = 1.57, so

MIPSunoptimized = = 318.5

The performance of unoptimized code is

For optimized code:

since half the ALU instructions are discarded (0.43/2) and the instruction
count is reduced by the missing ALU instructions. Thus,

Instruction type Frequency Clock cycle count

ALU ops 43% 1

Loads 21% 2

Stores 12% 2

Branches 24% 2

FIGURE 1.17 Measurements of the load-store machine.

500MHz

1.57 10
6×

CPU timeunoptimized ICunoptimized 1.57 2 10
9–×()××=

3.14 10
9–× ICunoptimized×=

CPIoptimized
0.43 2⁄() 1 0.21 2 0.12 2 0.24 2×+×+×+×

1 0.43 2⁄()–
-- 1.73= =

MIPSoptimized
500 MHz

1.73 10
6×

------------------------- 289.0= =

46 Chapter 1 Fundamentals of Computer Design

f per-

:

ram.
ppli-
S rat-
ting-

truc-
ines.
exe-
t op-
ting-
 C90

sine,
s not

ix-
with
0%
xer-

for a
ric for
e for
ime,
ting
The performance of optimized code is

The optimized code is 3.14/2.72 = 1.15 times faster, but its MIPS rating is
lower: 289 versus 318! ■

As examples such as this one show, MIPS can fail to give a true picture o
formance because it does not track execution time.

Fallacy: MFLOPS is a consistent and useful measure of performance.

Another popular alternative to execution time is million floating-point operations
per second, abbreviated megaFLOPS or MFLOPS, but always pronounced
“megaflops.” The formula for MFLOPS is simply the definition of the acronym

Clearly, a MFLOPS rating is dependent on the machine and on the prog
Since MFLOPS is intended to measure floating-point performance, it is not a
cable outside that range. Compilers, as an extreme example, have a MFLOP
ing near nil no matter how fast the machine, since compilers rarely use floa
point arithmetic.

This term is less innocent than MIPS. Based on operations rather than ins
tions, MFLOPS is intended to be a fair comparison between different mach
The belief is that the same program running on different computers would
cute a different number of instructions but the same number of floating-poin
erations. Unfortunately, MFLOPS is not dependable because the set of floa
point operations is not consistent across machines. For example, the Cray
has no divide instruction, while the Intel Pentium has divide, square root,
and cosine. Another perceived problem is that the MFLOPS rating change
only on the mixture of integer and floating-point operations but also on the m
ture of fast and slow floating-point operations. For example, a program
100% floating-point adds will have a higher rating than a program with 10
floating-point divides. (We discuss a proposed solution to this problem in E
cise 1.15 (b).)

Furthermore, like any other performance measure, the MFLOPS rating
single program cannot be generalized to establish a single performance met
a computer. Since MFLOPS is really just a constant divided by execution tim
a specific program and specific input, MFLOPS is redundant to execution t
our principal measure of performance. And unlike execution time, it is temp

CPU timeoptimized 0.785 ICunoptimized×() 1.73 2 10
9–×()××=

2.72 10
9–× ICunoptimized×=

MFLOPS Number of floating-point operations in a program

Execution time in seconds 10
6×

---=

1.8 Fallacies and Pitfalls 47

ing
om-

stone.
ior for
 in-
ide of
n’t re-
ome

 in-
tions

rk “re-
hey
ry-
ls at

r in-
 real
 and
ation

rela-
likely
ing

yn-
that
uare
—

to characterize a machine with a single MIPS or MFLOPS rating without nam
the program, specifying the I/O, or describing the versions of the OS and c
pilers.

Fallacy: Synthetic benchmarks predict performance for real programs.

The best known examples of such benchmarks are Whetstone and Dhry
These are not real programs and, as such, may not reflect program behav
factors not measured. Compiler and hardware optimizations can artificially
flate performance of these benchmarks but not of real programs. The other s
the coin is that because these benchmarks are not natural programs, they do
ward optimizations of behaviors that occur in real programs. Here are s
examples:

■ Optimizing compilers can discard 25% of the Dhrystone code; examples
clude loops that are only executed once, making the loop overhead instruc
unnecessary. To address these problems the authors of the benchma
quire” both optimized and unoptimized code to be reported. In addition, t
“forbid” the practice of inline-procedure expansion optimization, since Dh
stone’s simple procedure structure allows elimination of all procedure cal
almost no increase in code size.

■ Most Whetstone floating-point loops execute small numbers of times o
clude calls inside the loop. These characteristics are different from many
programs. As a result Whetstone underrewards many loop optimizations
gains little from techniques such as multiple issue (Chapter 4) and vectoriz
(Appendix B).

■ Compilers can optimize a key piece of the Whetstone loop by noting the
tionship between square root and exponential, even though this is very un
to occur in real programs. For example, one key loop contains the follow
FORTRAN code:

X = SQRT(EXP(ALOG(X)/T1))

It could be compiled as if it were

X = EXP(ALOG(X)/(2 ×T1))

since

SQRT(EXP(X)) = = EXP(X/2)

It would be surprising if such optimizations were ever invoked except in this s
thetic benchmark. (Yet one reviewer of this book found several compilers
performed this optimization!) This single change converts all calls to the sq
root function in Whetstone into multiplies by 2, surely improving performance
if Whetstone is your measure.

e
X2 eX 2/=

48 Chapter 1 Fundamentals of Computer Design

al per-
g the
ing,”
ench-

prove
rules
 in a

 suite
300
n a
iler
tion
 ear-
and
ticu-

tune
s or
erfor-
pages
ecific
gen-
redi-
IBM
sed
eded.
e sub-
ll per-
 1.2
, the
rfor-

r ex-
(called
ta for
uch
done.
 when
ot be
ed to
sure-
Fallacy: Benchmarks remain valid indefinitely.

Several factors influence the usefulness of a benchmark as a predictor of re
formance and some of these may change over time. A big factor influencin
usefulness of a benchmark is the ability of the benchmark to resist “crack
also known as benchmark engineering or “benchmarksmanship.” Once a b
mark becomes standardized and popular, there is tremendous pressure to im
performance by targeted optimizations or by aggressive interpretation of the
for running the benchmark. Small kernels or programs that spend their time
very small number of lines of code are particularly vulnerable.

 For example, despite the best intentions, the initial SPEC89 benchmark
included a small kernel, called matrix300, which consisted of eight different
× 300 matrix multiplications. In this kernel, 99% of the execution time was i
single line (see SPEC [1989]). Optimization of this inner loop by the comp
(using an idea called blocking, discussed in Chapter 5) for the IBM Powersta
550 resulted in performance improvement by a factor of more than 9 over an
lier version of the compiler! This benchmark tested compiler performance
was not, of course, a good indication of overall performance, nor of this par
lar optimization.

Even after the elimination of this benchmark, vendors found methods to
the performance of individual benchmarks by the use of different compiler
preprocessors, as well as benchmark-specific flags. While the baseline p
mance measurements restrict this (the rules for baseline tuning appear on
57–58), the tuned or optimized performance does not. In fact, benchmark-sp
flags are allowed, even if they are illegal and lead to incorrect compilation in
eral! This has resulted in long lists of options, as Figure 1.18 shows. This inc
ble list of impenetrable options used in the tuned measurements for an
Powerstation 590, which is not significantly different from the option lists u
by other vendors, makes it clear why the baseline measurements were ne
The performance difference between the baseline and tuned numbers can b
stantial. For the SPECfp92 benchmarks on the Powerstation 590, the overa
formance (which by SPEC92 rules is summarized by geometric mean) is
times higher for the optimized programs. For some benchmarks, however
difference is considerably larger: For the nasa7 kernels, the optimized pe
mance is 2.1 times higher than the baseline!

Benchmark engineering is sometimes applied to the runtime libraries. Fo
ample, SPEC92 added a spreadsheet to the SPEC92 integer benchmarks
sc). Like any spreadsheet, sc spends a great deal of its time formatting da
the screen, a function that is handled in a UNIX runtime library. Normally s
screen I/O is synchronous—each I/O is completed before the next one is
This increases the runtime substantially. Several companies observed that
the benchmark is run, its output goes to a file, in which case the I/O need n
synchronous. Instead the I/O can be done to a memory buffer that is flush
disk after the program completes, thus taking the I/O time out of the mea

1.8 Fallacies and Pitfalls 49

never
e real
eated
makes
ong

mark
tic and
n of
stem
 in-
ay be
 over
input
 this
eing

=1
ment loop. One company even went a step farther, realizing that the file is
read, and tossed the I/O completely. If the benchmark was meant to indicat
performance of a spreadsheet-like program, these “optimizations” have def
such goals. Perhaps even worse than the fact that this creative engineering
the program perform differently is that it makes it impossible to compare am
vendors’ machines, which was the key reason SPEC was created.

Ongoing improvements in technology can also change what a bench
measures. Consider the benchmark gcc, considered one of the most realis
challenging of the SPEC92 benchmarks. Its performance is a combinatio
CPU time and real system time. Since the input remains fixed and real sy
time is limited by factors, including disk access time, that improve slowly, an
creasing amount of the runtime is system time rather than CPU time. This m
appropriate. On the other hand, it may be appropriate to change the input
time, reflecting the desire to compile larger programs. In fact, the SPEC92
was changed to include four copies of each input file used in SPEC89; while
increases runtime, it may or may not reflect the way compilers are actually b

SPECfp92 Tuning parameters/Notes/Summary of changes:

Software: KAP for IBM FORTRAN Ver. 3.1 Beta, VAST-2 for XL FORTRAN Ver. 4.03 Beta, KAP for IBM C, Ver. 1.3

all: -O3 -qarch=pwrx -BI:/lib/syscalls.exp

013: -qnosave -P -Wp,-ea478,-Iindxx:dcsol,-Sv01.f:v06.f -lblas

015: -P -Wp,-ea478,-fz,-Isi:coeray,-Ssi.f:coeray.f -lblas

039: -Pk -Wp,-r=3,-inline,-ur=8,-ur2=2 00,-ind=2,-in11=2

034: -Pk -Wp,-r=3,-inline,-ur=4

047: -Q-Pk -Wp,-r=3,-o=4,-ag=a

048: -Pk -Wp,-inline,-r=3,-ur=2,-ur=10 0

052: -Q -Q-input-hidden -qhsflt -Dfloat=double -qassert-typeptr -qproclocal -qmaxmem=9999999 +K4 +Kargs=ur2

056: -qproclocal -Dfloat=double -qunroll=2 -qhsflt -qmaxmem=999999 +K4 -Kargs=-ar1=2:-ur2=5000

077: -O3 -qstrict -qarch=ppc -qmaxmem=-1 -Pk -Wp,-inline,-r=3,-ur=2,-ur2=9999

078: -qhsflt -P -Wp,-ea278,-fz,-me -qhot

089: -qnosave -qhssngl -Pk -Wp,-inline=trngv,-r=3,-ur=2,-ur2=9999

090: -P -Wp,-ea,-f1 -qhot

093: -DTIMES -P -Wp,-eaj78,-Rvpetst:vpenta:fftst -qfloat=nosqrt -lesslp2

094: -P -Wp,-ea78 -lesslp2

FIGURE 1.18 The tuning parameters for the SPECfp92 report on an IBM RS/6000 Powerstation 590. This is the por-
tion of the SPEC report for the tuned performance corresponding to that in Figure 1.10 on page 24. These parameters de-
scribe the compiler and preprocessor (two versions of KAP and a version of VAST-2) as well as the options used for the
tuned SPEC92 numbers. Each line shows the option used for one of the SPECfp92 benchmarks. The benchmarks are iden-
tified by number but appear in the same order as given in Figure 1.9 on page 22. Data from SPEC [1994].

50 Chapter 1 Fundamentals of Computer Design

hosen

d not
 is typ-
s for
n pre-
rams

n on
PS.
-MP
810.

puter
exam-
le of
nly

tions
hine
e fast-
MIPS
EC

times
en if

uper-
, ap-
bious
used. Over a long period of time, these changes may make even a well-c
benchmark obsolete.

Fallacy: Peak performance tracks observed performance.

One definition of peak performance is performance a machine is “guarantee
to exceed.” The gap between peak performance and observed performance
ically a factor of 10 or more in supercomputers. (See Appendix B on vector
an explanation.) Since the gap is so large, peak performance is not useful i
dicting observed performance unless the workload consists of small prog
that normally operate close to the peak.

As an example of this fallacy, a small code segment using long vectors ra
the Hitachi S810/20 at 236 MFLOPS and on the Cray X-MP at 115 MFLO
Although this suggests the S810 is 2.05 times faster than the X-MP, the X
runs a program with more typical vector lengths 1.97 times faster than the S
These data are shown in Figure 1.19.

While the use of peak performance has been rampant in the supercom
business, its use in the microprocessor business is just as misleading. For
ple, in 1994 DEC announced a version of the Alpha microprocessor capab
executing 1.2 billion instructions per second at its 300-MHz clock rate.The o
way this processor can achieve this performance is for two integer instruc
and two floating-point instructions to be executed each clock cycle. This mac
has a peak performance that is almost 50 times the peak performance of th
est microprocessor reported in the first SPEC benchmark report in 1989 (a
M/2000, which had a 25-MHz clock). The overall SPEC92 number of the D
Alpha processor, however, is only about 15 times higher on integer and 25
higher on FP. This rate of performance improvement is still spectacular, ev
peak performance is not a good indicator.

The authors hope that peak performance can be quarantined to the s
computer industry and eventually eradicated from that domain. In any case
proaching supercomputer performance is not an excuse for adopting du
supercomputer marketing habits.

Measurement
Cray
X-MP

Hitachi
S810/20 Performance

A(i)=B(i) *C(i)+D(i)*E(i) (vector length
1000 done 100,000 times)

2.6 secs 1.3 secs Hitachi 2.05
times faster

Vectorized FFT
(vector lengths 64,32,…,2)

3.9 secs 7.7 secs Cray 1.97
times faster

FIGURE 1.19 Measurements of peak performance and actual performance for the Hi-
tachi S810/20 and the Cray X-MP. Data from pages 18–20 of Lubeck, Moore, and Mendez
[1985]. Also see Fallacies and Pitfalls in Appendix B.

1.9 Concluding Remarks 51

as we
alter-
see
le us

ua-
r 2
 on

er.

at sec-
 in-

hap-
on

 im-
rlaps
clock
e in

f ma-
ning,
on-

ter 3,
 built
tech-
ong

egins
y for
 ana-

 uses
com-
ched
k at
cated
sign,

 The
We
look
 we
This chapter has introduced a number of concepts that we will expand upon
go through this book. The major ideas in instruction set architecture and the
natives available will be the primary subjects of Chapter 2. Not only will we
the functional alternatives, we will also examine quantitative data that enab
to understand the trade-offs. The quantitative principle, Make the common case
fast, will be a guiding light in this next chapter, and the CPU performance eq
tion will be our major tool for examining instruction set alternatives. Chapte
concludes with a hypothetical instruction set, called DLX, which is designed
the basis of observations of program behavior that we will make in the chapt

In Chapter 2, we will include a section, Crosscutting Issues, that specifically
addresses interactions between topics addressed in different chapters. In th
tion within Chapter 2, we focus on the interactions between compilers and
struction set design. This Crosscutting Issues section will appear in all future
chapters, with the exception of Chapter 4 on advanced pipelining. In later c
ters, the Crosscutting Issues sections describe interactions between instructi
sets and implementation techniques.

In Chapters 3 and 4 we turn our attention to pipelining, the most common
plementation technique used for making faster processors. Pipelining ove
the execution of instructions and thus can achieve lower CPIs and/or lower
cycle times. As in Chapter 2, the CPU performance equation will be our guid
the evaluation of alternatives. Chapter 3 starts with a review of the basics o
chine organization and control and moves through the basic ideas in pipeli
including the control of more complex floating-point pipelines. The chapter c
cludes with an examination and analysis of the R4000. At the end of Chap
you will be able to understand the pipeline design of almost every processor
before 1990. Chapter 4 is an extensive examination of advanced pipelining
niques that attempt to get higher performance by exploiting more overlap am
instructions than the simple pipelines in use in the 1980s. This chapter b
with an extensive discussion of basic concepts that will prepare you not onl
the wide range of ideas examined in Chapter 4, but also to understand and
lyze new techniques that will be introduced in the coming years. Chapter 4
examples that span about 20 years, drawing from the first modern super
puters (the CDC 6600 and IBM 360/91) to the latest processors that first rea
the market in 1995. Throughout Chapters 3 and 4, we will repeatedly loo
techniques that rely either on clever hardware techniques or on sophisti
compiler technology. These alternatives are an exciting aspect of pipeline de
likely to continue through the decade of the 1990s.
 In Chapter 5 we turn to the all-important area of memory system design.
Putting It All Together section in this chapter serves as a basic introduction.
will examine a wide range of techniques that conspire to make memory
infinitely large while still being as fast as possible. The simple equations

1.9 Concluding Remarks

52 Chapter 1 Fundamentals of Computer Design

tion
nd 4,

erfor-

s is-
ntita-

ing an
ortant
ag-

r cost
ain
 the
 the
ads,
e ex-
isks,
avail-
d for
nnect
to al-
merg-

ough
m to

ion
 is on
ough
in any
n the
oping

 im-
ic of
ma-
um
ould
 cov-
a via-
ector
 they
ory
veys

ences
ular
develop in this chapter will serve as a starting point for the quantitative evalua
of the many techniques used for memory system design. As in Chapters 3 a
we will see that hardware-software cooperation has become a key to high-p
mance memory systems, just as it has to high-performance pipelines.

In Chapters 6 and 7, we move away from a CPU-centric view and discus
sues in storage systems and in system interconnect. We apply a similar qua
tive approach, but one based on observations of system behavior and us
end-to-end approach to performance analysis. Chapter 6 addresses the imp
issue of how to efficiently store and retrieve data using primarily lower-cost m
netic storage technologies. As we saw earlier, such technologies offer bette
per bit by a factor of 50–100 over DRAM. Magnetic storage is likely to rem
advantageous wherever cost or nonvolatility (it keeps the information after
power is turned off) are important. In Chapter 6, our focus is on examining
performance of magnetic storage systems for typical I/O-intensive worklo
which are the counterpart to the CPU benchmarks we saw in this chapter. W
tensively explore the idea of RAID-based systems, which use many small d
arranged in a redundant fashion to achieve both high performance and high
ability. Chapter 7 also discusses the primary interconnection technology use
I/O devices, namely buses. This chapter explores the topic of system interco
more broadly, including large-scale MPP interconnects and networks used
low separate computers to communicate. We put special emphasis on the e
ing new networking standards developing around ATM.

Our final chapter returns to the issue of achieving higher performance thr
the use of multiple processors, or multiprocessors. Instead of using parallelis
overlap individual instructions, it uses parallelism to allow multiple instruct
streams to be executed simultaneously on different processors. Our focus
the dominant form of multiprocessors, shared-memory multiprocessors, th
we introduce other types as well and discuss the broad issues that arise
multiprocessor. Here again, we explore a variety of techniques, focusing o
important ideas first introduced in the 1980s as well as those that are devel
as this book goes to press.

We conclude this book with a variety of appendices that introduce you to
portant topics not covered in the eight chapters. Appendix A covers the top
floating-point arithmetic—a necessary ingredient for any high-performance
chine. The incorrect implementation of floating-point divide in the Intel Penti
processor, which led to an estimated impact in excess of $300 million, sh
serve as a clear reminder about the importance of floating point! Appendix B
ers the topic of vector machines. In the scientific market, such machines are
ble alternative to the multiprocessors discussed in Chapter 8. Although v
machines do not dominate supercomputing the way they did in the 1980s,
still include many important concepts in pipelining, parallelism, and mem
systems that are useful in different machine organizations. Appendix C sur
the most popular RISC instruction set architectures and contrasts the differ
among them, using DLX as a starting point. Appendix D examines the pop

1.10 Historical Perspective and References 53

xist-
at of
ndix

nd

2)

ction
apter.
nes or
lop-
vided

ty of
This

as
was
ng
veral
 10-

hines
king
ma-
as

om a
 was

roup
oring
ote a
rete
 put
ose
 used

he
80x86 instruction set—the most heavily used instruction set architecture in e
ence. Appendix D compares the design of the 80x86 instruction set with th
the RISC machines described in Chapter 2 and in Appendix C. Finally, Appe
E discusses implementation issues in coherence protocols.

If... history... teaches us anything, it is that man in his quest for knowledge a
progress, is determined and cannot be deterred.

John F. Kennedy, Address at Rice University (196

A section of historical perspectives closes each chapter in the text. This se
provides historical background on some of the key ideas presented in the ch
The authors may trace the development of an idea through a series of machi
describe significant projects. If you’re interested in examining the initial deve
ment of an idea or machine or interested in further reading, references are pro
at the end of the section.

The First General-Purpose Electronic Computers

J. Presper Eckert and John Mauchly at the Moore School of the Universi
Pennsylvania built the world’s first electronic general-purpose computer.
machine, called ENIAC (Electronic Numerical Integrator and Calculator), w
funded by the U.S. Army and became operational during World War II, but it
not publicly disclosed until 1946. ENIAC was used for computing artillery firi
tables. The machine was enormous—100 feet long, 8 1/2 feet high, and se
feet wide—far beyond the size of any computer built today. Each of the 20
digit registers was 2 feet long. In total, there were 18,000 vacuum tubes.

While the size was three orders of magnitude bigger than the size of mac
built today, it was more than five orders of magnitude slower, with an add ta
200 microseconds. The ENIAC provided conditional jumps and was program
ble, which clearly distinguished it from earlier calculators. Programming w
done manually by plugging up cables and setting switches and required fr
half-hour to a whole day. Data were provided on punched cards. The ENIAC
limited primarily by a small amount of storage and tedious programming.

In 1944, John von Neumann was attracted to the ENIAC project. The g
wanted to improve the way programs were entered and discussed st
programs as numbers; von Neumann helped crystallize the ideas and wr
memo proposing a stored-program computer called EDVAC (Electronic Disc
Variable Automatic Computer). Herman Goldstine distributed the memo and
von Neumann’s name on it, much to the dismay of Eckert and Mauchly, wh
names were omitted. This memo has served as the basis for the commonly
term von Neumann computer. The authors and several early inventors in t

1.10 Historical Perspective and References

54 Chapter 1 Fundamentals of Computer Design

 who
who
k.

ool
 com-
ect to
rage
 the
ler,
ich
 the
ator-
r un-
ruc-

ters.
o the
ave.
nal

 at
n the
w at
and
r the
ts and
er by
it to-
o, as
 there.
uilt a
ma-
r that
 he
 fil-

d un-
sed
still
 for
80].
 later
n for

y be
ther
computer field believe that this term gives too much credit to von Neumann,
wrote up the ideas, and too little to the engineers, Eckert and Mauchly,
worked on the machines. For this reason, this term will not appear in this boo

In 1946, Maurice Wilkes of Cambridge University visited the Moore Sch
to attend the latter part of a series of lectures on developments in electronic
puters. When he returned to Cambridge, Wilkes decided to embark on a proj
build a stored-program computer named EDSAC, for Electronic Delay Sto
Automatic Calculator. The EDSAC became operational in 1949 and was
world’s first full-scale, operational, stored-program computer [Wilkes, Whee
and Gill 1951; Wilkes 1985, 1995]. (A small prototype called the Mark I, wh
was built at the University of Manchester and ran in 1948, might be called
first operational stored-program machine.) The EDSAC was an accumul
based architecture. This style of instruction set architecture remained popula
til the early 1970s. (Chapter 2 starts with a brief summary of the EDSAC inst
tion set.)

In 1947, Eckert and Mauchly applied for a patent on electronic compu
The dean of the Moore School, by demanding the patent be turned over t
university, may have helped Eckert and Mauchly conclude they should le
Their departure crippled the EDVAC project, which did not become operatio
until 1952.

Goldstine left to join von Neumann at the Institute for Advanced Study
Princeton in 1946. Together with Arthur Burks, they issued a report based o
1944 memo [1946]. The paper led to the IAS machine built by Julian Bigelo
Princeton’s Institute for Advanced Study. It had a total of 1024 40-bit words
was roughly 10 times faster than ENIAC. The group thought about uses fo
machine, published a set of reports, and encouraged visitors. These repor
visitors inspired the development of a number of new computers. The pap
Burks, Goldstine, and von Neumann was incredible for the period. Reading
day, you would never guess this landmark paper was written 50 years ag
most of the architectural concepts seen in modern computers are discussed

Recently, there has been some controversy about John Atanasoff, who b
small-scale electronic computer in the early 1940s [Atanasoff 1940]. His
chine, designed at Iowa State University, was a special-purpose compute
was never completely operational. Mauchly briefly visited Atanasoff before
built ENIAC. The presence of the Atanasoff machine, together with delays in
ing the ENIAC patents (the work was classified and patents could not be file
til after the war) and the distribution of von Neumann’s EDVAC paper, were u
to break the Eckert-Mauchly patent [Larson 1973]. Though controversy
rages over Atanasoff’s role, Eckert and Mauchly are usually given credit
building the first working, general-purpose, electronic computer [Stern 19
Atanasoff, however, demonstrated several important innovations included in
computers. One of the most important was the use of a binary representatio
numbers. Atanasoff deserves much credit for his work, and he might fairl
given credit for the world’s first special-purpose electronic computer. Ano

1.10 Historical Perspective and References 55

uilt by
 was

tro-
y a
the
he
es.
s were
e term
ar-
ines

nd
d to
etic
ind
main

or-
wn
ter

C I,
 1951,
om-
ther
m in

usi-
the
any

arket

y the
dent

jour-

d in
SC
nd the
tar,
early machine that deserves some credit was a special-purpose machine b
Konrad Zuse in Germany in the late 1930s and early 1940s. This machine
electromechanical and, because of the war, never extensively pursued.

In the same time period as ENIAC, Howard Aiken was designing an elec
mechanical computer called the Mark-I at Harvard. The Mark-I was built b
team of engineers from IBM. He followed the Mark-I by a relay machine,
Mark-II, and a pair of vacuum tube machines, the Mark-III and Mark-IV. T
Mark-III and Mark-IV were being built after the first stored-program machin
Because they had separate memories for instructions and data, the machine
regarded as reactionary by the advocates of stored-program computers. Th
Harvard architecture was coined to describe this type of machine. Though cle
ly different from the original sense, this term is used today to apply to mach
with a single main memory but with separate instruction and data caches.
 The Whirlwind project [Redmond and Smith 1980] began at MIT in 1947 a
was aimed at applications in real-time radar signal processing. While it le
several inventions, its overwhelming innovation was the creation of magn
core memory, the first reliable and inexpensive memory technology. Whirlw
had 2048 16-bit words of magnetic core. Magnetic cores served as the
memory technology for nearly 30 years.

Commercial Developments

In December 1947, Eckert and Mauchly formed Eckert-Mauchly Computer C
poration. Their first machine, the BINAC, was built for Northrop and was sho
in August 1949. After some financial difficulties, the Eckert-Mauchly Compu
Corporation was acquired by Remington-Rand, where they built the UNIVA
designed to be sold as a general-purpose computer. First delivered in June
the UNIVAC I sold for $250,000 and was the first successful commercial c
puter—48 systems were built! Today, this early machine, along with many o
fascinating pieces of computer lore, can be seen at the Computer Museu
Boston, Massachusetts.

IBM, which earlier had been in the punched card and office automation b
ness, didn’t start building computers until 1950. The first IBM computer,
IBM 701, shipped in 1952 and eventually sold 19 units. In the early 1950s, m
people were pessimistic about the future of computers, believing that the m
and opportunities for these “highly specialized” machines were quite limited.

Several books describing the early days of computing have been written b
pioneers [Wilkes 1985, 1995; Goldstine 1972]. There are numerous indepen
histories, often built around the people involved [Slater 1987], as well as a
nal, Annals of the History of Computing, devoted to the history of computing.

The history of some of the computers invented after 1960 can be foun
Chapter 2 (the IBM 360, the DEC VAX, the Intel 80x86, and the early RI
machines), Chapters 3 and 4 (the pipelined processors, including Stretch a
CDC 6600), and Appendix B (vector processors including the TI ASC, CDC S
and Cray processors).

56 Chapter 1 Fundamentals of Computer Design

 was
 was
clear,
r the

es the

per-
e, the
ions
as no

in a
early
its

erage
rison
small
as the

s and
IPS
ench-
976]
 writ-
sed
 to
86]
lish a
 from

t in-
 the

arks
8 as
arket-
 M
Development of Quantitative Performance Measures:
Successes and Failures

In the earliest days of computing, designers set performance goals—ENIAC
to be 1000 times faster than the Harvard Mark-I, and the IBM Stretch (7030)
to be 100 times faster than the fastest machine in existence. What wasn’t
though, was how this performance was to be measured. In looking back ove
years, it is a consistent theme that each generation of computers obsolet
performance evaluation techniques of the prior generation.

The original measure of performance was time to perform an individual o
ation, such as addition. Since most instructions took the same execution tim
timing of one gave insight into the others. As the execution times of instruct
in a machine became more diverse, however, the time for one operation w
longer useful for comparisons. To take these differences into account, an instruc-
tion mix was calculated by measuring the relative frequency of instructions
computer across many programs. The Gibson mix [Gibson 1970] was an
popular instruction mix. Multiplying the time for each instruction times
weight in the mix gave the user the average instruction execution time. (If mea-
sured in clock cycles, average instruction execution time is the same as av
CPI.) Since instruction sets were similar, this was a more accurate compa
than add times. From average instruction execution time, then, it was only a
step to MIPS (as we have seen, the one is the inverse of the other). MIPS h
virtue of being easy for the layman to understand, hence its popularity.

As CPUs became more sophisticated and relied on memory hierarchie
pipelining, there was no longer a single execution time per instruction; M
could not be calculated from the mix and the manual. The next step was b
marking using kernels and synthetic programs. Curnow and Wichmann [1
created the Whetstone synthetic program by measuring scientific programs
ten in Algol 60. This program was converted to FORTRAN and was widely u
to characterize scientific program performance. An effort with similar goals
Whetstone, the Livermore FORTRAN Kernels, was made by McMahon [19
and researchers at Lawrence Livermore Laboratory in an attempt to estab
benchmark for supercomputers. These kernels, however, consisted of loops
real programs.

As it became clear that using MIPS to compare architectures with differen
structions sets would not work, a notion of relative MIPS was created. When
VAX-11/780 was ready for announcement in 1977, DEC ran small benchm
that were also run on an IBM 370/158. IBM marketing referred to the 370/15
a 1-MIPS computer, and since the programs ran at the same speed, DEC m
ing called the VAX-11/780 a 1-MIPS computer. Relative MIPS for a machine
was defined based on some reference machine as

 MIPSM

PerformanceM
Performancereference
-- MIPSreference×=

1.10 Historical Perspective and References 57

ela-
 to

nch-
ned
me-
bse-
alled
y the
PS.
hich

rage
try,
the
 peak

n the
d ba-
n the
s to-
bstan-
laced
 some
ber of
1994
n de-

ly be

ive,

an-
 5.

ision
The popularity of the VAX-11/780 made it a popular reference machine for r
tive MIPS, especially since relative MIPS for a 1-MIPS computer is easy
calculate: If a machine was five times faster than the VAX-11/780, for that be
mark its rating would be 5 relative MIPS. The 1-MIPS rating was unquestio
for four years, until Joel Emer of DEC measured the VAX-11/780 under a ti
sharing load. He found that the VAX-11/780 native MIPS rating was 0.5. Su
quent VAXes that run 3 native MIPS for some benchmarks were therefore c
6-MIPS machines because they run six times faster than the VAX-11/780. B
early 1980s, the term MIPS was almost universally used to mean relative MI

The 1970s and 1980s marked the growth of the supercomputer industry, w
was defined by high performance on floating-point-intensive programs. Ave
instruction time and MIPS were clearly inappropriate metrics for this indus
hence the invention of MFLOPS. Unfortunately customers quickly forget
program used for the rating, and marketing groups decided to start quoting
MFLOPS in the supercomputer performance wars.

SPEC (System Performance and Evaluation Cooperative) was founded i
late 1980s to try to improve the state of benchmarking and make a more vali
sis for comparison. The group initially focused on workstations and servers i
UNIX marketplace, and that remains the primary focus of these benchmark
day. The first release of SPEC benchmarks, now called SPEC89, was a su
tial improvement in the use of more realistic benchmarks. SPEC89 was rep
by SPEC92. This release enlarged the set of programs, made the inputs to
benchmarks bigger, and specified new run rules. To reduce the large num
benchmark-specific compiler flags and the use of targeted optimizations, in
SPEC introduced rules for compilers and compilation switches to be used i
termining the SPEC92 baseline performance:

1. The optimization options are safe: it is expected that they could general
used on any program.

2. The same compiler and flags are used for all the benchmarks.

3. No assertion flags, which would tell the compiler some fact it could not der
are allowed.

4. Flags that allow inlining of library routines normally considered part of the l
guage are allowed, though other such inlining hints are disallowed by rule

5. No program names or subroutine names are allowed in flags.

6. Feedback-based optimization is not allowed.

7. Flags that change the default size of a data item (for example, single prec
to double precision) are not allowed.

58 Chapter 1 Fundamentals of Computer Design

ular
ical
t the

rt.
sed to
put-

 is that
ance

com-
ce of
of the
e of

ity is
nted

pro-
 time,

 of a

em to
d in

res it
sures

t the
time
tion
ster,
 15%
 was
Specifically permitted are flags that direct the compiler to compile for a partic
implementation and flags that allow the compiler to relax certain numer
accuracy requirements (such as left-to-right evaluation). The intention is tha
baseline results are what a casual user could achieve without extensive effo

SPEC also has produced system-oriented benchmarks that can be u
benchmark a system including I/O and OS functions, as well as a through
oriented measure (SPECrate), suitable for servers. What has become clear
maintaining the relevance of these benchmarks in an area of rapid perform
improvement will be a continuing investment.

Implementation-Independent Performance Analysis

As the distinction between architecture and implementation pervaded the
puting community in the 1970s, the question arose whether the performan
an architecture itself could be evaluated, as opposed to an implementation
architecture. Many of the leading people in the field pursued this notion. On
the ambitious studies of this question performed at Carnegie Mellon Univers
summarized in Fuller and Burr [1977]. Three quantitative measures were inve
to scrutinize architectures:

■ S—Number of bytes for program code

■ M—Number of bytes transferred between memory and the CPU during
gram execution for code and data (S measures size of code at compile
while M is memory traffic during program execution.)

■ R—Number of bytes transferred between registers in a canonical model
CPU

Once these measures were taken, a weighting factor was applied to th
determine which architecture was “best.” The VAX architecture was designe
the height of popularity of the Carnegie Mellon study, and by those measu
does very well. Architectures created since 1985, however, have poorer mea
than the VAX using these metrics, yet their implementations do well agains
VAX implementations. For example, Figure 1.20 compares S, M, and CPU
for the VAXstation 3100, which uses the VAX instruction set, and the DECsta
3100, which doesn’t. The DECstation 3100 is about three to five times fa
even though its S measure is 35% to 70% worse and its M measure is 5% to
worse. The attempt to evaluate architecture independently of implementation
a valiant, if not successful, effort.

1.10 Historical Perspective and References 59

put-

ns,”

ment,
-

ter

on,

ental

67,

rs:

or-
ali-

,

References

AMDAHL , G. M. [1967]. “Validity of the single processor approach to achieving large scale com
ing capabilities,” Proc. AFIPS 1967 Spring Joint Computer Conf. 30 (April), Atlantic City, N.J.,
483–485.

ATANASOFF, J. V. [1940]. “Computing machine for the solution of large systems of linear equatio
Internal Report, Iowa State University, Ames.

BELL, C. G. [1984]. “The mini and micro industries,” IEEE Computer 17:10 (October), 14–30.

BELL, C. G., J. C. MUDGE, AND J. E. MCNAMARA [1978]. A DEC View of Computer Engineering,
Digital Press, Bedford, Mass.

BURKS, A. W., H. H. GOLDSTINE, AND J. VON NEUMANN [1946]. “Preliminary discussion of the logi-
cal design of an electronic computing instrument,” Report to the U.S. Army Ordnance Depart
p. 1; also appears in Papers of John von Neumann, W. Aspray and A. Burks, eds., MIT Press, Cam
bridge, Mass., and Tomash Publishers, Los Angeles, Calif., 1987, 97–146.

CURNOW, H. J. AND B. A. WICHMANN [1976]. “A synthetic benchmark,” The Computer J., 19:1.

FLEMMING, P. J. AND J. J. WALLACE [1986]. “How not to lie with statistics: The correct way to
summarize benchmarks results,” Comm. ACM 29:3 (March), 218–221.

FULLER, S. H. AND W. E. BURR [1977]. “Measurement and evaluation of alternative compu
architectures,” Computer 10:10 (October), 24–35.

GIBSON, J. C. [1970]. “The Gibson mix,” Rep. TR. 00.2043, IBM Systems Development Divisi
Poughkeepsie, N.Y. (Research done in 1959.)

GOLDSTINE, H. H. [1972]. The Computer: From Pascal to von Neumann, Princeton University Press,
Princeton, N.J.

JAIN, R. [1991]. The Art of Computer Systems Performance Analysis: Techniques for Experim
Design, Measurement, Simulation, and Modeling, Wiley, New York.

LARSON, E. R. [1973]. “Findings of fact, conclusions of law, and order for judgment,” File No. 4–
Civ. 138, Honeywell v. Sperry Rand and Illinois Scientific Development, U.S. District Court for the
State of Minnesota, Fourth Division (October 19).

LUBECK, O., J. MOORE, AND R. MENDEZ [1985]. “A benchmark comparison of three supercompute
Fujitsu VP-200, Hitachi S810/20, and Cray X-MP/2,” Computer 18:12 (December), 10–24.

MCMAHON, F. M. [1986]. “The Livermore FORTRAN kernels: A computer test of numerical perf
mance range,” Tech. Rep. UCRL-55745, Lawrence Livermore National Laboratory, Univ. of C
fornia, Livermore (December).

REDMOND, K. C. AND T. M. SMITH [1980]. Project Whirlwind—The History of a Pioneer Computer

S
(code size in bytes)

M
(megabytes code +
data transferred)

CPU time
(in secs)

Program VAX 3100 DEC 3100 VAX 3100 DEC 3100 VAX 3100 DEC 3100

Gnu C Compiler 409,600 688,128 18 21 291 90

Common TeX 158,720 217,088 67 78 449 95

spice 223,232 372,736 99 106 352 94

FIGURE 1.20 Code size and CPU time of the VAXstation 3100 and DECstation 3100 for Gnu C Compiler, TeX, and
spice. Both machines were announced the same day by the same company, and they run the same operating system and
similar technology. The difference is in the instruction sets, compilers, clock cycle time, and organization.

60 Chapter 1 Fundamentals of Computer Design

rk-

ions it
.

a ma-
times
 spent
t

tation

2?

axi-

grams
 vector
 the
easing
ive to
vest-

ake
0. En-
e
Digital Press, Boston.

SHURKIN, J. [1984]. Engines of the Mind: A History of the Computer, W. W. Norton, New York.

SLATER, R. [1987]. Portraits in Silicon, MIT Press, Cambridge, Mass.

SMITH, J. E. [1988]. “Characterizing computer performance with a single number,” Comm. ACM
31:10 (October), 1202–1206.

SPEC [1989]. SPEC Benchmark Suite Release 1.0, October 2, 1989.

SPEC [1994]. SPEC Newsletter (June).

STERN, N. [1980]. “Who invented the first electronic digital computer,” Annals of the History of
Computing 2:4 (October), 375–376.

TOUMA, W. R. [1993]. The Dynamics of the Computer Industry: Modeling the Supply of Wo
stations and Their Components, Kluwer Academic, Boston.

WEICKER, R. P. [1984]. “Dhrystone: A synthetic systems programming benchmark,” Comm. ACM
27:10 (October), 1013–1030.

WILKES, M. V. [1985]. Memoirs of a Computer Pioneer, MIT Press, Cambridge, Mass.

WILKES, M. V. [1995]. Computing Perspectives, Morgan Kaufmann, San Francisco.

WILKES, M. V., D. J. WHEELER, AND S. GILL [1951]. The Preparation of Programs for an Electronic
Digital Computer, Addison-Wesley, Cambridge, Mass.

E X E R C I S E S

Each exercise has a difficulty rating in square brackets and a list of the chapter sect
depends on in angle brackets. See the Preface for a description of the difficulty scale

1.1 [20/10/10/15] <1.6> In this exercise, assume that we are considering enhancing
chine by adding a vector mode to it. When a computation is run in vector mode it is 20
faster than the normal mode of execution. We call the percentage of time that could be
using vector mode the percentage of vectorization.Vectors are discussed in Appendix B, bu
you don’t need to know anything about how they work to answer this question!

a. [20] <1.6> Draw a graph that plots the speedup as a percentage of the compu
performed in vector mode. Label the y axis “Net speedup” and label the x axis “Percent
vectorization.”

b. [10] <1.6> What percentage of vectorization is needed to achieve a speedup of

c. [10] <1.6> What percentage of vectorization is needed to achieve one-half the m
mum speedup attainable from using vector mode?

d. [15] <1.6> Suppose you have measured the percentage of vectorization for pro
to be 70%. The hardware design group says they can double the speed of the
rate with a significant additional engineering investment. You wonder whether
compiler crew could increase the use of vector mode as another approach to incr
performance. How much of an increase in the percentage of vectorization (relat
current usage) would you need to obtain the same performance gain? Which in
ment would you recommend?

1.2 [15/10] <1.6> Assume—as in the Amdahl’s Law Example on page 30—that we m
an enhancement to a computer that improves some mode of execution by a factor of 1
hanced mode is used 50% of the time, measured as a percentage of the execution timwhen

Exercises 61

ig-
nnot

o fast

ge 33

e ma-
isters.
ad-
n

e new
 in-
ct the
truc-

 given

rences
uction
misses

er at
ts that
me that
he first
ents
n of

nopti-
nged.

ting-
the enhanced mode is in use. Recall that Amdahl’s Law depends on the fraction of the or
inal, unenhanced execution time that could make use of enhanced mode. Thus, we ca
directly use this 50% measurement to compute speedup with Amdahl’s Law.

a. [15] <1.6> What is the speedup we have obtained from fast mode?

b. [10] <1.6> What percentage of the original execution time has been converted t
mode?

1.3 [15] <1.6> Show that the problem statements in the Examples on page 31 and pa
are the same.

1.4 [15] <1.6> Suppose we are considering a change to an instruction set. The bas
chine initially has only loads and stores to memory, and all operations work on the reg
Such machines are called load-store machines (see Chapter 2). Measurements of the lo
store machine showing the instruction mix and clock cycle counts per instruction are give
in Figure 1.17 on page 45.

Let’s assume that 25% of the arithmetic logic unit (ALU) operations directly use a loaded
operand that is not used again.

We propose adding ALU instructions that have one source operand in memory. Thes
register-memory instructions have a clock cycle count of 2. Suppose that the extended
struction set increases the clock cycle count for branches by 1, but it does not affe
clock cycle time. (Chapter 3, on pipelining, explains why adding register-memory ins
tions might slow down branches.) Would this change improve CPU performance?

1.5 [15] <1.7> Assume that we have a machine that with a perfect cache behaves as
in Figure 1.17.

With a cache, we have measured that instructions have a miss rate of 5%, data refe
have a miss rate of 10%, and the miss penalty is 40 cycles. Find the CPI for each instr
type with cache misses and determine how much faster the machine is with no cache
versus with cache misses.

1.6 [20] <1.6> After graduating, you are asked to become the lead computer design
Hyper Computers, Inc. Your study of usage of high-level language constructs sugges
procedure calls are one of the most expensive operations. You have invented a sche
reduces the loads and stores normally associated with procedure calls and returns. T
thing you do is run some experiments with and without this optimization. Your experim
use the same state-of-the-art optimizing compiler that will be used with either versio
the computer. These experiments reveal the following information:

■ The clock rate of the unoptimized version is 5% higher.

■ Thirty percent of the instructions in the unoptimized version are loads or stores.

■ The optimized version executes two-thirds as many loads and stores as the u
mized version. For all other instructions the dynamic execution counts are uncha

■ All instructions (including load and store) take one clock cycle.

Which is faster? Justify your decision quantitatively.

1.7 [15/15/8/12] <1.6,1.8> The Whetstone benchmark contains 195,578 basic floa

62 Chapter 1 Fundamentals of Computer Design

. The
ting-

e co-
n of
re. As-
g soft-

rm a

co-
gure

t of a
ts. We
ging
point operations in a single iteration, divided as shown in Figure 1.21.

Whetstone was run on a Sun 3/75 using the F77 compiler with optimization turned on
Sun 3/75 is based on a Motorola 68020 running at 16.67 MHz, and it includes a floa
point coprocessor. The Sun compiler allows the floating point to be calculated with th
processor or using software routines, depending on compiler flags. A single iteratio
Whetstone took 1.08 seconds using the coprocessor and 13.6 seconds using softwa
sume that the CPI using the coprocessor was measured to be 10, while the CPI usin
ware was measured to be 6.

a. [15] <1.6,1.8> What is the MIPS rating for both runs?

b. [15] <1.6> What is the total number of instructions executed for both runs?

c. [8] <1.6> On the average, how many integer instructions does it take to perfo
floating-point operation in software?

d. [12] <1.8> What is the MFLOPS rating for the Sun 3/75 with the floating-point
processor running Whetstone? (Assume all the floating-point operations in Fi
1.21 count as one operation.)

1.8 [15/10/15/15/15] <1.3,1.4> This exercise estimates the complete packaged cos
microprocessor using the die cost equation and adding in packaging and testing cos
begin with a short description of testing cost and follow with a discussion of packa
issues.

Testing is the second term of the chip cost equation:

Cost of integrated circuit =

Testing costs are determined by three components:

Operation Count

Add 82,014

Subtract 8,229

Multiply 73,220

Divide 21,399

Convert integer to FP 6,006

Compare 4,710

Total 195,578

FIGURE 1.21 The frequency of floating-point
operations in the Whetstone benchmark.

Cost of die + Cost of testing die + Cost of packaging

Final test yield

Cost of testing die Cost of testing per hour Average die test time×
Die yield

--=

Exercises 63

d must
to test,
t takes
n the

ensive
r. Die
nd the

ie area.
sipate

 $2 in
ith
e cost
h adds
e as-
 yield
t.

er of
 a de-

ected
 from

e ad-
, and

uctor
st in-
Since bad dies are discarded, die yield is in the denominator in the equation—the goo
shoulder the costs of testing those that fail. (In practice, a bad die may take less time
but this effect is small, since moving the probes on the die is a mechanical process tha
a large fraction of the time.) Testing costs about $50 to $500 per hour, depending o
tester needed. High-end designs with many high-speed pins require the more exp
testers. For higher-end microprocessors test time would run $300 to $500 per hou
tests take about 5 to 90 seconds on average, depending on the simplicity of the die a
provisions to reduce testing time included in the chip.

The cost of a package depends on the material used, the number of pins, and the d
The cost of the material used in the package is in part determined by the ability to dis
power generated by the die. For example, a plastic quad flat pack (PQFP) dissipating less
than 1 watt, with 208 or fewer pins, and containing a die up to 1 cm on a side costs
1995. A ceramic pin grid array (PGA) can handle 300 to 600 pins and a larger die w
more power, but it costs $20 to $60. In addition to the cost of the package itself is th
of the labor to place a die in the package and then bond the pads to the pins, whic
from a few cents to a dollar or two to the cost. Some good dies are typically lost in th
sembly process, thereby further reducing yield. For simplicity we assume the final test
is 1.0; in practice it is at least 0.95. We also ignore the cost of the final packaged tes

This exercise requires the information provided in Figure 1.22.

a. [15] <1.4> For each of the microprocessors in Figure 1.22, compute the numb
good chips you would get per 20-cm wafer using the model on page 12. Assume
fect density of one defect per cm2, a wafer yield of 95%, and assume α = 3.

b. [10] <1.4> For each microprocessor in Figure 1.22, compute the cost per proj
good die before packaging and testing. Use the number of good dies per wafer
part (a) of this exercise and the wafer cost from Figure 1.22.

c. [15] <1.3> Both package cost and test cost are proportional to pin count. Using th
ditional assumption shown in Figure 1.23, compute the cost per good, tested
packaged part using the costs per good die from part (b) of this exercise.

d. [15] <1.3> There are wide differences in defect densities between semicond
manufacturers. Find the costs for the largest processor in Figure 1.22 (total co
cluding packaging), assuming defect densities are 0.6 per cm2 and assuming that de-
fect densities are 1.2 per cm2.

Microprocessor
Die area
(mm2) Pins Technology Estimated wafer cost ($) Package

MIPS 4600 77 208 CMOS, 0.6µ, 3M 3200 PQFP

PowerPC 603 85 240 CMOS, 0.6µ, 4M 3400 PQFP

HP 71x0 196 504 CMOS, 0.8µ, 3M 2800 Ceramic PGA

Digital 21064A 166 431 CMOS, 0.5µ, 4.5M 4000 Ceramic PGA

SuperSPARC/60 256 293 BiCMOS, 0.6µ, 3.5M 4000 Ceramic PGA

FIGURE 1.22 Characteristics of microprocessors. The technology entry is the process type, line width, and
number of interconnect levels.

64 Chapter 1 Fundamentals of Computer Design

al

con-

mean
hat for
l to the

metic
metic
l?

ews-
 run-

fp92
ighted

AX-

 the
1.24.

osed
e. [15] <1.3> The parameter α depends on the complexity of the process. Addition
metal levels result in increased complexity. For example, α might be approximated by
the number of interconnect levels. For the Digital 21064a with 4.5 levels of inter
nect, estimate the cost of working, packaged, and tested die if α = 3 and if α = 4.5.
Assume a defect density of 0.8 defects per cm2.

1.9 [12] <1.5> One reason people may incorrectly average rates with an arithmetic
is that it always gives an answer greater than or equal to the geometric mean. Show t
any two positive integers, a and b, the arithmetic mean is always greater than or equa
geometric mean. When are the two equal?

1.10 [12] <1.5> For reasons similar to those in Exercise 1.9, some people use arith
instead of the harmonic mean. Show that for any two positive rates, r and s, the arith
mean is always greater than or equal to the harmonic mean. When are the two equa

1.11 [15/15] <1.5> Some of the SPECfp92 performance results from the SPEC92 N
letter of June 1994 [SPEC 94] are shown in Figure 1.24. The SPECratio is simply the
time for a benchmark divided into the VAX 11/780 time for that benchmark. The SPEC
number is computed as the geometric mean of the SPECratios. Let’s see how a we
arithmetic mean compares.

a. [15] <1.5> Calculate the weights for a workload so that running times on the V
11/780 will be equal for each of the 14 benchmarks (given in Figure 1.24).

b. [15] <1.5> Using the weights computed in part (a) of this exercise, calculate
weighted arithmetic means of the execution times of the 14 programs in Figure

1.12 [15/15/15] <1.6,1.8> Three enhancements with the following speedups are prop
for a new architecture:

Speedup1 = 30

Speedup2 =20

Speedup3 = 10

Only one enhancement is usable at a time.

Package type Pin count Package cost
($)

Test time
(secs)

Test cost per hour
($)

PQFP <220 12 10 300

PQFP <300 20 10 320

Ceramic PGA <300 30 10 320

Ceramic PGA <400 40 12 340

Ceramic PGA <450 50 13 360

Ceramic PGA <500 60 14 380

Ceramic PGA >500 70 15 400

FIGURE 1.23 Package and test characteristics.

Exercises 65

ction

 20%
 are in

f en-
ance.
nce-

epre-
ave a
 inte-
rk. A
ker”
 on a
cessor
rts (a)–
a. [15] <1.6> If enhancements 1 and 2 are each usable for 30% of the time, what fra
of the time must enhancement 3 be used to achieve an overall speedup of 10?

b. [15] <1.6,1.8> Assume the distribution of enhancement usage is 30%, 30%, and
for enhancements 1, 2, and 3, respectively. Assuming all three enhancements
use, for what fraction of the reduced execution time is no enhancement in use?

c. [15] <1.6> Assume for some benchmark, the fraction of use is 15% for each o
hancements 1 and 2 and 70% for enhancement 3. We want to maximize perform
If only one enhancement can be implemented, which should it be? If two enha
ments can be implemented, which should be chosen?

1.13 [15/10/10/12/10] <1.6,1.8> Your company has a benchmark that is considered r
sentative of your typical applications. One of the older-model workstations does not h
floating-point unit and must emulate each floating-point instruction by a sequence of
ger instructions. This older-model workstation is rated at 120 MIPS on this benchma
third-party vendor offers an attached processor that is intended to give a “mid-life kic
to your workstation. That attached processor executes each floating-point instruction
dedicated processor (i.e., no emulation is necessary). The workstation/attached pro
rates 80 MIPS on the same benchmark. The following symbols are used to answer pa
(e) of this exercise.

Program name
VAX-11/780

Time
DEC 3000 Model 800

SPECratio
IBM Powerstation

590 SPECratio
Intel Xpress Pentium
815\100 SPECratio

spice2g6 23,944 97 128 64

doduc 1,860 137 150 84

mdljdp2 7,084 154 206 98

wave5 3,690 123 151 57

tomcatv 2,650 221 465 74

ora 7,421 165 181 97

alvinn 7,690 385 739 157

ear 25,499 617 546 215

mdljsp2 3,350 76 96 48

swm256 12,696 137 244 43

su2cor 12,898 259 459 57

hydro2d 13,697 210 225 83

nasa7 16,800 265 344 61

fpppp 9,202 202 303 119

Geometric mean 8,098 187 256 81

FIGURE 1.24 SPEC92 performance for SPECfp92. The DEC 3000 uses a 200-MHz Alpha microprocessor (21064) and
a 2-MB off-chip cache. The IBM Powerstation 590 uses a 66.67-MHz Power-2. The Intel Xpress uses a 100-MHz Pentium
with a 512-KB off-chip secondary cache. Data from SPEC [1994].

66 Chapter 1 Fundamentals of Computer Design

ion.

 the

ssor

 even
f the

 exe-

OPS

al ex-

t all
OPS

oops”
m ac-

r

I—Number of integer instructions executed on the benchmark.

F—Number of floating-point instructions executed on the benchmark.

Y—Number of integer instructions to emulate a floating-point instruction.

W—Time to execute the benchmark on the workstation alone.

B—Time to execute the benchmark on the workstation/attached processor combinat

a. [15] <1.6,1.8> Write an equation for the MIPS rating of each configuration using
symbols above. Document your equation.

b. [10] <1.6> For the configuration without the coprocessor, we measure that F = 8 × 106,
Y = 50, and W = 4. Find I.

c. [10] <1.6> What is the value of B?

d. [12] <1.6,1.8> What is the MFLOPS rating of the system with the attached proce
board?

e. [10] <1.6,1.8> Your colleague wants to purchase the attached processor board
though the MIPS rating for the configuration using the board is less than that o
workstation alone. Is your colleague’s evaluation correct? Defend your answer.

1.14 [15/15/10] <1.5,1.8> Assume the two programs in Figure 1.11 on page 24 each
cute 100 million floating-point operations during execution.

a. [15] <1.5,1.8> Calculate the MFLOPS rating of each program.

b. [15] <1.5,1.8> Calculate the arithmetic, geometric, and harmonic means of MFL
for each machine.

c. [10] <1.5,1.8> Which of the three means matches the relative performance of tot
ecution time?

1.15 [10/12] <1.8,1.6> One problem cited with MFLOPS as a measure is that no
FLOPS are created equal. To overcome this problem, normalized or weighted MFL
measures were developed. Figure 1.25 shows how the authors of the “Livermore L
benchmark calculate the number of normalized floating-point operations per progra
cording to the operations actually found in the source code. Thus, the native MFLOPS rat-
ing is not the same as the normalized MFLOPS rating reported in the supercompute
literature, which has come as a surprise to a few computer designers.

Real FP operations Normalized FP operations

Add, Subtract, Compare, Multiply 1

Divide, Square root 4

Functions (Exp, Sin, ...) 8

FIGURE 1.25 Real versus normalized floating-point operations. The number of normal-
ized floating-point operations per real operation in a program used by the authors of the Liv-
ermore FORTRAN Kernels, or “Livermore Loops,” to calculate MFLOPS. A kernel with one
Add, one Divide, and one Sin would be credited with 13 normalized floating-point operations.
Native MFLOPS won’t give the results reported for other machines on that benchmark.

Exercises 67

ns on
ted in

ized

uter.
h ma-

 rat-
n the
erfor-

tion
cution

on the
Let’s examine the effects of this weighted MFLOPS measure. The spice program ru
the DECstation 3100 in 94 seconds. The number of floating-point operations execu
that program are listed in Figure 1.26.

a. [10] <1.8,1.6> What is the native MFLOPS for spice on a DECstation 3100?

b. [12] <1.8,1.6> Using the conversions in Figure 1.25, what is the normal
MFLOPS?

1.16 [30] <1.5,1.8> Devise a program in C that gets the peak MIPS rating for a comp
Run it on two machines to calculate the peak MIPS. Now run the SPEC92 gcc on bot
chines. How well do peak MIPS predict performance of gcc?

1.17 [30] <1.5,1.8> Devise a program in C or FORTRAN that gets the peak MFLOPS
ing for a computer. Run it on two machines to calculate the peak MFLOPS. Now ru
SPEC92 benchmark spice on both machines. How well do peak MFLOPS predict p
mance of spice?

1.18 [Discussion] <1.5> What is an interpretation of the geometric means of execu
times? What do you think are the advantages and disadvantages of using total exe
times versus weighted arithmetic means of execution times using equal running time
VAX-11/780 versus geometric means of ratios of speed to the VAX-11/780?

Floating-point operation Times executed

addD 25,999,440

subD 18,266,439

mulD 33,880,810

divD 15,682,333

compareD 9,745,930

negD 2,617,846

absD 2,195,930

convertD 1,581,450

Total 109,970,178

FIGURE 1.26 Floating-point operations in spice.

2

Instruction Set
Principles and
Examples 2

n
A n Add the number in storage location n into the accumulator.

E n If the number in the accumulator is greater than or equal to

zero execute next the order which stands in storage location;

otherwise proceed serially.

Z Stop the machine and ring the warning bell.

Wilkes and Renwick
Selection from the List of 18 Machine
Instructions for the EDSAC (1949)

2.1 Introduction 69

2.2 Classifying Instruction Set Architectures 70

2.3 Memory Addressing 73

2.4 Operations in the Instruction Set 80

2.5 Type and Size of Operands 85

2.6 Encoding an Instruction Set 87

2.7 Crosscutting Issues: The Role of Compilers 89

2.8 Putting It All Together: The DLX Architecture 96

2.9 Fallacies and Pitfalls 108

2.10 Concluding Remarks 111

2.11 Historical Perspective and References 112

Exercises 118
f the
ces
t. In

of in-
ntages
e some
ction

ing on

t in-
ent ar-
lder
 need

ure-
on the
In this chapter we concentrate on instruction set architecture—the portion o
machine visible to the programmer or compiler writer. This chapter introdu
the wide variety of design alternatives available to the instruction set architec
particular, this chapter focuses on four topics. First, we present a taxonomy
struction set alternatives and give some qualitative assessment of the adva
and disadvantages of various approaches. Second, we present and analyz
instruction set measurements that are largely independent of a specific instru
set. Third, we address the issue of languages and compilers and their bear
instruction set architecture. Finally, the Putting It All Together section shows how
these ideas are reflected in the DLX instruction set, which is typical of recen
struction set architectures. The appendices add four examples of these rec
chitectures—MIPS, Power PC, Precision Architecture, SPARC—and one o
architecture, the 80x86. Before we discuss how to classify architectures, we
to say something about instruction set measurement.

Throughout this chapter, we examine a wide variety of architectural meas
ments. These measurements depend on the programs measured and

2.1 Introduction

70

Chapter 2 Instruction Set Principles and Examples

inter-
ment

 that
lass of
 set of
rences
 ana-
. All

d
f the

 and

 this
The
ay be

y be
rary
tion.

ly two
uction,

ad

nd is

compilers used in making the measurements. The results should not be
preted as absolute, and you might see different data if you did the measure
with a different compiler or a different set of programs. The authors believe
the measurements shown in these chapters are reasonably indicative of a c
typical applications. Many of the measurements are presented using a small
benchmarks, so that the data can be reasonably displayed and the diffe
among programs can be seen. An architect for a new machine would want to
lyze a much larger collection of programs to make his architectural decisions
the measurements shown are dynamic—that is, the frequency of a measure
event is weighed by the number of times that event occurs during execution o
measured program.

We begin by exploring how instruction set architectures can be classified
analyzed.

The type of internal storage in the CPU is the most basic differentiation, so in
section we will focus on the alternatives for this portion of the architecture.
major choices are a stack, an accumulator, or a set of registers. Operands m
named explicitly or implicitly: The operands in a stack architecture are implicitly
on the top of the stack, in an accumulator architecture one operand is implicitly
the accumulator, and general-purpose register architectures have only explicit
operands—either registers or memory locations. The explicit operands ma
accessed directly from memory or may need to be first loaded into tempo
storage, depending on the class of instruction and choice of specific instruc
Figure 2.1 shows how the code sequence C = A + B would typically appear on
these three classes of instruction sets. As Figure 2.1 shows, there are real
classes of register machines. One can access memory as part of any instr
called register-memory architecture, and one can access memory only with lo
and store instructions, called load-store or register-register architecture. A third
class, not found in machines shipping today, keeps all operands in memory a
called a memory-memory architecture.

2.2 Classifying Instruction Set Architectures

Stack Accumulator
Register
(register-memory)

Register
(load-store)

Push A Load A Load R1,A Load R1,A

Push B Add B Add R1,B Load R2,B

Add Store C Store C,R1 Add R3,R1,R2

Pop C Store C,R3

FIGURE 2.1 The code sequence for C = A + B for four instruction sets. It is assumed
that A, B, and C all belong in memory and that the values of A and B cannot be destroyed.

2.2 Classifying Instruction Set Architectures

71

ures,
hitec-
) ma-

 the
to use
xam-

ient
s (see
 right,

s are
(since
gister

iters
hines
y de-
eral-
t be
 use

 they
ssion
 allo-

har-
l in-
as

 a re-
nds is
 GPR
ses in
LU

s are
ossi-
 we
gister-
Although most early machines used stack or accumulator-style architect
virtually every machine designed after 1980 uses a load-store register arc
ture. The major reasons for the emergence of general-purpose register (GPR
chines are twofold. First, registers—like other forms of storage internal to
CPU—are faster than memory. Second, registers are easier for a compiler
and can be used more effectively than other forms of internal storage. For e
ple, on a register machine the expression (A * B) – (C* D) – (E * F) may be eval-
uated by doing the multiplications in any order, which may be more effic
because of the location of the operands or because of pipelining concern
Chapter 3). But on a stack machine the expression must be evaluated left to
unless special operations or swaps of stack positions are done.

More importantly, registers can be used to hold variables. When variable
allocated to registers, the memory traffic reduces, the program speeds up
registers are faster than memory), and the code density improves (since a re
can be named with fewer bits than can a memory location). Compiler wr
would prefer that all registers be equivalent and unreserved. Older mac
compromise this desire by dedicating registers to special uses, effectivel
creasing the number of general-purpose registers. If the number of truly gen
purpose registers is too small, trying to allocate variables to registers will no
profitable. Instead, the compiler will reserve all the uncommitted registers for
in expression evaluation.

How many registers are sufficient? The answer of course depends on how
are used by the compiler. Most compilers reserve some registers for expre
evaluation, use some for parameter passing, and allow the remainder to be
cated to hold variables.

Two major instruction set characteristics divide GPR architectures. Both c
acteristics concern the nature of operands for a typical arithmetic or logica
struction (ALU instruction). The first concerns whether an ALU instruction h
two or three operands. In the three-operand format, the instruction contains
sult and two source operands. In the two-operand format, one of the opera
both a source and a result for the operation. The second distinction among
architectures concerns how many of the operands may be memory addres
ALU instructions. The number of memory operands supported by a typical A
instruction may vary from none to three. Combinations of these two attribute
shown in Figure 2.2, with examples of machines. Although there are seven p
ble combinations, three serve to classify nearly all existing machines. As
mentioned earlier, these three are register-register (also called load-store), re
memory, and memory-memory.

72

Chapter 2 Instruction Set Principles and Examples

own in
olutes:
ple-

asily
 of the
mber
itec-

.

-

The advantages and disadvantages of each of these alternatives are sh
Figure 2.3. Of course, these advantages and disadvantages are not abs
They are qualitative and their actual impact depends on the compiler and im
mentation strategy. A GPR machine with memory-memory operations can e
be subsetted by the compiler and used as a register-register machine. One
most pervasive architectural impacts is on instruction encoding and the nu
of instructions needed to perform a task.We will see the impact of these arch
tural alternatives on implementation approaches in Chapters 3 and 4.

Number of memory
addresses

Maximum number of
operands allowed Examples

0 3 SPARC, MIPS, Precision Architecture, PowerPC, ALPHA

1 2 Intel 80x86, Motorola 68000

2 2 VAX (also has three-operand formats)

3 3 VAX (also has two-operand formats)

FIGURE 2.2 Possible combinations of memory operands and total operands per typical ALU instruction with ex-
amples of machines. Machines with no memory reference per ALU instruction are called load-store or register-register
machines. Instructions with multiple memory operands per typical ALU instruction are called register-memory or memory-
memory, according to whether they have one or more than one memory operand.

Type Advantages Disadvantages

Register-
register
(0,3)

Simple, fixed-length instruction encoding. Simple
code-generation model. Instructions take similar
numbers of clocks to execute (see Ch 3).

Higher instruction count than architectures with
memory references in instructions. Some instruc-
tions are short and bit encoding may be wasteful

Register-
memory
(1,2)

Data can be accessed without loading first.
Instruction format tends to be easy to encode and
yields good density.

Operands are not equivalent since a source oper
and in a binary operation is destroyed. Encoding a
register number and a memory address in each
instruction may restrict the number of registers.
Clocks per instruction varies by operand location.

Memory-
memory
(3,3)

Most compact. Doesn’t waste registers for
temporaries.

Large variation in instruction size, especially for
three-operand instructions. Also, large variation
in work per instruction. Memory accesses create
memory bottleneck.

FIGURE 2.3 Advantages and disadvantages of the three most common types of general-purpose register ma-
chines. The notation (m, n) means m memory operands and n total operands. In general, machines with fewer alternatives
make the compiler’s task simpler since there are fewer decisions for the compiler to make. Machines with a wide variety of
flexible instruction formats reduce the number of bits required to encode the program. A machine that uses a small number
of bits to encode the program is said to have good instruction density—a smaller number of bits do as much work as a larger
number on a different architecture. The number of registers also affects the instruction size.

2.3 Memory Addressing

73

 those
ture,
om
igure

n of

ds.

erand
preted
 The
epen-

mpiler
piler,

 as a
 this
s (16
uble

rd.

ast-

(the
of the
 ad-
 byte
ns as
n ex-
dian
ared.

Summary: Classifying Instruction Set Architectures

Here and in subsections at the end of sections 2.3 to 2.7 we summarize
characteristics we would expect to find in a new instruction set architec
building the foundation for the DLX architecture introduced in section 2.8. Fr
this section we should clearly expect the use of general-purpose registers. F
2.3, combined with the following chapter on pipelining, lead to the expectatio
a register-register (also called load-store) architecture.

With the class of architecture covered, the next topic is addressing operan

Independent of whether the architecture is register-register or allows any op
to be a memory reference, it must define how memory addresses are inter
and how they are specified. We deal with these two topics in this section.
measurements presented here are largely, but not completely, machine ind
dent. In some cases the measurements are significantly affected by the co
technology. These measurements have been made using an optimizing com
since compiler technology is playing an increasing role.

Interpreting Memory Addresses

How is a memory address interpreted? That is, what object is accessed
function of the address and the length? All the instruction sets discussed in
book are byte addressed and provide access for bytes (8 bits), half word
bits), and words (32 bits). Most of the machines also provide access for do
words (64 bits).

There are two different conventions for ordering the bytes within a wo
Little Endian byte order puts the byte whose address is “x...x00” at the le
significant position in the word (the little end). Big Endian byte order puts the
byte whose address is “x...x00” at the most-significant position in the word
big end). In Big Endian addressing, the address of a datum is the address
most-significant byte; while in Little Endian, the address of a datum is the
dress of the least-significant byte. When operating within one machine, the
order is often unnoticeable—only programs that access the same locatio
both words and bytes can notice the difference. Byte order is a problem whe
changing data among machines with different orderings, however. Little En
ordering also fails to match normal ordering of words when strings are comp
Strings appear “SDRAWKCAB” in the registers.

In many machines, accesses to objects larger than a byte must be aligned. An
access to an object of size s bytes at byte address A is aligned if A mod s = 0.
Figure 2.4 shows the addresses at which an access is aligned or misaligned.

2.3 Memory Addressing

74

Chapter 2 Instruction Set Principles and Examples

ign-
 on a
ore,
 mis-

es an
 the

e ma-
. For
 ma-
mory,
size

 sub-
dress
cify a
sed,

recent
ssing
hough
 on the

g
ions.
ction

ough
k, we
iption

Why would someone design a machine with alignment restrictions? Misal
ment causes hardware complications, since the memory is typically aligned
word or double-word boundary. A misaligned memory access will, theref
take multiple aligned memory references.Thus, even in machines that allow
aligned access, programs with aligned accesses run faster.

Even if data are aligned, supporting byte and half-word accesses requir
alignment network to align bytes and half words in registers. Depending on
instruction, the machine may also need to sign-extend the quantity. On som
chines a byte or half word does not affect the upper portion of a register
stores only the affected bytes in memory may be altered. (Although all the
chines discussed in this book permit byte and half-word accesses to me
only the Intel 80x86 supports ALU operations on register operands with a
shorter than a word.)

Addressing Modes

We now know what bytes to access in memory given an address. In this
section we will look at addressing modes—how architectures specify the ad
of an object they will access. In GPR machines, an addressing mode can spe
constant, a register, or a location in memory. When a memory location is u
the actual memory address specified by the addressing mode is called theeffec-
tive address.

Figure 2.5 shows all the data-addressing modes that have been used in
machines. Immediates or literals are usually considered memory-addre
modes (even though the value they access is in the instruction stream), alt
registers are often separated. We have kept addressing modes that depend
program counter, called PC-relative addressing, separate. PC-relative addressin
is used primarily for specifying code addresses in control transfer instruct
The use of PC-relative addressing in control instructions is discussed in se
2.4.

Figure 2.5 shows the most common names for the addressing modes, th
the names differ among architectures. In this figure and throughout the boo
will use an extension of the C programming language as a hardware descr
notation. In this figure, only one non-C feature is used: The left arrow (←) is used

Object addressed Aligned at byte offsets Misaligned at byte offsets

Byte 0,1,2,3,4,5,6,7 Never

Half word 0,2,4,6 1,3,5,7

Word 0,4 1,2,3,5,6,7

Double word 0 1,2,3,4,5,6,7

FIGURE 2.4 Aligned and misaligned accesses of objects. The byte offsets are specified
for the low-order three bits of the address.

2.3 Memory Addressing

75

r-

-

nts;
aver-
des.

for assignment. We also use the array Mem as the name for main memory and the a
ray Regs for registers. Thus, Mem[Regs[R1]] refers to the contents of the mem
ory location whose address is given by the contents of register 1 (R1). Later, we will
introduce extensions for accessing and transferring data smaller than a word.

Addressing modes have the ability to significantly reduce instruction cou
they also add to the complexity of building a machine and may increase the
age CPI (clock cycles per instruction) of machines that implement those mo

Addressing
mode Example instruction Meaning When used

Register Add R4,R3 Regs[R4] ←Regs[R4]+
Regs[R3]

When a value is in a register.

Immediate Add R4,#3 Regs[R4] ←Regs[R4]+3 For constants.

Displacement Add R4,100(R1) Regs[R4] ←Regs[R4]+
Mem[100+Regs[R1]]

Accessing local variables.

Register deferred
or indirect

Add R4,(R1) Regs[R4] ←Regs[R4]+
Mem[Regs[R1]]

Accessing using a pointer or a
computed address.

Indexed Add R3,(R1 + R2) Regs[R3] ←Regs[R3]+
Mem[Regs[R1]+Regs[R2]]

Sometimes useful in array
addressing: R1 = base of array;
R2 = index amount.

Direct or
absolute

Add R1,(1001) Regs[R1] ←Regs[R1]+
Mem[1001]

Sometimes useful for accessing
static data; address constant may
need to be large.

Memory indirect
or memory
deferred

Add R1,@(R3) Regs[R1] ←Regs[R1]+
Mem[Mem[Regs[R3]]]

If R3 is the address of a pointer
p, then mode yields *p.

Autoincrement Add R1,(R2)+ Regs[R1] ←Regs[R1]+
Mem[Regs[R2]]
Regs[R2] ←Regs[R2]+ d

Useful for stepping through ar-
rays within a loop. R2 points to
start of array; each reference in-
crements R2 by size of an ele-
ment, d.

Autodecrement Add R1,–(R2) Regs[R2] ←Regs[R2]– d
Regs[R1] ←Regs[R1]+
Mem[Regs[R2]]

Same use as autoincrement.
Autodecrement/increment can
also act as push/pop to imple-
ment a stack.

Scaled Add
R1,100(R2)[R3]

Regs[R1] ← Regs[R1]+
Mem[100+Regs[R2]+Regs
[R3]* d]

Used to index arrays. May be
applied to any indexed address-
ing mode in some machines.

FIGURE 2.5 Selection of addressing modes with examples, meaning, and usage. The extensions to C used in the
hardware descriptions are defined above. In autoincrement/decrement and scaled addressing modes, the variable d desig-
nates the size of the data item being accessed (i.e., whether the instruction is accessing 1, 2, 4, or 8 bytes); this means that
these addressing modes are only useful when the elements being accessed are adjacent in memory. In our measurements,
we use the first name shown for each mode.

76 Chapter 2 Instruction Set Principles and Examples

he ar-

rns in
 few
emory
Most
archi-

e ad-
 used

hat of
t sizes,
t field
Thus, the usage of various addressing modes is quite important in helping t
chitect choose what to include.

Figure 2.6 shows the results of measuring addressing mode usage patte
three programs on the VAX architecture. We use the VAX architecture for a
measurements in this chapter because it has the fewest restrictions on m
addressing. For example, it supports all the modes shown in Figure 2.5.
measurements in this chapter, however, will use the more recent load-store
tectures to show how programs use instruction sets of current machines.

As Figure 2.6 shows, immediate and displacement addressing dominat
dressing mode usage. Let’s look at some properties of these two heavily
modes.

Displacement Addressing Mode

The major question that arises for a displacement-style addressing mode is t
the range of displacements used. Based on the use of various displacemen
a decision of what sizes to support can be made. Choosing the displacemen

FIGURE 2.6 Summary of use of memory addressing modes (including immediates).
The data were taken on a VAX using three programs from SPEC89. Only the addressing
modes with an average frequency of over 1% are shown. The PC-relative addressing modes,
which are used almost exclusively for branches, are not included. Displacement mode in-
cludes all displacement lengths (8, 16, and 32 bit). Register modes, which are not counted,
account for one-half of the operand references, while memory addressing modes (including
immediate) account for the other half. The memory indirect mode on the VAX can use dis-
placement, autoincrement, or autodecrement to form the initial memory address; in these
programs, almost all the memory indirect references use displacement mode as the base. Of
course, the compiler affects what addressing modes are used; we discuss this further in sec-
tion 2.7. These major addressing modes account for all but a few percent (0% to 3%) of the
memory accesses.

0% 10% 20% 30% 40% 50% 60%

24%

11%

39%

32%

40%

3%

43%
17%

55%

0%

6%
16%Scaled

Register deferred

Immediate

Displacement

TeX
spice
gcc

TeX
spice
gcc

TeX
spice
gcc

TeX
spice
gcc

1%
6%Memory indirect

TeX
spice
gcc 1%

Frequency of the addressing mode

2.3 Memory Addressing 77

ure-
hmark

 sec-
d by
sizes is important because they directly affect the instruction length. Meas
ments taken on the data access on a load-store architecture using our benc
programs are shown in Figure 2.7. We will look at branch offsets in the next
tion—data accessing patterns and branches are so different, little is gaine
combining them.

FIGURE 2.7 Displacement values are widely distributed. The x axis is log2 of the displacement; that is, the size of a
field needed to represent the magnitude of the displacement. These data were taken on the MIPS architecture, showing the
average of five programs from SPECint92 (compress, espresso, eqntott, gcc, li) and the average of five programs from
SPECfp92 (dudoc, ear, hydro2d, mdljdp2, su2cor). Although there are a large number of small values in this data, there are
also a fair number of large values. The wide distribution of displacement values is due to multiple storage areas for variables
and different displacements used to access them. The different storage areas and their access patterns are discussed fur-
ther in section 2.7. The graph shows only the magnitude of the displacement and not the sign, which is heavily affected by
the storage layout. The entry corresponding to 0 on the x axis shows the percentage of displacements of value 0. The vast
majority of the displacements are positive, but a majority of the largest displacements (14+ bits) are negative. Again, this is
due to the overall addressing scheme used by the compiler and might change with a different compilation scheme. Since
this data was collected on a machine with 16-bit displacements, it cannot tell us anything about accesses that might want to
use a longer displacement. Such accesses are broken into two separate instructions—the first of which loads the upper 16
bits of a base register. By counting the frequency of these “load high immediate” instructions, which have limited use for
other purposes, we can bound the number of accesses with displacements potentially larger than 16 bits. Such an analysis
indicates that we may actually require a displacement longer than 16 bits for about 1% of immediates on SPECint92 and
1% of those for SPECfp92. Relating this data to the graph above, if it were widened to 32 bits we would see 1% of immedi-
ates collectively between sizes 16 and 31 for both SPECint92 and SPECfp92. And if the displacement is larger than 15 bits,
it is likely to be quite a bit larger since such constants are large, as shown in Figure 2.9 on page 79.To evaluate the choice
of displacement length, we might also want to examine a cumulative distribution, as shown in Exercise 2.1 (see Figure 2.32
on page 119). In summary, 12 bits of displacement would capture about 75% of the full 32-bit displacements and 16 bits
should capture about 99%.

0%

5%

10%

15%

20%

25%

30%

1514131211109876543210

Floating-point average

Integer average

Percentage of
displacement

Number of bits needed for a displacement value

78 Chapter 2 Instruction Set Principles and Examples

y for
se oc-
ress

know
. The
es of

r im-
struc-
most
n ad-
, un-
Immediate or Literal Addressing Mode

Immediates can be used in arithmetic operations, in comparisons (primaril
branches), and in moves where a constant is wanted in a register. The last ca
curs for constants written in the code, which tend to be small, and for add
constants, which can be large. For the use of immediates it is important to
whether they need to be supported for all operations or for only a subset
chart in Figure 2.8 shows the frequency of immediates for the general class
integer operations in an instruction set.

Another important instruction set measurement is the range of values fo
mediates. Like displacement values, the sizes of immediate values affect in
tion lengths. As Figure 2.9 shows, immediate values that are small are
heavily used. Large immediates are sometimes used, however, most likely i
dressing calculations. The data in Figure 2.9 were taken on a VAX because

FIGURE 2.8 We see that for ALU operations about one-half to three-quarters of the
operations have an immediate operand, while 75% to 85% of compare operations use
an immediate operation. (For ALU operations, shifts by a constant amount are included as
operations with immediate operands.) For loads, the load immediate instructions load 16 bits
into either half of a 32-bit register. These load immediates are not loads in a strict sense be-
cause they do not reference memory. In some cases, a pair of load immediates may be used
to load a 32-bit constant, but this is rare. The compares include comparisons against zero
that are done in conditional branches based on this comparison. These measurements were
taken on the DLX architecture with full compiler optimization (see section 2.7). The compiler
attempts to use simple compares against zero for branches whenever possible, because
these branches are efficiently supported in the architecture. Note that the bottom bars show
that integer programs use immediates in about one-third of the instructions, while floating-
point programs use immediates in about one-tenth of the instructions. Floating-point pro-
grams have many data transfers and operations on floating-point data that do not have im-
mediate forms in the DLX instruction set. (These percentages are the averages of the same 10
programs as in Figure 2.7 on page 77.)

0% 50% 100%

78%
58%

35%

77%
87%Compares

ALU operations

All instructions

10%

10%

Loads
45%

Percentage of operations that use immediates

Integer average Floating-point average

2.3 Memory Addressing 79

these
 zero
nd to
ments
s.

pport
gister
dress-
of the
ion in
e dis-
least
 50%
like recent load-store architectures, it supports 32-bit long immediates. For
measurements the VAX has the drawback that many of its instructions have
as an implicit operand. These include instructions to compare against zero a
store zero into a word. Because of the use of these instructions, the measure
show less frequent use of zero than on architectures without such instruction

Summary: Memory Addressing

First, because of their popularity, we would expect a new architecture to su
at least the following addressing modes: displacement, immediate, and re
deferred. Figure 2.6 on page 76 shows they represent 75% to 99% of the ad
ing modes used in our measurements. Second, we would expect the size
address for displacement mode to be at least 12 to 16 bits, since the capt
Figure 2.7 on page 77 suggests these sizes would capture 75% to 99% of th
placements. Third, we would expect the size of the immediate field to be at
8 to 16 bits. As the caption in Figure 2.9 suggests, these sizes would capture
to 80% of the immediates.

FIGURE 2.9 The distribution of immediate values is shown. The x axis shows the num-
ber of bits needed to represent the magnitude of an immediate value—0 means the immedi-
ate field value was 0. The vast majority of the immediate values are positive: Overall, less
than 6% of the immediates are negative.These measurements were taken on a VAX, which
supports a full range of immediates and sizes as operands to any instruction. The measured
programs are gcc, spice, and TeX. Note that 50% to 70% of the immediates fit within 8 bits
and 75% to 80% fit within 16 bits.

0%

10%

20%

30%

40%

50%

60%

322824201612840
Number of bits needed for an immediate value

gcc

TeX

spice

80 Chapter 2 Instruction Set Principles and Examples

rized,
most
. For
f in-
ular

make

epen-
tions

con-

mes.
i-
The operators supported by most instruction set architectures can be catego
as in Figure 2.10. One rule of thumb across all architectures is that the
widely executed instructions are the simple operations of an instruction set
example, Figure 2.11 shows 10 simple instructions that account for 96% o
structions executed for a collection of integer programs running on the pop
Intel 80x86. Hence the implementor of these instructions should be sure to
these fast, as they are the common case.

Because the measurements of branch and jump behavior are fairly ind
dent of other measurements, we examine the use of control-flow instruc
next.

Instructions for Control Flow

There is no consistent terminology for instructions that change the flow of
trol. In the 1950s they were typically called transfers. Beginning in 1960 the
name branch began to be used. Later, machines introduced additional na
Throughout this book we will use jump when the change in control is uncond
tional and branch when the change is conditional.

Operator type Examples

Arithmetic and logical Integer arithmetic and logical operations: add, and, subtract, or

Data transfer Loads-stores (move instructions on machines with memory addressing)

Control Branch, jump, procedure call and return, traps

System Operating system call, virtual memory management instructions

Floating point Floating-point operations: add, multiply

Decimal Decimal add, decimal multiply, decimal-to-character conversions

String String move, string compare, string search

Graphics Pixel operations, compression/decompression operations

FIGURE 2.10 Categories of instruction operators and examples of each. All machines generally provide a full set of
operations for the first three categories. The support for system functions in the instruction set varies widely among archi-
tectures, but all machines must have some instruction support for basic system functions. The amount of support in the in-
struction set for the last four categories may vary from none to an extensive set of special instructions. Floating-point
instructions will be provided in any machine that is intended for use in an application that makes much use of floating point.
These instructions are sometimes part of an optional instruction set. Decimal and string instructions are sometimes primi-
tives, as in the VAX or the IBM 360, or may be synthesized by the compiler from simpler instructions. Graphics instructions
typically operate on many smaller data items in parallel; for example, performing eight 8-bit additions on two 64-bit operands.

2.4 Operations in the Instruction Set

2.4 Operations in the Instruction Set 81

erent,
ncies
nch-
We can distinguish four different types of control-flow change:

1. Conditional branches

2. Jumps

3. Procedure calls

4. Procedure returns

We want to know the relative frequency of these events, as each event is diff
may use different instructions, and may have different behavior. The freque
of these control-flow instructions for a load-store machine running our be
marks are shown in Figure 2.12.

Rank 80x86 instruction
Integer average

(% total executed)

1 load 22%

2 conditional branch 20%

3 compare 16%

4 store 12%

5 add 8%

6 and 6%

7 sub 5%

8 move register-register 4%

9 call 1%

10 return 1%

Total 96%

FIGURE 2.11 The top 10 instructions for the 80x86. These percent-
ages are the average of the same five SPECint92 programs as in
Figure 2.7 on page 77.

FIGURE 2.12 Breakdown of control flow instructions into three classes: calls or re-
turns, jumps, and conditional branches. Each type is counted in one of three bars. Con-
ditional branches clearly dominate. The programs and machine used to collect these
statistics are the same as those in Figure 2.7.

0% 50% 100%

4%

86%
81%

6%

11%
13%Call/return

Jump

Conditional branch

Frequency of branch classes

Integer average Floating-point average

82 Chapter 2 Instruction Set Principles and Examples

ified.
 of
get is
 is to

e
pecify-
tive

. This
-

n at
 there
time.
he tar-
 used
 three
g

by
h
 all
sually

ts, a
g the
ts to
.13

ions.

y the
ir ad-

of the
 com-
ons as

onal
risons
d im-

that a
imple
The destination address of a control flow instruction must always be spec
This destination is specified explicitly in the instruction in the vast majority
cases—procedure return being the major exception—since for return the tar
not known at compile time. The most common way to specify the destination
supply a displacement that is added to the program counter, or PC. Control flow
instructions of this sort are called PC-relative. PC-relative branches or jumps ar
advantageous because the target is often near the current instruction, and s
ing the position relative to the current PC requires fewer bits. Using PC-rela
addressing also permits the code to run independently of where it is loaded
property, called position independence, can eliminate some work when the pro
gram is linked and is also useful in programs linked during execution.

To implement returns and indirect jumps in which the target is not know
compile time, a method other than PC-relative addressing is required. Here,
must be a way to specify the target dynamically, so that it can change at run
This dynamic address may be as simple as naming a register that contains t
get address; alternatively, the jump may permit any addressing mode to be
to supply the target address.These register indirect jumps are also useful for
other important features: case or switch statements found in many programmin
languages (which select among one of several alternatives), dynamically shared
libraries (which allow a library to be loaded only when it is actually invoked
the program), and virtual functions in object-oriented languages like C++ (whic
allow different routines to be called depending on the type of the data). In
three cases the target address is not known at compile time, and hence is u
loaded from memory into a register before the register indirect jump.

As branches generally use PC-relative addressing to specify their targe
key question concerns how far branch targets are from branches. Knowin
distribution of these displacements will help in choosing what branch offse
support and thus will affect the instruction length and encoding. Figure 2
shows the distribution of displacements for PC-relative branches in instruct
About 75% of the branches are in the forward direction.

Since most changes in control flow are branches, deciding how to specif
branch condition is important. The three primary techniques in use and the
vantages and disadvantages are shown in Figure 2.14.

One of the most noticeable properties of branches is that a large number
comparisons are simple equality or inequality tests, and a large number are
parisons with zero. Thus, some architectures choose to treat these comparis
special cases, especially if a compare and branch instruction is being used. Fig-
ure 2.15 shows the frequency of different comparisons used for conditi
branching. The data in Figure 2.8 said that a large percentage of the compa
had an immediate operand, and while not shown, 0 was the most heavily use
mediate. When we combine this with the data in Figure 2.15, we can see
significant percentage (over 50%) of the integer compares in branches are s
tests for equality with 0.

2.4 Operations in the Instruction Set 83

 state
 archi-
Procedure calls and returns include control transfer and possibly some
saving; at a minimum the return address must be saved somewhere. Some

FIGURE 2.13 Branch distances in terms of number of instructions between the target
and the branch instruction. The most frequent branches in the integer programs are to tar-
gets that are four to seven instructions away. This tells us that short displacement fields often
suffice for branches and that the designer can gain some encoding density by having a short-
er instruction with a smaller branch displacement. These measurements were taken on a
load-store machine (DLX architecture). An architecture that requires fewer instructions for the
same program, such as a VAX, would have shorter branch distances. Similarly, the number
of bits needed for the displacement may change if the machine allows instructions to be ar-
bitrarily aligned. A cumulative distribution of this branch displacement data is shown in Exer-
cise 2.1 (see Figure 2.32 on page 119). The programs and machine used to collect these
statistics are the same as those in Figure 2.7.

Name How condition is tested Advantages Disadvantages

Condition
code (CC)

Special bits are set by ALU opera-
tions, possibly under program
control.

Sometimes condition
is set for free.

CC is extra state. Condition codes
constrain the ordering of instruc-
tions since they pass information
from one instruction to a branch.

Condition
register

Test arbitrary register with the result
of a comparison.

Simple. Uses up a register.

Compare and
branch

Compare is part of the branch. Often
compare is limited to subset.

One instruction rather
than two for a branch.

May be too much work per
instruction.

FIGURE 2.14 The major methods for evaluating branch conditions, their advantages, and their disadvantages.
Although condition codes can be set by ALU operations that are needed for other purposes, measurements on programs
show that this rarely happens. The major implementation problems with condition codes arise when the condition code is
set by a large or haphazardly chosen subset of the instructions, rather than being controlled by a bit in the instruction. Ma-
chines with compare and branch often limit the set of compares and use a condition register for more complex compares.
Often, different techniques are used for branches based on floating-point comparison versus those based on integer com-
parison. This is reasonable since the number of branches that depend on floating-point comparisons is much smaller than
the number depending on integer comparisons.

0%

5%

10%

15%

20%

25%

30%

35%

40%

1514131211109876543210

Bits of branch displacement

Floating-point average

Integer average

84 Chapter 2 Instruction Set Principles and Examples

 com-
 save
ters

 when
riables
1 that

ure
sepa-

il-
 a

ill be
. As

echa-
riable
h be-
eeds
tectures provide a mechanism to save the registers, while others require the
piler to generate instructions. There are two basic conventions in use to
registers. Caller saving means that the calling procedure must save the regis
that it wants preserved for access after the call. Callee saving means that the
called procedure must save the registers it wants to use. There are times
caller save must be used because of access patterns to globally visible va
in two different procedures. For example, suppose we have a procedure P
calls procedure P2, and both procedures manipulate the global variable x. If P1
had allocated x to a register it must be sure to save x to a location known by P2
before the call to P2. A compiler’s ability to discover when a called proced
may access register-allocated quantities is complicated by the possibility of
rate compilation and situations where P2 may not touch x but can call another
procedure, P3, that may access x. Because of these complications, most comp
ers will conservatively caller save any variable that may be accessed during
call.

In the cases where either convention could be used, some programs w
more optimal with callee save and some will be more optimal with caller save
a result, the most sophisticated compilers use a combination of the two m
nisms, and the register allocator may choose which register to use for a va
based on the convention. Later in this chapter we will examine the mismatc
tween sophisticated instructions for automatically saving registers and the n
of the compiler.

FIGURE 2.15 Frequency of different types of compares in conditional branches. This
includes both the integer and floating-point compares in branches. Remember that earlier
data in Figure 2.8 indicate that most integer comparisons are against an immediate operand.
The programs and machine used to collect these statistics are the same as those in
Figure 2.7.

0% 50% 100%

23%

37%
86%

7%

40%
7%Less than/ greater than or

equal

Greater than/ less than or
equal

Equal/ not equal

Frequency of comparison types in branches

Integer average Floating-point average

2.5 Type and Size of Operands 85

ions:
 com-
tions
itec-

anch,
 ex-

ns to

tives:
de—
 with
 oper-

owev-

oat-
lude
ting
 are

two’s
ctur-
 that
The

h op-
 char-
s and

, usu-

racter

en

inte-
n of
ency
rtant
ould
Summary: Operations in the Instruction Set

From this section we see the importance and popularity of simple instruct
load, store, add, subtract, move register-register, and, shift, compare equal,
pare not equal, branch, jump, call, and return. Although there are many op
for conditional branches, we would expect branch addressing in a new arch
ture to be able to jump to about 100 instructions either above or below the br
implying a PC-relative branch displacement of at least 8 bits. We would also
pect to see register-indirect and PC-relative addressing for jump instructio
support returns as well as many other features of current systems.

How is the type of an operand designated? There are two primary alterna
First, the type of an operand may be designated by encoding it in the opco
this is the method used most often. Alternatively, the data can be annotated
tags that are interpreted by the hardware. These tags specify the type of the
and, and the operation is chosen accordingly. Machines with tagged data, h
er, can only be found in computer museums.

Usually the type of an operand—for example, integer, single-precision fl
ing point, character—effectively gives its size. Common operand types inc
character (1 byte), half word (16 bits), word (32 bits), single-precision floa
point (also 1 word), and double-precision floating point (2 words). Characters
almost always in ASCII and integers are almost universally represented as
complement binary numbers. Until the early 1980s, most computer manufa
ers chose their own floating-point representation. Almost all machines since
time follow the same standard for floating point, the IEEE standard 754.
IEEE floating-point standard is discussed in detail in Appendix A.

Some architectures provide operations on character strings, although suc
erations are usually quite limited and treat each byte in the string as a single
acter. Typical operations supported on character strings are comparison
moves.

For business applications, some architectures support a decimal format
ally called packed decimal or binary-coded decimal;—4 bits are used to encode
the values 0–9, and 2 decimal digits are packed into each byte. Numeric cha
strings are sometimes called unpacked decimal, and operations—called packing
and unpacking—are usually provided for converting back and forth betwe
them.

Our benchmarks use byte or character, half word (short integer), word (
ger), and floating-point data types. Figure 2.16 shows the dynamic distributio
the sizes of objects referenced from memory for these programs. The frequ
of access to different data types helps in deciding what types are most impo
to support efficiently. Should the machine have a 64-bit access path, or w

2.5 Type and Size of Operands

86 Chapter 2 Instruction Set Principles and Examples

 it to
nment
f data
sed as

t ac-
rand

opera-
maller
read

: On a
dress-
expect
float-

 16-,
ress
port
 ma-
taking two cycles to access a double word be satisfactory? How important is
support byte accesses as primitives, which, as we saw earlier, require an alig
network? In Figure 2.16, memory references are used to examine the types o
being accessed. In some architectures, objects in registers may be acces
bytes or half words. However, such access is very infrequent—on the VAX, i
counts for no more than 12% of register references, or roughly 6% of all ope
accesses in these programs. The successor to the VAX not only removed
tions on data smaller than 32 bits, it also removed data transfers on these s
sizes: The first implementations of the Alpha required multiple instructions to
or write bytes or half words.

Note that Figure 2.16 was measured on a machine with 32-bit addresses
64-bit address machine the 32-bit addresses would be replaced by 64-bit ad
es. Hence as 64-bit address architectures become more popular, we would
that double-word accesses will be popular for integer programs as well as
ing-point programs.

Summary: Type and Size of Operands

From this section we would expect a new 32-bit architecture to support 8-,
and 32-bit integers and 64-bit IEEE 754 floating-point data; a new 64-bit add
architecture would need to support 64-bit integers as well. The level of sup
for decimal data is less clear, and it is a function of the intended use of the
chine as well as the effectiveness of the decimal support.

FIGURE 2.16 Distribution of data accesses by size for the benchmark programs. Ac-
cess to the major data type (word or double word) clearly dominates each type of program.
Half words are more popular than bytes because one of the five SPECint92 programs (eqn-
tott) uses half words as the primary data type, and hence they are responsible for 87% of the
data accesses (see Figure 2.31 on page 110). The double-word data type is used solely for
double-precision floating-point in floating-point programs. These measurements were taken
on the memory traffic generated on a 32-bit load-store architecture.

0% 40% 80%20% 60%

0%
19%

7%

31%
74%Word

Half word

Byte

0%

0%

Double word
69%

Frequency of reference by size

Integer average Floating-point average

2.6 Encoding an Instruction Set 87

oded
ffects
 the
d its

s with

 of in-
e oper-
5). For

is used
ly one
case,

f ad-
ce the
le in-
ding
hitect

.

 aver-

le in
e in
cho-
sac-

rcent-
t is
easi-

. The
all
opera-
e

Clearly the choices mentioned above will affect how the instructions are enc
into a binary representation for execution by the CPU. This representation a
not only the size of the compiled program, it affects the implementation of
CPU, which must decode this representation to quickly find the operation an
operands. The operation is typically specified in one field, called the opcode. As
we shall see, the important decision is how to encode the addressing mode
the operations.

This decision depends on the range of addressing modes and the degree
dependence between opcodes and modes. Some machines have one to fiv
ands with 10 addressing modes for each operand (see Figure 2.5 on page 7
such a large number of combinations, typically a separate address specifier is
needed for each operand: the address specifier tells what addressing mode
to access the operand. At the other extreme is a load-store machine with on
memory operand and only one or two addressing modes; obviously, in this
the addressing mode can be encoded as part of the opcode.

When encoding the instructions, the number of registers and the number o
dressing modes both have a significant impact on the size of instructions, sin
addressing mode field and the register field may appear many times in a sing
struction. In fact, for most instructions many more bits are consumed in enco
addressing modes and register fields than in specifying the opcode. The arc
must balance several competing forces when encoding the instruction set:

1. The desire to have as many registers and addressing modes as possible

2. The impact of the size of the register and addressing mode fields on the
age instruction size and hence on the average program size.

3. A desire to have instructions encode into lengths that will be easy to hand
the implementation. As a minimum, the architect wants instructions to b
multiples of bytes, rather than an arbitrary length. Many architects have
sen to use a fixed-length instruction to gain implementation benefits while
rificing average code size.

Since the addressing modes and register fields make up such a large pe
age of the instruction bits, their encoding will significantly affect how easy i
for an implementation to decode the instructions. The importance of having
ly decoded instructions is discussed in Chapter 3.

Figure 2.17 shows three popular choices for encoding the instruction set
first we call variable, since it allows virtually all addressing modes to be with
operations. This style is best when there are many addressing modes and
tions. The second choice we call fixed, since it combines the operation and th

2.6 Encoding an Instruction Set

88 Chapter 2 Instruction Set Principles and Examples

ingle
 and

ize of
bits as
ly in
eger
n data
rd al-
k of
duce
addressing mode into the opcode. Often fixed encoding will have only a s
size for all instructions; it works best when there are few addressing modes
operations. The trade-off between variable encoding and fixed encoding is s
programs versus ease of decoding in the CPU. Variable tries to use as few
possible to represent the program, but individual instructions can vary wide
both size and the amount of work to be performed. For example, the VAX int
add can vary in size between 3 and 19 bytes and vary between 0 and 6 i
memory references. Given these two poles of instruction set design, the thi
ternative immediately springs to mind: Reduce the variability in size and wor
the variable architecture but provide multiple instruction lengths so as to re
code size. This hybrid approach is the third encoding alternative.

FIGURE 2.17 Three basic variations in instruction encoding. The variable format can
support any number of operands, with each address specifier determining the addressing
mode for that operand. The fixed format always has the same number of operands, with the
addressing modes (if options exist) specified as part of the opcode (see also Figure C.3 on
page C-4). Although the fields tend not to vary in their location, they will be used for different
purposes by different instructions. The hybrid approach will have multiple formats specified
by the opcode, adding one or two fields to specify the addressing mode and one or two fields
to specify the operand address (see also Figure D.7 on page D-12).

Operation &
no. of operands

Address
specifier 1

Address
field 1

Address
field 1

Operation Address
field 2

Address
field 3

Address
specifier

Operation Address
field

Address
specifier 1

Operation Address
specifier 2

Address
field

Address
specifier

Operation Address
field 1

Address
field 2

Address
specifier n

Address
field n

(a) Variable (e.g., VAX)

(b) Fixed (e.g., DLX, MIPS, Power PC, Precision Architecture, SPARC)

(c) Hybrid (e.g., IBM 360/70, Intel 80x86)

2.7 Crosscutting Issues: The Role of Compilers 89

exam-
4 and
.

:

and
 the
g the

econd
o

mode

ng
 total

 prior
riable

ted in
inter-
 and
er.
set
will
 pro-

lop-
ler, an
rchi-
g. Be-
iler,
ntly
 the
To make these general classes more specific, this book contains several
ples. Fixed formats of five machines can be seen in Figure C.3 on page C-
the hybrid formats of the Intel 80x86 can be seen in Figure D.8 on page D-13

Let’s look at a VAX instruction to see an example of the variable encoding

addl3 r1,737(r2),(r3)

The name addl3 means a 32-bit integer add instruction with three operands,
this opcode takes 1 byte. A VAX address specifier is 1 byte, generally with
first 4 bits specifying the addressing mode and the second 4 bits specifyin
register used in that addressing mode. The first operand specifier—r1 —indicates
register addressing using register 1, and this specifier is 1 byte long. The s
operand specifier—737(r2) —indicates displacement addressing. It has tw
parts: The first part is a byte that specifies the 16-bit indexed addressing
and base register (r2); the second part is the 2-byte-long displacement (737). The
third operand specifier—(r3)—specifies register indirect addressing mode usi
register 3. Thus, this instruction has two data memory accesses, and the
length of the instruction is

1 + (1) + (1+2) + (1) = 6 bytes

The length of VAX instructions varies between 1 and 53 bytes.

Summary: Encoding the Instruction Set

Decisions made in the components of instruction set design discussed in
sections determine whether or not the architect has the choice between va
and fixed instruction encodings. Given the choice, the architect more interes
code size than performance will pick variable encoding, and the one more
ested in performance than code size will pick fixed encoding. In Chapters 3
4, the impact of variability on performance of the CPU will be discussed furth

We have almost finished laying the groundwork for the DLX instruction
architecture that will be introduced in section 2.8. But before we do that, it
be helpful to take a brief look at recent compiler technology and its effect on
gram properties.

Today almost all programming is done in high-level languages. This deve
ment means that since most instructions executed are the output of a compi
instruction set architecture is essentially a compiler target. In earlier times, a
tectural decisions were often made to ease assembly language programmin
cause performance of a computer will be significantly affected by the comp
understanding compiler technology today is critical to designing and efficie
implementing an instruction set. In earlier days it was popular to try to isolate

2.7 Crosscutting Issues: The Role of Compilers

90 Chapter 2 Instruction Set Principles and Examples

itec-
cture

ay’s
 that
piler
his
the
s it

e of
compiler technology and its effect on hardware performance from the arch
ture and its performance, just as it was popular to try to separate an archite
from its implementation. This separation is essentially impossible with tod
compilers and machines. Architectural choices affect the quality of the code
can be generated for a machine and the complexity of building a good com
for it. Isolating the compiler from the hardware is likely to be misleading. In t
section we will discuss the critical goals in the instruction set primarily from
compiler viewpoint. What features will lead to high-quality code? What make
easy to write efficient compilers for an architecture?

The Structure of Recent Compilers

To begin, let’s look at what optimizing compilers are like today. The structur
recent compilers is shown in Figure 2.18.

FIGURE 2.18 Current compilers typically consist of two to four passes, with more
highly optimizing compilers having more passes. A pass is simply one phase in which
the compiler reads and transforms the entire program. (The term phase is often used inter-
changeably with pass.) The optimizing passes are designed to be optional and may be
skipped when faster compilation is the goal and lower quality code is acceptable. This struc-
ture maximizes the probability that a program compiled at various levels of optimization will
produce the same output when given the same input. Because the optimizing passes are also
separated, multiple languages can use the same optimizing and code-generation passes.
Only a new front end is required for a new language. The high-level optimization mentioned
here, procedure inlining, is also called procedure integration.

Language dependent;
machine independent

Dependencies
Transform language to
common intermediate form

Function

Front-end per
language

High-level
optimizations

Global
optimizer

Code generator

Intermediate
representation

For example, procedure inlining
and loop transformations

Including global and local
optimizations + register
allocation

Detailed instruction selection
and machine-dependent
optimizations; may include
or be followed by assembler

Somewhat language dependent,
largely machine independent

Small language dependencies;
machine dependencies slight
(e.g., register counts/types)

Highly machine dependent;
language independent

2.7 Crosscutting Issues: The Role of Compilers 91

m-
ally,
ug-

n the
ively
cture
bug-

he
ture
r and
zing
 per-
il.
d re-
oth
bout
ilers
now
lem

t ar-

on
 in a

tation
t be

mory
e ex-
own

icates
 glo-

t per-
he

style

ter

nt
A compiler writer’s first goal is correctness—all valid programs must be co
piled correctly. The second goal is usually speed of the compiled code. Typic
a whole set of other goals follows these two, including fast compilation, deb
ging support, and interoperability among languages. Normally, the passes i
compiler transform higher-level, more abstract representations into progress
lower-level representations, eventually reaching the instruction set. This stru
helps manage the complexity of the transformations and makes writing a
free compiler easier.

The complexity of writing a correct compiler is a major limitation on t
amount of optimization that can be done. Although the multiple-pass struc
helps reduce compiler complexity, it also means that the compiler must orde
perform some transformations before others. In the diagram of the optimi
compiler in Figure 2.18, we can see that certain high-level optimizations are
formed long before it is known what the resulting code will look like in deta
Once such a transformation is made, the compiler can’t afford to go back an
visit all steps, possibly undoing transformations. This would be prohibitive, b
in compilation time and in complexity. Thus, compilers make assumptions a
the ability of later steps to deal with certain problems. For example, comp
usually have to choose which procedure calls to expand inline before they k
the exact size of the procedure being called. Compiler writers call this prob
the phase-ordering problem.

How does this ordering of transformations interact with the instruction se
chitecture? A good example occurs with the optimization called global common
subexpression elimination. This optimization finds two instances of an expressi
that compute the same value and saves the value of the first computation
temporary. It then uses the temporary value, eliminating the second compu
of the expression. For this optimization to be significant, the temporary mus
allocated to a register. Otherwise, the cost of storing the temporary in me
and later reloading it may negate the savings gained by not recomputing th
pression. There are, in fact, cases where this optimization actually slows d
code when the temporary is not register allocated. Phase ordering compl
this problem, because register allocation is typically done near the end of the
bal optimization pass, just before code generation. Thus, an optimizer tha
forms this optimization must assume that the register allocator will allocate t
temporary to a register.

Optimizations performed by modern compilers can be classified by the
of the transformation, as follows:

1. High-level optimizations are often done on the source with output fed to la
optimization passes.

2. Local optimizations optimize code only within a straight-line code fragme
(called a basic block by compiler people).

92 Chapter 2 Instruction Set Principles and Examples

tro-

i-

g up
por-
lgo-

for al-
h the

 that

ore)
 and
not
algo-
is to

cal
code
 last
ing
iza-

how
tions:
d to al-
at the
a:

k on
 rela-

 than
-
k.
3. Global optimizations extend the local optimizations across branches and in
duce a set of transformations aimed at optimizing loops.

4. Register allocation.

5. Machine-dependent optimizations attempt to take advantage of specific arch
tectural knowledge.

Because of the central role that register allocation plays, both in speedin
the code and in making other optimizations useful, it is one of the most im
tant—if not the most important—optimizations. Recent register allocation a
rithms are based on a technique called graph coloring. The basic idea behind
graph coloring is to construct a graph representing the possible candidates
location to a register and then to use the graph to allocate registers. Althoug
problem of coloring a graph is NP-complete, there are heuristic algorithms
work well in practice.

Graph coloring works best when there are at least 16 (and preferably m
general-purpose registers available for global allocation for integer variables
additional registers for floating point. Unfortunately, graph coloring does
work very well when the number of registers is small because the heuristic
rithms for coloring the graph are likely to fail. The emphasis in the approach
achieve 100% allocation of active variables.

It is sometimes difficult to separate some of the simpler optimizations—lo
and machine-dependent optimizations—from transformations done in the
generator. Examples of typical optimizations are given in Figure 2.19. The
column of Figure 2.19 indicates the frequency with which the listed optimiz
transforms were applied to the source program. The effect of various optim
tions on instructions executed for two programs is shown in Figure 2.20.

The Impact of Compiler Technology on the Architect’s
Decisions

The interaction of compilers and high-level languages significantly affects
programs use an instruction set architecture. There are two important ques
How are variables allocated and addressed? How many registers are neede
locate variables appropriately? To address these questions, we must look
three separate areas in which current high-level languages allocate their dat

■ The stack is used to allocate local variables. The stack is grown and shrun
procedure call or return, respectively. Objects on the stack are addressed
tive to the stack pointer and are primarily scalars (single variables) rather
arrays. The stack is used for activation records, not as a stack for evaluating ex
pressions. Hence values are almost never pushed or popped on the stac

2.7 Crosscutting Issues: The Role of Compilers 93

glo-
ays or

 dis-
y not
■ The global data area is used to allocate statically declared objects, such as
bal variables and constants. A large percentage of these objects are arr
other aggregate data structures.

■ The heap is used to allocate dynamic objects that do not adhere to a stack
cipline. Objects in the heap are accessed with pointers and are typicall
scalars.

Optimization name Explanation
Percentage of the total num-
ber of optimizing transforms

High-level At or near the source level; machine-
independent

Procedure integration Replace procedure call by procedure body N.M.

Local Within straight-line code

Common subexpression elimination Replace two instances of the same
computation by single copy

18%

Constant propagation Replace all instances of a variable that
is assigned a constant with the constant

22%

Stack height reduction Rearrange expression tree to minimize re-
sources needed for expression evaluation

N.M.

Global Across a branch

Global common subexpression
elimination

Same as local, but this version crosses
branches

13%

Copy propagation Replace all instances of a variable A that
has been assigned X (i.e., A = X) with X

11%

Code motion Remove code from a loop that computes
same value each iteration of the loop

16%

Induction variable elimination Simplify/eliminate array-addressing
calculations within loops

2%

Machine-dependent Depends on machine knowledge

Strength reduction Many examples, such as replace multiply
by a constant with adds and shifts

N.M.

Pipeline scheduling Reorder instructions to improve pipeline
performance

N.M.

Branch offset optimization Choose the shortest branch displacement
that reaches target

N.M.

FIGURE 2.19 Major types of optimizations and examples in each class. The third column lists the static frequency with
which some of the common optimizations are applied in a set of 12 small FORTRAN and Pascal programs. The percentage
is the portion of the static optimizations that are of the specified type. These data tell us about the relative frequency of oc-
currence of various optimizations. There are nine local and global optimizations done by the compiler included in the mea-
surement. Six of these optimizations are covered in the figure, and the remaining three account for 18% of the total static
occurrences. The abbreviation N.M. means that the number of occurrences of that optimization was not measured. Machine-
dependent optimizations are usually done in a code generator, and none of those was measured in this experiment. Data
from Chow [1983] (collected using the Stanford UCODE compiler).

94 Chapter 2 Instruction Set Principles and Examples

 for
cated
e stack

o put
piler

e it is
. A
Register allocation is much more effective for stack-allocated objects than
global variables, and register allocation is essentially impossible for heap-allo
objects because they are accessed with pointers. Global variables and som
variables are impossible to allocate because they are aliased, which means that
there are multiple ways to refer to the address of a variable, making it illegal t
it into a register. (Most heap variables are effectively aliased for today’s com
technology.) For example, consider the following code sequence, where & returns
the address of a variable and * dereferences a pointer:

p = &a –– gets address of a in p

a = ... –– assigns to a directly

* p = ... –– uses p to assign to a

...a... -- accesses a

The variable a could not be register allocated across the assignment to * p with-
out generating incorrect code. Aliasing causes a substantial problem becaus
often difficult or impossible to decide what objects a pointer may refer to
compiler must be conservative; many compilers will not allocate any local vari-
ables of a procedure in a register when there is a pointer that may refer to one of
the local variables.

FIGURE 2.20 Change in instruction count for the programs hydro2d and li from the SPEC92 as compiler optimi-
zation levels vary. Level 0 is the same as unoptimized code. These experiments were perfomed on the MIPS compilers.
Level 1 includes local optimizations, code scheduling, and local register allocation. Level 2 includes global optimizations,
loop transformations (software pipelining), and global register allocation. Level 3 adds procedure integration.

li level 0

0% 20% 40% 60% 80% 100%

li level 1

li level 2

li level 3

hydro l 0

hydro l 1

hydro l 2

hydro l 3

100%

89%

75%

73%

100%

36%

26%

26%

Program and compiler
optimization level

FLOPs Loads-stores Integer ALUBranches/calls

Percent of unoptimized instructions executed

2.7 Crosscutting Issues: The Role of Compilers 95

tate-

bally
s that
e.

rin-

ating
 may

rties
t will
.

n in-
des—
nal
es are
n be
nera-
ner-

 this
truc-
is-

e
 may
rrect
e at-

r
eg-
 size

 is no
com-
 the

of the
ory

d be-
pute
How the Architect Can Help the Compiler Writer

Today, the complexity of a compiler does not come from translating simple s
ments like A = B + C. Most programs are locally simple, and simple translations
work fine. Rather, complexity arises because programs are large and glo
complex in their interactions, and because the structure of compilers mean
decisions must be made about what code sequence is best one step at a tim

Compiler writers often are working under their own corollary of a basic p
ciple in architecture: Make the frequent cases fast and the rare case correct. That
is, if we know which cases are frequent and which are rare, and if gener
code for both is straightforward, then the quality of the code for the rare case
not be very important—but it must be correct!

Some instruction set properties help the compiler writer. These prope
should not be thought of as hard and fast rules, but rather as guidelines tha
make it easier to write a compiler that will generate efficient and correct code

1. Regularity;—Whenever it makes sense, the three primary components of a
struction set—the operations, the data types, and the addressing mo
should be orthogonal. Two aspects of an architecture are said to be orthogo
if they are independent. For example, the operations and addressing mod
orthogonal if for every operation to which a certain addressing mode ca
applied, all addressing modes are applicable. This helps simplify code ge
tion and is particularly important when the decision about what code to ge
ate is split into two passes in the compiler. A good counterexample of
property is restricting what registers can be used for a certain class of ins
tions. This can result in the compiler finding itself with lots of available reg
ters, but none of the right kind!

2. Provide primitives, not solutions—Special features that “match” a languag
construct are often unusable. Attempts to support high-level languages
work only with one language, or do more or less than is required for a co
and efficient implementation of the language. Some examples of how thes
tempts have failed are given in section 2.9.

3. Simplify trade-offs among alternatives—One of the toughest jobs a compile
writer has is figuring out what instruction sequence will be best for every s
ment of code that arises. In earlier days, instruction counts or total code
might have been good metrics, but—as we saw in the last chapter—this
longer true. With caches and pipelining, the trade-offs have become very
plex. Anything the designer can do to help the compiler writer understand
costs of alternative code sequences would help improve the code. One
most difficult instances of complex trade-offs occurs in a register-mem
architecture in deciding how many times a variable should be reference
fore it is cheaper to load it into a register. This threshold is hard to com
and, in fact, may vary among models of the same architecture.

96 Chapter 2 Instruction Set Principles and Examples

 at
s of

om-

ask is
 the

ction
 sepa-
ing
ress-

ieces
lify

t that
ss is

put-

t it
ost
y tak-
 be

0

rals.

s

pro-
un-
 and
th,
4. Provide instructions that bind the quantities known at compile time as con-
stants—A compiler writer hates the thought of the machine interpreting
runtime a value that was known at compile time. Good counterexample
this principle include instructions that interpret values that were fixed at c
pile time. For instance, the VAX procedure call instruction (calls) dynami-
cally interprets a mask saying what registers to save on a call, but the m
fixed at compile time. However, in some cases it may not be known by
caller whether separate compilation was used.

Summary: The Role of Compilers

This section leads to several recommendations. First, we expect a new instru
set architecture to have at least 16 general-purpose registers—not counting
rate registers for floating-point numbers—to simplify allocation of registers us
graph coloring. The advice on orthogonality suggests that all supported add
ing modes apply to all instructions that transfer data. Finally, the last three p
of advice of the last subsection—provide primitives instead of solutions, simp
trade-offs between alternatives, don’t bind constants at runtime—all sugges
it is better to err on the side of simplicity. In other words, understand that le
more in the design of an instruction set.

In many places throughout this book we will have occasion to refer to a com
er’s “machine language.” The machine we use is a mythical computer called
“MIX .” MIX is very much like nearly every computer in existence, except tha
is, perhaps, nicer … MIX is the world’s first polyunsaturated computer. Like m
machines, it has an identifying number—the 1009. This number was found b
ing 16 actual computers which are very similar to MIX and on which MIX can
easily simulated, then averaging their number with equal weight:

 (360 + 650 + 709 + 7070 + U3 + SS80 + 1107 + 1604 + G20 + B220 + S200
+ 920 + 601 + H800 + PDP-4 + II)/16 = 1009.

The same number may be obtained in a simpler way by taking Roman nume

Donald Knuth, The Art of Computer Programming, Volume I: Fundamental Algorithm

In this section we will describe a simple load-store architecture called DLX (
nounced “Deluxe”). The authors believe DLX to be the world’s second poly
saturated computer—the average of a number of recent experimental
commercial machines that are very similar in philosophy to DLX. Like Knu

2.8 Putting It All Together: The DLX Architecture

2.8 Putting It All Together: The DLX Architecture 97

oman

,
10,

bser-
cuss
tions

ress
rred.

the
ister-
-rela-

s and

nd

ting-
struc-

ike

ng

 re-
cture
nd it
we derived the name of our machine from an average expressed in R
numerals:

(AMD 29K, DECstation 3100, HP 850, IBM 801, Intel i860, MIPS M/120A
MIPS M/1000, Motorola 88K, RISC I, SGI 4D/60, SPARCstation-1, Sun-4/1
Sun-4/260) / 13 = 560 = DLX.

The instruction set architecture of DLX and its ancestors was based on o
vations similar to those covered in the last sections. (In section 2.11 we dis
how and why these architectures became popular.) Reviewing our expecta
from each section:

■ Section 2.2—Use general-purpose registers with a load-store architecture.

■ Section 2.3—Support these addressing modes: displacement (with an add
offset size of 12 to 16 bits), immediate (size 8 to 16 bits), and register defe

■ Section 2.4—Support these simple instructions, since they will dominate
number of instructions executed: load, store, add, subtract, move reg
register, and, shift, compare equal, compare not equal, branch (with a PC
tive address at least 8 bits long), jump, call, and return.

■ Section 2.5—Support these data sizes and types: 8-, 16-, and 32-bit integer
64-bit IEEE 754 floating-point numbers.

■ Section 2.6—Use fixed instruction encoding if interested in performance a
use variable instruction encoding if interested in code size.

■ Section 2.7—Provide at least 16 general-purpose registers plus separate floa
point registers, be sure all addressing modes apply to all data transfer in
tions, and aim for a minimalist instruction set.

We introduce DLX by showing how it follows these recommendations. L
most recent machines, DLX emphasizes

■ A simple load-store instruction set

■ Design for pipelining efficiency, including a fixed instruction set encodi
(discussed in Chapter 3)

■ Efficiency as a compiler target

DLX provides a good architectural model for study, not only because of the
cent popularity of this type of machine, but also because it is an easy archite
to understand. We will use this architecture again in Chapters 3 and 4, a
forms the basis for a number of exercises and programming projects.

98 Chapter 2 Instruction Set Principles and Examples

R31.
sed

uble-
2, ...,
 and

ter to

s. An
t the
 be-

 data
alf
orted
uch as
l also
cision
early
g an

int.
n bit
d on

th 16-
 dis-
d by
ough

. As
tores

 types
 a half
on or
sses
Registers for DLX

DLX has 32 32-bit general-purpose registers (GPRs), named R0, R1, …,
Additionally, there is a set of floating-point registers (FPRs), which can be u
as 32 single-precision (32-bit) registers or as even-odd pairs holding do
precision values. Thus, the 64-bit floating-point registers are named F0, F
F28, F30. Both single- and double-precision floating-point operations (32-bit
64-bit) are provided.

The value of R0 is always 0. We shall see later how we can use this regis
synthesize a variety of useful operations from a simple instruction set.

A few special registers can be transferred to and from the integer register
example is the floating-point status register, used to hold information abou
results of floating-point operations. There are also instructions for moving
tween a FPR and a GPR.

Data types for DLX

The data types are 8-bit bytes, 16-bit half words, and 32-bit words for integer
and 32-bit single precision and 64-bit double precision for floating point. H
words were added to the minimal set of recommended data types supp
because they are found in languages like C and popular in some programs, s
the operating systems, concerned about size of data structures. They wil
become more popular as Unicode becomes more widely used. Single-pre
floating-point operands were added for similar reasons. (Remember the
warning that you should measure many more programs before designin
instruction set.)

The DLX operations work on 32-bit integers and 32- or 64-bit floating po
Bytes and half words are loaded into registers with either zeros or the sig
replicated to fill the 32 bits of the registers. Once loaded, they are operate
with the 32-bit integer operations.

Addressing modes for DLX data transfers

The only data addressing modes are immediate and displacement, both wi
bit fields. Register deferred is accomplished simply by placing 0 in the 16-bit
placement field, and absolute addressing with a 16-bit field is accomplishe
using register 0 as the base register. This gives us four effective modes, alth
only two are supported in the architecture.

DLX memory is byte addressable in Big Endian mode with a 32-bit address
it is a load-store architecture, all memory references are through loads or s
between memory and either the GPRs or the FPRs. Supporting the data
mentioned above, memory accesses involving the GPRs can be to a byte, to
word, or to a word. The FPRs may be loaded and stored with single-precisi
double-precision words (using a pair of registers for DP). All memory acce
must be aligned.

2.8 Putting It All Together: The DLX Architecture 99

pcode.
ll in-
truc-
for
sses.

 oth-
pera-

ored,
s oc-
pair.
 The
ples
DLX Instruction Format

Since DLX has just two addressing modes, these can be encoded into the o
Following the advice on making the machine easy to pipeline and decode, a
structions are 32 bits with a 6-bit primary opcode. Figure 2.21 shows the ins
tion layout. These formats are simple while providing 16-bit fields
displacement addressing, immediate constants, or PC-relative branch addre

DLX Operations

DLX supports the list of simple operations recommended above plus a few
ers. There are four broad classes of instructions: loads and stores, ALU o
tions, branches and jumps, and floating-point operations.

Any of the general-purpose or floating-point registers may be loaded or st
except that loading R0 has no effect. Single-precision floating-point number
cupy a single floating-point register, while double-precision values occupy a
Conversions between single and double precision must be done explicitly.
floating-point format is IEEE 754 (see Appendix A). Figure 2.22 gives exam

FIGURE 2.21 Instruction layout for DLX. All instructions are encoded in one of three
types.

I-type instruction

rs1 rd Immediate

Encodes: Loads and stores of bytes, words, half words
All immediates (rd rs1 op immediate)

6 5 5 16

Conditional branch instructions (rs1 is register, rd unused)
Jump register, jump and link register
 (rd = 0, rs1 = destination, immediate = 0)

R-type instruction

rs1 rs2

Register–register ALU operations: rd rs1 func rs2
 Function encodes the data path operation: Add, Sub, . . .
 Read/write special registers and moves

6 5 5 115

func

Opcode

J-type instruction

Offset added to PC

6 26

Jump and jump and link
Trap and return from exception

Opcode

Opcode rd

–‹

–‹

100 Chapter 2 Instruction Set Principles and Examples

rs in
a few

-

eled
digit

d by

 side
of the load and store instructions. A complete list of the instructions appea
Figure 2.25 (page 104). To understand these figures we need to introduce
additional extensions to our C description language:

■ A subscript is appended to the symbol ← whenever the length of the datum be
ing transferred might not be clear. Thus, ←n means transfer an n-bit quantity.
We use x, y ← z to indicate that z should be transferred to x and y.

■ A subscript is used to indicate selection of a bit from a field. Bits are lab
from the most-significant bit starting at 0. The subscript may be a single
(e.g., Regs[R4] 0 yields the sign bit of R4) or a subrange (e.g., Regs[R3] 24..31

yields the least-significant byte of R3).

■ The variable Mem, used as an array that stands for main memory, is indexe
a byte address and may transfer any number of bytes.

■ A superscript is used to replicate a field (e.g., 024 yields a field of zeros of
length 24 bits).

■ The symbol ## is used to concatenate two fields and may appear on either
of a data transfer.

Example instruction Instruction name Meaning

LW R1,30(R2) Load word Regs[R1] ←32 Mem[30+Regs[R2]]

LW R1,1000(R0) Load word Regs[R1] ←32 Mem[1000+0]

LB R1,40(R3) Load byte Regs[R1] ←32 (Mem[40+Regs[R3]] 0) 24 ##
Mem[40+Regs[R3]]

LBU R1,40(R3) Load byte unsigned Regs[R1] ←32 0 24 ## Mem[40+Regs[R3]]

LH R1,40(R3) Load half word Regs[R1] ←32 (Mem[40+Regs[R3]] 0) 16 ##
Mem[40+Regs[R3]]##Mem[41+Regs[R3]]

LF F0,50(R3) Load float Regs[F0] ←32 Mem[50+Regs[R3]]

LD F0,50(R2) Load double Regs[F0]##Regs[F1] ←64 Mem[50+Regs[R2]]

SW R3,500(R4) Store word Mem[500+Regs[R4]] ←32 Regs[R3]

SF F0,40(R3) Store float Mem[40+Regs[R3]] ←32 Regs[F0]

SD F0,40(R3) Store double Mem[40+Regs[R3]] ←32 Regs[F0];
Mem[44+Regs[R3]] ←32 Regs[F1]

SH R3,502(R2) Store half Mem[502+Regs[R2]] ←16 Regs[R3] 16..31

SB R2,41(R3) Store byte Mem[41+Regs[R3]] ←8 Regs[R2] 24..31

FIGURE 2.22 The load and store instructions in DLX. All use a single addressing mode and require that the memory
value be aligned. Of course, both loads and stores are available for all the data types shown.

2.8 Putting It All Together: The DLX Architecture 101

side

 R8 is
10.

de

iate,
a
 be
ss in

ing a
0, and
. (We
e

gis-
rations
so on.
e ex-

 jump
ress
dded
A summary of the entire description language appears on the back in
cover. As an example, assuming that R8 and R10 are 32-bit registers:

Regs[R10] 16..31 ← 16(Mem[Regs[R8]] 0) 8 ## Mem[Regs[R8]]

means that the byte at the memory location addressed by the contents of
sign-extended to form a 16-bit quantity that is stored into the lower half of R
(The upper half of R10 is unchanged.)

All ALU instructions are register-register instructions. The operations inclu
simple arithmetic and logical operations: add, subtract, AND, OR, XOR, and shifts.
Immediate forms of all these instructions, with a 16-bit sign-extended immed
are provided. The operation LHI (load high immediate) loads the top half of
register, while setting the lower half to 0. This allows a full 32-bit constant to
built in two instructions, or a data transfer using any constant 32-bit addre
one extra instruction.

As mentioned above, R0 is used to synthesize popular operations. Load
constant is simply an add immediate where one of the source operands is R
a register-register move is simply an add where one of the sources is R0
sometimes use the mnemonic LI , standing for load immediate, to represent th
former and the mnemonic MOV for the latter.)

There are also compare instructions, which compare two registers (=, ≠, <, >,
≤, ≥). If the condition is true, these instructions place a 1 in the destination re
ter (to represent true); otherwise they place the value 0. Because these ope
“set” a register, they are called set-equal, set-not-equal, set-less-than, and
There are also immediate forms of these compares. Figure 2.23 gives som
amples of the arithmetic/logical instructions.

Control is handled through a set of jumps and a set of branches. The four
instructions are differentiated by the two ways to specify the destination add
and by whether or not a link is made. Two jumps use a 26-bit signed offset a

Example instruction Instruction name Meaning

ADD R1,R2,R3 Add Regs[R1] ←Regs[R2]+Regs[R3]

ADDI R1,R2,#3 Add immediate Regs[R1] ←Regs[R2]+3

LHI R1,#42 Load high immediate Regs[R1] ←42##0 16

SLLI R1,R2,#5 Shift left logical
immediate

Regs[R1] ←Regs[R2]<<5

SLT R1,R2,R3 Set less than if (Regs[R2]<Regs[R3])
Regs[R1] ←1 else Regs[R1] ←0

FIGURE 2.23 Examples of arithmetic/logical instructions on DLX, both with and without im-
mediates.

102 Chapter 2 Instruction Set Principles and Examples

 de-
gister
jump,
turn

 in-
r may
 spec-
h is

anch
 reg-

ate
pera-

tions
 an
uires
int
t and

fix
to the program counter (of the instruction sequentially following the jump) to
termine the destination address; the other two jump instructions specify a re
that contains the destination address. There are two flavors of jumps: plain
and jump and link (used for procedure calls). The latter places the re
address—the address of the next sequential instruction—in R31.

All branches are conditional. The branch condition is specified by the
struction, which may test the register source for zero or nonzero; the registe
contain a data value or the result of a compare. The branch target address is
ified with a 16-bit signed offset that is added to the program counter, whic
pointing to the next sequential instruction. Figure 2.24 gives some typical br
and jump instructions. There is also a branch to test the floating-point status
ister for floating-point conditional branches, described below.

Floating-point instructions manipulate the floating-point registers and indic
whether the operation to be performed is single or double precision. The o
tions MOVF and MOVD copy a single-precision (MOVF) or double-precision (MOVD)
floating-point register to another register of the same type. The opera
MOVFP2I and MOVI2FP move data between a single floating-point register and
integer register; moving a double-precision value to two integer registers req
two instructions. Integer multiply and divide that work on 32-bit floating-po
registers are also provided, as are conversions from integer to floating poin
vice versa.

The floating-point operations are add, subtract, multiply, and divide; a sufD

is used for double precision and a suffix F is used for single precision (e.g., ADDD,
ADDF, SUBD, SUBF, MULTD, MULTF, DIVD, DIVF). Floating-point compares set a

Example instruction Instruction name Meaning

J name Jump PC←name; ((PC+4)–2 25) ≤ name <

((PC+4)+2 25)

JAL name Jump and link Regs[R31] ←PC+4; PC ←name;

((PC+4)–2 25) ≤ name < ((PC+4)+2 25)

JALR R2 Jump and link register Regs[R31] ←PC+4; PC ←Regs[R2]

JR R3 Jump register PC←Regs[R3]

BEQZ R4,name Branch equal zero if (Regs[R4]==0) PC ←name;

((PC+4)–2 15) ≤ name < ((PC+4)+2 15)

BNEZ R4,name Branch not equal zero if (Regs[R4]!=0) PC ←name;

((PC+4)–2 15) ≤ name < ((PC+4)+2 15)

FIGURE 2.24 Typical control-flow instructions in DLX. All control instructions, except jumps to an address in a register,
are PC-relative. If the register operand is R0, BEQZ will always branch, but the compiler will usually prefer to use a jump with
a longer offset over this “unconditional branch.”

2.8 Putting It All Together: The DLX Architecture 103

ir of
nt

nit
ntrol
nte-
oat-

ely
er-

ive
f in-

 2.27
 feel-
t are

 ad-
o exe-
ance
n of

I or

 the
eate
ilers.
hould
ll in-
 case
 the
ssing
ini-
four
1000
e was
bit in the special floating-point status register that can be tested with a pa
branches: BFPT and BFPF, branch floating-point true and branch floating-poi
false.

One slightly unusual DLX characteristic is that it uses the floating-point u
for integer multiplies and divides. As we shall see in Chapters 3 and 4, the co
for the slower floating-point operations is much more complicated than for i
ger addition and subtraction. Since the floating-point unit already handles fl
ing point multiply and divide, it is not much harder for it to perform the relativ
slow operations of integer multiply and divide. Hence DLX requires that op
ands to be multiplied or divided be placed in floating-point registers.

 Figure 2.25 contains a list of all DLX operations and their meaning. To g
an idea which instructions are popular, Figure 2.26 shows the frequency o
structions and instruction classes for five SPECint92 programs and Figure
shows the same data for five SPECfp92 programs. To give a more intuitive
ing, Figures 2.28 and 2.29 show the data graphically for all instructions tha
responsible on average for more than 1% of the instructions executed.

Effectiveness of DLX

It would seem that an architecture with simple instruction formats, simple
dress modes, and simple operations would be slow, in part because it has t
cute more instructions than more sophisticated designs. The perform
equation from the last chapter reminds us that execution time is a functio
more than just instruction count:

To see whether reduction in instruction count is offset by increases in CP
clock cycle time, we need to compare DLX to a sophisticated alternative.

One example of a sophisticated instruction set architecture is the VAX. In
mid 1970s, when the VAX was designed, the prevailing philosophy was to cr
instruction sets that were close to programming languages to simplify comp
For example, because programming languages had loops, instruction sets s
have loop instructions, not just simple conditional branches; they needed ca
structions that saved registers, not just simple jump and links; they needed
instructions, not just jump indirect; and so on. Following similar arguments,
VAX provided a large set of addressing modes and made sure that all addre
modes worked with all operations. Another prevailing philosophy was to m
mize code size. Recall that DRAMs have grown in capacity by a factor of
every three years; thus in the mid 1970s DRAM chips contained less than 1/
the capacity of today’s DRAMs, so code space was also critical. Code spac

CPU time Instruction count CPI × Clock cycle time × =

104 Chapter 2 Instruction Set Principles and Examples

ial

rations

t

Instruction type/opcode Instruction meaning

Data transfers Move data between registers and memory, or between the integer and FP or spec
registers; only memory address mode is 16-bit displacement + contents of a GPR

LB,LBU,SB

Load byte, load byte unsigned, store byte

LH,LHU,SH

Load half word, load half word unsigned, store half word

LW,SW

Load word, store word (to/from integer registers)

LF,LD,SF,SD

Load SP float, load DP float, store SP float, store DP float

MOVI2S, MOVS2I

Move from/to GPR to/from a special register

MOVF, MOVD Copy one FP register or a DP pair to another register or pair

MOVFP2I,MOVI2FP Move 32 bits from/to FP registers to/from integer registers

Arithmetic/logical Operations on integer or logical data in GPRs; signed arithmetic trap on overflow

ADD,ADDI,ADDU, ADDUI Add, add immediate (all immediates are 16 bits); signed and unsigned

SUB,SUBI,SUBU, SUBUI Subtract, subtract immediate; signed and unsigned

MULT,MULTU,DIV,DIVU Multiply and divide, signed and unsigned; operands must be FP registers; all ope
take and yield 32-bit values

AND,ANDI And, and immediate

OR,ORI,XOR,XORI Or, or immediate, exclusive or, exclusive or immediate

LHI Load high immediate—loads upper half of register with immediate

SLL, SRL, SRA, SLLI,
SRLI, SRAI

Shifts: both immediate (S__I) and variable form (S__) ; shifts are shift left logical, righ
logical, right arithmetic

S__,S__I Set conditional: “__” may be LT,GT,LE,GE,EQ,NE

Control Conditional branches and jumps; PC-relative or through register

BEQZ,BNEZ Branch GPR equal/not equal to zero; 16-bit offset from PC+4

BFPT,BFPF Test comparison bit in the FP status register and branch; 16-bit offset from PC+4

J, JR Jumps: 26-bit offset from PC+4 (J) or target in register (JR)

JAL, JALR Jump and link: save PC+4 in R31, target is PC-relative (JAL) or a register (JALR)

TRAP Transfer to operating system at a vectored address

RFE Return to user code from an exception; restore user mode

Floating point FP operations on DP and SP formats

ADDD,ADDF Add DP, SP numbers

SUBD,SUBF Subtract DP, SP numbers

MULTD,MULTF Multiply DP, SP floating point

DIVD,DIVF Divide DP, SP floating point

CVTF2D, CVTF2I,
CVTD2F, CVTD2I,
CVTI2F, CVTI2D

Convert instructions: CVTx2y converts from type x to type y, where x and y are I
(integer), D (double precision), or F (single precision). Both operands are FPRs.

__D, __F DP and SP compares: “__” = LT,GT,LE,GE,EQ,NE ; sets bit in FP status register

FIGURE 2.25 Complete list of the instructions in DLX. The formats of these instructions are shown in Figure 2.21.
SP = single precision; DP = double precision. This list can also be found on the page preceding the back inside cover.

2.8 Putting It All Together: The DLX Architecture 105

ad-
ntrast,
ittle

 of
a-

ing
de-emphasized in fixed-length instruction sets like DLX. For example, DLX
dress fields always use 16 bits, even when the address is very small. In co
the VAX allows instructions to be a variable number of bytes, so there is l
wasted space in address fields.

Designers of VAX machines later performed a quantitative comparison
VAX and a DLX-like machine for implementations with comparable organiz
tions. Their choices were the VAX 8700 and the MIPS M2000. The differ

Instruction compress eqntott espresso gcc (cc1) li
Integer
average

load 19.8% 30.6% 20.9% 22.8% 31.3% 26%

store 5.6% 0.6% 5.1% 14.3% 16.7% 9%

add 14.4% 8.5% 23.8% 14.6% 11.1% 14%

sub 1.8% 0.3% 0.5% 0%

mul 0.1% 0%

div 0%

compare 15.4% 26.5% 8.3% 12.4% 5.4% 14%

load imm 8.1% 1.5% 1.3% 6.8% 2.4% 4%

cond branch 17.4% 24.0% 15.0% 11.5% 14.6% 17%

jump 1.5% 0.9% 0.5% 1.3% 1.8% 1%

call 0.1% 0.5% 0.4% 1.1% 3.1% 1%

return, jmp ind 0.1% 0.5% 0.5% 1.5% 3.5% 1%

shift 6.5% 0.3% 7.0% 6.2% 0.7% 4%

and 2.1% 0.1% 9.4% 1.6% 2.1% 3%

or 6.0% 5.5% 4.8% 4.2% 6.2% 5%

other (xor, not) 1.0% 2.0% 0.5% 0.1% 1%

load FP 0%

store FP 0%

add FP 0%

sub FP 0%

mul FP 0%

div FP 0%

compare FP 0%

mov reg-reg FP 0%

other FP 0%

FIGURE 2.26 DLX instruction mix for five SPECint92 programs. Note that integer register-register move instructions
are included in the add instruction. Blank entries have the value 0.0%.

106 Chapter 2 Instruction Set Principles and Examples

als,
erful
oals
 and
in-
 large

tio of
ations
goals for VAX and MIPS have led to very different architectures. The VAX go
simple compilers and code density, led to powerful addressing modes, pow
instructions, efficient instruction encoding, and few registers. The MIPS g
were high performance via pipelining, ease of hardware implementation,
compatibility with highly optimizing compilers. These goals led to simple
structions, simple addressing modes, fixed-length instruction formats, and a
number of registers.

Figure 2.30 shows the ratio of the number of instructions executed, the ra
CPIs, and the ratio of performance measured in clock cycles. Since the organiz

Instruction doduc ear hydro2d mdljdp2 su2cor FP average

load 1.4% 0.2% 0.1% 1.1% 3.6% 1%

store 1.3% 0.1% 0.1% 1.3% 1%

add 13.6% 13.6% 10.9% 4.7% 9.7% 11%

sub 0.3% 0.2% 0.7% 0%

mul 0%

div 0%

compare 3.2% 3.1% 1.2% 0.3% 1.3% 2%

load imm 2.2% 0.2% 2.2% 0.9% 1%

cond branch 8.0% 10.1% 11.7% 9.3% 2.6% 8%

jump 0.9% 0.4% 0.4% 0.1% 0%

call 0.5% 1.9% 0.3% 1%

return, jmp ind 0.6% 1.9% 0.3% 1%

shift 2.0% 0.2% 2.4% 1.3% 2.3% 2%

and 0.4% 0.1% 0.3% 0%

or 0.2% 0.1% 0.1% 0.1% 0%

other (xor, not) 0%

load FP 23.3% 19.8% 24.1% 25.9% 21.6% 23%

store FP 5.7% 11.4% 9.9% 10.0% 9.8% 9%

add FP 8.8% 7.3% 3.6% 8.5% 12.4% 8%

sub FP 3.8% 3.2% 7.9% 10.4% 5.9% 6%

mul FP 12.0% 9.6% 9.4% 13.9% 21.6% 13%

div FP 2.3% 1.6% 0.9% 0.7% 1%

compare FP 4.2% 6.4% 10.4% 9.3% 0.8% 6%

mov reg-reg FP 2.1% 1.8% 5.2% 0.9% 1.9% 2%

other FP 2.4% 8.4% 0.2% 0.2% 1.2% 2%

FIGURE 2.27 DLX instruction mix for five programs from SPECfp92 . Note that integer register-register move instruc-
tions are included in the add instruction. Blank entries have the value 0.0%.

2.8 Putting It All Together: The DLX Architecture 107
FIGURE 2.28 Graphical display of instructions executed of the five programs from
SPECint92 in Figure 2.26. These instruction classes collectively are responsible on average
for 92% of instructions executed.

FIGURE 2.29 Graphical display of instructions executed of the five programs from
SPECfp92 in Figure 2.27. These instruction classes collectively are responsible on average
for just under 90% of instructions executed.

load int

conditional branch

add int

compare int

store int

or

shift

and

26%

16%

0% 5% 10% 15% 20% 25%

14%

13%

9%

5%

4%

3%

eqntott espresso gcc licompress

Total dynamic count

load FP

mul FP

add int

store FP

conditional branch

add FP

sub FP

compare FP

23%

13%

0% 5% 10% 15% 20% 25%

11%

9%

8%

8%

6%

6%

ear hydro2d mdljdp2 su2cordoduc

mov reg FP 2%

shift 2%

Total dynamic count

108 Chapter 2 Instruction Set Principles and Examples

 about
es

s the
 build
n the
chine

n this
were similar, clock cycle times were assumed to be the same. MIPS executes
twice as many instructions as the VAX, while the CPI for the VAX is about six tim
larger than that for the MIPS. Hence the MIPS M2000 has almost three time
performance of the VAX 8700. Furthermore, much less hardware is needed to
the MIPS CPU than the VAX CPU. This cost/performance gap is the reaso
company that used to make the VAX has dropped it and is now making a ma
similar to DLX.

Time and again architects have tripped on common, but erroneous, beliefs. I
section we look at a few of them.

FIGURE 2.30 Ratio of MIPS M2000 to VAX 8700 in instructions executed and performance in clock cycles using
SPEC89 programs. On average, MIPS executes a little over twice as many instructions as the VAX, but the CPI for the VAX
is almost six times the MIPS CPI, yielding almost a threefold performance advantage. (Based on data from Bhandarkar and
Clark [1991].)

2.9 Fallacies and Pitfalls

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

li

eq
nt

ot
t

es
pr

es
so

do
du

c

to
m

ca
tv

fp
pp

p

na
sa

7

m
at

rix
sp

ice

Performance
ratio

Instructions
executed ratio

CPI ratio

SPEC 89 benchmarks

MIPS/VAX

2.9 Fallacies and Pitfalls 109

d

have
ity.
se, or
forts

ring
 what

ner

the
gain,
is-
-
d

 men-
this

ion.

k point-

ver-
kage
an the
k-
ts to
seful,

are too
Pitfall: Designing a “high-level” instruction set feature specifically oriente
to supporting a high-level language structure.

Attempts to incorporate high-level language features in the instruction set
led architects to provide powerful instructions with a wide range of flexibil
But often these instructions do more work than is required in the frequent ca
they don’t exactly match the requirements of the language. Many such ef
have been aimed at eliminating what in the 1970s was called the semantic gap.
Although the idea is to supplement the instruction set with additions that b
the hardware up to the level of the language, the additions can generate
Wulf [1981] has called a semantic clash:

... by giving too much semantic content to the instruction, the machine desig
made it possible to use the instruction only in limited contexts. [p. 43]

More often the instructions are simply overkill—they are too general for
most frequent case, resulting in unneeded work and a slower instruction. A
the VAX CALLS is a good example. CALLS uses a callee-save strategy (the reg
ters to be saved are specified by the callee) but the saving is done by the call in
struction in the caller. The CALLS instruction begins with the arguments pushe
on the stack, and then takes the following steps:

1. Align the stack if needed.

2. Push the argument count on the stack.

3. Save the registers indicated by the procedure call mask on the stack (as
tioned in section 2.7). The mask is kept in the called procedure’s code—
permits callee save to be done by the caller even with separate compilat

4. Push the return address on the stack, then push the top and base of stac
ers for the activation record.

5. Clear the condition codes, which sets the trap enables to a known state.

6. Push a word for status information and a zero word on the stack.

7. Update the two stack pointers.

8. Branch to the first instruction of the procedure.

The vast majority of calls in real programs do not require this amount of o
head. Most procedures know their argument counts, and a much faster lin
convention can be established using registers to pass arguments rather th
stack. Furthermore, the CALLS instruction forces two registers to be used for lin
age, while many languages require only one linkage register. Many attemp
support procedure call and activation stack management have failed to be u
either because they do not match the language needs or because they
general and hence too expensive to use.

110 Chapter 2 Instruction Set Principles and Examples

dure.

 link-
n by

com-

hat
thetic
 that
ple,
pro-
The
plica-

ators
have
The VAX designers provided a simpler instruction, JSB, that is much faster
since it only pushes the return PC on the stack and jumps to the proce
However, most VAX compilers use the more costly CALLS instructions. The call
instructions were included in the architecture to standardize the procedure
age convention. Other machines have standardized their calling conventio
agreement among compiler writers and without requiring the overhead of a
plex, very general-procedure call instruction.

Fallacy: There is such a thing as a typical program.

Many people would like to believe that there is a single “typical” program t
could be used to design an optimal instruction set. For example, see the syn
benchmarks discussed in Chapter 1. The data in this chapter clearly show
programs can vary significantly in how they use an instruction set. For exam
Figure 2.31 shows the mix of data transfer sizes for four of the SPEC92
grams: It would be hard to say what is typical from these four programs.
variations are even larger on an instruction set that supports a class of ap
tions, such as decimal instructions, that are unused by other applications.

Fallacy: An architecture with flaws cannot be successful.

The 80x86 provides a dramatic example: The architecture is one only its cre
could love (see Appendix D). Succeeding generations of Intel engineers

FIGURE 2.31 Data reference size of four programs from SPEC92. Although you can cal-
culate an average size, it would be hard to claim the average is typical of programs.

0% 50% 100%

0%

4%

19%

87%

0%
1%

100%
0%

78%
12%

0%

0%

Word

Half word

Byte

0%
0%

100%

Double word
0%

Frequency of reference by size

ear eqntott compresshydro2d

2.10 Concluding Remarks 111

x86.
aging;
s use
very-

ifficul-
 in the

ard-
ly to
 made
d the
f de-
ally

blem
chi-

ware
itects
three
the
 good
piler
to re-
with
k of
archi-
rge
rchi-

d em-
based

er, in

s, ex-
ix C
its.
tried to correct unpopular architectural decisions made in designing the 80
For example, the 80x86 supports segmentation, whereas all others picked p
the 80x86 uses extended accumulators for integer data, but other machine
general-purpose registers; and it uses a stack for floating-point data when e
one else abandoned execution stacks long before. Despite these major d
ties, the 80x86 architecture—because of its selection as the microprocessor
IBM PC—has been enormously successful.

Fallacy: You can design a flawless architecture.

All architecture design involves trade-offs made in the context of a set of h
ware and software technologies. Over time those technologies are like
change, and decisions that may have been correct at the time they were
look like mistakes. For example, in 1975 the VAX designers overemphasize
importance of code-size efficiency, underestimating how important ease o
coding and pipelining would be 10 years later. Almost all architectures eventu
succumb to the lack of sufficient address space. However, avoiding this pro
in the long run would probably mean compromising the efficiency of the ar
tecture in the short run.

The earliest architectures were limited in their instruction sets by the hard
technology of that time. As soon as the hardware technology permitted, arch
began looking for ways to support high-level languages. This search led to
distinct periods of thought about how to support programs efficiently. In
1960s, stack architectures became popular. They were viewed as being a
match for high-level languages—and they probably were, given the com
technology of the day. In the 1970s, the main concern of architects was how
duce software costs. This concern was met primarily by replacing software
hardware, or by providing high-level architectures that could simplify the tas
software designers. The result was both the high-level-language computer
tecture movement and powerful architectures like the VAX, which has a la
number of addressing modes, multiple data types, and a highly orthogonal a
tecture. In the 1980s, more sophisticated compiler technology and a renewe
phasis on machine performance saw a return to simpler architectures,
mainly on the load-store style of machine.

Today, there is widespread agreement on instruction set design. Howev
the next decade we expect to see change in the following areas:

■ The 32-bit address instruction sets are being extended to 64-bit addresse
panding the width of the registers (among other things) to 64 bits. Append
gives three examples of architectures that have gone from 32 bits to 64 b

2.10 Concluding Remarks

112 Chapter 2 Instruction Set Principles and Examples

nies
y im-

 per-
acing
ndi-

e of
struc-
stiga-
ing

nce,
ruple

rchi-
pha-

1950s
pected
 of the
va-
 text-
e to

lude
 the
tudy.
lk of
ted in
com-
 the
tion

h a
■ Given the popularity of software for the 80x86 architecture, many compa
are looking to see if changes to load-store instruction sets can significantl
prove performance when emulating the 80x86 architecture.

■ In the next two chapters we will see that conditional branches can limit the
formance of aggressive computer designs. Hence there is interest in repl
conditional branches with conditional completion of operations, such as co
tional move (see Chapter 4).

■ Chapter 5 explains the increasing role of memory hierarchy in performanc
machines, with a cache miss on some machines taking almost as many in
tion times as page faults took on earlier machines. Hence there are inve
tions into hiding the cost of cache misses by prefetching and by allow
caches and CPUs to proceed while servicing a miss (see Chapter 5).

■ Appendix A describes new operations to enhance floating-point performa
such as operations that perform a multiply and an add. Support for quad
precision, at least for data transfer, may also be coming down the line.

Between 1970 and 1985 many thought the primary job of the computer a
tect was the design of instruction sets. As a result, textbooks of that era em
size instruction set design, much as computer architecture textbooks of the
and 1960s emphasized computer arithmetic. The educated architect was ex
to have strong opinions about the strengths and especially the weaknesses
popular machines. The importance of binary compatibility in quashing inno
tions in instruction set design was unappreciated by many researchers and
book writers, giving the impression that many architects would get a chanc
design an instruction set.

The definition of computer architecture today has been expanded to inc
design and evaluation of the full computer system—not just the definition of
instruction set—and hence there are plenty of topics for the architect to s
(You may have guessed this the first time you lifted this book.) Hence the bu
this book is on design of computers versus instruction sets. Readers interes
instruction set architecture may be satisfied by the appendices: Appendix C
pares four popular load-store machines with DLX. Appendix D describes
most widely used instruction set, the Intel 80x86, and compares instruc
counts for it with that of DLX for several programs.

One’s eyebrows should rise whenever a future architecture is developed wit
stack- or register-oriented instruction set. [p. 20]

Meyers [1978]

2.11 Historical Perspective and References

2.11 Historical Perspective and References 113

a-
chine
. The
td. in
g zero.

t ma-
rton

scribed
OL,
level
 sup-
 and
5000
est of
nsity,
orig-
P-

three

per-

erfor-

 Intel
xcept
.
l,
rtion

 seem
lead-
he
e 360
 de-

der-
The earliest computers, including the UNIVAC I, the EDSAC, and the IAS m
chines, were accumulator-based machines. The simplicity of this type of ma
made it the natural choice when hardware resources were very constrained
first general-purpose register machine was the Pegasus, built by Ferranti, L
1956. The Pegasus had eight general-purpose registers, with R0 always bein
Block transfers loaded the eight registers from the drum.

In 1963, Burroughs delivered the B5000. The B5000 was perhaps the firs
chine to seriously consider software and hardware-software trade-offs. Ba
and the designers at Burroughs made the B5000 a stack architecture (as de
in Barton [1961]). Designed to support high-level languages such as ALG
this stack architecture used an operating system (MCP) written in a high-
language. The B5000 was also the first machine from a U.S. manufacturer to
port virtual memory. The B6500, introduced in 1968 (and discussed in Hauck
Dent [1968]), added hardware-managed activation records. In both the B
and B6500, the top two elements of the stack were kept in the CPU and the r
the stack was kept in memory. The stack architecture yielded good code de
but only provided two high-speed storage locations. The authors of both the
inal IBM 360 paper [Amdahl, Blaauw, and Brooks 1964] and the original PD
11 paper [Bell et al. 1970] argue against the stack organization. They cite
major points in their arguments against stacks:

1. Performance is derived from fast registers, not the way they are used.

2. The stack organization is too limiting and requires many swap and copy o
ations.

3. The stack has a bottom, and when placed in slower memory there is a p
mance loss.

Stack-based machines fell out of favor in the late 1970s and, except for the
80x86 floating-point architecture, essentially disappeared. For example, e
for the 80x86, none of the machines listed in the SPEC reports uses a stack

The term computer architecture was coined by IBM in the early 1960s. Amdah
Blaauw, and Brooks [1964] used the term to refer to the programmer-visible po
of the IBM 360 instruction set. They believed that a family of machines of the same
architecture should be able to run the same software. Although this idea may
obvious to us today, it was quite novel at that time. IBM, even though it was the
ing company in the industry, had five different architectures before the 360. Thus, t
notion of a company standardizing on a single architecture was a radical one. Th
designers hoped that six different divisions of IBM could be brought together by
fining a common architecture. Their definition of architecture was

... the structure of a computer that a machine language programmer must un
stand to write a correct (timing independent) program for that machine.

114 Chapter 2 Instruction Set Principles and Examples

old,
ple-

yte
o had

. As
e first
store
ify ar-
tec-
 by
 the

 were
s and
g to

nes,
Many
erful,
s of
s are
mind
posed
these
ctly to

C re-
d to
ed

ture
vel-
n-

 large

one
stone
sys-
 pa-
sis of
an-
f the
mise
The term “machine language programmer” meant that compatibility would h
even in assembly language, while “timing independent” allowed different im
mentations.

The IBM 360 was the first machine to sell in large quantities with both b
addressing using 8-bit bytes and general-purpose registers. The 360 als
register-memory and limited memory-memory instructions.

In 1964, Control Data delivered the first supercomputer, the CDC 6600
Thornton [1964] discusses, he, Cray, and the other 6600 designers were th
to explore pipelining in depth. The 6600 was the first general-purpose, load-
machine. In the 1960s, the designers of the 6600 realized the need to simpl
chitecture for the sake of efficient pipelining. This interaction between archi
tural simplicity and implementation was largely neglected during the 1970s
microprocessor and minicomputer designers, but it was brought back in
1980s.

In the late 1960s and early 1970s, people realized that software costs
growing faster than hardware costs. McKeeman [1967] argued that compiler
operating systems were getting too big and too complex and taking too lon
develop. Because of inferior compilers and the memory limitations of machi
most systems programs at the time were still written in assembly language.
researchers proposed alleviating the software crisis by creating more pow
software-oriented architectures. Tanenbaum [1978] studied the propertie
high-level languages. Like other researchers, he found that most program
simple. He then argued that architectures should be designed with this in
and should optimize program size and ease of compilation. Tanenbaum pro
a stack machine with frequency-encoded instruction formats to accomplish
goals. However, as we have observed, program size does not translate dire
cost/performance, and stack machines faded out shortly after this work.

Strecker’s article [1978] discusses how he and the other architects at DE
sponded to this by designing the VAX architecture. The VAX was designe
simplify compilation of high-level languages. Compiler writers had complain
about the lack of complete orthogonality in the PDP-11. The VAX architec
was designed to be highly orthogonal and to allow the mapping of a high-le
language statement into a single VAX instruction. Additionally, the VAX desig
ers tried to optimize code size because compiled programs were often too
for available memories.

The VAX-11/780 was the first machine announced in the VAX series. It is
of the most successful and heavily studied machines ever built. The corner
of DEC’s strategy was a single architecture, VAX, running a single operating
tem, VMS. This strategy worked well for over 10 years. The large number of
pers reporting instruction mixes, implementation measurements, and analy
the VAX make it an ideal case study [Wiecek 1982; Clark and Levy 1982]. Bh
darkar and Clark [1991] give a quantitative analysis of the disadvantages o
VAX versus a RISC machine, essentially a technical explanation for the de
of the VAX.

2.11 Historical Perspective and References 115

-
-lev-
the

ing
a his-

ory
prob-
igh-

ware
om-

way
rson
itec-
paper
ed in-
r ar-

nly
hines
of in-
 of

ives
pro-
 have
dvan-
 tech-

 be-
hile
ke is
kert-

de-
ental
t and

as to
They
 not
ting
keley
While the VAX was being designed, a more radical approach, called high-
level-language computer architecture (HLLCA), was being advocated in the re
search community. This movement aimed to eliminate the gap between high
el languages and computer hardware—what Gagliardi [1973] called
“semantic gap”—by bringing the hardware “up to” the level of the programm
language. Meyers [1982] provides a good summary of the arguments and
tory of high-level-language computer architecture projects.

HLLCA never had a significant commercial impact. The increase in mem
size on machines and the use of virtual memory eliminated the code-size
lems arising from high-level languages and operating systems written in h
level languages. The combination of simpler architectures together with soft
offered greater performance and more flexibility at lower cost and lower c
plexity.

In the early 1980s, the direction of computer architecture began to swing a
from providing high-level hardware support for languages. Ditzel and Patte
[1980] analyzed the difficulties encountered by the high-level-language arch
tures and argued that the answer lay in simpler architectures. In another
[Patterson and Ditzel 1980], these authors first discussed the idea of reduc
struction set computers (RISC) and presented the argument for simple
chitectures. Their proposal was rebutted by Clark and Strecker [1980].

The simple load-store machines from which DLX is derived are commo
called RISC architectures. The roots of RISC architectures go back to mac
like the 6600, where Thornton, Cray, and others recognized the importance
struction set simplicity in building a fast machine. Cray continued his tradition
keeping machines simple in the CRAY-1. However, DLX and its close relat
are built primarily on the work of three research projects: the Berkeley RISC
cessor, the IBM 801, and the Stanford MIPS processor. These architectures
attracted enormous industrial interest because of claims of a performance a
tage of anywhere from two to five times over other machines using the same
nology.

Begun in 1975, the IBM project was the first to start but was the last to
come public. The IBM machine was designed as an ECL minicomputer, w
the university projects were both MOS-based microprocessors. John Coc
considered to be the father of the 801 design. He received both the Ec
Mauchly and Turing awards in recognition of his contribution. Radin [1982]
scribes the highlights of the 801 architecture. The 801 was an experim
project that was never designed to be a product. In fact, to keep down cos
complexity, the machine was built with only 24-bit registers.

In 1980, Patterson and his colleagues at Berkeley began the project that w
give this architectural approach its name (see Patterson and Ditzel [1980]).
built two machines called RISC-I and RISC-II. Because the IBM project was
widely known or discussed, the role played by the Berkeley group in promo
the RISC approach was critical to the acceptance of the technology. The Ber

116 Chapter 2 Instruction Set Principles and Examples

d by

on of
dul-

 in
hine
es
 em-
s and
chine
er is-

van-
 ma-
. A
was
erfor-

early
 ma-

 than

n the
t al.

6] is
xist-
 de-
ead,
ted in
990,
per-
liver-

keley
rPC
eral

 mi-
VAX,
ay it
 an-
rchi-
group went on to build RISC machines targeted toward Smalltalk, describe
Ungar et al. [1984], and LISP, described by Taylor et al. [1986].

In 1981, Hennessy and his colleagues at Stanford published a descripti
the Stanford MIPS machine. Efficient pipelining and compiler-assisted sche
ing of the pipeline were both key aspects of the original MIPS design.

These early RISC machines—the 801, RISC-II, and MIPS—had much
common. Both university projects were interested in designing a simple mac
that could be built in VLSI within the university environment. All three machin
used a simple load-store architecture, fixed-format 32-bit instructions, and
phasized efficient pipelining. Patterson [1985] describes the three machine
the basic design principles that have come to characterize what a RISC ma
is. Hennessy [1984] provides another view of the same ideas, as well as oth
sues in VLSI processor design.

In 1985, Hennessy published an explanation of the RISC performance ad
tage and traced its roots to a substantially lower CPI—under 2 for a RISC
chine and over 10 for a VAX-11/780 (though not with identical workloads)
paper by Emer and Clark [1984] characterizing VAX-11/780 performance
instrumental in helping the RISC researchers understand the source of the p
mance advantage seen by their machines.

Since the university projects finished up, in the 1983–84 time frame, the tech-
nology has been widely embraced by industry. Many manufacturers of the
computers (those made before 1986) claimed that their products were RISC
chines. However, these claims were often born more of marketing ambition
of engineering reality.

In 1986, the computer industry began to announce processors based o
technology explored by the three RISC research projects. Moussouris e
[1986] describe the MIPS R2000 integer processor, while Kane’s book [198
a complete description of the architecture. Hewlett-Packard converted their e
ing minicomputer line to RISC architectures; the HP Precision Architecture is
scribed by Lee [1989]. IBM never directly turned the 801 into a product. Inst
the ideas were adopted for a new, low-end architecture that was incorpora
the IBM RT-PC and described in a collection of papers [Waters 1986]. In 1
IBM announced a new RISC architecture (the RS 6000), which is the first su
scalar RISC machine (see Chapter 4). In 1987, Sun Microsystems began de
ing machines based on the SPARC architecture, a derivative of the Ber
RISC-II machine; SPARC is described in Garner et al. [1988]. The Powe
joined the forces of Apple, IBM, and Motorola. Appendix C summarizes sev
RISC architectures.

Prior to the RISC architecture movement, the major trend had been highly
crocoded architectures aimed at reducing the semantic gap. DEC, with the
and Intel, with the iAPX 432, were among the leaders in this approach. Tod
is hard to find a computer company without a RISC product. With the 1994
nouncement that Hewlett Packard and Intel will eventually have a common a
tecture, the end of the 1970s architectures draws near.

2.11 Historical Perspective and References 117

C

re-

11/

set

i-

1/

are,”

,

ure,”
References

AMDAHL , G. M., G. A. BLAAUW , AND F. P. BROOKS, JR. [1964]. “Architecture of the IBM System
360,” IBM J. Research and Development 8:2 (April), 87–101.

BARTON, R. S. [1961]. “A new approach to the functional design of a computer,” Proc. Western Joint
Computer Conf., 393–396.

BELL, G., R. CADY, H. MCFARLAND, B. DELAGI, J. O’LAUGHLIN, R. NOONAN, AND W. WULF

[1970]. “A new architecture for mini-computers: The DEC PDP-11,” Proc. AFIPS SJCC, 657–675.

BHANDARKAR, D., AND D. W. CLARK [1991]. “Performance from architecture: Comparing a RIS
and a CISC with similar hardware organizations,” Proc. Fourth Conf. on Architectural Support for
Programming Languages and Operating Systems, IEEE/ACM (April), Palo Alto, Calif., 310–19.

CHOW, F. C. [1983]. A Portable Machine-Independent Global Optimizer—Design and Measu
ments, Ph.D. Thesis, Stanford Univ. (December).

CLARK, D. AND H. LEVY [1982]. “Measurement and analysis of instruction set use in the VAX-
780,” Proc. Ninth Symposium on Computer Architecture (April), Austin, Tex., 9–17.

CLARK, D. AND W. D. STRECKER [1980]. “Comments on ‘the case for the reduced instruction
computer’,” Computer Architecture News 8:6 (October), 34–38.

CRAWFORD, J. AND P. GELSINGER [1988]. Programming the 80386, Sybex Books, Alameda, Calif.

DITZEL, D. R. AND D. A. PATTERSON [1980]. “Retrospective on high-level language computer arch
tecture,” in Proc. Seventh Annual Symposium on Computer Architecture, La Baule, France (June),
97–104.

EMER, J. S. AND D. W. CLARK [1984]. “A characterization of processor performance in the VAX-1
780,” Proc. 11th Symposium on Computer Architecture (June), Ann Arbor, Mich., 301–310.

GAGLIARDI , U. O. [1973]. “Report of workshop 4–Software-related advances in computer hardw
Proc. Symposium on the High Cost of Software, Menlo Park, Calif., 99–120.

GARNER, R., A. AGARWAL, F. BRIGGS, E. BROWN, D. HOUGH, B. JOY, S. KLEIMAN , S. MUNCHNIK,
M. NAMJOO, D. PATTERSON, J. PENDLETON, AND R. TUCK [1988]. “Scalable processor architecture
(SPARC),” COMPCON, IEEE (March), San Francisco, 278–283.

HAUCK, E. A., AND B. A. DENT [1968]. “Burroughs’ B6500/B7500 stack mechanism,” Proc. AFIPS
SJCC, 245–251.

HENNESSY, J. [1984]. “VLSI processor architecture,” IEEE Trans. on Computers C-33:11 (Decem-
ber), 1221–1246.

HENNESSY, J. [1985]. “VLSI RISC processors,” VLSI Systems Design VI:10 (October), 22–32.

HENNESSY, J., N. JOUPPI, F. BASKETT, AND J. GILL [1981]. “MIPS: A VLSI processor architecture,”
Proc. CMU Conf. on VLSI Systems and Computations (October), Computer Science Press
Rockville, Md.

KANE, G. [1986]. MIPS R2000 RISC Architecture, Prentice Hall, Englewood Cliffs, N.J.

LEE, R. [1989]. “Precision architecture,” Computer 22:1 (January), 78–91.

LEVY, H. AND R. ECKHOUSE [1989]. Computer Programming and Architecture: The VAX, Digital
Press, Boston.

LUNDE, A. [1977]. “Empirical evaluation of some features of instruction set processor architect
Comm. ACM 20:3 (March), 143–152.

MCKEEMAN, W. M. [1967]. “Language directed computer design,” Proc. 1967 Fall Joint Computer
Conf., Washington, D.C., 413–417.

MEYERS, G. J. [1978]. “The evaluation of expressions in a storage-to-storage architecture,” Computer
Architecture News 7:3 (October), 20–23.

118 Chapter 2 Instruction Set Principles and Examples

r,”

-

,”

tems

rchi-
s for
 refer-
equal
 the
t.

nch-
struc-

ding

4-bit
of
r of
MEYERS, G. J. [1982]. Advances in Computer Architecture, 2nd ed., Wiley, New York.

MOUSSOURIS, J., L. CRUDELE, D. FREITAS, C. HANSEN, E. HUDSON, S. PRZYBYLSKI, T. RIORDAN,
AND C. ROWEN [1986]. “A CMOS RISC processor with integrated system functions,” Proc.
COMPCON, IEEE (March), San Francisco, 191.

PATTERSON, D. [1985]. “Reduced instruction set computers,” Comm. ACM 28:1 (January), 8–21.

PATTERSON, D. A. AND D. R. DITZEL [1980]. “The case for the reduced instruction set compute
Computer Architecture News 8:6 (October), 25–33.

RADIN, G. [1982]. “The 801 minicomputer,” Proc. Symposium Architectural Support for Program
ming Languages and Operating Systems (March), Palo Alto, Calif., 39–47.

STRECKER, W. D. [1978]. “VAX-11/780: A virtual address extension of the PDP-11 family,” Proc.
AFIPS National Computer Conf. 47, 967–980.

TANENBAUM, A. S. [1978]. “Implications of structured programming for machine architecture
Comm. ACM 21:3 (March), 237–246.

TAYLOR, G., P. HILFINGER, J. LARUS, D. PATTERSON, AND B. ZORN [1986]. “Evaluation of the SPUR
LISP architecture,” Proc. 13th Symposium on Computer Architecture (June), Tokyo.

THORNTON, J. E. [1964]. “Parallel operation in Control Data 6600,” Proc. AFIPS Fall Joint Com-
puter Conf. 26, part 2, 33–40.

UNGAR, D., R. BLAU, P. FOLEY, D. SAMPLES, AND D. PATTERSON [1984]. “Architecture of SOAR:
Smalltalk on a RISC,” Proc. 11th Symposium on Computer Architecture (June), Ann Arbor, Mich.,
188–197.

WAKERLY, J. [1989]. Microcomputer Architecture and Programming, J. Wiley, New York.

WATERS, F., ED. [1986]. IBM RT Personal Computer Technology, IBM, Austin, Tex., SA 23-1057.

WIECEK, C. [1982]. “A case study of the VAX 11 instruction set usage for compiler execution,” Proc.
Symposium on Architectural Support for Programming Languages and Operating Sys
(March), IEEE/ACM, Palo Alto, Calif., 177–184.

WULF, W. [1981]. “Compilers and computer architecture,” Computer 14:7 (July), 41–47.

E X E R C I S E S

2.1 [20/15/10] <2.3,2.8> We are designing instruction set formats for a load-store a
tecture and are trying to decide whether it is worthwhile to have multiple offset length
branches and memory references. We have decided that both branch and memory
ences can have only 0-, 8-, and 16-bit offsets. The length of an instruction would be
to 16 bits + offset length in bits. ALU instructions will be 16 bits. Figure 2.32 contains
data in cumulative form. Assume an additional bit is needed for the sign on the offse

For instruction set frequencies, use the data for DLX from the average of the five be
marks for the load-store machine in Figure 2.26. Assume that the miscellaneous in
tions are all ALU instructions that use only registers.

a. [20] <2.3,2.8> Suppose offsets were permitted to be 0, 8, or 16 bits in length, inclu
the sign bit. What is the average length of an executed instruction?

b. [15] <2.3,2.8> Suppose we wanted a fixed-length instruction and we chose a 2
instruction length (for everything, including ALU instructions). For every offset
longer than 8 bits, an additional instruction is required. Determine the numbe

Exercises 119

ose

ition-
om-
used

ry ad-
ces of

struc-
. The
instruction bytes fetched in this machine with fixed instruction size versus th
fetched with a byte-variable-sized instruction as defined in part (a).

c. [10] <2.3,2.8> Now suppose we use a fixed offset length of 16 bits so that no add
al instruction is ever required. How many instruction bytes would be required? C
pare this result to your answer to part (b), which used 8-bit fixed offsets that
additional instruction words when larger offsets were required.

2.2 [15/10] <2.2> Several researchers have suggested that adding a register-memo
dressing mode to a load-store machine might be useful. The idea is to replace sequen

LOAD R1,0(Rb)

ADD R2,R2,R1

by

ADD R2,0(Rb)

Assume the new instruction will cause the clock cycle to increase by 10%. Use the in
tion frequencies for the gcc benchmark on the load-store machine from Figure 2.26
new instruction affects only the clock cycle and not the CPI.

Offset bits Cumulative data references Cumulative branches

0 17% 0%

1 17% 0%

2 23% 24%

3 32% 49%

4 40% 64%

5 48% 79%

6 54% 87%

7 57% 93%

8 60% 98%

9 61% 99%

10 69% 100%

11 71% 100%

12 75% 100%

13 78% 100%

14 80% 100%

15 100% 100%

FIGURE 2.32 The second and third columns contain the cumulative percentage of the
data references and branches, respectively, that can be accommodated with the
corresponding number of bits of magnitude in the displacement. These are the average
distances of all 10 programs in Figure 2.7.

120 Chapter 2 Instruction Set Principles and Examples

h the

 fol-
aced
ists.

 of

ion.

ory;
e re-
 other

ns
 regis-

ction

embly
ences

ch ar-
ficient

)

 and
h the
chine
a. [15] <2.2> What percentage of the loads must be eliminated for the machine wit
new instruction to have at least the same performance?

b. [10] <2.2> Show a situation in a multiple instruction sequence where a load of R1
lowed immediately by a use of R1 (with some type of opcode) could not be repl
by a single instruction of the form proposed, assuming that the same opcode ex

2.3 [20] <2.2> Your task is to compare the memory efficiency of four different styles
instruction set architectures. The architecture styles are

1. Accumulator—All operations occur between a single register and a memory locat

2. Memory-memory—All three operands of each instruction are in memory.

3. Stack—All operations occur on top of the stack. Only push and pop access mem
all other instructions remove their operands from stack and replace them with th
sult. The implementation uses a stack for the top two entries; accesses that use
stack positions are memory references.

4. Load-store—All operations occur in registers, and register-to-register instructio
have three operands per instruction. There are 16 general-purpose registers, and
ter specifiers are 4 bits long.

To measure memory efficiency, make the following assumptions about all four instru
sets:

■ The opcode is always 1 byte (8 bits).

■ All memory addresses are 2 bytes (16 bits).

■ All data operands are 4 bytes (32 bits).

■ All instructions are an integral number of bytes in length.

There are no other optimizations to reduce memory traffic, and the variables A, B, C, and D
are initially in memory.

Invent your own assembly language mnemonics and write the best equivalent ass
language code for the high-level-language fragment given. Write the four code sequ
for

A = B + C;

B = A + C;

D = A - B;

Calculate the instruction bytes fetched and the memory-data bytes transferred. Whi
chitecture is most efficient as measured by code size? Which architecture is most ef
as measured by total memory bandwidth required (code + data)?

2.4 [Discussion] <2.2–2.9> What are the economic arguments (i.e., more machines sold
for and against changing instruction set architecture?

2.5 [25] <2.1–2.5> Find an instruction set manual for some older machine (libraries
private bookshelves are good places to look). Summarize the instruction set wit
discriminating characteristics used in Figure 2.2. Write the code sequence for this ma

Exercises 121

ise 2.3

00, and
lues

any

scalar
the

any

e prior

ency
 the av-

ave
for the statements in Exercise 2.3. The size of the data need not be 32 bits as in Exerc
if the word size is smaller in the older machine.

2.6 [20] <2.8> Consider the following fragment of C code:

for (i=0; i<=100; i++)

{A[i] = B[i] + C;}

Assume that A and B are arrays of 32-bit integers, and C and i are 32-bit integers. Assume
that all data values and their addresses are kept in memory (at addresses 0, 5000, 15
2000 for A, B, C, and i , respectively) except when they are operated on. Assume that va
in registers are lost between iterations of the loop.

Write the code for DLX; how many instructions are required dynamically? How m
memory-data references will be executed? What is the code size in bytes?

2.7 [20] <App. D> Repeat Exercise 2.6, but this time write the code for the 80x86.

2.8 [20] <2.8> For this question use the code sequence of Exercise 2.6, but put the
data—the value of i , the value of C, and the addresses of the array variables (but not
actual array)—in registers and keep them there whenever possible.

Write the code for DLX; how many instructions are required dynamically? How m
memory-data references will be executed? What is the code size in bytes?

2.9 [20] <App. D> Make the same assumptions and answer the same questions as th
exercise, but this time write the code for the 80x86.

2.10 [15] <2.8> When designing memory systems it becomes useful to know the frequ
of memory reads versus writes and also accesses for instructions versus data. Using
erage instruction-mix information for DLX in Figure 2.26, find

■ the percentage of all memory accesses for data

■ the percentage of data accesses that are reads

■ the percentage of all memory accesses that are reads

Ignore the size of a datum when counting accesses.

2.11 [18] <2.8> Compute the effective CPI for DLX using Figure 2.26. Suppose we h
made the following measurements of average CPI for instructions:

Instruction Clock cycles

All ALU instructions 1.0

Loads-stores 1.4

Conditional branches

Taken 2.0

Not taken 1.5

Jumps 1.2

122 Chapter 2 Instruction Set Principles and Examples

e mis-
uen-

 ad-
ress.

verall

place-
s cal-
nced

hich

 one
ized.

a ac-

 in part

mea-
d. In
e pro-

ost
are?

milar

hry-

llow
use are
nstru-
u that

spice.

era-
es. We
Assume that 60% of the conditional branches are taken and that all instructions in th
cellaneous category of Figure 2.26 are ALU instructions. Average the instruction freq
cies of gcc and espresso to obtain the instruction mix.

2.12 [20/10] <2.3,2.8> Consider adding a new index addressing mode to DLX. The
dressing mode adds two registers and an 11-bit signed offset to get the effective add

Our compiler will be changed so that code sequences of the form

ADD R1, R1, R2

LW Rd, 100(R1)(or store)

will be replaced with a load (or store) using the new addressing mode. Use the o
average instruction frequencies from Figure 2.26 in evaluating this addition.

a. [20] <2.3,2.8> Assume that the addressing mode can be used for 10% of the dis
ment loads and stores (accounting for both the frequency of this type of addres
culation and the shorter offset). What is the ratio of instruction count on the enha
DLX compared to the original DLX?

b. [10] <2.3,2.8> If the new addressing mode lengthens the clock cycle by 5%, w
machine will be faster and by how much?

2.13 [25/15] <2.7> Find a C compiler and compile the code shown in Exercise 2.6 for
of the machines covered in this book. Compile the code both optimized and unoptim

a. [25] <2.7> Find the instruction count, dynamic instruction bytes fetched, and dat
cesses done for both the optimized and unoptimized versions.

b. [15] <2.7> Try to improve the code by hand and compute the same measures as
(a) for your hand-optimized version.

2.14 [30] <2.8> Small synthetic benchmarks can be very misleading when used for
suring instruction mixes. This is particularly true when these benchmarks are optimize
this exercise and Exercises 2.15–2.17, we want to explore these differences. Thes
gramming exercises can be done with any load-store machine.

Compile Whetstone with optimization. Compute the instruction mix for the top 20 m
frequently executed instructions. How do the optimized and unoptimized mixes comp
How does the optimized mix compare to the mix for spice on the same or a si
machine?

2.15 [30] <2.8> Follow the same guidelines as the prior exercise, but this time use D
stone and compare it with TeX.

2.16 [30] <2.8> Many computer manufacturers now include tools or simulators that a
you to measure the instruction set usage of a user program. Among the methods in
machine simulation, hardware-supported trapping, and a compiler technique that i
ments the object-code module by inserting counters. Find a processor available to yo
includes such a tool. Use it to measure the instruction set mix for one of TeX, gcc, or
Compare the results to those shown in this chapter.

2.17 [30] <2.3,2.8> DLX has only three operand formats for its register-register op
tions. Many operations might use the same destination register as one of the sourc

Exercises 123

 had
uired
per-
h the
ith

ines
(e.g., a
the re-
could introduce a new instruction format into DLX called R2 that has only two operands
and is a total of 24 bits in length. By using this instruction type whenever an operation
only two different register operands, we could reduce the instruction bandwidth req
for a program. Modify the DLX simulator to count the frequency of register-register o
ations with only two different register operands. Using the benchmarks that come wit
simulator, determine how much more instruction bandwidth DLX requires than DLX w
the R2 format.

2.18 [25] <App. C> How much do the instruction set variations among the RISC mach
discussed in Appendix C affect performance? Choose at least three small programs
sort), and code these programs in DLX and two other assembly languages. What is
sulting difference in instruction count?

3

Pipelining 3
It is quite a three-pipe problem.

Sir Arthur Conan Doyle
The Adventures of Sherlock Holmes

3.1 What Is Pipelining? 125

3.2 The Basic Pipeline for DLX 132

3.3 The Major Hurdle of Pipelining—Pipeline Hazards 139

3.4 Data Hazards 146

3.5 Control Hazards 161

3.6 What Makes Pipelining Hard to Implement? 178

3.7 Extending the DLX Pipeline to Handle Multicycle Operations 187

3.8 Crosscutting Issues: Instruction Set Design and Pipelining 199

3.9 Putting It All Together: The MIPS R4000 Pipeline 201

3.10 Fallacies and Pitfalls 209

3.11 Concluding Remarks 211

3.12 Historical Perspective and References 212

Exercises 214
are
ique

 are
h step
puter
 the
ruc-

t one
ould in

s
 line.

n an
all the
Pipelining is an implementation technique whereby multiple instructions
overlapped in execution. Today, pipelining is the key implementation techn
used to make fast CPUs.

A pipeline is like an assembly line. In an automobile assembly line, there
many steps, each contributing something to the construction of the car. Eac
operates in parallel with the other steps, though on a different car. In a com
pipeline, each step in the pipeline completes a part of an instruction. Like
assembly line, different steps are completing different parts of different inst
tions in parallel. Each of these steps is called a pipe stage or a pipe segment. The
stages are connected one to the next to form a pipe—instructions enter a
end, progress through the stages, and exit at the other end, just as cars w
an assembly line.

In an automobile assembly line, throughput is defined as the number of car
per hour and is determined by how often a completed car exits the assembly
Likewise, the throughput of an instruction pipeline is determined by how ofte
instruction exits the pipeline. Because the pipe stages are hooked together,

3.1 What Is Pipelining?

126

Chapter 3 Pipelining

e in an
own

 the
 pipe
e time
 one
ave

tage,
tep in

ion on

 pipe

ore,
 the
.
ion.
ed as

g the
akes
uc-
a-

ases

 the
ntage
is not
ipe-
 its
ion,
ing
s of
r its
 the
for-
4000
ing.
 the
stages must be ready to proceed at the same time, just as we would requir
assembly line. The time required between moving an instruction one step d
the pipeline is a machine cycle. Because all stages proceed at the same time,
length of a machine cycle is determined by the time required for the slowest
stage, just as in an auto assembly line, the longest step would determine th
between advancing the line. In a computer, this machine cycle is usually
clock cycle (sometimes it is two, rarely more), although the clock may h
multiple phases.

The pipeline designer’s goal is to balance the length of each pipeline s
just as the designer of the assembly line tries to balance the time for each s
the process. If the stages are perfectly balanced, then the time per instruct
the pipelined machine—assuming ideal conditions—is equal to

Under these conditions, the speedup from pipelining equals the number of
stages, just as an assembly line with n stages can ideally produce cars n times as
fast. Usually, however, the stages will not be perfectly balanced; furtherm
pipelining does involve some overhead. Thus, the time per instruction on
pipelined machine will not have its minimum possible value, yet it can be close

Pipelining yields a reduction in the average execution time per instruct
Depending on what you consider as the base line, the reduction can be view
decreasing the number of clock cycles per instruction (CPI), as decreasin
clock cycle time, or as a combination. If the starting point is a machine that t
multiple clock cycles per instruction, then pipelining is usually viewed as red
ing the CPI. This is the primary view we will take. If the starting point is a m
chine that takes one (long) clock cycle per instruction, then pipelining decre
the clock cycle time.

Pipelining is an implementation technique that exploits parallelism among
instructions in a sequential instruction stream. It has the substantial adva
that, unlike some speedup techniques (see Chapter 8 and Appendix B), it
visible to the programmer. In this chapter we will first cover the concept of p
lining using DLX and a simple version of its pipeline. We use DLX because
simplicity makes it easy to demonstrate the principles of pipelining. In addit
to simplify the diagrams we do not include the jump instructions of DLX; add
them does not involve new concepts—only bigger diagrams. The principle
pipelining in this chapter apply to more complex instruction sets than DLX o
RISC relatives, although the resulting pipelines are more complex. Using
DLX example, we will look at the problems pipelining introduces and the per
mance attainable under typical situations. Section 3.9 examines the MIPS R
pipeline, which is similar to other recent machines with extensive pipelin
Chapter 4 looks at more advanced pipelining techniques being used in
highest-performance processors.

Time per instruction on unpipelined machine
Number of pipe stages

--

3.1 What Is Pipelining?

127

en-

ple-

re
ple-
ined
ple-
ipe-
be
tro-

these

 that
 the
dis-
ll the

he

the
ntial

sub-
t se-

egis-
orary
 are
n the
Before we proceed to basic pipelining, we need to review a simple implem
tation of an unpipelined version of DLX.

A Simple Implementation of DLX

To understand how DLX can be pipelined, we need to understand how it is im
mented without pipelining. This section shows a simple implementation whe
every instruction takes at most five clock cycles. We will extend this basic im
mentation to a pipelined version, resulting in a much lower CPI. Our unpipel
implementation is not the most economical or the highest-performance im
mentation without pipelining. Instead, it is designed to lead naturally to a p
lined implementation. We will indicate where the implementation could
improved later in this section. Implementing the instruction set requires the in
duction of several temporary registers that are not part of the architecture;
are introduced in this section to simplify pipelining.

In sections 3.1–3.5 we focus on a pipeline for an integer subset of DLX
consists of load-store word, branch, and integer ALU operations. Later in
chapter, we will incorporate the basic floating-point operations. Although we
cuss only a subset of DLX, the basic principles can be extended to handle a
instructions.

Every DLX instruction can be implemented in at most five clock cycles. T
five clock cycles are as follows.

1. Instruction fetch cycle (IF):

IR ← Mem[PC]

NPC ← PC + 4

Operation: Send out the PC and fetch the instruction from memory into
instruction register (IR); increment the PC by 4 to address the next seque
instruction. The IR is used to hold the instruction that will be needed on
sequent clock cycles; likewise the register NPC is used to hold the nex
quential PC.

2. Instruction decode/register fetch cycle (ID):

A ← Regs[IR 6..10];

B ← Regs[IR 11..15];

Imm ← ((IR 16) 16##IR 16..31)

Operation: Decode the instruction and access the register file to read the r
ters. The outputs of the general-purpose registers are read into two temp
registers (A and B) for use in later clock cycles.The lower 16 bits of the IR
also sign-extended and stored into the temporary register Imm, for use i
next cycle.

128

Chapter 3 Pipelining

 be-
(see

 also
n an
cal-

 one

and

 on
d in

the
 the

e in
 been
ken.

e

ecu–
eeds
Decoding is done in parallel with reading registers, which is possible
cause these fields are at a fixed location in the DLX instruction format
Figure 2.21 on page 99). This technique is known as fixed-field decoding.
Note that we may read a register we don’t use, which doesn’t help but
doesn’t hurt. Because the immediate portion of an instruction is located i
identical place in every DLX format, the sign-extended immediate is also
culated during this cycle in case it is needed in the next cycle.

3. Execution/effective address cycle (EX):

The ALU operates on the operands prepared in the prior cycle, performing
of four functions depending on the DLX instruction type.

■ Memory reference:

ALUOutput ← A + Imm;

Operation: The ALU adds the operands to form the effective address
places the result into the register ALUOutput.

■ Register-Register ALU instruction:

ALUOutput ← A func B;

Operation: The ALU performs the operation specified by the function code
the value in register A and on the value in register B. The result is place
the temporary register ALUOutput.

■ Register-Immediate ALU instruction:

ALUOutput ← A op Imm;

Operation: The ALU performs the operation specified by the opcode on
value in register A and on the value in register Imm. The result is placed in
temporary register ALUOutput.

■ Branch:

ALUOutput ← NPC + Imm;

Cond ←(A op 0)

Operation: The ALU adds the NPC to the sign-extended immediate valu
Imm to compute the address of the branch target. Register A, which has
read in the prior cycle, is checked to determine whether the branch is ta
The comparison operation op is the relational operator determined by th
branch opcode; for example, op is “==” for the instruction BEQZ.

The load-store architecture of DLX means that effective address and ex
tion cycles can be combined into a single clock cycle, since no instruction n

3.1 What Is Pipelining?

129

dress,
luded

rns
is a
case
in the

des-

he
-
g on

d of
 on a
age
to simultaneously calculate a data address, calculate an instruction target ad
and perform an operation on the data. The other integer instructions not inc
above are jumps of various forms, which are similar to branches.

4. Memory access/branch completion cycle (MEM):

The PC is updated for all instructions: PC ← NPC;

■ Memory reference:

LMD ← Mem[ALUOutput] or

Mem[ALUOutput] ← B;

Operation: Access memory if needed. If instruction is a load, data retu
from memory and is placed in the LMD (load memory data) register; if it
store, then the data from the B register is written into memory. In either
the address used is the one computed during the prior cycle and stored
register ALUOutput.

■ Branch:

if (cond) PC ← ALUOutput

Operation: If the instruction branches, the PC is replaced with the branch
tination address in the register ALUOutput.

5. Write-back cycle (WB):

■ Register-Register ALU instruction:

Regs[IR 16..20] ← ALUOutput;

■ Register-Immediate ALU instruction:

Regs[IR 11..15] ← ALUOutput;

■ Load instruction:

Regs[IR 11..15] ← LMD;

Operation: Write the result into the register file, whether it comes from t
memory system (which is in LMD) or from the ALU (which is in ALUOut
put); the register destination field is also in one of two positions dependin
the function code.

Figure 3.1 shows how an instruction flows through the datapath. At the en
each clock cycle, every value computed during that clock cycle and required
later clock cycle (whether for this instruction or the next) is written into a stor

130

Chapter 3 Pipelining

orary
ry
ther

cessive

 and
12%
PI of
best
ance

device, which may be memory, a general-purpose register, the PC, or a temp
register (i.e., LMD, Imm, A, B, IR, NPC, ALUOutput, or Cond). The tempora
registers hold values between clock cycles for one instruction, while the o
storage elements are visible parts of the state and hold values between suc
instructions.

In this implementation, branch and store instructions require four cycles
all other instructions require five cycles. Assuming the branch frequency of
and a store frequency of 5% from the last chapter, this leads to an overall C
4.83. This implementation, however, is not optimal either in achieving the
performance or in using the minimal amount of hardware given the perform

FIGURE 3.1 The implementation of the DLX datapath allows every instruction to be executed in four or five clock
cycles. Although the PC is shown in the portion of the datapath that is used in instruction fetch and the registers are shown
in the portion of the datapath that is used in instruction decode/register fetch, both of these functional units are read as well
as written by an instruction. Although we show these functional units in the cycle corresponding to where they are read, the
PC is written during the memory access clock cycle and the registers are written during the write back clock cycle. In both
cases, the writes in later pipe stages are indicated by the multiplexer output (in memory access or write back) that carries a
value back to the PC or registers. These backward-flowing signals introduce much of the complexity of pipelining, and we
will look at them more carefully in the next few sections.

Instruction fetch
Instruction decode/

register fetch

Execute/
address

calculation

Memory
access

Write
back

B

PC

4

ALU

16 32

Add

Data
memory

Registers

Sign
extend

Instruction
memory

M
u
x

M
u
x

M
u
x

M
u
x

Zero?
Branch

taken
Cond

NPC

lmm

ALU
output

IR
A

LMD

3.1 What Is Pipelining?

131

ting
ing
 we
 im-
ts to
would
l to

is re-
espe-
ly

n is
ple-

ment
ore
truc-

ncies
ere

s and
ould
ike-
 data

n as
 im-

ould
 clock
would
 in-
ata
e for
mes
d to
 im-
very
ount

Sec-
nits
gle-

ycle
level. The CPI could be improved without affecting the clock rate by comple
ALU instructions during the MEM cycle, since those instructions are idle dur
that cycle. Assuming ALU instructions occupy 47% of the instruction mix, as
measured in Chapter 2, this improvement would lead to a CPI of 4.35, or an
provement of 4.82/4.35 = 1.1. Beyond this simple change, any other attemp
decrease the CPI may increase the clock cycle time, since such changes
need to put more activity into a clock cycle. Of course, it may still be beneficia
trade an increase in the clock cycle time for a decrease in the CPI, but th
quires a detailed analysis and is unlikely to produce large improvements,
cially if the initial distribution of work among the clock cycles is reasonab
balanced.

Although all machines today are pipelined, this multicycle implementatio
a reasonable approximation of how most machines would have been im
mented in earlier times. A simple finite-state machine could be used to imple
the control following the five-cycle structure shown above. For a much m
complex machine, microcode control could be used. In either event, an ins
tion sequence like that above would determine the structure of the control.

In addition to these CPI improvements, there are some hardware redunda
that could be eliminated in this multicycle implementation. For example, th
are two ALUs: one to increment the PC and one used for effective addres
ALU computation. Since they are not needed on the same clock cycle, we c
merge them by adding additional multiplexers and sharing the same ALU. L
wise, instructions and data could be stored in the same memory, since the
and instruction accesses happen on different clock cycles.

Rather than optimize this simple implementation, we will leave the desig
it is in Figure 3.1, since this provides us with a better base for the pipelined
plementation.

As an alternative to the multicycle design discussed in this section, we c
also have implemented the machine so that every instruction takes one long
cycle. In such cases, the temporary registers would be deleted, since there
not be any communication across clock cycles within an instruction. Every
struction would execute in one long clock cycle, writing the result into the d
memory, registers, or PC at the end of the clock cycle. The CPI would be on
such a machine. However, the clock cycle would be roughly equal to five ti
the clock cycle of the multicycle machine, since every instruction would nee
traverse all the functional units. Designers would never use this single-cycle
plementation for two reasons. First, a single-cycle implementation would be
inefficient for most machines that have a reasonable variation among the am
of work, and hence in the clock cycle time, needed for different instructions.
ond, a single-cycle implementation requires the duplication of functional u
that could be shared in a multicycle implementation. Nonetheless, this sin
cycle datapath allows us to illustrate how pipelining can improve the clock c
time, as opposed to the CPI, of a machine.

132

Chapter 3 Pipelining

ting a
of the

typi-
lock
 in-

le
LX

f the
 the
 can-

tion at
 pipe-
ruc-
lified
ajor

ution
ser-

uction
ruc-
 elimi-
etch

We can pipeline the datapath of Figure 3.1 with almost no changes by star
new instruction on each clock cycle. (See why we chose that design!) Each
clock cycles from the previous section becomes a pipe stage: a cycle in the pipe-
line. This results in the execution pattern shown in Figure 3.2, which is the
cal way a pipeline structure is drawn. While each instruction takes five c
cycles to complete, during each clock cycle the hardware will initiate a new
struction and will be executing some part of the five different instructions.

Your instinct is right if you find it hard to believe that pipelining is as simp
as this, because it’s not. In this and the following sections, we will make our D
pipeline “real” by dealing with problems that pipelining introduces.

To begin with, we have to determine what happens on every clock cycle o
machine and make sure we don’t try to perform two different operations with
same datapath resource on the same clock cycle. For example, a single ALU
not be asked to compute an effective address and perform a subtract opera
the same time. Thus, we must ensure that the overlap of instructions in the
line cannot cause such a conflict. Fortunately, the simplicity of the DLX inst
tion set makes resource evaluation relatively easy. Figure 3.3 shows a simp
version of the DLX datapath drawn in pipeline fashion. As you can see, the m
functional units are used in different cycles and hence overlapping the exec
of multiple instructions introduces relatively few conflicts. There are three ob
vations on which this fact rests.

First, the basic datapath of the last section already used separate instr
and data memories, which we would typically implement with separate inst
tion and data caches (discussed in Chapter 5). The use of separate caches
nates a conflict for a single memory that would arise between instruction f

3.2 The Basic Pipeline for DLX

 Clock number

Instruction number 1 2 3 4 5 6 7 8 9

Instruction i IF ID EX MEM WB

Instruction i + 1 IF ID EX MEM WB

Instruction i + 2 IF ID EX MEM WB

Instruction i + 3 IF ID EX MEM WB

Instruction i + 4 IF ID EX MEM WB

FIGURE 3.2 Simple DLX pipeline. On each clock cycle, another instruction is fetched and begins its five-cycle execution.
If an instruction is started every clock cycle, the performance will be up to five times that of a machine that is not pipelined.
The names for the stages in the pipeline are the same as those used for the cycles in the implementation on pages 127–
129: IF = instruction fetch, ID = instruction decode, EX = execution, MEM = memory access, and WB = write back.

3.2 The Basic Pipeline for DLX

133

cycle
liver

d for
 two
 every
nore

very
done

rises

and data memory access. Notice that if our pipelined machine has a clock
that is equal to that of the unpipelined version, the memory system must de
five times the bandwidth. This is one cost of higher performance.

Second, the register file is used in the two stages: for reading in ID an
writing in WB. These uses are distinct, so we simply show the register file in
places. This does mean that we need to perform two reads and one write
clock cycle. What if a read and write are to the same register? For now, we ig
this problem, but we will focus on it in the next section.

Third, Figure 3.3 does not deal with the PC. To start a new instruction e
clock, we must increment and store the PC every clock, and this must be
during the IF stage in preparation for the next instruction. The problem a

FIGURE 3.3 The pipeline can be thought of as a series of datapaths shifted in time. This shows the overlap among
the parts of the datapath, with clock cycle 5 (CC 5) showing the steady state situation. Because the register file is used as
a source in the ID stage and as a destination in the WB stage, it appears twice. We show that it is read in one stage and
written in another by using a solid line, on the right or left, respectively, and a dashed line on the other side. The abbreviation
IM is used for instruction memory, DM for data memory, and CC for clock cycle.

A
LU

A
LU

RegRegIM DM

RegIM DM

Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

P
ro

gr
am

 e
xe

cu
tio

n
or

de
r

(in
 in

st
ru

ct
io

ns
)

Reg

CC 8 CC 9

RegIM DM RegA
LU

RegIM DM RegA
LU

RegIM DM RegA
LU

134

Chapter 3 Pipelining

t until
ath,
 our
C or
m in
re in

 in a
tions
s that
isters.

are
o that
ar.
when we consider the effect of branches, which changes the PC also, but no
the MEM stage. This is not a problem in our multicycle, unpipelined datap
since the PC is written once in the MEM stage. For now, we will organize
pipelined datapath to write the PC in IF and write either the incremented P
the value of the branch target of an earlier branch. This introduces a proble
how branches are handled that we will explain in the next section and explo
detail in section 3.5.

Because every pipe stage is active on every clock cycle, all operations
pipe stage must complete in one clock cycle and any combination of opera
must be able to occur at once. Furthermore, pipelining the datapath require
values passed from one pipe stage to the next must be placed in reg
Figure 3.4 shows the DLX pipeline with the appropriate registers, called pipeline
registers or pipeline latches, between each pipeline stage. The registers
labeled with the names of the stages they connect. Figure 3.4 is drawn s
connections through the pipeline registers from one stage to another are cle

FIGURE 3.4 The datapath is pipelined by adding a set of registers, one between each pair of pipe stages. The reg-
isters serve to convey values and control information from one stage to the next. We can also think of the PC as a pipeline
register, which sits before the IF stage of the pipeline, leading to one pipeline register for each pipe stage. Recall that the
PC is an edge-triggered register written at the end of the clock cycle; hence there is no race condition in writing the PC. The
selection multiplexer for the PC has been moved so that the PC is written in exactly one stage (IF). If we didn’t move it, there
would be a conflict when a branch occurred, since two instructions would try to write different values into the PC. Most of
the datapaths flow from left to right, which is from earlier in time to later. The paths flowing from right to left (which carry the
register write-back information and PC information on a branch) introduce complications into our pipeline, which we will
spend much of this chapter overcoming.

Data
memory

ALU

Sign
extend

PC

Instruction
memory

ADD

IF/ID

4

ID/EX EX/MEM MEM/WB

IR6..10

MEM/WB.IR

M
u
x

M
u
x

M
u
x

IR11..15

Registers

Branch
taken

IR

16 32

M
u
x

Zero?

3.2 The Basic Pipeline for DLX 135

cles
f the

they
control
 must
ntil it

n our
 com-
ad or
om
 the
rrent-
m

ere-
eline
ining
. Fig-
 show
t two
ndent
tivity
 the
 PC
said
 deal
urce

trol
s in
y the
er
r the
ion.
ncre-
rite
he
is a
ddi-
ce is
ister
ster-
lti-
cify
All of the registers needed to hold values temporarily between clock cy
within one instruction are subsumed into these pipeline registers. The fields o
instruction register (IR), which is part of the IF/ID register, are labeled when
are used to supply register names. The pipeline registers carry both data and
from one pipeline stage to the next. Any value needed on a later pipeline stage
be placed in such a register and copied from one pipeline register to the next, u
is no longer needed. If we tried to just use the temporary registers we had i
earlier unpipelined datapath, values could be overwritten before all uses were
pleted. For example, the field of a register operand used for a write on a lo
ALU operation is supplied from the MEM/WB pipeline register rather than fr
the IF/ID register. This is because we want a load or ALU operation to write
register designated by that operation, not the register field of the instruction cu
ly transitioning from IF to ID! This destination register field is simply copied fro
one pipeline register to the next, until it is needed during the WB stage.

Any instruction is active in exactly one stage of the pipeline at a time; th
fore, any actions taken on behalf of an instruction occur between a pair of pip
registers. Thus, we can also look at the activities of the pipeline by exam
what has to happen on any pipeline stage depending on the instruction type
ure 3.5 shows this view. Fields of the pipeline registers are named so as to
the flow of data from one stage to the next. Notice that the actions in the firs
stages are independent of the current instruction type; they must be indepe
because the instruction is not decoded until the end of the ID stage. The IF ac
depends on whether the instruction in EX/MEM is a taken branch. If so, then
branch target address of the branch instruction in EX/MEM is written into the
at the end of IF; otherwise the incremented PC will be written back. (As we
earlier, this effect of branches leads to complications in the pipeline that we
with in the next few sections.) The fixed-position encoding of the register so
operands is critical to allowing the registers to be fetched during ID.

To control this simple pipeline we need only determine how to set the con
for the four multiplexers in the datapath of Figure 3.4. The two multiplexer
the ALU stage are set depending on the instruction type, which is dictated b
IR field of the ID/EX register. The top ALU input multiplexer is set by wheth
the instruction is a branch or not, and the bottom multiplexer is set by whethe
instruction is a register-register ALU operation or any other type of operat
The multiplexer in the IF stage chooses whether to use the value of the i
mented PC or the value of the EX/MEM.ALUOutput (the branch target) to w
into the PC. This multiplexer is controlled by the field EX/MEM.cond. T
fourth multiplexer is controlled by whether the instruction in the WB stage
load or a ALU operation. In addition to these four multiplexers, there is one a
tional multiplexer needed that is not drawn in Figure 3.4, but whose existen
clear from looking at the WB stage of an ALU operation. The destination reg
field is in one of two different places depending on the instruction type (regi
register ALU versus either ALU immediate or load). Thus, we will need a mu
plexer to choose the correct portion of the IR in the MEM/WB register to spe
the register destination field, assuming the instruction writes a register.

136 Chapter 3 Pipelining

ions
indi-
ach
truc-
ution
Basic Performance Issues in Pipelining

Pipelining increases the CPU instruction throughput—the number of instruct
completed per unit of time—but it does not reduce the execution time of an
vidual instruction. In fact, it usually slightly increases the execution time of e
instruction due to overhead in the control of the pipeline. The increase in ins
tion throughput means that a program runs faster and has lower total exec
time, even though no single instruction runs faster!

Stage Any instruction

IF IF/ID.IR ← Mem[PC];
IF/ID.NPC,PC ← (if ((EX/MEM.opcode == branch) & EX/MEM.cond){EX/MEM.
ALUOutput} else {PC+4});

ID ID/EX.A ← Regs[IF/ID.IR 6..10]; ID/EX.B ← Regs[IF/ID.IR 11..15];

ID/EX.NPC ← IF/ID.NPC; ID/EX.IR ← IF/ID.IR;

ID/EX.Imm ← (IF/ID.IR 16) 16##IF/ID.IR 16..31 ;

ALU instruction Load or store instruction Branch instruction

EX EX/MEM.IR ← ID/EX.IR;
EX/MEM.ALUOutput ←
ID/EX.A func ID/EX.B;
or
EX/MEM.ALUOutput ←
ID/EX.A op ID/EX.Imm;
EX/MEM.cond ← 0;

EX/MEM.IR← ID/EX.IR
EX/MEM.ALUOutput ←
ID/EX.A + ID/EX.Imm;

EX/MEM.cond ← 0;
EX/MEM.B← ID/EX.B;

EX/MEM.ALUOutput ←
ID/EX.NPC+ID/EX.Imm;

EX/MEM.cond ←
(ID/EX.A op 0);

MEM MEM/WB.IR ← EX/MEM.IR;
MEM/WB.ALUOutput ←
EX/MEM.ALUOutput;

MEM/WB.IR ← EX/MEM.IR;
MEM/WB.LMD ←
Mem[EX/MEM.ALUOutput];
or
Mem[EX/MEM.ALUOutput] ←
EX/MEM.B;

WB Regs[MEM/WB.IR 16..20] ←
MEM/WB.ALUOutput;
or
Regs[MEM/WB.IR 11..15] ←
MEM/WB.ALUOutput;

For load only:
Regs[MEM/WB.IR 11..15] ←
MEM/WB.LMD;

FIGURE 3.5 Events on every pipe stage of the DLX pipeline. Let’s review the actions in the stages that are specific to
the pipeline organization. In IF, in addition to fetching the instruction and computing the new PC, we store the incremented
PC both into the PC and into a pipeline register (NPC) for later use in computing the branch target address. This structure
is the same as the organization in Figure 3.4, where the PC is updated in IF from one or two sources. In ID, we fetch the
registers, extend the sign of the lower 16 bits of the IR, and pass along the IR and NPC. During EX, we perform an ALU
operation or an address calculation; we pass along the IR and the B register (if the instruction is a store). We also set the
value of cond to 1 if the instruction is a taken branch. During the MEM phase, we cycle the memory, write the PC if needed,
and pass along values needed in the final pipe stage. Finally, during WB, we update the register field from either the ALU
output or the loaded value. For simplicity we always pass the entire IR from one stage to the next, though as an instruction
proceeds down the pipeline, less and less of the IR is needed.

3.2 The Basic Pipeline for DLX 137

s lim-
ddi-

ce
 pipe
eeded

on of
time,
l that
kew,
ters,
s as
ng is

lock
path
ly re-
 the
gle-
The fact that the execution time of each instruction does not decrease put
its on the practical depth of a pipeline, as we will see in the next section. In a
tion to limitations arising from pipeline latency, limits arise from imbalan
among the pipe stages and from pipelining overhead. Imbalance among the
stages reduces performance since the clock can run no faster than the time n
for the slowest pipeline stage. Pipeline overhead arises from the combinati
pipeline register delay and clock skew. The pipeline registers add setup
which is the time that a register input must be stable before the clock signa
triggers a write occurs, plus propagation delay to the clock cycle. Clock s
which is maximum delay between when the clock arrives at any two regis
also contributes to the lower limit on the clock cycle. Once the clock cycle i
small as the sum of the clock skew and latch overhead, no further pipelini
useful, since there is no time left in the cycle for useful work.

E X A M P L E Consider the unpipelined machine in the previous section. Assume that it
has 10-ns clock cycles and that it uses four cycles for ALU operations and
branches and five cycles for memory operations. Assume that the relative
frequencies of these operations are 40%, 20%, and 40%, respectively.
Suppose that due to clock skew and setup, pipelining the machine adds
1 ns of overhead to the clock. Ignoring any latency impact, how much
speedup in the instruction execution rate will we gain from a pipeline?

A N S W E R The average instruction execution time on the unpipelined machine is

In the pipelined implementation, the clock must run at the speed of the
slowest stage plus overhead, which will be 10 + 1 or 11 ns; this is the av-
erage instruction execution time. Thus, the speedup from pipelining is

The 1-ns overhead essentially establishes a limit on the effectiveness of
pipelining. If the overhead is not affected by changes in the clock cycle,
Amdahl's Law tells us that the overhead limits the speedup. ■

Alternatively, if our base machine already has a CPI of 1 (with a longer c
cycle), then pipelining will enable us to have a shorter clock cycle. The data
of the previous section can be made into a single-cycle datapath by simp
moving the latches and letting the data flow from one cycle of execution to
next. How would the speedup of the pipelined version compare to the sin
cycle machine?

Average instruction execution time Clock cycle Average CPI×=

10 ns 40% 20%+() 4 40% 5×+×()×=

10 ns 4.4×=

44 ns=

Speedup from pipelining
Average instruction time unpipelined
Average instruction time pipelined

---=

44 ns
11 ns
------------- 4 times==

138 Chapter 3 Pipelining

n the
ssible
rties
en-

t two-
 the
ing

n be
e will
e in-

er
 the
is is
oint
 real
E X A M P L E Assume that the times required for the five functional units, which operate
in each of the five cycles, are as follows: 10 ns, 8 ns, 10 ns, 10 ns, and 7
ns. Assume that pipelining adds 1 ns of overhead. Find the speedup ver-
sus the single-cycle datapath.

A N S W E R Since the unpipelined machine executes all instructions in a single clock
cycle, its average time per instruction is simply the clock cycle time. The
clock cycle time is equal to the sum of the times for each step in the exe-
cution:

The clock cycle time on the pipelined machine must be the largest time
for any stage in the pipeline (10 ns) plus the overhead of 1 ns, for a total
of 11 ns. Since the CPI is 1, this yields an average instruction execution
time of 11 ns. Thus,

Pipelining can be thought of as improving the CPI, which is what we typi-
cally do, as increasing the clock rate—especially compared to another
pipelined machine, or sometimes as doing both. ■

Because the latches in a pipelined design can have a significant impact o
clock speed, designers have looked for latches that permit the highest po
clock rate. The Earle latch (invented by J. G. Earle [1965]) has three prope
that make it especially useful in pipelined machines. First, it is relatively ins
sitive to clock skew. Second, the delay through the latch is always a constan
gate delay, avoiding the introduction of skew in the data passing through
latch. Finally, two levels of logic can be performed in the latch without increas
the latch delay time. This means that two levels of logic in the pipeline ca
overlapped with the latch, so the overhead from the latch can be hidden. W
not be analyzing the pipeline designs in this chapter at this level of detail. Th
terested reader should see Kunkel and Smith [1986].

The pipeline we now have for DLX would function just fine for integ
instructions if every instruction were independent of every other instruction in
pipeline. In reality, instructions in the pipeline can depend on one another; th
the topic of the next section. The complications that arise in the floating-p
pipeline will be treated in section 3.7, and section 3.9 will look at a complete
pipeline.

Average instruction execution time 10 8 10 10 7+ + + +=

45 ns=

Speedup from pipelining
Average instruction time unpipelined
Average instruction time pipelined

---=

45 ns
11 ns
------------- 4.1 times==

3.3 The Major Hurdle of Pipelining—Pipeline Hazards 139

-
s re-
e are

not
ped

ious
 the

ns

 miss.
 sim-
truc-

r the
tions
the

wise
g the
che

tion
ntage
 will
talling
ate in

ance.
ing,
There are situations, called hazards, that prevent the next instruction in the in
struction stream from executing during its designated clock cycle. Hazard
duce the performance from the ideal speedup gained by pipelining. Ther
three classes of hazards:

1. Structural hazards arise from resource conflicts when the hardware can
support all possible combinations of instructions in simultaneous overlap
execution.

2. Data hazards arise when an instruction depends on the results of a prev
instruction in a way that is exposed by the overlapping of instructions in
pipeline.

3. Control hazards arise from the pipelining of branches and other instructio
that change the PC.

Hazards in pipelines can make it necessary to stall the pipeline. In Chapter 1,
we mentioned that the processor could stall on an event such as a cache
Stalls arising from hazards in pipelined machines are more complex than the
ple stall for a cache miss. Eliminating a hazard often requires that some ins
tions in the pipeline be allowed to proceed while others are delayed. Fo
pipelines we discuss in this chapter, when an instruction is stalled, all instruc
issued later than the stalled instruction—and hence not as far along in
pipeline—are also stalled. Instructions issued earlier than the stalled instruc-
tion—and hence farther along in the pipeline—must continue, since other
the hazard will never clear. As a result, no new instructions are fetched durin
stall. In contrast to this process of stalling only a portion of the pipeline, a ca
miss stalls all the instructions in the pipeline both before and after the instruc
causing the miss. (For the simple pipelines of this chapter there is no adva
in selecting stalling instructions on a cache miss, but in future chapters we
examine pipelines and caches that reduce cache miss costs by selectively s
on a cache miss.) We will see several examples of how pipeline stalls oper
this section—don’t worry, they aren’t as complex as they might sound!

Performance of Pipelines with Stalls

A stall causes the pipeline performance to degrade from the ideal perform
Let’s look at a simple equation for finding the actual speedup from pipelin
starting with the formula from the previous section.

3.3 The Major Hurdle of Pipelining—
Pipeline Hazards

140 Chapter 3 Pipelining

clock
start
ys 1.

e per-
g to

of cy-

ipe-

 can

n
of the

rhead,
 un-
Remember that pipelining can be thought of as decreasing the CPI or the
cycle time. Since it is traditional to use the CPI to compare pipelines, let’s
with that assumption. The ideal CPI on a pipelined machine is almost alwa
Hence, we can compute the pipelined CPI:

If we ignore the cycle time overhead of pipelining and assume the stages ar
fectly balanced, then the cycle time of the two machines can be equal, leadin

One important simple case is where all instructions take the same number
cles, which must also equal the number of pipeline stages (also called the depth
of the pipeline). In this case, the unpipelined CPI is equal to the depth of the p
line, leading to

If there are no pipeline stalls, this leads to the intuitive result that pipelining
improve performance by the depth of the pipeline.

Alternatively, if we think of pipelining as improving the clock cycle time, the
we can assume that the CPI of the unpipelined machine, as well as that
pipelined machine, is 1. This leads to

In cases where the pipe stages are perfectly balanced and there is no ove
the clock cycle on the pipelined machine is smaller than the clock cycle of the
pipelined machine by a factor equal to the pipelined depth:

Speedup from pipelining
Average instruction time unpipelined
Average instruction time pipelined

---=

CPI unpipelined Clock cycle unpipelined×
CPI pipelined Clock cycle pipelined×

---=

CPI unpipelined
CPI pipelined

--------------------------------------- Clock cycle unpipelined
Clock cycle pipelined

--×=

CPI pipelined Ideal CPI Pipeline stall clock cycles per instruction+=

1 Pipeline stall clock cycles per instruction+=

Speedup
CPI unpipelined

1 Pipeline stall cycles per instruction+
---=

Speedup
Pipeline depth

1 Pipeline stall cycles per instruction+
---=

Speedup from pipelining
CPI unpipelined
CPI pipelined

--------------------------------------- Clock cycle unpipelined
Clock cycle pipelined

--×=

1
1 Pipeline stall cycles per instruction+
--- Clock cycle unpipelined

Clock cycle pipelined
--×=

3.3 The Major Hurdle of Pipelining—Pipeline Hazards 141

tages,

uires
ible
ons
aid to
rise
ions
. An-
as not
line
t, but
 in a
truc-

until
ideal

a and
ce, it
 in
 data
h the

. We

indi-
 as in
hen
 its
This leads to the following:

Thus, if there are no stalls, the speedup is equal to the number of pipeline s
matching our intuition for the ideal case.

Structural Hazards

When a machine is pipelined, the overlapped execution of instructions req
pipelining of functional units and duplication of resources to allow all poss
combinations of instructions in the pipeline. If some combination of instructi
cannot be accommodated because of resource conflicts, the machine is s
have a structural hazard. The most common instances of structural hazards a
when some functional unit is not fully pipelined. Then a sequence of instruct
using that unpipelined unit cannot proceed at the rate of one per clock cycle
other common way that structural hazards appear is when some resource h
been duplicated enough to allow all combinations of instructions in the pipe
to execute. For example, a machine may have only one register-file write por
under certain circumstances, the pipeline might want to perform two writes
clock cycle. This will generate a structural hazard. When a sequence of ins
tions encounters this hazard, the pipeline will stall one of the instructions
the required unit is available. Such stalls will increase the CPI from its usual
value of 1.

Some pipelined machines have shared a single-memory pipeline for dat
instructions. As a result, when an instruction contains a data-memory referen
will conflict with the instruction reference for a later instruction, as shown
Figure 3.6. To resolve this, we stall the pipeline for one clock cycle when the
memory access occurs. Figure 3.7 shows our pipeline datapath figure wit
stall cycle added. A stall is commonly called a pipeline bubble or just bubble,
since it floats through the pipeline taking space but carrying no useful work
will see another type of stall when we talk about data hazards.

Rather than draw the pipeline datapath every time, designers often just
cate stall behavior using a simpler diagram with only the pipe stage names,
Figure 3.8. The form of Figure 3.8 shows the stall by indicating the cycle w
no action occurs and simply shifting instruction 3 to the right (which delays

Clock cycle pipelined
Clock cycle unpipelined

Pipeline depth
--=

Pipeline depth
Clock cycle unpipelined
Clock cycle pipelined

--=

Speedup from pipelining
1

1 Pipeline stall cycles per instruction+
--- Clock cycle unpipelined

Clock cycle pipelined
--×=

1
1 Pipeline stall cycles per instruction+
--- Pipeline depth×=

142 Chapter 3 Pipelining

actu-
pipe-
ually
ame:
etes
execution start and finish by one cycle). The effect of the pipeline bubble is
ally to occupy the resources for that instruction slot as it travels through the
line, just as Figure 3.7 shows. Although Figure 3.7 shows how the stall is act
implemented, the performance impact indicated by the two figures is the s
Instruction 3 does not complete until clock cycle 9, and no instruction compl
during clock cycle 8.

FIGURE 3.6 A machine with only one memory port will generate a conflict whenever a memory reference occurs.
In this example the load instruction uses the memory for a data access at the same time instruction 3 wants to fetch an in-
struction from memory.

A
LU

A
LU

RegRegMem Mem

RegMem Mem

Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

Reg

CC 8

RegMem Mem RegA
LU

RegMem Mem RegA
LU

RegMem MemA
LU

Load

Instruction 1

Instruction 2

Instruction 3

Instruction 4

3.3 The Major Hurdle of Pipelining—Pipeline Hazards 143
FIGURE 3.7 The structural hazard causes pipeline bubbles to be inserted. The effect is that no instruction will finish
during clock cycle 8, when instruction 3 would normally have finished. Instruction 1 is assumed to not be a load or store;
otherwise, instruction 3 cannot start execution.

A
L
U

A
L
U

RegRegMem Mem

RegMem Mem

Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

Reg

CC 8

RegMem Mem RegA
L
U

RegMem MemA
L
U

Load

Instruction 1

Instruction 2

Stall

Instruction 3

Bubble Bubble Bubble Bubble Bubble

144 Chapter 3 Pipelining
E X A M P L E Let’s see how much the load structural hazard might cost. Suppose that
data references constitute 40% of the mix, and that the ideal CPI of the
pipelined machine, ignoring the structural hazard, is 1. Assume that the
machine with the structural hazard has a clock rate that is 1.05 times high-
er than the clock rate of the machine without the hazard. Disregarding any
other performance losses, is the pipeline with or without the structural
hazard faster, and by how much?

A N S W E R There are several ways we could solve this problem. Perhaps the simplest
is to compute the average instruction time on the two machines:

Average instruction time =

Since it has no stalls, the average instruction time for the ideal machine is
simply the Clock cycle timeideal. The average instruction time for the ma-
chine with the structural hazard is

Clearly, the machine without the structural hazard is faster; we can use
the ratio of the average instruction times to conclude that the machine
without the hazard is 1.3 times faster.

 Clock cycle number

Instruction 1 2 3 4 5 6 7 8 9 10

Load instruction IF ID EX MEM WB

Instruction i + 1 IF ID EX MEM WB

Instruction i + 2 IF ID EX MEM WB

Instruction i + 3 stall IF ID EX MEM WB

Instruction i + 4 IF ID EX MEM WB

Instruction i + 5 IF ID EX MEM

Instruction i + 6 IF ID EX

FIGURE 3.8 A pipeline stalled for a structural hazard—a load with one memory port. As shown here, the load instruc-
tion effectively steals an instruction-fetch cycle, causing the pipeline to stall—no instruction is initiated on clock cycle 4 (which
normally would initiate instruction i + 3). Because the instruction being fetched is stalled, all other instructions in the pipeline
before the stalled instruction can proceed normally. The stall cycle will continue to pass through the pipeline, so that no in-
struction completes on clock cycle 8. Sometimes these pipeline diagrams are drawn with the stall occupying an entire hori-
zontal row and instruction 3 being moved to the next row; in either case, the effect is the same, since instruction 3 does not
begin execution until cycle 5. We use the form above, since it takes less space.

CPI Clock cycle time×

Average instruction time CPI Clock cycle time×=

1 0.4 1×+()
Clock cycle timeideal

1.05
---×=

1.3 Clock cycle timeideal×=

3.3 The Major Hurdle of Pipelining—Pipeline Hazards 145

ays
here

ing all
ma-
cle (to
 total
fully
az-
ual-
h a
ncy
ple,
ten-

 re-
antage
As an alternative to this structural hazard, the designer could provide
a separate memory access for instructions, either by splitting the cache
into separate instruction and data caches, or by using a set of buffers,
usually called instruction buffers, to hold instructions. Both the split cache
and instruction buffer ideas are discussed in Chapter 5. ■

If all other factors are equal, a machine without structural hazards will alw
have a lower CPI. Why, then, would a designer allow structural hazards? T
are two reasons: to reduce cost and to reduce the latency of the unit. Pipelin
the functional units, or duplicating them, may be too costly. For example,
chines that support both an instruction and a data cache access every cy
prevent the structural hazard of the above example) require twice as much
memory bandwidth and often have higher bandwidth at the pins. Likewise,
pipelining a floating-point multiplier consumes lots of gates. If the structural h
ard would not occur often, it may not be worth the cost to avoid it. It is also us
ly possible to design an unpipelined unit, or one that isn’t fully pipelined, wit
somewhat shorter total delay than a fully pipelined unit. The shorter late
comes from the lack of pipeline registers that introduce overhead. For exam
both the CDC 7600 and the MIPS R2010 floating-point unit choose shorter la
cy (fewer clocks per operation) versus full pipelining. As we will see shortly,
ducing latency has other performance benefits and may overcome the disadv
of the structural hazard.

E X A M P L E Many recent machines do not have fully pipelined floating-point units. For
example, suppose we had an implementation of DLX with a floating-point
multiply unit but no pipelining. Assume the multiplier could accept a new
multiply operation every five clock cycles. (This rate is called the repeat or
initiation interval.) Will this structural hazard have a large or small perfor-
mance impact on mdljdp2 running on DLX? For simplicity, assume that
the floating-point multiplies are uniformly distributed.

A N S W E R From Chapter 2 we find that floating-point multiply has a frequency of
14% in mdljdp2. Our proposed pipeline can handle up to a 20% frequency
of floating-point multiplies—one every five clock cycles. This means that
the performance benefit of fully pipelining the floating-point multiply on
mdljdp2 is likely to be limited, as long as the floating-point multiplies are
not clustered but are distributed uniformly. In the best case, multiplies are
overlapped with other operations, and there is no performance penalty at
all. In the worst case, the multiplies are all clustered with no intervening
instructions, and 14% of the instructions take 5 cycles each. Assuming a
base CPI of 1, this amounts to an increase of 0.7 in the CPI.

146 Chapter 3 Pipelining

by
 haz-
 oper-
uting
n of

ut
d a

that
ior to

t
y

om
hus,
the

s in

 im-
eads
que,
In practice, examining the performance of mdljdp2 on a machine with
a five-cycle-deep FP multiply pipeline shows that this structural hazard
increases execution time by less than 3%. One reason this loss is so low
is that data hazards (the topic of the next section) cause the pipeline to
stall, preventing multiply instructions that might cause structural hazards
from being initiated. Of course, other benchmarks make heavier use of
floating-point multiply or have fewer data hazards, and thus would show a
larger impact. In the rest of this chapter we will examine the contributions
of these different types of stalls in the DLX pipeline. ■

A major effect of pipelining is to change the relative timing of instructions
overlapping their execution. This introduces data and control hazards. Data
ards occur when the pipeline changes the order of read/write accesses to
ands so that the order differs from the order seen by sequentially exec
instructions on an unpipelined machine. Consider the pipelined executio
these instructions:

ADD R1,R2,R3

SUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

XOR R10,R1,R11

All the instructions after the ADD use the result of the ADD instruction. As shown in
Figure 3.9, the ADD instruction writes the value of R1 in the WB pipe stage, b
the SUB instruction reads the value during its ID stage. This problem is calle
data hazard. Unless precautions are taken to prevent it, the SUB instruction will
read the wrong value and try to use it. In fact, the value used by the SUB instruc-
tion is not even deterministic: Though we might think it logical to assume
SUB would always use the value of R1 that was assigned by an instruction pr
ADD, this is not always the case. If an interrupt should occur between the ADD and
SUB instructions, the WB stage of the ADD will complete, and the value of R1 a
that point will be the result of the ADD. This unpredictable behavior is obviousl
unacceptable.

The AND instruction is also affected by this hazard. As we can see fr
Figure 3.9, the write of R1 does not complete until the end of clock cycle 5. T
the AND instruction that reads the registers during clock cycle 4 will receive
wrong results.

 The XOR instruction operates properly, because its register read occur
clock cycle 6, after the register write. The OR instruction can also be made to
operate without incurring a hazard by a simple implementation technique,
plied in our pipeline diagrams. The technique is to perform the register file r
in the second half of the cycle and the writes in the first half. This techni

3.4 Data Hazards

3.4 Data Hazards 147

ister

azard

nique
which is hinted at in earlier figures by placing the dashed box around the reg
file, allows the OR instruction in the example in Figure 3.9 to execute correctly.

The next subsection discusses a technique to eliminate the stalls for the h
involving the SUB and AND instructions.

Minimizing Data Hazard Stalls By Forwarding

The problem posed in Figure 3.9 can be solved with a simple hardware tech
called forwarding (also called bypassing and sometimes short-circuiting). The
key insight in forwarding is that the result is not really needed by the SUB until af-
ter the ADD actually produces it. If the result can be moved from where the ADD

FIGURE 3.9 The use of the result of the ADD instruction in the next three instructions causes a hazard, since the
register is not written until after those instructions read it.

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

R1, R2, R3

Reg

DM

DM

DM

ADD

SUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

Reg

Reg Reg

RegIM

IM

IM

IM

IM

Reg A
LU

A
LU

A
LU

A
LU

Reg

P
ro

g
ra

m
 e

xe
cu

ti
o

n
 o

rd
e

r
(i

n
 i

n
st

ru
ct

io
n

s)

148 Chapter 3 Pipelining

ward-

U

rit-
 con-
alue

t be-

from
rted
place
ence

func-
 the
ame

f R1
uts.
 re-
nal
paths
 In
 and
ex-
produces it, the EX/MEM register, to where the SUB needs it, the ALU input
latches, then the need for a stall can be avoided. Using this observation, for
ing works as follows:

1. The ALU result from the EX/MEM register is always fed back to the AL
input latches.

2. If the forwarding hardware detects that the previous ALU operation has w
ten the register corresponding to a source for the current ALU operation,
trol logic selects the forwarded result as the ALU input rather than the v
read from the register file.

Notice that with forwarding, if the SUB is stalled, the ADD will be completed and
the bypass will not be activated. This is also true for the case of an interrup
tween the two instructions.

As the example in Figure 3.9 shows, we need to forward results not only
the immediately previous instruction, but possibly from an instruction that sta
two cycles earlier. Figure 3.10 shows our example with the bypass paths in
and highlighting the timing of the register read and writes. This code sequ
can be executed without stalls.

Forwarding can be generalized to include passing a result directly to the
tional unit that requires it: A result is forwarded from the output of one unit to
input of another, rather than just from the result of a unit to the input of the s
unit. Take, for example, the following sequence:

ADD R1,R2,R3

LW R4,0(R1)

SW 12(R1),R4

To prevent a stall in this sequence, we would need to forward the values o
and R4 from the pipeline registers to the ALU and data memory inp
Figure 3.11 shows all the forwarding paths for this example. In DLX, we may
quire a forwarding path from any pipeline register to the input of any functio
unit. Because the ALU and data memory both accept operands, forwarding
are needed to their inputs from both the ALU/MEM and MEM/WB registers.
addition, DLX uses a zero detection unit that operates during the EX cycle,
forwarding to that unit will be needed as well. Later in this section we will
plore all the necessary forwarding paths and the control of those paths.

3.4 Data Hazards 149
FIGURE 3.10 A set of instructions that depend on the ADD result use forwarding paths to avoid the data hazard.
The inputs for the SUB and AND instructions forward from the EX/MEM and the MEM/WB pipeline registers, respectively, to
the first ALU input. The OR receives its result by forwarding through the register file, which is easily accomplished by reading
the registers in the second half of the cycle and writing in the first half, as the dashed lines on the registers indicate. Notice
that the forwarded result can go to either ALU input; in fact, both ALU inputs could use forwarded inputs from either the same
pipeline register or from different pipeline registers. This would occur, for example, if the AND instruction was AND
R6, R1, R4.

DM

DM

DM

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

ADD R1, R2, R3

SUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

Reg

Reg

A
LU

A
LU

A
LU

A
LU

Reg

Reg

RegIM

IM

IM

IM

IM

Reg

Reg

P
ro

g
ra

m
 e

xe
cu

ti
o

n
 o

rd
e

r
(i

n
 i

n
st

ru
ct

io
n

s)

150 Chapter 3 Pipelining

s, and
he or-
ter op-
ce by
ver,
 from
r if we
rlier
eline
tion
Data Hazard Classification

A hazard is created whenever there is a dependence between instruction
they are close enough that the overlap caused by pipelining would change t
der of access to an operand. Our example hazards have all been with regis
erands, but it is also possible for a pair of instructions to create a dependen
writing and reading the same memory location. In our DLX pipeline, howe
memory references are always kept in order, preventing this type of hazard
arising. Cache misses could cause the memory references to get out of orde
allowed the processor to continue working on later instructions, while an ea
instruction that missed the cache was accessing memory. For the DLX pip
we stall the entire pipeline on a cache miss, effectively making the instruc

FIGURE 3.11 Stores require an operand during MEM, and forwarding of that operand is shown
here. The result of the load is forwarded from the memory output in MEM/WB to the memory input to be
stored. In addition, the ALU output is forwarded to the ALU input for the address calculation of both the load
and the store (this is no different than forwarding to another ALU operation). If the store depended on an
immediately preceding ALU operation (not shown above), the result would need to be forwarded to prevent
a stall.

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

R1, R2, R3 DM

DM

DM

ADD

LW R4, 0(R1)

SW 12(R1), R4

Reg

Reg Reg

RegIM

IM

IM A
LU

A
LU

A
LU

Reg

P
ro

g
ra

m
 e

xe
cu

ti
o

n
 o

rd
e

r
(i

n
 i

n
st

ru
ct

io
n

s)

3.4 Data Hazards 151

 will
fferent
az-

 order
s are
eline.

 kind

writ-

n in-
 in-
s. If
ible.
ge,
emory
ng the
e re-

 pipe-

two
s the
and

eline
zard
truc-
line.
that contained the miss run for multiple clock cycles. In the next chapter, we
discuss machines that allow loads and stores to be executed in an order di
from that in the program, which will introduce new problems. All the data h
ards discussed in this chapter involve registers within the CPU.

Data hazards may be classified as one of three types, depending on the
of read and write accesses in the instructions. By convention, the hazard
named by the ordering in the program that must be preserved by the pip
Consider two instructions i and j, with i occurring before j. The possible data haz-
ards are

■ RAW (read after write) — j tries to read a source before i writes it, so j incor-
rectly gets the old value. This is the most common type of hazard and the
that we used forwarding to overcome in Figures 3.10 and 3.11.

■ WAW (write after write) — j tries to write an operand before it is written by i.
The writes end up being performed in the wrong order, leaving the value
ten by i rather than the value written by j in the destination. This hazard is
present only in pipelines that write in more than one pipe stage (or allow a
struction to proceed even when a previous instruction is stalled). The DLX
teger pipeline writes a register only in WB and avoids this class of hazard
we made two changes to the DLX pipeline, WAW hazards would be poss
First, we could move write back for an ALU operation into the MEM sta
since the data value is available by then. Second, suppose that the data m
access took two pipe stages. Here is a sequence of two instructions showi
execution in this revised pipeline, highlighting the pipe stage that writes th
sult:

Unless this hazard is avoided, execution of this sequence on this revised
line will leave the result of the first write (the LW) in R1, rather than the result
of the ADD!

Allowing writes in different pipe stages introduces other problems, since
instructions can try to write during the same clock cycle. When we discus
DLX FP pipeline (section 3.7), which has both writes in different stages
different pipeline lengths, we will deal with both write conflicts and WAW
hazards in detail.

■ WAR (write after read) — j tries to write a destination before it is read by i,
so i incorrectly gets the new value. This cannot happen in our example pip
because all reads are early (in ID) and all writes are late (in WB). This ha
occurs when there are some instructions that write results early in the ins
tion pipeline, and other instructions that read a source late in the pipe

LW R1,0(R2) IF ID EX MEM1 MEM2 WB

ADD R1,R2,R3 IF ID EX WB

152 Chapter 3 Pipelining

s be-
ction
ad late
 as
e value
ing

rs:

, we
cuted

sing.

n in
op-
le 4
in-
d in-
3.12
apa-

eed-
Because of the natural structure of a pipeline, which typically reads value
fore it writes results, such hazards are rare. Pipelines for complex instru
sets that support autoincrement addressing and require operands to be re
in the pipeline could create a WAR hazard. If we modified the DLX pipeline
in the above example and also read some operands late, such as the sourc
for a store instruction, a WAR hazard could occur. Here is the pipeline tim
for such a potential hazard, highlighting the stage where the conflict occu

If the SW reads R2 during the second half of its MEM2 stage and the ADD writes
R2 during the first half of its WB stage, the SW will incorrectly read and store
the value produced by the ADD. In the DLX pipeline, reading all operands from
the register file during ID avoids this hazard; however, in the next chapter
will see how these hazards occur more easily when instructions are exe
out of order.

Note that the RAR (read after read) case is not a hazard.

Data Hazards Requiring Stalls

Unfortunately, not all potential data hazards can be handled by bypas
Consider the following sequence of instructions:

LW R1,0(R2)

SUB R4,R1,R5

AND R6,R1,R7

OR R8,R1,R9

The pipelined datapath with the bypass paths for this example is show
Figure 3.12. This case is different from the situation with back-to-back ALU
erations. The LW instruction does not have the data until the end of clock cyc
(its MEM cycle), while the SUB instruction needs to have the data by the beg
ning of that clock cycle. Thus, the data hazard from using the result of a loa
struction cannot be completely eliminated with simple hardware. As Figure
shows, such a forwarding path would have to operate backward in time—a c
bility not yet available to computer designers! We can forward the result immedi-
ately to the ALU from the MEM/WB registers for use in the AND operation, which
begins two clock cycles after the load. Likewise, the OR instruction has no prob-
lem, since it receives the value through the register file. For the SUB instruction,
the forwarded result arrives too late—at the end of a clock cycle, when it is n
ed at the beginning.

SW 0(R1),R2 IF ID EX MEM1 MEM2 WB

ADD R2,R3,R4 IF ID EX WB

3.4 Data Hazards 153

 for-

rlock
until
ll or
 the
 this
 in

s se-
one
The load instruction has a delay or latency that cannot be eliminated by
warding alone. Instead, we need to add hardware, called a pipeline interlock, to
preserve the correct execution pattern. In general, a pipeline interlock detects a
hazard and stalls the pipeline until the hazard is cleared. In this case, the inte
stalls the pipeline, beginning with the instruction that wants to use the data
the source instruction produces it. This pipeline interlock introduces a sta
bubble, just as it did for the structural hazard in section 3.3. The CPI for
stalled instruction increases by the length of the stall (one clock cycle in
case). The pipeline with the stall and the legal forwarding is shown
Figure 3.13. Because the stall causes the instructions starting with the SUB to
move one cycle later in time, the forwarding to the AND instruction now goes
through the register file, and no forwarding at all is needed for the OR instruction.
The insertion of the bubble causes the number of cycles to complete thi
quence to grow by one. No instruction is started during clock cycle 4 (and n

FIGURE 3.12 The load instruction can bypass its results to the AND and OR instructions, but not to the SUB, since
that would mean forwarding the result in “negative time.”

DMA
LU

A
LU

A
LU

DM

CC 1 CC 2 CC 3 CC 4 CC 5

Time (in clock cycles)

LW R1, 0(R2)

SUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

Reg

Reg

RegIM

IM

IM

IM Reg

Reg

P
ro

g
ra

m
 e

xe
cu

ti
o

n
 o

rd
e

r
(i

n
 i

n
st

ru
ct

io
n

s)

154 Chapter 3 Pipelining

ll us-
f this
.

finishes during cycle 6). Figure 3.14 shows the pipeline before and after the sta
ing a diagram containing only the pipeline stages. We will make extensive use o
more concise form for showing interlocks and stalls in this chapter and the next

FIGURE 3.13 The load interlock causes a stall to be inserted at clock cycle 4, delaying the SUB instruction and
those that follow by one cycle. This delay allows the value to be successfully forwarded on the next clock cycle.

LW R1,0(R2) IF ID EX MEM WB

SUB R4,R1,R5 IF ID EX MEM WB

AND R6,R1,R7 IF ID EX MEM WB

OR R8,R1,R9 IF ID EX MEM WB

LW R1,0(R2) IF ID EX MEM WB

SUB R4,R1,R5 IF ID stall EX MEM WB

AND R6,R1,R7 IF stall ID EX MEM WB

OR R8,R1,R9 stall IF ID EX MEM WB

FIGURE 3.14 In the top half, we can see why a stall is needed: the MEM cycle of the load produces a value that is
needed in the EX cycle of the SUB, which occurs at the same time. This problem is solved by inserting a stall, as shown
in the bottom half.

DM

DM

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

LW R1, 0(R2)

SUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

Reg A
LU

A
LU

A
LU

Reg

Reg

RegIM

IM

IM

IM Reg

P
ro

g
ra

m
 e

xe
cu

ti
o

n
 o

rd
e

r
(i

n
 i

n
st

ru
ct

io
n

s)

Bubble

Bubble

Bubble

3.4 Data Hazards 155

enal-
and

 for a
 value
ce the
re.

dule
inate
ith a
ech-

chines
E X A M P L E Suppose that 30% of the instructions are loads, and half the time the in-
struction following a load instruction depends on the result of the load. If
this hazard creates a single-cycle delay, how much faster is the ideal pipe-
lined machine (with a CPI of 1) that does not delay the pipeline than the
real pipeline? Ignore any stalls other than pipeline stalls.

A N S W E R The ideal machine will be faster by the ratio of the CPIs. The CPI for an
instruction following a load is 1.5, since it stalls half the time. Because
loads are 30% of the mix, the effective CPI is (0.7 × 1 + 0.3 × 1.5) = 1.15.
This means that the ideal machine is 1.15 times faster. ■

In the next subsection we consider compiler techniques to reduce these p
ties. After that, we look at how to implement hazard detection, forwarding,
interlocks.

Compiler Scheduling for Data Hazards

Many types of stalls are quite frequent. The typical code-generation pattern
statement such as A = B + C produces a stall for a load of the second data
(C). Figure 3.15 shows that the store of A need not cause another stall, sin
result of the addition can be forwarded to the data memory for use by the sto

Rather than just allow the pipeline to stall, the compiler could try to sche
the pipeline to avoid these stalls by rearranging the code sequence to elim
the hazard. For example, the compiler could try to avoid generating code w
load followed by the immediate use of the load destination register. This t
nique, called pipeline scheduling or instruction scheduling, was first used in the
1960s and became an area of major interest in the 1980s, as pipelined ma
became more widespread.

E X A M P L E Generate DLX code that avoids pipeline stalls for the following sequence:

a = b + c;

d = e – f;

Assume loads have a latency of one clock cycle.

LW R1,B IF ID EX MEM WB

LW R2,C IF ID EX MEM WB

ADD R3,R1,R2 IF ID stall EX MEM WB

SW A,R3 IF stall ID EX MEM WB

FIGURE 3.15 The DLX code sequence for A = B + C. The ADD instruction must be stalled to allow the load of C to com-
plete. The SW need not be delayed further because the forwarding hardware passes the result from the MEM/WB directly to
the data memory input for storing.

156 Chapter 3 Pipelining

line
sing

uling
ock is
nces
. For
nly
is ad-
sults,
re ef-
ism
ctive
 these

 (ID)

eline.
A N S W E R Here is the scheduled code:

LW Rb,b

LW Rc,c

LW Re,e ; swap instructions to avoid stall

ADD Ra,Rb,Rc

LW Rf,f

SW a,Ra ; store/load exchanged to avoid stall

SUB Rd,Re,Rf

SW d,Rd

Both load interlocks (LW Rc, c to ADD Ra, Rb, Rc and LW Rf , f to
SUB Rd, Re, Rf) have been eliminated. There is a dependence between
the ALU instruction and the store, but the pipeline structure allows the re-
sult to be forwarded. Notice that the use of different registers for the first
and second statements was critical for this schedule to be legal. In partic-
ular, if the variable e was loaded into the same register as b or c, this
schedule would be illegal. In general, pipeline scheduling can increase
the register count required. In the next chapter, we will see that this in-
crease can be substantial for machines that can issue multiple instruc-
tions in one clock. ■

Many modern compilers try to use instruction scheduling to improve pipe
performance. In the simplest algorithms, the compiler simply schedules u
other instructions in the same basic block. A basic block is a straight-line code se-
quence with no transfers in or out, except at the beginning or end. Sched
such code sequences is easy, since we know that every instruction in the bl
executed if the first one is. We can simply make a graph of the depende
among the instructions and order the instructions so as to minimize the stalls
a simple pipeline like the DLX integer pipeline with only short latencies (the o
delay is one cycle on loads), a scheduling strategy focusing on basic blocks
equate. Figure 3.16 shows the frequency that stalls are required for load re
assuming a single-cycle delay for loads. As you can see, this process is mo
fective for floating-point programs that have significant amounts of parallel
among instructions. As pipelining becomes more extensive and the effe
pipeline latencies grow, more ambitious scheduling schemes are needed;
are discussed in detail in the next chapter.

Implementing the Control for the DLX Pipeline

The process of letting an instruction move from the instruction decode stage
into the execution stage (EX) of this pipeline is usually called instruction issue;
an instruction that has made this step is said to have issued. For the DLX integer
pipeline, all the data hazards can be checked during the ID phase of the pip

3.4 Data Hazards 157

, we
riate
ware
as up-
tively,
 uses
 two
rce

an
must
If a data hazard exists, the instruction is stalled before it is issued. Likewise
can determine what forwarding will be needed during ID and set the approp
controls then. Detecting interlocks early in the pipeline reduces the hard
complexity because the hardware never has to suspend an instruction that h
dated the state of the machine, unless the entire machine is stalled. Alterna
we can detect the hazard or forwarding at the beginning of a clock cycle that
an operand (EX and MEM for this pipeline). To show the differences in these
approaches, we will show how the interlock for a RAW hazard with the sou
coming from a load instruction (called a load interlock) can be implemented by a
check in ID, while the implementation of forwarding paths to the ALU inputs c
be done during EX. Figure 3.17 lists the variety of circumstances that we
handle.

FIGURE 3.16 Percentage of the loads that result in a stall with the DLX pipeline. This
chart shows the frequency of stalls remaining in scheduled code that was globally optimized
before scheduling. Global optimization actually makes scheduling relatively harder because
there are fewer candidates for scheduling into delay slots, as we discuss in Fallacies and Pit-
falls. The pipeline slot after a load is often called the load delay or delay slot. In general, it is
easier to schedule the delay slots in FP programs, since they are more regular and the anal-
ysis is easier. Hence fewer loads stall in the FP programs: an average of 13% of the loads
versus 25% on the integer programs. The actual performance impact depends on the load
frequency, which varies from 19% to 34% with an average of 24%.The contribution to CPI
runs from 0.01 cycles per instruction to 0.15 cycles per instruction.

Benchmark

co
m

pr
es

s

eq
nt

ot
t

es
pr

es
so gc

c li

do
du

c
ea

r

hy
dr

o2
d

m
dlj

dp

su
2c

or

24%

41%

12%

23%
24%

20% 20%

10% 10%

4%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Fraction of loads that cause a stall

158 Chapter 3 Pipelining

ith
tage
e can
irect-
l load

Let’s start with implementing the load interlock. If there is a RAW hazard w
the source instruction being a load, the load instruction will be in the EX s
when an instruction that needs the load data will be in the ID stage. Thus, w
describe all the possible hazard situations with a small table, which can be d
ly translated to an implementation. Figure 3.18 shows a table that detects al
interlocks when the instruction using the load result is in the ID stage.

Situation
Example code
sequence Action

No dependence LW R1,45(R2)
ADD R5,R6,R7
SUB R8,R6,R7
OR R9,R6,R7

No hazard possible because no dependence
exists on R1 in the immediately following
three instructions.

Dependence
requiring stall

LW R1,45(R2)
ADD R5, R1,R7
SUB R8,R6,R7
OR R9,R6,R7

Comparators detect the use of R1 in the ADD
and stall the ADD (and SUB and OR) before the
ADD begins EX.

Dependence
overcome by
forwarding

LW R1,45(R2)
ADD R5,R6,R7
SUB R8, R1,R7
OR R9,R6,R7

Comparators detect use of R1 in SUB and for-
ward result of load to ALU in time for SUB to
begin EX.

Dependence
with accesses in
order

LW R1,45(R2)
ADD R5,R6,R7
SUB R8,R6,R7
OR R9, R1,R7

No action required because the read of R1 by
OR occurs in the second half of the ID phase,
while the write of the loaded data occurred in
the first half.

FIGURE 3.17 Situations that the pipeline hazard detection hardware can see by com-
paring the destination and sources of adjacent instructions. This table indicates that the
only comparison needed is between the destination and the sources on the two instructions
following the instruction that wrote the destination. In the case of a stall, the pipeline depen-
dences will look like the third case once execution continues. Of course hazards that involve
R0 can be ignored since the register always contains 0, and the test above could be extended
to do this.

Opcode field of ID/EX
(ID/EX.IR 0..5) Opcode field of IF/ID (IF/ID.IR 0..5) Matching operand fields

Load Register-register ALU ID/EX.IR11..15 == IF/ID.IR6..10

Load Register-register ALU ID/EX.IR11..15 == IF/ID.IR11..15

Load Load, store, ALU immediate, or branch ID/EX.IR11..15 == IF/ID.IR6..10

FIGURE 3.18 The logic to detect the need for load interlocks during the ID stage of an instruction requires three
comparisons. Lines 1 and 2 of the table test whether the load destination register is one of the source registers for a
register-register operation in ID. Line 3 of the table determines if the load destination register is a source for a load or store
effective address, an ALU immediate, or a branch test. Remember that the IF/ID register holds the state of the instruction in
ID, which potentially uses the load result, while ID/EX holds the state of the instruction in EX, which is the potential load
instruction.

3.4 Data Hazards 159

e stall
aid in
rry-
us,
/EX

does
ts
m-
mpar-
eous

s to
 that
ource
 or
tec-

tina-
inst
ers.
re the
tly

ed to
t unit,
estina-

eter-
ge the
gis-
ments
s in

sim-
 ex-
 to
Once a hazard has been detected, the control unit must insert the pipelin
and prevent the instructions in the IF and ID stages from advancing. As we s
section 3.2, all the control information is carried in the pipeline registers. (Ca
ing the instruction along is enough, since all control is derived from it.) Th
when we detect a hazard we need only change the control portion of the ID
pipeline register to all 0s, which happens to be a no-op (an instruction that
nothing, such as ADD R0,R0,R0). In addition, we simply recirculate the conten
of the IF/ID registers to hold the stalled instruction. In a pipeline with more co
plex hazards, the same ideas would apply: We can detect the hazard by co
ing some set of pipeline registers and shift in no-ops to prevent erron
execution.

Implementing the forwarding logic is similar, though there are more case
consider. The key observation needed to implement the forwarding logic is
the pipeline registers contain both the data to be forwarded as well as the s
and destination register fields. All forwarding logically happens from the ALU
data memory output to the ALU input, the data memory input, or the zero de
tion unit. Thus, we can implement the forwarding by a comparison of the des
tion registers of the IR contained in the EX/MEM and MEM/WB stages aga
the source registers of the IR contained in the ID/EX and EX/MEM regist
Figure 3.19 shows the comparisons and possible forwarding operations whe
destination of the forwarded result is an ALU input for the instruction curren
in EX. The Exercises ask you to add the entries when the result is forward
the data memory. The last possible forwarding destination is the zero detec
whose forwarding paths look the same as those that are needed when the d
tion instruction is an ALU immediate.

In addition to the comparators and combinational logic that we need to d
mine when a forwarding path needs to be enabled, we also need to enlar
multiplexers at the ALU inputs and add the connections from the pipeline re
ters that are used to forward the results. Figure 3.20 shows the relevant seg
of the pipelined datapath with the additional multiplexers and connection
place.

For DLX, the hazard detection and forwarding hardware is reasonably
ple; we will see that things become somewhat more complicated when we
tend this pipeline to deal with floating point. Before we do that, we need
handle branches.

160 Chapter 3 Pipelining
Pipeline
register
containing
source
instruction

Opcode
of source
instruction

Pipeline
register
containing
destination
instruction

Opcode of
destination
instruction

Destination
of the
forwarded
result

Comparison
(if equal then
forward)

EX/MEM Register-
register ALU

ID/EX Register-register ALU,
ALU immediate, load,
store, branch

Top ALU
input

EX/MEM.IR16..20 ==
ID/EX.IR6..10

EX/MEM Register-
register ALU

ID/EX Register-register ALU Bottom ALU
input

EX/MEM.IR16..20 ==
ID/EX.IR11..15

MEM/WB Register-
register ALU

ID/EX Register-register ALU,
ALU immediate, load,
store, branch

Top ALU
input

MEM/WB.IR16..20 ==
ID/EX.IR6..10

MEM/WB Register-
register ALU

ID/EX Register-register ALU Bottom ALU
input

MEM/WB.IR16..20 ==
ID/EX.IR11..15

EX/MEM ALU
immediate

ID/EX Register-register ALU,
ALU immediate, load,
store, branch

Top ALU
input

EX/MEM.IR11..15 ==
ID/EX.IR6..10

EX/MEM ALU
immediate

ID/EX Register-register ALU Bottom ALU
input

EX/MEM.IR11..15 ==
ID/EX.IR11..15

MEM/WB ALU
immediate

ID/EX Register-register ALU,
ALU immediate, load,
store, branch

Top ALU
input

MEM/WB.IR11..15 ==
ID/EX.IR6..10

MEM/WB ALU
immediate

ID/EX Register-register ALU Bottom ALU
input

MEM/WB.IR11..15 ==
ID/EX.IR11..15

MEM/WB Load ID/EX Register-register ALU,
ALU immediate, load,
store, branch

Top ALU
input

MEM/WB.IR11..15 ==
ID/EX.IR6..10

MEM/WB Load ID/EX Register-register ALU Bottom ALU
input

MEM/WB.IR11..15 ==
ID/EX.IR11..15

FIGURE 3.19 Forwarding of data to the two ALU inputs (for the instruction in EX) can occur from the ALU result
(in EX/MEM or in MEM/WB) or from the load result in MEM/WB. There are 10 separate comparisons needed to tell wheth-
er a forwarding operation should occur. The top and bottom ALU inputs refer to the inputs corresponding to the first and
second ALU source operands, respectively, and are shown explicitly in Figure 3.1 on page 130 and in Figure 3.20 on
page 161. Remember that the pipeline latch for destination instruction in EX is ID/EX, while the source values come from
the ALUOutput portion of EX/MEM or MEM/WB or the LMD portion of MEM/WB. There is one complication not addressed
by this logic: dealing with multiple instructions that write the same register. For example, during the code sequence ADD R1,
R2, R3; ADDI R1, R1, #2; SUB R4, R3, R1, the logic must ensure that the SUB instruction uses the result of the ADDI
instruction rather than the result of the ADD instruction. The logic shown above can be extended to handle this case by simply
testing that forwarding from MEM/WB is enabled only when forwarding from EX/MEM is not enabled for the same input. Be-
cause the ADDI result will be in EX/MEM, it will be forwarded, rather than the ADD result in MEM/WB.

3.5 Control Hazards 161

han
 PC to
s the

ed
om-

soon
e new
truc-
 pipe-
ust
Control hazards can cause a greater performance loss for our DLX pipeline t
do data hazards. When a branch is executed, it may or may not change the
something other than its current value plus 4. Recall that if a branch change
PC to its target address, it is a taken branch; if it falls through, it is not taken, or
untaken. If instruction i is a taken branch, then the PC is normally not chang
until the end of MEM, after the completion of the address calculation and c
parison, as shown in Figure 3.4 (page 134) and Figure 3.5 (page 136).

The simplest method of dealing with branches is to stall the pipeline as
as we detect the branch until we reach the MEM stage, which determines th
PC. Of course, we do not want to stall the pipeline until we know that the ins
tion is a branch; thus, the stall does not occur until after the ID stage, and the
line behavior looks like that shown in Figure 3.21. This control hazard stall m

FIGURE 3.20 Forwarding of results to the ALU requires the addition of three extra in-
puts on each ALU multiplexer and the addition of three paths to the new inputs. The
paths correspond to a bypass of (1) the ALU output at the end of the EX, (2) the ALU output
at the end of the MEM stage, and (3) the memory output at the end of the MEM stage.

3.5 Control Hazards

Data
memory

ALU

Zero?

ID/EX EX/MEM MEM/WB

M
u
x

M
u
x

162 Chapter 3 Pipelining

e in-
ranch
orms
o for
 repe-
deed
ly, but

30%
ieves
ch
e re-

to
 ex-
 early

y
le by
n on
d ear-
dder
sable
arate
 stall
s that
in-
be implemented differently from a data hazard stall, since the IF cycle of th
struction following the branch must be repeated as soon as we know the b
outcome. Thus, the first IF cycle is essentially a stall, because it never perf
useful work. This stall can be implemented by setting the IF/ID register to zer
the three cycles. You may have noticed that if the branch is untaken, then the
tition of the IF stage is unnecessary since the correct instruction was in
fetched. We will develop several schemes to take advantage of this fact short
first, let’s examine how we could reduce the worst-case branch penalty.

Three clock cycles wasted for every branch is a significant loss. With a
branch frequency and an ideal CPI of 1, the machine with branch stalls ach
only about half the ideal speedup from pipelining! Thus, reducing the bran
penalty becomes critical. The number of clock cycles in a branch stall can b
duced by two steps:

1. Find out whether the branch is taken or not taken earlier in the pipeline.

2. Compute the taken PC (i.e., the address of the branch target) earlier.

To optimize the branch behavior, both of these must be done—it doesn’t help
know the target of the branch without knowing whether the next instruction to
ecute is the target or the instruction at PC + 4. Both steps should be taken as
in the pipeline as possible.

In DLX, the branches (BEQZ and BNEZ) require testing a register for equalit
to zero. Thus, it is possible to complete this decision by the end of the ID cyc
moving the zero test into that cycle. To take advantage of an early decisio
whether the branch is taken, both PCs (taken and untaken) must be compute
ly. Computing the branch target address during ID requires an additional a
because the main ALU, which has been used for this function so far, is not u
until EX. Figure 3.22 shows the revised pipelined datapath. With the sep
adder and a branch decision made during ID, there is only a one-clock-cycle
on branches. Although this reduces the branch delay to one cycle, it mean
an ALU instruction followed by a branch on the result of the instruction will

Branch instruction IF ID EX MEM WB

Branch successor IF stall stall IF ID EX MEM WB

Branch successor + 1 IF ID EX MEM WB

Branch successor + 2 IF ID EX MEM

Branch successor + 3 IF ID EX

Branch successor + 4 IF ID

Branch successor + 5 IF

FIGURE 3.21 A branch causes a three-cycle stall in the DLX pipeline: One cycle is a repeated IF cycle and two
cycles are idle. The instruction after the branch is fetched, but the instruction is ignored, and the fetch is restarted once the
branch target is known. It is probably obvious that if the branch is not taken, the second IF for branch successor is redundant.
This will be addressed shortly.

3.5 Control Hazards 163

 pipe-

ycles
pute

ecode

ess it
ent
ore,
even.

ycles.
ds on
 ex-
at will
cur a data hazard stall. Figure 3.23 shows the branch portion of the revised
line table from Figure 3.5 (page 136).

In some machines, branch hazards are even more expensive in clock c
than in our example, since the time to evaluate the branch condition and com
the destination can be even longer. For example, a machine with separate d
and register fetch stages will probably have a branch delay—the length of the
control hazard—that is at least one clock cycle longer. The branch delay, unl
is dealt with, turns into a branch penalty. Many older machines that implem
more complex instruction sets have branch delays of four clock cycles or m
and large, deeply pipelined machines often have branch penalties of six or s
In general, the deeper the pipeline, the worse the branch penalty in clock c
Of course, the relative performance effect of a longer branch penalty depen
the overall CPI of the machine. A high CPI machine can afford to have more
pensive branches because the percentage of the machine’s performance th
be lost from branches is less.

FIGURE 3.22 The stall from branch hazards can be reduced by moving the zero test and branch target calculation
into the ID phase of the pipeline. Notice that we have made two important changes, each of which removes one cycle from
the three cycle stall for branches. The first change is to move both the branch address target calculation and the branch
condition decision to the ID cycle. The second change is to write the PC of the instruction in the IF phase, using either the
branch target address computed during ID or the incremented PC computed during IF. In comparison, Figure 3.4 obtained
the branch target address from the EX/MEM register and wrote the result during the MEM clock cycle. As mentioned in Fig-
ure 3.4, the PC can be thought of as a pipeline register (e.g., as part of ID/IF), which is written with the address of the next
instruction at the end of each IF cycle.

Data

ALU

Sign
extend

16 32

memory

PC

Instruction
memory

ADD

ADD

IF/ID

4

EX/MEM MEM/WB

IR
6..10

MEM/WB.IR

IR
11..15

Registers

Zero?

M
u
x

M
u
x

M
u
x

IR

ID/EX

164 Chapter 3 Pipelining

arise

 look
 jumps
from
trol-
een

 and

6%,
ber

ehav-
2%,
ches

back-

d on
shows
 of all
tion-
Before talking about methods for reducing the pipeline penalties that can
from branches, let’s take a brief look at the dynamic behavior of branches.

Branch Behavior in Programs

Because branches can dramatically affect pipeline performance, we should
at their behavior to get some ideas about how the penalties of branches and
might be reduced. We already know something about branch frequencies
our programs in Chapter 2. Figure 3.24 reviews the overall frequency of con
flow operations for our SPEC subset on DLX and gives the breakdown betw
branches and jumps. Conditional branches are also broken into forward
backward branches.

The integer benchmarks show conditional branch frequencies of 14% to 1
with much lower unconditional branch frequencies (though li has a large num
because of its high procedure call frequency). For the FP benchmarks, the b
ior is much more varied with a conditional branch frequency of 3% up to 1
but an overall average for both conditional branches and unconditional bran
that is lower than for the integer benchmarks. Forward branches dominate
ward branches by about 3.7 to 1 on average.

Since the performance of pipelining schemes for branches may depen
whether or not branches are taken, this data becomes critical. Figure 3.25
the frequency of forward and backward branches that are taken as a fraction
conditional branches. Totaling the two columns shows that 67% of the condi

Pipe stage Branch instruction

IF IF/ID.IR ← Mem[PC];
IF/ID.NPC,PC ← (if ((IF/ID.opcode == branch) & (Regs[IF/ID.IR 6..10]
op 0)) {IF/ID.NPC +
(IF/ID.IR 16) 16##IF/ID.IR 16..31 } else {PC+4});

ID ID/EX.A ← Regs[IF/ID.IR 6..10]; ID/EX.B ← Regs[IF/ID.IR 11..15];

ID/EX.IR ← IF/ID.IR;

ID/EX.Imm ← (IF/ID.IR 16) 16##IF/ID.IR 16..31

EX

MEM

WB

FIGURE 3.23 This revised pipeline structure is based on the original in Figure 3.5, page 136. It uses a separate
adder, as in Figure 3.22, to compute the branch target address during ID. The operations that are new or have changed are
in bold. Because the branch target address addition happens during ID, it will happen for all instructions; the branch condition
(Regs[IF/ID.IR 6..10] op 0) will also be done for all instructions. The selection of the sequential PC or the branch tar-
get PC still occurs during IF, but it now uses values from the ID/EX register, which correspond to the values set by the pre-
vious instruction. This change reduces the branch penalty by two cycles: one from evaluating the branch target and condition
earlier and one from controlling the PC selection on the same clock rather than on the next clock. Since the value of cond
is set to 0, unless the instruction in ID is a taken branch, the machine must decode the instruction before the end of ID. Be-
cause the branch is done by the end of ID, the EX, MEM, and WB stages are unused for branches. An additional complica-
tion arises for jumps that have a longer offset than branches. We can resolve this by using an additional adder that sums
the PC and lower 26 bits of the IR.

3.5 Control Hazards 165

4 and
ich is
hes
al branches are taken on average. By combining the data in Figures 3.2
3.25, we can compute the fraction of forward branches that are taken, wh
the probability that a forward branch will be taken. Since backward branc

FIGURE 3.24 The frequency of instructions (branches, jumps, calls, and returns) that
may change the PC. The unconditional column includes unconditional branches and jumps
(these differ in how the target address is specified), procedure calls, and returns. In all the
cases except li, the number of unconditional PC changes is roughly equally divided between
those that are for calls or returns and those that are unconditional jumps. In li, calls and re-
turns outnumber jumps and unconditional branches by a factor of 3 (6% versus 2%). Since
the compiler uses loop unrolling (described in detail in Chapter 4) as an optimization, the
backward conditional branch frequency will be lower, especially for the floating-point pro-
grams. Overall, the integer programs average 13% forward conditional branches, 3% back-
ward conditional branches, and 4% unconditional branches. The FP programs average 7%,
2%, and 1%, respectively.

Percentage of instructions executed

0% 25%5% 10% 15% 20%

10%

0%

0%

2%

1%

2%

6%

4%
4%

6%

2%
2%

11%

8%
4%

12%

4%
3%

11%

1%
4%

22%

2%
2%

11%

3%
3%

9%
0%

1%

Forward conditional
branches

Unconditional branchesBackward conditional
branches

Benchmark

compress

eqntott

espresso

gcc

li

doduc

ear

hydro2d

mdljdp

su2cor

166 Chapter 3 Pipelining

 be-
eed,
en on

h de-
hese
ranch
nalty
often form loops, we would expect that the probability of a backward branch
ing taken is higher than the probability of a forward branch being taken. Ind
the data, when combined, show that 60% of the forward branches are tak
average and 85% of the backward branches are taken.

Reducing Pipeline Branch Penalties

There are many methods for dealing with the pipeline stalls caused by branc
lay; we discuss four simple compile-time schemes in this subsection. In t
four schemes the actions for a branch are static—they are fixed for each b
during the entire execution. The software can try to minimize the branch pe

FIGURE 3.25 Together the forward and backward taken branches account for an average of 67% of all conditional
branches. Although the backward branches are outnumbered, they are taken with a frequency that is almost 1.5 times high-
er, contributing substantially to the taken branch frequency. On average, 62% of the branches are taken in the integer pro-
grams and 70% in the FP programs. Note the wide disparity in behavior between a program like su2cor and mdljdp2; these
variations make it challenging to predict the branch behavior very accurately. As in Figure 3.24, the use of loop unrolling
affects this data since it removes backward branches that had a high probability of being taken.

Fraction of all
conditional branches

0%

80%

10%

20%

30%

40%

50%

70%

60%
61%

21%

14%

53%

37%38%

26%

34%

13%

44%

16%

35%

25%

63%

8%

51%

22%

78%

3%

21%

Backward takenForward taken

Benchmark
co

m
pr

es
s

eq
nt

ot
t

es
pr

es
so gc

c li

do
du

c
ea

r

hy
dr

o2
d

m
dlj

dp
2

su
2c

or

3.5 Control Hazards 167

cuss-
these
look
duce
iction

n is
for
n in

ed by

t ev-
anch
te until
ving
 out”
ine in

rmal
. If
o-op

ress.
using knowledge of the hardware scheme and of branch behavior. After dis
ing these schemes, we examine compile-time branch prediction, since
branch optimizations all rely on such technology. In the next chapter, we
both at more powerful compile-time schemes (such as loop unrolling) that re
the frequency of loop branches and at dynamic hardware-based pred
schemes.

The simplest scheme to handle branches is to freeze or flush the pipeline, hold-
ing or deleting any instructions after the branch until the branch destinatio
known. The attractiveness of this solution lies primarily in its simplicity both
hardware and software. It is the solution used earlier in the pipeline show
Figure 3.21. In this case the branch penalty is fixed and cannot be reduc
software.

A higher performance, and only slightly more complex, scheme is to trea
ery branch as not taken, simply allowing the hardware to continue as if the br
were not executed. Here, care must be taken not to change the machine sta
the branch outcome is definitely known. The complexity that arises from ha
to know when the state might be changed by an instruction and how to “back
a change might cause us to choose the simpler solution of flushing the pipel
machines with complex pipeline structures.

In the DLX pipeline, this predict-not-taken or predict-untaken scheme is
implemented by continuing to fetch instructions as if the branch were a no
instruction. The pipeline looks as if nothing out of the ordinary is happening
the branch is taken, however, we need to turn the fetched instruction into a n
(simply by clearing the IF/ID register) and restart the fetch at the target add
Figure 3.26 shows both situations.

Untaken branch instruction IF ID EX MEM WB

Instruction i + 1 IF ID EX MEM WB

Instruction i + 2 IF ID EX MEM WB

Instruction i + 3 IF ID EX MEM WB

Instruction i + 4 IF ID EX MEM WB

Taken branch instruction IF ID EX MEM WB

Instruction i + 1 IF idle idle idle idle

Branch target IF ID EX MEM WB

Branch target + 1 IF ID EX MEM WB

Branch target + 2 IF ID EX MEM WB

FIGURE 3.26 The predict-not-taken scheme and the pipeline sequence when the branch is untaken (top) and taken
(bottom). When the branch is untaken, determined during ID, we have fetched the fall-through and just continue. If the
branch is taken during ID, we restart the fetch at the branch target. This causes all instructions following the branch to stall
one clock cycle.

168 Chapter 3 Pipelining

ranch
e taken
e we
 there
hose
nch
edict-
taken
 that
 pro-

nch,

DLX
. In
An alternative scheme is to treat every branch as taken. As soon as the b
is decoded and the target address is computed, we assume the branch to b
and begin fetching and executing at the target. Because in our DLX pipelin
don’t know the target address any earlier than we know the branch outcome,
is no advantage in this approach for DLX. In some machines—especially t
with implicitly set condition codes or more powerful (and hence slower) bra
conditions—the branch target is known before the branch outcome, and a pr
taken scheme might make sense. In either a predict-taken or predict-not-
scheme, the compiler can improve performance by organizing the code so
the most frequent path matches the hardware’s choice. Our fourth scheme
vides more opportunities for the compiler to improve performance.

A fourth scheme in use in some machines is called delayed branch. This tech-
nique is also used in many microprogrammed control units. In a delayed bra
the execution cycle with a branch delay of length n is

branch instruction

sequential successor 1
sequential successor 2

........
sequential successor n
branch target if taken

The sequential successors are in the branch-delay slots. These instructions are
executed whether or not the branch is taken. The pipeline behavior of the
pipeline, which would have one branch-delay slot, is shown in Figure 3.27

Untaken branch instruction IF ID EX MEM WB

Branch-delay instruction (i + 1) IF ID EX MEM WB

Instruction i + 2 IF ID EX MEM WB

Instruction i + 3 IF ID EX MEM WB

Instruction i + 4 IF ID EX MEM WB

Taken branch instruction IF ID EX MEM WB

Branch-delay instruction (i + 1) IF ID EX MEM WB

Branch target IF ID EX MEM WB

Branch target + 1 IF ID EX MEM WB

Branch target + 2 IF ID EX MEM WB

FIGURE 3.27 The behavior of a delayed branch is the same whether or not the branch is taken. The instructions in
the delay slot (there is only one delay slot for DLX) are executed. If the branch is untaken, execution continues with the in-
struction after the branch-delay instruction; if the branch is taken, execution continues at the branch target. When the in-
struction in the branch-delay slot is also a branch, the meaning is unclear: if the branch is not taken, what should happen to
the branch in the branch-delay slot? Because of this confusion, architectures with delay branches often disallow putting a
branch in the delay slot.

3.5 Control Hazards 169

, and

eful.
hich
ts for

y win.
practice, all machines with delayed branch have a single instruction delay
we focus on that case.

The job of the compiler is to make the successor instructions valid and us
A number of optimizations are used. Figure 3.28 shows the three ways in w
the branch delay can be scheduled. Figure 3.29 shows the different constrain
each of these branch-scheduling schemes, as well as situations in which the

FIGURE 3.28 Scheduling the branch-delay slot. The top box in each pair shows the
code before scheduling; the bottom box shows the scheduled code. In (a) the delay slot is
scheduled with an independent instruction from before the branch. This is the best choice.
Strategies (b) and (c) are used when (a) is not possible. In the code sequences for (b) and
(c), the use of R1 in the branch condition prevents the ADD instruction (whose destination is
R1) from being moved after the branch. In (b) the branch-delay slot is scheduled from the tar-
get of the branch; usually the target instruction will need to be copied because it can be
reached by another path. Strategy (b) is preferred when the branch is taken with high proba-
bility, such as a loop branch. Finally, the branch may be scheduled from the not-taken fall
through as in (c). To make this optimization legal for (b) or (c), it must be OK to execute the
moved instruction when the branch goes in the unexpected direction. By OK we mean that
the work is wasted, but the program will still execute correctly. This is the case, for example
in case (b), if R4 were an unused temporary register when the branch goes in the unexpected
direction.

(a) From before (b) From target (c) From fall through

SUB R4, R5, R6

ADD R1, R2, R3

if R1 = 0 then

ADD R1, R2, R3

if R1 = 0 then

SUB R4, R5, R6

SUB R4, R5, R6

ADD R1, R2, R3

if R1 = 0 then

 OR R7, R8, R9ADD R1, R2, R3

if R1 = 0 then

 SUB R4, R5, R6

ADD R1, R2, R3

if R2 = 0 then

if R2 = 0 then

 ADD R1, R2, R3

BecomesBecomesBecomes

Delay slot

Delay slot

Delay slot

OR R7, R8, R9

SUB R4, R5, R6

170 Chapter 3 Pipelining

ions
ity to
, we
 im-
ith

dict-
y slot

 the
ply
ncel-
The limitations on delayed-branch scheduling arise from (1) the restrict
on the instructions that are scheduled into the delay slots and (2) our abil
predict at compile time whether a branch is likely to be taken or not. Shortly
will see how we can better predict branches statically at compile time. To
prove the ability of the compiler to fill branch delay slots, most machines w
conditional branches have introduced a cancelling or nullifying branch. In a can-
celling branch, the instruction includes the direction that the branch was pre
ed. When the branch behaves as predicted, the instruction in the branch-dela
is simply executed as it would normally be with a delayed branch. When
branch is incorrectly predicted, the instruction in the branch-delay slot is sim
turned into a no-op. Figure 3.30 shows the behavior of a predicted-taken ca
ling branch, both when the branch is taken and untaken.

Scheduling strategy Requirements Improves performance when?

(a) From before Branch must not depend on the rescheduled instruc-
tions.

Always.

(b) From target Must be OK to execute rescheduled instructions if
branch is not taken. May need to duplicate instruc-
tions.

When branch is taken. May
enlarge program if instructions are
duplicated.

(c) From fall through Must be OK to execute instructions if branch is taken. When branch is not taken.

FIGURE 3.29 Delayed-branch scheduling schemes and their requirements. The origin of the instruction being sched-
uled into the delay slot determines the scheduling strategy. The compiler must enforce the requirements when looking for
instructions to schedule the delay slot. When the slots cannot be scheduled, they are filled with no-op instructions. In strategy
(b), if the branch target is also accessible from another point in the program—as it would be if it were the head of a loop—
the target instructions must be copied and not just moved.

Untaken branch instruction IF ID EX MEM WB

Branch-delay instruction (i + 1) IF idle idle idle idle

Instruction i + 2 IF ID EX MEM WB

Instruction i + 3 IF ID EX MEM WB

Instruction i + 4 IF ID EX MEM WB

Taken branch instruction IF ID EX MEM WB

Branch-delay instruction (i + 1) IF ID EX MEM WB

Branch target IF ID EX MEM WB

Branch target + 1 IF ID EX MEM WB

Branch target + 2 IF ID EX MEM WB

FIGURE 3.30 The behavior of a predicted-taken cancelling branch depends on whether the branch is taken or not.
The instruction in the delay slot is executed only if the branch is taken and is otherwise made into a no-op.

3.5 Control Hazards 171

ents
edul-
hown
 pro-
lling
ges,
nts of

th a
taken
d then

hese
 can-
ment)
branch-
t the
The advantage of cancelling branches is that they eliminate the requirem
on the instruction placed in the delay slot, enabling the compiler to use sch
ing schemes (b) and (c) of Figure 3.28 without meeting the requirements s
for these schemes in Figure 3.29. Most machines with cancelling branches
vide both a noncancelling form (i.e., a regular delayed branch) and a cance
form, usually cancel if not taken. This combination gains most of the advanta
but does not allow scheduling scheme (c) to be used unless the requireme
Figure 3.29 are met.

Figure 3.31 shows the effectiveness of the branch scheduling in DLX wi
single branch-delay slot and both a noncancelling branch and a cancel-if-un
form. The compiler uses a standard delayed branch whenever possible an
opts for a cancel-if-not-taken branch (also called branch likely). The second col-
umn shows that almost 20% of the branch delay slots are filled with no-ops. T
occur when it is not possible to fill the delay slot, either because the potential
didates are unknown (e.g., for a jump register that will be used in a case state
or because the successors are also branches. (Branches are not allowed in
delay slots because of the confusion in semantics.) The table shows tha

Benchmark
% conditional

branches

%
conditional
branches

with empty
slots

%
conditional
branches
that are

cancelling

%
cancelling
branches
that are

cancelled

%
branches

with
cancelled
delay slots

Total %
branches with

empty or
cancelled
delay slot

compress 14% 18% 31% 43% 13% 31%

eqntott 24% 24% 50% 24% 12% 36%

espresso 15% 29% 19% 21% 4% 33%

gcc 15% 16% 33% 34% 11% 27%

li 15% 20% 55% 48% 26% 46%

Integer average 17% 21% 38% 34% 13% 35%

doduc 8% 33% 12% 62% 7% 40%

ear 10% 37% 36% 14% 5% 42%

hydro2d 12% 0% 69% 24% 17% 17%

mdljdp2 9% 0% 86% 10% 9% 9%

su2cor 3% 7% 17% 57% 10% 17%

FP average 8% 16% 44% 33% 10% 25%

Overall average 12% 18% 41% 34% 12% 30%

FIGURE 3.31 Delayed and cancelling delay branches for DLX allow branch hazards to be hidden 70% of the time
on average for these 10 SPEC benchmarks. Empty delay slots cannot be filled at all (most often because the branch target
is another branch) in 18% of the branches. Just under half the conditional branches use a cancelling branch, and most of
these are not cancelled (65%). The behavior varies widely across benchmarks. When the fraction of conditional branches
is added in, the contribution to CPI varies even more widely.

172 Chapter 3 Pipelining

d de-
s are
mar-
lling
stall

is is
piler
xpos-
ISC
as at-
ore
h ap-
these
more
 the
 RISC
clude
remaining 80% of the branch delay slots are filled nearly equally by standar
layed branches and by cancelling branches. Most of the cancelling branche
not cancelled and hence contribute to useful computation. Figure 3.32 sum
izes the performance of the combination of delayed branch and cance
branch. Overall, 70% of the branch delays are usefully filled, reducing the
penalty to 0.3 cycles per conditional branch.

Delayed branches are an architecturally visible feature of the pipeline. Th
the source both of their primary advantage—allowing the use of simple com
scheduling to reduce branch penalties—and their primary disadvantage—e
ing an aspect of the implementation that is likely to change. In the early R
machines with single-cycle branch delays, the delayed branch approach w
tractive, since it yielded good performance with minimal hardware costs. M
recently, with deeper pipelines and longer branch delays, a delayed branc
proach is less useful since it cannot easily hide the longer delays. With
longer branch delays, most architects have found it necessary to include
powerful hardware schemes for branch prediction (which we will explore in
next chapter), making the delayed branch superfluous.This has led to recent
architectures that include both delayed and nondelayed branches or that in
only nondelayed branches, relying on hardware prediction.

FIGURE 3.32 The performance of delayed and cancelling branches is summarized by
showing the fraction of branches either with empty delay slots or with a cancelled de-
lay slot. On average 30% of the branch delay slots are wasted. The integer programs are,
on average, worse, wasting an average of 35% of the slots versus 25% for the FP programs.
Notice, though, that two of the FP programs waste more branch delay slots than four of the
five integer programs.

Percentage of
conditional branches

0%

50%

5%

10%

15%

20%

25%

45%

30%

35%

40%

Canceled delay slotsEmpty slot

Benchmark

co
m

pr
es

s

eq
nt

ot
t

es
pr

es
so gc

c li

do
du

c
ea

r

hy
dr

o2
d

m
dlj

dp

su
2c

or

3.5 Control Hazards 173

ngle-
PC is
 case,

ot. If
target
oth in-
 PCs
e in-

 pipe-

th un-
y are

hard-
n as
There is a small additional hardware cost for delayed branches. For a si
cycle delayed branch, the only case that exists in practice, a single extra
needed. To understand why an extra PC is needed for the single-cycle delay
consider when the interrupt occurs for the instruction in the branch-delay sl
the branch was taken, then the instruction in the delay slot and the branch
have addresses that are not sequential. Thus, we need to save the PCs of b
structions and restore them after the interrupt to restart the pipeline. The two
can be kept with the control in the pipeline latches and passed along with th
struction. This makes saving and restoring them easy.

Performance of Branch Schemes

What is the effective performance of each of these schemes? The effective
line speedup with branch penalties, assuming an ideal CPI of 1, is

Because of the following:

Pipeline stall cycles from branches = Branch frequency × Branch penalty

we obtain

The branch frequency and branch penalty can have a component from bo
conditional and conditional branches. However, the latter dominate since the
more frequent.

Using the DLX measurements in this section, Figure 3.33 shows several
ware options for dealing with branches, along with their performances give
branch penalty and as CPI (assuming a base CPI of 1).

Scheduling
scheme

Branch penalty per
conditional branch Penalty per

unconditional
branch

Average branch penalty
per branch

Effective CPI with
branch stalls

Integer FP Integer FP Integer FP

Stall pipeline 1.00 1.00 1.00 1.00 1.00 1.17 1.15

Predict taken 1.00 1.00 1.00 1.00 1.00 1.17 1.15

Predict not taken 0.62 0.70 1.0 0.69 0.74 1.12 1.11

Delayed branch 0.35 0.25 0.0 0.30 0.21 1.06 1.03

FIGURE 3.33 Overall costs of a variety of branch schemes with the DLX pipeline. These data are for our DLX pipeline
using the average measured branch frequencies from Figure 3.24 on page 165, the measurements of taken/untaken fre-
quencies from 3.25 on page 166, and the measurements of delay-slot filling from Figure 3.31 on page 171. Shown are both
the penalties per branch and the resulting overall CPI including only the effect of branch stalls and assuming a base CPI of 1.

Pipeline speedup
Pipeline depth

1 Pipeline stall cycles from branches+
---=

Pipeline speedup
Pipeline depth

1 Branch frequency Branch penalty×+
---=

174 Chapter 3 Pipelining

e an
ly one
as a
.

Remember that the numbers in this section are dramatically affected by the
length of the pipeline delay and the base CPI. A longer pipeline delay will caus
increase in the penalty and a larger percentage of wasted time. A delay of on
clock cycle is small—the R4000 pipeline, which we examine in section 3.9, h
conditional branch delay of three cycles. This results in a much higher penalty

E X A M P L E For an R4000-style pipeline, it takes three pipeline stages before the
branch target address is known and an additional cycle before the branch
condition is evaluated, assuming no stalls on the registers in the condi-
tional comparison. This leads to the branch penalties for the three sim-
plest prediction schemes listed in Figure 3.34.

Find the effective addition to the CPI arising from branches for this
pipeline, using the data from the 10 SPEC benchmarks in Figures 3.24
and 3.25.

A N S W E R We find the CPIs by multiplying the relative frequency of unconditional,
conditional untaken, and conditional taken branches by the respective
penalties. These frequencies for the 10 SPEC programs are 4%, 6%, and
10%, respectively. The results are shown in Figure 3.35.

The differences among the schemes are substantially increased with
this longer delay. If the base CPI was 1 and branches were the only
source of stalls, the ideal pipeline would be 1.56 times faster than a

Branch scheme Penalty unconditional Penalty untaken Penalty taken

Flush pipeline 2 3 3

Predict taken 2 3 2

Predict untaken 2 0 3

FIGURE 3.34 Branch penalties for the three simplest prediction schemes for a
deeper pipeline.

Addition to the CPI

Branch scheme
Unconditional

branches
Untaken conditional

branches
Taken conditional

branches All branches

Frequency of event 4% 6% 10% 20%

Stall pipeline 0.08 0.18 0.30 0.56

Predict taken 0.08 0.18 0.20 0.46

Predict untaken 0.08 0.00 0.30 0.38

FIGURE 3.35 CPI penalties for three branch-prediction schemes and a deeper pipeline.

3.5 Control Hazards 175

e com-
ctive-
way a
also

l
tak-
n we

h
, then

g how

hen
amic
y of
tatic

y ex-
cted
most

plest
diction
pipeline that used the stall-pipeline scheme. The predict-untaken scheme
would be 1.13 times better than the stall-pipeline scheme under the same
assumptions.

As we will see in section 3.9, the R4000 uses a mixed strategy with
a one-cycle, cancelling delayed branch for the first cycle of the branch
penalty. For an unconditional branch, a single-cycle stall is always added.
For conditional branches, the remaining two cycles of the branch penalty
use a predict-not-taken scheme. We will see measurements of the effec-
tive branch penalties for this strategy later. ■

Static Branch Prediction: Using Compiler Technology

Delayed branches are a technique that exposes a pipeline hazard so that th
piler can reduce the penalty associated with the hazard. As we saw, the effe
ness of this technique partly depends on whether we correctly guess which
branch will go. Being able to accurately predict a branch at compile time is
helpful for scheduling data hazards. Consider the following code segment:

LW R1,0(R2)

SUB R1,R1,R3

BEQZ R1,L

OR R4,R5,R6

ADD R10,R4,R3

L: ADD R7,R8,R9

The dependence of the SUB and BEQZ on the LW instruction means that a stall wil
be needed after the LW. Suppose we knew that this branch was almost always
en and that the value of R7 was not needed on the fall-through path. The
could increase the speed of the program by moving the instruction ADD

R7,R8,R9 to the position after the LW. Correspondingly, if we knew the branc
was rarely taken and that the value of R4 was not needed on the taken path
we could contemplate moving the OR instruction after the LW. In addition, we can
also use the information to better schedule any branch delay, since choosin
to schedule the delay depends on knowing the branch behavior.

To perform these optimizations, we need to predict the branch statically w
we compile the program. In the next chapter, we will examine the use of dyn
prediction based on runtime program behavior. We will also look at a variet
compile-time methods for scheduling code; these techniques require s
branch prediction and thus the ideas in this section are critical.

There are two basic methods we can use to statically predict branches: b
amination of the program behavior and by the use of profile information colle
from earlier runs of the program. We saw in Figure 3.25 (page 166) that
branches were taken for both forward and backward branches. Thus, the sim
scheme is to predict a branch as taken. This scheme has an average mispre

176 Chapter 3 Pipelining

4%).
) to

sing
t tak-
taken
r than
 than

es as
tion-

 than

nfor-
orth-
, an
.36
t data
 that
mall
rate for the 10 programs in Figure 3.25 of the untaken branch frequency (3
Unfortunately, the misprediction rate ranges from not very accurate (59%
highly accurate (9%).

Another alternative is to predict on the basis of branch direction, choo
backward-going branches to be taken and forward-going branches to be no
en. For some programs and compilation systems, the frequency of forward
branches may be significantly less than 50%, and this scheme will do bette
just predicting all branches as taken. In our SPEC programs, however, more
half of the forward-going branches are taken. Hence, predicting all branch
taken is the better approach. Even for other benchmarks or compilers, direc
based prediction is unlikely to generate an overall misprediction rate of less
30% to 40%.

A more accurate technique is to predict branches on the basis of profile i
mation collected from earlier runs. The key observation that makes this w
while is that the behavior of branches is often bimodally distributed; that is
individual branch is often highly biased toward taken or untaken. Figure 3
shows the success of branch prediction using this strategy. The same inpu
were used for runs and for collecting the profile; other studies have shown
changing the input so that the profile is for a different run leads to only a s
change in the accuracy of profile-based prediction.

FIGURE 3.36 Misprediction rate for a profile-based predictor varies widely but is gen-
erally better for the FP programs, which have an average misprediction rate of 9% with
a standard deviation of 4%, than for the integer programs, which have an average
misprediction rate of 15% with a standard deviation of 5%. The actual performance de-
pends on both the prediction accuracy and the branch frequency, which varies from 3% to
24% in Figure 3.31 (page 171); we will examine the combined effect in Figure 3.37.

Misprediction rate

0%

25%

5%

10%

20%

15%

Benchmark

co
m

pr
es

s

eq
nt

ot
t

es
pr

es
so gc

c li

do
du

c
ea

r

hy
dr

o2
d

m
dlj

dp

su
2c

or

12%

22%

18%

11%
12%

5% 6%

9% 10%

15%

3.5 Control Hazards 177

 and
ge of

eans
3.37
s for

, both
n av-
h and
nt for

total
LX

FP
nch-
anch
While we can derive the prediction accuracy of a predict-taken strategy
measure the accuracy of the profile scheme, as in Figure 3.36, the wide ran
frequency of conditional branches in these programs, from 3% to 24%, m
that the overall frequency of a mispredicted branch varies widely. Figure
shows the number of instructions executed between mispredicted branche
both a profile-based and a predict-taken strategy. The number varies widely
because of the variation in accuracy and the variation in branch frequency. O
erage, the predict-taken strategy has 20 instructions per mispredicted branc
the profile-based strategy has 110. However, these averages are very differe
integer and FP programs, as the data in Figure 3.37 show.

Summary: Performance of the DLX Integer Pipeline

We close this section on hazard detection and elimination by showing the
distribution of idle clock cycles for our integer benchmarks when run on the D
pipeline with software for pipeline scheduling. (After we examine the DLX
pipeline in section 3.7, we will examine the overall performance of the FP be
marks.) Figure 3.38 shows the distribution of clock cycles lost to load and br

FIGURE 3.37 Accuracy of a predict-taken strategy and a profile-based predictor as measured by the number of
instructions executed between mispredicted branches and shown on a log scale. The average number of instructions
between mispredictions is 20 for the predict-taken strategy and 110 for the profile-based prediction; however, the standard
deviations are large: 27 instructions for the predict-taken strategy and 85 instructions for the profile-based scheme. This wide
variation arises because programs such as su2cor have both low conditional branch frequency (3%) and predictable branch-
es (85% accuracy for profiling), while eqntott has eight times the branch frequency with branches that are nearly 1.5 times
less predictable. The difference between the FP and integer benchmarks as groups is large. For the predict-taken strategy,
the average distance between mispredictions for the integer benchmarks is 10 instructions, while it is 30 instructions for the
FP programs. With the profile scheme, the distance between mispredictions for the integer benchmarks is 46 instructions,
while it is 173 instructions for the FP benchmarks.

Instructions between
mispredictions

1

10

100

1000

11

9692

11

159

19

250

14

58

11

60

11
37

6

1910

56

14

113 253

Profile basedPredict taken

Benchmark

co
m

pr
es

s

eq
nt

ot
t

es
pr

es
so gc

c li

do
du

c
ea

r

hy
dr

o2
d

m
dlj

dp

su
2c

or

178 Chapter 3 Pipelining

n Fig-

r in-
from
rfect
rfor-

l with
 con-
n or-

iscuss
delays, which is obtained by combining the separate measurements shown i
ures 3.16 (page 157) and 3.31 (page 171).

Overall the integer programs exhibit an average of 0.06 branch stalls pe
struction and 0.05 load stalls per instruction, leading to an average CPI
pipelining (i.e., assuming a perfect memory system) of 1.11. Thus, with a pe
memory system and no clock overhead, pipelining could improve the pe
mance of these five integer SPECint92 benchmarks by 5/1.11 or 4.5 times.

Now that we understand how to detect and resolve hazards, we can dea
some complications that we have avoided so far. The first part of this section
siders the challenges of exceptional situations where the instruction executio
der is changed in unexpected ways. In the second part of this section, we d
some of the challenges raised by different instruction sets.

FIGURE 3.38 Percentage of the instructions that cause a stall cycle. This assumes a
perfect memory system; the clock-cycle count and instruction count would be identical if there
were no integer pipeline stalls. It also assumes the availability of both a basic delayed branch
and a cancelling delayed branch, both with one cycle of delay. According to the graph, from
8% to 23% of the instructions cause a stall (or a cancelled instruction), leading to CPIs from
pipeline stalls that range from 1.09 to 1.23. The pipeline scheduler fills load delays before
branch delays, and this affects the distribution of delay cycles.

3.6 What Makes Pipelining Hard to Implement?

Percentage of all instructions that stall

0%

2%

4%

6%

8%

10%

12%

14%

5%

7%

3%

9%

14%

4%
5%

4%
5%

7%

Load stallsBranch stalls

Benchmark

co
m

pr
es

s

eq
nt

ot
t

es
pr

es
so gc

c li

3.6 What Makes Pipelining Hard to Implement? 179

e the
uc-
n in-

ycles.
may
lete.
nder-
 exist

xecu-

term

se a
gure
ents

l
in the
semi-
Dealing with Exceptions

Exceptional situations are harder to handle in a pipelined machine becaus
overlapping of instructions makes it more difficult to know whether an instr
tion can safely change the state of the machine. In a pipelined machine, a
struction is executed piece by piece and is not completed for several clock c
Unfortunately, other instructions in the pipeline can raise exceptions that
force the machine to abort the instructions in the pipeline before they comp
Before we discuss these problems and their solutions in detail, we need to u
stand what types of situations can arise and what architectural requirements
for supporting them.

Types of Exceptions and Requirements
The terminology used to describe exceptional situations where the normal e
tion order of instruction is changed varies among machines. The terms interrupt,
fault, and exception are used, though not in a consistent fashion. We use the
exception to cover all these mechanisms, including the following:

I/O device request

Invoking an operating system service from a user program

Tracing instruction execution

Breakpoint (programmer-requested interrupt)

Integer arithmetic overflow

FP arithmetic anomaly (see Appendix A)

Page fault (not in main memory)

Misaligned memory accesses (if alignment is required)

Memory-protection violation

Using an undefined or unimplemented instruction

Hardware malfunctions

Power failure

When we wish to refer to some particular class of such exceptions, we will u
longer name, such as I/O interrupt, floating-point exception, or page fault. Fi
3.39 shows the variety of different names for the common exception ev
above.

Although we use the name exception to cover all of these events, individua
events have important characteristics that determine what action is needed
hardware.The requirements on exceptions can be characterized on five
independent axes:

180 Chapter 3 Pipelining

v-
tion,

mory.
f the
1. Synchronous versus asynchronous—If the event occurs at the same place e
ery time the program is executed with the same data and memory alloca
the event is synchronous. With the exception of hardware malfunctions, asyn-
chronous events are caused by devices external to the processor and me
Asynchronous events usually can be handled after the completion o
current instruction, which makes them easier to handle.

Exception event IBM 360 VAX Motorola 680x0 Intel 80x86

I/O device request Input/output
interruption

Device interrupt Exception (Level 0...7
autovector)

Vectored interrupt

Invoking the operat-
ing system service
from a user
program

Supervisor call
interruption

Exception (change
mode supervisor
trap)

Exception
(unimplemented
instruction)—
on Macintosh

Interrupt
(INT instruction)

Tracing instruction
execution

Not applicable Exception (trace
fault)

Exception (trace) Interrupt (single-
step trap)

Breakpoint Not applicable Exception (break-
point fault)

Exception (illegal
instruction or break-
point)

Interrupt (break-
point trap)

Integer arithmetic
overflow or under-
flow; FP trap

Program interrup-
tion (overflow or
underflow
exception)

Exception (integer
overflow trap or
floating underflow
fault)

Exception
(floating-point
coprocessor errors)

Interrupt (overflow
trap or math unit
exception)

Page fault (not in
main memory)

Not applicable (only
in 370)

Exception (transla-
tion not valid fault)

Exception (memory-
management unit
errors)

Interrupt
(page fault)

Misaligned memory
accesses

Program interrup-
tion (specification
exception)

Not applicable Exception
(address error)

Not applicable

Memory protection
violations

Program interrup-
tion (protection
exception)

Exception (access
control violation
fault)

Exception
(bus error)

Interrupt (protection
exception)

Using undefined
instructions

Program interrup-
tion (operation
exception)

Exception (opcode
privileged/
reserved fault)

Exception (illegal
instruction or break-
point/unimplemented
instruction)

Interrupt (invalid
opcode)

Hardware
malfunctions

Machine-check
interruption

Exception
(machine-check
abort)

Exception
(bus error)

Not applicable

Power failure Machine-check
interruption

Urgent interrupt Not applicable Nonmaskable
interrupt

FIGURE 3.39 The names of common exceptions vary across four different architectures. Every event on the IBM
360 and 80x86 is called an interrupt, while every event on the 680x0 is called an exception. VAX divides events into inter-
rupts or exceptions. Adjectives device, software, and urgent are used with VAX interrupts, while VAX exceptions are subdi-
vided into faults, traps, and aborts.

3.6 What Makes Pipelining Hard to Implement? 181

xcep-
r, be-

are used
ction
ptions

 user
re not

-
r

r
xe-

e
 that
ction
in in-
 and

e
er
at
tion of

 five
uc-
s re-

cuting
e pro-
s pro-
ides
estart
id to
ked
ipe-
2. User requested versus coerced—If the user task directly asks for it, it is a user-
request event. In some sense, user-requested exceptions are not really e
tions, since they are predictable. They are treated as exceptions, howeve
cause the same mechanisms that are used to save and restore the state
for these user-requested events. Because the only function of an instru
that triggers this exception is to cause the exception, user-requested exce
can always be handled after the instruction has completed. Coerced exceptions
are caused by some hardware event that is not under the control of the
program. Coerced exceptions are harder to implement because they a
predictable.

3. User maskable versus user nonmaskable—If an event can be masked or dis
abled by a user task, it is user maskable. This mask simply controls whethe
the hardware responds to the exception or not.

4. Within versus between instructions—This classification depends on whethe
the event prevents instruction completion by occurring in the middle of e
cution—no matter how short—or whether it is recognized between instruc-
tions. Exceptions that occur within instructions are usually synchronous, sinc
the instruction triggers the exception. It’s harder to implement exceptions
occur within instructions than those between instructions, since the instru
must be stopped and restarted. Asynchronous exceptions that occur with
structions arise from catastrophic situations (e.g., hardware malfunction)
always cause program termination.

5. Resume versus terminate—If the program’s execution always stops after th
interrupt, it is a terminating event. If the program’s execution continues aft
the interrupt, it is a resuming event. It is easier to implement exceptions th
terminate execution, since the machine need not be able to restart execu
the same program after handling the exception.

Figure 3.40 classifies the examples from Figure 3.39 according to these
categories. The difficult task is implementing interrupts occurring within instr
tions where the instruction must be resumed. Implementing such exception
quires that another program must be invoked to save the state of the exe
program, correct the cause of the exception, and then restore the state of th
gram before the instruction that caused the exception can be tried again. Thi
cess must be effectively invisible to the executing program. If a pipeline prov
the ability for the machine to handle the exception, save the state, and r
without affecting the execution of the program, the pipeline or machine is sa
be restartable. While early supercomputers and microprocessors often lac
this property, almost all machines today support it, at least for the integer p
line, because it is needed to implement virtual memory (see Chapter 5).

182 Chapter 3 Pipelining

rop-
tion
e re-
ult-
 the
exe-
other
y shut
orrect
n at

inue
shion.
ondi-
cep-
eline

e

te

e

Stopping and Restarting Execution
As in unpipelined implementations, the most difficult exceptions have two p
erties: (1) they occur within instructions (that is, in the middle of the instruc
execution corresponding to EX or MEM pipe stages), and (2) they must b
startable. In our DLX pipeline, for example, a virtual memory page fault res
ing from a data fetch cannot occur until sometime in the MEM stage of
instruction. By the time that fault is seen, several other instructions will be in
cution. A page fault must be restartable and requires the intervention of an
process, such as the operating system. Thus, the pipeline must be safel
down and the state saved so that the instruction can be restarted in the c
state. Restarting is usually implemented by saving the PC of the instructio
which to restart. If the restarted instruction is not a branch, then we will cont
to fetch the sequential successors and begin their execution in the normal fa
If the restarted instruction is a branch, then we will reevaluate the branch c
tion and begin fetching from either the target or the fall through. When an ex
tion occurs, the pipeline control can take the following steps to save the pip
state safely:

Exception type
Synchronous vs.
asynchronous

User
request vs.
coerced

User
maskable vs.
nonmaskable

Within vs.
between
instructions

Resume
vs.
terminate

I/O device request Asynchronous Coerced Nonmaskable Between Resume

Invoke operating system Synchronous User
request

Nonmaskable Between Resume

Tracing instruction execution Synchronous User
request

User maskable Between Resume

Breakpoint Synchronous User
request

User maskable Between Resume

Integer arithmetic overflow Synchronous Coerced User maskable Within Resume

Floating-point arithmetic
overflow or underflow

Synchronous Coerced User maskable Within Resume

Page fault Synchronous Coerced Nonmaskable Within Resume

Misaligned memory accesses Synchronous Coerced User maskable Within Resum

Memory-protection
violations

Synchronous Coerced Nonmaskable Within Resume

Using undefined instructions Synchronous Coerced Nonmaskable Within Termina

Hardware malfunctions Asynchronous Coerced Nonmaskable Within Terminat

Power failure Asynchronous Coerced Nonmaskable Within Terminate

FIGURE 3.40 Five categories are used to define what actions are needed for the different exception types shown
in Figure 3.39. Exceptions that must allow resumption are marked as resume, although the software may often choose to
terminate the program. Synchronous, coerced exceptions occurring within instructions that can be resumed are the most
difficult to implement. We might expect that memory protection access violations would always result in termination; how-
ever, modern operating systems use memory protection to detect events such as the first attempt to use a page or the first
write to a page. Thus, processors should be able to resume after such exceptions.

3.6 What Makes Pipelining Hard to Implement? 183

 all
into
uc-
ction.
d be-

trol,
sed

 long-
the in-
e and
one in

chine
 (us-

 in-
t can

dling
other
ome
es, the
ination
 may
rit-
pera-
igh-
e has
ourse,
ting-

064,
mes)

 oth-
At a
lers
tware
asier,
cise
1. Force a trap instruction into the pipeline on the next IF.

2. Until the trap is taken, turn off all writes for the faulting instruction and for
instructions that follow in the pipeline; this can be done by placing zeros
the pipeline latches of all instructions in the pipeline, starting with the instr
tion that generates the exception, but not those that precede that instru
This prevents any state changes for instructions that will not be complete
fore the exception is handled.

3. After the exception-handling routine in the operating system receives con
it immediately saves the PC of the faulting instruction. This value will be u
to return from the exception later.

When we use delayed branches, as mentioned in the last section, it is no
er possible to re-create the state of the machine with a single PC because
structions in the pipeline may not be sequentially related. So we need to sav
restore as many PCs as the length of the branch delay plus one. This is d
the third step above.

After the exception has been handled, special instructions return the ma
from the exception by reloading the PCs and restarting the instruction stream
ing the instruction RFE in DLX). If the pipeline can be stopped so that the
structions just before the faulting instruction are completed and those after i
be restarted from scratch, the pipeline is said to have precise exceptions. Ideally,
the faulting instruction would not have changed the state, and correctly han
some exceptions requires that the faulting instruction have no effects. For
exceptions, such as floating-point exceptions, the faulting instruction on s
machines writes its result before the exception can be handled. In such cas
hardware must be prepared to retrieve the source operands, even if the dest
is identical to one of the source operands. Because floating-point operations
run for many cycles, it is highly likely that some other instruction may have w
ten the source operands (as we will see in the next section, floating-point o
tions often complete out of order). To overcome this, many recent h
performance machines have introduced two modes of operation. One mod
precise exceptions and the other (fast or performance mode) does not. Of c
the precise exception mode is slower, since it allows less overlap among floa
point instructions. In some high-performance machines, including Alpha 21
Power-2, and MIPS R8000, the precise mode is often much slower (>10 ti
and thus useful only for debugging of codes.

Supporting precise exceptions is a requirement in many systems, while in
ers it is “just” valuable because it simplifies the operating system interface.
minimum, any machine with demand paging or IEEE arithmetic trap hand
must make its exceptions precise, either in the hardware or with some sof
support. For integer pipelines, the task of creating precise exceptions is e
and accommodating virtual memory strongly motivates the support of pre

184 Chapter 3 Pipelining

igners
e. In
inte-
hal-

ons
 the
xam-

ption

d then
st, if
ndled

 Ex-
ption
e of in-
he
en

;
exceptions for memory references. In practice, these reasons have led des
and architects to always provide precise exceptions for the integer pipelin
this section we describe how to implement precise exceptions for the DLX
ger pipeline. We will describe techniques for handling the more complex c
lenges arising in the FP pipeline in section 3.7.

Exceptions in DLX

Figure 3.41 shows the DLX pipeline stages and which “problem” excepti
might occur in each stage. With pipelining, multiple exceptions may occur in
same clock cycle because there are multiple instructions in execution. For e
ple, consider this instruction sequence:

This pair of instructions can cause a data page fault and an arithmetic exce
at the same time, since the LW is in the MEM stage while the ADD is in the EX
stage. This case can be handled by dealing with only the data page fault an
restarting the execution. The second exception will reoccur (but not the fir
the software is correct), and when the second exception occurs, it can be ha
independently.

In reality, the situation is not as straightforward as this simple example.
ceptions may occur out of order; that is, an instruction may cause an exce
before an earlier instruction causes one. Consider again the above sequenc
structions, LW followed by ADD. The LW can get a data page fault, seen when t
instruction is in MEM, and the ADD can get an instruction page fault, seen wh

LW IF ID EX MEM WB

ADD IF ID EX MEM WB

Pipeline stage Problem exceptions occurring

IF Page fault on instruction fetch; misaligned memory access
memory-protection violation

ID Undefined or illegal opcode

EX Arithmetic exception

MEM Page fault on data fetch; misaligned memory access;
memory-protection violation

WB None

FIGURE 3.41 Exceptions that may occur in the DLX pipeline. Exceptions raised from in-
struction or data-memory access account for six out of eight cases.

3.6 What Makes Pipelining Hard to Implement? 185

t,

 han-
,

n
 out
 by a

ption
ce an
l that
ister

MEM,
es an

tatus
der in
rre-

at in-
n on
e
le
see in

xcep-
ns.

that
uar-

ng of
xcep-
 state
ces-
modes
ecu-
t will
d the
cise

 af-
at-

stly,
the ADD instruction is in IF. The instruction page fault will actually occur firs
even though it is caused by a later instruction!

Since we are implementing precise exceptions, the pipeline is required to
dle the exception caused by the LW instruction first. To explain how this works
let’s call the instruction in the position of the LW instruction i, and the instruction
in the position of the ADD instruction i + 1. The pipeline cannot simply handle a
exception when it occurs in time, since that will lead to exceptions occurring
of the unpipelined order. Instead, the hardware posts all exceptions caused
given instruction in a status vector associated with that instruction. The exce
status vector is carried along as the instruction goes down the pipeline. On
exception indication is set in the exception status vector, any control signa
may cause a data value to be written is turned off (this includes both reg
writes and memory writes). Because a store can cause an exception during
the hardware must be prepared to prevent the store from completing if it rais
exception.

When an instruction enters WB (or is about to leave MEM), the exception s
vector is checked. If any exceptions are posted, they are handled in the or
which they would occur in time on an unpipelined machine—the exception co
sponding to the earliest instruction (and usually the earliest pipe stage for th
struction) is handled first. This guarantees that all exceptions will be see
instruction i before any are seen on i + 1. Of course, any action taken in earlier pip
stages on behalf of instruction i may be invalid, but since writes to the register fi
and memory were disabled, no state could have been changed. As we will
section 3.7, maintaining this precise model for FP operations is much harder.

In the next subsection we describe problems that arise in implementing e
tions in the pipelines of machines with more powerful, longer-running instructio

Instruction Set Complications

No DLX instruction has more than one result, and our DLX pipeline writes
result only at the end of an instruction’s execution. When an instruction is g
anteed to complete it is called committed. In the DLX integer pipeline, all instruc-
tions are committed when they reach the end of the MEM stage (or beginni
WB) and no instruction updates the state before that stage. Thus, precise e
tions are straightforward. Some machines have instructions that change the
in the middle of the instruction execution, before the instruction and its prede
sors are guaranteed to complete. For example, autoincrement addressing
on the VAX cause the update of registers in the middle of an instruction ex
tion. In such a case, if the instruction is aborted because of an exception, i
leave the machine state altered. Although we know which instruction cause
exception, without additional hardware support the exception will be impre
because the instruction will be half finished. Restarting the instruction stream
ter such an imprecise exception is difficult. Alternatively, we could avoid upd
ing the state before the instruction commits, but this may be difficult or co

186 Chapter 3 Pipelining

uction
ecise
back
ption

 value
at a
nd
ption

ory
0. To
re de-
tate of
d on
ntin-
rted
chine

le of
rking
state of

ddi-
ondi-
odes

ondi-
ow-

any
st in-
tween

cide
tion
th im-
lua-
e.
 be-
ntrol
 the

as an
st as

 to
since there may be dependences on the updated state: Consider a VAX instr
that autoincrements the same register multiple times. Thus, to maintain a pr
exception model, most machines with such instructions have the ability to
out any state changes made before the instruction is committed. If an exce
occurs, the machine uses this ability to reset the state of the machine to its
before the interrupted instruction started. In the next section, we will see th
more powerful DLX floating-point pipeline can introduce similar problems, a
the next chapter introduces techniques that substantially complicate exce
handling.

A related source of difficulties arises from instructions that update mem
state during execution, such as the string copy operations on the VAX or 36
make it possible to interrupt and restart these instructions, the instructions a
fined to use the general-purpose registers as working registers. Thus the s
the partially completed instruction is always in the registers, which are save
an exception and restored after the exception, allowing the instruction to co
ue. In the VAX an additional bit of state records when an instruction has sta
updating the memory state, so that when the pipeline is restarted, the ma
knows whether to restart the instruction from the beginning or from the midd
the instruction. The 80x86 string instructions also use the registers as wo
storage, so that saving and restoring the registers saves and restores the
such instructions.

A different set of difficulties arises from odd bits of state that may create a
tional pipeline hazards or may require extra hardware to save and restore. C
tion codes are a good example of this. Many machines set the condition c
implicitly as part of the instruction. This approach has advantages, since c
tion codes decouple the evaluation of the condition from the actual branch. H
ever, implicitly set condition codes can cause difficulties in scheduling
pipeline delays between setting the condition code and the branch, since mo
structions set the condition code and cannot be used in the delay slots be
the condition evaluation and the branch.

Additionally, in machines with condition codes, the processor must de
when the branch condition is fixed. This involves finding out when the condi
code has been set for the last time before the branch. In most machines wi
plicitly set condition codes, this is done by delaying the branch condition eva
tion until all previous instructions have had a chance to set the condition cod

Of course, architectures with explicitly set condition codes allow the delay
tween condition test and the branch to be scheduled; however, pipeline co
must still track the last instruction that sets the condition code to know when
branch condition is decided. In effect, the condition code must be treated
operand that requires hazard detection for RAW hazards with branches, ju
DLX must do on the registers.

A final thorny area in pipelining is multicycle operations. Imagine trying
pipeline a sequence of VAX instructions such as this:

3.7 Extending the DLX Pipeline to Handle Multicycle Operations 187

ire,
rent

ta haz-
 sim-
lock
ds and
X at
00

ction
the
can
uch

ilar
ship
s for

ine

ting-
ign al-

point

 in
k, or
, the
si-

pipe-
ycle
umber
tiple
ed
 data
MOVL R1,R2

ADDL3 42(R1),56(R1)+,@(R1)

SUBL2 R2,R3

MOVC3 @(R1)[R2],74(R2),R3

These instructions differ radically in the number of clock cycles they will requ
from as low as one up to hundreds of clock cycles. They also require diffe
numbers of data memory accesses, from zero to possibly hundreds. The da
ards are very complex and occur both between and within instructions. The
ple solution of making all instructions execute for the same number of c
cycles is unacceptable, because it introduces an enormous number of hazar
bypass conditions and makes an immensely long pipeline. Pipelining the VA
the instruction level is difficult, but a clever solution was found by the VAX 88
designers. They pipeline the microinstruction execution: a microinstruction is a
simple instruction used in sequences to implement a more complex instru
set. Because the microinstructions are simple (they look a lot like DLX),
pipeline control is much easier. While it is not clear that this approach
achieve quite as low a CPI as an instruction-level pipeline for the VAX, it is m
simpler, possibly leading to a shorter clock cycle.

In comparison, load-store machines have simple operations with sim
amounts of work and pipeline more easily. If architects realize the relation
between instruction set design and pipelining, they can design architecture
more efficient pipelining. In the next section we will see how the DLX pipel
deals with long-running instructions, specifically floating-point operations.

We now want to explore how our DLX pipeline can be extended to handle floa
point operations. This section concentrates on the basic approach and the des
ternatives, closing with some performance measurements of a DLX floating-
pipeline.

It is impractical to require that all DLX floating-point operations complete
one clock cycle, or even in two. Doing so would mean accepting a slow cloc
using enormous amounts of logic in the floating-point units, or both. Instead
floating-point pipeline will allow for a longer latency for operations. This is ea
er to grasp if we imagine the floating-point instructions as having the same
line as the integer instructions, with two important changes. First, the EX c
may be repeated as many times as needed to complete the operation—the n
of repetitions can vary for different operations. Second, there may be mul
floating-point functional units. A stall will occur if the instruction to be issu
will either cause a structural hazard for the functional unit it uses or cause a
hazard.

3.7 Extending the DLX Pipeline to
Handle Multicycle Operations

188 Chapter 3 Pipelining

its in

tions,

t pipe-
s not
pre-
 EX

 unit
f clock
wn in
For this section, let’s assume that there are four separate functional un
our DLX implementation:

1. The main integer unit that handles loads and stores, integer ALU opera
and branches.

2. FP and integer multiplier.

3. FP adder that handles FP add, subtract, and conversion.

4. FP and integer divider.

If we also assume that the execution stages of these functional units are no
lined, then Figure 3.42 shows the resulting pipeline structure. Because EX i
pipelined, no other instruction using that functional unit may issue until the
vious instruction leaves EX. Moreover, if an instruction cannot proceed to the
stage, the entire pipeline behind that instruction will be stalled.

In reality, the intermediate results are probably not cycled around the EX
as Figure 3.42 suggests; instead, the EX pipeline stage has some number o
delays larger than 1. We can generalize the structure of the FP pipeline sho

FIGURE 3.42 The DLX pipeline with three additional unpipelined, floating-point, func-
tional units. Because only one instruction issues on every clock cycle, all instructions go
through the standard pipeline for integer operations. The floating-point operations simply loop
when they reach the EX stage. After they have finished the EX stage, they proceed to MEM
and WB to complete execution.

EX

FP/integer
multiply

EX

Integer unit

EX

FP adder

EX

FP/integer
divider

IF ID MEM WB

3.7 Extending the DLX Pipeline to Handle Multicycle Operations 189

ons.
ional

n in-
initia-
suing
itia-

 0,
ncy of
pera-

y the
ple,

ion is
tency
ill be

n the
tage
bove,
n FP

r log-
ed for
long-

ding
 3.44
inter-
hich
epen-
clock
those
 active.
Figure 3.42 to allow pipelining of some stages and multiple ongoing operati
To describe such a pipeline, we must define both the latency of the funct
units and also the initiation interval or repeat interval. We define latency the
same way we defined it earlier: the number of intervening cycles between a
struction that produces a result and an instruction that uses the result. The
tion or repeat interval is the number of cycles that must elapse between is
two operations of a given type. For example, we will use the latencies and in
tion intervals shown in Figure 3.43.

With this definition of latency, integer ALU operations have a latency of
since the results can be used on the next clock cycle, and loads have a late
1, since their results can be used after one intervening cycle. Since most o
tions consume their operands at the beginning of EX, the latency is usuall
number of stages after EX that an instruction produces a result—for exam
zero stages for ALU operations and one stage for loads. The primary except
stores, which consume the value being stored one cycle later. Hence the la
to a store for the value being stored, but not for the base address register, w
one cycle less. Pipeline latency is essentially equal to one cycle less tha
depth of the execution pipeline, which is the number of stages from the EX s
to the stage that produces the result. Thus, for the example pipeline just a
the number of stages in an FP add is four, while the number of stages in a
multiply is seven. To achieve a higher clock rate, designers need to put fewe
ic levels in each pipe stage, which makes the number of pipe stages requir
more complex operations larger. The penalty for the faster clock rate is thus
er latency for operations.

The example pipeline structure in Figure 3.43 allows up to four outstan
FP adds, seven outstanding FP/integer multiplies, and one FP divide. Figure
shows how this pipeline can be drawn by extending Figure 3.42. The repeat
val is implemented in Figure 3.44 by adding additional pipeline stages, w
will be separated by additional pipeline registers. Because the units are ind
dent, we name the stages differently. The pipeline stages that take multiple
cycles, such as the divide unit, are further subdivided to show the latency of
stages. Because they are not complete stages, only one operation may be

Functional unit Latency Initiation interval

Integer ALU 0 1

Data memory (integer and FP loads) 1 1

FP add 3 1

FP multiply (also integer multiply) 6 1

FP divide (also integer divide) 24 25

FIGURE 3.43 Latencies and initiation intervals for functional units.

190 Chapter 3 Pipelining

arlier
nd FP

es the
tion.
The pipeline structure can also be shown using the familiar diagrams from e
in the chapter, as Figure 3.45 shows for a set of independent FP operations a
loads and stores. Naturally, the longer latency of the FP operations increas
frequency of RAW hazards and resultant stalls, as we will see later in this sec

FIGURE 3.44 A pipeline that supports multiple outstanding FP operations. The FP multiplier and adder are fully pipe-
lined and have a depth of seven and four stages, respectively. The FP divider is not pipelined, but requires 24 clock cycles
to complete. The latency in instructions between the issue of an FP operation and the use of the result of that operation
without incurring a RAW stall is determined by the number of cycles spent in the execution stages. For example, the fourth
instruction after an FP add can use the result of the FP add. For integer ALU operations, the depth of the execution pipeline
is always one and the next instruction can use the results. Both FP loads and integer loads complete during MEM, which
means that the memory system must provide either 32 or 64 bits in a single clock.

MULTD IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB

ADDD IF ID A1 A2 A3 A4 MEM WB

LD IF ID EX MEM WB

SD IF ID EX MEM WB

FIGURE 3.45 The pipeline timing of a set of independent FP operations. The stages in italics show where data is
needed, while the stages in bold show where a result is available. FP loads and stores use a 64-bit path to memory so that
the pipelining timing is just like an integer load or store.

EX

M1

FP/integer multiply

Integer unit

FP adder

FP/integer divider

IF ID MEM WB

M2 M3 M4 M5 M6

A1 A2 A3 A4

M7

DIV

3.7 Extending the DLX Pipeline to Handle Multicycle Operations 191

 ad-
of
 con-
so-
or
ught

parate
ontrol

rding

cur.
lled.

ister

 Note
 ID.

using

ore

y the
 that

l im-
he re-
s FP

 the
 of FP
nflicts

3.47:
gis-
 the
zard.
may
is is
ad, we

The structure of the pipeline in Figure 3.44 requires the introduction of the
ditional pipeline registers (e.g., A1/A2, A2/A3, A3/A4) and the modification
the connections to those registers. The ID/EX register must be expanded to
nect ID to EX, DIV, M1, and A1; we can refer to the portion of the register as
ciated with one of the next stages with the notation ID/EX, ID/DIV, ID/M1,
ID/A1. The pipeline register between ID and all the other stages may be tho
of as logically separate registers and may, in fact, be implemented as se
registers. Because only one operation can be in a pipe stage at a time, the c
information can be associated with the register at the head of the stage.

Hazards and Forwarding in Longer Latency Pipelines

There are a number of different aspects to the hazard detection and forwa
for a pipeline like that in Figure 3.44:

1. Because the divide unit is not fully pipelined, structural hazards can oc
These will need to be detected and issuing instructions will need to be sta

2. Because the instructions have varying running times, the number of reg
writes required in a cycle can be larger than 1.

3. WAW hazards are possible, since instructions no longer reach WB in order.
that WAR hazards are not possible, since the register reads always occur in

4. Instructions can complete in a different order than they were issued, ca
problems with exceptions; we deal with this in the next subsection.

5. Because of longer latency of operations, stalls for RAW hazards will be m
frequent.

The increase in stalls arising from longer operation latencies is fundamentall
same as that for the integer pipeline. Before describing the new problems
arise in this FP pipeline and looking at solutions, let’s examine the potentia
pact of RAW hazards. Figure 3.46 shows a typical FP code sequence and t
sultant stalls. At the end of this section, we’ll examine the performance of thi
pipeline for our SPEC subset.

Now look at the problems arising from writes, described as (2) and (3) in
list above. If we assume the FP register file has one write port, sequences
operations, as well as an FP load together with FP operations, can cause co
for the register write port. Consider the pipeline sequence shown in Figure
In clock cycle 11, all three instructions will reach WB and want to write the re
ter file. With only a single register file write port, the machine must serialize
instruction completion. This single register port represents a structural ha
We could increase the number of write ports to solve this, but that solution
be unattractive since the additional write ports would be used only rarely. Th
because the maximum steady state number of write ports needed is 1. Inste
choose to detect and enforce access to the write port as a structural hazard.

192 Chapter 3 Pipelining

ack
sues,

rite
truc-

r file
talled
ple-
ction
 reg-
tion.
nter
til
There are two different ways to implement this interlock. The first is to tr
the use of the write port in the ID stage and to stall an instruction before it is
just as we would for any other structural hazard. Tracking the use of the w
port can be done with a shift register that indicates when already-issued ins
tions will use the register file. If the instruction in ID needs to use the registe
at the same time as an instruction already issued, the instruction in ID is s
for a cycle. On each clock the reservation register is shifted one bit. This im
mentation has an advantage: It maintains the property that all interlock dete
and stall insertion occurs in the ID stage. The cost is the addition of the shift
ister and write conflict logic. We will assume this scheme throughout this sec

An alternative scheme is to stall a conflicting instruction when it tries to e
either the MEM or WB stage. If we wait to stall the conflicting instructions un

Clock cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

LD F4,0
(R2)

IF ID EX MEM WB

MULTD F0,
F4,F6

IF ID stall M1 M2 M3 M4 M5 M6 M7 MEM WB

ADDD F2,
F0,F8

IF stall ID stall stall stall stall stall stall A1 A2 A3 A4 MEM

SD 0(R2),
F2

IF stall stall stall stall stall stall ID EX stall stall stall MEM

FIGURE 3.46 A typical FP code sequence showing the stalls arising from RAW hazards. The longer pipeline sub-
stantially raises the frequency of stalls versus the shallower integer pipeline. Each instruction in this sequence is dependent
on the previous and proceeds as soon as data are available, which assumes the pipeline has full bypassing and forwarding.
The SD must be stalled an extra cycle so that its MEM does not conflict with the ADDD. Extra hardware could easily handle
this case.

Clock cycle number

Instruction 1 2 3 4 5 6 7 8 9 10 11

MULTD F0,F4,F6 IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB

... IF ID EX MEM WB

... IF ID EX MEM WB

ADDD F2,F4,F6 IF ID A1 A2 A3 A4 MEM WB

... IF ID EX MEM WB

... IF ID EX MEM WB

LD F2,0(R2) IF ID EX MEM WB

FIGURE 3.47 Three instructions want to perform a write back to the FP register file simultaneously, as shown in
clock cycle 11. This is not the worst case, since an earlier divide in the FP unit could also finish on the same clock. Note
that although the MULTD, ADDD, and LD all are in the MEM stage in clock cycle 10, only the LD actually uses the memory,
so no structural hazard exists for MEM.

3.7 Extending the DLX Pipeline to Handle Multicycle Operations 193

truc-
the
d an-
me is
M or
peline
nter-
 the
se

xist,

use it
s

n a
e that
 in

ch is

-

 can
ected

t po-
g
 ID

ue the
can
ple-

P in-
struc-
nteger
ters,
, we
zards
 an
ting-
 with-
they want to enter the MEM or WB stage, we can choose to stall either ins
tion. A simple, though sometimes suboptimal, heuristic is to give priority to
unit with the longest latency, since that is the one most likely to have cause
other instruction to be stalled for a RAW hazard. The advantage of this sche
that it does not require us to detect the conflict until the entrance of the ME
WB stage, where it is easy to see. The disadvantage is that it complicates pi
control, as stalls can now arise from two places. Notice that stalling before e
ing MEM will cause the EX, A4, or M7 stage to be occupied, possibly forcing
stall to trickle back in the pipeline. Likewise, stalling before WB would cau
MEM to back up.

Our other problem is the possibility of WAW hazards. To see that these e
consider the example in Figure 3.47. If the LD instruction were issued one cycle
earlier and had a destination of F2, then it would create a WAW hazard, beca
would write F2 one cycle earlier than the ADDD. Note that this hazard only occur
when the result of the ADDD is overwritten without any instruction ever using it! If
there were a use of F2 between the ADDD and the LD, the pipeline would need to
be stalled for a RAW hazard, and the LD would not issue until the ADDD was com-
pleted. We could argue that, for our pipeline, WAW hazards only occur whe
useless instruction is executed, but we must still detect them and make sur
the result of the LD appears in F2 when we are done. (As we will see
section 3.10, such sequences sometimes do occur in reasonable code.)

There are two possible ways to handle this WAW hazard. The first approa
to delay the issue of the load instruction until the ADDD enters MEM. The second
approach is to stamp out the result of the ADDD by detecting the hazard and chang
ing the control so that the ADDD does not write its result. Then, the LD can issue
right away. Because this hazard is rare, either scheme will work fine—you
pick whatever is simpler to implement. In either case, the hazard can be det
during ID when the LD is issuing. Then stalling the LD or making the ADDD a no-
op is easy. The difficult situation is to detect that the LD might finish before the
ADDD, because that requires knowing the length of the pipeline and the curren
sition of the ADDD. Luckily, this code sequence (two writes with no intervenin
read) will be very rare, so we can use a simple solution: If an instruction in
wants to write the same register as an instruction already issued, do not iss
instruction to EX. In the next chapter, we will see how additional hardware
eliminate stalls for such hazards. First, let’s put together the pieces for im
menting the hazard and issue logic in our FP pipeline.

In detecting the possible hazards, we must consider hazards among F
structions, as well as hazards between an FP instruction and an integer in
tion. Except for FP loads-stores and FP-integer register moves, the FP and i
registers are distinct. All integer instructions operate on the integer regis
while the floating-point operations operate only on their own registers. Thus
need only consider FP loads-stores and FP register moves in detecting ha
between FP and integer instructions. This simplification of pipeline control is
additional advantage of having separate register files for integer and floa
point data. (The main advantages are a doubling of the number of registers,

194 Chapter 3 Pipelining

more
gister

 sets.)
hecks

t
ister

d
hen

e, de-
t will
alue

urce
/A3,
 in-

f ID
the
 case
t ig-

ll the

era-
is true
the

ion.
e the
 log-

ha-

ated
out making either set larger, and an increase in bandwidth without adding
ports to either set. The main disadvantage, beyond the need for an extra re
file, is the small cost of occasional moves needed between the two register
Assuming that the pipeline does all hazard detection in ID, there are three c
that must be performed before an instruction can issue:

1. Check for structural hazards—Wait until the required functional unit is no
busy (this is only needed for divides in this pipeline) and make sure the reg
write port is available when it will be needed.

2. Check for a RAW data hazard—Wait until the source registers are not liste
as pending destinations in a pipeline register that will not be available w
this instruction needs the result. A number of checks must be made her
pending on both the source instruction, which determines when the resul
be available, and the destination instruction, which determines when the v
is needed. For example, if the instruction in ID is an FP operation with so
register F2, then F2 cannot be listed as a destination in ID/A1, A1/A2, or A2
which correspond to FP add instructions that will not be finished when the
struction in ID needs a result. (ID/A1 is the portion of the output register o
that is sent to A1.) Divide is somewhat more tricky, if we want to allow
last few cycles of a divide to be overlapped, since we need to handle the
when a divide is close to finishing as special. In practice, designers migh
nore this optimization in favor of a simpler issue test.

3. Check for a WAW data hazard—Determine if any instruction in A1,..., A4, D,
M1,..., M7 has the same register destination as this instruction. If so, sta
issue of the instruction in ID.

Although the hazard detection is more complex with the multicycle FP op
tions, the concepts are the same as for the DLX integer pipeline. The same
for the forwarding logic. The forwarding can be implemented by checking if
destination register in any of EX/MEM, A4/MEM, M7/MEM, D/MEM, or
MEM/WB registers is one of the source registers of a floating-point instruct
If so, the appropriate input multiplexer will have to be enabled so as to choos
forwarded data. In the Exercises, you will have the opportunity to specify the
ic for the RAW and WAW hazard detection as well as for forwarding.

Multicycle FP operations also introduce problems for our exception mec
nisms, which we deal with next.

Maintaining Precise Exceptions

Another problem caused by these long-running instructions can be illustr
with the following sequence of code:

DIVF F0,F2,F4

ADDF F10,F10,F8

3.7 Extending the DLX Pipeline to Handle Multicycle Operations 195

oblem
an in-

vent
rder

 ap-
s we
is is
c
at the
ld

rder
ut-of-
 ex-
ed in

 or are
this
emo-
cep-
rlier,
f ex-

. The
n of

over-
 that
 the
IPS

era-
 solu-
ong
. Fur-
struc-
r of

val-
ck ear-
SUBF F12,F12,F14

This code sequence looks straightforward; there are no dependences. A pr
arises, however, because an instruction issued early may complete after
struction issued later. In this example, we can expect ADDF and SUBF to complete
before the DIVF completes. This is called out-of-order completion and is common
in pipelines with long-running operations. Because hazard detection will pre
any dependence among instructions from being violated, why is out-of-o
completion a problem? Suppose that the SUBF causes a floating-point arithmetic
exception at a point where the ADDF has completed but the DIVF has not. The re-
sult will be an imprecise exception, something we are trying to avoid. It may
pear that this could be handled by letting the floating-point pipeline drain, a
do for the integer pipeline. But the exception may be in a position where th
not possible. For example, if the DIVF decided to take a floating-point-arithmeti
exception after the add completed, we could not have a precise exception
hardware level. In fact, because the ADDF destroys one of its operands, we cou
not restore the state to what it was before the DIVF, even with software help.

This problem arises because instructions are completing in a different o
than they were issued. There are four possible approaches to dealing with o
order completion. The first is to ignore the problem and settle for imprecise
ceptions. This approach was used in the 1960s and early 1970s. It is still us
some supercomputers, where certain classes of exceptions are not allowed
handled by the hardware without stopping the pipeline. It is difficult to use
approach in most machines built today because of features such as virtual m
ry and the IEEE floating-point standard, which essentially require precise ex
tions through a combination of hardware and software. As mentioned ea
some recent machines have solved this problem by introducing two modes o
ecution: a fast, but possibly imprecise mode and a slower, precise mode
slower precise mode is implemented either with a mode switch or by insertio
explicit instructions that test for FP exceptions. In either case the amount of
lap and reordering permitted in the FP pipeline is significantly restricted so
effectively only one FP instruction is active at a time. This solution is used in
DEC Alpha 21064 and 21164, in the IBM Power-1 and Power-2, and in the M
R8000.

A second approach is to buffer the results of an operation until all the op
tions that were issued earlier are complete. Some machines actually use this
tion, but it becomes expensive when the difference in running times am
operations is large, since the number of results to buffer can become large
thermore, results from the queue must be bypassed to continue issuing in
tions while waiting for the longer instruction. This requires a large numbe
comparators and a very large multiplexer.

There are two viable variations on this basic approach. The first is a history
file, used in the CYBER 180/990. The history file keeps track of the original
ues of registers. When an exception occurs and the state must be rolled ba

196 Chapter 3 Pipelining

 the
uto-
r ap-
the
main
r file
 4.6),
 Pow-
ving

t im-
 can
ations

 soft-
, and
:

n.

d.

turn

 of
e-
rly
tant

nt
ber of
. For
uc-
ntial
f FP
ver-

 con-
will
ption

f the
eans

work,
lier than some instruction that completed out of order, the original value of
register can be restored from the history file. A similar technique is used for a
increment and autodecrement addressing on machines like VAXes. Anothe
proach, the future file, proposed by J. Smith and A. Pleszkun [1988], keeps
newer value of a register; when all earlier instructions have completed, the
register file is updated from the future file. On an exception, the main registe
has the precise values for the interrupted state. In the next chapter (section
we will see extensions of this idea, which are used in processors such as the
erPC 620 and MIPS R10000 to allow overlap and reordering while preser
precise exceptions.

A third technique in use is to allow the exceptions to become somewha
precise, but to keep enough information so that the trap-handling routines
create a precise sequence for the exception. This means knowing what oper
were in the pipeline and their PCs. Then, after handling the exception, the
ware finishes any instructions that precede the latest instruction completed
the sequence can restart. Consider the following worst-case code sequence

Instruction1—A long-running instruction that eventually interrupts executio

Instruction2, ..., Instructionn–1—A series of instructions that are not complete

Instructionn—An instruction that is finished.

Given the PCs of all the instructions in the pipeline and the exception re
PC, the software can find the state of instruction1 and instructionn. Because
instructionn has completed, we will want to restart execution at instructionn+1.
After handling the exception, the software must simulate the execution
instruction1, ..., instructionn–1. Then we can return from the exception and r
start at instructionn+1. The complexity of executing these instructions prope
by the handler is the major difficulty of this scheme. There is an impor
simplification for simple DLX-like pipelines: If instruction2, ..., instructionn
are all integer instructions, then we know that if instructionn has completed, all
of instruction2, ..., instructionn–1 have also completed. Thus, only floating-poi
operations need to be handled. To make this scheme tractable, the num
floating-point instructions that can be overlapped in execution can be limited
example, if we only overlap two instructions, then only the interrupting instr
tion need be completed by software. This restriction may reduce the pote
throughput if the FP pipelines are deep or if there is a significant number o
functional units. This approach is used in the SPARC architecture to allow o
lap of floating-point and integer operations.

The final technique is a hybrid scheme that allows the instruction issue to
tinue only if it is certain that all the instructions before the issuing instruction
complete without causing an exception. This guarantees that when an exce
occurs, no instructions after the interrupting one will be completed and all o
instructions before the interrupting one can be completed. This sometimes m
stalling the machine to maintain precise exceptions. To make this scheme

3.7 Extending the DLX Pipeline to Handle Multicycle Operations 197

 ear-
s to
IPS
r in

tural
az-
ll cy-
 first

P add,
k the

unc-

talls
 stalls
ating-
elays
aries
the floating-point functional units must determine if an exception is possible
ly in the EX stage (in the first three clock cycles in the DLX pipeline), so a
prevent further instructions from completing. This scheme is used in the M
R2000/3000, the R4000, and the Intel Pentium. It is discussed furthe
Appendix A.

Performance of a DLX FP Pipeline

The DLX FP pipeline of Figure 3.44 on page 190 can generate both struc
stalls for the divide unit and stalls for RAW hazards (it also can have WAW h
ards, but this rarely occurs in practice). Figure 3.48 shows the number of sta
cles for each type of floating-point operation on a per instance basis (i.e., the
bar for each FP benchmark shows the number of FP result stalls for each F
subtract, or compare). As we might expect, the stall cycles per operation trac
latency of the FP operations, varying from 46% to 59% of the latency of the f
tional unit.

Figure 3.49 gives the complete breakdown of integer and floating-point s
for the five FP SPEC benchmarks we are using. There are four classes of
shown: FP result stalls, FP compare stalls, load and branch delays, and flo
point structural delays. The compiler tries to schedule both load and FP d
before it schedules branch delays. The total number of stalls per instruction v
from 0.65 to 1.21.

198 Chapter 3 Pipelining
FIGURE 3.48 Stalls per FP operation for each major type of FP operation. Except for
the divide structural hazards, these data do not depend on the frequency of an operation, only
on its latency and the number of cycles before the result is used. The number of stalls from
RAW hazards roughly tracks the latency of the FP unit. For example, the average number of
stalls per FP add, subtract, or convert is 1.7 cycles, or 56% of the latency (3 cycles). Likewise,
the average number of stalls for multiplies and divides are 2.8 and 14.2, respectively, or 46%
and 59% of the corresponding latency. Structural hazards for divides are rare, since the di-
vide frequency is low.

Number of stalls

0.0 25.05.0 10.0 20.015.0

FP SPEC
benchmarks

doduc

ear

hydro2d

mdljdp

su2cor

0.6
18.6

1.6
1.5

0.7

0.0
24.5

2.9
1.2

2.1

0.0
0.4

3.2
2.5

2.3

0.0
12.4

2.5
2.0

1.6

2.0
15.4

3.7
1.7
1.7

Compares MultiplyAdd/subtract/convert

Divide structuralDivide

3.8 Crosscutting Issues: Instruction Set Design and Pipelining 199

s was
n de-
effi-
ns.
r:

ong
licate

some-
For many years the interaction between instruction sets and implementation
believed to be small, and implementation issues were not a major focus i
signing instruction sets. In the 1980s it became clear that the difficulty and in
ciency of pipelining could both be increased by instruction set complicatio
Here are some examples, many of which are mentioned earlier in the chapte

■ Variable instruction lengths and running times can lead to imbalance am
pipeline stages, causing other stages to back up. They also severely comp
hazard detection and the maintenance of precise exceptions. Of course,

FIGURE 3.49 The stalls occurring for the DLX FP pipeline for the five FP SPEC bench-
marks. The total number of stalls per instruction ranges from 0.65 for su2cor to 1.21 for
doduc, with an average of 0.87. FP result stalls dominate in all cases, with an average of 0.71
stalls per instruction or 82% of the stalled cycles. Compares generate an average of 0.1 stalls
per instruction and are the second largest source. The divide structural hazard is only signif-
icant for doduc.

3.8 Crosscutting Issues:
Instruction Set Design and Pipelining

Number of stalls

0.00 1.000.200.10 0.40 0.80 0.900.60 0.700.30 0.50

FP SPEC
benchmarks

doduc

ear

hydro2d

mdljdp

su2cor

0.01
0.01
0.02

0.61

0.00
0.03

0.10
0.88

0.00
0.04

0.22
0.54

0.00
0.07
0.09

0.52

0.08
0.08
0.07

0.98

FP compare stalls

FP structural

FP result stalls

Branch/load stalls

200 Chapter 3 Pipelining

cause
nce

ze the
 ma-
x, it

. Ad-
plicate
 re-
 sub-
ine

ing
ache

r in-
truc-
 that
n in

ch
rmer
dif-
tter
very
 be-
 (the
oth
 them
at-

om-
 fetch.
cond
1983]

ould
k cy-

eline
ines
ned
IPS
ance
times the advantages justify the added complexity. For example, caches
instruction running times to vary when they miss; however, the performa
advantages of caches make the added complexity acceptable. To minimi
complexity, most machines freeze the pipeline on a cache miss. Other
chines try to continue running parts of the pipeline; though this is comple
may overcome some of the performance losses from cache misses.

■ Sophisticated addressing modes can lead to different sorts of problems
dressing modes that update registers, such as post-autoincrement, com
hazard detection. They also slightly increase the complexity of instruction
start. Other addressing modes that require multiple memory accesses
stantially complicate pipeline control and make it difficult to keep the pipel
flowing smoothly.

■ Architectures that allow writes into the instruction space (self-modify
code), such as the 80x86, can cause trouble for pipelining (as well as for c
designs). For example, if an instruction in the pipeline can modify anothe
struction, we must constantly check if the address being written by an ins
tion corresponds to the address of an instruction following the instruction
writes in the pipeline. If so, the pipeline must be flushed or the instructio
the pipeline somehow updated.

■ Implicitly set condition codes increase the difficulty of finding when a bran
has been decided and the difficulty of scheduling branch delays. The fo
problem occurs when the condition-code setting is not uniform, making it
ficult to decide which instruction assigns the condition code last. The la
problem occurs when the condition code is unconditionally set by almost e
instruction. This makes it hard to find instructions that can be scheduled
tween the condition evaluation and the branch. Most older architectures
IBM 360, the DEC VAX, and the Intel 80x86, for example) have one or b
of these problems. Many newer architectures avoid condition codes or set
explicitly under the control of a bit in the instruction. Either approach dram
ically reduces pipelining difficulties.

As a simple example, suppose the DLX instruction format were more c
plex, so that a separate, decode pipe stage were required before register
This would increase the branch delay to two clock cycles. At best, the se
branch-delay slot would be wasted at least as often as the first. Gross [
found that a second delay slot was only used half as often as the first. This w
lead to a performance penalty for the second delay slot of more than 0.1 cloc
cles per instruction. Another example comes from a comparison of the pip
efficiencies of a VAX 8800 and a MIPS R3000. Although these two mach
have many similarities in organization, the VAX instruction set was not desig
with pipelining in mind. As a result, on the SPEC89 benchmarks, the M
R3000 is faster by between two times and four times, with a mean perform
advantage of 2.7 times.

3.9 Putting It All Together: The MIPS R4000 Pipeline 201

IPS
ple-
pipe-
eper
sing
articu-
ory

d ver-
ns in
ulti-
very
com-

ther

truc-
In this section we look at the pipeline structure and performance of the M
R4000 processor family. The MIPS-3 instruction set, which the R4000 im
ments, is a 64-bit instruction set similar to DLX. The R4000 uses a deeper
line than that of our DLX model both for integer and FP programs. This de
pipeline allows it to achieve higher clock rates (100–200 MHz) by decompo
the five-stage integer pipeline into eight stages. Because cache access is p
larly time critical, the extra pipeline stages come from decomposing the mem
access. This type of deeper pipelining is sometimes called superpipelining.

Figure 3.50 shows the eight-stage pipeline structure using an abstracte
sion of the datapath. Figure 3.51 shows the overlap of successive instructio
the pipeline. Notice that although the instruction and data memory occupy m
ple cycles, they are fully pipelined, so that a new instruction can start on e
clock. In fact, the pipeline uses the data before the cache hit detection is
plete; Chapter 5 discusses how this can be done in more detail.

The function of each stage is as follows:

■ IF—First half of instruction fetch; PC selection actually happens here, toge
with initiation of instruction cache access.

■ IS—Second half of instruction fetch, complete instruction cache access.

■ RF—Instruction decode and register fetch, hazard checking, and also ins
tion cache hit detection.

3.9 Putting It All Together:
The MIPS R4000 Pipeline

FIGURE 3.50 The eight-stage pipeline structure of the R4000 uses pipelined instruc-
tion and data caches. The pipe stages are labeled and their detailed function is described
in the text. The vertical dashed lines represent the stage boundaries as well as the location
of pipeline latches. The instruction is actually available at the end of IS, but the tag check is
done in RF, while the registers are fetched. Thus, we show the instruction memory as oper-
ating through RF. The TC stage is needed for data memory access, since we cannot write the
data into the register until we know whether the cache access was a hit or not.

IF IS

Instruction memory Reg

A
LU Data memory Reg

RF EX DF DS TC WB

202 Chapter 3 Pipelining

on,

this
 3.51
e end
diate-
 in-

ranch
 de-
g two
imply
y slot
■ EX—Execution, which includes effective address calculation, ALU operati
and branch target computation and condition evaluation.

■ DF—Data fetch, first half of data cache access.

■ DS—Second half of data fetch, completion of data cache access.

■ TC—Tag check, determine whether the data cache access hit.

■ WB—Write back for loads and register-register operations.

In addition to substantially increasing the amount of forwarding required,
longer latency pipeline increases both the load and branch delays. Figure
shows that load delays are two cycles, since the data value is available at th
of DS. Figure 3.52 shows the shorthand pipeline schedule when a use imme
ly follows a load. It shows that forwarding is required for the result of a load
struction to a destination that is three or four cycles later.

Figure 3.53 shows that the basic branch delay is three cycles, since the b
condition is computed during EX. The MIPS architecture has a single-cycle
layed branch. The R4000 uses a predict-not-taken strategy for the remainin
cycles of the branch delay. As Figure 3.54 shows, untaken branches are s
one-cycle delayed branches, while taken branches have a one-cycle dela

FIGURE 3.51 The structure of the R4000 integer pipeline leads to a two-cycle load delay. A two-cycle delay is pos-
sible because the data value is available at the end of DS and can be bypassed. If the tag check in TC indicates a miss, the
pipeline is backed up a cycle, when the correct data are available.

CC 1

Time (in clock cycles)

CC 2

Instruction memory Reg

A
LU Data memory Reg

Instruction memory Reg

A
LU Data memory Reg

Instruction memory Reg

A
LU Data memory Reg

Instruction memory

LW R1

Instruction 1

Instruction 2

ADD R2, R1 Reg

A
LU Data memory Reg

CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9 CC 10 CC 11

3.9 Putting It All Together: The MIPS R4000 Pipeline 203

uc-
slot.
ken
followed by two idle cycles. The instruction set provides a branch likely instr
tion, which we described earlier and which helps in filling the branch delay
Pipeline interlocks enforce both the two-cycle branch stall penalty on a ta
branch and any data hazard stall that arises from use of a load result.

 Clock number

Instruction number 1 2 3 4 5 6 7 8 9

LW R1, . . . IF IS RF EX DF DS TC WB

ADD R2,R1, . . . IF IS RF stall stall EX DF DS

SUB R3,R1, . . . IF IS stall stall RF EX DF

OR R4,R1, . . . IF stall stall IS RF EX

FIGURE 3.52 A load instruction followed by an immediate use results in a two-cycle stall. Normal forwarding paths
can be used after two cycles, so the ADD and SUB get the value by forwarding after the stall. The OR instruction gets the
value from the register file. Since the two instructions after the load could be independent and hence not stall, the bypass
can be to instructions that are three or four cycles after the load.

FIGURE 3.53 The basic branch delay is three cycles, since the condition evaluation is performed during EX.

CC1

Time (in clock cycles)

CC2

Instruction memory Reg

A
LU Data memory Reg

Instruction memory Reg

A
LU Data memory Reg

Instruction memory Reg

A
LU Data memory Reg

Instruction memory

BEQZ

Instruction 1

Instruction 2

Instruction 3

Target

Reg

A
LU Data memory Reg

Instruction memory Reg

A
LU Data memory

CC3 CC4 CC5 CC6 CC7 CC8 CC9 CC10 CC11

204 Chapter 3 Pipelining

eline
LX
ons
e-

/TC,
ndi-

oint
00,
sion
for a
The
ges,
In addition to the increase in stalls for loads and branches, the deeper pip
increases the number of levels of forwarding for ALU operations. In our D
five-stage pipeline, forwarding between two register-register ALU instructi
could happen from the ALU/MEM or the MEM/WB registers. In the R4000 pip
line, there are four possible sources for an ALU bypass: EX/DF, DF/DS, DS
and TC/WB. The Exercises ask you to explore all the possible forwarding co
tions for the DLX instruction set using an R4000-style pipeline.

The Floating-Point Pipeline

The R4000 floating-point unit consists of three functional units: a floating-p
divider, a floating-point multiplier, and a floating-point adder. As in the R30
the adder logic is used on the final step of a multiply or divide. Double-preci
FP operations can take from two cycles (for a negate) up to 112 cycles
square root. In addition, the various units have different initiation rates.
floating-point functional unit can be thought of as having eight different sta
listed in Figure 3.55.

 Clock number

Instruction number 1 2 3 4 5 6 7 8 9

Branch instruction IF IS RF EX DF DS TC WB

Delay slot IF IS RF EX DF DS TC WB

Stall stall stall stall stall stall stall stall

Stall stall stall stall stall stall stall

Branch target IF IS RF EX DF

 Clock number

Instruction number 1 2 3 4 5 6 7 8 9

Branch instruction IF IS RF EX DF DS TC WB

Delay slot IF IS RF EX DF DS TC WB

Branch instruction + 2 IF IS RF EX DF DS TC

Branch instruction + 3 IF IS RF EX DF DS

FIGURE 3.54 A taken branch, shown in the top portion of the figure, has a one-cycle delay slot followed by a two-
cycle stall, while an untaken branch, shown in the bottom portion, has simply a one-cycle delay slot. The branch
instruction can be an ordinary delayed branch or a branch-likely, which cancels the effect of the instruction in the delay slot
if the branch is untaken.

3.9 Putting It All Together: The MIPS R4000 Pipeline 205

 use a
ency,
n FP

ce of
g of
 a stall
sible
y a

fig-
 and
There is a single copy of each of these stages, and various instructions may
stage zero or more times and in different orders. Figure 3.56 shows the lat
initiation rate, and pipeline stages used by the most common double-precisio
operations.

From the information in Figure 3.56, we can determine whether a sequen
different, independent FP operations can issue without stalling. If the timin
the sequence is such that a conflict occurs for a shared pipeline stage, then
will be needed. Figures 3.57, 3.58, 3.59, and 3.60 show four common pos
two-instruction sequences: a multiply followed by an add, an add followed b
multiply, a divide followed by an add, and an add followed by a divide. The
ures show all the interesting starting positions for the second instruction

Stage Functional unit Description

A FP adder Mantissa ADD stage

D FP divider Divide pipeline stage

E FP multiplier Exception test stage

M FP multiplier First stage of multiplier

N FP multiplier Second stage of multiplier

R FP adder Rounding stage

S FP adder Operand shift stage

U Unpack FP numbers

FIGURE 3.55 The eight stages used in the R4000 floating-point pipelines.

FP instruction Latency Initiation interval Pipe stages

Add, subtract 4 3 U,S+A,A+R,R+S

Multiply 8 4 U,E+M,M,M,M,N,N+A,R

Divide 36 35 U,A,R,D27,D+A,D+R,D+A,D+R,A,R

Square root 112 111 U,E,(A+R)108,A,R

Negate 2 1 U,S

Absolute value 2 1 U,S

FP compare 3 2 U,A,R

FIGURE 3.56 The latencies and initiation intervals for the FP operations both depend on the FP unit stages that a
given operation must use. The latency values assume that the destination instruction is an FP operation; the latencies are
one cycle less when the destination is a store. The pipe stages are shown in the order in which they are used for any oper-
ation. The notation S+A indicates a clock cycle in which both the S and A stages are used. The notation D28 indicates that
the D stage is used 28 times in a row.

206 Chapter 3 Pipelining

rse,
talls

12
whether that second instruction will issue or stall for each position. Of cou
there could be three instructions active, in which case the possibilities for s
are much higher and the figures more complex.

Clock cycle

Operation Issue/stall 0 1 2 3 4 5 6 7 8 9 10 11

Multiply Issue U M M M M N N+A R

Add Issue U S+A A+R R+S

Issue U S+A A+R R+S

Issue U S+A A+R R+S

Stall U S+A A+R R+S

Stall U S+A A+R R+S

Issue U S+A A+R R+S

Issue U S+A A+R R+S

FIGURE 3.57 An FP multiply issued at clock 0 is followed by a single FP add issued between clocks 1 and 7. The
second column indicates whether an instruction of the specified type stalls when it is issued n cycles later, where n is the
clock cycle number in which the U stage of the second instruction occurs. The stage or stages that cause a stall are high-
lighted. Note that this table deals with only the interaction between the multiply and one add issued between clocks 1 and
7. In this case, the add will stall if it is issued four or five cycles after the multiply; otherwise, it issues without stalling. Notice
that the add will be stalled for two cycles if it issues in cycle 4 since on the next clock cycle it will still conflict with the multiply;
if, however, the add issues in cycle 5, it will stall for only one clock cycle, since that will eliminate the conflicts.

Clock cycle

Operation Issue/stall 0 1 2 3 4 5 6 7 8 9 10 11 12

Add Issue U S+A A+R R+S

Multiply Issue U M M M M N N+A R

Issue U M M M M N N+A R

FIGURE 3.58 A multiply issuing after an add can always proceed without stalling, since the shorter instruction
clears the shared pipeline stages before the longer instruction reaches them.

3.9 Putting It All Together: The MIPS R4000 Pipeline 207

 when
eline

cles

O

D

A

Performance of the R4000 Pipeline

In this section we examine the stalls that occur for the SPEC92 benchmarks
running on the R4000 pipeline structure. There are four major causes of pip
stalls or losses:

1. Load stalls—Delays arising from the use of a load result one or two cy
after the load.

Clock cycle

peration Issue/stall 25 26 27 28 29 30 31 32 33 34 35 36

ivide issued in
cycle 0...

D D D D D D+A D+R D+A D+R A R

dd Issue U S+A A+R R+S

Issue U S+A A+R R+S

Stall U S+A A+R R+S

Stall U S+A A+R R+S

Stall U S+A A+R R+S

Stall U S+A A+R R+S

Stall U S+A A+R R+S

Stall U S+A A+R R+S

Issue U S+A A+R

Issue U S+A

Issue U

FIGURE 3.59 An FP divide can cause a stall for an add that starts near the end of the divide. The divide starts at
cycle 0 and completes at cycle 35; the last 10 cycles of the divide are shown. Since the divide makes heavy use of the round-
ing hardware needed by the add, it stalls an add that starts in any of cycles 28 to 33. Notice the add starting in cycle 28 will
be stalled until cycle 34. If the add started right after the divide it would not conflict, since the add could complete before the
divide needed the shared stages, just as we saw in Figure 3.58 for a multiply and add. As in the earlier figure, this example
assumes exactly one add that reaches the U stage between clock cycles 26 and 35.

Clock cycle

Operation Issue/stall 0 1 2 3 4 5 6 7 8 9 10 11 12

Add Issue U S+A A+R R+S

Divide Stall U A R D D D D D D D D D

Issue U A R D D D D D D D D

Issue U A R D D D D D D D

FIGURE 3.60 A double-precision add is followed by a double-precision divide. If the divide starts one cycle after the
add, the divide stalls, but after that there is no conflict.

208 Chapter 3 Pipelining

an-

con-

e 10

2. Branch stalls—Two-cycle stall on every taken branch plus unfilled or c
celled branch delay slots.

3. FP result stalls—Stalls because of RAW hazards for an FP operand.

4. FP structural stalls—Delays because of issue restrictions arising from
flicts for functional units in the FP pipeline.

Figure 3.61 shows the pipeline CPI breakdown for the R4000 pipeline for th
SPEC92 benchmarks. Figure 3.62 shows the same data but in tabular form.

FIGURE 3.61 The pipeline CPI for 10 of the SPEC92 benchmarks, assuming a perfect
cache. The pipeline CPI varies from 1.2 to 2.8. The leftmost five programs are integer pro-
grams, and branch delays are the major CPI contributor for these. The rightmost five pro-
grams are FP, and FP result stalls are the major contributor for these.

Pipeline CPI

0.00

3.00

0.50

1.00

2.00

1.50

2.50

SPEC92 benchmark
co

m
pr

es
s

eq
nt

ot
t

es
pr

es
so gc

c li

do
du

c
ea

r

hy
dr

o2
d

m
dlj

dp

su
2c

or

Load stalls Branch stallsBase

FP structural stallsFP result stalls

3.10 Fallacies and Pitfalls 209

eeper
five-
e cy-
ranch
e FP
 both
ts
ions
unc-
ctur-
s.

.

om-
ning
e first
t the

:

From the data in Figures 3.61 and 3.62, we can see the penalty of the d
pipelining. The R4000’s pipeline has much longer branch delays than the
stage DLX-style pipeline. The longer branch delay substantially increases th
cles spent on branches, especially for the integer programs with a higher b
frequency. An interesting effect for the FP programs is that the latency of th
functional units leads to more stalls than the structural hazards, which arise
from the initiation interval limitations and from conflicts for functional uni
from different FP instructions. Thus, reducing the latency of FP operat
should be the first target, rather than more pipelining or replication of the f
tional units. Of course, reducing the latency would probably increase the stru
al stalls, since many potential structural stalls are hidden behind data hazard

Pitfall: Unexpected execution sequences may cause unexpected hazards

At first glance, WAW hazards look like they should never occur because no c
piler would ever generate two writes to the same register without an interve
read. But they can occur when the sequence is unexpected. For example, th
write might be in the delay slot of a taken branch when the scheduler though
branch would not be taken. Here is the code sequence that could cause this

Benchmark Pipeline CPI Load stalls Branch stalls FP result stalls FP structural stalls

compress 1.20 0.14 0.06 0.00 0.00

eqntott 1.88 0.27 0.61 0.00 0.00

espresso 1.42 0.07 0.35 0.00 0.00

gcc 1.56 0.13 0.43 0.00 0.00

li 1.64 0.18 0.46 0.00 0.00

Integer average 1.54 0.16 0.38 0.00 0.00

doduc 2.84 0.01 0.22 1.39 0.22

mdljdp2 2.66 0.01 0.31 1.20 0.15

ear 2.17 0.00 0.46 0.59 0.12

hydro2d 2.53 0.00 0.62 0.75 0.17

su2cor 2.18 0.02 0.07 0.84 0.26

FP average 2.48 0.01 0.33 0.95 0.18

Overall average 2.00 0.10 0.36 0.46 0.09

FIGURE 3.62 The total pipeline CPI and the contributions of the four major sources of stalls are shown. The major
contributors are FP result stalls (both for branches and for FP inputs) and branch stalls, with loads and FP structural stalls
adding less.

3.10 Fallacies and Pitfalls

210 Chapter 3 Pipelining

ue of
ine.
 and
ndler.

g to

f the
 cy-
 a 55-
tes at
 45

, but
es the

rfor-

ing.
er of
ue to
mbine
.63

ce for
um-

tion is
ms,

ning

ode.

s that
 op-
yed
BNEZ R1,foo

DIVD F0,F2,F4 ; moved into delay slot

; from fall through

.....

.....

foo: LD F0,qrs

If the branch is taken, then before the DIVD can complete, the LD will reach WB,
causing a WAW hazard. The hardware must detect this and may stall the iss
the LD. Another way this can happen is if the second write is in a trap rout
This occurs when an instruction that traps and is writing results continues
completes after an instruction that writes the same register in the trap ha
The hardware must detect and prevent this as well.

Pitfall: Extensive pipelining can impact other aspects of a design, leadin
overall worse cost/performance.

The best example of this phenomenon comes from two implementations o
VAX, the 8600 and the 8700. When the 8600 was initially delivered, it had a
cle time of 80 ns. Subsequently, a redesigned version, called the 8650, with
ns clock was introduced. The 8700 has a much simpler pipeline that opera
the microinstruction level, yielding a smaller CPU with a faster clock cycle of
ns. The overall outcome is that the 8650 has a CPI advantage of about 20%
the 8700 has a clock rate that is about 20% faster. Thus, the 8700 achiev
same performance with much less hardware.

Fallacy: Increasing the number of pipeline stages always increases pe
mance.

Two factors combine to limit the performance improvement gained by pipelin
Limited parallelism in the instruction stream means that increasing the numb
pipeline stages, called the pipeline depth, will eventually increase the CPI, d
dependences that require stalls. Second, clock skew and latch overhead co
to limit the decrease in clock period obtained by further pipelining. Figure 3
shows the trade-off between the number of pipeline stages and performan
the first 14 of the Livermore Loops. The performance flattens out when the n
ber of pipeline stages reaches 4 and actually drops when the execution por
pipelined 16 deep. Although this study is limited to a small set of FP progra
the trade-off of increasing CPI versus increasing clock rate by more pipeli
arises constantly.

Pitfall: Evaluating a compile-time scheduler on the basis of unoptimized c

Unoptimized code—containing redundant loads, stores, and other operation
might be eliminated by an optimizer—is much easier to schedule than “tight”
timized code. This holds for scheduling both control delays (with dela

3.11 Concluding Remarks 211

000,
ock
 opti-
aster,
 opti-
ther

tech-
e via
950s
ion of
rove-
inte-
e in
 sets
off.

uction
e re-
 that
 will
branches) and delays arising from RAW hazards. In gcc running on an R3
which has a pipeline almost identical to that of DLX, the frequency of idle cl
cycles increases by 18% from the unoptimized and scheduled code to the
mized and scheduled code. Of course, the optimized program is much f
since it has fewer instructions. To fairly evaluate a scheduler you must use
mized code, since in the real system you will derive good performance from o
optimizations in addition to scheduling.

Pipelining has been and is likely to continue to be one of the most important
niques for enhancing the performance of processors. Improving performanc
pipelining was the key focus of many early computer designers in the late 1
through the mid 1960s. In the late 1960s through the late 1970s, the attent
computer architects was focused on other things, including the dramatic imp
ments in cost, size, and reliability that were achieved by the introduction of
grated circuit technology. In this period pipelining played a secondary rol
many designs. Since pipelining was not a primary focus, many instruction
designed in this period made pipelining overly difficult and reduced its pay
The VAX architecture is perhaps the best example.

In the late 1970s and early 1980s several researchers realized that instr
set complexity and implementation ease, particularly ease of pipelining, wer
lated. The RISC movement led to a dramatic simplification in instruction sets
allowed rapid progress in the development of pipelining techniques. As we

FIGURE 3.63 The depth of pipelining versus the speedup obtained. The x-axis shows
the number of stages in the EX portion of the floating-point pipeline. A single-stage pipeline
corresponds to 32 levels of logic, which might be appropriate for a single FP operation. Data
based on Table 2 in Kunkel and Smith [1986].

3.11 Concluding Remarks

1 2 4 8 16

Pipeline depth

3.0

2.5

1.5
Relative
performance

1.0

0.5

0.0

2.0

212 Chapter 3 Pipelining

icated.
ould

0s.
ome
pro-
e rep-
. To
ntro-
ch pre-
e of
e the

 with

, the
ast-
me—
ping
and
 use

uced
t de-

s and
asic

 Ra-
 en-
 the
ycle
se a

tion
arly

in in-
IPS

r the
enta-
rs of
see in the next chapter, these techniques have become extremely sophist
The sophisticated implementation techniques now in use in many designs w
have been extremely difficult with the more complex architectures of the 197

In this chapter, we introduced the basic ideas in pipelining and looked at s
simple compiler strategies for enhancing performance. The pipelined micro
cessors of the 1980s relied on these strategies, with the R4000-style machin
resenting one of the most advanced of the “simple” pipeline organizations
further improve performance in this decade most microprocessors have i
duced schemes such as hardware-based pipeline scheduling, dynamic bran
diction, the ability to issue more than one instruction in a cycle, and the us
more powerful compiler technology. These more advanced techniques ar
subject of the next chapter.

This section describes some of the major advances in pipelining and ends
some of the recent literature on high-performance pipelining.

The first general-purpose pipelined machine is considered to be Stretch
IBM 7030. Stretch followed the IBM 704 and had a goal of being 100 times f
er than the 704. The goal was a stretch from the state of the art at that ti
hence the nickname. The plan was to obtain a factor of 1.6 from overlap
fetch, decode, and execute, using a four-stage pipeline. Bloch [1959]
Bucholtz [1962] describe the design and engineering trade-offs, including the
of ALU bypasses. The CDC 6600, developed in the early 1960s, also introd
several enhancements in pipelining; these innovations and the history of tha
sign are discussed in the next chapter.

A series of general pipelining descriptions that appeared in the late 1970
early 1980s provided most of the terminology and described most of the b
techniques used in simple pipelines. These surveys include Keller [1975],
mamoorthy and Li [1977], Chen [1980], and Kogge’s book [1981], devoted
tirely to pipelining. Davidson and his colleagues [1971, 1975] developed
concept of pipeline reservation tables as a design methodology for multic
pipelines with feedback (also described in Kogge [1981]). Many designers u
variation of these concepts, as we did in sections 3.2 and 3.3.

The RISC machines were originally designed with ease of implementa
and pipelining in mind. Several of the early RISC papers, published in the e
1980s, attempt to quantify the performance advantages of the simplification
struction set. The best analysis, however, is a comparison of a VAX and a M
implementation published by Bhandarkar and Clark in 1991, 10 years afte
first published RISC papers. After 10 years of arguments about the implem
tion benefits of RISC, this paper convinced even the most skeptical designe
the advantages of a RISC instruction set architecture.

3.12 Historical Perspective and References

3.12 Historical Perspective and References 213

 the
 next
in mi-
ford
piler
uling
en-

 and
pter.
ould
ction
tatic

essy

g in-
r ma-
 and
ellent
988]
 and

tion-

ro-
991]
imi-
 in

C

The RISC machines refined the notion of compiler-scheduled pipelines in
early 1980s, though earlier work on this topic is described at the end of the
chapter. The concepts of delayed branches and delayed loads—common
croprogramming—were extended into the high-level architecture. The Stan
MIPS architecture made the pipeline structure purposely visible to the com
and allowed multiple operations per instruction. Simple schemes for sched
the pipeline in the compiler were described by Sites [1979] for the Cray, by H
nessy and Gross [1983] (and in Gross’s thesis [1983]), and by Gibbons
Muchnik [1986]. More advanced techniques will be described in the next cha
Rymarczyk [1982] describes the interlock conditions that programmers sh
be aware of for a 360-like machine; this paper also shows the complex intera
between pipelining and an instruction set not designed to be pipelined. S
branch prediction by profiling has been explored by McFarling and Henn
[1986] and by Fisher and Freudenberger [1992].

J. E. Smith and his colleagues have written a number of papers examinin
struction issue, exception handling, and pipeline depth for high-speed scala
chines. Kunkel and Smith [1986] evaluate the impact of pipeline overhead
dependences on the choice of optimal pipeline depth; they also have an exc
discussion of latch design and its impact on pipelining. Smith and Pleszkun [1
evaluate a variety of techniques for preserving precise exceptions. Weiss
Smith [1984] evaluate a variety of hardware pipeline scheduling and instruc
issue techniques.

The MIPS R4000, in addition to being one of the first deeply pipelined mic
processors, was the first true 64-bit architecture. It is described by Killian [1
and by Heinrich [1993]. The initial Alpha implementation (the 21064) has a s
lar instruction set and similar integer pipeline structure, with more pipelining
the floating-point unit.

References

BHANDARKAR, D. AND D. W. CLARK [1991]. “Performance from architecture: Comparing a RIS
and a CISC with similar hardware organizations,” Proc. Fourth Conf. on Architectural Support for
Programming Languages and Operating Systems, IEEE/ACM (April), Palo Alto, Calif., 310–319.

BLOCH, E. [1959]. “The engineering design of the Stretch computer,” Proc. Fall Joint Computer
Conf., 48–59.

BUCHOLTZ, W. [1962]. Planning a Computer System: Project Stretch, McGraw-Hill, New York.

CHEN, T. C. [1980]. “Overlap and parallel processing,” in Introduction to Computer Architecture, H.
Stone, ed., Science Research Associates, Chicago, 427–486.

CLARK, D. W. [1987]. “Pipelining and performance in the VAX 8800 processor,” Proc. Second Conf.
on Architectural Support for Programming Languages and Operating Systems, IEEE/ACM
(March), Palo Alto, Calif., 173–177.

DAVIDSON, E. S. [1971]. “The design and control of pipelined function generators,” Proc. Conf. on
Systems, Networks, and Computers, IEEE (January), Oaxtepec, Mexico, 19–21.

DAVIDSON, E. S., A. T. THOMAS, L. E. SHAR, AND J. H. PATEL [1975]. “Effective control for pipe-
lined processors,” COMPCON, IEEE (March), San Francisco, 181–184.

EARLE, J. G. [1965]. “Latched carry-save adder,” IBM Technical Disclosure Bull. 7 (March), 909–910.

214 Chapter 3 Pipelining

1/

s
nd

-

-

,”
EMER, J. S. AND D. W. CLARK [1984]. “A characterization of processor performance in the VAX-1
780,” Proc. 11th Symposium on Computer Architecture (June), Ann Arbor, Mich., 301–310.

FISHER, J. AND FREUDENBERGER, S. [1992]. “Predicting conditional branch directions from previou
runs of a program,” Proc. Fifth Conf. on Architectural Support for Programming Languages a
Operating Systems, IEEE/ACM (October), Boston, 85–95.

GIBBONS, P. B. AND S. S. MUCHNIK [1986]. “Efficient instruction scheduling for a pipelined proces
sor,” SIGPLAN ‘86 Symposium on Compiler Construction, ACM (June), Palo Alto, Calif., 11–16.

GROSS, T. R. [1983]. Code Optimization of Pipeline Constraints, Ph.D. Thesis (December), Comput
er Systems Lab., Stanford Univ.

HEINRICH, J. [1993]. MIPS R4000 User’s Manual, Prentice Hall, Englewood Cliffs, N.J.

HENNESSY, J. L. AND T. R. GROSS [1983]. “Postpass code optimization of pipeline constraints,” ACM
Trans. on Programming Languages and Systems 5:3 (July), 422–448.

IBM [1990]. “The IBM RISC System/6000 processor” (collection of papers), IBM J. of Research and
Development 34:1 (January).

KELLER R. M. [1975]. “Look-ahead processors,” ACM Computing Surveys 7:4 (December), 177–
195.

KILLIAN , E. [1991]. “MIPS R4000 technical overview–64 bits/100 MHz or bust,” Hot Chips III Sym-
posium Record (August), Stanford University, 1.6–1.19.

KOGGE, P. M. [1981]. The Architecture of Pipelined Computers, McGraw-Hill, New York.

KUNKEL, S. R. AND J. E. SMITH [1986]. “Optimal pipelining in supercomputers,” Proc. 13th Sym-
posium on Computer Architecture (June), Tokyo, 404–414.

MCFARLING, S. AND J. L. HENNESSY [1986]. “Reducing the cost of branches,” Proc. 13th Symposium
on Computer Architecture (June), Tokyo, 396-403.

RAMAMOORTHY, C. V. AND H. F. LI [1977]. “Pipeline architecture,” ACM Computing Surveys 9:1
(March), 61–102.

RYMARCZYK , J. [1982]. “Coding guidelines for pipelined processors,” Proc. Symposium on Archi-
tectural Support for Programming Languages and Operating Systems, IEEE/ACM (March), Palo
Alto, Calif., 12–19.

SITES, R. [1979]. Instruction Ordering for the CRAY-1 Computer, Tech. Rep. 78-CS-023 (July),
Dept. of Computer Science, Univ. of Calif., San Diego.

SMITH, J. E. AND A. R. PLESZKUN [1988]. “Implementing precise interrupts in pipelined processors
IEEE Trans. on Computers 37:5 (May), 562–573.

WEISS, S. AND J. E. SMITH [1984]. “Instruction issue logic for pipelined supercomputers,” Proc. 11th
Symposium on Computer Architecture (June), Ann Arbor, Mich., 110–118.

E X E R C I S E S

3.1 [15/15/15] <3.4,3.5> Use the following code fragment:

loop: LW R1,0(R2)

ADDI R1,R1,#1

SW 0(R2),R1

ADDI R2,R2,#4

SUB R4,R3,R2

BNEZ R4,Loop

Exercises 215

es are

line
 write
se a
d by
does

ith
ure
If all
cute?

and
p in-
ual
e the

ow a
e en-

) and
zards
er in-

ipe-
nd a

.10.
 han-
any
Assume that the initial value of R3 is R2 + 396.

Throughout this exercise use the DLX integer pipeline and assume all memory access
cache hits.

a. [15] <3.4,3.5> Show the timing of this instruction sequence for the DLX pipe
without any forwarding or bypassing hardware but assuming a register read and a
in the same clock cycle “forwards” through the register file, as in Figure 3.10. U
pipeline timing chart like Figure 3.14 or 3.15. Assume that the branch is handle
flushing the pipeline. If all memory references hit in the cache, how many cycles
this loop take to execute?

b. [15] <3.4,3.5> Show the timing of this instruction sequence for the DLX pipeline w
normal forwarding and bypassing hardware. Use a pipeline timing chart like Fig
3.14 or 3.15. Assume that the branch is handled by predicting it as not taken.
memory references hit in the cache, how many cycles does this loop take to exe

c. [15] <3.4,3.5> Assuming the DLX pipeline with a single-cycle delayed branch
normal forwarding and bypassing hardware, schedule the instructions in the loo
cluding the branch-delay slot. You may reorder instructions and modify the individ
instruction operands, but do not undertake other loop transformations that chang
number or opcode of the instructions in the loop (that’s for the next chapter!). Sh
pipeline timing diagram and compute the number of cycles needed to execute th
tire loop.

3.2 [15/15/15] <3.4,3.5,3.7> Use the following code fragment:

Loop: LD F0,0(R2)

LD F4,0(R3)

MULTD F0,F0,F4

ADDD F2,F0,F2

ADDI R2,R2,#8

ADDI R3,R3,#8

SUB R5,R4,R2

BNEZ R5,Loop

Assume that the initial value of R4 is R2 + 792.

For this exercise assume the standard DLX integer pipeline (as shown in Figure 3.10
the standard DLX FP pipeline as described in Figures 3.43 and 3.44. If structural ha
are due to write-back contention, assume the earliest instruction gets priority and oth
structions are stalled.

a. [15] <3.4,3.5,3.7> Show the timing of this instruction sequence for the DLX FP p
line without any forwarding or bypassing hardware but assuming a register read a
write in the same clock cycle “forwards” through the register file, as in Figure 3
Use a pipeline timing chart like Figure 3.14 or 3.15. Assume that the branch is
dled by flushing the pipeline. If all memory references hit in the cache, how m
cycles does this loop take to execute?

216 Chapter 3 Pipelining

ipe-
like
en. If
e to

nch
p in-
ual
e the

ow a
entire

for a
ister-
 mode

achine
line

 and
is both

rite of

enter;
need
b. [15] <3.4,3.5,3.7> Show the timing of this instruction sequence for the DLX FP p
line with normal forwarding and bypassing hardware. Use a pipeline timing chart
Figure 3.14 or 3.15. Assume that the branch is handled by predicting it as not tak
all memory references hit in the cache, how many cycles does this loop tak
execute?

c. [15] <3.4,3.5,3.7> Assuming the DLX FP pipeline with a single-cycle delayed bra
and full bypassing and forwarding hardware, schedule the instructions in the loo
cluding the branch-delay slot. You may reorder instructions and modify the individ
instruction operands, but do not undertake other loop transformations that chang
number or opcode of the instructions in the loop (that’s for the next chapter!). Sh
pipeline timing diagram and compute the time needed in cycles to execute the
loop.

3.3 [12/13/20/20/15/15] <3.2,3.4,3.5> For these problems, we will explore a pipeline
register-memory architecture. The architecture has two instruction formats: a reg
register format and a register-memory format. There is a single-memory addressing
(offset + base register).

There is a set of ALU operations with format:

ALUop Rdest, Rsrc 1, Rsrc 2

or

ALUop Rdest, Rsrc 1, MEM

where the ALUop is one of the following: Add, Subtract, And, Or, Load (Rsrc1 ignored),
Store. Rsrc or Rdest are registers. MEM is a base register and offset pair.

Branches use a full compare of two registers and are PC-relative. Assume that this m
is pipelined so that a new instruction is started every clock cycle. The following pipe
structure—similar to that used in the VAX 8700 micropipeline (Clark [1987])—is

The first ALU stage is used for effective address calculation for memory references
branches. The second ALU cycle is used for operations and branch comparison. RF
a decode and register-fetch cycle. Assume that when a register read and a register w
the same register occur in the same clock the write data is forwarded.

a. [12] <3.2> Find the number of adders needed, counting any adder or increm
show a combination of instructions and pipe stages that justify this answer. You
only give one combination that maximizes the adder count.

IF RF ALU1 MEM ALU2 WB

IF RF ALU1 MEM ALU2 WB

IF RF ALU1 MEM ALU2 WB

IF RF ALU1 MEM ALU2 WB

IF RF ALU1 MEM ALU2 WB

IF RF ALU1 MEM ALU2 WB

Exercises 217

 write
truc-
 and

ding
e two
t ig-
ning

stalls
at as
from

an an
ting

 stall.

 pipe-
ed and
us the
 to 20
 work
lot the

ng
at the
hen-
ver-
f any

(for

ipe-
 we
b. [13] <3.2> Find the number of register read and write ports and memory read and
ports required. Show that your answer is correct by showing a combination of ins
tions and pipeline stage indicating the instruction and the number of read ports
write ports required for that instruction.

c. [20] <3.4> Determine any data forwarding for any ALUs that will be needed. Assume
that there are separate ALUs for the ALU1 and ALU2 pipe stages. Put in all forwar
among ALUs needed to avoid or reduce stalls. Show the relationship between th
instructions involved in forwarding using the format of the table in Figure 3.19 bu
noring the last two columns. Be careful to consider forwarding across an interve
instruction, e.g.,

ADD R1, ...

any instruction

ADD ..., R1, ...

d. [20] <3.4> Show all data forwarding requirements needed to avoid or reduce
when either the source or destination unit is not an ALU. Use the same form
Figure 3.19, again ignoring the last two columns. Remember to forward to and
memory references.

e. [15] <3.4> Show all the remaining hazards that involve at least one unit other th
ALU as the source or destination unit. Use a table like that in Figure 3.18, but lis
the length of hazard in place of the last column.

f. [15] <3.5> Show all control hazard types by example and state the length of the
Use a format like Figure 3.21, labeling each example.

3.4 [10] <3.2> Consider the example on page 137 that compares the unpipelined and
lined machine. Assume that 1 ns overhead is fixed and that each pipe stage is balanc
takes 10 ns in the five-stage pipeline. Plot the speedup of the pipelined machine vers
unpipelined machine as the number of pipeline stages is increased from five stages
stages, considering only the impact of the pipelining overhead and assuming that the
can be evenly divided as the stages are increased (which is not generally true). Also p
“perfect” speedup that would be obtained if there was no overhead.

3.5 [12] <3.1–3.5> A machine is called “underpipelined” if additional levels of pipelini
can be added without changing the pipeline-stall behavior appreciably. Suppose th
DLX integer pipeline was changed to four stages by merging EX and MEM and lengt
ing the clock cycle by 50%. How much faster would the conventional DLX pipeline be
sus the underpipelined DLX on integer code only? Make sure you include the effect o
change in pipeline stalls using the data for gcc in Figure 3.38 (page 178).

3.6 [20] <3.4> Add the forwarding entries for stores and for the zero detect unit
branches) to the table in Figure 3.19. Hint: Remember the tricky case:

ADD R1, ...

any instruction

SW ..., R1

How is the forwarding handled for this case?

3.7 [20] <3.4,3.9> Create a table showing the forwarding logic for the R4000 integer p
line using the same format as that in Figure 3.19. Include only the DLX instructions
considered in Figure 3.19.

218 Chapter 3 Pipelining

g the
at we

are as

e sec-
onal
wheth-
chine

result
th of

tage

 basic

zard

ards
e 1 of
ot. We
yield
hes in
3.8 [15] <3.4,3.9> Create a table showing the R4000 integer hazard detection usin
same format as that in Figure 3.18. Include only the instructions in the DLX subset th
considered in section 3.4.

3.9 [15] <3.5> Suppose the branch frequencies (as percentages of all instructions)
follows:

Conditional branches 20%
Jumps and calls 5%
Conditional branches 60% are taken

We are examining a four-deep pipeline where the branch is resolved at the end of th
ond cycle for unconditional branches and at the end of the third cycle for conditi
branches. Assuming that only the first pipe stage can always be done independent of
er the branch goes and ignoring other pipeline stalls, how much faster would the ma
be without any branch hazards?

3.10 [20/20] <3.4> Suppose that we have the pipeline layout shown in Figure 3.64.

All data dependences are between the register written in stage 3 of instruction i and a reg-
ister read in stage 2 of instruction i + 1, before instruction i has completed. The probability
of such an interlock occurring is 1/p.

We are considering a change in the machine organization that would write back the
of an instruction during an effective fourth pipe stage. This would decrease the leng
the clock cycle by d (i.e., if the length of the clock cycle was T, it is now T – d). The prob-
ability of a dependence between instruction i and instruction i + 2 is p–2. (Assume that the
value of p–1 excludes instructions that would interlock on i + 2.) The branch would also be
resolved during the fourth stage.

a. [20] <3.4> Assume that we add no additional forwarding hardware for the four-s
pipeline. Considering only the data hazard, find the lower bound on d that makes this
a profitable change. Assume that each result has exactly one use and that the
clock cycle has length T.

b. [20] <3.4> Now assume that we have used forwarding to eliminate the extra ha
introduced by the change. That is, for all data hazards the pipeline length is effectively
3. This design may still not be worthwhile because of the impact of control haz
coming from a four-stage versus a three-stage pipeline. Assume that only stag
the pipeline can be safely executed before we decide whether a branch goes or n
want to know the impact of branch hazards before this longer pipeline does not
high performance. Find an upper bound on the percentages of conditional branc

Stage Function

1 Instruction fetch

2 Operand decode

3 Execution or memory access (branch resolution)

FIGURE 3.64 Pipeline stages.

Exercises 219

r
r-
e the

lls for
inter-

.44
ds to

table
pipe-

LX

s for

 the
ncy of
f for-
and

m-
d FP
st sus-

bly
lator.

with
programs in terms of the ratio of d to the original clock-cycle time, so that the longe
pipeline has better performance. If d is a 10% reduction, what is the maximum pe
centage of conditional branches before we lose with this longer pipeline? Assum
taken-branch frequency for conditional branches is 60%.

3.11 [20] <3.4,3.7> Construct a table like Figure 3.18 that shows the data hazard sta
the DLX FP pipeline as shown in Figure 3.44. Consider both integer-FP and FP-FP
actions but ignore divides (FP and integer).

3.12 [20] <3.4,3.7> Construct the forwarding table for the DLX FP pipeline of Figure 3
as we did in Figure 3.19. Consider both FP to FP forwarding and forwarding of FP loa
the FP units but ignore FP and integer divides.

3.13 [25] <3.4,3.7> Suppose DLX had only one register set. Construct the forwarding
for the FP and integer instructions using the format of Figure 3.19. Assume the DLX
line in Figure 3.44. Ignore FP and integer divides.

3.14 [15] <3.4,3.7> Construct a table like Figure 3.18 to check for WAW stalls in the D
FP pipeline of Figure 3.44. Do not consider integer or FP divides.

3.15 [20] <3.4,3.7> Construct a table like Figure 3.18 that shows the structural stall
the R4000 FP pipeline.

3.16 [35] <3.2–3.7> Change the DLX instruction simulator to be pipelined. Measure
frequency of empty branch-delay slots, the frequency of load delays, and the freque
FP stalls for a variety of integer and FP programs. Also, measure the frequency o
warding operations. Determine the performance impact of eliminating forwarding
stalling.

3.17 [35] <3.7> Using a DLX simulator, create a DLX pipeline simulator. Explore the i
pact of lengthening the FP pipelines, assuming both fully pipelined and unpipeline
units. How does clustering of FP operations affect the results? Which FP units are mo
ceptible to changes in the FP pipeline length?

3.18 [40] <3.3–3.5> Write an instruction scheduler for DLX that works on DLX assem
language. Evaluate your scheduler using either profiles of programs or a pipeline simu
If the DLX C compiler does optimization, evaluate your scheduler’s performance both
and without optimization.

4

Advanced Pipelining
and Instruction-
Level Parallelism 4
d

s
r
“Who’s first?”

“America.”

“Who’s second?”

“Sir, there is no second.”

Dialog between two observers of the sailing race later name
“The America’s Cup” and run every few years.

This quote was the inspiration for John Cocke’s naming of
the IBM research processor as “America.” This processor wa
the precursor to the RS/6000 series and the first superscala
microprocessor.

4.1 Instruction-Level Parallelism: Concepts and Challenges 221

4.2 Overcoming Data Hazards with Dynamic Scheduling 240

4.3 Reducing Branch Penalties with
Dynamic Hardware Prediction 262

4.4 Taking Advantage of More ILP with Multiple Issue 278

4.5 Compiler Support for Exploiting ILP 289

4.6 Hardware Support for Extracting More Parallelism 299

4.7 Studies of ILP 318

4.8 Putting It All Together: The PowerPC 620 335

4.9 Fallacies and Pitfalls 349

4.10 Concluding Remarks 352

4.11 Historical Perspective and References 354

Exercises 362
truc-
ng in-

s for
ited
ct of
f the
o in-

 ad-

t limit
lude

oita-
In the last chapter we saw how pipelining can overlap the execution of ins
tions when they are independent of one another. This potential overlap amo
structions is called instruction-level parallelism (ILP) since the instructions can
be evaluated in parallel. In this chapter, we look at a wide range of technique
extending the pipelining ideas by increasing the amount of parallelism explo
among instructions. We start by looking at techniques that reduce the impa
data and control hazards and then turn to the topic of increasing the ability o
processor to exploit parallelism. We discuss the compiler technology used t
crease the ILP and examine the results of a study of available ILP. The Putting It
All Together section covers the PowerPC 620, which supports most of the
vanced pipelining techniques described in this chapter.

In this section, we discuss features of both programs and processors tha
the amount of parallelism that can be exploited among instructions. We conc
the section by looking at simple compiler techniques for enhancing the expl
tion of pipeline parallelism by a compiler.

4.1 Instruction-Level Parallelism:
Concepts and Challenges

222

Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

ribu-

 by
 min-
t per
talls
duce
I, can
The
in this
e 4.1
ns to

cepts
e the

ces.
m or
ode

The CPI of a pipelined machine is the sum of the base CPI and all cont
tions from stalls:

The ideal pipeline CPI is a measure of the maximum performance attainable
the implementation. By reducing each of the terms of the right-hand side, we
imize the overall pipeline CPI and thus increase the instruction throughpu
clock cycle. While the focus of the last chapter was on reducing the RAW s
and the control stalls, in this chapter we will see that the techniques we intro
to further reduce the RAW and control stalls, as well as reduce the ideal CP
increase the importance of dealing with structural, WAR, and WAW stalls.
equation above allows us to characterize the various techniques we examine
chapter by what component of the overall CPI a technique reduces. Figur
shows some of the techniques we examine and how they affect the contributio
the CPI.

Before we examine these techniques in detail, we need to define the con
on which these techniques are built. These concepts, in the end, determin
limits on how much parallelism can be exploited.

Instruction-Level Parallelism

All the techniques in this chapter exploit parallelism among instruction sequen
As we stated above, this type of parallelism is called instruction-level parallelis
ILP. The amount of parallelism available within a basic block (a straight-line c

Technique Reduces Section

Loop unrolling Control stalls 4.1

Basic pipeline scheduling RAW stalls 4.1 (also Chapter 3)

Dynamic scheduling with scoreboarding RAW stalls 4.2

Dynamic scheduling with register renaming WAR and WAW stalls 4.2

Dynamic branch prediction Control stalls 4.3

Issuing multiple instructions per cycle Ideal CPI 4.4

Compiler dependence analysis Ideal CPI and data stalls 4.5

Software pipelining and trace scheduling Ideal CPI and data stalls 4.5

Speculation All data and control stalls 4.6

Dynamic memory disambiguation RAW stalls involving memory 4.2, 4.6

FIGURE 4.1 The major techniques examined in this chapter are shown together with the component of the CPI
equation that the technique affects. Data stalls are stalls arising from any type of data hazard, namely RAW (read after
write), WAR (write after read), or WAW (write after write).

Pipeline CPI Ideal pipeline CPI Structural stalls RAW stalls+ +=

WAR stalls WAW stalls Control stalls+ + +

4.1 Instruction-Level Parallelism: Concepts and Challenges

223

t at the
amic
n six

uctions
ithin
ance

lism
oop.

tely

hin

oop-
ues
the
on.
he
uence
ur in-
 and

store
 have
truc-
il in
f the
 that
 tech-
rical

nd-
e. To
ource
that
oth
 the
sequence with no branches in except to the entry and no branches out excep
exit) is quite small. For example, in Chapter 3 we saw that the average dyn
branch frequency in integer programs was about 15%, meaning that betwee
and seven instructions execute between a pair of branches. Since these instr
are likely to depend upon one another, the amount of overlap we can exploit w
a basic block is likely to be much less than six. To obtain substantial perform
enhancements, we must exploit ILP across multiple basic blocks.

The simplest and most common way to increase the amount of paralle
available among instructions is to exploit parallelism among iterations of a l
This type of parallelism is often called loop-level parallelism. Here is a simple
example of a loop, which adds two 1000-element arrays, that is comple
parallel:

for (i=1; i<=1000; i=i+1)

x[i] = x[i] + y[i];

Every iteration of the loop can overlap with any other iteration, although wit
each loop iteration there is little opportunity for overlap.

There are a number of techniques we will examine for converting such l
level parallelism into instruction-level parallelism. Basically, such techniq
work by unrolling the loop either statically by the compiler or dynamically by
hardware. We will look at a detailed example of loop unrolling later in this secti

An important alternative method for exploiting loop-level parallelism is t
use of vector instructions. Essentially, a vector instruction operates on a seq
of data items. For example, the above code sequence could execute in fo
structions on a typical vector processor: two instructions to load the vectors x
y from memory, one instruction to add the two vectors, and an instruction to
back the result vector. Of course, these instructions would be pipelined and
relatively long latencies, but these latencies may be overlapped. Vector ins
tions and the operation of vector processors are described in deta
Appendix B. Although the development of the vector ideas preceded most o
techniques we examine in this chapter for exploiting parallelism, processors
exploit ILP are replacing the vector-based processors; the reasons for this
nology shift are discussed in more detail later in this chapter and in the histo
perspectives at the end of the chapter.

Basic Pipeline Scheduling and Loop Unrolling

To keep a pipeline full, parallelism among instructions must be exploited by fi
ing sequences of unrelated instructions that can be overlapped in the pipelin
avoid a pipeline stall, a dependent instruction must be separated from the s
instruction by a distance in clock cycles equal to the pipeline latency of
source instruction. A compiler’s ability to perform this scheduling depends b
on the amount of ILP available in the program and on the latencies of

224

Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

 FP
ated.
lay of
epli-
e can

nt of
por-
tions
dds a

on is
how
t, let’s
m to
ve.
e. In

y

d
orm

functional units in the pipeline. Throughout this chapter we will assume the
unit latencies shown in Figure 4.2, unless different latencies are explicitly st
We assume the standard DLX integer pipeline, so that branches have a de
one clock cycle. We assume that the functional units are fully pipelined or r
cated (as many times as the pipeline depth), so that an operation of any typ
be issued on every clock cycle and there are no structural hazards.

In this subsection, we look at how the compiler can increase the amou
available ILP by unrolling loops. This example serves both to illustrate an im
tant technique as well as to motivate the definitions and program transforma
described in the rest of this section. Our example uses a simple loop that a
scalar value to an array in memory. Here is a typical version of the source:

for (i=1000; i>0; i=i–1)

x[i] = x[i] + s;

We can see that this loop is parallel by noticing that the body of each iterati
independent. We will formalize this notion later in this section and describe
we can test whether loop iterations are independent later in the chapter. Firs
work through this simple example, showing how we can use the parallelis
improve its performance for a DLX-like pipeline with the latencies shown abo

The first step is to translate the above segment to DLX assembly languag
the following code segment, R1 is initially the address of the element in the arra
with the highest address, and F2 contains the scalar value, s. For simplicity, we
assume that the element (x[1]) with the lowest address is at 8; if it were locate
elsewhere, the loop would require one additional integer instruction to perf
the comparison with R1.

Instruction producing result Instruction using result Latency in clock cycles

FP ALU op Another FP ALU op 3

FP ALU op Store double 2

Load double FP ALU op 1

Load double Store double 0

FIGURE 4.2 Latencies of FP operations used in this chapter. The first column shows the
originating instruction type. The second column is the type of the consuming instruction. The
last column is the number of intervening clock cycles needed to avoid a stall. These numbers
are similar to the average latencies we would see on an FP unit, like the one we described
for DLX in the last chapter. The major change versus the DLX FP pipeline was to reduce the
latency of FP multiply; this helps keep our examples from becoming unwieldy. The latency of
a floating-point load to a store is zero, since the result of the load can be bypassed without
stalling the store. We will continue to assume an integer load latency of 1 and an integer ALU
operation latency of 0.

4.1 Instruction-Level Parallelism: Concepts and Challenges

225

is:

im-

e that

The straightforward DLX code, not scheduled for the pipeline, looks like th

Loop: LD F0,0(R1) ;F0=array element
ADDD F4,F0,F2 ;add scalar in F2
SD 0(R1),F4 ;store result
SUBI R1,R1,#8 ;decrement pointer

;8 bytes (per DW)
BNEZ R1,Loop ;branch R1!=zero

Let’s start by seeing how well this loop will run when it is scheduled on a s
ple pipeline for DLX with the latencies from Figure 4.2.

E X A M P L E Show how the loop would look on DLX, both scheduled and unscheduled,
including any stalls or idle clock cycles. Schedule for both delays from
floating-point operations and from the delayed branch.

A N S W E R Without any scheduling the loop will execute as follows:

 Clock cycle issued

Loop: LD F0,0(R1) 1
stall 2
ADDD F4,F0,F2 3
stall 4
stall 5
SD 0(R1),F4 6
SUBI R1,R1,#8 7
stall 8
BNEZ R1,Loop 9
stall 10

This requires 10 clock cycles per iteration: one stall for the LD, two for the
ADDD, one for the SUBI (since a branch reads the operand in ID), and one
for the delayed branch. We can schedule the loop to obtain only one stall:

Loop: LD F0,0(R1)
SUBI R1,R1,#8
ADDD F4,F0,F2
stall
BNEZ R1,Loop ;delayed branch
SD 8(R1),F4 ;altered & interchanged

 with SUBI

Execution time has been reduced from 10 clock cycles to 6. The stall after
ADDD is for the use by the SD. ■

Notice that to schedule the delayed branch, the compiler had to determin
it could swap the SUBI and SD by changing the address to which the SD stored:

226

Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

ship

is
ncies.
 array
 ele-
aining

p rel-
g the

nd

ates
ther.
pen-
e in-
hen
 from
 for

the address was 0(R1) and is now 8(R1) . This is not a trivial observation, since
most compilers would see that the SD instruction depends on the SUBI and would
refuse to interchange them. A smarter compiler could figure out the relation
and perform the interchange. The chain of dependent instructions from the LD to
the ADDD and then to the SD determines the clock cycle count for this loop. Th
chain must take at least 6 cycles because of dependencies and pipeline late

In the above example, we complete one loop iteration and store back one
element every 6 clock cycles, but the actual work of operating on the array
ment takes just 3 (the load, add, and store) of those 6 clock cycles. The rem
3 clock cycles consist of loop overhead—the SUBI and BNEZ—and a stall. To
eliminate these 3 clock cycles we need to get more operations within the loo
ative to the number of overhead instructions. A simple scheme for increasin
number of instructions relative to the branch and overhead instructions is loop
unrolling. This is done by simply replicating the loop body multiple times, a
adjusting the loop termination code.

Loop unrolling can also be used to improve scheduling. Because it elimin
the branch, it allows instructions from different iterations to be scheduled toge
In this case, we can eliminate the load delay stall by creating additional inde
dent instructions within the loop body. The compiler can then schedule thes
structions into the load delay slot. If we simply replicated the instructions w
we unrolled the loop, the resulting use of the same registers could prevent us
effectively scheduling the loop. Thus, we will want to use different registers
each iteration, increasing the required register count.

E X A M P L E Show our loop unrolled so that there are four copies of the loop body,
assuming R1 is initially a multiple of 32, which means that the number of
loop iterations is a multiple of 4. Eliminate any obviously redundant com-
putations and do not reuse any of the registers.

A N S W E R Here is the result after merging the SUBI instructions and dropping the un-
necessary BNEZ operations that are duplicated during unrolling.

Loop: LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4 ;drop SUBI & BNEZ

LD F6,-8(R1)

ADDD F8,F6,F2

SD -8(R1),F8 ;drop SUBI & BNEZ

LD F10,-16(R1)

ADDD F12,F10,F2

SD -16(R1),F12 ;drop SUBI & BNEZ

LD F14,-24(R1)

ADDD F16,F14,F2

SD -24(R1),F16

SUBI R1,R1,#32

BNEZ R1,Loop

4.1 Instruction-Level Parallelism: Concepts and Challenges

227

Sup-

e first

d is

 by
tially.
d on

We have eliminated three branches and three decrements of R1 . The ad-
dresses on the loads and stores have been compensated to allow the
SUBI instructions on R1 to be merged. Without scheduling, every opera-
tion is followed by a dependent operation and thus will cause a stall. This
loop will run in 28 clock cycles—each LD has 1 stall, each ADDD 2, the
SUBI 1, the branch 1, plus 14 instruction issue cycles—or 7 clock cycles
for each of the four elements. Although this unrolled version is currently
slower than the scheduled version of the original loop, this will change
when we schedule the unrolled loop. Loop unrolling is normally done early
in the compilation process, so that redundant computations can be ex-
posed and eliminated by the optimizer. ■

In real programs we do not usually know the upper bound on the loop.
pose it is n, and we would like to unroll the loop to make k copies of the body. In-
stead of a single unrolled loop, we generate a pair of consecutive loops. Th
executes (n mod k) times and has a body that is the original loop. The secon
the unrolled body surrounded by an outer loop that iterates (n/k) times.

In the above Example, unrolling improves the performance of this loop
eliminating overhead instructions, although it increases code size substan
What will happen to the performance increase when the loop is schedule
DLX?

E X A M P L E Show the unrolled loop in the previous example after it has been sched-
uled on DLX.

A N S W E R Loop: LD F0,0(R1)

LD F6,-8(R1)

LD F10,-16(R1)

LD F14,-24(R1)

ADDD F4,F0,F2

ADDD F8,F6,F2

ADDD F12,F10,F2

ADDD F16,F14,F2

SD 0(R1),F4

SD -8(R1),F8

SUBI R1,R1,#32

SD 16(R1),F12

BNEZ R1,Loop

SD 8(R1),F16 ;8-32 = -24

The execution time of the unrolled loop has dropped to a total of 14 clock
cycles, or 3.5 clock cycles per element, compared with 7 cycles per
element before scheduling and 6 cycles when scheduled but not unrolled.
■

228

Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

rigi-
t can
ng the
epen-

ght-
 use-
ipe-

ues
the
ech-
 be
an be-
 in a
 un-

 it-

rced

 code.

nged
pen-
y do

 same

ding
n be
s these
 must
The gain from scheduling on the unrolled loop is even larger than on the o
nal loop. This is because unrolling the loop exposes more computation tha
be scheduled to minimize the stalls; the code above has no stalls. Scheduli
loop in this fashion necessitates realizing that the loads and stores are ind
dent and can be interchanged.

Loop unrolling is a simple but useful method for increasing the size of strai
line code fragments that can be scheduled effectively. This transformation is
ful in a variety of processors, from simple pipelines like those in DLX to the p
lines described in section 4.4 that issue more than one instruction per cycle.

Summary of the Loop Unrolling and Scheduling Example
Throughout this chapter we will look at both hardware and software techniq
that allow us to take advantage of instruction-level parallelism to fully utilize
potential of the functional units in a processor. The key to most of these t
niques is to know when and how the ordering among instructions may
changed. In our example we made many such changes, which to us, as hum
ings, were obviously allowable. In practice, this process must be performed
methodical fashion either by a compiler or by hardware. To obtain the final
rolled code we had to make the following decisions and transformations:

1. Determine that it was legal to move the SD after the SUBI and BNEZ, and find
the amount to adjust the SD offset.

2. Determine that unrolling the loop would be useful by finding that the loop
erations were independent, except for the loop maintenance code.

3. Use different registers to avoid unnecessary constraints that would be fo
by using the same registers for different computations.

4. Eliminate the extra tests and branches and adjust the loop maintenance

5. Determine that the loads and stores in the unrolled loop can be intercha
by observing that the loads and stores from different iterations are inde
dent. This requires analyzing the memory addresses and finding that the
not refer to the same address.

6. Schedule the code, preserving any dependences needed to yield the
result as the original code.

The key requirement underlying all of these transformations is an understan
of how an instruction depends on another and how the instructions ca
changed or reordered given the dependences. The next subsection define
ideas and describes the restrictions that any hardware or software system
maintain.

4.1 Instruction-Level Parallelism: Concepts and Challenges

229

 the
 how
ited.
 in-

 the
o in-
t are

llel and
epen-

me de-

ther if
tions.
le, the

ion de-
w the
n in-
Dependences

Determining how one instruction depends on another is critical not only to
scheduling process we used in the earlier example but also to determining
much parallelism exists in a program and how that parallelism can be explo
In particular, to exploit instruction-level parallelism we must determine which
structions can be executed in parallel. If two instructions are parallel, they can
execute simultaneously in a pipeline without causing any stalls, assuming
pipeline has sufficient resources (and hence no structural hazards exist). Tw
structions that are dependent are not parallel. Likewise, two instructions tha
dependent cannot be reordered. Instructions that can be reordered are para
vice versa. The key in both cases is to determine whether an instruction is d
dent on another instruction.

Data Dependences
There are three different types of dependences: data dependences, na

pendences, and control dependences. An instruction j is data dependent on in-
struction i if either of the following holds:

■ Instruction i produces a result that is used by instruction j, or

■ Instruction j is data dependent on instruction k, and instruction k is data depen-
dent on instruction i.

The second condition simply states that one instruction is dependent on ano
there exists a chain of dependences of the first type between the two instruc
This dependence chain can be as long as the entire program. In our examp
sequences

and

are both dependent sequences, as shown by the arrows, with each instruct
pending on the previous one.The arrows here and in following examples sho
order that must be preserved for correct execution. The arrow points from a
struction that must precede the instruction that the arrowhead points to.

Loop: LD F0,0(R1) ;F0=array element

ADDD F4,F0,F2 ;add scalar in F2

SD 0(R1),F4 ;store result

SUBI R1,R1,8 ;decrement pointer

;8 bytes (per DW)

BNEZ R1,Loop ; branch R1!=zero

230 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

ly or
ain of
truc-
ct a
with-
dule
 pro-
struc-
h the

dence

lts
 a stall

here
a

se,
of the
nd the
en-
deter-
bound
d in

lism
his

zard,
de is

e. We
nroll-
en-
uling
limi-
If two instructions are data dependent they cannot execute simultaneous
be completely overlapped. The dependence implies that there would be a ch
one or more RAW hazards between the two instructions. Executing the ins
tions simultaneously will cause a processor with pipeline interlocks to dete
hazard and stall, thereby reducing or eliminating the overlap. In a processor
out interlocks that relies on compiler scheduling, the compiler cannot sche
dependent instructions in such a way that they completely overlap, since the
gram will not execute correctly. The presence of a data dependence in an in
tion sequence reflects a data dependence in the source code from whic
instruction sequence was generated. The effect of the original data depen
must be preserved.

Dependences are a property of programs. Whether a given dependence resu
in an actual hazard being detected and whether that hazard actually causes
are properties of the pipeline organization. This difference is critical to under-
standing how instruction-level parallelism can be exploited. In our example, t
is a data dependence between the SUBI and the BNEZ; this dependence causes
stall because we moved the branch test for the DLX pipeline to the ID stage. Had
the branch test stayed in EX, this dependence would not cause a stall. (Of cour
the branch delay would then still be 2 cycles, rather than 1.) The presence
dependence indicates the potential for a hazard, but the actual hazard a
length of any stall is a property of the pipeline. The importance of the data dep
dences is that a dependence (1) indicates the possibility of a hazard, (2)
mines the order in which results must be calculated, and (3) sets an upper
on how much parallelism can possibly be exploited. Such limits are explore
section 4.7.

Since a data dependence can limit the amount of instruction-level paralle
we can exploit, a major focus of this chapter is overcoming the limitations. T
is done in two different ways: maintaining the dependence but avoiding a ha
and eliminating a dependence by transforming the code. Scheduling the co
the primary method used to avoid a hazard without altering the dependenc
used this technique in several places in our example both before and after u
ing; the dependence LD, ADDD, SD was scheduled to avoid hazards, but the dep
dence remains in the code. We will see techniques for implementing sched
of code both in hardware and in software. In our earlier example, we also e
nated dependences, though we did not show this step explicitly.

E X A M P L E Show how the process of optimizing the loop overhead by unrolling the
loop actually eliminates data dependences. In this example and those
used in the remainder of this chapter, we use nondelayed branches for
simplicity; it is easy to extend the examples to use delayed branches.

A N S W E R Here is the unrolled but unoptimized code with the extra SUBI instructions,
but without the branches. (Eliminating the branches is another type of
transformation, since it involves control rather than data.) The arrows

4.1 Instruction-Level Parallelism: Concepts and Challenges 231

quires
t of

com-
 per-

ugh
pen-

he in-
ene.
tect
show the data dependences that are within the unrolled body and involve
the SUBI instructions:

As the arrows show, the SUBI instructions form a dependent chain that in-
volves the SUBI, LD, and SD instructions. This forces the body to execute
in order, as well as making the SUBI instructions necessary, which in-
creases the instruction count. The compiler removes this dependence by
symbolically computing the intermediate values of R1 and folding the
computation into the offset of the LD and SD instructions and by changing
the final SUBI into a decrement by 32. This makes the three SUBI unnec-
essary, and the compiler can remove them. There are other types of de-
pendences in this code, but we will deal with them shortly. ■

Removing a real data dependence, as we did in the example above, re
knowledge of the global structure of the program and typically a fair amoun
analysis. Thus, techniques for doing such optimizations are carried out by
pilers, in contrast to the avoidance of hazards by scheduling, which can be
formed both in hardware and software.

A data value may flow between instructions either through registers or thro
memory locations. When the data flow occurs in a register, detecting the de
dence is reasonably straightforward since the register names are fixed in t
structions, although it gets more complicated when branches interv
Dependences that flow through memory locations are more difficult to de

Loop: LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4

SUBI R1,R1,#8 ;drop BNEZ

LD F6,0(R1)

ADDD F8,F6,F2

SD 0(R1),F8

SUBI R1,R1,#8 ;drop BNEZ

LD F10,0(R1)

ADDD F12,F10,F2

SD 0(R1),F12

SUBI R1,R1,#8 ;drop BNEZ

LD F14,0(R1)

ADDD F16,F14,F2

SD 0(R1),F16

SUBI R1,R1,#8

BNEZ R1,LOOP

232 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

xam-
f a
o that
e-
es for
tech-
aral-

-
led a
 that

ard,
pen-

must
ards.

es, as
ed be-
pen-

umber
o not
nd is
 a
since two addresses may refer to the same location, but look different: For e
ple, 100(R4) and 20(R6) may be identical. In addition, the effective address o
load or store may change from one execution of the instruction to another (s
20(R4) and 20(R4) will be different), further complicating the detection of a d
pendence. In this chapter, we examine both hardware and software techniqu
detecting data dependences that involve memory locations. The compiler
niques for detecting such dependences are critical in uncovering loop-level p
lelism, as we will see shortly.

Name Dependences
The second type of dependence is a name dependence. A name dependence oc
curs when two instructions use the same register or memory location, cal
name, but there is no flow of data between the instructions associated with
name. There are two types of name dependences between an instructioni that
precedes instruction j in program order:

1. An antidependence between instruction i and instruction j occurs when in-
struction j writes a register or memory location that instruction i reads and in-
struction i is executed first. An antidependence corresponds to a WAR haz
and the hazard detection for WAR hazards forces the ordering of an antide
dent instruction pair.

2. An output dependence occurs when instruction i and instruction j write the
same register or memory location. The ordering between the instructions
be preserved. Output dependences are preserved by detecting WAW haz

Both antidependences and output dependences are name dependenc
opposed to true data dependences, since there is no value being transmitt
tween the instructions. This means that instructions involved in a name de
dence can execute simultaneously or be reordered, if the name (register n
or memory location) used in the instructions is changed so the instructions d
conflict. This renaming can be more easily done for register operands a
called register renaming. Register renaming can be done either statically by
compiler or dynamically by the hardware.

E X A M P L E Unroll our example loop, eliminating the excess loop overhead, but using
the same registers in each loop copy. Indicate both the data and name de-
pendences within the body. Show how renaming eliminates name depen-
dences that reduce parallelism.

A N S W E R Here’s the loop unrolled but with the same registers in use for each copy.
The data dependences are shown with gray arrows and the name depen-
dences with black arrows. As in earlier examples, the direction of the

4.1 Instruction-Level Parallelism: Concepts and Challenges 233
arrow indicates the ordering that must be preserved for correct execution
of the code:

The name dependences force the instructions in the loop to be almost
completely ordered, allowing only the order of the LD following each SD to
be interchanged. When the registers used for each copy of the loop body
are renamed only the true dependences within each body remain:

Loop: LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4 ;drop SUBI & BNEZ

LD F0,-8(R1)

ADDD F4,F0,F2

SD -8(R1),F4 ;drop SUBI & BNEZ

LD F0,-16(R1)

ADDD F4,F0,F2

SD -16(R1),F4

LD F0,-24(R1)

ADDD F4,F0,F2

SD -24(R1),F4

SUBI R1,R1,#32

BNEZ R1,LOOP

Loop: LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4 ;drop SUBI & BNEZ

LD F6,-8(R1)

ADDD F8,F6,F2

SD -8(R1),F8 ;drop SUBI & BNEZ

LD F10,-16(R1)

ADDD F12,F10,F2

SD -16(R1),F12

LD F14,-24(R1)

ADDD F16,F14,F2

SD -24(R1),F16

SUBI R1,R1,#32

BNEZ R1,LOOP

234 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

-
 that
tion,
t on
e pre-
dence

mple,

efore
r ex-
ent

 after
, we
 por-

xecu-
limit
With the renaming, the copies of each loop body become independent
and can be overlapped or executed in parallel. This renaming process can
be performed either by the compiler or in hardware. In fact, we will see
how the entire unrolling and renaming process can be done in the hard-
ware. ■

Control Dependences
The last type of dependence is a control dependence. A control dependence deter
mines the ordering of an instruction with respect to a branch instruction so
the non-branch instruction is executed only when it should be. Every instruc
except for those in the first basic block of the program, is control dependen
some set of branches, and, in general, these control dependences must b
served. One of the simplest examples of a control dependence is the depen
of the statements in the “then” part of an if statement on the branch. For exa
in the code segment:

if p1 {

S1;

};

if p2 {

S2;

}

S1 is control dependent on p1, and S2 is control dependent on p2 but not on p1.
There are two constraints on control dependences:

1. An instruction that is control dependent on a branch cannot be moved b
the branch so that its execution is no longer controlled by the branch. Fo
ample, we cannot take an instruction from the then portion of an if statem
and move it before the if statement.

2. An instruction that is not control dependent on a branch cannot be moved
the branch so that its execution is controlled by the branch. For example
cannot take a statement before the if statement and move it into the then
tion.

It is sometimes possible to violate these constraints and still have a correct e
tion. Before we examine this further, let’s see how control dependences
parallelism in our example.

E X A M P L E Show the unrolled code sequence before the loop overhead is optimized
away. Indicate the control dependences. How are the control depen-
dences removed?

4.1 Instruction-Level Parallelism: Concepts and Challenges 235
A N S W E R Here is the unrolled code sequence with the branches still in place. The
branches for the first three loop iterations have the conditions comple-
mented, because we want the fall-through case (when the branch is un-
taken) to execute another loop iteration. The control dependences within
the unrolled body are shown with arrows.

The presence of the intermediate branches (BEQZ instructions) prevents
the overlapping of iterations for scheduling since moving the instructions
would require changing the control dependences. Furthermore, the pres-
ence of the intermediate branches prevents the removal of the SUBI in-
structions since the value computed by each SUBI is used in the branch.
Hence the first goal is to remove the intermediate branches.

Removing the branches changes the control dependences. In this
case, we know that the content of R1 is a multiple of 32 and that the num-
ber of loop iterations is a multiple of 4. This insight allows us to determine
that the three intermediate BEQZ instructions will never be taken. Since
they are never taken, the branches are no-ops and no instructions are
control dependent on the branches. After removing the branches, we can
then optimize the data dependences involving the SUBI instructions, as
we did in the example on page 230. ■

Loop: LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4

SUBI R1,R1,#8

BEQZ R1,exit ;complement of BNEZ

LD F6,0(R1)

ADDD F8,F6,F2

SD 0(R1),F8

SUBI R1,R1,#8

BEQZ R1,exit ;complement of BNEZ

LD F10,0(R1)

ADDD F12,F10,F2

SD 0(R1),F12

SUBI R1,R1,#8

BEQZ R1,exit ;complement of BNEZ

LD F14,0(R1)

ADDD F16,F14,F2

SD 0(R1),F16

SUBI R1,R1,#8

BNEZ R1,LOOP

exit:

236 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

such
an in-
d, the
ntrol

help
unda-
ome
tions
ces,
pen-
oper-
trol

of
gram.
t not
ain-

 code

ction
ption.

 FP
ken,
 the

 the
ch-
 this

 is the
uce
amic,
any
Control dependence is preserved by two properties in simple pipelines,
as that of Chapter 3. First, instructions execute in order. This ensures that
struction that occurs before a branch is executed before the branch. Secon
detection of control or branch hazards ensures that an instruction that is co
dependent on a branch is not executed until the branch direction is known.

Although preserving control dependence is a useful and simple way to
preserve program correctness, the control dependence in itself is not the f
mental performance limit. In the above example, the compiler removed s
control dependences. In other cases, we may be willing to execute instruc
that should not have been executed, thereby violating the control dependenif
we can do so without affecting the correctness of the program. Control de
dence is not the critical property that must be preserved. Instead, the two pr
ties critical to program correctness, and normally preserved by con
dependence, are the exception behavior and the data flow.

Preserving the exception behavior means that any changes in the ordering
instruction execution must not change how exceptions are raised in the pro
Often this is relaxed to mean that the reordering of instruction execution mus
cause any new exceptions in the program. A simple example shows how m
taining the control dependences can prevent such situations. Consider this
sequence, recalling that we are using nondelayed branches:

BEQZ R2,L1

LW R1,0(R2)

L1:

In this case, if we ignore the control dependence and move the load instru
before the branch, the load instruction may cause a memory protection exce
Notice that no data dependence prevents us from interchanging the BEQZ and the
LW; it is only the control dependence. A similar situation could arise with an
instruction that could raise an exception. In either case, if the branch is ta
such an exception would not occur if the instruction were not hoisted above
branch. To allow us to reorder the instructions, we would like to just ignore
exception when the branch is taken. In section 4.6, we will look at two te
niques, speculation and conditional instructions, that allow us to overcome
exception problem.

The second property preserved by maintenance of control dependences
data flow. The data flow is the actual flow of data among instructions that prod
results and those that consume them. Branches make the data flow dyn
since they allow the source of data for a given instruction to come from m
points. Consider the following code fragment:

ADD R1,R2,R3

BEQZ R4,L

SUB R1,R5,R6

L: OR R7,R1,R8

4.1 Instruction-Level Parallelism: Concepts and Challenges 237

r
serve
Thus

ute,
of

he
ep-

ning

nnot
ode

ta

n,
ult

his

ly not
d in

ction
ariety
educe
pen-
 stalls
nally

ctions

at can
nces.
In this example, the value of R1 used by the OR instruction depends on whethe
the branch is taken or not. Data dependence alone is not sufficient to pre
correctness, since it deals only with the static ordering of reads and writes.
while the OR instruction is data dependent on both the ADD and SUB instructions,
this is insufficient for correct execution. Instead, when the instructions exec
the data flow must be preserved: If the branch is not taken then the value R1

computed by the SUB should be used by the OR, and if the branch is taken the
value of R1 computed by the ADD should be used by the OR. By preserving the
control dependence of the SUB on the branch, we prevent an illegal change to t
data flow. Speculation and conditional instructions, which help with the exc
tion problem, allow us to change the control dependence while still maintai
the data flow, as we will see in section 4.6.

Sometimes we can determine that violating the control dependence ca
affect either the exception behavior or the data flow. Consider the following c
sequence:

ADD R1,R2,R3

BEQZ R12,skipnext

SUB R4,R5,R6

ADD R5,R4,R9

skipnext: OR R7,R8,R9

Suppose we knew that the register destination of the SUB instruction (R4) was un-
used after the instruction labeled skipnext . (The property of whether a value
will be used by an upcoming instruction is called liveness.) If R4 were unused,
then changing the value of R4 just before the branch would not affect the da
flow since R4 would be dead (rather than live) in the code region after skipnext .
Thus, if R4 were not live and the SUB instruction could not generate an exceptio
we could move the SUB instruction before the branch, since the program res
could not be affected by this change. If the branch is taken, the SUB instruction
will execute and will be useless, but it will not affect the program results. T
type of code scheduling is sometimes called speculation, since the compiler is
basically betting on the branch outcome; in this case that the branch is usual
taken. More ambitious compiler speculation mechanisms are discusse
section 4.5.

Control dependence is preserved by implementing control hazard dete
that causes control stalls. Control stalls can be eliminated or reduced by a v
of hardware and software techniques. Delayed branches, for example, can r
the stalls arising from control hazards. Loop unrolling reduces control de
dences, as we have seen. Other techniques for reducing the control hazard
and the impact of control dependences are converting branches into conditio
executed instructions and compiler-based and hardware speculation. Se
 4.5 and 4.6 examine these techniques.

In this subsection, we have defined the three types of dependences th
exist among instructions and examined examples of each in code seque

238 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

ques
e can
e exe-

o it,
y the
xist

e will
 some
moved
level
s are

ample
t of

epre-

struc-
p is

arried
(
near
t a
Because parallelism exists naturally in loops, it is useful to extend our techni
for detecting dependences to loops. The next subsection describes how w
use the concept of a dependence to determine whether an entire loop can b
cuted in parallel.

Loop-Level Parallelism: Concepts and Techniques

Loop-level parallelism is normally analyzed at the source level or close t
while most analysis of ILP is done once instructions have been generated b
compiler. Loop-level analysis involves determining what dependences e
among the operands in the loop across the iterations of the loop. For now, w
consider only data dependences, which arise when an operand is written at
point and read at a later point. Name dependences also exist and may be re
by renaming techniques like those we used earlier. The analysis of loop-
parallelism focuses on determining whether data accesses in later iteration
data dependent on data values produced in earlier iterations. Our earlier ex
is loop-level parallel. The computational work in each iteration is independen
previous iterations. To easily see this, we really want to look at the source r
sentation:

for (i=1000; i>0; i=i–1)

x[i] = x[i] + s;

There is a dependence in the loop body between the two uses of x[i] , but this de-
pendence is within a single iteration. There is no dependence between in
tions in different iterations. Thus, the loop is parallel. Of course, once this loo
translated to assembly language, the loop implementation creates a loop-c
dependence, involving the register used for addressing and decrementing R1 in
our code). For this reason, loop-level parallelism is usually analyzed at or
the source level, with loops still represented in high-level form. Let’s look a
more complex example.

E X A M P L E Consider a loop like this one:

for (i=1; i<=100; i=i+1) {

A[i+1] = A[i] + C[i]; /* S1 */

B[i+1] = B[i] + A[i+1]; /* S2 */

}

Assume that A, B, and C are distinct, nonoverlapping arrays. (In practice,
the arrays may sometimes be the same or may overlap. Because the
arrays may be passed as parameters to a procedure, which includes this
loop, determining whether arrays overlap or are identical requires sophis-
ticated, interprocedural analysis of the program.) What are the data de-
pendences among the statements S1 and S2 in the loop?

4.1 Instruction-Level Parallelism: Concepts and Challenges 239

 how
. Con-
epen-
en

ndent

n and
s of
 itera-
r ini-
op

t par-
A N S W E R There are two different dependences:

1. S1 uses a value computed by S1 in an earlier iteration, since iteration
i computes A[i+1] , which is read in iteration i+1 . The same is true
of S2 for B[i] and B[i+1] .

2. S2 uses the value, A[i+1] , computed by S1 in the same iteration.
■

These two dependences are different and have different effects. To see
they differ, let’s assume that only one of these dependences exists at a time
sider the dependence of statement S1 on an earlier iteration of S1. This d
dence is a loop-carried dependence, meaning that the dependence exists betwe
different iterations of the loop. Furthermore, since the statement S1 is depe
on itself, successive iterations of statement S1 must execute in order.

The second dependence above (S2 depending on S1) is within an iteratio
not loop-carried. Thus, if this were the only dependence, multiple iteration
the loop could execute in parallel, as long as each pair of statements in an
tion were kept in order. This is the same type of dependence that exists in ou
tial example, in which we can fully exploit the parallelism present in the lo
through unrolling.

It is also possible to have a loop-carried dependence that does not preven
allelism, as the next example shows.

E X A M P L E Consider a loop like this one:

for (i=1; i<=100; i=i+1) {

A[i] = A[i] + B[i]; /* S1 */

B[i+1] = C[i] + D[i]; /* S2 */

}

What are the dependences between S1 and S2? Is this loop parallel? If
not, show how to make it parallel.

A N S W E R Statement S1 uses the value assigned in the previous iteration by state-
ment S2, so there is a loop-carried dependence between S2 and S1. De-
spite this loop-carried dependence, this loop can be made parallel. Unlike
the earlier loop, this dependence is not circular: Neither statement de-
pends on itself, and while S1 depends on S2, S2 does not depend on S1.
A loop is parallel if it can be written without a cycle in the dependences,
since the absence of a cycle means that the dependences give a partial
ordering on the statements.

Although there are no circular dependences in the above loop, it
must be transformed to conform to the partial ordering and expose the
parallelism. Two observations are critical to this transformation:

240 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

tion-
it on

ying
es we
ilable
code.
s to
pen-

 it, un-
ne and
For-
pen-
not be
h the
 until
1. There is no dependence from S1 to S2. If there were, then there
would be a cycle in the dependences and the loop would not be par-
allel. Since this other dependence is absent, interchanging the two
statements will not affect the execution of S2.

2. On the first iteration of the loop, statement S1 depends on the value
of B[1] computed prior to initiating the loop.

These two observations allow us to replace the loop above with the
following code sequence:

A[1] = A[1] + B[1];

for (i=1; i<=99; i=i+1) {

B[i+1] = C[i] + D[i];

A[i+1] = A[i+1] + B[i+1];

}

B[101] = C[100] + D[100];

The dependence between the two statements is no longer loop-carried,
so that iterations of the loop may be overlapped, provided the statements
in each iteration are kept in order. There are a variety of such transforma-
tions that restructure loops to expose parallelism, as we will see in
section 4.5. ■

The key focus of the rest of this chapter is on techniques that exploit instruc
level parallelism. The data dependences in a compiled program act as a lim
how much ILP can be exploited. The challenge is to approach that limit by tr
to minimize the actual hazards and associated stalls that arise. The techniqu
examine become ever more sophisticated in an attempt to exploit all the ava
parallelism while maintaining the necessary true data dependences in the
Both the compiler and the hardware have a role to play: The compiler trie
eliminate or minimize dependences, while the hardware tries to prevent de
dences from becoming stalls.

In Chapter 3 we assumed that our pipeline fetches an instruction and issues
less there is a data dependence between an instruction already in the pipeli
the fetched instruction that cannot be hidden with bypassing or forwarding.
warding logic reduces the effective pipeline latency so that the certain de
dences do not result in hazards. If there is a data dependence that can
hidden, then the hazard detection hardware stalls the pipeline (starting wit
instruction that uses the result). No new instructions are fetched or issued

4.2 Overcoming Data Hazards
with Dynamic Scheduling

4.2 Overcoming Data Hazards with Dynamic Scheduling 241

duling
 num-
called
s as

stalls.
cases
volve

tly, it
ntly
st of a

pen-
, static
s by
urse,

 with a
ith

zards

y all
r in-
paced
its,

e
ring

data
ould

ecking
the dependence is cleared. We also examined compiler techniques for sche
the instructions so as to separate dependent instructions and minimize the
ber of actual hazards and resultant stalls. This approach, which has been
static scheduling, was first used in the 1960s and became popular in the 1980
pipelining became widespread.

Several early processors used another approach, called dynamic scheduling,
whereby the hardware rearranges the instruction execution to reduce the
Dynamic scheduling offers several advantages: It enables handling some
when dependences are unknown at compile time (e.g., because they may in
a memory reference), and it simplifies the compiler. Perhaps most importan
also allows code that was compiled with one pipeline in mind to run efficie
on a different pipeline. As we will see, these advantages are gained at a co
significant increase in hardware complexity.

While a dynamically scheduled processor cannot remove true data de
dences, it tries to avoid stalling when dependences are present. In contrast
pipeline scheduling, like that we have already seen, tries to minimize stall
separating dependent instructions so that they will not lead to hazards. Of co
static scheduling can also be used on code destined to run on a processor
dynamically scheduled pipeline. We will examine two different schemes, w
the second one extending the ideas of the first to attack WAW and WAR ha
as well as RAW stalls.

Dynamic Scheduling: The Idea

A major limitation of the pipelining techniques we have used so far is that the
use in-order instruction issue: If an instruction is stalled in the pipeline, no late
structions can proceed. Thus, if there is a dependence between two closely s
instructions in the pipeline, a stall will result. If there are multiple functional un
these units could lie idle. If instruction j depends on a long-running instruction i,
currently in execution in the pipeline, then all instructions after j must be stalled
until i is finished and j can execute. For example, consider this code:

DIVD F0,F2,F4

ADDD F10,F0,F8

SUBD F12,F8,F14

The SUBD instruction cannot execute because the dependence of ADDD on DIVD
causes the pipeline to stall; yet SUBD is not data dependent on anything in th
pipeline. This is a performance limitation that can be eliminated by not requi
instructions to execute in order.

In the DLX pipeline developed in the last chapter, both structural and
hazards were checked during instruction decode (ID): When an instruction c
execute properly, it was issued from ID. To allow us to begin executing the SUBD
in the above example, we must separate the issue process into two parts: ch

242 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

n still
e in-
n as

ons.
ns are
arlier
than
e ex-
 ap-
 that
tions

ipe

into a
ch or
eline.
e-
ction
-
at
l also
y of
more

stage
in the

 are
 6600

 im-
ng-
the structural hazards and waiting for the absence of a data hazard. We ca
check for structural hazards when we issue the instruction; thus, we still us
order instruction issue. However, we want the instructions to begin executio
soon as their data operands are available. Thus, the pipeline will do out-of-order
execution, which implies out-of-order completion.

Out-of-order completion creates major complications in handling excepti
In the dynamically scheduled processors addressed in this section, exceptio
imprecise, since instructions may complete before an instruction issued e
raises an exception. Thus, it is difficult to restart after an interrupt. Rather
address these problems in this section, we will discuss a solution for precis
ceptions in the context of a processor with speculation in section 4.6. The
proach discussed in section 4.6 can be used to solve the simpler problem
arises in these dynamically scheduled processors. For floating-point excep
other solutions may be possible, as discussed in Appendix A.

In introducing out-of-order execution, we have essentially split the ID p
stage into two stages:

1. Issue—Decode instructions, check for structural hazards.

2. Read operands—Wait until no data hazards, then read operands.

An instruction fetch stage precedes the issue stage and may fetch either
single-entry latch or into a queue; instructions are then issued from the lat
queue. The EX stage follows the read operands stage, just as in the DLX pip
As in the DLX floating-point pipeline, execution may take multiple cycles, d
pending on the operation. Thus, we may need to distinguish when an instru
begins execution and when it completes execution; between the two times, the in
struction is in execution. This allows multiple instructions to be in execution
the same time. In addition to these changes to the pipeline structure, we wil
change the functional unit design by varying the number of units, the latenc
operations, and the functional unit pipelining, so as to better explore these
advanced pipelining techniques.

Dynamic Scheduling with a Scoreboard

In a dynamically scheduled pipeline, all instructions pass through the issue
in order (in-order issue); however, they can be stalled or bypass each other
second stage (read operands) and thus enter execution out of order. Scoreboard-
ing; is a technique for allowing instructions to execute out of order when there
sufficient resources and no data dependences; it is named after the CDC
scoreboard, which developed this capability.

Before we see how scoreboarding could be used in the DLX pipeline, it is
portant to observe that WAR hazards, which did not exist in the DLX floati

4.2 Overcoming Data Hazards with Dynamic Scheduling 243

Sup-
is

-
az-

y stall-

n per
on as
er in-
ive or
sue
rder

usly.
nal
and
line

oint
LX,

cy of
ulti-
 ref-
r than
out
 and
al for

 data
places

n the
cides
ard-
ls
haz-
icture
stand
point or integer pipelines, may arise when instructions execute out of order.
pose in the earlier example, the SUBD destination is F8, so that the code sequence

DIVD F0,F2,F4

ADDD F10,F0,F8

SUBD F8,F8,F14

Now there is an antidependence between the ADDD and the SUBD: If the pipeline
executes the SUBD before the ADDD, it will violate the antidependence, yielding in
correct execution. Likewise, to avoid violating output dependences, WAW h
ards (e.g., as would occur if the destination of the SUBD were F10) must also be
detected. As we will see, both these hazards are avoided in a scoreboard b
ing the later instruction involved in the antidependence.

The goal of a scoreboard is to maintain an execution rate of one instructio
clock cycle (when there are no structural hazards) by executing an instructi
early as possible. Thus, when the next instruction to execute is stalled, oth
structions can be issued and executed if they do not depend on any act
stalled instruction. The scoreboard takes full responsibility for instruction is
and execution, including all hazard detection. Taking advantage of out-of-o
execution requires multiple instructions to be in their EX stage simultaneo
This can be achieved with multiple functional units, with pipelined functio
units, or with both. Since these two capabilities—pipelined functional units
multiple functional units—are essentially equivalent for the purposes of pipe
control, we will assume the processor has multiple functional units.

The CDC 6600 had 16 separate functional units, including 4 floating-p
units, 5 units for memory references, and 7 units for integer operations. On D
scoreboards make sense primarily on the floating-point unit since the laten
the other functional units is very small. Let’s assume that there are two m
pliers, one adder, one divide unit, and a single integer unit for all memory
erences, branches, and integer operations. Although this example is simple
the CDC 6600, it is sufficiently powerful to demonstrate the principles with
having a mass of detail or needing very long examples. Because both DLX
the CDC 6600 are load-store architectures, the techniques are nearly identic
the two processors. Figure 4.3 shows what the processor looks like.

Every instruction goes through the scoreboard, where a record of the
dependences is constructed; this step corresponds to instruction issue and re
part of the ID step in the DLX pipeline. The scoreboard then determines whe
instruction can read its operands and begin execution. If the scoreboard de
the instruction cannot execute immediately, it monitors every change in the h
ware and decides when the instruction can execute. The scoreboard also contro
when an instruction can write its result into the destination register. Thus, all
ard detection and resolution is centralized in the scoreboard. We will see a p
of the scoreboard later (Figure 4.4 on page 247), but first we need to under
the steps in the issue and execution segment of the pipeline.

244 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

cen-
ess.)
ore-
 from
ps in

in-
struc-
step
ther
 we
haz-
 will
Each instruction undergoes four steps in executing. (Since we are con
trating on the FP operations, we will not consider a step for memory acc
Let’s first examine the steps informally and then look in detail at how the sc
board keeps the necessary information that determines when to progress
one step to the next. The four steps, which replace the ID, EX, and WB ste
the standard DLX pipeline, are as follows:

1. Issue—If a functional unit for the instruction is free and no other active
struction has the same destination register, the scoreboard issues the in
tion to the functional unit and updates its internal data structure. This
replaces a portion of the ID step in the DLX pipeline. By ensuring that no o
active functional unit wants to write its result into the destination register,
guarantee that WAW hazards cannot be present. If a structural or WAW
ard exists, then the instruction issue stalls, and no further instructions

FIGURE 4.3 The basic structure of a DLX processor with a scoreboard. The score-
board’s function is to control instruction execution (vertical control lines). All data flows be-
tween the register file and the functional units over the buses (the horizontal lines, called
trunks in the CDC 6600). There are two FP multipliers, an FP divider, an FP adder, and an
integer unit. One set of buses (two inputs and one output) serves a group of functional units.
The details of the scoreboard are shown in Figures 4.4–4.7.

Control/
status

Scoreboard
Control/
status

Integer unit

FP add

FP divide

FP mult

FP mult

Data busesRegisters

4.2 Overcoming Data Hazards with Dynamic Scheduling 245

ses the
try,
in-
used

er-
n is
 tells

begin
step,
ether
ne.

ds.
xecu-
tiple

om-
 com-

ple

 of
ard

 re-

.e., in

leting

 the
aces
issue until these hazards are cleared. When the issue stage stalls, it cau
buffer between instruction fetch and issue to fill; if the buffer is a single en
instruction fetch stalls immediately. If the buffer is a queue with multiple
structions, it stalls when the queue fills; later we will see how a queue is
in the PowerPC 620 to connect fetch and issue.

2. Read operands—The scoreboard monitors the availability of the source op
ands. A source operand is available if no earlier issued active instructio
going to write it. When the source operands are available, the scoreboard
the functional unit to proceed to read the operands from the registers and
execution. The scoreboard resolves RAW hazards dynamically in this
and instructions may be sent into execution out of order. This step, tog
with issue, completes the function of the ID step in the simple DLX pipeli

3. Execution—The functional unit begins execution upon receiving operan
When the result is ready, it notifies the scoreboard that it has completed e
tion. This step replaces the EX step in the DLX pipeline and takes mul
cycles in the DLX FP pipeline.

4. Write result—Once the scoreboard is aware that the functional unit has c
pleted execution, the scoreboard checks for WAR hazards and stalls the
pleting instruction, if necessary.

A WAR hazard exists if there is a code sequence like our earlier exam
with ADDD and SUBD that both use F8. In that example we had the code

DIVD F0,F2,F4

ADDD F10,F0,F8

SUBD F8,F8,F14

ADDD has a source operand F8, which is the same register as the destination
SUBD. But ADDD actually depends on an earlier instruction. The scorebo
will still stall the SUBD in its write result stage until ADDD reads its operands.
In general, then, a completing instruction cannot be allowed to write its
sults when

■ there is an instruction that has not read its operands that precedes (i
order of issue) the completing instruction, and

■ one of the operands is the same register as the result of the comp
instruction.

If this WAR hazard does not exist, or when it clears, the scoreboard tells
functional unit to store its result to the destination register. This step repl
the WB step in the simple DLX pipeline.

246 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

rat-
the
 WAR

ds are
ward-
ot as
of
they
ically
 pipe-
 of
verlap.

 pro-
nits.
r of
ents a
tional
buses
 the
into

oard
tion
ons:

re
At first glance, it might appear that the scoreboard will have difficulty sepa
ing RAW and WAR hazards. Exercise 4.6 will help you understand how
scoreboard distinguishes these two cases and thus knows when to prevent a
hazard by stalling an instruction that is ready to write its results.

Because the operands for an instruction are read only when both operan
available in the register file, this scoreboard does not take advantage of for
ing. Instead registers are only read when they are both available. This is n
large a penalty as you might initially think. Unlike our simple pipeline
Chapter 3, instructions will write their result into the register file as soon as
complete execution (assuming no WAR hazards), rather than wait for a stat
assigned write slot that may be several cycles away. The effect is reduced
line latency and benefits of forwarding. There is still one additional cycle
latency that arises since the write result and read operand stages cannot o
We would need additional buffering to eliminate this overhead.

Based on its own data structure, the scoreboard controls the instruction
gression from one step to the next by communicating with the functional u
There is a small complication, however. There are only a limited numbe
source operand buses and result buses to the register file, which repres
structural hazard. The scoreboard must guarantee that the number of func
units allowed to proceed into steps 2 and 4 do not exceed the number of
available. We will not go into further detail on this, other than to mention that
CDC 6600 solved this problem by grouping the 16 functional units together
four groups and supplying a set of buses, called data trunks, for each group. Only
one unit in a group could read its operands or write its result during a clock.

Now let’s look at the detailed data structure maintained by a DLX scoreb
with five functional units. Figure 4.4 shows what the scoreboard’s informa
looks like part way through the execution of this simple sequence of instructi

LD F6,34(R2)

LD F2,45(R3)

MULTD F0,F2,F4

SUBD F8,F6,F2

DIVD F10,F0,F6

ADDD F6,F8,F2

There are three parts to the scoreboard:

1. Instruction status—Indicates which of the four steps the instruction is in.

2. Functional unit status—Indicates the state of the functional unit (FU). The
are nine fields for each functional unit:

Busy—Indicates whether the unit is busy or not.

Op—Operation to perform in the unit (e.g., add or subtract).

4.2 Overcoming Data Hazards with Dynamic Scheduling 247

t to

r,
et to
r.
Fi—Destination register.

Fj, Fk—Source-register numbers.

Qj, Qk—Functional units producing source registers Fj, Fk.

Rj, Rk—Flags indicating when Fj, Fk are ready and not yet read. Se
No after operands are read.

3. Register result status—Indicates which functional unit will write each registe
if an active instruction has the register as its destination. This field is s
blank whenever there are no pending instructions that will write that registe

 Instruction status

Instruction Issue Read operands Execution complete Write result

LD F6,34(R2) √ √ √ √
LD F2,45(R3) √ √ √
MULTD F0,F2,F4 √
SUBD F8,F6,F2 √
DIVD F10,F0,F6 √
ADDD F6,F8,F2

Functional unit status

Name Busy Op Fi Fj Fk Qj Qk Rj Rk

Integer Yes Load F2 R3 No

Mult1 Yes Mult F0 F2 F4 Integer No Yes

Mult2 No

Add Yes Sub F8 F6 F2 Integer Yes No

Divide Yes Div F10 F0 F6 Mult1 No Yes

Register result status

F0 F2 F4 F6 F8 F10 F12 ... F30

FU Mult1 Integer Add Divide

FIGURE 4.4 Components of the scoreboard. Each instruction that has issued or is pending issue has an entry in the
instruction status table. There is one entry in the functional-unit status table for each functional unit. Once an instruction is-
sues, the record of its operands is kept in the functional-unit status table. Finally, the register-result table indicates which unit
will produce each pending result; the number of entries is equal to the number of registers. The instruction status table says
that (1) the first LD has completed and written its result, and (2) the second LD has completed execution but has not yet
written its result. The MULTD, SUBD, and DIVD have all issued but are stalled, waiting for their operands. The functional-unit
status says that the first multiply unit is waiting for the integer unit, the add unit is waiting for the integer unit, and the divide
unit is waiting for the first multiply unit. The ADDD instruction is stalled because of a structural hazard; it will clear when the
SUBD completes. If an entry in one of these scoreboard tables is not being used, it is left blank. For example, the Rk field is
not used on a load and the Mult2 unit is unused, hence their fields have no meaning. Also, once an operand has been read,
the Rj and Rk fields are set to No. Figure 4.7 and Exercise 4.6 show why this last step is crucial.

248 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

xecu-
ore-
Now let’s look at how the code sequence begun in Figure 4.4 continues e
tion. After that, we will be able to examine in detail the conditions that the sc
board uses to control execution.

E X A M P L E Assume the following EX cycle latencies (chosen to illustrate the behavior
and not representative) for the floating-point functional units: Add is 2 clock
cycles, multiply is 10 clock cycles, and divide is 40 clock cycles. Using the
code segment in Figure 4.4 and beginning with the point indicated by the
instruction status in Figure 4.4, show what the status tables look like when
MULTD and DIVD are each ready to go to the write-result state.

A N S W E R There are RAW data hazards from the second LD to MULTD and SUBD, from
MULTD to DIVD, and from SUBD to ADDD. There is a WAR data hazard be-
tween DIVD and ADDD. Finally, there is a structural hazard on the add func-
tional unit for ADDD. What the tables look like when MULTD and DIVD are
ready to write their results is shown in Figures 4.5 and 4.6, respectively.

 Instruction status

Instruction Issue Read operands Execution complete Write result

LD F6,34(R2) √ √ √ √
LD F2,45(R3) √ √ √ √
MULTD F0,F2,F4 √ √ √
SUBD F8,F6,F2 √ √ √ √
DIVD F10,F0,F6 √
ADDD F6,F8,F2 √ √ √

Functional unit status

Name Busy Op Fi Fj Fk Qj Qk Rj Rk

Integer No

Mult1 Yes Mult F0 F2 F4 No No

Mult2 No

Add Yes Add F6 F8 F2 No No

Divide Yes Div F10 F0 F6 Mult1 No Yes

Register result status

F0 F2 F4 F6 F8 F10 F12 ... F30

FU Mult1 Add Divide

FIGURE 4.5 Scoreboard tables just before the MULTD goes to write result. The DIVD has not yet read either of its
operands, since it has a dependence on the result of the multiply. The ADDD has read its operands and is in execution, al-
though it was forced to wait until the SUBD finished to get the functional unit. ADDD cannot proceed to write result because
of the WAR hazard on F6, which is used by the DIVD. The Q fields are only relevant when a functional unit is waiting for
another unit.

4.2 Overcoming Data Hazards with Dynamic Scheduling 249

as to
hows
eping
 num-

ecifier
ource
a reg-
mple,
■

Now we can see how the scoreboard works in detail by looking at what h
happen for the scoreboard to allow each instruction to proceed. Figure 4.7 s
what the scoreboard requires for each instruction to advance and the bookke
action necessary when the instruction does advance. The scoreboard, like a
ber of other structures that we examine in this chapter, records operand sp
information, such as register numbers. For example, we must record the s
registers when an instruction is issued. Because we refer to the contents of
ister as Regs[D] where D is a register name, there is no ambiguity. For exa
Fj[FU] ← S1 causes the register name S1 to be placed in Fj[FU] , rather than the
contents of the register of register S1.

Instruction status

Instruction Issue Read operands Execution complete Write result

LD F6,34(R2) √ √ √ √
LD F2,45(R3) √ √ √ √
MULTD F0,F2,F4 √ √ √ √
SUBD F8,F6,F2 √ √ √ √
DIVD F10,F0,F6 √ √ √
ADDD F6,F8,F2 √ √ √ √

Functional unit status

Name Busy Op Fi Fj Fk Qj Qk Rj Rk

Integer No

Mult1 No

Mult2 No

Add No

Divide Yes Div F10 F0 F6 No No

 Register result status

F0 F2 F4 F6 F8 F10 F12 ... F30

FU Divide

FIGURE 4.6 Scoreboard tables just before the DIVD goes to write result. ADDD was able to complete as soon as DIVD
passed through read operands and got a copy of F6. Only the DIVD remains to finish.

250 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

. The
OR-
 was
main
n the
 sur-
imes
order
ing
truc-
s like

ing.
ising
ard is

ction
talls. If
ame

e-
d as

dow
The costs and benefits of scoreboarding are interesting considerations
CDC 6600 designers measured a performance improvement of 1.7 for F
TRAN programs and 2.5 for hand-coded assembly language. However, this
measured in the days before software pipeline scheduling, semiconductor
memory, and caches (which lower memory-access time). The scoreboard o
CDC 6600 had about as much logic as one of the functional units, which is
prisingly low. The main cost was in the large number of buses—about four t
as many as would be required if the processor only executed instructions in
(or if it only initiated one instruction per execute cycle). The recently increas
interest in dynamic scheduling is motivated by attempts to issue more ins
tions per clock (so the cost of more buses must be paid anyway) and by idea
speculation (explored in section 4.6) that naturally build on dynamic schedul

A scoreboard uses the available ILP to minimize the number of stalls ar
from the program’s true data dependences. In eliminating stalls, a scorebo
limited by several factors:

1. The amount of parallelism available among the instructions—This determines
whether independent instructions can be found to execute. If each instru
depends on its predecessor, no dynamic scheduling scheme can reduce s
the instructions in the pipeline simultaneously must be chosen from the s
basic block (as was true in the 6600), this limit is likely to be quite severe.

2. The number of scoreboard entries—This determines how far ahead the pip
line can look for independent instructions. The set of instructions examine
candidates for potential execution is called the window. The size of the score-
board determines the size of the window. In this section, we assume a win

Instruction status Wait until Bookkeeping

Issue Not Busy [FU] and
not Result [D]

Busy[FU] ← yes; Op[FU] ← op; Fi[FU] ←D;
Fj[FU] ← S1; Fk[FU] ← S2;
Qj ← Result[S1]; Qk ← Result[S2];
Rj ← not Qj; Rk ← not Qk; Result[D] ← FU;

Read operands Rj and Rk Rj ← No; Rk ← No; Qj ←0; Qk ←0

Execution complete Functional unit done

Write result ∀ f((Fj[f] ≠ Fi[FU] or
Rj[f] = No) & (Fk[f] ≠
Fi[FU] or Rk[f] = No))

∀ f(if Qj [f]=FU then Rj [f]← Yes);
∀ f(if Qk [f]=FU then Rk [f]← Yes);
Result[Fi[FU]] ← 0; Busy[FU] ← No

FIGURE 4.7 Required checks and bookkeeping actions for each step in instruction execution. FU stands for the
functional unit used by the instruction, D is the destination register name, S1 and S2 are the source register names, and op
is the operation to be done. To access the scoreboard entry named Fj for functional unit FU we use the notation Fj[FU]. Re-
sult[D] is the value of the result register field for register D. The test on the write-result case prevents the write when there is
a WAR hazard, which exists if another instruction has this instruction’s destination (Fi[FU]) as a source (Fj[f] or Fk[f]) and if
some other instruction has written the register (Rj = Yes or Rk = Yes). The variable f is used for any functional unit.

4.2 Overcoming Data Hazards with Dynamic Scheduling 251

lways
 how

f
.

osing
d by
wev-

WAW
sors,
lso be-
tion

 Reg-
t in the
nam-

s was
bert
nts of
e are
ers to

 just
hieve
 de-
ilers
ision

ing;
IBM
sulo’s
 that
tera-
does not extend beyond a branch, so the window (and the scoreboard) a
contains straight-line code from a single basic block. Section 4.6 shows
the window can be extended beyond a branch.

3. The number and types of functional units—This determines the importance o
structural hazards, which can increase when dynamic scheduling is used

4. The presence of antidependences and output dependences—These lead to
WAR and WAW stalls.

This entire chapter focuses on techniques that attack the problem of exp
and better utilizing available ILP. The second and third factors can be attacke
increasing the size of the scoreboard and the number of functional units; ho
er, these changes have cost implications and may also affect cycle time.
and WAR hazards become more important in dynamically scheduled proces
because the pipeline exposes more name dependences. WAW hazards a
come more important if we use dynamic scheduling with a branch predic
scheme that allows multiple iterations of a loop to overlap.

The next subsection looks at a technique called register renaming that dynam-
ically eliminates name dependences so as to avoid WAR and WAW hazards.
ister renaming does this by replacing the register names (such as those kep
scoreboard) with the names of a larger set of virtual registers. The register re
ing scheme also is the basis for implementing forwarding.

Another Dynamic Scheduling Approach—
The Tomasulo Approach

Another approach to allow execution to proceed in the presence of hazard
used by the IBM 360/91 floating-point unit. This scheme was invented by Ro
Tomasulo and is named after him. Tomasulo’s scheme combines key eleme
the scoreboarding scheme with the introduction of register renaming. Ther
many variations on this scheme, though the key concept of renaming regist
avoid WAR and WAW hazards is the most common characteristic.

The IBM 360/91 was completed about three years after the CDC 6600,
before caches appeared in commercial processors. IBM’s goal was to ac
high floating-point performance from an instruction set and from compilers
signed for the entire 360 computer family, rather than from specialized comp
for the high-end processors. The 360 architecture had only four double-prec
floating-point registers, which limits the effectiveness of compiler schedul
this fact was another motivation for the Tomasulo approach. In addition, the
360/91 had long memory accesses and long floating-point delays, which Toma
algorithm was designed to overcome. At the end of the section, we will see
Tomasulo’s algorithm can also support the overlapped execution of multiple i
tions of a loop.

252 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

on-
en
atter
gnifi-
rimary
its,
at a

re re-
ulti-
 for
up
oint
ed for
d to

we as-
e saw
. In

ogic.
s soon
addi-
their
is ac-
cifiers
n in a
n
ddi-
 and
l reg-
 com-
 the
ow it

 dif-
, haz-
ns at
unit.
irectly
ther

at al-
0/91
s
 for
We explain the algorithm, which focuses on the floating-point unit, in the c
text of a pipelined, floating-point unit for DLX. The primary difference betwe
DLX and the 360 is the presence of register-memory instructions in the l
processor. Because Tomasulo’s algorithm uses a load functional unit, no si
cant changes are needed to add register-memory addressing modes. The p
addition is another bus. The IBM 360/91 also had pipelined functional un
rather than multiple functional units. The only difference between these is th
pipelined unit can start at most one operation per clock cycle. Since there a
ally no fundamental differences, we describe the algorithm as if there were m
ple functional units. The IBM 360/91 could accommodate three operations
the floating-point adder and two for the floating-point multiplier. In addition,
to six floating-point loads, or memory references, and up to three floating-p
stores could be outstanding. Load data buffers and store data buffers are us
this function. Although we will not discuss the load and store units, we do nee
include the buffers for operands.

Tomasulo’s scheme shares many ideas with the scoreboard scheme, so
sume that you understand the scoreboard thoroughly. In the last section, w
how a compiler could rename registers to avoid WAW and WAR hazards
Tomasulo’s scheme this functionality is provided by the reservation stations,
which buffer the operands of instructions waiting to issue, and by the issue l
The basic idea is that a reservation station fetches and buffers an operand a
as it is available, eliminating the need to get the operand from a register. In
tion, pending instructions designate the reservation station that will provide
input. Finally, when successive writes to a register appear, only the last one
tually used to update the register. As instructions are issued, the register spe
for pending operands are renamed to the names of the reservation statio
process called register renaming. This combination of issue logic and reservatio
stations provides renaming and eliminates WAW and WAR hazards. This a
tional capability is the major conceptual difference between scoreboarding
Tomasulo’s algorithm. Since there can be more reservation stations than rea
isters, the technique can eliminate hazards that could not be eliminated by a
piler. As we explore the components of Tomasulo’s scheme, we will return to
topic of register renaming and see exactly how the renaming occurs and h
eliminates hazards.

In addition to the use of register renaming, there are two other significant
ferences in the organization of Tomasulo’s scheme and scoreboarding. First
ard detection and execution control are distributed: The reservation statio
each functional unit control when an instruction can begin execution at that
This function is centralized in the scoreboard. Second, results are passed d
to functional units from the reservation stations where they are buffered, ra
than going through the registers. This is done with a common result bus th
lows all units waiting for an operand to be loaded simultaneously (on the 36
this is called the common data bus, or CDB). In comparison, the scoreboard write
results into registers, where waiting functional units may have to contend

4.2 Overcoming Data Hazards with Dynamic Scheduling 253

heme
ple-

 unit
tions
tional
r the
ol the
store
ting-
 by a

rom
 to the
d by
them. The number of result buses in either the scoreboard or Tomasulo’s sc
can be varied. In the actual implementations, the CDC 6600 had multiple com
tion buses (two in the floating-point unit), while the IBM 360/91 had only one.

Figure 4.8 shows the basic structure of a Tomasulo-based floating-point
for DLX; none of the execution control tables are shown. The reservation sta
hold instructions that have been issued and are awaiting execution at a func
unit, the operands for that instruction if they have already been computed o
source of the operands otherwise, as well as the information needed to contr
instruction once it has begun execution at the unit. The load buffers and
buffers hold data or addresses coming from and going to memory. The floa
point registers are connected by a pair of buses to the functional units and
single bus to the store buffers. All results from the functional units and f
memory are sent on the common data bus, which goes everywhere except
load buffer. All the buffers and reservation stations have tag fields, employe
hazard control.

FIGURE 4.8 The basic structure of a DLX FP unit using Tomasulo’s algorithm. Float-
ing-point operations are sent from the instruction unit into a queue when they are issued. The
reservation stations include the operation and the actual operands, as well as information
used for detecting and resolving hazards. There are load buffers to hold the results of out-
standing loads that are waiting for the CDB. Similarly, store buffers are used to hold the des-
tination memory addresses of outstanding stores waiting for their operands. All results from
either the FP units or the load unit are put on the CDB, which goes to the FP register file as
well as to the reservation stations and store buffers. The FP adders implement addition and
subtraction, while the FP multipliers do multiplication and division.

From instruction unit

Floating-
point
operation
queue

From
memory

Load buffers
FP registers

Store buffers

To
memory

6
5
4
3
2
1 3

2

1

Reservation
stations

FP adders FP multipliers

3
2
1

2
1

Common data bus (CDB)

Operation bus

Operand
buses

254 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

ithm,
core-
re are

p-
tion

 regis-
uffer.
 is a
This

DB
, it is
s are

re
d to

oard,
 and
d dur-

on the

 to the
h dif-
load
an ex-
d is a
e six
 that
n reg-

isters,
e tag
uce

waiting
r than
 the

ailable
egister
sing
ation
Before we describe the details of the reservation stations and the algor
let’s look at the steps an instruction goes through—just as we did for the s
board. Since operands are transmitted differently than in a scoreboard, the
only three steps:

1. Issue—Get an instruction from the floating-point operation queue. If the o
eration is a floating-point operation, issue it if there is an empty reserva
station, and send the operands to the reservation station if they are in the
ters. If the operation is a load or store, it can issue if there is an available b
If there is not an empty reservation station or an empty buffer, then there
structural hazard and the instruction stalls until a station or buffer is freed.
step also performs the process of renaming registers.

2. Execute—If one or more of the operands is not yet available, monitor the C
while waiting for it to be computed. When an operand becomes available
placed into the corresponding reservation station. When both operand
available, execute the operation. This step checks for RAW hazards.

3. Write result—When the result is available, write it on the CDB and from the
into the registers, into any reservation stations waiting for this result, an
any waiting store buffers.

Although these steps are fundamentally similar to those in the scoreb
there are three important differences. First, there is no checking for WAW
WAR hazards—these are eliminated when the register operands are rename
ing issue. Second, the CDB is used to broadcast results rather than waiting
registers. Third, the loads and stores are treated as basic functional units.

The data structures used to detect and eliminate hazards are attached
reservation stations, the register file, and the load and store buffers. Althoug
ferent information is attached to different objects, everything except the
buffers contains a tag field per entry. These tags are essentially names for
tended set of virtual registers used in renaming. In this example, the tag fiel
four-bit quantity that denotes one of the five reservation stations or one of th
load buffers; as we will see this produces the equivalent of eleven registers
can be designated as result registers (as opposed to the four double-precisio
isters that the 360 architecture contains). In a processor with more real reg
we would want renaming to provide an even larger set of virtual registers. Th
field describes which reservation station contains the instruction that will prod
a result needed as a source operand. Once an instruction has issued and is
for a result, it refers to the operand by the reservation station number, rathe
by the number of the destination register written by the instruction producing
value. Unused values, such as zero, indicate that the operand is already av
in the registers. Because there are more reservation stations than actual r
numbers, WAW and WAR hazards are eliminated by renaming results u
reservation station numbers. Although in Tomasulo’s scheme the reserv

4.2 Overcoming Data Hazards with Dynamic Scheduling 255

 use a
hich

used
/91
gs in
 reg-
.

urce
ilable
nd

and
eld

onal

hose
i is
 for
ister

fer is
er file

tion
stations are used as the extended virtual registers, other approaches could
register set with additional registers or a structure like the reorder buffer, w
we will see in section 4.6.

In describing the operation of this scheme, scoreboard terminology is
wherever this will not lead to confusion. The terminology used by the IBM 360
is also shown, for historical reference. It is important to remember that the ta
the Tomasulo scheme refer to the buffer or unit that will produce a result; the
ister names are discarded when an instruction issues to a reservation station

Each reservation station has six fields:

Op—The operation to perform on source operands S1 and S2.

Qj, Qk—The reservation stations that will produce the corresponding so
operand; a value of zero indicates that the source operand is already ava
in Vj or Vk, or is unnecessary. (The IBM 360/91 calls these SINKunit a
SOURCEunit.)

Vj, Vk—The value of the source operands. These are called SINK
SOURCE on the IBM 360/91. Note that only one of the V field or the Q fi
is valid for each operand.

Busy—Indicates that this reservation station and its accompanying functi
unit are occupied.

The register file and store buffer each have a field, Qi:

Qi—The number of the reservation station that contains the operation w
result should be stored into this register or into memory. If the value of Q
blank (or 0), no currently active instruction is computing a result destined
this register or buffer. For a register, this means the value is simply the reg
contents.

The load and store buffers each require a busy field, indicating when a buf
available because of completion of a load or store assigned there; the regist
will have a blank Qi field when it is not busy.

Before we examine the algorithm in detail, let’s see what the informa
tables look like for the following code sequence:

1. LD F6,34(R2)

2. LD F2,45(R3)

3. MULTD F0,F2,F4

4. SUBD F8,F6,F2

5. DIVD F10,F0,F6

6. ADDD F6,F8,F2

256 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

first
e reg-
for the
 add
 in-

serva-
We saw what the scoreboard looked like for this program when only the
load had written its result. Figure 4.9 depicts the reservation stations and th
ister tags. The numbers appended to the names add, mult, and load stand
tag for that reservation station—Add1 is the tag for the result from the first
unit. In addition we have included an instruction status table. This table is
cluded only to help you understand the algorithm; it is not actually a part of the
hardware. Instead, the state of each operation that has issued is kept in a re
tion station.

Instruction status

Instruction Issue Execute Write result

LD F6,34(R2) √ √ √
LD F2,45(R3) √ √
MULTD F0,F2,F4 √
SUBD F8,F6,F2 √
DIVD F10,F0,F6 √
ADDD F6,F8,F2 √

 Reservation stations

Name Busy Op Vj Vk Qj Qk

Add1 Yes SUB Mem[34+Regs[R2]] Load2

Add2 Yes ADD Add1 Load2

Add3 No

Mult1 Yes MULT Regs[F4] Load2

Mult2 Yes DIV Mem[34+Regs[R2]] Mult1

Register status

Field F0 F2 F4 F6 F8 F10 F12 ... F30

Qi Mult1 Load2 Add2 Add1 Mult2

FIGURE 4.9 Reservation stations and register tags. All of the instructions have issued, but only the first load instruction
has completed and written its result to the CDB. The instruction status table is not actually present, but the equivalent infor-
mation is distributed throughout the hardware. The Vj and Vk fields show the value of an operand in our hardware description
language. The load and store buffers are not shown. Load buffer 2 is the only busy load buffer and it is performing on behalf
of instruction 2 in the sequence—loading from memory address R3 + 45. Remember that an operand is specified by either
a Q field or a V field at any time.

4.2 Overcoming Data Hazards with Dynamic Scheduling 257

ately
serva-
 the

 Sec-
az-

f the
az-
d the
ach

eased
g in-
s are

eser-
tation
4.9 we
-

tion
lt,

e
e
of

k at
There are two important differences from scoreboards that are immedi
observable in these tables. First, the value of an operand is stored in the re
tion station in one of the V fields as soon as it is available; it is not read from
register file nor from a reservation station once the instruction has issued.
ond, the ADDD instruction, which was blocked in the scoreboard by a WAR h
ard at the WB stage, has issued and could complete before the DIVD initiates.

The major advantages of the Tomasulo scheme are (1) the distribution o
hazard detection logic, and (2) the elimination of stalls for WAW and WAR h
ards. The first advantage arises from the distributed reservation stations an
use of the CDB. If multiple instructions are waiting on a single result, and e
instruction already has its other operand, then the instructions can be rel
simultaneously by the broadcast on the CDB. In the scoreboard the waitin
structions must all read their results from the registers when register buse
available.

WAW and WAR hazards are eliminated by renaming registers using the r
vation stations, and by the process of storing operands into the reservation s
as soon as they are available. For example, in our code sequence in Figure
have issued both the DIVD and the ADDD, even though there is a WAR hazard in
volving F6. The hazard is eliminated in one of two ways. First, if the instruc
providing the value for the DIVD has completed, then Vk will store the resu
allowing DIVD to execute independent of the ADDD (this is the case shown).

On the other hand, if the LD had not completed, then Qk would point to th
Load1 reservation station, and the DIVD instruction would be independent of th
ADDD. Thus, in either case, the ADDD can issue and begin executing. Any uses
the result of the DIVD would point to the reservation station, allowing the ADDD to
complete and store its value into the registers without affecting the DIVD. We’ll
see an example of the elimination of a WAW hazard shortly. But let’s first loo
how our earlier example continues execution.

E X A M P L E Assume the same latencies for the floating-point functional units as we did
for Figure 4.6: Add is 2 clock cycles, multiply is 10 clock cycles, and divide
is 40 clock cycles. With the same code segment, show what the status ta-
bles look like when the MULTD is ready to write its result.

A N S W E R The result is shown in the three tables in Figure 4.10. Unlike the example
with the scoreboard, ADDD has completed since the operands of DIVD are
copied, thereby overcoming the WAR hazard. Notice that even if the load
of F6 was delayed, the add into F6 could be executed without triggering a
WAW hazard.

258 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

 and
lable.
lt on
 or

rn the
n.
gh
ing
■

Figure 4.11 gives the steps that each instruction must go through. Load
stores are only slightly special. A load can execute as soon as it is avai
When execution is completed and the CDB is available, a load puts its resu
the CDB like any functional unit. Stores receive their values from the CDB
from the register file and execute autonomously; when they are done they tu
busy field off to indicate availability, just like a load buffer or reservation statio

To understand the full power of eliminating WAW and WAR hazards throu
dynamic renaming of registers, we must look at a loop. Consider the follow
simple sequence for multiplying the elements of an array by a scalar in F2:

Loop: LD F0,0(R1)

MULTD F4,F0,F2

SD 0(R1),F4

SUBI R1,R1,#8

BNEZ R1,Loop ; branches if R1 ≠0

Instruction status

Instruction Issue Execute Write result

LD F6,34(R2) √ √ √
LD F2,45(R3) √ √ √
MULTD F0,F2,F4 √ √
SUBD F8,F6,F2 √ √ √
DIVD F10,F0,F6 √
ADDD F6,F8,F2 √ √ √

Reservation stations

Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 Yes MULT Mem[45+Regs[R3]] Regs[F4]

Mult2 Yes DIV Mem[34+Regs[R2]] Mult1

Register status

Field F0 F2 F4 F6 F8 F10 F12 ... F30

Qi Mult1 Mult2

FIGURE 4.10 Multiply and divide are the only instructions not finished. This is different from the scoreboard case,
because the elimination of WAR hazards allowed the ADDD to finish right after the SUBD on which it depended.

4.2 Overcoming Data Hazards with Dynamic Scheduling 259

ulti-
ithout
re.
 lim-
rds.
void

s the
um-
al reg-
If we predict that branches are taken, using reservation stations will allow m
ple executions of this loop to proceed at once. This advantage is gained w
unrolling the loop—in effect, the loop is unrolled dynamically by the hardwa
In the 360 architecture, the presence of only four FP registers would severely
it the use of unrolling, since we would generate many WAW and WAR haza
As we saw earlier on page 227, when we unroll a loop and schedule it to a
interlocks, many more registers are required. Tomasulo’s algorithm support
overlapped execution of multiple copies of the same loop with only a small n
ber of registers used by the program. The reservation stations extend the re
ister set via the renaming process.

Instruction status Wait until Action or bookkeeping

Issue Station or buffer empty if (Register[S1].Qi ≠0)
 {RS[r].Qj ← Register[S1].Qi}
else {RS[r].Vj ← S1; RS[r].Qj ← 0};
if (Register[S2].Qi ≠0)
 {RS[r].Qk ← Register[S2].Qi}
else {RS[r].Vk ← S2; RS[r].Qk ← 0};
RS[r].Busy ← yes;
Register[D].Qi=r;

Execute (RS[r].Qj=0) and
(RS[r].Qk=0)

None—operands are in Vj and Vk

Write result Execution completed at r
and CDB available

∀ x(if (Register[x].Qi=r) {Fx ← result;
 Register[x].Qi ← 0});
∀ x(if (RS[x].Qj=r) {RS[x].Vj ← result;
 RS[x].Qj ← 0});
∀ x(if (RS[x].Qk=r) {RS[x].Vk ← result;
 RS[x].Qk ← 0});
∀ x(if (Store[x].Qi=r) {Store[x].V ← result;
 Store[x].Qi ← 0});
RS[r].Busy ← No

FIGURE 4.11 Steps in the algorithm and what is required for each step. For the issuing instruction, D is the destina-
tion, S1 and S2 are the source register numbers, and r is the reservation station or buffer that D is assigned to. RS is the
reservation-station data structure. The value returned by a reservation station or by the load unit is called result . Regis-
ter is the register data structure (not the register file), while Store is the store-buffer data structure. When an instruction
is issued, the destination register has its Qi field set to the number of the buffer or reservation station to which the instruction
is issued. If the operands are available in the registers, they are stored in the V fields. Otherwise, the Q fields are set to in-
dicate the reservation station that will produce the values needed as source operands. The instruction waits at the reserva-
tion station until both its operands are available, indicated by zero in the Q fields. The Q fields are set to zero either when
this instruction is issued, or when an instruction on which this instruction depends completes and does its write back. When
an instruction has finished execution and the CDB is available, it can do its write back. All the buffers, registers, and reser-
vation stations whose value of Qj or Qk is the same as the completing reservation station update their values from the CDB
and mark the Q fields to indicate that values have been received. Thus, the CDB can broadcast its result to many destinations
in a single clock cycle, and if the waiting instructions have their operands, they can all begin execution on the next clock cycle.
There is a subtle timing difficulty that arises in Tomasulo’s algorithm; we discuss this in Exercise 4.24.

260 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

ns of
leted.
at this
 it is
is state,
 the
ad,
tches
had

 is
ould
rmal
erent
ked by
e load
 store
is dy-
 com-

st of
 major
h re-
stores
rfor-
nal
, in-

hard-

ng of
rands
arise
ossi-
buff-
gister

rchi-
ters.

mpiler
osts
issue
t-to-
ter re-

hap-
s for
Let’s assume we have issued all the instructions in two successive iteratio
the loop, but none of the floating-point loads-stores or operations has comp
The reservation stations, register-status tables, and load and store buffers
point are shown in Figure 4.12. (The integer ALU operation is ignored, and
assumed the branch was predicted as taken.) Once the system reaches th
two copies of the loop could be sustained with a CPI close to 1.0 provided
multiplies could complete in four clock cycles. If we ignore the loop overhe
which is not reduced in this scheme, the performance level achieved ma
what we would obtain with compiler unrolling and scheduling, assuming we
enough registers.

An additional element that is critical to making Tomasulo’s algorithm work
shown in this example. The load instruction from the second loop iteration c
easily complete before the store from the first iteration, although the no
sequential order is different. The load and store can safely be done in a diff
order, provided the load and store access different addresses. This is chec
examining the addresses in the store buffer whenever a load is issued. If th
address matches the store-buffer address, we must stop and wait until the
buffer gets a value; we can then access it or get the value from memory. Th
namic disambiguation of addresses is an alternative to the techniques that a
piler would use when interchanging a load and store.

This dynamic scheme can yield very high performance, provided the co
branches can be kept small, an issue we address in the next section. The
drawback of this approach is the complexity of the Tomasulo scheme, whic
quires a large amount of hardware. In particular, there are many associative
that must run at high speed, as well as complex control logic. Lastly, the pe
mance gain is limited by the single completion bus (CDB). While additio
CDBs can be added, each CDB must interact with all the pipeline hardware
cluding the reservation stations. In particular, the associative tag-matching
ware would need to be duplicated at each station for each CDB.

In Tomasulo’s scheme two different techniques are combined: the renami
registers to a larger virtual set of registers and the buffering of source ope
from the register file. Source operand buffering resolves WAR hazards that
when the operand is available in the registers. As we will see later, it is also p
ble to eliminate WAR hazards by the renaming of a register together with the
ering of a result until no outstanding references to the earlier version of the re
remain. This approach will be used when we discuss hardware speculation.

Tomasulo’s scheme is appealing if the designer is forced to pipeline an a
tecture for which it is difficult to schedule code or that has a shortage of regis
On the other hand, the advantages of the Tomasulo approach versus co
scheduling for a efficient single-issue pipeline are probably fewer than the c
of implementation. But, as processors become more aggressive in their
capability and designers are concerned with the performance of difficul
schedule code (such as most nonnumeric code), techniques such as regis
naming and dynamic scheduling will become more important. Later in this c
ter, we will see that they are one important component of most scheme
incorporating hardware speculation.

4.2 Overcoming Data Hazards with Dynamic Scheduling 261

mic
iffi-

ne the
ount

ound
iently.

ill be
The key components for enhancing ILP in Tomasulo’s algorithm are dyna
scheduling, register renaming, and dynamic memory disambiguation. It is d
cult to assess the value of these features independently. When we exami
studies of ILP in section 4.7, we will look at how these features affect the am
of parallelism discovered.

Corresponding to the dynamic hardware techniques for scheduling ar
data dependences are dynamic techniques for handling branches effic
These techniques are used for two purposes: to predict whether a branch w
taken and to find the target more quickly. Hardware branch prediction, the name
for these techniques, is the next topic we discuss.

Instruction status

Instruction From iteration Issue Execute Write result

LD F0,0(R1) 1 √ √
MULTD F4,F0,F2 1 √
SD 0(R1),F4 1 √
LD F0,0(R1) 2 √ √
MULTD F4,F0,F2 2 √
SD 0(R1),F4 2 √

Reservation stations

Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 Yes MULT Regs[F2] Load1

Mult2 Yes MULT Regs[F2] Load2

Register status

Field F0 F2 F4 F6 F8 F10 F12 ... F30

Qi Load2 Mult2

Load buffers Store buffers

Field Load 1 Load 2 Load 3 Field Store 1 Store 2 Store 3

Address Regs[R1] Regs[R1]-8 Qi Mult1 Mult2

Busy Yes Yes No Busy Yes Yes No

Address Regs[R1] Regs[R1]-8

FIGURE 4.12 Two active iterations of the loop with no instruction yet completed. Load and store buffers are included,
with addresses to be loaded from and stored to. The loads are in the load buffer; entries in the multiplier reservation stations
indicate that the outstanding loads are the sources. The store buffers indicate that the multiply destination is their value to store.

262 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

e fre-
 stalls
to ex-
ugh
truc-

bly
inds
tial

 with
 on the
eme,

om-
 out-
avior

oach-
at, we
nch
solve
using
n the

 when
of the
from

by
ins a
plest
en it

w, in
anch
iction
The previous section describes techniques for overcoming data hazards. Th
quency of branches and jumps demands that we also attack the potential
arising from control dependences. Indeed, as the amount of ILP we attempt
ploit grows, control dependences rapidly become the limiting factor. Altho
schemes in this section are helpful in processors that try to maintain one ins
tion issue per clock, for two reasons they are crucial to any processor that tries to
issue more than one instruction per clock. First, branches will arrive up to n times
faster in an n-issue processor and providing an instruction stream will proba
require that we predict the outcome of branches. Second, Amdahl’s Law rem
us that relative impact of the control stalls will be larger with the lower poten
CPI in such machines.

In the last chapter, we examined a variety of static schemes for dealing
branches; these schemes are static since the action taken does not depend
dynamic behavior of the branch. We also examined the delayed branch sch
which allows software to optimize the branch behavior by scheduling it at c
pile time. This section focuses on using hardware to dynamically predict the
come of a branch—the prediction will change if the branch changes its beh
while the program is running.

We start with a simple branch prediction scheme and then examine appr
es that increase the accuracy of our branch prediction mechanisms. After th
look at more elaborate schemes that try to find the instruction following a bra
even earlier. The goal of all these mechanisms is to allow the processor to re
the outcome of a branch early, thus preventing control dependences from ca
stalls. The effectiveness of a branch prediction scheme depends not only o
accuracy, but also on the cost of a branch when the prediction is correct and
the prediction is incorrect. These branch penalties depend on the structure
pipeline, the type of predictor, and the strategies used for recovering
misprediction. Later in this chapter we will look at some typical examples.

Basic Branch Prediction and Branch-Prediction Buffers

The simplest dynamic branch-prediction scheme is a branch-prediction buffer or
branch history table. A branch-prediction buffer is a small memory indexed
the lower portion of the address of the branch instruction. The memory conta
bit that says whether the branch was recently taken or not. This is the sim
sort of buffer; it has no tags and is useful only to reduce the branch delay wh
is longer than the time to compute the possible target PCs. We don’t kno
fact, if the prediction is correct—it may have been put there by another br
that has the same low-order address bits. But this doesn’t matter. The pred

4.3 Reducing Branch Penalties
with Dynamic Hardware Prediction

4.3 Reducing Branch Penalties with Dynamic Hardware Prediction 263

direc-
red
, and,
 pre-

en it
f find-
that,
 the

Even
her

-bit
s the

eme
ith

o-bit
 an un-
rs
ather
is a hint that is assumed to be correct, and fetching begins in the predicted
tion. If the hint turns out to be wrong, the prediction bit is inverted and sto
back. Of course, this buffer is effectively a cache where every access is a hit
as we will see, the performance of the buffer depends on both how often the
diction is for the branch of interest and how accurate the prediction is wh
matches. We can use all the caching techniques to improve the accuracy o
ing the prediction matching this branch, as we will see shortly. Before we do
it is useful to make a small, but important, improvement in the accuracy of
branch prediction scheme.

This simple one-bit prediction scheme has a performance shortcoming:
if a branch is almost always taken, we will likely predict incorrectly twice, rat
than once, when it is not taken. The following example shows this.

E X A M P L E Consider a loop branch whose behavior is taken nine times in a row, then
not taken once. What is the prediction accuracy for this branch, assuming
the prediction bit for this branch remains in the prediction buffer?

A N S W E R The steady-state prediction behavior will mispredict on the first and last
loop iterations. Mispredicting the last iteration is inevitable since the pre-
diction bit will say taken (the branch has been taken nine times in a row at
that point). The misprediction on the first iteration happens because the
bit is flipped on prior execution of the last iteration of the loop, since the
branch was not taken on that iteration. Thus, the prediction accuracy for
this branch that is taken 90% of the time is only 80% (two incorrect pre-
dictions and eight correct ones). In general, for branches used to form
loops—a branch is taken many times in a row and then not taken once—
a one-bit predictor will mispredict at twice the rate that the branch is not
taken. Ideally, the accuracy of the predictor would match the taken branch
frequency for these highly regular branches. ■

To remedy this, two-bit prediction schemes are often used. In a two
scheme, a prediction must miss twice before it is changed. Figure 4.13 show
finite-state processor for a two-bit prediction scheme.

The two-bit scheme is actually a specialization of a more general sch
that has an n-bit saturating counter for each entry in the prediction buffer. W
an n-bit counter, the counter can take on values between 0 and 2n – 1: when the
counter is greater than or equal to one half of its maximum value (2n–1), the
branch is predicted as taken; otherwise, it is predicted untaken. As in the tw
scheme, the counter is incremented on a taken branch and decremented on
taken branch. Studies of n-bit predictors have shown that the two-bit predicto
do almost as well, and thus most systems rely on two-bit branch predictors r
than the more general n-bit predictors.

264 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

che”
of bits
on. If
taken,
ential

 pre-

out
ughly
e con-
 the
ich is
elp for
tle

sing
anch-
rom
.
ther
s, is
A branch-prediction buffer can be implemented as a small, special “ca
accessed with the instruction address during the IF pipe stage, or as a pair
attached to each block in the instruction cache and fetched with the instructi
the instruction is decoded as a branch and if the branch is predicted as
fetching begins from the target as soon as the PC is known. Otherwise, sequ
fetching and executing continue. If the prediction turns out to be wrong, the
diction bits are changed as shown in Figure 4.13.

While this scheme is useful for most pipelines, the DLX pipeline finds
both whether the branch is taken and what the target of the branch is at ro
the same time, assuming no hazard in accessing the register specified in th
ditional branch. (Remember that this is true for the DLX pipeline because
branch does a compare of a register against zero during the ID stage, wh
when the effective address is also computed.) Thus, this scheme does not h
the simple DLX pipeline; we will explore a scheme that can work for DLX a lit
later. First, let’s see how well branch prediction works in general.

What kind of accuracy can be expected from a branch-prediction buffer u
two bits per entry on real applications? For the SPEC89 benchmarks a br
prediction buffer with 4096 entries results in a prediction accuracy ranging f
over 99% to 82%, or a misprediction rate of 1% to 18%, as shown in Figure 4.14
To show the differences more clearly, we plot misprediction frequency ra
than prediction frequency. A 4K-entry buffer, like that used for these result
considered very large; smaller buffers would have worse results.

FIGURE 4.13 The states in a two-bit prediction scheme. By using two bits rather than
one, a branch that strongly favors taken or not taken—as many branches do—will be mispre-
dicted only once. The two bits are used to encode the four states in the system.

Taken

Taken

Taken

Taken

Not taken

Not taken

Not taken

Not taken

Predict taken Predict taken

Predict not taken Predict not taken

4.3 Reducing Branch Penalties with Dynamic Hardware Prediction 265

gh to
ts and
 fre-

 with
esso,
dicted

mes
eger
n for
ays:
heme
d, as
ta in
tor.
Knowing just the prediction accuracy, as shown in Figure 4.14, is not enou
determine the performance impact of branches, even given the branch cos
penalties for misprediction. We also need to take into account the branch
quency, since the importance of accurate prediction is larger in programs
higher branch frequency. For example, the integer programs—li, eqntott, espr
and gcc—have higher branch frequencies than those of the more easily pre
FP programs.

As we try to exploit more ILP, the accuracy of our branch prediction beco
critical. As we can see in Figure 4.14, the accuracy of the predictors for int
programs, which typically also have higher branch frequencies, is lower tha
the loop-intensive scientific programs. We can attack this problem in two w
by increasing the size of the buffer and by increasing the accuracy of the sc
we use for each prediction. A buffer with 4K entries is already quite large an
Figure 4.15 shows, performs quite comparably to an infinite buffer. The da
Figure 4.15 make it clear that the hit rate of the buffer is not the limiting fac

FIGURE 4.14 Prediction accuracy of a 4096-entry two-bit prediction buffer for the
SPEC89 benchmarks. The misprediction rate for the integer benchmarks (gcc, espresso,
eqntott, and li) is substantially higher (average of 11%) than that for the FP programs (aver-
age of 4%). Even omitting the FP kernels (nasa7, matrix300, and tomcatv) still yields a higher
accuracy for the FP benchmarks than for the integer benchmarks. These data, as well as the
rest of the data in this section, are taken from a branch prediction study done using the IBM
Power architecture and optimized code for that system. See Pan et al. [1992].

18%

tomcatv

spiceSPEC89
benchmarks

gcc

li

2% 4% 6% 8% 10% 12% 14% 16%

0%

1%

5%

9%

9%

12%

5%

10%

18%

nasa7

matrix300

doduc

fpppp

espresso

eqntott

1%

0%

Frequency of mispredictions

266 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

 little

ch to
 pre-

ment
r):
As we mentioned above, increasing the number of bits per predictor also has
impact.

These two-bit predictor schemes use only the recent behavior of a bran
predict the future behavior of that branch. It may be possible to improve the
diction accuracy if we also look at the recent behavior of other branches rather
than just the branch we are trying to predict. Consider a small code frag
from the SPEC92 benchmark eqntott (the worst case for the two-bit predicto

if (aa==2)

aa=0;

if (bb==2)

bb=0;

if (aa!=bb) {

FIGURE 4.15 Prediction accuracy of a 4096-entry two-bit prediction buffer versus an
infinite buffer for the SPEC89 benchmarks.

nasa7 1%
0%

matrix300 0%
0%

tomcatv
1%
0%

doduc

spice
SPEC89
benchmarks

fpppp

gcc

espresso

eqntott

li

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%

4096 entries:
2 bits per entry

Unlimited entries:
2 bits per entry

Frequency of mispredictions

5%
5%

9%
9%

9%
9%

12%
11%

5%
5%

18%
18%

10%
10%

4.3 Reducing Branch Penalties with Dynamic Hardware Prediction 267

ent

havior
ly, if
o true

edict

iction

pli-

at

. The

 pre-
e other
ve se-
Here is the DLX code that we would typically generate for this code fragm
assuming that aa and bb are assigned to registers R1 and R2:

SUBUI(3x) R3,R1,#2

BNEZ R3,L1 ;branch b1 (aa!=2)

ADD R1,R0,R0 ;aa=0

L1: SUBUI(3x) R3,R2,#2

BNEZ R3,L2 ;branch b2 (bb!=2)

ADD R2,R0,R0 ;bb=0

L2: SUBU(1x) R3,R1,R2 ;R3=aa-bb

BEQZ R3,L3 ;branch b3 (aa==bb)

Let’s label these branches b1, b2, and b3. The key observation is that the be
of branch b3 is correlated with the behavior of branches b1 and b2. Clear
branches b1 and b2 are both not taken (i.e., the if conditions both evaluate t
and aa and bb are both assigned 0), then b3 will be taken, since aa and bb are
clearly equal. A predictor that uses only the behavior of a single branch to pr
the outcome of that branch can never capture this behavior.

Branch predictors that use the behavior of other branches to make a pred
are called correlating predictors or two-level predictors. To see how such predic-
tors work, let’s choose a simple hypothetical case. Consider the following sim
fied code fragment (chosen for illustrative purposes):

if (d==0)

d=1;

if (d==1)

Here is the typical code sequence generated for this fragment, assuming thd is
assigned to R1:

BNEZ R1,L1 ;branch b1 (d!=0)

ADDI R1,R0,#1 ;d==0, so d=1

L1: SUBUI(3x) R3,R1,#1

BNEZ R3,L2 ;branch b2 (d!=1)

...

L2:

The branches corresponding to the two if statements are labeled b1 and b2
possible execution sequences for an execution of this fragment, assuming d has
values 0, 1, and 2, are shown in Figure 4.16. To illustrate how a correlating
dictor works, assume the sequence above is executed repeatedly and ignor
branches in the program (including any branch needed to cause the abo
quence to repeat).

268 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

 cor-
nnot.

ehav-

siest
 pre-
iction
e last
ugh
e are

ic-
 pre-

tions
From Figure 4.16, we see that if b1 is not taken, then b2 will be not taken. A
relating predictor can take advantage of this, but our standard predictor ca
Rather than consider all possible branch paths, consider a sequence where d alter-
nates between 2 and 0. A one-bit predictor initialized to not taken has the b
ior shown in Figure 4.17. As the figure shows, all the branches are mispredicted!

Alternatively, consider a predictor that uses one bit of correlation. The ea
way to think of this is that every branch has two separate prediction bits: one
diction assuming the last branch executed was not taken and another pred
that is used if the last branch executed was taken. Note that, in general, th
branch executed is not the same instruction as the branch being predicted, tho
this can occur in simple loops consisting of a single basic block (since ther
no other branches in the loops).

We write the pair of prediction bits together, with the first bit being the pred
tion if the last branch in the program is not taken and the second bit being the
diction if the last branch in the program is taken. The four possible combina
and the meanings are listed in Figure 4.18.

Initial value
of d d==0? b1

Value of d
before b2 d==1? b2

0 Yes Not taken 1 Yes Not taken

1 No Taken 1 Yes Not taken

2 No Taken 2 No Taken

FIGURE 4.16 Possible execution sequences for a code fragment.

d=?
b1

prediction
b1

action
New b1

prediction
b2

prediction
b2

action
New b2

prediction

2 NT T T NT T T

0 T NT NT T NT NT

2 NT T T NT T T

0 T NT NT T NT NT

FIGURE 4.17 Behavior of a one-bit predictor initialized to not taken. T stands for taken,
NT for not taken.

Prediction bits
Prediction if last branch

not taken Prediction if last branch taken

NT/NT Not taken Not taken

NT/T Not taken Taken

T/NT Taken Not taken

T/T Taken Taken

FIGURE 4.18 Combinations and meaning of the taken/not taken prediction bits. T
stands for taken, NT for not taken.

4.3 Reducing Branch Penalties with Dynamic Hardware Prediction 269

ed

cor-

 b2,
osen
en

uses
anch

or is
 only
es

nch
ing a

ction

tion
edic-
is no
d to
bject
linear
 the
. For
rder
ix-bit
The action of the one-bit predictor with one bit of correlation, when initializ
to NT/NT is shown in Figure 4.19.

In this case, the only misprediction is on the first iteration, when d = 2. The
rect prediction of b1 is because of the choice of values for d, since b1 is not obvi-
ously correlated with the previous prediction of b2. The correct prediction of
however, shows the advantage of correlating predictors. Even if we had ch
different values for d, the predictor for b2 would correctly predict the case wh
b1 is not taken on every execution of b2 after one initial incorrect prediction.

The predictor in Figures 4.18 and 4.19 is called a (1,1) predictor since it
the behavior of the last branch to choose from among a pair of one-bit br
predictors. In the general case an (m,n) predictor uses the behavior of the last m
branches to choose from 2m branch predictors, each of which is a n-bit predictor
for a single branch. The attraction of this type of correlating branch predict
that it can yield higher prediction rates than the two-bit scheme and requires
a trivial amount of additional hardware. The simplicity of the hardware com
from a simple observation: The global history of the most recent m branches can
be recorded in an m-bit shift register, where each bit records whether the bra
was taken or not taken. The branch-prediction buffer can then be indexed us
concatenation of the low-order bits from the branch address with the m-bit global
history. For example, Figure 4.20 shows a (2,2) predictor and how the predi
is accessed.

There is one subtle effect in this implementation. Because the predic
buffer is not a cache, the counters indexed by a single value of the global pr
tor may in fact correspond to different branches at some point in time. This
different from our earlier observation that the prediction may not correspon
the current branch. In Figure 4.20 we draw the buffer as a two-dimensional o
to ease understanding. In reality, the buffer can simply be implemented as a
memory array that is two bits wide; the indexing is done by concatenating
global history bits and the number of required bits from the branch address
the example in Figure 4.20, a (2,2) buffer with 64 total entries, the four low-o
address bits of the branch (word address) and the two global bits form a s
index that can be used to index the 64 counters.

d=? b1 prediction b1 action New b1 prediction b2 prediction b2 action New b2 prediction

2 NT/NT T T/NT NT/NT T NT/T

0 T/NT NT T/NT NT/T NT NT/T

2 T/NT T T/NT NT/T T NT/T

0 T/NT NT T/NT NT/T NT NT/T

FIGURE 4.19 The action of the one-bit predictor with one bit of correlation, initialized to not taken/not taken. T
stands for taken, NT for not taken. The prediction used is shown in bold.

270 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

ared
pare
 (
How much better do the correlating branch predictors work when comp
with the standard two-bit scheme? To compare them fairly, we must com
predictors that use the same number of state bits. The number of bits in anm,n)
predictor is

2m × n × Number of prediction entries selected by the branch address

A two-bit predictor with no global history is simply a (0,2) predictor.

E X A M P L E How many bits are in the (0,2) branch predictor we examined earlier? How
many bits are in the branch predictor shown in Figure 4.20?

A N S W E R The earlier predictor had 4K entries selected by the branch address. Thus
the total number of bits is

20 × 2 × 4K = 8K.

FIGURE 4.20 A (2,2) branch-prediction buffer uses a two-bit global history to choose
from among four predictors for each branch address. Each predictor is in turn a two-bit
predictor for that particular branch. The branch-prediction buffer shown here has a total of 64
entries; the branch address is used to choose four of these entries and the global history is
used to choose one of the four. The two-bit global history can be implemented as a shifter
register that simply shifts in the behavior of a branch as soon as it is known.

2–bit per branch predictors

Branch address

XX prediction

2–bit global branch history

4

XX

4.3 Reducing Branch Penalties with Dynamic Hardware Prediction 271

ple
 en-

ictor
dic-
r of

r of

2,2)
plore
anch
t use
 glo-

corre-
rge

ss to
oded
on is
enalty
 next
The predictor in Figure 4.20 has

22 × 2 × 16 = 128 bits.
■

To compare the performance of a correlating predictor with that of our sim
two-bit predictor examined in Figure 4.14, we need to determine how many
tries we should assume for the correlating predictor.

E X A M P L E How many branch-selected entries are in a (2,2) predictor that has a total
of 8K bits in the prediction buffer?

A N S W E R We know that

22 × 2 × Number of prediction entries selected by the branch = 8K.

Hence

Number of prediction entries selected by the branch = 1K.
■

Figure 4.21 compares the performance of the earlier two-bit simple pred
with 4K entries and a (2,2) predictor with 1K entries. As you can see, this pre
tor not only outperforms a simple two-bit predictor with the same total numbe
state bits, it often outperforms a two-bit predictor with an unlimited numbe
entries.

There are a wide spectrum of correlating predictors, with the (0,2) and (
predictors being among the most interesting. The Exercises ask you to ex
the performance of a third extreme: a predictor that does not rely on the br
address. For example, a (12,2) predictor that has a total of 8K bits does no
the branch address in indexing the predictor, but instead relies solely on the
bal branch history. Surprisingly, this degenerate case can outperform a non
lating two-bit predictor if enough global history is used and the table is la
enough!

Further Reducing Control Stalls: Branch-Target Buffers

To reduce the branch penalty on DLX, we need to know from what addre
fetch by the end of IF. This means we must know whether the as-yet-undec
instruction is a branch and, if so, what the next PC should be. If the instructi
a branch and we know what the next PC should be, we can have a branch p
of zero. A branch-prediction cache that stores the predicted address for the
instruction after a branch is called a branch-target buffer or branch-target cache.

272 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

nce it
 the
d in-
s-

index
t the
ffer.
For the standard DLX pipeline, a branch-prediction buffer is accessed during
the ID cycle, so that at the end of ID we know the branch-target address (si
is computed during ID), the fall-through address (computed during IF), and
prediction. Thus, by the end of ID we know enough to fetch the next predicte
struction. For a branch-target buffer, we access the buffer during the IF stage u
ing the instruction address of the fetched instruction, a possible branch, to
the buffer. If we get a hit, then we know the predicted instruction address a
end of the IF cycle, which is one cycle earlier than for a branch-prediction bu

FIGURE 4.21 Comparison of two-bit predictors. A noncorrelating predictor for 4096 bits
is first, followed by a noncorrelating two-bit predictor with unlimited entries and a two-bit pre-
dictor with two bits of global history and a total of 1024 entries.

4096 entries:
2 bits per entry

Unlimited entries:
2 bits per entry

1024 entries
(2,2)

nasa7

matrix300

tomcatv

doduc

SPEC89
benchmarks

spice

fpppp

gcc

espresso

eqntott

li

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%

Frequency of mispredictions

1%
0%
1%

0%
0%
0%

1%
0%
1%

5%
5%
5%

9%
9%

5%

9%
9%

5%

12%
11%
11%

5%
5%

4%

18%
18%

6%

10%
10%

5%

4.3 Reducing Branch Penalties with Dynamic Hardware Prediction 273

t out
s
buffer
n the
scuss
arget

me-
ntry

e it is
r the
 that
e pre-
h fol-
anch.
uires
Because we are predicting the next instruction address and will send i
before decoding the instruction, we must know whether the fetched instruction i
predicted as a taken branch. Figure 4.22 shows what the branch-target
looks like. If the PC of the fetched instruction matches a PC in the buffer, the
corresponding predicted PC is used as the next PC. In Chapter 5 we will di
caches in much more detail; we will see that the hardware for this branch-t
buffer is essentially identical to the hardware for a cache.

If a matching entry is found in the branch-target buffer, fetching begins im
diately at the predicted PC. Note that (unlike a branch-prediction buffer) the e
must be for this instruction, because the predicted PC will be sent out befor
known whether this instruction is even a branch. If we did not check whethe
entry matched this PC, then the wrong PC would be sent out for instructions
were not branches, resulting in a slower processor. We only need to store th
dicted-taken branches in the branch-target buffer, since an untaken branc
lows the same strategy (fetch the next sequential instruction) as a nonbr
Complications arise when we are using a two-bit predictor, since this req

FIGURE 4.22 A branch-target buffer. The PC of the instruction being fetched is matched
against a set of instruction addresses stored in the first column; these represent the addresses
of known branches. If the PC matches one of these entries, then the instruction being fetched
is a taken branch, and the second field, predicted PC, contains the prediction for the next PC
after the branch. Fetching begins immediately at that address. The third field, which is optional,
may be used for extra prediction state bits.

Look up Predicted PC

Number of
entries
in branch-
target
buffer

No: instruction is
not predicted to be
branch. Proceed normally

=

Yes: then instruction is branch and predicted
PC should be used as the next PC

Branch
predicted
taken or
untaken

PC of instruction to fetch

274 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

o re-
solu-
t the

arget
irect

 and
 be no
ect.

 this
could
not a
com-
the
ling

cally
we

 the
that we store information for both taken and untaken branches. One way t
solve this is to use both a target buffer and a prediction buffer, which is the
tion used by the PowerPC 620—the topic of section 4.8. We assume tha
buffer only holds PC-relative conditional branches, since this makes the t
address a constant; it is not hard to extend the mechanism to work with ind
branches.

Figure 4.23 shows the steps followed when using a branch-target buffer
where these steps occur in the pipeline. From this we can see that there will
branch delay if a branch-prediction entry is found in the buffer and is corr
Otherwise, there will be a penalty of at least two clock cycles. In practice,
penalty could be larger, since the branch-target buffer must be updated. We
assume that the instruction following a branch or at the branch target is
branch, and do the update during that instruction time; however, this does
plicate the control. Instead, we will take a two-clock-cycle penalty when
branch is not correctly predicted or when we get a miss in the buffer. Dea
with the mispredictions and misses is a significant challenge, since we typi
will have to halt instruction fetch while we rewrite the buffer entry. Thus,
would like to make this process fast to minimize the penalty.

To evaluate how well a branch-target buffer works, we first must determine
penalties in all possible cases. Figure 4.24 contains this information.

E X A M P L E Determine the total branch penalty for a branch-target buffer assuming
the penalty cycles for individual mispredictions from Figure 4.24. Make
the following assumptions about the prediction accuracy and hit rate:

■ prediction accuracy is 90%

■ hit rate in the buffer is 90%

A N S W E R Using a 60% taken branch frequency, this yields the following:

This compares with a branch penalty for delayed branches, which we
evaluated in section 3.5 of the last chapter, of about 0.5 clock cycles per
branch. Remember, though, that the improvement from dynamic branch
prediction will grow as the branch delay grows; in addition, better predic-
tors will yield a larger performance advantage. ■

Branch penalty Percent buffer hit rate Percent incorrect predictions 2××=

1(Percent buffer hit rate) Taken branches 2××–+

Branch penalty 90% 10% 2××()=

10% 60% 2××()+

Branch penalty 0.18 0.12+ 0.30 clock cycles= =

4.3 Reducing Branch Penalties with Dynamic Hardware Prediction 275
FIGURE 4.23 The steps involved in handling an instruction with a branch-target buffer. If the PC of an instruction is
found in the buffer, then the instruction must be a branch that is predicted taken; thus, fetching immediately begins from the
predicted PC in ID. If the entry is not found and it subsequently turns out to be a taken branch, it is entered in the buffer along
with the target, which is known at the end of ID. If the entry is found, but the instruction turns out not to be a taken branch,
it is removed from the buffer. If the instruction is a branch, is found, and is correctly predicted, then execution proceeds with
no delays. If the prediction is incorrect, we suffer a one-clock-cycle delay fetching the wrong instruction and restart the fetch
one clock cycle later, leading to a total mispredict penalty of two clock cycles. If the branch is not found in the buffer and the
instruction turns out to be a branch, we will have proceeded as if the instruction were a branch and can turn this into an
assume-not-taken strategy. The penalty will differ depending on whether the branch is actually taken or not.

IF

ID

EX

Send PC to
memory and
branch-target

buffer

Entry found in
branch-target

buffer?

No

No

Normal
instruction
execution

Yes

Send out
predicted

PCIs
instruction

a taken
branch?

Taken
branch?

Enter
branch instruction

address and
next PC

into branch
target buffer

Mispredicted
branch, kill fetched
instruction; restart

fetch at other
target; delete

entry from
target buffer

Branch
correctly

predicted;
continue

execution with
no stalls

Yes

No Yes

276 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

ss to
ld al-
tions

-cycle
tions
dition-
 PC.
ch is

nch-
h is

r cy-
axi-
of a
 this

st re-
hose
 will
s, and
om
ns ac-
e re-

e ac-
from
One variation on the branch-target buffer is to store one or more target in-
structions instead of, or in addition to, the predicted target address. This variation
has two potential advantages. First, it allows the branch-target buffer acce
take longer than the time between successive instruction fetches. This cou
low a larger branch-target buffer. Second, buffering the actual target instruc
allows us to perform an optimization called branch folding. Branch folding can
be used to obtain zero-cycle unconditional branches, and sometimes zero
conditional branches. Consider a branch-target buffer that buffers instruc
from the predicted path and is being accessed with the address of an uncon
al branch. The only function of the unconditional branch is to change the
Thus, when the branch-target buffer signals a hit and indicates that the bran
unconditional, the pipeline can simply substitute the instruction from the bra
target buffer in place of the instruction that is returned from the cache (whic
the unconditional branch). If the processor is issuing multiple instructions pe
cle, then the buffer will need to supply multiple instructions to obtain the m
mum benefit. In some cases, it may be possible to eliminate the cost
conditional branch when the condition codes are preset; we will see how
scheme can be used in the IBM PowerPC processor in the Putting It All Together
section.

Another method that designers have studied and are including in the mo
cent processors is a technique for predicting indirect jumps, that is, jumps w
destination address varies at runtime. While high-level language programs
generate such jumps for indirect procedure calls, select or case statement
FORTRAN-computed gotos, the vast majority of the indirect jumps come fr
procedure returns. For example, for the SPEC benchmarks procedure retur
count for 85% of the indirect jumps on average. Thus, focusing on procedur
turns seems appropriate.

Though procedure returns can be predicted with a branch-target buffer, th
curacy of such a prediction technique can be low if the procedure is called

Instruction in buffer Prediction Actual branch Penalty cycles

Yes Taken Taken 0

Yes Taken Not taken 2

No Taken 2

No Not taken 0

FIGURE 4.24 Penalties for all possible combinations of whether the branch is in the
buffer and what it actually does, assuming we store only taken branches in the buffer.
There is no branch penalty if everything is correctly predicted and the branch is found in the
target buffer. If the branch is not correctly predicted, the penalty is equal to one clock cycle
to update the buffer with the correct information (during which an instruction cannot be
fetched) and one clock cycle, if needed, to restart fetching the next correct instruction for the
branch. If the branch is not found and taken, a two-cycle penalty is encountered, during which
time the buffer is updated.

4.3 Reducing Branch Penalties with Dynamic Hardware Prediction 277

ome
 as a
resses:
urn. If
 will
eturn
use
.7.
y the
hieve

 pre-
tch-
 the
e path
ay to
ctions
ces-
multiple sites and the calls from one site are not clustered in time. To overc
this problem, the concept of a small buffer of return addresses operating
stack has been proposed. This structure caches the most recent return add
pushing a return address on the stack at a call and popping one off at a ret
the cache is sufficiently large (i.e., as large as the maximum call depth), it
predict the returns perfectly. Figure 4.25 shows the performance of such a r
buffer with 1–16 elements for a number of the SPEC benchmarks. We will
this type of return predictor when we examine the studies of ILP in section 4

Branch prediction schemes are limited both by prediction accuracy and b
penalty for misprediction. As we have seen, typical prediction schemes ac
prediction accuracy in the range of 80–95% depending on the type of program
and the size of the buffer. In addition to trying to increase the accuracy of the
dictor, we can try to reduce the penalty for misprediction. This is done by fe
ing from both the predicted and unpredicted direction. This requires that
memory system be dual-ported, have an interleaved cache, or fetch from on
and then the other. While this adds cost to the system, it may be the only w
reduce branch penalties below a certain point. Caching addresses or instru
from multiple paths in the target buffer is another alternative that some pro
sors have used.

FIGURE 4.25 Prediction accuracy for a return address buffer operated as a stack. The
accuracy is the fraction of return addresses predicted correctly. Since call depths are typically
not large, with some exceptions, a modest buffer works well. On average returns account for
81% of the indirect jumps in these six benchmarks.

50%

45%

40%

35%

30%

25%

20%

15%

10%

5%

2 41 8 16

Number of entries in the return stack

gcc
fpppp

espresso
doduc

li
tomcatv

Misprediction
rate

278 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

-based
ssor.
us sub-
cus to
n per
ore

ra-
llel-

d

a and
r we
duced

 to

ro-
 stati-
ues
mine
ically
tions
LIW
5 ex-
rs.
 the
xam-
We have seen a variety of software-based static schemes and hardware
dynamic schemes for trying to boost the performance of our pipelined proce
These schemes attack both the data dependences (discussed in the previo
sections) and the control dependences (discussed in this subsection). Our fo
date has been on sustaining the throughput of the pipeline at one instructio
clock. In the next section we will look at techniques that attempt to exploit m
parallelism by issuing multiple instructions in a clock cycle.

Processors are being produced with the potential for very many parallel ope
tions on the instruction level. ...Far greater extremes in instruction-level para
ism are on the horizon.

J. Fisher [1981], in the paper that inaugurate
the term “instruction-level parallelism”

The techniques of the previous two sections can be used to eliminate dat
control stalls and achieve an ideal CPI of 1. To improve performance furthe
would like to decrease the CPI to less than one. But the CPI cannot be re
below one if we issue only one instruction every clock cycle. The goal of the mul-
tiple-issue processors discussed in this section is to allow multiple instructions
issue in a clock cycle. Multiple-issue processors come in two flavors: superscalar
processors and VLIW (very long instruction word) processors. Superscalar p
cessors issue varying numbers of instructions per clock and may be either
cally scheduled by the compiler or dynamically scheduled using techniq
based on scoreboarding and Tomasulo’s algorithm. In this section, we exa
simple versions of both a statically scheduled superscalar and a dynam
scheduled superscalar. VLIWs, in contrast, issue a fixed number of instruc
formatted either as one large instruction or as a fixed instruction packet. V
processors are inherently statically scheduled by the compiler. Section 4.
plores compiler technology useful for scheduling both VLIWs and superscala

To explain and compare the techniques in this section we will assume
pipeline latencies we used earlier in section 4.1 (Figure 4.2) and the same e
ple code segment, which adds a scalar to an array in memory:

Loop: LD F0,0(R1) ;F0=array element

ADDD F4,F0,F2 ;add scalar in F2

SD 0(R1),F4 ;store result

SUBI R1,R1,#8 ;decrement pointer

;8 bytes (per DW)

BNEZ R1,LOOP ; branch R1!=zero

We begin by looking at a simple superscalar processor.

4.4 Taking Advantage of More ILP
with Multiple Issue

4.4 Taking Advantage of More ILP with Multiple Issue 279

ht in-
t and
rence
nt or
n se-
Ws,
tions
 make
or has
ility.
 now,
uling

 two
 load,
point
ting-
ssue.
100

s of
tions
aring

hen
al re-
n be
ware
di-

o the
tions
s for

issue
ther
the
ages

 for
d—

func-
stric-
 can
A Superscalar Version of DLX

In a typical superscalar processor, the hardware might issue from one to eig
structions in a clock cycle. Usually, these instructions must be independen
will have to satisfy some constraints, such as no more than one memory refe
issued per clock. If some instruction in the instruction stream is depende
doesn’t meet the issue criteria, only the instructions preceding that one i
quence will be issued, hence the variability in issue rate. In contrast, in VLI
the compiler has complete responsibility for creating a package of instruc
that can be simultaneously issued, and the hardware does not dynamically
any decisions about multiple issue. Thus, we say that a superscalar process
dynamic issue capability, while a VLIW processor has static issue capab
Superscalar processors may also be statically or dynamically scheduled; for
we assume static scheduling, but we will explore the use of dynamic sched
in conjunction with speculation in section 4.6.

What would the DLX processor look like as a superscalar? Let’s assume
instructions can be issued per clock cycle. One of the instructions can be a
store, branch, or integer ALU operation, and the other can be any floating-
operation. As we will see, issue of an integer operation in parallel with a floa
point operation is much simpler and less demanding than arbitrary dual i
This configuration is, in fact, very close to the organization used in the HP 7
processor.

Issuing two instructions per cycle will require fetching and decoding 64 bit
instructions. To keep the decoding simple, we could require that the instruc
be paired and aligned on a 64-bit boundary, with the integer portion appe
first. The alternative is to examine the instructions and possibly swap them w
they are sent to the integer or FP datapath; however, this introduces addition
quirements for hazard detection. In either case, the second instruction ca
issued only if the first instruction can be issued. Remember that the hard
makes this decision dynamically, issuing only the first instruction if the con
tions are not met. Figure 4.26 shows how the instructions look as they go int
pipeline in pairs. This table does not address how the floating-point opera
extend the EX cycle, but it is no different in the superscalar case than it wa
the ordinary DLX pipeline; the concepts of section 3.7 apply directly.

With this pipeline, we have substantially boosted the rate at which we can
floating-point instructions. To make this worthwhile, however, we need ei
pipelined floating-point units or multiple independent units. Otherwise,
floating-point datapath will quickly become the bottleneck, and the advant
gained by dual issue will be small.

By issuing an integer and a floating-point operation in parallel, the need
additional hardware, beyond the usual hazard detection logic, is minimize
integer and floating-point operations use different register sets and different
tional units on load-store architectures. Furthermore, enforcing the issue re
tion as a structural hazard (which it is, since only specific pairs of instructions

280 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

 are
ates
AW

clock

tores
 move
mple-
ad be
ing-

ation
opera-
 as for
ths to

alar
cle,
the

ns
 three
ively
com-
n de-

ver-
issue), requires only looking at the opcodes. The only difficulties that arise
when the integer instruction is a floating-point load, store, or move. This cre
contention for the floating-point register ports and may also create a new R
hazard when the floating-point operation that could be issued in the same
cycle is dependent on the first instruction of the pair.

The register port problem could be solved by requiring the FP loads and s
to issue by themselves. This solution treats the case of an FP load, store, or
that is paired with an FP operation as a structural hazard. This is easy to i
ment, but it has substantial performance drawbacks. This hazard could inste
eliminated by providing two additional ports, a read and a write, on the float
point register file.

When the fetched instruction pair consists of an FP load and an FP oper
that is dependent on it, we must detect the hazard and avoid issuing the FP
tion. Except for this case, other possible hazards are essentially the same
our single-issue pipeline. We will, however, need some additional bypass pa
prevent unnecessary stalls.

There is another difficulty that may limit the effectiveness of a supersc
pipeline. In our simple DLX pipeline, loads had a latency of one clock cy
which prevented one instruction from using the result without stalling. In
superscalar pipeline, the result of a load instruction cannot be used on thesame
clock cycle or on the next clock cycle. This means that the next three instructio
cannot use the load result without stalling. The branch delay also becomes
instructions, since a branch must be the first instruction of a pair. To effect
exploit the parallelism available in a superscalar processor, more ambitious
piler or hardware scheduling techniques, as well as more complex instructio
coding, will be needed.

Let’s see how well loop unrolling and scheduling work on a superscalar
sion of DLX with the delays in clock cycles from Figure 4.2 on page 224.

Instruction type Pipe stages

Integer instruction IF ID EX MEM WB

FP instruction IF ID EX MEM WB

Integer instruction IF ID EX MEM WB

FP instruction IF ID EX MEM WB

Integer instruction IF ID EX MEM WB

FP instruction IF ID EX MEM WB

Integer instruction IF ID EX MEM WB

FP instruction IF ID EX MEM WB

FIGURE 4.26 Superscalar pipeline in operation. The integer and floating-point instructions are issued at the same time,
and each executes at its own pace through the pipeline. This scheme will only improve the performance of programs with a
fair fraction of floating-point operations.

4.4 Taking Advantage of More ILP with Multiple Issue 281
E X A M P L E Below is the loop we unrolled and scheduled earlier in section 4.1. How
would it be scheduled on a superscalar pipeline for DLX?

Loop: LD F0,0(R1) ;F0=array element

ADDD F4,F0,F2 ;add scalar in F2

SD 0(R1),F4 ;store result

SUBI R1,R1,#8 ;decrement pointer

;8 bytes (per DW)

BNEZ R1,Loop ;branch R1!=zero

A N S W E R To schedule it without any delays, we will need to unroll the loop to make
five copies of the body. After unrolling, the loop will contain five each of LD,
ADDD, and SD; one SUBI; and one BNEZ. The unrolled and scheduled code
is shown in Figure 4.27.

This unrolled superscalar loop now runs in 12 clock cycles per iteration,
or 2.4 clock cycles per element, versus 3.5 for the scheduled and unrolled
loop on the ordinary DLX pipeline. In this Example, the performance of the
superscalar DLX is limited by the balance between integer and floating-
point computation. Every floating-point instruction is issued together with
an integer instruction, but there are not enough floating-point instructions
to keep the floating-point pipeline full. When scheduled, the original loop
ran in 6 clock cycles per iteration. We have improved on that by a factor of
2.5, more than half of which came from loop unrolling. Loop unrolling took
us from 6 to 3.5 (a factor of 1.7), while superscalar execution gave us a
factor of 1.5 improvement. ■

Integer instruction FP instruction Clock cycle

Loop: LD F0,0(R1) 1

LD F6,-8(R1) 2

LD F10,-16(R1) ADDD F4,F0,F2 3

LD F14,-24(R1) ADDD F8,F6,F2 4

LD F18,-32(R1) ADDD F12,F10,F2 5

SD 0(R1),F4 ADDD F16,F14,F2 6

SD -8(R1),F8 ADDD F20,F18,F2 7

SD -16(R1),F12 8

SUBI R1,R1,#40 9

SD 16(R1),F16 10

BNEZ R1,Loop 11

SD 8(R1),F20 12

FIGURE 4.27 The unrolled and scheduled code as it would look on a superscalar
DLX.

282 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

hem
they
quen-
 over
ssor
ut the
ms, or
rams

ces-
ithm.
o in-
nt to
s the
tures

float-
 sta-
 set.
ence
) and
n the
here
ction,
If a
struc-
uled

. The
n be

ssed
.
estric-
isters
. If we
sible

y us-
 allow
ulo’s
hile
could
Ideally, our superscalar processor will pick up two instructions and issue t
both if the first is an integer and the second is a floating-point instruction. If
do not fit this pattern, which can be quickly detected, then they are issued se
tially. This points to two of the major advantages of a superscalar processor
a VLIW processor. First, there is little impact on code density, since the proce
detects whether the next instruction can issue, and we do not need to lay o
instructions to match the issue capability. Second, even unscheduled progra
those compiled for older implementations, can be run. Of course, such prog
may not run well; one way to overcome this is to use dynamic scheduling.

Multiple Instruction Issue with Dynamic Scheduling

Multiple instruction issue can also be applied to dynamically scheduled pro
sors. We could start with either the scoreboard scheme or Tomasulo’s algor
Let’s assume we want to extend Tomasulo’s algorithm to support issuing tw
structions per clock cycle, one integer and one floating point. We do not wa
issue instructions to the reservation stations out of order, since this make
bookkeeping extremely complex. Rather, by employing separate data struc
for the integer and floating-point registers, we can simultaneously issue a
ing-point instruction and an integer instruction to their respective reservation
tions, as long as the two issued instructions do not access the same register

Unfortunately, this approach bars issuing two instructions with a depend
in the same clock cycle, such as a floating-point load (an integer instruction
a floating-point add. Of course, we cannot execute these two instructions i
same clock, but we would like to issue them to the reservation stations w
they will later be serialized. In the superscalar processor of the previous se
the compiler is responsible for finding independent instructions to issue.
hardware-scheduling scheme cannot find a way to issue two dependent in
tions in the same clock, there will be little advantage to a hardware-sched
scheme versus a compiler-based scheme.

Luckily, there are two approaches that can be used to achieve dual issue
first assumes that the register renaming portion of instruction-issue logic ca
made to run in one-half of a clock. This permits two instructions to be proce
in one clock cycle, so that they can begin executing on the same clock cycle

The second approach is based on the observation that with the issue r
tions assumed, it will only be FP loads and moves from the GP to the FP reg
that will create dependences among instructions that we can issue together
had a more complex set of issue capabilities, there would be additional pos
dependences that we would need to handle.

The need for reservation tables for loads and moves can be eliminated b
ing queues for the result of a load or a move. Queues can also be used to
stores to issue early and wait for their operands, just as they did in Tomas
algorithm. Since dynamic scheduling is most effective for data moves, w
static scheduling is highly effective in register-register code sequences, we

4.4 Taking Advantage of More ILP with Multiple Issue 283

 only
where
tional
i-

s and
rough
d. We
ue ver-
ory
an out-
d in-

y been
(possi-
flicts
rds
ikely
etect-

e next

logic
tional
arlier.
use static scheduling to eliminate reservation stations completely and rely
on the queues for loads and stores. This style of processor organization,
the load-store units have queues to allow slippage with respect to other func
units, has been called a decoupled architecture. Several machines have used var
ations on this idea.

A processor that dynamically schedules loads and stores may cause load
stores to be reordered. This may result in violating a data dependence th
memory and thus requires some detection hardware for this potential hazar
can detect such hazards with the same scheme we used for the single-iss
sion of Tomasulo’s algorithm: We dynamically check whether the mem
source address specified by a load is the same as the target address of
standing, uncompleted store. If there is such a match, we can stall the loa
struction until the store completes. Since the address of the store has alread
computed and resides in the store buffer, we can use an associative check
bly with only a subset of the address bits) to determine whether a load con
with a store in the buffer. There is also the possibility of WAW and WAR haza
through memory, which must be prevented, although they are much less l
than a true data dependence. (In contrast to these dynamic techniques for d
ing memory dependences, we will discuss compiler-based approaches in th
section.)

For simplicity, let us assume that we have pipelined the instruction issue
so that we can issue two operations that are dependent but use different func
units. Let’s see how this would work with the same code sequence we used e

E X A M P L E Consider the execution of our simple loop on a DLX pipeline extended
with Tomasulo’s algorithm and with multiple issue. Assume that both a
floating-point and an integer operation can be issued on every clock cycle,
even if they are related, provided the integer instruction is the first instruc-
tion. Assume one integer functional unit and a separate FP functional unit
for each operation type. The number of cycles of latency per instruction is
the same. Assume that issue and write results take one cycle each and
that there is dynamic branch-prediction hardware. Create a table showing
when each instruction issues, begins execution, and writes its result to the
CDB for the first two iterations of the loop. Here is the original loop:

Loop: LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4

SUBI R1,R1,#8

BNEZ R1,Loop

A N S W E R The loop will be dynamically unwound and, whenever possible, in-
structions will be issued in pairs. The result is shown in Figure 4.28. The
loop runs in 4 clock cycles per result, assuming no stalls are required on
loop exit.

284 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

point
d be
tion
 run
 trans-
 is,
d be

nt a
as we
or re-
peci-

 can
ard-

mech-
were
nif-
oth

 might
■

The number of dual issues is small because there is only one floating-
operation per iteration. The relative number of dual-issued instructions woul
helped by the compiler partially unwinding the loop to reduce the instruc
count by eliminating loop overhead. With that transformation, the loop would
as fast as scheduled code on a superscalar processor. We will return to this
formation in the Exercises. Alternatively, if the processor were “wider,” that
could issue more integer operations per cycle, larger improvements woul
possible.

The VLIW Approach

With a VLIW we can reduce the amount of hardware needed to impleme
multiple-issue processor, and the potential savings in hardware increases
increase the issue width. For example, our two-issue superscalar process
quires that we examine the opcodes of two instructions and the six register s
fiers and that we dynamically determine whether one or two instructions
issue and dispatch them to the appropriate functional units. Although the h
ware required for a two-issue processor is modest and we could extend the
anisms to handle three or four instructions (or more if the issue restrictions
chosen carefully), it becomes increasingly difficult to determine whether a sig
icant number of instructions can all issue simultaneously without knowing b
the order of the instructions before they are fetched and what dependencies
exist among them.

Iteration
number Instructions

Issues at
clock-cycle

number

Executes at
clock-cycle

number

Memory
access at

clock-cycle
number

Writes
result at

clock-cycle
number

1 LD F0,0(R1) 1 2 3 3

1 ADDD F4,F0,F2 1 4 6

1 SD 0(R1),F4 2 3 7

1 SUBI R1,R1,#8 3 4 5

1 BNEZ R1,Loop 4 5

2 LD F0,0(R1) 5 6 8 8

2 ADDD F4,F0,F2 5 9 11

2 SD 0(R1),F4 6 7 12

2 SUBI R1,R1,#8 7 8 9

2 BNEZ R1,Loop 8 9

FIGURE 4.28 The time of issue, execution, and writing result for a dual-issue version of our Toma-
sulo pipeline. The write-result stage does not apply to either stores or branches, since they do not write any
registers. We assume a result is written to the CDB at the end of the clock cycle it is available in. This also
assumes a wider CDB. For LD and SD, the execution is effective address calculation. We assume one mem-
ory pipeline.

4.4 Taking Advantage of More ILP with Multiple Issue 285

its.
its, a
 the
ously
isions
issue

nt
ve a
 an
usy,

avail-
hed-

ion to
 the
 dis-
s;
sume
ilding

era-
rate
An alternative is an LIW (long instruction word) or VLIW (very long instruc-
tion word) architecture. VLIWs use multiple, independent functional un
Rather than attempting to issue multiple, independent instructions to the un
VLIW packages the multiple operations into one very long instruction, hence
name. Since the burden for choosing the instructions to be issued simultane
falls on the compiler, the hardware in a superscalar to make these issue dec
is unneeded. Since this advantage of a VLIW increases as the maximum
rate grows, we focus on a wider-issue processor.

A VLIW instruction might include two integer operations, two floating-poi
operations, two memory references, and a branch. An instruction would ha
set of fields for each functional unit—perhaps 16 to 24 bits per unit, yielding
instruction length of between 112 and 168 bits. To keep the functional units b
there must be enough parallelism in a straight-line code sequence to fill the
able operation slots. This parallelism is uncovered by unrolling loops and sc
uling code across basic blocks using a global scheduling technique. In addit
eliminating branches by unrolling loops, global scheduling techniques allow
movement of instructions across branch points. In the next section, we will
cuss trace scheduling, one of these techniques developed specifically for VLIW
the references also provide pointers to other approaches. For now, let’s as
we have a technique to generate long, straight-line code sequences for bu
up VLIW instructions and examine how well these processors operate.

E X A M P L E Suppose we have a VLIW that could issue two memory references, two
FP operations, and one integer operation or branch in every clock cycle.
Show an unrolled version of the array sum loop for such a processor. Un-
roll as many times as necessary to eliminate any stalls. Ignore the branch-
delay slot.

A N S W E R The code is shown in Figure 4.29. The loop has been unrolled to make
seven copies of the body, which eliminates all stalls (i.e., completely
empty issue cycles), and runs in 9 cycles. This yields a running rate of
seven results in 9 cycles, or 1.29 cycles per result. ■

Limitations in Multiple-Issue Processors

What are the limitations of a multiple-issue approach? If we can issue five op
tions per clock cycle, why not 50? The difficulty in expanding the issue
comes from three areas:

1. Inherent limitations of ILP in programs

2. Difficulties in building the underlying hardware

3. Limitations specific to either a superscalar or VLIW implementation.

286 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

ple,
imes,
ts. At
allel
ver,
, and
uir-
s. For
ant
tions
l, we

erage
y 15
 five

 arises
s per
quite
asy
band-
oint
 for
 each
Limits on available ILP are the simplest and most fundamental. For exam
in a statically scheduled processor, unless loops are unrolled very many t
there may not be enough operations to fill the available instruction issue slo
first glance, it might appear that five instructions that could execute in par
would be sufficient to keep our example VLIW completely busy. This, howe
is not the case. Several of these functional units—the memory, the branch
the floating-point units—will be pipelined and have a multicycle latency, req
ing a larger number of operations that can execute in parallel to prevent stall
example, if the floating-point pipeline has a latency of five clocks, and if we w
to schedule both FP pipelines without stalling, there must be 10 FP opera
that are independent of the most recently issued FP operation. In genera
need to find a number of independent operations roughly equal to the av
pipeline depth times the number of functional units. This means that roughl
to 20 operations could be needed to keep a multiple-issue processor with
functional units busy.

The second cost, the hardware resources for a multiple-issue processor,
from the hardware needed both to issue and to execute multiple instruction
cycle. The hardware for executing multiple operations per cycle seems
straightforward: duplicating the floating-point and integer functional units is e
and cost scales linearly. However, there is a large increase in the memory
width and register-file bandwidth. For example, even with a split floating-p
and integer register file, our VLIW processor will require six read ports (two
each load-store and two for the integer part) and three write ports (one for

Memory
reference 1

Memory
reference 2

FP
operation 1

FP
operation 2

Integer
operation/branch

LD F0,0(R1) LD F6,-8(R1)

LD F10,-16(R1) LD F14,-24(R1)

LD F18,-32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2

LD F26,-48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2

ADDD F20,F18,F2 ADDD F24,F22,F2

SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2

SD -16(R1),F12 SD -24(R1),F16

SD -32(R1),F20 SD -40(R1),F24 SUBI R1,R1,#56

SD 8(R1),F28 BNEZ R1,Loop

FIGURE 4.29 VLIW instructions that occupy the inner loop and replace the unrolled sequence. This code takes nine
cycles assuming no branch delay; normally the branch delay would also need to be scheduled. The issue rate is 23 opera-
tions in nine clock cycles, or 2.5 operations per cycle. The efficiency, the percentage of available slots that contained an oper-
ation, is about 60%. To achieve this issue rate requires a larger number of registers than DLX would normally use in this
loop. The VLIW code sequence above requires at least eight FP registers, while the same code sequence for the base DLX
processor can use as few as two FP registers or as many as five when unrolled and scheduled. In the superscalar example
in Figure 4.27, six registers were needed.

4.4 Taking Advantage of More ILP with Multiple Issue 287

-store
n the
 in-
clock
tan-
er of
only
mory
lexity
ould
 that
r the
t an-
ssed

roach
atives
s time
hard-
 or

end-
ami-
nt of
lgo-
hed-
eve
 de-
ddi-
n is
xist-
y the

of in-
 issue
ser to
h of
 costs
echa-

LIW
roces-
ech-
code
bine
non-FP unit) on the integer register file and six read ports (one for each load
and two for each FP) and four write ports (one for each load-store or FP) o
floating-point register file. This bandwidth cannot be supported without an
crease in the silicon area of the register file and possible degradation of
speed. Our five-unit VLIW also has two data memory ports, which are subs
tially more expensive than register ports. If we wanted to expand the numb
issues further, we would need to continue adding memory ports. Adding
arithmetic units would not help, since the processor would be starved for me
bandwidth. As the number of data memory ports grows, so does the comp
of the memory system. To allow multiple memory accesses in parallel, we c
break the memory into banks containing different addresses with the hope
the operations in a single instruction do not have conflicting accesses, o
memory may be truly dual-ported, which is substantially more expensive. Ye
other approach is used in the IBM Power-2 design: The memory is acce
twice per clock cycle, but even with an aggressive memory system, this app
may be too slow for a high-speed processor. These memory system altern
are discussed in more detail in the next chapter. The complexity and acces
penalties of a multiported memory hierarchy are probably the most serious
ware limitations faced by any type of multiple-issue processor, whether VLIW
superscalar.

The hardware needed to support instruction issue varies significantly dep
ing on the multiple-issue approach. At one end of the spectrum are the dyn
cally scheduled superscalar processors that have a substantial amou
hardware involved in implementing either scoreboarding or Tomasulo’s a
rithm. In addition to the silicon that such mechanisms consume, dynamic sc
uling substantially complicates the design, making it more difficult to achi
high clock rates, as well as significantly increasing the task of verifying the
sign. At the other end of the spectrum are VLIWs, which require little or no a
tional hardware for instruction issue and scheduling, since that functio
handled completely by the compiler. Between these two extremes lie most e
ing superscalar processors, which use a combination of static scheduling b
compiler with the hardware making the decision of how many of the next n in-
structions to issue. Depending on what restrictions are made on the order
structions and what types of dependences must be detected among the
candidates, statically scheduled superscalars will have issue logic either clo
that of a VLIW or more like that of a dynamically scheduled processor. Muc
the challenge in designing multiple-issue processors lies in assessing the
and performance advantages of a wide spectrum of possible hardware m
nisms versus the compiler-driven alternatives.

Finally, there are problems that are specific to either the superscalar or V
model. We have already discussed the major challenge for a superscalar p
sor, namely the instruction issue logic. For the VLIW model, there are both t
nical and logistical problems. The technical problems are the increase in
size and the limitations of lock-step operation. Two different elements com

288 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

era-
ich
 func-
, we
each
times
y any

ory
ause a
 unit
units
nistic
ter a
cause
ences
 data

is
s may
rs of
hus,
tions

 de-
esign
is a
o this
ode
y a

rge
 FP
ctor
ces-
 simi-
ential
ofold.
f par-
 use

ultiple-
to increase code size substantially for a VLIW. First, generating enough op
tions in a straight-line code fragment requires ambitiously unrolling loops, wh
increases code size. Second, whenever instructions are not full, the unused
tional units translate to wasted bits in the instruction encoding. In Figure 4.29
saw that only about 60% of the functional units were used, so almost half of
instruction was empty. To combat this problem, clever encodings are some
used. For example, there may be only one large immediate field for use b
functional unit. Another technique is to compress the instructions in main mem
and expand them when they are read into the cache or are decoded. Bec
VLIW is statically scheduled and operates lock-step, a stall in any functional
pipeline must cause the entire processor to stall, since all the functional
must be kept synchronized. While we may be able to schedule the determi
functional units to prevent stalls, predicting which data accesses will encoun
cache stall and scheduling them is very difficult. Hence, a cache miss must
the entire processor to stall. As the issue rate and number of memory refer
becomes large, this lock-step structure makes it difficult to effectively use a
cache, thereby increasing memory complexity and latency.

Binary code compatibility is the major logistical problem for VLIWs. Th
problem exists within a generation of processors, even though the processor
implement the same basic instructions. The problem is that different numbe
issues and functional unit latencies require different versions of the code. T
migrating between successive implementations or even between implementa
with different issue widths is more difficult than it may be for a superscalar
sign. Of course, obtaining improved performance from a new superscalar d
may require recompilation. Nonetheless, the ability to run old binary files
practical advantage for the superscalar approach. One possible solution t
problem, and the problem of binary code compatibility in general, is object-c
translation or emulation. This technology is developing quickly and could pla
significant role in future migration schemes.

The major challenge for all multiple-issue processors is to try to exploit la
amounts of ILP. When the parallelism comes from unrolling simple loops in
programs, the original loop probably could have been run efficiently on a ve
processor (described in Appendix B). It is not clear that a multiple-issue pro
sor is preferred over a vector processor for such applications; the costs are
lar, and the vector processor is typically the same speed or faster. The pot
advantages of a multiple-issue processor versus a vector processor are tw
First, a multiple-issue processor has the potential to extract some amount o
allelism from less regularly structured code, and, second, it has the ability to
a less expensive memory system. For these reasons it appears clear that m

4.5 Compiler Support for Exploiting ILP 289

tion-
ors.

 par-
s to

s: (1)
ism,
alysis
. Since
lyzed
using

e is a
op in

p

ple in
n un-

sm
er

allel-
r of

have a

ent.
we
e, the

nces
cess to
issue approaches will be the primary method for taking advantage of instruc
level parallelism, and vectors will primarily be an extension to these process

In this section we discuss compiler technology for increasing the amount of
allelism that we can exploit in a program. We begin by examining technique
detect dependences and eliminate name dependences.

Detecting and Eliminating Dependences

Finding the dependences in a program is an important part of three task
good scheduling of code, (2) determining which loops might contain parallel
and (3) eliminating name dependences. The complexity of dependence an
arises because of the presence of arrays and pointers in languages like C
scalar variable references explicitly refer to a name, they can usually be ana
quite easily, with aliasing because of pointers and reference parameters ca
some complications and uncertainty in the analysis.

Our analysis needs to find all dependences and determine whether ther
cycle in the dependences, since that is what prevents us from running the lo
parallel. Consider the following example:

for (i=1;i<=100;i=i+1) {

A[i] = B[i] + C[i]

D[i] = A[i] * E[i]

}

Because the dependence involving A is not loop-carried, we can unroll the loo
and find parallelism; we just cannot exchange the two references to A. If a loop
has loop-carried dependences but no circular dependences (recall the Exam
section 4.1), we can transform the loop to eliminate the dependence and the
rolling will uncover parallelism. In many parallel loops the amount of paralleli
is limited only by the number of unrollings, which is limited only by the numb
of loop iterations. Of course, in practice, to take advantage of that much par
ism would require many functional units and possibly an enormous numbe
registers. The absence of a loop-carried dependence simply tells us that we
large amount of parallelism available.

The code fragment above illustrates another opportunity for improvem
The second reference to A need not be translated to a load instruction, since
know that the value is computed and stored by the previous statement; henc
second reference to A can simply be a reference to the register into which A was
computed. Performing this optimization requires knowing that the two refere
are always to the same memory address and that there is no intervening ac

4.5 Compiler Support for Exploiting ILP

290 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

refer-
mine
e, a
same

ble in
frag-
hitec-
ting
ount of

en-
an be
de-
nother;
h. If
 of five
many
es with
paral-

dence

form

o the
unc-
f the
value
the same location. Normally, data dependence analysis only tells that one
ence may depend on another; a more complex analysis is required to deter
that two references must be to the exact same address. In the example abov
simple version of this analysis suffices, since the two references are in the
basic block.

Often loop-carried dependences are in the form of a recurrence:

for (i=2;i<=100;i=i+1) {

Y[i] = Y[i-1] + Y[i];

}

A recurrence is when a variable is defined based on the value of that varia
an earlier iteration, often the one immediately preceding, as in the above
ment. Detecting a recurrence can be important for two reasons: Some arc
tures (especially vector computers) have special support for execu
recurrences, and some recurrences can be the source of a reasonable am
parallelism. To see how the latter can be true, consider this loop:

for (i=6;i<=100;i=i+1) {

Y[i] = Y[i-5] + Y[i];

}

On the iteration i, the loop references element i – 5. The loop is said to have a
dependence distance of 5. Many loops with carried dependences have a dep
dence distance of 1. The larger the distance, the more potential parallelism c
obtained by unrolling the loop. For example, if we unroll the first loop, with a
pendence distance of 1, successive statements are dependent on one a
there is still some parallelism among the individual instructions, but not muc
we unroll the loop that has a dependence distance of 5, there is a sequence
instructions that have no dependences, and thus much more ILP. Although
loops with loop-carried dependences have a dependence distance of 1, cas
larger distances do arise, and the longer distance may well provide enough
lelism to keep a processor busy.

How does the compiler detect dependences in general? Nearly all depen
analysis algorithms work on the assumption that array indices are affine. In sim-
plest terms, a one-dimensional array index is affine if it can be written in the
a × i + b, where a and b are constants, and i is the loop index variable. The index
of a multidimensional array is affine if the index in each dimension is affine.

Determining whether there is a dependence between two references t
same array in a loop is thus equivalent to determining whether two affine f
tions can have the same value for different indices between the bounds o
loop. For example, suppose we have stored to an array element with index
a × i + b and loaded from the same array with index value c × i + d, where i is the

4.5 Compiler Support for Exploiting ILP 291

-

 time.
s
ther
ompile
ltiple

here
nable

nce is
f a

o

u can
t suc-

e GCD

plete.
 cost.

ty and
t if it
ase is
aper.)
for-loop index variable that runs from m to n. A dependence exists if two condi
tions hold:

1. There are two iteration indices, j and k, both within the limits of the for loop.
That is m ≤ j ≤ n, m ≤ k ≤ n.

2. The loop stores into an array element indexed by a × j + b and later fetches
from that same array element when it is indexed by c × k + d. That is, a × j +
b = c × k + d.

In general, we cannot determine whether a dependence exists at compile
For example, the values of a, b, c, and d may not be known (they could be value
in other arrays), making it impossible to tell if a dependence exists. In o
cases, the dependence testing may be very expensive but decidable at c
time. For example, the accesses may depend on the iteration indices of mu
nested loops. Many programs, however, contain primarily simple indices w
a, b, c, and d are all constants. For these cases, it is possible to devise reaso
compile-time tests for dependence.

As an example, a simple and sufficient test for the absence of a depende
the greatest common divisor, or GCD, test. It is based on the observation that i
loop-carried dependence exists, then GCD (c,a) must divide (d – b). (Remember
that an integer, x, divides another integer, y, if there is no remainder when we d
the division y/x and get an integer quotient.)

E X A M P L E Use the GCD test to determine whether dependences exist in the follow-
ing loop:

for (i=1; i<=100; i=i+1) {
X[2 * i+3] = X[2 * i] * 5.0;

}

A N S W E R Given the values a = 2, b = 3, c = 2, and d = 0, then GCD(a,c) = 2, and
d – b = –3. Since 2 does not divide –3, no dependence is possible. ■

The GCD test is sufficient to guarantee that no dependence exists (yo
show this in the Exercises); however, there are cases where the GCD tes
ceeds but no dependence exists. This can arise, for example, because th
test does not take the loop bounds into account.

 In general, determining whether a dependence actually exists is NP-com
In practice, however, many common cases can be analyzed precisely at low
Recently, approaches using a hierarchy of exact tests increasing in generali
cost have been shown to be both accurate and efficient. (A test is exac
precisely determines whether a dependence exists. Although the general c
NP-complete, there exist exact tests for restricted situations that are much che

292 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

ts to
e de-
In addition to detecting the presence of a dependence, a compiler wan
classify the types of dependence. This allows a compiler to recognize nam
pendences and eliminate them at compile time by renaming and copying.

E X A M P L E The following loop has multiple types of dependences. Find all the true
dependences, output dependences, and antidependences, and eliminate
the output dependences and antidependences by renaming.

for (i=1; i<=100; i=i+1) {
Y[i] = X[i] / c; /*S1*/
X[i] = X[i] + c; /*S2*/
Z[i] = Y[i] + c; /*S3*/
Y[i] = c - Y[i]; /*S4*/

}

A N S W E R The following dependences exist among the four statements:

1. There are true dependences from S1 to S3 and from S1 to S4
because of Y[i] . These are not loop carried, so they do not prevent
the loop from being considered parallel. These dependences will
force S3 and S4 to wait for S1 to complete.

2. There is an antidependence from S1 to S2, based on X[i] .

3. There is an antidependence from S3 to S4 for Y[i].

4. There is an output dependence from S1 to S4, based on Y[i] .

The following version of the loop eliminates these false (or pseudo)
dependences.

for (i=1; i<=100; i=i+1 {

/* Y renamed to T to remove output dependence*/

T[i] = X[i] / c;

/* X renamed to X1 to remove antidependence*/

X1[i] = X[i] + c;

/* Y renamed to T to remove antidependence */

Z[i] = T[i] + c;

Y[i] = c - T[i];

}

After the loop the variable X has been renamed X1. In code that follows
the loop, the compiler can simply replace the name X by X1. In this case,
renaming does not require an actual copy operation but can be done by
substituting names or by register allocation. In other cases, however,
renaming will require copying. ■

4.5 Compiler Support for Exploiting ILP 293

 the
nces
r de-
ively
 criti-
ter-
back

tanc-
index
naly-

with

t exist
lues;

of a
t

uation
han

o un-
ight-
ed for

ra-
ffer-
g at
d in
es in-
struc-
op
 as
hat

 ear-
iffer-
 loop

nore
.

Dependence analysis is a critical technology for exploiting parallelism. At
instruction level it provides information needed to interchange memory refere
when scheduling, as well as to determine the benefits of unrolling a loop. Fo
tecting loop-level parallelism, dependence analysis is the basic tool. Effect
compiling programs to either vector computers or multiprocessors depends
cally on this analysis. In addition, it is useful in scheduling instructions to de
mine whether memory references are potentially dependent. The major draw
of dependence analysis is that it applies only under a limited set of circums
es, namely among references within a single loop nest and using affine
functions. Thus, there are a wide variety of situations in which dependence a
sis cannot tell us what we might want to know, including

■ when objects are referenced via pointers rather than array indices;

■ when array indexing is indirect through another array, which happens
many representations of sparse arrays;

■ when a dependence may exist for some value of the inputs, but does no
in actuality when the code is run since the inputs never take on certain va

■ when an optimization depends on knowing more than just the possibility
dependence, but needs to know on which write of a variable does a read of tha
variable depend.

The rapid progress in dependence analysis algorithms has led us to a sit
where we are often limited by the lack of applicability of the analysis rather t
a shortcoming in dependence analysis per se.

Software Pipelining: Symbolic Loop Unrolling

We have already seen that one compiler technique, loop unrolling, is useful t
cover parallelism among instructions by creating longer sequences of stra
line code. There are two other important techniques that have been develop
this purpose: software pipelining and trace scheduling.

Software pipelining is a technique for reorganizing loops such that each ite
tion in the software-pipelined code is made from instructions chosen from di
ent iterations of the original loop. This is most easily understood by lookin
the scheduled code for the superscalar version of DLX, which appeare
Figure 4.27 on page 281. The scheduler in this example essentially interleav
structions from different loop iterations, so as to separate the dependent in
tions that occur within a single loop iteration. A software-pipelined lo
interleaves instructions from different iterations without unrolling the loop,
illustrated in Figure 4.30. This technique is the software counterpart to w
Tomasulo’s algorithm does in hardware. The software-pipelined loop for the
lier example would contain one load, one add, and one store, each from a d
ent iteration. There is also some start-up code that is needed before the
begins as well as code to finish up after the loop is completed. We will ig
these in this discussion, for simplicity; the topic is addressed in the Exercises

294 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism
E X A M P L E Show a software-pipelined version of this loop, which increments all the
elements of an array whose starting address is in R1 by the contents of
F2:

Loop: LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4

SUBI R1,R1,#8

BNEZ R1,Loop

You may omit the start-up and clean-up code.

A N S W E R Software pipelining symbolically unrolls the loop and then selects instruc-
tions from each iteration. Since the unrolling is symbolic, the loop over-
head instructions (the SUBI and BNEZ) need not be replicated. Here’s the
body of the unrolled loop without overhead instructions, highlighting the
instructions taken from each iteration:

FIGURE 4.30 A software-pipelined loop chooses instructions from different loop iter-
ations, thus separating the dependent instructions within one iteration of the original
loop. The start-up and finish-up code will correspond to the portions above and below the
software-pipelined iteration.

Software-
pipelined
iteration

Iteration
0 Iteration

1 Iteration
2 Iteration

3 Iteration
4

4.5 Compiler Support for Exploiting ILP 295

mple
n are

rations
ccurs
ncies
lling

 to
are
Iteration i: LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4

Iteration i+1: LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4

Iteration i+2: LD F0,0(R1)

ADDD F4,F0,F2

SD 0(R1),F4

The selected instructions are then put together in the loop with the loop
control instructions:

Loop: SD 16(R1),F4 ;stores into M[i]

ADDD F4,F0,F2 ;adds to M[i-1]

LD F0,0(R1) ;loads M[i-2]

SUBI R1,R1,#8

BNEZ R1,Loop

This loop can be run at a rate of 5 cycles per result, ignoring the start-up
and clean-up portions, and assuming that SUBI is scheduled after the
ADDD and the LD instruction, with an adjusted offset, is placed in the
branch delay slot. Because the load and store are separated by offsets of
16 (two iterations), the loop should run for two fewer iterations. (We ad-
dress this and the start-up and clean-up portions in Exercise 4.18.) Notice
that the reuse of registers (e.g., F4, F0, and R1) requires the hardware to
avoid the WAR hazards that would occur in the loop. This should not be a
problem in this case, since no data-dependent stalls should occur.

By looking at the unrolled version we can see what the start-up code
and finish code will need to be. For start-up, we will need to execute any
instructions that correspond to iteration 1 and 2 that will not be executed.
These instructions are the LD for iterations 1 and 2 and the ADDD for iter-
ation 1. For the finish code, we need to execute any instructions that will
not be executed in the final two iterations. These include the ADDD for the
last iteration and the SD for the last two iterations. ■

Register management in software-pipelined loops can be tricky. The exa
above is not too hard since the registers that are written on one loop iteratio
read on the next. In other cases, we may need to increase the number of ite
between when we issue an instruction and when the result is used. This o
when there are a small number of instructions in the loop body and the late
are large. In such cases, a combination of software pipelining and loop unro
is needed. An example of this is shown in the Exercises.

Software pipelining can be thought of as symbolic loop unrolling. Indeed,
some of the algorithms for software pipelining use loop-unrolling algorithms
figure out how to software pipeline the loop. The major advantage of softw

296 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

less
bet-
nroll-
code.
peed
itera-
es—

vior
d, the

lism
useful
lling

busy.
cess,

se
pipelining over straight loop unrolling is that software pipelining consumes
code space. Software pipelining and loop unrolling, in addition to yielding a
ter scheduled inner loop, each reduce a different type of overhead. Loop u
ing reduces the overhead of the loop—the branch and counter-update
Software pipelining reduces the time when the loop is not running at peak s
to once per loop at the beginning and end. If we unroll a loop that does 100
tions a constant number of times, say 4, we pay the overhead 100/4 = 25 tim
every time the inner unrolled loop is initiated. Figure 4.31 shows this beha
graphically. Because these techniques attack two different types of overhea
best performance can come from doing both.

Trace Scheduling: Using Critical Path Scheduling

The other technique used to generate additional parallelism is trace scheduling.
Trace scheduling extends loop unrolling with a technique for finding paralle
across conditional branches other than loop branches. Trace scheduling is
for processors with a very large number of issues per clock where loop unro
may not be sufficient by itself to uncover enough ILP to keep the processor
Trace scheduling is a combination of two separate processes. The first pro
called trace selection, tries to find a likely sequence of basic blocks who

FIGURE 4.31 The execution pattern for (a) a software-pipelined loop and (b) an un-
rolled loop. The shaded areas are the times when the loop is not running with maximum
overlap or parallelism among instructions. This occurs once at the beginning and once at the
end for the software-pipelined loop. For the unrolled loop it occurs m/n times if the loop has a
total of m iterations and is unrolled n times. Each block represents an unroll of n iterations.
Increasing the number of unrollings will reduce the start-up and clean-up overhead. The over-
head of one iteration overlaps with the overhead of the next, thereby reducing the impact. The
total area under the polygonal region in each case will be the same, since the total number
of operations is just the execution rate multiplied by the time.

(a) Software pipelining

Proportional
to number of

unrolls

Overlap between
unrolled iterations

Time

Wind-down
code

Start-up
code

(b) Loop unrolling Time

Number
of

overlapped
operations

Number
of

overlapped
operations

4.5 Compiler Support for Exploiting ILP 297

ence
nch-
ion,
 result-
basic

ction
ing the

t the
trol de-
ile the
easily
e anal-
epen-
duling
r re-
 non-

ents
piler
ode.

 of an
operations will be put together into a smaller number of instructions; this sequ
is called a trace. Loop unrolling is used to generate long traces, since loop bra
es are taken with high probability. Additionally, by using static branch predict
other conditional branches are also chosen as taken or not taken, so that the
ant trace is a straight-line sequence resulting from concatenating many
blocks. Once a trace is selected, the second process, called trace compaction, tries
to squeeze the trace into a small number of wide instructions. Trace compa
attempts to move operations as early as it can in a sequence (trace), pack
operations into as few wide instructions (or issue packets) as possible.

Trace compaction is global code scheduling, where we want to compac
code into the shortest possible sequence that preserves the data and con
pendences. The data dependences force a partial order on operations, wh
control dependences dictate instructions across which code cannot be
moved. Data dependences are overcome by unrolling and using dependenc
ysis to determine if two references refer to the same address. Control d
dences are also reduced by unrolling. The major advantage of trace sche
over simpler pipeline-scheduling techniques is that it provides a scheme fo
ducing the effect of control dependences by moving code across conditional
loop branches using the predicted behavior of the branch. While such movem
cannot guarantee speedup, if the prediction information is accurate, the com
can determine whether such code movement is likely to lead to faster c
Figure 4.32 shows a code fragment, which may be thought of as an iteration
unrolled loop, and the trace selected.

FIGURE 4.32 A code fragment and the trace selected shaded with gray. This trace
would be selected first if the probability of the true branch being taken were much higher than
the probability of the false branch being taken. The branch from the decision (A[i]=0) to X is
a branch out of the trace, and the branch from X to the assignment to C is a branch into the
trace. These branches are what make compacting the trace difficult.

A[i] = A[i] + B[i]

T F

XB[i] =

A[i] = 0?

C[i] =

298 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

 so as
e as-
. The
puta-
bal
der a

or out
ode is
 may
 trace
ay be
 book-
 In the
 only
that is
cep-

rtain
ons. In
specu-

n of
tation
 not
t visi-

 look
ming
uch a
Once the trace is selected as shown in Figure 4.32, it must be compacted
to fill the processor’s resources. Compacting the trace involves moving th
signments to variables B and C up to the block before the branch decision
movement of the code associated with B is speculative: it will speed the com
tion up only when the path containing the code would be taken. Any glo
scheduling scheme, including trace scheduling, performs such movement un
set of constraints. In trace scheduling, branches are viewed as jumps into
of the selected trace, which is assumed to the most probable path. When c
moved across such trace entry and exit points, additional bookkeeping code
be needed on the entry or exit point. The key assumption is that the selected
is the most probable event, otherwise, the cost of the bookkeeping code m
excessive. This movement of code alters the control dependences, and the
keeping code is needed to maintain the correct dynamic data dependence.
case of moving the code associated with C, the bookkeeping costs are the
cost, since C is executed independent of the branch. For a code movement
speculative, like that associated with B, we must not introduce any new ex
tions. Compilers avoid changing the exception behavior by not moving ce
classes of instructions, such as memory references, that can cause excepti
the next section, we will see how hardware support can ease the process of
lative code motion as well as remove control dependences.

What is involved in moving the assignments to B and C? The computatio
and assignment to B is control-dependent on the branch, while the compu
of C is not. Moving these statements can only be done if they either do
change the control and data dependences or if the effect of the change is no
ble and thus does not affect program execution. To see what’s involved, let’s
at a typical code generation sequence for the flowchart in Figure 4.32. Assu
that the addresses for A, B, C are in R1, R2, and R3, respectively, here is s
sequence:

LW R4,0(R1) ; load A

LW R5,0(R2) ; load B

ADDI R4,R4,R5 ; Add to A

SW 0(R1),R4 ; Store A

...

BNEZ R4,elsepart ; Test A

... ; then part

SW 0(R2),... ; Stores to B

j join ; jump over else

elsepart:... ; else part

X ; code for X

...

join: ... ; after if

SW 0(R3),... ; store C[i]

4.6 Hardware Support for Extracting More Parallelism 299

 the
ved
ny ex-
gram
o not

e it
sign-

r than

oved
 shad-
uch
nt and

l and

teps.
ce (a
truc-

ecute
 were
 frag-
truc-
n the
e can
 does
e if
dant.
 to

e than
tech-
g the
speed

 can
ior of
es is
Let’s first consider the problem of moving the assignment to B to before
BNEZ instruction. Since B is control-dependent on that branch before it is mo
but not after, we must ensure the execution of the statement cannot cause a
ception, since that exception would not have been raised in the original pro
if the else part of the statement were selected. The movement of B must als
affect the data flow, since that will result in changing the value computed.

Moving B will change the data flow of the program, if B is referenced befor
is assigned either in X or after the if statement. In either case moving the as
ment to B will cause some instruction, i (either in X or later in the program), to
become data-dependent on the moved version of the assignment to B rathe
on an earlier assignment to B that occurs before the loop and on which i original-
ly depended. One could imagine more clever schemes to allow B to be m
even when the value is used: for example, in the first case, we could make a
ow copy of B before the if statement and use that shadow copy in X. S
schemes are generally not used, both because they are complex to impleme
because they will slow down the program if the trace selected is not optima
the operations end up requiring additional instructions to execute.

Moving the assignment to C up to before the first branch requires two s
First, the assignment is moved over the join point of the else part into the tra
trace entry) in the portion corresponding to the then part. This makes the ins
tions for C control-dependent on the branch and means that they will not ex
if the else path, which is not on the trace, is chosen. Hence, instructions that
data-dependent on the assignment to C, and which execute after this code
ment, will be affected. To ensure the correct value is computed for such ins
tions, a copy is made of the instructions that compute and assign to C o
branch into the trace, that is, at the end of X on the else path. Second, w
move C from the then case of the branch across the branch condition, if it
not affect any data flow into the branch condition. If C is moved to before th
test, the copy of C in the else branch can be eliminated, since it will be redun

Loop unrolling, software pipelining, and trace scheduling all aim at trying
increase the amount of ILP that can be exploited by a processor issuing mor
one instruction on every clock cycle. The effectiveness of each of these
niques and their suitability for various architectural approaches are amon
hottest topics being actively pursued by researchers and designers of high-
processors.

Techniques such as loop unrolling, software pipelining, and trace scheduling
be used to increase the amount of parallelism available when the behav
branches is fairly predictable at compile time. When the behavior of branch

4.6 Hardware Support for Extracting
More Parallelism

300 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

 ILP.
imita-

and
 will
t still
ored
re
l de-

first is
uch
 hard-
lated
ula-
anch
 of the

fers
con-
the
tures
e of
er to
etely
not well known, compiler techniques alone may not be able to uncover much
This section introduces several techniques that can help overcome such l
tions. The first is an extension of the instruction set to include conditional or
predicated instructions. Such instructions can be used to eliminate branches
to assist in allowing the compiler to move instructions past branches. As we
see, conditional or predicated instructions enhance the amount of ILP, bu
have significant limitations. To exploit more parallelism, designers have expl
an idea called speculation, which allows the execution of an instruction befo
the processor knows that the instruction should execute (i.e., it avoids contro
pendence stalls). We discuss two different approaches to speculation. The
static speculation performed by the compiler with hardware support. In s
schemes, the compiler chooses to make an instruction speculative and the
ware helps by making it easier to ignore the outcome of an incorrectly specu
instruction. Conditional instructions can also be used to perform limited spec
tion. Speculation can also be done dynamically by the hardware using br
prediction to guide the speculation process; such schemes are the subject
third portion of this section.

Conditional or Predicated Instructions

The concept behind conditional instructions is quite simple: An instruction re
to a condition, which is evaluated as part of the instruction execution. If the
dition is true, the instruction is executed normally; if the condition is false,
execution continues as if the instruction was a no-op. Many newer architec
include some form of conditional instructions. The most common exampl
such an instruction is conditional move, which moves a value from one regist
another if the condition is true. Such an instruction can be used to compl
eliminate the branch in simple code sequences.

E X A M P L E Consider the following code:

if (A==0) {S=T;}

Assuming that registers R1, R2, and R3 hold the values of A, S, and T,
respectively, show the code for this statement with the branch and with the
conditional move.

A N S W E R The straightforward code using a branch for this statement is (remember
that we are assuming normal rather than delayed branches)

BNEZ R1,L

MOV R2,R3

L:

4.6 Hardware Support for Extracting More Parallelism 301

ion:

s one

nal
his en-

 Con-
ar or
used
Using a conditional move that performs the move only if the third operand
is equal to zero, we can implement this statement in one instruction:

CMOVZ R2,R3,R1

The conditional instruction allows us to convert the control dependence
present in the branch-based code sequence to a data dependence. (This
transformation is also used for vector computers, where it is called if-
conversion.) For a pipelined processor, this moves the place where the
dependence must be resolved from near the front of the pipeline, where
it is resolved for branches, to the end of the pipeline where the register
write occurs. ■

One use for conditional move is to implement the absolute value funct
A = abs (B) , which is implemented as if (B<0) {A=–B;) else {A=B;} .
This if statement can be implemented as a pair of conditional moves, or a
unconditional move (A = B) and one conditional move (A = –B).

In the example above or in the compilation of absolute value, conditio
moves are used to change a control dependence into a data dependence. T
ables us to eliminate the branch and possibly improve the pipeline behavior.
ditional instructions can also be used to improve scheduling in superscal
VLIW processors by the use of speculation. A conditional instruction can be
to speculatively move an instruction that is time-critical.

E X A M P L E Here is a code sequence for a two-issue superscalar that can issue a
combination of one memory reference and one ALU operation, or a
branch by itself, every cycle:

This sequence wastes a memory operation slot in the second cycle and
will incur a data dependence stall if the branch is not taken, since the sec-
ond LW after the branch depends on the prior load. Show how the code
can be improved using a conditional form of LW.

A N S W E R Call the conditional version load word LWC and assume the load occurs
unless the third operand is 0. The LW immediately following the branch can
be converted to a LWC and moved up to the second issue slot:

First instruction slot Second instruction slot

LW R1,40(R2) ADD R3,R4,R5

ADD R6,R3,R7

BEQZ R10,L

LW R8,20(R10)

LW R9,0(R8)

302 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

ust
us the
o ef-
ite
fied.

bove

ould
the

dware

na-
 sig-

 still
 and
in-
n to
 per-
ove).
 out-
lim-
re we
es is
al, the
This improves the execution time by several cycles since it eliminates one
instruction issue slot and reduces the pipeline stall for the last instruction
in the sequence. Of course, if the compiler mispredicts the branch, the
conditional instruction will have no effect and will not improve the running
time. This is why the transformation is speculative. ■

To use a conditional instruction successfully in examples like this, we m
ensure that the speculated instruction does not introduce an exception. Th
semantics of the conditional instruction must define the instruction to have n
fect if the condition is not satisfied. This means that the instruction cannot wr
the result destination nor cause any exceptions if the condition is not satis
The property of not causing exceptions is quite critical, as the Example a
shows: If register R10 contains zero, the instruction LW R8,20(R10) executed un-
conditionally is likely to cause a protection exception, and this exception sh
not occur. It is this property that prevents a compiler from simply moving
load of R8 across the branch. Of course, if the condition is satisfied, the LW may
still cause a legal and resumable exception (e.g., a page fault), and the har
must take the exception when it knows that the controlling condition is true.

Conditional instructions are certainly helpful for implementing short alter
tive control flows. Nonetheless, the usefulness of conditional instructions is
nificantly limited by several factors:

■ Conditional instructions that are annulled (i.e., whose conditions are false)
take execution time. Therefore, moving an instruction across a branch
making it conditional will slow the program down whenever the moved
struction would not have been normally executed. An important exceptio
this occurs when the cycles used by the moved instruction when it is not
formed would have been idle anyway (as in the superscalar example ab
Moving an instruction across a branch is essentially speculating on the
come of the branch. Conditional instructions make this easier but do not e
inate the execution time taken by an incorrect guess. In simple cases, whe
trade a conditional move for a branch and a move, using conditional mov
almost always better. When longer code sequences are made condition
benefits are more limited.

First instruction slot Second instruction slot

LW R1,40(R2) ADD R3,R4,R5

LWC R8,20(R10),R10 ADD R6,R3,R7

BEQZ R10,L

LW R9,0(R8)

4.6 Hardware Support for Extracting More Parallelism 303

ated
epen-
elp
ition

es
ction
hes,
re-

con-
truc-
ore

al in-
ures
.33
.

rately
file.
edul-
ited
nces
 try-
l in-
tions

ption
 same.
move
so that
■ Conditional instructions are most useful when the condition can be evalu
early. If the condition and branch cannot be separated (because of data d
dences in determining the condition), then a conditional instruction will h
less, though it may still be useful since it delays the point when the cond
must be known till nearer the end of the pipeline.

■ The use of conditional instructions is limited when the control flow involv
more than a simple alternative sequence. For example, moving an instru
across multiple branches requires making it conditional on both branc
which requires two conditions to be specified, an unlikely capability, or
quires additional instructions to compute the “and” of the conditions.

■ Conditional instructions may have some speed penalty compared with un
ditional instructions. This may show up as a higher cycle count for such ins
tions or a slower clock rate overall. If conditional instructions are m
expensive, they will need to be used judiciously.

For these reasons, many architectures have included a few simple condition
structions (with conditional move being the most frequent), but few architect
include conditional versions for the majority of the instructions. Figure 4
shows the conditional operations available in a variety of recent architectures

Compiler Speculation with Hardware Support

As we saw in Chapter 3, many programs have branches that can be accu
predicted at compile time either from the program structure or by using a pro
In such cases, the compiler may want to speculate either to improve the sch
ing or to increase the issue rate. Conditional instructions provide some lim
ability to speculate, but they are really more useful when control depende
can be completely eliminated, such as in an if-then with a small then body. In
ing to speculate, the compiler would like to not only make instructions contro
dependent, it would also like to move them so that the speculated instruc
execute before the branch!

In moving instructions across a branch the compiler must ensure that exce
behavior is not changed and that the dynamic data dependence remains the
We have already seen, in examining trace scheduling, how the compiler can
instructions across branches and how to compensate for such speculation

Alpha HP PA MIPS SPARC

Conditional
move

Any register-register instruction can nullify the
following instruction, making it conditional.

Conditional
move

Conditional
move

FIGURE 4.33 Conditional instructions available in four different RISC architectures. Conditional
move was one of the few user instructions added to the Intel P6 processor.

304 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

hich
 specu-
e is in

ns it
tion,
ruc-
duce
esults
mpu-

e am-

spec-

it-
. The
ister.

d the
n is

at in-
mory

h as a
sed for
ative
n may
tions,

osses
error
 such
g in a
annot
.

all re-
fined

erat-
rror.
the data dependences are properly maintained. In addition to determining w
register values are unneeded, the compiler can rename registers so that the
lated code will not destroy data values when they are needed. The challeng
avoiding the unintended changes in exception behavior when speculating.

In the simplest case, the compiler is conservative about what instructio
speculatively moves, and the exception behavior is unaffected. This limita
however, is very constraining. In particular, since all memory reference inst
tions and most FP instructions can cause exceptions, this limitation will pro
small benefits. The key observation for any scheme is to observe that the r
of a speculated sequence that is mispredicted will not be used in the final co
tation.

There are three methods that have been investigated for supporting mor
bitious speculation without introducing erroneous exception behavior:

1. The hardware and operating system cooperatively ignore exceptions for
ulative instructions.

2. A set of status bits, called poison bits, are attached to the result registers wr
ten by speculated instructions when the instructions cause exceptions
poison bits cause a fault when a normal instruction attempts to use the reg

3. A mechanism is provided to indicate that an instruction is speculative an
hardware buffers the instruction result until it is certain that the instructio
no longer speculative.

To explain these schemes, we need to distinguish between exceptions th
dicate a program error and would normally cause termination, such as a me
protection violation, and those that are handled and normally resumed, suc
page fault. Exceptions that can be resumed can be accepted and proces
speculative instructions just as if they were normal instructions. If the specul
instruction should not have been executed, handling the unneeded exceptio
have some negative performance effects. Handling these resumable excep
however, cannot cause incorrect execution; furthermore, the performance l
are probably minor, so we ignore them. Exceptions that indicate a program
should not occur in correct programs, and the result of a program that gets
an exception is not well defined, except perhaps when the program is runnin
debugging mode. If such exceptions arise in speculated instructions, we c
take the exception until we know that the instruction is no longer speculative

Hardware-Software Cooperation for Speculation
In the simplest case, the hardware and the operating system simply handle
sumable exceptions when the exception occurs and simply return an unde
value for any exception that would cause termination. If the instruction gen
ing the terminating exception was not speculative, then the program is in e

4.6 Hardware Support for Extracting More Parallelism 305

inue,
ner-
rrect

fined
a cor-
pro-
 an
 gen-
eive a

lative.
ting
 not
Note that instead of terminating the program, the program is allowed to cont
though it will almost certainly generate incorrect results. If the instruction ge
ating the terminating exception is speculative, then the program may be co
and the speculative result will simply be unused; thus, returning an unde
value for the instruction cannot be harmful. This scheme can never cause
rect program to fail, no matter how much speculation is done. An incorrect
gram, which formerly might have received a terminating exception, will get
incorrect result. This is probably acceptable, assuming the compiler can also
erate a normal version of the program, which does not speculate and can rec
terminating exception.

E X A M P L E Consider the following code fragment from an if-then-else statement of
the form

if (A==0) A = B; else A = A+4;

where A is at 0(R3) and B is at 0(R2) :

LW R1,0(R3) ;load A

BNEZ R1,L1 ;test A

LW R1,0(R2) ;if clause

J L2 ;skip else

L1: ADDI R1,R1,#4 ;else clause

L2: SW 0(R3),R1 ;store A

Assume the then clause is almost always executed. Compile the code
using compiler-based speculation. Assume R14 is unused and available.

A N S W E R Here is the new code:

LW R1,0(R3) ;load A

LW R14,0(R2) ;speculative load B

BEQZ R1,L3 ;other branch of the if

ADDI R14,R1,#4 ;the else clause

L3: SW 0(R3),R14 ;nonspeculative store

The then clause is completely speculated. We introduce a temporary
register to avoid destroying R1 when B is loaded. After the entire code
segment is executed, A will be in R14. The else clause could have also
been compiled speculatively with a conditional move, but if the branch is
highly predictable and low cost, this might slow the code down, since two
extra instructions would always be executed as opposed to one branch.■

In such a scheme, it is not necessary to know that an instruction is specu
Indeed, it is helpful only when a program is in error and receives a termina
exception on a normal instruction; in such cases, if the instruction were

306 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

, as in
tions
. Be-
s can-

ll act
traint
anch

xcep-
out

 The
dded
ison
s in a
cula-
ister

 at-
auses
 gen-
 that is
mory
marked as speculative, the program could be terminated. In such a scheme
the next one, renaming will often be needed to prevent speculative instruc
from destroying live values. Renaming is usually restricted to register values
cause of this restriction, the targets of stores cannot be destroyed and store
not be speculative. The small number of registers and the cost of spilling wi
as one constraint on the amount of speculation. Of course, the major cons
remains the cost of executing speculative instructions when the compiler’s br
prediction is incorrect.

Speculation with Poison Bits
The use of poison bits allows compiler speculation with less change to the e
tion behavior. In particular, incorrect programs that caused termination with
speculation will still cause exceptions when instructions are speculated.
scheme is simple: A poison bit is added to every register and another bit is a
to every instruction to indicate whether the instruction is speculative. The po
bit of the destination register is set whenever a speculative instruction result
terminating exception; all other exceptions are handled immediately. If a spe
tive instruction uses a register with a poison bit turned on, the destination reg
of the instruction simply has its poison bit turned on. If a normal instruction
tempts to use a register source with its poison bit turned on, the instruction c
a fault. In this way, any program that would have generated an exception still
erates one, albeit at the first instance where a result is used by an instruction
not speculative. Since poison bits exist only on register values and not me
values, stores are not speculative and thus trap if either operand is “poison.”

E X A M P L E Consider the code fragment from page 305 and show how it would be
compiled with speculative instructions and poison bits. Show where an
exception for the speculative memory reference would be recognized.
Assume R14, R15 are unused and available.

A N S W E R Here is the code (an “*” on the opcode indicates a speculative instruction):

LW R1,0(R3) ;load A

LW* R14,0(R2) ;speculative load B

BEQZ R1,L3 ;

ADDI R14,R1,#4 ;

L3: SW 0(R3),R14 ;exception for speculative LW

If the speculative LW* generates a terminating exception, the poison bit of
R14 will be turned on. When the nonspeculative SW instruction occurs, it
will raise an exception if the poison bit for R14 is on. ■

4.6 Hardware Support for Extracting More Parallelism 307

r reg-
et the

oduce
egis-
cula-
es,
ard-

 next.
e re-

tions.
d in-
itted
allow
nch is
 the
ulti-
One complication that must be overcome is how the OS can save the use
isters if the poison bit is set. A special instruction is needed to save and res
state of the poison bits to avoid this problem.

Speculative Instructions with Renaming
The main disadvantages of the two previous schemes are the need to intr
copies to deal with register renaming and the possibility of exhausting the r
ters. The former problem reduces efficiency, while the latter can make spe
tion not worthwhile. An alternative is to move instructions past branch
flagging them as speculative, and providing renaming and buffering in the h
ware, much as Tomasulo’s algorithm does. This concept has been called boost-
ing, and it is closely related to the full hardware-based scheme we consider
A boosted instruction is executed speculatively based on a future branch. Th
sults of the instruction are forwarded to and used by other boosted instruc
When the branch following the boosted instruction is reached, if the booste
struction contains a correct prediction of the branch, then results are comm
to the registers; otherwise, the results are discarded. Boosted instructions
the execution of an instruction that is dependent on a branch before the bra
resolved, but the final action to commit the instruction is taken only after
branch is resolved. It is possible to support boosting of instructions across m
ple branches, but we consider only the case of boosting across one branch.

E X A M P L E Consider the code fragment from page 305 and show how it would be
compiled with boosted instructions. Show where the instruction would
finally commit. Can the sequence be compiled without needing any
additional registers?

A N S W E R We use a “+” after the opcode to indicate that the instruction is boosted
across the next branch and predicts the branch as taken. Here is the new
code:

LW R1,0(R3) ;load A

LW+ R1,0(R2) ;boosted load B

BEQZ R1,L3 ;other branch of the if

ADDI R1,R1,#4 ;the else clause

L3: SW 0(R3),R1 ;nonspeculative store

The extra register is no longer necessary, since if the branch is not taken,
the result of the speculative load is never written to R1, so R1 can be used
in the code sequence. Remember that the result of the boosted instruc-
tion is not written into R1 until after the branch. Hence, the branch uses
the value of R1 produced by the first, nonboosted load. Other boosted in-
structions could use the results of the boosted load. ■

308 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

ly re-
n, the

redic-
ution
ched-
rd-
hen to

ecula-

nces.
ers.
y ad-
rithm.

iction
is is
ictor
pro-
bout

when

odel

eping

iffer-
enta-
ften

de se-
ware
ces-

n with
quan-
one
Boosting can be implemented by one of several techniques that are close
lated to the techniques needed to implement hardware-based speculatio
topic of the next section.

Hardware-Based Speculation

Hardware-based speculation combines three key ideas: dynamic branch p
tion to choose which instructions to execute, speculation to allow the exec
of instructions before the control dependences are resolved, and dynamic s
uling to deal with the scheduling of different combinations of basic blocks. Ha
ware-based speculation uses the dynamic data dependences to choose w
execute instructions. This method of executing programs is essentially a data-
flow execution: operations execute as soon as their operands are available.

The advantages of hardware-based speculation versus software-based sp
tion include the following:

1. To speculate extensively, we must be able to disambiguate memory refere
This is difficult to do at compile time for integer programs that contain point
In a hardware-based scheme, dynamic runtime disambiguation of memor
dresses is done using the techniques we saw earlier for Tomasulo’s algo
This allows us to move loads past stores at runtime.

2. Hardware-based speculation is better when hardware-based branch pred
is superior to software-based branch prediction done at compile time. Th
true for many integer programs. For example, a profile-based static pred
has a misprediction rate of about 16% for four of the five integer SPEC
grams we use, while a hardware predictor has a misprediction rate of a
11%. Because speculated instructions may slow down the computation
the prediction is incorrect, this difference is significant.

3. Hardware-based speculation maintains a completely precise exception m
even for speculated instructions.

4. Hardware-based speculation does not require compensation or bookke
code.

5. Hardware-based speculation with dynamic scheduling does not require d
ent code sequences to achieve good performance for different implem
tions of an architecture. Compiler-based speculation and scheduling o
requires code sequences tuned to the machine, and older or different co
quences can result in much lower performance. In contrast, while hard
speculation and scheduling can benefit from scheduling and tuning pro
sors, using the hardware-based approaches is expected to work well eve
older or different code sequences. While this advantage is the hardest to
tify, it may be the most important in the long run. Interestingly, this was
of the motivations for the IBM 360/91.

4.6 Hardware Support for Extracting More Parallelism 309

tion in

f pro-
bine
thm.
n to
olves
ther

o’s al-
oint
n the

 sup-
ng in-
 the
 an
t al-
l we
 per-
ction
truc-
e al-
the

exe-

ction
ruc-
had
 add
m in-
fore
tion
l set of
ution

s the
order
iated
, the
n sta-
t in
ntly
Against these advantages stands a major disadvantage: supporting specula
hardware is complex and requires substantial hardware resources.

The approach we examine here, and the one implemented in a number o
cessors (PowerPC 620, MIPS R10000, Intel P6, and AMD K5), is to com
speculative execution with dynamic scheduling based on Tomasulo’s algori
The 360/91 did this to a certain extent since it could use branch predictio
fetch instructions and assign them to reservation stations. Speculation inv
going further and actually executing the instructions as well as executing o
instructions dependent on the speculated instructions. Just as with Tomasul
gorithm, we explain hardware speculation in the context of the floating-p
unit, but the ideas are easily applicable to the integer unit, as we will see i
Putting It All Together section.

The hardware that implements Tomasulo’s algorithm can be extended to
port speculation. To do so, we must separate the bypassing of results amo
structions, which is needed to execute an instruction speculatively, from
actual completion of an instruction. By making this separation, we can allow
instruction to execute and to bypass its results to other instructions, withou
lowing the instruction to perform any updates that cannot be undone, unti
know that the instruction is no longer speculative. Using the bypass is like
forming a speculative register read, since we do not know whether the instru
providing the source register value is providing the correct result until the ins
tion is no longer speculative. When an instruction is no longer speculative, w
low it to update the register file or memory; we call this additional step in
instruction execution sequence instruction commit.

The key idea behind implementing speculation is to allow instructions to
cute out of order but to force them to commit in order and to prevent any irrevo-
cable action (such as updating state or taking an exception) until an instru
commits. In the simple single-issue DLX pipeline we could ensure that inst
tions committed in order, and only after any exceptions for that instruction
been detected, simply by moving writes to the end of the pipeline. When we
speculation, we need to separate the process of completing execution fro
struction commit, since instructions may finish execution considerably be
they are ready to commit. Adding this commit phase to the instruction execu
sequence requires some changes to the sequence as well as an additiona
hardware buffers that hold the results of instructions that have finished exec
but have not committed. This hardware buffer, which we call the reorder buffer, is
also used to pass results among instructions that may be speculated.

The reorder buffer provides additional virtual registers in the same way a
reservation stations in Tomasulo’s algorithm extend the register set. The re
buffer holds the result of an instruction between the time the operation assoc
with the instruction completes and the time the instruction commits. Hence
reorder buffer is a source of operands for instructions, just as the reservatio
tions provide operands in Tomasulo’s algorithm. The key difference is tha
Tomasulo’s algorithm, once an instruction writes its result, any subseque

310 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

the
fini-
per-
mit.
 we
ity.
ored

, the
ther
has a
oad,
num-
e the
e of
f re-

e re-
ffers.
e re-
n the

ided
order
 a re-
 sta-

must
rna-
uffer

 the
e re-
n the
e the
ult is
ag the
 re-
ble
issued instructions will find the result in the register file. With speculation,
register file is not updated until the instruction commits (and we know de
tively that the instruction should execute); thus, the reorder buffer supplies o
ands in the interval between completion of execution and instruction com
The reorder buffer is not unlike the store buffer in Tomasulo’s algorithm, and
integrate the function of the store buffer into the reorder buffer for simplic
Since the reorder buffer is responsible for holding results until they are st
into the registers, it also replaces the function of the load buffers.

Each entry in the reorder buffer contains three fields: the instruction type
destination field, and the value field. The instruction type field indicates whe
the instruction is a branch (and has no destination result), a store (which
memory address destination), or a register operation (ALU operation or l
which have register destinations). The destination field supplies the register
ber (for loads and ALU operations) or the memory address (for stores), wher
instruction result should be written. The value field is used to hold the valu
the instruction result until the instruction commits. We will see an example o
order buffer entries shortly.

Figure 4.34 shows the hardware structure of the processor including th
order buffer. The reorder buffer completely replaces the load and store bu
Although the renaming function of the reservation stations is replaced by th
order buffer, we still need a place to buffer operations (and operands) betwee
time they issue and the time they begin execution. This function is still prov
by the reservation stations. Since every instruction has a position in the re
buffer until it commits (and the results are posted to the register file), we tag
sult using the reorder buffer entry number rather than using the reservation
tion number. This requires that the reorder buffer assigned for an instruction
be tracked in the reservation stations. In section 4.8, we will explore an alte
tive implementation that uses extra registers for renaming and the reorder b
only to track when instructions can commit.

Here are the four steps involved in instruction execution:

1. Issue—Get an instruction from the floating-point operation queue. Issue
instruction if there is an empty reservation station and an empty slot in th
order buffer, send the operands to the reservation station if they are i
registers or the reorder buffer, and update the control entries to indicat
buffers are in use. The number of the reorder buffer allocated for the res
also sent to the reservation station, so that the number can be used to t
result when it is placed on the CDB. If either all reservations are full or the
order buffer is full, then instruction issue is stalled until both have availa
entries. This stage is sometimes called dispatch in a dynamically scheduled
machine.

4.6 Hardware Support for Extracting More Parallelism 311

DB
step
ation
s call

r-
e re-
(It is

DB,
 com-
oard
tation
2. Execute—If one or more of the operands is not yet available, monitor the C
(common data bus) while waiting for the register to be computed. This
checks for RAW hazards. When both operands are available at a reserv
station, execute the operation. Some dynamically scheduled processor
this step issue, but we use the terminology based on the CDC 6600.

3. Write result—When the result is available, write it on the CDB (with the reo
der buffer tag sent when the instruction issued) and from the CDB into th
order buffer, as well as to any reservation stations waiting for this result.
also possible to read results from the reorder buffer, rather than from the C
just as the scoreboard reads results from the registers rather than from a
pletion bus. The trade-offs are similar to those that exist in a central scoreb
scheme versus a broadcast scheme using a CDB.) Mark the reservation s
as available.

FIGURE 4.34 The basic structure of a DLX FP unit using Tomasulo’s algorithm and
extended to handle speculation. Comparing this to Figure 4.8 on page 253, which imple-
mented Tomasulo’s algorithm, the major changes are the addition of the reorder buffer and
the elimination of the load and store buffers (their functions are subsumed by the reorder buff-
er). This mechanism can be extended to multiple issue by making the CDB (common data
bus) wider to allow for multiple completions per clock.

From instruction unit

Floating-
point
operation
queue

FP registers

FP adders FP multipliers

Common data bus

Operation bus
Operand

buses

...

Reorder buffer

Reservation
stations

To memory
(data/address)

Register no.

From
memory

(load results)

 (data)

312 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

on,
r, up-
n is
 with
t the
arted
d, the

ed
d for
s in-
, so
om-
an
 the

ces-
 con-
ame
4. Commit—When an instruction, other than a branch with incorrect predicti
reaches the head of the reorder buffer and its result is present in the buffe
date the register with the result (or perform a memory write if the operatio
a store) and remove the instruction from the reorder buffer. When a branch
incorrect prediction reaches the head of the reorder buffer, it indicates tha
speculation was wrong. The reorder buffer is flushed and execution is rest
at the correct successor of the branch. If the branch was correctly predicte
branch is finished. Some machines call this completion or graduation.

Once an instruction commits, its entry in the reorder buffer is reclaim
and the register or memory destination is updated, eliminating the nee
the reorder buffer entry. To avoid changing the reorder buffer numbers a
structions commit, we implement the reorder buffer as a circular queue
that positions in the reorder buffer change only when an instruction is c
mitted. If the reorder buffer fills, we simply stop issuing instructions until
entry is made free. Now, let’s examine how this scheme would work with
same example we used for Tomasulo’s algorithm.

E X A M P L E Assume the same latencies for the floating-point functional units as in ear-
lier examples: Add is 2 clock cycles, multiply is 10 clock cycles, and divide
is 40 clock cycles. Using the code segment below, the same one we used
earlier, show what the status tables look like when the MULTD is ready to
go to commit.

LD F6,34(R2)

LD F2,45(R3)

MULTD F0,F2,F4

SUBD F8,F6,F2

DIVD F10,F0,F6

ADDD F6,F8,F2

A N S W E R The result is shown in the three tables in Figure 4.35. Note that although
the SUBD instruction has completed execution, it does not commit until the
MULTD commits. Note that all tags in the Qj and Qk fields as well as in the
register status fields have been replaced with reorder buffer numbers, and
the Dest field designates the reorder buffer number that is the destination
for the result. ■

The above Example illustrates the key important difference between a pro
sor with speculation and a processor with dynamic scheduling. Compare the
tent of Figure 4.35 with that of Figure 4.10 (page 258), which shows the s

4.6 Hardware Support for Extracting More Parallelism 313

e key
com-
in

ffer
 For
til
other
code sequence in operation on a processor with Tomasulo’s algorithm. Th
difference is that in the example above, no instruction after the earliest un
pleted instruction (MULTD above) is allowed to complete. In contrast,
Figure 4.10 the SUBD and ADDD instructions have also completed.

One implication of this difference is that the processor with the reorder bu
can dynamically execute code while maintaining a precise interrupt model.
example, if the MULTD instruction caused an interrupt, we could simply wait un
it reached the head of the reorder buffer and take the interrupt, flushing any

 Reservation stations

Name Busy Op Vj Vk Qj Qk Dest

Add1 No

Add2 No

Add3 No

Mult1 No MULTD Mem[45+Regs[R3]] Regs[F4] #3

Mult2 Yes DIVD Mem[34+Regs[R2]] #3 #5

 Reorder buffer

Entry Busy Instruction State Destination Value

1 No LD F6,34(R2) Commit F6 Mem[34+Regs[R2]]

2 No LD F2,45(R3) Commit F2 Mem[45+Regs[R3]]

3 Yes MULTD F0,F2,F4 Write result F0 #2 x Regs[F4]

4 Yes SUBD F8,F6,F2 Write result F8 #1 – #2

5 Yes DIVD F10,F0,F6 Execute F10

6 Yes ADDD F6,F8,F2 Write result F6 #4 + #2

FP register status

Field F0 F2 F4 F6 F8 F10 F12 ... F30

Reorder # 3 6 4 5

Busy Yes No No Yes Yes Yes No ... No

FIGURE 4.35 Only the two LD instructions have committed, though several others have completed execution. The
SUBD and ADDD instructions will not commit until the MULTD instruction commits, though the results of the instructions are
available and can be used as sources for other instructions.The value column indicates the value being held, the format #X
is used to refer to a value field of reorder buffer entry X.

314 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

lds a
, the

ise.
ptions
 ter-

cep-
y are
dling
mit

n, as
pending instructions. Because instruction commit happens in order, this yie
precise exception. By contrast, in the example using Tomasulo’s algorithm
SUBD and ADDD instructions could both complete before the MULTD raised the ex-
ception. The result is that the registers F8 and F6 (destinations of the SUBD and
ADDD instructions) could be overwritten, and the interrupt would be imprec
Some users and architects have decided that imprecise floating-point exce
are acceptable in high-performance processors, since the program will likely
minate; see Appendix A for further discussion of this topic. Other types of ex
tions, such as page faults, are much more difficult to accommodate if the
imprecise, since the program must transparently resume execution after han
such an exception. The use of a reorder buffer with in-order instruction com
provides precise exceptions, in addition to supporting speculative executio
the next Example shows.

E X A M P L E Consider the code example used earlier for Tomasulo’s algorithm and
shown in Figure 4.12 on page 261 in execution:

Loop: LD F0,0(R1)

MULTD F4,F0,F2

SD 0(R1),F4

SUBI R1,R1,#8

BNEZ R1,Loop ; branches if R1 ≠0

Assume that we have issued all the instructions in the loop twice. Let’s
also assume that the LD and MULTD from the first iteration have committed
and all other instructions have completed execution. In an implementation
that uses dynamic scheduling for both the integer and floating-point units,
the store would wait in the reorder buffer for both the effective address op-
erand (R1 in this example) and the value (F4 in this example); however,
since we are only considering the floating-point resources, assume the ef-
fective address for the store is computed by the time the instruction is is-
sued.

A N S W E R The result is shown in the three tables in Figure 4.36.

4.6 Hardware Support for Extracting More Parallelism 315

ritten
tions

ample
to
uffer;
d and
 ma-
ispre-
pear
e re-

essor.
iction
■

Because neither the register values nor any memory values are actually w
until an instruction commits, the processor can easily undo its speculative ac
when a branch is found to be mispredicted. Suppose that in the above ex
(Figure 4.36), the branch BNEZ is not taken the first time. The instructions prior
the branch will simply commit when each reaches the head of the reorder b
when the branch reaches the head of that buffer, the buffer is simply cleare
the processor begins fetching instructions from the other path. In practice,
chines that speculate try to recover as early as possible after a branch is m
dicted. This can be done by clearing the reorder buffer for all entries that ap
after the mispredicted branch, allowing those that are before the branch in th
order buffer to continue, and restarting the fetch at the correct branch succ
In speculative processors, performance is more sensitive to the branch pred

Reservation stations

Name Busy Op Vj Vk Qj Qk Dest

Mult1 No MULTD Mem[0+Regs[R1]] Regs[F2] #2

Mult2 No MULTD Mem[0+Regs[R1]] Regs[F2] #7

 Reorder buffer

Entry Busy Instruction State Destination Value

1 No LD F0,0(R1) Commit F0 Mem[0+Regs[R1]]

2 No MULTD F4,F0,F2 Commit F4 #1 x Regs[F2]

3 Yes SD 0(R1),F4 Write result 0+Regs[R1] #2

4 Yes SUBI R1,R1,#8 Write result R1 Regs[R1]–8

5 Yes BNEZ R1,Loop Write result

6 Yes LD F0,0(R1) Write result F0 Mem[#4]

7 Yes MULTD F4,F0,F2 Write result F4 #6 x Regs[F2]

8 Yes SD 0(R1),F4 Write result 0+#4 #7

9 Yes SUBI R1,R1,#8 Write result R1 #4 – 8

10 Yes BNEZ R1,Loop Write result

FP register status

Field F0 F2 F4 F6 F8 F10 F12 ... F30

Reorder # 6 7

Busy Yes No Yes No No No No ... No

FIGURE 4.36 Only the LD and MULTD instructions have committed, though all the others have completed execu-
tion. The remaining instructions will be committed as fast as possible.

316 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

 as-
 and

y to
rded

ould
when
order
eally
this is

 con-
n. We

ting
units.
grams
nally,
allow-
n is
s can
iler

cises)
d pro-
 issue
ation
iding
able
 to

ple
 4.7
n be
ower-

ation.
niques
 can
ly in

 can-
 The
is the
mechanisms, since the impact of a misprediction will be higher. Thus, all the
pects of handling branches—prediction accuracy, misprediction detection,
misprediction recovery—increase in importance.

Exceptions are handled by not recognizing the exception until it is read
commit. If a speculated instruction raises an exception, the exception is reco
in the reorder buffer. If a branch misprediction arises and the instruction sh
not have been executed, the exception is flushed along with the instruction
the reorder buffer is cleared. If the instruction reaches the head of the re
buffer, then we know it is no longer speculative and the exception should r
be taken. We can also try to handle exceptions as soon as they arise, but
more challenging for exceptions than for branch mispredict.

Figure 4.37 shows the steps of execution for an instruction, as well as the
ditions that must be satisfied to proceed to the step and the actions take
show the case where mispredicted branches are not resolved until commit.

Although this explanation of speculative execution has focused on floa
point, the techniques easily extend to the integer registers and functional
Indeed, speculation may be more useful in integer programs, since such pro
tend to have code where the branch behavior is less predictable. Additio
these techniques can be extended to work in a multiple-issue processor by
ing multiple instructions to issue and commit every clock. Indeed, speculatio
probably most interesting in such processors, since less ambitious technique
probably exploit sufficient ILP within basic blocks when assisted by a comp
using unrolling.

A speculative processor can be extended to multiple issue (see the Exer
using the same techniques we employed when extending a Tomasulo-base
cessor in section 4.4. The same techniques for implementing the instruction
unit can be used: We process multiple instructions per clock assigning reserv
stations and reorder buffers to the instructions. The challenge here is in dec
what instructions can issue and in performing the renaming within the allow
clock period. We also need to widen the CDB to allow multiple instructions
complete within a clock cycle. The challenge lies in monitoring the multi
completion buses for operands without impacting the clock cycle. In section
we will examine the importance of speculation on the amount of ILP that ca
extracted. Section 4.8 examines a speculative multiple-issue machine, the P
PC 620, and its performance.

The alternative to hardware-based speculation is compiler-based specul
Such approaches are useful when branches cannot be eliminated by tech
such as loop unrolling but are statically predictable, so that the compiler
choose how to speculate. Whether speculation will be supported primari
hardware or primarily in software is a point of current debate.

Of course, all the techniques described in the last chapter and in this one
not take advantage of more parallelism than is provided by the application.
question of how much parallelism is available has been hotly debated and
topic of the next section.

4.6 Hardware Support for Extracting More Parallelism 317
Instruction
status Wait until Action or bookkeeping

Issue Reservation station (r)
and reorder buffer (b)
both available

if (Register[S1].Busy)
 /* an executing instruction writes S1 */
 {h ← Register[S1].Reorder;
 if (Reorder[h].Ready)
 /* Instruction has completed already */
 {RS[r].Vj ← Reorder[h].Value; RS[r].Qj ← 0;}
 else /* Wait for instrution */
 {RS[r].Qj ← h;}
} else /* Data must be in registers */
 {RS[r].Vj ← Regs[S1]; RS[r].Qj ← 0;};
if (Register[S2].Busy)
 /* an executing instruction writes S1 */
 {h ← Register[S2].Reorder;
 if (Reorder[h].Ready)
 /* Instruction has completed already */
 {RS[r].Vk ← Reorder[h].Value; RS[r].Qk ← 0;}
 else /* Wait for instrution */
 {RS[r].Qk ← h;}
} else /* Data must be in registers */
 {RS[r].Vk ← Regs[S2]; RS[r].Qk ← 0;};
/* assign tracking fields of reservation station,
 register data structure, and reorder buffer */
RS[r].Busy ← Yes; RS[r].Dest¨ b;
Register[D].Qi=b; Register[D].Busy ← Yes;
Reorder[h].Instruction ← opcode;
Reorder[b].Dest ← D; Reorder[b].Ready ← No;

Execute (RS[r].Qj=0) and
(RS[r].Qk=0)

None—operands are in Vj and Vk

Write result Execution completed at
r and CDB available,
value is result (for a
store, there are two re-
sults, dest is the stores
destination address in
memory, while result is
the value to be stored)

b←RS[r].Reorder;
/* if x waiting for this reorder buffer, update it */
∀ x(if (RS[x].Qj=b) {RS[x].Vj ← result; RS[x].Qj ← 0});
∀ x(if (RS[x].Qk=b) {RS[x].Vk ← result; RS[x].Qk ← 0});
/* free reservation station; update reorder buffer */
RS[r].Busy ← No;
Reorder[b].Value ← result; Reorder[b].Ready ← Yes;
if (Reorder[h].Instruction=Store)
 {Reorder[b].Address ← dest;};

Commit Instruction is at the head
of the reorder buffer
(entry h) and instruction
has completed Write re-
sult.

r = Reorder[h].Dest; /* register dest, if it exists
*/
if (Reorder[h].Instruction==Branch)
 {if (branch is mispredicted)
 {clear reorder buffer and Register status;
 fetch correct branch successor;};}
else if (Reorder[h].Instruction==Store)
 /* preform the store operation */
 {Mem[Reorder[h].Address] ← Reorder[h].Value;}
else /* put the result in the register destination */
 {Regs[r] ← Reorder[h].Value;};
Reorder[h].Busy ← No; /* free up reorder buffer en-
try */
/* free up dest register if no one else writing it */
if (Register[r].Qi==h) {Register[r].Busy ← No;};

FIGURE 4.37 Steps in the algorithm and what is required for each step. For the issuing instruction, D is the destination,
S1 and S2 are the sources, and r is the reservation station allocated and b is the assigned reorder buffer entry. RS is the
reservation-station data structure. The value returned by a reservation station is called the result . Register is the reg-
ister data structure, Regs represents the actual registers, while Reorder is the reorder buffer data structure. Just as in To-
masulo’s algorithm there is a subtle timing problem; see Exercise 4.24 for further discussion. Similarly, some of the details
in handling stores have been simplified; as an exercise, the reader should consider the implication of the fact that stores have
two input operands, but that the operands are not needed at the same time.

318 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

sors
 rapid
 our
se in

ritical
sign-
o ex-
ding

e his-
n this
f as-
ump-
west
ble.

y and
edibly
 with
ome

h ad-

 over-
por-

ssor.
 The
rough

le

re

d
nch
tion

d
ntical.
Exploiting ILP to increase performance began with the first pipelined proces
in the 1960s. In the 1980s and 1990s, these techniques were key to achieving
performance improvements. The question of how much ILP exists is critical to
long-term ability to enhance performance at a rate that exceeds the increa
speed of the base integrated-circuit technology. On a shorter scale, the c
question of what is needed to exploit more ILP is crucial to both computer de
ers and compiler writers. The data in this section also provide us with a way t
amine the value of ideas that we have introduced in this chapter, inclu
memory disambiguation, register renaming, and speculation.

In this section we review one of the studies done of these questions. Th
torical section describes several studies, including the source for the data i
section. All these studies of available parallelism operate by making a set o
sumptions and seeing how much parallelism is available under those ass
tions. The data we examine here are from a study that makes the fe
assumptions; in fact, the ultimate hardware model is completely unrealiza
Nonetheless, all such studies assume a certain level of compiler technolog
some of these assumptions could affect the results, despite the use of incr
ambitious hardware. In the future, advances in compiler technology together
significantly new and different hardware techniques may be able to overc
some limitations assumed in these studies; however, it is unlikely that suc
vances when coupled with realistic hardware will overcome these limits in the
near future. Instead, developing new hardware and software techniques to
come the limits seen in these studies will continue to be one of the most im
tant challenges in computer design.

The Hardware Model

To see what the limits of ILP might be, we first need to define an ideal proce
An ideal processor is one where all artificial constraints on ILP are removed.
only limits on ILP in such a processor are true data dependences either th
registers or memory.

The assumptions made for an ideal or perfect processor are as follows:

1. Register renaming—There are an infinite number of virtual registers availab
and hence all WAW and WAR hazards are avoided.

2. Branch prediction—Branch prediction is perfect. All conditional branches a
predicted exactly.

3. Jump prediction—All jumps (including jump register used for return an
computed jumps) are perfectly predicted. When combined with perfect bra
prediction, this is equivalent to having a processor with perfect specula
and an unbounded buffer of instructions available for execution.

4. Memory-address alias analysis—All memory addresses are known exactly an
a load can be moved before a store provided that the addresses are not ide

4.7 Studies of ILP

4.7 Studies of ILP 319

f in-
 the
struc-
e may
ition,
nce of
an one
ber of
 any

 HP
000 is-
ruc-
ing,

allel-
ting

d op-
tru-

ences.
 only
nd per-
ay be
bers

since

f the
y the
Initially, we examine a processor that can issue an unlimited number o
structions at once looking arbitrarily far ahead in the computation. For all
processor models we examine, there are no restrictions on what types of in
tions can execute in a cycle. For the unlimited-issue case, this means ther
be an unlimited number of loads or stores issuing in one clock cycle. In add
all functional unit latencies are assumed to be one cycle, so that any seque
dependent instructions can issue on successive cycles. Latencies longer th
cycle would decrease the number of issues per cycle, although not the num
instructions under execution at any point. (The instructions in execution at
point are often referred to as in-flight.)

Of course, this processor is completely unrealizable. For example, the
8000 is one of the widest superscalar processors announced to date. The 8
sues up to six instructions per clock (with significant restrictions on the inst
tion types, including at most two memory references), supports limited renam
has multicycle latencies, and uses branch prediction. After looking at the par
ism available for the perfect processor, we will examine the impact of restric
various features.

To measure the available parallelism, a set of programs were compiled an
timized with the standard MIPS optimizing compilers. The programs were ins
mented and executed to produce a trace of the instruction and data refer
Every instruction in the trace is then scheduled as early as possible, limited
by the data dependences. Since a trace is used, perfect branch prediction a
fect alias analysis are easy to do. With these mechanisms, instructions m
scheduled much earlier than they would otherwise, moving across large num
of instructions on which they are not data dependent, including branches,
branches are perfectly predicted.

Figure 4.38 shows the average amount of parallelism available for six o
SPEC92 benchmarks. Throughout this section the parallelism is measured b

FIGURE 4.38 ILP available in a perfect processor for six of the SPEC benchmarks.
The first three programs are integer programs, while the last three are floating-point
programs. The floating-point programs are loop-intensive and have large amounts of loop-
level parallelism.

0 20 40 60 80 100 120

Instruction issues per cycle

gcc

espresso

li
SPEC
benchmarks

fpppp

doduc

tomcatv

54.8

62.6

17.9

75.2

118.7

150.1

140 160

320 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

cycle
ting-

ting-
ould
 has

oops
 has

show
s but

d per-
-time
ot be

aral-
amic
cov-

e to
rfect

 of a

struc-

ions

ine
ng all
average instruction issue rate (remember that all instructions have a one-
latency). Three of these benchmarks (fpppp, doduc, and tomcatv) are floa
point intensive, while the other three are integer programs. Two of the floa
point benchmarks (fpppp and tomcatv) have extensive parallelism, which c
be exploited by a vector computer or by a multiprocessor. The doduc program
extensive parallelism, but the parallelism does not occur in simple parallel l
as it does in fpppp and tomcatv. The program li is a LISP interpreter that
many short dependences.

In the next few sections, we restrict various aspects of this processor to
what the effects of various assumptions are before looking at some ambitiou
realizable processors.

Limitations on the Window Size and Maximum Issue Count

To build a processor that even comes close to perfect branch prediction an
fect alias analysis requires extensive dynamic analysis, since static compile
schemes cannot be perfect. Of course, most realistic dynamic schemes will n
perfect, but the use of dynamic schemes will provide the ability to uncover p
lelism that cannot be analyzed by static compile-time analysis. Thus, a dyn
processor might be able to more closely match the amount of parallelism un
ered by our ideal processor.

How close could a real dynamically scheduled, speculative processor com
the ideal processor? To gain insight into this question, consider what the pe
processor must do:

1. Look arbitrarily far ahead to find a set of instructions to issue.

2. Rename all register uses to avoid WAR and WAW hazards.

3. Determine which instructions can issue and which must wait because
register dependence.

4. Determine if any memory dependences exist and prevent dependent in
tions from issuing.

5. Predict all branches.

6. Provide enough replicated functional units to allow all the ready instruct
to issue.

Obviously, this analysis is quite complicated. For example, to determ
whether n instructions have any register dependences among them, assumi

4.7 Studies of ILP 321

nded,

s—the

 ob-
nce.

dence
 reuse
 the

num-
truc-

 the
 and
dow
all.

ut 900
cent
truc-
ild.
and
tion
rs will
ach
in a

ock
erful
es

o em-
rs had

er.

dow

aral-
 of

f the
teger
oint
ff in
com-
low
instructions are register-register and the total number of registers is unbou
requires

comparisons. Thus, to detect dependences among the next 2000 instruction
default size we assume in several figures—requires almost four million compari-
sons! Even examining only 50 instructions requires 2450 comparisons. This
viously limits the number of instructions that can be considered for issue at o
In practice, things are not quite so bad, since we need only detect depen
pairs. For a smaller number of registers we can build a structure that detects
of registers rather than comparing all instructions. Of course, if we serialize
instruction issue, the number of comparisons drops. In particular, this large
ber of comparisons is only needed to simultaneously issue a group of ins
tions; it is not necessarily needed if the instructions are overlapped.

The set of instructions examined for simultaneous execution is called
window. Since each instruction in the window must be kept in the processor
the number of comparisons required to execute any instruction in the win
grows quadratically in the window size, real window sizes are likely to be sm
To date, the window size has been in the range of 4 to 32, which requires abo
comparisons, but probably not larger. As we will see in the next section, re
machines actually have several smaller windows (2–8) used for different ins
tion types. This limits the issue capability somewhat, but is much simpler to bu

The window size limits the number of instructions considered for issue
thus implicitly the maximum number of instructions that may issue. In addi
to the cost in dependence checking and renaming hardware, real processo
have a limited number of functional units available and limited copies of e
functional unit. Thus, the maximum number of instructions that may issue
real processor might be smaller than the window size.

Issuing large numbers of instructions will almost certainly lengthen the cl
cycle. For example, in the early 1990s, the processors with the most pow
multiple-issue capabilities typically had clock cycles that were 1.5 to 3 tim
longer than the processors with the simplest pipelines that were designed t
phasize a high clock rate. This does not mean the multiple-issue processo
lower performance, since they “typically” had CPIs that were 2 to 3 times low
Several examples of such comparisons appear later in the chapter.

Figures 4.39 and 4.40 show the effects of restricting the size of the win
from which an instruction can issue; the only difference in the two graphs is the
format—the data are identical. As we can see in Figure 4.39, the amount of p
lelism uncovered falls sharply with decreasing window size. Even a window
32, which would be ambitious in 1995 technology, achieves about one-fifth o
average issue rate of an infinite window. As we can see in Figure 4.40, the in
programs do not contain nearly as much parallelism as the floating-p
programs. This is to be expected. Looking at how the parallelism drops o
Figure 4.40 makes it clear that the parallelism in the floating-point cases is
ing from loop-level parallelism. The fact that the amount of parallelism at

2n 2– 2n 4– … 2 2Σi 1=

n 1–
i 2

n 1–()n
2

-------------------- n
2

n–===+ + +

322 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

ams
 loop
small
t loop
era-
over
e the
ing,

 4.39
win-
mum
e in
ndow
window sizes is not that different among the floating-point and integer progr
implies a structure where there are non-loop-carried dependences within
bodies, but few loop-carried dependences in programs such as tomcatv. At
window sizes, the processors simply cannot see the instructions in the nex
iteration that could be issued in parallel with instructions from the current it
tion. This is an example of where better compiler technology could unc
higher amounts of ILP, since it can find the loop-level parallelism and schedul
code to take advantage of it, even with small window sizes. Software pipelin
for example, could do this.

We know that large window sizes are impractical, and the data in Figures
and 4.40 tell us that issue rates will be considerably reduced with realistic
dows, thus we will assume a base window size of 2K entries and a maxi
issue capability of 64 instructions for the rest of this analysis. As we will se
the next few sections, when the rest of the processor is not perfect, a 2K wi
and a 64-issue limitation do not constrain the processor.

FIGURE 4.39 The effects of reducing the size of the window. The window is the group of instructions from which an
instruction can issue. The start of the window is the earliest uncompleted instruction, while the last instruction in the window
is determined by the window size. The instructions in the window are obtained by perfectly predicting branches and selecting
instructions until the window is full.

160

140

120

100

Instruction issues per cycle 80

60

40

20

0
 Infinite 2k 512 128

Window size

gcc

fpppp

espresso

doduc

li

tomcatv

32 8 4

4.7 Studies of ILP 323

e out-
exe-
d 4.42
ats.
The Effects of Realistic Branch and Jump Prediction

Our ideal processor assumes that branches can be perfectly predicted: Th
come of any branch in the program is known before the first instruction is
cuted! Of course, no real processor can ever achieve this. Figures 4.41 an
show the effects of more realistic prediction schemes in two different form

FIGURE 4.40 The effect of window size shown by each application by plotting the av-
erage number of instruction issues per clock cycle. The most interesting observation is
that at modest window sizes, the amount of parallelism found in the integer and floating-point
programs is similar.

gcc

espresso

li

fpppp

Benchmarks

doduc

tomcatv

0

55
10
10

8
4

3

15
13

8
4

3

18
12
11

9
4

3

49
75

63

119

35
14

5
3

16
15

9
4

3

150
45

34
14

6
3

20

Infinite

Window size

8

512 128 32

4

40 60 80

Instruction issues per cycle

100 120 140 160

324 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

rfect
redic-
 the
tes.

tion.

bit
tor,
con-
re
sing
 non-
nch
ecifies
elec-
o-bit
Our data is for several different branch-prediction schemes varying from pe
to no predictor. We assume a separate predictor is used for jumps. Jump p
tors are important primarily with the most accurate branch predictors, since
branch frequency is higher and the accuracy of the branch predictors domina

The five levels of branch prediction shown in these figures are

1. Perfect—All branches and jumps are perfectly predicted at the start of execu

2. Selective history predictor—The prediction scheme uses a correlating two-
predictor and a noncorrelating two-bit predictor together with a selec
which chooses the best predictor for each branch. The prediction buffer
tains 213 (8K) entries, each consisting of three two-bit fields, two of which a
predictors and the third is a selector. The correlating predictor is indexed u
the exclusive-or of the branch address and the global branch history. The
correlating predictor is the standard two-bit predictor indexed by the bra
address. The selector table is also indexed by the branch address and sp
whether the correlating or noncorrelating predictor should be used. The s
tor is incremented or decremented just as we would for a standard tw

FIGURE 4.41 The effect of branch-prediction schemes. This graph shows the impact of going from a perfect model of
branch prediction (all branches predicted correctly arbitrarily far ahead) to various dynamic predictors (selective and two-bit),
to compile time, profile-based prediction, and finally to using no predictor. The predictors are described precisely in the text.

60

Instruction issues per cycle

50

40

30

20

10

0
Perfect Selective

predictor
Standard

2-bit

Branch prediction scheme

Static None

gcc

fpppp

espresso

doduc

li

tomcatv

4.7 Studies of ILP 325

 the
least
ir of
rns
 (as in
rfect.
predictor. This predictor, which uses a total of 48K bits, outperforms both
correlating and noncorrelating predictors, achieving an accuracy of at
97% for these six SPEC benchmarks. Jump prediction is done with a pa
2K-entry predictors, one organized as a circular buffer for predicting retu
and one organized as a standard predictor and used for computed jumps
case statement or computed gotos). These jump predictors are nearly pe

3. Standard two-bit predictor with 512 two-bit entries—In addition, we assume
a 16-entry buffer to predict returns.

FIGURE 4.42 The effect of branch-prediction schemes sorted by application. This
graph highlights the differences among the programs with extensive loop-level parallelism
(tomcatv and fpppp) and those without (the integer programs and doduc).

gcc

35

41

9
6
6

2

12
7

6
2

espresso

Benchmarks

li

fpppp

doduc

tomcatv

0

16
10

6
7

2

10 20

Selective
predictor

Perfect Standard 2 bit Static None

30 40 50

Instruction issues per cycle

60

61
48

46
45

58

29

15
13

14
4

19

60
46

45
45

Branch predictor

326 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

icts
as we

ral-

fect
n be

oint
e two
highly
ith
 for

iffer-
tor is
nifi-
t and

s not
paral-

f 2K
 the

es two
ore
ibed
ic-

rences
regis-
r ex-
teger
e ar-
ults in
 4.43
nam-
egis-
end.
4. Static—A static predictor uses the profile history of the program and pred
that the branch is always taken or always not taken based on the profile,
discussed in the last chapter.

5. None—No branch prediction is used, though jumps are still predicted. Pa
lelism is largely limited to within a basic block.

Since we do not charge additional cycles for a mispredicted branch, the ef
of varying the branch prediction is to vary the amount of parallelism that ca
exploited across basic blocks by speculation.

Figure 4.42 shows that the branch behavior of two of the floating-p
programs is much simpler than the other programs, primarily because thes
programs have many fewer branches and the few branches that exist are
predictable.This allows significant amounts of parallelism to be exploited w
realistic prediction schemes. In contrast, for all the integer programs and
doduc, the FP benchmark with the least loop-level parallelism, even the d
ence between perfect branch prediction and the ambitious selective predic
dramatic. Like the window size data, these figures tell us that to achieve sig
cant amounts of parallelism in integer programs, the processor must selec
execute instructions that are widely separated. When branch prediction i
highly accurate, the mispredicted branches become a barrier to finding the
lelism.

As we have seen, branch prediction is critical, even with a window size o
instructions and an issue limit of 64. For the rest of the studies, in addition to
window and issue limit, we assume as a base an ambitious predictor that us
levels of prediction and a total of 8K entries. This predictor, which requires m
than 150K bits of storage, slightly outperforms the selective predictor descr
above (by about 0.5–1%). We also assume a pair of 2K jump and return pred
tors, as described above.

The Effects of Finite Registers

Our ideal processor eliminates all name dependences among register refe
using an infinite set of virtual registers. While several processors have used
ter renaming for this purpose, most have only a few extra virtual registers. Fo
ample, the PowerPC 620 provides 12 extra FP registers and eight extra in
registers in addition to the 32 FP and 32 integer registers provided for in th
chitecture; these renaming registers are also used to hold speculative res
the 620, but not in these experiments where speculation is perfect. Figures
and 4.44 show the effect of reducing the number of registers available for re
ing, again using the same data in two different forms. Both the FP and GP r
ters are increased by the number of registers shown on the axis or in the leg

4.7 Studies of ILP 327

ight
avail-
luat-

ded to
aving
 Al-
e im-
dow
ing

 sig-
ore

m-
ume

pated
At first, the results in these figures might seem somewhat surprising: you m
expect that name dependences should only slightly reduce the parallelism
able. Remember though, exploiting large amounts of parallelism requires eva
ing many independent threads of execution. Thus, many registers are nee
hold live variables from these threads. Figure 4.43 shows that the impact of h
only a finite number of registers is significant if extensive parallelism exists.
though these graphs show a large impact on the floating-point programs, th
pact on the integer programs is small primarily because the limitations in win
size and branch prediction have limited the ILP substantially, making renam
less valuable. In addition, notice that the reduction in available parallelism is
nificant even if 32 additional registers are available for renaming, which is m
than the number of registers available on any existing processor as of 1995.

While register renaming is obviously critical to performance, an infinite nu
ber of registers is obviously not practical. Thus, for the next section, we ass
that there are 256 registers available for renaming—far more than any antici
processor has.

FIGURE 4.43 The effect of finite numbers of registers available for renaming. Both the number of FP registers and
the number of GP registers are increased by the number shown on the x axis. The effect is most dramatic on the FP pro-
grams, although having only 32 extra GP and 32 extra FP registers has a significant impact on all the programs. As stated
earlier, we assume a window size of 2K entries and a maximum issue width of 64 instructions. Recall that DLX supplies 31
integer registers and 16 FP registers (the base number provided under “None”).

60

50

40

30

20

10

0
Infinite 256 128

Number of registers available for renaming

3264 None

gcc

fpppp

espresso

doduc

li

tomcatv

Instruction issues per cycle

328 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

pen-
erfect

 com-
s at
mory
The Effects of Imperfect Alias Analysis

Our optimal model assumes that it can perfectly analyze all memory de
dences, as well as eliminate all register name dependences. Of course, p
alias analysis is not possible in practice: The analysis cannot be perfect at
pile time, and it requires a potentially unbounded number of comparison
runtime. Figures 4.45 and 4.46 show the impact of three other models of me
alias analysis, in addition to perfect analysis. The three models are

FIGURE 4.44 The reduction in available parallelism is significant when fewer than an
unbounded number of renaming registers are available. For the integer programs, the im-
pact of having more than 64 registers is not seen here. To use more than 64 registers requires
uncovering lots of parallelism, which for the integer programs requires essentially perfect
branch prediction.

gcc

espresso

li

Benchmarks

fpppp

doduc

tomcatv

0

11
10
10

9
5

4

15
13

10
5

4

5
4

12
12
12

11
6

5

49
59

15

29

35
20

16
15

11
5
5

54
45

44
28

7
5

10

Infinite

32

256 128 64

None

20 30 40

Instruction issues per cycle

50 60

Renaming registers

4.7 Studies of ILP 329

d
nts an
tly in
hould

eter-
10 as
 a base
ed on
d the

t per-
 can
ented

nces
lysis.
 find
1. Global/stack perfect—This model does perfect predictions for global an
stack references and assumes all heap references conflict. This represe
idealized version of the best compiler-based analysis schemes curren
production. Recent and ongoing research on alias analysis for pointers s
improve the handling of pointers to the heap.

2. Inspection—This model examines the accesses to see if they can be d
mined not to interfere at compile time. For example, if an access uses R
a base register with an offset of 20, then another access that uses R10 as
register with an offset of 100 cannot interfere. In addition, addresses bas
registers that point to different allocation areas (such as the global area an
stack area) are assumed never to alias. This analysis is similar to tha
formed by many existing commercial compilers, though newer compilers
do better through the use of dependence analysis, at least for loop-ori
programs.

3. None—All memory references are assumed to conflict.

As one might expect, for the FORTRAN programs (where no heap refere
exist), there is no difference between perfect and global/stack perfect ana
The global/stack perfect analysis is optimistic, since no compiler could ever

FIGURE 4.45 The effect of various alias analysis techniques on the amount of ILP. Anything less than perfect anal-
ysis has a dramatic impact on the amount of parallelism found in the integer programs, while global/stack analysis is perfect
(and unrealizable) for the FORTRAN programs. As we said earlier, we assume a maximum issue width of 64 instructions
and a window of 2K instructions.

60

50

Instruction issues per cycle

40

30

20

10

0
Global/stack

perfect
Inspection

Alias analysis technique

NonePerfect

gcc

fpppp

espresso

doduc

li

tomcatv

330 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

stack
r so-
d to

ls of
rticu-
all array dependences exactly. The fact that perfect analysis of global and
references is still a factor of two better than inspection indicates that eithe
phisticated compiler analysis or dynamic analysis on the fly will be require
obtain much parallelism.

ILP for Realizable Processors

In this section we look at the performance of processors with realistic leve
hardware support that might be attainable in the next five to 10 years. In pa
lar we assume the following fixed attributes:

1. Up to 64 instruction issues per clock with no issue restrictions.

2. A selective predictor with 1K entries and a 16-entry return predictor.

FIGURE 4.46 The effect of varying levels of alias analysis on individual programs.

10
7

4
3

15
7

5
5

12
9

4
3

49
49

4
3

16
16

6
4

45
45

5
4

gcc

espresso

li

Benchmarks

fpppp

doduc

tomcatv

0 5

Perfect Global/stack
perfect

Inspection None

10 15 20

Instruction issues per cycle

25 30 35 40 45 50

Alias analysis

4.7 Studies of ILP 331

s is

rs.

 the
en-
ound
ly to
g the
tem-
uite
stric-
issue
ction

ssues

 non-
 have

tling
effect
rams.
 The
3. Perfect disambiguation of memory references done dynamically—thi
ambitious but perhaps attainable for small window sizes.

4. Register renaming with 64 additional integer and 64 additional FP registe

Figures 4.47 and 4.48 show the result for this configuration as we vary
window size. This configuration is still substantially more complex and exp
sive than existing implementations in 1995. Nonetheless, it gives a useful b
on what future implementations might yield. The data in these figures is like
be very optimistic for another reason. There are no issue restrictions amon
64 instructions: they may all be memory references. No one would even con
plate this capability in a single processor at this time. Unfortunately, it is q
difficult to bound the performance of a processor with reasonable issue re
tions; not only is the space of possibilities quite large, but the existence of
restrictions requires that the parallelism be evaluated with an accurate instru
scheduler, making the cost of studying processors with large numbers of i
very expensive.

In addition, remember that in interpreting these results, cache misses and
unit latencies have not been taken into account, and both these effects will
significant impact (see the Exercises).

Figure 4.47 shows the parallelism versus window size. The most star
observation is that with the realistic processor constraints listed above, the
of the window size for the integer programs is not so severe as for FP prog
This points to the key difference between these two types of programs:

FIGURE 4.47 The amount of parallelism available for a wide variety of window sizes and a fixed implementation
with up to 64 issues per clock.

60

50

40

30

20

10

0
Infinite

Instruction issues per cycle

256 128

Window size

32 16 864 4

gcc

fpppp

espresso

doduc

li

tomcatv

332 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism
FIGURE 4.48 The amount of parallelism available versus the window size for a variety
of integer and floating-point programs with up to 64 arbitrary instruction issues per
clock.

10
10
10

4
6

8
9

3

15
15

13

4
6

8
10

2

11
12
12

11

4
3

6
9

14
22

35

52
47

8
5

3

9
12

15
16
17

7
4

3

56
45

34
22

14
9

6
3

gcc

espresso

li

fpppp

Benchmarks

doduc

tomcatv

0 10 20

Instruction issues per cycle

30 40 50 60

Infinite

32

256 128 64

16 8 4

Window size

4.7 Studies of ILP 333

the
ther
m to
for
r than

are
d re-
ffs is
ersus
aller
availability of loop-level parallelism in two of the FP programs means that
amount of ILP that can be exploited is higher, but that for integer programs o
factors—such as branch prediction, register renaming, and less parallelis
start with—are all important limitations. As we will see in the next section,
today’s speculative machines the actual performance levels are much lowe
those shown in Figure 4.47.

Given the difficulty of increasing the instruction rates with realistic hardw
designs, designers face a challenge in deciding how best to use the limite
sources available on a integrated circuit. One of the most interesting trade-o
between simpler processors with larger caches and higher clock rates v
more emphasis on instruction-level parallelism with a slower clock and sm
caches. The following Example illustrates the challenges.

E X A M P L E Consider the following three hypothetical, but not atypical, processors,
which we run with the SPEC gcc benchmark:

1. A simple DLX pipe running with a clock rate of 300 MHz and achiev-
ing a pipeline CPI of 1.1. This processor has a cache system that
yields 0.03 misses per instruction.

2. A deeply pipelined version of DLX with slightly smaller caches and a
400 MHz clock rate. The pipeline CPI of the processor is 1.5, and the
smaller caches yield 0.035 misses per instruction on average.

3. A speculative superscalar with a 32-entry window. It achieves 75%
of the ideal issue rate measured for this window size. (Use the data
in Figure 4.47 on page 331.) This processor has the smallest caches,
which leads to 0.05 misses per instruction. This processor has a 200-
MHz clock.

Assume that the main memory time (which sets the miss penalty) is 200
ns. Determine the relative performance of these three processors.

A N S W E R First, we use the miss penalty and miss rate information to compute the
contribution to CPI from cache misses for each configuration. We do this
with the following formula:

We need to compute the miss penalties for each system:

Cache CPI Misses per instruction Miss penalty×=

Miss penalty
Memory access time

Clock cycle
---=

334 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism
The clock cycle times for the processors are 3.3 ns, 2.5 ns, and 5 ns, re-
spectively. Hence, the miss penalties are

Applying this for each cache:

Cache CPI1 = 0.03 × 60 = 1.8
Cache CPI2 = 0.035 × 80 = 2.8
Cache CPI3 = 0.05 × 40 = 2.0

We know the pipeline CPI contribution for everything but processor 3; its
pipeline CPI is given by

Now we can find the CPI for each processor by adding the pipeline and
cache CPI contributions.

CPI1 = 1.1 + 1.8 = 2.9
CPI2 = 1.5 + 2.8 = 4.3
CPI3 = 0.167 + 2.0 = 2.167

Since this is the same architecture we can compare instruction execution
rates to determine relative performance:

So the simplest design is the fastest. Of course, the designer building
either system 2 or system 3 will probably be alarmed by the large fraction
of the system performance lost to cache misses. In the next chapter we’ll
see the most common solution to this problem: adding another level of
caches. ■

Miss penalty1
200 ns
3.33 ns
----------------- 60 cycles==

Miss penalty2
200 ns
2.5 ns
--------------- 80 cycles==

Miss penalty3
200 ns
5 ns

--------------- 40 cycles==

Pipeline CPI3
1

Issue rate
----------------------- 1

8 0.75×
------------------- 1

6
--- 0.167====

Instruction execution rate
CR
CPI
---------=

Instruction execution rate1
300 MHz

2.9
---------------------- 103 MIPS= =

Instruction execution rate2
400 MHz

4.3
---------------------- 93 MIPS= =

Instruction execution rate3
200 MHz

2.167
---------------------- 92 MIPS= =

4.8 Putting It All Together: The PowerPC 620 335

 ideas

C ar-
d in
r to
000
other
ower-
tion

tially

etch,
arate
own

per-
 here

ly
 and
ns
r

cution
U is
 both
cking
own.
lation
ache
 result
he ef-
 holds
hich

ds the
 that a
causes
nding
at this
xecu-
isses,
Before we move to the next chapter, let’s see how some of the advanced
in this chapter are put to use in a real processor.

The PowerPC 620 is an implementation of the 64-bit version of the PowerP
chitecture; this implementation embodies many of the ideas discusse
section 4.6, including out-of-order execution and speculation. It is very simila
several other processors that provide this facility, including the MIPS R10
and the HP PA 8000, and somewhat more ambitious in organization than
multiple-issue processors, such as the Alpha 21164 and UltraSPARC. The P
PC 620 and 604 are very similar. The 604 implements only the 32-bit instruc
set and provides fewer buffers; its overall organization, however, is essen
identical to that of the 620.

The structure of the PowerPC 620 is shown in Figure 4.49. The 620 can f
issue, and complete up to four instructions per clock. There are six sep
execution units, each of which can initiate execution independently from its
reservation stations. The six units are as follows:

■ Two simple integer units, XSU0 and XSU1, which handle simple integer o
ations, such as add, subtract, and simple logical operations. All operations
take a single cycle.

■ One complex integer function unit, MCFXU, which handles integer multip
and divide. Operations in this unit have a latency of 3 to 20 clock cycles
provide early availability for multiplies with short input values. The operatio
in this unit vary from being fully pipelined (for multiplies with short intege
values) to unpipelined (for integer divide).

■ One load-store unit, LSU, which handles loads and stores and has a exe
latency for integer loads of 1 cycle and for FP loads of 2 cycles.The LS
fully pipelined and has its own effective address adder. The LSU contains
load and store buffers and allows loads to bypass pending stores by che
for address conflicts once the effective address of both instructions is kn
The load and store buffers hold requests once the effective address calcu
is completed. The load buffer simply holds the effective address until the c
access can be completed, whereupon the result is written to the GP or FP
buses. The store buffer is actually two separate queues: one that holds t
fective address of the target until the data are available, and a second that
both the effective address and the data until the store is ready to commit, w
happens in order. When the store is ready to commit, the store buffer sen
data to the cache and frees the buffer entry. The cache has two banks so
load and a store to separate banks can proceed in parallel. When a load
a cache miss, the load is moved to a single-entry buffer that holds the pe
load until the miss is handled. Other loads and stores can be processed
point, and if the requests hit in the cache, the instructions can complete e
tion. Because there is a single-entry buffer, when a second instruction m

4.8 Putting It All Together: The PowerPC 620

336 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

es to
load-
d in

 by
dd
 for
it is returned to the reservation station. This allows up to four cache miss
occur (one in the buffer and three in the reservation stations) before the
store is completely stalled. This capability, called nonblocking, is describe
more detail in Chapter 5.

■ One floating-point unit, FPU, which has a latency for use of its result
another floating-point operation of 2 cycles for multiply, add, or multiply-a
and 31 clock cycles for DP FP divide. The FPU is fully pipelined except
divide.

FIGURE 4.49 The PowerPC 620 has six different functional units, each with its own reservation stations and a 16-
entry reorder buffer, contained in the instruction completion unit. Renaming is implemented for both the integer and
floating-point registers, and the additional renaming registers are part of the respective register files. The condition register
used for branches (see Appendix C for a description of conditional branches in the PowerPC architecture) is a 32-bit register
grouped as a set of eight 4-bit fields. The BPU provides an additional 16 rename buffers that can each rename one 4-bit
field. The condition register and rename buffers are inside the BPU and hence are not shown separately. All the major data
flows in the processor are shown here, but not all the control signals. The load and store buffers are not shown, but are
present inside the LSU.

FPU

Instruction
dispatch
buses

FP operand buses
GP operand buses

LSUMCFXU BPUXSU1XSU0

Reservation
stations

FP registersGP registers

Completion
unit with

reorder buffer

Register nos.

Register
nos.

Register nos.

Register nos.

FP result busesGP result buses

Data
cache

Instruction
cache

Fetch
unit

Dispatch unit
with 8-entry

 instruction queue

Instruction
operation
buses

Result status buses

Branch correction
Reorder buffer information

4.8 Putting It All Together: The PowerPC 620 337

nit of
ndi-
ches

ular,
hen

cuted

n 4.6,
 reg-

its, at
inte-
tion
ed to
eme,
s are
rchi-
nd 12
gister;
 and
rchi-
nd 12
tions,
ion is
mon

ock
 not

eter-
ative
h ad-
 the

ction
when
ere

All
 are

sta-
func-
d to
d to
■ One branch unit, BPU, which completes branches and informs the fetch u
mispredictions. The branch unit includes the condition register, used for co
tional branches in the PowerPC architecture. The branch unit allows bran
to be evaluated independently of the rest of the instructions. In partic
branches do not take issue slots or cycles in the other functional units. W
condition registers are set early enough, conditional branches can be exe
in parallel with no additional delay.

The 620 operates much like the speculative processor we saw in sectio
with one major extension: The register set is extended with a set of renaming
isters. These are used to hold speculative results until the instruction comm
which time the result is written from the renaming registers to the standard
ger or floating-point registers. The reorder buffer, which is part of the comple
unit, does not contain the speculative results, but only the information need
complete the instruction when it commits. The primary advantage of this sch
which is similar to the one used in the MIPS R10000, is that all the operand
available from a single location: the extended register file, consisting of the a
tectural plus renaming registers. In the 620, there are eight extra integer a
extra FP registers. When an instruction issues, it is allocated a rename re
when execution completes, the result is written into the rename register;
when it commits, the result is moved from the rename register to one of the a
tected registers. With the available rename registers, at most eight integer a
FP instructions can be in flight. Operands are still read into reservation sta
as soon as they are available, either from the register file when the instruct
dispatched or from the result buses, the counterpart to the CDB (the Com
Data Bus used in Tomasulo’s scheme), when the operand is produced.

The instructions flow through a pipeline that varies from five to seven cl
cycles in typical cases and much longer for operations like divide, which are
pipelined. All instructions pass through the following pipe stages:

1. Fetch—Loads the decode queue with instructions from the cache and d
mines the address of the next instruction. A 256-entry two-way set-associ
branch-target buffer is used as the first source for predicting the next fetc
dress. There is also a 2048-entry branch-prediction buffer used when
branch-target buffer does not hit but a branch is present in the instru
stream. Both the target and prediction buffers are updated, if necessary,
the instruction completes using information from the BPU. In addition, th
is a stack of return address registers used to predict subroutine returns.

2. Instruction decode—Instructions are decoded and prepared for issue.
time-critical portions of decode are done here. The next four instructions
passed to the next pipeline stage.

3. Instruction issue—Issues the instructions to the appropriate reservation
tion. Operands are read from the register file in this stage, either into the
tional unit or into the reservation stations. A rename register is allocate
hold the result of the instruction and a reorder buffer entry is allocate

338 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

uled
m
0, the

 res-
sim-
 The
ivide
The
t the
from
 into

fied
anch
ied,
g the
ame
tion-

ini-
 in-
n, it

such
n: it
xecu-

ted.
 reg-
om-
the
se the
tra
it be-

 how
to an-
 re-
 PC,
ensure in-order completion. In some speculative and dynamically sched
machines, this process is called dispatch, rather than issue. We use the ter
issue, since the process corresponds to the issue process of the CDC 660
first dynamically scheduled machine.

4. Execution—This stage proceeds when the operands are all available in a
ervation station. One of six functional units executes the instruction. The
ple integer units XSU0 and XSU1 have a one-stage execution pipeline.
MCFXU has a pipeline depth of between one and three, though integer d
is not fully pipelined and takes more clock cycles (a total of 20 cycles).
FPU has a three-stage pipeline, while the LSU has a two-cycle pipeline. A
end of execution, the result is written into the appropriate result bus and
there into any reservation stations that are waiting for the result, as well as
the rename buffer allocated for this instruction. The completion unit is noti
that the instruction has completed. If the instruction is a branch, and the br
was mispredicted, the instruction fetch unit and completion unit are notif
causing instruction fetch to restart at the corrected address and causin
completion unit to discard the speculated instructions and free the ren
buffers holding speculated results. When an instruction moves to the func
al unit, we say that it has initiated execution; some machines use the term issue
for this transition. An instruction frees up the reservation station when it
tiates execution, allowing another instruction to issue to that station. If the
struction is ready to execute when it first issues to the reservation statio
can initiate on the next clock cycle freeing up the reservation station. In
cases, the instruction effectively spends no time in the reservation statio
acts simply as a latch between stages. When an instruction has finished e
tion and is ready to move to the next stage, we say it has completed execution.

5. Commit—This occurs when all previous instructions have been commit
Up to four instructions may complete per cycle. The results in the rename
ister are written into the register file and the rename buffer freed. Upon c
pletion of a store instruction, the LSU is also notified, so that
corresponding store buffer may be sent to the cache. Some machines u
term instruction completion for this stage. In a small number of cases, an ex
stage may be added for write backs that cannot complete during comm
cause of a shortage of write ports.

Figure 4.50 shows the basic structure of the PowerPC 620 pipeline and
the stages are connected by buffers, allowing one stage to slip with respect
other. When an instruction commits, all information about that instruction is
moved and its results are written into architecturally visible state (registers,
or memory).

4.8 Putting It All Together: The PowerPC 620 339

 620,
f the
lvinn,

issue
iple-
plet-
giv-
eases
pipe-
um
 per
ator
or is
4; in
 cycle
hat

mp-
hat
nes,
ts re-

 that
igid
Performance of the PowerPC 620 Pipeline

In this section we look at the performance characteristics of the PowerPC
examining the critical factors that determine performance. We use seven o
SPEC92 benchmarks in this evaluation: compress, eqntott, espresso, li, a
hydro2d, and tomcatv.

Before we start, we need to understand what it means to stall a multiple-
processor with dynamic scheduling and speculation. Let’s start with the mult
issue part. In a simple single-issue pipeline, the number of instructions com
ing in a clock cycle is 0 or 1, and the instruction portion of the CPI ratio for a
en clock cycle either increases by 0, in which case a stall occurred, or incr
by 1, in which case a stall did not occur. In a multiple-issue processor, the
line may be partially stalled—completing fewer instructions than its maxim
capability. For example, in the 620 up to four instructions may be completed
clock cycle. Thus a stall is no longer binary: the contribution to the denomin
of the CPI for a given clock cycle may vary from 0 to 4. Clearly, the process
stalled when the contribution is 0, and not stalled when the contribution is
between, the processor is partly stalled since the CPI corresponding to that
cannot reach its ideal value of 0.25. To keep this clear, we will focus on w
fraction of the instruction slots are empty. If 50% of the instruction slots are e
ty at instruction commit in a given clock cycle, then two instructions commit t
clock cycle, and the CPI for that clock cycle is 0.5. For multiple-issue machi
it is convenient to use IPC (instructions per clock) as the metric, rather than i
ciprocal, CPI. We follow this practice in the measurements.

 As a further complication, the dynamic scheduling in the pipeline means
we cannot simply track empty instruction slots down the pipeline in a r

FIGURE 4.50 The pipeline stages of the 620 are linked with a set of buffers, which are shown in grey. These buffers
allow slippage between stages of the pipeline. For example, the fetch stage places instructions in the instruction buffer where
they are removed by the issue stage. The buffers limit the slippage: If the buffer fills, the stage filling the buffer must stall; if
the buffer empties, the stage emptying the buffer must stall. The reservation stations, each of which is associated with a
particular functinal unit, and the reorder buffer link issue with the rest of the pipeline. The rename registers are used for re-
sults by the execute stage, until the commit unit writes the renamed register to an architectural register. The data cache is
essentially part of the load-store unit (LSU). Unless a stall occurs, instructions spend at most one cycle in each stage, except
for execute.

Fetch

Instruction
memory

Instruction
buffer

Reservation
stations Rename

registers

Reorder
buffer

Registers
Registers

Commit
unit

Issue Execute Commit

FUs

XSU0
XSU1

MCFXU
LSU

FPU
BPU

340 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

an re-

o in-
in a
ome
ction

ion of
 that
0, this
 issue

y the
truc-
lly be

t. For
iven
sses
tially
 the
nnot
 im-
mpty
 the
een

ult, if
y will
age
s less

ion
using
y-state
 exe-
necks
l fo-
 perfor-
ble for
sue
vent a
ance,
(1.2–
ence
fashion. Once instructions reach the execution stage, dynamic scheduling c
order the instructions. The instruction throughput, however, cannot increase as
instructions proceed down the pipeline: If the issue unit processes only tw
structions in a given cycle, at least two empty instruction slots will appear
later clock cycle at the instruction commit stage. These commit slots may c
up at different times, but they must appear. No stage can exceed the instru
processing rate achieved by earlier stages. In fact, because of the imposit
additional constraints as instructions flow down the pipeline, we can expect
each stage of execution will somewhat decrease the throughput. For the 62
effect appears minor, primarily because the execute stage is wider than the
stage and because instruction commit has few constraints.

Because of the buffering between stages, the performance is limited b
stage that falls behind on any given clock cycle. This means that empty ins
tion slots created by a given unit that would decrease performance can actua
hidden by the presence of stalls that create additional slots in another uni
example, the instruction fetch unit may provide only three instructions on a g
cycle, leaving one instruction slot empty. If, however, the issue unit proce
only two instructions, then the lost slot generated by the fetch unit is essen
hidden by the issue unit. From a designer’s viewpoint, we would like to place
burden for the partial stall on the issue unit. Notice that in doing so, we ca
conclude that eliminating the empty slots by redesigning the issue unit will
prove the CPI by the corresponding amount. Instead, it will expose the e
slots in the fetch unit. Such interactions are a major source of complexity in
design and performance analysis of pipelines that provide buffering betw
stages. As a final complication, remember that the buffers are finite. As a res
a given stage is stalled sufficiently, it also affects the earlier stages, since the
have to stall when the buffers are full. The buffers provide for limited slipp
between stages. The goal is that the total number of empty instruction slots i
than the sum of the number of empty slots generated by each unit.

In looking at the 620 performance data, we will focus on the instruct
throughput of the issue stage as the critical performance measurement. Foc
on issue makes sense for two reasons. First, it is a good measure of stead
performance, since in equilibrium instructions cannot issue faster than they
cute or commit. Second, the issue stage is the location of some key bottle
that are common in many dynamically scheduled machines. Although we wil
cus on the issue stage, both the fetch stage and the execute stage affect the
mance of instruction issue since the fetch and execute stages are responsi
filling the input buffer and emptying the output buffer, respectively, of the is
stage. Thus, we examine the ability of the fetch and execute stages to pre
stall in the issue stage. Figure 4.51 gives a preview of the pipeline perform
showing how the difference between the ideal IPC (4) and the actual IPC
1.3) is distributed to the various pipeline stages. We investigate this differ
and its causes in more detail in this section.

4.8 Putting It All Together: The PowerPC 620 341

at is
since
e for
 later
eting
xpect
lation
g at
erfor-
de on

laces
neck
tice
In a machine with speculation, the processor can be active doing work th
later discarded. In examining the performance we ignore such instructions,
they do not contribute to useful work. In particular, we charge the fetch stag
mispredicted branches and do not count stalls for such instructions in the
stages. Notice that incorrect speculation can reduce performance by comp
for resources against instructions that must be completed, but we do not e
such effects to be large in well-designed machines. This downside to specu
puts increased importance on the accuracy of branch prediction. After lookin
the performance of the various stages we summarize the overall processor p
mance. The data examined in this section all comes from measurements ma
a PowerPC 620 simulator described by Diep, Nelson, and Shen [1995].

Performance of the Fetch Stage

The instruction fetch stage fetches up to four instructions per cycle and p
them into the eight-entry instruction buffer. This stage can become a bottle
whenever it cannot keep at least four instructions in the instruction buffer. No

FIGURE 4.51 An overview of the performance of the 620 pipeline showing the IPC at
each pipe stage. The ideal IPC is 4. Losses occurring in fetch, primarily due to branch
mispredict, bring the IPC down to 3.6 on average. Issue stage incurs stalls for both limitations
in the issue structure and mismatch in the functional unit capacity versus need. After issue
the IPC is about 1.8. Losses occurring due to a lack of ILP and finite buffers cause the exe-
cute stage to back up. This eventually leads to a stall in the issue stage, but we count it in the
execute stage. By the end of execute, the IPC is between 1.2 and 1.3. More detailed versions
of these data appear throughout this section.

Instructions per
clock

0.0

2.5

2.0

1.5

1.0

0.5

3.0

4.0

3.5

1.21.3 1.21.3
1.6

2.1

3.4

3.84.0 4.0

FP averageInteger average

IPC at each pipe stage

Id
ea

l IP
C

Fet
ch

 IP
C

Iss
ue

 IP
C

Exe
cu

te
 IP

C

Com
m

it I
PC

342 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

 the
buffer
h unit

nd is
does
under

e
fer,
stall,
ant

o an
eri-
te is
effect
ffer-
 fact,
mpty

ch
bout

he
ords
in the
nd
 FP

f in-
 15%
 (0.2
that if the instruction buffer has at least four instructions, then the failure of
fetch stage to return four instructions cannot be seen as a stall. In fact, if the
is completely full, then downstream pipe stages must be stalled and the fetc
can do nothing but wait.

On average, the fetch stage is able to keep 5.2 instruction buffers full a
often not a limit on performance. Fetch does limit performance whenever it
not have four instructions available for issue. There are three circumstances
which the fetch unit can fail to keep the instruction buffer full:

1. A branch misprediction—No useful instructions are added to the buffer; th
fetch unit is effectively stalled. In reality, instructions are added to the buf
but since the instructions come from the wrong path, we count this as a
treating it as if no instructions were placed in the buffer. This is the domin
cause of a complete stall in the instruction fetch unit, since it can lead t
effectively empty instruction buffer. Branch mispredict is a much more s
ous problem for the selected integer programs, where the mispredict ra
10%, than for the selected FP programs, where the rate is about 3%. This
shows up clearly in Figure 4.51, where it is the dominant cause of the di
ence in throughput of the fetch stage for the integer and FP programs. In
75% of the loss in fetch for the integer programs arises from having an e
buffer.

2. An instruction cache miss—No instructions are added to the buffer; the fet
unit is completely stalled. With the programs chosen and the assumption a
a perfect off-chip cache, I-cache misses are not a serious problem.

3. Partial cache line fill—The next group of four instructions crosses a cac
block, and only the instructions on the same cache block, which is 8 w
long, are fetched. This effect can be significant when branch targets are
middle of cache blocks. It is a major contributor to having 1–3 buffers full a
is responsible for most of the throughput loss in the fetch stage of the
programs.

Figure 4.52 shows the contribution of these factors to the total effective loss o
struction slots by the fetch unit. On average the integer benchmarks lose
(0.6 out of 4.0) of their peak performance, while the FP benchmarks lose 5%
out of 4.0).

4.8 Putting It All Together: The PowerPC 620 343

 units
0 by
 four
tion
ulta-

tages
. Be-
struc-
were
Instruction Issue

Instruction issue tries to send four instructions to the appropriate reservation
on every clock cycle. We measure and analyze the performance of the 62
focusing on the instruction issue stage. Instruction issue can fail to process
instructions for two primary reasons. First, there are limitations in the instruc
issue processing stage where certain combinations of instructions cannot sim
neously issue. Second, lack of progress in the execution and completion s
leads to the unavailability of buffers that are required to issue an instruction
cause instruction issue is in order, the first event that prevents issuing an in
tion terminates the issue packet. Thus, if the conflicts that prevent issue

FIGURE 4.52 The average number of instructions that the fetch unit can provide to
the issue unit varies between 3.2 and 4, with an average of 3.4 for the integer bench-
marks and 3.8 for the FP benchmarks. This means that the fetch stage loses about 0.6 IPC
for integer programs and 0.2 IPC for FP programs. These data are computed by determining
how often the instruction buffer has 0 through 3 instructions and weighting the frequency by
the issue potential that is lost, which is the difference between 4 and the number of entries in
the buffer. The portion of the ideal IPC of 4 lost to each of the three causes is shown; these
data make the assumption that the timing of one of these events is independent of the state
of the instruction buffer. All of the measurements in this section include the effects of the on-
chip cache misses, assuming the presence of another level of cache off-chip with a 100% hit
rate. The miss penalty to the off-chip cache is 8 cycles, which is probably slightly optimistic.
Multilevel cache structures are discussed in detail in the next chapter; the assumption of
100% hits in the next level has only a small effect on the SPEC benchmarks.

Components of
IPC at fetch

0.0

4.0

0.5

1.0

3.5

3.0

1.5

2.0

2.5

Cache miss loss Partial line lossEffective IPC
delivered

Mispredict loss

co
m

pr
es

s

eq
nt

ot
t

es
pr

es
so li

alv
inn

hy
dr

o2
d

to
m

ca
tv

3.
6

3.
2

3.
3

3.
3

3.
8

3.
7

4.
0

344 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

rage

g is
n in

ction

ppro-

front
n is-

, con-
posed
in the
ificant
2d.
mary

tages
flicts
n in
uniformly distributed across the four potentially issuing instructions, the ave
number of instruction issues would be given by p + p2 + p3 + p4, where p is the
probability that any one instruction can issue. If the probability of not issuin
significant, the average number of issues per clock drops quickly, as show
Figure 4.53.

This clearly shows the importance of preventing unnecessary stalls in instru
issue.

Five possible conflicts can prevent an instruction from being issued:

1. No reservation station available: There is no reservation station of the a
priate type available.

2. No rename registers are available.

3. Reorder buffer is full.

4. Two operations to the same functional unit: The reservation stations in
of each functional unit share a single write port, so only one operation ca
sue to the reservation stations for a unit in a clock cycle.

5. Miscellaneous conflicts: Includes shortages of read ports for the registers
flicts that occur when special registers are accessed, and serialization im
by special instructions. The last is quite rare and essentially never occurs
SPEC benchmarks (less than 0.01%). The use of special registers is sign
only in li, while register port shortages occur for both tomcatv and hydro
These three classes of stalls are combined, but only one of the two pri
types is significant in the benchmarks.

The first three of these conflicts arise because the execution or completion s
have not processed instructions that were previously issued; the last two con
are internal limitations in the implementation. Figure 4.54 shows the reductio
IPC because of these cases.

Probability (cannot issue a
given instruction) = (1 – p)

Probability (issue a given
instruction) = p

Average number of
instruction issues

0.1 0.9 3.1

0.2 0.8 2.4

0.3 0.7 1.8

0.4 0.6 1.3

0.5 0.5 0.9

FIGURE 4.53 Number of instruction issues out of four possible issues. p is the prob-
ability that any one instruction can issue. The first instruction to stall ends the issue packet.

4.8 Putting It All Together: The PowerPC 620 345

curs
 for
zed to
r in-
struc-
ciated
nant
, this
s ac-
Because instruction issue is in order, the first of these conflicts that oc
when examining the instructions in order limits the instruction issue count
that clock cycle. Figure 4.55 shows the same data as Figure 4.54, but organi
show how often various events are responsible for issuing fewer than fou
structions per cycle. More than one of these events can occur for a given in
tion in a clock cycle. The data in Figure 4.54 assume that the cause is asso
with the first event that triggers the stall in the order given above. The domi
cause of stalls is lack of available buffers to issue to (with an average of 54%
occurs on slightly more than one-half of the cycles), with reservation station
counting for the largest cause of shortage (33% of the cycles).

FIGURE 4.54 The IPC throughput rate for the issue stage is arrived at by subtracting
stalls that arise in issue from the IPC rate sustained by the fetch stage. The top of each
bar shows the IPC from the fetch stage, while the bottom section of each bar shows the ef-
fective IPC after the issue stage. The difference is divided between two classes of stalls,
those that arise because the later stages have not freed up buffers and those that arise from
an implementation limitation in the issue stage (the FU and miscellaneous conflicts). Multiple
potential stalls can arise in the same clock cycle for the same instruction. We count the stall
as arising from the first cause in the following order: miscellaneous stalls, no reservation sta-
tion, no rename buffers, no reorder buffer entries, and FU conflict.

Figure 4.54— Hennessy/Patterson

IPC at the issue stage

0.0

0.5

1.0

1.5

2.0

2.5

No rename registersIssue stage IPC No reservation
station

Miscellaneous conflictFull reorder buffer FU conflict

co
m

pr
es

s

eq
nt

ot
t

es
pr

es
so li

alv
inn

hy
dr

o2
d

to
m

ca
tv

1.
13

1.
42

1.
36

1.
01

1.
78

1.
00

1.
09

346 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

 until
n ini-
low-
ion
all in

.
y to
ly/

ra-

in-
de-
Performance of the Execution Stage
Once instructions have issued, they wait at the assigned reservation station
the functional unit and the operands are available, whereupon the instructio
tiates execution at a functional unit. There are six different functional units al
ing up to six initiations per clock. Until an instruction in a reservation stat
issues, the buffers for the instruction are occupied, potentially causing a st
the issue stage.

An instruction at a reservation station may be delayed for four reasons:

1. Source operand unavailable—One of the source operands is not yet ready.

2. Functional unit unavailable—Another instruction is using the functional unit
For fully pipelined units, this happens only when two instructions are read
initiate on the same clock cycle, but for unpipelined units (integer multip
divide, FP divide), the functional unit blocks further initiation until the ope
tion completes.

3. Out-of-order disallowed—Both the branch unit and the FP unit require that
structions initiate in order. Thus, an instruction may be stalled until its pre
cessor initiates.This is a limitation of the execution unit.

Benchmark
No stalls:
4 issues

Stall:
no res.
station

Stall: no
rename
buffer

Stall: no
reorder
buffer

Total
stalls: no
buffers

Stall: 2
instrs.
to FU

Misc.
stall

Total issue
limit stalls

compress 24% 36% 24% 6% 66% 10% 0% 10%

eqntott 41% 22% 8% 4% 34% 21% 4% 25%

espresso 33% 32% 14% 2% 48% 18% 1% 19%

li 31% 34% 17% 4% 55% 11% 3% 14%

alvinn 31% 23% 1% 21% 45% 24% 0% 24%

hydro2d 17% 43% 17% 8% 68% 12% 3% 15%

tomcatv 6% 37% 34% 9% 80% 7% 7% 14%

Integer avg. 32% 31% 16% 4% 51% 15% 2% 17%

FP avg. 34% 28% 10% 8% 46% 19% 2% 21%

Total avg. 28% 33% 12% 9% 54% 16% 2% 18%

FIGURE 4.55 The sources of all stalls in the issue unit is shown in three broad groups. The first category shows the
frequency that four instructions are issued, i.e., no stalls are incurred. The second group shows the frequency of stalls due
to full buffers, with the last column totaling the frequency of full buffer stalls. This group arises because the execution and
commit stages have failed to complete instructions, which would free up buffers. We will examine the reasons for lack of
progress in the execute stage in the next section. The last group are stalls due to restrictions in the issue stage, and the last
column sums the two types of these stalls. As in Figure 4.54, there may be multiple reasons for stalling an instruction, so
the stall is counted according to the guidelines in Figure 4.54. Notice that the number of cycles where no stalls occur varies
widely from 6% to 41%; likewise, in many cases (35% on average) zero instructions issue. This frequency also varies widely
from 18% for alvinn to 45% for li and hydro2d.

4.8 Putting It All Together: The PowerPC 620 347

x-
xecute
rior

r the
s loss
ecu-
ue

ils to
plate

rs are
le,

he
 wait
4. Serialization—A few instructions require totally in-order execution. For e
ample, instructions that access the non-renamed special registers must e
totally in order. Such instructions wait at the reservation station for all p
instructions to commit.

Full buffer stalls in the issue stage are responsible for a loss of 1.6 IPC fo
integer programs and 2.0 IPC in the FP programs. We can decompose thi
into the four components above, if we make the assumption that initiating ex
tion for any instruction will free an equivalent number of buffers, allowing iss
to continue. Figure 4.56 shows this distribution.

When the issue stage stalls and an instruction in a reservation station fa
initiate for one of the four reasons shown above, a designer could contem
one of three possible reasons:

1. If the source operand is not available and issue stalls because the buffe
full, this indicates that the amount of instruction-level parallelism availab
given the limited window size dictated by the buffering, is insufficient. If t
code had more parallelism, then fewer reservation stations would have to

FIGURE 4.56 The stalls in the issue stage because of full buffers (reservation station,
rename registers, or reorder buffer) can be attributed to lack of progress in the execu-
tion unit. An occupied reservation station fails to begin execution for one of the four reasons
shown above. The frequency of these events is used to attribute the total number of full buffer
stalls from the issue stage.

Total buffer-full-stalls in issue

0.0

2.5

0.5

1.5

2.0

1.0

In-order forced SerializationSource not
ready

FU busy

co
m

pr
es

s

eq
nt

ot
t

es
pr

es
so li

alv
inn

hy
dr

o2
d

to
m

ca
tv

348 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

rna-
rger

 is in
city is
that
ent
ined
 dis-

dis-
ices,
lter-

 the
ions
alls
tion
rts—
 par-
 to
 to a
aver-
d 100
it is

t un-
e IPC

nch-
rage
s for

ated
for results, leading to more initiations and a need for fewer buffers. Alte
tively, the designer could increase the number of buffers, leading to a la
window and possibly increased instruction-level parallelism.

2. If the instruction in a reservation station does not initiate because the FU
use and issue is also stalled, then the basic problem is that the FU capa
not sufficient to handle the dynamic instruction distribution, at least at
point in the execution. Increasing the number of functional units of differ
classes would help, as would increasing the pipelining in the unpipel
units. For example, from Figure 4.56 and a knowledge of the instruction
tribution, we can see the load-store FU is overcommitted in compress.

3. The final two reasons for a reservation station not initiating (out-of-order
allowed and serialization) are both execution-stage implementation cho
which could be eliminated by reorganizing the execution unit, though an a
native structure might have other drawbacks.

Performance of Instruction Commit
Instruction commit is totally stalled only when the instruction at the head of
reorder buffer has not completed execution. The failure to commit instruct
during the cycle can eventually lead to a full reorder buffer, which in turn st
the instruction issue stage. Instruction commit is basically limited by instruc
issue and execute. In some infrequent situations, a lack of write-back po
there are four integer write ports and two FP write ports—can also lead to a
tial stall in instruction commit. Like execution stalls, a completion stall leads
not freeing up rename registers and reorder buffer entries, which can lead
stall in the issue stage. Completion stalls, however, are very infrequent: on
age, execution stalls are seven times more frequent for the FP programs an
times more frequent for the integer programs. As a result, instruction comm
not a bottleneck.

Summary: Overall Performance

From the data in earlier figures, we can determine that the IPC runs from jus
der 1 to just under 1.8 for these benchmarks. The gap between the effectiv
and the ideal IPC of 4.0 can be viewed as three parts:

1. The limitation caused by the functional units—This limitation arises because
the 620 does not have four copies of each functional unit. For these be
marks the bottleneck is the load-store unit. This loss counts only the ave
shortage of FU capacity for the entire program. Short-term higher demand
a functional unit are counted as ILP/finite buffer stalls.

2. Losses in specific stages—Fetch, issue, and execute all have losses associ
specifically with that stage.

4.9 Fallacies and Pitfalls 349

ctu-
thout

 (1.0

ave
with
3. Limited instruction-level parallelism and finite buffering—Stalls that arise be-
cause of lack of parallelism or insufficient buffering. Cache misses that a
ally result in stall cycles are counted here; cache misses may occur wi
generating any stalls.

Figure 4.57 shows how the peak IPC of 4 is divided between the actual IPC
to 1.8) and the various possible stalls.

Fallacy: Processors with lower CPIs will always be faster.

Although a lower CPI is certainly better, sophisticated pipelines typically h
slower clock rates than processors with simple pipelines. In applications

FIGURE 4.57 The breakdown of the ideal IPC of 4.0 into its components. The actual
IPC averages 1.2 for the integer programs and 1.3 for the FP programs. The largest differ-
ence is the IPC loss due to the functional unit balance not matching the frequency of instruc-
tions. Losses in fetch, issue, and execution are the next largest components. ILP and
limitations of finite buffering are last. The limits are calculated in this same order, so that the
shortage of load-store execution slots is counted as a FU capacity loss, rather than as an ILP/
finite buffer loss. Although the ILP/finite buffering limitations are small overall, this arises
largely because the other limitations prevent the lack of ILP or finite buffering from becoming
overly constraining.

4.9 Fallacies and Pitfalls

IPC at the issue stage

0.0

2.5

3.0

3.5

4.0

0.5

1.0

1.5

2.0

Fetch limitationsActual IPC

Execution
limitations

Issue
limitations

FU capacity

ILP/finite buffer
limitations

co
m

pr
es

s

eq
nt

ot
t

es
pr

es
so li

alv
inn

hy
dr

o2
d

to
m

ca
tv

350 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

 re-
igned
lock,
dest
re or
 the
arks,
rfor-

state-
 part

ri-

 issu-
 HP
ation)
PEC
rk, as
ut the
limited ILP or where the parallelism cannot be exploited by the hardware
sources, the faster clock rate often wins. The IBM Power-2 is a machine des
for high-performance FP and capable of sustaining four instructions per c
including two FP and two load-store instructions; its clock rate was a mo
71.5 MHz. The DEC Alpha 21064 is a dual-issue machine with one load-sto
FP operation per clock, but an aggressive 200-MHz clock rate. Comparing
low CPI Power-2 against the high CPI 21064 shows that on a few benchm
including some FP programs, the fast clock rate of Alpha leads to better pe
mance (see Figure 4.58). Of course, this fallacy is nothing more than a re
ment of a pitfall from Chapter 2 about comparing processors using only one
of the performance equation.

Pitfall: Emphasizing a reduction in CPI by increasing issue rate while sac
ficing clock rate can lead to lower performance.

The TI SuperSPARC design is a flexible multiple-issue processor capable of
ing up to three instructions per cycle. It had a 1994 clock rate of 60 MHz. The
PA 7100 processor is a simple dual-issue processor (integer and FP combin
with a 99-MHz clock rate in 1994. The HP processor is faster on all the S
benchmarks except two of the integer benchmarks and one FP benchma
shown in Figure 4.59. On average, the two processors are close on integer, b

FIGURE 4.58 The performance of the low-CPI Power-2 design versus the high-CPI Alpha 21064. Overall, the 21064
is about 1.1 times faster on integer and 1.4 times faster on FP, indicating that the CPI for the 21064 is 2 to 2.5 times higher
than for the Power-2, assuming instruction counts are identical.

SPEC ratio

Benchmarks
es

pr
es

so li

eq
nt

ot
t

co
m

pr
es

s sc gc
c

sp
ice

do
du

c

m
dlj

dp
2

wav
e5

to
m

ca
tv or

a

alv
inn ea

r

m
dlj

sp
2

sw
m

25
6

ea
rs

u2
co

r

hy
dr

o2
d

na
sa

fp
pp

p

900

800

700

600

500

400

300

200

100

0

200-MHz Alpha 71.5-MHz Power2

4.9 Fallacies and Pitfalls 351

differ-
o the

 focus
ycle
lina-
eval-
cycle
lt to
 and
he de-
ally
der-
ional
aluable

ting
HP processor is about 1.5 times faster on the FP benchmarks. Of course,
ences in compiler technology, as well as the processor, could contribute t
performance differences.

The potential of multiple-issue techniques has caused many designers to
on reducing CPI while possibly not focusing adequately on the trade-off in c
time incurred when implementing these sophisticated techniques. This inc
tion arises at least partially because it is easier with good simulation tools to
uate the impact of enhancements that affect CPI than it is to evaluate the
time impact. There are two factors that lead to this outcome. First, it is difficu
know the clock rate impact of an approach until the design is well underway,
then it may be too late to make large changes in the organization. Second, t
sign simulation tools available for determining and improving CPI are gener
better than those available for determining and improving cycle time. In un
standing the complex interaction between cycle time and various organizat
approaches, the experience of the designers seems to be one of the most v
factors.

Pitfall: Improving only one aspect of a multiple-issue processor and expec
overall performance improvement.

FIGURE 4.59 The performance of a 99-MHz HP PA 7100 processor versus a 60-MHz SuperSPARC. The comparison
is based on 1994 measurements.

300

250

200

150

100

SPEC ratio

50

0

HP PA 7100 TI SuperSPARC

Benchmarks
es

pr
es

so li

eq
nt

ot
t

co
m

pr
es

s sc gc
c

sp
ice

do
du

c

m
dlj

dp
2

wav
e5

to
m

ca
tv or

a

alv
inn ea

r

m
dlj

sp
2

sw
m

25
6

ea
rs

u2
co

r

hy
dr

o2
d

na
sa

fp
pp

p

352 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

at a
to see
mit
 pro-
ance.
t the
oing
ves
How-
f par-
tion

 the
ince
 those
y im-

se of
ssor
 the
t to

ough
at it
te, a
 rate
ly too
ade-
e
. One
tiple-
rows.
s-
on
nd, a
r in-

per-
ger
This is simply a restatement of Amdahl’s Law. A designer might simply look
design, see a poor branch prediction mechanism and improve it, expecting
significant performance improvements. The difficulty is that many factors li
the performance of multiple-issue machines, and improving one aspect of a
cessor often exposes some other aspect that previously did not limit perform
We can see examples of this in the data on ILP. For example, looking just a
effect of branch prediction in Figure 4.42 on page 325, we can see that g
from a standard two-bit predictor to a selective predictor significantly impro
the parallelism in espresso (from an issue rate of 7 to an issue rate of 12).
ever, if the processor provides only 32 registers for renaming, the amount o
allelism is limited to 5 issues per clock cycle, even with a branch predic
scheme better than either alternative.

Likewise, improving, for example, the performance of the fetch stage of
PowerPC 620 will probably have little impact on the SPEC benchmarks, s
the issue and execute stages are significant bottlenecks and the stalls in
stages would probably increase to capture most of the benefit obtained b
proving fetch.

The tremendous interest in multiple-issue organizations came about becau
an interest in improving performance without affecting the standard uniproce
programming model. While taking advantage of ILP is conceptually simple,
design problems are amazingly complex in practice. It is extremely difficul
achieve the performance you might expect from a simple first-level analysis.

The trade-offs between increasing clock speed and decreasing CPI thr
multiple issue are extremely hard to quantify. Although you might expect th
is possible to build an advanced multiple-issue processor with a high clock ra
factor of 1.5 to 2 in clock rate has consistently separated the highest clock
processors and the most sophisticated multiple-issue processors. It is simp
early to tell whether this difference is due to fundamental implementation tr
offs, or to the difficulty of dealing with the complexities in multiple-issu
processors, or simply a lack of experience in implementing such processors
insight that is clear is that the peak to sustained performance ratios for mul
issue processors are often quite large and typically grow as the issue rate g
Thus, increasing the clock rate by X is almost always a better choice than increa
ing the issue width by X, though often the clock rate increase may rely largely
deeper pipelining, substantially narrowing the advantage. On the other ha
simple two-way superscalar that issues FP instructions in parallel with intege
structions can probably be built with little impact on clock rate and should
form better on FP applications and suffer little or no degradation on inte
applications.

4.10 Concluding Remarks

4.10 Concluding Remarks 353

ware,
are to
ch-
erfor-
rn out

asic
ber

eans
t raw
r we
tions
ycle
ploit
 the
e lim-
gle

is to
ro-

em in
sor

strib-
oun-
ge.
vel
s re-
s effi-
fine-
 in a
ter ar-
P in
ither
 the
sors
f ar-

t also
roces-
Whether approaches based primarily on faster clock rates, simpler hard
and more static scheduling or approaches using more sophisticated hardw
achieve lower CPI will win out is difficult to say and may depend on the ben
marks. At the present, both approaches seem capable of delivering similar p
mance. Pragmatic issues, such as code quality for existing binaries, may tu
to be the deciding factor.

What will happen to multiple-issue processors in the long term? The b
trends in integrated circuit technology lead to an important insight: The num
of devices available on a chip will grow faster than the device speed. This m
that designs that obtain performance with more transistors rather than jus
gate speed are a more promising direction. Three other factors limit how fa
can exploit this trend, however. One is the increasing delay of interconnec
compared with gates, which means that bigger designs will have longer c
times. The second factor is the diminishing returns seen when trying to ex
ILP. The last factor is the potential impact of increased complexity on either
clock rate or the design time. Combined, these effects may serve as effectiv
its to how much performance can be gained by exploiting ILP within a sin
processor.

The alternative to trying to continue to push uniprocessors to exploit ILP
look toward multiprocessors, the topic of Chapter 8. Looking toward multip
cessors to take advantage of parallelism overcomes a fundamental probl
ILP processors: building a cost-effective memory system. A multiproces
memory system is inherently multiported and, as we will see, can even be di
uted in a larger processor. Using multiprocessors to exploit parallelism enc
ters two difficulties. First, it is likely that the software model will need to chan
Second, MP approaches may have difficulty in exploiting fine-grained, low-le
parallelism. While it appears clear that using a large number of processor
quires new programming approaches, using a smaller number of processor
ciently could be based on compiler approaches. Exploiting the type of
grained parallelism that a compiler can easily uncover can be quite difficult
multiprocessor, since the processors are relatively far apart. To date, compu
chitects do not know how to design processors that can effectively exploit IL
a multiprocessor configuration. Existing high-performance designs are e
tightly integrated uniprocessors or loosely coupled multiprocessors. Around
end of this century, it should be possible to place two fully configured proces
on a single die. Perhaps this capability will inspire the design of a new type o
chitecture that allows processors to be more tightly coupled than before, bu
separates them sufficiently so that the design can be partitioned and each p
sor can individually achieve very high performance.

354 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

y and
issue
oiting
a flow
 de-
uter

 in
 first
heral
lining
imple
nolo-
clud-
70]
rchi-
 out
AN

ata,
 for-
ara-

g the
 for

J. E.
e-
ing.

y of
erger
g the
mine
] have
each
ech-
This section describes some of the major advances in compiler technolog
advanced pipelining and ends with some of the recent literature on multiple-
processors. The basic concepts—data dependence and its limitation in expl
parallelism—are old ideas that were studied in the 1960s. Ideas such as dat
computation derived from observations that programs were limited by data
pendence. Loop unrolling is a similarly old idea, practiced by early comp
programmers on processors with very expensive branches.

The Introduction of Dynamic Scheduling

In 1964 CDC delivered the first CDC 6600. The CDC 6600 was unique
many ways. In addition to introducing scoreboarding, the CDC 6600 was the
processor to make extensive use of multiple functional units. It also had perip
processors that used a time-shared pipeline. The interaction between pipe
and instruction set design was understood, and the instruction set was kept s
to promote pipelining. The CDC 6600 also used an advanced packaging tech
gy. Thornton [1964] describes the pipeline and I/O processor architecture, in
ing the concept of out-of-order instruction execution. Thornton’s book [19
provides an excellent description of the entire processor, from technology to a
tecture, and includes a foreword by Cray. (Unfortunately, this book is currently
of print.) The CDC 6600 also has an instruction scheduler for the FORTR
compilers, described by Thorlin [1967].

The IBM 360/91 introduced many new concepts, including tagging of d
register renaming, dynamic detection of memory hazards, and generalized
warding. Tomasulo’s algorithm is described in his 1967 paper. Anderson, Sp
cio, and Tomasulo [1967] describe other aspects of the processor, includin
use of branch prediction. Many of the ideas in the 360/91 faded from use
nearly 25 years before being broadly employed in the 1990s.

Branch Prediction Schemes

Basic dynamic hardware branch prediction schemes are described by
Smith [1981] and by A. Smith and Lee [1984]. Ditzel and McLellan [1987] d
scribe a novel branch-target buffer for CRISP, which implements branch fold
McFarling and Hennessy [1986] did a quantitative comparison of a variet
compile-time and runtime branch prediction schemes. Fisher and Freudenb
[1992] evaluated a range of compile-time branch prediction schemes usin
metric of distance between mispredictions. The correlating predictor we exa
was described by Pan, So, and Rameh in 1992. Yeh and Patt [1992,1993
written several papers on multilevel predictors that use branch histories for
branch. McFarling’s competitive prediction scheme is described in his 1993 t
nical report.

4.11 Historical Perspective and References

4.11 Historical Perspective and References 355

 most
rth
ide-
ting
 and
ntly.

mple-
em-

r had
ility
for-
reat-
e of
uling,
ro-
ribed
ell

mpor-
mong
cula-
ob-
all

nged
m-

pro-
ially.
f the
 dy-
The
l in-
 the
tor-
e of
e,

 with
logy;
pieces
ited a
these

r, and
ues
The Development of Multiple-Issue Processors

The concept of multiple-issue designs has been around for a while, though
early processors followed an LIW or VLIW design approach. Charleswo
[1981] reports on the Floating Point Systems AP-120B, one of the first w
instruction processors containing multiple operations per instruction. Floa
Point Systems applied the concept of software pipelining in both a compiler
by hand-writing assembly language libraries to use the processor efficie
Since the processor was an attached processor, many of the difficulties of i
menting multiple issue in general-purpose processors, for example, virtual m
ory and exception handling, could be ignored. The Stanford MIPS processo
the ability to place two operations in a single instruction, though this capab
was dropped in commercial variants of the architecture, primarily for per
mance reasons. Along with his colleagues at Yale, Fisher [1983] proposed c
ing a processor with a very wide instruction (512 bits), and named this typ
processor a VLIW. Code was generated for the processor using trace sched
which Fisher [1981] had developed originally for generating horizontal mic
code. The implementation of trace scheduling for the Yale processor is desc
by Fisher et al. [1984] and by Ellis [1986]. The Multiflow processor (see Colw
et al. [1987]) was based on the concepts developed at Yale, although many i
tant refinements were made to increase the practicality of the approach. A
these was a controllable store buffer that provided support for a form of spe
tion. Although more than 100 Multiflow processors were sold, a variety of pr
lems, including the difficulties of introducing a new instruction set from a sm
company and the competition provided from RISC microprocessors that cha
the economics in the minicomputer market, led to failure of Multiflow as a co
pany. Around the same time, Cydrome was founded to build a VLIW-style
cessor (see Rau et al. [1989]), which was also unsuccessful commerc
Dehnert, Hsu, and Bratt [1989] explain the architecture and performance o
Cydrome Cydra 5, a processor with a wide-instruction word that provides
namic register renaming and additional support for software pipelining.
Cydra 5 is a unique blend of hardware and software, including conditiona
structions, aimed at extracting ILP. Cydrome relied on more hardware than
Multiflow processor and achieved competitive performance primarily on vec
style codes. In the end, Cydrome suffered from problems similar to thos
Multiflow and was not a commercial success. Both Multiflow and Cydrom
though unsuccessful as commercial entities, produced a number of people
extensive experience in exploiting ILP as well as advanced compiler techno
many of those people have gone on to incorporate their experience and the
of the technology in newer processors. Recently, Fisher and Rau [1993] ed
comprehensive collection of papers covering the hardware and software of
two important processors.

Rau had also developed a scheduling technique called polycyclic scheduling,
which is a basis for most software pipelining schemes (see Rau, Glaese
Picard [1982]). Rau’s work built on earlier work by Davidson and his colleag

356 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

ther
h of

s the
era-
t the
other
ction
ut of

he ad-
ssues
d to
it in-
ere is a
ns of
 used

 is-
ode
tages

CS
duct

sor that
lks in

t
(the

pled
ing.
ong a
 be-
ribed
load-
imilar
uling

per-
ces-

fer to
uff-
uffer.
ossi-
cribed
on the design of optimal hardware schedulers for pipelined processors. O
LIW processors have included the Apollo DN 10000 and the Intel i860, bot
which could dual issue FP and integer operations.

One of the interesting approaches used in early VLIW processors, such a
AP-120B and i860, was the idea of a pipeline organization that requires op
tions to be “pushed through” a functional unit and the results to be caught a
end of the pipeline. In such processors, operations advance only when an
operation pushes them from behind (in sequence). Furthermore, an instru
specifies the destination for an instruction issued earlier that will be pushed o
the pipeline when this new operation is pushed in. Such an approach has t
vantage that it does not specify a result destination when an operation first i
but only when the result register is actually written. This eliminates the nee
detect WAW and WAR hazards in the hardware. The disadvantage is that
creases code size since no-ops may be needed to push results out when th
dependence on an operation that is still in the pipeline and no other operatio
that type are immediately needed. Instead of the “push-and-catch” approach
in these two processors, almost all designers have chosen to use self-draining
pipelines that specify the destination in the issuing instruction and in which an
sued instruction will complete without further action. The advantages in c
density and simplifications in code generation seem to outweigh the advan
of the more unusual structure.

IBM did pioneering work on multiple issue. In the 1960s, a project called A
was underway. It included multiple-issue concepts, but never reached pro
stage. John Cocke made a subsequent proposal for a superscalar proces
dynamically makes issue decisions; he described the key ideas in several ta
the mid 1980s and coined the name superscalar. He called the design America; i
is described by Agerwala and Cocke [1987]. The IBM Power-1 architecture
RS/6000 line) is based on these ideas (see Bakoglu et al. [1989]).

J. E. Smith [1984] and his colleagues at Wisconsin proposed the decou
approach that included multiple issue with limited dynamic pipeline schedul
A key feature of this processor is the use of queues to maintain order am
class of instructions (such as memory references) while allowing it to slip
hind or ahead of another class of instructions. The Astronautics ZS-1 desc
by Smith et al. [1987] embodies this approach with queues to connect the
store unit and the operation units. The Power-2 design uses queues in a s
fashion. J. E. Smith [1989] also describes the advantages of dynamic sched
and compares that approach to static scheduling.

The concept of speculation has its roots in the original 360/91, which
formed a very limited form of speculation. The approach used in recent pro
sors combines the dynamic scheduling techniques of the 360/91 with a buf
allow in-order commit. J. E. Smith and Pleszkun [1988] explored the use of b
ering to maintain precise interrupts and described the concept of a reorder b
Sohi [1990] describes adding renaming and dynamic scheduling, making it p
ble to use the mechanism for speculation. Patt and his colleagues have des

4.11 Historical Perspective and References 357

algo-

 eval-
ech-
ing
] de-

 that
 mod-
hown
d very
essor
in.

y D.
lso

D and
n a va-
 vari-

s a
e se-

was
988]
rp, a
ons.
lling
everal
 with
rd-

con-
tion
con-
 gen-

 and
vail-
are.

an ten
another approach, called HPSm, that is also an extension of Tomasulo’s
rithm [Hwu and Patt 1986] and supports speculative-like execution.

The use of speculation as a technique in multiple-issue processors was
uated by Smith, Johnson, and Horowitz [1989] using the reorder buffer t
nique; their goal was to study available ILP in nonscientific code us
speculation and multiple issue. In a subsequent book, M. Johnson [1990
scribes the design of a speculative superscalar processor.

What is surprising about the development of multiple-issue processors is
many of the early processors were not successful. Recent superscalars with
est issue capabilities (e.g., the DEC 21064 or HP 7100), however, have s
that the techniques can be used together with aggressive clock rates to buil
fast processors, and designs like the Power-2 and TFP [Hsu 1994] proc
show that very high issue-rate processors can be successful in the FP doma

Compiler Technology

Loop-level parallelism and dependence analysis was developed primarily b
Kuck and his colleagues at the University of Illinois in the 1970s. They a
coined the commonly used terminology of antidependence and output depen-
dence and developed several standard dependence tests, including the GC
Banerjee tests. The latter test was named after Uptal Banerjee and comes i
riety of flavors. Recent work on dependence analysis has focused on using a
ety of exact tests ending with an algorithm called Fourier-Motzkin, which i
linear programming algorithm. D. Maydan and W. Pugh both showed that th
quences of exact tests were a practical solution.

In the area of uncovering and scheduling ILP, much of the early work
connected to the development of VLIW processors, described earlier. Lam [1
developed algorithms for software pipelining and evaluated their use on Wa
wide-instruction-word processor designed for special-purpose applicati
Weiss and J. E. Smith [1987] compare software pipelining versus loop unro
as techniques for scheduling code on a pipelined processor. Recently s
groups have been looking at techniques for scheduling code for processors
conditional and speculative execution, but without full support for dynamic ha
ware scheduling. For example, Smith, Horowitz, and Lam [1992] created a
cept called boosting that contains a hardware facility for supporting specula
but relies on compiler scheduling of speculated instructions. The sentinel
cept, developed by Hwu and his colleagues [Mahlke et al. 1992] is a more
eral form of this idea.

Studies of ILP

A series of early papers, including Tjaden and Flynn [1970] and Riseman
Foster [1972], concluded that only small amounts of parallelism could be a
able at the instruction level without investing an enormous amount of hardw
These papers dampened the appeal of multiple instruction issue for more th

358 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

with
ILP in

udies
rt and
ns as
 sev-
all

they
y of
989]

sors.
roces-
ces-
t and

ir pro-
 im-
wing

e PC.
tures,
essor

r (3 or
 Sun
0. In
ecula-
ar. In
ory
d, all
f the

erenc-
e in-
years. Nicolau and Fisher [1984] published a paper based on their work
trace scheduling and asserted the presence of large amounts of potential
scientific programs.

Since then there have been many studies of the available ILP. Such st
have been criticized since they presume some level of both hardware suppo
compiler technology. Nonetheless, the studies are useful to set expectatio
well as to understand the sources of the limitations. Wall has participated in
eral such strategies, including Jouppi and Wall [1989], Wall [1991], and W
[1993]. While the early studies were criticized as being conservative (e.g.,
didn’t include speculation), the latest study is by far the most ambitious stud
ILP to date and the basis for the data in section 4.8. Sohi and Vajapeyam [1
give measurements of available parallelism for wide-instruction-word proces
Smith, Johnson, and Horowitz [1989] also used a speculative superscalar p
sor to study ILP limits. At the time of their study, they anticipated that the pro
sor they specified was an upper bound on reasonable designs. Recen
upcoming processors, however, are likely to be at least as ambitious as the
cessor. Most recently, Lam and Wilson [1992] have looked at the limitations
posed by speculation and shown that additional gains are possible by allo
processors to speculate in multiple directions, which requires more than on
Such ideas represent one possible alternative for future processor architec
since they represent a hybrid organization between a conventional uniproc
and a conventional multiprocessor.

Recent Advanced Microprocessors

The years 1994–95 saw the announcement of a wide superscalar processo
more issues per clock) by every major processor vendor: Intel P6, AMD K5,
UltraSPARC, Alpha 21164, MIPS R10000, PowerPC 604/620, and HP 800
1995, the trade-offs between processors with more dynamic issue and sp
tion and those with more static issue and higher clock rates remains uncle
practice, many factors, including the implementation technology, the mem
hierarchy, the skill of the designers, and the type of applications benchmarke
play a role in determining which approach is best. Figure 4.60 shows some o
most interesting recent processors, their characteristics, and suggested ref
es. What is clear is that some level of multiple issue is here to stay and will b
cluded in all processors in the foreseeable future.

4.11 Historical Perspective and References 359
Issue capabilities
SPEC

(measure
or

estimate)Processor

Year
shipped in

systems

Initial
clock rate

(MHz)
Issue

structure
Schedul-

ing
Maxi-
mum

Load-
store

Integer
ALU FP Branch

IBM
Power-1

1991 66 Dynamic Static 4 1 1 1 1 60 int
80 FP

HP 7100 1992 100 Static Static 2 1 1 1 1 80 int
150 FP

DEC Al-
pha 21064

1992 150 Dynamic Static 2 1 1 1 1 100 int
150 FP

Super-
SPARC

1993 50 Dynamic Static 3 1 1 1 1 75 int
85 FP

IBM
Power-2

1994 67 Dynamic Static 6 2 2 2 2 95 int
270 FP

MIPS TFP 1994 75 Dynamic Static 4 2 2 2 1 100 int
310 FP

Intel
Pentium

1994 66 Dynamic Static 2 2 2 1 1 65 int
65 FP

DEC
Alpha
21164

1995 300 Static Static 4 2 2 2 1 330 int
500 FP

Sun
Ultra–
SPARC

1995 167 Dynamic Static 4 1 1 1 1 275 int
305 FP

Intel P6 1995 150 Dynamic Dynamic 3 1 2 1 1 > 200 int

AMD K5 1995 100 Dynamic Dynamic 4 2 2 1 1 130

HaL R1 1995 154 Dynamic Dynamic 4 1 2 1 1 255 int
330 FP

PowerPC
620

1995 133 Dynamic Dynamic 4 1 2 1 1 225 int
300 FP

MIPS
R10000

1996 200 Dynamic Dynamic 4 1 2 2 1 300 int
600 FP

HP 8000 1996 200 Dynamic Static 4 2 2 2 1 > 360 int
> 550 FP

FIGURE 4.60 Recent high-performance processors and their characteristics and suggested references. For the last
seven systems (starting with the UltraSPARC), the SPEC numbers are estimates, since no system has yet shipped. Issue
structure refers to whether the hardware (dynamic) or compiler (static) is responsible for arranging instructions into issue
packets; scheduling similarly describes whether the hardware dynamically schedules instructions or not. To read more about
these processors the following references are useful: IBM Journal of Research and Development (contains issues on Power
and PowerPC designs), the Digital Technical Journal (contains issues on various Alpha processors), and Proceedings of the
Hot Chips Symposium (annual meeting at Stanford, which reviews the newest microprocessors).

360 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

M

sign

t

”
tems

o-

c-

s
nd

nd

re

d

References

AGERWALA, T. AND J. COCKE [1987]. “High performance reduced instruction set processors,” IB
Tech. Rep. (March).

ANDERSON, D. W., F. J. SPARACIO, AND R. M. TOMASULO [1967]. “The IBM 360 Model 91:
Processor philosophy and instruction handling,” IBM J. Research and Development 11:1 (January),
8–24.

BAKOGLU, H. B., G. F. GROHOSKI, L. E. THATCHER, J. A. KAHLE, C. R. MOORE, D. P. TUTTLE, W. E.
MAULE, W. R. HARDELL, D. A. HICKS, M. NGUYEN PHU, R. K. MONTOYE, W. T. GLOVER, AND S.
DHAWAN [1989]. “IBM second-generation RISC processor organization,” Proc. Int’l Conf. on
Computer Design, IEEE (October), Rye, N.Y., 138–142.

CHARLESWORTH, A. E. [1981]. “An approach to scientific array processing: The architecture de
of the AP-120B/FPS-164 family,” Computer 14:9 (September), 18–27.

COLWELL, R. P., R. P. NIX, J. J. O’DONNELL, D. B. PAPWORTH, AND P. K. RODMAN [1987]. “A
VLIW architecture for a trace scheduling compiler,” Proc. Second Conf. on Architectural Suppor
for Programming Languages and Operating Systems, IEEE/ACM (March), Palo Alto, Calif.,
180–192.

DEHNERT, J. C., P. Y.-T. HSU, AND J. P. BRATT [1989]. “Overlapped loop support on the Cydra 5,
Proc. Third Conf. on Architectural Support for Programming Languages and Operating Sys
(April), IEEE/ACM, Boston, 26–39.

DIEP, T. A., C. NELSON, AND J. P. SHEN [1995]. “Performance evaluation of the PowerPC 620 micr
architecture,” Proc. 22th Symposium on Computer Architecture (June), Santa Margherita, Italy.

DITZEL, D. R. AND H. R. MCLELLAN [1987]. “Branch folding in the CRISP microprocessor: Redu
ing the branch delay to zero,” Proc. 14th Symposium on Computer Architecture (June), Pittsburgh,
2–7.

ELLIS, J. R. [1986]. Bulldog: A Compiler for VLIW Architectures, MIT Press, Cambridge, Mass.

FISHER, J. A. [1981]. “Trace scheduling: A technique for global microcode compaction,” IEEE
Trans. on Computers 30:7 (July), 478–490.

FISHER, J. A. [1983]. “Very long instruction word architectures and ELI-512,” Proc. Tenth Sympo-
sium on Computer Architecture (June), Stockholm, 140–150.

FISHER, J. A., J. R. ELLIS, J. C. RUTTENBERG, AND A. NICOLAU [1984]. “Parallel processing: A smart
compiler and a dumb processor,” Proc. SIGPLAN Conf. on Compiler Construction (June), Palo
Alto, Calif., 11–16.

FISHER, J. A. AND S. M. FREUDENBERGER [1992]. “Predicting conditional branches from previou
runs of a program,” Proc. Fifth Conf. on Architectural Support for Programming Languages a
Operating Systems, IEEE/ACM (October), Boston, 85-95.

FISHER, J. A. AND B. R. RAU [1993]. Journal of Supercomputing (January), Kluwer.

FOSTER, C. C. AND E. M. RISEMAN [1972]. “Percolation of code to enhance parallel dispatching a
execution,” IEEE Trans. on Computers C-21:12 (December), 1411–1415.

HSU, P. Y.-T. [1994]. “Designing the TFP microprocessor,” IEEE Micro. 14:2, 23–33.

HWU, W.-M. AND Y. PATT [1986]. “HPSm, a high performance restricted data flow architectu
having minimum functionality,” Proc. 13th Symposium on Computer Architecture (June), Tokyo,
297–307.

IBM [1990]. “The IBM RISC System/6000 processor,” collection of papers, IBM J. Research and
Development 34:1 (January), 119 pages.

JOHNSON, M. [1990]. Superscalar Microprocessor Design, Prentice Hall, Englewood Cliffs, N.J.

JOUPPI, N. P. AND D. W. WALL [1989]. “Available instruction-level parallelism for superscalar an
superpipelined processors,” Proc. Third Conf. on Architectural Support for Programming
Languages and Operating Systems, IEEE/ACM (April), Boston, 272–282.

4.11 Historical Perspective and References 361

s,”

n

n
s

-

-

nd

r

,”
that

h
ing

ems,

nal
LAM, M. [1988]. “Software pipelining: An effective scheduling technique for VLIW processor
SIGPLAN Conf. on Programming Language Design and Implementation, ACM (June), Atlanta,
Ga., 318–328.

LAM, M. S. AND R. P. WILSON [1992]. “Limits of control flow on parallelism,” Proc. 19th Sympo-
sium on Computer Architecture (May), Gold Coast, Australia, 46–57.

MAHLKE, S. A., W. Y. CHEN, W.-M. HWU, B. R. RAU, AND M. S. SCHLANSKER [1992]. “Sentinel
scheduling for VLIW and superscalar processors,” Proc. Fifth Conf. on Architectural Support for
Programming Languages and Operating Systems (October), Boston, IEEE/ACM, 238–247.

MCFARLING, S. [1993] “Combining branch predictors,” WRL Technical Note TN-36 (June), Digital
Western Research Laboratory, Palo Alto, Calif.

MCFARLING, S. AND J. HENNESSY [1986]. “Reducing the cost of branches,” Proc. 13th Symposium
on Computer Architecture (June), Tokyo, 396–403.

NICOLAU, A. AND J. A. FISHER [1984]. “Measuring the parallelism available for very long instructio
word architectures,” IEEE Trans. on Computers C-33:11 (November), 968–976.

PAN, S.-T., K. SO, AND J. T. RAMEH [1992]. “Improving the accuracy of dynamic branch predictio
using branch correlation,” Proc. Fifth Conf. on Architectural Support for Programming Language
and Operating Systems, IEEE/ACM (October), Boston, 76-84.

RAU, B. R., C. D. GLAESER, AND R. L. PICARD [1982]. “Efficient code generation for horizontal
architectures: Compiler techniques and architectural support,” Proc. Ninth Symposium on Comput
er Architecture (April), 131–139.

RAU, B. R., D. W. L. YEN, W. YEN, AND R. A. TOWLE [1989]. “The Cydra 5 departmental supercom
puter: Design philosophies, decisions, and trade-offs,” IEEE Computers 22:1 (January), 12–34.

RISEMAN, E. M. AND C. C. FOSTER [1972]. “Percolation of code to enhance parallel dispatching a
execution,” IEEE Trans. on Computers C-21:12 (December), 1411–1415.

SMITH, A. AND J. LEE [1984]. “Branch prediction strategies and branch-target buffer design,” Com-
puter 17:1 (January), 6–22.

SMITH, J. E. [1981]. “A study of branch prediction strategies,” Proc. Eighth Symposium on Compute
Architecture (May), Minneapolis, 135–148.

SMITH, J. E. [1984]. “Decoupled access/execute computer architectures,” ACM Trans. on Computer
Systems 2:4 (November), 289–308.

SMITH, J. E. [1989]. “Dynamic instruction scheduling and the Astronautics ZS-1,” Computer 22:7
(July), 21–35.

SMITH, J. E. AND A. R. PLESZKUN [1988]. “Implementing precise interrupts in pipelined processors
IEEE Trans. on Computers 37:5 (May), 562–573. This paper is based on an earlier paper
appeared in Proc. 12th Symposium on Computer Architecture, June 1988.

SMITH, J. E., G. E. DERMER, B. D. VANDERWARN, S. D. KLINGER, C. M. ROZEWSKI, D. L. FOWLER,
K. R. SCIDMORE, AND J. P. LAUDON [1987]. “The ZS-1 central processor,” Proc. Second Conf. on
Architectural Support for Programming Languages and Operating Systems, IEEE/ACM (March),
Palo Alto, Calif., 199–204.

SMITH, M. D., M. HOROWITZ, AND M. S. LAM [1992]. “Efficient superscalar performance throug
boosting,” Proc. Fifth Conf. on Architectural Support for Programming Languages and Operat
Systems (October), Boston, IEEE/ACM, 248–259.

SMITH, M. D., M. JOHNSON, AND M. A. HOROWITZ [1989]. “Limits on multiple instruction issue,”
Proc. Third Conf. on Architectural Support for Programming Languages and Operating Syst
IEEE/ACM (April), Boston, 290–302.

SOHI, G. S. [1990]. “Instruction issue logic for high-performance, interruptible, multiple functio
unit, pipelined computers,” IEEE Trans. on Computers 39:3 (March), 349-359.

362 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

i-
ting

c-

ch

r-
per-

h

 of

rag-
loop is

e loop
SOHI, G. S. AND S. VAJAPEYAM [1989]. “Tradeoffs in instruction format design for horizontal arch
tectures,” Proc. Third Conf. on Architectural Support for Programming Languages and Opera
Systems, IEEE/ACM (April), Boston, 15–25.

THORLIN, J. F. [1967]. “Code generation for PIE (parallel instruction execution) computers,” Proc.
Spring Joint Computer Conf. 27.

THORNTON, J. E. [1964]. “Parallel operation in the Control Data 6600,” Proc. AFIPS Fall Joint Com-
puter Conf., Part II, 26, 33–40.

THORNTON, J. E. [1970]. Design of a Computer, the Control Data 6600, Scott, Foresman, Glenview,
Ill.

TJADEN, G. S. AND M. J. FLYNN [1970]. “Detection and parallel execution of independent instru
tions,” IEEE Trans. on Computers C-19:10 (October), 889–895.

TOMASULO, R. M. [1967]. “An efficient algorithm for exploiting multiple arithmetic units,” IBM J.
Research and Development 11:1 (January), 25–33.

WALL , D. W. [1991]. “Limits of instruction-level parallelism,” Proc. Fourth Conf. on Architectural
Support for Programming Languages and Operating Systems (April), Santa Clara, Calif., IEEE/
ACM, 248–259.

WALL , D. W. [1993]. Limits of Instruction-Level Parallelism, Research Rep. 93/6, Western Resear
Laboratory, Digital Equipment Corp. (November).

WEISS, S. AND J. E. SMITH [1984]. “Instruction issue logic for pipelined supercomputers,” Proc. 11th
Symposium on Computer Architecture (June), Ann Arbor, Mich., 110–118.

WEISS, S. AND J. E. SMITH [1987]. “A study of scalar compilation techniques for pipelined supe
computers,” Proc. Second Conf. on Architectural Support for Programming Languages and O
ating Systems (March), IEEE/ACM, Palo Alto, Calif., 105–109.

WEISS, S. AND J. E. SMITH [1994]. Power and PowerPC, Morgan Kaufmann, San Francisco.

YEH, T. AND Y. N. PATT [1992]. “Alternative implementations of two-level adaptive branc
prediction,” Proc. 19th Symposium on Computer Architecture (May), Gold Coast, Australia, 124–
134.

YEH, T. AND Y. N. PATT [1993]. “A comparison of dynamic branch predictors that use two levels
branch history,” Proc. 20th Symposium on Computer Architecture (May), San Diego, 257–266.

E X E R C I S E S

4.1 [15] <4.1> List all the dependences (output, anti, and true) in the following code f
ment. Indicate whether the true dependences are loop-carried or not. Show why the
not parallel.

for (i=2;i<100;i=i+1) {
a[i] = b[i] + a[i]; /* S1 */
c[i-1] = a[i] + d[i]; /* S2 */
a[i-1] = 2 * b[i]; /* S3 */
b[i+1] = 2 * b[i]; /* S4 */

}

4.2 [15] <4.1> Here is an unusual loop. First, list the dependences and then rewrite th
so that it is parallel.

for (i=1;i<100;i=i+1) {
a[i] = b[i] + c[i]; /* S1 */
b[i] = a[i] + d[i]; /* S2 */
a[i+1] = a[i] + e[i]; /* S3 */

}

Exercises 363

ach
tement
lues are
re

op
erhead
putes

ayed
any
e loop
ct that

az-
 in-
g the
ple,

 se-
4.3 [10] <4.1> For the following code fragment, list the control dependences. For e
control dependence, tell whether the statement can be scheduled before the if sta
based on the data references. Assume that all data references are shown, that all va
defined before use, and that only b and c are used again after this segment. You may igno
any possible exceptions.

if (a>c) {
d = d + 5;
a = b + d + e;}

else {
e = e + 2;
f = f + 2;
c = c + f;

}
b = a + f;

4.4 [15] <4.1> Assuming the pipeline latencies from Figure 4.2, unroll the following lo
as many times as necessary to schedule it without any delays, collapsing the loop ov
instructions. Assume a one-cycle delayed branch. Show the schedule. The loop com
Y[i] = a × X[i] + Y[i], the key step in a Gaussian elimination.

loop: LD F0,0(R1)
MULTD F0,F0,F2
LD F4,0(R2)
ADDD F0,F0,F4
SD 0(R2),F0
SUBI R1,R1,8
SUBI R2,R2,8
BNEZ R1,loop

4.5 [15] <4.1> Assume the pipeline latencies from Figure 4.2 and a one-cycle del
branch. Unroll the following loop a sufficient number of times to schedule it without
delays. Show the schedule after eliminating any redundant overhead instructions. Th
is a dot product (assuming F2 is initially 0) and contains a recurrence. Despite the fa
the loop is not parallel, it can be scheduled with no delays.

loop: LD F0,0(R1)
LD F4,0(R2)
MULTD F0,F0,F4
ADDD F2,F0,F2
SUBI R1,R1,#8
SUBI R2,R2,#8
BNEZ R1,loop

4.6 [20] <4.2> It is critical that the scoreboard be able to distinguish RAW and WAR h
ards, since a WAR hazard requires stalling the instruction doing the writing until the
struction reading an operand initiates execution, while a RAW hazard requires delayin
reading instruction until the writing instruction finishes—just the opposite. For exam
consider the sequence:

MULTD F0,F6,F4
SUBD F8,F0,F2
ADDD F2,F10,F2

The SUBD depends on the MULTD (a RAW hazard) and thus the MULTD must be allowed
to complete before the SUBD; if the MULTD were stalled for the SUBD due to the inability
to distinguish between RAW and WAR hazards, the processor will deadlock. This
quence contains a WAR hazard between the ADDD and the SUBD, and the ADDD cannot be

364 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

nits
ing the
s re-
t ac-

onal
ulta-
ence

dware
eme.
roach

: only
 from
quence
 algo-

rate
ary

sign-
 to

order
.

ction.
data-

 loops)
g the
r to the
allowed to complete until the SUBD begins execution. The difficulty lies in distinguishing
the RAW hazard between MULTD and SUBD, and the WAR hazard between the SUBD and
ADDD.

Describe how the scoreboard for a machine with two multiply units and two add u
avoids this problem and show the scoreboard values for the above sequence assum
ADDD is the only instruction that has completed execution (though it has not written it
sult). (Hint: Think about how WAW hazards are prevented and what this implies abou
tive instruction sequences.)

4.7 [12] <4.2> A shortcoming of the scoreboard approach occurs when multiple functi
units that share input buses are waiting for a single result. The units cannot start sim
neously, but must serialize. This is not true in Tomasulo’s algorithm. Give a code sequ
that uses no more than 10 instructions and shows this problem. Assume the har
configuration from Figure 4.3, for the scoreboard, and Figure 4.8, for Tomasulo’s sch
Use the FP latencies from Figure 4.2 (page 224). Indicate where the Tomasulo app
can continue, but the scoreboard approach must stall.

4.8 [15] <4.2> Tomasulo’s algorithm also has a disadvantage versus the scoreboard
one result can complete per clock, due to the CDB. Use the hardware configuration
Figures 4.3 and 4.8 and the FP latencies from Figure 4.2 (page 224). Find a code se
of no more than 10 instructions where the scoreboard does not stall, but Tomasulo’s
rithm must due to CDB contention. Indicate where this occurs in your sequence.

4.9 [45] <4.2> One benefit of a dynamically scheduled processor is its ability to tole
changes in latency or issue capability without requiring recompilation. This was a prim
motivation behind the 360/91 implementation. The purpose of this programming as
ment is to evaluate this effect. Implement a version of Tomasulo’s algorithm for DLX
issue one instruction per clock; your implementation should also be capable of in-
issue. Assume fully pipelined functional units and the latencies shown in Figure 4.61

A one-cycle latency means that the unit and the result are available for the next instru
Assume the processor takes a one-cycle stall for branches, in addition to any
dependent stalls shown in the above table. Choose 5–10 small FP benchmarks (with
to run; compare the performance with and without dynamic scheduling. Try schedulin
loops by hand and see how close you can get with the statically scheduled processo
dynamically scheduled results.

Unit Latency

Integer 7

Branch 9

Load-store 11

FP add 13

FP mult 15

FP divide 17

FIGURE 4.61 Latencies for functional units.

Exercises 365

or and

ent a
 pen-
it rate
ith the
ume a

al
1, and
 en-

ction
lowing
o-bit

dicted
eep-
Deter-
ferent

. You
iction

e the
re the
r these
erform

 at
 the

on in
Change the processor to the configuration shown in Figure 4.62.

Rerun the loops and compare the performance of the dynamically scheduled process
the statically scheduled processor.

4.10 [15] <4.3> Suppose we have a deeply pipelined processor, for which we implem
branch-target buffer for the conditional branches only. Assume that the misprediction
alty is always 4 cycles and the buffer miss penalty is always 3 cycles. Assume 90% h
and 90% accuracy, and 15% branch frequency. How much faster is the processor w
branch-target buffer versus a processor that has a fixed 2-cycle branch penalty? Ass
base CPI without branch stalls of 1.

4.11 [10] <4.3> Determine the improvement from branch folding for uncondition
branches. Assume a 90% hit rate, a base CPI without unconditional branch stalls of
an unconditional branch frequency of 5%. How much improvement is gained by this
hancement versus a processor whose effective CPI is 1.1?

4.12 [30] <4.4> Implement a simulator to evaluate the performance of a branch-predi
buffer that does not store branches that are predicted as untaken. Consider the fol
prediction schemes: a one-bit predictor storing only predicted taken branches, a tw
predictor storing all the branches, a scheme with a target buffer that stores only pre
taken branches and a two-bit prediction buffer. Explore different sizes for the buffers k
ing the total number of bits (assuming 32-bit addresses) the same for all schemes.
mine what the branch penalties are, using Figure 4.24 as a guideline. How do the dif
schemes compare both in prediction accuracy and in branch cost?

4.13 [30] <4.4> Implement a simulator to evaluate various branch prediction schemes
can use the instruction portion of a set of cache traces to simulate the branch-pred
buffer. Pick a set of table sizes (e.g., 1K bits, 2K bits, 8K bits, and 16K bits). Determin
performance of both (0,2) and (2,2) predictors for the various table sizes. Also compa
performance of the degenerate predictor that uses no branch address information fo
table sizes. Determine how large the table must be for the degenerate predictor to p
as well as a (0,2) predictor with 256 entries.

4.14 [20/22/22/22/22/25/25/25/20/22/22] <4.1,4.2,4.4> In this Exercise, we will look
how a common vector loop runs on a variety of pipelined versions of DLX. The loop is
so-called SAXPY loop (discussed extensively in Appendix B) and the central operati

Unit Latency

Integer 19

Branch 21

Load-store 23

FP add 25

FP mult 27

FP divide 29

FIGURE 4.62 Latencies for functional
units, configuration 2.

366 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

le (in-
u will
 pipe-

ipe-
 and
) on
e?

nd
 the
e did
rfor-

oard
at
ctional
ding
ncies

the
e in-
r op-
 (as in
.

e FP
d for
-
e the
 does

 for
aten-
Gaussian elimination. The loop implements the vector operation Y = a × X + Y for a vector
of length 100. Here is the DLX code for the loop:

foo: LD F2,0(R1) ;load X(i)
MULTD F4,F2,F0 ;multiply a*X(i)
LD F6,0(R2) ;load Y(i)
ADDD F6,F4,F6 ;add a*X(i) + Y(i)
SD 0(R2),F6 ;store Y(i)
ADDI R1,R1,#8 ;increment X index
ADDI R2,R2,#8 ;increment Y index
SGTI R3,R1,done ;test if done
BEQZ R3,foo ; loop if not done

For (a)–(e), assume that the integer operations issue and complete in one clock cyc
cluding loads) and that their results are fully bypassed. Ignore the branch delay. Yo
use the FP latencies shown in Figure 4.2 (page 224). Assume that the FP unit is fully
lined.

a. [20] <4.1> For this problem use the standard single-issue DLX pipeline with the p
line latencies from Figure 4.2. Show the number of stall cycles for each instruction
what clock cycle each instruction begins execution (i.e., enters its first EX cycle
the first iteration of the loop. How many clock cycles does each loop iteration tak

b. [22] <4.1> Unroll the DLX code for SAXPY to make four copies of the body a
schedule it for the standard DLX integer pipeline and a fully pipelined FPU with
FP latencies of Figure 4.2. When unwinding, you should optimize the code as w
in section 4.1. Significant reordering of the code will be needed to maximize pe
mance. How many clock cycles does each loop iteration take?

c. [22] <4.2> Using the DLX code for SAXPY above, show the state of the scoreb
tables (as in Figure 4.4) when the SGTI instruction reaches write result. Assume th
issue and read operands each take a cycle. Assume that there is one integer fun
unit that takes only a single execution cycle (the latency to use is 0 cycles, inclu
loads and stores). Assume the FP unit configuration of Figure 4.3 with the FP late
of Figure 4.2. The branch should not be included in the scoreboard.

d. [22] <4.2> Use the DLX code for SAXPY above and a fully pipelined FPU with
latencies of Figure 4.2. Assume Tomasulo’s algorithm for the hardware with on
teger unit taking one execution cycle (a latency of 0 cycles to use) for all intege
erations. Show the state of the reservation stations and register-status tables
Figure 4.9) when the SGTI writes its result on the CDB. Do not include the branch

e. [22] <4.2> Using the DLX code for SAXPY above, assume a scoreboard with th
functional units described in Figure 4.3, plus one integer functional unit (also use
load-store). Assume the latencies shown in Figure 4.63. Show the state of the score
board (as in Figure 4.4) when the branch issues for the second time. Assum
branch was correctly predicted taken and took one cycle. How many clock cycles
each loop iteration take? You may ignore any register port/bus conflicts.

f. [25] <4.2> Use the DLX code for SAXPY above. Assume Tomasulo’s algorithm
the hardware using one fully pipelined FP unit and one integer unit. Assume the l
cies shown in Figure 4.63.

Exercises 367

re 4.9)
rrectly

ndent
ode
ncies
der,
ny

you
riginal

nits,
 that
nre-
tion.

 the
per-
e load
clock
s long

nroll
ons
encies
any

ces-
func-
essor

ch was
 loop
Show the state of the reservation stations and register status tables (as in Figu
when the branch is executed for the second time. Assume the branch was co
predicted as taken. How many clock cycles does each loop iteration take?

g. [25] <4.1,4.4> Assume a superscalar architecture that can issue any two indepe
operations in a clock cycle (including two integer operations). Unwind the DLX c
for SAXPY to make four copies of the body and schedule it assuming the FP late
of Figure 4.2. Assume one fully pipelined copy of each functional unit (e.g., FP ad
FP multiplier) and two integer functional units with latency to use of 0. How ma
clock cycles will each iteration on the original code take? When unwinding,
should optimize the code as in section 4.1. What is the speedup versus the o
code?

h. [25] <4.4> In a superpipelined processor, rather than have multiple functional u
we would fully pipeline all the units. Suppose we designed a superpipelined DLX
had twice the clock rate of our standard DLX pipeline and could issue any two u
lated instructions in the same time that the normal DLX pipeline issued one opera
If the second instruction is dependent on the first, only the first will issue. Unroll
DLX SAXPY code to make four copies of the loop body and schedule it for this su
pipelined processor, assuming the FP latencies of Figure 4.63. Also assume th
to use latency is 1 cycle, but other integer unit latencies are 0 cycles. How many
cycles does each loop iteration take? Remember that these clock cycles are half a
as those on a standard DLX pipeline or a superscalar DLX.

i. [20] <4.4> Start with the SAXPY code and the processor used in Figure 4.29. U
the SAXPY loop to make four copies of the body, performing simple optimizati
(as in section 4.1). Assume all integer unit latencies are 0 cycles and the FP lat
are given in Figure 4.2. Fill in a table like Figure 4.28 for the unrolled loop. How m
clock cycles does each loop iteration take?

j. [22] <4.2,4.6> Using the DLX code for SAXPY above, assume a speculative pro
sor with the functional unit organization used in section 4.6 and a single integer
tional unit. Assume the latencies shown in Figure 4.63. Show the state of the proc
(as in Figure 4.35) when the branch issues for the second time. Assume the bran
correctly predicted taken and took one cycle. How many clock cycles does each
iteration take?

Instruction producing result Instruction using result Latency in clock cycles

FP multiply FP ALU op 6

FP add FP ALU op 4

FP multiply FP store 5

FP add FP store 3

Integer operation
(including load)

Any 0

FIGURE 4.63 Pipeline latencies where latency is number of cycles between producing
and consuming instruction.

368 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

ces-
ne FP
w the
d time.
 clock

tarts
ange

arried,

294
starts.

 4.5.
 a
lling
ce is

order
tions

 value
wn in
eded

i-
ffects
k. [22] <4.2,4.6> Using the DLX code for SAXPY above, assume a speculative pro
sor like Figure 4.34 that can issue one load-store, one integer operation, and o
operation each cycle. Assume the latencies in clock cycles of Figure 4.63. Sho
state of the processor (as in Figure 4.35) when the branch issues for the secon
Assume the branch was correctly predicted taken and took one cycle. How many
cycles does each loop iteration take?

4.15 [15] <4.5> Here is a simple code fragment:

for (i=2;i<=100;i+=2)

a[i] = a[50 * i+1];

To use the GCD test, this loop must first be “normalized”—written so that the index s
at 1 and increments by 1 on every iteration. Write a normalized version of the loop (ch
the indices as needed), then use the GCD test to see if there is a dependence.

4.16 [15] <4.1,4.5> Here is another loop:

for (i=2,i<=100;i+=2)

a[i] = a[i-1];

Normalize the loop and use the GCD test to detect a dependence. Is there a loop-c
true dependence in this loop?

4.17 [25] <4.5> Show that if for two array elements A(a × i + b) and A(c × i + d) there is
a true dependence, then GCD(c,a) divides (d – b).

4.18 [15] <4.5> Rewrite the software pipelining loop shown in the Example on page
in section 4.5, so that it can be run by simply decrementing R1 by 16 before the loop
After rewriting the loop, show the start-up and finish-up code. Hint: To get the loop to run
properly when R1 is decremented, the SD should store the result of the original first itera-
tion. You can achieve this by adjusting load-store offsets.

4.19 [20] <4.5> Consider the loop that we software pipelined on page 294 in section
Suppose the latency of the ADDD was five cycles. The software pipelined loop now has
stall. Show how this loop can be written using both software pipelining and loop unro
to eliminate any stalls. The loop should be unrolled as few times as possible (on
enough). You need not show loop start-up or clean-up.

4.20 [15/15] <4.6> Consider our speculative processor from section 4.6. Since the re
buffer contains a value field, you might think that the value field of the reservation sta
could be eliminated.

a. [15] <4.6> Show an example where this is the case and an example where the
field of the reservation stations is still needed. Use the speculative machine sho
Figure 4.34. Show DLX code for both examples. How many value fields are ne
in each reservation station?

b. [15] <4.6> Find a modification to the rules for instruction commit that allows elim
nation of the value fields in the reservation station. What are the negative side e
of such a change?

Exercises 369

uces
 reg-
en-

rrupts
 a reg-
 that

Show
ple in
ation.
ding

types
 those
text or
re am-
ons:

 input

easily
e reg-

eedy
cu-

w-

 the

ing

 two

cks.

ts will
4.21 [20] <4.6> Our implementation of speculation uses a reorder buffer and introd
the concept of instruction commit, delaying commit and the irrevocable updating of the
isters until we know an instruction will complete. There are two other possible implem
tation techniques, both originally developed as a method for preserving precise inte
when issuing out of order. One idea introduces a future file that keeps future values of
ister; this idea is similar to the reorder buffer. An alternative is to keep a history buffer
records values of registers that have been speculatively overwritten.

Design a speculative processor like the one in section 4.6 but using a history buffer.
the state of the processor, including the contents of the history buffer, for the exam
Figure 4.36. Show the changes needed to Figure 4.37 for a history buffer implement
Describe exactly how and when entries in the history buffer are read and written, inclu
what happens on an incorrect speculation.

4.22 [30/30] <4.8> This exercise involves a programming assignment to evaluate what
of parallelism might be expected in more modest, and more realistic, processors than
studied in section 4.7. These studies can be done using traces available with this
obtained from other tracing programs. For simplicity, assume perfect caches. For a mo
bitious project, assume a real cache. To simplify the task, make the following assumpti

■ Assume perfect branch and jump prediction: hence you can use the trace as the
to the window, without having to consider branch effects—the trace is perfect.

■ Assume there are 64 spare integer and 64 spare floating-point registers; this is
implemented by stalling the issue of the processor whenever there are more liv
isters required.

■ Assume a window size of 64 instructions (the same for alias detection). Use gr
scheduling of instructions in the window. That is, at any clock cycle, pick for exe
tion the first n instructions in the window that meet the issue constraints.

a. [30] <4.8> Determine the effect of limited instruction issue by performing the follo
ing experiments:

■ Vary the issue count from 4–16 instructions per clock,

■ Assuming eight issues per clock: determine what the effect of restricting
processor to two memory references per clock is.

b. [30] <4.8> Determine the impact of latency in instructions. Assume the follow
latency models for a processor that issues up to 16 instructions per clock:

■ Model 1: All latencies are one clock.

■ Model 2: Load latency and branch latency are one clock; all FP latencies are
clocks.

■ Model 3: Load and branch latency is two clocks; all FP latencies are five clo

Remember that with limited issue and a greedy scheduler, the impact of latency effec
be greater.

370 Chapter 4 Advanced Pipelining and Instruction-Level Parallelism

able
s that
-offs
ically
gram
es rely
amic

ple-
rob-
 same
struc-
e it is
nd its

inst the
ation
 be

tiple

rscalar
xt of
er in

4.23 [Discussion] <4.3,4.6> Dynamic instruction scheduling requires a consider
investment in hardware. In return, this capability allows the hardware to run program
could not be run at full speed with only compile-time, static scheduling. What trade
should be taken into account in trying to decide between a dynamically and a stat
scheduled implementation? What situations in either hardware technology or pro
characteristics are likely to favor one approach or the other? Most speculative schem
on dynamic scheduling; how does speculation affect the arguments in favor of dyn
scheduling?

4.24 [Discussion] <4.3> There is a subtle problem that must be considered when im
menting Tomasulo’s algorithm. It might be called the “two ships passing in the night p
lem.” What happens if an instruction is being passed to a reservation station during the
clock period as one of its operands is going onto the common data bus? Before an in
tion is in a reservation station, the operands are fetched from the register file; but onc
in the station, the operands are always obtained from the CDB. Since the instruction a
operand tag are in transit to the reservation station, the tag cannot be matched aga
tag on the CDB. So there is a possibility that the instruction will then sit in the reserv
station forever waiting for its operand, which it just missed. How might this problem
solved? You might consider subdividing one of the steps in the algorithm into mul
parts. (This intriguing problem is courtesy of J. E. Smith.)

4.25 [Discussion] <4.4-4.6> Discuss the advantages and disadvantages of a supe
implementation, a superpipelined implementation, and a VLIW approach in the conte
DLX. What levels of ILP favor each approach? What other concerns would you consid
choosing which type of processor to build? How does speculation affect the results?

5

Memory-Hierarchy
Design 5
uch

.

 the
Ideally one would desire an indefinitely large memory capacity s

that any particular . . . word would be immediately available. . .

We are . . . forced to recognize the possibility of constructing a

hierarchy of memories, each of which has greater capacity than

preceding but which is less quickly accessible.

A. W. Burks, H. H. Goldstine, and J. von Neumann
Preliminary Discussion of the Logical Design
of an Electronic Computing Instrument (1946)

5.1 Introduction 373

5.2 The ABCs of Caches 375

5.3 Reducing Cache Misses 390

5.4 Reducing Cache Miss Penalty 411

5.5 Reducing Hit Time 422

5.6 Main Memory 427

5.7 Virtual Memory 439

5.8 Protection and Examples of Virtual Memory 447

5.9 Crosscutting Issues in the Design of Memory Hierarchies 457

5.10 Putting It All Together:
The Alpha AXP 21064 Memory Hierarchy 461

5.11 Fallacies and Pitfalls 466

5.12 Concluding Remarks 471

5.13 Historical Perspective and References 472

Exercises 476
ited

ory
at
 page
 the
ory is
aller,
ide a
 and
subset
ta in
ttom
y to a
ping,
Computer pioneers correctly predicted that programmers would want unlim
amounts of fast memory. An economical solution to that desire is a memory hier-
archy, which takes advantage of locality and cost/performance of mem
technologies. The principle of locality, presented in the first chapter, says th
most programs do not access all code or data uniformly (see section 1.6,
38). This principle, plus the guideline that smaller hardware is faster, led to
hierarchy based on memories of different speeds and sizes. Since fast mem
expensive, a memory hierarchy is organized into several levels—each sm
faster, and more expensive per byte than the next level. The goal is to prov
memory system with cost almost as low as the cheapest level of memory
speed almost as fast as the fastest level. The levels of the hierarchy usually
one another; all data in one level is also found in the level below, and all da
that lower level is found in the one below it, and so on until we reach the bo
of the hierarchy. Note that each level maps addresses from a larger memor
smaller but faster memory higher in the hierarchy. As part of address map

5.1 Introduction

374

Chapter 5 Memory-Hierarchy Design

 pro-
rchy.
 per-
n de-
hes.
year
 pro-
cess
rchi-

ory
mem-

the memory hierarchy is given the responsibility of address checking; hence
tection schemes for scrutinizing addresses are also part of the memory hiera

The importance of the memory hierarchy has increased with advances in
formance of processors. For example, in 1980 microprocessors were ofte
signed without caches, while in 1995 they often come with two levels of cac
As noted in Chapter 1, microprocessor performance improved 55% per
since 1987, and 35% per year until 1986. Figure 5.1 plots CPU performance
jections against the historical performance improvement in main memory ac
time. Clearly there is a processor-memory performance gap that computer a
tects must try to close.

In addition to giving us the trends that highlight the importance of the mem
hierarchy, Chapter 1 gives us a formula to evaluate the effectiveness of the
ory hierarchy:

Memory stall cycles = Instruction count × Memory references per instruction × Miss rate × Miss penalty

FIGURE 5.1 Starting with 1980 performance as a baseline, the performance of mem-
ory and CPUs are plotted over time. The memory baseline is 64-KB DRAM in 1980, with
three years to the next generation and a 7% per year performance improvement in latency
(see Figure 5.30 on page 429). The CPU line assumes a 1.35 improvement per year until
1986, and a 1.55 improvement thereafter. Note that the vertical axis must be on a logarithmic
scale to record the size of the CPU-DRAM performance gap.

10,000

1000

100

10

1

Performance

Year

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

20
00

19
98

19
99

Memory CPU

5.2 The ABCs of Caches

375

g the
tem

ffs of
ns on

show
 the
e the
ms.

e,

 en-
pplies
s so

se

tions
nd

where Miss rate is the fraction of accesses that are not in the cache and Miss
penalty is the additional clock cycles to service the miss. Recall that a block is the
minimum unit of information that can be present in the cache (hit in the cache) or
not (miss in the cache).

This chapter uses a related formula to evaluate many examples of usin
principle of locality to improve performance while keeping the memory sys
affordable. This common principle allows us to pose four questions aboutany
level of the hierarchy:

Q1: Where can a block be placed in the upper level? (Block placement)

Q2: How is a block found if it is in the upper level? (Block identification)

Q3: Which block should be replaced on a miss? (Block replacement)

Q4: What happens on a write? (Write strategy)

The answers to these questions help us understand the different trade-o
memories at different levels of a hierarchy; hence we ask these four questio
every example.

To put these abstract ideas into practice, throughout the chapter we
examples from the four levels of the memory hierarchy in a computer using
Alpha AXP 21064 microprocessor. Toward the end of the chapter we evaluat
impact of these levels on performance using the SPEC92 benchmark progra

Cache: a safe place for hiding or storing things.

Webster’s New World Dictionary of the American Languag
Second College Edition (1976)

Cache is the name generally given to the first level of the memory hierarchy
countered once the address leaves the CPU. Since the principle of locality a
at many levels, and taking advantage of locality to improve performance i
popular, the term cache is now applied whenever buffering is employed to reu
commonly occurring items; examples include file caches, name caches, and so
on. We start our description of caches by answering the four common ques
for the first level of the memory hierarchy; you’ll see similar questions a
answers later.

5.2 The ABCs of Caches

376

Chapter 5 Memory-Hierarchy Design

 cate-

aid to

Q1: Where can a block be placed in a cache?
Figure 5.2 shows that the restrictions on where a block is placed create three
gories of cache organization:

■ If each block has only one place it can appear in the cache, the cache is s
be direct mapped. The mapping is usually

(Block address) MOD (Number of blocks in cache)

FIGURE 5.2 This example cache has eight block frames and memory has 32 blocks.
Real caches contain hundreds of block frames and real memories contain millions of blocks.
The set-associative organization has four sets with two blocks per set, called two-way set as-
sociative. Assume that there is nothing in the cache and that the block address in question
identifies lower-level block 12. The three options for caches are shown left to right. In fully
associative, block 12 from the lower level can go into any of the eight block frames of the
cache. With direct mapped, block 12 can only be placed into block frame 4 (12 modulo 8).
Set associative, which has some of both features, allows the block to be placed anywhere in
set 0 (12 modulo 4). With two blocks per set, this means block 12 can be placed either in block
0 or block 1 of the cache.

Fully associative:
block 12 can go
anywhere

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7Block
no.

Block
no.

Block
no.

Set
0

Set
1

Set
2

Set
3

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Block

Block frame address

no.

Cache

Memory

5.2 The ABCs of Caches

377

che is

st
at set.

uum
ative

are di-
ns we

ss. The
ed to
s are

rma-

r
match

CPU
t divi-

he tag
e on

set to
 index

ent or
■ If a block can be placed anywhere in the cache, the cache is said to befully
associative.

■ If a block can be placed in a restricted set of places in the cache, the ca
said to be set associative. A set is a group of blocks in the cache. A block is fir
mapped onto a set, and then the block can be placed anywhere within th
The set is usually chosen by bit selection; that is,

(Block address) MOD (Number of sets in cache)

If there are n blocks in a set, the cache placement is called n-way set associative.

The range of caches from direct mapped to fully associative is really a contin
of levels of set associativity: Direct mapped is simply one-way set associ
and a fully associative cache with m blocks could be called m-way set associa-
tive; equivalently, direct mapped can be thought of as having m sets and fully
associative as having one set. The vast majority of processor caches today
rect mapped, two-way set associative, or four-way set associative, for reaso
shall see shortly.

Q2: How is a block found if it is in the cache?
Caches have an address tag on each block frame that gives the block addre
tag of every cache block that might contain the desired information is check
see if it matches the block address from the CPU. As a rule, all possible tag
searched in parallel because speed is critical.

There must be a way to know that a cache block does not have valid info
tion. The most common procedure is to add a valid bit to the tag to say whether o
not this entry contains a valid address. If the bit is not set, there cannot be a
on this address.

Before proceeding to the next question, let’s explore the relationship of a
address to the cache. Figure 5.3 shows how an address is divided. The firs
sion is between the block address and the block offset. The block frame address
can be further divided into the tag field and the index field. The block offset field
selects the desired data from the block, the index field selects the set, and t
field is compared against it for a hit. While the comparison could be mad
more of the address than the tag, there is no need because of the following:

■ Checking the index would be redundant, since it was used to select the
be checked; an address stored in set 0, for example, must have 0 in the
field or it couldn’t be stored in set 0.

■ The offset is unnecessary in the comparison since the entire block is pres
not, and hence all block offsets must match.

378

Chapter 5 Memory-Hierarchy Design

s the
asing

o the
hes

d with
isions
e is
e or
 There

ly
 repro-

n
laced

a cor-
 the

 the
 ex-

ce in

 reads,
hap-
king
nd

If the total cache size is kept the same, increasing associativity increase
number of blocks per set, thereby decreasing the size of the index and incre
the size of the tag. That is, the tag-index boundary in Figure 5.3 moves t
right with increasing associativity, with the end case of fully associative cac
having no index field.

Q3: Which block should be replaced on a cache miss?
When a miss occurs, the cache controller must select a block to be replace
the desired data. A benefit of direct-mapped placement is that hardware dec
are simplified—in fact, so simple that there is no choice: Only one block fram
checked for a hit, and only that block can be replaced. With fully associativ
set-associative placement, there are many blocks to choose from on a miss.
are two primary strategies employed for selecting which block to replace:

■ Random—To spread allocation uniformly, candidate blocks are random
selected. Some systems generate pseudorandom block numbers to get
ducible behavior, which is particularly useful when debugging hardware.

■ Least-recently used (LRU)—To reduce the chance of throwing out informatio
that will be needed soon, accesses to blocks are recorded. The block rep
is the one that has been unused for the longest time. LRU makes use of
ollary of locality: If recently used blocks are likely to be used again, then
best candidate for disposal is the least-recently used block.

A virtue of random replacement is that it is simple to build in hardware. As
number of blocks to keep track of increases, LRU becomes increasingly
pensive and is frequently only approximated. Figure 5.4 shows the differen
miss rates between LRU and random replacement.

Q4: What happens on a write?
Reads dominate processor cache accesses. All instruction accesses are
and most instructions don’t write to memory. Figure 2.26 on page 105 in C
ter 2 suggests a mix of 9% stores and 26% loads for DLX programs, ma
writes 9%/(100% + 26% + 9%) or about 7% of the overall memory traffic a

FIGURE 5.3 The three portions of an address in a set-associative or direct-mapped
cache. The tag is used to check all the blocks in the set and the index is used to select the
set. The block offset is the address of the desired data within the block.

Tag Index
Block
offset

Block address

5.2 The ABCs of Caches

379

on
 tradi-
aw
 can-

ck can
so the
it, the

miss,

g is
 paral-
ces-
y that
s than

tions

ory

ture

ock

9%/(26% + 9%) or about 25% of the data cache traffic. Making the comm
case fast means optimizing caches for reads, especially since processors
tionally wait for reads to complete but need not wait for writes. Amdahl’s L
(section 1.6, page 29) reminds us, however, that high-performance designs
not neglect the speed of writes.

Fortunately, the common case is also the easy case to make fast. The blo
be read from cache at the same time that the tag is read and compared,
block read begins as soon as the block address is available. If the read is a h
requested part of the block is passed on to the CPU immediately. If it is a
there is no benefit—but also no harm; just ignore the value read.

Such is not the case for writes. Modifying a block cannot begin until the ta
checked to see if the address is a hit. Because tag checking cannot occur in
lel, writes normally take longer than reads. Another complexity is that the pro
sor also specifies the size of the write, usually between 1 and 8 bytes; onl
portion of a block can be changed. In contrast, reads can access more byte
necessary without fear.

The write policies often distinguish cache designs. There are two basic op
when writing to the cache:

■ Write through (or store through)—The information is written to both the block
in the cache and to the block in the lower-level memory.

■ Write back (also called copy back or store in)—The information is written only
to the block in the cache. The modified cache block is written to main mem
only when it is replaced.

To reduce the frequency of writing back blocks on replacement, a fea
called the dirty bit is commonly used. This status bit indicates whether the bl
is dirty (modified while in the cache) or clean (not modified). If it is clean, the

Associativity

Two-way Four-way Eight-way

Size LRU Random LRU Random LRU Random

16 KB 5.18% 5.69% 4.67% 5.29% 4.39% 4.96%

64 KB 1.88% 2.01% 1.54% 1.66% 1.39% 1.53%

256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

FIGURE 5.4 Miss rates comparing least-recently used versus random replacement
for several sizes and associativities. These data were collected for a block size of 16 bytes
using one of the VAX traces containing user and operating system code. There is little differ-
ence between LRU and random for larger-size caches in this trace. Although not included in
the table, a first-in, first-out order replacement policy is worse than random or LRU.

380

Chapter 5 Memory-Hierarchy Design

n to

ck,
lock

o to
ve in
 the
rite
t copy
ine

 they
write
hy.
the

to the
 we

 on a

s.

ck,
to that
write

e data
000
locks
nd

 (The
), the

or tag
e 29-
 into
block is not written on a miss, since the lower level has identical informatio
the cache.

Both write back and write through have their advantages. With write ba
writes occur at the speed of the cache memory, and multiple writes within a b
require only one write to the lower-level memory. Since some writes don’t g
memory, write back uses less memory bandwidth, making write back attracti
multiprocessors. With write through, read misses never result in writes to
lower level, and write through is easier to implement than write back. W
through also has the advantage that the next lower level has the most curren
of the data. This is important for I/O and for multiprocessors, which we exam
in Chapters 6 and 8. As we shall see, I/O and multiprocessors are fickle:
want write back for processor caches to reduce the memory traffic and
through to keep the cache consistent with lower levels of the memory hierarc

When the CPU must wait for writes to complete during write through,
CPU is said to write stall. A common optimization to reduce write stalls is a write
buffer, which allows the processor to continue as soon as the data is written
buffer, thereby overlapping processor execution with memory updating. As
shall see shortly, write stalls can occur even with write buffers.

Since the data are not needed on a write, there are two common options
write miss:

■ Write allocate (also called fetch on write)—The block is loaded on a write
miss, followed by the write-hit actions above. This is similar to a read mis

■ No-write allocate (also called write around)—The block is modified in the
lower level and not loaded into the cache.

Although either write-miss policy could be used with write through or write ba
write-back caches generally use write allocate (hoping that subsequent writes
block will be captured by the cache) and write-through caches often use no-
allocate (since subsequent writes to that block will still have to go to memory).

An Example: The Alpha AXP 21064 Data Cache
and Instruction Cache

To give substance to these ideas, Figure 5.5 shows the organization of th
cache in the Alpha AXP 21064 microprocessor that is found in the DEC 3
Model 800 workstation. The cache contains 8192 bytes of data in 32-byte b
with direct-mapped placement, write through with a four-block write buffer, a
no-write allocate on a write miss.

Let’s trace a cache hit through the steps of a hit as labeled in Figure 5.5.
four steps are shown as circled numbers.) As we shall see later (Figure 5.41
21064 microprocessor presents a 34-bit physical address to the cache f
comparison. The address coming into the cache is divided into two fields: th
bit block address and 5-bit block offset. The block address is further divided
an address tag and cache index. Step 1 shows this division.

5.2 The ABCs of Caches

381

 in the
ociativ-
nd we

lows
d and

f the
 con-

The cache index selects the tag to be tested to see if the desired block is
cache. The size of the index depends on cache size, block size, and set ass
ity. The 21064 cache is direct mapped, so set associativity is set to one, a
calculate the index as follows:

Hence the index is 8 bits wide, and the tag is 29 – 8 or 21 bits wide.
Index selection is step 2 in Figure 5.5. Remember that direct mapping al

the data to be read and sent to the CPU in parallel with the tag being rea
checked.

After reading the tag from the cache, it is compared to the tag portion o
block address from the CPU. This is step 3 in the figure. To be sure the tag

FIGURE 5.5 The organization of the data cache in the Alpha AXP 21064 microproces-
sor. The 8-KB cache is direct mapped with 32-byte blocks. It has 256 blocks selected by the
8-bit index. The four steps of a read hit, shown as circled numbers in order of occurrence,
label this organization. Although we show a 4:1 multiplexer to select the desired 8 bytes, in
reality the data RAM is organized 8 bytes wide and the multiplexer is unnecessary: 2 bits of
the block offset join the index to supply the RAM address to select the proper 8 bytes (see
Figure 5.8). Although not exercised in this example, the line from memory to the cache is
used on a miss to load the cache.

Block address
Block
offset

CPU
address
Data
in

Data
out

<21>

 Tag Index

<8> <5>

Valid
<1>

Data
<256>

=?

4

3

(256
blocks)

2

1

Write
buffer

Lower level memory

Tag
<21>

4:1 Mux

2
index Cache size

Block size Set associativity×
-- 8192

32 1×
--------------- 256 2

8
= = ==

382

Chapter 5 Memory-Hierarchy Design

pari-

d the
s, so
se

 it is
re the
n 5.5
tion

data
 hold
 are
 the
 to
cked
buffer

the
rite
rite
PU)

s on a
 wait,
 next
sev-
 clock
hoice
e ad-
ache
lows

y
single
 load
y re-

ld
e way
 and
luding
l to
tains valid information, the valid bit must be set or else the results of the com
son are ignored.

Assuming the tag does match, the final step is to signal the CPU to loa
data from the cache. The 21064 allows two clock cycles for these four step
the instructions in the following two clock cycles would stall if they tried to u
the result of the load.

Handling writes is more complicated than handling reads in the 21064, as
in any cache. If the word to be written is in the cache, the first three steps a
same. After the tag comparison indicates a hit, the data are written. (Sectio
shows how the 21064 avoids the extra time on write hits that this descrip
implies.)

Since this is a write-through cache, the write process isn’t yet over. The
are also sent to a write buffer that can contain up to four blocks that each can
four 64-bit words. If the write buffer is empty, the data and the full address
written in the buffer, and the write is finished from the CPU’s perspective;
CPU continues working while the write buffer prepares to write the word
memory. If the buffer contains other modified blocks, the addresses are che
to see if the address of this new data matches the address of the valid write
entry; if so, the new data are combined with that entry, called write merging.
Without this optimization, four stores to sequential addresses would fill
buffer, even though these four words easily fit within a single block of the w
buffer when merged. Figure 5.6 shows a write buffer with and without w
merging. If the buffer is full and there is no address match, the cache (and C
must wait until the buffer has an empty entry.

So far we have assumed the common case of a cache hit. What happen
miss? On a read miss, the cache sends a stall signal to the CPU telling it to
and 32 bytes are read from the next level of the hierarchy. The path to the
lower level is 16 bytes wide in the DEC 3000 model 800 workstation, one of
eral models that use the 21064. That takes 5 clock cycles per transfer, or 10
cycles for all 32 bytes. Since the data cache is direct mapped, there is no c
on which block to replace. Replacing a block means updating the data, th
dress tag, and the valid bit. On a write miss, the CPU writes “around” the c
to lower-level memory and does not affect the cache; that is, the 21064 fol
the no-write-allocate rule.

We have seen how it works, but the data cache cannot supply all the memor
needs of the processor: the processor also needs instructions. Although a
cache could try to supply both, it can be a bottleneck. For example, when a
or store instruction is executed, the pipelined processor will simultaneousl
quest both a data word and an instruction word. Hence a single cache wou
present a structural hazard for loads and stores, leading to stalls. One simpl
to conquer this problem is to divide it: one cache is dedicated to instructions
another to data. Separate caches are found in most recent processors, inc
the Alpha AXP 21064. It has an 8-KB instruction cache that is nearly identica
its 8-KB data cache in Figure 5.5.

5.2 The ABCs of Caches

383

ress,
tween
nity of
socia-

n

 data
tween
voted
epa-
size to
 data
 miss
rcent-

sts the

The CPU knows whether it is issuing an instruction address or a data add
so there can be separate ports for both, thereby doubling the bandwidth be
the memory hierarchy and the CPU. Separate caches also offer the opportu
optimizing each cache separately: different capacities, block sizes, and as
tivities may lead to better performance. (In contrast to the instruction caches and
data caches of the 21064, the terms unified or mixed are applied to caches that ca
contain either instructions or data.)

Figure 5.7 shows that instruction caches have lower miss rates than
caches. Separating instructions and data removes misses due to conflicts be
instruction blocks and data blocks, but the split also fixes the cache space de
to each type. Which is more important to miss rates? A fair comparison of s
rate instruction and data caches to unified caches requires the total cache
be the same. For example, a separate 1-KB instruction cache and 1-KB
cache should be compared to a 2-KB unified cache. Calculating the average
rate with separate instruction and data caches necessitates knowing the pe
age of memory references to each cache. Figure 2.26 on page 105 sugge

FIGURE 5.6 To illustrate write merging, the write buffer on top does not use it while
the write buffer on the bottom does. Each buffer has four entries, and each entry holds four
64-bit words. The address for each entry is on the left, with valid bits (V) indicating whether
or not the next sequential four bytes are occupied in this entry. The four writes are merged
into a single buffer entry with write merging; without it, all four entries are used. Without write
merging, the blocks to the right in the upper drawing would only be used for instructions that
wrote multiple words at the same time. (The Alpha is a 64-bit architecture so its buffer is really
8 bytes per word.)

100

104

108

112

Write address

1

1

1

1

V

0

0

0

0

V

0

0

0

0

V

0

0

0

0

V

100

Write address

1

0

0

0

V

1

0

0

0

V

1

0

0

0

V

1

0

0

0

V

384

Chapter 5 Memory-Hierarchy Design

% +
rfor-
e in a

valu-
 such
. The
 con-
dware.
better
mory:

 be-
bsolute
 CPU
r that
ough

.

split is 100%/(100% + 26% + 9%) or about 75% instruction references to (26
9%)/(100% + 26% + 9%) or about 25% data references. Splitting affects pe
mance beyond what is indicated by the change in miss rates, as we shall se
little bit.

Cache Performance

Because instruction count is independent of the hardware, it is tempting to e
ate CPU performance using that number. As we saw in Chapter 1, however,
indirect performance measures have waylaid many a computer designer
corresponding temptation for evaluating memory-hierarchy performance is to
centrate on miss rate, because it, too, is independent of the speed of the har
As we shall see, miss rate can be just as misleading as instruction count. A
measure of memory-hierarchy performance is the average time to access me

Average memory access time = Hit time + Miss rate × Miss penalty

where Hit time is the time to hit in the cache; we have seen the other two terms
fore. The components of average access time can be measured either in a
time—say, 2 nanoseconds on a hit—or in the number of clock cycles that the
waits for the memory—such as a miss penalty of 50 clock cycles. Remembe
average memory access time is still an indirect measure of performance; alth
it is a better measure than miss rate, it is not a substitute for execution time.

This formula can help us decide between split caches and a unified cache

E X A M P L E Which has the lower miss rate: a 16-KB instruction cache with a 16-KB
data cache or a 32-KB unified cache? Use the miss rates in Figure 5.7 to
help calculate the correct answer. Assume a hit takes 1 clock cycle and
the miss penalty is 50 clock cycles, and a load or store hit takes 1 extra
clock cycle on a unified cache since there is only one cache port to satisfy

Size Instruction cache Data cache Unified cache

1 KB 3.06% 24.61% 13.34%

2 KB 2.26% 20.57% 9.78%

4 KB 1.78% 15.94% 7.24%

8 KB 1.10% 10.19% 4.57%

16 KB 0.64% 6.47% 2.87%

32 KB 0.39% 4.82% 1.99%

64 KB 0.15% 3.77% 1.35%

128 KB 0.02% 2.88% 0.95%

FIGURE 5.7 Miss rates for instruction, data, and unified caches of different sizes. The
data are for a direct-mapped cache with 32-byte blocks for an average of SPEC92 bench-
marks on the DECstation 5000 [Gee et al. 1993]. The percentage of instruction references is
about 75%.

5.2 The ABCs of Caches

385

at all
ically
 using
ount

s for
rt of
ost
two simultaneous requests. Using the pipelining terminology of the previ-
ous chapter, the unified cache leads to a structural hazard. What is the av-
erage memory access time in each case? Assume write-through caches
with a write buffer and ignore stalls due to the write buffer.

A N S W E R As stated above, about 75% of the memory accesses are instruction
references. Thus, the overall miss rate for the split caches is

(75% × 0.64%) + (25% × 6.47%) = 2.10%

According to Figure 5.7, a 32-KB unified cache has a slightly lower miss
rate of 1.99%.

The average memory access time formula can be divided into
instruction and data accesses:

So the time for each organization is

Hence the split caches in this example—which offer two memory ports
per clock cycle, thereby avoiding the structural hazard—have a better av-
erage memory access time than the single-ported unified cache even
though their effective miss rate is higher. ■

In Chapter 1 we saw another formula for the memory hierarchy:

CPU time = (CPU execution clock cycles + Memory stall clock cycles) × Clock cycle time

To simplify evaluation of cache alternatives, sometimes designers assume th
memory stalls are due to cache misses since the memory hierarchy typ
dominates other reasons for stalls, such as contention due to I/O devices
memory. We use this simplifying assumption here, but it is important to acc
for all memory stalls when calculating final performance!

The CPU time formula above raises the question whether the clock cycle
a cache hit should be considered part of CPU execution clock cycles or pa
memory stall clock cycles. Although either convention is defensible, the m
widely accepted is to include hit clock cycles in CPU execution clock cycles.

Average memory access time

% instructions Hit time Instruction miss rate Miss penalty×+() +×=

% data Hit time Data miss rate Miss penalty×+()×

Average memory access timesplit

75% 1 0.64% 50×+() 25% 1 6.47% 50×+()×+×=

75% 1.32×() 25% 4.235×()+ 0.990 1.059+ 2.05= = =

Average memory access timeunified

75% 1 1.99% 50×+() 25% 1 1 1.99% 50×+ +()×+×=

75% 1.995×() 25% 2.995×()+ 1.496 0.749+ 2.24= = =

386 Chapter 5 Memory-Hierarchy Design

em-
 reads

and

re of-

les,
ction,

ple-
eated
e the
uction
dent;

e very
ular
ion
Memory stall clock cycles can then be defined in terms of the number of m
ory accesses per program, miss penalty (in clock cycles), and miss rate for
and writes:

Memory stall clock cycles = Reads × Read miss rate × Read miss penalty

+ Writes × Write miss rate × Write miss penalty

We often simplify the complete formula by combining the reads and writes
finding the average miss rates and miss penalty for reads and writes:

Memory stall clock cycles = Memory accesses × Miss rate × Miss penalty

This formula is an approximation since the miss rates and miss penalties a
ten different for reads and writes.

Factoring instruction count (IC) from execution time and memory stall cyc
we now get a CPU time formula that includes memory accesses per instru
miss rate, and miss penalty:

Some designers prefer measuring miss rate as misses per instruction rather
than misses per memory reference:

The advantage of this measure is that it is independent of the hardware im
mentation. For example, the 21064 instruction prefetch unit can make rep
references to a single word (see section 5.10), which can artificially reduc
miss rate if measured as misses per memory reference rather than per instr
executed. The drawback is that misses per instruction is architecture depen
for example, the average number of memory accesses per instruction may b
different for an 80x86 versus DLX. Thus misses per instruction is most pop
with architects working with a single computer family. They then use this vers
of the CPU time formula:

We can now explore the impact of caches on performance.

E X A M P L E Let’s use a machine similar to the Alpha AXP as a first example. Assume
the cache miss penalty is 50 clock cycles, and all instructions normally take
2.0 clock cycles (ignoring memory stalls). Assume the miss rate is 2%, and

CPU time IC CPIexecution
Memory accesses

Instruction
--+

× Miss rate Miss penalty×× 
 Clock cycle time×=

Misses
Instruction
-------------------------- Memory accesses Miss rate×

Instruction
---=

CPU time = IC CPIexecution
Memory stall clock cycles

Instruction
---+

× 
 Clock cycle time×

5.2 The ABCs of Caches 387

 per-
 CPU

s are
lock

thus
vior in

l and
uce
there is an average of 1.33 memory references per instruction. What is the
impact on performance when behavior of the cache is included?

A N S W E R

The performance, including cache misses, is

CPU timewith cache = IC × (2.0 + (1.33 × 2% × 50)) × Clock cycle time

= IC × 3.33 × Clock cycle time

The clock cycle time and instruction count are the same, with or without a
cache, so CPU time increases with CPI from 2.0 for a “perfect cache” to
3.33 with a cache that can miss. Hence, including the memory hierarchy
in the CPI calculations stretches the CPU time by a factor of 1.67. Without
any memory hierarchy at all the CPI would increase to 2.0 + 50 × 1.33 or
68.5—a factor of over 30 times longer! ■

As this example illustrates, cache behavior can have enormous impact on
formance. Furthermore, cache misses have a double-barreled impact on a
with a low CPI and a fast clock:

1. The lower the CPIexecution, the higher the relative impact of a fixed number of
cache miss clock cycles.

2. When calculating CPI, the cache miss penalty is measured in CPU clock
cycles for a miss. Therefore, even if memory hierarchies for two computer
identical, the CPU with the higher clock rate has a larger number of c
cycles per miss and hence the memory portion of CPI is higher.

The importance of the cache for CPUs with low CPI and high clock rates is
greater, and, consequently, greater is the danger of neglecting cache beha
assessing performance of such machines. Amdahl’s Law strikes again!

Although minimizing average memory access time is a reasonable goa
we will use it in much of this chapter, keep in mind that the final goal is to red
CPU execution time. The next example shows how these two can differ.

E X A M P L E What is the impact of two different cache organizations on the perfor-
mance of a CPU? Assume that the CPI with a perfect cache is 2.0 and the
clock cycle time is 2 ns, that there are 1.3 memory references per instruc-
tion, and that the size of both caches is 64 KB and both have a block size
of 32 bytes. One cache is direct mapped and the other is two-way set as-
sociative. Figure 5.8 shows that for set-associative caches we must add
a multiplexer to select between the blocks in the set depending on the tag

CPU time = IC CPIexecution
Memory stall clock cycles

Instruction
---+

× 
 Clock cycle time×

388 Chapter 5 Memory-Hierarchy Design
match. Since the speed of the CPU is tied directly to the speed of a cache
hit, assume the CPU clock cycle time must be stretched 1.10 times to ac-
commodate the selection multiplexer of the set-associative cache. To the
first approximation, the cache miss penalty is 70 ns for either cache orga-
nization. (In practice it must be rounded up or down to an integer number
of clock cycles.) First, calculate the average memory access time, and
then CPU performance. Assume the hit time is one clock cycle. Assume
that the miss rate of a direct-mapped 64-KB cache is 1.4%, and the miss
rate for a two-way set-associative cache of the same size is 1.0%.

A N S W E R Average memory access time is

Average memory access time = Hit time + Miss rate × Miss penalty

FIGURE 5.8 A two-way set-associative version of the 8-KB cache of Figure 5.5, show-
ing the extra multiplexer in the path. Unlike the prior figure, the data portion of the cache
is drawn more realistically, with the two leftmost bits of the block offset combined with the in-
dex to address the desired 64-bit word in memory, which is then sent to the CPU.

Block address
Block
offset

CPU
address
Data
in

Data
out

<22>

 Tag Index

<7> <5>

Valid
<1>

Data
<64>

=?

=?

Write
buffer

Lower level memory

Tag
<22>

2:1
M
u
x

5.2 The ABCs of Caches 389

re 5.1
years
s. Your
hile,
ir es-
tail!
rk to
Thus, the time for each organization is

Average memory access time1-way = 2.0 + (.014 × 70) = 2.98 ns
Average memory access time2-way = 2.0 × 1.10 + (.010 × 70) = 2.90 ns

The average memory access time is better for the two-way set-associative
cache.

CPU performance is

Substituting 70 ns for (Miss penalty × Clock cycle time), the performance
of each cache organization is

and relative performance is

In contrast to the results of average memory access time comparison, the
direct-mapped cache leads to slightly better average performance be-
cause the clock cycle is stretched for all instructions for the two-way case,
even if there are fewer misses. Since CPU time is our bottom-line evalua-
tion, and since direct mapped is simpler to build, the preferred cache is
direct mapped in this example. ■

Improving Cache Performance

The increasing gap between CPU and main memory speeds shown in Figu
has attracted the attention of many architects. A bibliographic search for the
1989 –95 revealed more than 1600 research papers on the subject of cache
authors’ job was to survey all 1600 papers, decide what is and is not worthw
translate the results into a common terminology, reduce the results to the
sence, write in an intriguing fashion, and provide just the right amount of de
Fortunately, the average memory access time formula gave us a framewo
present cache optimizations as well as the techniques for improving caches:

Average memory access time = Hit time + Miss rate × Miss penalty

CPU time IC CPIExecution
Misses

Instruction
-------------------------- Miss penalty× 

 Clock cycle time×+
×=

IC CPIExecution(Clock cycle time)××=

Memory accesses
Instruction

-- Miss rate Miss penalty Clock cycle time××× 
 +

CPU time1-way IC 2 2.0 1.3 0.014 70××()+×()× 5.27 IC×= =

CPU time2-way IC 2 2.0 1.10× 1.3 0.010 70××()+×()× 5.31 IC×= =

CPU time2-way
CPU time1-way
------------------------------------- 5.31 Instruction count×

5.27 Instruction count×
--- 5.31

5.27
---------- 1.01===

390 Chapter 5 Memory-Hierarchy Design

com-

 where
 start

tion
d and

ped,
 be-
 to its

n by
raph

ses by
 con-
. Here

s)

ur-

ay

ay
Hence we organize 15 cache optimizations into three categories:

■ Reducing the miss rate (Section 5.3)

■ Reducing the miss penalty (Section 5.4)

■ Reducing the time to hit in the cache (Section 5.5)

Figure 5.29 on page 427 concludes with a summary of the implementation
plexity and the performance benefits of the 15 techniques presented.

Most cache research has concentrated on reducing the miss rate, so that is
we start our exploration. To gain better insights into the causes of misses, we
with a model that sorts all misses into three simple categories:

■ Compulsory—The very first access to a block cannot be in the cache, so the
block must be brought into the cache. These are also called cold start misses or
first reference misses.

■ Capacity—If the cache cannot contain all the blocks needed during execu
of a program, capacity misses will occur because of blocks being discarde
later retrieved.

■ Conflict—If the block placement strategy is set associative or direct map
conflict misses (in addition to compulsory and capacity misses) will occur
cause a block can be discarded and later retrieved if too many blocks map
set. These are also called collision misses or interference misses.

Figure 5.9 shows the relative frequency of cache misses, broken dow
the “three C’s.” Figure 5.10 presents the same data graphically. The top g
shows absolute miss rates; the bottom graph plots percentage of all the mis
type of miss as a function of cache size. To show the benefit of associativity,
flict misses are divided into misses caused by each decrease in associativity
are the four divisions:

■ Eight-way—conflict misses due to going from fully associative (no conflict
to eight-way associative

■ Four-way—conflict misses due to going from eight-way associative to fo
way associative

■ Two-way—conflict misses due to going from four-way associative to two-w
associative

■ One-way—conflict misses due to going from two-way associative to one-w
associative (direct mapped)

5.3 Reducing Cache Misses

5.3 Reducing Cache Misses 391
Cache size
Degree

associative
Total

miss rate

Miss rate components (relative percent)
(Sum = 100% of total miss rate)

Compulsory Capacity Conflict

1 KB 1-way 0.133 0.002 1% 0.080 60% 0.052 39%

1 KB 2-way 0.105 0.002 2% 0.080 76% 0.023 22%

1 KB 4-way 0.095 0.002 2% 0.080 84% 0.013 14%

1 KB 8-way 0.087 0.002 2% 0.080 92% 0.005 6%

2 KB 1-way 0.098 0.002 2% 0.044 45% 0.052 53%

2 KB 2-way 0.076 0.002 2% 0.044 58% 0.030 39%

2 KB 4-way 0.064 0.002 3% 0.044 69% 0.018 28%

2 KB 8-way 0.054 0.002 4% 0.044 82% 0.008 14%

4 KB 1-way 0.072 0.002 3% 0.031 43% 0.039 54%

4 KB 2-way 0.057 0.002 3% 0.031 55% 0.024 42%

4 KB 4-way 0.049 0.002 4% 0.031 64% 0.016 32%

4 KB 8-way 0.039 0.002 5% 0.031 80% 0.006 15%

8 KB 1-way 0.046 0.002 4% 0.023 51% 0.021 45%

8 KB 2-way 0.038 0.002 5% 0.023 61% 0.013 34%

8 KB 4-way 0.035 0.002 5% 0.023 66% 0.010 28%

8 KB 8-way 0.029 0.002 6% 0.023 79% 0.004 15%

16 KB 1-way 0.029 0.002 7% 0.015 52% 0.012 42%

16 KB 2-way 0.022 0.002 9% 0.015 68% 0.005 23%

16 KB 4-way 0.020 0.002 10% 0.015 74% 0.003 17%

16 KB 8-way 0.018 0.002 10% 0.015 80% 0.002 9%

32 KB 1-way 0.020 0.002 10% 0.010 52% 0.008 38%

32 KB 2-way 0.014 0.002 14% 0.010 74% 0.002 12%

32 KB 4-way 0.013 0.002 15% 0.010 79% 0.001 6%

32 KB 8-way 0.013 0.002 15% 0.010 81% 0.001 4%

64 KB 1-way 0.014 0.002 14% 0.007 50% 0.005 36%

64 KB 2-way 0.010 0.002 20% 0.007 70% 0.001 10%

64 KB 4-way 0.009 0.002 21% 0.007 75% 0.000 3%

64 KB 8-way 0.009 0.002 22% 0.007 78% 0.000 0%

128 KB 1-way 0.010 0.002 20% 0.004 40% 0.004 40%

128 KB 2-way 0.007 0.002 29% 0.004 58% 0.001 14%

128 KB 4-way 0.006 0.002 31% 0.004 61% 0.001 8%

128 KB 8-way 0.006 0.002 31% 0.004 62% 0.000 7%

FIGURE 5.9 Total miss rate for each size cache and percentage of each according to the “three C’s.” Compulsory
misses are independent of cache size, while capacity misses decrease as capacity increases, and conflict misses decrease
as associativity increases. Gee et al. [1993] calculated the average D-cache miss rate for the SPEC92 benchmark suite with
32-byte blocks and LRU replacement on a DECstation 5000. Figure 5.10 shows the same information graphically. The com-
pulsory rate was calculated as the miss rate of a fully associative 1-MB cache. Note that the 2:1 cache rule of thumb (inside
front cover) is supported by the statistics in this table: a direct-mapped cache of size N has about the same miss rate as a
2-way set-associative cache of size N/2.

392 Chapter 5 Memory-Hierarchy Design

 pro-

em?
s all
may
verall

f the
nd a
As we can see from the figures, the compulsory miss rate of the SPEC92
grams is very small, as it is for many long-running programs.

Having identified the three C’s, what can a computer designer do about th
Conceptually, conflicts are the easiest: Fully associative placement avoid
conflict misses. Full associativity is expensive in hardware, however, and
slow the processor clock rate (see the example above), leading to lower o
performance.

There is little to be done about capacity except to enlarge the cache. I
upper-level memory is much smaller than what is needed for a program, a

FIGURE 5.10 Total miss rate (top) and distribution of miss rate (bottom) for each
size cache according to three C’s for the data in Figure 5.9. The top diagram is the
actual D-cache miss rates, while the bottom diagram is scaled to the direct-mapped miss
ratios.

2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 4 8 16 32 64 128

Compulsory

1-way

Cache size (KB)

2-way

4-way

8-way

Capacity

2
0%

Miss rate per type

Miss rate per type

100%

1 4 8 16 32 64 128

CompulsoryCache size (KB)

80%

60%

40%

20%

1-way

2-way

4-way 8-way

Capacity

5.3 Reducing Cache Misses 393

n the
ts
lower-

 re-
an in-

l has
ndi-
ell as
. Thus,
nges.
t to
e re-
 miss

e or
iques
aking
nced

 5.11
cache
curs

 spa-

duce
s and
rease
o
e; the
significant percentage of the time is spent moving data between two levels i
hierarchy, the memory hierarchy is said to thrash. Because so many replacemen
are required, thrashing means the machine runs close to the speed of the
level memory, or maybe even slower because of the miss overhead.

Another approach to improving the three C’s is to make blocks larger to
duce the number of compulsory misses, but, as we shall see, large blocks c
crease other kinds of misses.

The three C’s give insight into the cause of misses, but this simple mode
its limits; it gives you insight into average behavior but may not explain an i
vidual miss. For example, changing cache size changes conflict misses as w
capacity misses, since a larger cache spreads out references to more blocks
a miss might move from a capacity miss to a conflict miss as cache size cha
Note that the three C’s also ignore replacement policy, since it is difficul
model and since, in general, it is less significant. In specific circumstances th
placement policy can actually lead to anomalous behavior, such as poorer
rates for larger associativity, which is contradictory to the three C’s model.
 Alas, many of the techniques that reduce miss rates also increase hit tim
miss penalty. The desirability of reducing miss rates using the seven techn
presented in the rest of this section must be balanced against the goal of m
the whole system fast. This first example shows the importance of a bala
perspective.

First Miss Rate Reduction Technique: Larger Block Size

This simplest way to reduce miss rate is to increase the block size. Figure
shows the trade-off of block size versus miss rate for a set of programs and
sizes. Larger block sizes will reduce compulsory misses. This reduction oc
because the principle of locality has two components: temporal locality and
tial locality. Larger blocks take advantage of spatial locality.

At the same time, larger blocks increase the miss penalty. Since they re
the number of blocks in the cache, larger blocks may increase conflict misse
even capacity misses if the cache is small. Clearly there is little reason to inc
the block size to such a size that it increases the miss rate, but there is also n
benefit to reducing miss rate if it increases the average memory access tim
increase in miss penalty may outweigh the decrease in miss rate.

394 Chapter 5 Memory-Hierarchy Design
E X A M P L E Figure 5.12 shows the actual miss rates plotted in Figure 5.11. Assume
the memory system takes 40 clock cycles of overhead and then delivers
16 bytes every 2 clock cycles. Thus, it can supply 16 bytes in 42 clock
cycles, 32 bytes in 44 clock cycles, and so on. Which block size has the
minimum average memory access time for each cache size in
Figure 5.12?

FIGURE 5.11 Miss rate versus block size for five different-sized caches. Each line rep-
resents a cache of different size. Figure 5.12 shows the data used to plot these lines. This
graph is based on the same measurements found in Figure 5.10.

Cache size

Block size 1K 4K 16K 64K 256K

16 15.05% 8.57% 3.94% 2.04% 1.09%

32 13.34% 7.24% 2.87% 1.35% 0.70%

64 13.76% 7.00% 2.64% 1.06% 0.51%

128 16.64% 7.78% 2.77% 1.02% 0.49%

256 22.01% 9.51% 3.29% 1.15% 0.49%

FIGURE 5.12 Actual miss rate versus block size for five different-sized caches in
Figure 5.11. Note that for a 1-KB cache, 64-byte, 128-byte, and 256-byte blocks have a high-
er miss rate than 32-byte blocks. In this example, the cache would have to be 256 KB in order
for a 256-byte block to decrease misses.

5%

16

Block size

32

10%

15%

20%

25%

64 128 256

Miss
rate

0%

1k 4k 16k

64k 256k

5.3 Reducing Cache Misses 395

 the
th the
nd-
iss for
 en-
ck—
wice

pul-
ity to
A N S W E R Average memory access time is

Average memory access time = Hit time + Miss rate × Miss penalty

If we assume the hit time is one clock cycle independent of block size,
then the access time for a 16-byte block in a 1-KB cache is

Average memory access time = 1 + (15.05% × 42) = 7.321 clock cycles

and for a 256-byte block in a 256-KB cache the average memory access
time is

Average memory access time = 1 + (0.49% × 72) = 1.353 clock cycles

Figure 5.13 shows the average memory access time for all block and
cache sizes between those two extremes. The boldfaced entries show the
fastest block size for a given cache size: 32 bytes for 1-KB, 4-KB, and 16-
KB caches and 64 bytes for the larger caches. These sizes are, in fact,
popular block sizes for processor caches today.

■

As in all of these techniques, the cache designer is trying to minimize both
miss rate and the miss penalty. The selection of block size depends on bo
latency and bandwidth of the lower-level memory: high latency and high ba
width encourage large block size since the cache gets many more bytes per m
a small increase in miss penalty. Conversely, low latency and low bandwidth
courage smaller block sizes since there is little time saved from a larger blo
twice the miss penalty of a small block may be close to the penalty of a block t
the size—and the larger number of small blocks may reduce conflict misses.

After seeing the positive and negative impact of larger block size on com
sory and capacity misses, we next look at the potential of higher associativ
reduce conflict misses.

Cache size

Block size Miss penalty 1K 4K 16K 64K 256K

16 42 7.321 4.599 2.655 1.857 1.458

32 44 6.870 4.186 2.263 1.594 1.308

64 48 7.605 4.360 2.267 1.509 1.245

128 56 10.318 5.357 2.551 1.571 1.274

256 72 16.847 7.847 3.369 1.828 1.353

FIGURE 5.13 Average memory access time versus block size for five different-sized
caches in Figure 5.11. The smallest average time per cache size is boldfaced.

396 Chapter 5 Memory-Hierarchy Design

tivity.
s. The
duc-

vation,
a

set-

ry ac-
iss rate
 of in-
 or
irect-
re of a

easing
Second Miss Rate Reduction Technique:
Higher Associativity

Figures 5.9 and 5.10 above show how miss rates improve with higher associa
There are two general rules of thumb that can be gleaned from these figure
first is that eight-way set associative is for practical purposes as effective in re
ing misses for these sized caches as fully associative. The second obser
called the 2:1 cache rule of thumb and found on the front inside cover, is that
direct-mapped cache of size N has about the same miss rate as a 2-way
associative cache of size N/2.

Like many of these examples, improving one aspect of the average memo
cess time comes at the expense of another. Increasing block size reduced m
while increasing miss penalty, and greater associativity can come at the cost
creased hit time. Hill [1988] found about a 10% difference in hit times for TTL
ECL board-level caches and a 2% difference for custom CMOS caches for d
mapped caches versus two-way set-associative caches. Hence the pressu
fast processor clock cycle encourages simple cache designs, but the incr
miss penalty rewards associativity, as the following example suggests.

E X A M P L E Assume that going to higher associativity would increase the clock cycle
as suggested below:

Clock cycle time2-way = 1.10 × Clock cycle time1-way

Clock cycle time4-way = 1.12 × Clock cycle time1-way

Clock cycle time8-way = 1.14 × Clock cycle time1-way

Assume that the hit time is 1 clock cycle, that the miss penalty for the
direct-mapped case is 50 clock cycles, and that the miss penalty need not
be rounded to an integral number of clock cycles. Using Figure 5.9 for
miss rates, for which cache sizes are each of these three statements
true?

Average memory access time8-way < Average memory access time4-way

Average memory access time4-way < Average memory access time2-way

Average memory access time2-way < Average memory access time1-way

A N S W E R Average memory access time for each associativity is

Average memory access time8-way = Hit time8-way + Miss rate8-way × Miss penalty1-way = 1.14 + Miss rate8-way × 50
Average memory access time4-way = 1.12 + Miss rate4-way × 50
Average memory access time2-way = 1.10 + Miss rate2-way × 50
Average memory access time1-way = 1.00 + Miss rate1-way × 50

5.3 Reducing Cache Misses 397

duce
. Start-
 rate
The miss penalty is the same time in each case, so we leave it as 50 clock
cycles. For example, the average memory access time for a 1-KB direct-
mapped cache is

Average memory access time1-way = 1.00 + (0.133 × 50) = 7.65

and the time for a 128-KB, eight-way set-associative cache is

Average memory access time8-way = 1.14 + (0.006 × 50) = 1.44

Using these formulas and the miss rates from Figure 5.9, Figure 5.14
shows the average memory access time for each cache and associativity.
The figure shows that the formulas in this example hold for caches less
than or equal to 16 KB. Starting with 32 KB, the average memory access
time of four-way is less than two-way, and two-way is less than one-way,
but eight-way cache is not less than four-way.

Note that we did not account for the slower clock rate on the rest of
the program in this example, thereby understating the advantage of direct-
mapped cache.

■

Third Miss Rate Reduction Technique: Victim Caches

Larger block size and higher associativity are two classic techniques to re
miss rates that have been considered by architects since the earliest caches
ing with this subsection, we see more recent inventions to reduce miss
without affecting the clock cycle time or the miss penalty.

Associativity

Cache size (KB) One-way Two-way Four-way Eight-way

1 7.65 6.60 6.22 5.44

2 5.90 4.90 4.62 4.09

4 4.60 3.95 3.57 3.19

8 3.30 3.00 2.87 2.59

16 2.45 2.20 2.12 2.04

32 2.00 1.80 1.77 1.79

64 1.70 1.60 1.57 1.59

128 1.50 1.45 1.42 1.44

FIGURE 5.14 Average memory access time using miss rates in Figure 5.9 for param-
eters in the example. Boldface type means that this time is higher than the number to the
left; that is, higher associativity increases average memory access time.

398 Chapter 5 Memory-Hierarchy Design

s to
path.

 on a
-level
ed.
t re-
pend-
the

he hit

 miss,
ther
One solution that reduces conflict misses without impairing clock rate i
add a small, fully associative cache between a cache and its refill
Figure 5.15 shows the organization. This victim cache contains only blocks that

are discarded from a cache because of a miss—“victims”—and are checked
miss to see if they have the desired data before going to the next lower
memory. If it is found there, the victim block and cache block are swapp
Jouppi [1990] found that victim caches of one to five entries are effective a
ducing conflict misses, especially for small, direct-mapped data caches. De
ing on the program, a four-entry victim cache removed 20% to 95% of
conflict misses in a 4-KB direct-mapped data cache.

Fourth Miss Rate Reduction Technique:
Pseudo-Associative Caches

Another approach to getting the miss rate of set-associative caches and t
speed of direct mapped is called pseudo-associative or column associative. A
cache access proceeds just as in the direct-mapped cache for a hit. On a
however, before going to the next lower level of the memory hierarchy, ano

FIGURE 5.15 Placement of victim cache in the memory hierarchy.

CPU
address
Data
in

Data
out

Write
buffer

Lower level memory

Tag

Data

Victim cache

=?

=?

5.3 Reducing Cache Misses 399

t the
t.”
corre-
alty.
es of
cache,
por-
 and
f the
cache entry is checked to see if it matches there. A simple way is to inver
most significant bit of the index field to find the other block in the “pseudo se

Pseudo-associative caches then have one fast and one slow hit time—
sponding to a regular hit and a pseudo hit—in addition to the miss pen
Figure 5.16 shows the relative times. The danger is if many of the fast hit tim
the direct-mapped cache became slow hit times in the pseudo-associative
then the performance would be degraded by this optimization. Hence it is im
tant to be able to indicate for each set which block should be the fast hit
which should be the slow one; one way is simply to swap the contents o
blocks.

Let’s do an example to see how well pseudo-associativity works.

E X A M P L E Assume that it takes two extra cycles to find the entry in the alternative
location if it is not found in the direct-mapped location: one cycle to check
and one cycle to swap. Using the parameters from the previous example,
which of direct-mapped, two-way set-associative, and pseudo-associative
organizations is fastest for 2-KB and 128-KB sizes?

A N S W E R The average memory access time for pseudo-associative caches starts
with the standard formula:

Average memory access timepseudo = Hit timepseudo + Miss ratepseudo × Miss penaltypseudo

Let’s start with the last part of the equation. The pseudo miss penalty is
one cycle more than a normal miss penalty, to account for the time to
check the alternative location.To determine the miss rate we need to see
when misses occur. As long as we invert the most significant bit of the in-
dex to find the other block, the two blocks in the “pseudo set” are selected
using the same index that would be used in a two-way set-associative
cache and hence have the same miss rates. Thus the last part of the
equation is

Miss ratepseudo × Miss penaltypseudo = Miss rate2-way × Miss penalty1-way

FIGURE 5.16 Relationship between a regular hit time, pseudo hit time, and miss pen-
alty.

Hit time

Pseudo hit time Miss penalty

Time

400 Chapter 5 Memory-Hierarchy Design

ipe-
udo-
n of

with-
 they
tched,
Returning to the beginning of the equation, the hit time for a pseudo-
associative cache is the time to hit in a direct-mapped cache plus the
fraction of accesses that are found in the pseudo-associative search
times the extra time it takes to find the hit:

Hit timepseudo = Hit time1-way + Alternate hit ratepseudo × 2

The hit rate for the pseudo-associative search is the difference between
the hits that would occur in a two-way set-associative cache and the num-
ber of hits in a direct-mapped cache:

But it is slightly more complex. The miss rate is of a direct-mapped cache
half the size—since half of the cache is reserved for alternate locations—
while the whole cache has the contents of a two-way set-associative
cache. Putting the pieces back together:

Average memory access timepseudo = Hit time1-way + (Miss rate1-way – Miss rate2-way) × 2 + Miss rate2-way × Miss penalty1-way

Figure 5.9 supplies the values we need to plug into our formulas:

Average memory access timepseudo 2 KB = 1 + (0.113 – 0.076) × 2 + (0.076 × (50 + 1)) = 1 + 0.074 + 3.876 = 4.950

Average memory access timepseudo 128 KB = 1 + (0.014 – 0.007) × 2 + (0.007 × (50+ 1)) = 1 + 0.014 + 0.357 = 1.371

From Figure 5.14 in the last example we know these results for 2-KB
caches:

Average memory access time1-way = 5.90 clock cycles
Average memory access time2-way = 4.90 clock cycles

For 128-KB caches the times are

Average memory access time
1-way

 = 1.50 clock cycles

Average memory access time2-way = 1.45 clock cycles

The pseudo-associative cache is fastest for the 128-KB cache while the
two-way set associative is fastest for the 2-KB cache. ■

Although an attractive idea on paper, variable hit times can complicate a p
lined CPU design. Hence the authors expect the most likely use of pse
associativity is with caches further from the processor (see the descriptio
second-level caches in the next section).

Fifth Miss Rate Reduction Technique:
Hardware Prefetching of Instructions and Data

Victim caches and pseudo-associativity both promise to improve miss rates
out affecting the processor clock rate. A third way is to prefetch items before
are requested by the processor. Both instructions and data can be prefe

Alternate hit ratepseudo Hit rate2-way Hit rate1-way–=

1 Miss rate2-way–() 1 Miss rate1-way–()–=

Miss rate1-way Miss rate2-way–=

5.3 Reducing Cache Misses 401

ickly

. For
: the

ced in
o the
tion
 the

e than
und
sses
cks
h 16

single
pped
uffers
d that
essler
 that
ffers
our-
either directly into the caches or into an external buffer that can be more qu
accessed than main memory.

Instruction prefetch is frequently done in hardware outside of the cache
example, the Alpha AXP 21064 microprocessor fetches two blocks on a miss
requested block and the next consecutive block. The requested block is pla
the instruction cache when it returns, and the prefetched block is placed int
instruction stream buffer. If the requested block is present in the instruc
stream buffer, the original cache request is canceled, the block is read from
stream buffer, and the next prefetch request is issued. There is never mor
one 32-byte block in the 21064 instruction stream buffer. Jouppi [1990] fo
that a single instruction stream buffer would catch 15% to 25% of the mi
from a 4-KB direct-mapped instruction cache with 16-byte blocks. With 4 blo
in the instruction stream buffer the hit rate improves to about 50%, and wit
blocks to 72%.

A similar approach can be applied to data accesses. Jouppi found that a
data stream buffer caught about 25% of the misses from the 4-KB direct-ma
cache. Instead of having a single stream, there could be multiple stream b
beyond the data cache, each prefetching at different addresses. Jouppi foun
four data stream buffers increased the data hit rate to 43%. Palacharla and K
[1994] looked at a set of scientific programs and considered stream buffers
could handle either instructions or data. They found that eight stream bu
could capture 50% to 70% of all misses from a processor with two 64-KB f
way set-associative caches, one for instructions and the other for data.

E X A M P L E What is the effective miss rate of the Alpha AXP 21064 using instruction
prefetching? How much bigger an instruction cache would be needed in
the Alpha AXP 21064 to match the average access time if prefetching
were removed?

A N S W E R We assume it takes 1 extra clock cycle if the instruction misses the cache
but is found in the prefetch buffer. Here is our revised formula:

Average memory access timeprefetch = Hit time + Miss rate × Prefetch hit rate × 1 + Miss rate ×
(1– Prefetch hit rate) × Miss penalty

Let's assume the prefetch hit rate is 25%. Figure 5.7 on page 384 gives
the miss rate for an 8-KB instruction cache as 1.10%. Using the parame-
ters from the Example on page 386, the hit time is 2 clock cycles, and the
miss penalty is 50 clock cycles:

Average memory access timeprefetch = 2 + (1.10% × 25% × 1) + (1.10% × (1 – 25%) × 50) = 2 + 0.00275 + 0.413 = 2.415

To find the effective miss rate with the equivalent performance, we start
with the original formula and solve for the miss rate:

402 Chapter 5 Memory-Hierarchy Design

 un-
ses.

 in-
vors of

ot
 this

ster
ey
nti-
em-
lting

 the
struc-
ble

ith
es to
 the
 miss
Our calculation suggests that the effective miss rate of prefetching with an
8-KB cache is 0.83%. Figure 5.7 on page 384 gives the miss rate of a
16-KB instruction cache as 0.64%, so 8 KB with prefetching is midway be-
tween the 1.10% and 0.64% miss rates of the 8-KB and 16-KB caches. ■

Prefetching relies on utilizing memory bandwidth that otherwise would be
used, and can actually lower performance if it interferes with demand mis
Help from compilers can reduce useless prefetching.

Sixth Miss Rate Reduction Technique:
Compiler-Controlled Prefetching

An alternative to hardware prefetching is for the compiler to insert prefetch
structions to request the data before they are needed. There are several fla
prefetch:

■ Register prefetch will load the value into a register.

■ Cache prefetch loads data only into the cache and not the register.

Either of these can be faulting or nonfaulting; that is, the address does or does n
cause an exception for virtual address faults and protection violations. Using
terminology, a normal load instruction could be considered a “faulting regi
prefetch instruction.” Nonfaulting prefetches simply turn into no-ops if th
would normally result in an exception. The most effective prefetch is “sema
cally invisible” to a program: it doesn't change the contents of registers or m
ory and it cannot cause virtual memory faults. This section assumes nonfau
cache prefetch, also called nonbinding prefetch.

Prefetching makes sense only if the processor can proceed while
prefetched data are being fetched; that is, the caches continue to supply in
tions and data while waiting for the prefetched data to return. Such a nim
cache is called a nonblocking cache or lockup-free cache; we'll discuss it in more
detail later.

Like hardware-controlled prefetching, the goal is to overlap execution w
the prefetching of data. Loops are the key targets, as they lend themselv
prefetch optimizations. If the miss penalty is small, the compiler just unrolls
loop once or twice and it schedules the prefetches with the execution. If the

Average memory access time Hit time Miss rate Miss penalty×+=

Miss rate
Average memory access time – Hit time

Miss penalty
--=

Miss rate
2.415 2–

50
---------------------- 0.415

50
------------- 0.83%= = =

5.3 Reducing Cache Misses 403

rolls

 care
y con-
id un-

ntly.
penalty is large, it uses software pipelining (page 290 in Chapter 4) or un
many times to prefetch data for a future iteration.

Issuing prefetch instructions incurs an instruction overhead, however, so
must be taken to ensure that such overheads do not exceed the benefits. B
centrating on references that are likely to be cache misses, programs can avo
necessary prefetches while improving average memory access time significa

E X A M P L E For the code below, determine which accesses are likely to cause data
cache misses. Next, insert prefetch instructions to reduce misses. Finally,
calculate the number of prefetch instructions executed and the misses
avoided due to prefetching. Let's assume we have an 8-KB direct-mapped
data cache with 16-byte blocks, it is a write-back cache that does write al-
locate, and that the elements of a and b are 8 bytes long as they are dou-
ble-precision floating-point arrays with 3 rows and 100 columns for a and
101 rows and 3 columns for b. Let’s also assume they are not in the cache
at the start of the program.

for (i = 0; i < 3; i = i+1)

for (j = 0; j < 100; j = j+1)

a[i][j] = b[j][0] * b[j+1][0];

A N S W E R The compiler will first determine which accesses are likely to cause cache
misses; otherwise, we will waste time on issuing prefetch instructions for
data that would be hits. Elements of a are written in the order that they are
stored in memory, so a will benefit from spatial locality: the even values of
j will miss and the odd values will hit. Since a has 3 rows and 100 col-
umns, its accesses will lead to or 150 misses. The array b does
not benefit from spatial locality since the accesses are not in the order it
is stored. The array b does benefit twice from temporal locality: the same
elements are accessed for each iteration of i , and each iteration of j
uses the same value of b as the last iteration. Ignoring potential conflict
misses, the misses due to b will be for b[j+1][0] accesses when i = 0,
and also the first access to b[j][0] when j = 0. Since j goes from 0 to
99 when i = 0, accesses to b lead to 100 + 1 or 101 misses. Thus this
loop will miss the data cache approximately 150 + 101 or 251 times.

To simplify our optimization, we will not worry about prefetching the
first accesses of the loop nor suppressing the prefetches at the end of the
loop; if these were faulting prefetches, we could not take this luxury. Given
our analysis of misses, we split the loop so the first loop will prefetch b as
well as a, and the second loop will just prefetch a, since b will have already
been prefetched. Let's assume that the miss penalty is so large we need
to prefetch at least seven iterations in advance.

3 100×
2

404 Chapter 5 Memory-Hierarchy Design
for (j = 0; j < 100; j = j+1) {

prefetch(b[j+7][0]);

/* b(j,0) for 7 iterations later */

prefetch(a[0][j+7]);

/* a(0,j) for 7 iterations later */

a[0][j] = b[j][0] * b[j+1][0];};

for (i = 1; i < 3; i = i+1)

for (j = 0; j < 100; j = j+1) {

prefetch(a[i][j+7]);

/* a(i,j) for +7 iterations */

a[i–1][j] = b[j][0] *b[j+1][0];}

This revised code prefetches a[i][7] through a[i][99] and b[7][0]
through b[99][0] , reducing the number of nonprefetched misses to

The cost of avoiding 232 cache misses is executing 400 prefetch instruc-
tions, very likely a good trade-off. ■

E X A M P L E Calculate the time saved in the example above. Ignore instruction cache
misses and assume there are no conflict or capacity misses in the data
cache. Assume that prefetches can overlap with each other and with
cache misses, thereby transferring at the maximum memory bandwidth.
Here are the key loop times ignoring cache misses: the original loop takes
7 clock cycles per iteration, the first prefetch loop takes 9 clock cycles per
iteration, and the second prefetch loop takes 8 clock cycles per iteration
(including the overhead of the outer for loop). A miss takes 50 clock
cycles.

A N S W E R The original doubly nested loop executes the multiply 3 × 100 or 300
times. Since the loop takes 7 clock cycles per iteration, the total is
300 × 7 or 2100 clock cycles plus cache misses. Cache misses add
251 × 50 or 12,550 clock cycles, giving a total of 14,650 clock cycles. The
first prefetch loop iterates 100 times; at 9 clock cycles per iteration the
total is 900 clock cycles plus cache misses. They add 11 × 50 or 550 clock
cycles for cache misses, giving a total of 1450. The second loop executes
2 × 100 or 200 times, and at 8 clock cycles per iteration it takes 1600 clock
cycles plus 8 × 50 or 400 clock cycles for cache misses. This gives a total
of 2000 clock cycles. From the prior example we know that this code
executes 400 prefetch instructions during the 1450 + 2000 or 3450 clock
cycles to execute these two loops. If we assume that the prefetches are
completely overlapped with the rest of the execution, then the prefetch
code is 14,650/3450 or 4.2 times faster. ■

3 7×
2

------------ 8 11 8 19=+=+

5.3 Reducing Cache Misses 405

ions to
ware
with-

 de-
ssors
hier-
gain
ents

ple,
by re-
 to
e in-
ache
rfor-
g the
pped
 set-

such
ata.
a in a
ram-

s,
s the

 the

rams
t the

, lead-
dent
ntain
Seventh Miss Rate Reduction Technique:
Compiler Optimizations

Thus far our techniques to reduce misses have required changes to or addit
the hardware: larger blocks, higher associativity, pseudo-associativity, hard
prefetching, or prefetch instructions. This final technique reduces miss rates
out any hardware changes!

This magical reduction comes from optimized software—the hardware
signer’s favorite solution. The increasing performance gap between proce
and main memory has inspired compiler writers to scrutinize the memory
archy to see if compile time optimizations can improve performance. Once a
research is split between improvements in instruction misses and improvem
in data misses.

Code can easily be rearranged without affecting correctness; for exam
reordering the procedures of a program might reduce instruction miss rates
ducing conflict misses. McFarling [1989] looked at using profiling information
determine likely conflicts between groups of instructions, and reordered th
structions to reduce misses by 50% for a 2-KB direct-mapped instruction c
with 4-byte blocks, and by 75% in an 8-KB cache. McFarling got the best pe
mance when it was possible to prevent some instructions from ever enterin
cache, but even without that feature, optimized programs on a direct-ma
cache had lower miss rates than unoptimized programs on an eight-way
associative cache of the same size.
 Data have even fewer restrictions on location than code. The goal of
transformations is to try to improve the spatial and temporal locality of the d
For example, array calculations can be changed to operate on all the dat
cache block rather than blindly striding through arrays in the order the prog
mer happened to place the loop.

To give a feeling of this type of optimization, we will show four example
transforming the C code by hand to reduce cache misses. Figure 5.17 show
performance improvement in using these optimizations on a subset of
SPEC92 floating-point benchmarks.

Merging Arrays
This first technique reduces misses by improving spatial locality. Some prog
reference multiple arrays in the same dimension with the same indices a
same time. The danger is that these accesses will interfere with each other
ing to conflict misses. This danger is removed by combining these indepen
matrices into a single compound array so that a single cache block can co
the desired elements.

/* Before */

int val[SIZE];

int key[SIZE];

406 Chapter 5 Memory-Hierarchy Design

e of
on.

uential
ss the
uces
ache
/* After */

struct merge {

int val;

int key;

};

struct merge merged_array[SIZE];

An interesting characteristic of this example is that the proper coding practic
using an array of records would achieve the same benefits as this optimizati

Loop Interchange
Some programs have nested loops that access data in memory in nonseq
order. Simply exchanging the nesting of the loops can make the code acce
data in the order it is stored. Like the prior example, this technique red
misses by improving spatial locality; reordering maximizes use of data in a c
block before it is discarded.

FIGURE 5.17 Lebeck and Wood [1994] performed the four optimizations in this section by hand on
three SPEC92 programs and five separate portions of the nasa7 benchmark.

1

compress

cholesky (nasa7)

spice

mxm (nasa7)

btrix (nasa7)

tomcatv

gmty (nasa7)

vpenta (nasa7)

1.5

Performance improvement

Merged arrays Loop
interchange

Loop
fusion

Blocking

2 2.5 3

5.3 Reducing Cache Misses 407

 the
e next
um-

ys with
. By
 can

st two
tem-

 state-
/* Before */

for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];

/* After */

for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

The original code would skip through memory in strides of 100 words, while
revised version accesses all the words in the cache block before going to th
one. This optimization improves cache performance without affecting the n
ber of instructions executed, unlike the prior example.

Loop Fusion
Some programs have separate sections of code that access the same arra
the same loops, performing different computations on the common data
“fusing” the code into a single loop, the data that are fetched into the cache
be used repeatedly before being swapped out. Hence, in contrast to our fir
techniques, the target of this optimization is reducing misses via improved
poral locality.

/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];

/* After */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{

a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];

}

The original code would take all the misses to access arrays a and c twice, once
in the first loop and then again in the second. In the fused loop, the second
ment freeloads on the cache accesses of the first statement.

408 Chapter 5 Memory-Hierarchy Design

gain
 with
mns.

 used
trans-

hms
ata
below,
Blocking
This optimization, perhaps the most famous of the cache optimizations, a
tries to reduce misses via improved temporal locality. We are again dealing
multiple arrays, with some arrays accessed by rows and some by colu
Storing the arrays row by row (row major order) or column by column (column
major order) does not solve the problem because both rows and columns are
in every iteration of the loop. Such orthogonal accesses mean the earlier
formations, such as loop interchange, are not helpful.

Instead of operating on entire rows or columns of an array, blocked algorit
operate on submatrices or blocks. The goal is to maximize accesses to the d
loaded into the cache before the data are replaced. The code example
which performs matrix multiplication, helps motivate the optimization:

/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{r = 0;

 for (k = 0; k < N; k = k+1) {

r = r + y[i][k]*z[k][j];};

 x[i][j] = r;

};

The two inner loops read all N by N elements of z, access the same N elements in a
row of y repeatedly, and write one row of N elements of x. Figure 5.18 gives a

FIGURE 5.18 A snapshot of the three arrays x, y, and z when i = 1. The age of accesses to the array elements is
indicated by shade: white means not yet touched, light means older accesses and dark means newer accesses. The vari-
ables i , j , and k are shown along the rows or columns used to access the arrays.

0

1

2

3

4

5

10 2 3 4 5
x

j

i

0

1

2

3

4

5

10 2 3 4 5
y

k

i

0

1

2

3

4

5

10 2 3 4 5
z

j

k

5.3 Reducing Cache Misses 409

 recent
ot yet

.
o

nd

riginal

 only

 used
 can
 the

r the
e re-
words
 than
w of

ache-
d and

.

snapshot of the accesses to the three arrays, with a dark shade indicating a
access, a light shade indicating an older access, and white meaning n
accessed.

The number of capacity misses clearly depends on N and the size of the cache
If it can hold all three N by N matrices, then all is well, provided there are n
cache conflicts. If the cache can hold one N by N matrix and one row of N, then at
least the i th row of y and the array z may stay in the cache. Less than that a
misses may occur for both x and z. In the worst case, there would be 2N3 + N2

words read from memory for N3 operations.
To ensure that the elements being accessed can fit in the cache, the o

code is changed to compute on a submatrix of size B by B by having the two inner
loops compute in steps of size B rather than going from beginning to end of x and
z. B is called the blocking factor. (Assume x is initialized to zero.)

/* After */

for (jj = 0; jj < N; jj = jj+B)

for (kk = 0; kk < N; kk = kk+B)

for (i = 0; i < N; i = i+1)

 for (j = jj; j < min(jj+B,N); j = j+1)

{r = 0;

 for (k = kk; k < min(kk+B,N); k = k+1) {

r = r + y[i][k]*z[k][j];};

 x[i][j] = x[i][j] + r;

};

Figure 5.19 illustrates the accesses to the three arrays using blocking. Looking
at capacity misses, the total number of memory words accessed is 2N3/B + N2,
which is an improvement by about a factor of B. Thus blocking exploits a combi-
nation of spatial and temporal locality, since y benefits from spatial locality and z

benefits from temporal locality.
Although we have aimed at reducing cache misses, blocking can also be

to help register allocation. By taking a small blocking size such that the block
be held in registers, we can minimize the number of loads and stores in
program.

Traditionally blocking has been aimed at reducing capacity misses, unde
simplifying assumption that conflict misses are either not significant or can b
moved by more associative caches. Since blocking reduces the number of
that are active in a cache at a given time, choosing a blocking size smaller
capacity can also reduce conflict misses. Figure 5.20 gives a qualitative vie
this trade-off.

These last two subsections have concentrated on the potential benefit of c
aware compilers and programs. Given that increasing gap in processor spee
memory access times, this benefit will only increase in importance over time

410 Chapter 5 Memory-Hierarchy Design
FIGURE 5.19 The age of accesses to the arrays x, y, and z. Note in contrast to
Figure 5.18 the smaller number of elements accessed.

FIGURE 5.20 The impact of conflict misses in caches that aren’t fully associative on
block size. For example, Lam, Rothberg, and Wolf [1991] found one case where a blocking
factor of 24 had a fifth the number of misses of a blocking factor of 48, despite both fitting into
the cache.

0

1

2

3

4

5

10 2 3 4 5
x

j

i

0

1

2

3

4

5

10 2 3 4 5
y

k

i

0

1

2

3

4

5

10 2 3 4 5
z

j

k

Fully associative cache

0%

Miss rate 5%

10%

0 50 100 150

Direct mapped cache

Blocking factor

5.4 Reducing Cache Miss Penalty 411

 cache
mory

but the
an be

s that
AMs,
timi-
tion is

ffer
Write
e up-
Now that we have spent more than 20 pages on techniques that reduce
misses, it is time to look at reducing the next component of average me
access time.

Reducing cache misses has been the traditional focus of cache research,
cache performance formula assures us that improvements in miss penalty c
just as beneficial as improvements in miss rate. Moreover, Figure 5.1 show
technology trends have improved the speed of processors faster than DR
making the relative cost of miss penalties increase over time. We give five op
zations here to address this problem. Perhaps the most interesting optimiza
the final one, which adds another level of cache to reduce miss penalty.

First Miss Penalty Reduction Technique:
Giving Priority to Read Misses over Writes

With a write-through cache the most important improvement is a write bu
(page 380) of the proper size (see the pitfall on page 470 in section 5.11).
buffers, however, do complicate memory accesses in that they might hold th
dated value of a location needed on a read miss.

E X A M P L E Look at this code sequence:

SW 512(R0),R3 ; M[512] ← R3 (cache index 0)

LW R1,1024(R0) ; R1 ← M[1024] (cache index 0)

LW R2,512(R0) ; R2 ← M[512] (cache index 0)

Assume a direct-mapped, write-through cache that maps 512 and 1024
to the same block, and a four-word write buffer. Will the value in R2 always
be equal to the value in R3?

A N S W E R Using the terminology from Chapter 3, this is a read-after-write data haz-
ard in memory. Let’s follow a cache access to see the danger. The data in
R3 are placed into the write buffer after the store. The following load uses
the same cache index and is therefore a miss. The second load instruction
tries to put the value in location 512 into register R2; this also results in a
miss. If the write buffer hasn’t completed writing to location 512 in memo-
ry, the read of location 512 will put the old, wrong value into the cache
block, and then into R2. Without proper precautions, R3 would not be
equal to R2! ■

5.4 Reducing Cache Miss Penalty

412 Chapter 5 Memory-Hierarchy Design

the
ill
 miss

our-
 by a
 read
 read

uced.
 the
ock
,
sit-
buffer

 that
 they
rage
. Of
ould

n
rts as
ache,
ple.

e re-
hich

t not
t one
full
CPU.
The simplest way out of this dilemma is for the read miss to wait until
write buffer is empty. A write buffer of a few words in a write-through cache w
almost always have data in the buffer on a miss, thereby increasing the read
penalty. The designers of the MIPS M/1000 estimated that waiting for a f
word buffer to empty would have increased the average read miss penalty
factor of 1.5. The alternative is to check the contents of the write buffer on a
miss, and if there are no conflicts and the memory system is available, let the
miss continue.

The cost of writes by the processor in a write-back cache can also be red
Suppose a read miss will replace a dirty memory block. Instead of writing
dirty block to memory, and then reading memory, we could copy the dirty bl
to a buffer, then read memory, and then write memory. This way the CPU read
for which the processor is probably waiting, will finish sooner. Similar to the
uation above, if a read miss occurs, the processor can either stall until the
is empty or check the addresses of the words in the buffer for conflicts.

Second Miss Penalty Reduction Technique:
Sub-block Placement for Reduced Miss Penalty

Suppose you are designing a cache that must fit on the chip. You may find
your tags are too large, either because they don’t fit on the chip or because
are too slow. A simple solution is to go to large blocks, which reduces tag sto
without decreasing the amount of information you can store in the cache
course the miss rate will likely improve, but the increase in miss penalty c
make the larger blocks a bad decision.

One solution is called sub-block placement. A valid bit is added to units small-
er than the full block, called sub-blocks. Only a single sub-block need be read o
a miss. The valid bits specify some parts of the block as valid and some pa
invalid, so a match of the tag doesn’t mean the word is necessarily in the c
as the valid bit for that word must also be on. Figure 5.21 gives an exam
Clearly sub-blocks will have a smaller miss penalty than full blocks.

Figure 5.21 shows the reduction in tag storage; if the valid bits had to b
placed by full tags, there would be much more memory dedicated to tags, w
is the reason sub-block placement was invented.

Third Miss Penalty Reduction Technique:
Early Restart and Critical Word First

The first two techniques require extra hardware to reduce miss penalty, bu
this third technique. It is based on the observation that the CPU needs jus
word of the block at a time. This strategy is impatience: Don’t wait for the
block to be loaded before sending the requested word and restarting the
Here are two specific strategies:

5.4 Reducing Cache Miss Penalty 413

it to

t to
 the

ocks,
■ Early restart—As soon as the requested word of the block arrives, send
the CPU and let the CPU continue execution.

■ Critical word first—Request the missed word first from memory and send i
the CPU as soon as it arrives; let the CPU continue execution while filling
rest of the words in the block. Critical-word-first fetch is also called wrapped
fetch and requested word first.

Generally these techniques only benefit designs with very large cache bl
since the benefit is low unless blocks are large.

E X A M P L E Let’s assume a machine has a 32-byte cache block and the memory sys-
tem takes five clock cycles to fetch bytes over a 16-byte wide path to
memory, as in the case of the Alpha AXP 21064. Calculate the average
miss penalty for critical word first, assuming that there will be no other
accesses to the other half of the block until it is completely fetched. Then
calculate assuming the following instruction reads data from the other half
of the block.

FIGURE 5.21 In this example there are four sub-blocks per block in a direct-mapped
cache. Sub-blocks can be thought of as an extra level of addressing beyond the address tag.
In the first block (top), all the valid bits are on, equivalent to the valid bit being on for a block
in a normal cache. In the last block (bottom), the opposite is true; no valid bits are on. In the
second block, locations 300 and 301 are valid and will be hits, while locations 302 and 303
will be misses. For the third block, locations 201 and 203 are hits. If, instead of this organiza-
tion, there were 16 blocks the size of the sub-block, 16 tags would be needed instead of 4.
Note that for caches with sub-block placement, a block can no longer be defined as the min-
imum unit transferred between cache and memory. For such caches a block is defined as the
unit of information associated with an address tag.

100

300

200

204

1

1

0

0

1

1

1

0

1

0

0

0

Sub-blocks

1

0

1

0

414 Chapter 5 Memory-Hierarchy Design

tart
ortion

enalty

con-
sing
 need
truc-
 the
l
cache
iss

f the
ffec-
 or

em-
under
an be

or an
point
t al-
A N S W E R The average miss penalty is five clock cycles for critical word first. For
back-to-back reads of both halves of the cache block, only one cycle is
saved since the pipeline will only move one instruction further until it must
stall on the missing data. ■

As this example illustrates, the benefits of critical word first and early res
depend on the size of the block and the likelihood of another access to the p
of the block that has not yet been fetched.

The next technique takes overlap between the CPU and cache miss p
even further to reduce the average miss penalty.

Fourth Miss Penalty Reduction Technique:
Nonblocking Caches to Reduce Stalls on Cache Misses

Early restart still waits for the requested word to arrive before the CPU can
tinue execution. For pipelined machines that allow out-of-order completion u
a scoreboard or Tomasulo-style control (section 4.2 in Chapter 4), the CPU
not stall on a cache miss. For example, the CPU could continue fetching ins
tions from the instruction cache while waiting for the data cache to return
missing data. A nonblocking cache or lockup-free cache escalates the potentia
benefits of such a scheme by allowing the data cache to continue to supply
hits during a miss. This “hit under miss” optimization reduces the effective m
penalty by being helpful during a miss instead of ignoring the requests o
CPU. A subtle and complex option is that the cache may further lower the e
tive miss penalty if it can overlap multiple misses: a “hit under multiple miss”
“miss under miss” optimization. The second option is beneficial only if the m
ory system can service multiple misses (see page 434). Be aware that hit
miss significantly increases the complexity of the cache controller as there c
multiple outstanding memory accesses.

Figure 5.22 shows the average time in clock cycles for cache misses f
8-KB data cache as the number of outstanding misses is varied. Floating-
programs benefit from increasing complexity, while integer programs ge
most all of the benefit from a simple hit-under-one-miss scheme.

5.4 Reducing Cache Miss Penalty 415
E X A M P L E For the cache described in Figure 5.22, which is more important for
floating-point programs: two-way set associativity or hit under one miss?
What about for integer programs? Assume the following average miss
rates for 8-KB data caches: 11.4% for floating-point programs with a
direct-mapped cache, 10.7% for these programs with a two-way set-
associative cache, 7.4% for integer programs with a direct-mapped
cache, and 6.0% for integer programs with a two-way set-associative
cache. Assume the average memory stall time is just the product of the
miss rate and the miss penalty.

FIGURE 5.22 Ratio of the average memory stall time for a blocking cache to hit-un-
der-miss schemes as the number of outstanding misses is varied for 18 SPEC92 pro-
grams. The hit-under-64-misses line allows one miss for every register in the machine. The
first 14 programs are floating-point programs: the average for hit under 1 miss is 76%, for 2
misses is 51%, and for 64 misses is 39%. The final four are integer programs, and the three
averages are 81%, 78%, and 78%, respectively. These data were collected for an 8-KB di-
rect-mapped data cache with 32-byte blocks and a 16-clock-cycle miss penalty. These data
were generated using the VLIW Multiflow Compiler, which scheduled loads away from use
[Farkas and Jouppi 1994].

100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Ratio of the
average
memory
stall time

Benchmarks

sw
m

25
6

fp
pp

p

hy
dr

o2
d

na
sa

7

wav
e5

m
dlj

dp
2

sp
ice

2g
6

xli
sp

co
m

pr
es

s

to
m

ca
tv

su
2c

or

m
dlj

sp
2

do
du

c
ea

r

alv
inn or

a

es
pr

es
so

eq
nt

ot
t

Hit under 1 miss Hit under 2 misses Hit under 64 misses

416 Chapter 5 Memory-Hierarchy Design

is fi-
cache

tect to
ed of
 CPU
ache
ough
 can
ereby

ard,
e are
A N S W E R The numbers for Figure 5.22 were based on a miss penalty of 16 clock cy-
cles. Although this is low for a miss penalty, let’s stick with it for consisten-
cy. For floating-point programs the average memory stall times are

Miss rateDM × Miss penalty = 11.4% × 16 = 1.84

Miss rate2-way × Miss penalty = 10.7% × 16 = 1.71

The memory stalls of two-way are thus 1.71/1.84 or 93% of direct-
mapped cache. The caption of Figure 5.22 says hit under one miss
reduces the average memory stall time to 76% of a blocking cache, so for
floating-point programs the direct-mapped data cache supporting hit un-
der one miss gives better performance than a two-way set-associative
cache that blocks on a miss.

For integer programs the calculation is

Miss rateDM × Miss penalty = 7.4% × 16 = 1.18

Miss rate2-way × Miss penalty = 6.0% × 16 = 0.96

The memory stalls of two-way are thus 0.96/1.18 or 81% of direct-
mapped cache. The caption of Figure 5.22 says hit under one miss
reduces the average memory stall time to 81% of a blocking cache, so the
two options give about the same performance for integer programs. One
potential advantage of hit under miss is that it cannot affect the hit time,
as associativity can. ■

Fifth Miss Penalty Reduction Technique:
Second-Level Caches

The first four techniques to reduce miss penalty have impact on the CPU. Th
nal technique ignores the CPU, concentrating on the interface between the
and main memory.

The performance gap between processors and memory leads the archi
this question: Should I make the cache faster to keep pace with the spe
CPUs, or make the cache larger to overcome the widening gap between the
and main memory? One answer is, both. By adding another level of c
between the original cache and memory, the first-level cache can be small en
to match the clock cycle time of the fast CPU, while the second-level cache
be large enough to capture many accesses that would go to main memory, th
lessening the effective miss penalty.

While the concept of adding another level in the hierarchy is straightforw
it complicates performance analysis. Definitions for a second level of cach

5.4 Reducing Cache Miss Penalty 417

ec-

 the
-level

m-

m-
e, the

of the
 mea-
go all

write-

ed.
ange
e can
 the
not always straightforward. Let’s start with the definition of average memory
access time for a two-level cache. Using the subscripts L1 and L2 to refer, resp
tively, to a first-level and a second-level cache, the original formula is

Average memory access time = Hit timeL1 + Miss rateL1 × Miss penaltyL1

and

Miss penaltyL1 = Hit timeL2 + Miss rateL2 × Miss penaltyL2

so

Average memory access time = Hit timeL1 + Miss rateL1× (Hit timeL2 + Miss rateL2 × Miss penaltyL2)

In this formula, the second-level miss rate is measured on the leftovers from
first-level cache. To avoid ambiguity, these terms are adopted here for a two
cache system:

■ Local miss rate—The number of misses in the cache divided by the total nu
ber of memory accesses to this cache; this is Miss rateL2 above for the second-
level cache.

■ Global miss rate—The number of misses in the cache divided by the total nu
ber of memory accesses generated by the CPU; using the terms abov
global miss rate of the second-level cache is Miss rateL1 × Miss rateL2.

This local miss rate is large because the first-level cache skims the cream
memory accesses, and this is why the global miss rate is the more useful
sure: it indicates what fraction of the memory accesses that leave the CPU
the way to memory.

E X A M P L E Suppose that in 1000 memory references there are 40 misses in the first-
level cache and 20 misses in the second-level cache. What are the vari-
ous miss rates?

A N S W E R The miss rate (either local or global) for the first-level cache is 40/1000 or
4%. The local miss rate for the second-level cache is 20/40 or 50%. The
global miss rate of the second-level cache is 20/1000 or 2%. ■

Note that these formulas are for combined reads and writes, assuming a
back first-level cache. Obviously, a write-through first-level cache will sendall
writes to the second level, not just the misses, and a write buffer would be us

Figures 5.23 and 5.24 show how miss rates and relative execution time ch
with the size of a second-level cache for one design. From these figures w
gain two insights. The first is that the global cache miss rate is very similar to

418 Chapter 5 Memory-Hierarchy Design

-level
owl-
cache
single cache miss rate of the second-level cache, provided that the second
cache is much larger than the first-level cache. Hence our intuition and kn
edge about the first-level caches apply. The second insight is that the local

FIGURE 5.23 Miss rates versus cache size for reads and writes. The top graph shows the results
plotted on a linear scale as we have done with earlier figures, while the bottom graph shows the results
plotted on a log scale. As miss rates shrink, the log scale makes the differences easier to follow. The
miss rate of a single-level cache versus size is plotted against the local miss rate and global miss rate
of a second-level cache using a 32-KB first-level cache. Second-level caches smaller than the 32-KB
first level make little sense, as reflected in the high miss rates. After 256 KB the single cache and global
miss rates are virtually identical. Przybylski [1990] used four traces from the VAX system and four user
programs from the MIPS R2000 that were randomly interleaved to duplicate the effect of process
switches.

80.0%

70.0%

60.0%

50.0%

Miss
rate

40.0%

30.0%

20.0%

10.0%

4

72% 72% 71%

53%

38%

28%
22%

18% 16% 15% 15%

1%1%1%1%1%1%2%3%4%6%8%

3% 3% 3% 2%
8 16 32 64 128

Cache size (KB)

256 512 1024 2048 4096

100.0%

Miss
rate

10.0%

1.0%

0.1%
4 8 16 32 64 128

Cache size (KB)

256 512 1024 2048 4096

Single cache miss rate
Global miss rate

Local miss rate

Single cache miss rate
Global miss rate

Local miss rate

5.4 Reducing Cache Miss Penalty 419

te of
Thus,
hes.
ond-
ed of

f the
s, we
osen

cond-
, and

n the
ache

igger,
ond-
eans
ing a
r set
rate is not a good measure of secondary caches; it is a function of the miss ra
the first-level cache, and hence can vary by changing the first-level cache.
the global cache miss rate should be used when evaluating second-level cac

With these definitions in place, we can consider the parameters of sec
level caches. The foremost difference between the two levels is that the spe
the first-level cache affects the clock rate of the CPU, while the speed o
second-level cache only affects the miss penalty of the first-level cache. Thu
can consider many alternatives in the second-level cache that would be ill ch
for the first-level cache. There are but two questions for the design of the se
level cache: Will it lower the average memory access time portion of the CPI
how much does it cost?

The initial decision is the size of a second-level cache. Since everything i
first-level cache is likely to be in the second-level cache, the second-level c
should be much bigger than the first. If second-level caches are just a little b
the local miss rate will be high. This observation inspires design of huge sec
level caches—the size of main memory in older computers! Large size m
that the second-level cache may have practically no capacity misses, leav
few compulsory and conflict misses for our attention. One question is whethe
associativity makes more sense for second-level caches.

FIGURE 5.24 Relative execution time by second-level cache size. Przybylski [1990] col-
lected these data using a 32-KB first-level write-back cache, varying the size of the second-
level cache. The two bars are for different clock cycles for a level two cache hit. The reference
execution time of 1.00 is for a 4096-KB second-level cache with a one-clock-cycle latency on
a second-level hit. These data were collected the same way as in Figure 5.23.

1

4096

2048

1024

512

256

128

64

1.5 2 2.5

Level two cache size (KB)

Level two hit = 8 clock cycles

Level two hit = 4 clock cycles

Relative execution time

1.24
1.62

1.62

1.62

1.25

1.25

1.27
1.64

1.32
1.68

1.38
1.75

1.49
1.84

420 Chapter 5 Memory-Hierarchy Design

cond-
udo-
ct on

 is due
-level
also

-level
 since
e. Be-
emory
E X A M P L E Given the data below, what is the impact of second-level cache as-
sociativity on the miss penalty?

■ Two-way set associativity increases hit time by 10% of a CPU clock
cycle

■ Hit timeL2 for direct mapped = 10 clock cycles

■ Local miss rateL2 for direct mapped = 25%

■ Local miss rateL2 for two-way set associative = 20%

■ Miss penaltyL2 = 50 clock cycles

A N S W E R For a direct-mapped second-level cache, the first-level cache miss
penalty is

Miss penalty1- way L2 = 10 + 25% × 50 = 22.5 clock cycles

Adding the cost of associativity increases the hit cost only 0.1 clock
cycles, making the new first-level cache miss penalty

Miss penalty2- way L2 = 10.1 + 20% × 50 = 20.1 clock cycles

In reality, second-level caches are almost always synchronized with the
first-level cache and CPU. Accordingly, the second-level hit time must be
an integral number of clock cycles. If we are lucky, we can shave the
second-level hit time to 10 cycles; if not, we can round up to 11 cycles.
Either choice is an improvement over the direct-mapped second-level
cache:

Miss penalty2- way L2 = 10 + 20% × 50 = 20.0 clock cycles

Miss penalty2- way L2 = 11 + 20% × 50 = 21.0 clock cycles

■

Now we can reduce the miss penalty by reducing the miss rate of the se
level caches using techniques from section 5.3. Higher associativity or pse
associativity (page 398) are worth considering because they have small impa
the second-level hit time and because so much of the average access time
to misses in the second-level cache. Although the larger size of the second
cache eliminates conflict misses by distributing data over more blocks, it
eliminates most of the capacity misses; thus the percentage of conflict misses is
still significant in direct-mapped second-level caches.

Another approach to reducing misses is increasing block size in second
caches. Increasing block size can increase conflict misses with small caches
there may not be enough places to put data, therefore increasing miss rat
cause this is not an issue in large second-level caches, and because m

5.4 Reducing Cache Miss Penalty 421

 occa-
e as

bits.
re al-
ve the
en

just by

ory
 larg-

 with
te all
ing a
ates.
iza-

hes
en a
write
 as a
access time is relatively longer, block sizes of 64 bytes, 128 bytes, and even
sionally 256 bytes are popular. Figure 5.25 shows the variation in execution tim
the second-level block size changes for a relatively narrow memory bus of 32

Another consideration concerns whether all data in the first-level cache a
ways in the second-level cache. If so, the second-level cache is said to ha
multilevel inclusion property. Inclusion is desirable because consistency betwe
I/O and caches (or between caches in a multiprocessor) can be determined
checking the second-level cache (see section 8.7).

The drawback to this natural inclusion is that the lower average mem
access times can suggest smaller blocks for the smaller first-level cache and
er blocks for the larger second-level cache. Inclusion can still be maintained
more work on a second-level miss: The second-level cache must invalida
first-level blocks that map onto the second-level block to be replaced, caus
slightly higher first-level miss rate. It can also cause unneeded cache invalid
Inclusion escalates in complexity when combined with performance optim
tions, such as a nonblocking secondary cache.

Finally, although a novice might design the first- and second-level cac
independently, the designer of the first-level cache has a simpler job giv
second-level cache to back up the first. It is less of a gamble to use a
through, for example, if there is a write-back cache at the next level to act
backstop for repeated writes.

FIGURE 5.25 Relative execution time by block size for a two-level cache. Przybylski
[1990] collected these data using a 512-KB second-level cache. These data were collected
the same way as in Figure 5.23. The path to memory was basically 32 bits wide in this study:
one clock cycle to send the address, six clock cycles to access the data, and one word per
clock cycle to transfer the data.

2.00

1.75

1.50Relative CPU execution time

1.25

1.36

1.28 1.27

1.34

1.54

1.95

1.00
16 32 64

Block size of second-level cache (bytes)

128 256 512

422 Chapter 5 Memory-Hierarchy Design

he de-
 hurt
t-level
aches

cing
 are

any
n for
st hit

mula
 then

ress
 from
rtainly
 the
e de-
chip,
mory
 direct
e de-
ffec-

 small

dress
ow in
ry hi-
st be
Summarizing the second-level cache considerations, the essence of cac
sign is balancing fast hits and few misses. Most optimizations that help one
the other. For second-level caches, there are many fewer hits than in the firs
cache, so the emphasis shifts to fewer misses. This insight leads to larger c
with higher associativity and larger blocks.

Now that we have examined ways to improve cache performance by redu
misses (in section 5.3) and by reducing miss penalty (in section 5.4), we
ready to reduce the third component of the average memory access time.

Hit time is critical because it affects the clock rate of the processor; on m
machines today the cache access time limits the clock cycle rate, eve
machines that take multiple clock cycles to access the cache. Hence a fa
time is multiplied in importance beyond the average memory access time for
because it helps everything. This section gives two general techniques and
one optimization for write hits.

First Hit Time Reduction Technique:
Small and Simple Caches

A time-consuming portion of a cache hit is using the index portion of the add
to read the tag memory and then compare it to the address. Our guideline
Chapter 1 suggests that smaller hardware is faster, and a small cache ce
helps the hit time. It is also critical to keep the cache small enough to fit on
same chip as the processor to avoid the time penalty of going off-chip. Som
signs strike a compromise by keeping the tags on-chip and the data off-
promising a fast tag check, yet providing the greater capacity of separate me
chips. The second suggestion is to keep the cache simple, such as using
mapping (see page 396). A main benefit of direct-mapped caches is that th
signer can overlap the tag check with the transmission of the data. This e
tively reduces hit time. Hence the pressure of a fast clock cycle encourages
and simple cache designs for first-level caches.

Second Hit Time Reduction Technique:
Avoiding Address Translation During Indexing of the Cache

Even a small and simple cache must cope with the translation of a virtual ad
from the CPU to a physical address to access memory. As described bel
section 5.7, processors treat main memory as just another level of the memo
erarchy, and thus the address of the virtual memory that exists on disk mu
mapped onto the main memory.

5.5 Reducing Hit Time

5.5 Reducing Hit Time 423

irtual
. Such

ddress
 ad-
 virtual
ushed.
is to
The guideline of making the common case fast suggests that we use v
addresses for the cache, since hits are much more common than misses
caches are termed virtual caches, with physical cache used to identify the tradi-
tional cache that uses physical addresses. Virtual addressing eliminates a
translation time from a cache hit. Then why doesn’t everyone build virtually
dressed caches? One reason is that every time a process is switched, the
addresses refer to different physical addresses, requiring the cache to be fl
Figure 5.26 shows the impact on miss rates of this flushing. One solution

FIGURE 5.26 Miss rate versus virtually addressed cache size of a program measured
three ways: without process switches (uniprocess), with process switches using a
process-identifier tag (PIDs), and with process switches but without PIDs (purge). PIDs
increase the uniprocess absolute miss rate by 0.3% to 0.6% and save 0.6% to 4.3% over
purging. Agarwal [1987] collected these statistics for the Ultrix operating system running on
a VAX, assuming direct-mapped caches with a block size of 16 bytes. Note that the miss rate
goes up from 128K to 256K. Such nonintuitive behavior can occur in caches because chang-
ing size changes the mapping of memory blocks onto cache blocks, which can change the
conflict miss rate.

20%

18%

16%

14%

12%

10%
Miss
rate

8%

6%

4%

2%

0%
2K

0.6%
0.4%

18.8%

1.1%

0.5%

13.0%

1.8%

0.6%

8.7%

2.7%

0.6%

3.9%

3.4%

0.4%

2.7%

3.9%

0.4%
0.9%

4.1%

0.3%
0.4%

4.3%

0.3%
0.3%

4.3%

0.3%
0.3%

4.3%

0.3%
0.3%

4K 8K

Uniprocess PIDs Purge

16K 32K

Cache size

64K 128K 256K 512K 1024K

424 Chapter 5 Memory-Hierarchy Design

 cache
ta in
 rates

 sys-
same

 oth-
ince
rdware
cal

some
ires

on is
ing

is re-

hys-
teract
w in

ache
is in-
reater

 of the

e the
while
on to
dress
ive
an ad-
 is 8

rt of
at the
increase the width of the cache address tag with a process-identifier tag (PID). If
the operating system assigns these tags to processes, it only need flush the
when a PID is recycled; that is, the PID distinguishes whether or not the da
the cache are for this program. Figure 5.26 shows the improvement in miss
by using PIDs to avoid cache flushes.

Another reason why virtual caches are not more popular is that operating
tems and user programs may use two different virtual addresses for the
physical address. These duplicate addresses, called synonyms or aliases, could
result in two copies of the same data in a virtual cache; if one is modified, the
er will have the wrong value. With a physical cache this wouldn’t happen, s
the accesses would first be translated to the same physical cache block. Ha
solutions, called anti-aliasing, guarantee every cache block a unique physi
address.

Software can make this problem much easier by forcing aliases to share
address bits. The version of UNIX from Sun Microsystems, for example, requ
all aliases to be identical in the last 18 bits of their addresses; this restricti
called page coloring. Note that page coloring is simply set-associative mapp
applied to virtual memory: the 4-KB (212) pages are mapped using 64 (26) sets to
ensure that the physical and virtual addresses match in the last 18 bits. Th
striction means a direct-mapped cache that is 218 (256K) bytes or smaller can
never have duplicate physical addresses for blocks.

The final area of concern with virtual addresses is I/O. I/O typically uses p
ical addresses and thus would require mapping to virtual addresses to in
with a virtual cache. (The impact of I/O on caches is further discussed belo
section 5.9.)

Another technique to get fast hits is to break address translation and c
access into separate pipeline stages, giving fast cycle time and slow hits. Th
creases the number of pipeline stages for a memory access, leading to g
penalty on mispredicted branches and more clock cycles between the issue
load and the use of the data (see section 3.9).

One alternative to get the best of both virtual and physical caches is to us
page offset—the part unaffected by address translation—to index the cache
sending the virtual part to be translated. This alternative allows the comparis
be with physical addresses and yet overlap the time to read the tags with ad
translation. The limitation of this virtually indexed, physically tagged alternat
is that a direct-mapped cache can be no bigger than the page size. This is
vantage of the 8-KB caches of the Alpha AXP 21064; the minimum page size
KB, so the 8-bit index can be taken from the physical part of the address.

One way to keep the index small enough to be taken from the physical pa
the address and still have a large cache is to use high associativity. Recall th
size of the index is controlled by this formula:

2
index Cache size

Block size Set associativity×
--=

5.5 Reducing Hit Time 425

 even
 asso-
th a
re.

ple-
hysi-
n first

are
al ad-
al ad-
x the
hybrid
 data
bits of
 de-

dress
 con-

ed be-
ech-
rites.
 and
 cache
omes
The IBM 3033 cache, as an extreme example, is 16-way set associative,
though studies show there is little benefit to miss rates above eight-way set
ciativity. This high associativity allows a 64-KB cache to be addressed wi
physical index despite the limitation of 4-KB pages in the IBM architectu
Figure 5.27 shows the relationship of index to page offset.

One alternative to higher associativity is for the operating system to im
ment page coloring by guaranteeing that the last few bits of the virtual and p
cal page address are identical. Such cooperating allows a larger index tha
with the page offset and still compares physical addresses.

Another alternative to higher associativity is to have a small piece of hardw
that guesses the mapping of the last few bits of virtual address bits to physic
dress. This might be a small table that uses a hashing function on the virtu
dress. This guess is used with the physical portion of the address to inde
cache, with the translated address used to match the tag selected by this
index. If the tag matches, we have a hit. If the tag doesn’t match, either the
were not in the cache or we had a bad guess of the mapping of the last few
virtual address. The cache would presumably retry with the correct index to
cide whether the access was a hit or a real miss.

Keeping caches small and simple and techniques to avoid delays of ad
translation will make both read hits and write hits faster. The next subsection
centrates only on writes.

Third Hit Time Reduction Technique: Pipelining
Writes for Fast Write Hits

Write hits usually take longer than read hits because the tag must be check
fore writing the data; otherwise the wrong address would be written. One t
nique, used by the Alpha AXP 21064 and other machines, pipelines the w
Figure 5.28 shows the hardware organization of pipelined writes. First, tags
data are split so that they can be addressed independently. On a write, the
compares the tag with the current write address, as usual. The difference c

FIGURE 5.27 Relationship of index field and page offset in the IBM 3033 cache. The
4-KB page means the last 12 bits of the address are not translated, and hence some of it can
be used to index the cache.

Page address
Address tag Index Block offset

Page offset

0111231

426 Chapter 5 Memory-Hierarchy Design

pari-
is still
e
ipe-

stage
med
for the
eady

nd hit
 equa-
rizes
at the
ning
 none
with the write to the data portion of the cache that occurs during the tag com
son; it must be using some other address since the current write address
being checked. The trick is that the cache uses the address and data from thpre-
vious write, which has already been determined to be a hit. Thus the logical p
line is between writes—the second stage of the write occurs during the first
of the next write (or during a cache miss). Therefore, writes can be perfor
back to back at one per clock cycle because the CPU does not have to wait
tag check before writing. Reads play no part in this pipeline since they alr
operate in parallel with the tag check, and so no help is needed.

Cache Optimization Summary

The techniques in sections 5.3 to 5.5 to improve miss rate, miss penalty, a
time generally impact the other components of the average memory access
tion as well as the complexity of the memory hierarchy. Figure 5.29 summa
these techniques and estimates the impact on complexity, with + meaning th
technique improves the factor, – meaning it hurts that factor, and blank mea
it has no impact. Note that few techniques help more than one category, and
help all three.

FIGURE 5.28 The hardware organization of pipelined writes. It is possible to find the de-
sired data in the delayed write buffer. In that case, either the write buffer supplies the newer
data or the write buffer could complete and then the new data are read from the cache.

CPU
address
Data
in

Data
out

Write
buffer

Lower level memory

=?

Delayed write buffer

=?

M
u
x

Tag

Data

5.6 Main Memory 427

ntion
on-
ade

e
… the one single development that put computers on their feet was the inve
of a reliable form of memory, namely, the core memory. … Its cost was reas
able, it was reliable and, because it was reliable, it could in due course be m
large. [p. 209]

Maurice Wilkes, Memoirs of a Computer Pioneer (1985)

Technique
Miss
rate

Miss
penalty

Hit
time

Hardware
complexity Comment

Larger block size + – 0 Trivial; RS/6000 550 uses 128

Higher associativity + – 1 e.g., MIPS R10000 is 4-way

Victim caches + 2 Similar technique in HP 7200

Pseudo-associative caches + 2 Used in L2 of MIPS R10000

Hardware prefetching of
instructions and data

+ 2 Data are harder to prefetch; tried in a
few machines; Alpha 21064

Compiler-controlled prefetching + 3 Needs nonblocking cache too;
several machines support it

Compiler techniques to reduce
cache misses

+ 0 Software is challenge; some ma-
chines give compiler option

Giving priority to read misses
over writes

+ 1 Trivial for uniprocessor, and widely
used

Subblock placement + 1 Used primarily to reduce tags

Early restart and critical
word first

+ 2 Used in MIPS R10000, IBM 620

Nonblocking caches + 3 Used in Alpha 21064, R10000

Second-level caches + 2 Costly hardware; harder if block siz
L1 ≠ L2; widely used

Small and simple caches – + 0 Trivial; widely used

Avoiding address translation
during indexing of the cache

+ 2 Trivial if small cache; used in Alpha
21064

Pipelining writes for fast write
hits

+ 1 Used in Alpha 21064

FIGURE 5.29 Summary of cache optimizations and impact on the three aspects of cache performance and on
cache complexity. + means that the technique improves the factor, – means it hurts that factor, and blank means it has no
impact. The complexity measure is subjective, with 0 being the easiest and 3 being a challenge.

5.6 Main Memory

428 Chapter 5 Memory-Hierarchy Design

 the
f input

pha-
ytes
cts
mory
vel
rtant
emo-

 I/O

d cy-
 the

to
emo-

sary
 there-
t first,
-
e
atrix

 its
ut
h bit
shed
sys-
nds.

ilable

M.
teps
ers

ing
well as
infor-
 no
efresh
 are
Main memory is the next level down in the hierarchy. Main memory satisfies
demands of caches and serves as the I/O interface, as it is the destination o
as well as the source for output. Performance measures of main memory em
size both latency and bandwidth. (Memory bandwidth is the number of b
read or written per unit time.) Traditionally, main memory latency (which affe
the cache miss penalty) is the primary concern of the cache, while main me
bandwidth is the primary concern of I/O. With the popularity of second-le
caches and their larger block sizes, main memory bandwidth becomes impo
to caches as well. In fact, cache designers may take advantage of the high m
ry bandwidth by increasing block size. The relationship of main memory and
is discussed in Chapter 6.

Memory Technology

Memory latency is traditionally quoted using two measures—access time an
cle time. Access time is the time between when a read is requested and when
desired word arrives, while cycle time is the minimum time between requests
memory. One reason that cycle time is greater than access time is that the m
ry needs the address lines to be stable between accesses.

As early DRAMs grew in capacity, the cost of a package with all the neces
address lines was an issue. The solution was to multiplex the address lines,
by cutting the number of address pins in half. One half of the address is sen
called the row access strobe or RAS. It is followed by the other half of the ad
dress, sent during the column access strobe or CAS. These names come from th
internal chip organization, since the memory is organized as a rectangular m
addressed by rows and columns.

An additional requirement of DRAM derives from the property signified by
first letter, D, for dynamic. DRAMs use only a single transistor to store a bit, b
reading that bit can disturb the information. To prevent loss of information, eac
must be “refreshed” periodically. Fortunately, all the bits in a row can be refre
simultaneously just by reading that row. Hence every DRAM in the memory
tem must access every row within a certain time window, such as 8 milliseco
Memory controllers include hardware to periodically refresh the DRAMs.

This requirement means that the memory system is occasionally unava
because it is sending a signal telling every chip to refresh. The time for a refresh
is typically a full memory access (RAS and CAS) for each row of the DRA
Since the memory matrix in a DRAM is conceptually square, the number of s
in a refresh is usually the square root of the DRAM capacity. DRAM design
try to keep time spent refreshing to be less than 5% of the total time.

In contrast to DRAMs are SRAMs—the first letter standing for static. The dy-
namic nature of the circuits in DRAM require data to be written back after be
read, hence the difference between the access time and the cycle time as
the need to refresh. SRAMs use four to six transistors per bit to prevent the
mation from being disturbed when read. Thus, unlike DRAMs, there is
difference between access time and cycle time, and there is no need to r
SRAM. In DRAM designs the emphasis is on capacity, while SRAM designs

5.6 Main Memory 429

d-
hnol-
cle
 16

d of
that
M for

arly
igners
t in
ately,
ows
n, or

p is
ore
ious
erfor-

s may
main
s for
ec-
concerned with both speed and capacity. (Because of this concern, SRAM a
dress lines are not multiplexed.) For memories designed in comparable tec
ogies, the capacity of DRAMs is roughly 4 to 8 times that of SRAMs. The cy
time of SRAMs is 8 to 16 times faster than DRAMs, but they are also 8 to
times as expensive.

The main memory of virtually every computer sold since 1975 is compose
semiconductor DRAMs (and virtually all caches use SRAM); the exception
proves the rule is Cray supercomputers such as the C-90, which use SRA
main memory.

Amdahl suggested a rule of thumb that memory capacity should grow line
with CPU speed to keep a balanced system (see section 1.4), and CPU des
rely on DRAMs to supply that demand: they expect a four-fold improvemen
capacity every three years in the base technology, or 60% per year. Unfortun
the performance of DRAMs is growing at a much slower rate. Figure 5.30 sh
a performance improvement in row access time of about 22% per generatio
7% per year.

As we saw in Figure 5.1 on page 374, the CPU-DRAM performance ga
clearly a problem today—Amdahl’s Law warns us what will happen if we ign
one portion of the computation while trying to speed up the rest. The prev
sections describe what can be done with cache organization to reduce this p
mance gap, but simply making caches larger or adding more levels of cache
not be a cost-effective way to eliminate the gap. Innovative organizations of
memory are needed as well. In the next section we examine technique
organizing memory to improve bandwidth, concluding with techniques esp
ially for DRAMs.

Row access strobe (RAS)

Year of
introduction Chip size

Slowest
DRAM

Fastest
DRAM

Column
access strobe

(CAS)
Cycle
time

1980 64 Kbit 180 ns 150 ns 75 ns 250 ns

1983 256 Kbit 150 ns 120 ns 50 ns 220 ns

1986 1 Mbit 120 ns 100 ns 25 ns 190 ns

1989 4 Mbit 100 ns 80 ns 20 ns 165 ns

1992 16 Mbit 80 ns 60 ns 15 ns 120 ns

1995 64 Mbit 65 ns 50 ns 10 ns 90 ns

FIGURE 5.30 Times of fast and slow DRAMs with each generation. The improvement
by a factor of two in column access accompanied the switch from NMOS DRAMs to CMOS
DRAMs. With three years per generation, the performance improvement of row access time
is about 7% per year. Data in the last row represent predicted performance for 64-Mbit
DRAMs.

430 Chapter 5 Memory-Hierarchy Design

er to
ncy.
 size

iss.

 next
ific
Organizations for Improving Main Memory Performance

Although caches are interested in low latency memory, it is generally easi
improve memory bandwidth with new organizations than it is to reduce late
Caches benefit from bandwidth improvement by allowing each cache block
to increase without a large increase in the miss penalty.

Let’s illustrate these organizations with the case of satisfying a cache m
Assume the performance of the basic memory organization is

■ 4 clock cycles to send the address

■ 24 clock cycles for the access time per word

■ 4 clock cycles to send a word of data

Given a cache block of four words, the miss penalty is 4 × (4 + 24 + 4) or 128 clock
cycles, with a memory bandwidth of one-eighth byte (16/128) per clock cycle.

Figure 5.31 shows some of the options to faster memory systems. The
four solutions assume generic memory, either DRAM or SRAM. DRAM-spec
solutions form the last subsection.

FIGURE 5.31 Three examples of bus width, memory width, and memory interleaving
to achieve higher memory bandwidth. (a) is the simplest design, with everything the width
of one word; (b) shows a wider memory, bus, and cache; while (c) shows a narrow bus and
cache with an interleaved memory.

Memory
bank 0

Memory
bank 1

Memory
bank 2

Memory
bank 3

Bus

Cache

CPU

(c) Interleaved
 memory organization

Bus

Cache

CPU

(a) One-word-wide
 memory organization

Bus

Cache

CPU

(b) Wide memory organization

Multiplexor

Memory

Memory

5.6 Main Memory 431

e the

ause
ten de-
 the
em-
our

 per

cally
ere
multi-
e the
itical
le by
idth

cul-
 rest
ulated
e full
ify-
signs
rites

ond-
mers
lder
the

van-
em.
 time
to try
The simplest approach to increasing memory bandwidth, then, is to mak
memory wider; we examine this first.

First Technique for Higher Bandwidth: Wider Main Memory

First-level caches are often organized with a physical width of one word bec
most CPU accesses are that size. Systems without second-level caches of
sign main memory to match the width of the cache. Doubling or quadrupling
width of the cache and the memory will therefore double or quadruple the m
ory bandwidth. With a main memory width of two words, the miss penalty in
example would drop from 4 × 32 or 128 clock cycles to 2 × 32 or 64 clock cycles.
At four words wide the miss penalty is just 1 × 32 clock cycles. The bandwidth is
then one-quarter byte per clock cycle at two words wide and one-half byte
clock cycle when the memory is four words wide.

There is cost in the wider connection between the CPU and memory, typi
called a memory bus. CPUs will still access the cache a word at a time, so th
now needs to be a multiplexer between the cache and the CPU—and that
plexer may be on the critical timing path. Second-level caches can help sinc
multiplexing can be between first- and second-level caches, not on the cr
path. Another drawback is that since main memory is traditionally expandab
the customer, the minimum increment is doubled or quadrupled when the w
is doubled or quadrupled. Finally, memories with error correction have diffi
ties with writes to a portion of the protected block (e.g., a write of a byte); the
of the data must be read so that the new error correction code can be calc
and stored when the data are written. If the error correction is done over th
width, the wider memory will increase the frequency of such “read-mod
write” sequences because more writes become partial block writes. Many de
of wider memory have separate error correction every 32 bits since most w
are that size.

One example of wide main memory is the Alpha AXP 21064 whose sec
level cache, memory bus, and memory are all 256 bits wide. To allow custo
to purchase small amounts of memory without sacrificing width, DEC sells o
generations of DRAM for small memories as well as current DRAMs for
larger memory systems (see section 5.10).

Second Technique for Higher Bandwidth:
Simple Interleaved Memory

Increasing width is one way to improve bandwidth, but another is to take ad
tage of the potential parallelism of having many DRAMs in a memory syst
Memory chips can be organized in banks to read or write multiple words at a
rather than a single word. In general, the purpose of interleaved memory is
to take advantage of the potential memory bandwidth of all the DRAMs in the

432 Chapter 5 Memory-Hierarchy Design

ining

ache
to read
g an

 miss
.4
back
ne

bank.

 sys-
rleaved
1 has
inter-

ter-
 ideal
tially.
re ef-
system; in contrast, most memory systems activate only the DRAMs conta
the needed words.

The banks are often one word wide so that the width of the bus and the c
need not change, but sending addresses to several banks permits them all
simultaneously. Figure 5.31(c) shows this organization. For example, sendin
address to four banks (with access times shown on page 430) yields a
penalty of 4 + 24 + 4 × 4 or 44 clock cycles, giving a bandwidth of about 0
bytes per clock cycle. Banks are also valuable on writes. Although back-to-
writes would normally have to wait for earlier writes to finish, banks allow o
clock cycle for each write, provided the writes are not destined to the same
Such a memory organization is especially important for write through.

The mapping of addresses to banks affects the behavior of the memory
tem. The example above assumes the addresses of the four banks are inte
at the word level—bank 0 has all words whose address modulo 4 is 0, bank
all words whose address modulo 4 is 1, and so on. Figure 5.32 shows this
leaving. This mapping is referred to as the interleaving factor; interleaved
memory normally means banks of memory that are word interleaved. This in
leaving optimizes sequential memory accesses. A cache read miss is an
match to word-interleaved memory, as the words in a block are read sequen
Write-back caches make writes as well as reads sequential, getting even mo
ficiency from word-interleaved memory.

E X A M P L E What can interleaving and a wide memory buy? Consider the following
description of a machine and its cache performance:

Block size = 1 word

Memory bus width = 1 word

Miss rate = 3%

FIGURE 5.32 Four-way interleaved memory. This example assumes word addressing:
with byte addressing and four bytes per word, each of these addresses would be multiplied
by four.

0

4

8

12

Bank 0Address

1

5

9

13

Bank 1Address

2

6

10

14

Bank 2Address

3

7

11

15

Bank 3Address

5.6 Main Memory 433

ory,
es—the

uters
Memory accesses per instruction = 1.2

Cache miss penalty = 32 cycles (as above)

Average cycles per instruction (ignoring cache misses) = 2

If we change the block size to two words, the miss rate falls to 2%, and a
four-word block has a miss rate of 1%. What is the improvement in perfor-
mance of interleaving two ways and four ways versus doubling the width
of memory and the bus, assuming the access times on page 430?

A N S W E R The CPI for the base machine using one-word blocks is

2 + (1.2 × 3% × 32) = 3.15

Since the clock cycle time and instruction count won’t change in this ex-
ample, we can calculate performance improvement by just comparing
CPI.

Increasing the block size to two words gives the following options:

32-bit bus and memory, no interleaving = 2 + (1.2 × 2% × 2 × 32) = 3.54

32-bit bus and memory, interleaving = 2 + (1.2 × 2% × (4 + 24 + 8)) = 2.86

64-bit bus and memory, no interleaving = 2 + (1.2 × 2% × 1 × 32) = 2.77

Thus, doubling the block size slows down the straightforward im-
plementation (3.54 versus 3.15), while interleaving or wider memory is
1.10 or 1.14 times faster, respectively. If we increase the block size to four,
the following is obtained:

32-bit bus and memory, no interleaving = 2 + (1.2 × 1% × 4 × 32) = 3.54

32-bit bus and memory, interleaving = 2 + (1.2 × 1% × (4 + 24 + 16)) = 2.53

64-bit bus and memory, no interleaving = 2 + (1.2 × 1% × 2 × 32) = 2.77

Again, the larger block hurts performance for the simple case, although
the interleaved 32-bit memory is now fastest—1.25 times faster versus
1.14 for the wider memory and bus. ■

This subsection has shown that interleaved memory is logically a wide mem
except that accesses to banks are staged over time to share internal resourc
bus in this example.

How many banks should be included? One metric, used in vector comp
(Appendix B), is as follows:

Number of banks ≥ Number of clock cycles to access word in bank

434 Chapter 5 Memory-Hierarchy Design

lock
 were
ith an
ord

s the
 18
ord.
nce

wing
ce of

n the
. For

ahl/
 mem-
t to
r of
rga-

em-
ns of
 to,

 by
since
 bank
is to
llow
 bank
e, an in-
nother,
 CPU
 to be
anks;
 get
sors
The memory system goal is to deliver information from a new bank each c
cycle for sequential accesses. To see why this formula holds, imagine there
fewer banks than clock cycles to access a word in a bank; say, 8 banks w
access time of 10 clock cycles. After 10 clock cycles the CPU could get a w
from bank 0, and then bank 0 would begin fetching the next desired word a
CPU received the following 7 words from the other 7 banks. At clock cycle
the CPU would be at the door of bank 0, waiting for it to supply the next w
The CPU would have to wait until clock cycle 20 for the word to appear. He
we want more banks than clock cycles to access a bank to avoid waiting.

We will discuss conflicts on nonsequential accesses to banks in the follo
subsections. For now, we note that having many banks reduces the chan
these bank conflicts.

Ironically, as capacity per memory chip increases, there are fewer chips i
same-sized memory system, making multiple banks much more expensive
example, a 64-MB main memory takes 512 memory chips of 1 M × 1 bit, easily
organized into 16 banks of 32 memory chips. But it takes only eight 64-M × 1-bit
memory chips for 64 MB, making one bank the limit. Even though the Amd
Case rule of thumb for balanced computer systems recommends increasing
ory capacity with increasing CPU performance, many manufacturers will wan
have a small memory option in the baseline model. This shrinking numbe
DRAMs is the main disadvantage of interleaved memory banks. DRAMs o
nized with wider paths, such as 16 M × 4 bits or 8 M × 8 bits, will postpone this
weakness.

A second disadvantage of memory banks is again the difficulty of main m
ory expansion. Either the memory system must support multiple generatio
DRAM, as in the DEC 3000 model 800, or the minimum increment will be
say, double main memory.

Third Technique for Higher Bandwidth:
Independent Memory Banks

The original motivation for memory banks was higher memory bandwidth
interleaving sequential accesses. This hardware is not much more difficult
the banks can share address lines with a memory controller, enabling each
to use the data portion of the memory bus. A generalization of interleaving
allow multiple independent accesses, where multiple memory controllers a
banks (or sets of word-interleaved banks) to operate independently. Each
needs separate address lines and possibly a separate data bus. For exampl
put device may use one controller and one bank, the cache read may use a
and a cache write may use a third. Nonblocking caches (page 414) allow the
to proceed beyond a cache miss, potentially allowing multiple cache misses
serviced simultaneously. Such a design only makes sense with memory b
otherwise the multiple reads will be serviced by a single memory port and
only a small benefit of overlapping access with transmission. Multiproces

5.6 Main Memory 435

 (see

e
rm
.33
erm

dent
/O that
ontig-
puters
ency
 work
ber.

r. One
 hav-

 not
vided.
xecute

e in
r how
that share a common memory provide further motivation for memory banks
Chapter 8).

Thus the term memory bank has potentially two conflicting definitions. We us
the term superbank to mean all memory active on one block transfer and the te
bank for the portion within a superbank that is word interleaved. Figure 5
shows this relationship. If there is no confusion, we’ll just use the shorter t
bank to mean a collection of memory.

Fourth Technique for Higher Bandwidth:
Avoiding Memory Bank Conflicts

If the memory system is being designed to support multiple indepen
requests—as in the case of miss-under-miss caches, direct memory access I
can read data from noncontiguous addresses (“gather”) or write data to nonc
uous addresses (“scatter”), multiprocessors (see Chapter 8), or vector com
(see Appendix B)—the effectiveness of the system will depend on the frequ
that independent requests will go to different banks. Sequential accesses
well with traditional interleaving, as do any accesses that differ by an odd num
The problem is when this difference between addresses is an even numbe
solution, used by larger computers, is to statistically reduce the chances by
ing many banks; the NEC SX/3, for instance, has up to 128 banks.

The problem with such a solution is that data memory references are
random, and may go to the same bank no matter how many banks are pro
Suppose we have 128 memory banks, interleaved on a word basis, and e
this code:

int x[256][512];

for (j = 0; j < 512; j = j+1)

for (i = 0; i < 256; i = i+1)

x[i][j] = 2 * x[i][j];

Since the 512 is an even multiple of 128, all the elements of a column will b
the same memory bank and code will stall on data cache misses no matte
sophisticated a CPU or memory system.

FIGURE 5.33 The relationship of superbanks and banks.

Bank offset
Superbank offset

Bank number
Superbank number

436 Chapter 5 Memory-Hierarchy Design

lem.
void
r the
reby

nks
e ex-

nt of

ve a
are to
ove.

ickly,
f two
mple

 re-

s that
e fol-
There are both software and hardware solutions to the bank conflict prob
The compiler could do the loop interchange optimization (see page 407) to a
accessing the same bank. A simpler solution would be for the programmer o
compiler to expand the size of the array so that it is not a power of two, the
forcing the addresses above to go to different banks.

Before describing a hardware solution, let’s review how addressing of ba
works. The mapping of an address to a location in a memory bank can b
pressed as two problems:

Bank number = Address MOD Number of banks

Address within bank =

Traditional memory systems keep both the number of banks and the amou
memory per bank a power of two to make this calculation trivial.

One hardware solution to reduce the number of bank conflicts is to ha
prime number of banks! Such a number would seem to demand more hardw
perform a complex calculation: the modulo and the division mentioned ab
Furthermore, this complex calculation would lengthen each memory access.

Fortunately, there are several hardware schemes to calculate modulo qu
especially if the prime number of memory banks is one less than a power o
(see Exercise 5.10). In this case division can be replaced by the following si
calculation:

Address within bank = Address MOD Number of words in bank

Since the number of words in a bank is very likely a power of two, we have
placed division by a prime number by bit selection.

The proof of this simplification is based on the Chinese Remainder Theorem.
This 2000-year-old observation states that as long as two sets of integers ai and bi
follow these rules:

bi = x MOD ai, 0 ≤ bi < ai, 0 ≤ x < a0 × a1 × a2 ×. . .

and that ai and aj are co-prime if i ≠ j, then the integer x has only one solution of
each pair of integers ai and bi (two integers are co-prime if they have no common
prime number as a factor). The Chinese Remainder Theorem guarantee
there is no ambiguity with this mapping of addresses to banks because th
lowing conditions hold:

■ Bank number = Address MOD Number of banks (b0 = x MOD a0).

■ Address within bank = Address MOD Number of words in bank (b1 = x MOD a1).

■ Bank number < Number of banks (0 ≤ b0 < a0).

■ Address within a bank < Number of words in bank (0 ≤ b1 < a1).

■ Address < Number of banks × Number of words in a bank (0 ≤ x < a0 × a1).

Address / Number of banks

5.6 Main Memory 437

next

eater

g the
 new

ider
nce.
r dis-
s that

umn
mn
r 64
Ms
t an-
■ The number of banks and the number of words in a bank are co-prime (a0 and
a1 are co-prime).

The first two conditions above are simply the definition of the mapping. The
three conditions are trivially true because an N-word address goes from 0 to N –1.
The last condition is true since the number of banks is a prime number gr
than two and the number of words in a bank is a power of two.

Figure 5.34 shows three memory modules, each with eight words, showin
traditional sequentially interleaved mapping of addresses on the left and the
mapping on the right.

Fifth Technique for Higher Bandwidth:
DRAM-Specific Interleaving

Thus far we have seen four techniques that improve memory bandwidth: w
memory, interleaved memory, banked memory, and bank conflict avoida
These techniques work with any memory technology, and have been used o
cussed since before DRAMs were invented. This section presents technique
take advantage of the nature of DRAMs.

As mentioned earlier, DRAM access is divided into row access and col
access. DRAMs must buffer a row of bits inside the DRAM for the colu
access, and this row is usually the square root of the DRAM size—8 Kbits fo
Mbits, 16 Kbits for 256 Mbits, and so on. To improve performance, all DRA
come with timing signals that allow repeated accesses to the buffer withou
other row access time. There are three versions for this optimization:

Address
within
bank

Memory bank

Sequentially interleaved Modulo interleaved

0 1 2 0 1 2

0 0 1 2 0 16 8

1 3 4 5 9 1 17

2 6 7 8 18 10 2

3 9 10 11 3 19 11

4 12 13 14 12 4 20

5 15 16 17 21 13 5

6 18 19 20 6 22 14

7 21 22 23 15 7 23

FIGURE 5.34 Three memory banks with sequentially interleaved addressing on the
left, requiring a division as part of addressing of the word within a module, and the new
mapping, which requires only modulo to a power of two. For example, address 5 is
mapped to the second word of memory bank 2 on the left and to the sixth word of memory
bank 2 on the right.

438 Chapter 5 Memory-Hierarchy Design

a-

ss,
fresh

 to
ges.

ree
oos-
time
eed

y on
old
e ad-
ads 4
ed
, the
rol.
aving

ate
de
■ Nibble mode—The DRAM can supply three extra bits from sequential loc
tions for every row access strobe.

■ Page mode—The buffer acts like a SRAM; by changing column addre
random bits can be accessed in the buffer until the next row access or re
time.

■ Static column—Very similar to page mode, except that it’s not necessary
toggle the column access strobe line every time the column address chan

Starting with the 1-Mbit generation, most DRAMs can perform any of the th
options, with the optimization selected at the time the die is packaged by ch
ing which pads to wire up. These operations change the definition of cycle
for DRAMs. Figure 5.35 shows the traditional cycle time plus the fastest sp
between accesses in the optimized mode.

The advantage of such optimizations is that they use the circuitry alread
the DRAMs, adding little cost to the system while achieving almost a fourf
improvement in bandwidth. For example, nibble mode was designed to tak
vantage of the same program behavior as interleaved memory. The chip re
bits at a time internally, supplying 4 bits externally in the time of four optimiz
cycles. Unless the bus transfer time is faster than the optimized cycle time
cost of four-way interleaved memory is only more complicated timing cont
Page mode and static column could also be used to get even higher interle
with slightly more complex control. DRAMs also tend to have weak trist
buffers, implying traditional interleaving with more memory chips must inclu
buffer chips for each memory bank.

Row access
Optimized time

nibble, page, static
columnChip size

Slowest
DRAM

Fastest
DRAM

Column
access

Cycle
time

64 Kbits 180 ns 150 ns 75 ns 250 ns 150 ns

256 Kbits 150 ns 120 ns 50 ns 220 ns 100 ns

1 Mbits 120 ns 100 ns 25 ns 190 ns 50 ns

4 Mbits 100 ns 80 ns 20 ns 165 ns 40 ns

16 Mbits 80 ns 60 ns 15 ns 120 ns 30 ns

64 Mbits 65 ns 50 ns 10 ns 90 ns 25 ns

FIGURE 5.35 DRAM cycle time for the optimized accesses. This figure is the same as
Figure 5.30 (page 429), with a column added to show the optimized cycle time for the three
modes. Starting with the 1-Mbit DRAM, optimized cycle time is about four times faster than un-
optimized cycle time. It is so much faster that page mode was renamed fast page mode. The
optimized cycle time is the same no matter which of the three optimized modes is selected.

5.7 Virtual Memory 439

ize
US.
face,
nent.
 ac-
e data.

 chip
rm its
that
pipe-

ce the
ere
ity. On
pre-
ater
Ms
rice

 fast

h its
 be too
s, es-
ence,

mong

n ap-
ng-
e to
fore a
Recently new breeds of DRAMs have been produced that further optim
the interface between the DRAM and CPU. One example is from RAMB
This company takes the standard DRAM core and provides a new inter
making a single chip act more like a memory system than a memory compo
RAMBUS has dropped RAS/CAS, replacing it with a bus that allows other
cesses over the bus between the sending of the address and return of th
(Such a bus is called a packet-switched bus or split-transaction bus, described in
Chapters 6 and 7.) This bus allows a single chip to act as a memory bank. A
can return a variable amount of data from a single request, and even perfo
own refresh. RAMBUS offers a byte-wide interface, and a clock signal so
the chip can be tightly synchronized to the CPU clock. Once the address
line is full, a single chip can deliver one byte every 2 ns.

Most main memory systems use techniques such as page mode to redu
CPU-DRAM performance gap. Unlike traditional interleaved memories, th
are no disadvantages using such a mode as DRAMs scale upward in capac
the other hand, the new breed of DRAMs such as RAMBUS might cost a
mium of, say, 20% per megabyte over traditional DRAMs to provide the gre
bandwidth. The marketplace will determine whether the more radical DRA
such as RAMBUS will become popular for main memory, or whether the p
premium restricts them to niche markets.

One example niche market is computer graphics, where a DRAM with a
serial output line is used to drive displays. This special DRAM is called a video
RAM or VRAM; RAMBUS is challenging VRAMs in this market.

… a system has been devised to make the core drum combination appear to
the programmer as a single level store, the requisite transfers taking place
automatically.

Kilburn et al. [1962]

At any instant in time computers are running multiple processes, each wit
own address space. (Processes are described in the next section.) It would
expensive to dedicate a full-address-space worth of memory for each proces
pecially since many processes use only a small part of their address space. H
there must be a means of sharing a smaller amount of physical memory a
many processes. One way to do this, virtual memory, divides physical memory
into blocks and allocates them to different processes. Inherent in such a
proach must be a protection scheme that restricts a process to the blocks belo
ing only to that process. Most forms of virtual memory also reduce the tim
start a program, since not all code and data need be in physical memory be
program can begin.

5.7 Virtual Memory

440 Chapter 5 Memory-Hierarchy Design

t the
sical
pro-
, and
n.
ysical
ed at
mer
ur-
pre-
pping

ging
 for
 in
 any-
em.

tion
Although virtual memory is essential for current computers, sharing is no
reason virtual memory was invented. If a program became too large for phy
memory, it was the programmer’s job to make it fit. Programmers divided
grams into pieces, then identified the pieces that were mutually exclusive
loaded or unloaded these overlays under user program control during executio
The programmer ensured that the program never tried to access more ph
main memory than was in the machine and that the proper overlay was load
the proper time. As one can well imagine, this responsibility eroded program
productivity. Virtual memory was invented to relieve programmers of this b
den; it automatically manages the two levels of the memory hierarchy re
sented by main memory and secondary storage. Figure 5.36 shows the ma
of virtual memory to physical memory for a program with four pages.

In addition to sharing protected memory space and automatically mana
the memory hierarchy, virtual memory also simplifies loading the program
execution. Called relocation, this mechanism allows the same program to run
any location in physical memory. The program in Figure 5.36 can be placed
where in physical memory or disk just by changing the mapping between th
(Prior to the popularity of virtual memory, machines would include a reloca

FIGURE 5.36 The logical program in its contiguous virtual address space is shown
on the left: it consists of four pages A, B, C, and D. The physical location of three of the
blocks is physical memory and one is located on disk.

0

4K

8K

12K

16K

20K

24K

28K

Physical
address:

Physical
main memory

Disk
D

0

4K

8K

12K

Virtual
address:

Virtual memory

A

B

C

D

C

A

B

5.7 Virtual Memory 441

 be

mo-

c-
are

d
ical

yond

 vir-
 the
ision
 more

ut the

 the
mally
by the

mory
called

ported

)

register just for that purpose.) An alternative to a hardware solution would
software that changed all addresses in a program each time it was run.

Several general memory-hierarchy terms from Chapter 1 apply to virtual me
ry, while some other terms are different. Page or segment is used for block, and
page fault or address fault is used for miss. With virtual memory, the CPU produ
es virtual addresses that are translated by a combination of hardware and softw
to physical addresses, which access main memory. This process is called memory
mapping or address translation. Today, the two memory-hierarchy levels controlle
by virtual memory are DRAMs and magnetic disks. Figure 5.37 shows a typ
range of memory-hierarchy parameters for virtual memory.

There are further differences between caches and virtual memory be
those quantitative ones mentioned in Figure 5.37:

■ Replacement on cache misses is primarily controlled by hardware, while
tual memory replacement is primarily controlled by the operating system;
longer miss penalty means it’s more important to make a really good dec
and also that the operating system can afford to get involved and spend
time deciding what to replace.

■ The size of the processor address determines the size of virtual memory, b
cache size is independent of the processor address size.

■ In addition to acting as the lower-level backing store for main memory in
hierarchy, secondary storage is also used for the file system that is not nor
part of the address space; most of secondary storage is in fact taken up
file system.

Virtual memory also encompasses several related techniques. Virtual me
systems can be categorized into two classes: those with fixed-size blocks,
pages, and those with variable-size blocks, called segments. Pages are fixed at
4096 to 65,536 bytes, while segment size varies. The largest segment sup

Parameter First-level cache Virtual memory

Block (page) size 16–128 bytes 4096–65,536 bytes

Hit time 1–2 clock cycles 40–100 clock cycles

Miss penalty 8–100 clock cycles 700,000–6,000,000 clock cycles

 (Access time) (6–60 clock cycles) (500,000–4,000,000 clock cycles

 (Transfer time) (2–40 clock cycles) (200,000–2,000,000 clock cycles)

Miss rate 0.5–10% 0.00001– 0.001%

Data memory size 0.016–1MB 16–8192 MB

FIGURE 5.37 Typical ranges of parameters for caches and virtual memory. Virtual
memory parameters represent increases of 10 to 100,000 times over cache parameters.

442 Chapter 5 Memory-Hierarchy Design

1
.

mory
d into
single
nts re-

 seg-
r the

ted in
use of

on any machine ranges from 216 bytes up to 232 bytes; the smallest segment is
byte. Figure 5.38 shows how the two approaches might divide code and data

The decision to use paged virtual memory versus segmented virtual me
affects the CPU. Paged addressing has a single fixed-size address divide
page number and offset within a page, analogous to cache addressing. A
address does not work for segmented addresses; the variable size of segme
quires one word for a segment number and one word for an offset within a
ment, for a total of two words. An unsegmented address space is simpler fo
compiler.

The pros and cons of these two approaches have been well documen
operating systems textbooks; Figure 5.39 summarizes the arguments. Beca

FIGURE 5.38 Example of how paging and segmentation divide a program.

Page Segment

Words per address One Two (segment and offset)

Programmer visible? Invisible to application programmer May be visible to application programmer

Replacing a block Trivial (all blocks are the same size) Hard (must find contiguous, variable-size,
unused portion of main memory)

Memory use
inefficiency

Internal fragmentation (unused portion
of page)

External fragmentation (unused pieces of main
memory)

Efficient disk traffic Yes (adjust page size to balance access
time and transfer time)

Not always (small segments may transfer just a
few bytes)

FIGURE 5.39 Paging versus segmentation. Both can waste memory, depending on the block size and how well the seg-
ments fit together in main memory. Programming languages with unrestricted pointers require both the segment and the
address to be passed. A hybrid approach, called paged segments, shoots for the best of both worlds: segments are com-
posed of pages, so replacing a block is easy, yet a segment may be treated as a logical unit.

Code Data

Paging

Segmentation

5.7 Virtual Memory 443

 use

 re-
s need
iple
e size.

rtual

stor-
 or a
wer
 allow
y in

 page
f the

ess to
ted to

es the
 is
ress,

uld be
shing
gth of
ch

nly
er

 these

zing
ry to
the replacement problem (the third line of the figure), few machines today
pure segmentation. Some machines use a hybrid approach, called paged
segments, in which a segment is an integral number of pages. This simplifies
placement because memory need not be contiguous, and the full segment
not be in main memory. A more recent hybrid is for a machine to offer mult
page sizes, with the larger sizes being powers of two times the smallest pag
The Alpha AXP 21064, for example, allows 8 KB, 64 KB (23 × 8 KB), 512 KB
(26 × 8 KB), and 4096 KB (29 × 8 KB) to act as a single page.

We are now ready to answer the four memory-hierarchy questions for vi
memory.

Q1: Where can a block be placed in main memory?
The miss penalty for virtual memory involves access to a rotating magnetic
age device and is therefore quite high. Given the choice of lower miss rates
simpler placement algorithm, operating systems designers normally pick lo
miss rates because of the exorbitant miss penalty. Thus, operating systems
blocks to be placed anywhere in main memory. According to the terminolog
Figure 5.2 (page 376), this strategy would be labeled fully associative.

Q2: How is a block found if it is in main memory?
Both paging and segmentation rely on a data structure that is indexed by the
or segment number. This data structure contains the physical address o
block. For segmentation, the offset is added to the segment’s physical addr
obtain the final physical address. For paging, the offset is simply concatena
this physical page address (see Figure 5.40).

This data structure, containing the physical page addresses, usually tak
form of a page table. Indexed by the virtual page number, the size of the table
the number of pages in the virtual address space. Given a 28-bit virtual add
4-KB pages, and 4 bytes per page table entry, the size of the page table wo
256 KB. To reduce the size of this data structure, some machines apply a ha
function to the virtual address so that the data structure need only be the len
the number of physical pages in main memory; this number could be mu
smaller than the number of virtual pages. Such a structure is called an inverted
page table. Using the example above, a 64-MB physical memory would o
need 128 KB (8 × 64 MB/4 KB) for an inverted page table; the extra 4 bytes p
page table entry is for the virtual address.

To reduce address translation time, computers use a cache dedicated to
address translations, called a translation look-aside buffer, or simply translation
buffer. They are described in more detail shortly.

Q3: Which block should be replaced on a virtual memory miss?
As mentioned above, the overriding operating system guideline is minimi
page faults. Consistent with this guideline, almost all operating systems t

444 Chapter 5 Memory-Hierarchy Design

ely to
vide a
ting
rmine
k in
cently

ions
no one
ain
t be
ne!)

ssary
lude
tered
replace the least-recently used (LRU) block, because that is the one least lik
be needed. To help the operating system estimate LRU, many machines pro
use bit or reference bit, which is set whenever a page is accessed. The opera
system periodically clears the use bits and later records them so it can dete
which pages were touched during a particular time period. By keeping trac
this way, the operating system can select a page that is among the least-re
referenced.

Q4: What happens on a write?
The level below main memory contains rotating magnetic disks that take mill
of clock cycles to access. Because of the great discrepancy in access time,
has yet built a virtual memory operating system that can write through m
memory straight to disk on every store by the CPU. (This remark should no
interpreted as an opportunity to become famous by being the first to build o
Thus, the write strategy is always write back. Since the cost of an unnece
access to the next-lower level is so high, virtual memory systems usually inc
a dirty bit so that the only blocks written to disk are those that have been al
since they were loaded from the disk.

FIGURE 5.40 The mapping of a virtual address to a physical address via a page table.

Main
memory

Page
table

Virtual address

Virtual page number Page offset

Physical address

5.7 Virtual Memory 445

some-
kes at
 and a

ess is
re gen-
e lo-

y
rely re-
n cache

tual
ection
age
stem
t be-

 the

ach
, the
s. Of
 type
n in-

de the
nds
 The
-bit

diffi-
 in-

cache
e ad-

n be-
cache

lock
st be

ache-
 cache
Techniques for Fast Address Translation

Page tables are usually so large that they are stored in main memory, and
times paged themselves. This means that every memory access logically ta
least twice as long, with one memory access to obtain the physical address
second access to get the data. This cost is far too dear.

One remedy is to remember the last translation, so that the mapping proc
skipped if the current address refers to the same page as the last one. A mo
eral solution is to again rely on the principle of locality; if the accesses hav
cality, then the address translations for the accesses must also have locality. B
keeping these address translations in a special cache, a memory access ra
quires a second access to translate the data. This special address translatio
is referred to as a translation look-aside buffer or TLB, also called a translation
buffer or TB.

A TLB entry is like a cache entry where the tag holds portions of the vir
address and the data portion holds a physical page frame number, prot
field, valid bit, and usually a use bit and dirty bit. To change the physical p
frame number or protection of an entry in the page table, the operating sy
must make sure the old entry is not in the TLB; otherwise, the system won’
have properly. Note that this dirty bit means the corresponding page is dirty, not
that the address translation in the TLB is dirty nor that a particular block in
data cache is dirty.

Figure 5.41 shows the Alpha AXP 21064 data TLB organization, with e
step of a translation labeled. The TLB uses fully associative placement; thus
translation begins (steps 1 and 2) by sending the virtual address to all tag
course, the tag must be marked valid to allow a match. At the same time, the
of memory access is checked for a violation (also in step 2) against protectio
formation in the TLB.

For reasons similar to those in the cache case, there is no need to inclu
13 bits of the Alpha AXP 21064 page offset in the TLB. The matching tag se
the corresponding physical address through the 32:1 multiplexer (step 3).
page offset is then combined with the physical page frame to form a full 34
physical address (step 4).

As mentioned on page 422, one architectural challenge stems from the
culty of combining caches with virtual memory. Small caches can restrict the
dex to the page offset so that the index can proceed immediately. While the
address tags are being read, the virtual portion of the address (the page fram
dress) is sent to the TLB to be translated. The address comparison is the
tween the physical address from the TLB and the cache tag; hence the
index is virtual but the tags are physical.

Address translation can easily be on the critical path determining the c
cycle of the processor, since even in the simplest cache the TLB values mu
read and compared. Thus the TLB is usually smaller and faster than the c
address-tag memory, so that simultaneous TLB reading does not stretch the

446 Chapter 5 Memory-Hierarchy Design

 and
some-

ge is a
ring a

mory
 mak-

 fast

 net-
hit time. For example, in the Alpha AXP 21064, the data TLB has 32 blocks
the data cache has 256 blocks. Because of its critical nature, TLB access is
times pipelined.

Selecting a Page Size

The most obvious architectural parameter is the page size. Choosing the pa
question of balancing forces that favor a larger page size versus those favo
smaller size. The following favor a larger size:

■ The size of the page table is inversely proportional to the page size; me
(or other resources used for the memory map) can therefore be saved by
ing the pages bigger.

■ As mentioned on page 424 in section 5.5, a larger page size simplifies
cache hit times.

■ Transferring larger pages to or from secondary storage, possibly over a
work, is more efficient than transferring smaller pages.

FIGURE 5.41 Operation of the Alpha AXP 21064 data TLB during address translation.
The four steps of a TLB hit are shown as circled numbers. The three left fields of an entry are
valid (V), read permissions (R), and write permissions (W). Note that there is no specific ref-
erence, use bit, or dirty bit. Hence, a page replacement algorithm such as LRU must rely on
disabling reads and writes occasionally to record reads and writes to pages to measure us-
age and whether or not pages are dirty. The advantage of these omissions is that the TLB
need not be written during normal memory accesses.

Page-frame
address

<30>

Page
offset
<13>

V Physical address
<1><2><2> <21>

R W Tag
<30>

<21>

<13>
34-bit
physical
address

43

21

(Low-order 13 bits
 of address)

(High-order 21 bits of address)

32:1 Mux

5.8 Protection and Examples of Virtual Memory 447

t more
ses.

t mul-
PI as

mall
irtual
 un-
s
ge per
with
urse,
 (both
ern is
would

 by
 and
uters
ual

gram
ulti-

ers at
s, at
is is

start
e re-
uter
 saved
t pro-

rotect
on to
ime-
ning
 at the
m the
■ The number of TLB entries are restricted, so a larger page size means tha
memory can be mapped efficiently, thereby reducing the number of TLB mis

It is for this final reason that recent microprocessors have decided to suppor
tiple page sizes; for some programs, TLB misses can be as significant on C
the cache misses.

The main motivation for a smaller page size is conserving storage. A s
page size will result in less wasted storage when a contiguous region of v
memory is not equal in size to a multiple of the page size. The term for this
used memory in a page is internal fragmentation. Assuming that each process ha
three primary segments (text, heap, and stack), the average wasted stora
process will be 1.5 times the page size. This is negligible for machines
megabytes of memory and page sizes in the range of 4 KB to 8 KB. Of co
when the page sizes become very large (more than 32 KB), lots of storage
main and secondary) may be wasted, as well as I/O bandwidth. A final conc
process start-up time; many processes are small, so larger page sizes
lengthen the time to invoke a process.

The invention of multiprogramming, where a computer would be shared
several programs running concurrently, led to new demands for protection
sharing among programs. These are closely tied to virtual memory in comp
today, and so we cover the topic here along with two examples of virt
memory.

Multiprogramming leads to the concept of a process. Metaphorically, a pro-
cess is a program’s breathing air and living space—that is, a running pro
plus any state needed to continue running it. Time-sharing is a variation of m
programming that shares the CPU and memory with several interactive us
the same time, giving the illusion that all users have their own machines. Thu
any instant it must be possible to switch from one process to another. Th
called a process switch or context switch.

A process must operate correctly whether it executes continuously from
to finish, or is interrupted repeatedly and switched with other processes. Th
sponsibility for maintaining correct process behavior is shared by the comp
designer, who must ensure that the CPU portion of the process state can be
and restored, and the operating system designer, who must guarantee tha
cesses do not interfere with each others’ computations. The safest way to p
the state of one process from another would be to copy the current informati
disk. But a process switch would then take seconds—far too long for a t
sharing environment. This problem is solved by operating systems partitio
main memory so that several different processes have their state in memory
same time. This means that the operating system designer needs help fro

5.8 Protection and Examples of Virtual Memory

448 Chapter 5 Memory-Hierarchy Design

y an-
 data

 mem-

y ad-

always

s, then
ust be
mputer
signer

 user
 called

write.
nd the
 be-
hange

isable

rvisor

ated
 sys-
ode

e.

tual
have
l ad-

rther
computer designer to provide protection so that one process cannot modif
other. Besides protection, the computers also provide for sharing of code and
between processes, to allow communication between processes or to save
ory by reducing the number of copies of identical information.

Protecting Processes

The simplest protection mechanism is a pair of registers that checks ever
dress to be sure that it falls between the two limits, traditionally called base and
bound. An address is valid if

Base ≤ Address ≤ Bound

In some systems the address is considered an unsigned number that is
added to the base, so the limit test is just

(Base + Address) ≤ Bound

If user processes are allowed to change the base and bounds register
users can’t be protected from each other. The operating system, however, m
able to change the registers so that it can switch processes. Hence, the co
designer has three more responsibilities in helping the operating system de
protect processes from each other:

1. Provide at least two modes, indicating whether the running process is a
process or an operating system process. This latter process is sometimes
a kernel process, a supervisor process, or an executive process.

2. Provide a portion of the CPU state that a user process can use but not
This includes the base/bound registers, a user/supervisor mode bit(s), a
exception enable/disable bit. Users are prevented from writing this state
cause the operating system cannot control user processes if users can c
the address range checks, give themselves supervisor privileges, or d
exceptions.

3. Provide mechanisms whereby the CPU can go from user mode to supe
mode and vice versa. The first direction is typically accomplished by a system
call, implemented as a special instruction that transfers control to a dedic
location in supervisor code space. The PC is saved from the point of the
tem call, and the CPU is placed in supervisor mode. The return to user m
is like a subroutine return that restores the previous user/supervisor mod

Base and bound constitute the minimum protection system, while vir
memory offers a more fine-grained alternative to this simple model. As we
seen, the CPU address must go through a mapping from virtual to physica
dress. This mapping provides the opportunity for the hardware to check fu

5.8 Protection and Examples of Virtual Memory 449

plest
xam-
ting
n to
rotec-
o the
ignal,
es be-
 and

page
 must
um-

puter
xpand
 Like
assi-
ng,
nd so
 the

ces of
 point
s, is

rove-

s may
uires
stem
s the
s-

hout
al of

ging,
ace

ys-
mory
divid-
 from
for errors in the program or to protect processes from each other. The sim
way of doing this is to add permission flags to each page or segment. For e
ple, since few programs today intentionally modify their own code, an opera
system can detect accidental writes to code by offering read-only protectio
pages. This page-level protection can be extended by adding user/kernel p
tion to prevent a user program from trying to access pages that belong t
kernel. As long as the CPU provides a read/write signal and a user/kernel s
it is easy for the address translation hardware to detect stray memory access
fore they can do damage. Such reckless behavior simply interrupts the CPU
invokes the operating system.

Processes are thus protected from one another by having their own
tables, each pointing to distinct pages of memory. Obviously, user programs
be prevented from modifying their page tables or protection would be circ
vented.

Protection can be escalated, depending on the apprehension of the com
designer or the purchaser. Rings added to the CPU protection structure e
memory access protection from two levels (user and kernel) to many more.
a military classification system of top secret, secret, confidential, and uncl
fied, concentric rings of security levels allow the most trusted to access anythi
the second most trusted to access everything except the innermost level, a
on until the “civilian” programs, which are the least trusted and, hence, have
most limited range of accesses. There may also be restrictions on what pie
memory can contain code—execute protection—and even on the entrance
between the levels. The Intel Pentium protection structure, which uses ring
described later in this section. It is not clear today whether rings are an imp
ment in practice over the simple system of user and kernel modes.

As the designer’s apprehension escalates to trepidation, these simple ring
not suffice. Restricting the freedom given a program in the inner sanctum req
a new classification system. Instead of a military model, the analogy of this sy
is to keys and locks: A program can’t unlock access to the data unless it ha
key. For these keys, or capabilities, to be useful, the hardware and operating sy
tem must be able to explicitly pass them from one program to another wit
allowing a program itself to forge them. Such checking requires a great de
hardware support if time for checking keys is to be kept low.

A Paged Virtual Memory Example:
The Alpha AXP Memory Management and the 21064 TLB

The Alpha AXP architecture uses a combination of segmentation and pa
providing protection while minimizing page table size. The 64-bit address sp
is first divided into three segments: seg0 (bits 63 – 41 = 0...00), kseg (bits 63 – 41
= 0...01), and seg1 (bits 63 to 41 = 1...11). kseg is reserved for the operating s
tem kernel, has uniform protection for the whole space, and does not use me
management. User processes use seg0, which is mapped into pages with in
ual protection. Figure 5.42 shows the layout of seg0 and seg1. seg0 grows

450 Chapter 5 Memory-Hierarchy Design

 some
vides
ge table

ce is
p the
se page
l3.

ation
d then
table.
mem-
l3 ad-
um to
ss is
 table
 all
.
.
 half
address 0 upward, while seg1 grows downward to 0. Many systems today use
such combination of predivided segments and paging. This approach pro
many advantages: segmentation divides the address space and conserves pa
space, while paging provides virtual memory, relocation, and protection.

Even with this division, the size of page tables for the 64-bit address spa
alarming. Hence the Alpha uses a three-level hierarchical page table to ma
address space to keep the size reasonable. The addresses for each of the
tables come from three “level” fields, labeled level1, level2, and leve
Figure 5.43 shows address translation in the Alpha AXP. Address transl
starts with adding the level1 address field to the page table base register an
reading memory from this location to get the base of the second-level page
The level2 address field is in turn added to this newly fetched address, and
ory is accessed again to determine the base of the third page table. The leve
dress field is added to this base address, and memory is read using this s
(finally) get the physical address of the page being referenced. This addre
concatenated with the page offset to get the full physical address. Each page
in the Alpha AXP architecture is constrained to fit within a single page, so
page table addresses are physical addresses that need no further translation

The Alpha uses a 64-bit page table entry (PTE) in each of these page tables
The first 32 bits contain the physical page frame number, and the other
includes the following five protection fields:

■ Valid—Says that the page frame number is valid for hardware translation

■ User read enable—Allows user programs to read data within this page

■ Kernel read enable—Allows the kernel to read data within this page

■ User write enable—Allows user programs to write data within this page

■ Kernel write enable—Allows the kernel to write data within this page

FIGURE 5.42 The organization of seg0 and seg1 in the Alpha. User processes live in
seg0, while seg1 is used for portions of the page tables. seg0 includes a downward growing
stack, text and data, and an upward growing heap.

seg0
Address space

seg1
Address space

5.8 Protection and Examples of Virtual Memory 451

eases.
 three
hird-

g, and
ach of
aves
ost-

 bits
In addition, the PTE has fields reserved for systems software to use as it pl
Since the Alpha goes through three levels of tables on a TLB miss, there are
potential places to check protection restrictions. The Alpha obeys only the t
level PTE, checking the first two only to be sure the valid bit is set.

Since the PTEs are 8 bytes long, the page tables are exactly one page lon
the Alpha AXP 21064 has 8-KB pages, each page table has 1024 PTEs. E
the three level fields are 10 bits long and the page offset is 13 bits, which le
64 – (3 × 10 + 13) or 21 bits to be defined. If this is a seg0 address, the m
significant bit is a 0, and for seg1 the two most-significant bits are 11two. Alpha
requires all bits to the left of the level1 field to be identical. For seg0 these 21

FIGURE 5.43 The mapping of an Alpha virtual address. Each page table is exactly one
page long, so each level field is n bits wide where 2n = page size/8. The Alpha AXP architec-
ture document allows the page size to grow from 8 KB in the current implementations to 16
KB, 32 KB, or 64 KB in the future. The virtual address for each page size grows from the cur-
rent 43 bits to 47, 51, or 55 bits and the maximum physical address size grows from the cur-
rent 41 bits to 45, 47, or 48 bits. The 21064 uses 8-KB pages, but it implements just 34 bits
of the maximum 41-bit physical address possible in this scheme.

Page offset

Virtual address

Page table
base register +

seg0/seg1
Selector

Physical address

Page offsetPhysical page-frame number

Main memory

L1 page table

L2 page table

+ L3 page table

+

Level1 Level2 Level3
000 … 0 or
111 … 1

Page table entry

Page table entry

Page table entry

452 Chapter 5 Memory-Hierarchy Design

dress-
ysi-

cture
21064

page
um

ill be
ansion

 user
e ta-
, the

 oper-
ry be-
ddress

ich
esses
f each
 se-
e mini-
match
ust be
are all zeros and for seg1 they are all ones. This means the 21064 virtual ad
es are really 43 bits long instead of the full 64 bits found in registers. The ph
cal addresses would appear to be 32 + 13 or 45 bits, but Alpha AXP archite
requires that the physical address be smaller than the virtual address. The
saves space on the chip by further limiting the physical address to 34 bits.

The maximum virtual address and physical address is then tied to the
size. The architecture document allows for the Alpha to expand the minim
page size from 8 KB up to 64 KB, thereby increasing the virtual address to 3× 13
+ 16 or 55 bits and the maximum physical address to 32 + 16 or 48 bits; it w
interesting to see whether or not operating systems accommodate such exp
plans over the life of the Alpha.

While we have explained translation of legal addresses, what prevents the
from creating illegal address translations and getting into mischief? The pag
bles themselves are protected from being written by user programs. Thus
user can try any virtual address, but by controlling the page table entries the
ating system controls what physical memory is accessed. Sharing of memo
tween processes is accomplished by having a page table entry in each a
space point to the same physical memory page.

The first implementation of this architecture was the Alpha AXP 21064, wh
employs two TLBs to reduce address translation time, one for instruction acc
and another for data accesses. Figure 5.44 shows the key parameters o
TLB. The Alpha allows the operating system to tell the TLB that contiguous
quences of pages can act as one: the options are 8, 64, and 512 times th
mum page size. Thus the variable page size of a PTE mapping makes the
more challenging, as the size of the space being mapped in the PTE also m
checked to determine the match. Figure 5.41 above describes the data TLB.

Parameter Description

Block size 1 PTE (8 bytes)

Hit time 1 clock cycle

Miss penalty
(average)

20 clock cycles

TLB size Instruction: 8 PTE for 8-KB pages, 4 PTE for 4-MB pages
(96 bytes total)
Data: 32 PTE for 8-KB, 64-KB, 512-KB, or 4-MB pages
(256 bytes total)

Block selection Random, but not last used

Write strategy (Not applicable)

Block placement Fully associative

FIGURE 5.44 Memory-hierarchy parameters of the Alpha AXP 21064 TLB.

5.8 Protection and Examples of Virtual Memory 453

day,
ating
imary
n the
t the

he
 frills

r vir-
regis-
ed the
rtual
fields
, with

 few
ult,

del:
ds to
ode.

es be-
 tables
 to be

pace,
. The
ss pa-

on,
ore-
el of
hole
ating
ccess

 sys-
mple
Memory management in the Alpha 21064 is typical of most computers to
relying on page-level address translation and correct operation of the oper
system to provide safety to multiple processes sharing the computer. The pr
difference is that Alpha has extended the virtual address beyond 32 bits. I
next section we see a protection scheme for individuals who want to trus
operating system as little as possible.

A Segmented Virtual Memory Example:
Protection in the Intel Pentium

The second system is the most dangerous system a man ever designs… . T
general tendency is to over-design the second system, using all the ideas and
that were cautiously sidetracked on the first one.

F. P. Brooks, Jr., The Mythical Man-Month (1975)

The original 8086 used segments for addressing, yet it provided nothing fo
tual memory or for protection. Segments had base registers but no bound
ters and no access checks, and before a segment register could be load
corresponding segment had to be in physical memory. Intel’s dedication to vi
memory and protection is evident in the successors to the 8086, with a few
extended to support larger addresses. This protection scheme is elaborate
many details carefully designed to try to avoid security loopholes. The next
pages highlight a few of the Intel safeguards; if you find the reading diffic
imagine the difficulty of implementing them!

The first enhancement is to double the traditional two-level protection mo
the Pentium has four levels of protection. The innermost level (0) correspon
Alpha kernel mode and the outermost level (3) corresponds to Alpha user m
The Pentium has separate stacks for each level to avoid security breach
tween the levels. There are also data structures analogous to Alpha page
that contain the physical addresses for segments, as well as a list of checks
made on translated addresses.

The Intel designers did not stop there. The Pentium divides the address s
allowing both the operating system and the user access to the full space
Pentium user can call an operating system routine in this space and even pa
rameters to it while retaining full protection. This safe call is not a trivial acti
since the stack for the operating system is different from the user’s stack. M
over, the Pentium allows the operating system to maintain the protection lev
the called routine for the parameters that are passed to it. This potential loop
in protection is prevented by not allowing the user process to ask the oper
system to access something indirectly that it would not have been able to a
itself. (Such security loopholes are called Trojan horses.)

The Intel designers were guided by the principle of trusting the operating
tem as little as possible, while supporting sharing and protection. As an exa

454 Chapter 5 Memory-Hierarchy Design

s and
ents.

-date
hall
ction,

iva-

dress-
s in the
 data

es

lid

ical

t is

for

the
s of

d ad-
escrip-
by the
ing.

l pro-

ro-
lobal
local

 the
of the use of such protected sharing, suppose a payroll program writes check
also updates the year-to-date information on total salary and benefits paym
Thus, we want to give the program the ability to read the salary and year-to
information, and modify the year-to-date information but not the salary. We s
see the mechanism to support such features shortly. In the rest of this subse
we will look at the big picture of the Pentium protection and examine its mot
tion.

Adding Bounds Checking and Memory Mapping
The first step in enhancing the Intel processor was getting the segmented ad
ing to check bounds as well as supply a base. Rather than a base address, a
8086, segment registers in the Pentium contain an index to a virtual memory
structure called a descriptor table. Descriptor tables play the role of page tabl
in the Alpha. On the Pentium the equivalent of a page table entry is a segment
descriptor. It contains fields found in PTEs:

■ A present bit—equivalent to the PTE valid bit, used to indicate this is a va
translation

■ A base field—equivalent to a page frame address, containing the phys
address of the first byte of the segment

■ An access bit—like the reference bit or use bit in some architectures tha
helpful for replacement algorithms

■ An attributes field—specifies the valid operations and protection levels
operations that use this segment

There is also a limit field, not found in paged systems, which establishes
upper bound of valid offsets for this segment. Figure 5.45 shows example
Pentium segment descriptors.

Pentium provides an optional paging system in addition to this segmente
dressing, where the upper portion of the 32-bit address selects the segment d
tor and the middle portion is used as an index into the page table selected
descriptor. We describe below the protection system that does not rely on pag

Adding Sharing and Protection
To provide for protected sharing, half of the address space is shared by al
cesses and half is unique to each process, called global address space and local
address space, respectively. Each half is given a descriptor table with the app
priate name. A descriptor pointing to a shared segment is placed in the g
descriptor table, while a descriptor for a private segment is placed in the
descriptor table.

A program loads a Pentium segment register with an index to the table and a
bit saying which table it desires. The operation is checked according to

5.8 Protection and Examples of Virtual Memory 455

e off-
n the

legal
se a

 up-
pro-
field
en be
rip-
attributes in the descriptor, the physical address being formed by adding th
set in the CPU to the base in the descriptor, provided the offset is less tha
limit field. Every segment descriptor has a separate 2-bit field to give the
access level of this segment. A violation occurs only if the program tries to u
segment with a lower protection level in the segment descriptor.

We can now show how to invoke the payroll program mentioned above to
date the year-to-date information without allowing it to update salaries. The
gram could be given a descriptor to the information that has the writable
clear, meaning it can read but not write the data. A trusted program can th
supplied that will only write the year-to-date information and is given a desc

FIGURE 5.45 The Pentium segment descriptors are distinguished by bits in the at-
tributes field. Base, limit, present, readable, and writable are all self-explanatory. D gives
the default addressing size of the instructions: 16 bits or 32 bits. G gives the granularity of the
segment limit: 0 means in bytes and 1 means in 4-KB pages. G is set to 1 when paging is
turned on to set the size of the page tables. DPL means descriptor privilege level—this is
checked against the code privilege level to see if the access will be allowed. Conforming says
the code takes on the privilege level of the code being called rather than the privilege level of
the caller; it is used for library routines. The expand-down field flips the check to let the base
field be the high-water mark and the limit field be the low-water mark. As one might expect,
this is used for stack segments that grow down. Word count controls the number of words
copied from the current stack to the new stack on a call gate. The other two fields of the call
gate descriptor, destination selector and destination offset, select the descriptor of the desti-
nation of the call and the offset into it, respectively. There are many more than these three
segment descriptors in the Pentium.

Attributes Base Limit

8 bits 4 bits 32 bits 24 bits

Present

Code segment

DPL 11 Conforming Readable Accessed

Present

Data segment

DPL 10 Expand down Writable Accessed

Attributes Destination selector Destination offset

8 bits 16 bits 16 bits

Word
count

8 bits

Present

Call gate

DPL 0 00100

GD

456 Chapter 5 Memory-Hierarchy Design

the
 This
alled
read
et the
sys-
o up-
 that

, can
ng the
estrict
 proper
of the

ment
e-
offset
nt the
ode
l pro-
on is

ither
 de-
, the
local
s the
dware
 will
 stack.
me-

ting
ystem’s
lem

ction
f the
ed into
tor with the writable field set (Figure 5.45). The payroll program invokes
trusted code using a code segment descriptor with the conforming field set.
means the called program takes on the privilege level of the code being c
rather than the privilege level of the caller. Hence, the payroll program can
the salaries and call a trusted program to update the year-to-date totals, y
payroll program cannot modify the salaries. If a Trojan horse exists in this
tem, to be effective it must be located in the trusted code whose only job is t
date the year-to-date information. The argument for this style of protection is
limiting the scope of the vulnerability enhances security.

Adding Safe Calls from User to OS Gates and Inheriting Protection
Level for Parameters
Allowing the user to jump into the operating system is a bold step. How, then
a hardware designer increase the chances of a safe system without trusti
operating system or any other piece of code? The Pentium approach is to r
where the user can enter a piece of code, to safely place parameters on the
stack, and to make sure the user parameters don’t get the protection level
called code.

To restrict entry into others’ code, the Pentium provides a special seg
descriptor, or call gate, identified by a bit in the attributes field. Unlike other d
scriptors, call gates are full physical addresses of an object in memory; the
supplied by the CPU is ignored. As stated above, their purpose is to preve
user from randomly jumping anywhere into a protected or more-privileged c
segment. In our programming example, this means the only place the payrol
gram can invoke the trusted code is at the proper boundary. This restricti
needed to make conforming segments work as intended.

What happens if caller and callee are “mutually suspicious,” so that ne
trusts the other? The solution is found in the word count field in the bottom
scriptor in Figure 5.45. When a call instruction invokes a call gate descriptor
descriptor copies the number of words specified in the descriptor from the
stack onto the stack corresponding to the level of this segment. This allow
user to pass parameters by first pushing them onto the local stack. The har
then safely transfers them onto the correct stack. A return from a call gate
pop the parameters off both stacks and copy any return values to the proper
Note that this model is incompatible with the current practice of passing para
ters in registers.

This scheme still leaves open the potential loophole of having the opera
system use the user’s address, passed as parameters, with the operating s
security level, instead of with the user’s level. The Pentium solves this prob
by dedicating 2 bits in every CPU segment register to the requested protection
level. When an operating system routine is invoked, it can execute an instru
that sets this 2-bit field in all address parameters with the protection level o
user that called the routine. Thus, when these address parameters are load

5.9 Crosscutting Issues in the Design of Memory Hierarchies 457

roper
revent
 those

del,
 en-
o, the
n of
spe-
me
on-

any
ld ac-
 infor-

sid-
on of
n its
ased

amen-

tions
eak
ere is
ove,
s on

 CPU
the segment registers, they will set the requested protection level to the p
value. The Pentium hardware then uses the requested protection level to p
any foolishness: No segment can be accessed from the system routine using
parameters if it has a more-privileged protection level than requested.

Summary: Protection on the Alpha versus the Pentium

If the Pentium protection model looks harder to build than the Alpha mo
that’s because it is. This effort must be especially frustrating for the Pentium
gineers, since few customers use the elaborate protection mechanism. Als
fact that the protection model is a mismatch for the simple paging protectio
UNIX means it will be used only by someone writing an operating system e
cially for this computer. NT from Microsoft is the best candidate, but only ti
will tell whether the performance cost of such protection is justified for a pers
al computer operating system.

One wild card is the increasing popularity of the Internet, where virtually
machine can become an information provider, and hence almost anyone cou
cess the desktop computer. This openness leads to extraordinary sharing of
mation, but it also gives a powerful opportunity for malicious behavior.

We conclude this section with questions rather than answers: Will the con
erable protection engineering effort, which must be borne by each generati
the 80x86 family, be put to good use? Will it prove any safer in practice tha
paging system? Will the popularity of the Internet lead to demands of incre
support for protection in all computers?

This section describes four topics discussed in other chapters that are fund
tal to memory-hierarchy design.

Superscalar CPU and Number of Ports to the Cache

One complexity of the advanced designs of Chapter 4 is that multiple instruc
can be issued within a single clock cycle. Clearly, if there is not sufficient p
bandwidth from the cache to match the peak demands of the instructions, th
little benefit to designing such parallelism in the processor. As mentioned ab
similar reasoning applies to CPUs that want to continue executing instruction
a cache miss: clearly the memory hierarchy must also be nonblocking or the
benefits little.

5.9 Crosscutting Issues in the Design of
Memory Hierarchies

458 Chapter 5 Memory-Hierarchy Design

truc-
s per

 data
rtainly

ns is
pec-
ere
ption
d in-
pond-

he to
ts of
s (see

aral-

isses.
op
For example, the IBM RS/6000 Power 2 model 900 can issue up to six ins
tions per clock cycle, and its data cache can supply two 128-bit accesse
clock cycle. The RS/6000 does this by making the instruction cache and
cache wide and by making two reads to the data cache each clock cycle, ce
likely to be the critical path in the 71.5-MHz machine.

Speculative Execution and the Memory System

Inherent in CPUs that support speculative execution or conditional instructio
the possibility of generating invalid addresses that would not occur without s
ulative execution. Not only would this be incorrect behavior if exceptions w
taken, the benefits of speculative execution would be swamped by false exce
overhead. Hence the memory system must identify speculatively execute
structions and conditionally executed instructions and suppress the corres
ing exception.

By similar reasoning, we cannot allow such instructions to cause the cac
stall on a miss, for again unnecessary stalls could overwhelm the benefi
speculation. Hence these CPUs must be matched with nonblocking cache
page 414).

Compiler Optimization: Instruction-Level Parallelism
versus Reducing Cache Misses

Sometimes the compiler must choose between improving instruction-level p
lelism and improving cache performance. For example, the code below,

for (i = 0; i < 512; i = i+1)

for (j = 1; j < 512; j = j+1)

x[i][j] = 2 * x[i][j-1];

accesses the data in the order they are stored, thereby minimizing cache m
Unfortunately, the dependency limits parallel execution. Unrolling the lo
shows this dependency:

for (i = 0; i < 512; i = i+1)

for (j = 1; j < 512; j = j+4){

x[i][j] = 2 * x[i][j-1];

x[i][j+1] = 2 * x[i][j];

x[i][j+2] = 2 * x[i][j+1];

x[i][j+3] = 2 * x[i][j+2];

};

5.9 Crosscutting Issues in the Design of Memory Hierarchies 459

ment.

lism
cache

 as the
etween

e in-
s the

n the
input
nd the
roach
cess
is-

y the
 words
were
rated

tale-
ms,

ory
Each of the last three statements has a RAW dependency on the prior state
We can improve parallelism by interchanging the two loops:

for (j = 1; j < 512; j = j+1)

for (i = 0; i < 512; i = i+1)

x[i][j] = 2 * x[i][j-1];

Unrolling the loop shows this parallelism:

for (j = 1; j < 512; j = j+1)

for (i = 0; i < 512; i = i+4) {

x[i][j] = 2 * x[i][j-1];

x[i+1][j] = 2 * x[i+1][j-1];

x[i+2][j] = 2 * x[i+2][j-1];

x[i+3][j] = 2 * x[i+3][j-1];

};

Now all four statements in the loop are independent! Alas, increasing paralle
leads to accesses that hop through memory, reducing spatial locality and
hit rates.

I/O and Consistency of Cached Data

Because of caches, data can be found in memory and in the cache. As long
CPU is the sole device changing or reading the data and the cache stands b
the CPU and memory, there is little danger in the CPU seeing the old or stale
copy. I/O devices give the opportunity for other devices to cause copies to b
consistent or for other devices to read the stale copies. Figure 5.46 illustrate
problem, generally referred to as the cache-coherency problem.

The question is this: Where does the I/O occur in the computer—betwee
I/O device and the cache or between the I/O device and main memory? If
puts data into the cache and output reads data from the cache, both I/O a
CPU see the same data, and the problem is solved. The difficulty in this app
is that it interferes with the CPU. I/O competing with the CPU for cache ac
will cause the CPU to stall for I/O. Input will also interfere with the cache by d
placing some information with the new data that is unlikely to be accessed b
CPU soon. For example, on a page fault the CPU may need to access a few
in a page, but a program is not likely to access every word of the page if it
loaded into the cache. Given the integration of caches onto the same integ
circuit, it is also difficult for that interface to be visible.

The goal for the I/O system in a computer with a cache is to prevent the s
data problem while interfering with the CPU as little as possible. Many syste
therefore, prefer that I/O occur directly to main memory, with main mem

460 Chapter 5 Memory-Hierarchy Design

n up-
(This
work.
ated
cach-

ch, the
ut oc-
y are
mes a
l with
he, the
acting as an I/O buffer. If a write-through cache is used, then memory has a
to-date copy of the information, and there is no stale-data issue for output.
is a reason many machines use write through.) Input requires some extra
The software solution is to guarantee that no blocks of the I/O buffer design
for input are in the cache. In one approach, a buffer page is marked as non
able; the operating system always inputs to such a page. In another approa
operating system flushes the buffer addresses from the cache after the inp
curs. A hardware solution is to check the I/O addresses on input to see if the
in the cache; to avoid slowing down the cache to check addresses, someti
duplicate set of tags are used to allow checking of I/O addresses in paralle
processor cache accesses. If there is a match of I/O addresses in the cac

FIGURE 5.46 The cache-coherency problem. A' and B' refer to the cached copies of A
and B in memory. (a) shows cache and main memory in a coherent state. In (b) we assume
a write-back cache when the CPU writes 550 into A. Now A' has the value but the value in
memory has the old, stale value of 100. If an output used the value of A from memory, it would
get the stale data. In (c) the I/O system inputs 440 into the memory copy of B, so now B' in
the cache has the old, stale data.

CPU CPU CPU

100

200

A'

B'

B

A

Cache Cache Cache

Memory Memory Memory

550

200

A'

B'

200

I/O
output A
gives 100

B

A

100

100 100 100

200

A'

B'

440

I/O
input

440 to B

(a) Cache and
memory coherent:
A' = A & B' = B

(b) Cache and
memory incoherent:
A' ≠ A (A stale)

(c) Cache and
memory incoherent:
B' ≠ B (B' stale)

B

A

I/O

200

5.10 Putting It All Together: The Alpha AXP 21064 Memory Hierarchy 461

lso be
.

. Un-
hen-
ave
r pro-

proto-

chy;
nents
.

e on
tion
alid
nter-
 set to
hereby

 en-
ts of
 TLB

s are
l likely
ure
ine
cess
led,
tions,

it sets

 la-
ss is
 the
ully
ween
s, the
n. An
 or if
cache entries are invalidated to avoid stale data. All these approaches can a
used for output with write-back caches. More about this is found in Chapter 6

The cache-coherency problem applies to multiprocessors as well as I/O
like I/O, where multiple data copies are a rare event—one to be avoided w
ever possible—a program running on multiple processors will want to h
copies of the same data in several caches. Performance of a multiprocesso
gram depends on the performance of the system when sharing data. The
cols to maintain coherency for multiple processors are called cache-coherency
protocols, and are described in Chapter 8.

Thus far we have given glimpses of the Alpha AXP 21064 memory hierar
this section unveils the full design and shows the performance of its compo
for the SPEC92 programs. Figure 5.47 gives the overall picture of this design

Let's really start at the beginning, when the Alpha is turned on. Hardwar
the chip loads the instruction cache from an external PROM. This initializa
allows the 8-KB instruction cache to omit a valid bit, for there are always v
instructions in the cache; they just might not be the ones your program is i
ested in. The hardware does clear the valid bits in the data cache. The PC is
the kseg segment so that the instruction addresses are not translated, t
avoiding the TLB.

One of the first steps is to update the instruction TLB with valid page table
tries (PTEs) for this process. Kernel code updates the TLB with the conten
the appropriate page table entry for each page to be mapped. The instruction
has eight entries for 8-KB pages and four for 4-MB pages. (The 4-MB page
used by large programs such as the operating system or data bases that wil
touch most of their code.) A miss in the TLB invokes the Privileged Architect
Library (PAL code) software that updates the TLB. PAL code is simply mach
language routines with some implementation-specific extensions to allow ac
to low-level hardware, such as the TLB. PAL code runs with exceptions disab
and instruction accesses are not checked for memory management viola
allowing PAL code to fill the TLB.

Once the operating system is ready to begin executing a user process,
the PC to the appropriate address in segment seg0.

We are now ready to follow memory hierarchy in action: Figure 5.47 is
beled with the steps of this narrative. The page frame portion of this addre
sent to the TLB (step 1), while the 8-bit index from the page offset is sent to
direct-mapped 8-KB (256 32-byte blocks) instruction cache (step 2). The f
associative TLB simultaneously searches all 12 entries to find a match bet
the address and a valid PTE (step 3). In addition to translating the addres
TLB checks to see if the PTE demands that this access result in an exceptio
exception might occur if either this access violates the protection on the page

5.10 Putting It All Together:
The Alpha AXP 21064 Memory Hierarchy

462 Chapter 5 Memory-Hierarchy Design
FIGURE 5.47 The overall picture of the Alpha AXP 21064 memory hierarchy. Individual components can be seen in
greater detail in Figures 5.5 (page 381), 5.28 (page 426), and 5.41 (page 446). While the data TLB has 32 entries, the in-
struction TLB has just 12.

V Data
<1>

D
<1> <13> <256>

=?

(65,536
blocks)

<13>

 Tag Index

<16>

Main
memory

Tag

Victim buffer

Write buffer

Block
offset

Index

<8> <5>

1

1

2

2

3

5

5

6

7

8
9

10

11 12

12

12

13

14

15

16

17

18

18

19

19

19

20

17

21

22

23

23

23

24

25

26

27

28

28

 Page-frame
 address <30>

Instruction <64> Data in <64>Data Out <64>

V Physical address
<1> <21>

R
<2>

W
<2>

Tag
<30>

<21>

<64>

<64>

<29>
<29>

<64>

(High-order 21 bits of
 physical address)

Page
offset<13>

Block
offset

Index

<8> <5>

Data page-frame
 address <30>

V Physical address
<1> <21>

R
<2>

W
<2>

Tag
<30>

<21>

(High-order 21 bits of
 physical address)

Page
offset<13>

I
T
L
B

I
C
A
C
H
E

L2
C
A
C
H
E

D
C
A
C
H
E

D
T
L
B

PC

CPU

Alpha AXP 21064

=?

Instruction prefetch stream buffer

Tag <29> Data <256>
=?

Tag <29> Data <256>

Data
<21> <64>

=?

2

4

5

9

12
(256
blocks)

Tag Valid Data
<1> <21> <64>

=?

(256
blocks)

Tag

Delayed write buffer

12:1 Mux

4:1 Mux

32:1 Mux

Magnetic
disk

5.10 Putting It All Together: The Alpha AXP 21064 Memory Hierarchy 463

lated
proper
f the

-level
e de-
 sent
uc-
teps 6

che
d to
iss

y sys-
yte
it tag
 if it
ycles
n the

 a re-
e in-

n. It
make
dress

sical
mory
ght
s

 are
.

ge
ycles
ata 16

 some
ck
 are
ta are

im
the page is not in main memory. If there is no exception, and if the trans
physical address matches the tag in the instruction cache (step 4), then the
8 bytes of the 32-byte block are furnished to the CPU using the lower bits o
page offset (step 5), and the instruction stream access is done.

A miss, on the other hand, simultaneously starts an access to the second
cache (step 6) and checks the prefetch instruction stream buffer (step 7). If th
sired instruction is found in the stream buffer (step 8), the critical 8 bytes are
to the CPU, the full 32-byte block of the stream buffer is written into the instr
tion cache (step 9), and the request to the second-level cache is canceled. S
to 9 take just a single clock cycle.

If the instruction is not in the prefetch stream buffer, the second-level ca
continues trying to fetch the block. The 21064 microprocessor is designe
work with direct-mapped second-level caches from 128 KB to 8 MB with a m
penalty between 3 and 16 clock cycles. For this section we use the memor
tem of the DEC 3000 model 800 Alpha AXP. It has a 2-MB (65,536 32-b
blocks) second-level cache, so the 29-bit block address is divided into a 13-b
and a 16-bit index (step 10). The cache reads the tag from that index and
matches (step 11), the cache returns the critical 16 bytes in the first 5 clock c
and the other 16 bytes in the next 5 clock cycles (step 12). The path betwee
first- and second-level cache is 128 bits wide (16 bytes). At the same time,
quest is made for the next sequential 32-byte block, which is loaded into th
struction stream buffer in the next 10 clock cycles (step 13).

The instruction stream does not rely on the TLB for address translatio
simply increments the physical address of the miss by 32 bytes, checking to
sure that the new address is within the same page. If the incremented ad
crosses a page boundary, then the prefetch is suppressed.

If the instruction is not found in the secondary cache, the translated phy
address is sent to memory (step 14). The DEC 3000 model 800 divides me
into four memory mother boards (MMB), each of which contains two to ei
SIMMs (single inline memory modules). The SIMMs come with eight DRAM
for information plus one DRAM for error protection per side, and the options
single- or double-sided SIMMs using 1-Mbit, 4-Mbit, or 16-Mbit DRAMs
Hence the memory capacity of the model 800 is 8 MB (4 × 2 × 8 × 1 × 1/8) to
1024 MB (4 × 8 × 8 × 16 × 2/8), always organized 256 bits wide. The avera
time to transfer 32 bytes from memory to the secondary cache is 36 clock c
after the processor makes the request. The second-level cache loads this d
bytes at a time.

Since the second-level cache is a write-back cache, any miss can lead to
old block being written back to memory. The 21064 places this "victim" blo
into a victim buffer to get out of the way of new data (step 15). The new data
loaded into the cache as soon as they arrive (step 16), and then the old da
written from the victim buffer (step 17). There is a single block in the vict
buffer, so a second miss would need to stall until the victim buffer empties.

464 Chapter 5 Memory-Hierarchy Design

data
 the

iative
 to 4

 In
e page
age
hing

e tag
g the

o the

ion of
18 and
. The
he data
 write
5, the
atch,
ache
laced

uffer

hole
ten
e ad-
 if the
an be
idth

 is a
 cache
lock
of 16
 write

ed to
the
ty. A
level
Suppose this initial instruction is a load. It will send the page frame of its
address to the data TLB (step 18) at the same time as the 8-bit index from
page offset is sent to the data cache (step 19). The data TLB is a fully assoc
cache containing 32 PTEs, each of which represents page sizes from 8 KB
MB. A TLB miss will trap to PAL code to load the valid PTE for this address.
the worst case, the page is not in memory, and the operating system gets th
from disk (step 20). Since millions of instructions could execute during a p
fault, the operating system will swap in another process if there is somet
waiting to run.

Assuming that we have a valid PTE in the data TLB (step 21), the cach
and the physical page frame are compared (step 22), with a match sendin
desired 8 bytes from the 32-byte block to the CPU (step 23). A miss goes t
second-level cache, which proceeds exactly like an instruction miss.

Suppose the instruction is a store instead of a load. The page frame port
the data address is again sent to the data TLB and the data cache (steps
19), which checks for protection violations as well as translates the address
physical address is then sent to the data cache (steps 21 and 22). Since t
cache uses write through, the store data are simultaneously sent to the
buffer (step 24) and the data cache (step 25). As explained on page 42
21064 pipelines write hits. The data address of this store is checked for a m
and at the same time the data from the previous write hit are written to the c
(step 26). If the address check was a hit, then the data from this store are p
in the write pipeline buffer. On a miss, the data are just sent to the write b
since the data cache does not allocate on a write miss.

The write buffer takes over now. It has four entries, each containing a w
cache block. If the buffer is full, then the CPU must stall until a block is writ
to the second-level cache. If the buffer is not full, the CPU continues and th
dress of the word is presented to the write buffer (step 27). It checks to see
word matches any block already in the buffer so that a sequence of writes c
stitched together into a full block, thereby optimizing use of the write bandw
between the first- and second-level cache.

All writes are eventually passed on to the second-level cache. If a write
hit, then the data are written to the cache (step 28). Since the second-level
uses write back, it cannot pipeline writes: a full 32-byte block write takes 5 c
cycles to check the address and 10 clock cycles to write the data. A write
bytes or less takes 5 clock cycles to check the address and 5 clock cycles to
the data. In either case the cache marks the block as dirty.

If the access to the second-level cache is a miss, the victim block is check
see if it is dirty; if so, it is placed in the victim buffer as before (step 15). If
new data are a full block, then the data are simply written and marked dir
partial block write results in an access to main memory since the second-
cache policy is to allocate on a write miss.

5.10 Putting It All Together: The Alpha AXP 21064 Memory Hierarchy 465

per-
ma-
LBs,
n time

%

%

%

%

%

Performance of the 21064 Memory Hierarchy

How well does the 21064 work? The bottom line in this evaluation is the
centage of time lost while the CPU is waiting for the memory hierarchy. The
jor components are the instruction and data caches, instruction and data T
and the secondary cache. Figure 5.48 shows the percentage of the executio

CPI Miss rates

Program I cache D cache L2
Total
cache

Instr.
issue

Other
stalls

Total
CPI I cache D cache L2

TPC-B (db1) 0.57 0.53 0.74 1.84 0.79 1.67 4.30 8.10% 41.00% 7.40%

TPC-B (db2) 0.58 0.48 0.75 1.81 0.76 1.73 4.30 8.30% 34.00% 6.20%

AlphaSort 0.09 0.24 0.50 0.83 0.70 1.28 2.81 1.30% 22.00% 17.40%

Avg comm 0.41 0.42 0.66 1.49 0.75 1.56 3.80 5.90% 32.33% 10.33%

espresso 0.06 0.13 0.01 0.20 0.74 0.57 1.51 0.84% 9.00% 0.33

li 0.14 0.17 0.00 0.31 0.75 0.96 2.02 2.04% 9.00% 0.21%

eqntott 0.02 0.16 0.01 0.19 0.79 0.41 1.39 0.22% 11.00% 0.55%

compress 0.03 0.30 0.04 0.37 0.77 0.52 1.66 0.48% 20.00% 1.19

sc 0.20 0.18 0.04 0.42 0.78 0.85 2.05 2.79% 12.00% 0.93%

gcc 0.33 0.25 0.02 0.60 0.77 1.14 2.51 4.67% 17.00% 0.46%

Avg SPECint92 0.13 0.20 0.02 0.35 0.77 0.74 1.86 1.84% 13.00% 0.61

spice 0.01 0.68 0.02 0.71 0.83 0.99 2.53 0.21% 36.00% 0.43%

doduc 0.16 0.26 0.00 0.42 0.77 1.58 2.77 2.30% 14.00% 0.11%

mdljdp2 0.00 0.31 0.01 0.32 0.83 2.18 3.33 0.06% 28.00% 0.21%

wave5 0.04 0.39 0.04 0.47 0.68 0.84 1.99 0.57% 24.00% 0.89%

tomcatv 0.00 0.42 0.04 0.46 0.67 0.79 1.92 0.06% 20.00% 0.89%

ora 0.00 0.10 0.00 0.10 0.72 1.25 2.07 0.05% 7.00% 0.10%

alvinn 0.03 0.49 0.00 0.52 0.62 0.25 1.39 0.38% 18.00% 0.01%

ear 0.01 0.15 0.00 0.16 0.65 0.24 1.05 0.11% 9.00% 0.01%

mdljsp2 0.00 0.09 0.00 0.09 0.80 1.67 2.56 0.05% 5.00% 0.11%

swm256 0.00 0.24 0.01 0.25 0.68 0.37 1.30 0.02% 13.00% 0.32%

su2cor 0.03 0.74 0.01 0.78 0.66 0.71 2.15 0.41% 43.00% 0.16%

hydro2d 0.01 0.54 0.01 0.56 0.69 1.23 2.48 0.09% 32.00% 0.32%

nasa7 0.01 0.68 0.02 0.71 0.68 0.64 2.03 0.19% 37.00% 0.25

fpppp 0.52 0.17 0.00 0.69 0.70 0.97 2.36 7.42% 7.00% 0.01%

Avg SPECfp92 0.06 0.38 0.01 0.45 0.71 0.98 2.14 0.85% 20.93% 0.27

FIGURE 5.48 Percentage of execution time due to memory latency and miss rates for three commercial programs
and the SPEC92 benchmarks (see Chapter 1) running on the Alpha AXP 21064 in the DEC 3000 model 800. The first
two commercial programs are pieces of the TP1 benchmark and the last is a sort of 100-byte records in a 100-MB database.

466 Chapter 5 Memory-Hierarchy Design

ercial
avily,
ution

int92
te, and
, 21%,

ory
igure

imary
esult
pen-

em-
t the
due to the memory hierarchy for the SPEC92 programs and three comm
programs. The three commercial programs tax the memory much more he
with secondary cache misses alone responsible for 20% to 28% of the exec
time.

Figure 5.48 also shows the miss rates for each component. The SPEC
programs have about a 2% instruction miss rate, a 13% data cache miss ra
a 0.6% second-level cache miss rate. For SPECfp92 the averages are 1%
and 0.3%, respectively. The commercial workloads really exercise the mem
hierarchy; the averages of the three miss rates are 6%, 32%, and 10%. F
 5.49 shows the same data graphically. This figure makes clear that the pr
performance limits of the superscalar 21064 are instruction stalls, which r
from branch mispredictions, and the other category, which includes data de
dencies.

As the most naturally quantitative of the computer architecture disciplines, m
ory hierarchy would seem to be less vulnerable to fallacies and pitfalls. Ye
authors were limited here not by lack of warnings, but by lack of space!

FIGURE 5.49 Graphical representation of the data in Figure 5.48, with programs in
each of the three classes sorted by total CPI.

5.11 Fallacies and Pitfalls

4.50

4.00

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0.00

CPI

Commercial Integer Floating point

L2

TPC-B
 (d

b2
)

TPC-B
 (d

b1
)

Alph
aS

or
t

gc
c sc li

co
m

pr
es

s

es
pr

es
so

eq
nt

ot
t

ea
r

sw
m

25
6

alv
inn

to
m

ca
tv

wav
e5

fp
pp

p

hy
dr

o2
d

m
dlj

sp
2

do
du

c

m
dlj

dp
2

or
a

I$ D$ I Stall Other

5.11 Fallacies and Pitfalls 467

sign
 fatal

d
P-11

to the
ram
ogram
e is

ress:
an to
ng ad-
. Bell

ult to
mem-
very

k of
 Intel
-

d the
s be-

 pro-
on the
12%,
ither
 such
ache,
eral-

to an-
iss

hine
ts 10%
Pitfall: Too small an address space.

Just five years after DEC and Carnegie Mellon University collaborated to de
the new PDP-11 computer family, it was apparent that their creation had a
flaw. An architecture announced by IBM six years before the PDP-11 was still
thriving, with minor modifications, 25 years later. And the DEC VAX, criticize
for including unnecessary functions, has sold 100,000 units since the PD
went out of production. Why?

The fatal flaw of the PDP-11 was the size of its addresses as compared
address sizes of the IBM 360 and the VAX. Address size limits the prog
length, since the size of a program and the amount of data needed by the pr
must be less than 2address size. The reason the address size is so hard to chang
that it determines the minimum width of anything that can contain an add
PC, register, memory word, and effective-address arithmetic. If there is no pl
expand the address from the start, then the chances of successfully changi
dress size are so slim that it normally means the end of that computer family
and Strecker [1976] put it like this:

There is only one mistake that can be made in computer design that is diffic
recover from—not having enough address bits for memory addressing and
ory management. The PDP-11 followed the unbroken tradition of nearly e
known computer. [p. 2]

A partial list of successful machines that eventually starved to death for lac
address bits includes the PDP-8, PDP-10, PDP-11, Intel 8080, Intel 8086,
80186, Intel 80286, Motorola AMI 6502, Zilog Z80, CRAY-1, and CRAY X
MP. A few companies already offer computers with 64-bit flat addresses, an
authors expect that the rest of the industry will offer 64-bit address machine
fore the third edition of this book!

Fallacy: Predicting cache performance of one program from another.

Figure 5.50 shows the instruction miss rates and data miss rates for three
grams from the SPEC92 benchmark suite as cache size varies. Depending
program, the data miss rate for a direct-mapped 4-KB cache is either 28%,
or 8%, and the instruction miss rate for a direct-mapped 1-KB cache is e
10%, 3%, or 0%. Figure 5.48 on page 465 shows that commercial programs
as databases will have significant miss rates even in a 2-MB second-level c
which is not the case for the SPEC92 programs. Clearly it is not safe to gen
ize cache performance from one of these programs to another.

Nor is it safe to generalize cache measurements from one architecture
other. Figure 5.48 for the DEC Alpha with 8-KB caches running gcc shows m
rates of 17% for data and 4.67% for instructions, yet the DEC MIPS mac
running the same program and cache size measured in Figure 5.48 sugges
for data and 4% for instructions.

468 Chapter 5 Memory-Hierarchy Design

ures

arge
 is not
e av-
f in-
e first
cess
lf of
mory
 finish

he
g too
ning

 hun-
Pitfall: Simulating enough instructions to get accurate performance meas
of the memory hierarchy.

There are really two pitfalls here. One is trying to predict performance of a l
cache using a small trace, and the other is that a program's locality behavior
constant over the run of the entire program. Figure 5.51 shows the cumulativ
erage memory access time for four programs over the execution of billions o
structions. For these programs, the average memory access times for th
billion instructions executed is very different from their average memory ac
times for the second billion. While two of the programs need to execute ha
the total number of instructions to get a good estimate of the average me
access time, SOR needs to get to the three-quarters mark, and TV needs to
completely before the accurate measure appears.

The first edition of this book included another example of this pitfall. T
compulsory miss ratios were erroneously high (e.g., 1%) because of tracin
few memory accesses. A program with an infinite cache miss ratio of 1% run
on a machine accessing memory 10 million times per second would touch
dreds of megabytes of new memory every minute:

FIGURE 5.50 Instruction and data miss rates for direct-mapped caches with 32-byte
blocks for running three programs for DEC 5000 as cache size varies from 1 KB to 128
KB. The programs espresso, gcc, and tomcatv are from the SPEC92 benchmark suite.

35%

30%

25%

20%

Miss
rate 15%

10%

5%

0%
1 2 4 8 16

Cache size (KB)

D: tomcatv

I: gcc

D: gcc

I: espresso

D: espresso

I: tomcatv

32 64 128

10,000,000 accesses
Second

-- 0.01 misses
Access

----------------------------× 32 bytes
Miss

--------------------× 60 seconds
Minute

-------------------------- 192,000,000 bytes
Minute

--=×

5.11 Fallacies and Pitfalls 469

lusion

 the

nt on
n the
se of
Data on typical page fault rates and process sizes do not support the conc
that memory is touched at this rate.

Pitfall: Ignoring the impact of the operating system on the performance of
memory hierarchy.

Figure 5.52 shows the memory stall time due to the operating system spe
three large workloads. About 25% of the stall time is either spent in misses i
operating system or results from misses in the application programs becau
interference with the operating system.

FIGURE 5.51 Average memory access times for four programs over execution time
of billions of instructions. The assumed memory hierarchy was a 4-KB instruction cache
and 4-KB data cache with 16-byte blocks, and a 512-KB second-level cache with 128-byte
blocks using the Titan RISC instruction set. The first-level data cache is write through with a
four-entry write buffer, and the second-level cache is write back. The miss penalty for the first-
level cache to second-level cache is 12 clock cycles, and the miss penalty from the second-
level cache to main memory is 200 clock cycles. SOR is a FORTRAN program for successive
over-relaxation, Tree is a Scheme program that builds and searches a tree, Mult is a multi-
programmed workload consisting of six smaller programs, and TV is a Pascal program for
timing verification of VLSI circuits. (This figure taken from Figure 3-5 on page 276 of the paper
by Borg, Kessler, and Wall [1990].)

Tree

1.5

SOR

Instructions executed (billions)

Mult

TV

1

2

2.5

3

4

3.5

4.5

0 1 2 10 11 123 6 94 5 7 8

erage
s time

470 Chapter 5 Memory-Hierarchy Design

 av-

nces
uffer

until
word
 is

ation
he

ith a

%

%

Pitfall: Basing the size of the write buffer on the speed of memory and the
erage mix of writes.

This seems like a reasonable approach:

If there is one memory reference per clock cycle, 10% of the memory refere
are writes, and writing a word of memory takes 10 cycles, then a one-word b
is added (1 × 10% × 10 = 1). Calculating for the Alpha AXP 21064,

Thus, a one-word buffer seems sufficient.
The pitfall is that when writes come close together, the CPU must stall

the prior write is completed. Hence the calculation above says that a one-
buffer would be utilized 100% of the time. Queuing theory tells us if utilization
close to 100%, then writes will normally stall the CPU.

The proper question to ask is how large a buffer is needed to keep utiliz
low so that the buffer rarely fills, thereby keeping CPU write stall time low. T
impact of write buffer size can be established by simulation or estimated w
queuing model.

Time

Misses
% time due to appl.

misses % time due directly to OS misses
% time OS
misses &

appl.
conflictsWorkload

% in % in
appl OS

Inherent
appl.

misses

OS
conflicts
w. appl.

OS
instr

misses

Data
misses for
migration

Data misses
in block

operations

Rest
of OS
misses

Pmake 47% 53% 14.1% 4.8% 10.9% 1.0% 6.2% 2.9% 25.8

Multipgm 53% 47% 21.6% 3.4% 9.2% 4.2% 4.7% 3.4% 24.9%

Oracle 73% 27% 25.7% 10.2% 10.6% 2.6% 0.6% 2.8% 26.8

FIGURE 5.52 Misses and time spent in misses for applications and operating system. Collected on Silicon Graphics
POWER station 4D/340, a multiprocessor with four 33-MHz R3000 CPUs running three application workloads under a UNIX
System V—Pmake: a parallel compile of 56 files; Multipgm: the parallel numeric program MP3D running concurrently with
Pmake and five-screen edit session; and Oracle: running a restricted version of the TP-1 benchmark using the Oracle data-
base. Each CPU has a 64-KB instruction cache and a two-level data cache with 64 KB in the first level and 256 KB in the
second level; all caches are direct mapped with 16-byte blocks. Data from Torrellas, Gupta, and Hennessy [1992].

Write buffer size
Memory references

Clock cycle
-- Write percentage×=

Clock cycles to write memory×

Write buffer size
1.36 memory references

2.0 clock cycles
-- 0.1 writes× 15 clock cycles

Write
-------------------------------------× 1.0= =

5.12 Concluding Remarks 471

 un-
s that
re—
rrent
 the

ke the
 the
ther,
ng a
hat
ciative
ook.

, per-
ware,
ful,

000
The difficulty of building a memory system to keep pace with faster CPUs is
derscored by the fact that the raw material for main memory is the same a
found in the cheapest computer. It is the principle of locality that saves us he
its soundness is demonstrated at all levels of the memory hierarchy in cu
computers, from disks to TLBs. Figure 5.53 summarizes the attributes of
memory-hierarchy examples described in this chapter.

Yet the design decisions at these levels interact, and the architect must ta
whole system view to make wise decisions. The primary challenge for
memory-hierarchy designer is in choosing parameters that work well toge
not in inventing new techniques. The increasingly fast CPUs are spendi
larger fraction of time waiting for memory, which has led to new inventions t
have increased the number of choices: variable page size, pseudo-asso
caches, and cache-aware compilers weren’t found in the first edition of this b
Fortunately, there tends to be a technological “sweet spot” in balancing cost
formance, and complexity: missing the target wastes performance, hard
design time, debug time, or possibly all four. Architects hit the target by care
quantitative analysis.

5.12 Concluding Remarks

TLB First-level cache Second-level cache Virtual memory

Block size 4–8 bytes
(1 PTE)

4–32 bytes 32–256 bytes 4096–16,384 bytes

Hit time 1 clock cycle 1–2 clock cycles 6–15 clock cycles 10–100 clock
cycles

Miss penalty 10–30 clock cycles 8–66 clock cycles 30–200 clock cycles 700,000–6,000,
 clock cycles

Miss rate (local) 0.1–2% 0.5–20% 15–30% 0.00001–0.001%

Size 32–8192 bytes
(8–1024 PTEs)

1–128 KB 256 KB–16 MB 16–8192 MB

Backing store First-level cache Second-level cache Page-mode DRAM Disks

Q1: block placement Fully associative
or set associative

Direct mapped Direct mapped or
set associative

Fully associative

Q2: block
identification

Tag/block Tag/block Tag/block Table

Q3: block replacement Random N.A. (direct
mapped)

Random ≈ LRU

Q4: write strategy Flush on a write to
page table

Write through
or write back

Write back Write back

FIGURE 5.53 Summary of the memory-hierarchy examples in this chapter.

472 Chapter 5 Memory-Hierarchy Design

 and
d by
sity

op-
 an-
erm
only
dded

 645
 first
as in-

 ma-
m was
980s
rly

ribed
om-
ea
st .…

st to
 fre-

, de-
 open
uced

s or
 pro-

l ad-
. At

 slow
 that
 go
While the pioneers of computing knew of the need for a memory hierarchy
coined the term, the automatic management of two levels was first propose
Kilburn et al. [1962] and demonstrated with the Atlas computer at the Univer
of Manchester. This was the year before the IBM 360 was announced. While
IBM planned for its introduction with the next generation (System/370), the
erating system TSS wasn’t up to the challenge in 1970. Virtual memory was
nounced for the 370 family in 1972, and it was for this machine that the t
“translation look-aside buffer” was coined [Case and Padegs 1978]. The
computers today without virtual memory are a few supercomputers, embe
processors, and older personal computers.

Both the Atlas and the IBM 360 provided protection on pages, and the GE
was the first system to provide paged segmentation. The Intel 80286, the
80x86 to have the protection mechanisms described on pages 453 to 457, w
spired by the Multics protection software that ran on the GE 645. Over time,
chines evolved more elaborate mechanisms. The most elaborate mechanis
capabilities, which reached its highest interest in the late 1970s and early 1
[Fabry 1974; Wulf, Levin, and Harbison 1981]. Wilkes [1982], one of the ea
workers on capabilities, had this to say:

Anyone who has been concerned with an implementation of the type just desc
[capability system], or has tried to explain one to others, is likely to feel that c
plexity has got out of hand. It is particularly disappointing that the attractive id
of capabilities being tickets that can be freely handed around has become lo

Compared with a conventional computer system, there will inevitably be a co
be met in providing a system in which the domains of protection are small and
quently changed. This cost will manifest itself in terms of additional hardware
creased runtime speed, and increased memory occupancy. It is at present an
question whether, by adoption of the capability approach, the cost can be red
to reasonable proportions.

Today there is little interest in capabilities either from the operating system
the computer architecture communities, although there is growing interest in
tection and security.

Bell and Strecker [1976] reflected on the PDP-11 and identified a smal
dress space as the only architectural mistake that is difficult to recover from
the time of the creation of PDP-11, core memories were increasing at a very
rate, and the competition from 100 other minicomputer companies meant
DEC might not have a cost-competitive product if every address had to

5.13 Historical Perspective and References

5.13 Historical Perspective and References 473

ust 4
e IBM
ecture
ever,
er ad-
 soft-
tored
ine

 stay

bing

o a
l
f the

t pub-
ped

nnel
tates

om-
de-
s rate
0 pro-
mory
 years

e of
s in

ersus
ory

rm
r ex-
rvey
has
ve re-
isses
d in
cking
through the 16-bit datapath twice, hence the architect's decision to add j
more address bits than the predecessor of the PDP-11. The architects of th
360 were aware of the importance of address size and planned for the archit
to extend to 32 bits of address. Only 24 bits were used in the IBM 360, how
because the low-end 360 models would have been even slower with the larg
dresses in 1964. Unfortunately, the architects didn’t reveal their plans to the
ware people, and the expansion effort was foiled by programmers who s
extra information in the upper 8 “unused” address bits. Virtually every mach
since then, including the Alpha AXP, will check to make sure the unused bits
unused, and trap if the bits have the wrong value.

A few years after the Atlas paper, Wilkes published the first paper descri
the concept of a cache [1965]:

The use is discussed of a fast core memory of, say, 32,000 words as slave t
slower core memory of, say, one million words in such a way that in practica
cases the effective access time is nearer that of the fast memory than that o
slow memory. [p. 270]

This two-page paper describes a direct-mapped cache. While this is the firs
lication on caches, the first implementation was probably a direct-map
instruction cache built at the University of Cambridge. It was based on tu
diode memory, the fastest form of memory available at the time. Wilkes s
that G. Scarott suggested the idea of a cache memory.

Subsequent to that publication, IBM started a project that led to the first c
mercial machine with a cache, the IBM 360/85 [Liptay 1968]. Gibson [1967]
scribes how to measure program behavior as memory traffic as well as mis
and shows how the miss rate varies between programs. Using a sample of 2
grams (each with 3 million references!), Gibson also relied on average me
access time to compare systems with and without caches. This was over 25
ago, and yet many used miss rates until recently.

Conti, Gibson, and Pitkowsky [1968] describe the resulting performanc
the 360/85. The 360/91 outperforms the 360/85 on only 3 of the 11 program
the paper, even though the 360/85 has a slower clock cycle time (80 ns v
60 ns), smaller memory interleaving (4 versus 16), and a slower main mem
(1.04 µsec versus 0.75 µsec). This paper was also the first to use the te
“cache.” Strecker [1976] published the first comparative cache design pape
amining caches for the PDP-11. Smith [1982] later published a thorough su
paper, using the terms “spatial locality” and “temporal locality”; this paper
served as a reference for many computer designers. While most studies ha
lied on simulations, Clark [1983] used a hardware monitor to record cache m
of the VAX-11/780 over several days. Hill [1987] proposed the three C’s use
section 5.3 to explain cache misses. One of the first papers on nonblo
caches is by Kroft [1981].

474 Chapter 5 Memory-Hierarchy Design

ed by
n this
Borg,
oth-
od
rime
iative
earch.
and

.

m-

he
SCA

,”

he

ss

s

0

nnual
This chapter relies on the measurements of SPEC92 benchmarks collect
Gee et al. [1993] for DEC 5000s. There are several other papers used i
chapter that are cited in the captions of the figures that use the data:
Kessler, and Wall [1990]; Farkas and Jouppi [1994]; Jouppi [1990]; Lam, R
berg, and Wolf [1991]; Mowry, Lam, and Gupta [1992]; Lebeck and Wo
[1994]; and Torrellas, Gupta, and Hennessy [1992]. For more details on p
numbers of memory modules, read Gao [1993]; for more on pseudo-assoc
caches, see Agarwal and Pudar [1993]. Caches remain an active area of res

The Alpha AXP architecture is described in detail by Bhandarkar [1995]
by Sites [1992], and a good source of data on implementations is the Digital
Technical Journal, issue no. 4 of 1992, which is dedicated to articles on Alpha

References

AGARWAL, A. [1987]. Analysis of Cache Performance for Operating Systems and Multiprogra
ming, Ph.D. Thesis, Stanford Univ., Tech. Rep. No. CSL-TR-87-332 (May).

AGARWAL, A. AND S. D. PUDAR [1993]. “Column-associative caches: A technique for reducing t
miss rate of direct-mapped caches,” 20th Annual Int’l Symposium on Computer Architecture I
’20, San Diego, Calif., May 16–19. Computer Architecture News 21:2 (May), 179–90.

BAER, J.-L. AND W.-H. WANG [1988]. “On the inclusion property for multi-level cache hierarchies
Proc. 15th Annual Symposium on Computer Architecture (May–June), Honolulu, 73–80.

BELL, C. G. AND W. D. STRECKER [1976]. “Computer structures: What have we learned from t
PDP-11?,” Proc. Third Annual Symposium on Computer Architecture (January), Pittsburgh, 1–14.

BHANDARKAR, D. P. [1995]. Alpha Architecture Implementations, Digital Press, Newton, Mass.

BORG, A., R. E. KESSLER, AND D. W. WALL [1990]. “Generation and analysis of very long addre
traces,” Proc. 17th Annual Int’l Symposium on Computer Architecture (Cat. No. 90CH2887–8),
Seattle, May 28–31, IEEE Computer Society Press, Los Alamitos, Calif., 270–9.

CASE, R. P. AND A. PADEGS [1978]. “The architecture of the IBM System/370,” Communications of
the ACM 21:1, 73–96. Also appears in D. P. Siewiorek, C. G. Bell, and A. Newell, Computer Struc-
tures: Principles and Examples (1982), McGraw-Hill, New York, 830–855.

CLARK, D. W. [1983]. “Cache performance of the VAX-11/780,” ACM Trans. on Computer System
1:1, 24–37.

CONTI, C., D. H. GIBSON, AND S. H. PITKOWSKY [1968]. “Structural aspects of the System/36
Model 85, Part I: General organization,” IBM Systems J. 7:1, 2–14.

CRAWFORD, J. H. AND P. P. GELSINGER [1987]. Programming the 80386, Sybex, Alameda, Calif.

FABRY, R. S. [1974]. “Capability based addressing,” Comm. ACM 17:7 (July), 403–412.

FARKAS, K. I. AND N. P. JOUPPI [1994]. “Complexity/performance tradeoffs with non-blocking
loads,” Proc. 21st Annual Int’l Symposium on Computer Architecture, Chicago (April).

GAO, Q. S. [1993]. “The Chinese remainder theorem and the prime memory system,” 20th A
Int’l Symposium on Computer Architecture ISCA '20, San Diego, May 16–19, 1993. Computer
Architecture News 21:2 (May), 337–40.

GEE, J. D., M. D. HILL , D. N. PNEVMATIKATOS, AND A. J. SMITH [1993]. “Cache performance of the
SPEC92 benchmark suite,” IEEE Micro 13:4 (August), 17–27.

GIBSON, D. H. [1967]. “Considerations in block-oriented systems design,” AFIPS Conf. Proc. 30,
SJCC, 75–80.

5.13 Historical Perspective and References 475

381

ully-
c-
s

.

s
ges

y,”

r
ting

re-

-

n

h.

e-
HANDY, J. [1993]. The Cache Memory Book, Academic Press, Boston.

HILL , M. D. [1987]. Aspects of Cache Memory and Instruction Buffer Performance, Ph.D. Thesis,
University of Calif. at Berkeley, Computer Science Division, Tech. Rep. UCB/CSD 87/
(November).

HILL , M. D. [1988]. “A case for direct mapped caches,” Computer 21:12 (December), 25–40.

JOUPPI, N. P. [1990]. “Improving direct-mapped cache performance by the addition of a small f
associative cache and prefetch buffers,” Proc. 17th Annual Int’l Symposium on Computer Archite
ture (Cat. No. 90CH2887–8), Seattle, May 28–31, 1990. IEEE Computer Society Press, Lo
Alamitos, Calif., 364–73.

KILBURN, T., D. B. G. EDWARDS, M. J. LANIGAN, AND F. H. SUMNER [1962]. “One-level storage
system,” IRE Trans. on Electronic Computers EC-11 (April) 223–235. Also appears in D. P
Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Principles and Examples (1982),
McGraw-Hill, New York, 135–148.

KROFT, D. [1981]. “Lockup-free instruction fetch/prefetch cache organization,” Proc. Eighth Annual
Symposium on Computer Architecture (May 12–14), Minneapolis, 81–87.

LAM, M. S., E. E. ROTHBERG, AND M. E. WOLF [1991]. “The cache performance and optimization
of blocked algorithms,” Fourth Int’l Conf. on Architectural Support for Programming Langua
and Operating Systems, Santa Clara, Calif., April 8–11. SIGPLAN Notices 26:4 (April), 63–74.

LEBECK, A. R. AND D. A. WOOD [1994]. “Cache profiling and the SPEC benchmarks: A case stud
Computer 27:10 (October), 15–26.

LIPTAY, J. S. [1968]. “Structural aspects of the System/360 Model 85, Part II: The cache,” IBM
Systems J. 7:1, 15–21.

MCFARLING, S. [1989]. “Program optimization for instruction caches,” Proc. Third Int’l Conf. on
Architectural Support for Programming Languages and Operating Systems (April 3–6), Boston,
183–191.

MOWRY, T. C., S. LAM, AND A. GUPTA [1992]. “Design and evaluation of a compiler algorithm fo
prefetching,” Fifth Int’l Conf. on Architectural Support for Programming Languages and Opera
Systems (ASPLOS-V), Boston, October 12–15 , SIGPLAN Notices 27:9 (September), 62–73.

PALACHARLA , S. AND R. E. KESSLER [1994]. “Evaluating stream buffers as a secondary cache
placement,” Proc. 21st Annual Int’l Symposium on Computer Architecture, Chicago, April 18–21,
IEEE Computer Society Press, Los Alamitos, Calif., 24–33.

PRZYBYLSKI, S. A. [1990]. Cache Design: A Performance-Directed Approach, Morgan Kaufmann
Publishers, San Mateo, Calif.

PRZYBYLSKI, S. A., M. HOROWITZ, AND J. L. HENNESSY [1988]. “Performance tradeoffs in cache de
sign,” Proc. 15th Annual Symposium on Computer Architecture (May–June), Honolulu, 290–298.

SAAVEDRA-BARRERA, R. H. [1992]. CPU Performance Evaluation and Execution Time Predictio
Using Narrow Spectrum Benchmarking, Ph.D. Dissertation, University of Calif., Berkeley (May).

SAMPLES, A. D. AND P. N. HILFINGER [1988]. “Code reorganization for instruction caches,” Tec
Rep. UCB/CSD 88/447 (October), University of Calif., Berkeley.

SITES, R. L. (ED.) [1992]. Alpha Architecture Reference Manual, Digital Press, Burlington, Mass.

SMITH, A. J. [1982]. “Cache memories,” Computing Surveys 14:3 (September), 473–530.

SMITH, J. E. AND J. R. GOODMAN [1983]. “A study of instruction cache organizations and replac
ment policies,” Proc. 10th Annual Symposium on Computer Architecture (June 5–7), Stockholm,
132–137.

STRECKER, W. D. [1976]. “Cache memories for the PDP-11?,” Proc. Third Annual Symposium on
Computer Architecture (January), Pittsburgh, 155–158.

476 Chapter 5 Memory-Hierarchy Design

-
up-

2

l

s,”
stems

aniza-
riting
t writ-
-back

rough

ck and

s pos-
.)

s pos-
.)

hine

hine

ram
d then
elow
UNIX
hange
 at dif-

d many
d from
ime per
TORRELLAS, J., A. GUPTA, AND J. HENNESSY [1992]. “Characterizing the caching and synchron
ization performance of a multiprocessor operating system,” Fifth Int’l Conf. on Architectural S
port for Programming Languages and Operating Systems (ASPLOS-V), Boston, October 1–15,
SIGPLAN Notices 27:9 (September), 162–174.

WANG, W.-H., J.-L. BAER, AND H. M. LEVY [1989]. “Organization and performance of a two-leve
virtual-real cache hierarchy,” Proc. 16th Annual Symposium on Computer Architecture (May 28–
June 1), Jerusalem, 140–148.

WILKES, M. [1965]. “Slave memories and dynamic storage allocation,” IEEE Trans. Electronic
Computers EC-14:2 (April), 270–271.

WILKES, M. V. [1982]. “Hardware support for memory protection: Capability implementation
Proc. Symposium on Architectural Support for Programming Languages and Operating Sy
(March 1–3), Palo Alto, Calif., 107–116.

WULF, W. A., R. LEVIN, AND S. P. HARBISON [1981]. Hydra/C.mmp: An Experimental Computer
System, McGraw-Hill, New York.

E X E R C I S E S

5.1 [15/15/12/12] <5.1,5.2> Let’s try to show how you can make unfair benchmarks. Here
are two machines with the same processor and main memory but different cache org
tions. Assume the miss time is 10 times a cache hit time for both machines. Assume w
a 32-bit word takes 5 times as long as a cache hit (for the write-through cache) and tha
ing a whole 32-byte block takes 10 times as long as a cache-read hit (for the write
cache). The caches are unified; that is, they contain both instructions and data.

Cache A: 128 sets, two elements per set, each block is 32 bytes, and it uses write th
and no-write allocate.

Cache B: 256 sets, one element per set, each block is 32 bytes, and it uses write ba
does allocate on write misses.

a. [15] <1.5,5.2> Describe a program that makes machine A run as much faster a
sible than machine B. (Be sure to state any further assumptions you need, if any

b. [15] <1.5,5.2> Describe a program that makes machine B run as much faster a
sible than machine A. (Be sure to state any further assumptions you need, if any

c. [12] <1.5,5.2> Approximately how much faster is the program in part (a) on mac
A than machine B?

d. [12] <1.5,5.2> Approximately how much faster is the program in part (b) on mac
B than on machine A?

5.2 [15/10/12/12/12/12/12/12/12/12/12] <5.3,5.4> In this exercise, we will run a prog
to evaluate the behavior of a memory system. The key is having accurate timing an
having the program stride through memory to invoke different levels of the hierarchy. B
is the code in C for UNIX systems. The first part is a procedure that uses a standard
utility to get an accurate measure of the user CPU time; this procedure may need to c
to work on some systems. The second part is a nested loop to read and write memory
ferent strides and cache sizes. To get accurate cache timing, this code is repeate
times. The third part times the nested loop overhead only so that it can be subtracte
overall measured times to see how long the accesses were. The last part prints the t
access as the size and stride varies. You may need to change CACHE_MAX depending on the

Exercises 477

g. The
, and
question you are answering and the size of memory on the system you are measurin
code below was taken from a program written by Andrea Dusseau of U.C. Berkeley
was based on a detailed description found in Saavedra-Barrera [1992].

#include <stdio.h>
#include <sys/times.h>
#include <sys/types.h>
#include <time.h>
#define CACHE_MIN (1024) /* smallest cache */
#define CACHE_MAX (1024*1024) /* largest cache */
#define SAMPLE 10 /* to get a larger time sample */
#ifndef CLK_TCK
#define CLK_TCK 60 /* number clock ticks per second */
#endif
int x[CACHE_MAX]; /* array going to stride through */

double get_seconds() { /* routine to read time */
struct tms rusage;
times(&rusage); /* UNIX utility: time in clock ticks */
return (double) (rusage.tms_utime)/CLK_TCK;

}
void main() {
int register i, index, stride, limit, temp;
int steps, tsteps, csize;
double sec0, sec; /* timing variables */

for (csize=CACHE_MIN; csize <= CACHE_MAX; csize=csize*2)
for (stride=1; stride <= csize/2; stride=stride*2) {

sec = 0; /* initialize timer */
limit = csize-stride+1; /* cache size this loop */

steps = 0;
do { /* repeat until collect 1 second */

sec0 = get_seconds(); /* start timer */
for (i=SAMPLE*stride;i!=0;i=i-1) /* larger sample */
 for (index=0; index < limit; index=index+stride)

x[index] = x[index] + 1; /* cache access */
steps = steps + 1; /* count while loop iterations */
sec = sec + (get_seconds() - sec0);/* end timer */
} while (sec < 1.0); /* until collect 1 second */

/* Repeat empty loop to subtract loop overhead */
tsteps = 0; /* used to match no. while iterations */

do { /* repeat until same no. iterations as above */
sec0 = get_seconds(); /* start timer */
for (i=SAMPLE*stride;i!=0;i=i-1) /* larger sample */
 for (index=0; index < limit; index=index+stride)

temp = temp + index; /* dummy code */
tsteps = tsteps + 1; /* count while iterations */
sec = sec - (get_seconds() - sec0);/* - overhead */
} while (tsteps<steps); /* until = no. iterations */

printf("Size:%7d Stride:%7d read+write:%l4.0f ns\n",
csize*sizeof(int), stride*sizeof(int), (double)

sec*1e9/(steps*SAMPLE*stride*((limit-1)/stride+1)));
}; /* end of both outer for loops */

}

478 Chapter 5 Memory-Hierarchy Design

h is true
es tend
chine

emory

d the
e for

 any),
 block

che?

archy

in

ad or
The program above assumes that program addresses track physical addresses, whic
on the few machines that use virtually addressed caches. In general, virtual address
to follow physical addresses shortly after rebooting, so you may need to reboot the ma
in order to get smooth lines in your results.

To answer the questions below, assume that the sizes of all components of the m
hierarchy are powers of 2.

a. [15] <5.3,5.4> Plot the experimental results with elapsed time on the y-axis an
memory stride on the x-axis. Use logarithmic scales for both axes, and draw a lin
each cache size.

b. [10] <5.3,5.4> How many levels of cache are there?

c. [12] <5.3,5.4> What is the size of the first-level cache? Block size? Hint: Assume the
size of the page is much larger than the size of a block in a secondary cache (if
and the size of a second-level cache block is greater than or equal to the size of a
in a first-level cache.

d. [12] <5.3,5.4> What is the size of the second-level cache (if any)? Block size?

e. [12] <5.3,5.4> What is the associativity of the first-level cache? Second-level ca

f. [12] <5.3,5.4> What is the page size?

g. [12] <5.3,5.4> How many entries are in the TLB?

h. [12] <5.3,5.4> What is the miss penalty for the first-level cache? Second-level?

i. [12] <5.3,5.4> What is the time for a page fault to secondary memory? Hint: A page
fault to magnetic disk should be measured in milliseconds.

j. [12] <5.3,5.4> What is the miss penalty for the TLB?

k. [12] <5.3,5.4> Is there anything else you have discovered about the memory hier
from these measurements?

5.3 [10/10/10] <5.2> Figure 5.54 shows the output from running the program
Exercise 5.2 on a SPARCstation 1+, which has a single unified cache.

a. [10] <5.2> What is the size of the cache?

b. [10] <5.2> What is the block size of the cache?

c. [10] <5.2> What is the miss penalty for the first-level cache?

5.4 [15/15] <5.2> You purchased an Acme computer with the following features:

■ 95% of all memory accesses are found in the cache.

■ Each cache block is two words, and the whole block is read on any miss.

■ The processor sends references to its cache at the rate of 109 words per second.

■ 25% of those references are writes.

■ Assume that the memory system can support 109 words per second, reads or writes.

■ The bus reads or writes a single word at a time (the memory system cannot re
write two words at once).

Exercises 479

ch of
system
ptions.

ache
ccur,
t 50%
buffer
es 1
he to
 0.5%

 DLX
ith a

the
■ Assume at any one time, 30% of the blocks in the cache have been modified.

■ The cache uses write allocate on a write miss.

You are considering adding a peripheral to the system, and you want to know how mu
the memory system bandwidth is already used. Calculate the percentage of memory
bandwidth used on the average in the two cases below. Be sure to state your assum

a. [15] <5.2> The cache is write through.

b. [15] <5.2> The cache is write back.

5.5 [15/15] <5.5> One difference between a write-through cache and a write-back c
can be in the time it takes to write. During the first cycle, we detect whether a hit will o
and during the second (assuming a hit) we actually write the data. Let’s assume tha
of the blocks are dirty for a write-back cache. For this question, assume that the write
for write through will never stall the CPU (no penalty). Assume a cache read hit tak
clock cycle, the cache miss penalty is 50 clock cycles, and a block write from the cac
main memory takes 50 clock cycles. Finally, assume the instruction cache miss rate is
and the data cache miss rate is 1%.

a. [15] <5.5> Using statistics for the average percentage of loads and stores from
in Figure 2.26 on page 105, estimate the performance of a write-through cache w
two-cycle write versus a write-back cache with a two-cycle write for each of
programs.

FIGURE 5.54 Results of running program in Exercise 5.2 on a SPARCstation 1+.

1100

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

1000

900

800

700

600

500

400

300

200

4K

64K

8K

128K

2M1M

16K

Stride

256K

4M

32K

512K

Time for read + write (ns)

480 Chapter 5 Memory-Hierarchy Design

ache
 clock

lim-
 cache
in the

 399
e cor-

 block.
le in-

inol-
9.

cess
hich

 CPI

le and
ctions
a TLB
r the
LB,
 cache

B.

hree

ly or

r of
cially
e
ing:
b. [15] <5.5> Do the same comparison, but this time assume the write-through c
pipelines the writes, as described on page 425, so that a write hit takes just one
cycle.

5.6 [20] <5.3> Improve on the compiler prefetch Example found on page 401: Try to e
inate both the number of extraneous prefetches and the number of non-prefetched
misses. Calculate the performance of this refined version using the parameters
Example.

5.7 [15/12] <5.3> The Example evaluation of a pseudo-associative cache on page
assumed that on a hit to the slower block the hardware swapped the contents with th
responding fast block so that subsequent hits on this address would all be to the fast
Assume that if we don’t swap, a hit in the slower block takes just one extra clock cyc
stead of two extra clock cycles.

a. [15] <5.3> Derive a formula for the average memory access time using the term
ogy for direct-mapped and two-way set-associative caches as given on page 39

b. [12] <5.3> Using the formula from part (a), recalculate the average memory ac
times for the two cases found on page 399 (2-KB cache and 128-KB cache). W
pseudo-associative scheme is faster for the given configurations and data?

5.8 [15/20/15] <5.7> If the base CPI with a perfect memory system is 1.5, what is the
for these cache organizations? Use Figure 5.9 (page 391):

■ 16-KB direct-mapped unified cache using write back.

■ 16-KB two-way set-associative unified cache using write back.

■ 32-KB direct-mapped unified cache using write back.

Assume the memory latency is 40 clocks, the transfer rate is 4 bytes per clock cyc
that 50% of the transfers are dirty. There are 32 bytes per block and 20% of the instru
are data transfer instructions. There is no write buffer. Add to the assumptions above
that takes 20 clock cycles on a TLB miss. A TLB does not slow down a cache hit. Fo
TLB, make the simplifying assumption that 0.2% of all references aren’t found in T
either when addresses come directly from the CPU or when addresses come from
misses.

a. [15] <5.3> Compute the effective CPI for the three caches assuming an ideal TL

b. [20] <5.3> Using the results from part (a), compute the effective CPI for the t
caches with a real TLB.

c. [15] <5.3> What is the impact on performance of a TLB if the caches are virtual
physically addressed?

5.9 [10] <5.4> What is the formula for average access time for a three-level cache?

5.10 [15/15] <5.6> The section on avoiding bank conflicts by having a prime numbe
memory banks mentioned that there are techniques for fast modulo arithmetic, espe
when the prime number can be represented as 2N – 1. The idea is that by understanding th
laws of modulo arithmetic we can simplify the hardware. The key insights are the follow

1. Modulo arithmetic obeys the laws of distribution:

((a modulo c) + (b modulo c)) modulo c = (a + b) modulo c
((a modulo c) × (b modulo c)) modulo c = (a × b) modulo c

Exercises 481

inary

only

 of
ve?

ank
 wide.

 in-
lock.
ccess
. The
g:

e to

d in a
into a
 as the
e the

) Use
ate for
ocess-
witch.)
2. The sequence 20 modulo 2N– 1, 21 modulo 2N– 1, 22 modulo 2N– 1, . . . is a repeating
pattern 20, 21, 22, and so on for powers of 2 less than 2N. For example, if 2N– 1 = 7, then

20 modulo 7 = 1
21 modulo 7 = 2
22 modulo 7 = 4
23 modulo 7 = 1
24 modulo 7 = 2
25 modulo 7 = 4

3. Given a binary number a, the value of (a mod 7) can be expressed as

ai × 2i +. . .+ a2 × 22 + a1 × 21 + a0 × 20 modulo 7 =
((a0 + a3 +. . .) × 1 + (a1 + a4 +. . .) × 2 + (a2 + a5 +…) × 4) modulo 7

where i = log2a and aj = 0 for j >i

This is possible because 7 is a prime number of the form 2N–1. Since the multiplica-
tions in the expression above are by powers of two, they can be replaced by b
shifts (a very fast operation).

4. The address is now small enough to find the modulo by looking it up in a read-
memory (ROM) to get the bank number.

Finally, we are ready for the questions.

a. [15] <5.6> Given 2N– 1 memory banks, what is the approximate reduction in size
an address that is M bits wide as a result of the intermediate result in step 3 abo
Give the general formula, and then show the specific case of N = 3 and M = 32.

b. [15] <5.6> Draw the block structure of the hardware that would pick the correct b
out of seven banks given a 32-bit address. Assume that each bank is 8 bytes
What is the size of the adders and ROM used in this organization?

5.11 [25/10/15] <5.6> The CRAY X-MP instruction buffers can be thought of as an
struction-only cache. The total size is 1 KB, broken into four blocks of 256 bytes per b
The cache is fully associative and uses a first-in, first-out replacement policy. The a
time on a miss is 10 clock cycles, with the transfer time of 64 bytes every clock cycle
X-MP takes 1 clock cycle on a hit. Use the cache simulator to determine the followin

a. [25] <5.6> Instruction miss rate.

b. [10] <5.6> Average instruction memory access time measured in clock cycles.

c. [15] <5.6> What does the CPI of the CRAY X-MP have to be for the portion du
instruction cache misses to be 10% or less?

5.12 [25] <5.6> Traces from a single process give too high estimates for caches use
multiprocess environment. Write a program that merges the uniprocess DLX traces
single reference stream. Use the process-switch statistics in Figure 5.26 (page 423)
average process-switch rate with an exponential distribution about that mean. (Us
number of clock cycles rather than instructions, and assume the CPI of DLX is 1.5.
the cache simulator on the original traces and the merged trace. What is the miss r
each, assuming a 64-KB direct-mapped cache with 16-byte blocks? (There is a pr
identified tag in the cache tag so that the cache doesn’t have to be flushed on each s

482 Chapter 5 Memory-Hierarchy Design

mple

g is
h in-
support

 with

 four-
ock on
y band-

the

ter-

ss of
ck as

write

write-

ith a

there
5.13 [25] <5.6> One approach to reducing misses is to prefetch the next block. A si
but effective strategy, found in the Alpha 21064, is when block i is referenced to make sure
block i + 1 is in the cache, and if not, to prefetch it. Do you think automatic prefetchin
more or less effective with increasing block size? Why? Is it more or less effective wit
creasing cache size? Why? Use statistics from the cache simulator and the traces to
your conclusion.

5.14 [20/25] <5.6> Smith and Goodman [1983] found that for a small instruction cache, a
cache using direct mapping could consistently outperform one using fully associative
LRU replacement.

a. [20] <5.6> Explain why this would be possible. (Hint: You can’t explain this with the
three C’s model because it ignores replacement policy.)

b. [25] <5.6> Use the cache simulator to see if their results hold for the traces.

5.15 [30] <5.7> Use the cache simulator and traces to calculate the effectiveness of a
bank versus eight-bank interleaved memory. Assume each word transfer takes one cl
the bus and a random access is eight clocks. Measure the bank conflicts and memor
width for these cases:

a. <5.7> No cache and no write buffer.

b. <5.7> A 64-KB direct-mapped write-through cache with four-word blocks.

c. <5.7> A 64-KB direct-mapped write-back cache with four-word blocks.

d. <5.7> A 64-KB direct-mapped write-through cache with four-word blocks but
“interleaving” comes from a page-mode DRAM.

e. <5.7> A 64-KB direct-mapped write-back cache with four-word blocks but the “in
leaving” comes from a page-mode DRAM.

5.16 [25/25/25] <5.7> Use a cache simulator and traces to calculate the effectivene
early restart and out-of-order fetch. What is the distribution of first accesses to a blo
block size increases from 2 words to 64 words by factors of two for the following:

a. [25] <5.7> A 64-KB instruction-only cache?

b. [25] <5.7> A 64-KB data-only cache?

c. [25] <5.7> A 128-KB unified cache?

Assume direct-mapped placement.

5.17 [25/25/25/25/25/25] <5.2> Use a cache simulator and traces with a program you
yourself to compare the effectiveness of these schemes for fast writes:

a. [25] <5.2> One-word buffer and the CPU stalls on a data-read cache miss with a
through cache.

b. [25] <5.2> Four-word buffer and the CPU stalls on a data-read cache miss w
write-through cache.

c. [25] <5.2> Four-word buffer and the CPU stalls on a data-read cache miss only if
is a potential conflict in the addresses with a write-through cache.

Exercises 483

ssed

data

ata
 and

for in-
mory
emory.

che
ss rate
 same

data.
ost
LB on

es?

em-
pect to

curity
ome

n.

ected
ppose

tech-
uctor

agnetic
 it is.
Thus
fac-
h sev-
sing

uced
tions
and,
. The

timiza-
s and
es in
 the so-
ople
d. [25] <5.2> A write-back cache that writes dirty data first and then loads the mi
block.

e. [25] <5.2> A write-back cache with a one-block write buffer that loads the miss
first and then stalls the CPU on a clean miss if the write buffer is not empty.

f. [25] <5.2> A write-back cache with a one-block write buffer that loads the miss d
first and then stalls the CPU on a clean miss only if the write buffer is not empty
there is a potential conflict in the addresses.

Assume a 64-KB direct-mapped cache for data and a 64-KB direct-mapped cache
structions with a block size of 32 bytes. The CPI of the CPU is 1.5 with a perfect me
system and it takes 14 clocks on a cache miss and 7 clocks to write a single word to m

5.18 [25] <5.4> Using the UNIX pipe facility, connect the output of one copy of the ca
simulator to the input of another. Use this pair to see at what cache size the global mi
of a second-level cache is approximately the same as a single-level cache of the
capacity for the traces provided.

5.19 [Discussion] <5.7> Second-level caches now contain several megabytes of
Although new TLBs provide for variable length pages to try to map more memory, m
operating systems do not take advantage of them. Does it make sense to miss the T
data that are found in a cache? How should TLBs be reorganized to avoid such miss

5.20 [Discussion] <5.7> Some people have argued that with increasing capacity of m
ory storage per chip, virtual memory is an idea whose time has passed, and they ex
see it dropped from future computers. Find reasons for and against this argument.

5.21 [Discussion] <5.7> So far, few computer systems take advantage of the extra se
available with gates and rings found in a CPU like the Intel Pentium. Construct s
scenario whereby the computer industry would switch over to this model of protectio

5.22 [Discussion] <5.12> Many times a new technology has been invented that is exp
to make a major change to the memory hierarchy. For the sake of this question, let's su
that biological computer technology becomes a reality. Suppose biological memory
nology has the following unusual characteristic: It is as fast as the fastest semicond
DRAMs and it can be randomly accessed, but its per byte costs are the same as m
disk memory. It has the further advantage of not being any slower no matter how big
The only drawback is that you can only write it once, but you can read it many times.
it is called a WORM (write once, read many) memory. Because of the way it is manu
tured, the WORM memory module can be easily replaced. See if you can come up wit
eral new ideas to take advantage of WORMs to build better computers u
“biotechnology.”

5.23 [Discussion] <3,4,5> Chapters 3 and 4 showed how execution time is being red
by pipelining and by superscalar and VLIW organizations: even floating-point opera
may account for only a fraction of a clock cycle in total execution time. On the other h
Figure 5.1 on page 374 shows that the memory hierarchy is increasing in importance
research on algorithms, data structures, operating systems, and even compiler op
tions were done in an era of simpler machines, with no pipelining or caches. Classe
textbooks may still reflect those simpler machines. What is the impact of the chang
computer architecture on these other fields? Find examples where textbooks suggest
lution appropriate for old machines but inappropriate for modern machines. Talk to pe
in other fields to see what they think about these changes.

6

Storage Systems 6
I/O certainly has been lagging in the last decade.

Seymour Cray
Public Lecture (1976)

Also, I/O needs a lot of work.

David Kuck
Keynote Address, 15th Annual Symposium
on Computer Architecture (1988)

6.1 Introduction 485

6.2 Types of Storage Devices 486

6.3 Buses—Connecting I/O Devices to CPU/Memory 496

6.4 I/O Performance Measures 504

6.5 Reliability, Availability, and RAID 521

6.6 Crosscutting Issues: Interfacing to an Operating System 525

6.7 Designing an I/O System 528

6.8 Putting It All Together: UNIX File System Performance 539

6.9 Fallacies and Pitfalls 548

6.10 Concluding Remarks 553

6.11 Historical Perspective and References 553

Exercises 557
cted
ost

com-
t be
 cit-

vic-
hile
pes a
ance.

e CPU

e and
glect-
ith
ster
Input/output has been the orphan of computer architecture. Historically negle
by CPU enthusiasts, the prejudice against I/O is institutionalized in the m
widely used performance measure, CPU time (page 32). The quality of a
puter’s I/O system—whether it has the best or worst in the world—canno
measured by CPU time, which by definition ignores I/O. The second-class
izenship of I/O is even apparent in the label peripheral applied to I/O devices.

This attitude is contradicted by common sense. A computer without I/O de
es is like a car without wheels—you can’t get very far without them. And w
CPU time is interesting, response time—the time between when the user ty
command and when results appear—is surely a better measure of perform
The customer who pays for a computer cares about response time, even if th
designer doesn’t.

I/O’s revenge is at hand. Suppose we have a difference between CPU tim
response time of 10%, and we speed up the CPU by a factor of 10, while ne
ing I/O. Amdahl’s Law tells us that we will get a speedup of only 5 times, w
half the potential of the CPU wasted. Similarly, making the CPU 100 times fa

6.1 Introduction

486

Chapter 6 Storage Systems

ring
 im-
 I/O-
CPU

ge in
e I/O,
 I/O,
nce.

esn’t
rocess

rfor-

se
ever

 com-
of re-
sses

ging
ith

esses
ing!
 strict

ntrate
 CD-

in
s than

2)

without improving the I/O would obtain a speedup of only 10 times, squande
90% of the potential. If, as predicted in Chapter 1, performance of CPUs
proves at 55% per year and I/O does not improve, every task will become
bound. There would be no reason to buy faster CPUs—and no jobs for
designers.

To reflect the increasing importance of I/O, we have expanded its covera
this second edition. We now have two I/O chapters: this chapter covers storag
and the next covers network I/O. Although two chapters cannot fully vindicate
they may at least atone for some of the sins of the past and restore some bala

Are CPUs Ever Idle?

Some suggest that the prejudice against I/O is well founded. I/O speed do
matter, they argue, since there is always another process to run while one p
waits for a peripheral.

There are several points to make in reply. First, this is an argument that pe
mance is measured as throughput—more tasks per hour—rather than as respon
time. Plainly, if users didn’t care about response time, interactive software n
would have been invented, and there would be no workstations or personal
puters today; section 6.4 gives experimental evidence on the importance
sponse time. It may also be expensive to rely on performing other proce
while waiting for I/O, since the main memory must be large or else the pa
traffic from process switching would actually increase I/O. Furthermore, w
desktop computing there is only one person per CPU, and thus fewer proc
than in timesharing; many times the only waiting process is the human be
And some applications, such as transaction processing (section 6.4), place
limits on response time as part of the performance analysis.

Thus, I/O performance can limit system performance and effectiveness.

Rather than discuss the characteristics of all storage devices, we will conce
on the devices with the highest capacity: magnetic disks, magnetic tapes,
ROMS, and automated tape libraries.

Magnetic Disks

I think Silicon Valley was misnamed. If you look back at the dollars shipped
products in the last decade there has been more revenue from magnetic disk
from silicon. They ought to rename the place Iron Oxide Valley.

Al Hoagland, One of the Pioneers of Magnetic Disks (198

6.2 Types of Storage Devices

6.2 Types of Storage Devices

487

inated
tems:

ing

ory

rd”

 will
ag-

,
vered
ctor
per-

In spite of repeated attacks by new technologies, magnetic disks have dom
secondary storage since 1965. Magnetic disks play two roles in computer sys

■ Long-term, nonvolatile storage for files, even when no programs are runn

■ A level of the memory hierarchy below main memory used for virtual mem
during program execution (see section 5.7)

In this chapter we are not talking about floppy disks, but the original “ha
disks.

As descriptions of magnetic disks can be found in countless books, we
only list the key characteristics, with the terms illustrated in Figure 6.1. A m
netic disk consists of a collection of platters (1 to 20), rotating on a spindle at
say, 3600 revolutions per minute (RPM). These platters are metal disks co
with magnetic recording material on both sides. Disk diameters vary by a fa
of six, from 1.3 to 8 inches. Traditionally, the widest disks have the highest
formance and the smallest disks have the lowest cost per disk drive.

FIGURE 6.1 Disks are organized into platters, tracks, and sectors. Both sides of a plat-
ter are coated so that information can be stored on both surfaces. A cylinder refers to a track
at the same position on every platter.

Sectors

Tracks

Track

Platter

Platters

488

Chapter 6 Storage Systems

 into

or is
 mag-
ding
.
cks,

. Re-

ace
select

ngth
The
o that

e arm

f

and
he av-
erage
er of
ut, de-
k time
fer-

ge
rota-

 milli-
everal

 head.

is a
peed
The disk surface is divided into concentric circles, designated tracks. There
are typically 500 to 2500 tracks on each surface. Each track in turn is divided
sectors that contain the information; each track might have 64 sectors. A sect
the smallest unit that can be read or written. The sequence recorded on the
netic media is a sector number, a gap, the information for that sector inclu
error correction code, a gap, the sector number of the next sector, and so on

Traditionally, all tracks have the same number of sectors; the outer tra
which are longer, record information at a lower density than the inner tracks
cording more sectors on the outer tracks than on the inner tracks, called constant
bit density, is becoming more widespread with the advent of intelligent interf
standards such as SCSI (see section 6.3). IBM mainframes allow users to
the size of the sectors, although almost all other systems fix their size.

To read and write information into a sector, a movable arm containing a read/
write head is located over each surface. Bits are recorded using a run-le
limited code, which improves the recording density of the magnetic media.
arms for each surface are connected together and move in conjunction, s
every arm is over the same track of every surface. The term cylinder is used to
refer to all the tracks under the arms at a given point on all surfaces.

To read or write a sector, the disk controller sends a command to move th
over the proper track. This operation is called a seek, and the time to move the
arm to the desired track is called seek time. Average seek time is the subject o
considerable misunderstanding.

Disk manufacturers report minimum seek time, maximum seek time,
average seek time in their manuals. The first two are easy to measure, but t
erage was open to wide interpretation. The industry decided to calculate av
seek time as the sum of the time for all possible seeks divided by the numb
possible seeks. Average seek times are advertised to be 8 ms to 12 ms, b
pending on the application and operating system, the actual average see
may be only 25% to 33% of the advertised number, due to locality of disk re
ences. Section 6.9 has a detailed example.

The time for the requested sector to rotate under the head is the rotation
latency or rotational delay. Many disks rotate at 3600 RPM, and an avera
latency to the desired information is halfway around the disk; the average
tion time for many disks is therefore

Note that there are two mechanical components to a disk access: several
seconds on average for the arm to move over the desired track and then s
milliseconds on average for the desired sector to rotate under the read/write

The next component of disk access, transfer time, is the time it takes to trans-
fer a block of bits, typically a sector, under the read-write head. This time
function of the block size, rotation speed, recording density of a track, and s

Average rotation time
0.5

3600 RPM
-------------------------- 0.0083 sec 8.3 ms= = =

6.2 Types of Storage Devices

489

ically

 and
. For
e de-
thers
sys-
sire to
his is

tor,

s usu-

-
ance
 free

eter
e tra-
t this
hich
lly a
nical
me.
of the electronics connecting disk to computer. Transfer rates in 1995 are typ
2 to 8 MB per second.

Between the disk controller and main memory is a hierarchy of controllers
data paths, whose complexity varies (and the cost of the computer with it)
example, whenever the transfer time is a small portion of a full access, th
signer will want to disconnect the memory device during the access so that o
can transfer their data. This is true for disk controllers in high-performance
tems, and, as we shall see later, for buses and networks. There is also a de
amortize this long access by reading more than simply what is requested; t
called read ahead. The hope is that a nearby request will be for the next sec
which will already be available.

To handle the complexities of disconnect/connect and read ahead, there i
ally, in addition to the disk drive, a device called a disk controller. Thus, the final
component of disk-access time is controller time, which is the overhead the con
troller imposes in performing an I/O access. When referring to the perform
of a disk in a computer system, the time spent waiting for a disk to become
(queuing delay) is added to this time.

E X A M P L E What is the average time to read or write a 512-byte sector for a typical
disk? The advertised average seek time is 9 ms, the transfer rate is 4 MB/
sec, it rotates at 7200 RPM, and the controller overhead is 1 ms. Assume
the disk is idle so that there is no queuing delay.

A N S W E R Average disk access is equal to average seek time + average rotational
delay + transfer time + controller overhead. Using the calculated, average
seek time, the answer is

9 ms + + 1 ms = 9 + 4.15 + 0.125 + 1 = 14.3 ms

Assuming the measured seek time is 33% of the calculated average, the
answer is

3 ms + 4.2 ms + 0.1 ms + 1 ms = 8.3 ms
■

Figure 6.2 shows the characteristics of a 1993 magnetic disk. Large-diam
drives have many more megabytes to amortize the cost of electronics, so th
ditional wisdom used to be that they had the lowest cost per megabyte. Bu
advantage is offset for the small drives by the much higher sales volume, w
lowers manufacturing costs. Hence the best price per megabyte is typica
medium-width disk, which has enough capacity to offset the cost of the mecha
components and enough volume to take advantage of high manufacturing volu

0.5
7200 RPM
-------------------------- 0.5 KB

4.0 MB/sec
---------------------------+

490

Chapter 6 Storage Systems

ove-

year,
ed to

tional
mil-
d in

ent of
ent.
995,
 6.4

roved
 1995
 was
 about

The Future of Magnetic Disks

The disk industry has concentrated on improving the capacity of disks. Impr
ment in capacity is customarily expressed as areal density, measured in bits per
square inch:

Through about 1988 the rate of improvement of areal density was 29% per
thus doubling density every three years. Since that time the rate has improv
60% per year, quadrupling density every three years and matching the tradi
rate of DRAMs. In 1995 the highest density in commercial products is 644
lion bits per square inch, with 3000 million bits per square inch demonstrate
the labs.

Cost per megabyte has dropped at least at the same rate of improvem
areal density, with smaller drives playing the larger role in this improvem
Figure 6.3 plots price per personal computer disk between 1983 and 1
showing both the rapid drop in price and the increase in capacity. Figure
translates these costs into price per megabyte, showing that it has imp
more than a hundredfold over those 12 years. In fact, between 1992 and
the rate of improvement in cost per megabyte of personal computer disks
about 2.0 times per year, a considerable increase over the previous rate of
1.3 to 1.4 times per year between 1986 and 1992.

Characteristics
Seagate ST31401N
Elite-2 SCSI Drive

Disk diameter (inches) 5.25

Formatted data capacity (GB) 2.8

Cylinders 2627

Tracks per cylinder 21

Sectors per track ≈ 99

Bytes per sector 512

Rotation speed (RPM) 5400

Average seek in ms
(random cylinder to cylinder)

11.0

Minimum seek in ms 1.7

Maximum seek in ms 22.5

Data transfer rate in MB/sec ≈ 4.6

FIGURE 6.2 Characteristics of a 1993 magnetic disk.

Areal density
Tracks
Inch

---------------- on a disk surface
Bits
Inch
---------- on a track×=

6.2 Types of Storage Devices

491

FIGURE 6.3 Price per personal computer disk over time. The prices are in 1995 dollars, adjusted for inflation using the
Producer Price Index. The costs were collected from advertisements from the January edition of Byte magazine, using the
lowest price of a disk of a particular size in that issue. In a few cases, the price was adjusted slightly to get a consistent disk
capacity (e.g., shrinking the price of an 86-MB disk by 80/86 to get a point for the 80-MB line).

FIGURE 6.4 Price per megabyte of personal computer disk over time. The center point is the median price per MB,
with the low point on the line being the minimum and the high point being the maximum. These data were collected in the
same way as for Figure 6.3, except that more disks are included on this graph.

$5000

20 MB

80 MB

210 MB

420 MB
1050 MB

$4000

$3000

1995 dollars per disk

$2000

$1000

$0

Year

1983 1985 1987 1989 1991 1993 1995

$1000

$100

$10
Dollars per megabyte

$1

$0

Year

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

492

Chapter 6 Storage Systems

 pow-
k dis-
ading
(bits
 small
ndard

ndary

r than
mes
thus

ther

Because it is easier to spin the smaller mass, smaller-diameter disks save
er as well as volume. Smaller drives also have fewer cylinders, so the see
tances are shorter. In 1995, 3.5-inch or 2.5-inch drives are probably the le
technology, and the future will see even smaller drives. Increasing density
per inch on a track) has improved transfer times, and there has been some
improvement in seek speed. Rotation speeds have improved from the sta
3600 RPM in the 1980s to 5400–7200 RPM in the 1990s.

Magnetic disks have been challenged many times for supremacy of seco
storage. One reason has been the fabled access time gap as shown in Figure 6.5.
The price of a megabyte of disk storage in 1995 is about 100 times cheape
the price of a megabyte of DRAM in a system, but DRAM is about 100,000 ti
faster. Many a scientist has tried to invent a technology to fill that gap, but
far all have failed.

Using DRAMs as Disks

One challenger to disks for dominance of secondary storage is solid state disks
(SSDs), built from DRAMs with a battery to make the system nonvolatile; ano

FIGURE 6.5 Cost versus access time for SRAM, DRAM, and magnetic disk in 1980, 1985, 1990, and 1995. (Note the
difference in cost between a DRAM chip and DRAM chips packaged on a board and ready to plug into a computer.) The
two-order-of-magnitude gap in cost and access times between semiconductor memory and rotating magnetic disks has in-
spired a host of competing technologies to try to fill it. So far, such attempts have been made obsolete before production by
improvements in magnetic disks, DRAMs, or both. Note that between 1990 and 1995 the cost per megabyte of SRAM and
DRAM chips made less improvement, while disk cost made dramatic improvement. Also, since 1990 SIMM modules have
shrunk the gap between the cost of DRAM (board) and DRAM (chip).

Access time (ns)

Cost
($/MB)

100,000

10,000 100,000 1,000,000 10,000,000 100,000,000

1000

1000

100

100

10

10

1

1
.1

Access time gap

1985

1980

10,000 1980

1985

1990
1995

1980

1995

1980

1985

19901995 1985

1990

1995

SRAM (chip) DRAM (chip)

DRAM (board) Disk

1990

6.2 Types of Storage Devices

493

 or
 dur-
ans-
rivial
like

pecial
 errors
s er-

eater
ow it
acri-
d by
n I/O
 limits

which

 per
ould
d the

 has

ium.
for-
 cost
 for

t the
s pre-

rate
 mag-
dards.
 tape

se they
rove-
es is
is expanded storage (ES), a large memory that allows only block transfers to
from main memory. ES acts like a software-controlled cache (the CPU stalls
ing the block transfer), while SSDs involve the operating system just like a tr
fer from magnetic disks. The advantages of SSDs and ES are nonvolatility, t
seek times, higher potential transfer rate, and possibly higher reliability. Un
just a larger main memory, SSDs and ES are autonomous: They require s
commands to access their storage, and thus are “safe” from some software
that write over main memory. The block-access nature of SSDs and ES allow
ror correction to be spread over more words, which means lower cost for gr
error recovery. For example, IBM’s ES uses the greater error recovery to all
to be constructed from less reliable (and less expensive) DRAMs without s
ficing product availability. SSDs, unlike main memory and ES, may be share
multiple CPUs because they function as separate units. Placing DRAMs in a
device rather than memory is also one way to get around the address-space
of the current 32-bit computers. The disadvantage of SSDs and ES is cost,
is at least 50 times per megabyte the cost of magnetic disks.

When the first edition of this book was written, disks were growing at 29%
year and DRAMs at 60% per year. One exercise asked when DRAMs w
match the cost per bit of magnetic disks. Now that disks have at least matche
DRAM growth rate and will apparently do so for many years, the question
changed from What year? to What must change for it to happen?

Optical Disks

Another challenger to magnetic disks is optical compact disks, or CDs. The CD-
ROM is removable and inexpensive to manufacture, but it is a read-only med
Its low manufacturing cost has made it a favorite medium for distributing in
mation, but not as a rewritable storage device. The high capacity and low
mean that CD-ROMs may well replace floppy disks as the favorite medium
distributing personal computer software.

So far, magnetic disk challengers have never had a product to market a
right time. By the time a new product ships, disks have made advances a
dicted earlier, and costs have dropped accordingly.

Unfortunately, the data distribution responsibilities of CDs mean that their
of improvement is governed by standards committees, and it appears that
netic storage grows more quickly than human beings can agree on CD stan
Writable optical disks, however, may have the potential to compete with new
technologies for archival storage.

Magnetic Tapes

Magnetic tapes have been part of computer systems as long as disks becau
use the same technology as disks, and hence follow the same density imp
ments. The inherent cost/performance difference between disks and tap
based on their geometries:

494

Chapter 6 Storage Systems

ve a
r.

ny
an take

k.
 with-

g the
faster
out a
 and

ds of
lions
rated
ject,
 such
 more

s.

d and
 mean
on of
(STC)
. Put-
ated
CII

y of
e 6.7
 the
 1000
as-

ow to
■ Fixed rotating platters offer random access in milliseconds, but disks ha
limited storage area and the storage medium is sealed within each reade

■ Long strips wound on removable spools of “unlimited” length mean ma
tapes can be used per reader, but tapes require sequential access that c
seconds.

This relationship has made tapes the technology of choice for backups to dis
One of the limits of tapes has been the speed at which the tapes can spin

out breaking or jamming. A relatively recent technology, called helical scan
tapes, solves this problem by keeping the tape speed the same but recordin
information on a diagonal to the tape with a tape reader that spins much
than the tape is moving. This technology increases recording density by ab
factor of 20 to 50. Helical scan tapes were developed for the low-cost VCRs
camcorders, which brings down the cost of the tapes and readers.

One drawback to tapes is that they wear out: Helical tapes last for hundre
passes, while the traditional longitudinal tapes wear out in thousands to mil
of passes. The helical scan read/write heads also wear out quickly, typically
for 2000 hours of continuous use. Finally, there are typically long rewind, e
load, and spin-up times for helical scan tapes. In the archival backup market,
performance characteristics have not mattered, and hence there has been
engineering focus on increasing density than on overcoming these limitation

Automated Tape Libraries

Tape capacities are enhanced by inexpensive robots to automatically loa
store tapes, offering a new level of storage hierarchy. These robo-line tapes
access to terabytes of information in tens of seconds, without the interventi
a human operator. Figure 6.6 shows the Storage Technologies Corporation
PowderHorn, which loads 6000 tapes, giving a total capacity of 60 terabytes
ting this capacity into perspective, in 1995 the Library of Congress is estim
to have 30 terabytes of text, if books could be magically transformed into AS
characters.

One interesting characteristic of automated tape libraries is that econom
scale can apply, unlike almost all other parts of the computer industry. Figur
shows that the price per gigabyte drops by a factor of four when going from
small systems (less than 100 GB in 1995) to the large systems (greater than
GB). The drawback of such large systems is the limited bandwidth of this m
sive storage.

Now that we have described several storage devices, we must discover h
connect them to a computer.

6.2 Types of Storage Devices

495

FIGURE 6.6 The STC PowderHorn. This storage silo holds 6000 tape cartridges; using the
3590 cartridge announced in 1995, the total capacity is 60 terabytes. It has a performance
level of up to 350 cartridge exchanges per hour. (Courtesy STC.)

FIGURE 6.7 Plot of capacity per library versus dollars per gigabyte for several 1995 tape libraries. Note that the x
axis is a log scale. In 1995 large libraries are one-quarter the cost per gigabyte of small libraries. The danger of comparing
disk to tape at small capacities is the subject of the fallacy discussed on page 548.

$180

$160

$140

$120

$100

$80

$60

$40

$20

Dollars per gigabyte

$0

Capacity (GB)

1 10 100 1000 10000

496

Chapter 6 Storage Systems

anoth-
 CPU

d
f the
tion

ved be-
single

neck,
h a
evere
d in
perfor-
of the

rgely
(and,
e de-

con-

 wide
ollow
ly high

idth.
types
ccept
com-

n
. Bus

is first
ls in-
emo-
nals,

 CPU
sually
a read,

.

In a computer system, the various subsystems must have interfaces to one
er; for instance, the memory and CPU need to communicate, and so do the
and I/O devices. This is commonly done with a bus. The bus serves as a share
communication link between the subsystems. The two major advantages o
bus organization are low cost and versatility. By defining a single interconnec
scheme, new devices can be added easily and peripherals may even be mo
tween computer systems that use a common bus. The cost is low, since a
set of wires is shared in multiple ways.

The major disadvantage of a bus is that it creates a communication bottle
possibly limiting the maximum I/O throughput. When I/O must pass throug
central bus, this bandwidth limitation is as real as—and sometimes more s
than—memory bandwidth. In commercial systems, where I/O is frequent, an
supercomputers, where the necessary I/O rates are high because the CPU
mance is high, designing a bus system capable of meeting the demands
processor is a major challenge.

One reason bus design is so difficult is that the maximum bus speed is la
limited by physical factors: the length of the bus and the number of devices
hence, bus loading). These physical limits prevent arbitrary bus speedup. Th
sire for high I/O rates (low latency) and high I/O throughput can also lead to
flicting design requirements.

Buses are traditionally classified as CPU-memory buses or I/O buses. I/O buses
may be lengthy, may have many types of devices connected to them, have a
range in the data bandwidth of the devices connected to them, and normally f
a bus standard. CPU-memory buses, on the other hand, are short, general
speed, and matched to the memory system to maximize memory-CPU bandw
During the design phase, the designer of a CPU-memory bus knows all the
of devices that must connect together, while the I/O bus designer must a
devices varying in latency and bandwidth capabilities. To lower costs, some
puters have a single bus for both memory and I/O devices.

Let’s review a typical bus transaction, as seen in Figure 6.8. A bus transactio
includes two parts: sending the address and receiving or sending the data
transactions are usually defined by what they do to memory: A read transaction
transfers data from memory (to either the CPU or an I/O device), and a write
transaction writes data to the memory. In a read transaction, the address
sent down the bus to the memory, together with the appropriate control signa
dicating a read. In Figure 6.8, this means deasserting the read signal. The m
ry responds by returning the data on the bus with the appropriate control sig
in this case deasserting the wait signal. A write transaction requires that the
or I/O device send both address and data and requires no return of data. U
the CPU must wait between sending the address and receiving the data on
but the CPU often does not wait on writes.

6.3 Buses—Connecting I/O Devices to CPU/Memory

6.3 Buses—Connecting I/O Devices to CPU/Memory

497

rest of
. The
 lines,
ore

Bus Design Decisions

The design of a bus presents several options, as Figure 6.9 shows. Like the
the computer system, decisions will depend on cost and performance goals
first three options in the figure are clear choices—separate address and data
wider data lines, and multiple-word transfers all give higher performance at m
cost.

FIGURE 6.8 Typical bus read transaction. This bus is synchronous. The read begins
when the read signal is asserted, and data are not ready until the wait signal is deasserted.

Option High performance Low cost

Bus width Separate address and data lines Multiplex address and data lines

Data width Wider is faster (e.g., 64 bits) Narrower is cheaper (e.g., 8 bits)

Transfer size Multiple words have less bus overhead Single-word transfer is simpler

Bus masters Multiple (requires arbitration) Single master (no arbitration)

Split
transaction?

Yes—separate request and reply packets get
higher bandwidth (need multiple masters)

No—continuous connection is cheaper and
has lower latency

Clocking Synchronous Asynchronous

FIGURE 6.9 The main options for a bus. The advantage of separate address and data buses is primarily on writes.

Clock

Address

Data

Read

Wait

498

Chapter 6 Storage Systems

s al-
Us or
s, an
s next.
s or
bus.
ets,
alled

he
ddress
 must
nsac-

ords
itrate

return
 has

us

r no
t and

The next item in the table concerns the number of bus masters. These are de-
vices that can initiate a read or write transaction; the CPU, for instance, i
ways a bus master. A bus has multiple masters when there are multiple CP
when I/O devices can initiate a bus transaction. If there are multiple master
arbitration scheme is required among the masters to decide who gets the bu
Arbitration is often a fixed priority, as is the case with daisy-chained device
an approximately fair scheme that randomly chooses which master gets the

With multiple masters, a bus can offer higher bandwidth by going to pack
as opposed to holding the bus for the full transaction. This technique is c
split transactions. (Some systems call this ability connect/disconnect, a pipelined
bus, or a packet-switched bus.) Figure 6.10 shows the split-transaction bus. T
read transaction is broken into a read-request transaction that contains the a
and a memory-reply transaction that contains the data. Each transaction
now be tagged so that the CPU and memory can tell what is what. Split tra
tions make the bus available for other masters while the memory reads the w
from the requested address. It also normally means that the CPU must arb
for the bus to send the data and the memory must arbitrate for the bus to
the data. Thus, a split-transaction bus has higher bandwidth, but it usually
higher latency than a bus that is held during the complete transaction.

The final item in Figure 6.9, clocking, concerns whether a bus is synchrono
or asynchronous. If a bus is synchronous, it includes a clock in the control lines
and a fixed protocol for address and data relative to the clock. Since little o
logic is needed to decide what to do next, these buses can be both fas

FIGURE 6.10 A split-transaction bus. Here the address on the bus corresponds to a later
memory access.

Address addr1 addr2 addr3

Data data 0 data 1 d

Wait Wait 1 OK 1

6.3 Buses—Connecting I/O Devices to CPU/Memory

499

e bus
chro-

ed,
e 6.11

ices
tion

nchro-
 trans-
s not
ical

ronous
ynch-

inexpensive. They have two major disadvantages, however. Everything on th
must run at the same clock rate, and because of clock-skew problems, syn
nous buses cannot be long. CPU-memory buses are typically synchronous.

An asynchronous bus, on the other hand, is not clocked. Instead, self-tim
handshaking protocols are used between bus sender and receiver. Figur
shows the steps of a master performing a write on an asynchronous bus.

Asynchrony makes it much easier to accommodate a wide variety of dev
and to lengthen the bus without worrying about clock skew or synchroniza
problems. If a synchronous bus can be used, it is usually faster than an asy
nous bus because it avoids the overhead of synchronizing the bus for each
action. The choice of synchronous versus asynchronous bus has implication
only for data bandwidth but also for an I/O system’s capacity in terms of phys
distance and number of devices that can be connected to the bus; asynch
buses scale better with technological changes. I/O buses are typically as
ronous. Figure 6.12 suggests when to use one over the other.

FIGURE 6.11 A master performing a write. The state of the transaction at each time step is as follows. Master has ob-
tained control and asserts address, direction, and data, then waits a specified amount of time for slaves to decode target;
t1: Master asserts request line; t2: Slave asserts ack, indicating data received; t3: Master releases req; t4: Slave releases
ack.

Address Next address

Data

Master asserts address

Master asserts data

Read

Request

t0 t1 t2 t3 t4

Acknowledgment

500 Chapter 6 Storage Systems

tems,
hich

bus for
 I/O-

ining
e I/O-
 com-
nnect

e de
Once
sign-
ines
n the

rs. If
Bus Standards

The number and variety of I/O devices are not fixed on most computer sys
permitting customers to tailor computers to their needs. As the interface to w
devices are connected, the I/O bus can also be considered an expansion
adding I/O devices over time. Standards that let the computer designer and
device designer work independently, therefore, play a large role in determ
the choice of buses. As long as both the computer-system designer and th
device designer meet the requirements, any I/O device can connect to any
puter. In fact, an I/O bus standard is the document that defines how to co
them.

Machines sometimes grow to be so popular that their I/O buses becom
facto standards; examples are the PDP-11 Unibus and the IBM PC-AT Bus.
many I/O devices have been built for a popular machine, other computer de
ers will build their I/O interface so that those devices can plug into their mach
as well. Sometimes standards also come from an explicit standards effort o
part of I/O device makers. The intelligent peripheral interface (IPI) and Ethernet are
examples of standards that resulted from the cooperation of manufacture

FIGURE 6.12 Preferred bus type as a function of length/clock skew and variation in
I/O device speed. Synchronous is best when the distance is short and the I/O devices on
the bus all transfer at similar speeds.

Asynchronous better

Synchronous better

Mixture of I/O
device speeds

VariedSimilar

Short

Long

Clock skew
(function of
bus length)

6.3 Buses—Connecting I/O Devices to CPU/Memory 501

y like
m a

cting
ion is
s are
uss
ction
 main
, the
rfere
standards are successful, they are eventually blessed by a sanctioning bod
ANSI or IEEE. Occasionally, a bus standard comes top-down directly fro
standards committee—PCI is one example.

Examples of Buses

Figure 6.13 summarizes characteristics of five I/O buses, and Figure 6.14 sum-
marizes three CPU-memory buses found in servers.

Interfacing Storage Devices to the CPU

Having described I/O devices and looked at some of the issues of the conne
bus, we are ready to discuss the CPU end of the interface. The first quest
how the physical connection of the I/O bus should be made. The two choice
connecting it to memory or to the cache. In the following section we will disc
the pros and cons of connecting an I/O bus directly to the cache; in this se
we examine the more usual case in which the I/O bus is connected to the
memory bus. Figure 6.15 shows a typical organization. In low-cost systems
I/O bus is the memory bus; this means an I/O command on the bus could inte
with a CPU instruction fetch, for example.

S bus MicroChannel PCI IPI SCSI 2

Data width (primary) 32 bits 32 bits 32 to 64 bits 16 bits 8 to 16 bits

Clock rate 16 to 25 MHz Asynchronous 33 MHz Asynchronous 10 MHz or
asynchronous

Number of bus masters Multiple Multiple Multiple Single Multiple

Bandwidth, 32-bit reads 33 MB/sec 20 MB/sec 33 MB/sec 25 MB/sec 20 MB/sec or 6
MB/sec

Bandwidth, peak 89 MB/sec 75 MB/sec 132 MB/sec 25 MB/sec 20 MB/sec or 6
MB/sec

Standard None — — ANSI X3.129 ANSI X3.131

FIGURE 6.13 Summary of I/O buses. The first two started as CPU-memory buses and evolved into I/O buses.

HP Summit SGI Challenge Sun XDBus

Data width (primary) 128 bits 256 bits 144 bits

Clock rate 60 MHz 48 MHz 66 MHz

Number of bus masters Multiple Multiple Multiple

Bandwidth, peak 960 MB/sec 1200 MB/sec 1056 MB/sec

Standard None None None

FIGURE 6.14 Summary of CPU-memory buses found in 1994 servers. All use split
transactions to enhance bandwidth. The number of slots on the bus for masters or slaves is
16, 9, and 10, respectively.

502 Chapter 6 Storage Systems

s the
t com-
-
ses may
t aside
mory-

 this
les of
ters.

ters to
ory-

e the

line
ta to

t
CPU
char-
Once the physical interface is chosen, the question becomes, How doe
CPU address an I/O device that it needs to send or receive data? The mos
mon practice is called memory-mapped I/O. In this scheme, portions of the ad
dress space are assigned to I/O devices. Reads and writes to those addres
cause data to be transferred; some portion of the I/O space may also be se
for device control, so commands to the device are just accesses to those me
mapped addresses.

The alternative practice is to use dedicated I/O opcodes in the CPU. In
case, the CPU sends a signal that this address is for I/O devices. Examp
computers with I/O instructions are the Intel 80x86 and the IBM 370 compu
I/O opcodes have been waning in popularity.

No matter which addressing scheme is selected, each I/O device has regis
provide status and control information. Either through loads and stores in mem
mapped I/O or through special instructions, the CPU sets flags to determin
operation the I/O device will perform.

Any I/O event is rarely a single operation. For example, the DEC LP11
printer has two I/O device registers: one for status information and one for da
be printed. The status register contains a done bit, set by the printer when it has
printed a character, and an error bit, indicating that the printer is jammed or ou
of paper. Each byte of data to be printed is put into the data register; the
must then wait until the printer sets the done bit before it can place another
acter in the buffer.

FIGURE 6.15 A typical interface of I/O devices and an I/O bus to the CPU-memory
bus.

Cache

I/O bus

I/O
controller

Disk Disk Graphics
output

Network

I/O
controller

I/O
controller

CPU-memory bus

CPU

Bus
adapter Main

memory

6.3 Buses—Connecting I/O Devices to CPU/Memory 503

 see

waste
n of
.
ows
r ex-
r the
O is

nt. In
d can
peri-

ere
k of

es, as
lock
r
PU.
n I/O
 and

which
 DMA
ltiple
the

the

per-

tion)
very-
e I/O
800
save

eral
essors
d thus
ally
This simple interface, in which the CPU periodically checks status bits to
if it is time for the next I/O operation, is called polling. As you might expect, the
fact that CPUs are so much faster than I/O devices means that polling may
a lot of CPU time. This was recognized long ago, leading to the inventio
interrupts to notify the CPU when it is time to do something for the I/O device

Interrupt-driven I/O, used by most systems for at least some devices, all
the CPU to work on some other process while waiting for the I/O device. Fo
ample, the LP11 has a mode that allows it to interrupt the CPU wheneve
done bit or error bit is set. In general-purpose applications, interrupt-driven I/
the key to multitasking operating systems and good response times.

The drawback to interrupts is the operating system overhead on each eve
real-time applications with hundreds of I/O events per second, this overhea
be intolerable. One hybrid solution for real-time systems is to use a clock to
odically interrupt the CPU, at which time the CPU polls all I/O devices.

Delegating I/O Responsibility from the CPU

Interrupt-driven I/O relieves the CPU from waiting for every I/O event, but th
are still many CPU cycles spent in transferring data. Transferring a disk bloc
2048 words, for instance, would require at least 2048 loads and 2048 stor
well as the overhead for the interrupt. Since I/O events so often involve b
transfers, direct memory access (DMA) hardware is added to many compute
systems to allow transfers of numbers of words without intervention by the C

DMA is a specialized processor that transfers data between memory and a
device while the CPU goes on with other tasks. Thus, it is external to the CPU
must act as a master on the bus. The CPU first sets up the DMA registers,
contain a memory address and number of bytes to be transferred. Once the
transfer is complete, the controller interrupts the CPU. There may be mu
DMA devices in a computer system; for example, DMA is frequently part of
controller for an I/O device.

Increasing the intelligence of the DMA device can further unburden
CPU. Devices called I/O processors (or I/O controllers, or channel controllers)
operate either from fixed programs or from programs downloaded by the o
ating system. The operating system typically sets up a queue of I/O control
blocks that contain information such as data location (source and destina
and data size. The I/O processor then takes items from the queue, doing e
thing requested and sending a single interrupt when the task specified in th
control blocks is complete. Whereas the LP11 line printer would cause 4
interrupts to print a 60-line by 80-character page, an I/O processor could
4799 of those interrupts.

I/O processors are similar to multiprocessors in that they facilitate sev
processes being executed simultaneously in the computer system. I/O proc
are less general than CPUs, however, since they have dedicated tasks, an
parallelism is also much more limited. Also, an I/O processor doesn’t norm

504 Chapter 6 Storage Systems

ce to

 con-
ance

ne of
 An-

ance,
imes

ainst
ducer
s tasks

laced
rage
ghest
hould
 buffer

xe-
ess.
 how
ss.
change information, as a CPU does, but just moves information from one pla
another.

Now that we have covered the basic types of storage devices and ways to
nect them to the CPU, we are ready to look at ways to evaluate the perform
of storage systems.

I/O performance has measures that have no counterparts in CPU design. O
these is diversity: Which I/O devices can connect to the computer system?
other is capacity: How many I/O devices can connect to a computer system?

In addition to these unique measures, the traditional measures of perform
response time and throughput, also apply to I/O. (I/O throughput is somet
called I/O bandwidth, and response time is sometimes called latency.) The next
two figures offer insight into how response time and throughput trade off ag
each other. Figure 6.16 shows the simple producer-server model. The pro
creates tasks to be performed and places them in a buffer; the server take
from the first-in-first-out buffer and performs them.

Response time is defined as the time a task takes from the moment it is p
in the buffer until the server finishes the task. Throughput is simply the ave
number of tasks completed by the server over a time period. To get the hi
possible throughput, the server should never be idle, and thus the buffer s
never be empty. Response time, on the other hand, counts time spent in the
and is therefore minimized by the buffer being empty.

Another measure of I/O performance is the interference of I/O with CPU e
cution. Transferring data may interfere with the execution of another proc
There is also overhead due to handling I/O interrupts. Our concern here is
many more clock cycles a process will take because of I/O for another proce

6.4 I/O Performance Measures

FIGURE 6.16 The traditional producer-server model of response time and through-
put. Response time begins when a task is placed in the buffer and ends when it is completed
by the server. Throughput is the number of tasks completed by the server in unit time.

Producer Server

Queue

6.4 I/O Performance Measures 505

l I/O
ults in
ults in

nts
6.18,
 tasks
s the
 more

ter is
gure
oard
Throughput versus Response Time

Figure 6.17 shows throughput versus response time (or latency) for a typica
system. The knee of the curve is the area where a little more throughput res
much longer response time or, conversely, a little shorter response time res
much lower throughput.

Life would be simpler if improving performance always meant improveme
in both response time and throughput. Adding more servers, as in Figure
increases throughput: By spreading data across two disks instead of one,
may be serviced in parallel. Alas, this does not help response time, unles
workload is held constant and the time in the buffers is reduced because of
resources.

How does the architect balance these conflicting demands? If the compu
interacting with human beings, Figure 6.19 suggests an answer. This fi
presents the results of two studies of interactive environments: one keyb
oriented and one graphical. An interaction, or transaction, with a computer is
divided into three parts:

FIGURE 6.17 Throughput versus response time. Latency is normally reported as re-
sponse time. Note that the minimum response time achieves only 11% of the throughput,
while the response time for 100% throughput takes seven times the minimum response time.
Note that the independent variable in this curve is implicit: To trace the curve, you typically
vary load (concurrency). Chen et al. [1990] collected these data for an array of magnetic
disks.

300

0%

Percent of maximum throughput (bandwidth)

Response time
(latency)
in ms

20% 40% 60% 80% 100%

200

100

0

506 Chapter 6 Storage Systems

tem
us 4.0

and

gins

 de-
utting
onven-
s im-
think
1. Entry time—The time for the user to enter the command. The graphics sys
in Figure 6.19 took 0.25 seconds on average to enter a command vers
seconds for the keyboard system.

2. System response time—The time between when the user enters the comm
and the complete response is displayed.

3. Think time—The time from the reception of the response until the user be
to enter the next command.

The sum of these three parts is called the transaction time. Several studies report
that user productivity is inversely proportional to transaction time; transactions
per hour is a measure of the work completed per hour by the user.

The results in Figure 6.19 show that reduction in response time actually
creases transaction time by more than just the response time reduction: C
system response time by 0.7 seconds saves 4.9 seconds (34%) from the c
tional transaction and 2.0 seconds (70%) from the graphics transaction. Thi
plausible result is explained by human nature: People need less time to
when given a faster response.

FIGURE 6.18 The single-producer, single-server model of Figure 6.16 is extended
with another server and buffer. This increases I/O system throughput and takes less time
to service producer tasks. Increasing the number of servers is a common technique in I/O
systems. There is a potential imbalance problem with two buffers: Unless data is placed per-
fectly in the buffers, sometimes one server will be idle with an empty buffer while the other
server is busy with many tasks in its buffer.

Producer

Server

Queue

Server

Queue

6.4 I/O Performance Measures 507

ention
t, as
 more

se of
ming
d tal-
ienced
could
s the
d re-

er re-
ower-
 the
ut.

et of
n en-
gure
vice,
Whether these results are explained as a better match to the human att
span or getting people “on a roll,” several studies report this behavior. In fac
computer responses drop below one second, productivity seems to make a
than linear jump. Figure 6.20 compares transactions per hour (the inver
transaction time) of a novice, an average engineer, and an expert perfor
physical design tasks on graphics displays. System response time magnifie
ent: a novice with subsecond response time was as productive as an exper
professional with slower response, and the experienced engineer in turn
outperform the expert with a similar advantage in response time. In all case
number of transactions per hour jumps more than linearly with subsecon
sponse time.

Since humans may be able to get much more work done per day with bett
sponse time, it is possible to attach an economic benefit to the customer of l
ing response time into the subsecond range [IBM 1982], thereby helping
architect decide how to tip the balance between response time and throughp

A Little Queuing Theory

With an appreciation of the importance of response time, we can give a s
simple theorems that will help calculate response time and throughput of a
tire I/O system. Let’s start with a black box approach to I/O systems, as in Fi
6.21. In our example the CPU is making I/O requests that arrive at the I/O de
and the requests “depart” when the I/O device fulfills them.

FIGURE 6.19 A user transaction with an interactive computer divided into entry time,
system response time, and user think time for a conventional system and graphics
system. The entry times are the same, independent of system response time. The entry time
was 4 seconds for the conventional system and 0.25 seconds for the graphics system. (From
Brady [1986].)

0

Time (seconds)

High-function graphics workload
(0.3 sec. system response time)

5 10 15

High-function graphics workload
(1.0 sec. system response time)

Conventional interactive workload
(0.3 sec. system response time)

Conventional interactive workload
(1.0 sec. system response time)

Workload

–70% total
(–81% think)

–34% total
(–70% think)

Entry time System response time Think time

508 Chapter 6 Storage Systems

rather
tion
o the
f

time to
We are usually interested in the long term, or steady state, of a system
than in the initial start-up conditions. Hence we make the simplifying assump
that we are evaluating systems in equilibrium: the input rate must be equal t
output rate. This leads us to Little’s Law, which relates the average number o
tasks in the system, the average arrival rate of new tasks, and the average
perform a task:

FIGURE 6.20 Transactions per hour versus computer response time for a novice, ex-
perienced engineer, and expert doing physical design on a graphics system. Trans-
actions per hour is a measure of productivity. (From IBM [1982].)

FIGURE 6.21 Treating the I/O system as a black box. This leads to a simple but important
observation: If the system is in steady state, then the number of tasks entering the systems
must equal the number of tasks leaving the system.

4500

System response time (secs)

Transactions
per user
hour
(productivity)

0.250.00 0.50 0.75 1.00 1.50

1000

500

0
1.25

1500

2000

2500

3000

3500

4000

Novice

Engineer

Expert

Arrivals Departures

Mean number of tasks in system Arrival rate Mean response time×=

6.4 I/O Performance Measures 509

 the
 sur-

u-

 of

-

tions:
rvice

n the
Little’s Law applies to any system in equilibrium, as long as nothing inside
black box is creating new tasks or destroying them. This simple equation is
prisingly powerful, as we shall see.

If we open the black box, we see Figure 6.22. The areas where the tasks acc
mulate, waiting to be serviced, is called the queue, or waiting line, and the device
performing the requested service is called the server.

Little’s Law and a series of definitions lead to several useful equations:

Timeserver—Average time to service a task; service rate is 1/Timeserver, tradi-
tionally represented by the symbol µ in many texts.

Timequeue—Average time per task in the queue.

Timesystem—Average time/task in the system, or the response time, the sum
Timequeue and Timeserver.

Arrival rate—Average number of arriving tasks/second, traditionally repre
sented by the symbol in many texts.

Lengthserver—Average number of tasks in service.

Lengthqueue—Average length of queue.

Lengthsystem—Average number of tasks in system, the sum of Lengthqueue and
Lengthserver.

One common misunderstanding can be made clearer by these defini
whether the question is how long a task must wait in the queue before se
starts (Timequeue) or how long a task takes until it is completed (Timesystem). The
latter term is what we mean by response time, and the relationship betwee
terms is .

Using the terms above we can restate Little’s Law as

FIGURE 6.22 The single server model for this section. In this situation an I/O request
“departs” by being completed by the server.

Arrivals

Queue Server

I/O controller
& device

λ

Time
system

Time
queue

Time
server

+=

Length
system

Arrival rate Time
system

×=

510 Chapter 6 Storage Systems

 utili-

ks ar-
qui-

ince
We can also talk about how busy a system is from these definitions. Server
zation is simply

The value must be between 0 and 1, for otherwise there would be more tas
riving than could be serviced, violating our assumption that the system is in e
librium. Utilization is also called traffic intensity and is represented by the
symbol in many texts.

E X A M P L E Suppose an I/O system with a single disk gets about 10 I/O requests per
second and the average time for a disk to service an I/O request is 50 ms.
What is the utilization of the I/O system?

A N S W E R The service rate is then

Using the equation above,

So the I/O system utilization is 0.5. ■

Little’s Law can be applied to the components of the black box as well, s
they must also be in equilibrium:

E X A M P L E Suppose the average time to satisfy a disk request is 50 ms and the I/O
system with many disks gets about 200 I/O requests per second. What is
the mean number of I/O requests at the disk server?

A N S W E R Using the equation above,

So there are 10 requests on average at the disk server. ■

Server utilization
Arrival rate
Service rate
----------------------------=

ρ

1
50 ms
-------------- 1

0.05 sec
------------------- 20 I/O per second (IOPS)= =

Server utilization
Arrival rate
Service rate
---------------------------- 10 IOPS

20 IOPS
-------------------- 0.50= = =

Length
queue

Arrival rate Time
queue

×=

Length
server

Arrival rate Time
server

×=

Length
server

Arrival rate Time
server

× 200
sec
--------- 0.05 sec = 10×= =

6.4 I/O Performance Measures 511

in the

es the
ks are

 new
isting
 if we
.

th a
 be,

 is a
lues
 as
 ex-
lues,
 over
tively,

 char-
mea-
 use

r-

 devi-
rd
How the queue delivers tasks to the server is called the queue discipline. The
simplest and most common discipline is first-in-first-out (FIFO). If we assume
FIFO we can relate time waiting in the queue to the mean number of tasks
queue:

That is, the system response time is the number of tasks in the queue tim
mean service time plus the time it takes the server to complete whatever tas
being serviced when a new task arrives.

The last component of the equation is not as simple as it first appears. A
task can arrive at any instant, so we have no basis to know how long the ex
task has been in the server. Although such requests are random events,
know something about the distribution of events we can predict performance

To estimate this answer we need to know a little about distributions of random
variables. A variable is random if it takes one of a specified set of values wi
specified probability; that is, you cannot know exactly what its next value will
but you do know the probability of all possible values.

One way to characterize the distribution of values of a random variable
histogram, which divides the range between the minimum and maximum va
into subranges called buckets. Histograms then plot the number in each bucket
columns. Histograms work well for distributions that are discrete values—for
ample, the number of I/O requests. For distributions that are not discrete va
such as time waiting for an I/O request, we need a curve to plot the values
the full range so that we can accurately estimate the value. Stated alterna
we need a histogram with an infinite number of buckets.

Hence, to be able to solve the last part of the equation above we need to
acterize the distribution of this random variable. The mean time and some
sure of the variance is sufficient for that characterization. For the first term we
the weighted arithmetic mean time (see page 26 in Chapter 1 for a slightly diffe
ent version of the formula):

where Ti is the time for task i and fi is the frequency of occurrence of task i.
To characterize variability about the mean, many people use the standard

ation. Let’s use the variance instead, which is simply the square of the standa
deviation. Given the weighted mean, the variance can be calculated as

Time
system

Length
queue

Time
server

× Mean time to complete service of tasks when new task arrives+=

Weighted mean time
f1 T1× f2 T2× … fn Tn×+ + +

f1 f2 … fn+ + +
--=

512 Chapter 6 Storage Systems

e the
g it
 be

but to
oper-

f 1. In
ess
r-
 about
ulas.

ean.
n the

must
The problem with variance is that you must remember the units. Let’s assum
distribution is of time. If time is on the order of 100 milliseconds, then squarin
yields 10,000 square milliseconds. This unit is certainly unusual. It would
more convenient if we had a unitless measure.

To avoid this unit problem, we use the squared coefficient of variance, tradi-
tionally called C:

For reasons stated earlier, we are trying to characterize random events,
be able to predict performance we need random events with certain nice pr
ties. Figure 6.23 gives a few examples. An exponential distribution, with most of
the times short relative to average but with a few long ones, has a C value o
a hypoexponential distribution, most values are close to average and C is l
than 1. In a hyperexponential distribution, most values are further from the ave
age and C is greater than 1. The disk service is best measured with a C of
1.5. As we shall see, the value of C affects the simplicity of the queuing form

Note that we are using a constant to characterize variability about the m
Since C does not vary over time, the past history of events has no impact o
probability of an event occurring now. This forgetful property is called memory-
less and is a key assumption used to predict behavior.

Finally, we can answer the question about the length of time a new task
wait for the server to complete a task, called the average residual service time:

Distribution type C % less than average 90% of distribution is less than

Hypoexponential 0.5 57% 2.0 times average

Exponential 1.0 63% 2.3 times average

Hyperexponential 2.0 69% 2.8 times average

FIGURE 6.23 Examples of value of squared coefficient of variance C and variability
of distributions given an unlimited number of tasks (infinite population).

Variance
f1 T1

2× f2 T2
2× … fn Tn

2×+ + +

f1 f2 … fn+ + +
-- Weighted mean time

2
–=

C
Variance

Weighted mean time
2

--=

Average residual service time 1 2 Weighted mean time 1 C+()××⁄=

6.4 I/O Performance Measures 513

dis-
 vari-
lf the
Although we won’t derive this formula, we can appeal to intuition. When the
tribution is not random and all possible values are equal to the average, the
ance is 0 and so C is 0. The average residual service time is then just ha
average service time, as we would expect.

E X A M P L E Using the definitions and formulas above, derive the average time waiting
in the queue (Timequeue) in terms of the average service time (Timeserver),
server utilization, and the squared coefficient of variance (C).

A N S W E R All tasks in the queue (Lengthqueue) ahead of the new task must be com-
pleted before the task can be serviced; each takes on average Timeserver.
If a task is at the server, it takes average residual service time to complete.
The chance the server is busy is server utilization, hence the expected
time for service is Server utilization × Average residual service time. This
leads to our initial formula:

Replacing average residual service time by its definition and Lengthqueue
by Arrival rate × Timequeue yields

Rearranging the last term, let us replace Arrival rate × Timeserver by Server
utilization since

It works as follows:

Rearranging terms and simplifying gives us the desired equation:

Time
queue

Length
queue

Time
server

× Server utilization Average residual service time×+=

Time
queue

Server utilization 1 2 Time
server

1 C+()××⁄()× Arrival rate Time
queue

×() Time
server

×+=

Server utilization
Arrival rate

1 Time
server

⁄
------------------------------------ Arrival rate Time

server
×= =

Time
queue

Server utilization 1 2 Time
server

1 C+()××⁄()× Arrival rate Time
server

×() Time
queue

×+=

Server utilization 1 2 Time
server

1 C+()××⁄()× Server utilization Time
queue

×+=

Time
queue

Server utilization 1 2 Time
server

1 C+()××⁄()× Server utilization Time
queue

×+=

Time
queue

Server utilization Time
queue

×– Server utilization 1 2 Time
server

1 C+()××⁄()×=

Time
queue

1 Server utilization–()×
Server utilization Time

server
1 C+()×()×

2
--=

Time
queue

Time
server

1 C+() Server utilization××
2 1 Server utilization–()×

---=

514 Chapter 6 Storage Systems

hemat-
n-
exact
swers
rs can

 vari-
l pro-
 times
 and

an be
which
 pre-
ment
d dis-

pe of

 the

out
Note that when we have an exponential distribution, then C = 1.0, so this
formula simplifies to

■

These equations and this subsection are based on an area of applied mat
ics called queuing theory, which offers equations to predict behavior of such ra
dom variables. Real systems are too complex for queuing theory to provide
analysis, and hence queuing theory works best when only approximate an
are needed. This subsection is a simple introduction, and interested reade
find many books on the topic.

Requests for service from an I/O system can be modeled by a random
able, because the operating system is normally switching between severa
cesses that generate independent I/O requests. We also model I/O service
by a random variable given the probabilistic nature of disks in terms of seek
rotational delays.

Queuing theory makes a sharp distinction between past events, which c
characterized by measurements using simple arithmetic, and future events,
are predictions requiring mathematics. In computer systems we commonly
dict the future from the past; one example is least recently used block place
(see Chapter 5). Hence the distinction between measurements and predicte
tributions is often blurred here, and we use measurements to verify the ty
distribution and then rely on the distribution thereafter.

Let’s review the assumptions about the queuing model:

■ The system is in equilibrium.

■ The times between two successive requests arriving, called the interarrival
times, are exponentially distributed.

■ The number of requests is unlimited (this is called an infinite population model
in queuing theory).

■ The server can start on the next customer immediately after finishing with
prior one.

■ There is no limit to the length of the queue, and it follows the first-in-first-
order discipline.

■ All tasks in line must be completed.

Such a queue is called M/G/1:

M = exponentially random request arrival (C = 1), with M standing for the
memoryless property mentioned above

Time
queue

Time
server

Server utilization
1 Server utilization–()

---×=

6.4 I/O Performance Measures 515

e last

ing
 collec-
mes
inter-
The
.

G = general service distribution (i.e., not necessarily exponential)

1 = single server

When service times are exponentially distributed, this model becomes an M/M/1
queue and we can use the simple equation for waiting time at the end of th
example. The M/M/1 model is a simple and widely used model.

The assumption of exponential distribution is commonly used in queu
examples for two reasons, one good and one bad. The good reason is that a
tion of many arbitrary distributions acts as an exponential distribution. Many ti
in computer systems a particular behavior is the result of many components
acting, so an exponential distribution of interarrival times is the right model.
bad reason is that the math is simpler if you assume exponential distributions

Let’s put queuing theory to work in a few Examples.

E X A M P L E Suppose a processor sends 10 disk I/Os per second, these requests are
exponentially distributed, and the average disk service time is 20 ms.
Answer the following questions:

1. On average, how utilized is the disk?

2. What is the average time spent in the queue?

3. What is the 90th percentile of the queuing time?

4. What is the average response time for a disk request, including the
queuing time and disk service time?

A N S W E R Let’s restate these facts:

Average number of arriving tasks/second is 10.

Average disk time to service a task is 20 ms (0.02 sec).

The server utilization is then

Since the interarrival times are exponentially distributed, we can use the
simplified formula for the average time spent waiting in line:

From Figure 6.23 (page 512), the 90th percentile is 2.3 times the mean
waiting time, so it is 11.5 ms. The average response time is

■

Server utilization
Arrival rate
Service rate
---------------------------- 10

1 0.02⁄
----------------- 0.2= = =

Time
queue

Time
server

Server utilization
1 Server utilization–()

---× 20 ms
0.2

1 0.2–
----------------× 20

0.2
0.8
-------× 20 0.25× 5 ms= = = = =

Time
queue

Time
server

5 20 ms 25 ms=+=+

516 Chapter 6 Storage Systems

nce.

s. We
es of
tions

cerns

fly
d to

ges to
uar-
fails
e ac-

is un-
ell as

k for
 the

 per
E X A M P L E Suppose we get a new, faster disk. Recalculate the answers to the ques-
tions above, assuming the disk service time is 10 ms.

A N S W E R The disk utilization is then

Since the service distribution is exponential, we can use the simplified for-
mula for the average time spent waiting in line:

The 90th percentile of the mean waiting time is 2.56 ms.
The average response time is 10 + 1.11 ms or 11.11 ms, 2.25 times

faster than the old response time even though the new service time is only
2.0 times faster. ■

Section 6.7 has more examples using queuing theory to predict performa

Examples of Benchmarks of Disk Performance

The prior subsection tries to predict the performance of storage subsystem
also need to measure the performance of real systems to collect the valu
parameters needed for prediction, to determine if the queuing theory assump
hold, and to suggest what to do if the assumptions don’t hold.

This subsection describes three benchmarks, each illustrating novel con
regarding storage systems versus processors.

Transaction Processing Benchmarks
Transaction processing (TP, or OLTP for on-line transaction processing) is chie
concerned with I/O rate: the number of disk accesses per second, as oppose
data rate, measured as bytes of data per second. TP generally involves chan
a large body of shared information from many terminals, with the TP system g
anteeing proper behavior on a failure. If, for example, a bank’s computer
when a customer withdraws money, the TP system would guarantee that th
count is debited if the customer received the money and that the account
changed if the money was not received. Airline reservations systems as w
banks are traditional customers for TP.

Two dozen members of the TP community conspired to form a benchmar
the industry and, to avoid the wrath of their legal departments, published
report anonymously [1985]. This benchmark, called DebitCredit, simulates bank
tellers and has as its bottom line the number of debit/credit transactions

Server utilization
Arrival rate
Service rate
---------------------------- 10

1 0.01⁄
----------------- 0.1= = =

Time
queue

Time
server

Server utilization
1 Server utilization–()

---× 10 ms
0.1

1 0.1–
----------------× 10

0.1
0.9
-------× 10 0.11× 1.11 ms= = = = =

6.4 I/O Performance Measures 517

siting
f
C-A

long
tion-
0 disk
 vari-
e, al-
ed by
 soft-

n that
ench-

of the
ip in

ench-
 to a
 high
a per-
a fast-

om-
 re-

e five-
second (TPS). The DebitCredit performs the operation of a customer depo
or withdrawing money. TPC-A and TPC-B are more tightly specified versions o
this original benchmark. The organization responsible for standardizing TP
and TPC-B have also developed benchmarks on complex query processing (TPC-C)
and decision support (TPC-D).

Disk I/O for DebitCredit is random reads and writes of 100-byte records a
with occasional sequential writes. Depending on how cleverly the transac
processing system is designed, each transaction results in between 2 and 1
I/Os and takes between 5000 and 20,000 CPU instructions per disk I/O. The
ation depends largely on the efficiency of the transaction-processing softwar
though in part it depends on the extent to which disk accesses can be avoid
keeping information in main memory. Hence, TPC measures the database
ware as well as the underlying machine.

The main performance measurement is the peak TPS, under the restrictio
90% of the transactions have less than a two-second response time. The b
mark requires that for TPS to increase, the number of tellers and the size
account file must also increase. Figure 6.24 shows this unusual relationsh
which more TPS requires more users. This scaling is to ensure that the b
mark really measures disk I/O; otherwise a large main memory dedicated
database cache with a small number of accounts would unfairly yield a very
TPS. (Another perspective is that the number of accounts must grow, since
son is not likely to use the bank more frequently just because the bank has
er computer!)

Another novel feature of TPC-A and TPC-B is that they address how to c
pare the performance of systems with different configurations. In addition to
porting TPS, benchmarkers must also report the cost per TPS, based on th
year cost of the computer system hardware and software.

TPS Number of ATMs Account file size

10 1000 0.1 GB

100 10,000 1.0 GB

1000 100,000 10.0 GB

10,000 1,000,000 100.0 GB

FIGURE 6.24 Relationship among TPS, tellers, and account file size. The DebitCredit
benchmark requires that the computer system handle more tellers and larger account files
before it can claim a higher transaction-per-second milestone. The benchmark is supposed
to include “terminal handling” overhead, but this metric is sometimes ignored.

518 Chapter 6 Storage Systems

ces-
com-
unning
d on
s, and

 com-
cks
 full

orted
rease
igure
fortu-

The
as the
nce.

 and

r-
hmark
 gen-
ram-
r than

how
 five

s
t.

i-

at
f the

e

SPEC System-Level File Server (SFS) Benchmark
The SPEC benchmarking effort is best known for its characterization of pro
sor performance, but it branches out into other fields as well. In 1990 seven
panies agreed on a synthetic benchmark, called SFS, to evaluate systems r
the Sun Microsystems network file service NFS. This synthetic mix was base
measurements on NFS systems to propose a reasonable mix of reads, write
file operations such as examining a file. SFS supplies default parameters for
parative performance: For example, half of all writes are done in 8-KB blo
and half are done in partial blocks of 1, 2, or 4 KB. For reads the mix is 85%
blocks and 15% partial blocks.

Like TPC-B, SFS scales the size of the file system according to the rep
throughput: For every 100 NFS operations per second, the capacity must inc
by 1 GB. It also limits the average response time, in this case to 50 ms. F
6.25 shows average response time versus throughput for three systems. Un
nately, unlike TPC-B, SFS does not normalize for different configurations.
fastest system in Figure 6.25 has 12 times the number of CPUs and disks
slowest system, but SPEC leaves it to you to calculate price versus performa

Self-Scaling I/O Benchmark
A different approach to I/O performance analysis was proposed by Chen
Patterson [1994b]. The first step is a self-scaling benchmark, which automatically
and dynamically adjusts several aspects of its workload according to the perfo
mance characteristics of the system being measured. By doing so, the benc
automatically scales across current and future systems. This scaling is more
eral than the scaling found in TPC-B and SFS, for scaling here varies five pa
eters, according to the characteristics of the system being measured, rathe
just one.

This first step aids in understanding system performance by reporting
performance varies according to each of five workload parameters. These
parameters determine the first-order performance effects in I/O systems:

1. Number of unique bytes touched—This is the number of unique data byte
read or written in a workload; essentially, it is the total size of the data se

2. Percentage of reads.

3. Average I/O request size—It chooses sizes from a distribution with a coeff
cient of variance (C) of one.

4. Percentage of sequential requests—This is the percentage of requests th
sequentially follow the prior request. When set at 50%, on average half o
accesses are to the next sequential address.

5. Number of processes—This is the concurrency in the workload, that is, th
number of processes simultaneously issuing I/O.

6.4 I/O Performance Measures 519

eters
 while
xcep-
e file
 disk
bytes

ters.
g the
ction
 and

es is
The benchmark first chooses a nominal value for each of the five param
based on the system’s performance. It then varies each parameter in turn
the other four parameters remain at their fixed, nominal values. The one e
tion is the first parameter, since it determines whether all accesses go to th
cache or to disk. Because of the very different performance for file cache and
accesses, the benchmark automatically picks two values for the number of
accessed.

The resulting I/O performance is then plotted for each of the parame
Figure 6.26 shows the performance for workstations and mainframes, usin
nominal parameter values collected by the self-scaling benchmark as a fun
of unique bytes touched. These plots give insight into appropriate workloads
resulting performance. The width of the high-performance parts of the curv

FIGURE 6.25 SPEC SFS performance for three SGI Challenge servers. The dashed line represents the 50-ms average
response time limit imposed by SPEC. Reported in March 1995, these systems all ran IRIX version 5.3 with the EFS file
system and all used the R4400 microprocessor. The XL model processors ran at 200 MHz and the other two used 150 MHz.
Each system had one 1-GB disk with the rest being 2-GB disks, most spinning at 7200 RPM. SPEC SFS also divides the
peak rate by 10 and calls this quotient SPECnsf_A93 users/second. The numbers of such users per second for these three
machines are 84, 283, and 702, respectively.

70

60

50

40

30

20

SGI S (1 CPU, 256 MB, 9 disks)

SGI DM (4 CPUs, 512 MB, 36 disks)

SGI XL (12 CPUs, 1024 MB, 109 disks)

10

Average NFS response time (ms)

0

NFS throughput (SPECnfs_A93 ops/sec)

0 20001000 4000 50003000 6000 7000 8000

520 Chapter 6 Storage Systems

high-
oads
 large

 and
es the
t the
m.
ce of
sum-
determined by the size of the file cache. For example, the HP 730 offers the
est performance, provided the workload fits in its small file cache, and workl
that would need to go to disk on other systems can be satisfied by the very
file cache of the Convex.

The self-scaling benchmark increases our understanding of a system
scales the workload to remain relevant as technology advances. It complicat
task of comparing results from two systems, however. The problem is tha
benchmark may choose different workloads on which to measure each syste

Hence, the second part of this new approach is to estimate the performan
other workloads. It estimates performance for unmeasured workloads by as

FIGURE 6.26 Performance versus megabytes touched for several workstations and mainframes (see section 6.8).
Note the log-log scale. These results use the nominal values selected by the self-scaling benchmark. For example, 50% of
accesses are reads and 50% are writes. The primary difference between the systems is the average access size of 120 KB
for the Convex; adjusting for a common access size would halve Convex performance but make little change to the other
lines in this plot.

100

HP 730

Convex

3090

RS/6000

AXP 3000

SS 10

10

1

Megabytes per second

0.1

Number of MB touched

1 10 100 1000 10000

6.5 Reliability, Availability, and RAID 521

 the
ance

 reads
ds and
e pre-
ratio

o 50%
ds ac-

esign,
 This

ng
works

em-
n
ore

fail-

age
e is
many
 519)
to 109

ncy is
, reli-
ing that the shape of a performance curve for one parameter is independent of
values of the other parameters. This assumption leads to an overall perform
equation of

where X, Y, Z, ... are the parameters. Suppose the nominal values were 50%
and 50% of accesses as sequential, but the desired workload had 60% rea
60% sequential, and all other parameters matched the nominal values. Th
dicted performance is the nominal performance multiplied by the measured
of 60% reads to 50% reads and by the measured ratio at 60% sequential t
sequential. Chen and Patterson [1994b] have shown that this technique yiel
curate performance estimates, within 10% for most workloads.

We use this benchmark to evaluate systems in section 6.8.

Although throughput and response time have their analogues in processor d
reliability is given considerably more attention in storage than in processors.
brings us to two terms that are often confused—reliability and availability. The
term reliability is commonly used interchangeably with availability: if somethi
breaks, but the user can still use the system, it seems as if the system still
and hence it seems more reliable. Here is a clearer distinction:

Reliability—Is anything broken?

Availability—Is the system still available to the user?

Adding hardware can therefore improve availability (for example, ECC on m
ory), but it cannot improve reliability (the DRAM is still broken). Reliability ca
only be improved by bettering environmental conditions, by building from m
reliable components, or by building with fewer components. Another term, data
integrity, refers to consistent reporting when information is lost because of
ure; this is very important to some applications.

One innovation that improves both availability and performance of stor
systems is disk arrays. The argument for arrays is that since price per megabyt
independent of disk size, potential throughput can be increased by having
disk drives and, hence, many disk arms. For example, Figure 6.25 (page
shows how NFS throughput increases as the systems expand from 9 disks
disks. Simply spreading data over multiple disks, called striping, automatically
forces accesses to several disks. (Although arrays improve throughput, late
not necessarily improved.) The drawback to arrays is that with more devices
ability drops: N devices generally have 1/N the reliability of a single device.

6.5 Reliability, Availability, and RAID

Perf X Y Z …, , ,() Perf X
nominal

Y
nominal

Z
nominal

…, , ,() f×
X

X() f
Y

Y() f
Z

Z() …×××=

522 Chapter 6 Storage Systems

er of
 im-
ma-
is in
 re-

urs,
 sin-

d and
 how
 each

isks
 re-
nsfer
 sec-

ver

ed in
So, while a disk array can never be more reliable than a smaller numb
larger disks when each disk has the same failure rate, availability can be
proved by adding redundant disks. That is, if a single disk fails, the lost infor
tion can be reconstructed from redundant information. The only danger
having another disk failure between the time a disk fails and the time it is
placed (termed mean time to repair, or MTTR). Since the mean time to failure
(MTTF) of disks is five or more years, and the MTTR is measured in ho
redundancy can make the availability of 100 disks much higher than that of a
gle disk. These systems have become known by the acronym RAID, standing for
redundant array of inexpensive disks.

There are several approaches to redundancy that have different overhea
performance. Figure 6.27 shows the RAID levels and gives an example of
eight disks would have to be supplemented by redundant or check disks at
level plus the number of failures that the system would survive.

One problem is discovering when a disk fails. Fortunately, magnetic d
provide information about their correct operation. There is extra information
corded in each sector to discover errors within that sector. As long as we tra
at least one sector and check the error detection information when reading
tors, electronics associated with disks will with very high probability disco
when a disk fails or loses information.

We cover here the most popular of these RAID levels; readers interest
more detail should see the paper by Chen et al. [1994].

RAID level Failures survived Data disks Check disks

0 Nonredundant 0 8 0

1 Mirrored 1 8 8

2 Memory-style ECC 1 8 4

3 Bit-interleaved parity 1 8 1

4 Block-interleaved parity 1 8 1

5 Block-interleaved
distributed parity

1 8 1

6 P+Q redundancy 2 8 2

FIGURE 6.27 RAID levels, their availability, and their overhead in redundant disks.
The paper that introduced the term RAID [Patterson, Gibson, and Katz 1987] used a numer-
ical classification for these schemes that has become popular; in fact, the nonredundant disk
array is sometimes called RAID 0.

6.5 Reliability, Availability, and RAID 523

n to a
 disk
ror-

l data
e lost
one

 re-
 disk
e re-
um
cover

ered a
an be

dvan-
on-

t has
it for
urse,

ity.

tly. In
ould
rallel.

n in
ds” to
ctor.
and

ed to
ing
 new
ht to
Mirroring (RAID 1)

The traditional solution to disk failure, called mirroring or shadowing, uses twice
as many disks. Whenever data is written to one disk, that data is also writte
redundant disk, so that there are always two copies of the information. If a
fails, the system just goes to the “mirror” to get the desired information. Mir
ing is the most expensive solution.

Bit-Interleaved Parity (RAID 3)

The cost of higher availability can be reduced to 1/N, where N is the number of
disks in a protection group. Rather than have a complete copy of the origina
for each disk, we need only add enough redundant information to restore th
information on a failure. Reads or writes go to all disks in the group, with
extra disk to hold the check information in case there is a failure.

Parity is one such scheme. Readers unfamiliar with parity can think of the
dundant disk as having the sum of all the data in the other disks. When a
fails, then you subtract all the data in the good disks from the parity disk; th
maining information must be the missing information. Parity is simply the s
modulo 2. The assumption is that failures are so rare that taking longer to re
from failure but reducing redundant storage is a good trade-off.

 Just as direct-mapped associative placement in caches can be consid
special case of set-associative placement (see section 5.2), the mirroring c
considered the special case of one data disk and one parity disk (N = 1). Parity
can be accomplished by duplicating the data, so mirrored disks have the a
tage of simplifying parity calculation. Duplicating data also means that the c
troller can improve read performance by reading from the disk of the pair tha
the shortest seek distance, although this optimization means writes must wa
the arm with the longer seek since arms are no longer synchronized. Of co
the redundancy of N = 1 has the highest overhead for increasing disk availabil

Block-Interleaved Distributed Parity (RAID 5)

This level uses the same organization of disks, but data is accessed differen
the prior organization every access went to all disks. Some applications w
prefer to do smaller accesses, allowing independent accesses to occur in pa
That is the purpose of this next RAID level. Since error-detection informatio
each sector is checked on reads to see if data is correct, such “small rea
each disk can occur independently as long as the minimum access is one se

Writes are another matter. It would seem that each small write would dem
that all other disks be accessed to read the rest of the information need
recalculate the new parity. In our example, a “small write” would require read
the other three data disks, adding the new information, and then writing the
parity to the parity disk and the new data to the data disk. The key insig

524 Chapter 6 Storage Systems

ing
 the

e old
e cor-

write

, and
dated
rite
here
d in

w of
s for
ated
ss its

e to
 sec-
.

s I/Os
hen
reduce this overhead is that parity is simply a sum of information; by watch
which bits change when we write the new information, we need only change
corresponding bits on the parity disk. We must read the old data, compar
data to the new data to see which bits change, read the old parity, change th
responding bits, then write the new data and new parity. Thus the small
involves four disk accesses for two disks instead of accessing all disks.

This scheme supports mixtures of large reads, large writes, small reads
small writes. One drawback to the system is that the parity disk must be up
on every write, so it is the bottleneck for sequential writes. To fix the parity-w
bottleneck, the parity information is spread throughout all the disks so that t
is no single bottleneck for writes. Figure 6.28 shows how data are distribute
this disk array organization.

As the organization on the right shows, the parity associated with each ro
data blocks is no longer restricted to a single disk. This organization allow
multiple writes to occur simultaneously as long as the stripe units are not loc
in the same disks. For example, a write to block 8 on the right must also acce
parity block P2, thereby occupying the first and third disks. A second writ
block 5 on the right, implying an update to its parity block P1, accesses the
ond and fourth disks and thus could occur at the same time as the prior write

The higher throughput, measured either as megabytes per second or a
per second, and the ability to recover from failures make RAID attractive. W

FIGURE 6.28 Block-interleaved parity (RAID 4) versus distributed block-interleaved
parity (RAID 5). By distributing parity blocks to all disks, some small writes can be performed
in parallel.

0

4

8

12

16

20

. . .

1

5

9

13

17

21

. . .

2

6

10

14

18

22

. . .

3

7

11

15

19

23

.

0

4

8

12

20

. . .

1

5

9

16

21

. . .

2

6

13

17

22

. . .

3

10

14

18

23

. . .

7

11

15

19

. . .

P0

P1

P2

P3

P4

P5

P4

P3

P2

P1

P0

P5

RAID 4 RAID 5

6.6 Crosscutting Issues: Interfacing to an Operating System 525

all-

g sys-
y be
6-bit
NIX
 I/O
han

ities of
one

cop-

 (see
at the
ta, in
 arises
ected
ll I/O

xisting
ill be

ks in
in the
 the

n be-
ted to
vid-
ccurs.
(no

date.

pdated
combined with the advantages of smaller volume and lower power of sm
diameter drives, RAIDs are playing an increasing role in storage systems.

In a manner analogous to the way compilers use an instruction set, operatin
tems control what I/O techniques implemented by the hardware will actuall
used. For example, many I/O controllers used in early UNIX systems were 1
microprocessors. To avoid problems with 16-bit addresses in controllers, U
was changed to limit the maximum I/O transfer to 63 KB or less. Thus, a new
controller designed to efficiently transfer 1-MB files would never see more t
63 KB at a time under UNIX, no matter how large the files.

Caches Cause Problems for Operating Systems—Stale Data

The prevalence of caches in computer systems has added to the responsibil
the operating system. Caches imply the possibility of two copies of the data—
each for cache and main memory—while virtual memory can result in three
ies—for cache, memory, and disk. This brings up the possibility of stale data: the
CPU or I/O system could modify one copy without updating the other copies
section 5.9). Either the operating system or the hardware must make sure th
CPU reads the most recently input data and that I/O outputs the correct da
the presence of caches and virtual memory. Whether the stale-data problem
depends in part on where the I/O is connected to the computer. If it is conn
to the CPU cache, as shown in Figure 6.29, there is no stale-data problem; a
devices and the CPU see the most accurate version in the cache, and e
mechanisms in the memory hierarchy ensure that other copies of the data w
updated. The side effect is lost CPU performance, since I/O will replace bloc
the cache with data that are unlikely to be needed by the process running
CPU at the time of the transfer. In other words, all I/O data goes through
cache, but little of it is referenced. This arrangement also requires arbitratio
tween the CPU and I/O to decide who accesses the cache. If I/O is connec
memory, as in Figure 6.15 (page 502), then it doesn’t interfere with CPU, pro
ed the CPU has a cache. In this situation, however, the stale-data problem o
Alternatively, I/O can just invalidate data—either all data that might match
tag check) or only data that matches.

There are two parts to the stale-data problem:

1. The I/O system sees stale data on output because memory is not up-to-

2. The CPU sees stale data in the cache on input after the I/O system has u
memory.

6.6 Crosscutting Issues:
Interfacing to an Operating System

526 Chapter 6 Storage Systems

 con-
ory

rating
is flush
re se-

see if
 tries

er in-
ibly be
ress-

or not
ded to
hese
r, dis-
or in a
The first dilemma is how to output correct data if there is a cache and I/O is
nected to memory. A write-through cache solves this by ensuring that mem
will have the same data as the cache. A write-back cache requires the ope
system to flush output addresses to make sure they are not in the cache. Th
takes time, even if the data is not in the cache, since address checks a
quential. Alternatively, the hardware can check cache tags during output to
they are in a write-back cache, and only interact with the cache if the output
to read data that is in the cache.

The second problem is ensuring that the cache won’t have stale data aft
put. The operating system can guarantee that the input data area can’t poss
in the cache. If it can’t guarantee this, the operating system flushes input add
es to make sure they are not in the cache. Again, this takes time, whether
the input addresses are in the cache. As before, extra hardware can be ad
check tags during an input and invalidate the data if there is a conflict. T
problems are basically the same as cache coherency in a multiprocesso
cussed in Chapter 8; I/O can be thought of as a second dedicated process
multiprocessor.

FIGURE 6.29 Example of I/O connected directly to the cache.

Disk Disk

Cache

I/O bus

I/O
controller

Graphics
output

Network

I/O
controller

I/O
controller

CPU-memory bus

Bus
adapter

Main
memory

CPU

TLB

6.6 Crosscutting Issues: Interfacing to an Operating System 527

uld
f prob-

e the
sical

per-
). The
ry.

at
e se-
ory.

ess is
 in
gis-
DMA and Virtual Memory

Given the use of virtual memory, there is the matter of whether DMA sho
transfer using virtual addresses or physical addresses. Here are a couple o
lems with DMA using physically mapped I/O:

■ Transferring a buffer that is larger than one page will cause problems, sinc
pages in the buffer will not usually be mapped to sequential pages in phy
memory.

■ Suppose DMA is ongoing between memory and a frame buffer, and the o
ating system removes some of the pages from memory (or relocates them
DMA would then be transferring data to or from the wrong page of memo

One answer is virtual DMA. It allows the DMA to use virtual addresses th
are mapped to physical addresses during the DMA. Thus, a buffer must b
quential in virtual memory, but the pages can be scattered in physical mem
The operating system could update the address tables of a DMA if a proc
moved using virtual DMA, or the operating system could “lock” the pages
memory until the DMA is complete. Figure 6.30 shows address-translation re
ters added to the DMA device.

FIGURE 6.30 Virtual DMA requires a register for each page to be transferred in the
DMA controller, showing the protection bits and the physical page corresponding to
each virtual page.

Disk Disk

Cache

I/O bus

I/O
controller

Graphics
output

Network

I/O
controller

I/O
controller

CPU-memory bus

Address
translation
registers Main

memoryTLB

CPU

DMA

528 Chapter 6 Storage Systems

vices
ents
erfor-
s the
 that
um-
r sup-

sing
each
The
cost/

r list

me,

ller

de

tion

, or

h

when
 bus

anize
ula-

s.
sical
/Os per
, the
The art of I/O is finding a design that meets goals for cost and variety of de
while avoiding bottlenecks to I/O performance. This means that compon
must be balanced between main memory and the I/O device, because p
mance—and hence effective cost/performance—can only be as good a
weakest link in the I/O chain. The architect must also plan for expansion so
customers can tailor the I/O to their applications. This expansibility, both in n
bers and types of I/O devices, has its costs in longer I/O buses, larger powe
plies to support I/O devices, and larger cabinets.

In designing an I/O system, analyze performance, cost, and capacity u
varying I/O connection schemes and different numbers of I/O devices of
type. Here is a series of six steps to follow in designing an I/O system.
answers for each may be dictated by market requirements or simply by
performance goals.

1. List the different types of I/O devices to be connected to the machine, o
the standard buses that the machine will support.

2. List the physical requirements for each I/O device. This includes volu
power, connectors, bus slots, expansion cabinets, and so on.

3. List the cost of each I/O device, including the portion of cost of any contro
needed for this device.

4. Record the CPU resource demands of each I/O device. This should inclu

■ Clock cycles for instructions used to initiate an I/O, to support opera
of an I/O device (such as handling interrupts), and complete I/O

■ CPU clock stalls due to waiting for I/O to finish using the memory, bus
cache

■ CPU clock cycles to recover from an I/O activity, such as a cache flus

5. List the memory and I/O bus resource demands of each I/O device. Even
the CPU is not using memory, the bandwidth of main memory and the I/O
is limited.

6. The final step is assessing the performance of the different ways to org
these I/O devices. Performance can only be properly evaluated with sim
tion, though it may be estimated using queuing theory.

You then select the best organization, given your performance and cost goal
Cost/performance goals affect the selection of the I/O scheme and phy

design. Performance can be measured either as megabytes per second or I
second, depending on the needs of the application. For high performance

6.7 Designing an I/O System

6.7 Designing an I/O System 529

ed of
e I/O
n, of
only limits should be speed of I/O devices, number of I/O devices, and spe
memory and CPU. For low cost, the only expenses should be those for th
devices themselves and for cabling to the CPU. Cost/performance desig
course, tries for the best of both worlds.

To make these ideas clearer, let’s go through several examples.

E X A M P L E First, let’s look at the impact on the CPU of reading a disk page directly
into the cache. Make the following assumptions:

■ Each page is 16 KB, and the cache-block size is 64 bytes.

■ The addresses corresponding to the new page are not in the cache.

■ The CPU will not access any of the data in the new page.

■ 95% of the blocks that were displaced from the cache will be read in
again, and each will cause a miss.

■ The cache uses write back, and 50% of the blocks are dirty on aver-
age.

■ The I/O system buffers a full cache block before writing to the cache
(this is called a speed-matching buffer, matching transfer bandwidth
of the I/O system and memory).

■ The accesses and misses are spread uniformly to all cache blocks.

■ There is no other interference between the CPU and I/O for the cache
slots.

■ There are 15,000 misses every 1 million clock cycles when there is
no I/O.

■ The miss penalty is 30 clock cycles, plus 30 more cycles to write the
block if it was dirty.

Assuming one page is brought in every 1 million clock cycles, what is the
impact on performance?

A N S W E R Each page fills 16,384/64 or 256 blocks. I/O transfers do not cause cache
misses on their own because entire cache blocks are transferred. How-
ever, they do displace blocks already in the cache. If half of the displaced
blocks are dirty, it takes 128 × 30 clock cycles to write them back to mem-
ory. There are also misses from 95% of the blocks displaced in the cache
because they are referenced later, adding another 95% × 256, or 244
misses. Since this data was placed into the cache from the I/O system, all
these blocks are dirty and will need to be written back when replaced.
Thus, the total is on average 128 × 30 + 244 × 60 more clock cycles than

530 Chapter 6 Storage Systems

iza-
put,
t side
the original 1,000,000 + 7500 × 30 + 7500 × 60. This turns into a 1%
decrease in performance:

■

Now let’s take a long look at the cost/performance of different I/O organ
tions. A simple way to perform this analysis is to look at maximum through
assuming that resources can be used at 100% of their maximum rate withou
effects from interference. (A later example takes a more realistic view.)

E X A M P L E Assume the following performance and cost information:

■ A 500-MIPS CPU costing $30,000.

■ A 16-byte-wide memory with a 100-ns cycle time.

■ 200 MB/sec I/O bus with room for 20 SCSI-2 buses and controllers.

■ SCSI-2 buses that can transfer 20 MB/sec and support up to 15 disks
per bus (these are also called SCSI strings).

■ A $1500 SCSI-2 controller that adds 1 ms of overhead to perform a
disk I/O.

■ An operating system that uses 10,000 CPU instructions for a disk I/O.

■ A choice of a large disk containing 8 GB or a small disk containing 2
GB, each costing $0.25 per MB.

■ Both disks rotate at 7200 RPM, have an 8-ms average seek time, and
can transfer 6 MB/sec.

■ The storage capacity must be 200 GB.

■ The average I/O size is 16 KB.

Evaluate the cost per I/O per second (IOPS) of using small or large drives.
Assume that every disk I/O requires an average seek and average rota-
tional delay. Use the optimistic assumption that all devices can be used at
100% of capacity and that the workload is evenly divided among all disks.

A N S W E R I/O performance is limited by the weakest link in the chain, so we evaluate
the maximum performance of each link in the I/O chain for each organiza-
tion to determine the maximum performance of that organization.

128 30 244 60×+×
1,000,000 7500 30 7500 60×+×+
--- 18,480

1,675,000
------------------------ 0.011= =

6.7 Designing an I/O System 531
 Let’s start by calculating the maximum number of IOPS for the CPU,
main memory, and I/O bus. The CPU I/O performance is determined by
the speed of the CPU and the number of instructions to perform a disk I/O:

Maximum IOPS for CPU = = 50,000

The maximum performance of the memory system is determined by the
memory cycle time, the width of the memory, and the size of the I/O trans-
fers:

Maximum IOPS for main memory = ≈ 10,000

The I/O bus maximum performance is limited by the bus bandwidth and
the size of the I/O:

Maximum IOPS for the I/O bus = ≈ 12,500

Thus, no matter which disk is selected, the CPU and main memory limit
the maximum performance to no more than 10,000 IOPS.

Now it’s time to look at the performance of the next link in the I/O
chain, the SCSI-2 controllers. The time to transfer 16 KB over the SCSI-2
bus is

SCSI-2 bus transfer time = = 0.8 ms

Adding the 1-ms SCSI-2 controller overhead means 1.8 ms per I/O, mak-
ing the maximum rate per controller

Maximum IOPS per SCSI-2 controller = = 556 IOPS

All the organizations will use several controllers, so 556 IOPS is not the
limit for the whole system.

The final link in the chain is the disks themselves. The time for an av-
erage disk I/O is

I/O time = 8 ms + = 8 + 4.2 + 2.7 = 14.9 ms

so the disk performance is

Maximum IOPS (using average seeks) per disk = ≈ 67 IOPS

500 MIPS
10,000 instructions per I/O
--

1/100 ns() 16×
16 KB per I/O

200 MB/sec
16 KB per I/O

16 KB
20 MB/sec

1

1.8 ms˙

0.5
7200 RPM
-------------------------- 16 KB

6 MB/sec
-----------------------+

1
14.9 ms

532 Chapter 6 Storage Systems
The number of disks in each organization depends on the size of each
disk: 200 GB can be either 25 8-GB disks or 100 2-GB disks. The maxi-
mum number of I/Os for all the disks is

Thus, provided there are enough SCSI-2 strings, the disks become the
new limit to maximum performance: 1675 IOPS for the 8-GB disks and
6700 for the 2-GB disks.

Although we have determined the performance of each link of the
I/O chain, we still have to determine how many SCSI-2 buses and control-
lers to use and how many disks to connect to each controller, as this may
further limit maximum performance. The I/O bus is limited to 20 SCSI-2
controllers, and the limit is 15 disks per SCSI-2 string. The minimum
number of controllers for the 8-GB disks is

Minimum number of SCSI-2 strings for 25 8-GB disks = or 2

and for 2-GB disks

Minimum number of SCSI-2 strings for 100 2-GB disks = or 7

We can calculate the maximum IOPS for each configuration:

The maximum performance of this number of controllers is slightly
lower than the disk I/O throughput, so let’s also calculate the number of
controllers so they don’t become a bottleneck. One way is to find the num-
ber of disks they can support per string:

Number of disks per SCSI string at full bandwidth = or 8

and then calculate the number of strings:

Number of SCSI strings for full bandwidth 8-GB disks = or 4

Number of SCSI strings for full bandwidth 2-GB disks = or 13

This establishes the performance of four organizations: 25 8-GB
disks with 2 or 4 SCSI-2 strings and 100 2-GB disks with 7 or 13 SCSI-2
strings. Using the format

Min(CPU limit, memory limit, I/O bus limit, disk limit, string limit)

Maximum IOPS for 25 8-GB disks 25 67× 1675= =

Maximum IOPS for 100 2-GB disks 100 67× 6700= =

25
15

100
15

Maximum IOPS for 2 SCSI-2 strings 2 556× 1112= =

Maximum IOPS for 7 SCSI-2 strings 7 556× 3892= =

556
67
--------- 8.3=

25
8
------ 3.1=

100
8

--------- 12.5=

6.7 Designing an I/O System 533

 to see
the maximum performance of each option is limited by the bottleneck (in
boldface):

8-GB disks, 2 strings = Min(50,000, 10,000, 12,500, 1675,1112) = 1112 IOPS
8-GB disks, 4 strings = Min(50,000, 10,000, 12,500, 1675, 2224) = 1675 IOPS
2-GB disks, 7 strings = Min(50,000, 10,000, 12,500, 6700, 3892) = 3892 IOPS
2-GB disks, 13 strings = Min(50,000, 10,000, 12,500, 6700, 7228) = 6700 IOPS

We can now calculate the cost for each organization:

8-GB disks, 2 strings = $30,000 + 2 × $1500 + 25 × (8192 × $0.25) = $84,200
8-GB disks, 4 strings = $30,000 + 4 × $1500 + 25 × (8192 × $0.25) = $87,200
2-GB disks, 7 strings = $30,000 + 7 × $1500 + 100 × (2048 × $0.25) = $91,700
2-GB disks, 13 strings = $30,000 + 13 × $1500 + 100 × (2048 × $0.25) = $100,700

Finally, the cost per IOPS for each of the four configurations is $76,
$52, $24, and $15, respectively. Calculating the maximum number of av-
erage I/Os per second, assuming 100% utilization of the critical resourc-
es, the best cost/performance is the organization with the small disks and
the largest number of controllers. The small disks have about 3.5 times
better cost/performance than the large disks in this example. The only
drawback is that the larger number of disks will affect system availability
unless some form of redundancy is added (see section 6.5). ■

This example assumed that resources can be used 100%. It is instructive
what the bottleneck is in each organization.

E X A M P L E For the organizations in the last example, calculate the percentage of uti-
lization of each resource in the computer system.

A N S W E R Figure 6.31 gives the answer. Either the disks or the SCSI buses are the
bottleneck.

■

Resource
8-GB disks,
2 strings

8-GB disks,
4 strings

2-GB disks,
7 strings

2-GB disks,
13 strings

CPU 2% 3% 8% 13%

Memory 11% 17% 39% 67%

I/O bus 9% 13% 31% 54%

SCSI-2 buses 100% 75% 100% 93%

Disks 66% 100% 58% 100%

IOPS 1112 1675 3892 6700

FIGURE 6.31 The percentage of utilization of each resource and peak IOPS given
the four organizations in the previous example. Either the SCSI-2 buses or the disks
are the bottleneck.

534 Chapter 6 Storage Systems

see
 Let’s
While it is useful to learn where the bottleneck is, it’s more important to
the impact on response time as we approach 100% utilization of a resource.
do this for one configuration from Figure 6.31.

E X A M P L E Recalculate performance for, say, the second column in Figure 6.31, but
this time in terms of response time. Assume that all requests are in a single
wait line. To simplify the calculation, ignore the SCSI-2 strings and just cal-
culate for the 25 disks. According to Figure 6.31, the peak I/O rate is 1675
IOPS. Plot the mean response time for the following number of I/Os per
second: 1000, 1100, 1200, 1300, 1400, 1500, 1550, 1600, 1625, 1650,
1670. Assume the time between requests is exponentially distributed.

A N S W E R To be able to calculate the average response time, we need the equation
for an M/M/m queue; that is, for m servers rather than one. From Jain
[1991] we get the formulas for that queue:

That is, the average service time for m servers is simply the average
service time of one server divided by the number of servers.

From the example above we know that we have 25 disks and that the
mean service time is 14.9 ms. Figure 6.32 shows the utilization and mean
response time for each of the request rates, and Figure 6.33 plots the re-
sponse times as the request rate varies.

Request rate Utilization Mean response time (ms)

1000 60% 15.8

1100 66% 16.0

1200 72% 16.4

1300 77% 16.9

1400 83% 17.9

1500 89% 19.9

1550 92% 22.1

1600 95% 27.1

1625 97% 33.1

1650 98% 49.8

1670 100% 137.0

FIGURE 6.32 Utilization and mean response time for 25 large disks in the
prior example, ignoring the impact of SCSI-2 buses and controllers.

Server utilization
Arrival rate

1
Timeserver/m

-------------------------------- Arrival rate

Timeserver
m

-------------------------×= =

Timesystem Timeserver 1
Prob (>=m)

m 1× Utilserver–
--+ 

 ×=

6.7 Designing an I/O System 535

o use
 I/O
■

Figure 6.33 shows the severe increase in response time when trying t
100% of a server. A variety of rules of thumb have been evolved to guide
designers to keep response time and contention low:

■ No I/O bus should be utilized more than 75%.

■ No disk string should be utilized more than 40%.

■ No disk arm should be seeking more than 60% of the time.

■ No disk should be used more than 80% of the time.

E X A M P L E Recalculate performance in the example above using these rules of
thumb, and show the utilization of each component.

A N S W E R Figure 6.31 shows that the I/O bus is far below the suggested guidelines,
so we concentrate on the disks, utilization of disk seeking, and SCSI-2
bus. The new limit on IOPS for disks used 80% of the time is 67 × 0.8 =
54 IOPS. The utilization of seek time per disk is

FIGURE 6.33 X-Y plot of response times in Figure 6.32.

140

120

100

80

60

40

20

Response time (ms)

0

Request rate (IOPS)

1000 1100 1200 14001300 1500 1600 1700

Time of average seek
Time between I/Os

--- 8
1

54 IOPS

--------------------- 8

18.5
---------- 43%= = =

536 Chapter 6 Storage Systems
which is below the rule of thumb. The biggest impact is on the SCSI-2 bus:

Suggested IOPS per SCSI-2 string = = 222 IOPS

With this data we can recalculate IOPS for each organization:

8-GB disks, 2 strings = Min(50,000,10,000, 9375, 1350, 444) = 444 IOPS
8-GB disks, 4 strings = Min(50,000,10,000, 9375, 1350, 888) = 888 IOPS
2-GB disks, 7 strings = Min(50,000,10,000, 9375, 5400, 1554) = 1554 IOPS
2-GB disks, 13 strings = Min(50,000,10,000, 9375, 5400, 2886) = 2886 IOPS

Under these assumptions, the small disks have about 3.5 times the per-
formance of the large disks.

Clearly, the string bandwidth is the bottleneck now. The number of
disks per string that would not exceed the guideline is

Number of disks per SCSI-2 string at full bandwidth = = 4

and the ideal number of strings is

Number of SCSI-2 strings with 8-GB disks = = 7

Number of SCSI-2 strings for full bandwidth with 2-GB disks = = 25

This suggestion is fine for 8-GB disks, but the I/O bus is limited to 20
SCSI-2 controllers and strings so that becomes the limit for 2-GB disks:

8-GB disks, 7 strings = Min(50,000, 10,000, 9375, 1350, 1554) = 1350 IOPS
2-GB disks, 20 strings = Min(50,000, 10,000, 9375, 5400, 4440) = 4440 IOPS

Notice that the IOPS for the large disks is in the flat part of the response
time graph in Figure 6.33, as we would hope. We can now calculate the
cost for each organization:

8-GB disks, 7 strings = $30,000 + 7 × $1500 + 25 × (8192 × $0.25) = $91,700
2-GB disks, 20 strings = $30,000 + 20 × $1500 + 100 × (2048 × $0.25) = $111,200

The respective cost per IOPS is $68 versus $25, or an advantage of about
2.7 for the small disks. Compared with the earlier naive assumption that
we could use 100% of resources, the cost per IOPS increased $10 to $15.
Figure 6.34 shows the new utilization of each resource by following these
guidelines. Following the rule of thumb of 40% string utilization sets the
performance limit in every case. Exercise 6.18 explores what happens
when this SCSI limit is relaxed.

1
1.8 ms
---------------- 40%×

222
54
--------- 4.1=

25
4
------ 6.3=

100
4

6.7 Designing an I/O System 537

s and
■

Queuing theory can also help us to answer questions about I/O controller
buses.

E X A M P L E The SCSI controller will send requests down the bus to the device and
then get data back on a read. One issue is the impact of returning the data
in a single 16-KB transfer versus four 4-KB transfers. How long does it
take for the drive to see the request for each workload? Assume that there
are many disks on the SCSI bus, that the time between arriving SCSI re-
quests is exponential, that the bus is occupied during the entire transfer,
that the overhead for each SCSI activity is 1 ms plus the time to transfer
the data, and that the CPU issues 100 disk reads per second on this SCSI
bus.

A N S W E R The times between arrivals are exponential, but we need the distribution
of the service times on the SCSI bus. For the 16-KB transfer size there are
just two sizes: very small and 16 KB, and so the times are 1 ms or

In fact, for each CPU request taking 1 ms there is exactly one transfer tak-
ing 1.8 ms, so the distribution is half 1-ms service times and half 1.8-ms
service times. A 4-KB transfer takes

Resource

8-GB
disks,

2 strings

8-GB
disks,

4 strings

2-GB
disks,

7 strings

2-GB
disks,

13 strings

8-GB
disks,

7 strings

2-GB
disks,

20 strings

CPU 1% 2% 3% 6% 3% 9%

Memory 4% 9% 16% 29% 16% 44%

I/O bus 4% 7% 12% 23% 12% 36%

SCSI-2 buses 40% 40% 40% 40% 40% 40%

Disks 27% 53% 23% 43% 23% 66%

Seek utilization 14% 28% 12% 23% 12% 36%

IOPS 444 888 1554 2886 1350 4400

FIGURE 6.34 The percentage of utilization of each resource, given the six organiza-
tions in this Example, which tries to limit utilization of key resources to the rules of
thumb given above.

1 ms
16 KB

20 MB/sec
--------------------------+ 1 0.8+ 1.8 ms= =

1 ms
4 KB

20 MB/sec
--------------------------+ 1 0.2+ 1.2 ms= =

538 Chapter 6 Storage Systems
For every request of 1.0 ms there are four 1.2-ms transfers. Neither distri-
bution is exponential, so we must use the general model for service inter-
arrival times. Since the SCSI bus acts as a single queue following the
FIFO discipline, we must use the M/G/1 model to answer this question.

The proper formula to predict the time before a single transfer comes
from page 513:

Thus we must first calculate Timeserver , Server utilization, and C.
For a single transfer, the average time before the disk can transfer is

Time
queue

Time
server

1 C+() Server utilization××
2 1 Server utilization–()×

--=

Time
server

Weighted mean time
f1 T1× f2 T2× … fn Tn×+ + +

f1 f2 ... fn+ + +
-- 0.5 1× 0.5 1.8×+

0.5 0.5+
-- 1.4 ms= = = =

Server utilization
Arrival rate

1 Timeserver⁄
----------------------------------- Arrival rate Time

server
× 100 1 1+()×() sec⁄ 1.4 ms× 200 sec⁄ 0.0014 sec× 0.28= = = = =

Variance
f1 T1

2× f2 T2
2× … fn Tn

2×+ + +

f1 f2 ... fn+ + +
-- Timeserver

2
–=

Variance
0.5 1

2× 0.5 1.8
2×+

0.5 0.5+
-- 1.4

2
– 0.5 1.62 1.96–+ 2.12 1.96–= = 0.16= =

C
Variance

Timeserver
2

------------------------------- 0.16

1.4
2

---------- 0.16
1.96
---------- 0.082= = = =

Time
queue

Timeserver 1 C+() Server utilization××

2 1 Server utilization–()×
-- 1.4 ms 1 0.082+() 0.28××

2 1 0.16–()×
--

0.424
1.440
------------- ms 0.294 ms= = = =

6.8 Putting It All Together: UNIX File System Performance 539

stems
per by

ited
. The
eter-
ms
t file
 bet-
ce.
ating-
ache
For the case where the transfer is broken into four 4-KB pieces, the time is

For these parameters, the single large transfer wins: 0.3 ms versus 0.8
ms. Although it might seem better to break the transfer into smaller pieces
so that a request doesn’t have to wait for the long transfer, the collective
SCSI overhead on each transfer increases bus utilization so as to over-
come the benefits of the shorter transfers. ■

This section compares the file-system performance of several operating sy
and hardware systems in use in 1995 (see Figure 6.35). It is based on a pa
Chen and Patterson [1994a].

As a preview, this evaluation once again shows that I/O performance is lim
by the weakest link in the chain between the disk and the operating system
hardware determines potential I/O performance, but the operating system d
mines how much of that potential is delivered. In particular, for UNIX syste
the file cache is critical to I/O performance. The main observations are tha
cache performance of UNIX on mainframes and mini-supercomputers is no
ter than workstations, and that file caching policy is of overriding importan
Optimized memory systems can increase read performance, but the oper
system policy on writes can result in orders of magnitude differences in file c
performance.

6.8 Putting It All Together:
UNIX File System Performance

Timeserver Weighted mean time
f1 T1× f2 T2× … fn Tn×+ + +

f1 f2 ... fn+ + +
-- 0.2 1× 0.8 1.2×+

0.2 0.8+
-- 1.16 ms= = = =

Server utilization Arrival rate Timeserver× 100 1 4+()×() sec⁄ 1.16 ms× 500 sec⁄ 0.0016 sec× 0.58= = = =

Variance
f1 T1

2× f2 T2
2× … fn Tn

2×+ + +

f1 f2 ... fn+ + +
-- Time

server

2
–=

Variance
0.2 1

2× 0.8 1.2
2×+

0.2 0.8+
-- 1.16

2
– 0.2 1.152 1.346–+ 1.352 1.346–= = 0.006= =

C
Variance

Timeserver
2

------------------------------- 0.006

1.16
2

------------- 0.006
1.346
------------- 0.005= = = =

Timequeue

Timeserver 1 C+() Server utilization××

2 1 Server utilization–()×
-- 1.16 ms 1 0.005+() 0.58××

2 1 0.58–()×

0.676
0.840
------------- ms 0.805 ms= = = =

540 Chapter 6 Storage Systems

for-
an be
e I/O
rbates
n be

 VF

0

K

M

l

Disk Subsystem Performance

A comprehensive evaluation of disk performance is problematic. I/O per
mance is limited by the slowest component between memory and disks: It c
the main memory, the CPU-memory bus, the bus adapter, the I/O bus, th
controller, or the disks themselves. The trend toward open systems exace
the complexity of measuring I/O performance, for a particular machine ca

Computer

Alpha
AXP/
3000

Dec-
Station
5000

Dec-
Station
5000 HP 730

IBM
RS/
6000

Sun
Sparc-
Station
1

Sun
Sparc-
Station
10

Convex
C2

IBM
3090

Operating
system

OSF-1
1.3

Sprite
LFS

Ultrix
4.2A 47

HP/UX
8.07

AIX
3.1.5

SunOS
4.1

Solaris
2.1

Convex-
OS 10.1

AIX/
ESA on
VM

Processor
model

400 200 200 730 550 1+ 30 C20 600J

Year proc.
shipped

1993 1990 1990 1991 1991 1989 1992 1988 199

Approx. $
as tested

$30K $20K $15K $25K $30K $15K $20K $750K $1000

Proc. clock
rate (MHz)

133 25 25 66 41.7 25 33 25 69

Proc. perf.
SPECint92

75 19 19 48 34 12 45 ≈ 10–20 ≈ 35–45

Cache size
(levels 1
& 2 in KB)

L1:
8,8
L2: 512

L1:
64,64

L1:
64,64

L1:
128,256

L1:
8,64

L1:
64

L1:
20,16
L2:
1024

L1:
8,4

Memory
size (MB)

64 32 32 32 64 28 128 1024 128 V
partition

Memory
perf.
(MB/sec)

300 100 100 264 222 80 88 200

I/O bus Turbo-
channel

SCSI-I SCSI-I Fast
SCSI-II

SCSI SCSI-I SCSI-I IPI-2 IBM
Channe

Disk(s) 1 SCSI
DEC
RZ26

3 CDC
Wren
(RAID 0)

1 DEC
RZ55

1 HP
1350SX

1 IBM
93x
2355

1 CDC
Wren
IV

1 Segate
Elite
(5400
RPM)

4 DKD-
502
(RAID
5)

1 IBM
3390

FIGURE 6.35 Machines and operating systems evaluated in this section. Note that the oldest machine is the Convex
C20, which first shipped in 1988. AIX/ESA is run under VM because there are not enough people at that installation to justify
running it native. For cache parameters, the first level 1 (L1) number is the instruction cache size and the second L1 number
is the data cache size; a single number means a unified cache.

6.8 Putting It All Together: UNIX File System Performance 541

ses.
affect

are
ce the
ork-
 they

a dif-
oten-
n of
ould
ves

 with
 have

 per-
ini-
 top
 3090
configured with many different kinds of disks, disk controllers, and even I/O bu
In addition to the hardware components, the policies of the operating system
I/O performance of a workload. The number of combinations is staggering.

If we were interested in comparing the I/O performance of hardware-softw
systems, then ideally we would use many of the same components to redu
number of variables. This ideal has several practical obstacles. First, few w
stations share the same operating system, CPU, or CPU-memory bus, so
may be unique to each machine. And a different CPU-memory bus requires
ferent bus adaptor. This leaves the I/O bus, I/O controller, and disks to be p
tially in common. The problem now is that there is no standard configuratio
these components across manufacturers, so it is unlikely that customers w
normally buy the same configuration from different manufacturers. This lea
the evaluator the unattractive alternative of purchasing computer systems
common I/O subsystems simply to evaluate performance; few organizations
the budgets for such an effort.

We can now present the results in proper context. Figure 6.36 shows disk
formance when reading for the machines in Figure 6.35. The Convex m
supercomputer, with the RAID of four disks and the fast IPI-2 I/O bus, is at the
of the chart; the SparcStation 10 is second because of its fast single disk. The
mainframe, with its single 3390 disk, comes in a surprisingly low sixth place.

FIGURE 6.36 Disk performance for the machines in Figure 6.35. These results are for reads of size 32 KB. Except
where otherwise noted in the figure, the machines use SCSI I/O buses, SCSI controllers, and SCSI disks that rotate at 3600
RPM. Read performance is from 1.5 to 2.8 times faster than write performance, except for the Sprite system. Sprite’s Log-
Structured File System is optimized for writes, which are 1.3 times faster than reads on the DS 5000. (Section 6.4 explains
the measurement method of data collection; we started with the measured 100% read performance at nominal access sizes
and then interpolated to determine performance for a common 32-KB access size. The only numbers adjusted by more than
5% were for the Alpha AXP/3000, DS 5000/ Ultrix, and the Convex.)

Machine and operating system

Megabytes per second

0.0 1.0 2.0 3.0 4.0 5.0

Convex C240
ConvexOS10

SS 10, Solaris 2 2.4

4.2 IPI-2, RAID

5400 RPM SCSI-II disk

IBM channel, IBM 3390 disk

AXP/3000, OSF1 2.0

RS/6000, AIX 1.6

HP 730, HP/UX 8 1.5

3090, AIX/ESA 1.1

Sparc1 +, SunOS 4.1 0.7

DS5000, Ultrix 0.6

DS5000, Sprite 0.5

542 Chapter 6 Storage Systems

r
 sub-
r-
n a
ID.

sub-
RAID
 of a
 no

fast

sing
nce
rfor-
6.37
 rate.
Given the warnings above, we cannot say that IBM mainframes have lowe
disk performance than workstations, nor that Convex has the fastest disk
system. We can say that the IBM 3090-600J running AIX/ESA under VM pe
forms 32-KB reads to a single IBM 3390 disk drive much more slowly tha
Convex C240 running Convex OS10 reads 32-KB blocks from a four-disk RA

The conclusions we draw from Figure 6.36 are that many workstation I/O
systems can sustain the performance of a high-speed single disk, that a
disk array can deliver much higher performance, and that the performance
single mainframe disk on a 3090 model 600J running AIX/ESA under VM is
faster than many workstations.

Basic File Cache Performance

For UNIX systems the most important factor in I/O performance is not how
the disk is, or how efficiently it is used, but whether it is used. Operating systems
designers’ concern for performance led them to cache-like optimizations, u
main memory as a “cache” for disk traffic to improve I/O performance. Si
main memory is much faster than disks, file caches yield a substantial pe
mance improvement and are found in every UNIX operating system. Figure
shows the change in disk I/Os versus a cacheless system measured as miss

FIGURE 6.37 The effectiveness of a file cache or disk cache on reducing disk I/Os
versus cache size. Ousterhout et al. [1985] collected the VAX UNIX data on VAX-11/785s
with 8 MB to 16 MB of main memory, running 4.2 BSD UNIX using a 16-KB block size. Smith
[1985] collected the IBM SVS and IBM MVS traces on IBM 370/168 using a one-track block
size (which varied from 7294 bytes to 19,254 bytes, depending on the disk). The difference
between a file cache and a disk cache is that the file cache uses logical block numbers while
a disk cache uses addresses that have been mapped to the physical sector and track on a
disk. This difference is similar to the difference between a virtually addressed and a physically
addressed cache (see section 5.5).

60%

50%

40%

30%

20%

10%

0%
0

Cache size (MB)

Disk/file
cache
miss rate

4 8 12 16

IBM MVS

20 24 28 32

IBM SVS

VAX UNIX

6.8 Putting It All Together: UNIX File System Performance 543

6.35.
 from
f the
emo-

perat-
puter.
e per-
n of

 not
idth
XP/

r 30
e in-
. The
idth.

ple,
imes

rfor-
ce of

opies
rfor-
 shall
Figure 6.38 shows this file cache performance for the machines of Figure
The first thing to notice is the change in scale of the chart: machines read
their file caches 3 to 25 times faster than from their disks. The performance o
file cache is determined by the processor, cache, CPU-memory bus, main m
ry, and operating system. Except for the size of memory and perhaps the o
ing system, there is little choice in these components when selecting a com
Hence observations about commercial systems can be drawn about file cach
formance with much more confidence than with the disks, since this portio
the system will be common at most sites.

The biggest surprise is that the mainframe and mini-supercomputers did
lead this chart, given their much greater cost and reputation for high-bandw
memory systems and CPU-memory buses. At the top of the list is the Alpha A
3000 and HP 730 workstation running HP/UX version 8, both delivering ove
MB per second. Unlike most workstations, the Alpha 3000 and HP 730 hav
terleaved main memories; that may explain their fast file cache performance
IBM RS/6000 model 550 comes in third, and it also has high memory bandw
This chart also shows rapid file cache improvement in workstations. For exam
both the SparcStation 10 and DEC Alpha AXP/3000 are more than four t
faster than their predecessors, the SparcStation 1 and the DecStation 5000.

In addition, Figure 6.38 shows the impact of operating systems on I/O pe
mance; the Sprite operating system offers 1.7 times the file cache performan
Ultrix running on the same DecStation 5000 hardware. Sprite does fewer c
when reading data from the file cache than does Ultrix, hence its higher pe
mance. Fewer copies are important for networks as well as storage, as we
see in the next chapter.

FIGURE 6.38 File cache performance for machines in Figure 6.35. This plot is for 32-KB reads with the number of bytes
touched limited to fit within the file cache of each system. Figure 6.39 (page 545) shows the size of the file caches that
achieve this performance. (See the caption of Figure 6.39 for details on measurements.)

Machine and operating system

Megabytes per second

0.0 10.0 20.0 30.0 40.0

AXP/3000, OSF1

HP 730, HP/UX 8 30.2

31.8

RS/6000, AIX 28.2

3090, AIX/ESA 27.2

SS 10, Solaris 2 11.4

Convex C240
9.9ConvexOS10

8.7

DS5000, Ultrix 5.0

Sparc1+, SunOS 4.1 2.8

DS5000, Sprite

544 Chapter 6 Storage Systems

perat-
, we

s al-
sured
erly-
nning
e of

e file
ed to
hange
ain
nd is
 and
ize

 will
ient

ge of
cent-
nd

file

prite,
ache
 3090,
ksta-
ain
he is
ther

nfu-
hes.

well

rite
The Impact of Operating System Policies on File Cache
Performance

Given that UNIX systems have common ancestors, we expected that the o
ing system policies toward I/O would be the same on all machines. Instead
find that different systems have very different I/O policies, and some policie
ter I/O performance by factors of 10 to 75. Even though the machines mea
vary significantly in cost, these policies can be more important than the und
ing hardware. These file systems are aimed largely at the same customers ru
the same applications, which calls into question the low performance of som
these policies.

File Cache Size
Since main memory must be used for running programs as well as for th
cache, the first policy decision is how much main memory should be allocat
the file cache. The second is whether or not the size of the file cache can c
dynamically. Early UNIX systems give the file cache a fixed percentage of m
memory; this percentage is determined at the time of system generation, a
typically set to 10%. Recent systems allow the barrier between file cache
program memory to vary, allowing file caches to grow to be virtually the full s
of the main memory if warranted by the workload. File servers, for example,
surely use much more of their main memory for file cache than will most cl
workstations.

Figure 6.39 shows these maximum file cache sizes, both in percenta
main memory and in absolute size. The reason for the large variation in per
age of main memory is the file cache size policy. HP/UX version 8, Ultrix, a
AIX/ESA all reserve small, fixed portions of main memory for the file cache.

Figure 6.37 (page 542) shows that UNIX workloads benefit from larger
caches, so this fixed-size policy surely hurts I/O performance. Note that S
running on the same hardware as Ultrix, has more than six times the file c
size, and that the SparcStation 1 has a file cache almost as large as the IBM
even though the mainframe has four times the physical memory of the wor
tion. When the flexible file cache boundary policy is combined with large m
memories, we can get astounding file caches: the Convex C240 file cac
almost 900 MB! Thus workloads that would require disk accesses on o
machines will instead access main memory on the Convex.

Write Policy
Thus far we have unrealistically left the O out of I/O. There is often some co
sion about the definition and implications of alternative write strategies for cac
To lessen that confusion, we first review write policies of processor caches.

 Write through with write buffers and write back applies to file caches as
as processor caches. The operating systems community uses the term asynchro-
nous writes for writes that allow the processor to continue after updating a w

6.8 Putting It All Together: UNIX File System Performance 545

e-
mp-
ote

 just
rite

s and
 see
s and
 oper-
 disk

 IBM
ge of
buffer. If writes occur infrequently, then this buffer works well; if writes are fr
quent, then the processor may eventually have to stall until the write buffer e
ties, limiting the speed to that of the next level of the memory hierarchy. N
that a write buffer does not reduce the number of writes to the next level. It
allows the processor to continue while I/O is in progress, provided that the w
buffer is not full.

Figure 6.40 shows the file cache performance as we vary the mix of read
writes. Clearly HP/UX and Sprite use a write-back cache; while it is hard to
with this figure, the Sun OS 4.1 write performance is nearly as fast as read
much faster than disks, so it also uses write back. We can tell that the other
ating systems use write through because their write performance matches
speed. Note that three of the highest performers in Figure 6.38—RS/6000,
3090, and Alpha AXP/3000—fall to the back of the pack unless the percenta
reads is more than 90%.

FIGURE 6.39 File cache size. The bar graph shows the maximum percentage of main memory for the file cache, while
the line graph shows the maximum size in megabytes, using the log scale on the right. Thus the HP 730 HP/UX version 8
uses only 8% of its 32-MB main memory for its file cache, or just 2.7 MB, and the Convex C240 uses 87% of its 1024-MB
main memory, or 890 MB, for its file cache.

90%

80%

70%

60%

50%

40%

30%

100

1000

1

10

Percentage of main memory for file cache File cache size (MB)

20%

10% 8% 10%

20%

63%

71%
74%

77%
80%

87%

0%

HP73
0,

 H
P/U

X 8

DS50
00

, U
ltr

ix

30
90

, A
IX

/E
SA

DS50
00

, S
pr

ite

SPARC1+
 S

un
OS 4

.1

SS 1
0,

 S
ola

ris
 2

Alph
a,

 O
SF1

RS/6
00

0,
 A

IX

Con
ve

x C
24

0,

Con
ve

xO
S10

546 Chapter 6 Storage Systems

hing
res,
ut of
peri-
s;

 so
 30-
and
ive a
dow.
n, it
back
The effectiveness of caches for writes also depends on the policy of flus
dirty data to the disk; to protect against losing information in case of failu
applications will occasionally issue a command that forces modified data o
the cache and onto the disk. Most UNIX operating systems have a policy of
odically writing dirty data to disk to give a safety window for all application
typically, the window is 30 seconds.

The short lives of files means that files will be deleted or overwritten and
their data need not be written to disk. Baker et al. [1991] found that this
second window captures 65% to 80% of the lifetimes for all files. Hartman
Ousterhout [1993] reported that 36% to 63% of the bytes written do not surv
30-second window; this number jumps to 60% to 95% in a 1000-second win
Given that such short lifetimes mean that file cache blocks will be rewritte
seems wise for more operating system policy makers to consider write-
caches provided a 30-second window meets the failure requirements.

FIGURE 6.40 File cache performance versus read percentage. 0% reads means 100% writes. These accesses all
fit within the file caches of the respective machines. Note that the high performance of the file caches of the AXP/3000,
RS/6000, and 3090 are only evident for workloads with ≥ 90% reads. Access sizes are 32 KB. (See the caption of Figure
6.36 for details on measurements.)

30.0

20.0

15.0

25.0

10.0

5.0

Megabytes
 per second

0

Percentage of reads

0% 10% 20% 30% 40% 60% 80% 90%50% 70% 100%

SunOS (SS1)

Ultrix (DS5000)

Solaris 2 (SS 10)

OSF1 (AXP 3000)

Sprite (DS 5000)

Convex

AIX (RS/6000)
AIX/ESA (3090)
HP/UX (HP 730)

6.8 Putting It All Together: UNIX File System Performance 547

exist
lients

10

rver

igure
es are

 file
n the
f the
s stale
 the
elay
e ac-
 same
alled
Write Policy for Client/Server Computing
Thus far we have been ignoring the network and the possibility that the files
on a file server. Figure 6.41 shows performance for three combinations of c
and servers:

■ An HP 712/60 client running HP-UX 9.05 with an Auspex file server (a
SPARC multiprocessor designed for file service)

■ An IBM RS6000/520 client running AIX 3.0 with a RS6000/320H server

■ A Sun SPARC 10/50 client running Solaris 2.3 with a Sun SPARC 10/50 se

All client/server pairs were connected by an Ethernet local area network. F
6.41 shows file cache performance as a percentage of reads when the fil
reached over the networks.

This experiment brings us to the issue of consistency of files in multiple
caches. The concern is that multiple copies of files in the client caches and o
server create the possibility that someone will access the wrong version o
data. This raises a policy question: How do you ensure that no one accesse
data? The NFS solution, used by SunOS, is to make all client writes go to
server’s disk when the file is closed. It would seem that if the 30-second d
was satisfactory for writes to local disk, then a 30-second delay would also b
ceptable before client writes must be sent to the server, thereby allowing the
benefits to accrue. Hence HP/UX 9 offers an alternative network protocol, c

FIGURE 6.41 File cache performance versus percentage of reads for client/server computing. An IBM RS 6000 is
75 times slower than an HP 712 running the DUX network file system.

60

50

40

30

20

10

Megabytes per second

0

Percentage of reads

0% 11% 22% 33% 44% 50% 56%

SPARC 10

RS 6000

HP 712

67% 78% 89% 100%

548 Chapter 6 Storage Systems

po-
 and
gy to
che

iffer-
he HP
 write
s 75
work-

 of
read-
peed

stem
es in

ce is

an
ion

rs is

ome

arket,
sis to

m.

ared
ag-
s less

 is
DUX, which allows client-level caching of writes. The server keeps track of
tential conflicts and takes the appropriate action only when the file is shared
someone is writing it. Using a shared-bus multiprocessor as a rough analo
our workstations on the local area network, DUX offers write back with ca
coherency, while NFS does write through without write buffers.

The 100%-read case—the rightmost portion of the graph—shows the d
ences in performance of the hardware, where SPARC 10 is twice as fast as t
712. The rest of the graph shows the differences in performance due to the
policies of their operating systems. The HP system is the clear winner: It i
times faster than the RS/6000 and 25 times faster than the SPARC 10 for
loads with mostly writes, and still 14 to 20 times faster even when only 20%
the accesses are writes. Put another way, for all but the most heavily
oriented workloads, the RS/6000 and SPARC 10 clients operate at disk s
while the HP client runs at main memory speed.

Conclusion

Hardware determines the potential I/O performance, but the operating sy
determines how much of that potential is delivered. As a result of the studi
this section, we conclude the following:

■ File caching policy determines performance of most I/O events, and hen
the place to start when trying to improve I/O performance.

■ File cache performance in workstations is improving rapidly, with more th
fourfold improvements in three years for DEC (AXP/3000 vs. DecStat
5000) and Sun (SparcStation 10 vs. SparcStation 1+).

■ File cache performance of UNIX on mainframes and mini-supercompute
no better than on workstations.

■ Workstations can take advantage of high-performance disks.

■ RAID systems can deliver much higher disk performance, but cannot overc
weaknesses in file cache policy.

Given the varying decisions in this matter by companies serving the same m
we hope this section motivates file cache designers to give greater empha
quantitative evaluations of policy decisions.

Pitfall: Comparing the price of media with the price of the packaged syste

This happens most frequently when new memory technologies are comp
with magnetic disks. For example, comparing the DRAM-chip price with m
netic-disk packaged price in Figure 6.5 (page 492) suggests the difference i
than a factor of 10, but it’s much greater when the price of packaging DRAM

6.9 Fallacies and Pitfalls

6.9 Fallacies and Pitfalls 549

 cost
ly $2
 the

single
here
ies to
ond is
orage
bytes.
ake a
don’t
store
 by a

 time

 the
ear in
 dis-
clud-
rs. In
 basis
age”
eek
 and

ravel-
 allow

se
mple
hort

veling
e. For
 dis-
included. A common mistake with removable media is to compare the media
not including the drive to read the media. For example, a CD-ROM costs on
per gigabyte in 1995, but including the cost of the optical drive may bring
price closer to $200 per gigabyte.

Figure 6.7 (page 495) suggests another example. When comparing a
disk to a tape library, it would seem that tape libraries have little benefit. T
are two mistakes in this comparison. The first is that economy of scale appl
tape libraries, and so the economical end is for large tape libraries. The sec
that it is more than twice as expensive per gigabyte to purchase a disk st
subsystem that can store terabytes than it is to buy one that can store giga
Reasons for increased cost include packing, interfaces, redundancy to m
system with many disks sufficiently reliable, and so on. These same factors
apply to tape libraries since they are designed to be sufficiently reliable to
terabytes without extra redundancy. These two mistakes change the ratio
factor of 10 when comparing large tape libraries with large disk subsystems.

Fallacy: The time of an average seek of a disk in a computer system is the
for a seek of one-third the number of cylinders.

This fallacy comes from confusing the way manufacturers market disks with
expected performance and with the false assumption that seek times are lin
distance. The one-third-distance rule of thumb comes from calculating the
tance of a seek from one random location to another random location, not in
ing the current cylinder and assuming there are a large number of cylinde
the past, manufacturers listed the seek of this distance to offer a consistent
for comparison. (As mentioned on page 488, today they calculate the “aver
by timing all seeks and dividing by the number.) Assuming (incorrectly) that s
time is linear in distance, and using the manufacturer’s reported minimum
“average” seek times, a common technique to predict seek time is

Timeseek = Timeminimum +

The fallacy concerning seek time is twofold. First, seek time is not linear with
distance; the arm must accelerate to overcome inertia, reach its maximum t
ing speed, decelerate as it reaches the requested position, and then wait to
the arm to stop vibrating (settle time). Moreover, sometimes the arm must pau
to control vibrations. Figure 6.42 plots time versus seek distance for a sa
disk. It also shows the error in the simple seek-time formula above. For s
seeks, the acceleration phase plays a larger role than the maximum tra
speed, and this phase is typically modeled as the square root of the distanc
disks with more than 200 cylinders, Chen and Lee [1995] modeled the seek
tance as

Distance
Distanceaverage
------------------------------------- Timeaverage Timeminimum–()×

Seek time Distance() a Distance 1–× b Distance 1–()× c+ +=

550 Chapter 6 Storage Systems

tch
. Fig-
6.2.
ould
oth
used

to be
asure-
nd a
 to the

this
where a, b, and c are selected for a particular disk so that this formula will ma
the quoted times for Distance = 1, Distance = max, and Distance = 1/3 max
ure 6.43 plots this equation versus the fallacy equation for the disk in Figure

The second problem is that the average in the product specification w
only be true if there was no locality to disk activity. Fortunately, there is b
temporal and spatial locality (see page 393 in Chapter 5): disk blocks get
more than once, and disk blocks near the current cylinder are more likely
used than those farther away. For example, Figure 6.44 shows sample me
ments of seek distances for two workloads: a UNIX timesharing workload a
business-processing workload. Notice the high percentage of disk accesses
same cylinder, labeled distance 0 in the graphs, in both workloads.

Thus, this fallacy couldn’t be more misleading. (The Exercises debunk
fallacy in more detail.)

FIGURE 6.42 Seek time versus seek distance for the first 200 cylinders. The Imprimis
Sabre 97209 contains 1.2 GB using 1635 cylinders and has the IPI-2 interface [Imprimis
1989]. This is an 8-inch disk. Note that longer seeks can take less time than shorter seeks.
For example, a 40-cylinder seek takes almost 10 ms, while a 50-cylinder seek takes less than
9 ms.

Time (ms)

Measured

Formula: T = T
min

+ (D/D
avg

) * (T
avg

–T
min

)

Seek distance

0 4020 60 80 100 120 140 180160 200
0

2

4

6

8

10

14

12

6.9 Fallacies and Pitfalls 551

ve

ance
tion
archi-
 live
erfor-
 then

 the
ve if
field
disk ro-
 disk
icable
Pitfall: Moving functions from the CPU to the I/O processor to impro
performance.

There are many examples of this pitfall, although I/O processors can enh
performance. A problem inherent with a family of computers is that the migra
of an I/O feature usually changes the instruction set architecture or system
tecture in a programmer-visible way, causing all future machines to have to
with a decision that made sense in the past. If CPUs are improved in cost/p
mance more rapidly than the I/O processor (and this will likely be the case),
moving the function may result in a slower machine in the next CPU.

The most telling example comes from the IBM 360. It was decided that
performance of the ISAM system, an early database system, would impro
some of the record searching occurred in the disk controller itself. A key
was associated with each record, and the device searched each key as the
tated until it found a match. It would then transfer the desired record. For the
to find the key, there had to be an extra gap in the track. This scheme is appl
to searches through indices as well as data.

FIGURE 6.43 Seek time versus seek distance for sophisticated model versus naive model for the disk in Figure
6.2 (page 490) . Chen and Lee [1995] found the equations shown above for parameters a, b, and c worked well for several
disks.

30

25

20

15

10

5

Access time (ms)

0

Seek distance

0

a =
3 × Number of cylinders

250 500 750 1000 1250 1500

Naive seek formula

New seek formula

1750 2000 2250 2500

– 10 × Time
min

+ 15 × Time
avg

– 5 × Time
max

b =
3 × Number of cylinders

7 × Time
min

– 15 × Time
avg

+ 8 × Time
max

c = Time
min

552 Chapter 6 Storage Systems

e disk
 disk,
alent
 is no
e data
5-byte
The speed at which a track can be searched is limited by the speed of th
and of the number of keys that can be packed on a track. On an IBM 3330
the key is typically 10 characters, but the total gap between records is equiv
to 191 characters if there were a key. (The gap is only 135 characters if there
key, since there is no need for an extra gap for the key.) If we assume that th
is also 10 characters and that the track has nothing else on it, then a 13,16
track can contain

 = 62 key-data records

This performance is

 ≈ .25 ms/key search

FIGURE 6.44 Sample measurements of seek distances for two systems. The measurements on the left were taken
on a UNIX timesharing system. The measurements on the right were taken from a business-processing application in which
the disk seek activity was scheduled. Seek distance of 0 means the access was made to the same cylinder. The rest of the
numbers show the collective percentage for distances between numbers on the y axis. For example, 11% for the bar labeled
16 in the business graph means that the percentage of seeks between 1 and 16 cylinders was 11%. The UNIX measure-
ments stopped at 200 cylinders, but this captured 85% of the accesses. The total was 1000 cylinders. The business mea-
surements tracked all 816 cylinders of the disks. The only seek distances with 1% or greater of the seeks that are not in the
graph are 224 with 4% and 304, 336, 512, and 624 each having 1%. This total is 94%, with the difference being small but
nonzero distances in other categories. Measurements courtesy of Dave Anderson of Imprimis.

0% 10%

Percentage of seeks (UNIX timesharing workload)

23%

8%

4%

20% 40%30% 50% 60% 70%

24%

3%

3%

1%

3%

3%

3%

3%

3%

2%

2%

0% 10%

Percentage of seeks (business workload)

Seek
distance

Seek
distance

11%

20% 40%30% 50% 60% 70%

61%

3%

0%

3%

0%

0%

1%

1%

1%

1%

1%

3%

0%195

180

165

150

135

120

105

90

75

60

45

30

15

0

208

192

176

160

144

128

112

96

80

64

48

32

16

0

13,165
191 10 10+ +

16.7 ms (1 revolution)
62

6.11 Historical Perspective and References 553

k and
block

trate-
 in the

 as
CPU
led to
IDs
ms,

abyte
an-
ose
nec-

illion

 tape
NIAC
ls of
0s the
It can
t 200
In place of this scheme, we could put several key-data pairs in a single bloc
have smaller interrecord gaps. Assuming there are 15 key-data pairs per
and the track has nothing else on it, then

 = 30 blocks of key-data pairs

The revised performance is then

 ≈ 0.04 ms/key search

Yet as CPUs got faster, the CPU time for a search was trivial. Although the s
gy made early machines faster, programs that use the search-key operation
I/O processor run almost six times slower on today’s machines!

According to Amdahl’s Law, ignorance of I/O will lead to wasted performance
CPUs get faster. Disk performance is growing at 4% to 6% per year, while
performance is growing at a much faster rate. This performance gap has
novel organizations to try to bridge it: file caches to improve latency and RA
to improve throughput. The future demands for I/O include better algorith
better organizations, and more caching in a struggle to keep pace.

Nevertheless, the impressive improvement in capacity and cost per meg
of disks and tape have made digital libraries plausible, whereby all of hum
kind’s knowledge could be at the beck and call of your fingertips. Getting th
requests to the libraries and the information back is the challenge of intercon
tion networks, the topic of the next chapter.

Mass storage is a term used there to imply a unit capacity in excess of one m
alphanumeric characters…

Hoagland [1963]

Magnetic recording was invented to record sound, and by 1941 magnetic
was able to compete with other storage devices. It was the success of the E
in 1947 that led to the push to use tapes to record digital information. Ree
magnetic tapes dominated removable storage through the 1970s. In the 198
IBM 3480 cartridge became the de facto standard, at least for mainframes.
transfer at 3 MB/sec since it reads 18 tracks in parallel. The capacity is jus

6.10 Concluding Remarks

6.11 Historical Perspective and References

13,165
135 15 10 10+()×+
-- 13,165

135 300+
------------------------=

16.7 ms (1 revolution)
30 15×

554 Chapter 6 Storage Systems

ich
s in a
ction

ity. In
tever
torage

thod
hat
 of 1

 the
 disk

tic
e al-
rface.
 and
rface,
nces

about
 that
f not
rms.
. The
to in-
ty of
 1995
 of
e on

ves,
C. In
drive
ains

come
et al.

with
tems.
d by
time
ed a
MB for this 1/2-inch tape. In 1995 3M and IBM announced the IBM 3590, wh
transfers at 9 MB/sec and stores 10,000 MB. This device records the track
zig-zag fashion rather than just longitudinally, so that the head reverses dire
to follow the track. Its official name is serpentine recording. The other competitor
is helical scan, which rotates the head to get the increased recording dens
1995 the 8-mm tapes contain 6000 MB and transfer at about 1 MB/sec.Wha
their density and cost, the serial nature of tapes creates an appetite for s
devices with random access.

The magnetic disk first appeared in 1956 in the IBM Random Access Me
of Accounting and Control (RAMAC) machine. This disk used 50 platters t
were 24 inches in diameter, with a total capacity of 5 MB and an access time
second. IBM maintained its leadership in the disk industry, and many of
future leaders of competing disk industries started their careers at IBM. The
industry is responsible for 90% of the mass storage market.

Although RAMAC contained the first disk, the breakthrough in magne
recording was found in later disks with air-bearing read-write heads. Thes
lowed the head to ride on a cushion of air created by the fast-moving disk su
This cushion meant the head could both follow imperfections in the surface
yet be very close to the surface. In 1995 heads fly 4 microinches above the su
whereas the RAMAC drive was 1000 microinches away. Subsequent adva
have been largely from improved quality of components and higher precision.

The second breakthough was the so-called Winchester disk design in
1965. Before this time the cost of the electronics to control the disk meant
the media had to be removable. The integrated circuit lowered the costs o
only CPUs, but also of disk controllers and the electronics to control the a
This price reduction meant that the media could be sealed with the reader
sealed system meant the heads could fly closer to the surface, which led
creases in areal density. The IBM 1311 disk in 1962 had an areal densi
50,000 bits per square inch and a cost of about $800 per megabyte, and in
IBM sells a disk using 640 million bits per square inch with a street price
about $0.25 per megabyte. (See Hospodor and Hoagland [1993] for mor
magnetic storage trends.)

The personal computer created a market for small form-factor disk dri
since the 14-inch disk drives used in mainframes were bigger than the P
1995 the 3.5-inch drive is the market leader, although the smaller 2.5-inch
needed for portable computers is catching up quickly in sales volume. It rem
to be seen whether hand-held devices, requiring even smaller disks, will be
as popular as PCs or portables. These smaller disks inspired RAID; Chen
[1994] survey the RAID ideas and future directions.

One attraction of a personal computer is that you don’t have to share it
anyone. This means that response time is predictable, unlike timesharing sys
Early experiments in the importance of fast response time were performe
Doherty and Kelisky [1979]. They showed that if computer-system response
increased one second, then user think time did also. Thadhani [1981] show

6.11 Historical Perspective and References 555

 and
ck of
dies
ntry
two
han-

rs in
I/O

oving

 them.
low-
 disk
con-
others
the
nly
der the

ies to
in-
e first
door
ented
This
 pro-
r that

open,
 be the

e de-
ali-

C in
ith

had
tions.

5.2.

s

jump in productivity as computer response times dropped to one second
another jump as they dropped to one-half second. His results inspired a flo
studies, and they supported his observations [IBM 1982]. In fact, some stu
were started to disprove his results! Brady [1986] proposed differentiating e
time from think time (since entry time was becoming significant when the
were lumped together) and provided a cognitive model to explain the more-t
linear relationship between computer response time and user think time.

The ubiquitous microprocessor has inspired not only personal compute
the 1970s, but also the current trend to moving controller functions into
devices in the late 1980s and 1990s. I/O devices continued this trend by m
controllers into the devices themselves. These are called intelligent devices, and
some bus standards (e.g., IPI and SCSI) have been created specifically for
Intelligent devices can relax the timing constraints by handling many of the
level tasks and queuing the results. For example, many SCSI-compatible
drives include a track buffer on the disk itself, supporting read ahead and
nect/disconnect. Thus, on a SCSI string some disks can be seeking and
loading their track buffer while one is transferring data from its buffer over
SCSI bus. The controller in the original RAMAC, built from vacuum tubes, o
needed to move the head over the desired track, wait for the data to pass un
head, and transfer data with calculated parity.

 SCSI, which stands for small computer systems interface, is an example of
one company inventing a bus and generously encouraging other compan
build devices that would plug into it. This bus, originally called SASI, was
vented by Shugart and was later standardized by the IEEE. Perhaps th
multivendor bus was the PDP-11 Unibus in 1970 from DEC. Alas, this open-
policy on buses is in contrast to companies with proprietary buses using pat
interfaces, thereby preventing competition from plug-compatible vendors.
practice also raises costs and lowers availability of I/O devices that plug into
prietary buses, since such devices must have an interface designed just fo
bus. The PCI bus being pushed by Intel gives us hope in 1995 of a return to
standard I/O buses inside computers. There are also several candidates to
successor to SCSI, most using simpler connectors and serial cables.

The machines of the RAMAC era gave us I/O interrupts as well as storag
vices. The first machine to extend interrupts from detecting arithmetic abnorm
ties to detecting asynchronous I/O events is credited as the NBS DYSEA
1954 [Leiner and Alexander 1954]. The following year, the first machine w
DMA was operational, the IBM SAGE. Just as today’s DMA has, the SAGE
address counters that performed block transfers in parallel with CPU opera
(Smotherman [1989] explores the history of I/O in more depth.)

References

ANON, ET AL. [1985]. “A measure of transaction processing power,” Tandem Tech. Rep. TR 8
Also appeared in Datamation, April 1, 1985.

BAKER, M. G., J. H. HARTMAN, M. D. KUPFER, K. W. SHIRRIFF, AND J. K. OUSTERHOUT [1991].
“Measurements of a distributed file system,” Proc. 13th ACM Symposium on Operating System

556 Chapter 6 Storage Systems

00

-

lf-

n

,”

d A.

/

8-1

ems,
Principles (October), 198–212.

BASHE, C. J., W. BUCHHOLZ, G. V. HAWKINS, J. L. INGRAM, AND N. ROCHESTER [1981]. “The archi-
tecture of IBM’s early computers,” IBM J. Research and Development 25:5 (September), 363–375.

BASHE, C. J., L. R. JOHNSON, J. H. PALMER, AND E. W. PUGH [1986]. IBM’s Early Computers, MIT
Press, Cambridge, Mass.

BRADY, J. T. [1986]. “A theory of productivity in the creative process,” IEEE CG&A (May), 25–34.

BUCHER, I. V. AND A. H. HAYES [1980]. “I/O performance measurement on Cray-1 and CDC 70
computers,” Proc. Computer Performance Evaluation Users Group, 16th Meeting, NBS 500-65,
245–254.

CHEN, P. M. AND D. A. PATTERSON [1993]. “Storage performance-metrics and benchmarks.” Proc.
IEEE 81:8 (August), 1151–65.

CHEN, P. M. AND D. A. PATTERSON [1994a]. “Unix I/O performance in workstations and main
frames,” Tech. Rep. CSE-TR-200-94, Univ. of Michigan (March).

CHEN, P. M. AND D. A. PATTERSON [1994b]. “A new approach to I/O performance evaluation—Se
scaling I/O benchmarks, predicted I/O performance,” ACM Trans. on Computer Systems 12:4
(November).

CHEN, P. M., G. A. GIBSON, R. H. KATZ, AND D. A. PATTERSON [1990]. “An evaluation of redundant
arrays of inexpensive disks using an Amdahl 5890,” Proc. 1990 ACM SIGMETRICS Conference o
Measurement and Modeling of Computer Systems (May), Boulder, Colo.

CHEN, P. M., E. K. LEE, G. A. GIBSON, R. H. KATZ, AND D. A. PATTERSON [1994]. “RAID: High-
performance, reliable secondary storage,” ACM Computing Surveys 26:2 (June), 145–88.

CHEN, P. M. AND E. K. LEE [1995]. “Striping in a RAID level 5 disk array,” Proc. 1995 ACM SIG-
METRICS Conference on Measurement and Modeling of Computer Systems (May), 136–145.

DOHERTY, W. J. AND R. P. KELISKY [1979]. “Managing VM/CMS systems for user effectiveness
IBM Systems J. 18:1, 143–166.

FEIERBACK, G. AND D. STEVENSON [1979]. “The Illiac-IV,” in Infotech State of the Art Report on
Supercomputers, Maidenhead, England. This data also appears in D. P. Siewiorek, C. G. Bell, an
Newell, Computer Structures: Principles and Examples (1982), McGraw-Hill, New York, 268–269.

FRIESENBORG, S. E. AND R. J. WICKS [1985]. “DASD expectations: The 3380, 3380-23, and MVS
XA,” Tech. Bulletin GG22-9363-02 (July 10), Washington Systems Center.

GOLDSTEIN, S. [1987]. “Storage performance—An eight year outlook,” Tech. Rep. TR 03.30
(October), Santa Teresa Laboratory, IBM, San Jose, Calif.

GRAY, J. (ED.) [1993]. The Benchmark Handbook for Database and Transaction Processing Syst
2nd ed. Morgan Kaufmann Publishers, San Francisco.

GRAY, J. AND A. REUTER [1993]. Transaction Processing: Concepts and Techniques, Morgan
Kaufmann Publishers, San Francisco.

HARTMAN J. H. AND J. K. OUSTERHOUT [1993]. “Letter to the editor,” ACM SIGOPS Operating
Systems Review 27:1 (January), 7–10.

HENLY, M. AND B. MCNUTT [1989]. “DASD I/O characteristics: A comparison of MVS to VM,”
Tech. Rep. TR 02.1550 (May), IBM, General Products Division, San Jose, Calif.

HOAGLAND, A. S. [1963]. Digital Magnetic Recording, Wiley, New York.

HOSPODOR, A. D. AND A. S. HOAGLAND [1993]. “The changing nature of disk controllers.” Proc.
IEEE 81:4 (April), 586–94.

HOWARD, J. H., ET AL. [1988]. “Scale and performance in a distributed file system,” ACM Trans. on
Computer Systems 6:1, 51–81.

IBM [1982]. The Economic Value of Rapid Response Time, GE20-0752-0, White Plains, N.Y., 11–82.

Exercises 557

B,

ental

-

.

ical

tion
of the

tion
e by
IMPRIMIS [1989]. Imprimis Product Specification, 97209 Sabre Disk Drive IPI-2 Interface 1.2 G
Document No. 64402302 (May).

JAIN, R. [1991]. The Art of Computer Systems Performance Analysis: Techniques for Experim
Design, Measurement, Simulation, and Modeling, Wiley, New York.

KAHN, R. E. [1972]. “Resource-sharing computer communication networks,” Proc. IEEE 60:11
(November), 1397-1407.

KATZ, R. H., D. A. PATTERSON, AND G. A. GIBSON [1990]. “Disk system architectures for high
performance computing,” Proc. IEEE 78:2 (February).

KIM, M. Y. [1986]. “Synchronized disk interleaving,” IEEE Trans. on Computers C-35:11
(November).

LEINER, A. L. [1954]. “System specifications for the DYSEAC,” J. ACM 1:2 (April), 57–81.

LEINER, A. L. AND S. N. ALEXANDER [1954]. “System organization of the DYSEAC,” IRE Trans. of
Electronic Computers EC-3:1 (March), 1–10.

MABERLY, N. C. [1966]. Mastering Speed Reading, New American Library, New York.

MAJOR, J. B. [1989]. “Are queuing models within the grasp of the unwashed?,” Proc. Int’l Confer-
ence on Management and Performance Evaluation of Computer Systems, Reno, Nev. (December
11-15), 831–839.

OUSTERHOUT, J. K., ET AL. [1985]. “A trace-driven analysis of the UNIX 4.2 BSD file system,” Proc.
Tenth ACM Symposium on Operating Systems Principles, Orcas Island, Wash., 15–24.

PATTERSON, D. A., G. A. GIBSON, AND R. H. KATZ [1987]. “A case for redundant arrays of inexpen
sive disks (RAID),” Tech. Rep. UCB/CSD 87/391, Univ. of Calif. Also appeared in ACM SIGMOD
Conf. Proc., Chicago, June 1–3, 1988, 109–116.

ROBINSON, B. AND L. BLOUNT [1986]. “The VM/HPO 3880-23 performance results,” IBM Tech
Bulletin GG66-0247-00 (April), Washington Systems Center, Gaithersburg, Md.

SALEM, K. AND H. GARCIA-MOLINA [1986]. “Disk striping,” IEEE 1986 Int’l Conf. on Data Engi-
neering.

SCRANTON, R. A., D. A. THOMPSON, AND D. W. HUNTER [1983]. “The access time myth,” Tech.
Rep. RC 10197 (45223) (September 21), IBM, Yorktown Heights, N.Y.

SMITH, A. J. [1985]. “Disk cache—Miss ratio analysis and design considerations,” ACM Trans. on
Computer Systems 3:3 (August), 161–203.

SMOTHERMAN, M. [1989]. “A sequencing-based taxonomy of I/O systems and review of histor
machines,” Computer Architecture News 17:5 (September), 5–15.

THADHANI , A. J. [1981]. “Interactive user productivity,” IBM Systems J. 20:4, 407–423.

THISQUEN, J. [1988]. “Seek time measurements,” Amdahl Peripheral Products Division Tech. Rep.
(May).

E X E R C I S E S

6.1 [10] <6.9> Using the formulas in the fallacy starting on page 549, including the cap
of Figure 6.43 (page 551), calculate the seek time for moving the arm over one-third
cylinders of the disk in Figure 6.2 (page 490).

6.2 [25] <6.9> Using the formulas in the fallacy starting on page 549, including the cap
of Figure 6.43 (page 551), write a short program to calculate the “average” seek tim

558 Chapter 6 Storage Systems

y the

tion
verage
e seek
105 in

or the
of 300
ce as

g the
6.43
me for
ssump-

pable
PU

.

sts are
at the
round

 orga-
count

ve for

 bot-

your
soft-
 1 disk

 group
estimating the time for all possible seeks using these formulas and then dividing b
number of seeks. How close is the answer to Exercise 6.1 to this answer?

6.3 [20] <6.9> Using the formulas in the fallacy starting on page 549, including the cap
of Figure 6.43 (page 551) and the statistics in Figure 6.44 (page 552), calculate the a
seek distance on the disk in Figure 6.2 (page 490). Use the midpoint of a range as th
distance. For example, use 98 as the seek distance for the entry representing 91–
Figure 6.44. For the business workload, just ignore the missing 5% of the seeks. F
UNIX workload, assume the missing 15% of the seeks have an average distance
cylinders. If you were misled by the fallacy, you might calculate the average distan
884/3. What is the measured distance for each workload?

6.4 [20] <6.9> Figure 6.2 (page 490) gives the manufacturer’s average seek time. Usin
formulas in the fallacy starting on page 549, including the equations in Figure
(page 551), and the statistics in Figure 6.44 (page 552), what is the average seek ti
each workload on the disk in Figure 6.2 using the measurements? Make the same a
tions as in Exercise 6.3.

6.5 [20/15/15/15/15/15] <6.4> The I/O bus and memory system of a computer are ca
of sustaining 1000 MB/sec without interfering with the performance of an 800-MIPS C
(costing $50,000). Here are the assumptions about the software:

■ Each transaction requires 2 disk reads plus 2 disk writes.

■ The operating system uses 15,000 instructions for each disk read or write.

■ The database software executes 40,000 instructions to process a transaction.

■ The transfer size is 100 bytes.

You have a choice of two different types of disks:

■ A small disk that stores 500 MB and costs $100.

■ A big disk that stores 1250 MB and costs $250.

Either disk in the system can support on average 30 disk reads or writes per second

Answer parts (a)–(f) using the TPS benchmark in section 6.4. Assume that the reque
spread evenly to all the disks, that there is no waiting time due to busy disks, and th
account file must be large enough to handle 1000 TPS according to the benchmark g
rules.

a. [20] <6.4> How many TPS transactions per second are possible with each disk
nization, assuming that each uses the minimum number of disks to hold the ac
file?

b. [15] <6.4> What is the system cost per transaction per second of each alternati
TPS?

c. [15] <6.4> How fast does a CPU need to be to make the 1000 MB/sec I/O bus a
tleneck for TPS? (Assume that you can continue to add disks.)

d. [15] <6.4> As manager of MTP (Mega TP), you are deciding whether to spend
development money building a faster CPU or improving the performance of the
ware. The database group says they can reduce a transaction to 1 disk read and
write and cut the database instructions per transaction to 30,000. The hardware

Exercises 559

 same
er per-

e gain

sen-
out

ks if
at the
ven the
mall

 have
must
PU as

 sin-
e, and
 seek-
6.43
e track.
er the
e track.
k sys-
 2 ms
e I/O

lculate
k orga-
ctors.

e the
aniza-
verage
ch disk

te the
aniza-

it mat-

e that
e

bility of
it must
ay the
can build a faster CPU that sells for the same amount as the slower CPU with the
development budget. (Assume you can add as many disks as needed to get high
formance.) How much faster does the CPU have to be to match the performanc
of the software improvement?

e. [15] <6.4> The MTP I/O group was listening at the door during the software pre
tation. They argue that advancing technology will allow CPUs to get faster with
significant investment, but that the cost of the system will be dominated by dis
they don’t develop new small, faster disks. Assume the next CPU is 100% faster
same cost and that the new disks have the same capacity as the old ones. Gi
new CPU and the old software, what will be the cost of a system with enough old s
disks so that they do not limit the TPS of the system?

f. [15] <6.4> Start with the same assumptions as in part (e). Now assume that you
as many new disks as you had old small disks in the original design. How fast
the new disks be (I/Os per second) to achieve the same TPS rate with the new C
the system in part (e)? What will the system cost?

6.6 [20] <6.4> Assume that we have the following two magnetic-disk configurations: a
gle disk and an array of four disks. Each disk has 20 surfaces, 885 tracks per surfac
16 sectors/track. Each sector holds 1K bytes, and it revolves at 7200 RPM. Use the
time formula in the fallacy starting on page 549, including the equations in Figure
(page 551). The time to switch between surfaces is the same as to move the arm on
In the disk array all the spindles are synchronized—sector 0 in every disk rotates und
head at the exact same time—and the arms on all four disks are always over the sam
The data is “striped” across all four disks, so four consecutive sectors on a single-dis
tem will be spread one sector per disk in the array. The delay of the disk controller is
per transaction, either for a single disk or for the array. Assume the performance of th
system is limited only by the disks and that there is a path to each disk in the array. Ca
the performance in both I/Os per second and megabytes per second of these two dis
nizations, assuming the request pattern is random reads of 4 KB of sequential se
Assume the 4 KB are aligned under the same arm on each disk in the array.

6.7 [20]<6.4> Start with the same assumptions as in Exercise 6.5 (e). Now calculat
performance in both I/Os per second and megabytes per second of these two disk org
tions assuming the request pattern is reads of 4 KB of sequential sectors where the a
seek distance is 10 tracks. Assume the 4 KB are aligned under the same arm on ea
in the array.

6.8 [20] <6.4> Start with the same assumptions as in Exercise 6.5 (e). Now calcula
performance in both I/Os per second and megabytes per second of these two disk org
tions assuming the request pattern is random reads of 1 MB of sequential sectors. (If
ters, assume the disk controller allows the sectors to arrive in any order.)

6.9 [20] <6.2> Assume that we have one disk defined as in Exercise 6.5 (e). Assum
we read the next sector after any read and that all read requests are one sector in length. W
store the extra sectors that were read ahead in a disk cache. Assume that the proba
receiving a request for the sector we read ahead at some time in the future (before
be discarded because the disk-cache buffer fills) is 0.1. Assume that we must still p

560 Chapter 6 Storage Systems

 is 250
e
as just

ne:

che
 stale-
e miss
e write

oaded
uch

miss

k sec-
 data

How
licy?
controller overhead on a disk-cache read hit, and the transfer time for the disk cache
ns per word. Is the read-ahead strategy faster? (Hint: Solve the problem in the steady stat
by assuming that the disk cache contains the appropriate information and a request h
missed.)

6.10 [20/10/20/20] <6.4–6.6> Assume the following information about our DLX machi

■ Loads 2 cycles.

■ Stores 2 cycles.

■ All other instructions are 1 cycle.

Use the summary instruction mix information on DLX for gcc from Chapter 2.

Here are the cache statistics for a write-through cache:

■ Each cache block is four words, and the whole block is read on any miss.

■ Cache miss takes 23 cycles.

■ Write through takes 16 cycles to complete, and there is no write buffer.

Here are the cache statistics for a write-back cache:

■ Each cache block is four words, and the whole block is read on any miss.

■ Cache miss takes 23 cycles for a clean block and 31 cycles for a dirty block.

■ Assume that on a miss, 30% of the time the block is dirty.

Assume that the bus

■ Is only busy during transfers

■ Transfers on average 1 word / clock cycle

■ Must read or write a single word at a time (it is not faster to access two at once)

a. [20] <6.4–6.6> Assume that DMA I/O can take place simultaneously with CPU ca
hits. Also assume that the operating system can guarantee that there will be no
data problem in the cache due to I/O. The sector size is 1 KB. Assume the cach
rate is 5%. On the average, what percentage of the bus is used for each cach
policy? (This measured is called the traffic ratio in cache studies.)

b. [10] <6.4–6.6> Start with the same assumptions as in part (a). If the bus can be l
up to 80% of capacity without suffering severe performance penalties, how m
memory bandwidth is available for I/O for each cache write policy? The cache
rate is still 5%.

c. [20] <6.4–6.6> Start with the same assumptions as in part (a). Assume that a dis
tor read takes 1000 clock cycles to initiate a read, 100,000 clock cycles to find the
on the disk, and 1000 clock cycles for the DMA to transfer the data to memory.
many disk reads can occur per million instructions executed for each write po
How does this change if the cache miss rate is cut in half?

Exercises 561

imum

um
hieve

etic
2 on

time
f differ-
xercise
he real

uild-

uild-
hy?

of the

distri-
ersus

 are
 SCSI
t the

s.)

tively
 with

old tape

te of
d. [20] <6.4–6.6> Start with the same assumptions as in part (c). Now you can have any
number of disks. Assuming ideal scheduling of disk accesses, what is the max
number of sector reads that can occur per million instructions executed?

6.11 [50] < 6.4> Take your favorite computer and write a program that achieves maxim
bandwidth to and from disks. What is the percentage of the bandwidth that you ac
compared with what the I/O device manufacturer claims?

6.12 [20] <6.2,6.5> Search the World Wide Web to find descriptions of recent magn
disks of different diameters. Be sure to include at least the information in Figure 6.
page 490.

6.13 [20] <6.9> Using data collected in Exercise 6.12, plot the two projections of seek
as used in Figure 6.43 (page 551). What seek distance has the largest percentage o
ence between these two predictions? If you have the real seek distance data from E
6.12, add that data to the plot and see on average how close each projection is to t
seek times.

6.14 [15] <6.2,6.5> Using the answer to Exercise 6.13, which disk would be a good b
ing block to build a 100-GB storage subsystem using mirroring (RAID 1)? Why?

6.15 [15] <6.2,6.5> Using the answer to Exercise 6.13, which disk would be a good b
ing block to build a 1000-GB storage subsystem using distributed parity (RAID 5)? W

6.16 [15] <6.4> Starting with the Example on page 515, calculate the average length
queue and the average length of the system.

6.17 [15] <6.4> Redo the Example that starts on page 515, but this time assume the
bution of disk service times has a squared coefficient of variance of 2.0 (C = 2.0), v
1.0 in the Example. How does this change affect the answers?

6.18 [20] <6.7> The I/O utilization rules of thumb on page 535 are just guidelines and
subject to debate. Redo the Example starting on page 535, but increase the limit of
utilization to 50%, 60%, ..., until it is never the bottleneck. How does this change affec
answers? What is the new bottleneck? (Hint: Use a spreadsheet program to find answer

6.19 [15]<6.2> Tape libraries were invented as archival storage, and hence have rela
few readers per tape. Calculate how long it would take to read all the data for a system
6000 tapes, 10 readers that read at 9 MB/sec, and 30 seconds per tape to put the
away and load a new tape.

6.20 [25]<6.2>Extend the figures, showing price per system and price per megaby
disks by collecting data from advertisements in the January issues of Byte magazine after
1995. How fast are prices changing now?

7

Interconnection
Networks 7
s
“The Medium is the Message” because it is the medium that

shapes and controls the search and form of human association

and actions.

Marshall McLuhan
Understanding Media (1964)

The marvels—of film, radio, and television—are marvels of

one-way communication, which is not communication at all.

Milton Mayer
On the Remote Possibility of
Communication (1967)

7.1 Introduction 563

7.2 A Simple Network 565

7.3 Connecting the Interconnection Network to the Computer 573

7.4 Interconnection Network Media 576

7.5 Connecting More Than Two Computers 579

7.6 Practical Issues for Commercial Interconnection Networks 597

7.7 Examples of Interconnection Networks 601

7.8 Crosscutting Issues for Interconnection Networks 605

7.9 Internetworking 608

7.10 Putting It All Together: An ATM Network of Workstations 613

7.11 Fallacies and Pitfalls 622

7.12 Concluding Remarks 625

7.13 Historical Perspective and References 626

Exercises 629
 been
 con-
ows

 soft-
tion

r is
ork

nces

um-
rent

 less
ts.
Thus far we have covered the components of a single computer, which has
the traditional focus of computer architecture. In this chapter we see how to
nect computers together, forming a community of computers. Figure 7.1 sh
the generic components of this community: computer nodes, hardware and
ware interfaces, links to the interconnection network, and the interconnec
network. Interconnection networks are also called networks or communication
subnets, and nodes are sometimes called end systems or hosts. This topic is vast,
with whole books written about portions of this figure. The goal of this chapte
to help you understand the architectural implications of interconnection netw
technology, providing introductory explanations of the key ideas and refere
to more detailed descriptions.

Let’s start with the generic types of interconnections. Depending on the n
ber of nodes and their proximity, these interconnections are given diffe
names:

■ Massively parallel processor (MPP) network—This interconnection network
can connect thousands of nodes, and the maximum distance is typically
than 25 meters. The nodes are typically found in a row of adjacent cabine

7.1 Introduction

564

Chapter 7 Interconnection Networks

nd
on-
ny-

ween

om-

ne

d sus-
ica-
ches

tion
tives.
inter-
 each

mple
here

■ Local area network (LAN)—This device connects hundreds of computers, a
the distance is up to a few kilometers. Unlike the MPP network, the LAN c
nects computers distributed throughout a building. The traffic is mostly ma
to-one, such as between clients and server, while MPP traffic is often bet
all nodes.

■ Wide area network (WAN)—Also called long haul network, the WAN connects
computers distributed throughout the world. WANs include thousands of c
puters, and the maximum distance is thousands of kilometers.

The connection of two or more interconnection networks is called internet-
working, which relies on software standards to convert information from o
kind of network to another.

These three types of interconnection networks have been designed an
tained by three different cultures—the MPP, workstation, and telecommun
tions communities—each using its own dialects and its own favorite approa
to the goal of interconnecting autonomous computers.

This chapter gives a common framework for evaluating all interconnec
networks, using a single set of terms to describe the basic alterna
Figure 7.21 in section 7.7 gives several other examples of each of these
connection networks. As we shall see, some components are common to
type and some are quite different.

We begin the chapter by exploring the design and performance of a si
network to introduce the ideas. We then consider the following problems: w

FIGURE 7.1 Drawing of the generic interconnection network.

Link Link Link Link

Interconnection network

Node

SW interface

HW interface

Node

SW interface

HW interface

Node

SW interface

HW interface

Node

SW interface

HW interface

7.2 A Simple Network

565

nect,
es for
for
nal

es a
these
d and
plica-

imple
. At
 this
. The
led a

ntain-
rrives,
ave at
w re-
n in-

xam-
works

to attach the interconnection network, which media to use as the intercon
how to connect many computers together, and what are the practical issu
commercial networks. We follow with examples illustrating the trade-offs
each type of network, explore internetworking, and conclude with the traditio
ending of the chapters in this book.

To explain the complexities and concepts of networks, this section describ
simple network of two computers. We then describe the software steps for
two machines to communicate. The remainder of the section gives a detaile
then a simple performance model, including several examples to see the im
tions of key network parameters.

Suppose we want to connect two computers together. Figure 7.2 shows a s
model with a unidirectional wire from machine A to machine B and vice versa
the end of each wire is a first-in-first-out (FIFO) queue to hold the data. In
simple example each machine wants to read a word from the other’s memory
information sent between machines over an interconnection network is cal
message.

For one machine to get data from the other, it must first send a request co
ing the address of the data it desires from the other node. When a request a
the machine must send a reply with the data. Hence each message must h
least 1 bit in addition to the data to determine whether the message is a ne
quest or a reply to an earlier request. The network must distinguish betwee
formation needed to deliver the message, typically called the header or the trailer
depending on where it is relative to the data, and the payload, which contains the
data. Figure 7.3 shows the format of messages in our simple network. This e
ple shows a single-word payload, but messages in some interconnection net
can include hundreds of words.

7.2 A Simple Network

FIGURE 7.2 A simple network connecting two machines.

Machine A Machine B

566

Chapter 7 Interconnection Networks

 in-
ropri-

ating
hared
stem

e mes-
is dis-
rt can

ring
 that

t and
ssage

 time
res be-

er or

e and

All interconnection networks involve software. Even this simple example
vokes software to translate requests and replies into messages with the app
ate headers. An application program must usually cooperate with the oper
system to send a message to another machine, since the network will be s
with all the processes running on the two machines, and the operating sy
cannot allow messages for one process to be received by another. Thus th
saging software must have some way to distinguish between processes; th
tinction may be included in an expanded header. Although hardware suppo
reduce the amount of work, most is done by software.

In addition to protection, network software is often responsible for ensu
that messages are reliably delivered. The twin responsibilities are ensuring
the message is not garbled in transit, or lost in transit.

The first responsibility is met by adding a checksum field to the message for-
mat; this redundant information is calculated when the message is first sen
checked upon receipt. The receiver then sends an acknowledgment if the me
passes the test.

One way to meet the second responsibility is to have a timer record the
each message is sent and to presume the message is lost if the timer expi
fore an acknowledgment arrives. The message is then re-sent.

The software steps to send a message are as follows:

1. The application copies data to be sent into an operating system buffer.

2. The operating system calculates the checksum, includes it in the head
trailer of the message, and then starts the timer.

3. The operating system sends the data to the network interface hardwar
tells the hardware to send the message.

FIGURE 7.3 Message format for our simple network. Messages must have extra infor-
mation beyond the data.

Header (1 bit) Payload (32 bits)

0= Request
1 = Reply

0

1

Address

Data

7.2 A Simple Network

567

e op-

tches
to the
nd the

s space

ssage

 timer.

to sup-
ormat

nd re-

-
 sender
eive.
two
ntly

Message reception is in just the reverse order:

3. The system copies the data from the network interface hardware into th
erating system buffer.

2. The system calculates the checksum over the data. If the checksum ma
the sender’s checksum, the receiver sends an acknowledgment back
sender; if not, it deletes the message, assuming that the sender will rese
message when the associated timer expires.

1. If the data pass the test, the system copies the data to the user’s addres
and signals the application to continue.

The sender must still react to the acknowledgment:

■ When the sender gets the acknowledgment, it releases the copy of the me
from the system buffer.

■ If the sender gets the time-out instead, it resends the data and restarts the

Here we assume that the operating system keeps the message in its buffer
port retransmission in case of failure. Figure 7.4 shows how the message f
looks now.

The sequence of steps that software follows to communicate is called a proto-
col and generally has the symmetric but reversed steps between sending a
ceiving. Our example is similar to the UDP/IP protocol used by some UNIX
systems. Note that this protocol is for sending a single message. When an appli
cation does not require a response before sending the next message, the
can overlap the time to send with the transmission delays and the time to rec

A protocol must handle many more issues than reliability. For example, if
machines are from different manufacturers, they might order bytes differe

FIGURE 7.4 Message format for our simple network. Note that the checksum is in the
trailer.

Header (2 bits)

00 = Request
01 = Reply
10 = Acknowledge request
11 = Acknowledge reply

Payload (32 bits) Checksum (4 bits)

Data

568

Chapter 7 Interconnection Networks

order
st the
stuck.
ed-

e, we
ters of
onfu-

ich
e en-
yload
cond

n

ver,
e of

(not
 the
end for

within a word (see section 2.3 of Chapter 2). The software must reverse the
of bytes in each word as part of the delivery system. It must also guard again
possibility of duplicate messages if a delayed message were to become un
Finally, it must work when the receiver’s FIFO becomes full, suggesting fe
back to control the flow of messages from the sender (see section 7.5).

Now that we have covered the steps in sending and receiving a messag
can discuss performance. Figure 7.5 shows the many performance parame
interconnection networks. These terms are often used loosely, leading to c
sion, so we define them here precisely:

■ Bandwidth—This most widely used term refers to the maximum rate at wh
the interconnection network can propagate information once the messag
ters the network. Traditionally, the headers and trailers as well as the pa
are counted in the bandwidth calculation, and the units are megabits/se
rather than megabytes/second. The term throughput is sometimes used to mea
network bandwidth delivered to an application.

■ Time of flight—The time for the first bit of the message to arrive at the recei
including the delays due to repeaters or other hardware in the network. Tim
flight can be milliseconds for a WAN or nanoseconds for an MPP.

■ Transmission time—The time for the message to pass through the network
including time of flight) and equal to the size of the message divided by
bandwidth. This measure assumes there are no other messages to cont
the network.

FIGURE 7.5 Performance parameters of interconnection networks. Depending on
whether it is an MPP, LAN, or WAN, the relative lengths of the time of flight and transmission
may be quite different from those shown here. (Based on a presentation by Greg Papa-
dopolous, Sun Microsystems.)

Sender
overheadSender

Receiver

Transmission
time

(bytes/BW)

Time of
flight

Transmission
time

(bytes/BW)
Receiver
overhead

Transport latency

Total latency

7.2 A Simple Network

569

e
g the
n it

 in-
nts.
 term

d part

the
nts.

exam-

te the

■ Transport latency—The sum of time of flight and transmission time, it is th
time that the message spends in the interconnection network, not includin
overhead of injecting the message into the network nor pulling it out whe
arrives.

■ Sender overhead—The time for the processor to inject the message into the
terconnection network, including both hardware and software compone
Note that the processor is busy for the entire time, hence the use of the
overhead. Once the processor is free, any subsequent delays are considere
of the transport latency.

■ Receiver overhead—The time for the processor to pull the message from
interconnection network, including both hardware and software compone
In general, the receiver overhead is larger than the sender overhead: for
ple, the receiver may pay the cost of an interrupt.

The total latency of a message can be expressed algebraically:

As we shall see, for many applications and networks, the overheads domina
total message latency.

E X A M P L E Assume a network with a bandwidth of 10 Mbits/second has a sending
overhead of 230 microseconds and a receiving overhead of 270 micro-
seconds. Assume two machines are 100 meters apart and one wants to
send a 1000-byte message to another (including the header), and the
message format allows 1000 bytes in a single message. Calculate the to-
tal latency to send the message from one machine to another. Next, per-
form the same calculation but assume the machines are now 1000 km
apart.

A N S W E R The speed of light is 299,792.5 kilometers per second, and signals prop-
agate at about 50% of the speed of light in a conductor, so time of flight
can be estimated. Let’s plug the parameters for the shorter distance into
the formula above:

Total latency Sender overhead Time of flight
Message size
Bandwidth

------------------------------- Receiver overhead+ + +=

570

Chapter 7 Interconnection Networks

ead,

 net-

sage
Substituting the longer distance into the third equation yields

The increased fraction of the latency required by time of flight for long dis-
tances, as well as the greater likelihood of errors over long distances, are
why wide area networks use more sophisticated and time-consuming pro-
tocols. Increased latency affects the structure of programs that try to hide
this latency, requiring quite different solutions if the latency is 1, 100, or
10,000 microseconds.

As mentioned above, when an application does not require a re-
sponse before sending the next message, the sender can overlap the
sending overhead with the transport latency and receiver overhead. ■

 We can simplify the performance equation by combining sender overh
receiver overhead, and time of flight into a single term called Overhead:

We can use this formula to calculate the effective bandwidth delivered by the
work as message size varies:

Let’s use this simpler equation to explore the impact of overhead and mes
size on effective bandwidth.

Total latency Sender overhead Time of flight
Message size
Bandwidth

------------------------------- Receiver overhead+ + +=

230 µsecs
0.1km

0.5 299,792.5 km/sec×
-- 1000 bytes

10 Mbits/sec
------------------------------ 270 µsecs+ + +=

230 µsecs
0.1 10

6×
0.5 299,792.5×
------------------------------------- µsecs

1000 8×
10

--------------------- µsecs 270 µsecs+ + +=

230 µsecs 0.67 µsecs 800 µsecs 270 µsecs+ + +=

1301µsecs=

Total latency 230 µsecs
1000 10

6×
0.5 299,792.5×
------------------------------------- µsecs

1000 8×
10

--------------------- µsecs 270 µsecs+ + +=

230 µsecs 6671µsecs 800 µsecs 270 µsecs+ + +=

7971 µsecs=

Total latency Overhead
Message size
Bandwidth

-------------------------------+≈

Effective bandwidth
Message size
Total latency
-------------------------------=

7.2 A Simple Network

571

Figure
es at
ages
ssage
.
ility,
odel.

E X A M P L E Plot the effective bandwidth versus message size for overheads of 1, 25,
and 500 microseconds and for network bandwidths of 10, 100, and 1000
Mbits/second. Vary message size from 16 bytes to 4 megabytes. For what
message sizes is the effective bandwidth virtually the same as the raw net-
work bandwidth? Assuming a 500-microsecond overhead, for what mes-
sage sizes is the effective bandwidth always less than 10 Mbits/second?

A N S W E R Figure 7.6 plots effective bandwidth versus message size using the sim-
plified equation above. The notation “oX,bwY” means an overhead of X
microseconds and a network bandwidth of Y Mbits/second. Message
sizes must be four megabytes for effective bandwidth to be about the
same as network bandwidth, thereby amortizing the cost of high over-
head. Assuming the high overhead, message sizes less than 4096 bytes
will not break the 10 Mbits/second barrier no matter what the actual
network bandwidth.

Thus we must lower overhead as well as increase network bandwidth
unless messages are very large. ■

 Many applications send far more small messages than large messages.
7.7 shows the size of Network File System (NFS) messages for 239 machin
Berkeley collected over a period of one week. One plot is cumulative in mess
sent, and the other is cumulative in data bytes sent. The maximum NFS me
size is just over 8 KB, yet 95% of the messages are less than 192 bytes long

Even this simple network has brought up the issues of protection, reliab
heterogeneity, software protocols, and a more sophisticated performance m
The next four sections address other key questions:

■ Where do you connect the network to the computer?

■ Which media are available to connect computers together?

■ What issues arise if you want to connect more than two computers?

■ What practical issues arise for commercial networks?

572

Chapter 7 Interconnection Networks

FIGURE 7.6 Bandwidth delivered versus message size for overheads of 1, 25, and
500 microseconds and for network bandwidths of 10, 100, and 1000 Mbits/second. The
notation “oX,bwY” means an overhead of X microseconds and a network bandwidth of Y
Mbits/second. Note that with 500 microseconds of overhead and a network bandwidth of
1000 Mbits/second, only the 4-MB message size gets an effective bandwidth of 1000 Mbits/
second. In fact, message sizes must be greater than 4 KB for the effective bandwidth to ex-
ceed 10 Mbits/second.

16 64 25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

10
48

57
6

41
94

30
4

Message size (bytes)

0.10

1.00

10.00

100.00

1,000.00

Effective
bandwidth
(Mbit/sec)

o1, bw1000

o25, bw1000

o500, bw1000

o1, bw100

o25, bw100

o500, bw100

o1, bw10

o25, bw10

o500, bw10

7.3 Connecting the Interconnection Network to the Computer

573

rface
or the
per-

r ex-
O de-
 and

hand,
PPs

Where the network attaches to the computer affects both the network inte
hardware and software. Questions include whether to use the memory bus
I/O bus, whether to use polling or interrupts, and how to avoid invoking the o
ating system.

Computers have a hierarchy of buses with different cost/performance. Fo
ample, a personal computer in 1995 has a memory bus, a PCI bus for fast I/
vices, and an ISA bus for slow I/O devices. I/O buses follow open standards
have less stringent electrical requirements. Memory buses, on the other
provide higher bandwidth and lower latency than I/O buses. Typically, M
plug into the memory bus, and LANs and WANs plug into the I/O bus.

FIGURE 7.7 Cumulative percentage of messages and data transferred as message
size varies for NFS traffic in the Computer Science Department at University of Califor-
nia at Berkeley. Each x-axis entry includes all bytes up to the next one; e.g., 32 represents
32 bytes to 63 bytes. More than half the bytes are sent in 8-KB messages, but 95% of the
messages are less than 192 bytes. Figure 7.39 (page 622) shows the details of this measure-
ment.

7.3 Connecting the Interconnection Network
to the Computer

32 64 96 12
8

16
0

19
2

22
4

25
6

51
2

10
24

15
36

20
48

25
60

30
72

35
84

40
96

51
20

61
44

71
68

81
92

Message size (bytes)

0%

10%

20%

30%

40%

Messages

Data bytes

50%

60%

70%

80%

90%

100%

Cumulative
percentage

574

Chapter 7 Interconnection Networks

ance
 will-
l of

ter-
e key
r may

ush its
crease
erent

ct to
) to

 sent by
cy of
d so
ache
emory
y send

 re-
ge ar-
, or
rrupt
rrives

Where to connect the network to the machine depends on the perform
goals and whether you hope to buy a standard network interface card or are
ing to design or buy one that only works with the memory bus on your mode
computer.

The location of the network connection significantly affects the software in
face to the network as well as the hardware. As mentioned in section 6.6, on
is whether the interface is consistent with the processor’s caches: the sende
have to flush the cache before each send, and the receiver may have to fl
cache before each receive to prevent the stale data problem. Such flushes in
send and receive overhead. A memory bus is more likely to be cache-coh
than an I/O bus and therefore more likely to avoid these extra cache flushes.

A related question of where to connect to the computer is how to conne
the software: Do you use programmed I/O or direct memory access (DMA
send a message? (See section 6.6.) In general, large messages are best
DMA. Whether to use DMA to send small messages depends on the efficien
the interface to the DMA. The DMA interface is usually memory-mapped, an
each interaction is typically at the speed of main memory rather than of a c
access. If DMA setup takes many accesses, each running at uncached m
speeds, then the sender overhead may be so high that it is faster to simpl
the data directly to the interface.

Interconnection networks follow biblical advice: It’s easier to send than to
ceive. One question is how the receiver should be notified when a messa
rives. Should it poll the network interface waiting for a message to arrive
should it perform other tasks and then pay the overhead to service an inte
when it arrives? The issue is the time wasted polling before the message a
versus the time wasted in interrupting the processor and restoring its state.

E X A M P L E The CM-5 is an MPP that allows users to send messages without invoking
the operating system and allows the receiver to either poll or use inter-
rupts. First plot the average overhead for polling and interrupts as a func-
tion of message arrival. Then propose a message reception scheme for
the CM-5 that will work well as the rate varies. The time per poll is 1.6
microseconds: 0.6 to poll the interface card and 1.0 to check the type of
message and get it from the interface card. The time per interrupt is 19
microseconds. The times are 4.9 microseconds and 3.75 microseconds
to enable or disable interrupts, respectively, because the CM-5 operating
system kernel must be invoked.

A N S W E R For polling, the wasted time is simply the time between messages less the
time to execute the simplest code to handle the message, which takes 0.5
microseconds. Interrupts cannot process messages any faster than the
interrupt overhead time plus the time to handle a message, so the fastest
time between interrupts is 19.5 microseconds. Figure 7.8 plots these
curves.

7.3 Connecting the Interconnection Network to the Computer

575

the

inter-

Given the parameters above, we want to avoid enabling and disabling
interrupts, since the cost of invoking the kernel is large relative to the cost
of receiving messages. The CM-5 uses the following scheme: Have inter-
rupts enabled at all times, but on an interrupt the routine will poll for in-
coming messages before returning to the interrupted program. The virtue
of this scheme is that it works well no matter what the load. When mes-
sages are arriving slowly, the overhead cost should be that of the interrupt
code; when they arrive quickly, the cost should be that of polling, since the
interrupt code will not return until all the messages have been received.
■

When selecting the network interface hardware, where to plug it into
machine, and how to interface to the software, try to follow these guidelines:

■ Avoid invoking the operating system in the common case.

■ Minimize the number of times operating at uncached memory speeds to
act with the network interface (such as to check status).

FIGURE 7.8 Message overhead versus message interarrival times for the CM-5. Liu
and Culler [1994] took these measurements.

100

90

80

70

60

50

40

30

20

10

0
0 10 20 30 40 50 60 70 80 90 100

Message interarrival (µsecs)

Message
 overhead

(µsecs)

Polling

Interrupts

576

Chapter 7 Interconnection Networks

ey.
ribe

nnect
have
 cov-

s,
ence,
y can
tion,

There is an old network saying: Bandwidth problems can be cured with mon
Latency problems are harder because the speed of light is fixed—you can’t b
God.

David Clark, MIT

Just as there is a memory hierarchy, there is a hierarchy of media to interco
computers that varies in cost, performance, and reliability. Network media
another figure of merit, the maximum distance between nodes. This section
ers three popular examples, and Figure 7.9 illustrates them.

The first medium is twisted pairs of copper wires. These are two insulated wire
each about 1 mm thick. They are twisted together to reduce electrical interfer
since two parallel lines form an antenna but a twisted pair does not. As the
transfer a few megabits per second over several kilometers without amplifica

7.4 Interconnection Network Media

FIGURE 7.9 Three network media. (From a presentation by David Culler of U.C. Berkeley.)

Twisted pair:

Coaxial cable:

Fiber optics:

Transmitter

Silica
Light source

Air

Total internal
reflection

LED
Laser diode

Receiver
Photodiode

Plastic covering

Braided outer conductor

Insulator

Copper core

7.4 Interconnection Network Media

577

anies
pairs
nces,

r a
uni-
insu-
 50-

r.
inal

hat
lution
le,
g to

s of
 need
ered
o re-

ight

 as it
ave-

e of

Ds
995

ser
reds
twisted pair were the mainstay of the telephone system. Telephone comp
bundled together (and sheathed) many pairs coming into a building. Twisted
can also offer tens of megabits per second of bandwidth over shorter dista
making them plausible for LANs.

Coaxial cable was developed for the cable television companies to delive
higher rate over a few kilometers. To offer high bandwidth and good noise imm
ty, a single stiff copper wire is surrounded by insulating material, and then the
lator is surrounded by cylindrical conductor, often woven as a braided mesh. A
ohm baseband coaxial cable delivers 10 megabits per second over a kilomete

Connecting to this heavily insulated media is more challenging. The orig
technique was a T junction: the cable is cut in two and a connector is inserted t
reconnects the cable and adds a third wire to a computer. A less invasive so
is a vampire tap: a hole of precise depth and width is first drilled into the cab
terminating in the copper core. A connector is then screwed in without havin
cut the cable.

As the supply of copper has dwindled and to keep up with the demand
bandwidth and distance, it became clear that the telephone company would
to find new media. The solution could be more expensive provided that it off
much higher bandwidth and that supplies were plentiful. The answer was t
place copper with plastic and electrons with photons. Fiber optics transmits digi-
tal data as pulses of light: for example, light might mean 1 and no light m
mean 0.

A fiber optic network has three components:

1. the transmission medium, a fiber optic cable;

2. the light source, an LED or laser diode;

3. the light detector, a photodiode.

Note that unlike twisted pairs or coax, fibers are one-way, or simplex, media. A
two-way, or full duplex, connection between two nodes requires two fibers.

Since light is bent or refracted at interfaces, it can slowly be spread out
travels down the cable unless the diameter of the cable is limited to one w
length of light; then it transfers in a straight line. Thus fiber optic cables ar
two forms:

1. Multimode fiber—Allows the light to be dispersed and uses inexpensive LE
as a light source. It is useful for transmissions up to 2 kilometers and in 1
transmits up to 600 megabits per second.

2. Single-mode fiber—This single-wavelength fiber requires more expensive la
diodes for light sources and currently transmits gigabits per second for hund
of kilometers, making it the medium of choice for telephone companies.

578 Chapter 7 Interconnection Networks

t to
d the
f con-
ode

ting
e two

ts off

com-
ctive

and

e of
975
rs by

 me-
have
xperi-
Although single-mode fiber is a better transmitter, it is much more difficul
attach connectors to single-mode; it is less reliable and more expensive, an
cable itself has restrictions on the degree it can be bent. Hence when ease o
nection is more important than very long distance, such as in a LAN, multim
fiber is likely to be popular.

Connecting fiber optics to a computer is more challenging than connec
cable. The vampire tap solution of cable fails because it loses light. There ar
forms of T-boxes:

1. Taps are fused onto the optical fiber. Each tap is passive, so a failure cu
just a single computer.

2. In an active repeater, light is converted to electrical signals, sent to the
puter, converted back to light, and then sent down the cable. If an a
repeater fails, it blocks the network.

In both cases, fiber optics has the additional cost of optical-to-electrical
electrical-to-optical conversion as part of the computer interface.

The product of the bandwidth and maximum distance forms a single figur
merit: gigabit-kilometers per second. According to Desurvire [1992], since 1
optical fibers have increased transmission capacity by tenfold every four yea
this measure.

Figure 7.10 shows the typical distance, bandwidth, and cost of the three
dia. Compared to the electrical media, fiber optics are more difficult to tap,
more expensive interfaces, go for longer distances, and are less likely to e
ence degradation due to noise.

Media Bandwidth
Maximum
distance

Bandwidth
× distance

Cost
per

meter

Cost for
termi-
nation

Labor
cost to
install

Cost per
computer
interface

Twisted pair
copper wire

1 Mb/sec
(20 Mb/sec)

2 km
(0.1 km)

0.02 Gb-km/sec $0.23 $4.60 $2.00 ≈$2

Coaxial cable 10 Mb/sec 1 km 0.01 Gb-km/sec $1.64 $220.00 $15.00 ≈$5

Multimode
optical fiber

600 Mb/sec 2 km 1.20 Gb-km/sec $1.03 $11.80 $10.00≈$1000

Single-mode
optical fiber

2000
Mb/sec

100 km 200.00
Gb-km/sec

$1.64 $23.90 $10.00 ≈$1000

FIGURE 7.10 Figures of merit for several network media in 1995. The coaxial cable is the Thick Net Ethernet standard
(see Figure 7.9) using a vampire tap for termination. Twisted-pair Ethernet lowers cost by using the media in the first row.
Since an optical fiber is a one-way, or simplex, media, the costs per meter and for termination in this figure are for two strands
to supply two-way, or full duplex, communication. The major costs for fiber are the electrical-optical interfaces.

7.5 Connecting More Than Two Computers 579

s, but
hun-

akes

are a
. The
ds of

te the
e net-
give
Let’s compare these media in an example.

E X A M P L E Suppose you have 100 magnetic tapes, each containing 10 GB. Assume
that you have enough tape readers to keep any network busy. How long
will it take to transmit the data over a distance of one kilometer using each
of the media in Figure 7.10? How do they compare to delivering the tapes
by car?

A N S W E R The amount of data is 1000 GB. The time for each medium is given below:

A car filled with tapes is a high-bandwidth medium! ■

Thus far we have discussed two computers communicating over private line
what makes interconnection networks interesting is the ability to connect
dreds of computers together. And what makes them more interesting also m
them more challenging to build.

Shared versus Switched Media

Certainly the simplest way to connect multiple computers is to have them sh
single interconnection medium, just as I/O devices share a single I/O bus
most popular LAN, Ethernet, is simply a bus that can be shared by hundre
computers.

Given that the medium is shared, there must be a mechanism to coordina
use of the shared medium so that only one message is sent at a time. If th
work is small, it may be possible to have an additional central arbiter to

7.5 Connecting More Than Two Computers

Twisted pair
1000 1024 8 Mb××

1 Mb/sec
--- 8,192,000 secs 95 days= = =

Coaxial cable
1000 1024 8 Mb××

10 Mb/sec
--- 819,200 secs 9.5 days= = =

Multimode fiber
1000 1024 8 Mb××

600 Mb/sec
--- 13,653 secs 3.8 hours= = =

Single-mode fiber
1000 1024 8 Mb××

2000 Mb/sec
--- 4096 secs 1.1 hours= = =

Car Time to load car Transport time Time to unload car+ +=

300 secs
1 km

50 kph
---------------- 300 secs+ + = 300 secs 72 secs 300 secs+ +=

672 secs 11.2 min= =

580 Chapter 7 Interconnection Networks

of how

 of
 first
on the
ome
 at the
e-
ere

colli-

arbled
ions
ugh
nsmit
ork
 well.

s buses:
aring
cated
ent

d

out

arbitra-
ded

ck to
tion is
m
 to sub-

giv-
a
le to

m is
permission to send a message. (Of course, this leaves open the question
the nodes talk to the arbiter.)

Centralized arbitration is impractical for networks with a large number
nodes spread out over a kilometer, so we must distribute arbitration. A node
listens to make sure it doesn’t send a message while another message is
network. If the interconnection is idle, the node tries to send. Of course, s
other node may decide to send at the same instant. When two nodes send
same time, it is called a collision. Let’s assume that the network interface can d
tect any resulting collisions by listening to what is sent to hear if the data w
garbled by other data appearing on the line. Listening to avoid and detect
sions is called carrier sensing and collision detection.

To avoid repeated head-on collisions, each node whose message was g
waits (or “backs off”) a random time before resending. Subsequent collis
result in exponentially increasing time between attempts to retransmit. Altho
this approach is not guaranteed to be fair—some subsequent node may tra
while those that collided are waiting—it does control congestion. If the netw
does not have high demand from many nodes, this simple approach works
Under high utilization, performance degrades since the medium is shared.

Shared media have some of the same advantages and disadvantages a
they are inexpensive, but they have limited bandwidth. The alternative to sh
the media is to have a dedicated line to a switch that in turn provides a dedi
line to all destinations. Figure 7.11 shows the potential bandwidth improvem
of switches: Aggregate bandwidth is many times that of the single share
medium.

Switches allow communication directly from source to destination, with
intermediate nodes to interfere with these signals. Such point-to-point communi-
cation is faster than a line shared between many nodes because there is no
tion and the interface is simpler electrically. Of course, it does pay the ad
latency of going through the switch.

Every node of a shared line will see every message, even if it is just to che
see whether or not the message is for that node, so this style of communica
sometimes called broadcast to contrast it with point-to-point. The shared mediu
makes it easy to broadcast a message to every node, and even to broadcast
sets of nodes, called multicasting.

Switches allow multiple pairs of nodes to communicate simultaneously,
ing these interconnections much higher aggregate bandwidth than the speed of
shared link to a node. Switches also allow the interconnection network to sca
a very large number of nodes. Switches are called data switching exchanges, mul-
tistage interconnection networks, or even interface message processors (IMPs).
Depending on the distance of the node to the switch, the network mediu
either copper wire or optical fiber.

7.5 Connecting More Than Two Computers 581
E X A M P L E Compare 16 nodes connected three ways: a single 10 Mb/sec coaxial ca-
ble; a switch connected via twisted pairs, each running at 10 Mb/sec; and
a switch connected via optical fibers, each running at 100 Mb/sec. The
single coax is 500 meters long, and the average length of each segment
to a switch is 50 meters. Both switches can support the full bandwidth,
with the slower version costing $10,000 and the faster version costing
$15,000. Assume each switch adds 50 microseconds to the latency. Cal-
culate the aggregate bandwidth, transport latency, and cost of each alter-
native. Assume the average message size is 125 bytes.

A N S W E R The aggregate bandwidth of each example is the simplest calculation: 10
Mb/sec for the single coax; 16 × 10, or 160 Mb/sec for the switched twisted
pairs; and 16 × 100, or 1600 Mb/sec for the switched optical fibers.

The transport time is

FIGURE 7.11 Shared medium versus switch. Ethernet is a shared medium and ATM is a
switch-based medium. All nodes on the Ethernet must share the 10 Mb/sec interconnection,
but switches like ATM can support multiple 155 Mb/sec transfers simultaneously.

Shared media (Ethernet)

Switched media (ATM)

Node

Node

Node Node

Node

Node Node

Switch

Transport time Time of flight
Message size
Bandwidth

-------------------------------+=

582 Chapter 7 Interconnection Networks
For coax we just plug in the distance, bandwidth, and message size:

For the switches, the distance is twice the average segment, since there
is one segment from the sender to the switch and one from the switch to
the receiver. We must also add the latency for the switch.

Figure 7.12 shows the costs of each option, based on Figure 7.10.
We assumed that the switches included the termination and interfaces.
Since the media is connected to both the nodes and to the switch, we
doubled the labor costs.

The high costs of the thick coaxial cable and vampire taps, illustrated
in this example, have led to the use of twisted pairs for shorter distance
LANs. Although the continuing silicon revolution will lower the price of the
switch, the challenge for the optical fiber is to bring down the cost of the
electrical-optical interfaces. ■

Coax Twisted pair Fiber optic

Termination $3520 $74 $189

Labor $240 $64 $320

Node interfaces $80 $32 $16,000

Media $820 $184 $824

Switch $10,000 $15,000

Total $4660 $10,354 $32,333

FIGURE 7.12 Costs of single coax, twisted pair using switch, and fiber
optics using switch, using costs in Figure 7.10 (page 578).

Transport timecoax
500/1000 10

6×
0.5 299,792.5×
------------------------------------- µsecs

125 8×
10

------------------ µsecs+=

3.3 µsecs 100 µsecs+=

103.3 µsecs=

Transport timetp 2
50/1000 10

6×
0.5 299,792.5×
------------------------------------- 

 × µsecs 50 µsecs
125 8×

10
------------------ µsecs+ +=

0.7 µsecs 50 µsecs 100+ µsecs+=

150.7 µsecs=

Transport timefiber 2
50/1000 10

6×
0.5 299,792.5×
------------------------------------- 

 × µsecs 50 µsecs
125 8×

100
------------------ µsecs+ +=

0.7 µsecs 50 µsecs 10+ µsecs+=

60.7 µsecs=

7.5 Connecting More Than Two Computers 583

licon
muni-
e see
ors re-
as-

tions
lly is
PPs
olo-
hal-

 over

ath
or
e in
-

muni-
m-

e to
logy,
lly
nica-

wn as
y two
ssages
ge of

nd as-
any

-
re it

 an al-
uted
Switches allow communication to harvest the same rapid advance from si
as have processors and main memory. Whereas the switches from telecom
cations companies were once the size of mainframe computers, today w
single-chip switches in MPPs. Just as single-chip processors led to process
placing logic in a surprising number of places, single-chip switches will incre
ingly replace buses and shared media interconnection networks.

Switch Topology

The number of different topologies that have been discussed in publica
would be difficult to count, but the number that have been used commercia
just a handful, with MPP designers being the most visible and imaginative. M
have used regular topologies to simplify packaging and scalability. The top
gies of LANs and WANs are more haphazard, having more to do with the c
lenges of long distance or simply the connection of equipment purchased
several years.

Figure 7.13 illustrates two of the popular switch organizations, with the p
from node P0 to node P6 shown in gray in each topology. A fully connected,
crossbar, interconnection allows any node to communicate with any other nod
one pass through the interconnection. An Omega interconnection uses less hard
ware than the crossbar interconnection (n/2 log2 n vs. n2 switches), but contention
is more likely to occur between messages, depending on the pattern of com
cation. The term blocking is used to describe this form of contention. For exa
ple, in the Omega interconnection in Figure 7.13 a message from P1 to P7 is
blocked while waiting for a message from P0 to P6. Of course, if two nodes try to
send to the same destination—both P0 and P1 send to P6—there will be conten-
tion for that link, even in the crossbar.

Another switch is based on a tree with bandwidth added higher in the tre
match the requirements of common communications patterns. This topo
commonly called a fat tree, is shown in Figure 7.14. Interconnections are norma
drawn as graphs, with each arc of the graph representing a link of the commu
tion interconnection, with nodes shown as black squares and switches sho
shaded circles. This figure shows that there are multiple paths between an
nodes; for example, between node 0 and node 8 there are four paths. If me
are randomly assigned to different paths, communication can take advanta
the full bandwidth of the fat-tree topology.

Thus far the switch has been separate from the processor and memory a
sumed to be located in a central location. Looking inside this switch we see m
smaller switches. The term multistage switch is sometimes used to refer to cen
tralized units to reflect the multiple steps that a message may travel befo
reaches a computer. Instead of centralizing these small switching elements,
ternative is to place one small switch at every computer, yielding a distrib
switching unit.

584 Chapter 7 Interconnection Networks
FIGURE 7.13 Popular switch topologies for eight nodes. The links are unidirectional; data come in at the left and exit
out the right link. The switch box in (c) can pass A to C and B to D or B to C and A to D. The crossbar uses n2 switches,
where n is the number of processors, while the Omega network uses n/2 log2 n of the large switch boxes, each of which is
logically composed of four of the smaller switches. In this case the crossbar uses 64 switches versus 12 switch boxes or 48
switches in the Omega network. The crossbar, however, can simultaneously route any permutation of traffic pattern between
processors. The Omega network cannot.

P
0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

a. Cross bar b. Omega network

A

B

C

D

c. Omega network switch box

7.5 Connecting More Than Two Computers 585

ther.
ork

 along
es, a
e sec-
Rings
t travel
e

 side
Given a distributed switch, the question is how to connect the switches toge
Figure 7.15 shows that a low-cost alternative to full interconnection is a netw
that connects a sequence of nodes together. This topology is called a ring. Since
some nodes are not directly connected, some messages will have to hop
intermediate nodes until they arrive at the final destination. Unlike shared lin
ring is capable of many simultaneous transfers: the first node can send to th
ond at the same time as the third node can send to the fourth, for example.
are not quite as good as this sounds because the average message mus
through n/2 switches, where n is the number of nodes. To first order, a ring is lik
a pipelined bus: on the plus side are point-to-point links, and on the minus
are “bus repeater” delays.

FIGURE 7.14 A fat-tree topology for 16 nodes. The shaded circles are switches, and the squares at the bottom are pro-
cessor-memory nodes. A simple 4-ary tree would only have the links at the front of the figure; that is, the tree with the root
labeled 0,0. This three-dimensional view suggests the increase in bandwidth via extra links at each level over a simple tree,
so bandwidth between each level of a fat tree is normally constant rather than being reduced by a factor of four as in a 4-
ary tree. Multiple paths and random routing give it the ability to route common patterns well, which ensures no single pattern
from a broad class of communication patterns will do badly. In the CM-5 fat-tree implementation, the switches have four
downward connections and two or four upward connections; in this figure the switches have two upward connections.

00 10

01
11

02
12

03
13

00
10

20
30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

586 Chapter 7 Interconnection Networks

ch
ken. (A
as a
trate

ated
 per-
cost,
 de-
erfor-
 large
l ma-
rfor-
s.

vered
g
 then
ully

as to
tion
 that
 pos-
these
 64
One variation of rings used in local area networks is the token ring. To simplify
arbitration, a single slot, or token, is passed around the ring to determine whi
node is allowed to send a message; a node can send only when it gets the to
token is simply a special bit pattern.) In this section we will evaluate the ring
topology with more bandwidth rather than one that may be simpler to arbi
than a long shared medium.

A straightforward but expensive alternative to a ring is to have a dedic
communication link between every switch. The tremendous improvement in
formance of fully connected switches is offset by the enormous increase in
typically going up with the square of the number of nodes. This cost inspires
signers to invent new topologies that are between the cost of rings and the p
mance of fully connected networks. The evaluation of success depends in
part on the nature of the communication in the interconnection network. Rea
chines frequently add extra links to these simple topologies to improve pe
mance and reliability. Figure 7.16 illustrates three popular topologies for MPP

One popular measure for MPP interconnections, in addition to the ones co
in section 7.2, is the bisection bandwidth. This measure is calculated by dividin
the interconnect into two roughly equal parts, each with half the nodes. You
sum the bandwidth of the lines that cross that imaginary dividing line. For f
connected interconnections the bisection bandwidth is (n/2)2, where n is the num-
ber of nodes.

Since some interconnections are not symmetric, the question arises
where to draw the imaginary line when bisecting the interconnect. Bisec
bandwidth is a worst-case metric, so the answer is to choose the division
makes interconnection performance worst; stated alternatively, calculate all
sible bisection bandwidths and pick the smallest. Figure 7.17 summarizes
different topologies using bisection bandwidth and the number of links for
nodes.

FIGURE 7.15 A ring network topology.

7.5 Connecting More Than Two Computers 587
FIGURE 7.16 Network topologies that have appeared in commercial MPPs. The shaded
circles represent switches, and the black squares represent nodes. Even though a switch has
many links, generally only one goes to the node. Frequently these basic topologies have been
supplemented with extra arcs to improve performance and reliability. For example, the
switches in the left and right columns of the 2D grid are connected together using the unused
ports on each switch to form the 2D torus. The Boolean hypercube topology is an n-dimen-
sional interconnect for 2n nodes, requiring n ports per switch (plus one for the processor), and
thus n nearest neighbor nodes.

Evaluation category Bus Ring 2D torus 6-cube Fully connected

Performance

Bisection bandwidth 1 2 16 32 1024

Cost

Ports per switch
Total number of lines

NA
1

3
128

5
192

7
256

64
2080

FIGURE 7.17 Relative cost and performance of several interconnects for 64 nodes. The bus is the standard refer-
ence at unit cost, and of course there can be more than one data line along each link between nodes. Note that any
network topology that scales the bisection bandwidth linearly must scale the number of interconnection lines faster than lin-
early. Figure 7.13a on page 584 is an example of a fully connected network.

a. 2D grid or mesh of 16 nodes

c. Hypercube tree of 16 nodes (16 = 24 so n = 4)

b. 2D torus of 16 nodes

588 Chapter 7 Interconnection Networks
E X A M P L E Let’s examine the difference between the bisection bandwidths of each to-
pology in Figure 7.17 for 64 nodes. Assume all-to-all communication:
each node does a single transfer to every other node. We simplify the
communication cost model for this example: it takes one time unit to go
from switch to switch, and there is no cost in or out of the processor.
Assuming every link of every interconnect is the same speed and that a
node can send as many messages as it wants at a time, how long does it
take for complete communication? (See Exercise 7.8 for a more realistic
version of this example.)

A N S W E R For each node to send a message to every other node, we need to send
64 × 63 or 4032 messages. Here are the cases in increasing order of dif-
ficulty of explanation:

■ Bus—Transfers are done sequentially, so it takes 4032 time units.

■ Fully connected—All transfers are done in parallel, taking one time
unit.

■ Ring—This is easiest to see step by step. In the first step each node
sends a message to the node with the next higher address, with node
63 sending to node 0. This takes one step for all 64 transfers to the
nearest neighbor. The second step sends to the node address + 2
modulo 64. Since this goes through two links, it takes two time units.
It would seem that this would continue until we send to the node ad-
dress + 63 modulo 64 taking 63 time units, but remember that these
are bidirectional links. Hence, sending from node 1 to node 1 + 63
modulo 64 = 0 takes just one time unit because there is a link con-
necting them together. Then the calculation for the ring is

■ 2D torus—There are eight rows and eight columns in our torus of 64
nodes. Remember that the top and bottom rows of a torus are just
one link away, as are the leftmost and rightmost columns. This allows
us to treat the communication as we did the ring, in that there are no
special cases at the edges. Let’s first calculate the time to send a
message to all the nodes in the same row. This time is the same as
a ring with just eight nodes:

TimeRing 1 2 … 31 32 31 … 2 1+ + + + + + + +=

31 32×
2

------------------ 32
31 32×

2
------------------ 496 32 496+ +=+ +=

1024=

7.5 Connecting More Than Two Computers 589
To send a message to all the elements in the row below, all eight mes-
sages must first take one time unit to get to that row. The time for the
eight messages to get to the proper node within that row is the same
as the time to send a message to all elements of a row:

TimeRow below = 8 × 1 + TimeRow

This can be generalized as the time it takes to send eight messages
to each row plus the time to distribute the messages within a row:

This is only sending one message at a time per node, even though
each node has multiple links. The communication pattern suggested
above first uses vertical and then horizontal links, using only half the
potential interconnection bandwidth. By carefully selecting pairs of
communications that have the same number of vertical hops as the
other has horizontal hops and vice versa, the time for complete com-
munication can be cut approximately in half.

■ 6-cube—The number of nodes at each distance in a 6-cube can be
found from Pascal’s Triangle: 6 at distance 1, 15 at 2, 20 at 3, 15 at
4, 6 at 5, and 1 at distance 6. The number of hops for a node to send
to all other nodes is

(1 × 6) + (2 × 15) + (3 × 20) + (4 × 15) + (5 × 6) + (6 * 1) = 6 + 30 + 60
+ 60 + 30 + 6 = 192

Since every node must send this message, the total number required
is 64 × 192 = 12,228. Since the interconnection network has 64 ×
(6/2) = 192 links, it will take 12,228/192 = 64 cycles to complete all
hops.

TimeRow 1 2 3 4 3 2 1+ + + + + +=

3 4×
2

------------ 4
3 4×

2
------------ 6 4 6+ +=+ +=

16=

Time2D TimeRow 8 1 TimeRow+×() 8 2 TimeRow+×() …+ + +=

8 4 TimeRow+×() … 8 1 TimeRow+×()+ + +

TimeRow 8 1 8 2× 8 3× 8 4× 8 3 8 2 8 1×+×+×+ + + +×() 7 TimeRow×+ +=

8 Time× Row 8 1 2 3 4 3 2 1+ + + + + +()×+=

256=

590 Chapter 7 Interconnection Networks
Figure 7.18 summarizes the calculations from this example.

■

E X A M P L E A common communication pattern in scientific programs is to consider the
nodes as elements of a two-dimensional array and then have communi-
cation to the nearest neighbor in a given direction. (This is sometimes
called NEWS communication, standing for north, east, west, and south,
the directions on the compass.) Map an eight-by-eight array onto the 64
nodes in each topology, and assume every link of every interconnect is
the same speed. How long does it take for each node to send one mes-
sage to its northern neighbor and one to its eastern neighbor? Ignore
nodes that have no northern or eastern neighbors.

A N S W E R In this case we want to send 2 × (64 – 8), or 112, messages. Here are the
cases, again in increasing order of difficulty of explanation:

■ Bus—The placement of the eight-by-eight array makes no difference
for the bus, since all nodes are equally distant. The 112 transfers are
done sequentially, taking 112 time units.

■ Fully connected—Again the nodes are equally distant; all transfers
are done in parallel, taking one time unit.

■ Ring—Here the nodes are differing distances. Assume the first row
of the array is placed on nodes 0 to 7, the second row on nodes 8 to
15, and so on. It takes just one time unit to send to the eastern neigh-
bor, for this is a send from node n to node n + 1. The northern neigh-
bor is exactly eight nodes away in this scheme, so it takes eight time
units for each node to send to its northern neighbor. The ring total is
nine time units.

■ 2D torus—There are eight rows and eight columns in our grid of 64
nodes, which is a perfect match to the NEWS communication. It takes
just two time units to send to the northern and eastern neighbors.

■ 6-cube—It is possible to place the array so that it will take just two
time units for this communication pattern, as in the case of the 2D grid.

Figure 7.18 also summarizes the calculations from this example. ■

Evaluation category Bus Ring 2D torus 6-cube Fully connected

Time all-to-all 4032 1024 256 64 1

Time north & east 112 8 1 1 1

FIGURE 7.18 Summary of the communication times for all-to-all and for nearest
northern and eastern neighbors calculated in the surrounding examples.

7.5 Connecting More Than Two Computers 591

veral
 net-
hips,
-like.

n
er-
itch
ent
ends

gy.
 look
ottom
ese
The simple analysis of interconnection networks in this section ignores se
important practical considerations in the construction of an interconnection
work. First, these three-dimensional drawings must be mapped onto c
boards, and cabinets that are essentially two-dimensional media, often tree
For example, due to the fixed height of cabinets, an n-node Intel Paragon uses a

 rectangular grid rather than the ideal of . Another consid
ation is the internal speed of the switch: if it is fixed, then more links per sw
means lower bandwidth per link, potentially affecting the desirability of differ
topologies. Yet another consideration is that the latency through a switch dep
on the complexity of the routing pattern, which in turn depends on the topolo

Topologies that appear elegant when sketched on the blackboard may
awkward when constructed from chips, cables, boards, and boxes. The b
line is that quality of implementation matters more than topology. To put th
topologies in perspective, Figure 7.19 lists those used in commercial MPPs.

Institution Name
Number
of nodes

Basic
topology

Data
bits/link

Network
clock rate

Peak
BW/link
(MB/sec)

Bisection
(MB/sec) Year

Thinking
Machines

CM-2 1024 to
4096

12-cube 1 7 MHz 1 1024 1987

nCube nCube/ten 1 to 1024 10-cube 1 10 MHz 1.2 640 1987

Intel iPSC/2 16 to 128 7-cube 1 16 MHz 2 345 1988

Maspar MP-1216 32 to 512 2D grid +
multistage
Omega

1 25 MHz 3 1300 1989

Intel Delta 540 2D grid 16 40 MHz 40 640 1991

Thinking
Machines

CM-5 32 to 2048 Multistage
fat tree

4 40 MHz 20 10,240 1991

Meiko CS-2 32 to 1024 Multistage
fat tree

8 70 MHz 50 50,000 1992

Intel Paragon 4 to 2048 2D grid 16 100 MHz 175 6400 1992

IBM SP-2 2 to 512 Multistage
fat tree

8 40 MHz 40 20,480 1993

Cray
Research

T3D 16 to 2048 3D torus 16 150 MHz 300 76,800 1993

FIGURE 7.19 Characteristics of interconnections of some commercial MPPs. The bisection bandwidth is given for
the largest machine. The 2D grid of the Intel Delta is 16 rows by 35 columns. The fat-tree topology of the CM-5 is restricted
in the lower two levels, hence the lower bandwidth in the bisection. Note that the Cray T3D has two processors per node
and the Intel Paragon has from two to as many as four processors per node.

n 16⁄ 16× n n×

592 Chapter 7 Interconnection Networks

owed

n can
com-
 the

ution
lots,

fi-
 con-
tance

tion
ok-
mmu-

nica-

rom
 cir-
 in-
f

tells

 the
Connection-Oriented versus Connectionless
Communication

Before computers arrived on the scene, the telecommunications industry all
communication around the world. An operator sets up a connection between a
caller and a callee, and once the connection is established, a conversatio
continue for hours. To share transmission lines over long distances, the tele
munications industry uses switches to multiplex several conversations on
same lines. Since audio transmissions have relatively low bandwidth, the sol
was to divide the bandwidth of the transmission line into a fixed number of s
with each slot assigned to a conversation. This technique is called frequency-
division multiplexing.

Although a good match for voice, frequency-division multiplexing is inef
cient for sending data. The problem is that the time slot is dedicated to the
versation whether or not there is anything being said. Hence the long dis
lines are “busy” based on the number of conversations, and not on the amount of
information being sent at a particular time. An alternative style of communica
is called connectionless, where each package is routed to the destination by lo
ing at its address. The postal system is a good example of connectionless co
nication.

Closely related to the idea of connection versus connectionless commu
tion are the terms circuit switching and packet switching. Circuit switching is the
traditional way to offer a connection-based service. A circuit is established f
source to destination to carry the conversation, reserving bandwidth until the
cuit is broken. The alternative to circuit-switched transmission is to divide the
formation into packets, or frames, with each packet including the destination o
the packet plus a portion of the information. Queuing theory in section 6.4
us that packets cannot use all of the bandwidth, but in general this packet-
switched approach allows more use of the bandwidth of the medium and is
traditional way to support connectionless communication.

E X A M P L E Let’s compare a single 100 Mbits/sec packet switched network with ten
10 Mbits/sec packet-switched networks. Assume that the mean size of a
packet is 250 bytes, the arrival rate is 25,000 packets per second, and the
interarrival times are exponentially distributed. What is the mean re-
sponse time for each alternative? What is the intuitive reason behind
the difference?

A N S W E R From section 6.4 in the prior chapter, we can use an M/M/1 queue to
calculate the mean response time for the single fast network:

7.5 Connecting More Than Two Computers 593

er-
n top
nnec-

upon
 node.

 to see
The 10 slow networks can be modeled by an M/M/m queue, and the
appropriate formulas are found in section 6.7:

The intuition is clear from the results: the service time is much less
for the faster networks even though the queuing times are the same. This
intuition is the argument for “statistical multiplexing” using packets; queu-
ing times are not worse for a single faster network, and the latency for a
single packet is much less. Stated alternatively, you get better latency
when you use an unloaded fast network, and data traffic is bursty so it
works. ■

Although connections are traditionally aligned with circuit switching, it is c
tainly possible to provide the user the appearance of a logical connection o
of a packet-switched network. TCP/IP, as we shall see in section 7.9, is a co
tion-oriented service that operates over packet-switched networks.

Routing: Delivering Messages

Given that the path between nodes may be difficult to navigate depending
the topology, the system must be able to route the message to the desired
Shared media has a simple solution: The message is broadcast to all nodes that
share the media, and each node looks at an address within the message

Service rate
100 10

6×
250 8×

------------------------ 100 10
6×

2000
------------------------ 50,000 packets per second= = =

Timeserver
1

50,000
---------------- 0.00002 secs 20 µsecs= = =

Utilization
Arrival rate
Service rate
---------------------------- 25,000

50,000
---------------- 0.5= = =

Timequeue Timeserver
Server utilization

1 Server utilization–()
---× 20 µsecs

0.5
1 0.5–
----------------× 20

0.5
0.5
-------× 20 µsecs= = = =

Mean response time Timequeue Timeserver+ 20 20+ 40 µsecs= = =

Service rate
10 10

6×
250 8×
--------------------- 10 10

6×
2000

--------------------- 5000 packets per second= = =

Timeserver
1

5000
------------ 0.0002 secs 200 µsecs= = =

Utilization
Arrival rate

m Service rate×
--------------------------------------- 25,000

10 5000×
------------------------ 25,000

50,000
---------------- 0.5= = = =

Timequeue Timeserver
Server utilization

m 1 Server utilization–()×
--× 200 µsecs

0.5
10 1 0.5–()×
---------------------------------× 20

0.5
0.5
-------× 20 µsecs= = = =

Mean response time Timequeue Timeserver+ 20 200+ 220 µsecs= = =

594 Chapter 7 Interconnection Networks

dcast
cast is

llows

imply

 must

ptive
n
reby

it is
ader,
 with-

-
 strung
ting

g-out
large
uffer

and-
iate
he
whether the message is for that node. This routing also made it easy to broa
one message to all nodes by reserving one address for everyone; broad
much harder to support in switch-based networks.

Switched media use three solutions for routing. In source-based routing, the
message specifies the path to the destination. Since the network merely fo
directions, it can be simpler. One alternative is the virtual circuit, whereby a cir-
cuit is established between source and destination, and the message s
names the circuit to follow. Another approach is a destination-based routing,
where the message merely contains a destination address, and the switch
pick a path to deliver the message. Destination-based routing may be determinis-
tic and always follow the same path, or it may be adaptive, allowing the network
to pick different routes to avoid failures or congestion. Closely related to ada
routing is randomized routing, whereby the network will randomly pick betwee
several equally good paths to spread the traffic throughout the network, the
avoiding hot spots.

Switches in wide area networks route messages using a store-and-forward
policy; each switch waits for the full message to arrive in the switch before
sent on to the next switch. The alternative is for the switch to examine the he
decide where to send the message, and then start forwarding it immediately
out waiting for the rest of the message. This alternative is called either cut-
through routing or wormhole routing and is popular in MPP networks. In worm
hole routing, when the head of the message is blocked, the message stays
out over the network, potentially blocking other messages. Cut-through rou
lets the tail continue when the head is blocked, compressing the strun
message into a single switch. Clearly, cut-through routing requires a buffer
enough to hold the largest packet, while wormhole routing needs only to b
the piece of the packet that is sent between switches.

The advantage of both cut-through and wormhole routing over store-
forward is that latency reduces from a function of the number of intermed
switches multiplied by the size of the packet to the time for the first part of t
packet to negotiate the switches plus the transmission time.

E X A M P L E The CM-5 uses wormhole routing, with each switch buffer being just 4 bits
per port. Compare efficiency of store-and-forward versus wormhole rout-
ing for a 128-node machine using a CM-5 interconnection sending a 16-
byte payload. Assume each switch takes 0.25 microseconds and that the
transfer rate is 20 MB/sec.

A N S W E R Each switch in the CM-5 is one node of the 4-ary fat tree. The CM-5 inter-
connection for 128 nodes is four levels high, so a message goes through
seven intermediate switches. Each CM-5 packet has four bytes of header
information, so the length of this packet is 20 bytes. The time to transfer
20 bytes over one CM-5 link is

20
20 MB/sec
-------------------------- 1 µsec=

7.5 Connecting More Than Two Computers 595

rks
e re-

er or-

hed,
n be
s are
ull, no
 when
hone
 at a

nce,
. Just
ckets
livered
ere is

ce of

tance
Then the time for store and forward is

(Switches × Switch delay) + ((Switches + 1) × Transfer time) = (7 × 0.25) + (8 × 1) = 9.75 µsecs

while wormhole routing is

(Switches × Switch delay) + Transfer time = (7 × 0.25) + 1 = 2.75 µsecs

For this example, wormhole routing improves latency by more than a
factor of three. ■

A final routing issue is the order in which packets arrive. Some netwo
require that packets arrive in the order in which they are sent. The alternativ
moves this restriction, requiring software to reassemble the packets in prop
der.

Congestion Control

One advantage of a circuit-switched network is that once a circuit is establis
it ensures there is sufficient bandwidth to deliver all the information that ca
sent along that circuit. Thus interconnection bandwidth is reserved as circuit
established rather than consumed as data are sent, and if the network is f
more circuits can be established. You may have encountered this blockage
trying to place a long distance phone call on a popular holiday, as the telep
system tells you that “all circuits are busy” and asks you to please call back
later time.

Packet-switched networks do not reserve interconnect bandwidth in adva
so the interconnection network can become clogged with too many packets
as with rush hour traffic, a traffic jam of packets increases packet latency. Pa
take longer to arrive, and in extreme cases fewer packets per second are de
by the interconnect, just as is the case for the poor rush-hour commuters. Th
even the computer equivalent of gridlock: deadlock is achieved when packets in
the interconnect can make no forward progress no matter what sequen
events happens. Chapter 8 addresses how to avoid this ultimate congestion.

These problems are exacerbated with higher bandwidth and longer dis
networks, as this Example illustrates.

E X A M P L E Assume a 155 Mbits/sec network stretching from San Francisco to New
York City. How many bytes will be in flight? What is the number if the net-
work is upgraded to 1000 Mbits/sec?

A N S W E R The speed of light is still 299,792.5 kilometers per second, signals go at
about 50% of the speed of light in a conductor, and the distance between
San Francisco and New York City is 4120 km. Calculating time of flight:

596 Chapter 7 Interconnection Networks

 net-
 the
 the
puter

, flow

e re-
 lost

d
 send
jacent
ceiver

 end
ack-

n of
t to

-
 the
ction
ndow.
Let’s assume the network delivers 50% of the peak bandwidth. The num-
ber of bytes in transit on a 155 Mbits/sec network is

At 1000 Mbits/sec the number is

Clearly a megabyte of messages will be a challenge to control and to
store. ■

The solution to congestion is to prevent new packets from entering the
work until traffic is reduced. Using our automobile analogy, this is the role of
metering lights on freeway on-ramps that control the rate of cars entering
freeway. There are three basic schemes used for congestion control in com
interconnection networks, each with its own weaknesses: packet discarding
control, and choke packets.

The simplest, and most callous, is packet discarding. If a packet arrives at a
switch and there is no room in the buffer, the packet is discarded. This schem
lies on higher-level software that handles errors in transmission to resend
packets. Internetworking protocols such as UDP discard packets.

The second scheme is to rely on flow control between pairs of receivers an
senders. The idea is to use feedback to tell the sender when it is allowed to
the next packet. One version of feedback is via separate wires between ad
senders and receivers that tell the sender to stop immediately when the re
cannot accept another message. This back-pressure feedback is rapidly sent back
to the original sender over dedicated lines, causing all links between the two
points to be frozen until the receiver can make room for the next message. B
pressure flow control is common in MPPs. A more sophisticated variatio
feedback is for the ultimate destination to give the original sender the righ
send n packets before getting permission to send more. The collection of n pack-
ets is typically called a window, with the window’s size determining the mini
mum frequency of communication from receiver to sender. The goal of
window is to send enough packets to overlap the latency of the interconne
with the overhead to send and receive a packet. The TCP protocol uses a wi

Time of flight
4120 km

0.5 299,792.5 × km/sec
-- 0.0275 secs= =

Bytes in transit Delivered bandwidth Time of Flight×=

0.5 155× Mbits/sec
8

-- 0.0275 secs× 9.7 MB/sec 0.0275 secs×= =

260 KB=

Bytes in transit
0.5 1000× Mbits/sec

8
--- 0.0275 secs× 62.5 MB/sec 0.0275 secs×= =

1678 KB=

7.6 Practical Issues for Commercial Interconnection Networks 597

text-
 and

es is
trol,

h to
 Each
urce
ected
ave
sit to

so far
dard-

ction
 low

 both
nter-
 de-
arket,

 cus-
ter-
pany

gree
ging
ld

ter if
es or
om-
h of

 by the
This brings us to a point of confusion on terminology in many papers and
books. Note that flow control describes just two nodes of the interconnection
not the total interconnection network between all end systems. Congestion con-
trol refers to schemes that reduce traffic when the collective traffic of all nod
too large for the network to handle. Hence flow control helps congestion con
but it is not a universal solution.

The third scheme is based on choke packets. The observation is that you only
want to limit traffic when the network is congested. The idea is for each switc
see how busy it is, entering a warning state when it passes a threshold.
packet received by the switch in a warning state will be sent back to the so
via a choke packet that includes the intended destination. The source is exp
to reduce traffic to that destination by a fixed percentage. Since it likely will h
already sent many packets along that path, it waits for all the packets in tran
be returned before taking choke packets seriously.

There are two practical issues in addition to the technical issues described
that are important considerations for some interconnection networks: stan
ization and fault tolerance.

Standardization

Standards are useful in many places in computer design, but with interconne
networks they are often critical. Advantages of successful standards include
cost and stability: the customer has many vendors to choose from, which
keeps price close to cost due to competition and makes the viability of the i
connection independent of the stability of a single company. Components
signed to be used in a standard interconnection may also have a larger m
and this higher volume can lower the vendor’s costs, further benefitting the
tomer. Finally, a standard allows many companies to build products with in
faces to the standard, so the customer does not have to wait for a single com
to develop interfaces to all the products the customer might be interested in.

One drawback of standards is that it takes a long time for committees to a
on the definition of standards, which is a problem when technology is chan
quickly. Another problem is when to standardize: on one hand, designers wou
like to have a standard before anything is built; on the other, it would be bet
something is built before standardization to avoid legislating useless featur
omitting important ones. When done too early, it is often done entirely by c
mittee, which is somewhat like asking all of France to prepare a single dis
food. Standards can also suppress innovation, since the interfaces are fixed
standard.

7.6 Practical Issues for Commercial
Interconnection Networks

598 Chapter 7 Interconnection Networks

nd
nnect
ver
ity of
mers

, the
argu-
ercon-
ed for

es on
erly.
lures,
rest of

put-
lerate

uters
 fail.

itch-
e co-
s it
MPP interconnection networks are traditionally proprietary, while LANs a
WANs use standards. WANs involve many types of companies and must co
to many brands of computers, so it is difficult to imagine a proprietary WAN e
being successful. The ubiquitous nature of the Ethernet shows the popular
standards for LANs as well as WANs, and it seems unlikely that many custo
would tie the viability of their LAN to the stability of a single company.

Since an MPP is really a single brand of computer from a single company
customer is already betting on a single company, removing one of the main
ments for interconnect standards. Thus the few MPPs that used standard int
nections did so to take advantage of the lower cost of components develop
these standards.

Node Failure Tolerance

The second practical issue refers to whether or not the interconnection reli
all the nodes being operational in order for the interconnection to work prop
Since software failures are generally much more frequent than hardware fai
the question is whether a software crash on a single node can prevent the
the nodes from communicating.

Clearly WANs would be useless if they demanded that thousands of com
ers spread across a continent be continuously available, and so they all to
the failures of individual nodes. LANs connect dozens to hundreds of comp
together, and again it would be impractical to require that no computer ever
All successful LANs normally survive node failures.

Although some MPPs have the ability to work around failed nodes and sw
es, it is not clear that MPP operating systems support this feature. The clos
operation of the software on an MPP during communication also make
unlikely that the interconnection would be useful if a single node crashed.

E X A M P L E Figure 7.20 shows the number of failures of 58 workstations on a local
area network for a period of just over one year. Suppose that one local
area network is based on a network that requires all machines to be op-
erational for the interconnection network to send data; if a node crashes,
it cannot accept messages, so the interconnection becomes choked with
data waiting to be delivered. An alternative is the traditional local area net-
work, which can operate in the presence of node failures; the interconnec-
tion simply discards messages for a node that decides not to accept them.
Assuming that you need to have both your workstation and the connecting
LAN to get your work done, how much greater are your chances of being
prevented from getting your work done using the failure-intolerant LAN
versus traditional LANs? Assume the down time for a crash is less than
30 minutes. Calculate using the one-hour intervals from this figure.

7.6 Practical Issues for Commercial Interconnection Networks 599

 can
o the
 new

 the
rk ad-
, for
A N S W E R Assuming the numbers for Figure 7.20, the percentage of hours that you
can’t get your work done using the failure-intolerant network is

The percentage of hours that you can’t get your work done using the
traditional network is just the time your workstation has crashed. Assum-
ing that these failures are equally distributed among workstations, the per-
centage is

Hence you are more than 30 times more likely to be prevented from get-
ting your work done with the failure-intolerant LAN than with the traditional
LAN, according to the failure statistics in Figure 7.20. Stated alternatively,
the person responsible for maintaining the LAN would receive a thirtyfold
increase in phone calls from irate users! ■

One practical issue is tied to node failure tolerance: If the interconnection
survive a failure, can it also continue operation while a new node is added t
interconnection? If not, the interconnection must be disabled each time a
node is added. Disabling is impractical for both WANs and LANs.

Finally, we have been discussing the ability of the network to operate in
presence of failed nodes. Clearly as important to the happiness of the netwo
ministrator is the reliability of the network media and switches themselves
their failure is certain to frustrate much of the user community.

Intervals with failures
Total intervals

-- Total intervals – Intervals no failures
Total intervals

--=

8974 8605–
8974

------------------------------ 369
8974
------------ 4.1%= ==

Failures/Machines
Total intervals

--
654/58
8974

---------------- 11.28
8974
------------- 0.13%===

600 Chapter 7 Interconnection Networks
Failed
machines per
time interval

One-hour intervals
with number of failed

machines in
first column

Total failures per
one-hour interval

One-day intervals
with number of failed

machines in
first column

Total failures per
one-day interval

0 8605 0 184 0

1 264 264 105 105

2 50 100 35 70

3 25 75 11 33

4 10 40 6 24

5 7 35 9 45

6 3 18 6 36

7 1 7 4 28

8 1 8 4 32

9 2 18 2 18

10 2 20

11 1 11 2 22

12 1 12

17 1 17

20 1 20

21 1 21 1 21

31 1 31

38 1 38

58 1 58

Total 8974 654 373 573

FIGURE 7.20 Measurement of reboots of 58 DECstation 5000s running Ultrix over a 373-day period. These reboots
are distributed into time intervals of one hour and one day. The first column is used to sort the intervals according to the
number of machines that failed in that interval. The next two columns concern one-hour intervals, and the last two columns
concern one-day intervals. The second and fourth columns show the number of intervals for each number of failed ma-
chines. The third and fifth columns are just the product of the number of failed machines and the number of intervals. For
example, there were 50 occurrences of one-hour intervals with two failed machines, for a total of 100 failed machines, and
there were 35 days with two failed machines, for a total of 70 failures. As we would expect, the number of failures per interval
changes with the size of the interval. For example, the day with 31 failures might include one hour with 11 failures and one
hour with 20 failures. The last row shows the total number of each column: the number of failures don’t agree because mul-
tiple reboots of the same machine in the same interval do not result in separate entries. (These data were collected by Randy
Wang of U.C. Berkeley.)

7.7 Examples of Interconnection Networks 601

 solu-
 7.22

works
e net-

with
oday.
acket-
 for

8 and
 solu-
o use
ernets
er as
reby
ters.

ibed

 traf-
s are

side
at the
, dis-

o
ges,
rs di-
age-

eir ad
To further understand these issues, this section explores examples and the
tions used in each context. Figure 7.21 lists several examples and Figure
shows the packet formats for three examples. Figure 7.23 shows where net
are connected on several systems and the level of processing available on th
work interface card. We discuss a few networks in more detail.

The first example is the Ethernet: It has been extraordinarily successful
the 10 Mbits/sec standard proposed in 1978 used practically everywhere t
Many classes of computers include Ethernet as a standard interface. This p
switched network uses carrier sensing with exponential backoff to arbitrate
the network, and has been codified as IEEE 802.3.

Given that computers are hundreds of times faster than they were in 197
the shared interconnection is no faster, engineers have invented temporary
tions until a faster interconnect can take Ethernet’s place. One solution is t
multiple Ethernets to connect machines and to connect these smaller Eth
with devices that can take traffic from one Ethernet and pass it on to anoth
needed. These devices allow individual Ethernets to operate in parallel, the
increasing the aggregate interconnection bandwidth of a collection of compu
In effect these devices provide similar functionality to the switches descr
above for point-to-point networks.

Figure 7.24 shows the potential parallelism. Depending on how they pass
fic and what kinds of interconnections they can put together, these device
named differently:

■ Bridges—These devices connect LANs together, passing traffic from one
to another depending on the addresses in the packet. Bridges operate
Ethernet protocol level and are usually simpler and cheaper than routers
cussed next.

■ Routers or gateways—These devices connect LANs to WANs or WANs t
WANs and resolve incompatible addressing. Generally slower than brid
they operate at the internetworking protocol level (see section 7.9). Route
vide the interconnect into separate smaller subnets, which simplifies man
ability and improves security.

Since these devices were not planned as part of the Ethernet standard, th
hoc nature has added to the difficulty and cost of maintaining LANs.

7.7 Examples of Interconnection Networks

602 Chapter 7 Interconnection Networks

/sec

00

22…

iber

22

r

One potential successor to Ethernet is FDDI, which stands for fiber-distributed
data interface. This optical-based interconnection was specified at 100 Mbits

MPP LAN WAN

CM-5
IBM
SP-2

Intel
Paragon

Cray
T3D Ethernet

100-Mb
Ethernet

Switched
Ethernet FDDI ATM

Length
(meters)

25 10? 10? 10.3 500/
2500

200 500/2500 4000 100/10

Number
data lines

4 8 16 16 1 1 1 1 1

Clock rate
(MHz)

40 40 100 150 10 100 10 100 155/6

Switch? Yes Yes Yes Yes No No Yes No Yes

Nodes ≤2048 ≤512 ≤1024 ≤2048 ≤254 ≤254 ≤254 ≤254 ≈10000

Material Copper Copper Copper Copper Copper Copper Copper FiberCopper/f

Bisection
BW
(Mbits/sec)

40x
Nodes

320x
Nodes

1600x
Nodes1/2

2400x
Nodes2/3

10 100 10x
Nodes

100 155x
Nodes

Peak link
BW
(Mbits/sec)

160 320 1600 2400 10 100 10 100 155/6

Measured
link BW

160 284 1400 1120 9 97 10

Latency
(µsecs)

5 1 1 0.2 15 1.5 ≈50 10 ≈50

Send +
receive
overheads
(µsecs)

15 39 24 0.7 440 440 440 ≈500 630

Topology Fat tree Fat tree 2D mesh 3D torus Line Line Star Ring Sta

Connec-
tionless?

Yes Yes Yes Yes Yes Yes Yes Yes No

Store &
forward?

No No No No No No No No Yes

Congestion
control

Back-
pressure

Back-
pressure

Back-
pressure

Back-
pressure

Carrier
sense

Carrier
sense

Carrier
sense

Token

Standard No No No No IEEE
802.3

ATM
Forum

Fault
tolerance

No Yes No No Yes Yes Yes Yes Yes

FIGURE 7.21 Several examples of MPP, LAN, and WAN interconnection networks. The overhead figure is hardware
and software overhead, measured on SPARCStation-10s for the LANs and WAN (see section 7.10).

7.7 Examples of Interconnection Networks 603
FIGURE 7.22 Packet format for CM-5, Ethernet, and ATM. ATM calls their messages “cells” instead of packets, so this
is more properly called the ATM cell format (see section 7.10). The width of each drawing is 32 bits. All three formats have
destination addressing fields, encoded differently for each situation. All three also have a checksum field (C) to catch trans-
mission errors, although the ATM checksum field is calculated only over the header; ATM relies on higher-level protocols to
catch errors in the data. Both CM-5 and the Ethernet have a length field (L), since the packets hold a variable amount of
data, with the former counted in 32-bit words and the latter in bytes. The CM-5 and ATM headers have a type field (T) that
gives the type of packet. The remaining Ethernet fields are a preamble to allow the receiver to recover the clock from the
self-clocking code used on the Ethernet, the source address, and a pad field to make sure the smallest packet is 64 bytes
(including the header).

ATM

Data (48)

Destination

C

T

CM-5

C

T LRoute

Data (4 - 20)

32 bits

Ethernet

Preamble

Preamble

Pad (0-46)

Checksum

32 bits

32 bits

Destination

Destination

Length

Source

Source

Data (0 - 1500)

604 Chapter 7 Interconnection Networks

rited
dium,
 and
ich
cting

te is
rnet.

tches

band-
 the

ork
lds
g a
and could use much longer cables than Ethernet. Unfortunately, FDDI inhe
Ethernet’s weakness in that all machines shared the interconnection me
with only one packet on the medium at a time, so FDDI still needed bridges
routers. FDDI is currently most widely used as a “backbone” network, wh
simply means connecting LANs together via their routers rather than conne
desktop computers.

Today, there are three more promising LAN candidates. The first candida
one of two competing standards that offer a 100 Mbits/sec version of the Ethe
The second builds on the trend toward many smaller networks by making swi
a part of the standard. Switched Ethernet simply includes fast, multiport switches
so that the bandwidth to a single machine is no higher, but the aggregate
width of the LAN is much higher. Twisted pairs can connect the machine to
switch, lowering the costs of wiring. The third candidate, asynchronous transfer
mode (ATM), is described in section 7.10.

At the opposite performance end of the LAN networks is the MPP netw
found in the Cray Research T3D. Using 16-bit links clocked at 150 MHz yie
2400 megabits (300 MB) per second per link. The distributed switch usin

FIGURE 7.23 Location of network interface versus processing on network interface
for several interconnection networks. The fallacy on page 623 refers to the increasing
processing performance. (From a presentation by Lok Liu of U.C. Berkeley.)

Further from CPU

I/O bus

Memory
bus

Sun "SAHI"
(ATM)

Myricom Lanai
(Myrinet)

TMC CM-5
Cray T3D

Meiko CS-2 IBM SP-2
Intel Paragon

Controller Embedded
processor

Full blown
processor

Less
specialized
hardware

Fore SBA-100
(ATM)

Fore SBA-200
(ATM)

7.8 Crosscutting Issues for Interconnection Networks 605

bout
nd—
le up
uding
e the
ong
.

amen-

ECfp,
or, as
three-dimensional torus topology has a bisection bandwidth of between a
10% and 25% of a fully connected system—38,400 to 244,000 Mbits/seco
depending on the number of nodes. This proprietary network, which can sca
to 2048 nodes, has a one-way trip latency of less than one microsecond, incl
hardware and software overhead. Although the T3D network does not fac
LAN challenges of distance and security, it still shows that LANs have a l
way to go before pushing the envelope of networking bandwidth and latency

This section describes four topics discussed in other chapters that are fund
tal to interconnections.

Efficient Interface to Memory Hierarchy
versus Interconnection Network

Traditional evaluations of processor performance, such as SPECint and SP
encourage the memory hierarchy to be closely integrated with the process

FIGURE 7.24 The potential increased bandwidth of using many Ethernets and bridges.

7.8 Crosscutting Issues for
Interconnection Networks

Single Ethernet: 1 packet at a time

Multiple Ethernets: Multiple packets at a time

NodeNode

Node Node Node NodeNode

Node NodeNode Node

Bridge Bridge

NodeNode

Node Node Node NodeNode

Node NodeNode Node

606 Chapter 7 Interconnection Networks

rfor-
 buff-
 chip.
 inter-
e net-
ay
and
lts in

nes.
Hz
n-20
sing
in this
ause it
. The
) and
ay an

s the
ier, to
likely
alar and
s per

s has
tures
 are

 from
s all

com-
de-
the efficiency of the memory hierarchy translates directly into processor pe
mance. Hence microprocessors have first-level caches on chips along with
ers for writes, and usually have second-level caches immediately next to the
Benchmarks such as SPECint and SPECfp do not reward good interfaces to
connection networks, and hence many machines make the access time to th
work delayed by the full memory hierarchy: Writes must lumber their w
through full write buffers, and reads must go through the cycles of first-
second-level cache misses before reaching the interconnection. This resu
newer systems having higher latencies to interconnections than older machi

Let’s compare three machines. A 40-MHz SPARCstation-2, a 50-M
SPARCstation-20 without an external cache, and a 50-MHz SPARCstatio
with an external cache. According to SPECint95, this list is in order of increa
performance. The time to access the I/O bus (S-bus), however, increases
sequence: 200 ns, 500 ns, and 1000 ns. The SPARCstation-2 is fastest bec
has a single bus for memory and I/O, and there is only one level to the cache
SPARCstation-20 memory access must first go over the memory bus (M-bus
then to the I/O bus, adding 300 ns. Machines with a second-level cache p
extra penalty of 500 ns before accessing the I/O bus.

Compute-Optimized Processors versus Receiver Overhead

The overhead to receive a message likely involves an interrupt, which bear
cost of flushing and then restarting the processor pipeline. As mentioned earl
read the network status and to receive the data from the network interface
operates at cache miss speeds. As microprocessors become more supersc
go to faster clock rates, the number of missed instruction issue opportunitie
message reception seems likely to rise quickly over time.

Where to Draw the Hardware/Software Dividing Line for
Interconnection Network Functions

The choice of hardware versus software support for interconnection network
many of the same trade-offs as in other parts of a computer. Examples of fea
implemented in hardware with some systems and in software with others
message routing, message error detection, and retransmission.

Early MPPs required each processor along a path to route a message
switch to switch. This software overhead dominated switch latency, and thu
recent MPPs have hardware routing. Hardware routing in turn affects the
plexity of the topologies of the interconnection, since hardware simplicity
mands a simple routing algorithm.

7.8 Crosscutting Issues for Interconnection Networks 607

able
ed reli-
ck-
ered.
owl-

same
con-
an a

vok-
rs an

res can
ccess is

ded
, be-

o pro-

aries
 the

 for 8
ly be-
tch
 it’s
m in
Another example of the hardware/software implementation decision is reli
delivery of messages. TCP checks to make sure that messages are deliver
ably by including checksums, yet LANs like Ethernet will also include che
sums in hardware to determine whether packets have been reliably deliv
Some interconnection interfaces hold onto a packet until it has been ackn
edged by the receiving hardware, retransmitting in case of failure. These
functions are provided in software by TCP. Reliable delivery is one area of
siderable duplication in effort between the hardware and software rather th
clear division of responsibilities (see the pitfall on page 623).

Protection and User Access to the Network

The challenge is to ensure safe communication across a network without in
ing the operating system in the common case. The Cray Research T3D offe
interesting case study. It supports a global address space, so loads and sto
access memory across the network. Protection is ensured because each a
checked by the TLB.

To support transfer of larger objects, a block transfer engine (BLT) was ad
to the hardware. Protection of access requires invoking the operating system
fore using the BLT, to check the range of accesses to be sure there will be n
tection violations.

Figure 7.25 compares the bandwidth delivered as the size of the object v
for reads and writes. For very large reads, 512 KB, the BLT does achieve
highest performance: 140 MB/sec. But simple loads get higher performance
KB or less. For the write case, both achieve a peak of 90 MB/sec, presumab
cause of the limitations of the memory bus. But for writes, BLT can only ma
the performance of simple stores for transfers of 2 MB; anything smaller and
faster to send stores. Clearly a BLT that avoided invoking the operating syste
the common case would be more useful.

608 Chapter 7 Interconnection Networks

om-
d in-
ross
ines
li-

less
ll and
ent is
 call,

that
der-
a hier-
rall
er of
nsi-
Undoubtedly one of the most important innovations in the communications c
munity has been internetworking. It allows computers on independent an
compatible networks to communicate reliably and efficiently. The need to c
networks is illustrated by Figure 7.26, which shows the networks and mach
involved in transferring a file from Stanford University to the University of Ca
fornia at Berkeley, a distance of about 75 km.

The low cost of internetworking is remarkable. For example, it is vastly
expensive to send electronic mail than to make a coast-to-coast telephone ca
leave a message on an answering machine. This dramatic cost improvem
achieved using the same long-haul communication lines as the telephone
which makes the improvement even more impressive.

The enabling technologies for internetworking are software standards
allow reliable communication without demanding reliable networks. The un
lying principle of these successful standards is that they were composed as
archy of layers, each layer taking responsibility for a portion of the ove
communication task. Each computer, network, and switch implements its lay
the standards, relying on the other components to faithfully fulfill their respo
bilities. These layered software standards are called protocol families or protocol

FIGURE 7.25 Bandwidth versus transfer size for simple memory access instructions
versus a block transfer device on the Cray Research T3D . (Arpaci et al. [1995].)

7.9 Internetworking

12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

Transfer size (bytes)

0

20

40

60

80

100

120

140

160

CPU write

BLT read

BLT write

CPU read

Bandwidth
(MB/sec)

7.9 Internetworking 609

tra
odel

he
ally

es IP
AN
suites. They enable applications to work with any interconnection without ex
work by the application programmer. Figure 7.27 suggests the hierarchical m
of communication.

The most popular internetworking standard is TCP/IP, which stands for trans-
mission control protocol/internet protocol. This protocol family is the basis of the
humbly named Internet, which connects tens of millions of computers around t
world. This popularity means TCP/IP is used even when communicating loc
across compatible networks; for example, the network file system NFS us
even though it is very likely to be communicating across a homogenous L
such as Ethernet.

FIGURE 7.26 The connection established between mojave.stanford.edu and mammoth.berkeley.edu. FDDI is a 100
Mbits/sec LAN, while a T1 line is a 1.5 Mbits/sec telecommunications line and a T3 is a 45 Mbits/sec telecommunications
line. BARRNet stands for Bay Area Research Network. Note that inr-111-cs2.Berkeley.edu is a router with two Internet ad-
dresses, one for each port.

UCB1.
BARRNet.net
192.31.161.4

mojave.
Stanford.edu
36.22.0.120

CIS-Gateway.
Stanford.edu

36.1.0.22

SU-CM.
BARRNet.net
131.119.5.3

EthernetFDDI

T1 line

T3 line

inr-108-eecs.
Berkeley.edu

128.32.120.108 128.32.120.111

 inr-111-cs2.
Berkeley.edu

128.32.149.13

 mammoth.
Berkeley.edu

128.32.149.78

FDDI

FDDI

Ethernet Ethernet

Internet

fd-0.enss128.t3.
ans.net

192.31.48.244Stanford,
California

Berkeley,
California

610 Chapter 7 Interconnection Networks

low

ng
ices
e bot-
stract
 de-

 stan-

 on the
ed to
ts it
rts to
oes
es it

nto an
ds a

cycle
 chain

 on it
ll, the
ans-
r.

 as
trailer
 its

 if it is
We use TCP/IP as our protocol family example; other protocol families fol
similar lines. Section 7.13 gives the history of TCP/IP.

The goal of a family of protocols is to simplify the standard by dividi
responsibilities hierarchically among layers, with each layer offering serv
needed by the layer above. The application program is at the top, and at th
tom is the physical communication medium, which sends the bits. Just as ab
data types simplify the programmer’s task by shielding the programmer from
tails of the implementation of the data type, this layered strategy makes the
dard easier to understand.

The key to protocol families is that communication occurs logically at the
same level of the protocol in both sender and receiver, but it is implemented via
services of the lower level. This style of communication is called peer-to-peer. As
an analogy, imagine that General A needs to send a message to General B
battlefield. General A writes the message, puts it in an envelope address
General B, and gives it to a colonel with orders to deliver it. This colonel pu
in an envelope and writes the name of the corresponding colonel who repo
General B, and gives it to a major with instructions for delivery. The major d
the same thing and gives it to a captain, who gives it to a lieutenant, who giv
to a sergeant. The sergeant takes the envelope from the lieutenant, puts it i
envelope with the name of a sergeant who is in General B’s division, and fin
private with orders to take the large envelope. The private borrows a motor
and delivers the envelope to the sergeant. Once it arrives, it is passed up the
of command, with each person removing an outer envelope with his name
and passing on the inner envelope to his superior. As far as General B can te
note is from another general. Neither general knows who was involved in tr
mitting the envelope, nor how it was transported from one division to the othe

Protocol families follow this analogy more closely than you might think,
Figure 7.28 shows. The original message is given a header and possibly a
to be sent by the lower-level protocol. The next-lower protocol in turn adds
own header to the message, possibly breaking it up into smaller messages

FIGURE 7.27 The role of internetworking. The width is intended to indicate the relative
number of items at each level.

Applications

Networks

Internetworking

7.9 Internetworking 611

neral
This
til the
en sent
will
it on to
roto-

rable
educe
ne a
 many

ple-

tocol
cial
ti-
s. IP
, con-
f reli-

ants
argest
too large for this layer. Recalling our analogy, a long message from the ge
would be divided and placed in several envelopes if it could not fit in one.
division of the message and appending of headers and trailers continues un
message descends to the physical transmission medium. The message is th
to the destination. Each level of the protocol family on the receiving end
check the message at its level and peel off its headers and trailers, passing
the next higher level and putting the pieces back together. This nesting of p
col layers for a specific message is often referred to as a protocol stack, reflecting
the last-in-first-out nature of the addition and removal of headers.

As in our analogy, the danger in this layered approach is the conside
latency added to message delivery. Clearly one way to reduce latency is to r
the number of layers. But keep in mind that protocol families are used to defi
standard, not to force how the standard is implemented. Just as there are
ways to implement an instruction set architecture, there are many ways to im
ment a protocol family.

Our protocol stack example is TCP/IP. Let’s assume that the bottom pro
layer is Ethernet. The next level up is the Internet Protocol or IP layer; the offi
term for an IP packet is datagram. The IP layer routes the datagram to the des
nation machine, which may involve many intermediate machines or switche
makes a best effort to deliver the packets, but does not guarantee delivery
tent, or order of datagrams. The TCP layer above IP makes the guarantee o
able, in-order delivery and prevents corruption of datagrams.

Following the example in Figure 7.28, assume an application program w
to send a message to a machine via an Ethernet. It starts with TCP. The l

FIGURE 7.28 A generic protocol stack with two layers. Note that communication is
peer-to-peer, with headers and trailers for the peer added at each sending layer and removed
by each receiving layer. Each layer is intended to offer services to the one above to shield it
from unnecessary details.

T

Message

H T

HH T T HH T T HH T T HH T T HH T TT

H T H T

Message

H T H T H T

Actual Actual

Actual

Actual

Logical

Logical

Actual

612 Chapter 7 Interconnection Networks

 data
 and
eader
above
ta sent
rmat
e the
number of bytes that can be sent at one time with TCP is 64 KB. Since the
may be much larger than 64 KB, TCP must divide it into smaller segments
reassemble them in proper order upon arrival. TCP adds a 20-byte h
(Figure 7.29) to every datagram, and passes them down to IP. The IP layer
the physical layer adds a 20-byte header, also shown in Figure 7.29. The da
down from the IP level to the Ethernet would be sent in packets with the fo
shown in Figure 7.22 on page 603. Note that the TCP packet appears insid
data portion of the IP datagram, just as Figure 7.28 suggests.

FIGURE 7.29 The headers for IP and TCP. This drawing is 32 bits wide. The standard
headers for both are 20 bytes, but both allow the headers to optionally be expanded for rarely
transmitted information. Both headers have a length of header field (L) to accommodate the
optional fields, as well as source and destination fields. The length field of the whole data-
gram is in a separate length field in IP, while TCP combines the length of the datagram with

IP header

IP data

TCP data

Identifier Fragment

Header checksum

Source

Source

Sequence no. (length)

Destination

Destination

LengthType

Time Protocol

V L

TCP header

Urgent pointer

Window

TCP data

32 bits

Piggyback acknowledgment

Flags

Checksum

L

 (0 – 65,516 bytes)

7.10 Putting It All Together: An ATM Network of Workstations 613

 of the
 the
 to
en-

race-
 are
ATM
osts

that
TM
or-
 con-
ame
the sequence number of the datagram by giving the sequence number in bytes. TCP uses
the checksum field to be sure that the datagram has not been corrupted, and the sequence
number field to be sure the datagrams are assembled into the proper order when they arrive.
IP provides checksum error detection only for the header, since TCP has protected the rest
of the packet. One optimization is that TCP is allowed to send a sequence of datagrams be-
fore waiting for permission to send more. The number of datagrams that can be sent without
waiting for approval is called the window, and the window field tells how many bytes may be
sent beyond the byte being acknowledged by this datagram. TCP will adjust the size of the
window depending on the success of the IP layer in sending datagrams; the more reliable and
faster it is, the larger TCP makes the window. Since the window slides forward as the data
arrives and is acknowledged, this technique is called a sliding window protocol. The piggy-
back acknowledgment field of TCP is another optimization. Since some applications send
data back and forth over the same connection, it seems wasteful to send a datagram contain-
ing only an acknowledgment. This piggyback field allows a datagram carrying data to also
carry the acknowledgment for a previous transmission, “piggybacking” on top of a data trans-
mission. The urgent pointer field of TCP gives the address within the datagram of an impor-
tant byte, such as a break character. This pointer allows the application software to skip over
data so that the user doesn’t have to wait for all prior data to be processed before seeing a
character that tells the software to stop. The identifier field and fragment field of IP allow in-
termediary machines to break the original datagram into many smaller datagrams. A unique
identifier is associated with the original datagram and placed in every fragment, with the frag-
ment field saying which piece is which. The time-to-live field allows a datagram to be killed
off after going through a maximum number of intermediate switches no matter where it is in
the network. Knowing the maximum number of hops that it will take for a datagram to arrive—
if it ever arrives—simplifies the protocol software. The protocol field identifies which possible
upper layer protocol sent the IP datagram; in our case it is TCP. The V (for version) and type
fields allow different versions of the IP protocol software to be used in the network. Explicit
version numbering is included so that software can be upgraded gracefully machine by ma-
chine, without shutting down the entire network.

The search for a successor to the Ethernet has even attracted the attention
telecommunications industry. Given the desirability of using switches and
need to efficiently interface to WANs, why not use ATM as a LAN? In addition
having the scalable bandwidth of switched Ethernet, ATM is defined indep
dently from the physical medium, which allows the system to be upgraded g
fully to higher-speed interconnections. Unlike Ethernet, several data rates
included in the standard. There is also the practical hope that the volume of
equipment needed by the telecommunications industry will result in lower c
for LAN applications.

 ATM is still evolving as a standard, so we describe the subset of ATM
today seems likely to be popular for LAN. (See section 7.13 for more about A
and references.) The promise of ATM is that it will allow much higher perf
mance communication, while avoiding the hodgepodge of devices needed to
nect segments of LANs together or to connect LANs to WANs, since the s
underlying technology can be used from top to bottom.

7.10 Putting It All Together:
An ATM Network of Workstations

614 Chapter 7 Interconnection Networks

ands
RC-
of a
Our example is 16 SPARCstation-10 workstations connected via two br
of ATM switches. Figure 7.30 shows details of the organization. The SPA
station-10 uses a 50-MHz SuperSPARC microprocessor, which consists

FIGURE 7.30 The organization of the SPARCstation-10 and the ATM switch. The switch is described in Figure 7.35.

CPU

Instruction
cache
24 KB

Data
cache
16 KB

M-bus

S-bus

Second-
level

cache
1024 KB

Disk

S-bus
adapter

SCSI
bus

SCSI
ATM
host

interface
card

ATM
host

interface
card

Memory
Controller

DRAM
SIMM

SPARCstation-10

CPU

Instruction
cache
24 KB

Data
cache
16 KB

M-bus

S-bus

Second-
level

cache
1024 KB

Disk

S-bus
adapter

SCSI
bus

SCSI

Memory
controller

DRAM
SIMM

SPARCstation-10

SynOptics
LattisCell
16-by-16

ATM switch

7.10 Putting It All Together: An ATM Network of Workstations 615

 inter-
or and
o the

the
aches
31
fifth

byte
TM
efore
hat the
 do not

r
per
superscalar CPU and instruction and data caches on a single chip. This chip
faces to a 1-MB second-level cache that stands between the microprocess
the 40-MHz M-bus. The M-bus connects to memory and to a bus interface t
20-MHz S-bus, Sun’s I/O bus. It is on the S-bus that we find the ATM host inter-
face card, which interfaces to the 16-by-16 ATM switch.

 Let’s follow a transfer through the levels before we talk in detail about
components. The transfer proceeds down the TCP and IP layers until it re
ATM. At the top of the ATM software is the ATM adaptation layer. Figure 7.
shows this relationship between layers and Figure 7.32 shows AAL-5, the
proposal for an ATM standard protocol.

The next layer of ATM software breaks up the data payload into the 48-
units transferred in each ATM cell. Figure 7.33 shows the details of the A
header. Unlike Ethernet, ATM is based on connections set up in advance b
data are transmitted between two machines. For this example, we assume t
connections have already been established between machines, so that we
need to establish a connection. These connections are called virtual channels,
with the virtual channel identifier (VCI) used to pick the proper connection fo
each ATM cell. The ATM switch uses the VCI to send the cell to the pro
output port. The header also provides a virtual path identifier (VPI); virtual paths

FIGURE 7.31 The relationship between TPC, IP, and AAL-5 layers. The ATM Forum hopes that over time adaptation
layers such as AAL-5 will replace protocol suites such as TCP/IP.

Data

Hdr

Hdr

Trlr

TCP

IP

AAL-5

ATM

Data

Data

Data

Application

ATM network

Data

Hdr

Hdr

Trlr

TCP

IP

AAL-5

ATM

Data

Data

Data

Application

DataH DataH DataH DataH DataH DataH

616 Chapter 7 Interconnection Networks

ches
dica-
simply represent bundles of virtual channels and may be used by ATM swit
to route many channels at once rather than individually. The payload type in
tor field is used by AAL-5 to mark the end of a packet.

FIGURE 7.32 The AAL-5 format of ATM. The evolving ATM standard has at least five pro-
posals for AALs, but in our view AAL-5 is the most likely winner for LANs when shipping da-
tagrams. Lower-level protocols set bits in packets to show the end of the transfer. The pad
field ensures that the data payload plus the AAL-5 trailer is a multiple of 48 bytes, the data
size of an ATM cell. The control field (Cntl) is reserved for future use. Length and checksum
fields are self-explanatory. The total size including trailer and pad is 64 KB.

FIGURE 7.33 The ATM header format. The VPI field is 12 bits, VCI is 16 bits, the PTI field
is 4 bits, and the checksum field is 8 bits. The main use of the payload type indicator field is
to mark the end of the AAL-5 packet. This format is used for the ATM network-to-network
interface.

AAL-5

Pad (0–47)

Checksum

Length

Data (0 – 65527)

CntlPad

Check

PTIVCIVPI

7.10 Putting It All Together: An ATM Network of Workstations 617

n of

riate
. The
up the

M
 net-
con-
 are a
e to
addi-
data
ation

sible
tion
nd
Note that ATM uses a fixed-sized unit of transmission to simplify the desig
switches and interfaces. These units are called cells, since use of the term packet
in a connection-based system might lead to confusion. The cell selects thecon-
nection rather than including the destination address in every cell.

Once all cells composing the AAL-5 message are delivered to the approp
machine, the cells arrive in order and are passed to the AAL-5 layer software
layer checks the data and passes them up to the IP software, proceeding
protocol stack.

The Host Interface Card

The ATM host interface card lives on the S-bus and interfaces a node to the AT
switch. The Fore Systems SBA-200 ATM adapter is a rather sophisticated
work interface. It is the successor to Fore’s simple SBA-100 adapter, which
tained only send and receive FIFOs. The three key features of the SBA-200
25-MHz Intel i960CA used as communications coprocessor, a DMA interfac
the host bus, and an AAL5-compatible hardware CRC generator/checker. In
tion, the SBA-200 has 256 KB of static RAM, which serves as program and
memory for the i960 and can be accessed directly from the host workst
processor. Figure 7.34 shows a block diagram of the SBA-200.

The inclusion of a processor on the network interface card is the most vi
feature of the SBA-200. The main role of the i960 is to free the host worksta
CPU from performing the ATM adaptation layer (AAL) segmentation a

FIGURE 7.34 The Fore Systems SBA-200 host interface card. The processor and SRAM are in the center, the DMA
unit in the upper-left corner, the direct access to the SRAM and to a few board control registers in the lower-left corner, and
a simple send/receive FIFO interface to the fiber augmented with the CRC generator/checker on the right-hand side.

IN FIFO
and DMA Intel i960

control
processor To/from

ATM
network

B
us

m
as

te
r

in
te

rf
ac

e

B
us

sl
av

e
in

te
rf

ac
e

H
os

t b
us

P
hy

si
ca

l
la

ye
rOUT FIFO

and DMA

256K
SRAM

Boot
PROM

Bus control
Net control

CRC

Rcv buffer

Tx buffer

Board control

618 Chapter 7 Interconnection Networks

tor to
aders
side,
to the

s-
nd it
MA

: the
rols
 i960
ware
sing
erface

g on
r op-

, but
ters to

mi-
idth

/sec.

sec
55

ds. It
ffer

 ini-
run-
ks,
Fore
ore
ate
reassembly of data payload into cells. The host CPU hands a data descrip
the i960, which breaks the data blocks into cells and generates the cell he
and trailers, including appropriate checksums, or CRCs. On the receiving
the i960 reassembles arriving cells into data blocks and hands a descriptor
host once the data are complete.

The role of the DMA interface is twofold: It allows the ATM adaptor to tran
fer packets to and from main memory without host processor intervention, a
allows data to be transferred using burst bus transactions. The SBA-200’s D
interface can transfer data at over 30 Mbytes/sec in eight-word bursts.

The software support for the SBA-200 consists of two major components
firmware that is downloaded into the SBA-200’s SRAM at boot time and cont
the operation of the i960, and the device driver that communicates with the
from the host. The apparent rationale underlying the design of Fore’s hard
and software is to off-load the specifics of the ATM adaptation layer proces
from the host processor as much as possible and to provide a data block int
to the device driver.

The Switches

Each host interface card is connected to a 16-by-16 ATM switch. Dependin
the distance to the switch, the media can be either twisted pair copper wire o
tical fiber. The latter option requires expensive electrical-to-optical interfaces
stretches the distance between the host interface card and switch from me
kilometers.

The Bay Networks LattisCell 10114 switch itself is a multistage switch si
lar to the Omega switch in Figure 7.13 (page 584), with an internal bandw
that is twice the demand of the sixteen 155 Mbits/sec ports: 5 Gbits
Figure 7.35 gives details of the switch.

Another ATM switch is the Fore Systems ASX-200. Inside this 2.5 Gbits/
switch is simply a 40-MHz, 64-bit-wide bus! Capable of handling up to 24 1
Mbits/sec ports, the latency through the switch is less than 10 microsecon
includes a SPARC microprocessor for routing and up to 700 KB of output bu
per port.

Performance of SPARCstations and ATM

To put ATM in context, this section compares the performance of two of the
tial ATM switches to an Ethernet LAN. For each experiment, two Sparc 10s
ning Solaris 2.3 were connected to an ATM switch via OC-3C SONET lin
which have a line rate of 155 Mbits/sec. The network interface was the
Systems SBA-200 ATM interface and two ATM switches were tested, the F
Systems ASX-200 and the Bay Networks LattisCell 10114. The approxim
1995 prices of the components are shown in Figure 7.36.

7.10 Putting It All Together: An ATM Network of Workstations 619

re in-
ad of

r the
Figure 7.37 shows the TCP throughput as the size of the TCP packets a
creased for Ethernet and ATM. Sending larger packets amortizes the overhe
TCP, IP, and the ATM driver. Figure 7.38 shows the one-way trip latencies fo
same systems.

FIGURE 7.35 ATM host interface cards and 16-by-16 LattisCell ATM switch from Synoptics. The switch connection
is called a Delta connection, which is a relative of the Omega switch. The switch also has a copy network that is identical to
the routing network to support multicast; it is placed before the router. The switch module finds the outgoing destination port
of the switch by indexing into a table using the incoming VCI port number.

S-bus (node 1)

ATM
host interface

card

ATM
host interface

card

Switch module controller

SynOpsys routing network

S-bus (node 2)

620 Chapter 7 Interconnection Networks

r 512
n is

 lay-
oth
en im-

raffic
 one-
The most surprising result here is that the bandwidth for messages unde
bytes is worse over the ATM network than it is over the Ethernet! The reaso
that the vast majority of the time is spent in the operating system networking
ers and the latency of the network itself is insignificant in comparison in b
cases. The Ethernet turns out to be faster because its device drivers have be
proved over many years and are thus better optimized.

To see the impact, let’s estimate the times to replay the trace of NFS t
from Figure 7.7 on page 573 on Ethernet and ATM. Measurements show the

Network Host Interfaces Switch

Ethernet ≈$50 NA

ATM ≈$1000 ≈$50,000 (ASX-200)

≈$30,000 (LattisCell 10114)

FIGURE 7.36 Approximate 1995 prices of measured networks.

FIGURE 7.37 TCP throughput of ATM versus Ethernet between two machines as datagram size varies from 64
bytes to 8 KB. The Fore Systems switch offers roughly 5% to 10% higher bandwidth. Measurements were gathered by run-
ning user-level programs that exchanged data over TCP sockets. All measurements were done for point-to-point connec-
tions with little or no additional network traffic flowing through the switch. We measured the time to receive 5000 TCP packets
and calculated the effective bandwidth (number of bytes received/elapsed time). Since these experiments measure user da-
ta, it does not give credit to the headers and trailers that are part of TCP, IP, AAL5, or ATM. If they were counted, the deliv-
ered throughput would be closer to 90 Mbits/second. (Measurements were taken by Kim Keeton of U.C. Berkeley.)

25
6

76
8

12
80

17
92

23
04

28
16

33
28

38
40

43
52

48
64

53
76

58
88

64
00

69
12

74
24

79
36

Packet size

0

10

20

30

40

50

60

70

80

Fore

SynOptics

Ethernet

Throughput
(Mbit/sec)

7.10 Putting It All Together: An ATM Network of Workstations 621

icro-
 fixed
ments
nd 9
time,
 peak
ata-
o that

ocol
on,
 fare
irst,
 sec-

d a
ory.

cross
.
is at
 and
igh

ing
red
ain
way time for the smallest packet on an unloaded Ethernet to be 504 m
seconds, versus the 690 microseconds for ATM. We model the time as the
overhead per message plus a per-data-byte overhead. Our ATM measure
suggest a peak rate of 78 Mbits/sec using TCP/IP for the Fore ATM Switch a
Mbits/sec for Ethernet. Figure 7.39 shows the overhead time, transmission
and total time to send all the NFS messages over Ethernet and ATM. The
link speed of ATM is 15 times faster and the measured link speed for 8-KB d
grams is almost 9 times faster, but the higher overheads offset the benefits s
ATM would transmit these messages only 1.2 times faster.

Overall the performance is depressing: using a reliable transport prot
(TCP), we can utilize little more than half the network bandwidth. In additi
the small messages prevalent in request-response-style communication
worse over ATM than over Ethernet. Why is this so? The answer is twofold: F
the UNIX networking layers are not designed for networks of this speed, and
ond, the driver-firmware interface used by Fore is inefficient.

The problem with the UNIX network layers is that they were designe
decade ago for much slower networks and workstations with much less mem
The same layers with the same algorithms are used for SLIP connections a
9.6 Kbits/second modems as well as for 155 Mbits/second ATM connections

Another problem is caused by the fact that the driver-firmware interface
the level of data blocks. This level requires the i960 to traverse descriptors
follow pointers in main memory using DMA accesses that are good for h
bandwidth but not low latency. The result is that even if all the UNIX network
inefficiencies were alleviated, the round-trip times would still be several hund
microseconds. See page 623 for the fallacy concerning off-loading the m
processor.

Data size Ethernet ASX-200 LattisCell 10114

8 504 690 865

256 726 811 989

1024 1422 908 1083

4096 4174 1379 1589

8192 8631 1993 2274

FIGURE 7.38 One-way trip times in microseconds for different data payloads and net-
works. Measurements were gathered by running user-level programs that exchanged data
over UDP sockets. All measurements were done for point-to-point connections with little or
no additional network traffic flowing through the switch. The round-trip test was performed
by sending messages over UDP in a request-response communication pattern. Reported
above is one-half of the round-trip times. Single round-trip times were collected until a 95%
confidence interval was obtained, or a minimum of 35 iterations were measured—whichever
came first. (Measurements were taken by Kim Keeton of U.C. Berkeley.)

622 Chapter 7 Interconnection Networks

 just

cols
erit
there
Interconnection networks are filled with myths and hazards; this section has
a few warnings, so proceed carefully.

Pitfall: Using bandwidth as the only measure of network performance.

Many network companies apparently believe that given sophisticated proto
like TCP/IP that maximize delivered bandwidth, there is only one figure of m
for networks. This may be true for some applications, such as video, where

Overhead (secs) Transmission (secs) Total time (secs)

Size No. messages ATM Ethernet No. data bytes ATM Ethernet ATM Ethernet

32 771,060 532 389 33,817,052 4 48 536 436

64 56,923 39 29 4,101,088 0 5 40 34

96 4,082,014 2817 2057 428,346,316 46 475 2863 2532

128 5,574,092 3846 2809 779,600,736 83 822 3929 3631

160 328,439 227 166 54,860,484 6 56 232 222

192 16,313 11 8 3,316,416 0 3 12 12

224 4820 3 2 1,135,380 0 1 3 4

256 24,766 17 12 9,150,720 1 9 18 21

512 32,159 22 16 25,494,920 3 23 25 40

1024 69,834 48 35 70,578,564 8 72 56 108

1536 8842 6 4 15,762,180 2 14 8 19

2048 9170 6 5 20,621,760 2 19 8 23

2560 20,206 14 10 56,319,740 6 51 20 61

3072 13,549 9 7 43,184,992 4 39 14 46

3584 4200 3 2 16,152,228 2 14 5 17

4096 67,808 47 34 285,606,596 29 255 76 290

5120 6143 4 3 35,434,680 4 32 8 35

6144 5858 4 3 37,934,684 4 34 8 37

7168 4140 3 2 31,769,300 3 28 6 30

8192 287,577 198 145 2,390,688,480 245 2132 444 2277

Total 11,387,913 7858 5740 4,352,876,316 452 4132 8310 9872

FIGURE 7.39 Total time on Ethernet and ATM, calculating the total overhead and transmission time separately.
Note that the size of the headers needs to be added to the data bytes to calculate transmission time. (NFS measurements
taken by Mike Dahlin of U.C. Berkeley.)

7.11 Fallacies and Pitfalls

7.11 Fallacies and Pitfalls 623

ions,
essage
y is as

ell as
ver-

econds.
but the
er re-
 hard-

rd-
head.

-to-

 sat-
hest

with
com-
ture

ays,
mers
eliev-

teway.
r mil-
as re-
 only
tings
ecked
red.

for-

face
oces-
of an
is little interaction between the sender and the receiver, but many applicat
such as NFS, are of a request-response nature, and so for every large m
there must be one or more small messages. Figure 7.39 shows that latenc
important as bandwidth.

Pitfall: Ignoring software overhead when determining message overhead.

Low software overhead requires cooperation with the operating system as w
with the communication libraries. As an example, the CM-5 has a software o
head of 20 µsecs to send a message and a hardware overhead of 0.5 micros
The Intel Paragon reduced the hardware overhead to just 0.2 microseconds,
initial release of software has a software overhead of 250 microseconds. Lat
leases reduced this overhead to 25 microseconds, which still dominates the
ware overhead. Figure 7.39 shows a similar pitfall for ATM.

This pitfall is simply Amdahl’s Law applied to networks: Faster network ha
ware is superfluous if there is not a corresponding decrease in software over

Pitfall: Adding functions to interconnection systems that violate the end
end argument.

This argument is against providing features at a lower level that only partially
isfy the communication demand that can only be accomplished at the hig
level. Saltzer, Reed, and Clark [1984] give the end-to-end argument as

The function in question can completely and correctly be specified only
the knowledge and help of the application standing at the endpoints of the
munication system. Therefore, providing that questioned function as a fea
of the communication system itself is not possible. [page 278]

Their example of the pitfall was a network at MIT that used several gatew
each of which added a checksum from one gateway to the next. The program
of the application assumed the checksum guaranteed accuracy, incorrectly b
ing that the message was protected while stored in the memory of each ga
One gateway developed a transient failure that swapped one pair of bytes pe
lion bytes transferred. Over time the source code of one operating system w
peatedly passed through the gateway, thereby corrupting the code. The
solution was to correct the infected source files by comparing to paper lis
and repairing the code by hand! Had the checksums been calculated and ch
by the application running on the end systems, safety would have been assu

Fallacy: Adding a processor to the network interface card improves per
mance.

Microprocessors make it very tempting to add intelligence to a network inter
card. Like the pitfall in the last chapter (page 551), the danger is that the pr
sor is much slower and that the additional processor will add to the latency
operation. Here are two examples.

624 Chapter 7 Interconnection Networks

 the
from
lower
 faster.
sim-

icro-
 50-
rther

ight
roces-
ssor!
sfer-
d the
e fol-

eue in

ces-
tion-
 sec-

ation
tion

 extra
mes-

r, the
 net-

sters.

unica-
 from
dates

 steps

 of in-
uta-

rfere
The Meiko CS-2 MPP uses a 66-MHz HyperSPARC microprocessor in
computation node and added a SPARC-compatible microprocessor built
gate arrays to the network interface card. Their custom design has a much s
clock rate and no caches, and hence the main processor is about 40 times
The Meiko’s communication has higher overhead than the CM-5, which has
pler hardware despite the use of similar nodes on both MPPs.

To avoid the problem above, the Intel Paragon MPP uses the identical m
processor twice: once for computation and once for communication. The two
MHz i860 XP microprocessors use a common bus that is cache-coherent, fu
simplifying the software model.

Liu and Culler [1995] measure the Paragon performance for sending e
words using two processors versus one processor. The latency for a single p
sor is 3.1 microseconds but grows to 9.1 microseconds for the dual proce
The basic reason for the slowdown is that extra work must be performed tran
ring the data between the cache of the communication microprocessor an
cache of the computation microprocessor. Sending a message requires th
lowing steps on the Paragon:

1. The computation processor stores the messages into the message qu
shared memory for the communication processor to access.

2. The cache block for the queue is likely already in the communication pro
sor, since there is little else for it to do. Since the i860 XP uses an invalida
based protocol, the store by the first processor invalidates the block in the
ond. The communication processor is polling, so each time the comput
processor writes one word, it is read into the cache of the communica
processor and then invalidated by a subsequent write. There is also the
cost of executing the instructions that write to memory and then read the
sage back. Each cache-to-cache transfer takes two bus transactions.

3. When the full message is in the cache of the communication processo
processor sends it to the network interface card, which sends it over the
work to the receiver’s network interface card.

4. The receiver’s communication processor loads the message into its regi

5. Similar to step 2 above, there begins a sequence of stores by the comm
tion processor and loads by the computation processor to move the data
one cache to the other, which may involve a repeated sequence of invali
and partial copies.

The extra processor adds steps 2 and 5, which are the most time-consuming
in the process.

The reasons designers add an extra processor are to avoid the overhead
voking the operating system and to communicate in parallel with the comp
tion. This works best for DMA-like transfers of large messages, but can inte
with latency of small messages.

7.12 Concluding Remarks 625

nt to
across
t have
ard-
Such
ware
aste
ters.
 as
 in sys-

eer-
ely
rnet
 that
a of
at fail-
of fail-
tions
n as

ller
ill
cost/
ange
 scale

tch-
. Al-
rob-
s for
hared-
to pro-
ys of
fast-
pen-

 are
ork-

tes for
Pitfall: Using TCP/IP as LAN protocol.

The network designers on the first workstations decided it would be elega
use a single protocol stack no matter where the destination of the message:
a room or across an ocean, the TCP/IP overhead must be paid. This migh
been a wise decision especially given the unreliability of early Ethernet h
ware, but it sets a high software overhead barrier for commercial systems.
an obstacle lowers the enthusiasm for low-latency network interface hard
and low-latency interconnection networks if the software is just going to w
hundreds of microseconds when the message must travel only dozens of me

TCP/IP advocates point out that the protocol itself is theoretically not
burdensome as the current implementations, but progress has been modest
tems shipped commercially.

Networking is one of the most exciting fields in computer science and engin
ing today. The Internet and World Wide Web pervade our society and will lik
revolutionize how we access information. Although we couldn’t have the Inte
without the telecommunication media, it is protocol suites such as TCP/IP
make electronic communication practical. More than almost any other are
computer science and engineering, these protocols embrace the concept th
ures are the norm, and so the system must operate reliably in the presence
ures. Interconnection network hardware and software blend telecommunica
with data communications, calling into question whether they should remai
separate academic disciplines or be combined into a single field.

The silicon revolution has made its way to the switch: just as the “ki
micro” changed computing, whatever turns out to be the “killer network” w
transform communication. We are seeing the same dramatic change in
performance in switches as the mainframe-minicomputer-microprocessor ch
did to processors. Inexpensive switches mean that network bandwidth can
with the number of nodes, even in the local area network.

The combination of fast rate of improvement in processors and in swi
based LANs offers an interesting challenge to conventional computer design
though the desktop computer is clearly the most cost-effective solution for p
lems that run fast enough on the desktop, there are many alternative
problems that are bigger than the desktop. For example, both MPPs and s
memory processors leverage the same microprocessor as on the desktop
vide larger-scale computing. The problem has been higher prices and dela
introduction for nodes in the multiprocessor versus the high volume and
moving desktop computer. The ability to upgrade nodes and switches inde
dently may offer the same flexibility and competition in price and quality as
enjoyed by buyers of stereo components. In 1995, clusters or networks of w
stations have the potential to pose a serious challenge to the other candida

7.12 Concluding Remarks

626 Chapter 7 Interconnection Networks

ad of
and
nder-

 en-
sts.

n both
r sug-
nge

inet of
 con-
t.

er of
part-
search
ned
ence
/IP,
ited

oft-
nce

 in
t half
 the

 fully
n of
pean
92 a
ace
 are

 the
less

plac-
 as
large-scale computing. Challenges to be overcome include the high overhe
communication, the Achilles’ heel of such collections of low-cost machines,
providing operating systems that can coordinate hundreds of machines [A
son, Culler, and Patterson 1995].

 The dramatic improvement in cost/performance of communications has
abled millions of people around the world to find others with common intere
We are not near any performance plateaus, so we expect rapid advance i
local and wide area networks. As the quotes at the beginning of this chapte
gest, the authors believe this revolution in two-way communication will cha
the form of human associations and actions.

This chapter has taken the unusual perspective that computers inside a cab
an MPP and computers on an intercontinental WAN share many of the same
cerns. Although this observation may be true, their histories are very differen

Wide Area Networks

The earliest of the data interconnection networks are WANs. The forerunn
the Internet is the ARPANET, which in 1969 connected computer science de
ments across the U.S. that had research grants funded by the Advanced Re
Project Agency (ARPA), a U.S. government agency. It was originally envisio
as using reliable communications at lower levels; it was the practical experi
with failures of underlying technology that led to the failure-tolerant TCP
which is the basis for the Internet today. Vint Cerf and Robert Kahn are cred
with developing the TCP/IP protocols in the mid 1970s, winning the ACM S
ware Award in recognition of that achievement. Kahn [1972] is an early refere
on the ideas of ARPANET.

In 1975 there were roughly 100 networks in the ARPANET and only 200
1983; in 1995 the Internet encompasses 50,000 networks worldwide, abou
of which are in the United States. Interestingly, the key networks that made
Internet possible, such as ARPANET and NSFNET, have been replaced by
commercial systems, and yet the Internet still thrives. The exciting applicatio
the Internet is the World Wide Web, developed by a programmer at the Euro
Center for Particle Research (CERN) in 1989 for information access. In 19
young programmer at the University of Illinois developed a graphical interf
for Web called Mosaic, which became immensely popular. In May 1995 there
over 30,000 Web sites, and the number is doubling every two months.

One interesting sociological phenomenon is the ongoing battle between
advocates of ATM and the Internet protocols. The dream of ATM is a seam
software interface from the local area network to the wide area network, re
ing the cumbersome TCP/IP protocol stack with a uniform protocol such

7.13 Historical Perspective and References

7.13 Historical Perspective and References 627

ol-
oge-
 we

tions
ion
oma-
d to

eans
pro-

advan-

ocal
 been

e of
ker
’ ex-
tral ar-
se of

 like
, re-
stry.
tan-
ther-
hich

nsuc-
e to
also a

AN
ree

allel
Seitz
a hy-
with
AAL-5. The Internet advocates think ATM is a fine piece of underlying techn
ogy, but you still need TCP/IP because networks will continue to be heter
neous: ISDN to the home, wireless to the portable, ATM to the office. Thus
are more likely to see contention than synergy between ATM and TCP/IP.

ATM is just the latest of the ongoing standards set by the telecommunica
industry, and it is undoubtedly the future for this community. Communicat
forces standardization by competitive companies, sometimes leading to an
lies. For example, the telecommunication companies in North America wante
use 64-byte packets to match their existing equipment, while the Europ
wanted 32-byte packets to match their existing equipment. The 48-byte com
mise of the new standard was reached to ensure that neither group had an
tage in the marketplace!

Local Area Networks

ARPA’s success with wide area networks led directly to the most popular l
area networks. Many researchers at Xerox Palo Alto Research Center had
funded by ARPA while working at universities, and so they all knew the valu
networking. This group invented the forerunner of today’s workstations [Thac
et al. 1982] and Ethernets in 1974 [Metcalfe and Boggs 1976]. It was Boggs
perience as a ham radio operator that led to a design that did not need a cen
biter, but instead listened before use and then varied back-off times in ca
conflicts.

This first Ethernet provided a 3 Mbits/sec interconnection, which seemed
an unlimited amount of communication bandwidth with computers of that era
lying on the interconnect technology developed for the cable television indu
The announcement by Digital Equipment Corporation, Intel, and Xerox of a s
dard for 10 Mbits/sec Ethernet was critical to the commercial success of E
net. This announcement short-circuited a lengthy IEEE standards effort, w
eventually did publish IEEE 802.3 as an standard for Ethernets.

It is long past time to replace the Ethernet, and there have been several u
cessful candidates. Unfortunately, the FDDI committee took a very long tim
agree on the standard and the resulting interfaces were expensive. It is
shared medium when switches are becoming affordable.

As mentioned earlier, the failure of FDDI on the desktop has led the L
community to look elsewhere, and at the time of this writing there are th
promising candidates: switched Ethernet, 100-Mbit Ethernet, and ATM.

Massively Parallel Processors

The final component of interconnect networks is found in massively par
processors (MPPs). One forerunner of today’s MPPs is the Cosmic Cube [
1985], which used Ethernet interface chips to connect 8086 computers in
percube. MPP interconnections have improved considerably since then,

628 Chapter 7 Interconnection Networks

esti-
 gone
 be-
y, but
cube,
990s.
 and

king
lared

h the
rer in
odel
itch
e of
MPP
n the

ing:
 or
n an

an be
ivery,
 There
age of
kes
em

de-
chi-
people
ght in
ts at
 has

 the
messages routed automatically through intermediate switches to their final d
nations at high bandwidths and with low latency. Considerable research has
into the benefits over different topologies in both construction and program
havior. Whether due to faddishness or changes in technology is hard to sa
topologies certainly become very popular and then disappear. The hyper
widely popular in the 1980s, has almost disappeared from MPPs of the 1
Cut-through routing, however, has been preserved and is covered by Dally
Seitz [1986].

By the second edition of this book, MPPs have fallen on hard times: Thin
Machines, Kendall Square Research, and Cray Computer Corporation dec
bankruptcy, and Intel Supercomputer announced a reorganization. Althoug
Cray T3D and N-cube MPP continue unchanged, the MPP standard bea
1995 is clearly the IBM SP-2. It uses processor boards from the RS/6000 m
590 workstation, the AIX operating systems from the workstations, and a sw
from an MPP research project. The conventionally configured maximum siz
the SP-2 is 128 nodes, with two special orders at 512 nodes. The M of
stands for massive, and massive is certainly smaller in 1995 than it was i
1980s.

The Future

At the time of writing this second edition, a new class of networks is emerg
system area networks. These recent networks are designed for a single room
single floor and thus the length is ten to hundreds of meters, falling betwee
MPP interconnection network and a LAN. Close distance means the wires c
wider and faster at lower cost, network hardware can ensure error-free del
and less handshaking time is consumed when cascading switches together.
is also less reason to go to the cost of optical fiber, since the distance advant
fiber is less important for SANs. The limited size of the networks also ma
source-based routing plausible, further simplifying the network. Both Tand
Computers and Myricom sell SANs.

 Will ATM, Ethernet successors, or SANs be the killer network of the next
cade? In 1995 it is very hard to tell. A wonderful characteristic of computer ar
tecture is that such issues will not remain academic debates, unresolved as
rehash the same arguments time and again. Instead, the battle will be fou
the marketplace, with well-funded and talented groups giving their best sho
shaping the future. The best combination of technology and follow-through
often determined commercial success.

Thus time will tell us who wins and who loses; we shall know the score by
next edition of this text.

Exercises 629

a

-5,”

c-

rnet.

l

rnet is
Mbits/
tes to
References

ALLES, A. [1993]. ATM in Private Networking, Interop 93 Tutorial.

ANDERSON, T. E., D. E. CULLER, D. PATTERSON [1995]. “A case for NOW (networks of work-
stations),” IEEE Micro 15:1 (February), 54–64.

ARPACI, R. H., D. E. CULLER, A. KRISHNAMURTHY, S. G. STEINBERG, AND K. YELICK [1995].
“Empirical evaluation of the CRAY-T3D: A compiler perspective,” Proc. 23rd Int’l Symposium on
Computer Architecture (June), Italy.

ATM FORUM [1994]. ATM User-Network Interface Specification: Version 3.1., PTR Prentice Hall,
Englewood Cliffs, N.J.

BREWER, E. A. AND B. C. KUSZMAUL [1994]. “How to get good performance from the CM-5 dat
network.” Proc. Eighth Int’l Parallel Processing Symposium (April), Cancun, Mexico.

COMER, D. [1993]. Internetworking with TCP/IP, 2nd ed., Prentice Hall, Englewood Cliffs, N.J.

DALLY , W. J. AND C. I. SEITZ [1986]. “The torus routing chip,” Distributed Computing 1:4, 187–96.

DESURVIRE, E. [1992]. “Lightwave communications: The fifth generation,” Scientific American
(International Edition) 266:1 (January), 96–103.

KAHN, R. E. [1972]. “Resource-sharing computer communication networks,” Proc. IEEE 60:11
(November), 1397–1407.

LIU, L. T. AND D. E. CULLER [1994]. “Measurement of active message performance on the CM
Tech. Rep. UCB/CSD94-807, University of California, Berkeley.

LIU, L. T. AND D. E. CULLER [1995]. “An evaluation of the Intel Paragon communication archite
ture,” submitted to Supercomputing 95, San Diego, Calif.

METCALFE, R. M. [1993]. “Computer/network interface design: Lessons from Arpanet and Ethe
IEEE J. on Selected Areas in Communications 11:2 (February), 173–80.

METCALFE, R. M. AND D. R. BOGGS [1976]. “Ethernet: Distributed packet switching for loca
computer networks,” Comm. ACM 19:7 (July), 395–404.

PARTRIDGE, C. [1994]. Gigabit Networking. Addison-Wesley, Reading, Mass.

SALTZER, J. H., D. P. REED, D. D. CLARK [1984]. “End-to-end arguments in system design,” ACM
Trans. on Computer Systems 2:4 (November), 277–88.

SEITZ, C. L. [1985]. “The Cosmic Cube (concurrent computing),”Communications of the ACM 28:1
(January), 22–33.

TANENBAUM, A. S. [1988]. Computer Networks, 2nd ed., Prentice Hall, Englewood Cliffs, N.J.

THACKER, C. P., E. M. MCCREIGHT, B. W. LAMPSON, R. F. SPROULL, AND D. R. BOGGS [1982].
“Alto: A personal computer,” in Computer Structures: Principles and Examples, D. P. Siewiorek,
C. G. Bell, and A. Newell, eds., McGraw-Hill, New York, 549–572.

WALRAND, J. [1991]. Communication Networks: A First Course, Aksen Associates: Irwin, Home-
wood, Ill.

E X E R C I S E S

7.1 [15] <7.2> Assume the overhead to send a zero-length data packet on an Ethe
500 microseconds and that an unloaded network can transmit at 90% of the peak 10
sec rating. Plot the delivered bandwidth as the data transfer size varies from 32 by
1500.

630 Chapter 7 Interconnection Networks

ssage
te. For
large
n an

l-size
acket
 ATM

n the
n over-
wing

ight

and-

n

, you
u

es of

 sta-
7.2 [15] <7.2> One reason that ATM has a fixed transfer size is that when a short me
is behind a long message, a node may need to wait for an entire transfer to comple
applications that are time-sensitive, such as when transmitting voice or video, the
transfer size may result in transmission delays that are too long for the application. O
unloaded interconnection, what is the worst-case delay if a node must wait for one ful
Ethernet packet versus an ATM transfer? See Figure 7.22 (page 603) to find the p
sizes. For this question assume you can transmit at 100% of the 155 Mbits/sec of the
network and 100% of the 10 Mbits/sec Ethernet.

7.3 [20/10] <7.4>Is electronic communication always fastest for longer distances tha
Example on page 579? Calculate the time to send 100 GB using 10 8-mm tapes and a
night delivery service versus sending 100 GB by FTP over the Internet. Make the follo
four assumptions:

■ The tapes are picked up at 4 P.M. Pacific time and delivered 4200 km away at 10 A.M.
Eastern time (7 A.M. Pacific time).

■ On one route the slowest link is a T1 line, which transfers at 1.5 Mbits/sec.

■ On another route the slowest link is a 10 Mbits/sec Ethernet.

■ You can use 50% of the slowest link between the two sites.

a. [20] <7.4> Will all the bytes sent by either Internet route arrive before the overn
delivery person arrives?

b. [10] <7.4> What is the bandwidth of overnight delivery? Calculate the average b
width of overnight delivery service for a 100-GB package.

7.4 [20/20/20/20] <7.9> If you have access to a UNIX system, use ping to explore the In-
ternet. First read the manual page. Then use ping without option flags to be sure you ca
reach the following sites. It should say that X is alive . Depending on your system, you
may be able to see the path by setting the flags to verbose mode (-v) and trace route mode
(-R) to see the path between your machine and the example machine. Alternatively
may need to use the program traceroute to see the path. If so, try its manual page. Yo
may want to use the UNIX command script to make a record of your session.

a. [20] <7.9> Trace the route to another machine on the same local area network.

b. [20] <7.9> Trace the route to another machine on your campus that is not on the same
local area network.

c. [20] <7.9> Trace the route to another machine off campus. For example, if you have a
friend you send email to, try tracing that route. See if you can discover what typ
networks are used along that route.

d. [20] <7.9> One of the more interesting sites is the McMurdo NASA government
tion in Antarctica. Trace the route to mcmvax.mcmurdo.gov.

7.5 [12/15/15] <7.5> Assume 64 nodes and 16 × 16 ATM switches in the following. (This
exercise was suggested by Mark Hill.)

a. [12] <7.5> Design a switch topology that has the minimum number of switches.

Exercises 631

hes.

inks.

rent

f the
mples

h be-
e 587,

nd fat
e 7.14
me the
e. How
P7 to

nec-
dwidth.
g
.

 sites
nsfer

 in

ea-
nd that

10

w to
b. [15] <7.5> Design a switch topology that has the minium latency through the switc
Assume unit delay in the switches and zero delay for wires.

c. [15] <7.5> Design a switch topology that balances the bandwidth required for all l
Assume a uniform traffic pattern.

7.6 [20] <7.5> Redo the cut-through routing calculation for CM-5 on page 594 of diffe
sizes: 64, 256, and 1024 nodes.

7.7 [15] <7.5> Calculate the time to perform a broadcast (from-one-to-all) on each o
topologies in Figure 7.17 on page 587, making the same assumptions as the two Exa
on pages 588–590.

7.8 [20] <7.5> The two Examples on pages 588–590 assumed unlimited bandwidt
tween the node and the network interface. Redo the calculations in Figure 7.17 on pag
this time assuming a node can only issue one message in a time unit.

7.9 [15] <7.5> Compare the interconnection latency of a crossbar, Omega network, a
tree with eight nodes. Use Figure 7.13 on page 584 and add a fat tree similar to Figur
on page 585 as a third option. Assume that each switch costs a unit time delay. Assu
fat tree randomly picks a path, so give the best case and worst case for each exampl
long will it take to send a message from node P0 to P6? How long will it take P1 and
also communicate?

7.10 [15] <7.5> One interesting measure of the latency and bandwidth of an intercon
tion is to calculate the size of a message needed to achieve one-half of the peak ban
This halfway point is sometimes referred to as n1/2, taken from the vector processing. Usin
Figure 7.37 on page 620, estimate n1/2 for TCP/IP message using ATM and the Ethernet

7.11 [15] <7.9> Use FTP to transfer a file from a remote site and then between local
on the same LAN. What is the difference in bandwidth for each transfer? Try the tra
at different times of day or days of the week. Is the WAN or LAN the bottleneck?

7.12 [15] <7.5> Draw the topology of a 6-cube similar to the drawing of the 4-cube
Figure 7.16 on page 587.

7.13 [12/12/12/15/15/18] <7.7> Use M/M/1 queuing model to answer this exercise. M
surements of a network bridge show that packets arrive at 200 packets per second a
the gateway forwards them in about 2 ms.

a. [12] <7.7> What is the utilization of the gateway?

b. [12] <7.7> What is the mean number of packets in the gateway?

c. [12] <7.7> What is the mean time spent in the gateway?

d. [15] <7.7> Plot the response time versus utilization as you vary the arrival rate.

e. [15] <7.7> For an M/M/1 queue, the probability of finding n or more tasks in the sys-

tem is Utilizationn. What is the chance of an overflow of the FIFO if it can hold
messages?

f. [18] <7.7> How big must the gateway be to have packet loss due to FIFO overflo
be less than one packet per million?

632 Chapter 7 Interconnection Networks

 prob-
nd in-
essage

If two
ill get

l these
 versus
receive
rosec-

ing
width

ges as
estina-
7.14 [20] <7.7> The imbalance between the time of sending and receiving can cause
lems in network performance. Sending too fast can cause the network to back up a
crease the latency of messages, since the receivers will not be able to pull out the m
fast enough. A technique called bandwidth matching proposes a simple solution: Slow
down the sender so that it matches the performance of the receiver [Brewer 1994].
machines exchange an equal number of messages using a protocol like UDP, one w
ahead of the other, causing it to send all its messages first. After the receiver puts al
messages away, it will then send its messages. Estimate the performance for this case
a bandwidth-matched case. Assume the send overhead is 200 microseconds, the
overhead is 300 microseconds, time of flight is 5 microseconds, and latency is 10 mic
onds, and that the two machines want to exchange 100 messages.

7.15 [40] <7.7> Compare the performance of UDP with and without bandwidth match
by slowing down the UDP send code to match the receive code as advised by band
matching [Brewer 1994]. Devise an experiment to see how much performance chan
a result. How should you change the send rate when two nodes send to the same d
tion? What if one sender sends to two destinations?

8

Multiprocessors 8
en the
nal

 the

ntial

d of
ast, the
The turning away from the conventional organization came in the middle 1960s, wh
law of diminishing returns began to take effect in the effort to increase the operatio
speed of a computer. … Electronic circuits are ultimately limited in their speed of
operation by the speed of light… and many of the circuits were already operating in
nanosecond range.

Bouknight et al., The Illiac IV System [1972]

… sequential computers are approaching a fundamental physical limit on their pote
computational power. Such a limit is the speed of light . . .

A. L. DeCegama, The Technology of Parallel Processing, Volume I (1989)

… today’s machines… are nearing an impasse as technologies approach the spee
light. Even if the components of a sequential processor could be made to work this f
best that could be expected is no more than a few million instructions per second.

Mitchell, The Transputer: The Time Is Now [1989]

8.1 Introduction 635

8.2 Characteristics of Application Domains 647

8.3 Centralized Shared-Memory Architectures 654

8.4 Distributed Shared-Memory Architectures 677

8.5 Synchronization 694

8.6 Models of Memory Consistency 708

8.7 Crosscutting Issues 721

8.8 Putting It All Together:
The SGI Challenge Multiprocessor 728

8.9 Fallacies and Pitfalls 734

8.10 Concluding Remarks 740

8.11 Historical Perspective and References 745

Exercises 755
 uni-
rying
ipro-
t rate
n bal-
gger
pro-
gical
ltiple
ing a
nova-
985

ssue
ed in
As the quotations that open this chapter show, the view that advances in
processor architecture were nearing an end has been widely held at va
times. To counter this view, we observe that during the period 1985–95, un
cessor performance growth, driven by the microprocessor, was at its highes
since the first transistorized computers in the late 1950s and early 1960s. O
ance, your authors believe that parallel machines will definitely have a bi
role in the future. This view is driven by three observations. First, since micro
cessors are likely to remain the dominant uniprocessor technology, the lo
way to improve performance beyond a single processor is by connecting mu
microprocessors together. This is likely to be more cost-effective than design
custom processor. Second, it is unclear whether the pace of architectural in
tion that has contributed to the rapid rate of performance growth starting in 1
can be sustained indefinitely. As we saw in Chapter 4, modern multiple-i
processors have become incredibly complex, and the increases achiev

8.1 Introduction

636

Chapter 8 Multiprocessors

min-
stacle

 ad-
f per-

this
 bet

down,

e is
ing

re al-
trade-
ly en-
 have
n the
bers
 and
sign
settled
 the
mput-
rallel
g ap-
 re-

 the
led to
ribe
these
per-

o im-
ears
 still
ams
hine,
performance for increasing complexity and increasing silicon seem to be di
ishing. Third, there appears to be slow but steady progress on the major ob
to widespread use of parallel machines, namely software.

Your authors, however, are extremely reluctant to predict the death of
vances in uniprocessor architecture. Indeed, we believe that the rapid rate o
formance growth will continue at least into the next millennium. Whether
pace of innovation can be sustained longer is difficult to predict and hard to
against. Nonetheless, if the pace of progress in uniprocessors does slow
multiprocessor architectures will become increasingly attractive.

That said, we are left with two problems. First, multiprocessor architectur
a large and diverse field, and much of the field is in its infancy, with ideas com
and going and more architectures failing than succeeding. Given that we a
ready on page 636, full coverage of the multiprocessor design space and its
offs would require another volume. Second, such coverage would necessari
tail discussing approaches that may not stand the test of time, something we
largely avoided to this point. For these reasons, we have chosen to focus o
mainstream of multiprocessor design: machines with small to medium num
of processors (<100). Such designs vastly dominate in terms of both units
dollars. We will pay only slight attention to the larger-scale multiprocessor de
space (>100 processors). The future architecture of such machines is so un
in the mid 1990s that even the viability of that marketplace is in doubt. In
past, the high-end scientific marketplace has been dominated by vector co
ers (see Appendix B), which in recent times have become small-scale pa
vector computers (typically 4 to 16 processors). There are several contendin
proaches and which, if any, will survive in the future remains unclear. We will
turn to this topic briefly at the end of the chapter, in section 8.10.

A Taxonomy of Parallel Architectures

We begin this chapter with a taxonomy so that you can appreciate both
breadth of design alternatives for multiprocessors and the context that has
the development of the dominant form of multiprocessors. We briefly desc
the alternatives and the rationale behind them; a longer description of how
different models were born (and often died) can be found in the historical
spectives at the end of the chapter.

The idea of using multiple processors both to increase performance and t
prove availability dates back to the earliest electronic computers. About 30 y
ago, Flynn proposed a simple model of categorizing all computers that is
useful today. He looked at the parallelism in the instruction and data stre
called for by the instructions at the most constrained component of the mac
and placed all computers in one of four categories:

8.1 Introduction

637

.

 pro-
ingle
s in-
rality

rs are

 None-

sors
n the
oice
 for

rt,
nce
mul-

helf
ame
rs.

pro-
nect
 what
e.

small
alized
large
s of a
has a

 called
1. Single instruction stream, single data stream (SISD)—This is a uniprocessor

2. Single instruction stream, multiple data streams (SIMD)—The same instruc-
tion is executed by multiple processors using different data streams. Each
cessor has its own data memory (hence multiple data), but there is a s
instruction memory and control processor, which fetches and dispatche
structions. The processors are typically special purpose, since full gene
is not required.

3. Multiple instruction streams, single data stream (MISD)—No commercial
machine of this type has been built to date, but may be in the future.

4. Multiple instruction streams, multiple data streams (MIMD)—Each processor
fetches its own instructions and operates on its own data. The processo
often off-the-shelf microprocessors.

This is a coarse model, as some machines are hybrids of these categories.
theless, it is useful to put a framework on the design space.

As discussed in the historical perspectives, many of the early multiproces
were SIMD, and the SIMD model received renewed attention in the 1980s. I
last few years, however, MIMD has clearly emerged as the architecture of ch
for general-purpose multiprocessors. Two factors are primarily responsible
the rise of the MIMD machines:

1. MIMDs offer flexibility. With the correct hardware and software suppo
MIMDs can function as single-user machines focusing on high performa
for one application, as multiprogrammed machines running many tasks si
taneously, or as some combination of these functions.

2. MIMDs can build on the cost/performance advantages of off-the-s
microprocessors. In fact, nearly all multiprocessors built today use the s
microprocessors found in workstations and small, single-processor serve

Existing MIMD machines fall into two classes, depending on the number of
cessors involved, which in turn dictate a memory organization and intercon
strategy. We refer to the machines by their memory organization, because
constitutes a small or large number of processors is likely to change over tim

The first group, which we call centralized shared-memory architectures, have
at most a few dozen processors in the mid 1990s. For multiprocessors with
processor counts, it is possible for the processors to share a single centr
memory and to interconnect the processors and memory by a bus. With
caches, the bus and the single memory can satisfy the memory demand
small number of processors. Because there is a single main memory that
uniform access time from each processor, these machines are sometimes

638

Chapter 8 Multiprocessors

r-
ows
s the

y. To
roces-
ble to
 rapid
essor’s
uted
se in
urse,
idth

what

UMAs for uniform memory access. This type of centralized shared-memory a
chitecture is currently by far the most popular organization. Figure 8.1 sh
what these machines look like. The architecture of such multiprocessors i
topic of section 8.3.

The second group consists of machines with physically distributed memor
support larger processor counts, memory must be distributed among the p
sors rather than centralized; otherwise the memory system would not be a
support the bandwidth demands of a larger number of processors. With the
increase in processor performance and the associated increase in a proc
memory bandwidth requirements, the scale of machine for which distrib
memory is preferred over a single, centralized memory continues to decrea
number (which is another reason not to use small and large scale). Of co
moving to a distributed-memory organization raises the need for a high bandw
interconnect, of which we saw examples in Chapter 7. Figure 8.2 shows
these machines look like.

FIGURE 8.1 Basic structure of a centralized shared-memory multiprocessor. Multiple
processor-cache subsystems share the same physical memory, typically connected by a bus.

Processor

One or
more levels
of cache

ProcessorProcessor Processor

Main memory I/O system

One or
more levels
of cache

One or
more levels
of cache

One or
more levels
of cache

8.1 Introduction

639

t is a
re to

 to the
e at
emory
uted
omes
 longer
uted

ulti-

rface
l to
-node
 that

on is

Distributing the memory among the nodes has two major benefits. First, i
cost-effective way to scale the memory bandwidth, if most of the accesses a
the local memory in the node. Second, it reduces the latency for accesses
local memory. These two advantages make distributed memory attractiv
smaller processor counts as processors get ever faster and require more m
bandwidth and lower memory latency. The key disadvantage for a distrib
memory architecture is that communicating data between processors bec
somewhat more complex and has higher latency because the processors no
share a single centralized memory. As we will see shortly, the use of distrib
memory leads to two different paradigms for interprocessor communication.

Typically, I/O as well as memory is distributed among the nodes of the m
processor, and the nodes may actually each contain a small number (2–8) of pro-
cessors interconnected with a different technology. While this clustering of
multiple processors in a node together with a memory and a network inte
may be quite useful from a cost-efficiency viewpoint, it is not fundamenta
how these machines work, and so we will focus on the one-processor-per
style of machine throughout this chapter. The major architectural differences
distinguish among the distributed-memory machines are how communicati
done and the logical architecture of the distributed memory.

FIGURE 8.2 The basic architecture of a distributed-memory machine consists of in-
dividual nodes containing a processor, some memory, typically some I/O, and an in-
terface to an interconnection network that connects all the nodes. Individual nodes may
contain a small number of processors, which may be interconnected by a small bus or a dif-
ferent interconnection technology, which is often less scalable than the global interconnection
network.

Memory I/O

Interconnection network

Memory I/O Memory I/O

Processor
+ cache

Processor
+ cache

Processor
+ cache

Processor
+ cache

Memory I/O

Memory I/O Memory I/O Memory I/O Memory I/O

Processor
+ cache

Processor
+ cache

Processor
+ cache

Processor
+ cache

640

Chapter 8 Multiprocessors

ories
e ar-
data
as one
ade by
rights.

 to the

,
nown

f a

paces
 such
o two
le is

ter,
 a local
 can
oset or

ciated
at ad-
pera-

h
sing

 called

sages
 dis-
rate on
erform
of as a

es-
 ac-
reply

efore
Models for Communication and Memory Architecture

As discussed earlier, any large-scale multiprocessor must use multiple mem
that are physically distributed with the processors. There are two alternativ
chitectural approaches that differ in the method used for communicating
among processors. The physically separate memories can be addressed
logically shared address space, meaning that a memory reference can be m
any processor to any memory location, assuming it has the correct access
These machines are called distributed shared-memory (DSM) or scalable shared-
memory architectures. The term shared memory refers to the fact that the address
space is shared; that is, the same physical address on two processors refers
same location in memory. Shared memory does not mean that there is a single
centralized memory. In contrast to the centralized memory machines, also k
as UMAs (uniform memory access), the DSM machines are also called NUMAs,
non-uniform memory access, since the access time depends on the location o
data word in memory.

Alternatively, the address space can consist of multiple private address s
that are logically disjoint and cannot be addressed by a remote processor. In
machines, the same physical address on two different processors refers t
different locations in two different memories. Each processor-memory modu
essentially a separate computer; therefore these machines have been calledmulti-
computers. As pointed out in the concluding remarks of the previous chap
these machines can even be completely separate computers connected on
area network. For applications that require little or no communication and
make use of separate memories, such clusters of machines, whether in a cl
on desktops, can form a very cost-effective approach.

With each of these organizations for the address space, there is an asso
communication mechanism. For a machine with a shared address space, th
dress space can be used to communicate data implicitly via load and store o
tions; hence the name shared memory for such machines. For a machine wit
multiple address spaces, communication of data is done by explicitly pas
messages among the processors. Therefore, these machines are often
message passing machines.

In message passing machines, communication occurs by sending mes
that request action or deliver data just as with the simple network protocols
cussed in section 7.2. For example, if one processor wants to access or ope
data in a remote memory, it can send a message to request the data or to p
some operation on the data. In such cases, the message can be thought
remote procedure call (RPC). When the destination processor receives the m
sage, either by polling for it or via an interrupt, it performs the operation or
cess on behalf of the remote processor and returns the result with a
message. This type of message passing is also called synchronous, since the initi-
ating processor sends a request and waits until the reply is returned b

8.1 Introduction

641

tails of
return

ther
g data
an be
is of-
ender

s to
 check
g re-
t con-
ferent
 pass-
 pro-
rface.

some
eter-
gle
h by
How
th of
ed in
r in-
of a
 limit
pan-
vent,
 limits
uni-

w

nec-
iving
continuing. Software systems have been constructed to encapsulate the de
sending and receiving messages, including passing complex arguments or
values, presenting a clean RPC facility to the programmer.

Communication can also occur from the viewpoint of the writer of data ra
than the reader, and this can be more efficient when the processor producin
knows which other processors will need the data. In such cases, the data c
sent directly to the consumer process without having to be requested first. It
ten possible to perform such message sends asynchronously, allowing the s
process to continue immediately. Often the receiver will want to block if it trie
receive the message before it has arrived; in other cases, the reader may
whether a message is pending before actually trying to perform a blockin
ceive. Also the sender must be prepared to block if the receiver has not ye
sumed an earlier message. The message passing facilities offered in dif
machines are fairly diverse. To ease program portability, standard message
ing libraries (for example, message passing interface, or MPI) have been
posed. Such libraries sacrifice some performance to achieve a common inte

Performance Metrics for Communication Mechanisms
Three performance metrics are critical in any communication mechanism:

1. Communication bandwidth—Ideally the communication bandwidth is limited
by processor, memory, and interconnection bandwidths, rather than by
aspect of the communication mechanism. The bisection bandwidth is d
mined by the interconnection network. The bandwidth in or out of a sin
node, which is often as important as bisection bandwidth, is affected bot
the architecture within the node and by the communication mechanism.
does the communication mechanism affect the communication bandwid
a node? When communication occurs, resources within the nodes involv
the communication are tied up or occupied, preventing other outgoing o
coming communication. When this occupancy is incurred for each word
message, it sets an absolute limit on the communication bandwidth. This
is often lower than what the network or memory system can provide. Occu
cy may also have a component that is incurred for each communication e
such as an incoming or outgoing request. In the latter case, the occupancy
the communication rate, and the impact of the occupancy on overall comm
cation bandwidth depends on the size of the messages.

2. Communication latency—Ideally the latency is as low as possible. As we sa
in Chapter 7, communication latency is equal to

Sender overhead + Time of flight + Transmission time + Receiver overhead

Time of flight is preset and transmission time is determined by the intercon
tion network. The software and hardware overheads in sending and rece

642

Chapter 8 Multiprocessors

nd its
nce
 it di-
using
 many
ancy
ch-
s the
ction
y the
all. Al-
m for
f com-

y
n?

s an
time
t for
ared
dea,
 pro-
ation

of the
 com-
 a di-
hes.
ing

nisms
, and
cient
tion

emory

zed
messages are largely determined by the communication mechanism a
implementation. Why is latency crucial? Latency affects both performa
and how easy it is to program a multiprocessor. Unless latency is hidden,
rectly affects performance either by tying up processor resources or by ca
the processor to wait. Overhead and occupancy are closely related, since
forms of overhead also tie up some part of the node, incurring an occup
cost, which in turn limits bandwidth. Key features of a communication me
anism may directly affect overhead and occupancy. For example, how i
destination address for a remote communication named, and how is prote
implemented? When naming and protection mechanisms are provided b
processor, as in a shared address space, the additional overhead is sm
ternatively, if these mechanisms must be provided by the operating syste
each communication, this increases the overhead and occupancy costs o
munication, which in turn reduce bandwidth and increase latency.

3. Communication latency hiding—How well can the mechanism hide latency b
overlapping communication with computation or with other communicatio
Although measuring this is not as simple as measuring the first two, it i
important characteristic that can be quantified by measuring the running
on machines with the same communication latency but different suppor
latency hiding. We will see examples of latency hiding techniques for sh
memory in sections 8.6 and 8.7. While hiding latency is certainly a good i
it poses an additional burden on the software system and ultimately on the
grammer. Furthermore, the amount of latency that can be hidden is applic
dependent. Thus it is usually best to reduce latency wherever possible.

Each of these performance measures is affected by the characteristics
communications needed in the application. The size of the data items being
municated is the most obvious, since it affects both latency and bandwidth in
rect way, as well as affecting the efficacy of different latency hiding approac
Similarly, the regularity in the communication patterns affects the cost of nam
and protection, and hence the communication overhead. In general, mecha
that perform well with smaller as well as larger data communication requests
irregular as well as regular communication patterns, are more flexible and effi
for a wider class of applications. Of course, in considering any communica
mechanism, designers must consider cost as well as performance.

Advantages of Different Communication Mechanisms
Each of these communication mechanisms has its advantages. For shared-m
communication, advantages include

■ Compatibility with the well-understood mechanisms in use in centrali
multiprocessors, which all use shared-memory communication.

8.1 Introduction

643

rs are
lify

mu-
and
than

f re-
ared
r ac-

ared-

ten-
om-
not
e is

hard-
assing
ntially

nted by
ficul-
itrary
ned
e ei-

lties,

ssing
, all
e ad-
renc-

 small
 soft-

soft-
is the
 soft-
 hier-
tual
■ Ease of programming when the communication patterns among processo
complex or vary dynamically during execution. Similar advantages simp
compiler design.

■ Lower overhead for communication and better use of bandwidth when com
nicating small items. This arises from the implicit nature of communication
the use of memory mapping to implement protection in hardware, rather
through the operating system.

■ The ability to use hardware-controlled caching to reduce the frequency o
mote communication by supporting automatic caching of all data, both sh
and private. As we will see, caching reduces both latency and contention fo
cessing shared data.

The major advantages for message-passing communication include

■ The hardware can be simpler, especially by comparison with a scalable sh
memory implementation that supports coherent caching of remote data.

■ Communication is explicit, forcing programmers and compilers to pay at
tion to communication. This process may be painful for programmers and c
piler writers, but it simplifies the abstraction of what is costly and what is
and focuses attention on costly communication. (If you think this advantag
a mixed bag, that’s OK; so do many others.)

Of course, the desired communication model can be created on top of a
ware model that supports either of these mechanisms. Supporting message p
on top of shared memory is considerably easier: Because messages esse
send data from one memory to another, sending a message can be impleme
doing a copy from one portion of the address space to another. The major dif
ties arise from dealing with messages that may be misaligned and of arb
length in a memory system that is normally oriented toward transferring alig
blocks of data organized as cache blocks. These difficulties can be overcom
ther with small performance penalties in software or with essentially no pena
using a small amount of hardware support.

Supporting shared memory efficiently on top of hardware for message pa
is much more difficult. Without explicit hardware support for shared memory
shared-memory references need to involve the operating system to provid
dress translation and memory protection, as well as to translate memory refe
es into message sends and receives. Loads and stores usually move
amounts of data, so the high overhead of handling these communications in
ware severely limits the range of applications for which the performance of
ware-based shared memory is acceptable. An ongoing area of research
exploration of when a software-based model is acceptable and whether a
ware-based mechanism is usable for the highest level of communication in a
archically structured system. One promising direction is the use of vir

644

Chapter 8 Multiprocessors

tion
ines
gners
ilt with
een

90s.
rgest

nd hy-
f the
influ-
a dis-
 and

mi-
mo-
tail at
atural

e dis-
dress

ro-
e in
tions.
s in

memory mechanisms to share objects at the page level, a technique called shared
virtual memory; we discuss this approach in section 8.7.

In distributed-memory machines, the memory model and communica
mechanisms distinguish the machines. Originally, distributed-memory mach
were built with message passing, since it was clearly simpler and many desi
and researchers did not believe that a shared address space could be bu
distributed memory. More recently, shared-memory communication has b
supported in virtually every machine designed for the latter half of the 19
What hardware communication mechanisms will be supported in the very la
machines (called massively parallel processors, or MPPs), which typically have
more than 100 processors, is unclear; shared memory, message passing, a
brid approaches are all contenders. Despite the symbolic importance o
MPPs, such machines are a small portion of the market and have little or no
ence on the mainstream machines with tens of processors. We will return to
cussion of the possibilities and trends for MPPs in the concluding remarks
historical perspectives at the end of this chapter.

Although centralized memory machines using a bus interconnect still do
nate in terms of market size, long-term technical trends favor distributing me
ry even in moderate-scale machines; we’ll discuss these issues in more de
the end of this chapter. These distributed shared-memory machines are a n
extension of the centralized multiprocessors that dominate the market, so w
cuss these architectures in section 8.4. One important question that we ad
there is the question of caching and coherence.

Challenges of Parallel Processing

Two important hurdles, both explainable with Amdahl’s Law, make parallel p
cessing challenging. The first has to do with the limited parallelism availabl
programs and the second arises from the relatively high cost of communica
Limitations in available parallelism make it difficult to achieve good speedup
parallel machines, as our first Example shows.

E X A M P L E Suppose you want to achieve a speedup of 80 with 100 processors. What
fraction of the original computation can be sequential?

A N S W E R Amdahl’s Law is

Speedup =
1

Fractionenhanced
Speedupenhanced
--- (1 – Fractionenhanced)+

--

8.1 Introduction

645

s in a
ces-

, de-
ork,

to re-

ider
For simplicity in this example, assume that the program operates in only
two modes: parallel with all processors fully used, which is the enhanced
mode, or serial with only one processor in use. With this simplification, the
speedup in enhanced mode is simply the number of processors, while the
fraction of enhanced mode is the time spent in parallel mode. Substituting
into the equation above:

Simplifying this equation yields

Thus to achieve a speedup of 80 with 100 processors, only 0.25% of orig-
inal computation can be sequential. Of course, to achieve linear speedup
(speedup of n with n processors), the entire program must usually be par-
allel with no serial portions. (One exception to this is superlinear speedup
that occurs due to the increased memory and cache available when the
processor count is increased. This effect is usually not very large.) In prac-
tice, programs do not just operate in fully parallel or sequential
mode, but often use less than the full complement of the processors.
Exercise 8.2 asks you to extend Amdahl’s Law to deal with such a
case. ■

The second major challenge involves the large latency of remote acces
parallel machine. In existing machines, communication of data between pro
sors may cost anywhere from 50 clock cycles to over 10,000 clock cycles
pending on the communication mechanism, the type of interconnection netw
and the scale of the machine. Figure 8.3 shows the typical round-trip delays
trieve a word from a remote memory for several different parallel machines.

The effect of long communication delays is clearly substantial. Let’s cons
a simple Example.

80
1

Fractionparallel
100

------------------------------------ (1 – Fractionparallel)+

---=

0.8 Fractionparallel× 80 (1 – Fractionparallel×)+ 1=

80 79.2 Fractionparallel×– 1=

Fractionparallel 0.9975=

646

Chapter 8 Multiprocessors

E X A M P L E Suppose we have an application running on a 32-processor machine,
which has a 2000-ns time to handle reference to a remote memory. For
this application, assume that all the references except those involving
communication hit in the local memory hierarchy, which may be only
slightly pessimistic. Processors are stalled on a remote request, and the
cycle time of the processors is 10 ns. If the base CPI (assuming that all
references hit in the cache) is 1.0, how much faster is the machine if there
is no communication versus if 0.5% of the instructions involve a remote
communication reference?

A N S W E R The effective CPI for the machine with 0.5% remote references is

The Remote request cost is

Hence we can compute the CPI:

CPI = 1.0 + 0.5% × 200 = 2.0

The machine with all local references is 2.0/1.0 = 2 times faster. In prac-
tice, the performance analysis is much more complex, since some fraction

Machine
Communication

mechanism
Interconnection

network
Processor

count
Typical remote

memory access time

SPARCCenter Shared memory Bus ≤ 20 1 µs

SGI Challenge Shared memory Bus ≤ 36 1 µs

Cray T3D Shared memory 3D torus 32–2048 1 µs

Convex Exemplar Shared memory Crossbar + ring 8–64 2 µs

KSR-1 Shared memory Hierarchical ring 32–256 2–6 µs

CM-5 Message passing Fat tree 32–1024 10 µs

Intel Paragon Message passing 2D mesh 32–2048 10–30 µs

IBM SP-2 Message passing Multistage switch 2–512 30–100 µs

FIGURE 8.3 Typical remote access times to retrieve a word from a remote memory. In the case of shared-memory
machines, this is the remote load time. For a message-passing machine, the value shown is the time to send a message
and reply to the message.

CPI Base CPI Remote request rate Remote request cost×+=

1.0 0.5% Remote request cost×+=

Remote access cost
Cycle time

-- 2000 ns
10 ns

-------------------= 200 cycles=

8.2 Characteristics of Application Domains

647

uni-
m of
with
act of
gram-
either
echa-
 try to

g re-
 how
 a co-
use it
bot-
isten-
ul to
th for
tions
allel

plica-
ns.
aches

rallel
ch as
pend
 fac-
 spa-
e time
for-

s of
ed

of the noncommunication references will miss in the local hierarchy and
the remote access time does not have a single constant value. For exam-
ple, the cost of a remote reference could be quite a bit worse, since con-
tention caused by many references trying to use the global interconnect
can lead to increased delays. ■

These problems—insufficient parallelism and long latency remote comm
cation—are the two biggest challenges in using multiprocessors. The proble
inadequate application parallelism must be attacked primarily in software
new algorithms that can have better parallel performance. Reducing the imp
long remote latency can be attacked both by the architecture and by the pro
mer. For example, we can reduce the frequency of remote accesses with
hardware mechanisms, such as caching shared data, or with software m
nisms, such as restructuring the data to make more accesses local. We can
tolerate the latency by using prefetch, which we examined in Chapter 5.

Much of this chapter focuses on techniques for reducing the impact of lon
mote communication latency. For example, sections 8.3 and 8.4 discuss
caching can be used to reduce remote access frequency, while maintaining
herent view of memory. Section 8.5 discusses synchronization, which, beca
inherently involves interprocessor communication, is an additional potential
tleneck. Section 8.6 talks about latency hiding techniques and memory cons
cy models for shared memory. Before we wade into these topics, it is helpf
have some understanding of the characteristics of parallel applications, bo
better comprehension of the results we show using some of these applica
and to gain a better understanding of the challenges in writing efficient par
programs.

In earlier chapters, we examined the performance and characteristics of ap
tions with only a small amount of insight into the structure of the applicatio
For understanding the key elements of uniprocessor performance, such as c
and pipelining, general knowledge of an application is often adequate. In pa
processing, however, the additional performance-critical characteristics—su
load balance, synchronization, and sensitivity to memory latency—often de
on high-level characteristics of the application. These characteristics include
tors like how data is distributed, the structure of a parallel algorithm, and the
tial and temporal access patterns to data. Therefore at this point we take th
to examine the two different classes of workloads that we will use for per
mance analysis in this chapter.

This section briefly describes the characteristics of two different domain
multiprocessor workloads: individual parallel programs and multiprogramm

8.2 Characteristics of Application Domains

648

Chapter 8 Multiprocessors

oads
g real-
ces-

cess,
tions
re is
f data-
tipro-
ve to

pu-
n LU
 tech-
 typ-
all

ecific

which
We
ir ba-
 the
 data
 single

c-
 to

 ver-
ecu-

o
r are

 data
only
e six
workloads with operating systems included. Other major classes of workl
are databases, fileservers, and transaction processing systems. Constructin
istic versions of such workloads and accurately measuring them on multipro
sors, including any OS activity, is an extremely complex and demanding pro
at the edge of what we can do with performance modeling tools. Future edi
of this book may contain characterizations of such workloads. Happily, the
some evidence that the parallel processing and memory system behaviors o
base and transaction processing workloads are similar to those of large mul
grammed workloads, which include the OS activity. For the present, we ha
be content with examining such a multiprogramming workload.

Parallel Applications

Our parallel applications workload consists of two applications and two com
tational kernels. The kernels are an FFT (fast Fourier transformation) and a
decomposition, which were chosen because they represent commonly used
niques in a wide variety of applications and have performance characteristics
ical of many parallel scientific applications. In addition, the kernels have sm
code segments whose behavior we can understand and directly track to sp
architectural characteristics.

The two applications that we use in this chapter are Barnes and Ocean,
represent two important but very different types of parallel computation.
briefly describe each of these applications and kernels and characterize the
sic behavior in terms of parallelism and communication. We describe how
problem is decomposed for a distributed shared-memory machine; certain
decompositions that we describe are not necessary on machines that have a
centralized memory.

The FFT Kernel
The fast Fourier transform (FFT) is the key kernel in applications that use spe
tral methods, which arise in fields ranging from signal processing to fluid flow
climate modeling. The FFT application we study here is a one-dimensional
sion of a parallel algorithm for a complex-number FFT. It has a sequential ex
tion time for n data points of n log n. The algorithm uses a high radix (equal t

) that minimizes communication. The measurements shown in this chapte
collected for a million-point input data set.

There are three primary data structures: the input and output arrays of the
being transformed and the roots of unity matrix, which is precomputed and
read during the execution. All arrays are organized as square matrices. Th
steps in the algorithm are as follows:

1. Transpose data matrix.

2. Perform 1D FFT on each row of data matrix.

n

8.2 Characteristics of Application Domains

649

the

ces-
in its
vily
e al-

o-all
s as-
placed
s one
stem.
che
patial

ense
tion,

-
ads

 al-
 the
cache
l parts

ica-
iling:

the
on is

 and

red
ks are
3. Multiply the roots of unity matrix by the data matrix and write the result in
data matrix.

4. Transpose data matrix.

5. Perform 1D FFT on each row of data matrix.

6. Transpose data matrix.

The data matrices and the roots of unity matrix are partitioned among pro
sors in contiguous chunks of rows, so that each processor’s partition falls
own local memory. The first row of the roots of unity matrix is accessed hea
by all processors and is often replicated, as we do, during the first step of th
gorithm just shown.

The only communication is in the transpose phases, which require all-t
communication of large amounts of data. Contiguous subcolumns in the row
signed to a processor are grouped into blocks, which are transposed and
into the proper location of the destination matrix. Every processor transpose
block locally and sends one block to each of the other processors in the sy
Although there is no reuse of individual words in the transpose, with long ca
blocks it makes sense to block the transpose to take advantage of the s
locality afforded by long blocks in the source matrix.

The LU Kernel
LU is an LU factorization of a dense matrix and is representative of many d
linear algebra computations, such as QR factorization, Cholesky factoriza
and eigenvalue methods. For a matrix of size n × n the running time is n3 and the
parallelism is proportional to n2. Dense LU factorization can be performed effi
ciently by blocking the algorithm, using the techniques in Chapter 5, which le
to highly efficient cache behavior and low communication. After blocking the
gorithm, the dominant computation is a dense matrix multiply that occurs in
innermost loop. The block size is chosen to be small enough to keep the
miss rate low, and large enough to reduce the time spent in the less paralle
of the computation. Relatively small block sizes (8 × 8 or 16 × 16) tend to satisfy
both criteria. Two details are important for reducing interprocessor commun
tion. First, the blocks of the matrix are assigned to processors using a 2D t
the (where each block is B × B) matrix of blocks is allocated by laying a
grid of size over the matrix of blocks in a cookie-cutter fashion until all
blocks are allocated to a processor. Second, the dense matrix multiplicati
performed by the processor that owns the destination block. With this blocking
and allocation scheme, communication during the reduction is both regular
predictable. For the measurements in this chapter, the input is a 512 × 512 matrix
and a block of 16 × 16 is used.

A natural way to code the blocked LU factorization of a 2D matrix in a sha
address space is to use a 2D array to represent the matrix. Because bloc

n
B
--- n

B
---×

p p×

650 Chapter 8 Multiprocessors

ress
s of
d to a
 the

and

g a

s in-
educe
ter-
e
 off
lgo-
t are
llec-
any
ec-
 tree.

ldren)
nts the

s, the
he net
t the
if the
is “far
roxi-
enter
 mass
sited.
nces,
nates
 crite-
f the

be-
king

ity of
allocated in a tiled decomposition, and a block is not contiguous in the add
space in a 2D array, it is very difficult to allocate blocks in the local memorie
the processors that own them. The solution is to ensure that blocks assigne
processor are allocated locally and contiguously by using a 4D array (with
first two dimensions specifying the block number in the 2D grid of blocks,
the next two specifying the element in the block).

The Barnes Application
Barnes is an implementation of the Barnes-Hut n-body algorithm solvin
problem in galaxy evolution. N-body algorithms simulate the interaction among
a large number of bodies that have forces interacting among them. In thi
stance the bodies represent collections of stars and the force is gravity. To r
the computational time required to model completely all the individual in
actions among the bodies, which grow as n2, n-body algorithms take advantag
of the fact that the forces drop off with distance. (Gravity, for example, drops
as 1/d2, where d is the distance between the two bodies.) The Barnes-Hut a
rithm takes advantage of this property by treating a collection of bodies tha
“far away” from another body as a single point at the center of mass of the co
tion and with mass equal to the collection. If the body is far enough from
body in the collection, then the error introduced will be negligible. The coll
tions are structured in a hierarchical fashion, which can be represented in a
This algorithm yields an n log n running time with parallelism proportional to n.

The Barnes-Hut algorithm uses an octree (each node has up to eight chi
to represent the eight cubes in a portion of space. Each node then represe
collection of bodies in the subtree rooted at that node, which we call a cell. Be-
cause the density of space varies and the leaves represent individual bodie
depth of the tree varies. The tree is traversed once per body to compute t
force acting on that body. The force-calculation algorithm for a body starts a
root of the tree. For every node in the tree it visits, the algorithm determines
center of mass of the cell represented by the subtree rooted at the node
enough away” from the body. If so, the entire subtree under that node is app
mated by a single point at the center of mass of the cell, and the force this c
of mass exerts on the body is computed. On the other hand, if the center of
is not far enough away, the cell must be “opened” and each of its subtrees vi
The distance between the body and the cell, together with the error tolera
determines which cells must be opened. This force calculation phase domi
the execution time. This chapter takes measurements using 16K bodies; the
rion for determining whether a cell needs to be opened is set to the middle o
range typically used in practice.

Obtaining effective parallel performance on Barnes-Hut is challenging
cause the distribution of bodies is nonuniform and changes over time, ma
partitioning the work among the processors and maintenance of good local

8.2 Characteristics of Application Domains 651

wly;
cell
n the
btree.
e will

a sub-
), the
e work
st on
n, we
g the
lity
f data
on of

e flow
ue to

y up-

ids.
prox-
 con-
ints.
tion
rror at
 to a
nest

o the
s (as
corre-
gned
an in-
nce
nize at

 when
arest-
reference difficult. We are helped by two properties: the system evolves slo
and because gravitational forces fall off quickly, with high probability, each
requires touching a small number of other cells, most of which were used o
last time step. The tree can be partitioned by allocating each processor a su
Many of the accesses needed to compute the force on a body in the subtre
be to other bodies in the subtree. Since the amount of work associated with
tree varies (cells in dense portions of space will need to access more cells
size of the subtree allocated to a processor is based on some measure of th
it has to do (e.g., how many other cells does it need to visit), rather than ju
the number of nodes in the subtree. By partitioning the octree representatio
can obtain good load balance and good locality of reference, while keepin
partitioning cost low. Although this partitioning scheme results in good loca
of reference, the resulting data references tend to be for small amounts o
and are unstructured. Thus this scheme requires an efficient implementati
shared-memory communication.

The Ocean Application
Ocean simulates the influence of eddy and boundary currents on large-scal
in the ocean. It uses a restricted red-black Gauss-Seidel multigrid techniq
solve a set of elliptical partial differential equations. Red-black Gauss-Seidel is
an iteration technique that colors the points in the grid so as to consistentl
date each point based on previous values of the adjacent neighbors. Multigrid
methods solve finite difference equations by iteration using hierarchical gr
Each grid in the hierarchy has fewer points than the grid below, and is an ap
imation to the lower grid. A finer grid increases accuracy and thus the rate of
vergence, while requiring more execution time, since it has more data po
Whether to move up or down in the hierarchy of grids used for the next itera
is determined by the rate of change of the data values. The estimate of the e
every time-step is used to decide whether to stay at the same grid, move
coarser grid, or move to a finer grid. When the iteration converges at the fi
level, a solution has been reached. Each iteration has n2 work for an n × n grid
and the same amount of parallelism.

The arrays representing each grid are dynamically allocated and sized t
particular problem. The entire ocean basin is partitioned into square subgrid
close as possible) that are allocated in the portion of the address space
sponding to the local memory of the individual processors, which are assi
responsibility for the subgrid. For the measurements in this chapter we use
put that has 130 × 130 grid points. There are five steps in a time iteration. Si
data are exchanged between the steps, all the processors present synchro
the end of each step before proceeding to the next. Communication occurs
the boundary points of a subgrid are accessed by the adjacent subgrid in ne
neighbor fashion.

652 Chapter 8 Multiprocessors

 the
ica-
ction
om-
sing
ica-
 prob-
count
en in-
 the

nica-
utation
e. For
unt of
nica-
mpu-
tion
e the

di-
rises
rs. This
ds to
oces-
d pro-

ork-
two
mpile
ns for
g 787
B of

h in-
 re-
only
 also
Computation/Communication for the Parallel Programs
A key characteristic in determining the performance of parallel programs is
ratio of computation to communication. If the ratio is high, it means the appl
tion has lots of computation for each datum communicated. As we saw in se
8.1, communication is the costly part of parallel computing; therefore high c
putation-to-communication ratios are very beneficial. In a parallel proces
environment, we are concerned with how the ratio of computation to commun
tion changes as we increase either the number of processors, the size of the
lem, or both. Knowing how the ratio changes as we increase the processor
sheds light on how well the application can be sped up. Because we are oft
terested in running larger problems, it is vital to understand how changing
data set size affects this ratio.

To understand what happens quantitatively to the computation-to-commu
tion ratio as we add processors, consider what happens separately to comp
and to communication as we either add processors or increase problem siz
these applications Figure 8.4 shows that as we add processors, the amo
computation per processor falls proportionately and the amount of commu
tion per processor falls more slowly. As we increase the problem size, the co
tation scales as the O() complexity of the algorithm dictates. Communica
scaling is more complex and depends on details of the algorithm; we describ
basic phenomena for each application in the caption of Figure 8.4.

The overall computation-to-communication ratio is computed from the in
vidual growth rate in computation and communication. In general, this rate
slowly with an increase in data set size and decreases as we add processo
reminds us that performing a fixed-size problem with more processors lea
increasing inefficiencies because the amount of communication among pr
sors grows. It also tells us how quickly we must scale data set size as we ad
cessors, to keep the fraction of time in communication fixed.

Multiprogramming and OS Workload

For small-scale multiprocessors we will also look at a multiprogrammed w
load consisting of both user activity and OS activity. The workload used is
independent copies of the compile phase of the Andrew benchmark. The co
phase consists of a parallel make using eight processors. The workload ru
5.24 seconds on eight processors, creating 203 processes and performin
disk requests on three different file systems. The workload is run with 128 M
memory, and no paging activity takes place.

The workload has three distinct phases: compiling the benchmarks, whic
volves substantial compute activity; installing the object files in a library; and
moving the object files. The last phase is completely dominated by I/O and
two processes are active (one for each of the runs). In the middle phase, I/O
plays a major role and the processes are largely idle.

8.2 Characteristics of Application Domains 653

nt in
e per-
e the

k,

k,

e

k

e
Because both idle time and instruction cache performance are importa
this workload, we examine these two issues here, focusing on the data cach
formance later in the chapter. For the workload measurements, we assum
following memory and I/O systems:

Application
Scaling of

computation
Scaling of

communication
Scaling of computation-

to-communication

FFT

LU

Barnes
Approximately Approximately

Ocean

FIGURE 8.4 Scaling of computation, of communication, and of the ratio are critical
factors in determining performance on parallel machines. In this table p is the increased
processor count and n is the increased data set size. Scaling is on a per-processor basis. The
computation scales up with n at the rate given by O() analysis and scales down linearly as p
is increased. Communication scaling is more complex. In FFT all data points must interact,
so communication increases with n and decreases with p. In LU and Ocean, communication
is proportional to the boundary of a block, so it scales with data set size at a rate proportional
to the side of a square with n points, namely ; for the same reason communication in these
two applications scales inversely to . Barnes has the most complex scaling properties.
Because of the fall-off of interaction between bodies, the basic number of interactions among
bodies, which require communication, scales as . An additional factor of log n is needed
to maintain the relationships among the bodies. As processor count is increased, communi-
cation scales inversely to .

I/O system Memory

Level 1 instruction cache 32K bytes, two-way set associative with a 64-byte bloc
one clock cycle hit time

Level 1 data cache 32K bytes, two-way set associative with a 32-byte bloc
one clock cycle hit time

Level 2 cache 1M bytes unified, two-way set associative with a 128-byt
block, hit time 10 clock cycles

Main memory Single memory on a bus with an access time of 100 cloc
cycles

Disk system Fixed access latency of 3 ms (less than normal to reduc
idle time)

n nlog
p

-------------- n
p
--- nlog

n
p
--- n

p
------- n

p

n nlog
p

-------------- n nlog()
p

----------------------- n

p

n
p
--- n

p
------- n

p

n
p

n

p

654 Chapter 8 Multiprocessors

ssors
ents:
syn-
l—

s a
ction
 varies
tion
 sizes.

mall
on-
ure,

s.

ly re-
and-

ay be
bined
ners

 single
Figure 8.5 shows how the execution time breaks down for the eight proce
using the parameters just listed. Execution time is broken into four compon
idle—execution in the kernel mode idle loop; user—execution in user code;
chronization—execution or waiting for synchronization variables; and kerne
execution in the OS that is neither idle nor in synchronization access.

Unlike the parallel scientific workload, this multiprogramming workload ha
significant instruction cache performance loss, at least for the OS. The instru
cache miss rate in the OS for a 32-byte block size, two set-associative cache
from 1.7% for a 32-KB cache to 0.2% for a 256-KB cache. User-level, instruc
cache misses are roughly one-sixth of the OS rate, across the variety of cache

Multis are a new class of computers based on multiple microprocessors. The s
size, low cost, and high performance of microprocessors allow design and c
struction of computer structures that offer significant advantages in manufact
price-performance ratio, and reliability over traditional computer families. ...
Multis are likely to be the basis for the next, the fifth, generation of computer
[p. 463]

Bell [1985]

As we saw in Chapter 5, the use of large, multilevel caches can substantial
duce the memory bandwidth demands of a processor. If the main memory b
width demands of a single processor are reduced, multiple processors m
able to share the same memory. Starting in the 1980s, this observation, com
with the emerging dominance of the microprocessor, motivated many desig
to create small-scale multiprocessors where several processors shared a

Mode % instructions executed % execution time

Idle 69% 64%

User 27% 27%

Sync 1% 2%

Kernel 3% 7%

FIGURE 8.5 The distribution of execution time in the multiprogrammed parallel make
workload. The high fraction of idle time is due to disk latency when only one of the eight pro-
cesses is active. These data and the subsequent measurements for this workload were col-
lected with the SimOS system [Rosenblum 1995]. The actual runs and data collection were
done by M. Rosenblum, S. Herrod, and E. Bugnion of Stanford University, using the SimOS
simulation system.

8.3 Centralized Shared-Memory Architectures

8.3 Centralized Shared-Memory Architectures 655

e pro-
idth

vided
 ma-
 which
r pro-
 mul-

.1 on

reads
s mi-
emory
havior
hared
cess
duc-
 mul-
ces a

oblem
rent
blem
o dif-
prob-
r the
physical memory connected by a shared bus. Because of the small size of th
cessors and the significant reduction in the requirements for bus bandw
achieved by large caches, such machines are extremely cost-effective, pro
that a sufficient amount of memory bandwidth exists. Early designs of such
chines were able to place an entire CPU and cache subsystem on a board,
plugged into the bus backplane. More recent designs have placed up to fou
cessors per board; and by some time early in the next century, there may be
tiple processors on a single die configured as a multiprocessor. Figure 8
page 638 shows a simple diagram of such a machine.

The architecture supports the caching of both shared and private data. Private
data is used by a single processor, while shared data is used by multiple proces-
sors, essentially providing communication among the processors through
and writes of the shared data. When a private item is cached, its location i
grated to the cache, reducing the average access time as well as the m
bandwidth required. Since no other processor uses the data, the program be
is identical to that in a uniprocessor. When shared data are cached, the s
value may be replicated in multiple caches. In addition to the reduction in ac
latency and required memory bandwidth, this replication also provides a re
tion in contention that may exist for shared data items that are being read by
tiple processors simultaneously. Caching of shared data, however, introdu
new problem: cache coherence.

What Is Multiprocessor Cache Coherence?

As we saw in Chapter 6, the introduction of caches caused a coherence pr
for I/O operations, since the view of memory through the cache could be diffe
from the view of memory obtained through the I/O subsystem. The same pro
exists in the case of multiprocessors, because the view of memory held by tw
ferent processors is through their individual caches. Figure 8.6 illustrates the
lem and shows how two different processors can have two different values fo
same location. This is generally referred to as the cache-coherence problem.

Time Event

Cache
contents

for CPU A

Cache
contents for

CPU B

Memory
contents for
location X

0 1

1 CPU A reads X 1 1

2 CPU B reads X 1 1 1

3 CPU A stores 0 into X 0 1 0

FIGURE 8.6 The cache-coherence problem for a single memory location (X), read and
written by two processors (A and B). We initially assume that neither cache contains the
variable and that X has the value 1. We also assume a write-through cache; a write-back
cache adds some additional but similar complications. After the value of X has been written
by A, A’s cache and the memory both contain the new value, but B’s cache does not, and if
B reads the value of X, it will receive 1!

656 Chapter 8 Multiprocessors

of a
tion,
ore
tem
ms.
ad.

ith
 read

ssor
ted

 loca-
s. For
s can

to be
hat it
usly

ose
 P2
 the
 the
rite of
oid
 are

tion of

quire
 pro-
n an-
 read
e left
st be
Informally, we could say that a memory system is coherent if any read
data item returns the most recently written value of that data item. This defini
while intuitively appealing, is vague and simplistic; the reality is much m
complex. This simple definition contains two different aspects of memory sys
behavior, both of which are critical to writing correct shared-memory progra
The first aspect, called coherence, defines what values can be returned by a re
The second aspect, called consistency, determines when a written value will be
returned by a read. Let’s look at coherence first.

A memory system is coherent if

1. A read by a processor, P, to a location X that follows a write by P to X, w
no writes of X by another processor occurring between the write and the
by P, always returns the value written by P.

2. A read by a processor to location X that follows a write by another proce
to X returns the written value if the read and write are sufficiently separa
and no other writes to X occur between the two accesses.

3. Writes to the same location are serialized: that is, two writes to the same
tion by any two processors are seen in the same order by all processor
example, if the values 1 and then 2 are written to a location, processor
never read the value of the location as 2 and then later read it as 1.

The first property simply preserves program order—we expect this property
true even in uniprocessors. The second property defines the notion of w
means to have a coherent view of memory: If a processor could continuo
read an old data value, we would clearly say that memory was incoherent.

The need for write serialization is more subtle, but equally important. Supp
we did not serialize writes, and processor P1 writes location X followed by
writing location X. Serializing the writes ensures that every processor will see
write done by P2 at some point. If we did not serialize the writes, it might be
case that some processor could see the write of P2 first and then see the w
P1, maintaining the value written by P1 indefinitely. The simplest way to av
such difficulties is to serialize writes, so that all writes to the same location
seen in the same order; this property is called write serialization. Although the
three properties just described are sufficient to ensure coherence, the ques
when a written value will be seen is also important.

To understand why consistency is complex, observe that we cannot re
that a read of X instantaneously see the value written for X by some other
cessor. If, for example, a write of X on one processor precedes a read of X o
other processor by a very small time, it may be impossible to ensure that the
returns the value of the data written, since the written data may not even hav
the processor at that point. The issue of exactly when a written value mu
seen by a reader is defined by a memory consistency model—a topic discussed in

8.3 Centralized Shared-Memory Architectures 657

efines
tency
emory
l de-
til all
es not
 pro-
order.
 ex-

 has
ere
le—a
ame
 both
ra-
nspar-
ocated
being
 local
 read
rfor-
em by
n by

ck-
cols,

 in
4,

ical
lized
cache
ve
in this
section 8.6. Coherence and consistency are complementary: Coherence d
the behavior of reads and writes to the same memory location, while consis
defines the behavior of reads and writes with respect to accesses to other m
locations. For simplicity, and because we cannot explain the problem in ful
tail at this point, assume that we require that a write does not complete un
processors have seen the effect of the write and that the processor do
change the order of any write with any other memory access. This allows the
cessor to reorder reads, but forces the processor to finish a write in program
We will rely on this assumption until we reach section 8.6, where we will see
actly the meaning of this definition, as well as the alternatives.

Basic Schemes for Enforcing Coherence

The coherence problem for multiprocessors and I/O, while similar in origin,
different characteristics that affect the appropriate solution. Unlike I/O, wh
multiple data copies are a rare event—one to be avoided whenever possib
program running on multiple processors will want to have copies of the s
data in several caches. In a coherent multiprocessor, the caches provide
migration and replication of shared data items. Coherent caches provide mig
tion, since a data item can be moved to a local cache and used there in a tra
ent fashion; this reduces the latency to access a shared data item that is all
remotely. Coherent caches also provide replication for shared data that is
simultaneously read, since the caches make a copy of the data item in the
cache. Replication reduces both latency of access and contention for a
shared data item. Supporting this migration and replication is critical to pe
mance in accessing shared data. Thus, rather than trying to solve the probl
avoiding it in software, small-scale multiprocessors adopt a hardware solutio
introducing a protocol to maintain coherent caches.

The protocols to maintain coherence for multiple processors are called cache-
coherence protocols. Key to implementing a cache-coherence protocol is tra
ing the state of any sharing of a data block. There are two classes of proto
which use different techniques to track the sharing status, in use:

■ Directory based—The sharing status of a block of physical memory is kept
just one location, called the directory; we focus on this approach in section 8.
when we discuss scalable shared-memory architecture.

■ Snooping—Every cache that has a copy of the data from a block of phys
memory also has a copy of the sharing status of the block, and no centra
state is kept. The caches are usually on a shared-memory bus, and all
controllers monitor or snoop on the bus to determine whether or not they ha
a copy of a block that is requested on the bus. We focus on this approach
section.

658 Chapter 8 Multiprocessors

ssors
n use a

us of

previ-
ess to a

ost
cess

 write
s en-
 Since
r must
isses
quire
essor
 the
ecide
r the
hich

 seri-
ping
Snooping protocols became popular with multiprocessors using microproce
and caches attached to a single shared memory because these protocols ca
preexisting physical connection—the bus to memory—to interrogate the stat
the caches.

Alternative Protocols

There are two ways to maintain the coherence requirement described in the
ous subsection. One method is to ensure that a processor has exclusive acc
data item before it writes that item. This style of protocol is called a write invali-
date protocol because it invalidates other copies on a write. It is by far the m
common protocol, both for snooping and for directory schemes. Exclusive ac
ensures that no other readable or writable copies of an item exist when the
occurs: all other cached copies of the item are invalidated. To see how thi
sures coherence, consider a write followed by a read by another processor:
the write requires exclusive access, any copy held by the reading processo
be invalidated (hence the protocol name). Thus, when the read occurs, it m
in the cache and is forced to fetch a new copy of the data. For a write, we re
that the writing processor have exclusive access, preventing any other proc
from being able to write simultaneously. If two processors do attempt to write
same data simultaneously, one of them wins the race (we’ll see how we d
who wins shortly), causing the other processor’s copy to be invalidated. Fo
other processor to complete its write, it must obtain a new copy of the data, w
must now contain the updated value. Therefore, this protocol enforces write
alization. Figure 8.7 shows an example of an invalidation protocol for a snoo
bus with write-back caches in action.

Processor activity Bus activity
Contents of

CPU A’s cache
Contents of

CPU B’s cache
Contents of memory

location X

0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes a 1 to X Invalidation for X 1 0

CPU B reads X Cache miss for X 1 1 1

FIGURE 8.7 An example of an invalidation protocol working on a snooping bus for a single cache block (X) with
write-back caches. We assume that neither cache initially holds X and that the value of X in memory is 0. The CPU and
memory contents show the value after the processor and bus activity have both completed. A blank indicates no activity or
no copy cached. When the second miss by B occurs, CPU A responds with the value canceling the response from memory.
In addition, both the contents of B’s cache and the memory contents of X are updated. This is typical in most protocols and
simplifies the protocol, as we will see shortly.

8.3 Centralized Shared-Memory Architectures 659

 of a

col
ed—
dcast
proto-
lidate
 why,

roto-

iple
n a

es a
d in
val-
ork

y to
rs in

itten
e the

at the
ation
The alternative to an invalidate protocol is to update all the cached copies
data item when that item is written. This type of protocol is called a write update
or write broadcast protocol. To keep the bandwidth requirements of this proto
under control it is useful to track whether or not a word in the cache is shar
that is, is contained in other caches. If it is not, then there is no need to broa
or update any other caches. Figure 8.7 shows an example of a write update
col in operation. In the decade since these protocols were developed, inva
has emerged as the winner for the vast majority of designs. To understand
let’s look at the qualitative performance differences.

The performance differences between write update and write invalidate p
cols arise from three characteristics:

1. Multiple writes to the same word with no intervening reads require mult
write broadcasts in an update protocol, but only one initial invalidation i
write invalidate protocol.

2. With multiword cache blocks, each word written in a cache block requir
write broadcast in an update protocol, while only the first write to any wor
the block needs to generate an invalidate in an invalidation protocol. An in
idation protocol works on cache blocks, while an update protocol must w
on individual words (or bytes, when bytes are written). It is possible to tr
merge writes in a write broadcast scheme, just as we did for write buffe
Chapter 5, but the basic difference remains.

3. The delay between writing a word in one processor and reading the wr
value in another processor is usually less in a write update scheme, sinc
written data are immediately updated in the reader’s cache (assuming th
reading processor has a copy of the data). By comparison, in an invalid

Processor activity Bus activity
Contents of

CPU A’s cache
Contents of

CPU B’s cache
Contents of memory

location X

0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes a 1 to X Write broadcast of X 1 1 1

CPU B reads X 1 1 1

FIGURE 8.8 An example of a write update or broadcast protocol working on a snooping bus for a single cache
block (X) with write-back caches. We assume that neither cache initially holds X and that the value of X in memory is 0.
The CPU and memory contents show the value after the processor and bus activity have both completed. A blank indicates
no activity or no copy cached. When CPU A broadcasts the write, both the cache in CPU B and the memory location of X
are updated.

660 Chapter 8 Multiprocessors

talled

 de-
ol of
s for
date,
unts
ds of
cessor
ct up-
ly on

 the
 sim-
he bus.
 pro-

 corre-
ed by
ete to
e first
invali-
e is
.
ing
. In a
e all

e of a
com-

 data
 rather
heme
dress

ested
 caus-
 lower
ulti-
n im-
protocol, the reader is invalidated first, then later reads the data and is s
until a copy can be read and returned to the processor.

Because bus and memory bandwidth is usually the commodity most in
mand in a bus-based multiprocessor, invalidation has become the protoc
choice for almost all implementations. Update protocols also cause problem
memory consistency models, reducing the potential performance gains of up
mentioned in point 3, even further. In designs with very small processor co
(2–4) where the processors are tightly coupled, the larger bandwidth deman
update may be acceptable. Nonetheless, given the trends in increasing pro
performance and the related increase in bandwidth demands, we can expe
date schemes to be used very infrequently. For this reason, we will focus on
invalidate protocols for the rest of the chapter.

Basic Implementation Techniques

The key to implementing an invalidate protocol in a small-scale machine is
use of the bus to perform invalidates. To perform an invalidate the processor
ply acquires bus access and broadcasts the address to be invalidated on t
All processors continuously snoop on the bus watching the addresses. The
cessors check whether the address on the bus is in their cache. If so, the
sponding data in the cache is invalidated. The serialization of access enforc
the bus also forces serialization of writes, since when two processors comp
write to the same location, one must obtain bus access before the other. Th
processor to obtain bus access will cause the other processor’s copy to be
dated, causing writes to be strictly serialized. One implication of this schem
that a write to a shared data item cannot complete until it obtains bus access

In addition to invalidating outstanding copies of a cache block that is be
written into, we also need to locate a data item when a cache miss occurs
write-through cache, it is easy to find the recent value of a data item, sinc
written data are always sent to the memory, from which the most recent valu
data item can always be fetched. (Write buffers can lead to some additional
plexities, which are discussed in section 8.6.)

For a write-back cache, however, the problem of finding the most recent
value is harder, since the most recent value of a data item can be in a cache
than in memory. Happily, write-back caches can use the same snooping sc
both for caches misses and for writes: Each processor snoops every ad
placed on the bus. If a processor finds that it has a dirty copy of the requ
cache block, it provides that cache block in response to the read request and
es the memory access to be aborted. Since write-back caches generate
requirements for memory bandwidth, they are greatly preferable in a m
processor, despite the slight increase in complexity. Therefore, we focus o
plementation with write-back caches.

8.3 Centralized Shared-Memory Architectures 661

. Fur-
ent.
t, are

rites
se, if
us in a
write

te bit
it. By
er a

te oc-
as pri-
The

nged
s this
he also
ted by

ntially
y one

way.
ed in
d up-
eeds
 or to

a copy
hen it
y in the
aling

 en-
tivity

vity is
, then
rieve
ipro-
e indi-
mes it
rther
The normal cache tags can be used to implement the process of snooping
thermore, the valid bit for each block makes invalidation easy to implem
Read misses, whether generated by an invalidation or by some other even
also straightforward since they simply rely on the snooping capability. For w
we’d like to know whether any other copies of the block are cached, becau
there are no other cached copies, then the write need not be placed on the b
write-back cache. Not sending the write reduces both the time taken by the
and the required bandwidth.

To track whether or not a cache block is shared we can add an extra sta
associated with each cache block, just as we have a valid bit and a dirty b
adding a bit indicating whether the block is shared, we can decide wheth
write must generate an invalidate. When a write to a block in the shared sta
curs, the cache generates an invalidation on the bus and marks the block
vate. No further invalidations will be sent by that processor for that block.
processor with the sole copy of a cache block is normally called the owner of the
cache block.

When an invalidation is sent, the state of the owner’s cache block is cha
from shared to unshared (or exclusive). If another processor later request
cache block, the state must be made shared again. Since our snooping cac
sees any misses, it knows when the exclusive cache block has been reques
another processor and the state should be made shared.

Since every bus transaction checks cache-address tags, this could pote
interfere with CPU cache accesses. This potential interference is reduced b
of two techniques: duplicating the tags or employing a multilevel cache within-
clusion, whereby the levels closer to the CPU are a subset of those further a
If the tags are duplicated, then the CPU and the snooping activity may proce
parallel. Of Of course, on a cache miss the processor needs to arbitrate for an
date both sets of tags. Likewise, if the snoop finds a matching tag entry, it n
to arbitrate for and access both sets of cache tags (to perform an invalidate
update the shared bit), as well as possibly the cache data array to retrieve
of a block. Thus with duplicate tags the processor only needs to be stalled w
does a cache access at the same time that a snoop has detected a cop
cache. Furthermore, snooping activity is delayed only when the cache is de
with a miss.

If the CPU uses a multilevel cache with the inclusion property, then every
try in the primary cache is also in the secondary cache. Thus the snoop ac
can be directed to the second-level cache, while most of the processor’s acti
directed to the primary cache. If the snoop gets a hit in the secondary cache
it must arbitrate for the primary cache to update the state and possibly ret
the data, which usually requires a stall of the processor. Since many mult
cessors use a multilevel cache to decrease the bandwidth demands of th
vidual processors, this solution has been adopted in many designs. Someti
may even be useful to duplicate the tags of the secondary cache to fu

662 Chapter 8 Multiprocessors

ss the

pend-
 cache
ip is
tocols

finite
 pro-
well as
uests

decrease contention between the CPU and the snooping activity. We discu
inclusion property in more detail in section 8.8.

As you might imagine, there are many variations on cache coherence, de
ing on whether the scheme is invalidate based or update based, whether the
is write back or write through, when updates occur, and if and how ownersh
recorded. Figure 8.9 summarizes several snooping cache-coherence pro
and shows some machines that have used or are using that protocol.

An Example Protocol

A bus-based coherence protocol is usually implemented by incorporating a
state controller in each node. This controller responds to requests from the
cessor and from the bus, changing the state of the selected cache block, as
using the bus to access data or to invalidate it. Figure 8.10 shows the req

Name Protocol type Memory-write policy Unique feature Machines using

Write
Once

Write invalidate Write back after first write First snooping protocol
described in literature

Synapse
N+1

Write invalidate Write back Explicit state where
memory is the owner

Synapse machines;
first cache-coherent
machines available

Berkeley Write invalidate Write back Owned shared state Berkeley SPUR
machine

Illinois Write invalidate Write back Clean private state; can
supply data from any
cache with a clean copy

SGI Power and
Challenge series

“Firefly” Write broadcast Write back when private,
write through when shared

Memory updated on
broadcast

No current machines;
SPARCCenter 2000
closest.

FIGURE 8.9 Five snooping protocols summarized. Archibald and Baer [1986] use these names to describe the five pro-
tocols, and Eggers [1989] summarizes the similarities and differences as shown in this figure. The Firefly protocol was
named for the experimental DEC Firefly multiprocessor, in which it appeared.

Request Source Function

Read hit Processor Read data in cache

Write hit Processor Write data in cache

Read miss Bus Request data from cache or memory

Write miss Bus Request data from cache or memory; perform any
needed invalidates

FIGURE 8.10 The cache-coherence mechanism receives requests from both the pro-
cessor and the bus and responds to these based on the type of request and the state
of the cache block specified in the request.

8.3 Centralized Shared-Memory Architectures 663

g from
en a
ch an
essors
k is
write
ansac-

k us-
ree
U re-
 right).
itions

state of

ssor
dirty
8.11
 in a
miss
 state
d only
.
ing
state
half

ck is
ly one
or to
g all
lock

block
 block
a sub-
.12,
 com-

, and
ys up
etail
generated by the processor-cache module in a node as well as those comin
the bus. For simplicity, the protocol we explain does not distinguish betwe
write hit and a write miss to a shared cache block: in both cases, we treat su
access as a write miss. When the write miss is placed on the bus, any proc
with copies of the cache block invalidate it. In a write-back cache, if the bloc
exclusive in just one cache, that cache also writes back the block. Treating
hits to shared blocks as cache misses reduces the number of different bus tr
tions and simplifies the controller.

Figure 8.11 shows a finite-state transition diagram for a single cache bloc
ing a write-invalidation protocol and a write-back cache. For simplicity, the th
states of the protocol are duplicated to represent transitions based on CP
quests (on the left), as opposed to transitions based on bus requests (on the
Boldface type is used to distinguish the bus actions, as opposed to the cond
on which a state transition depends. The state in each node represents the
the selected cache block specified by the processor or bus request.

All of the states in this cache protocol would be needed in a uniproce
cache, where they would correspond to the invalid, valid (and clean), and
states. All of the state changes indicated by arcs in the left half of Figure
would be needed in a write-back uniprocessor cache; the only difference
multiprocessor with coherence is that the controller must generate a write
when the controller has a write hit for a cache block in the shared state. The
changes represented by the arcs in the right half of Figure 8.11 are neede
for coherence and would not appear at all in a uniprocessor cache controller

In reality, there is only one finite-state machine per cache, with stimuli com
either from the attached CPU or from the bus. Figure 8.12 shows how the
transitions in the right half of Figure 8.11 are combined with those in the left
of the figure to form a single state diagram for each cache block.

To understand why this protocol works, observe that any valid cache blo
either in the shared state in multiple caches or in the exclusive state in exact
cache. Any transition to the exclusive state (which is required for a process
write to the block) requires a write miss to be placed on the bus, causin
caches to make the block invalid. In addition, if some other cache had the b
in exclusive state, that cache generates a write back, which supplies the
containing the desired address. Finally, if a read miss occurs on the bus to a
in the exclusive state, the owning cache also makes its state shared, forcing
sequent write to require exclusive ownership. The actions in gray in Figure 8
which handle read and write misses on the bus, are essentially the snooping
ponent of the protocol. One other property that is preserved in this protocol
in most other protocols, is that any memory block in the shared state is alwa
to date in the memory. This simplifies the implementation, as we will see in d
in section 8.5.

664 Chapter 8 Multiprocessors

ica-
se is

 pro-
s, and

rly, if
isses
Although our simple cache protocol is correct, it omits a number of compl
tions that make the implementation much trickier. The most important of the
that the protocol assumes that operations are atomic—that is, an operation can be
done in such a way that no intervening operation can occur. For example, the
tocol described assumes that write misses can be detected, acquire the bu
receive a response as a single atomic action. In reality this is not true. Simila
we used a split transaction bus (see Chapter 6, section 6.3), then read m
would also not be atomic.

FIGURE 8.11 A write-invalidate, cache-coherence protocol for a write-back cache showing the states and state
transitions for each block in the cache. The cache states are shown in circles with any access permitted by the CPU with-
out a state transition shown in parenthesis under the name of the state. The stimulus causing a state change is shown on
the transition arcs in regular type, and any bus actions generated as part of the state transition are shown on the transition
arc in bold. The stimulus actions apply to a block in the cache, not to a specific address in the cache. Hence, a read miss to
a line in the shared state is a miss for that cache block but for a different address. The left side of the diagram shows state
transitions based on actions of the CPU associated with this cache; the right side shows transitions based on operations on
the bus. A read miss in the exclusive or shared state and a write miss in the exclusive state occur when the address request-
ed by the CPU does not match the address in the cache block. Such a miss is a standard cache replacement miss. An at-
tempt to write a block in the shared state always generates a miss, even if the block is present in the cache, since the block
must be made exclusive. Whenever a bus transaction occurs, all caches that contain the cache block specified in the bus
transaction take the action dictated by the right half of the diagram. The protocol assumes that memory provides data on a
read miss for a block that is clean in all caches. In actual implementations, these two sets of state diagrams are combined.
This protocol is somewhat simpler than those in use in existing multiprocessors.

Invalid

Exclusive
(read/write)

Write miss for
this block

Write miss
for this block

CPU write hit
CPU read hit

Cache state transitions based
on requests from the bus

CPU write

P
la

ce
 w

ri
te

m
is

s
o

n
 b

u
s

CPU re
ad

 m
iss

W
rit

e-
bac

k b
lo

ck

Pla
ce

 w
rit

e
m

is
s

on b
us

Plac
e r

ea
d m

iss
 o

n b
us CPU w

rit
e

Place read miss on bus

Place read
miss on bus

W
ri

te
-b

ac
k

b
lo

ck
;

ab
o

rt
 m

em
o

ry
ac

ce
ss

W
rit

e-
bac

k b
lo

ck
; a

bort

m
em

ory
 ac

ce
ss

CPU read

Cache state transitions
based on requests from CPU

Shared
(read only)

Exclusive
(read/write)

CPU read hit

CPU write miss

Write-back cache block
Place write miss on bus

CPU
read
miss

Read miss
for this block

Invalid
Shared

(read only)

8.3 Centralized Shared-Memory Architectures 665

 with
 with

ed in
ons
 the re-
lifies
rite
the
Nonatomic actions introduce the possibility that the protocol can deadlock,
meaning that it reaches a state where it cannot continue. Appendix E deals
these complex issues, showing how the protocol can be modified to deal
nonatomic writes without introducing deadlock.

As stated earlier, this coherence protocol is actually simpler than those us
practice. There are two major simplifications. First, in this protocol all transiti
to the exclusive state generate a write miss on the bus, and we assume that
questing cache always fills the block with the contents returned. This simp
the detailed implementation. Most real protocols distinguish between a w
miss and a write hit, which can occur when the cache block is initially in
shared state. Such misses are called ownership or upgrade misses, since they

FIGURE 8.12 Cache-coherence state diagram with the state transitions induced by
the local processor shown in black and by the bus activities shown in gray. As in
Figure 8.11, the activities on a transition are shown in bold.

Exclusive
(read/write)

CPU write hit
CPU read hit

Write miss
for block

CPU write

P
la

ce
 w

ri
te

 m
is

s
o

n
 b

u
s

Rea
d

m
iss

 fo
r b

loc
k

CPU re
ad

 m
iss

W
rit

e-
bac

k b
lo

ck

Plac
e w

rit
e m

iss
 o

n b
us

CPU w
rit

e

Place read miss on bus

Place read
miss on bus

CPU read

CPU read hit

CPU write miss

Write-back data
Place write miss on bus

CPU
read
miss

Invalid

Write miss for this block

W
rit

e-
bac

k d
at

a;
 p

lac
e r

ea
d m

iss
 o

n b
us

Shared
(read only)

W
ri

te
-b

ac
k

b
lo

ck

666 Chapter 8 Multiprocessors

etch.

n of

en a
xactly
 gen-
 wide
xt part
l and

rent
ache
raffic
sub-
ck size
g to

rallel

t to

 block

t, and
t is the
e as a

 exclu-
l that

rease
size
involve changing the state of the block, but do not actually require a data f
To support such state changes, the protocol uses an invalidate operation, in addi-
tion to a write miss. With such operations, however, the actual implementatio
the protocol becomes slightly more complex.

The second major simplification is that many machines distinguish betwe
cache block that is really shared and one that exists in the clean state in e
one cache. This addition of a “clean and private” state eliminates the need to
erate a bus transaction on a write to such a block. Another enhancement in
use allows other caches to supply data on a miss to a shared block. The ne
of this section examines the performance of these protocols for our paralle
multiprogrammed workloads.

Performance of Snooping Coherence Protocols

In a bus-based multiprocessor using an invalidation protocol, several diffe
phenomena combine to determine performance. In particular, the overall c
performance is a combination of the behavior of uniprocessor cache miss t
and the traffic caused by communication, which results in invalidations and
sequent cache misses. Changing the processor count, cache size, and blo
can affect these two components of the miss rate in different ways, leadin
overall system behavior that is a combination of the two effects.

Performance for the Parallel Program Workload
In this section, we use a simulator to study the performance of our four pa
programs. For these measurements, the problem sizes are as follows:

■ Barnes-Hut—16K bodies run for six time steps (the accuracy control is se
1.0, a typical, realistic value);

■ FFT—1 million complex data points

■ LU—A 512 × 512 matrix is used with 16 × 16 blocks

■ Ocean—A 130 × 130 grid with a typical error tolerance

In looking at the miss rates as we vary processor count, cache size, and
size, we decompose the total miss rate into coherence misses and normal unipro-
cessor misses. The normal uniprocessor misses consist of capacity, conflic
compulsory misses. We label these misses as capacity misses, because tha
dominant cause for these benchmarks. For these measurements, we includ
coherence miss any write misses needed to upgrade a block from shared to
sive, even though no one is sharing the cache block. This reflects a protoco
does not distinguish between a private and shared cache block.

Figure 8.13 shows the data miss rates for our four applications, as we inc
the number of processors from one to 16, while keeping the problem

8.3 Centralized Shared-Memory Architectures 667

he in-
ng the
n turn
differs

t the
 con-
ome

ache
 pro-

sses
nt of
t ef-
dual
oces-

ltiple
 and

nflicts
ltiple

s little
 caus-

 it re-
nge in
due to
ad to a
ct—as
te. In-
at are
is in-
even-
s in
 rate.
 that
e but
s that
ir of

nt in
ccurs
e lat-
,
faster
ure be-
constant. As we increase the number of processors, the total amount of cac
creases, usually causing the capacity misses to drop. In contrast, increasi
processor count usually causes the amount of communication to increase, i
causing the coherence misses to rise. The magnitude of these two effects
by application.

In FFT, the capacity miss rate drops (from nearly 7% to just over 5%) bu
coherence miss rate increases (from about 1% to about 2.7%), leading to a
stant overall miss rate. Ocean shows a combination of effects, including s
that relate to the partitioning of the grid and how grid boundaries map to c
blocks. For a typical 2D grid code the communication-generated misses are
portional to the boundary of each partition of the grid, while the capacity mi
are proportional to the area of the grid. Therefore, increasing the total amou
cache while keeping the total problem size fixed will have a more significan
fect on the capacity miss rate, at least until each subgrid fits within an indivi
processor’s cache. The significant jump in miss rate between one and two pr
sors occurs because of conflicts that arise from the way in which the mu
grids are mapped to the caches. This conflict is present for direct-mapped
two-way set associative caches, but fades at higher associativities. Such co
are not unusual in array-based applications, especially when there are mu
grids in use at once. In Barnes and LU the increase in processor count ha
effect on the miss rate, sometimes causing a slight increase and sometimes
ing a slight decrease.

Increasing the cache size has a beneficial effect on performance, since
duces the frequency of costly cache misses. Figure 8.14 illustrates the cha
miss rate as cache size is increased, showing the portion of the miss rate
coherence misses and to uniprocessor capacity misses. Two effects can le
miss rate that does not decrease—at least not as quickly as we might expe
cache size increases: inherent communication and plateaus in the miss ra
herent communication leads to a certain frequency of coherence misses th
not significantly affected by increasing cache size. Thus if the cache size
creased while maintaining a fixed problem size, the coherence miss rate
tually limits the decrease in cache miss rate. This effect is most obviou
Barnes, where the coherence miss rate essentially becomes the entire miss

A less important effect is a temporary plateau in the capacity miss rate
arises when the application has some fraction of its data present in cach
some significant portion of the data set does not fit in the cache or in cache
are slightly bigger. In LU, a very small cache (about 4 KB) can capture the pa
16 × 16 blocks used in the inner loop; beyond that the next big improveme
capacity miss rate occurs when both matrices fit in the caches, which o
when the total cache size is between 4 MB and 8 MB, a data point we will se
er. This working set effect is partly at work between 32 KB and 128 KB for FFT
where the capacity miss rate drops only 0.3%. Beyond that cache size, a
decrease in the capacity miss rate is seen, as some other major data struct

668 Chapter 8 Multiprocessors
FIGURE 8.13 Data miss rates can vary in nonobvious ways as the processor count is
increased from one to 16. The miss rates include both coherence and capacity miss rates.
The compulsory misses in these benchmarks are all very small and are included in the ca-
pacity misses. Most of the misses in these applications are generated by accesses to data
that is potentially shared, although in the applications with larger miss rates (FFT and Ocean),
it is the capacity misses rather than the coherence misses that comprise the majority of the
miss rate. Data is potentially shared if it is allocated in a portion of the address space used
for shared data. In all except Ocean, the potentially shared data is heavily shared, while in
Ocean only the boundaries of the subgrids are actually shared, although the entire grid is
treated as a potentially shared data object. Of course, since the boundaries change as we
increase the processor count (for a fixed-size problem), different amounts of the grid become
shared. The anomalous increase in capacity miss rate for Ocean in moving from one to two
processors arises because of conflict misses in accessing the subgrids. In all cases except
Ocean, the fraction of the cache misses caused by coherence transactions rises when a
fixed-size problem is run on an increasing number of processors. In Ocean, the coherence
misses initially fall as we add processors due to a large number of misses that are write own-
ership misses to data that is potentially, but not actually, shared. As the subgrids begin to fit
in the aggregate cache (around 16 processors), this effect lessens. The single processor
numbers include write upgrade misses, which occur in this protocol even if the data is not ac-
tually shared, since it is in the shared state. For all these runs, the cache size is 64 KB, two-
way set associative, with 32 blocks. Notice that the scale for each benchmark is different, so
that the behavior of the individual benchmarks can be seen clearly.

Miss rate

0%

3%

2%

1%

1 2 4

Processor count

FFT

8 16

8%

4%

7%

6%

5%

Miss rate

0%

6%

4%

2%

1 2 4

Processor count

Ocean

8 16

16%
18%

20%

8%

14%

12%

10%

Miss rate

0%

1%

1 2 4

Processor count

LU

8 16

2%

Miss rate

0%
1 2 4

Processor count

Barnes

8 16

1%

Coherence miss rate Capacity miss rate

8.3 Centralized Shared-Memory Architectures 669

al with

he. In
ulti-
 for
t
at for
r, be-
con-
gins to reside in the cache. These plateaus are common in programs that de
large arrays in a structured fashion.

Increasing the block size is another way to change the miss rate in a cac
uniprocessors, larger block sizes are often optimal with larger caches. In m
processors, two new effects come into play: a reduction in spatial locality
shared data and an effect called false sharing. Several studies have shown tha
shared data have lower spatial locality than unshared data. This means th
shared data, fetching larger blocks is less effective than in a uniprocesso
cause the probability is higher that the block will be replaced before all its
tents are referenced.

FIGURE 8.14 The miss rate usually drops as the cache size is increased, although co-
herence misses dampen the effect. The block size is 32 bytes and the cache is two-way
set-associative. The processor count is fixed at 16 processors. Observe that the scale for
each graph is different.

Miss rate

0%

4%

2%

32 64 128

Cache size (KB)

FFT

256

10%

6%

8%

Miss rate

0%

1%

1%

32 64 128

Cache size (KB)

LU

256

2%

2%

Miss rate

0%

6%

2%

4%

32 64 128

Cache size (KB)

Ocean

256

14%

10%

8%

12%

Miss rate

0%

1%

32 64 128

Cache size (KB)

 Barnes

256

2%

1%

Coherence miss rate Capacity miss rate

670 Chapter 8 Multiprocessors

ased
hen

e some
rit-
e ref-
dent of
 the
to be
aring

 actu-
ord.
The second effect, false sharing, arises from the use of an invalidation-b
coherence algorithm with a single valid bit per block. False sharing occurs w
a block is invalidated (and a subsequent reference causes a miss) becaus
word in the block, other than the one being read, is written into. If the word w
ten into is actually used by the processor that received the invalidate, then th
erence was a true sharing reference and would have caused a miss indepen
the block size or position of words. If, however, the word being written and
word read are different and the invalidation does not cause a new value
communicated, but only causes an extra cache miss, then it is a false sh
miss. In a false sharing miss, the block is shared, but no word in the cache is
ally shared, and the miss would not occur if the block size were a single w
The following Example makes the sharing patterns clear.

E X A M P L E Assume that words x1 and x2 are in the same cache block in a clean state
in the caches of P1 and P2, which have previously read both x1 and x2.
Assuming the following sequence of events, identify each miss as a true
sharing miss, a false sharing miss, or a hit. Any miss that would occur if
the block size were one word is designated a true sharing miss.

A N S W E R Here are classifications by time step:

1. This event is a true sharing miss, since x1 was read by P2 and needs
to be invalidated from P2.

2. This event is a false sharing miss, since x2 was invalidated by the
write of x1 in P1, but that value of x1 is not used in P2.

3. This event is a false sharing miss, since the block containing x1 is
marked shared due to the read in P2, but P2 did not read x1.

4. This event is a false sharing miss for the same reason as step 3.

5. This event is a true sharing miss, since the value being read was
written by P2. ■

Time P1 P2

1 Write x1

2 Read x2

3 Write x1

4 Write x2

5 Read x2

8.3 Centralized Shared-Memory Architectures 671

r a 16-
rnes,
 num-
In the
te. In

pacity
sed at
ion in
 ex-
 more
Figure 8.15 shows the miss rates as the cache block size is increased fo
processor run with a 64-KB cache. The most interesting behavior is in Ba
where the miss rate initially declines and then rises due to an increase in the
ber of coherence misses, which probably occurs because of false sharing.
other benchmarks, increasing the block size decreases the overall miss ra
Ocean and LU, the block size increase affects both the coherence and ca
miss rates about equally. In FFT, the coherence miss rate is actually decrea
a faster rate than the capacity miss rate. This is because the communicat
FFT is structured to be very efficient. In less optimized programs, we would
pect more false sharing and less spatial locality for shared data, resulting in
behavior like that of Barnes.

FIGURE 8.15 The data miss rate drops as the cache block size is increased. All these
results are for a 16-processor run with a 64-KB cache and two-way set associativity. Once
again we use different scales for each benchmark.

Miss rate

0%

6%

4%

2%

16 32 64

Block size (bytes)

FFT

128

14%

10%

8%

12%

Miss rate

0%

2%

1%

16 32 64

Block size (bytes)

LU

128

4%

3%

Miss rate

0%

6%

2%

4%

16 32 64

Block size (bytes)

Ocean

128

14%

10%

8%

12%

Miss rate

0%
16 32 64

Block size (bytes)

Barnes

128

1%

Coherence miss rate Capacity miss rate

672 Chapter 8 Multiprocessors

ieve
based
cks

traffic
s that
ad to
d bus

med
ins the
, each
 of the
parate.
Although the drop in miss rates with longer blocks may lead you to bel
that choosing a longer block size is the best decision, the bottleneck in bus-
multiprocessors is often the limited memory and bus bandwidth. Larger blo
mean more bytes on the bus per miss. Figure 8.16 shows the growth in bus
as the block size is increased. This growth is most serious in the program
have a high miss rate, especially Ocean. The growth in traffic can actually le
performance slowdowns due both to longer miss penalties and to increase
contention.

Performance of the Multiprogramming and OS Workload
In this subsection we examine the cache performance of the multiprogram
workload as the cache size and block size are changed. The workload rema
same as described in the previous section: two independent parallel makes
using up to eight processors. Because of differences between the behavior
kernel and that of the user processes, we keep these two components se

FIGURE 8.16 Bus traffic for data misses climbs steadily as the block size in the data
cache is increased. The factor of 3 increase in traffic for Ocean is the best argument against
larger block sizes. Remember that our protocol treats ownership misses the same as other
misses, slightly increasing the penalty for large cache blocks; in both Ocean and FFT this ef-
fect accounts for less than 10% of the traffic.

7.0

4.0

5.0

6.0

3.0

2.0

1.0

Bytes per data reference

0.0

Block size (bytes)

16 32 64 128

FFT LU Barnes Ocean

8.3 Centralized Shared-Memory Architectures 673

es as
 the
miss

el and

or and

he OS
es are
Remember, though, that the user processes execute more than eight tim
many instructions, so that the overall miss rate is determined primarily by
miss rate in user code, which, as we will see, is often one-fifth of the kernel
rate.

Figure 8.17 shows the data miss rate versus data cache size for the kern
user components. The misses can be broken into three significant classes:

■ Compulsory misses represent the first access to this block by this process
are significant in this workload.

■ Coherence misses represent misses due to invalidations.

■ Normal capacity misses include misses caused by interference between t
and the user process and between multiple user processes. Conflict miss
included in this category.

FIGURE 8.17 The data miss rate drops faster for the user code than for the kernel
code as the data cache is increased from 32 KB to 256 KB with a 32-byte block. Al-
though the user level miss rate drops by a factor of 3, the kernel level miss rate drops only by
a factor of 1.3. As Figure 8.18 shows, this is due to a higher rate of compulsory misses and
coherence misses.

7%

4%

5%

6%

3%

2%

1%

Miss rate

0%

Cache size (KB)

32 64 128 256

Kernel miss rate User miss rate

674 Chapter 8 Multiprocessors

than
ages

lsory
ta and
 coher-
r; this
 ker-

this
 the
 im-
 rare,
hows
size is
 8.20
ction
 ab-
reased
For this workload the behavior of the operating system is more complex
the user processes. This is for two reasons. First, the kernel initializes all p
before allocating them to a user, which significantly increases the compu
component of the kernel’s miss rate. Second, the kernel actually shares da
thus has a nontrivial coherence miss rate. In contrast, user processes cause
ence misses only when the process is scheduled on a different processo
component of the miss rate is small. Figure 8.18 shows the breakdown of the
nel miss rate as the cache size is increased.

Increasing the block size is likely to have more beneficial effects for
workload than for our parallel program workload, since a larger fraction of
misses arise from compulsory and capacity, both of which can be potentially
proved with larger block sizes. Since coherence misses are relatively more
the negative effects of increasing block size should be small. Figure 8.19 s
how the miss rate for the kernel and user references changes as the block
increased, assuming a 32 KB two-way set-associative data cache. Figure
confirms that, for the kernel references, the largest improvement is the redu
of the compulsory miss rate. As in the parallel programming workloads, the
sence of large increases in the coherence miss rate as block size is inc
means that false sharing effects are insignificant.

FIGURE 8.18 The components of the kernel data miss rate change as the data cache
size is increased from 32KB to 256 KB. The compulsory miss rate component stays con-
stant, since it is unaffected by cache size. The capacity component drops by more than a fac-
tor of two, while the coherence component nearly doubles. The increase in coherence misses
occurs because the probability of a miss being caused by an invalidation increases with
cache size, since fewer entries are bumped due to capacity.

Miss rate

0%

2%

4%

6%

5%

3%

1%

32 64 128

Cache size (KB)

256

7%

Compulsory Coherence Capacity

8.3 Centralized Shared-Memory Architectures 675

igure
t of

raffic
tion
isses
c ra-

user
rk-

m.
If we examine the number of bytes needed per data reference, as in F
8.21, we see that the behavior of the multiprogramming workload is like tha
some programs in the parallel program workload. The kernel has a higher t
ratio that grows quickly with block size. This is despite the significant reduc
in compulsory misses; the smaller reduction in capacity and coherence m
drives an increase in total traffic. The user program has a much smaller traffi
tio that grows very slowly.

For the multiprogrammed workload, the OS is a much more demanding
of the memory system. If more OS or OS-like activity is included in the wo
load, it will become very difficult to build a sufficiently capable memory syste

FIGURE 8.19 Miss rate drops steadily as the block size is increased for a 32-KB two-
way set-associative data cache. As we might expect based on the higher compulsory com-
ponent in the kernel, the improvement in miss rate for the kernel references is larger (almost
a factor of 4 for the kernel references when going from 16-byte to 128-byte blocks versus just
under a factor of 3 for the user references).

10%

6%

7%

8%

9%

4%

5%

3%

1%

2%

Miss rate

0%

Block size (bytes)

16 32 64 128

Kernel miss rate User miss rate

676 Chapter 8 Multiprocessors

 and
duce
ges in
ache
mpo-
rence

 dif-
, the
ding
rallel
d and

pends
e bus
 ex-
Summary: Performance of Snooping Cache Schemes

In this section we examined the cache performance of both parallel program
multiprogrammed workloads. We saw that the coherence traffic can intro
new behaviors in the memory system that do not respond as easily to chan
cache size or block size that are normally used to improve uniprocessor c
performance. Coherence requests are a significant but not overwhelming co
nent in the parallel processing workload. We can expect, however, that cohe
requests will be more important in parallel programs that are less optimized.

In the multiprogrammed workload, the user and OS portions perform very
ferently, although neither has significant coherence traffic. In the OS portion
compulsory and capacity contributions to the miss rate are much larger, lea
to overall miss rates that are comparable to the worst programs in the pa
program workload. User cache performance, on the other hand, is very goo
compares to the best programs in the parallel program workload.

The question of how these cache miss rates affect CPU performance de
on the rest of the memory system, including the latency and bandwidth of th
and memory. We will return to overall performance in section 8.8, when we
plore the design of the Challenge multiprocessor.

FIGURE 8.20 As we would expect, the increasing block size substantially reduces the
compulsory miss rate in the kernel references. It also has a significant impact on the ca-
pacity miss rate, decreasing it by a factor of 2.4 over the range of block sizes. The increased
block size has a small reduction in coherence traffic, which appears to stabilize at 64 bytes,
with no change in the coherence miss rate in going to 128-byte lines. Because there are not
significant reductions in the coherence miss rate as the block size increases, the fraction of
the miss rate due to coherence grows from about 7% to about 15%.

Miss rate

0%

2%

4%

9%

8%

7%

6%

5%

3%

1%

16 32 64

Block size (bytes)

128

10%

Compulsory Coherence Capacity

8.4 Distributed Shared-Memory Architectures 677

r in-
 cache
panies
. In
 inter-
nside
 the lo-
e con-

 data is
ourse,
data
f the
A scalable machine supporting shared memory could choose to exclude o
clude cache coherence. The simplest scheme for the hardware is to exclude
coherence, focusing instead on a scalable memory system. Several com
have built this style of machine; the Cray T3D is one well-known example
such machines, memory is distributed among the nodes and all nodes are
connected by a network. Access can be either local or remote—a controller i
each node decides, on the basis of the address, whether the data resides in
cal memory or in a remote memory. In the latter case a message is sent to th
troller in the remote memory to access the data.

These systems have caches, but to prevent coherence problems, shared
marked as uncacheable and only private data is kept in the caches. Of c
software can still explicitly cache the value of shared data by copying the
from the shared portion of the address space to the local private portion o

FIGURE 8.21 The number of bytes needed per data reference grows as block size is
increased for both the kernel and user components. It is interesting to compare this chart
against the same chart for the parallel program workload shown in Figure 8.16.

8.4 Distributed Shared-Memory Architectures

3.5

2.0

2.5

3.0

1.5

1.0

0.5

Bytes per data reference

0.0

Block size (bytes)

16 32 64 128

Kernel traffic User traffic

678 Chapter 8 Multiprocessors

. The
d, al-
mote
.
echa-
iques

vel
licitly
ruc-
ased
that
 that
ce
rately
mers

 being
 cost
t be

refer-
ech-
n) or
er are
need-

seful
tched

emote
ccess
about

ll-scale
to ex-
rtain-
ould
 be

be ad-
very
 cen-
ental

ve, as
 16
address space that is cached. Coherence is then controlled by software
advantage of such a mechanism is that little hardware support is require
though support for features such as block copy may be useful, since re
accesses fetch only single words (or double words) rather than cache blocks

There are several major disadvantages to this approach. First, compiler m
nisms for transparent software cache coherence are very limited. The techn
that currently exist apply primarily to programs with well-structured loop-le
parallelism, and these techniques have significant overhead arising from exp
copying data. For irregular problems or problems involving dynamic data st
tures and pointers (including operating systems, for example), compiler-b
software cache coherence is currently impractical. The basic difficulty is
software-based coherence algorithms must be conservative: every block
might be shared must be treated as if it is shared. This results in excess coheren
overhead, because the compiler cannot predict the actual sharing accu
enough. Due to the complexity of the possible interactions, asking program
to deal with coherence is unworkable.

Second, without cache coherence, the machine loses the advantage of
able to fetch and use multiple words in a single cache block for close to the
of fetching one word. The benefits of spatial locality in shared data canno
leveraged when single words are fetched from a remote memory for each
ence. Support for a DMA mechanism among memories can help, but such m
anisms are often either costly to use (since they often require OS interventio
expensive to implement since special-purpose hardware support and a buff
needed. Furthermore, they are useful primarily when large block copies are
ed (see Figure 7.25 on page 608 on the Cray T3D block copy).

Third, mechanisms for tolerating latency such as prefetch are more u
when they can fetch multiple words, such as a cache block, and where the fe
data remain coherent; we will examine this advantage in more detail later.

These disadvantages are magnified by the large latency of access to r
memory versus a local cache. For example, on the Cray T3D a local cache a
has a latency of two cycles and is pipelined, while a remote access takes
150 cycles.

For these reasons, cache coherence is an accepted requirement in sma
multiprocessors. For larger-scale architectures, there are new challenges
tending the cache-coherent shared-memory model. Although the bus can ce
ly be replaced with a more scalable interconnection network, and we c
certainly distribute the memory so that the memory bandwidth could also
scaled, the lack of scalability of the snooping coherence scheme needs to
dressed. A snooping protocol requires communication with all caches on e
cache miss, including writes of potentially shared data. The absence of any
tralized data structure that tracks the state of the caches is both the fundam
advantage of a snooping-based scheme, since it allows it to be inexpensi
well as its Achilles’ heel when it comes to scalability. For example, with only

8.4 Distributed Shared-Memory Architectures 679

al bus
 the
 (for
hich is
ilicon
or in
hese
ches
duce

t in-
to the
tory
ry in-

ith
or-
ces-
dred
hines,
 The
locks
r bits

 can
n go
ries.
lock
nce

 ma-

ctory
ared,
bina-
 state
:

em-
processors and a block size of 64 bytes and a 64-KB data cache, the tot
bandwidth demand (ignoring stall cycles) for the four parallel programs in
workload ranges from almost 500 MB/sec (for Barnes) to over 9400 MB/sec
Ocean), assuming a processor that issues a data reference every 5 ns, w
what a 1995 superscalar processor might generate. In comparison, the S
Graphics Challenge bus, the highest bandwidth bus-based multiprocess
1995, provides 1200 MB of bandwidth. Although the cache size used in t
simulations is small, so is the problem size. Furthermore, although larger ca
reduce the uniprocessor component of the traffic, they do not significantly re
the parallel component of the miss rate.

Alternatively, we could build scalable shared-memory architectures tha
clude cache coherency. The key is to find an alternative coherence protocol
snooping protocol. One alternative protocol is a directory protocol. A direc
keeps the state of every block that may be cached. Information in the directo
cludes which caches have copies of the block, whether it is dirty, and so on.

Existing directory implementations associate an entry in the directory w
each memory block. In typical protocols, the amount of information is prop
tional to the product of the number of memory blocks and the number of pro
sors. This is not a problem for machines with less than about a hun
processors, because the directory overhead will be tolerable. For larger mac
we need methods to allow the directory structure to be efficiently scaled.
methods that have been proposed either try to keep information for fewer b
(e.g., only those in caches rather than all memory blocks) or try to keep fewe
per entry.

To prevent the directory from becoming the bottleneck, directory entries
be distributed along with the memory, so that different directory accesses ca
to different locations, just as different memory requests go to different memo
A distributed directory retains the characteristic that the sharing status of a b
is always in a single known location. This property is what allows the cohere
protocol to avoid broadcast. Figure 8.22 shows how our distributed-memory
chine looks with the directories added to each node.

Directory-Based Cache-Coherence Protocols: The Basics

Just as with a snooping protocol, there are two primary operations that a dire
protocol must implement: handling a read miss and handling a write to a sh
clean cache block. (Handling a write miss to a shared block is a simple com
tion of these two.) To implement these operations, a directory must track the
of each cache block. In a simple protocol, these states could be the following

■ Shared—One or more processors have the block cached, and the value in m
ory is up to date (as well as in all the caches).

■ Uncached—No processor has a copy of the cache block.

680 Chapter 8 Multiprocessors

writ-
d the

ces-
e in-

each
ether
it vec-
sive
the in-

tical to
n are
e in
in the
an ac-
 avoid
inter-
■ Exclusive—Exactly one processor has a copy of the cache block and it has
ten the block, so the memory copy is out of date. The processor is calle
owner of the block.

In addition to tracking the state of each cache block, we must track the pro
sors that have copies of the block when it is shared, since they will need to b
validated on a write. The simplest way to do this is to keep a bit vector for
memory block. When the block is shared, each bit of the vector indicates wh
the corresponding processor has a copy of that block. We can also use the b
tor to keep track of the owner of the block when the block is in the exclu
state. For efficiency reasons, we also track the state of each cache block at
dividual caches.

The states and transitions for the state machine at each cache are iden
what we used for the snooping cache, although the actions on a transitio
slightly different. We make the same simplifying assumptions that we mad
the case of the snooping cache: attempts to write data that is not exclusive
writer’s cache always generate write misses, and the processors block until
cess completes. Since the interconnect is no longer a bus and we want to
broadcast, there are two additional complications. First, we cannot use the

FIGURE 8.22 A directory is added to each node to implement cache coherence in a
distributed-memory machine. Each directory is responsible for tracking the caches that
share the memory addresses of the portion of memory in the node. The directory may com-
municate with the processor and memory over a common bus, as shown, or it may have a
separate port to memory, or it may be part of a central node controller through which all in-
tranode and internode communications pass.

Interconnection network

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Directory

Processor
+ cache

Memory I/O

Memory

Directory

Processor
+ cache

Processor
+ cache

Processor
+ cache

Processor
+ cache

Memory I/O Memory MemoryI/O I/O Memory I/O

Directory Directory Directory Directory

8.4 Distributed Shared-Memory Architectures 681

 the
like the
nses.

log of
ctories.

y
 space
for a
vide
ory

xclu-
sa. In
placed

.

s

s

connect as a single point of arbitration, a function the bus performed in
snooping case. Second, because the interconnect is message oriented (un
bus, which is transaction oriented), many messages must have explicit respo

Before we see the protocol state diagrams, it is useful to examine a cata
the message types that may be sent between the processors and the dire
Figure 8.23 shows the type of messages sent among nodes. The local node is the
node where a request originates. The home node is the node where the memor
location and the directory entry of an address reside. The physical address
is statically distributed, so the node that contains the memory and directory
given physical address is known. For example, the high-order bits may pro
the node number, while the low-order bits provide the offset within the mem
on that node.

The remote node is the node that has a copy of a cache block, whether e
sive or shared. The local node may also be the home node, and vice ver
either case the protocol is the same, although internode messages can be re
by intranode transactions, which should be faster.

Message type Source Destination
Message
contents Function of this message

Read miss Local cache Home
directory

P, A Processor P has a read miss at address A;
request data and make P a read sharer.

Write miss Local cache Home
directory

P, A Processor P has a write miss at address A; —
request data and make P the exclusive owner.

Invalidate Home
directory

Remote cache A Invalidate a shared copy of data at address A

Fetch Home
directory

Remote cache A Fetch the block at address A and send it to it
home directory; change the state of A in the
remote cache to shared.

Fetch/invalidate Home
directory

Remote cache A Fetch the block at address A and send it to it
home directory; invalidate the block in the
cache.

Data value reply Home
directory

Local cache Data Return a data value from the home memory.

Data write back Remote
cache

Home
directory

A, data Write back a data value for address A.

FIGURE 8.23 The possible messages sent among nodes to maintain coherence. The first two messages are miss
requests sent by the local cache to the home. The third through fifth messages are messages sent to a remote cache by the
home when the home needs the data to satisfy a read or write miss request. Data value replies are used to send a value
from the home node back to the requesting node. Data value write backs occur for two reasons: when a block is replaced in
a cache and must be written back to its home memory, and also in reply to fetch or fetch/invalidate messages from the home.
Writing back the data value whenever the block becomes shared simplifies the number of states in the protocol, since any
dirty block must be exclusive and any shared block is always available in the home memory.

682 Chapter 8 Multiprocessors

ini-
n as-
r they

itional
em-

at in-

y like
ous to
 show
e dia-
 the
ils of a
num-
ures,
knotty
ed in

nds.
 out-

idual
tch re-
 also
y. Read
s be-

8.24
al, and
cast
lidate
ping
 and

 the
es of

satisfy
s for a
ngle

ulti-
actly
In this section, we assume a simple model of memory consistency. To m
mize the type of messages and the complexity of the protocol, we make a
sumption that messages will be received and acted upon in the same orde
are sent. This assumption may not be true in practice, and can result in add
complications, some of which we address in section 8.6 when we discuss m
ory consistency models. In this section, we use this assumption to ensure th
validates sent by a processor are honored immediately.

An Example Directory Protocol

The basic states of a cache block in a directory-based protocol are exactl
those in a snooping protocol, and the states in the directory are also analog
those we showed earlier. Thus we can start with simple state diagrams that
the state transitions for an individual cache block and then examine the stat
gram for the directory entry corresponding to each block in memory. As in
snooping case, these state transition diagrams do not represent all the deta
coherence protocol; however, the actual controller is highly dependent on a
ber of details of the machine (message delivery properties, buffering struct
and so on). In this section we present the basic protocol state diagrams. The
issues involved in implementing these state transition diagrams are examin
Appendix E, along with similar problems that arise for snooping caches.

Figure 8.24 shows the protocol actions to which an individual cache respo
We use the same notation as in the last section, with requests coming from
side the node in gray and actions in bold. The state transitions for an indiv
cache are caused by read misses, write misses, invalidates, and data fe
quests; these operations are all shown in Figure 8.24. An individual cache
generates read and write miss messages that are sent to the home director
and write misses require data value replies, and these events wait for replie
fore changing state.

The operation of the state transition diagram for a cache block in Figure
is essentially the same as it is for the snooping case: the states are identic
the stimulus is almost identical. The write miss operation, which was broad
on the bus in the snooping scheme, is replaced by the data fetch and inva
operations that are selectively sent by the directory controller. Like the snoo
protocol, any cache block must be in the exclusive state when it is written
any shared block must be up to date in memory.

In a directory-based protocol, the directory implements the other half of
coherence protocol. A message sent to a directory causes two different typ
actions: updates of the directory state, and sending additional messages to
the request. The states in the directory represent the three standard state
block, but for all the cached copies of a memory block rather than for a si
cache block. The memory block may be uncached by any node, cached in m
ple nodes and readable (shared), or cached exclusively and writable in ex

8.4 Distributed Shared-Memory Architectures 683

set of

it
cises,
 the set

sages
miss,
one node. In addition to the state of each block, the directory must track the
processors that have a copy of a block; we use a set called Sharers to perform this
function. In small-scale machines (≤ 128 nodes), this set is typically kept as a b
vector. In larger machines, other techniques, which we discuss in the Exer
are needed. Directory requests need to update the set Sharers and also read
to perform invalidations.

Figure 8.25 shows the actions taken at the directory in response to mes
received. The directory receives three different requests: read miss, write

FIGURE 8.24 State transition diagram for an individual cache block in a directory-
based system. Requests by the local processor are shown in black and those from the home
directory are shown in gray. The states are identical to those in the snooping case, and the
transactions are very similar, with explicit invalidate and write-back requests replacing the
write misses that were formerly broadcast on the bus. As we did for the snooping controller,
we assume that an attempt to write a shared cache block is treated as a miss; in practice,
such a transaction can be treated as an ownership request or upgrade request and can de-
liver ownership without requiring that the cache block be fetched.

Exclusive
(read/write)

CPU write hit
CPU read hit

Fetch
invalidate

CPU write

S
en

d
 w

ri
te

 m
is

s
m

es
sa

g
e

Fet
ch

CPU re
ad

 m
iss

Dat
a w

rit
e-

bac
k

Sen
d w

rit
e m

iss
 m

es
sa

ge
CPU w

rit
e

Send read miss message

Read miss

CPU read

CPU read hit

CPU write miss

Data write-back
Write miss

CPU
read
miss

Invalid

Invalidate

Dat
a w

rit
e-

bac
k;

 re
ad

 m
iss

Shared
(read only)

D
at

a
w

ri
te

-b
ac

k

684 Chapter 8 Multiprocessors

own in
e all
lified

ue and
tion.
eived
opy in

mory
 made
and data write back. The messages sent in response by the directory are sh
bold, while the updating of the set Sharers is shown in bold italics. Becaus
the stimulus messages are external, all actions are shown in gray. Our simp
protocol assumes that some actions are atomic, such as requesting a val
sending it to another node; a realistic implementation cannot use this assump

To understand these directory operations, let’s examine the requests rec
and actions taken state by state. When a block is in the uncached state the c
memory is the current value, so the only possible requests for that block are

■ Read miss—The requesting processor is sent the requested data from me
and the requestor is made the only sharing node. The state of the block is
shared.

FIGURE 8.25 The state transition diagram for the directory has the same states and
structure as the transition diagram for an individual cache. All actions are in gray be-
cause they are all externally caused. Bold indicates the action taken by the directory in re-
sponse to the request. Bold italics indicate an action that updates the sharing set, Sharers,
as opposed to sending a message.

Exclusive
(read/write)

Data
write-back

Write miss

D
at

a
va

lu
e

re
p

ly
;

S
h

ar
er

s=
{P

}

S
h

ar
er

s=
{}

In
va

lid
at

e;
 S

har
er

s=
{P

};
dat

a v
alu

e r
ep

ly

Read miss

Data value reply
Sharers=Sharers+{P}

Data value reply; Sharers={P}

Write
miss

Fetch/invalidate
Data value reply
Sharers={P}

Read
miss

Uncached

Fet
ch

; d
at

a v
alu

e r
ep

ly;
 S

har
er

s=
Shar

er
s+

{P
}

Rea
d

m
iss

W
rit

e
m

iss

Shared
(read only)

8.4 Distributed Shared-Memory Architectures 685

Shar-
y is

 same

mory

 the
tain the
ive.

ld in
re are

uses
es the
 sent
sor is
r that

ore
ctory
rer set

ner
ich it
s is set
ve.

s in
since
dix E

onal
curs
ome
iginal
own-
ck to
they
■ Write miss—The requesting processor is sent the value and becomes the
ing node. The block is made exclusive to indicate that the only valid cop
cached. Sharers indicates the identity of the owner.

When the block is in the shared state the memory value is up to date, so the
two requests can occur:

■ Read miss—The requesting processor is sent the requested data from me
and the requesting processor is added to the sharing set.

■ Write miss—The requesting processor is sent the value. All processors in
set Sharers are sent invalidate messages, and the Sharers set is to con
identity of the requesting processor. The state of the block is made exclus

When the block is in the exclusive state the current value of the block is he
the cache of the processor identified by the set sharers (the owner), so the
three possible directory requests:

■ Read miss—The owner processor is sent a data fetch message, which ca
the state of the block in the owner’s cache to transition to shared and caus
owner to send the data to the directory, where it is written to memory and
back to the requesting processor. The identity of the requesting proces
added to the set sharers, which still contains the identity of the processo
was the owner (since it still has a readable copy).

■ Data write-back—The owner processor is replacing the block and theref
must write it back. This makes the memory copy up to date (the home dire
essentially becomes the owner), the block is now uncached, and the sha
is empty.

■ Write miss—The block has a new owner. A message is sent to the old ow
causing the cache to send the value of the block to the directory, from wh
is sent to the requesting processor, which becomes the new owner. Sharer
to the identity of the new owner, and the state of the block remains exclusi

This state transition diagram in Figure 8.25 is a simplification, just as it wa
the snooping cache case. In the directory case it is a larger simplification,
our assumption that bus transactions are atomic no longer applies. Appen
explores these issues in depth.

In addition, the directory protocols used in real machines contain additi
optimizations. In particular, in our protocol here when a read or write miss oc
for a block that is exclusive, the block is first sent to the directory at the h
node. From there it is stored into the home memory and also sent to the or
requesting node. Many protocols in real machines forward the data from the
er node to the requesting node directly (as well as performing the write ba
the home). Such optimizations may not add complexity to the protocol, but
often move the complexity from one part of the design to another.

686 Chapter 8 Multiprocessors

e fac-
e, pro-
rious
ends
 the
t the

ping-
lock
ory

s both
here-
nd re-
tions,
capaci-
tribu-

fected
e the
icts in
miss-

eased,
crease

tle or
misses
n, 512
arger

Be-
educe
going
miss

s re-
 local

ands
For a
quired
 next
Performance of Directory-Based Coherence Protocols

The performance of a directory-based machine depends on many of the sam
tors that influence the performance of bus-based machines (e.g., cache siz
cessor count, and block size), as well as the distribution of misses to va
locations in the memory hierarchy. The location of a requested data item dep
on both the initial allocation and the sharing patterns. We start by examining
basic cache performance of our parallel program workload and then look a
effect of different types of misses.

Because the machine is larger and has longer latencies than our snoo
based multiprocessor, we begin with a slightly larger cache (128 KB) and a b
size of 64 bytes. In distributed memory architectures, the distribution of mem
requests between local and remote is key to performance, because it affect
the consumption of global bandwidth and the latency seen by requests. T
fore, for the figures in this section we separate the cache misses into local a
mote requests. In looking at the figures, keep in mind that, for these applica
most of the remote misses that arise are coherence misses, although some
ty misses can also be remote, and in some applications with poor data dis
tion, such misses can be significant (see the Pitfall on page 738).

As Figure 8.26 shows, the miss rates with these cache sizes are not af
much by changes in processor count, with the exception of Ocean, wher
miss rate rises at 64 processors. This rise occurs because of mapping confl
the cache that occur when the grid becomes small, leading to a rise in local
es, and because of a rise in the coherence misses, which are all remote.

Figure 8.27 shows how the miss rates change as the cache size is incr
assuming a 64-processor execution and 64-byte blocks. These miss rates de
at rates that we might expect, although the dampening effect caused by lit
no reduction in coherence misses leads to a slower decrease in the remote
than in the local misses. By the time we reach the largest cache size show
KB, the remote miss rate is equal to or greater than the local miss rate. L
caches would just continue to amplify this trend.

Finally, we examine the effect of changing the block size in Figure 8.28.
cause these applications have good spatial locality, increases in block size r
the miss rate, even for large blocks, although the performance benefits for
to the largest blocks are small. Furthermore, most of the improvement in
rate comes in the local misses.

Rather than plot the memory traffic, Figure 8.29 plots the number of byte
quired per data reference versus block size, breaking the requirement into
and global bandwidth. In the case of a bus, we can simply aggregate the dem
of each processor to find the total demand for bus and memory bandwidth.
scalable interconnect, we can use the data in Figure 8.29 to compute the re
per-node global bandwidth and the estimated bisection bandwidth, as the
Example shows.

8.4 Distributed Shared-Memory Architectures 687
FIGURE 8.26 The data miss rate is often steady as processors are added for these
benchmarks. Because of its grid structure, Ocean has an initially decreasing miss rate,
which rises when there are 64 processors. For Ocean, the local miss rate drops from 5% at
8 processors to 2% at 32, before rising to 4% at 64. The remote miss rate in Ocean, driven
primarily by communication, rises monotonically from 1% to 2.5%. Note that to show the de-
tailed behavior of each benchmark, different scales are used on the y-axis. The cache for all
these runs is 128 KB, two-way set associative, with 64-byte blocks. Remote misses include
any misses that require communication with another node, whether to fetch the data or to de-
liver an invalidate. In particular, in this figure and other data in this section, the measurement
of remote misses includes write upgrade misses where the data is up to date in the local
memory but cached elsewhere and, therefore, requires invalidations to be sent. Such invali-
dations do indeed generate remote traffic, but may or may not delay the write, depending on
the consistency model (see section 8.6).

Miss rate

0%

3%

2%

1%

8 16 32

Processor count

FFT

64

6%

4%

5%

Miss rate

0.0%

0.5%

8 16 32

Processor count

LU

64

1.0%

Miss rate

0%

4%

2%

8 16 32

Processor count

Ocean

64

8%

6%

Miss rate

0.0%
8 16 32

Processor count

Barnes

64

0.5%

Local misses Remote misses

688 Chapter 8 Multiprocessors
FIGURE 8.27 Miss rates decrease as cache sizes grow. Steady decreases are seen in
the local miss rate, while the remote miss rate declines to varying degrees, depending on
whether the remote miss rate had a large capacity component or was driven primarily by com-
munication misses. In all cases, the decrease in the local miss rate is larger than the decrease
in the remote miss rate. The plateau in the miss rate of FFT, which we mentioned in the last
section, ends once the cache exceeds 128 KB. These runs were done with 64 processors
and 64-byte cache blocks.

Miss rate

0%

4%

2%

32 64 128

Cache size (KB)

FFT

256 512

10%

6%

8%

Miss rate

0.0%

1.0%

0.5%

32 64 128

Cache size (KB)

LU

Ocean

256 512

2.5%

1.5%

2.0%

Miss rate

0.0%

0.5%

32 64 128

Cache size (KB)

Barnes

256 512

1.5%

1.0% Miss rate

0%

10%

5%

32 64 128

Cache size (KB)

256 512

20%

15%

Local misses Remote misses

8.4 Distributed Shared-Memory Architectures 689
E X A M P L E Assume a multiprocessor with 64 200-MHz processors that sustains one
memory reference per clock. For a 64-byte block size, the remote miss
rate is 0.7%. Find the per-node and estimated bisection bandwidth for
FFT. Assume that the processor does not stall for remote memory re-
quests; this might be true if, for example, all remote data were prefetched.
How do these bandwidth requirements compare to various interconnec-
tion technologies?

FIGURE 8.28 Data miss rate versus block size assuming a 128-KB cache and 64 pro-
cessors in total. Although difficult to see, the coherence miss rate in Barnes actually rises
for the largest block size, just as in the last section.

Miss rate

0%

4%

6%

2%

16 32 64

Block size (bytes)

FFT

128

12%

8%

10%

Miss rate

0%

2%

1%

16 32 64

Block size (bytes)

LU

128

4%

3%

Miss rate

0%

5%

10%

16 32 64

Block size (bytes)

Ocean

128

15%

Miss rate

0.0%

0.1%

16 32 64

Block size (bytes)

Barnes

128

0.3%

0.2%

Local misses Remote misses

690 Chapter 8 Multiprocessors
A N S W E R The per-node bandwidth is simply the number of data bytes per reference
times the reference rate: 0.7% × 200 × 64 = 90 MB/sec. This rate is about
half the bandwidth of the fastest scalable MPP interconnects available in
1995. The FFT per-node bandwidth demand exceeds the fastest ATM in-
terconnects available in 1995 by about a factor of 5, and slightly exceeds
next-generation ATM.

FFT performs all-to-all communication, so the bisection bandwidth is
equal to 32 times the per-node bandwidth, or 2880 MB/sec. For a 64-pro-
cessor machine arranged in a 2D mesh, the bisection bandwidth grows
as the square root of the number of processors. Thus for 64 processors

FIGURE 8.29 The number of bytes per data reference climbs steadily as block size is
increased. These data can be used to determine the bandwidth required per node both in-
ternally and globally. The data assumes a 128-KB cache for each of 64 processors.

Bytes per data
reference

Bytes per data
reference

Bytes per data
reference

Bytes per data
reference

0.0

2.0

3.0

1.0

16 32 64

Block size (bytes)

FFT

128

6.0

4.0

5.0

0.0

0.2

0.3

0.1

16 32 64

Block size (bytes)

LU

128

0.6

0.4

0.5

0.0

2.0

4.0

6.0

5.0

3.0

1.0

16 32 64

Block size (bytes)

Ocean

128

7.0

0.0

0.1

16 32 64

Block size (bytes)

Barnes

128

0.4

0.3

0.2

Local Global

8.4 Distributed Shared-Memory Architectures 691

issue
sight
 8.30
e time
local
his

n the
uses
ct in
the bisection bandwidth is 8 times the node bandwidth. In 1995, MPP-
style interconnects offer about 200 MB/sec to a node for a total of 1600
MB/sec, or somewhat less than the required bandwidth. At 64 processors,
a 3D mesh has double this bisection bandwidth (3200 MB/sec), which
exceeds the required bandwidth. A next-generation 2D mesh is also ex-
pected to meet the bisection bandwidth requirement. A 1995 ATM-based
64 × 64 crossbar has about 1200 MB/sec of bisection bandwidth; a next-
generation ATM offers four times this bandwidth, which exceeds the bi-
section bandwidth required, although it does not satisfy the per-node
bandwidth. ■

The previous Example looked at the bandwidth demands. The other key
for a parallel program is remote memory access time, or latency. To get in
into this, we use a simple example of a directory-based machine. Figure
shows the parameters we assume for our simple machine. It assumes that th
to first word for a local memory access is 25 cycles and that the path to
memory is 8 bytes wide, while the network interconnect is 2 bytes wide. T
model ignores the effects of contention, which are probably not too serious i
parallel benchmarks we examine, with the possible exception of FFT, which
all-to-all communication. Contention could have a serious performance impa
other work loads.

Characteristic Number of processor clock cycles

Cache hit 1

Cache miss to local memory

Cache miss to remote home directory

Cache miss to remotely cached data
(3-hop miss)

FIGURE 8.30 Characteristics of the example directory-based machine. Misses can be
serviced locally (including from the local directory), at a remote home node, or using the ser-
vices of both the home node and another remote node that is caching an exclusive copy. This
last case is called a 3-hop miss and has a higher cost because it requires interrogating both
the home directory and a remote cache. Note that this simple model does not account for in-
validation time. These network latencies are typical of what can be achieved in 1995–96 in an
MPP-style network interfaced in hardware to each node and assuming moderately fast pro-
cessors (150–200 MHz).

25
block size in bytes

8
--+

75
block size in bytes

2
--+

100
block size in bytes

2
--+

692 Chapter 8 Multiprocessors

, as-
 type
s, re-
 total
he lo-
s fair-
easing
te in-
 also.
inant

ould
s the
 ac-

al sim-
ies:
era-
ce of
uces

ate a
 and
es in
roto-

hend
ader,
 are
le. It
as the
ries.

ning
Figure 8.31 shows the cost in cycles for the average memory reference
suming the parameters in Figure 8.30. Only the latencies for each reference
are counted. Each bar indicates the contribution from cache hits, local misse
mote misses, and 3-hop remote misses. The cost is influenced by the
frequency of cache misses and upgrades, as well as by the distribution of t
cation where the miss is satisfied. The cost for a remote memory reference i
ly steady as the processor count is increased, except for Ocean. The incr
miss rate in Ocean for 64 processors is clear in Figure 8.26. As the miss ra
creases, we should expect the time spent on memory references to increase

Although Figure 8.31 shows the memory access cost, which is the dom
multiprocessor cost in these benchmarks, a complete performance model w
need to consider the effect of contention in the memory system, as well a
losses arising from synchronization delays. In section 8.8 we will look at the
tual performance of the SGI Challenge system on these benchmarks.

The coherence protocols that we have discussed so far have made sever
plifying assumptions. In practice, real protocols must deal with two realit
nonatomicity of operations and finite buffering. We have seen why certain op
tions (such as a write miss) cannot be atomic. In DSM machines the presen
only a finite number of buffers to hold message requests and replies introd
additional possibilities for deadlock. The challenge for the designer is to cre
protocol that works correctly and without deadlock, using nonatomic actions
finite buffers as the building blocks. These factors are fundamental challeng
all parallel machines, and the solutions are applicable to a wide variety of p
col design environments, both in hardware and in software.

Because this material is extremely complex and not necessary to compre
the rest of the chapter, we have placed it in Appendix E. For the interested re
Appendix E shows how the specific problems in our coherence protocols
solved and illustrates the general principles that are more globally applicab
describes the problems arising in snooping cache implementations, as well
more complex problems that arise in more distributed systems using directo
If you want to understand how these machines really work and why desig
them is such a challenge, go read Appendix E!

8.4 Distributed Shared-Memory Architectures 693
FIGURE 8.31 The effective latency of memory references in a DSM machine depends
both on the relative frequency of cache misses and on the location of the memory
where the accesses are served. These plots show the memory access cost (a metric called
average memory access time in Chapter 5) for each of the benchmarks for 8, 16, 32, and 64
processors, assuming a 128-KB data cache that is two-way set associative with 64-byte
blocks. The average memory access cost is composed of four different types of accesses,
with the cost of each type given in Figure 8.30. For the Barnes and LU benchmarks, the low
miss rates lead to low overall access times. In FFT, the higher access cost is determined by
a higher local miss rate (4%) and a significant 3-hop miss rate (1%). Ocean shows the highest
cost for memory accesses, as well as the only behavior that varies significantly with proces-
sor count. The high cost is driven primarily by a high local miss rate (average 1.4%). The
memory access cost drops from 8 to 32 processors as the grids more easily fit in the individ-
ual caches. At 64 processors, the data set size is too small to map properly and both local
misses and coherence misses rise, as we saw in Figure 8.26.

Average cycles
per reference

0.0

1.5

1.0

2.0

0.5

8 16 32

Processor count

FFT

64

4.5

2.5

3.0

3.5

4.0

Average cycles
per reference

0.0

1.5

1.0

2.0

0.5

8 16 32

Processor count

LU

64

4.5

2.5

3.0

3.5

4.0

Average cycles
per reference

0.0

1.5

1.0

2.0

0.5

8 16 32

Processor count

Barnes

64

4.5

2.5

3.0

3.5

4.0

Average cycles
per reference

0.0

1.5

1.0

2.0

0.5

8 16 32

Processor count

Ocean

64

4.5

2.5

3.0

3.5

4.0

Hit Miss to
local memory

Remote
miss to
home

3-hop
miss to
remote
cache

694 Chapter 8 Multiprocessors

ines
ma-
ter-
and
ed us-
 be

ence
niza-
 addi-
. We

evel
 syn-

veral
for-

 is a
m-

tion
ses.
ives,
her
ese
e va-
 and
dware
ram-
icky.
build

 see
 want
 free
et the
ress
s 1 if
Synchronization mechanisms are typically built with user-level software rout
that rely on hardware-supplied synchronization instructions. For smaller
chines or low-contention situations, the key hardware capability is an unin
ruptible instruction or instruction sequence capable of atomically retrieving
changing a value. Software synchronization mechanisms are then construct
ing this capability. For example, we will see how very efficient spin locks can
built using a simple hardware synchronization instruction and the coher
mechanism. In larger-scale machines or high-contention situations, synchro
tion can become a performance bottleneck, because contention introduces
tional delays and because latency is potentially greater in such a machine
will see how contention can arise in implementing some common user-l
synchronization operations and examine more powerful hardware-supported
chronization primitives that can reduce contention as well as latency.

We begin by examining the basic hardware primitives, then construct se
well-known synchronization routines with the primitives, and then turn to per
mance problems in larger machines and solutions for those problems.

Basic Hardware Primitives

The key ability we require to implement synchronization in a multiprocessor
set of hardware primitives with the ability to atomically read and modify a me
ory location. Without such a capability, the cost of building basic synchroniza
primitives will be too high and will increase as the processor count increa
There are a number of alternative formulations of the basic hardware primit
all of which provide the ability to atomically read and modify a location, toget
with some way to tell if the read and write were performed atomically. Th
hardware primitives are the basic building blocks that are used to build a wid
riety of user-level synchronization operations, including things such as locks
barriers. In general, architects do not expect users to employ the basic har
primitives, but instead expect that the primitives will be used by system prog
mers to build a synchronization library, a process that is often complex and tr
Let’s start with one such hardware primitive and show how it can be used to
some basic synchronization operations.

One typical operation for building synchronization operations is the atomic
exchange, which interchanges a value in a register for a value in memory. To
how to use this to build a basic synchronization operation, assume that we
to build a simple lock where the value 0 is used to indicate that the lock is
and a 1 is used to indicate that the lock is unavailable. A processor tries to s
lock by doing an exchange of 1, which is in a register, with the memory add
corresponding to the lock.The value returned from the exchange instruction i

8.5 Synchronization

8.5 Synchronization 695

 latter
e from

imul-
form
en it
ple-

sible
ech-
vari-

ment
mem-
 exe-

 could
d in a
iza-

n
roni-
d ex-
h we

era-
mem-
 read
ple-
ns be-

n re-
 was
ears
ppear
other

d
nked
en the
o in-
ed to
 load
eds
some other processor had already claimed access and 0 otherwise. In the
case, the value is also changed to be 1, preventing any competing exchang
also retrieving a 0.

For example, consider two processors that each try to do the exchange s
taneously: This race is broken since exactly one of the processors will per
the exchange first, returning 0, and the second processor will return 1 wh
does the exchange. The key to using the exchange (or swap) primitive to im
ment synchronization is that the operation is atomic: the exchange is indivi
and two simultaneous exchanges will be ordered by the write serialization m
anisms. It is impossible for two processors trying to set the synchronization
able in this manner to both think they have simultaneously set the variable.

There are a number of other atomic primitives that can be used to imple
synchronization. They all have the key property that they read and update a
ory value in such a manner that we can tell whether or not the two operations
cuted atomically. One operation present in many older machines is test-and-set,
which tests a value and sets it if the value passes the test. For example, we
define an operation that tested for 0 and set the value to 1, which can be use
fashion similar to how we used atomic exchange. Another atomic synchron
tion primitive is fetch-and-increment: it returns the value of a memory locatio
and atomically increments it. By using the value 0 to indicate that the synch
zation variable is unclaimed, we can use fetch-and-increment, just as we use
change. There are other uses of operations like fetch-and-increment, whic
will see shortly.

A slightly different approach to providing this atomic read-and-update op
tion has been used in some recent machines. Implementing a single atomic
ory operation introduces some challenges, since it requires both a memory
and a write in a single, uninterruptible instruction. This complicates the im
mentation of coherence, since the hardware cannot allow any other operatio
tween the read and the write, and yet must not deadlock.

An alternative is to have a pair of instructions where the second instructio
turns a value from which it can be deduced whether the pair of instructions
executed as if the instructions were atomic. The pair of instructions app
atomic if it appears as if all other operations executed by any processor a
before or after the pair. Thus when an instruction pair appears atomic, no
processor can change the value between the instruction pair.

The pair of instructions includes a special load called a load linked or load
locked and a special store called a store conditional. These instructions are use
in sequence: If the contents of the memory location specified by the load li
are changed before the store conditional to the same address occurs, th
store conditional fails. If the processor does a context switch between the tw
structions, then the store conditional also fails. The store conditional is defin
return a value indicating whether or not the store was successful. Since the
linked returns the initial value and the store conditional returns 1 if it succe

696 Chapter 8 Multiprocessors

n the

peci-
yed

ry be-
e-

n be
mic

ress

is in-

if so,
 ei-
, care
struc-
ted;
r can
ad
that
onal to

s of a
s
 lock
lock-
 the
and 0 otherwise, the following sequence implements an atomic exchange o
memory location specified by the contents of R1:

try: MOV R3,R4 ;mov exchange value

LL R2,0(R1) ;load linked

SC R3,0(R1) ;store conditional

BEQZ R3,try ;branch store fails

MOV R4,R2 ;put load value in R4

At the end of this sequence the contents of R4 and the memory location s
fied by R1 have been atomically exchanged (ignoring any effect from dela
branches). Any time a processor intervenes and modifies the value in memo
tween the LL and SC instructions, the SC returns 0 in R3, causing the code s
quence to try again.

An advantage of the load linked/store conditional mechanism is that it ca
used to build other synchronization primitives. For example, here is an ato
fetch-and-increment:

try: LL R2,0(R1) ;load linked

ADDI R3,R2,#1 ;increment

SC R3,0(R1) ;store conditional

BEQZ R3,try ;branch store fails

These instructions are typically implemented by keeping track of the add
specified in the LL instruction in a register, often called the link register. If an in-
terrupt occurs, or if the cache block matching the address in the link register
validated (for example, by another SC), the link register is cleared. The SC

instruction simply checks that its address matches that in the link register;
the SC succeeds; otherwise, it fails. Since the store conditional will fail after
ther another attempted store to the load linked address or any exception
must be taken in choosing what instructions are inserted between the two in
tions. In particular, only register-register instructions can safely be permit
otherwise, it is possible to create deadlock situations where the processo
never complete the SC. In addition, the number of instructions between the lo
linked and the store conditional should be small to minimize the probability
either an unrelated event or a competing processor causes the store conditi
fail frequently.

Implementing Locks Using Coherence

Once we have an atomic operation, we can use the coherence mechanism
multiprocessor to implement spin locks: locks that a processor continuously trie
to acquire, spinning around a loop. Spin locks are used when we expect the
to be held for a very short amount of time and when we want the process of
ing to be low latency when the lock is available. Because spin locks tie up

8.5 Synchronization 697

te in

 co-
ually
ether

simply
whose

he co-
van-
ing

 copy
 lock.
lity in
 in the
roces-

ather
uires

op di-
g to
rite
usive

ads
ble.
r first
g until
 races
 lock
e and
sers

o set
ssor
 vari-
de to
processor, waiting in a loop for the lock to become free, they are inappropria
some circumstances.

The simplest implementation, which we would use if there were no cache
herence, would keep the lock variables in memory. A processor could contin
try to acquire the lock using an atomic operation, say exchange, and test wh
the exchange returned the lock as free. To release the lock, the processor
stores the value 0 to the lock. Here is the code sequence to lock a spin lock
address is in R1 using an atomic exchange:

LI R2,#1

lockit: EXCH R2,0(R1) ;atomic exchange

BNEZ R2,lockit ;already locked?

If our machine supports cache coherence, we can cache the locks using t
herence mechanism to maintain the lock value coherently. This has two ad
tages. First, it allows an implementation where the process of “spinning” (try
to test and acquire the lock in a tight loop) could be done on a local cached
rather than requiring a global memory access on each attempt to acquire the
The second advantage comes from the observation that there is often loca
lock accesses: that is, the processor that used the lock last will use it again
near future. In such cases, the lock value may reside in the cache of that p
sor, greatly reducing the time to acquire the lock.

To obtain the first advantage—being able to spin on a local cached copy r
than generating a memory request for each attempt to acquire the lock—req
a change in our simple spin procedure. Each attempt to exchange in the lo
rectly above requires a write operation. If multiple processors are attemptin
get the lock, each will generate the write. Most of these writes will lead to w
misses, since each processor is trying to obtain the lock variable in an excl
state.

Thus we should modify our spin-lock procedure so that it spins by doing re
on a local copy of the lock until it successfully sees that the lock is availa
Then it attempts to acquire the lock by doing a swap operation. A processo
reads the lock variable to test its state. A processor keeps reading and testin
the value of the read indicates that the lock is unlocked. The processor then
against all other processes that were similarly “spin waiting” to see who can
the variable first. All processes use a swap instruction that reads the old valu
stores a 1 into the lock variable. The single winner will see the 0, and the lo
will see a 1 that was placed there by the winner. (The losers will continue t
the variable to the locked value, but that doesn’t matter.) The winning proce
executes the code after the lock and, when finished, stores a 0 into the lock
able to release the lock, which starts the race all over again. Here is the co
perform this spin lock (remember that 0 is unlocked and 1 is locked):

698 Chapter 8 Multiprocessors

cha-
multi-
essor
must
 copy
ss of
 they

lockit: LW R2,0(R1) ;load of lock

BNEZ R2,lockit ;not available-spin

LI R2,#1 ;load locked value

EXCH R2,0(R1) ;swap

BNEZ R2,lockit ;branch if lock wasn’t 0

Let’s examine how this “spin-lock” scheme uses the cache-coherence me
nisms. Figure 8.32 shows the processor and bus or directory operations for
ple processes trying to lock a variable using an atomic swap. Once the proc
with the lock stores a 0 into the lock, all other caches are invalidated and
fetch the new value to update their copy of the lock. One such cache gets the
of the unlocked value (0) first and performs the swap. When the cache mi
other processors is satisfied, they find that the variable is already locked, so
must return to testing and spinning.

Step Processor P0 Processor P1 Processor P2
Coherence
state of lock Bus/directory activity

1 Has lock Spins, testing if
lock = 0

Spins, testing if
lock = 0

Shared None

2 Set lock to 0 (Invalidate
received)

(Invalidate
received)

Exclusive Write invalidate of lock
variable from P0

3 Cache miss Cache miss Shared Bus/directory services P2
cache miss; write back from
P0

4 (Waits while bus/
directory busy)

Lock = 0 Shared Cache miss for P2 satisfied

5 Lock = 0 Executes swap,
gets cache miss

Shared Cache miss for P1 satisfied

6 Executes swap,
gets cache miss

Completes swap:
returns 0 and sets
Lock =1

Exclusive Bus/directory services P2
cache miss; generates
invalidate

7 Swap completes
and returns 1

Enter critical
section

Shared Bus/directory services P1
cache miss; generates write
back

8 Spins, testing if
lock = 0

None

FIGURE 8.32 Cache-coherence steps and bus traffic for three processors, P0, P1, and P2. This figure assumes write-
invalidate coherence. P0 starts with the lock (step 1). P0 exits and unlocks the lock (step 2). P1 and P2 race to see which
reads the unlocked value during the swap (steps 3–5). P2 wins and enters the critical section (steps 6 and 7), while P1’s
attempt fails so it starts spin waiting (steps 7 and 8). In a real system, these events will take many more than eight clock
ticks, since acquiring the bus and replying to misses takes much longer.

8.5 Synchronization 699

ional
ked

ence,
e (R1

 when

cal-
rated
re de-

s not
same
sors,
ws
This example shows another advantage of the load-linked/store-condit
primitives: the read and write operation are explicitly separated. The load lin
need not cause any bus traffic. This allows the following simple code sequ
which has the same characteristics as the optimized version using exchang
has the address of the lock):

lockit: LL R2,0(R1) ;load linked

BNEZ R2,lockit ;not available-spin

LI R2,#1 ;locked value

SC R2,0(R1) ;store

BEQZ R2,lockit ;branch if store fails

The first branch forms the spinning loop; the second branch resolves races
two processors see the lock available simultaneously.

Although our spin lock scheme is simple and compelling, it has difficulty s
ing up to handle many processors because of the communication traffic gene
when the lock is released. The next section discusses these problems in mo
tail, as well as techniques to overcome these problems in larger machines.

Synchronization Performance Challenges

To understand why the simple spin-lock scheme of the previous section doe
scale well, imagine a large machine with all processors contending for the
lock. The directory or bus acts as a point of serialization for all the proces
leading to lots of contention, as well as traffic. The following Example sho
how bad things can be.

E X A M P L E Suppose there are 20 processors on a bus that each try to lock a variable
simultaneously. Assume that each bus transaction (read miss or write
miss) is 50 clock cycles long. You can ignore the time of the actual read
or write of a lock held in the cache, as well as the time the lock is held (they
won’t matter much!). Determine the number of bus transactions required
for all 20 processors to acquire the lock, assuming they are all spinning
when the lock is released at time 0. About how long will it take to process
the 20 requests? Assume that the bus is totally fair so that every pending
request is serviced before a new request and that the processors are
equally fast.

A N S W E R Figure 8.33 shows the sequence of events from the time of the release to
the time to the next release. Of course, the number of processors con-
tending for the lock drops by one each time the lock is acquired, which re-
duces the average cost to 1525 cycles. Thus for 20 lock-unlock pairs it will

700 Chapter 8 Multiprocessors

ial-
 prop-
r that
me
ntion
locks,
offer
 lost in
tion,
other

allel
ses
tation
r that
es un-
e the

that
s

take over 30,000 cycles for the processors to pass through the lock. Fur-
thermore, the average processor will spend half this time idle, simply try-
ing to get the lock. The number of bus transactions involved is over 400!

■

The difficulty in this Example arises from contention for the lock and ser
ization of lock access, as well as the latency of the bus access. The fairness
erty of the bus actually makes things worse, since it delays the processo
claims the lock from releasing it; unfortunately, for any bus arbitration sche
some worst-case scenario does exist. The root of the problem is the conte
and the fact that the lock access is serialized. The key advantages of spin
namely that they have low overhead in terms of bus or network cycles and
good performance when locks are reused by the same processor, are both
this example. We will consider alternative implementations in the next sec
but before we do that, let’s consider the use of spin locks to implement an
common high-level synchronization primitive.

Barrier Synchronization
One additional common synchronization operation in programs with par
loops is a barrier. A barrier forces all processes to wait until all the proces
reach the barrier and then releases all of the processes. A typical implemen
of a barrier can be done with two spin locks: one used to protect a counte
tallies the processes arriving at the barrier and one used to hold the process
til the last process arrives at the barrier. To implement a barrier we usually us
ability to spin on a variable until it satisfies a test; we use the notation spin(con-

dition) to indicate this. Figure 8.34 is a typical implementation, assuming
lock and unlock provide basic spin locks and total is the number of processe
that must reach the barrier.

Event Duration

Read miss by all waiting processors to fetch lock (20 × 50) 1000

Write miss by releasing processor and invalidates 50

Read miss by all waiting processors (20 × 50) 1000

Write miss by all waiting processors, one successful lock (50), and
invalidation of all lock copies (19 × 50)

1000

Total time for one processor to acquire and release lock 3050 clocks

FIGURE 8.33 The time to acquire and release a single lock when 20 processors
contend for the lock, assuming each bus transaction takes 50 clock cycles. Be-
cause of fair bus arbitration, the releasing processor must wait for all other 19 proces-
sors to try to get the lock in vain!

8.5 Synchronization 701

ore
eased
ume
in op-

mple.
ain be-
 in the
t
ast in-
he im-
 the
s that
s they

enter
 this
con-
 is a
le,
the
able;

In practice, another complication makes barrier implementation slightly m
complex. Frequently a barrier is used within a loop, so that processes rel
from the barrier would do some work and then reach the barrier again. Ass
that one of the processes never actually leaves the barrier (it stays at the sp
eration), which could happen if the OS scheduled another process, for exa
Now it is possible that one process races ahead and gets to the barrier ag
fore the last process has left. The fast process traps that last slow process
barrier by resetting the flag release . Now all the processes will wait infinitely a
the next instance of this barrier, because one process is trapped at the l
stance, and the number of processes can never reach the value of total. T
portant observation is that the programmer did nothing wrong. Instead,
implementer of the barrier made some assumptions about forward progres
cannot be assumed. One obvious solution to this is to count the processes a
exit the barrier (just as we did on entry) and not to allow any process to re
and reinitialize the barrier until all processes have left the prior instance of
barrier. This would significantly increase the latency of the barrier and the
tention, which as we will see shortly are already large. An alternative solution
sense-reversing barrier, which makes use of a private per-process variab
local_sense , which is initialized to 1 for each process. Figure 8.34 shows
code for the sense-reversing barrier. This version of a barrier is safely us
however, as the next example shows, its performance can still be quite poor.

lock (counterlock);/* ensure update atomic */

if (count==0) release=0;/*first=>reset release */

count = count +1;/* count arrivals */

unlock(counterlock);/* release lock */

if (count==total) { /* all arrived */

count=0;/* reset counter */

release=1;/* release processes */

}

else { /* more to come */

spin (release==1);/* wait for arrivals */

}

FIGURE 8.34 Code for a simple barrier. The lock counterlock protects the counter so
that it can be atomically incremented. The variable count keeps the tally of how many pro-
cesses have reached the barrier. The variable release is used to hold the processes until
the last one reaches the barrier.The operation spin (release==1) causes a process to
wait until all processes reach the barrier.

702 Chapter 8 Multiprocessors
E X A M P L E Suppose there are 20 processors on a bus that each try to execute a bar-
rier simultaneously. Assume that each bus transaction is 50 clock cycles,
as before. You can ignore the time of the actual read or write of a lock held
in the cache as the time to execute other nonsynchronization operations
in the barrier implementation. Determine the number of bus transactions
required for all 20 processors to reach the barrier, be released from the
barrier, and exit the barrier. Assume that the bus is totally fair, so that
every pending request is serviced before a new request and that the pro-
cessors are equally fast. Don’t worry about counting the processors out of
the barrier. How long will the entire process take?

A N S W E R The following table shows the sequence of events for one processor to
traverse the barrier, assuming that the first process to grab the bus does
not have the lock.

local_sense = ! local_sense; /*toggle local_sense*/

lock (counterlock);/* ensure update atomic */

count=count+1;/* count arrivals */

unlock (counterlock);/* unlock */

if (count==total) { /* all arrived */

count=0;/* reset counter */

release=local_sense;/* release processes */

}

else { /* more to come */

spin (release==local_sense);/*wait for signal*/

}

FIGURE 8.35 Code for a sense-reversing barrier. The key to making the barrier reusable
is the use of an alternating pattern of values for the flag release, which controls the exit from
the barrier. If a process races ahead to the next instance of this barrier while some other pro-
cesses are still in the barrier, the fast process cannot trap the other processes, since it does
not reset the value of release as it did in Figure 8.34.

Event
Duration in clocks
for one processor

Duration in clocks
for 20 processors

Time for each processor to grab lock, increment, release lock 1525 30,500

Time to execute release 50 50

Time for each processor to get the release flag 50 1000

Total 1625 31,550

8.5 Synchronization 703

 be a
sses.
t, we
t is,
tion.
ead
vari-
f the
e, it

ould
ad as
in the

 pro-
blem
te the
and
then it
oper-
zation
uld be
er the

 un-
tion is
 the
 two
.

on-
artifi-
ying
. The
er the
Our barrier operation takes a little longer than the 20-processor lock-
unlock sequence we considered earlier. The total number of bus trans-
actions is about 440. ■

As we can see from these examples, synchronization performance can
real bottleneck when there is substantial contention among multiple proce
When there is little contention and synchronization operations are infrequen
are primarily concerned about the latency of a synchronization primitive—tha
how long it takes an individual process to complete a synchronization opera
Our basic spin-lock operation can do this in two bus cycles: one to initially r
the lock and one to write it. We could improve this to a single bus cycle by a
ety of methods. For example, we could simply spin on the swap operation. I
lock were almost always free, this could be better, but if the lock were not fre
would lead to lots of bus traffic, since each attempt to lock the variable w
lead to a bus cycle. In practice, the latency of our spin lock is not quite as b
we have seen in this example, since the write miss for a data item present
cache is treated as an upgrade and will be cheaper than a true read miss.

The more serious problem in these examples is the serialization of each
cess’s attempt to complete the synchronization. This serialization is a pro
when there is contention, because it greatly increases the time to comple
synchronization operation. For example, if the time to complete all 20 lock
unlock operations depended only on the latency in the uncontended case,
would take 2000 rather than 40,000 cycles to complete the synchronization
ations. The use of a bus interconnect exacerbates this problem, but seriali
could be just as serious in a directory-based machine, where the latency wo
large. The next section presents some solutions that are useful when eith
contention is high or the processor count is large.

Synchronization Mechanisms for Larger-Scale Machines

What we would like are synchronization mechanisms that have low latency in
contended cases and that minimize serialization in the case where conten
significant. We begin by showing how software implementations can improve
performance of locks and barriers when contention is high; we then explore
basic hardware primitives that reduce serialization while keeping latency low

Software Implementations
The major difficulty with our spin-lock implementation is the delay due to c
tention when many processes are spinning on the lock. One solution is to
cially delay processes when they fail to acquire the lock. This is done by dela
attempts to reacquire the lock whenever the store-conditional operation fails
best performance is obtained by increasing the delay exponentially whenev

704 Chapter 8 Multiprocessors

 for
ks and
tency
at if
 their

result
sses

how
ware
ercise
 for

ause it
 much
. We

an be
 leave
attempt to acquire the lock fails. Figure 8.36 shows how a spin lock with expo-
nential back-off is implemented. Exponential back-off is a common technique
reducing contention in shared resources, including access to shared networ
buses (see section 7.7). This implementation still attempts to preserve low la
when contention is small by not delaying the initial spin loop. The result is th
many processes are waiting, the back-off does not affect the processes on
first attempt to acquire the lock. We could also delay that process, but the
would be poorer performance when the lock was in use by only two proce
and the first one happened to find it locked.

Another technique for implementing locks is to use queuing locks. We s
how this works in the next section using a hardware implementation, but soft
implementations using arrays can achieve most of the same benefits (see Ex
8.24). Before we look at hardware primitives, let’s look at a better mechanism
barriers.

Our barrier implementation suffers from contention both during the gather
stage, when we must atomically update the count, and at the release stage, when
all the processes must read the release flag. The former is more serious bec
requires exclusive access to the synchronization variable and thus creates
more serialization; in comparison, the latter generates only read contention
can reduce the contention by using a combining tree, a structure where multiple
requests are locally combined in tree fashion. The same combining tree c
used to implement the release process, reducing the contention there; we
the last step for the Exercises.

LI R3,#1 ;R3 = initial delay

lockit: LL R2,0(R1) ;load linked

BNEZ R2,lockit ;not available-spin

ADDI R2,R2,#1 ;get locked value

SC R2,0(R1) ;store conditional

BNEZ R2,gotit ;branch if store succeeds

SLL R3,R3,#1 ;increase delay by factor of 2

PAUSE R3 ;delays by value in R3

J lockit

gotit: use data protected by lock

FIGURE 8.36 A spin lock with exponential back-off. When the store conditional fails, the
process delays itself by the value in R3. The delay can be implemented by decrementing R3
until it reaches 0. The exact timing of the delay is machine dependent, although it should start
with a value that is approximately the time to perform the critical section and release the lock.
The statement pause R3 should cause a delay of R3 of these time units. The value in R3 is
increased by a factor of 2 every time the store conditional fails, which causes the process to
wait twice as long before trying to acquire the lock again.

8.5 Synchronization 705

 tree.
ur ear-
arrier
r.

and

 at the

sed to
alyze
Our combining tree barrier uses a predetermined n-ary tree structure. We use
the variable k to stand for the fan-in; in practice k = 4 seems to work well. When
the kth process arrives at a node in the tree, we signal the next level in the
When a process arrives at the root, we release all waiting processes. As in o
lier example, we use a sense-reversing technique. The following tree-based b
uses a tree to combine the processes and a single signal to release the barrie

struct node{ /* a node in the combining tree */

int counterlock; /* lock for this node */

int count; /* counter for this node */

int parent; /* parent in the tree = 0..P–1 except for root

= –1*/

};

struct node tree [0..P–1]; /* the tree of nodes */

int local_sense; /* private per processor */

int release; /* global release flag */

/* function to implement barrier */

barrier (int mynode) {

lock (tree[mynode].counterlock); /* protect count */

tree[mynode].count=tree[mynode].count+1;

/* increment count */

unlock (tree[mynode].counterlock); /* unlock */

if (tree[mynode].count==k) { /* all arrived at mynode */

if (tree[mynode].parent >=0) {

barrier(tree[mynode].parent);

} else {

release = local_sense;

}

tree[mynode].count = 0; /* reset for the next time */

} else {

spin (release==local_sense); /* wait */

};

};

/* code executed by a processor to join barrier */

local_sense = ! local_sense;

barrier (mynode);

The tree is assumed to be prebuilt statically using the nodes in the array tree .
Each node in the tree combines k processes and provides a separate counter
lock, so that at most k processes contend at each node. When the kth process
reaches a node in the tree it goes up to the parent, incrementing the count
parent. When the count in the parent node reaches k, the release flag is set. The
count in each node is reset by the last process to arrive. Sense-reversing is u
avoid races as in the simple barrier. Exercises 8.22 and 8.23 ask you to an

706 Chapter 8 Multiprocessors

PPs
, but

first
er of
s. In
denti-
scal-

es
eased
roces-
ch of

and-
ing
f the

 This

array
 either
where
 a soft-
essor
lock

miss
ory

k is
trol-
ds the

ns on.
he list
ected
 fetch
the time for the combining barrier versus the noncombining version. Some M
(e.g., the T3D and CM-5) have also included hardware support for barriers
whether such facilities will be included in future machines is unclear.

Hardware Primitives
In this section we look at two hardware synchronization primitives. The
primitive deals with locks, while the second is useful for barriers and a numb
other user-level operations that require counting or supplying distinct indice
both cases we can create a hardware primitive where latency is essentially i
cal to our earlier version, but with much less serialization, leading to better
ing when there is contention.

The major problem with our original lock implementation is that it introduc
a large amount of unneeded contention. For example, when the lock is rel
all processors generate both a read and a write miss, although at most one p
sor can successfully get the lock in the unlocked state. This happens on ea
the 20 lock/unlock sequences. We can improve this situation by explicitly h
ing the lock from one waiting processor to the next. Rather than simply allow
all processors to compete every time the lock is released, we keep a list o
waiting processors and hand the lock to one explicitly, when its turn comes.
sort of mechanism has been called a queuing lock. Queuing locks can be imple-
mented either in hardware, which we describe here, or in software using an
to keep track of the waiting processes. The basic concepts are the same in
case. Our hardware implementation assumes a directory-based machine
the individual processor caches are addressable. In a bus-based machine,
ware implementation would be more appropriate and would have each proc
using a different address for the lock, permitting the explicit transfer of the
from one process to another.

How does a queuing lock work? On the first miss to the lock variable, the
is sent to a synchronization controller, which may be integrated with the mem
controller (in a bus-based system) or with the directory controller. If the loc
free, it is simply returned to the processor. If the lock is unavailable, the con
ler creates a record of the node’s request (such as a bit in a vector) and sen
processor back a locked value for the variable, which the processor then spi
When the lock is freed, the controller selects a processor to go ahead from t
of waiting processors. It can then either update the lock variable in the sel
processor’s cache or invalidate the copy, causing the processor to miss and
an available copy of the lock.

E X A M P L E How many bus transaction and how long does it take to have 20 proces-
sors lock and unlock the variable using a queuing lock that updates the
lock on a miss? Make the other assumptions about the system the same
as before.

8.5 Synchronization 707

apa-
o we
rovide
ented

to the
 and

pared
 been
or.

pera-
uces
 seri-
sing
ing

 incre-
can

ode-
A N S W E R Each processor misses once on the lock initially and once to free the lock,
so it takes only 40 bus cycles. The first 20 initial misses take 1000 cycles,
followed by a 50-cycle delay for each of the 20 releases. This is a total of
2050 cycles—significantly better than the case with conventional coher-
ence-based spin locks. ■

There are a couple of key insights in implementing such a queuing lock c
bility. First, we need to be able to distinguish the initial access to the lock, s
can perform the queuing operation, and also the lock release, so we can p
the lock to another processor. The queue of waiting processes can be implem
by a variety of mechanisms. In a directory-based machine, this queue is akin
sharing set, and similar hardware can be used to implement the directory
queuing lock operations. One complication is that the hardware must be pre
to reclaim such locks, since the process that requested the lock may have
context-switched and may not even be scheduled again on the same process

Queuing locks can be used to improve the performance of our barrier o
tion (see Exercise 8.15). Alternatively, we can introduce a primitive that red
the amount of time needed to increment the barrier count, thus reducing the
alization at this bottleneck, which should yield comparable performance to u
queuing locks. One primitive that has been introduced for this and for build
other synchronization operations is fetch-and-increment, which atomically fetch-
es a variable and increments its value. The returned value can be either the
mented value or the fetched value. Using fetch-and-increment we
dramatically improve our barrier implementation, compared to the simple c
sensing barrier.

E X A M P L E Write the code for the barrier using fetch-and-increment. Making the
same assumptions as in our earlier example and also assuming that a
fetch-and-increment operation takes 50 clock cycles, determine the time
for 20 processors to traverse the barrier. How many bus cycles are
required?

A N S W E R Figure 8.37 shows the code for the barrier. This implementation requires
20 fetch-and-increment operations and 20 cache misses for the release
operation. This is a total time of 2000 cycles and 40 bus/interconnect op-
erations versus an earlier implementation that took over 15 times longer
and 10 times more bus operations to complete the barrier. Of course,
fetch-and-increment can also be used in implementing the combining tree
barrier, reducing the serialization at each node in the tree.

708 Chapter 8 Multiprocessors

arger-
bined
ance
rallel
syn-
ons.

memo-
t
ated by

r data
is: In

ugh
ds and

om-
ents
■

As we have seen, synchronization problems can become quite acute in l
scale machines. When the challenges posed by synchronization are com
with the challenges posed by long memory latency and potential load imbal
in computations, we can see why getting efficient usage of large-scale pa
machines is very challenging. In section 8.8 we will examine the costs of
chronization on an existing bus-based multiprocessor for some real applicati

Cache coherence ensures that multiple processors see a consistent view of
ry. It does not answer the question of how consistent the view of memory mus
be. By this we mean, When must a processor see a value that has been upd
another processor?

Since processors communicate through shared variables (both those fo
values and those used for synchronization), the question boils down to th
what order must a processor observe the data writes of another processor?

Since the only way to “observe the writes of another processor” is thro
reads, the question becomes, What properties must be enforced among rea
writes to different locations by different processors?

Although the question, how consistent?, seems simple, it is remarkably c
plicated, as we can see in the following example. Here are two code segm
from processes P1 and P2, shown side by side:

P1: A = 0; P2: B = 0;

A = 1; B = 1;

L1: if (B == 0) ... L2: if (A == 0) ...

local_sense = ! local_sense; /*toggle local_sense*/

fetch_and_increment(count);/* atomic update*/

if (count==total) { /* all arrived */

count=0;/* reset counter */

release=local_sense;/* release processes */

}

else { /* more to come */

spin (release==local_sense);/*wait for signal*/

}

FIGURE 8.37 Code for a sense-reversing barrier using fetch-and-increment to
do the counting.

8.6 Models of Memory Consistency

8.6 Models of Memory Consistency 709

ations
. If
oces-

layed,
 that

wed,

n be
 and the
possi-
sign-
8.38
tate-

ces-
ions
ay the
Assume that the processes are running on different processors, and that loc
A and B are originally cached by both processors with the initial value of 0
writes always take immediate effect and are immediately seen by other pr
sors, it will be impossible for both if statements (labeled L1 and L2) to evaluate
their conditions as true, since reaching the if statement means that either A or B
must have been assigned the value 1. But suppose the write invalidate is de
and the processor is allowed to continue during this delay; then it is possible
both P1 and P2 have not seen the invalidations for B and A (respectively) before
they attempt to read the values. The question is, Should this behavior be allo
and if so, under what conditions?

The most straightforward model for memory consistency is called sequential
consistency. Sequential consistency requires that the result of any executio
the same as if the accesses executed by each processor were kept in order
accesses among different processors were interleaved. This eliminates the
bility of some nonobvious execution in the previous example, because the as
ments must be completed before the if statements are initiated. Figure
illustrates why sequential consistency prohibits an execution where both if s
ments evaluate to true.

The simplest way to implement sequential consistency is to require a pro
sor to delay the completion of any memory access until all the invalidat
caused by that access are completed. Of course, it is equally simple to del

FIGURE 8.38 In sequential consistency, both if statements cannot evaluate to true,
since the memory accesses within one process must be kept in program order and the
reads of A and B must be interleaved so that one of them completes before the other.
To see that this is true, consider the program order shown with black arrows. For both if state-
ments to evaluate to true, the order shown by the two gray arrows must hold, since the reads
must appear as if they happen before the writes. For both of these orders to hold and program
order to hold, there must be a cycle in the order. The presence of the cycle means that it is
impossible to write the accesses down in interleaved order. This means that the execution is
not sequentially consistent. You can easily write down all possible orders to help convince
yourself.

P1:

L1:

A = 0;

...

A = 1;

if (B == 0) ...

P2:

L2:

B = 0;

...

B = 1;

if (A == 0) ...

710 Chapter 8 Multiprocessors

mory
s that
, we
-
ply
ntial
ntial
 long

mem-
ffect
trictive

tage,
The
et al-
t al-
s are
d by
next memory access until the previous one is completed. Remember that me
consistency involves operations among different variables: the two accesse
must be ordered are actually to different memory locations. In our example
must delay the read of A or B (A==0 or B==0) until the previous write has complet
ed (B=1 or A=1). Under sequential consistency, we cannot, for example, sim
place the write in a write buffer and continue with the read. Although seque
consistency presents a simple programming paradigm, it reduces pote
performance, especially in a machine with a large number of processors, or
interconnect delays, as we can see in the following Example.

E X A M P L E Suppose we have a processor where a write miss takes 40 cycles to es-
tablish ownership, 10 cycles to issue each invalidate after ownership is
established, and 50 cycles for an invalidate to complete and be acknowl-
edged once it is issued. Assuming that four other processors share a
cache block, how long does a write miss stall the writing processor if the
processor is sequentially consistent? Assume that the invalidates must be
explicitly acknowledged before the directory controller knows they are
completed. Suppose we could continue executing after obtaining owner-
ship for the write miss without waiting for the invalidates; how long would
the write take?

A N S W E R When we wait for invalidates, each write takes the sum of the ownership
time plus the time to complete the invalidates. Since the invalidates can
overlap, we need only worry about the last one, which starts 10 + 10 + 10
+ 10 = 40 cycles after ownership is established. Hence the total time is
40 + 40 + 50 = 130 cycles. In comparison, the ownership time is only 40
cycles. With appropriate write-buffer implementations it is even possible
to continue before ownership is established. ■

To provide better performance, designers have developed less restrictive
ory consistency models that allow for faster hardware. Such models do a
how the programmer sees the machine, so before we discuss these less res
models, let’s look at what the programmer expects.

The Programmer’s View

Although the sequential consistency model has a performance disadvan
from the viewpoint of the programmer it has the advantage of simplicity.
challenge is to develop a programming model that is simple to explain and y
lows a high performance implementation. One such programming model tha
lows us to have a more efficient implementation is to assume that program
synchronized. A program is synchronized if all access to shared data is ordere

8.6 Models of Memory Consistency 711

n op-
r and
 sepa-
y the
cessor.
n are
peed
edict-

o dif-
ck and
at the
other
rite)
iable
niza-

 oper-
e
 set of

hows
taken
synchronization operations. A data reference is ordered by a synchronizatio
eration if, in every possible execution, a write of a variable by one processo
an access (either a read or a write) of that variable by another processor are
rated by a pair of synchronization operations, one executed after the write b
writing processor and one executed before the access by the second pro
Cases where variables may be updated without ordering by synchronizatio
called data races, because the execution outcome depends on the relative s
of the processors, and like races in hardware design, the outcome is unpr
able. This leads to another name for synchronized programs: data-race-free.

As a simple example, consider a variable being read and updated by tw
ferent processors. Each processor surrounds the read and update with a lo
an unlock, both to ensure mutual exclusion for the update and to ensure th
read is consistent. Clearly, every write is now separated from a read by the
processor by a pair of synchronization operations: one unlock (after the w
and one lock (before the read). Of course, if two processors are writing a var
with no intervening reads, then the writes must also be separated by synchro
tion operations.

We call the synchronization operation corresponding to the unlock a release,
because it releases a potentially blocked processor, and the synchronization
ation corresponding to a lock an acquire, because it acquires the right to read th
variable. We use the terms acquire and release because they apply to a wide
synchronization structures, not just locks and unlocks. The next Example s
where the acquires and releases are in several synchronization primitives
from the previous section.

E X A M P L E Show which operations are acquires and releases in the lock implemen-
tation on page 699 and the barrier implementation in Figure 8.34 on
page 701.

A N S W E R Here is the lock code with the acquire operation shown in bold:

lockit: LL R2,0(R1) ;load linked

BNEZ R2,lockit ;not available-spin

ADDI R2,R2,#1 ;get locked value

SC 0(R1),R2 ;store

BEQZ R2,lockit ;branch if store fails

The release operation for this lock is simply a store operation (which is not
shown, but looks like: sw(R1), R0).

Here is the code for the barrier operation with the acquires shown in
bold and the releases in italics (there are two acquires and two releases
in the barrier):

712 Chapter 8 Multiprocessors

eleas-
by
sor con-

am is
 by syn-

. This
d, the
peed
affect
bout

rder-
ely

rally,
tead,
 cor-
dard
■

We can now define when a program is synchronized using acquires and r
es. A program is synchronized if every execution sequence containing a write
a processor and a subsequent access of the same data by another proces
tains the following sequence of events:

write (x)

...

release (s)

...

acquire (s)

...

access(x)

It is easy to see that if all such execution sequences look like this, the progr
synchronized in the sense that accesses to shared data are always ordered
chronization and that data races are impossible.

It is a broadly accepted observation that most programs are synchronized
observation is true primarily because if the accesses were unsynchronize
behavior of the program would be quite difficult to determine because the s
of execution would determine which processor won a data race and thus
the results of the program. Even with sequential consistency, reasoning a
such programs is very difficult. Programmers could attempt to guarantee o
ing by constructing their own synchronization mechanisms, but this is extrem
tricky, can lead to buggy programs, and may not be supported architectu
meaning that they may not work in future generations of the machine. Ins
almost all programmers will choose to use synchronization libraries that are
rect and optimized for the machine and the type of synchronization. A stan

lock (counterlock) ;/* ensure update atomic */

if (count==0) release=0;/*first=>reset release */

count=count+1;/* count arrivals */

unlock(counterlock) ;/* release lock */

if (count==total) { /* all arrived */

count=0;/* reset counter */

release=1; /* release processes */

}

else{ /* more to come */

spin (release==1) ;/* wait for arrivals */

}

8.6 Models of Memory Consistency 713

n in
 in the

avoid
ory.
rn an
rrect
shion,

ng of

that
cuted

 com-

write
order

s as
bound-
ence.
 that

 Thus
until
ated

oint
arliest

nce.
sses.
d, so

e po-
ces.
inary
synchronization library can classify the operations used for synchronizatio
the library as releases or acquires, or sometimes as both, as, for example,
case of a barrier.

The major use of unsynchronized accesses is in programs that want to
synchronization cost and are willing to accept an inconsistent view of mem
For example, in a stochastic program we may be willing to have a read retu
old value of a data item, because the program will still converge on the co
answer. In such cases we still require the system to behave in a coherent fa
but we do not need to rely on a well-defined consistency model.

Beyond the synchronization operations, we also need to define the orderi
memory operations. There are two types of restrictions on memory orders: write
fences and read fences. Fences are fixed points in a computation that ensure
no read or write is moved across the fence. For example, a write fence exe
by processor P ensures that

■ all writes by P that occur before P executed the write fence operation have
pleted, and

■ no writes that occur after the fence in P are initiated before the fence.

In sequential consistency, all reads are read fences and all writes are
fences. This limits the ability of the hardware to optimize accesses, since
must be strictly maintained.

From a performance viewpoint, the processor would like to execute read
early as possible and complete writes as late as possible. Fences act as
aries, forcing the processor to order reads and writes with respect to the f
Although a write fence is a two-way blockade, it is most often used to ensure
writes have completed, since the processor wants to delay write completion.
the typical effect of a write fence is to cause the program execution to stall
all outstanding writes have completed, including the delivery of any associ
invalidations.

A read fence is also a two-way blockade, marking the earliest or latest p
that a read may be executed. Most often a read fence is used to mark the e
point that a read may be executed.

A memory fence is an operation that acts as both a read and a write fe
Memory fences enforce ordering among the accesses of different proce
Within a single process we require that program order always be preserve
reads and writes of the same location cannot be interchanged.

The weaker consistency models discussed in the next section provide th
tential for hiding read and write latency by defining fewer read and write fen
In particular, synchronization accesses act as the fences rather than ord
accesses.

714 Chapter 8 Multiprocessors

model
 that
pro-
f re-

 of a
 a se-
on-
traints

impli-
s of

ons

 to

 to

r pro-
dence,
 A se-
nd is
lizes
y bar-

uted

 write
lida-
ed but

. In-
l
cribed,
ta-
 be
Relaxed Models for Memory Consistency

Since most programs are synchronized and since a sequential consistency
imposes major inefficiencies, we would like to define a more relaxed model
allows higher performance implementations and still preserves a simple
gramming model for synchronized programs. In fact, there are a number o
laxed models that all maintain the property that the execution semantics
synchronized program is the same under the model as it would be under
quential consistency model. The relaxed models vary in how tightly they c
strain the set of possible execution sequences, and thus in how many cons
they impose on the implementation.

To understand the variations among the relaxed models and the possible
cations for an implementation, it is simplest if we define the models in term
what orderings among reads and writes performed by a single processor are pre-
served by each model. There are four such orderings:

1. R → R: a read followed by a read.

2. R → W: a read followed by a write, which is always preserved if the operati
are to the same address, since this is an antidependence.

3. W → W: a write followed by a write, which is always preserved if they are
the same address, since this is an output dependence.

4. W → R: a write followed by a read, which is always preserved if they are
the same address, since this is a true dependence.

If there is a dependence between the read and the write, then uniprocesso
gram semantics demand that the operations be ordered. If there is no depen
the memory consistency model determines what orders must be preserved.
quential consistency model requires that all four orderings be preserved a
thus equivalent to assuming a single centralized memory module that seria
all processor operations, or to assuming that all reads and writes are memor
riers.

When an order is relaxed, it simply means that we allow an operation exec
later by the processor to complete first. For example, relaxing the ordering W→R
means that we allow a read that is later than a write to complete before the
has completed. Remember that a write does not complete until all its inva
tions complete, so letting the read occur after the write miss has been handl
before the invalidations are done does not preserve the ordering.

A consistency model does not, in reality, restrict the ordering of events
stead, it says what possible orderings can be observed. For example, in sequentia
consistency, the system must appear to preserve the four orderings just des
although in practice it can allow reordering. This subtlety allows implemen
tions to use tricks that reorder events without allowing the reordering to

8.6 Models of Memory Consistency 715

le, al-
ted,
 earli-
 pre-
y to

 syn-
. When
 syn-
odels,

cess-
plest
If we
h the

other

 read

ss-
d be-

all the
 of a

lica-
chro-

ead is
ttern

s

d this
um-

show

by

or
lete
ation

g:
observed. Under sequential consistency an implementation can, for examp
low a processor, P, to initiate another write before an earlier write is comple
as long as P does not allow the value of the later write to be seen before the
er write has completed. For simplicity, we discuss what orderings must be
served, with the understanding that the implementation has the flexibilit
preserve fewer orderings if only the preserved orderings are visible.

The consistency model must also define the orderings imposed between
chronization variable accesses, which act as fences, and all other accesses
a machine implements sequential consistency, all reads and writes, including
chronization accesses, are fences and are thus kept in order. For weaker m
we need to specify the ordering restrictions imposed by synchronization ac
es, as well as the ordering restrictions involving ordinary variables. The sim
ordering restriction is that every synchronization access is a memory fence.
let S stand for a synchronization variable access, we could also write this wit
ordering notation just shown as S→W, S→R, W→S, and R→S. Remember that a
synchronization access is also an R or a W and its ordering is affected by
synchronization accesses, which means there is an implied ordering S→S.

The first model we examine relaxes the ordering between a write and a
(to a different address), eliminating the order W→R; this model was first used in
the IBM 370 architecture. Such models allow the buffering of writes with bypa
ing by reads, which occurs whenever the processor allows a read to procee
fore it guarantees that an earlier write by that processor has been seen by
other processors. This model allows a machine to hide some of the latency
write operation. Furthermore, by relaxing only this one ordering, many app
tions, even those that are unsynchronized, operate correctly, although a syn
nization operation is necessary to ensure that a write completes before a r
done. If a synchronization operation is executed before the read (i.e. a pa
W...S...R), then the orderings W→S and S→R ensure that the write complete
before the read. Processor consistency and total store ordering (TSO) have been
used as names for this model, and many machines have implicitly selecte
model. This model is equivalent to making the writes be write fences. We s
marize all the models, showing the orderings imposed, in Figure 8.39 and
an example in Figure 8.40.

If we also allow nonconflicting writes to potentially complete out of order,
relaxing the W →W ordering, we arrive at a model that has been called partial
store ordering (PSO). From an implementation viewpoint, it allows pipelining
overlapping of write operations, rather than forcing one operation to comp
before another. A write operation need only cause a stall when a synchroniz
operation, which causes a write fence, is encountered.

The third major class of relaxed models eliminates the R → R and R → W or-
derings, in addition to the other two orders. This model, which is called weak or-
dering, does not preserve ordering among references, except for the followin

716 Chapter 8 Multiprocessors

ed in

rites

 cre-

has
 or-

 Even
tains
the R
for the
al, the
ten-

This
a-

 S
ms an
n must
quire.

 that
read or
s that
 in

rings
gs to
ses
sses.
nder

easily
 con-
ire or
ically
 barri-
alent to
■ A read or write is completed before any synchronization operation execut
program order by the processor after the read or write.

■ A synchronization operation is always completed before any reads or w
that occur in program order after the operation.

As Figure 8.39 shows, the only orderings imposed in weak order are those
ated by synchronization operations. Although we have eliminated the R → R and
R → W orderings, the processor can only take advantage of this if it
nonblocking reads. Otherwise the processor implicitly implements these two
ders, since no further instructions can be executed until the R is completed.
with nonblocking reads, the processor may be limited in the advantage it ob
from relaxing the read orderings, since the primary advantage occurs when
causes a cache miss and the processor is unlikely to be able to keep busy
tens to hundreds of cycles that handling the cache miss may take. In gener
major advantage of all weaker consistency models comes in hiding write la
cies rather than read latencies.

A more relaxed model can be obtained by extending weak ordering.
model, called release consistency, distinguishes between synchronization oper
tions that are used to acquire access to a shared variable (denoted SA) and those
that release an object to allow another processor to acquire access (denotedR).
Release consistency is based on the observation that in synchronized progra
acquire operation must precede a use of shared data, and a release operatio
follow any updates to shared data and also precede the time of the next ac
This allows us to slightly relax the ordering by observing that a read or write
precedes an acquire need not complete before the acquire, and also that a
write that follows a release need not wait for the release. Thus the ordering
are preserved involve only SA and SR , as shown in Figure 8.39; as the example
Figure 8.40 shows, this model imposes the fewest orders of the five models.

To compare release consistency to weak ordering, consider what orde
would be needed for weak ordering, if we decompose each S in the orderin
SA and SR. This would lead to eight orderings involving synchronization acces
and ordinary accesses plus four orderings involving only synchronization acce
With such a description, we can see that four of the orderings required u
weak ordering are not imposed under release consistency: W → SA, R→ SA,
SR → R, and SR → W.

Release consistency provides one of the least restrictive models that is
checkable, and ensures that synchronized programs will see a sequentially
sistent execution. While most synchronization operations are either an acqu
a release (an acquire normally reads a synchronization variable and atom
updates it, while a release usually just writes it), some operations, such as a
er, act as both an acquire and a release and cause the ordering to be equiv
weak ordering.

8.6 Models of Memory Consistency 717
Model Used in Ordinary orderings Synchronization orderings

Sequential consistency Most machines as
an optional mode

R →R, R →W, W→R,
W→W

S→W, S→R, R→S, W→S, S→S

Total store order or
processor consistency

IBMS/370, DEC
VAX, SPARC

R →R, R →W, W→W S→W, S→R, R→S, W→S, S→S

Partial store order SPARC R →R, R →W S→W, S→R, R→S, W→S, S→S

Weak ordering PowerPC S→W, S→R, R→S, W→S, S→S

Release consistency Alpha, MIPS SA→W, SA→R, R→SR, W→SR,
SA→SA, SA→SR, SR→SA, SR→SR

FIGURE 8.39 The orderings imposed by various consistency models are shown for both ordinary accesses and
synchronization accesses. The models grow from most restrictive (sequential consistency) to least restrictive (release
consistency), allowing increased flexibility in the implementation. The weaker models rely on fences created by synchroni-
zation operations, as opposed to an implicit fence at every memory operation. SA and SR stand for acquire and release op-
erations, respectively, and are needed to define release consistency. If we used the notation SA and SR for each S
consistently, each ordering with one S would become two orderings (e.g., S→W becomes SA→W, SR→W), and each
S→S would become the four orderings shown in the last line of the bottom-right table entry.

FIGURE 8.40 These examples of the five consistency models discussed in this section show the reduction in the
number of orders imposed as the models become more relaxed. Only the minimum orders are shown with arrows. Or-
ders implied by transitivity, such as the write of C before the release of S in the sequential consistency model or the acquire
before the release in weak ordering or release consistency, are not shown.

 = A

B =

acquire (S);

C =

 = D

release (S);

E =

F =

Sequential
consistency

 = A

B =

acquire (S);

C =

 = D

release (S);

E =

F =

TSO (total store
order) or

processor
consistency

 = A

B =

acquire (S);

C =

 = D

release (S);

E =

F =

PSO (partial
store order)

 = A

B =

acquire (S);

C =

 = D

release (S);

E =

F =

Weak ordering Release
consistency

 = A

B =

acquire (S);

C =

 = D

release (S);

E =

F =

718 Chapter 8 Multiprocessors

lease
niza-
s be

, we
r syn-
tively

ple,
er or-

onal
ect
mory
ssor,
tely,
ding

con-
 con-

tion is
 to a

ead
eter-
 read
t two
alita-
is that

f the
 also.

 allow
rites.
r as
rting

 data
 con-
r the
ding
unt
It is also possible to consider even weaker orderings. For example, in re
consistency we do not associate memory locations with particular synchro
tion variables. If we required that the same synchronization variable, V, alway
acquired before accessing a particular memory location, M, for example
could relax the ordering of access to M and acquires and releases of all othe
chronization variables other than V. The orderings discussed so far are rela
straightforward to implement. Weaker orderings, such as the previous exam
are harder to implement, and it is unclear whether the advantages of weak
derings would justify their implementation.

Implementation of Relaxed Models

Relaxed models of consistency can usually be implemented with little additi
hardware. Most of the complexity lies in implementing memory or interconn
systems that can take advantage of a relaxed model. For example, if the me
or interconnect does not allow multiple outstanding accesses from a proce
then the benefits of the more ambitious relaxed models will be small. Fortuna
most of the benefit can be obtained by having a small number of outstan
writes and one outstanding read.

In this section we describe straightforward implementations of processor
sistency and release consistency. Our directory protocols already satisfy the
straints of sequential consistency, since the processor stalls until an opera
complete and the directory first invalidates all sharers before responding
write miss.

Processor consistency (or TSO) is typically implemented by allowing r
misses to bypass pending writes. A write buffer that can support a check to d
mine whether any pending write in the buffer is to the same address as a
miss, together with a memory and interconnection system that can suppor
outstanding references per node, is sufficient to implement this scheme. Qu
tively, the advantage of processor consistency over sequential consistency
it allows the latency of write misses to be hidden.

Release consistency allows additional write latency to be hidden, and i
processor supports nonblocking reads, allows the read latency to be hidden
To allow write latency to be hidden as much as possible, the processor must
multiple outstanding writes and allow read misses to bypass outstanding w
To maximize performance, writes should complete and clear the write buffe
early as possible, which allows any dependent reads to go forward. Suppo
early completion of writes requires allowing a write to complete as soon as
are available and before all pending invalidations are completed (since our
sistency model allows this). To implement this scheme, either the directory o
original requester can keep track of the invalidation count for each outstan
write. After each invalidation is acknowledged, the pending invalidation co

8.6 Models of Memory Consistency 719

l out-
mply
se is
ding
at it

eads;
s are
pen-
n of
 per-
oces-
hide
cutes
 cy-

on, it
ation
mi-

cles,
ited,

tency

 both
 per-
envi-
rties:

r dy-

ard-
for that write is decreased. We must ensure that all pending invalidates to al
standing writes complete before we allow a release to complete, so we si
check the pending invalidation counts on any outstanding write when a relea
executed. The release is held up until all such invalidations for all outstan
writes complete. In practice, we limit the number of outstanding writes, so th
is easy to track the writes and pending invalidates.

To hide read latency we must have a machine that has nonblocking r
otherwise, when the processor blocks, little progress will be made. If read
nonblocking we can simply allow them to execute, knowing that the data de
dences will preserve correct execution. It is unlikely, however, that the additio
nonblocking reads to a relaxed consistency model will substantially enhance
formance. The limited gain occurs because the read miss times in a multipr
sor are likely to be large and the processor can provide only limited ability to
this latency. For example, if the reads are nonblocking but the processor exe
in order, then the processor will almost certainly block for the read after a few
cles. If the processor supports nonblocking reads and out-of-order executi
will block as soon as any of its buffers, such as the reorder buffer or reserv
stations, are full. (See Chapter 4 for a discussion of full buffer stalls in dyna
cally scheduled machines.) This is likely to happen in at most tens of cy
while a miss may cost a hundred cycles. Thus, although the gain may be lim
there is a positive synergy between nonblocking loads and relaxed consis
models.

Performance of Relaxed Models

The performance potential of a more relaxed consistency model depends on
the capabilities of the machine and the particular application. To examine the
formance of a memory consistency model, we must first define a hardware
ronment. The hardware configurations we consider have the following prope

■ The pipeline issues one instruction per clock cycle and is either statically o
namically scheduled. All functional unit latencies are one cycle.

■ Cache misses take 50 clock cycles.

■ The CPU includes a write buffer of depth 16.

■ The caches are 64 KB and have 16-byte blocks.

To give a flavor of the tradeoffs and performance potential with different h
ware capabilities, we consider four hardware models:

1. SSBR (statically scheduled with blocking reads)—The processor is statically
scheduled and reads that miss in the cache immediately block.

720 Chapter 8 Multiprocessors

 do

 out-
s.

 out-
rge

ram
erent
erfor-
enta-
ance
r miss
 Fig-
ld in-
ing to
rate
tions.

nsis-
nd al-
ation
ram-
pro-
the

as of
test
tim-
 ma-
mote
and as
s non-
ing a

 high
2. SS (statically scheduled)—The processor is statically scheduled but reads
not cause the processor to block until the result is used.

3. DS16 (dynamically scheduled with a 16-entry reorder buffer)—The proces-
sor is dynamically scheduled and has a reorder buffer that allows up to 16
standing instructions of any type, including 16 memory access instruction

4. DS64 (dynamically scheduled with a 64-entry reorder buffer)—The proces-
sor is dynamically scheduled and has a reorder buffer that allows up to 64
standing instructions of any type. This reorder buffer is potentially la
enough to hide the total cache miss latency of 50 cycles.

Figure 8.41 shows the relative performance for two of the parallel prog
benchmarks, LU and Ocean, for these four hardware models and for two diff
consistency models: total store order (TSO) and release consistency. The p
mance is shown relative to the performance under a straightforward implem
tion of sequential consistency. Relaxed models offer a much larger perform
gain on Ocean than on LU. This is simply because Ocean has a much highe
rate and has a significant fraction of write misses. In interpreting the data in
ure 8.41, remember that the caches are fairly small. Most designers wou
crease the cache size before including nonblocking reads or even beginn
think about dynamic scheduling. This would dramatically reduce the miss
and the possible advantage from the relaxed model at least for these applica

Final Remarks on Consistency Models

At the present time, most machines being built support some sort of weak co
tency model, varying from processor consistency to release consistency, a
most all also support sequential consistency as an option. Since synchroniz
is highly machine specific and error prone, the expectation is that most prog
mers will use standard synchronization libraries and will write synchronized
grams, making the choice of a weak consistency model invisible to
programmer and yielding higher performance. Yet to be developed are ide
how to deal with nondeterministic programs that do not rely on getting the la
values. One possibility is that programmers will not need to rely at all on the
ing of updates to variables in such programs; the other possibility is that
chine-specific models of update behavior will be needed and used. As re
access latencies continue to increase relative to processor performance,
features that increase the potential advantage of relaxed models, such a
blocking caches, are included in more processors, the importance of choos
consistency model that delivers both a convenient programming model and
performance will increase.

8.7 Crosscutting Issues 721

ce in-
ral ex-
mory
 con-
ent

 mea-
swer
asur-
ring
Because multiprocessors redefine many system characteristics, they introdu
teresting design problems across the spectrum. In this section we give seve
amples: accurate performance measurement, two examples involving me
systems, an example of the interaction between compilers and the memory
sistency model, and a method for using virtual memory support to implem
shared memory.

Performance Measurement of Parallel Machines

One of the most controversial issues in parallel processing has been how to
sure the performance of parallel machines. Of course, the straightforward an
is to measure a benchmark as supplied and to examine wall-clock time. Me
ing wall-clock time obviously makes sense; in a parallel processor, measu

FIGURE 8.41 The performance of relaxed consistency models on a variety of hardware mechanisms, varying from
quite reasonable to highly ambitious. The caches are 64 KB, direct mapped, with 16-byte blocks. Misses take 50 cycles.
With SSBR most of the write latency is hidden in these benchmarks. It takes dynamic scheduling to hide read latency, and
to completely hide read latency a buffer larger than the latency is needed (DS64). For larger cache sizes, the miss rate of
Ocean continues to fall and so does the advantage of a relaxed model. For example, at a 256-KB cache with 64-byte blocks
and 16 processors, the miss rate is 2%. This leads to an upper bound of 2.0 on the benefits from a relaxed model.

8.7 Crosscutting Issues

Performance relative to
sequential consistency

0.0

0.6

0.4

0.2

SSBR SS DS16 DS64

Hardware models Hardware models

LU

1.6

0.8

1.4

1.2 1.1 1.1 1.1 1.1 1.1
1.2 1.2

1.4

1.0

Performance relative to
sequential consistency

0.0

1.5

1.0

0.5

SSBR SS DS16 DS64

Ocean

4.0

2.0

3.5

3.0

1.3

1.9

1.4

2.0

1.4

2.2

1.5

3.8

2.5

Total store order Release consistency

722 Chapter 8 Multiprocessors

ailable

 ma-
 per-
ense to
ffects
 re-
ill be
up as

 of the
s. The
void
nder-
is dis-

mark
ench-
rob-
ng the
called

e the
ation

 time
s

CPU time can be misleading because the processors may be idle but unav
for other uses.

Users and designers are often interested in knowing not just how well a
chine performs with a certain fixed number of processors, but also how the
formance scales as more processors are added. In many cases, it makes s
scale the application or benchmark, since if the benchmark is unscaled, e
arising from limited parallelism and increases in communication can lead to
sults that are pessimistic when the expectation is that more processors w
used to solve larger problems. Thus it is often useful to measure the speed
processors are added both for a fixed-size problem and for a scaled version
problem, providing an unscaled and a scaled version of the speedup curve
choice of how to measure the uniprocessor algorithm is also important to a
anomalous results, since using the parallel version of the benchmark may u
state the uniprocessor performance and thus overstate the speedup. This
cussed with an example in section 8.9.

Once we have decided to measure scaled speedup, the question is how to scale
the application. Let’s assume that we have determined that running a bench
of size n on p processors makes sense. The question is how to scale the b
mark to run on m × p processors. There are two obvious ways to scale the p
lem: keeping the amount of memory used per processor constant; and keepi
total execution time, assuming perfect speedup, constant. The first method,
memory-constrained scaling, specifies running a problem of size m × n on m × p
processors. The second method, called time-constrained scaling, requires that we
know the relationship between the running time and the problem size, sinc
former is kept constant. For example, suppose the running time of the applic
with data size n on p processors is proportional to n2/p. Then with time-
constrained scaling, the problem to run is the problem whose ideal running
on m × p processors is still n2/p. The problem with this ideal running time ha
size .

E X A M P L E Suppose we have a problem whose execution time for a problem of size
n is proportional to n3. Suppose the actual running time on a 10-processor
machine is 1 hour. Under the time-constrained and memory-constrained
scaling models, find the size of the problem to run and the effective run-
ning time for a 100-processor machine.

A N S W E R For the time-constrained problem, the ideal running time is the same, 1
hour, so the problem size is . For memory-constrained scaling,
the size of the problem is 10n and the ideal execution time is 103/10, or
100 hours! Since most users will be reluctant to run a problem on an order
of magnitude more processors for 100 times longer, this size problem is
probably unrealistic. ■

m n×

103 n×

8.7 Crosscutting Issues 723

 pro-
of the
ena,

hange
ffect
 in-
 more
, the

indi-
of the
r in
l to

-

ds a
-
tors,
a in
tion
ize.

ing the
t only
ed as

he de-
uces
s. In
pact
ssor

 de-
e also
he
ture
c, as
In addition to the scaling methodology, there are questions as to how the
gram should be scaled when increasing the problem size affects the quality
result. Since many parallel programs are simulations of physical phenom
changing the problem size changes the quality of the result, and we must c
the application to deal with this effect. As a simple example, consider the e
of time to convergence for solving a differential equation. This time typically
creases as the problem size increases, since, for example, we often require
iterations for the larger problem. Thus when we increase the problem size
total running time may scale faster than the basic algorithmic scaling would
cate. For example, suppose that the number of iterations grows as the log
problem size. Then for a problem whose algorithmic running time is linea
the size of the problem, the effective running time actually grows proportiona
n log n. If we scaled from a problem of size m on 10 processors, purely algorith
mic scaling would allow us to run a problem of size 10 m on 100 processors. Ac-
counting for the increase in iterations means that a problem of size k × m, where
k log k = 10, will have the same running time on 100 processors. This yiel
scaling of 5.72 m, rather than 10 m. In practice, scaling to deal with error re
quires a good understanding of the application and may involve other fac
such as error tolerances (for example, it affects the cell-opening criteri
Barnes-Hut). In turn, such effects often significantly affect the communica
or parallelism properties of the application as well as the choice of problem s

Scaled speedup is not the same as unscaled (or true) speedup; confus
two has led to erroneous claims. Scaled speedup has an important role, bu
when the scaling methodology is sound and the results are clearly report
using a scaled version of the application.

Memory System Issues

As we have seen in this chapter, memory system issues are at the core of t
sign of shared-memory multiprocessors. Indeed, multiprocessing introd
many new memory system complications that do not exist in uniprocessor
this section we look at two implementation issues that have a significant im
on the design and implementation of a memory system in a multiproce
context.

Inclusion and Its Implementation
Many multiprocessors use multilevel cache hierarchies to reduce both the
mand on the global interconnect and the latency of cache misses. If the cach
provides multilevel inclusion—every level of cache hierarchy is a subset of t
level further away from the processor—then we can use the multilevel struc
to reduce the contention between coherence traffic and processor traffi

724 Chapter 8 Multiprocessors

 the

ial.
es a
ate
ted,

rent.
rger

 want
nclu-
 L1,
le L1
iss

led

lev-
e that
hes.
n in-
inclu-
vels
explained earlier. Thus most multiprocessors with multilevel caches enforce
inclusion property. This restriction is also called the subset property, because
each cache is a subset of the cache below it in the hierarchy.

At first glance, preserving the multilevel inclusion property seems triv
Consider a two-level example: any miss in L1 either hits in L2 or generat
miss in L2, causing it to be brought into both L1 and L2. Likewise, any invalid
that hits in L2 must be sent to L1, where it will cause the block to be invalida
if it exists.

The catch is what happens when the block size of L1 and L2 are diffe
Choosing different block sizes is quite reasonable, since L2 will be much la
and have a much longer latency component in its miss penalty, and thus will
to use a larger block size. What happens to our “automatic” enforcement of i
sion when the block sizes differ? A block in L2 represents multiple blocks in
and a miss in L2 causes the replacement of data that is equivalent to multip
blocks. For example, if the block size of L2 is four times that of L1, then a m
in L2 will replace the equivalent of four L1 blocks. Let’s consider a detai
example.

E X A M P L E Assume that L2 has a block size four times that of L1. Show how a miss
for an address that causes a replacement in L1 and L2 can lead to viola-
tion of the inclusion property.

A N S W E R Assume that L1 and L2 are direct mapped and that the block size of L1 is
b bytes and the block size of L2 is 4b bytes. Suppose L1 contains blocks
with starting addresses x and x + b and that x mod 4b = 0, meaning that
x also is the starting address of a block in L2. That single block in L2 con-
tains the L1 blocks x, x + b, x + 2b, and x + 3b. Suppose the processor
generates a reference to block y that maps to the block containing x in
both caches and hence misses. Since L2 missed, it fetches 4b bytes and
replaces the block containing x, x + b, x + 2b, and x + 3b, while L1 takes
b bytes and replaces the block containing x. Since L1 still contains x + b,
but L2 does not, the inclusion property no longer holds. ■

To maintain inclusion with multiple block sizes, we must probe the higher
els of the hierarchy when a replacement is done at the lower level to ensur
any words replaced in the lower level are invalidated in the higher-level cac
Most systems chose this solution rather than the alternative of not relying o
clusion and snooping the higher-level caches. In the Exercises we explore
sion further and show that similar problems exist if the associativity of the le
is different.

8.7 Crosscutting Issues 725

e the
n and

case.
more
rger,
nding

tency
uires

ntinue
rship
er re-
ge of
mic
els to

ch-
ipro-
r 5 we
 pro-
hout

 the
d val-

ction,
r the
r vari-
s that
 most

t, a
 since
coher-
rties

egis-

e: a
 con-

e pro-
e old

is in-
h is
Nonblocking Caches and Latency Hiding
We saw the idea of nonblocking or lockup-free caches in Chapter 5, wher
concept was used to reduce cache misses by overlapping them with executio
by pipelining misses. There are additional benefits in the multiprocessor
The first is that the miss penalties are likely to be larger, meaning there is
latency to hide, and the opportunity for pipelining misses is also probably la
since the memory and interconnect system can often handle multiple outsta
memory references.

A machine needs nonblocking caches to take advantage of weak consis
models. For example, to implement a model like processor consistency req
that writes be nonblocking with respect to reads so that a processor can co
either immediately, by buffering the write, or as soon as it establishes owne
of the block and updates the cache. Relaxed consistency models allow furth
ordering of misses, but nonblocking caches are needed to take full advanta
this flexibility. With the more extensive use of nonblocking caches and dyna
scheduling, we can expect the potential benefits of relaxed consistency mod
increase.
 Finally, nonblocking support is critical to implementing prefetching. Prefet
ing, which we also discussed in Chapter 5, is even more important in mult
cessors than in uniprocessors, due to longer memory latencies. In Chapte
described why it is important that prefetches not affect the semantics of the
gram, since this allows them to be inserted anywhere in the program wit
changing the results of the computation.

In a multiprocessor, maintaining the absence of any semantic impact from
use of prefetches requires that prefetched data be kept coherent. A prefetche
ue is kept coherent if, when the value is actually accessed by a load instru
the most recently written value is returned, even if that value was written afte
prefetch. This is exactly the property that cache coherence gives us for othe
ables in memory. A prefetch that brings a data value closer, and guarantee
on the actual memory access to the data (a load of the prefetched value) the
recent value of the data item is obtained, is called nonbinding, since the data val-
ue is not bound to a local copy, which would be incoherent. By contras
prefetch that moves a data value into a general-purpose register is binding,
the register value is a new variable, as opposed to a cache block, which is a
ent copy of a variable. A nonbinding prefetch maintains the coherence prope
of any other value in memory, while a binding prefetch appears more like a r
ter load, since it removes the data from the coherent address space.

Why is nonbinding prefetch critical? Consider a simple but typical exampl
data value written by one processor and used by another. In this case, the
sumer would like to prefetch the value as early as possible; but suppose th
ducing process is delayed for some reason. Then the prefetch may fetch th
value of the data item. If the prefetch is nonbinding, the copy of the old data
validated when the value is written, maintaining coherence. If the prefetc

726 Chapter 8 Multiprocessors

 the
 need
im to

oher-

-free
causes

since
 han-
f the

sued a
 lead
rite
ping

t the
wait
alling
pro-

 the
In ex-
ned
d and
ht af-
iza-

usually
ple,
yn-
rise.

orksta-
echa-
This
binding, however, then the old, incoherent value of the data is used by
prefetching process. Because of the long memory latencies, a prefetch may
to be placed a hundred or more instructions earlier than the data use, if we a
hide the entire latency. This makes the nonbinding property vital to ensure c
ent usage of the prefetch in multiprocessors.

Implementing prefetch requires the same sort of support that a lockup
cache needs, since there are multiple outstanding memory accesses. This
several complications:

1. A local node will need to keep track of the multiple outstanding accesses,
the replies may return in a different order than they were sent. This can be
dled by adding tags to the requests, or by incorporating the address o
memory block in the reply.

2. Before issuing a request, the node must ensure that it has not already is
request for the same block, since two requests for the same block could
to incorrect operation of the protocol. In particular, if the node issues a w
miss to a block, while it has such a write miss outstanding both our snoo
protocol and directory protocol fail to operate properly.

3. Our implementation of the directory and snooping controllers assumes tha
processor stalls on a miss. Stalling allows the cache controller to simply
for a reply when it has generated a request. With a nonblocking cache, st
is not possible and the actual implementation must deal with additional
cessor requests.

Compiler Optimization and the Consistency Model

Another reason for defining a model for memory consistency is to specify
range of legal compiler optimizations that can be performed on shared data.
plicitly parallel programs, unless the synchronization points are clearly defi
and the programs are synchronized, the compiler could not interchange a rea
a write of two different shared data items, because such transformations mig
fect the semantics of the program. This prevents even relatively simple optim
tions, such as register allocation of shared data, because such a process
interchanges reads and writes. In implicitly parallelized programs—for exam
those written in High Performance FORTRAN (HPF)—programs must be s
chronized and the synchronization points are known, so this issue does not a

Using Virtual Memory Support to Build Shared Memory

Suppose we wanted to support a shared address space among a group of w
tions connected to a network. One approach is to use the virtual memory m
nism and operating system (OS) support to provide shared memory.

8.7 Crosscutting Issues 727

d

bility
g. By
tem to
 the dis-

. The
emo-
write
roces-

 request-
 has a
le for

mory.
are is
nces
igger
 false
times

rithms

e an
ses the
ured
eti-
as the
rams

rtual

. Bet-
 the

se of
ntag-
orted

h tech-
n us-
r in
uted
approach, which was first explored more than 10 years ago, has been calledis-
tributed virtual memory (DVM) or shared virtual memory (SVM). The key obser-
vation that this idea builds on is that the virtual memory hardware has the a
to control access to portions of the address space for both reading and writin
using the hardware to check and intercept accesses and the operating sys
ensure coherence, we can create a coherent, shared address space across
tributed memory of multiple processors.

In SVM, pages become the units of coherence, rather than cache blocks
OS can allow pages to be replicated in read-only fashion, using the virtual m
ry support to protect the pages from writing. When a process attempts to
such a page, it traps to the operating system. The operating system on that p
sor can then send messages to the OS on each node that shares the page,
ing that the page be invalidated. Just as in a directory system, each page
home node, and the operating system running in that node is responsib
tracking who has copies of the page.

The mechanisms are quite similar to those at work in coherent shared me
The key differences are that the unit of coherence is a page and that softw
used to implement the coherence algorithms. It is exactly these two differe
that lead to the major performance differences. A page is considerably b
than a cache block, and the possibilities for poor usage of a page and for
sharing are very high. This leads to much less stable performance and some
even lower performance than a uniprocessor. Because the coherence algo
are implemented in software, they have much higher overhead.

The result of this combination is that shared virtual memory has becom
acceptable substitute for loosely coupled message passing, since in both ca
frequency of communication must be low, and communication that is struct
in larger blocks is favored. Distributed virtual memory is not currently comp
tive with schemes that have hardware-supported, coherent memory, such
distributed shared-memory schemes we examined in section 8.4: Most prog
written for coherent shared memory cannot be run efficiently on shared vi
memory.

Several factors could change the attractiveness of shared virtual memory
ter implementation and small amounts of hardware support could reduce
overhead in the operating system. Compiler technology, as well as the u
smaller or multiple page sizes, could allow the system to reduce the disadva
es of coherence at a page-level granularity. The concept of software-supp
shared memory remains an important and active area of research, and suc
niques may play an important role in improving the hardware mechanisms; i
ing more loosely coupled machines, such as networks of workstations; o
allowing coherent shared memory to be extended to larger or more distrib
machines possibly built with DSM clusters.

728 Chapter 8 Multiprocessors

phics
design
ssors

ory.
(TFP)
 pro-
iscus-

t, and

), 50-
con-
ence.

sing
repre-
e pro-
etail.
in the
oces-
 to be
f this
hen a
un-
ill of-

sses to
ular,
essor,
in the
e the
ate ac-

eight
write

pera-
 to tag
In this section we examine the design and performance of the Silicon Gra
Challenge multiprocessor. The Challenge is a bus-based, cache-coherent
with a wide, high-speed bus, capable of holding up to 36 MIPS R4400 proce
with 4 processors on a board, and up to 16 GB of eight-way interleaved mem
The Power Challenge design uses the much higher performance R8000
microprocessors but with the same bus, memory, and I/O system; with two
cessors per board a Power Challenge can hold up to 18 processors. Our d
sion will focus on the bus, coherence hardware, and synchronization suppor
our measurements use a 150-MHz R4400-based Challenge system.

The Challenge System Bus (POWERpath-2)

The core of the Challenge design is a wide (256 data bits; 40 address bits
MHz bus (using reduced voltage swing) called POWERpath-2. This bus inter
nects all the major system components and provides support for coher
Figure 8.42 is a diagram of the system configuration.

The POWERpath-2 implements a write-invalidate coherence scheme u
four states: the three states we saw in section 8.3 and an additional state
senting a block that is clean but exclusive in one cache. The basic coherenc
tocol is a slight extension over the three-state protocol we examined in d
When a block that is not shared by any cache is read, the block is placed
clean exclusive state. Additional read misses of the same block by other pr
sors change the block to the shared state. A write miss causes the block
transferred to the exclusive (dirty exclusive) state. The major advantage o
protocol is that there is no need to generate a write miss, or an invalidate, w
block is upgraded from clean exclusive to dirty exclusive. Although this is
likely to be a large effect for accesses to truly shared data (since such data w
ten be in some processor’s cache), it does improve the performance of acce
private data and to data that are potentially but not actually shared. In partic
data that are not actually shared behave as if the machine were a uniproc
where a cache miss would not be needed to write a block already resident
cache. Implementing the clean exclusive state is straightforward, becaus
processor sees any attempt to read or write the block and can change the st
cordingly.

The POWERpath-2 bus supports split transactions and can have up to
pending memory reads outstanding, including reads needed to satisfy a
miss. All pending reads are tracked at each processor board, and resource identifi-
ers, unique numbers between 0 and 7 (since there are eight outstanding o
tions), are assigned to reads as they arrive. The resource identifiers are used

8.8 Putting It All Together:
The SGI Challenge Multiprocessor

8.8 The SGI Challenge Multiprocessor 729

 bus. If
 free,

. In
ly if
ed on
urther
idate
cessor
nding
results, so that processors know when a response to their request is on the
all eight resource identifiers are in use, a read must wait for one to become
which happens when an outstanding read completes.

In Appendix E we discuss the difficulties raised by a split transaction bus
particular, the cache-coherence algorithm of section 8.3 will not work correct
two writes or a write and a read for the same cache block can be interleav
the bus. (The interested reader should see Appendix E for an example and f
details.) To prevent this problem, a processor board will not issue an inval
(or write miss) for the same address as any pending read. Thus each pro
module keeps track of the requested address for the eight possible outsta

FIGURE 8.42 The Challenge system structure relies on a fast wide bus to intercon-
nect the system and to allow expansion. Each processor board holds four R4400 proces-
sors or two R8000 processors. Each memory board holds up to 2 GB. In the largest
configuration there are 15 POWERpath-2 bus slots, which can be configured with up to a
maximum of nine CPU boards (36 R4400s or 18 R8000s), eight memory boards (16 GB), five
VME64 buses (with up to 20 more in an extension box), 32 SCSI-2 channels, eight Ethernets,
four HPPI channels, four FDDI connections, and up to three graphics subsystems. This con-
figuration allows four disks in the main cabinet and almost 500 disks with expansion cabinets,
for a total of multiple terabytes. For further information about the Challenge design, see
http://www.sgi.com/.

Processor
board

Processor
board

Processor
board

1–9 processor boards

POWERpath-2 bus
256 bits data

40 bits address

1–8
memory
boards

I/O system:
1–4 POWERchannel

boards

Network:
HPPI, FDDI,

Ethernet

VME64 and
SCSI-2
buses

Up to 3
graphics
systems

730 Chapter 8 Multiprocessors

d and
ss for
hen

D), the
s.
to in-
ps can
d the
r re-
If the
k in a
e in-

pies
 and

uest-
case,
rst- or
ta, this
ster

ack re-
ate and
bitrated
ad re-

 each
oard.
ledge.
On the
trans-

576-
gle
ter-
time
 bus
reads. If a write miss occurs for a read that is pending, the processor is stalle
the write is delayed. If a processor board receives a read miss for an addre
which a read is pending, the later read can “piggyback” on the earlier read. W
the response to the earlier read appears (tagged with the correct resource I
bus interface simply grabs the data and uses it to satisfy the later cache mis

For each of the eight read resources there is an inhibit line, which is used
dicate that a read request should not be responded to by the memory. Snoo
take variable amounts of time, depending on the state of the processor an
block, so this signal is critical to implementing coherence. When a processo
ceives a snoop request, it asserts the inhibit line until it completes its snoop.
snoop either finds that the cache does not have the block or finds the bloc
clean state, the processor drops the inhibit line. If all the processors drop th
hibit line, the memory will respond, since it knows that all the processor co
are clean. If a processor finds a dirty copy of the block, it requests the bus
places the data on the bus, after which it drops the inhibit line. Both the req
ing processor and the memory receive the data and write it. In this latter
since there are separate tags for snooping, and retrieving a value from the fi
second-level cache takes much longer than detecting the presence of the da
solution of letting memory respond when its copy is valid is considerably fa
than always intervening.

The data and address buses are separately arbitrated and used. Write-b
quests use both buses, read responses use only the data bus, and invalid
read requests use only the address bus. Since the buses are separately ar
and assigned, the combined pair of buses can simultaneously carry a new re
quest and a response to an earlier request.

On POWERpath-2, each bus transaction consists of five bus clock cycles,
20 ns in length, that are executed in parallel by the bus controllers on each b
These five cycles are arbitration, resolution, address, decode, and acknow
On the address bus, one address is sent in the five-cycle bus transaction.
data bus, four 256-bit data transfers are performed during the five-cycle bus
action. Thus the sustained bus transfer rate is

(256/8) bytes/transfer × (1000/20) bus cycles/microsecond

× (4/5) transfers/bus cycle = 1.28 GB/sec

To obtain high bandwidth from memory, each memory board provides a
bit path to the DRAMs (512 bits of data and 64 bits of ECC), allowing a sin
memory cycle to provide the data for two bus transfers. Thus with two-way in
leaving a single memory board can support the full bus bandwidth.The total
to satisfy a read miss for a 128-byte cache block with no contention is 22
clock cycles:

1. The initial read request is one bus transaction of five bus clock cycles.

2. The latency until memory is ready to transfer is 12 bus clock cycles.

8.8 The SGI Challenge Multiprocessor 731

ans-

s, as-
e reply
nsac-

he la-
essor

ory
 a miss
cess
dress

 clock

 takes

ntire
. The
al bus
 the

ary

clocks
oces-
. This
 ac-

oces-
 these
essor
sion.
nder-
execu-
3. The reply transfers all 128 bytes in one reply transaction (four 256-bit tr
fers), taking five bus clock cycles.

Thus, latency of the access from the processor viewpoint is 22 bus clock cycle
suming that the memory access can start when the address is received and th
transaction can start immediately after the data is available. The bus is split tra
tion, so other requests and replies can occur during the memory access time.

Thus to calculate the secondary cache miss time, we need to compute t
tency of each step from the point a memory address is issued until the proc
is restarted after the miss:

1. The first step is the initial detection of the miss and generation of the mem
request by the processor. This process consists of three steps: detecting
in the primary on-chip cache; initiating a secondary (off-chip) cache ac
and detecting a miss in the secondary cache; and driving the complete ad
off-chip through the system bus. This process takes about 40 processor
cycles.

2. The next step is the bus and memory system component, which we know
22 bus clock cycles.

3. The next step is reloading the cache line. The R4400 is stalled until the e
cache block is reloaded, so the reload time is added into the miss time
memory interface on the processor is 64 bits and operates at the extern
timing of 50 MHz, which is the same as the bus timing. Thus reloading
128-byte cache block takes 16 bus clock cycles.

4. Finally, 10 additional processor clock cycles are used to reload the prim
cache and restart the pipeline.

The total miss penalty for a secondary cache miss consists of 50 processor
plus 38 bus clocks. For a 150-MHz R4400, each bus clock (20 ns) is three pr
sor clocks (6.67 ns), so the miss time is 164 processor clocks, or 1093 ns
number is considerably larger than it would be for a uniprocessor memory
cess, as we discuss in section 8.9. The next section discusses performance.

Performance of the Parallel Program Workload on Challenge

Figure 8.43 shows the speedup for our applications running on up to 16 pr
sors. The speedups for 16 processors vary from 10.5 to 15.0. Because
benchmarks have been tuned to improve memory behavior, the uniproc
version of the parallel benchmark is better than the original uniprocessor ver
Thus we report speedup relative to the uniprocessor parallel version. To u
stand what’s behind the speedups, we can examine the components of the
tion time.

732 Chapter 8 Multiprocessors

po-
ime.
 pro-

 by the
op-off
 most
roni-
sents
 fixed
minds
es and
ors are
arly,
Figure 8.44 shows how the total execution time is composed of three com
nents: CPU time, memory overhead or stall time, and synchronization wait t
With the data in Figure 8.44, we can explain the speedup behavior of these
grams. For example, FFT shows the most linear speedup, as can be seen
nearly constant processor utilization. Both Barnes and Ocean have some dr
in speedup due to slight increases in synchronization overhead. LU has the
significant loss of speedup, which arises from a significant increase in synch
zation overhead. Interestingly, this synchronization overhead actually repre
load imbalance, which becomes a serious problem as the ratio between a
problem size and the number of processors decreases. Figure 8.44 also re
us that speedup is a dangerous measure to use by itself. For example, Barn
Ocean have nearly identical speedup at 16 processors, but the 16 process
busy 70% of the time in Barnes and only 43% of the time in Ocean. Cle
Barnes makes much more effective use of the Challenge multiprocessor.

FIGURE 8.43 The speedups for the parallel benchmarks are shown versus processor
count for a 150-MHz R4400 Challenge system. The superlinear speedup for Ocean run-
ning on two processors occurs because of the doubling of the available cache.

Speed-up

0

4

8

14

12

10

6

2

FFT

1
2.0

3.9

7.8

15.0

LU Barnes

Benchmarks

Ocean

16

1
1.9

3.5

6.4

10.5

1
1.9

3.7

6.9

13.5

1
2.1

4.4

8.6

13.7

1 2 4 8 16

8.8 The SGI Challenge Multiprocessor 733
FIGURE 8.44 The components of execution time for the four parallel benchmarks running on a Challenge multi-
processor with 1 to 16 150-MHz R4400. Although memory stalls are a problem with all processor counts, synchronization
stalls become more severe as the processor count is increased. Synchronization stalls often result from load balancing, as
in LU, or from contention arising when synchronization becomes very frequent, as in Ocean. These applications have been
tuned to have good locality and low miss rates, which keep memory stalls from becoming an increasing problem with larger
processor counts.

Percentage of
total execution time

0%

30%

20%

10%

1 2 4

Processor count

FFT

8 16

100%

40%

70%

90%

80%

60%

50% Percentage of
total execution time

0%

30%

20%

10%

1 2 4

Processor count

LU

8 16

100%

40%

70%

90%

80%

60%

50%

Percentage of
total execution time

0%

30%

20%

10%

1 2 4

Processor count

Barnes

8 16

100%

40%

70%

90%

80%

60%

50% Percentage of
total execution time

0%

30%

20%

10%

1 2 4

Processor count

Ocean

8 16

100%

40%

70%

90%

80%

60%

50%

CPU busy time Memory overhead Synchronization

734 Chapter 8 Multiprocessors

 are
 un-
ulti-
have

sus

ow-
ed to
 paral-
 the
rfor-
 on a

ess-
 col-

lgo-
 may
 than
lgo-
ntial
lent

ir, al-
ncoun-
cache
.
ricky
ines
 ma-
icky,
 valid

(see
ever,
Given the lack of maturity in our understanding of parallel computing, there
many hidden pitfalls that will be uncovered either by careful designers or by
fortunate ones. Given the large amount of hype that often surrounds m
processors, especially at the high end, common fallacies abound. We
included a selection of these.

Pitfall: Measuring performance of multiprocessors by linear speedup ver
execution time.

“Mortar shot” graphs—plotting performance versus number of processors sh
ing linear speedup, a plateau, and then a falling off—have long been us
judge the success of parallel processors. Although speedup is one facet of a
lel program, it is not a direct measure of performance. The first question is
power of the processors being scaled: A program that linearly improves pe
mance to equal 100 Intel 8080s may be slower than the sequential version
workstation. Be especially careful of floating-point-intensive programs; proc
ing elements without hardware assist may scale wonderfully but have poor
lective performance.

Comparing execution times is fair only if you are comparing the best a
rithms on each machine. Comparing the identical code on two machines
seem fair, but it is not; the parallel program may be slower on a uniprocessor
a sequential version. Developing a parallel program will sometimes lead to a
rithmic improvements, so that comparing the previously best-known seque
program with the parallel code—which seems fair—will not compare equiva
algorithms. To reflect this issue, the terms relative speedup (same program) and
true speedup (best program) are sometimes used. Results that suggest super-
linear performance, when a program on n processors is more than n times faster
than the equivalent uniprocessor, may indicate that the comparison is unfa
though there are instances where “real” superlinear speedups have been e
tered. For example, when Ocean is run on two processors, the combined
produces a small superlinear speedup (2.1 vs. 2.0), as shown in Figure 8.43

In summary, comparing performance by comparing speedups is at best t
and at worst misleading. Comparing the speedups for two different mach
does not necessarily tell us anything about the relative performance of the
chines. Even comparing two different algorithms on the same machine is tr
since we must use true speedup, rather than relative speedup, to obtain a
comparison.

Fallacy: Amdahl’s Law doesn’t apply to parallel computers.

In 1987, the head of a research organization claimed that Amdahl’s Law
section 1.6) had been broken by an MIMD machine. This hardly meant, how

8.9 Fallacies and Pitfalls

8.9 Fallacies and Pitfalls 735

on of
 re-

 ex-
om-
me

st be
say

n of

s the
data set
xecu-
ntial
d the

s true
can

st is,
e can
llars
gners

h no
el of
e
imple
em-
roces-

 bus.
and
ces-
400
cessor

esign
f-the-
 they
that the law has been overturned for parallel computers; the neglected porti
the program will still limit performance. To understand the basis of the media
ports, let’s see what Amdahl [1967] originally said:

A fairly obvious conclusion which can be drawn at this point is that the effort
pended on achieving high parallel processing rates is wasted unless it is acc
panied by achievements in sequential processing rates of very nearly the sa
magnitude. [p. 483]

One interpretation of the law was that since portions of every program mu
sequential, there is a limit to the useful economic number of processors—
100. By showing linear speedup with 1000 processors, this interpretatio
Amdahl’s Law was disproved.

The basis for the statement that Amdahl’s Law had been “overcome” wa
use of scaled speedup.The researchers scaled the benchmark to have a
size that is 1000 times larger and compared the uniprocessor and parallel e
tion times of the scaled benchmark. For this particular algorithm the seque
portion of the program was constant independent of the size of the input, an
rest was fully parallel—hence, linear speedup with 1000 processors.

We have already described the dangers of relating scaled speedup a
speedup. Additional problems with this sort of scaling methodology, which
result in unrealistic running times, were examined in section 8.7.

Fallacy: Multiprocessors are “free.”

This fallacy has two different interpretations, and both are erroneous. The fir
given that modern microprocessors contain support for snooping caches, w
build small-scale, bus-based multiprocessors for no additional cost in do
(other than the microprocessor cost) or sacrifice of performance. Many desi
believed this to be true and have even tried to build machines to prove it.

To understand why this doesn’t work, you need to compare a design wit
multiprocessing extensibility against a design that allows for a moderate lev
multiprocessing (say 2–4 processors). The 2–4 processor design requires som
sort of bus and a coherence controller that is more complicated than the s
memory controller required for the uniprocessor design. Furthermore, the m
ory access time is almost always faster in the uniprocessor case, since the p
sor can be directly connected to memory with only a simple single-master
Thus the strictly uniprocessor solution typically has better performance
lower cost than the 1-processor configuration of even a very small multipro
sor. For example, a typical Silicon Graphics workstation using 150-MHz R4
has a miss penalty that is under 80 processor clocks versus the 164 pro
clocks seen on a Challenge.

It also became popular in the 1980s to believe that the multiprocessor d
was free in the sense that an MP could be quickly constructed from state-o
art microprocessors and then quickly updated using newer processors as

736 Chapter 8 Multiprocessors

 and
hich
oft-
ed for

earch
 mid-
 a
om a
 that
nvest-
 net-

 ca-
th of

e bi-
bus-
 bus-

ch as
le to
l ma-
ires a
user
. The
 with

can in-
ses.)
uses.
a bus-

hat
con-
 pro-
mall

may

r, a
became available. This viewpoint ignores the complexity of cache coherence
the challenge of designing high-bandwidth, low-latency memory systems, w
for modern processors is extremely difficult. Moreover, there is additional s
ware effort: compilers, operating systems, and debuggers all must be adapt
a parallel system. The next two fallacies are closely related to this one.

Fallacy: Scalability is almost free.

The goal of scalable parallel computing has been a focus of much of the res
and a significant segment of the high-end machine development since the
1980s. Until recently, it was widely held that you could build scalability into
multiprocessor and then simply offer the machine at any point on the scale fr
small number of processors to a large number. The difficulty with this view is
machines that scale to larger processor counts require substantially more i
ment (in both dollars and design time) in the interprocessor communication
work, as well as in aspects such as reliability and reconfigurability.

As an example, consider the CM-5. It provides an interconnection network
pable of scaling to 4000 processors, where it can deliver a bisection bandwid
20 GB/sec. At a more typical 32- to 64-processor configuration, however, th
section bandwidth is only 160–320 MB/sec, which is less than what most
based systems provide. Furthermore, the cost per CPU is higher than in a
based system in this range.

The cost of scalability can be seen even in more limited design ranges, su
very small MP systems (2–8 processors) versus bus-based systems that sca
16–32 processors. Although a fast 64-bit bus might be adequate for a smal
chine with fewer than four processors, a larger number of processors requ
wider, higher bandwidth bus (for example, the 256-bit Challenge bus). The
who buys the large system pays for the cost of this high-performance bus
SPARCCenter 2000 design addresses this by using a multiple bus design
narrower buses. In a small system, only one bus is needed; a larger system
clude two buses. (In fact, a version of this design from Cray can have four bu
Interleaved memory allows transfers to be done simultaneously on both b
Even in this case, scalability still has a cost, since each processor requires
snooping ASIC for each bus in the system.

Scalability is also not free in software: To build software applications t
scale requires significantly more attention to load balance, locality, potential
tention for shared resources, and the serial (or partly parallel) portions of the
gram. Obtaining scalability for real applications, as opposed to toys or s
kernels, across factors of more than 10 in processor count, is a major challenge.
In the future, better compiler technology and performance analysis tools
help with this critical problem.

Pitfall: Not developing the software to take advantage of, or optimize fo
multiprocessor architecture.

8.9 Fallacies and Pitfalls 737

ma-
mples
lop-
le to
 from

em-
lding
ulti-

ess re-
h the
ues
ory

cation
local
nd a
ing.

 local
gners

when
ment.
single
s not
me a

t uses
stat-
 pro-
e page
l that
llo-
tion

has
eck
aral-
roces-

at one
ue to

lock
ce is
ugs
 soft-
There is a long history of software lagging behind on massively parallel
chines, possibly because the software problems are much harder. Two exa
from mainstream, bus-based multiprocessors illustrate the difficulty of deve
ing software for new multiprocessors. The first has to do with not being ab
take advantage of a potential architectural capability, and the second arises
the need to optimize the software for a multiprocessor.

The SUN SPARCCenter is a bus-based machine with one or two buses. M
ory is distributed on the boards with the processors to create a simple bui
block consisting of processor, cache, and memory. With this structure, the m
processor could also have a fast local access and use the bus only to acc
mote memory. The SUN operating system, however, was not able to deal wit
NUMA (non-uniform memory access) aspect of memory, including such iss
as controlling where memory was allocated (local versus global). If mem
pages were allocated randomly, then successive runs of the same appli
could have substantially different performance, and the benefits of fast
access might be small or nonexistent. In addition, providing both a remote a
local access path to memory slightly complicated the design because of tim
Since the software would not have been able to take advantage of faster
memory and the design was believed to be more complicated, the desi
decided to require all requests to go over the bus.

Our second example shows the subtle kinds of problems that can arise
software designed for a uniprocessor is adapted to a multiprocessor environ
The SGI operating system protects the page table data structure with a
lock, assuming that page allocation is infrequent. In a uniprocessor this doe
represent a performance problem. In a multiprocessor situation, it can beco
major performance bottleneck for some programs. Consider a program tha
a large number of pages that are initialized at start-up, which UNIX does for
ically allocated pages. Suppose the program is parallelized so that multiple
cesses allocate the pages. Because page allocation requires the use of th
table data structure, which is locked whenever it is in use, even an OS kerne
allows multiple threads in the OS will be serialized if the processes all try to a
cate their pages at once (which is exactly what we might expect at initializa
time!).

This page table serialization eliminates parallelism in initialization and
significant impact on overall parallel performance. This performance bottlen
persists even under multiprogramming. For example, suppose we split the p
lel program apart into separate processes and run them, one process per p
sor, so that there is no sharing between the processes. (This is exactly wh
user did, since he reasonably believed that the performance problem was d
unintended sharing or interference in his application.) Unfortunately, the
still serializes all the processes—so even the multiprogramming performan
poor. This pitfall indicates the kind of subtle but significant performance b
that can arise when software runs on multiprocessors. Like many other key

738 Chapter 8 Multiprocessors

ht in a
ffec-

e.

re. As
ed for
% of
 miss-

e local
verage

tion
 be re-
ote
 CPI
s, the

o not
 the
 was
odes

.

s to
how-
s uni-
ys that

ssors,
st de-
ssor.

ssor
ding
 use
lete
e unit
ssor
8.8.
ware components, the OS algorithms and data structures must be rethoug
multiprocessor context. Placing locks on smaller portions of the page table e
tively eliminates the problem.

Pitfall: Neglecting data distribution in a distributed shared-memory machin

Consider the Ocean benchmark running on a 32-processor DSM architectu
Figure 8.26 (page 687) shows, the miss rate is 3.1%. Because the grid us
the calculation is allocated in a tiled fashion (as described on page 654), 2.5
the accesses are local capacity misses and 0.6% are remote communication
es needed to access data at the boundary of each grid. Assuming a 30-cycl
memory access cost and a 100-cycle remote memory access cost, the a
miss has a cost of 43.5 cycles.

If the grid was allocated in a straightforward fashion by round-robin alloca
of the pages, we could expect 1/32 of the misses to be local and the rest to
mote. This would lead to local miss rate of and a rem
miss rate of 3.0%, for an average miss cost of 96.8 cycles. If the average
without cache misses is 1.5, and 45% of the instructions are data reference
version with tiled allocation is

This analysis only considers latency, and assumes that contention effects d
lead to increased latency, which is very optimistic. Round-robin is also not
worst possible data allocation: if the grid fit in a subset of the memory and
allocated to only a subset of the nodes, contention for memory at those n
could easily lead to a difference in performance of more than a factor of 2.

Fallacy: Linear speedups are needed to make multiprocessors cost-effective

It is widely recognized that one of the major benefits of parallel computing i
offer a “shorter time to solution” than the fastest uniprocessor. Many people,
ever, also hold the view that parallel processors cannot be as cost-effective a
processors unless they can achieve perfect linear speedup. This argument sa
because the cost of the machine is a linear function of the number of proce
anything less than linear speedup means that the ratio of performance/co
creases, making a parallel processor less cost-effective than using a uniproce

The problem with this argument is that cost is not only a function of proce
count, but also depends on memory (as well as I/O). The effect of inclu
memory in the system cost was pointed out by Wood and Hill [1995], and we
an example from their article to demonstrate the effect of looking at a comp
system. They compare a uniprocessor server, the Challenge DM (a desksid
with one processor and up to 6 GB of memory), against a multiproce
Challenge XL, the rack-mounted multiprocessor we examined in section

3.1% 1 32⁄× 0.1%=

1.5 45% 3.1%× 96.8×+
1.5 45% 3.1%× 43.5×+
--- 1.5 1.35+

1.5 0.61+
------------------------ 2.85

2.11
---------- 1.35 times faster= = =

8.9 Fallacies and Pitfalls 739

MHz

n the
0 +
dups

XL is
edup

roces-

dup of
 cost

ead,
e. If
le the
ds to
eds to
st ef-
or ex-
B of

 XL
rs.
o in-
nce is
pari-
(The XL also has faster processors than those of the Challenge DM—150
versus 100 MHz—but we will ignore this difference.)

First, Wood and Hill introduce a cost function: cost (p, m), which equals the
list price of a machine with p processors and m megabytes of memory. For the
Challenge DM:

For the Challenge XL:

Suppose our computation requires 1 GB of memory on either machine. The
cost of the DM is $138,400, while the cost of the Challenge XL is $181,60
$20,000 × p. For different numbers of processors, we can compute what spee
are necessary to make the use of parallel processing on the XL more cost effec-
tive than that of the uniprocessor. For example, the cost of an 8-processor
$341,600, which is about 2.5 times higher than the DM, so if we have a spe
on 8 processors of more than 2.5, the multiprocessor is actually more cost effec-
tive than the uniprocessor. If we are able to achieve linear speedup, the 8-p
sor XL system is actually more than three times more cost effective! Things get
better with more processors: On 16 processors, we need to achieve a spee
only 3.6, or less than 25% parallel efficiency, to make the multiprocessor as
effective as the uniprocessor.

The use of a multiprocessor may involve some additional memory overh
although this number is likely to be small for a shared-memory architectur
we assume an extremely conservative number of 100% overhead (i.e., doub
memory is required on the multiprocessor), the 8-processor machine nee
achieve a speedup of 3.2 to break even, and the 16-processor machine ne
achieve a speedup of 4.3 to break even. Surprisingly, the XL can even be co
fective when compared against a headless workstation used as a server. F
ample, the cost function for a Challenge S, which can have at most 256 M
memory, is

For problems small enough to fit in 256 MB of memory on both machines, the
breaks even with a speedup of 6.3 on 8 processors and 10.1 on 16 processo

In comparing the cost/performance of two computers, we must be sure t
clude accurate assessments of both total system cost and what performa
achievable. For many applications with larger memory demands, such a com
son can dramatically increase the attractiveness of using a multiprocessor.

tcos 1 m,() $38,400 $100 m×+=

tcos p m,() $81,600 $20,000 p× $100 m×+ +=

tcos 1 m,() $16,600 $100 m×+=

740 Chapter 8 Multiprocessors

 of a
 be

r as
idity

been
 and
te of
 pro-
rove

er, in-
m-

 and
ec-
hitec-
ry of

ds to
ulti-

t this

tood.
pu-

pu-
ism.
en for
uch

e and
nsive
t re-
ccess
everal
cuss

ters
cro-
For over a decade prophets have voiced the contention that the organization
single computer has reached its limits and that truly significant advances can
made only by interconnection of a multiplicity of computers in such a manne
to permit cooperative solution. …Demonstration is made of the continued val
of the single processor approach. … [p. 483]

Amdahl [1967]

The dream of building computers by simply aggregating processors has
around since the earliest days of computing. However, progress in building
using effective and efficient parallel processors has been slow. This ra
progress has been limited by difficult software problems as well as by a long
cess of evolving architecture of multiprocessors to enhance usability and imp
efficiency. We have discussed many of the software challenges in this chapt
cluding the difficulty of writing programs that obtain good speedup due to A
dahl’s law, dealing with long remote access or communication latencies,
minimizing the impact of synchronization. The wide variety of different archit
tural approaches and the limited success and short life of many of the arc
tures to date has compounded the software difficulties. We discuss the histo
the development of these machines in section 8.11.

Despite this long and checkered past, progress in the last 10 years lea
some reasons to be optimistic about the future of parallel processing and m
processors. This optimism is based on a number of observations abou
progress and the long-term technology directions:

1. The use of parallel processing in some domains is beginning to be unders
Probably first among these is the domain of scientific and engineering com
tation. This application domain has an almost limitless thirst for more com
tation. It also has many applications that have lots of natural parallel
Nonetheless, it has not been easy: programming parallel processors ev
these applications remains very challenging. Another important, and m
larger (in terms of market size), application area is large-scale data bas
transaction processing systems. This application domain also has exte
natural parallelism available through parallel processing of independen
quests, but its needs for large-scale computation, as opposed to purely a
to large-scale storage systems, are less well understood. There are also s
contending architectural approaches that may be viable—a point we dis
shortly.

2. It is now widely held that one of the most effective ways to build compu
that offer more performance than that achieved with a single-chip mi

8.10 Concluding Remarks

8.10 Concluding Remarks 741

rice/
ely to

 are
vers,
re,
 for
rces,

 large
 OS
om-

ulti-
ularly
ively

ng as

)

mely
ic for
r more
addi-
d on
ost-
uch
ts of

omi-
resent

ill be
mar-
d for
processor is by building a multiprocessor that leverages the significant p
performance advantages of mass-produced microprocessors. This is lik
become more true in the future.

3. Multiprocessors are highly effective for multiprogrammed workloads that
often the dominant use of mainframes and large servers, including file ser
which handle a restricted type of multiprogrammed workload. In the futu
such workloads may well constitute a large portion of the market need
higher-performance machines. When the workload wants to share resou
such as file storage, or can efficiently timeshare a resource, such as a
memory, a multiprocessor can be a very efficient host. Furthermore, the
software needed to efficiently execute multiprogrammed workloads is bec
ing commonplace.

While there is reason to be optimistic about the growing importance of m
processors, many areas of parallel architecture remain unclear. Two partic
important questions are, How will the largest-scale multiprocessors (the mass
parallel processors, or MPPs) be built? and What is the role of multiprocessi
a long-term alternative to higher-performance uniprocessors?

The Future of MPP Architecture

Hennessy and Patterson should move MPPs to Chapter 11.

Jim Gray, when asked about coverage of MPPs
in the second edition of this book, alludes to
Chapter 11 bankruptcy protection in U.S. law (1995

Small-scale multiprocessors built using snooping-bus schemes are extre
cost-effective. Recent microprocessors have even included much of the log
cache coherence in the processor chip, and several allow the buses of two o
processors to be directly connected—implementing a coherent bus with no
tional logic. With modern integration levels, multiple processors can be place
a board, or even on a single multi-chip module (MCM), resulting in a highly c
effective multiprocessor. Using DSM technology it is possible to configure s
2–4 processor nodes into a coherent structure with relatively small amoun
additional hardware. It is premature to predict that such architectures will d
nate the middle range of processor counts (16–64), but it appears at the p
that this approach is the most attractive.

What is totally unclear at the present is how the very largest machines w
constructed. The difficulties that designers face include the relatively small
ket for very large machines (> 64 nodes and often > $5 million) and the nee

742 Chapter 8 Multiprocessors

ive at
 the
cale

nter-
 that
ssage
e co-
ma-
is not
mpat-
ma-

 with
such
se of

tural
r fits
 that
ram-
r to a

hich
ential
 ma-

 net-
hich
con-
al.

stom
 of the
e dis-
sage
ents

 cost
 ma-
xam-

e
tech-
nter-
n the
). Of
machines that scale to larger processor counts to be extremely cost-effect
the lower processor counts where most of the machines will be sold. At
present there appear to be four slightly different alternatives for large-s
machines:

1. Large-scale machines that simply scale up naturally, using proprietary i
connect and communications controller technology. This is the approach
has been followed so far in machines like the Intel Paragon, using a me
passing approach, and Cray T3D, using a shared memory without cach
herence. There are two primary difficulties with such designs. First, the
chines are not cost-effective at small scales, where the cost of scalability
valued. Second, these machines have programming models that are inco
ible, in varying degrees, with the mainstream of smaller and midrange
chines.

2. Large-scale machines constructed from clusters of mid range machines
combinations of proprietary and standard technologies to interconnect
machines. This cluster approach gets its cost-effectiveness through the u
cost-optimized building blocks. In some approaches, the basic architec
model (e.g., coherent shared memory) is extended. The Convex Exempla
in this class. The disadvantage of trying to build this extended machine is
more custom design and interconnect are needed. Alternatively, the prog
ming model can be changed from shared memory to message passing o
different variation on shared memory, such as shared virtual memory, w
may be totally transparent. The disadvantage of such designs is the pot
change in the programming model; the advantage is that the large-scale
chine can make use of more off-the-shelf technology, including standard
works. Another example of such a machine is the SGI Challenge array, w
is built from SGI Challenge machines and uses standard HPPI for its inter
nect. Overall, this class of machine, while attractive, remains experiment

3. Designing machines that use off-the-shelf uniprocessor nodes and a cu
interconnect. The advantage of such a machine is the cost-effectiveness
standard uniprocessor node, which is often a repackaged workstation; th
advantage is that the programming model will probably need to be mes
passing even at very small node counts. In some application environm
where little or no sharing occurs, this may be acceptable. In addition, the
of the interconnect, because it is custom, can be significant, making the
chine costly, especially at small node counts. The IBM SP-2 is the best e
ple of this approach today.

4. Designing a machine using all off-the-shelf components, which promises th
lowest cost. The leverage in this approach lies in the use of commodity
nology everywhere: in the processors (PC or workstation nodes), in the i
connect (high-speed local area network technology, such as ATM), and i
software (standard operating systems and programming languages

8.10 Concluding Remarks 743

 likely
igns.
and-
ost-
ch to
 pro-
 these
sta-
uc-
ion-
nes.

 impor-
ication
er-
s may

diza-
hes.

 to try
 the
 in a
 in-
 for
ents
im-

in the
st 10
eas-
ill

y.
have
xter-
t yet

n the
cerns

o not
gle-

ance
he
course, such machines will use message passing, and communication is
to have higher latency and lower bandwidth than in the alternative des
Like the previous class of designs, for applications that do not need high b
width or low-latency communication, this approach can be extremely c
effective. Databases and file servers, for example, may be a good mat
these machines. Also, for multiprogrammed workloads, where each user
cess is independent of the others, this approach is very attractive. Today
machines are built as workstation clusters or as NOWs (networks of work
tions) or COWs (clusters of workstations). The VAXCluster approach s
cessfully used this organization for multiprogrammed and transact
oriented workloads, albeit with minicomputers rather than desktop machi

Each of these approaches has advantages and disadvantages, and the
tance of the shortcomings of any one approach are dependent on the appl
class. In 1995 it is unclear which if any of these models will win out for larg
scale machines. For some classes of applications, one of these approache
even become dominant for small to midrange machines. Finally, some hybri
tion of these ideas may emerge, given the similarity in several of the approac

The Future of Microprocessor Architecture

As we saw in Chapter 4, architects are using ever more complex techniques
to exploit more instruction-level parallelism. As we also saw in that chapter,
prospects for finding ever-increasing amounts of instruction-level parallelism
manner that is efficient to exploit are somewhat limited. Likewise, there are
creasingly difficult problems to be overcome in building memory hierarchies
high-performance processors. Of course, continued technology improvem
will allow us to continue to advance clock rate. But the use of technology
provements that allow a faster gate speed alone is not sufficient to mainta
incredible growth of performance that the industry has experienced in the pa
years. Maintaining a rapid rate of performance growth will depend to an incr
ing extent on exploiting the dramatic growth in effective silicon area, which w
continue to grow much faster than the basic speed of the process technolog

Unfortunately, for the past five or more years, increases in performance
come at the cost of ever-increasing inefficiencies in the use of silicon area, e
nal connections, and power. This diminishing-returns phenomenon has no
slowed the growth of performance in the mid 1990s, but we cannot sustai
rapid rate of performance improvements without addressing these con
through new innovations in computer architecture.

Unlike the prophets quoted at the beginning of the chapter, your authors d
believe that we are about to “hit a brick wall” in our attempts to improve sin
processor performance. Instead, we may see a gradual slowdown in perform
growth, with the eventual growth being limited primarily by improvements in t

744 Chapter 8 Multiprocessors

rd to
ch a
 an-

h in
rowth
d an
!
be
 a di-
per-
sing
mory
sses.
used

user
 evo-
ture
s who
st in-

s, but
 of an

hes,
. The
o 10
have
hines
mul-
f ma-

pose
he ex-
possi-
 the
 soft-
rallel

ry.
speed of the technology. When these limitation will become serious is ha
say, but possibly as early as the beginning of the next century. Even if su
slowdown were to occur, performance might well be expected to grow at the
nual rate of 1.35 that we saw prior to 1985.

Furthermore, we do not want to rule out the possibility of a breakthroug
uniprocessor design. In the early 1980s, many people predicted the end of g
in uniprocessor performance, only to see the arrival of RISC technology an
unprecedented 10-year growth in performance averaging 1.6 times per year

With this in mind, we cautiously ask whether the long-term direction will
to use increased silicon to build multiple processors on a single chip. Such
rection is appealing from the architecture viewpoint—it offers a way to scale
formance without increasing complexity. It also offers an approach to ea
some of the challenges in memory-system design, since a distributed me
can be used to scale bandwidth while maintaining low latency for local acce
The challenge lies in software and in what architecture innovations may be
to make the software easier.

Evolution Versus Revolution and the Challenges to
Paradigm Shifts in the Computer Industry

Figure 8.45 shows what we mean by the evolution-revolution spectrum of com-
puter architecture innovation. To the left are ideas that are invisible to the
(presumably excepting better cost, better performance, or both). This is the
lutionary end of the spectrum. At the other end are revolutionary architec
ideas. These are the ideas that require new applications from programmer
must learn new programming languages and models of computation, and mu
vent new data structures and algorithms.

Revolutionary ideas are easier to get excited about than evolutionary idea
to be adopted they must have a much higher payoff. Caches are an example
evolutionary improvement. Within 5 years after the first publication about cac
almost every computer company was designing a machine with a cache
RISC ideas were nearer to the middle of the spectrum, for it took closer t
years for most companies to have a RISC product. Most multiprocessors
tended to the revolutionary end of the spectrum, with the largest-scale mac
(MPPs) being more revolutionary than others. Most programs written to use
tiprocessors as parallel engines have been written especially for that class o
chines, if not for the specific architecture.

The challenge for both hardware and software designers that would pro
that multiprocessors and parallel processing become the norm, rather than t
ception, is the disruption to the established base of programs. There are two
ble ways this paradigm shift could be facilitated: if parallel processing offers
only alternative to enhance performance, and if advances in hardware and
ware technology can construct a gentle ramp that allows the movement to pa
processing, at least with small numbers of processors, to be more evolutiona

8.11 Historical Perspective and References 745

n we
 the
 oth-
 great
esent
There is a tremendous amount of history in parallel processing; in this sectio
divide our discussion by both time period and architecture. We start with
SIMD approach and the Illiac IV. We then turn to a short discussion of some
er early experimental machines and progress to a discussion of some of the
debates in parallel processing. Next we discuss the historical roots of the pr
machines and conclude by discussing recent advances.

FIGURE 8.45 The evolution-revolution spectrum of computer architecture. The sec-
ond through fifth columns are distinguished from the final column in that applications and op-
erating systems can be ported from other computers rather than written from scratch. For
example, RISC is listed in the middle of the spectrum because user compatibility is only at
the level of high-level languages, while microprogramming allows binary compatibility, and la-
tency-oriented MIMDs require changes to algorithms and extending HLLs. Timeshared MIMD
means MIMDs justified by running many independent programs at once, while latency MIMD
means MIMDs intended to run a single program faster.

8.11 Historical Perspective and References

SISD vs.
Intel Paragon

Algorithms,
extended HLL,
programs

High-level
language

Sun 3 vs. Sun 4

Full instruction set
(same data
representation)

Assembly

MIPS 1000
vs.
DEC 3100

Byte order
(Big vs. Little
Endian)

Upward
binary

Intel 8086 vs.
80286 vs.
80386 vs.
80486

Some new
instructions

Binary

VAX-11/780
vs. 8800

Microcode,
TLB, caches,
pipelining,
MIMD

User
compatibility

Example

Difference

New programs,
extended or
new HLL, new
algorithms

RevolutionaryEvolutionary

S
pe

ci
al

 p
ur

po
se

La
te

nc
y

M
IM

D

M
as

si
ve

 S
IM

D

R
IS

C

V
ec

to
r

in
st

ru
ct

io
ns

V
irt

ua
l m

em
or

y

T
im

es
ha

re
d

M
IM

D
C

ac
he

P
ip

el
in

in
g

M
ic

ro
pr

og
ra

m
m

in
g

746 Chapter 8 Multiprocessors

n op-
ding

ne of

ting
that
 that

lot-
 ba-
ects.
later
te in
the
nitial
to
neer-
nny
ad

ons.
nd ad-
s are
s. For
n.
m-

op-
f da-
ach
what
t the

rsus
llelism
, for
 64
The Rise and Fall of SIMD Computers

The cost of a general multiprocessor is, however, very high and further desig
tions were considered which would decrease the cost without seriously degra
the power or efficiency of the system. The options consist of recentralizing o
the three major components.... Centralizing the [control unit] gives rise to the
basic organization of [an]... array processor such as the Illiac IV.

Bouknight et al. [1972]

The SIMD model was one of the earliest models of parallel computing, da
back to the first large-scale multiprocessor, the Illiac IV. The key idea in
machine, as in more recent SIMD machines, is to have a single instruction
operates on many data items at once, using many functional units.

The earliest ideas on SIMD-style computers are from Unger [1958] and S
nick, Borck, and McReynolds [1962]. Slotnick’s Solomon design formed the
sis of the Illiac IV, perhaps the most infamous of the supercomputer proj
While successful in pushing several technologies that proved useful in
projects, it failed as a computer. Costs escalated from the $8 million estima
1966 to $31 million by 1972, despite construction of only a quarter of
planned machine. Actual performance was at best 15 MFLOPS, versus i
predictions of 1000 MFLOPS for the full system [Hord 1982]. Delivered
NASA Ames Research in 1972, the computer took three more years of engi
ing before it was usable. These events slowed investigation of SIMD, with Da
Hillis [1985] resuscitating this style in the Connection Machine, which h
65,636 1-bit processors.

Real SIMD computers need to have a mixture of SISD and SIMD instructi
There is an SISD host computer to perform operations such as branches a
dress calculations that do not need parallel operation. The SIMD instruction
broadcast to all the execution units, each of which has its own set of register
flexibility, individual execution units can be disabled during a SIMD instructio
In addition, massively parallel SIMD machines rely on interconnection or co
munication networks to exchange data between processing elements.

SIMD works best in dealing with arrays in for-loops. Hence, to have the
portunity for massive parallelism in SIMD there must be massive amounts o
ta, or data parallelism. SIMD is at its weakest in case statements, where e
execution unit must perform a different operation on its data, depending on
data it has. The execution units with the wrong data are disabled so tha
proper units can continue. Such situations essentially run at 1/nth performance,
where n is the number of cases.

The basic trade-off in SIMD machines is performance of a processor ve
number of processors. Recent machines emphasize a large degree of para
over performance of the individual processors. The Connection Machine 2
example, offered 65,536 single bit-wide processors, while the Illiac IV had
64-bit processors.

8.11 Historical Perspective and References 747

 by
rpose
. A
archi-
IMD
erna-
e and
 low-
rs for

rpose
ial-

equire
rtain
nits.

ut-
 im-
rs.
n the
and
cted
sors

 mod-
espe-
ster-
time.
cement
 de-
hese
much

aban-
eply
 the
After being resurrected in the 1980s, first by Thinking Machines and then
MasPar, the SIMD model has once again been put to bed as a general-pu
multiprocessor architecture, for two main reasons. First, it is too inflexible
number of important problems cannot use such a style of machine, and the
tecture does not scale down in a competitive fashion; that is, small-scale S
machines often have worse cost/performance compared with that of the alt
tives. Second, SIMD cannot take advantage of the tremendous performanc
cost advantages of microprocessor technology. Instead of leveraging this
cost technology, designers of SIMD machines must build custom processo
their machines.

Although SIMD computers have departed from the scene as general-pu
alternatives, this style of architecture will continue to have a role in spec
purpose designs. Many special-purpose tasks are highly data parallel and r
a limited set of functional units. Thus designers can build in support for ce
operations, as well as hardwire interconnection paths among functional u
Such organizations are often called array processors, and they are useful for
tasks like image and signal processing.

Other Early Experiments

It is difficult to distinguish the first multiprocessor. Surprisingly, the first comp
er from the Eckert-Mauchly Corporation, for example, had duplicate units to
prove availability. Holland [1959] gave early arguments for multiple processo

Two of the best-documented multiprocessor projects were undertaken i
1970s at Carnegie Mellon University. The first of these was C.mmp [Wulf
Bell 1972; Wulf and Harbison 1978], which consisted of 16 PDP-11s conne
by a crossbar switch to 16 memory units. It was among the first multiproces
with more than a few processors, and it had a shared-memory programming
el. Much of the focus of the research in the C.mmp project was on software,
cially in the OS area. A later machine, Cm* [Swan et al. 1977], was a clu
based multiprocessor with a distributed memory and a nonuniform access
The absence of caches and a long remote access latency made data pla
critical. This machine and a number of application experiments are well
scribed by Gehringer, Siewiorek, and Segall [1987]. Many of the ideas in t
machines would be reused in the 1980s when the microprocessor made it
cheaper to build multiprocessors.

Great Debates in Parallel Processing

The quotes at the beginning of this chapter give the classic arguments for
doning the current form of computing, and Amdahl [1967] gave the classic r
in support of continued focus on the IBM 370 architecture. Arguments for

748 Chapter 8 Multiprocessors

ena-
f in-
ates
ve fo-

ow to
aller

1970s.
ssors
advantages of parallel execution can be traced back to the 19th century [M
brea 1842]! Yet the effectiveness of the multiprocessor for reducing latency o
dividual important programs is still being explored. Aside from these deb
about the advantages and limitations of parallelism, several hot debates ha
cused on how to build multiprocessors.

How to Build High-Performance Parallel Processors
One of the longest-raging debates in parallel processing has been over h
build the fastest multiprocessors—using many small processors or a sm
number of faster processors. This debate goes back to the 1960s and
Figure 8.46 shows the state of the industry in 1990, plotting number of proce

FIGURE 8.46 Danny Hillis, architect of the Connection Machines, has used a figure similar to this to illustrate the
multiprocessor industry. (Hillis’s x-axis was processor width rather than processor performance.) Processor performance
on this graph is approximated by the MFLOPS rating of a single processor for the DAXPY procedure of the Linpack bench-
mark for a 1000 x 1000 matrix. Generally it is easier for programmers when moving to the right, while moving up is easier
for the hardware designer because there is more hardware replication. The massive parallelism question is, Which is the
quickest path to the upper right corner? The computer design question is, Which has the best cost/performance or is more
scalable for equivalent cost/performance?

1000000

Number of processors

“El Dorado”

CM-2

Sequent
Symmetry

CRAY Y-MP

Performance per processor (MFLOPS)

.001 1 1000
1

1000

8.11 Historical Perspective and References 749

stion
 El

ch of
 be the
nge is
hun-
ds that

ction.
 road
ntin-
cture.

 for
 out-
th an

illion
 to
ents
rize
high-
n at

would
m to
PS

. This

e the
ould
994
 times
ear

ight
a se-
fore

uper-
uters
chines
f the
ore
versus performance of an individual processor. The massive parallelism que
is whether taking the high road or the low road in Figure 8.46 will get us to
Dorado—the highest-performance multiprocessor. In the last few years, mu
this debate has subsided. Microprocessor-based machines are assumed to
basis for the highest-performance multiprocessors. Perhaps the biggest cha
the perception that machines built from microprocessors will probably have
dreds and perhaps a few thousand processors, but not the tens of thousan
had been predicted earlier.

In the last five years, the middle road has emerged as the most viable dire
It combines moderate numbers of high-performance microprocessors. This
relies on advances in our ability to program parallel machines as well as on co
ued progress in microprocessor performance and advances in parallel archite

Predictions of the Future
It’s hard to predict the future, yet in 1989 Gordon Bell made two predictions
1995. We included these predictions in the first edition of the book, when the
come was completely unclear. We discuss them in this section, together wi
assessment of the accuracy of the prediction.

The first is that a computer capable of sustaining a teraFLOPS—one m
MFLOPS—will be constructed by 1995, either using a multicomputer with 4K
32K nodes or a Connection Machine with several million processing elem
[Bell 1989]. To put this prediction in perspective, each year the Gordon Bell P
acknowledges advances in parallelism, including the fastest real program (
est MFLOPS). In 1989 the winner used an eight-processor Cray Y-MP to ru
1680 MFLOPS. On the basis of these numbers, machines and programs
have to have improved by a factor of 3.6 each year for the fastest progra
achieve 1 TFLOPS in 1995. In 1994, the winner achieved 140,000 MFLO
(0.14 TFLOPS) using a 1904-node Paragon, which contains 3808 processors
represents a year-to-year improvement of 2.4, which is still quite impressive.

What has become recognized since 1989 is that although we may hav
technology to build a teraFLOPS machine, it is not clear either that anyone c
afford it or that it would be cost-effective. For example, based on the 1
winner, a sustained teraFLOPS would require a machine that is about seven
larger and would likely cost close to $100 million. If factors of 2 in year-to-y
performance improvement can be sustained, the price of a teraFLOPS m
reach a reasonable level in 1997 or 1998. Gordon Bell argued this point in
ries of articles and lectures in 1992–93, using the motto “No teraFLOPS be
its time.”

The second Bell prediction concerns the number of data streams in s
computers shipped in 1995. Danny Hillis believed that although supercomp
with a small number of data streams may be the best sellers, the biggest ma
will be machines with many data streams, and these will perform the bulk o
computations. Bell bet Hillis that in the last quarter of calendar year 1995 m
sustained MFLOPS will be shipped in machines using few data streams (≤100)

750 Chapter 8 Multiprocessors

rs,
lica-
oint
er
ur

 Al-
licly
with
ter of
at

 use
ber of

ther
ors
nd a
 fur-
day’s

the
 Bell
owed
orta-
d the

 to

apse
rs to
com-
phics
Se-
n in

Baer
iginal
rather than many data streams (≥1000). This bet concerns only supercompute
defined as machines costing more than $1 million and used for scientific app
tions. Sustained MFLOPS is defined for this bet as the number of floating-p
operations per month, so availability of machines affects their rating. The los
must write and publish an article explaining why his prediction failed; yo
authors will act as judge and jury.

In 1989, when this bet was made, it was totally unclear who would win.
though it is a little too early to convene the court, a survey of the current pub
known supercomputers shows only six machines in existence in the world
more than 1000 data streams. It is quite possible that during the last quar
1995, no machines with ≥1000 data streams will ship. In fact, it appears th
much smaller microprocessor-based machines (≤ 20 programs) are becoming
dominant. A recent survey of the 500 highest-performance machines in
(based on Linpack ratings), called the Top 500, showed that the largest num
machines were bus-based shared-memory multiprocessors!

More Recent Advances and Developments

With the exception of the parallel vector machines (see Appendix B), all o
recent MIMD computers have been built from off-the-shelf microprocess
using a bus and logically central memory or an interconnection network a
distributed memory. A number of experimental machines built in the 1980s
ther refined and enhanced the concepts that form the basis for many of to
multiprocessors.

The Development of Bus-Based Coherent Machines
Although very large mainframes were built with multiple processors in
1970s, multiprocessors did not become highly successful until the 1980s.
[1985] suggests the key was that the smaller size of the microprocessor all
the memory bus to replace the interconnection network hardware, and that p
ble operating systems meant that multiprocessor projects no longer require
invention of a new operating system. In this paper, Bell defines the terms multi-
processor and multicomputer and sets the stage for two different approaches
building larger-scale machines.

The first bus-based multiprocessor with snooping caches was the Syn
N+1 described by Frank [1984]. Goodman [1983] wrote one of the first pape
describe snooping caches. The late 1980s saw the introduction of many
mercial bus-based, snooping-cache architectures, including the Silicon Gra
4D/240 [Baskett et al. 1988], the Encore Multimax [Wilson 1987], and the
quent Symmetry [Lovett and Thakkar 1988]. The mid 1980s saw an explosio
the development of alternative coherence protocols, and Archibald and
[1986] provide a good survey and analysis, as well as references to the or
papers.

8.11 Historical Perspective and References 751

ere
multi-
yper-
bring
It in-
stan-
uter
ased
ed net-
lso

hough
puta-

 off-
vided
ving
he art

lude
80;
3],
 al.
em-
ated

as in
nces

o be
ns of
ed ad-
ped in

 done
rence
che-
] and
cto-
ries

 (now
t al.
noski
992]
ry. It
Toward Large-Scale Multiprocessors
In the effort to build large-scale multiprocessors, two different directions w
explored: message passing multicomputers and scalable shared-memory
processors. Although there had been many attempts to build mesh and h
cube-connected multiprocessors, one of the first machines to successfully
together all the pieces was the Cosmic Cube built at Caltech [Seitz 1985].
troduced important advances in routing and interconnect technology and sub
tially reduced the cost of the interconnect, which helped make the multicomp
viable. The Intel iPSC 860, a hypercube-connected collection of i860s, was b
on these ideas. More recent machines, such as the Intel Paragon, have us
works with lower dimensionality and higher individual links. The Paragon a
employed a separate i860 as a communications controller in each node, alt
a number of users have found it better to use both i860 processors for com
tion as well as communication. The Thinking Machines CM-5 made use of
the-shelf microprocessors and a fat tree interconnect (see Chapter 7). It pro
user-level access to the communication channel, thus significantly impro
communication latency. In 1995, these two machines represent the state of t
in message-passing multicomputers.

Early attempts at building a scalable shared-memory multiprocessor inc
the IBM RP3 [Pfister et al. 1985], the NYU Ultracomputer [Schwartz 19
Elder et al. 1985], the University of Illinois Cedar project [Gajksi et al. 198
and the BBN Butterfly and Monarch [BBN Laboratories 1986; Rettberg et
1990]. These machines all provided variations on a nonuniform distributed-m
ory model, but did not support cache coherence, which substantially complic
programming. The RP3 and Ultracomputer projects both explored new ide
synchronization (fetch-and-operate) as well as the idea of combining refere
in the network. In all four machines, the interconnect networks turned out t
more costly than the processing nodes, raising problems for smaller versio
the machine. The Cray T3D builds on these ideas, using a noncoherent shar
dress space but building on the advances in interconnect technology develo
the multicomputer domain.

Extending the shared-memory model with scalable cache coherence was
by combining a number of ideas. Directory-based techniques for cache cohe
were actually known before snooping cache techniques. In fact, the first ca
coherence protocols actually used directories, as described by Tang [1976
implemented in the IBM 3081. Censier and Feautrier [1978] described a dire
ry coherence scheme with tags in memory. The idea of distributing directo
with the memories to obtain a scalable implementation of cache coherence
called distributed shared memory, or DSM) was first described by Agarwal e
[1988] and served as the basis for the Stanford DASH multiprocessor (see Le
et al. [1990, 1992]). The Kendall Square Research KSR-1 [Burkhardt et al.1
was the first commercial implementation of scalable coherent shared memo

752 Chapter 8 Multiprocessors

bed
ared
od-

dules,

red-
ver-
es,

 other
ks,

hat
riggs
ve

con-
is col-
n the

 and
ppear
papers
nc-

rchi-
 book

paral-
SA
 con-
gra-
AQ.
now
s that
st not
extended the basic DSM approach to implement a concept called COMA (cache-
only memory architecture), which makes the main memory a cache, as descri
in Exercise 8.13. The Convex Exemplar implements scalable coherent sh
memory using a two-level architecture: at the lowest level eight-processor m
ules are built using a crossbar. A ring can then connect up to 32 of these mo
for a total of 256 processors.

Developments in Synchronization and Consistency Models
A wide variety of synchronization primitives have been proposed for sha
memory multiprocessors. Mellor-Crummey and Scott [1991] provide an o
view of the issues as well as efficient implementations of important primitiv
such as locks and barriers. An extensive bibliography supplies references to
important contributions, including developments in spin locks, queuing loc
and barriers.

Lamport [1979] introduced the concept of sequential consistency and w
correct execution of parallel programs means. Dubois, Scheurich, and B
[1988] introduced the idea of weak ordering (originally in 1986). In 1990, Ad
and Hill provided a better definition of weak ordering and also defined the
cept of data-race-free; at the same conference, Gharachorloo [1990] and h
leagues introduced release consistency and provided the first data o
performance of relaxed consistency models.

Other References

There is an almost unbounded amount of information on multiprocessors
multicomputers: Conferences, journal papers, and even books seem to a
faster than any single person can absorb the ideas. No doubt many of these
will go unnoticed—not unlike the past. Most of the major architecture confere
es contain papers on multiprocessors. An annual conference, Supercomputing XY
(where X and Y are the last two digits of the year), brings together users, a
tects, software developers, and vendors and publishes the proceedings in
and CD-ROM form. Two major journals, Journal of Parallel and Distributed
Computing and the IEEE Transactions on Parallel and Distributed Systems, con-
tain papers on all aspects of parallel processing. Several books focusing on
lel processing are included in the following references. Eugene Miya of NA
Ames has collected an online bibliography of parallel-processing papers that
tains more than 10,000 entries. To get information about receiving the biblio
phy, see http://unix.hensa.ac.uk/parallel/bibliographies/parallelism-biblos-F
Also see [Miya 1985]. In addition to documenting the discovery of concepts
used in practice, these references also provide descriptions of many idea
have been explored and found wanting, as well as ideas whose time has ju
yet come.

8.11 Historical Perspective and References 753

e

ale

es-

:

.

s-

t

/501

ter
References

ADVE, S. V. AND M. D. HILL [1990]. “Weak ordering—A new definition,” Proc. 17th Int’l Sympo-
sium on Computer Architecture (June), Seattle, 2–14.

AGARWAL, A., J. L. HENNESSY, R. SIMONI, AND M.A. HOROWITZ [1988]. “An evaluation of direc-
tory schemes for cache coherence,” Proc. 15th Int’l Symposium on Computer Architectur
(June), 280–289.

ALMASI, G. S. AND A. GOTTLIEB [1989]. Highly Parallel Computing, Benjamin/Cummings, Red-
wood City, Calif.

AMDAHL , G. M. [1967]. “Validity of the single processor approach to achieving large sc
computing capabilities,” Proc. AFIPS Spring Joint Computer Conf. 30, Atlantic City, N.J. (April),
483–485.

ARCHIBALD, J. AND J.-L. BAER [1986]. “Cache coherence protocols: Evaluation using a multiproc
sor simulation model,” ACM Trans. on Computer Systems 4:4 (November), 273–298.

BASKETT, F., T. JERMOLUK, AND D. SOLOMON [1988]. “The 4D-MP graphics superworkstation
Computing + graphics = 40 MIPS + 40 MFLOPS and 10,000 lighted polygons per second,” Proc.
COMPCON Spring, San Francisco, 468–471.

BBN LABORATORIES [1986]. “Butterfly parallel processor overview,” Tech. Rep. 6148, BBN Labo-
ratories, Cambridge, Mass.

BELL, C. G. [1985]. “Multis: A new class of multiprocessor computers,” Science 228 (April 26), 462–467.

BELL, C. G. [1989]. “The future of high performance computers in science and engineering,” Comm.
ACM 32:9 (September), 1091–1101.

BOUKNIGHT, W. J, S. A. DENEBERG, D. E. MCINTYRE, J. M. RANDALL , A. H. SAMEH, AND D. L.
SLOTNICK [1972]. “The Illiac IV system,” Proc. IEEE 60:4, 369–379. Also appears in D. P
Siewiorek, C. G. Bell, and A. Newell, Computer Structures: Principles and Examples, McGraw-
Hill, New York (1982), 306–316.

BURKHARDT, H. III, S. FRANK, B. KNOBE, AND J. ROTHNIE [1992]. “Overview of the KSR1 computer
system,” Tech. Rep. KSR-TR-9202001, Kendall Square Research, Boston (February).

CENSIER, L. AND P. FEAUTRIER [1978]. “A new solution to coherence problems in multicache sy
tems,” IEEE Trans. on Computers C-27:12 (December), 1112–1118.

DUBOIS, M., C. SCHEURICH, AND F. BRIGGS [1988]. “Synchronization, coherence, and even
ordering,” IEEE Computer 9-21 (February).

EGGERS, S. [1989]. Simulation Analysis of Data Sharing in Shared Memory Multiprocessors, Ph.D.
Thesis, Univ. of California, Berkeley. Computer Science Division Tech. Rep. UCB/CSD 89
(April).

ELDER, J., A. GOTTLIEB, C. K. KRUSKAL, K. P. MCAULIFFE, L. RANDOLPH, M. SNIR, P. TELLER, AND

J. WILSON [1985]. “Issues related to MIMD shared-memory computers: The NYU Ultracompu
approach,” Proc. 12th Int’l Symposium on Computer Architecture (June), Boston, 126–135.

FLYNN, M. J. [1966]. “Very high-speed computing systems,” Proc. IEEE 54:12 (December), 1901–1909.

FRANK, S. J. [1984] “Tightly coupled multiprocessor systems speed memory access time,” Electron-
ics 57:1 (January), 164–169.

GAJSKI, D., D. KUCK, D. LAWRIE, AND A. SAMEH [1983]. “CEDAR—A large scale multiprocessor,”
Proc. Int’l Conf. on Parallel Processing (August), 524–529.

GEHRINGER, E. F., D. P. SIEWIOREK, AND Z. SEGALL [1987]. Parallel Processing: The Cm* Experi-
ence, Digital Press, Bedford, Mass.

GHARACHORLOO, K., D. LENOSKI, J. LAUDON, P. GIBBONS, A. GUPTA, AND J. L. HENNESSY [1990].
“Memory consistency and event ordering in scalable shared-memory multiprocessors,” Proc. 17th
Int’l Symposium on Computer Architecture (June), Seattle, 15–26.

754 Chapter 8 Multiprocessors

pro-

cess

io-

r
-

s

GOODMAN, J. R. [1983]. “Using cache memory to reduce processor memory traffic,” Proc. 10th Int’l
Symposium on Computer Architecture (June), Stockholm, Sweden, 124–131.

HILLIS, W. D. [1985]. The Connection Machine, MIT Press, Cambridge, Mass.

HOCKNEY, R. W. AND C. R. JESSHOPE [1988]. Parallel Computers-2, Architectures, Programming
and Algorithms, Adam Hilger Ltd., Bristol, England.

HOLLAND, J. H. [1959]. “A universal computer capable of executing an arbitrary number of sub
grams simultaneously,” Proc. East Joint Computer Conf. 16, 108–113.

HORD, R. M. [1982]. The Illiac-IV, The First Supercomputer, Computer Science Press, Rockville, Md.

HWANG, K. [1993]. Advanced Computer Architecture and Parallel Programming, McGraw-Hill,
New York.

LAMPORT, L. [1979]. “How to make a multiprocessor computer that correctly executes multipro
programs,” IEEE Trans. on Computers C-28:9 (September), 241–248.

LENOSKI, D., J. LAUDON, K. GHARACHORLOO, A. GUPTA, AND J. L. HENNESSY [1990]. “The Stan-
ford DASH multiprocessor,” Proc. 17th Int’l Symposium on Computer Architecture (June), Seattle,
148–159.

LENOSKI, D., J. LAUDON, K. GHARACHORLOO, W.-D. WEBER, A. GUPTA, J. L. HENNESSY, M. A.
HOROWITZ, AND M. LAM [1992]. “The Stanford DASH multiprocessor,” IEEE Computer 25:3
(March).

LOVETT, T. AND S. THAKKAR [1988]. “The Symmetry multiprocessor system,” Proc. 1988 Int’l Conf.
of Parallel Processing, University Park, Penn., 303–310.

MELLOR-CRUMMEY, J. M. AND M. L. SCOTT [1991]. “Algorithms for scalable synchronization on
shared-memory multiprocessors,” ACM Trans. on Computer Systems 9:1 (February), 21–65.

MENABREA, L. F. [1842]. “Sketch of the analytical engine invented by Charles Babbage,” Bib
thèque Universelle de Genève (October).

MITCHELL, D. [1989]. “The Transputer: The time is now,” Computer Design (RISC supplement), 40–41.

MIYA , E. N. [1985]. “Multiprocessor/distributed processing bibliography,” Computer Architecture
News (ACM SIGARCH) 13:1, 27–29.

PFISTER, G. F., W. C. BRANTLEY, D. A. GEORGE, S. L. HARVEY, W. J. KLEINFEKDER, K. P. MCAU-

LIFFE, E. A. MELTON, V. A. NORTON, AND J. WEISS [1985]. “The IBM research parallel processo
prototype (RP3): Introduction and architecture,” Proc. 12th Int’l Symposium on Computer Architec
ture (June), Boston, 764–771.

RETTBERG, R. D., W. R. CROWTHER, P. P. CARVEY, AND R. S. TOWLINSON [1990]. “The Monarch
parallel processor hardware design,” IEEE Computer 23:4 (April).

ROSENBLUM, M., S. A. HERROD, E. WITCHEL, AND A. GUTPA [1995]. “Complete computer simula-
tion: The SimOS approach,” to appear in IEEE Parallel and Distributed Technology 3:4 (fall).

SCHWARTZ, J. T. [1980]. “Ultracomputers,” ACM Trans. on Programming Languages and System
4:2, 484–521.

SEITZ, C. [1985]. “The Cosmic Cube,” Comm. ACM 28:1 (January), 22–31.

SLOTNICK, D. L., W. C. BORCK, AND R. C. MCREYNOLDS [1962]. “The Solomon computer,” Proc.
Fall Joint Computer Conf. (December), Philadelphia, 97–107.

STONE, H. [1991]. High Performance Computers, Addison-Wesley, New York.

SWAN, R. J., A. BECHTOLSHEIM, K. W. LAI, AND J. K. OUSTERHOUT [1977]. “The implementation of
the Cm* multi-microprocessor,” Proc. AFIPS National Computing Conf., 645–654.

SWAN, R. J., S. H. FULLER, AND D. P. SIEWIOREK [1977]. “Cm*—A modular, multi-microproces-
sor,” Proc. AFIPS National Computer Conf. 46, 637–644.

Exercises 755

es-

ort

ssors
 serial
ent in

times
otocol.
 can be
 ma-
ith a

tocol

d bit
hout

hile
re in-
bility
TANG, C. K. [1976]. “Cache design in the tightly coupled multiprocessor system,” Proc. AFIPS
National Computer Conf., New York (June), 749–753.

UNGER, S. H. [1958]. “A computer oriented towards spatial problems,” Proc. Institute of Radio
Enginers 46:10 (October), 1744–1750.

WILSON, A. W., JR. [1987]. “Hierarchical cache/bus architecture for shared-memory multiproc
sors,” Proc. 14th Int’l Symposium on Computer Architecture (June), Pittsburgh, 244–252.

WOOD, D. A. AND M. D. HILL [1995]. “Cost-effective parallel computing,” IEEE Computer 28:2
(February).

WULF, W. AND C. G. BELL [1972]. “C.mmp—A multi-mini-processor,” Proc. AFIPS Fall Joint
Computing Conf. 41, part 2, 765–777.

WULF, W. AND S. P. HARBISON [1978]. “Reflections in a pool of processors—An experience rep
on C.mmp/Hydra,” Proc. AFIPS 1978 National Computing Conf. 48 (June), Anaheim, Calif., 939–
951.

E X E R C I S E S

8.1 [10] <8.1> Suppose we have an application that runs in three modes: all proce
used, half the processors in use, and serial mode. Assume that 0.02% of the time is
mode, and there are 100 processors in total. Find the maximum time that can be sp
the mode when half the processors are used, if our goal is a speedup of 80.

8.2 [15] <8.1> Assume that we have a function for an application of the form F(i,p), which
gives the fraction of time that exactly i processors are usable given that a total of p proces-
sors are available. This means that

Assume that when i processors are in use, the application runs i times faster. Rewrite
Amdahl’s Law so that it gives the speedup as a function of p for some application.

8.3 [15] <8.3> In small bus-based multiprocessors, write-through caches are some
used. One reason is that a write-through cache has a slightly simpler coherence pr
Show how the basic snooping cache coherence protocol of Figure 8.12 on page 665
changed for a write-through cache. From the viewpoint of an implementor, what is the
jor hardware functionality that is not needed with a write-through cache compared w
write-back cache?

8.4 [20] <8.3> Add a clean private state to the basic snooping cache-coherence pro
(Figure 8.12 on page 665). Show the protocol in the format of Figure 8.12.

8.5 [15] <8.3> One proposed solution for the problem of false sharing is to add a vali
per word (or even for each byte). This would allow the protocol to invalidate a word wit
removing the entire block, allowing a cache to keep a portion of a block in its cache w
another processor wrote a different portion of the block. What extra complications a
troduced into the basic snooping cache coherency protocol (Figure 8.12) if this capa
is included? Remember to consider all possible protocol actions.

F i,p() 1=

i 1=

p

∑

756 Chapter 8 Multiprocessors

ate
ry sys-

nces
k much

n up-

date
 and

uted
aches,
e, and

f local
s traf-

es, as-
ps and
nge bus.
rency
 used
 25 bus

k run
6 on
e using

e can
edi-

ure
gures.

ner-
plete
 clock
for the
on 32

nect
ses in
8.6 [12/10/15] <8.3> The performance differences for write invalidate and write upd
schemes can arise from both bandwidth consumption and latency. Assume a memo
tem with 64-byte cache blocks. Ignore the effects of contention.

a. [12] <8.3> Write two parallel code sequences to illustrate the bandwidth differe
between invalidate and update schemes. One sequence should make update loo
better and the other should make invalidate look much better.

b. [10] <8.3> Write a parallel code sequence to illustrate the latency advantage of a
date scheme versus an invalidate scheme.

c. [15] <8.3> Show, by example, that when contention is included, the latency of up
may actually be worse. Assume a bus-based machine with 50-cycle memory
snoop transactions.

8.7 [15/15] <8.3–8.4> One possible approach to achieving the scalability of distrib
shared memory and the cost-effectiveness of a bus design is to combine the two appro
using a set of nodes with memories at each node, a hybrid cache-coherence schem
interconnected with a bus. The argument in favor of such a design is that the use o
memories and a coherence scheme with limited broadcast results in a reduction in bu
fic, allowing the bus to be used for a larger number of processors. For these Exercis
sume the same parameters as for the Challenge bus. Assume that remote snoo
memory accesses take the same number of cycles as a memory access on the Challe
Ignore the directory processing time for these Exercises. Assume that the cohe
scheme works as follows on a miss: If the data are up-to-date in the local memory, it is
there. Otherwise, the bus is used to snoop for the data. Assume that local misses take
clocks.

a. [15] <8.3–8.4> Find the time for a read or write miss to data that are remote.

b. [15] <8.3–8.4> Ignoring contention and using the data from the Ocean benchmar
on 16 processors for the frequency of local and remote misses (Figure 8.2
page 687), estimate the average memory access time versus that for a Challeng
the same total miss rate.

8.8 [20/15] <8.4> If an architecture allows a relaxed consistency model, the hardwar
improve the performance of write misses by allowing the write miss to proceed imm
ately, buffering the write data until ownership is obtained.

a. [20] <8.4> Modify the directory protocol in Figure 8.24 on page 683 and in Fig
8.25 on page 684 to do this. Show the protocol in the same format as these two fi

b. [15] <8.4> Assume that the write buffer is large enough to hold the write until ow
ship is granted, and that write ownership and any required invalidates always com
before a release is reached. If the extra time to complete a write is 100 processor
cycles and writes generate 40% of the misses, find the performance advantage
relaxed consistency machines versus the original protocol using the FFT data
processors (Figure 8.26 on page 687).

8.9 [12/15] <8.3,8.4,8.8> Although it is widely believed that buses are the ideal intercon
for small-scale multiprocessors, this may not always be the case. For example, increa

Exercises 757

imple-
 the bus
mory

ce on

 cache
a mem-
cessor

 bits
. As-
 mes-
 Find
mote
action

y ac-

ries
s as
r

nt. In
32 to
mple,
ory is
oblem
is pro-
rcises.

 ma-
nd di-
e root
mory
te the
s, as-
both
odes.

of 50
ached.
 for a
ench-

ses oc-
cross
ies?
processor performance are lowering the processor count at which a more distributed
mentation becomes attractive. Because a standard bus-based implementation uses
both for access to memory and for interprocessor coherency traffic, it has a uniform me
access time for both. In comparison, a distributed memory implementation may sacrifi
remote memory access, but it can have a much better local memory access time.

Consider the design of a DSM multiprocessor with 16 processors. Assume the R4400
miss overheads shown for the Challenge design (see pages 730–731). Assume that
ory access takes 150 ns from the time the address is available from either the local pro
or a remote processor until the first word is delivered.

a. [12] <8.3,8.4,8.8> How much faster is a local access than on the Challenge?

b. [15] <8.3,8.4,8.8> Assume that the interconnect is a 2D grid with links that are 16
wide and clocked at 100 MHz, with a start-up time of five cycles for a message
sume one clock cycle between nodes in the network, and ignore overhead in the
sages and contention (i.e., assume that the network bandwidth is not the limit).
the average remote memory access time, assuming a uniform distribution of re
requests. How does this compare to the Challenge case? What is the largest fr
of remote misses for which the DSM machine will have a lower average memor
cess time than that of the Challenge machine?

8.10 [20/15/30] <8.4> One downside of a straightforward implementation of directo
using fully populated bit vectors is that the total size of the directory information scale
the product: Processor count × Memory blocks. If memory is grown linearly with processo
count, then the total size of the directory grows quadratically in the processor cou
practice, because the directory needs only 1 bit per memory block (which is typically
128 bytes), this problem is not serious for small to moderate processor counts. For exa
assuming a 128-byte block, the amount of directory storage compared to main mem
Processor count/1024, or about 10% additional storage with 100 processors. This pr
can be avoided by observing that we only need to keep an amount of information that
portional to the cache size of each processor. We explore some solutions in these Exe

a. [20] <8.4> One method to obtain a scalable directory protocol is to organize the
chine as a logical hierarchy with the processors at the leaves of the hierarchy a
rectories positioned at the root of each subtree. The directory at each subtre
records which descendents cache which memory blocks, as well as which me
blocks with a home in that subtree are cached outside of the subtree. Compu
amount of storage needed to record the processor information for the directorie
suming that each directory is fully associative. Your answer should incorporate
the number of nodes at each level of the hierarchy as well as the total number of n

b. [15] <8.4> Assume that each level of the hierarchy in part (a) has a lookup cost
cycles plus a cost to access the data or cache of 50 cycles, when the point is re
We want to compute the AMAT (average memory access time—see Chapter 5)
64-processor machine with four-node subtrees. Use the data from the Ocean b
mark run on 64 processors (Figure 8.26) and assume that all noncoherence mis
cur within a subtree node and that coherence misses are uniformly distributed a
the machine. Find the AMAT for this machine. What does this say about hierarch

758 Chapter 8 Multiprocessors

ple-
es the
r. Us-
 four-

 are
ectory
y has
s the
 field
hich
ior of
to focus
he di-

toler-
ed in
itch

d pro-
arallel

s to an-
dled.

igure
te ac-
ake 120
t affect

ine.
 sig-

ces-
ity as

t
s. This
) or
ry ar-
a in

us, a
hitec-
hard-
ent
ually
cture.
c. [30] <8.4> An alternative approach to implementing directory schemes is to im
ment bit vectors that are not dense. There are two such strategies: one reduc
number of bit vectors needed and the other reduces the number of bits per vecto
ing traces, you can compare these schemes. First, implement the directory as a
way set-associative cache storing full bit vectors, but only for the blocks that
cached outside of the home node. If a directory cache miss occurs, choose a dir
entry and invalidate the entry. Second, implement the directory so that every entr
8 bits. If a block is cached in only one node outside of its home, this field contain
node number. If the block is cached in more than one node outside its home, this
is a bit vector with each bit indicating a group of eight processors, at least one of w
caches the block. Using traces of 64-processor execution, simulate the behav
these two schemes. Assume a perfect cache for nonshared references, so as
on coherency behavior. Determine the number of extraneous invalidations as t
rectory cache size is increased.

8.11 [25/40] <8.7> Prefetching and relaxed consistency models are two methods of
ating the latency of longer access in multiprocessors. Another scheme, originally us
the HEP multiprocessor and incorporated in the MIT Alewife multiprocessor, is to sw
to another activity when a long-latency event occurs. This idea, called multiple context or
multithreading, works as follows:

■ The processor has several register files and maintains several PCs (and relate
gram states). Each register file and PC holds the program state for a separate p
thread.

■ When a long-latency event occurs, such as a cache miss, the processor switche
other thread, executing instructions from that thread while the miss is being han

a. [25] <8.7> Using the data for the Ocean benchmark running on 64 processors (F
8.26), determine how many contexts are needed to hide all the latency of remo
cesses. Assume that local cache misses take 40 cycles and that remote misses t
cycles. Assume that the increased demands due to a higher request rate do no
either the latency or the bandwidth of communications.

b. [40] <8.7> Implement a simulator for a multiple-context directory-based mach
Use the simulator to evaluate the performance gains from multiple context. How
nificant are contention and the added bandwidth demands in limiting the gains?

8.12 [25] <8.7> Prove that in a two-level cache hierarchy, where L1 is closer to the pro
sor, inclusion is maintained with no extra action if L2 has at least as much associativ
L1, both caches use LRU replacement, and both caches have the same block size.

8.13 [20] <8.4,8.9> As we saw in Fallacies and Pitfalls, data distribution can be importan
when an application has a nontrivial private data miss rate caused by capacity misse
problem can be attacked with compiler technology (distributing the data in blocks
through architectural support. One architectural technique is called cache-only memo
chitecture (COMA), a version of which was implemented in the KSR-1. The basic ide
COMA is to make the distributed memories into caches, so that blocks can be replicated
and migrated at the memory level of the hierarchy, as well as in higher levels. Th
COMA architecture can change what would be remote capacity misses on a DSM arc
ture into local capacity misses, by creating copies of data in the local memory. This
ware capability allows the software to ignore the initial distribution of data to differ
memories. The hardware required to implement a cache in the local memory will us
lead to a slight increase in the memory access time of the memory on a COMA archite

Exercises 759

es are
MA

isses
ng the
on the

otocol
e spin

cks.

cre-

e with

sis-
partial
u have
t, be-

gs al-

n de-
 hier-
ncy of
see if
.

s for
, and to
ntroller
8.4 to

llows

As-

ier.

tem.
ors to
Assume that we have a DSM and a COMA machine where remote coherence miss
uniformly distributed and take 100 clocks. Assume that all capacity misses on the CO
machine hit in the local memory and require 50 clock cycles. Assume that capacity m
take 40 cycles when they are local on the DSM machine and 75 cycles otherwise. Usi
Ocean data for 32 processors (Figure 8.13), find what fraction of the capacity misses
DSM machine must be local if the performance of the two machines is identical.

8.14 [15] <8.5> Some machines have implemented a special broadcast coherence pr
just for locks, sometimes even using a different bus. Evaluate the performance of th
lock in the Example on page 699 assuming a write broadcast protocol.

8.15 [15] <8.5> Implement the barrier in Figure 8.34 on page 701, using queuing lo
Compare the performance to the spin-lock barrier.

8.16 [15] <8.5> Implement the barrier in Figure 8.34 on page 701, using fetch-and-in
ment. Compare the performance to the spin-lock barrier.

8.17 [15] <8.5> Implement the barrier on page 705, so that barrier release is also don
a combining tree.

8.18 [28] <8.6> Write a set of programs so that you can distinguish the following con
tency models: sequential consistency, processor consistency or total store order,
store order, weak ordering, and release consistency. Using multiprocessors that yo
access to, determine what consistency model different machines support. Note tha
cause of timing, you may need to try accesses multiple times to uncover all orderin
lowed by a machine.

8.19 [30] <8.3–8.5> Using an available shared-memory multiprocessor, see if you ca
termine the organization and latencies of its memory hierarchy. For each level of the
archy, you can look at the total size, block size, and associativity, as well as the late
each level of the hierarchy. If the machine uses a nonbus interconnection network,
you can discover the topology, latency, and bandwidth characteristics of the network

8.20 [20] <8.4> As we discussed earlier, the directory controller can send invalidate
lines that have been replaced by the local cache controller. To avoid such messages
keep the directory consistent, replacement hints are used. Such messages tell the co
that a block has been replaced. Modify the directory coherence protocol of section
use such replacement hints.

8.21 [25] <8.6> Prove that for synchronized programs, a release consistency model a
only the same results as sequential consistency.

8.22 [15] <8.5> Find the time for n processes to synchronize using a standard barrier.
sume that the time for a single process to update the count and release the lock is c.

8.23 [15] <8.5> Find the time for n processes to synchronize using a combining tree barr
Assume that the time for a single process to update the count and release the lock is c.

8.24 [25] <8.5> Implement a software version of the queuing lock for a bus-based sys
Using the model in the Example on page 699, how long does it take for 20 process
acquire and release the lock? You need only count bus cycles.

760 Chapter 8 Multiprocessors

ea of
favor
 and

cise
al ma-

ansfer
0 cy-
 over-
MA

 for

or in-
nly
ster?
?

re—

0% of

ing
roject
solute
hanges
 What

 that
 also
 result
orse

nce

 worse
the mul-
r than
at give

lbeit
ation.

uni-
 What

ulti-
8.25 [20/30] <8.2–8.5> Both researchers and industry designers have explored the id
having the capability to explicitly transfer data between memories. The argument in
of such facilities is that the programmer can achieve better overlap of computation
communication by explicitly moving data when it is available. The first part of this exer
explores the potential on paper; the second explores the use of such facilities on re
chines.

a. [20] <8.2–8.5> Assume that cache misses stall the processor, and that block tr
occurs into the local memory of a DSM node. Assume that remote misses cost 10
cles and that local misses cost 40 cycles. Assume that each DMA transfer has an
head of 10 cycles. Assuming that all the coherence traffic can be replaced with D
into main memory followed by a cache miss, find the potential improvement
Ocean running on 64 processors (Figure 8.26).

b. [30] <8.2–8.5> Find a machine that implements both shared memory (coherent
coherent) and a simple DMA facility. Implement a blocked matrix multiply using o
shared memory and using the DMA facilities with shared memory. Is the latter fa
How much? What factors make the use of a block data transfer facility attractive

8.26 [Discussion] <8.8> Construct a scenario whereby a truly revolutionary architectu
pick your favorite candidate—will play a significant role. Significant is defined as 10% of
the computers sold, 10% of the users, 10% of the money spent on computers, or 1
some other figure of merit.

8.27 [40] <8.2,8.7,8.9> A multiprocessor or multicomputer is typically marketed us
programs that can scale performance linearly with the number of processors. The p
here is to port programs written for one machine to the others and to measure their ab
performance and how it changes as you change the number of processors. What c
need to be made to improve performance of the ported programs on each machine?
is the ratio of processor performance according to each program?

8.28 [35] <8.2,8.7,8.9> Instead of trying to create fair benchmarks, invent programs
make one multiprocessor or multicomputer look terrible compared with the others, and
programs that always make one look better than the others. It would be an interesting
if you couldn’t find a program that made one multiprocessor or multicomputer look w
than the others. What are the key performance characteristics of each organization?

8.29 [40] <8.2,8.7,8.9> Multiprocessors and multicomputers usually show performa
increases as you increase the number of processors, with the ideal being n times speedup
for n processors. The goal of this biased benchmark is to make a program that gets
performance as you add processors. For example, this means that one processor on
tiprocessor or multicomputer runs the program fastest, two are slower, four are slowe
two, and so on. What are the key performance characteristics for each organization th
inverse linear speedup?

8.30 [50] <8.2,8.7,8.9> Networked workstations can be considered multicomputers, a
with somewhat slower, though perhaps cheaper, communication relative to comput
Port multicomputer benchmarks to a network using remote procedure calls for comm
cation. How well do the benchmarks scale on the network versus the multicomputer?
are the practical differences between networked workstations and a commercial m
computer?

A

Computer Arithmetic 1

by David Goldberg
(Xerox Palo Alto Research Center)
.
The Fast drives out the Slow even if the Fast is wrong

W. Kahan

A.1 Introduction A-1

A.2 Basic Techniques of Integer Arithmetic A-2

A.3 Floating Point A-13

A.4 Floating-Point Multiplication A-17

A.5 Floating-Point Addition A-22

A.6 Division and Remainder A-28

A.7 More on Floating-Point Arithmetic A-34

A.8 Speeding Up Integer Addition A-38

A.9 Speeding Up Integer Multiplication and Division A-46

A.10 Putting It All Together A-61

A.11 Fallacies and Pitfalls A-65

A.12 Historical Perspective and References A-66

Exercises A-72
CPU
heir
ting-
t of
the

ing
y of
l im-
basic
sub-
ther
s be
ther

E
nce.
Although computer arithmetic is sometimes viewed as a specialized part of
design, it is a very important part. This was brought home for Intel when t
Pentium chip was discovered to have a bug in the divide algorithm. This floa
point flaw resulted in a flurry of bad publicity for Intel and also cost them a lo
money. Intel took a $300 million write-off to cover the cost of replacing
buggy chips.

In this appendix we will study some basic floating-point algorithms, includ
the division algorithm used on the Pentium. Although a tremendous variet
algorithms have been proposed for use in floating-point accelerators, actua
plementations are usually based on refinements and variations of the few
algorithms presented here. In addition to choosing algorithms for addition,
traction, multiplication, and division, the computer architect must make o
choices. What precisions should be implemented? How should exception
handled? This appendix will give you the background for making these and o
decisions.

Our discussion of floating point will focus almost exclusively on the IEE
floating-point standard (IEEE 754) because of its rapidly increasing accepta

A.1 Introduction

A-2

Appendix A Computer Arithmetic

ing
 on
 that

, we

t de-
acher,

sec-

om-

)
 is a

vious

 al-

s
see
.
 the
ter-
nol-
e the

Although floating-point arithmetic involves manipulating exponents and shift
fractions, the bulk of the time in floating-point operations is spent operating
fractions using integer algorithms (but not necessarily sharing the hardware
implements integer instructions). Thus, after our discussion of floating point
will take a more detailed look at integer algorithms.

Some good references on computer arithmetic, in order from least to mos
tailed, are Chapter 4 of Patterson and Hennessy [1994]; Chapter 7 of Ham
Vranesic, and Zaky [1984]; Gosling [1980]; and Scott [1985].

Readers who have studied computer arithmetic before will find most of this
tion to be review.

Ripple-Carry Addition

Adders are usually implemented by combining multiple copies of simple c
ponents. The natural components for addition are half adders and full adders.
The half adder takes two bits a and b as input and produces a sum bit s and a car-
ry bit cout as output. Mathematically, s = (a + b) mod 2, and cout =  (a + b)/2 ,
where   is the floor function. As logic equations, s = ab + ab and cout = ab,
where ab means a ∧ b and a + b means a ∨ b. The half adder is also called a (2,2
adder, since it takes two inputs and produces two outputs. The full adder
(3,2) adder and is defined by s = (a + b + c) mod 2, cout =  (a + b + c)/2 , or the
logic equations

A.2.1 s = abc + abc + abc + abc

A.2.2 cout = ab + ac + bc

The principal problem in constructing an adder for n-bit numbers out of small-
er pieces is propagating the carries from one piece to the next. The most ob
way to solve this is with a ripple-carry adder, consisting of n full adders, as illus-
trated in Figure A.1. (In the figures in this appendix, the least-significant bit is
ways on the right.) The inputs to the adder are an–1an–2⋅⋅⋅a0 and bn–1bn–2⋅⋅⋅b0,
where an–1an–2⋅⋅⋅a0 represents the number an–1 2n–1 + an–2 2n–2 + ⋅⋅⋅ + a0. The ci+1

output of the ith adder is fed into the ci+1 input of the next adder (the (i + 1)-th
adder) with the lower-order carry-in c0 set to 0. Since the low-order carry-in i
wired to 0, the low-order adder could be a half adder. Later, however, we will
that setting the low-order carry-in bit to 1 is useful for performing subtraction

In general, the time a circuit takes to produce an output is proportional to
maximum number of logic levels through which a signal travels. However, de
mining the exact relationship between logic levels and timings is highly tech
ogy dependent. Therefore, when comparing adders we will simply compar

A.2 Basic Techniques of Integer Arithmetic

A.2 Basic Techniques of Integer Arithmetic

A-3

arry

i-
 the

ar

igns
gies

larger

bit at

eg-

.

ved
ter
m,

wer-

s the
 To
number of logic levels in each one. How many levels are there for a ripple-c
adder? It takes two levels to compute c1 from a0 and b0. Then it takes two more
levels to compute c2 from c1, a1, b1, and so on, up to cn. So there are a total of 2n
levels. Typical values of n are 32 for integer arithmetic and 53 for double-prec
sion floating point. The ripple-carry adder is the slowest adder, but also
cheapest. It can be built with only n simple cells, connected in a simple, regul
way.

Because the ripple-carry adder is relatively slow compared with the des
discussed in section A.8, you might wonder why it is used at all. In technolo
like CMOS, even though ripple adders take time O(n), the constant factor is very
small. In such cases short ripple adders are often used as building blocks in
adders.

Radix-2 Multiplication and Division

The simplest multiplier computes the product of two unsigned numbers, one
a time, as illustrated in Figure A.2(a). The numbers to be multiplied are an–1an–2

⋅⋅⋅a0 and bn–1bn–2⋅⋅⋅b0, and they are placed in registers A and B, respectively. R
ister P is initially 0. Each multiply step has two parts.

Multiply Step (i) If the least-significant bit of A is 1, then register B, containing bn–1bn–2⋅⋅⋅b0, is
added to P; otherwise 00⋅⋅⋅00 is added to P. The sum is placed back into P

(ii) Registers P and A are shifted right, with the carry-out of the sum being mo
into the high-order bit of P, the low-order bit of P being moved into regis
A, and the rightmost bit of A, which is not used in the rest of the algorith
being shifted out.

After n steps, the product appears in registers P and A, with A holding the lo
order bits.

The simplest divider also operates on unsigned numbers and produce
quotient bits one at a time. A hardware divider is shown in Figure A.2(b).

FIGURE A.1 Ripple-carry adder, consisting of n full adders. The carry-out of one full
adder is connected to the carry-in of the adder for the next most-significant bit. The carries
ripple from the least-significant bit (on the right) to the most-significant bit (on the left).

b
n–1

a
n–1

s
n–1

Full
adder

c
n–1

s
n–2

c
n

a
n–2

b
n–2

Full
adder

b
1

a
1

s
1

Full
adder

s
0

a
0

b
0

Full
adder

c
2 c

1

0

A-4 Appendix A Computer Arithmetic

d

to 1.
compute a/b, put a in the A register, b in the B register, 0 in the P register, an
then perform n divide steps. Each divide step consists of four parts:

Divide Step (i) Shift the register pair (P,A) one bit left.

(ii) Subtract the content of register B (which is bn–1bn–2⋅⋅⋅b0) from register P, put-
ting the result back into P.

(iii) If the result of step 2 is negative, set the low-order bit of A to 0, otherwise

FIGURE A.2 Block diagram of (a) multiplier and (b) divider for n-bit unsigned inte-
gers. Each multiplication step consists of adding the contents of P to either B or 0 (depending
on the low-order bit of A), replacing P with the sum, and then shifting both P and A one bit
right. Each division step involves first shifting P and A one bit left, subtracting B from P, and,
if the difference is nonnegative, putting it into P. If the difference is nonnegative, the low-order
bit of A is set to 1.

Carry-out

P A

n

n

n

Shift

P

B0

A

n + 1

n1

n

Shift

(a)

(b)

1

B

A.2 Basic Techniques of Integer Arithmetic A-5

 con-

d
n of
(a).
(iv) If the result of step 2 is negative, restore the old value of P by adding the
tents of register B back into P.

After repeating this process n times, the A register will contain the quotient, an
the P register will contain the remainder. This algorithm is the binary versio
the paper-and-pencil method; a numerical example is illustrated in Figure A.3

FIGURE A.3 Numerical example of (a) restoring division and (b) nonrestoring divi-
sion.

00000

00001

–00011

–00010

00001

00011

–00011

00000

00001

–00011

–00010

00001

00010

–00011

–00001

00010

1110

110

1100

1100

100

1001

001

0010

0010

010

0100

0100

Divide 14 = 1110
2
 by 3 = 11

2
. B always contains 0011

2
.

step 1(i): shift.

step 1(ii): subtract.

step 1(iii): result is negative, set quotient bit to 0.

step 1(iv): restore.

step 2(i): shift.

step 2(ii): subtract.

P A

step 2(iii): result is nonnegative, set quotient bit to 1.

step 3(i): shift.

step 3(ii): subtract.

step 3(iii): result is negative, set quotient bit to 0.

step 3(iv): restore.

step 4(i): shift.

step 4(ii): subtract.

step 4(iii): result is negative, set quotient bit to 0.

step 4(iv): restore. The quotient is 0100
2
 and the remainder is 00010

2
.

00000

00001

+11101

11110

11101

+00011

00000

00001

+11101

11110

11100

+00011

11111

+00011

00010

1110

110

1100

100

1001

001

0010

010

0100

Divide 14 = 1110
2
 by 3 = 11

2
. B always contains 0011

2
.

step 1(i-b): shift.

step 1(ii-b): subtract b (add two’s complement).

step 1(iii): P is negative, so set quotient bit 0.

step 2(i-a): shift.

step 2(ii-a): add b.

step 2(iii): P is nonnegative, so set quotient bit to 1.

step 3(i-b): shift.

step 3(ii-b): subtract b.

step 3(iii): P is negative, so set quotient bit to 0.

step 4(i-a): shift.

step 4(ii-a): add b.

step 4(iii): P is negative, so set quotient bit to 0.

Remainder is negative, so do final restore step.

The quotient is 0100
2
 and the remainder is 00010

2
.

(b)

(a)

A-6 Appendix A Computer Arithmetic

ain
left
ard-

g
d in-

e

 then
ing.

n-

s

h

e

ard-
 ex-
sn’t
-
e is it
Notice that the two block diagrams in Figure A.2 are very similar. The m
difference is that the register pair (P,A) shifts right when multiplying and
when dividing. By allowing these registers to shift bidirectionally, the same h
ware can be shared between multiplication and division.

The division algorithm illustrated in Figure A.3(a) is called restoring, because
if subtraction by b yields a negative result, the P register is restored by addinb
back in. The restoring algorithm has a variant that skips the restoring step an
stead works with the resulting negative numbers. Each step of this nonrestoring
algorithm has three parts:

Nonrestoring If P is negative,

Divide Step (i-a) Shift the register pair (P,A) one bit left.

(ii-a) Add the contents of register B to P.

Else,

(i-b) Shift the register pair (P,A) one bit left.

(ii-b) Subtract the contents of register B from P.

(iii) If P is negative, set the low-order bit of A to 0, otherwise set it to 1.

After repeating this n times, the quotient is in A. If P is nonnegative, it is th
remainder. Otherwise, it needs to be restored (i.e., add b), and then it will be the
remainder. A numerical example is given in Figure A.3(b). Since (i-a) and (i-b)
are the same, you might be tempted to perform this common step first, and
test the sign of P. That doesn’t work, since the sign bit can be lost when shift

The explanation for why the nonrestoring algorithm works is this. Let rk be the
contents of the (P,A) register pair at step k, ignoring the quotient bits (which are
simply sharing the unused bits of register A). In Figure A.3(a), initially A co
tains 14, so r0 = 14. At the end of the first step, r1 = 28, and so on. In the restoring
algorithm, part (i) computes 2rk and then part (ii) 2rk − 2nb (2nb since b is sub-
tracted from the left half). If 2rk − 2nb ≥ 0, both algorithms end the step with
identical values in (P,A). If 2rk − 2nb < 0, then the restoring algorithm restore
this to 2rk, and the next step begins by computing rres = 2(2rk) − 2nb. In the nonre-
storing algorithm, 2rk − 2nb is kept as a negative number, and in the next steprn-

onres = 2(2rk − 2nb) + 2nb = 4rk − 2nb = rres. Thus (P,A) has the same bits in bot
algorithms.

If a and b are unsigned n-bit numbers, hence in the range 0 ≤ a,b ≤ 2n − 1, then
the multiplier in Figure A.2 will work if register P is n bits long. However, for
division, P must be extended to n + 1 bits in order to detect the sign of P. Thus th
adder must also have n + 1 bits.

Why would anyone implement restoring division, which uses the same h
ware as nonrestoring division (the control is slightly different) but involves an
tra addition? In fact, the usual implementation for restoring division doe
actually perform an add in step (iv). Rather, the sign resulting from the sub
traction is tested at the output of the adder, and only if the sum is nonnegativ
loaded back into the P register.

A.2 Basic Techniques of Integer Arithmetic A-7

 see

nd its
ed
d up

nted in
 usual
to the
 nega-

nt, is
ent

igh-

le-

sen-
 using
s

As a final point, before beginning to divide, the hardware must check to
whether the divisor is 0.

Signed Numbers

There are four methods commonly used to represent signed n-bit numbers: sign
magnitude, two’s complement, one’s complement, and biased. In the sign-mag-
nitude system, the high-order bit is the sign bit, and the low-order n − 1 bits are
the magnitude of the number. In the two’s complement system, a number a
negative add up to 2n. In one’s complement, the negative of a number is obtain
by complementing each bit (or alternatively, the number and its negative ad
to 2n − 1). In each of these three systems, nonnegative numbers are represe
the usual way. In a biased system, nonnegative numbers do not have their
representation. Instead, all numbers are represented by first adding them
bias, and then encoding this sum as an ordinary unsigned number. Thus a
tive number k can be encoded as long as k + bias ≥ 0. A typical value for the bias
is 2n-1.

E X A M P L E Using 4-bit numbers (n = 4), if k = 3 (or in binary, k = 00112), how is −k
expressed in each of these formats?

A N S W E R In signed magnitude, the leftmost bit in k = 00112 is the sign bit, so flip it
to 1: −k is represented by 10112. In two’s complement, k + 11012 = 2n
= 16. So −k is represented by 11012. In one’s complement, the bits of
k = 00112 are flipped, so −k is represented by 11002. For a biased system,
assuming a bias of 2n-1 = 8, k is represented by k + bias = 10112, and −k
by −k + bias = 01012. ■

The most widely used system for representing integers, two’s compleme
the system we will use here. One reason for the popularity of two’s complem
is that it makes signed addition easy: Simply discard the carry-out from the h
order bit. To add 5 + −2, for example, add 01012 and 11102 to obtain 00112, re-
sulting in the correct value of 3. A useful formula for the value of a two’s comp
ment number an–1an–2⋅⋅⋅a1a0 is

A.2.3 −an–12
n–1 + an–22

n–2 + ⋅⋅⋅ + a12
1 + a0

As an illustration of this formula, the value of 11012 as a 4-bit two’s complement
number is −1⋅23 + 1⋅22 + 0⋅21 + 1⋅20 = −8 + 4 + 1 = −3, confirming the result of
the example above.

Overflow occurs when the result of the operation does not fit in the repre
tation being used. For example, if unsigned numbers are being represented
4 bits, then 6 = 01102 and 11 = 10112. Their sum (17) overflows because it

A-8 Appendix A Computer Arithmetic

ct-
-sig-
ctly
ed)

 and

r in

em.
n un-

gns)
 and

ber

nly
om-
at is,
than

and

 if
0.

e un-
 The

g a
s.
s
s:
binary equivalent (100012) doesn’t fit into 4 bits. For unsigned numbers, dete
ing overflow is easy; it occurs exactly when there is a carry-out of the most
nificant bit. For two’s complement, things are trickier: Overflow occurs exa
when the carry into the high-order bit is different from the (to be discard
carry-out of the high-order bit. In the example of 5 + −2 above, a 1 is carried both
into and out of the leftmost bit, avoiding overflow.

Negating a two’s complement number involves complementing each bit
then adding 1. For instance, to negate 00112, complement it to get 11002 and then
add 1 to get 11012. Thus, to implement a − b using an adder, simply feed a and b
(where b is the number obtained by complementing each bit of b) into the adder
and set the low-order, carry-in bit to 1. This explains why the rightmost adde
Figure A.1 is a full adder.

Multiplying two’s complement numbers is not quite as simple as adding th
The obvious approach is to convert both operands to be nonnegative, do a
signed multiplication, and then (if the original operands were of opposite si
negate the result. Although this is conceptually simple, it requires extra time
hardware. Here is a better approach: Suppose that we are multiplying a times b
using the hardware shown in Figure A.2(a). Register A is loaded with the num
a; B is loaded with b. Since the content of register B is always b, we will use B
and b interchangeably. If B is potentially negative but A is nonnegative, the o
change needed to convert the unsigned multiplication algorithm into a two’s c
plement one is to ensure that when P is shifted, it is shifted arithmetically; th
the bit shifted into the high-order bit of P should be the sign bit of P (rather
the carry-out from the addition). Note that our n-bit-wide adder will now be add-
ing n-bit two’s complement numbers between −2n-1 and 2n-1 − 1.

Next, suppose a is negative. The method for handling this case is called Booth
recoding. Booth recoding is a very basic technique in computer arithmetic
will play a key role in section A.9. The algorithm on page A-3 computes a × b by
examining the bits of a from least significant to most significant. For example,
a = 7 = 01112, then part (i) will successively add B, add B, add B, and add
Booth recoding “recodes” the number 7 as 8 − 1 = 10002 − 00012 = 1001, where
1 represents −1. This gives an alternate way to compute a × b; namely, succes-
sively subtract B, add 0, add 0, and add B. This is more complicated than th
signed algorithm on page A-3, since it uses both addition and subtraction.
advantage shows up for negative values of a. With the proper recoding, we can
treat a as though it were unsigned. For example, take a = −4 = 11002. Think of
11002 as the unsigned number 12, and recode it as 12 = 16 − 4 = 100002 − 01002
= 10100. If the multiplication algorithm is only iterated n times (n = 4 in this
case), the high-order digit is ignored, and we end up subtracting 01002 = 4 times
the multiplier—exactly the right answer. This suggests that multiplying usin
recoded form of a will work equally well for both positive and negative number
And indeed, to deal with negative values of a, all that is required is to sometime
subtract b from P, instead of adding either b or 0 to P. Here are the precise rule

A.2 Basic Techniques of Integer Arithmetic A-9

rk,
If the initial content of A is an–1⋅⋅⋅a0, then at the ith multiply step, the low-order
bit of register A is ai, and step (i) in the multiplication algorithm becomes

I. If ai = 0 and ai–1 = 0, then add 0 to P.

II. If ai = 0 and ai–1 = 1, then add B to P.

III. If ai = 1 and ai–1 = 0, then subtract B from P.

IV. If ai = 1 and ai–1 = 1, then add 0 to P.

For the first step, when i = 0, take ai–1 to be 0.

E X A M P L E When multiplying −6 times −5, what is the sequence of values in the (P,A)
register pair?

A N S W E R See Figure A.4.

■

The four cases above can be restated as saying that in the ith step you should add
(ai–1 − ai)B to P. With this observation, it is easy to verify that these rules wo
because the result of all the additions is

FIGURE A.4 Numerical example of Booth recoding. Multiplication of a = –6 by b = –5 to
get 30.

0000

0000

0000

+ 0101

0101

0010

+ 1011

1101

1110

+ 0101

0011

0001

1010

1010

0101

0101

1010

1010

1101

1101

1110

Put –6 = 1010
2
 into A, –5 = 1011

2
 into B.

step 1(i): a
0
 = a

–1
 = 0, so from rule I add 0.

step 1(ii): shift.

step 2(i): a
1
 = 1, a

0
 = 0. Rule III says subtract b (or add –b = –1011

2
 = 0101

2
).

step 2(ii): shift.

step 3(i): a
2
 = 0, a

1
 = 1. Rule II says add b (1011).

step 3(ii): shift. (Arithmetic shift—load 1 into leftmost bit.)

step 4(i): a
3
 = 1, a

2
 = 0. Rule III says subtract b.

step 4(ii): shift. Final result is 00011110
2
 = 30.

P A

b(ai 1– ai–)2i

i 0=

n 1–

∑ b an 1– 2
n 1–

an 2– 2
n 2– … a12 a0+ + + +–() ba 1–+=

A-10 Appendix A Computer Arithmetic

e A

extra
 con-
the
od
f P
e in

rd-
mple-
ally
pports

d

int),
e,
y-

etic
best

try

er-
ion is
ed to

arith-

pli-
per-

re are
over-
rred.

f this
 sets
 this
Using Equation A.2.3 (page A-7) together with a−1 = 0, the right-hand side is
seen to be the value of b × a as a two’s complement number.

The simplest way to implement the rules for Booth recoding is to extend th
register one bit to the right so that this new bit will contain ai−1. Unlike the naive
method of inverting any negative operands, this technique doesn’t require
steps or any special casing for negative operands. It has only slightly more
trol logic. If the multiplier is being shared with a divider, there will already be
capability for subtracting b, rather than adding it. To summarize, a simple meth
for handling two’s complement multiplication is to pay attention to the sign o
when shifting it right, and to save the most recently shifted-out bit of A to us
deciding whether to add or subtract b from P.

Booth recoding is usually the best method for designing multiplication ha
ware that operates on signed numbers. For hardware that doesn’t directly i
ment it, however, performing Booth recoding in software or microcode is usu
too slow because of the conditional tests and branches. If the hardware su
arithmetic shifts (so that negative b is handled correctly), then the following
method can be used. Treat the multiplier a as if it were an unsigned number, an
perform the first n − 1 multiply steps using the algorithm on page A-3. If a < 0 (in
which case there will be a 1 in the low-order bit of the A register at this po
then subtract b from P; otherwise (a ≥ 0) neither add nor subtract. In either cas
do a final shift (for a total of n shifts). This works because it amounts to multipl
ing b by −an – 12

n-1 + ⋅⋅⋅ + a12 + a0, which is the value of an–1⋅⋅⋅a0 as a two’s com-
plement number by Equation A.2.3. If the hardware doesn’t support arithm
shift, then converting the operands to be nonnegative is probably the
approach.

Two final remarks: A good way to test a signed-multiply routine is to
−2n-1

 × −2n−1, since this is the only case that produces a 2n − 1 bit result. Unlike
multiplication, division is usually performed in hardware by converting the op
ands to be nonnegative and then doing an unsigned divide. Because divis
substantially slower (and less frequent) than multiplication, the extra time us
manipulate the signs has less impact than it does on multiplication.

Systems Issues

When designing an instruction set, a number of issues related to integer
metic need to be resolved. Several of them are discussed here.

First, what should be done about integer overflow? This situation is com
cated by the fact that detecting overflow differs depending on whether the o
ands are signed or unsigned integers. Consider signed arithmetic first. The
three approaches: Set a bit on overflow, trap on overflow, or do nothing on
flow. In the last case, software has to check whether or not an overflow occu
The most convenient solution for the programmer is to have an enable bit. I
bit is turned on, then overflow causes a trap. If it is turned off, then overflow
a bit (or alternatively, have two different add instructions). The advantage of

A.2 Basic Techniques of Integer Arithmetic A-11

e in-
 the
ws

s in
 use
le to

two
r

an
teger
ilizes

on of

y cy-
e

three

 ap-
part
ach
, the
approach is that both trapping and nontrapping operations require only on
struction. Furthermore, as we will see in section A.7, this is analogous to how
IEEE floating-point standard handles floating-point overflow. Figure A.5 sho
how some common machines treat overflow.

What about unsigned addition? Notice that none of the architecture
Figure A.5 traps on unsigned overflow. The reason for this is that the primary
of unsigned arithmetic is in manipulating addresses. It is convenient to be ab
subtract from an unsigned address by adding. For example, when n = 4, we can
subtract 2 from the unsigned address 10 = 10102 by adding 14 = 11102. This gen-
erates an overflow, but we would not want a trap to be generated.

A second issue concerns multiplication. Should the result of multiplying
n-bit numbers be a 2n-bit result, or should multiplication just return the low-orde
n bits, signaling overflow if the result doesn’t fit in n bits? An argument in favor
of an n-bit result is that in virtually all high-level languages, multiplication is
operation in which arguments are integer variables and the result is an in
variable of the same type. Therefore, compilers won’t generate code that ut
a double-precision result. An argument in favor of a 2n-bit result is that it can be
used by an assembly language routine to substantially speed up multiplicati
multiple-precision integers (by about a factor of 3).

A third issue concerns machines that want to execute one instruction ever
cle. It is rarely practical to perform a multiplication or division in the sam
amount of time that an addition or register-register move takes. There are
possible approaches to this problem. The first is to have a single-cycle multiply-
step instruction. This might do one step of the Booth algorithm. The second
proach is to do integer multiplication in the floating-point unit and have it be
of the floating-point instruction set. (This is what DLX does.) The third appro
is to have an autonomous unit in the CPU do the multiplication. In this case

Machine Trap on signed overflow? Trap on unsigned
overflow?

Set bit on signed
overflow?

Set bit on unsigned
overflow?

VAX If enable is on No Yes. Add sets V bit. Yes. Add sets C bit.

IBM 370 If enable is on No Yes. Add sets cond
code.

Yes. Logical add
sets cond code.

Intel 8086 No No Yes. Add sets V bit. Yes. Add sets C bit.

MIPS R3000 Two add instructions: one
always traps, the other
never does.

No No. Software must deduce it from sign of
operands and result.

SPARC No No Addcc sets V bit.
Add does not.

Addcc sets C bit.
Add does not.

FIGURE A.5 Summary of how various machines handle integer overflow. Both the 8086 and SPARC have an instruc-
tion that traps if the V bit is set, so the cost of trapping on overflow is one extra instruction.

A-12 Appendix A Computer Arithmetic

and
e an
rigi-

hile
ision
truc-
ugh

ion,
er et

r for

ould
 no

mely

re is
result either can be guaranteed to be delivered in a fixed number of cycles—
the compiler charged with waiting the proper amount of time—or there can b
interlock. The same comments apply to division as well. As examples, the o
nal SPARC had a multiply-step instruction but no divide-step instruction, w
the MIPS R3000 has an autonomous unit that does multiplication and div
(newer versions of the SPARC architecture added an integer multiply ins
tion). The designers of the HP Precision Architecture did an especially thoro
job of analyzing the frequency of the operands for multiplication and divis
and they based their multiply and divide steps accordingly. (See Magenheim
al. [1988] for details.)

The final issue involves the computation of integer division and remainde
negative numbers. For example, what is −5 DIV 3 and −5 MOD 3? When comput-
ing x DIV y and x MOD y, negative values of x occur frequently enough to be worth
some careful consideration. (On the other hand, negative values of y are quite
rare.) If there are built-in hardware instructions for these operations, they sh
correspond to what high-level languages specify. Unfortunately, there is
agreement among existing programming languages. See Figure A.6.

One definition for these expressions stands out as clearly superior. Na
x DIV y =  x/y , so that 5 DIV 3 = 1, −5 DIV 3 = −2. And MOD should satisfy x =
(x DIV y) × y + x MOD y, so that x MOD y ≥ 0. Thus 5 MOD 3 = 2, and −5 MOD 3 = 1.
Some of the many advantages of this definition are

1. A calculation to compute an index into a hash table of size N can use MOD N
and be guaranteed to produce a valid index in the range from 0 to N − 1.

2. In graphics, when converting from one coordinate system to another, the
no “glitch” near 0. For example, to convert from a value x expressed in a sys-
tem that uses 100 dots per inch to a value y on a bitmapped display with 70
dots per inch, the formula y = (70 × x) DIV 100 maps one or two x coordinates
into each y coordinate. But if DIV were defined as in Pascal to be x/y rounded
to 0, then 0 would have three different points (−1, 0, 1) mapped into it.

Language Division Remainder

FORTRAN −5/3 = −1 MOD(−5, 3) = −2

Pascal −5 DIV 3 = −1 −5 MOD 3 = 1

Ada −5/3 = −1 −5 MOD 3 = 1
−5 REM 3 = −2

C −5/3 undefined −5 % 3 undefined

Modula-3 −5 DIV 3 = −2 −5 MOD 3 = 1

FIGURE A.6 Examples of integer division and integer remainder in various program-
ming languages.

A.3 Floating Point A-13

di-

ird
ion
ent

er of

 just
one
ther
num-
gers
n

e, an

vious.
de-
are,

nance
enta-

man-
point
aria-
d sig-
tions

itec-
fortu-
pidly

erna-
ating
sen-

g

3. x MOD 2k is the same as performing a bitwise AND with a mask of k bits, and x
DIV 2k is the same as doing a k-bit arithmetic right shift.

Finally, a potential pitfall worth mentioning concerns multiple-precision ad
tion. Many instruction sets offer a variant of the add instruction that adds three
operands: two n-bit numbers together with a third single-bit number. This th
number is the carry from the previous addition. Since the multiple-precis
number will typically be stored in an array, it is important to be able to increm
the array pointer without destroying the carry bit.

Many applications require numbers that aren’t integers. There are a numb
ways that non-integers can be represented. One is to use fixed point; that is, use
integer arithmetic and simply imagine the binary point somewhere other than
to the right of the least-significant digit. Adding two such numbers can be d
with an integer add, whereas multiplication requires some extra shifting. O
representations that have been proposed involve storing the logarithm of a
ber and doing multiplication by adding the logarithms, or using a pair of inte
(a,b) to represent the fraction a/b. However, only one non-integer representatio
has gained widespread use, and that is floating point. In this system, a computer
word is divided into two parts, an exponent and a significand. As an exampl
exponent of −3 and significand of 1.5 might represent the number 1.5 × 2–3

 =
0.1875. The advantages of standardizing a particular representation are ob
Numerical analysts can build up high-quality software libraries, computer
signers can develop techniques for implementing high-performance hardw
and hardware vendors can build standard accelerators. Given the predomi
of the floating-point representation, it appears unlikely that any other repres
tion will come into widespread use.

The semantics of floating-point instructions are not as clear-cut as the se
tics of the rest of the instruction set, and in the past the behavior of floating-
operations varied considerably from one computer family to the next. The v
tions involved such things as the number of bits allocated to the exponent an
nificand, the range of exponents, how rounding was carried out, and the ac
taken on exceptional conditions like underflow and overflow. Computer arch
ture books used to dispense advice on how to deal with all these details, but
nately this is no longer necessary. That’s because the computer industry is ra
converging on the format specified by IEEE standard 754-1985 (also an int
tional standard, IEC 559). The advantages of using a standard variant of flo
point are similar to those for using floating point over other non-integer repre
tations.

IEEE arithmetic differs from many previous arithmetics in the followin
major ways:

A.3 Floating Point

A-14 Appendix A Computer Arithmetic

, it

alue

s.

, the
ating-
 sig-

d it
unded
t 3.1.

s are

her

tation
king
quare
t
 con-
-
ally
a
stem
ns and
rith-

many

aN
nes
ks. For
rmula
N

1. When rounding a “halfway” result to the nearest floating-point number
picks the one that is even.

2. It includes the special values NaN, ∞, and −∞.

3. It uses denormal numbers to represent the result of computations whose v
is less than 1.0 × 2Emin.

4. It rounds to nearest by default, but it also has three other rounding mode

5. It has sophisticated facilities for handling exceptions.

To elaborate on (1), note that when operating on two floating-point numbers
result is usually a number that cannot be exactly represented as another flo
point number. For example, in a floating-point system using base 10 and two
nificant digits, 6.1 × 0.5 = 3.05. This needs to be rounded to two digits. Shoul
be rounded to 3.0 or 3.1? In the IEEE standard, such halfway cases are ro
to the number whose low-order digit is even. That is, 3.05 rounds to 3.0, no
The standard actually has four rounding modes. The default is round to nearest,
which rounds ties to an even number as just explained. The other mode
round toward 0, round toward +∞, and round toward –∞.

We will elaborate on the other differences in following sections. For furt
reading, see IEEE [1985], Cody et al. [1984], and Goldberg [1991].

Special Values and Denormals

Probably the most notable feature of the standard is that by default a compu
continues in the face of exceptional conditions, such as dividing by 0 or ta
the square root of a negative number. For example, the result of taking the s
root of a negative number is a NaN (Not a Number), a bit pattern that does no
represent an ordinary number. As an example of how NaNs might be useful,
sider the code for a zero finder that takes a function F as an argument and evalu
ates F at various points to determine a zero for it. If the zero finder accident
probes outside the valid values for F, F may well cause an exception. Writing
zero finder that deals with this case is highly language and operating-sy
dependent, because it relies on how the operating system reacts to exceptio
how this reaction is mapped back into the programming language. In IEEE a
metic it is easy to write a zero finder that handles this situation and runs on
different systems. After each evaluation of F, it simply checks to see whether F
has returned a NaN; if so, it knows it has probed outside the domain of F.

In IEEE arithmetic, if the input to an operation is a NaN, the output is N
(e.g., 3 + NaN = NaN). Because of this rule, writing floating-point subrouti
that can accept NaN as an argument rarely requires any special case chec
example, suppose that arccos is computed in terms of arctan, using the fo
arccos x = 2 arctan(). If arctan handles an argument of Na1 x–() 1 x+()⁄

A.3 Floating Point A-15

r

there

.

an
 in a
other
 1.

low
hen

r sig-

-
ain-

-

etic.
nent,
g the

 1
to
e
, if
properly, arccos will automatically do so too. That’s because if x is a NaN, 1 + x,
1 − x, (1 + x)/(1 − x), and will also be NaNs. No checking fo
NaNs is required.

While the result of is a NaN, the result of 1/0 is not a NaN, but +∞,
which is another special value. The standard defines arithmetic on infinities (
is both +∞ and –∞) using rules such as 1/∞ = 0. The formula arccos x =
2 arctan() illustrates how infinity arithmetic can be used
Since arctan x asymptotically approaches π/2 as x approaches ∞, it is natural to
define arctan(∞) = π/2, in which case arccos(−1) will automatically be computed
correctly as 2 arctan(∞) = π.

The final kind of special values in the standard are denormal numbers. In
many floating-point systems, if Emin is the smallest exponent, a number less th
1.0 × 2Emin

 cannot be represented, and a floating-point operation that results
number less than this is simply flushed to 0. In the IEEE standard, on the
hand, numbers less than 1.0 × 2Emin are represented using significands less than
This is called gradual underflow. Thus, as numbers decrease in magnitude be
2Emin, they gradually lose their significance and are only represented by 0 w
all their significance has been shifted out. For example, in base 10 with fou
nificant figures, let x = 1.234 × 10Emin. Then x/10 will be rounded to 0.123 ×
10Emin, having lost a digit of precision. Similarly x/100 rounds to 0.012 × 10Emin,
and x/1000 to 0.001 × 10

Emin, while x/10000 is finally small enough to be round
ed to 0. Denormals make dealing with small numbers more predictable by m
taining familiar properties such as x = y ⇔ x − y = 0. For example, in a flush-to-
zero system (again in base 10 with four significant digits), if x = 1.256 × 10Emin

and y = 1.234 × 10Emin, then x − y = 0.022 × 10Emin, which flushes to zero. So
even though x ≠ y, the computed value of x − y = 0. This never happens with grad
ual underflow. In this example, x − y = 0.022 × 10Emin is a denormal number, and
so the computation of x − y is exact.

Representation of Floating-Point Numbers

Let us consider how to represent single-precision numbers in IEEE arithm
Single-precision numbers are stored in 32 bits: 1 for the sign, 8 for the expo
and 23 for the fraction. The exponent is a signed number represented usin
bias method (see the subsection Signed Numbers, page A-7) with a bias of 127.
The term biased exponent refers to the unsigned number contained in bits
through 8 and unbiased exponent (or just exponent) means the actual power
which 2 is to be raised. The fraction represents a number less than 1, but thsig-
nificand of the floating-point number is 1 plus the fraction part. In other words
e is the biased exponent (value of the exponent field) and f is the value of the frac-
tion field, the number being represented is 1. f × 2e−127.

1 x–() 1 x+()⁄

1–

1 x–() 1 x+()⁄

A-16 Appendix A Computer Arithmetic

ust
ead-
ad-
he

s. It
ingly,
55 are

he bi-
 frac-
 the

 0. Be-
reat-
ed to
ith a

 for-
ered in
an be
t 0 is
dding
E X A M P L E What single-precision number does the following 32-bit word represent?

1 10000001 01000000000000000000000

A N S W E R Considered as an unsigned number, the exponent field is 129, making the
value of the exponent 129 − 127 = 2. The fraction part is .012 = .25, mak-
ing the significand 1.25. Thus, this bit pattern represents the number
−1.25 × 22 = −5. ■

The fractional part of a floating-point number (.25 in the example above) m
not be confused with the significand, which is 1 plus the fractional part. The l
ing 1 in the significand 1. f does not appear in the representation; that is, the le
ing bit is implicit. When performing arithmetic on IEEE format numbers, t
fraction part is usually unpacked, which is to say the implicit one is made
explicit.

Figure A.7 summarizes the parameters for single (and other) precision
shows the exponents for single precision to range from –126 to 127; accord
the biased exponent ranges from 1 to 254. The biased exponents of 0 and 2
used to represent special values. This is summarized in Figure A.8. When t
ased exponent is 255, a zero fraction field represents infinity, and a nonzero
tion field represents a NaN. Thus, there is an entire family of NaNs. When
biased exponent and the fraction field are 0, then the number represented is
cause of the implicit leading 1, ordinary numbers always have a significand g
er than or equal to 1. Thus, a special convention such as this is requir
represent 0. Denormalized numbers are implemented by having a word w
zero exponent field represent the number 0. f × 2

Emin.

The primary reason why the IEEE standard, like most other floating-point
mats, uses biased exponents is that it means nonnegative numbers are ord
the same way as integers. That is, the magnitude of floating-point numbers c
compared using an integer comparator. Another (related) advantage is tha
represented by a word of all 0’s. The downside of biased exponents is that a

Single Single extended Double Double extended

p (bits of precision) 24 ≥ 32 53 ≥ 64

Emax 127 ≥ 1023 1023 ≥ 16383

Emin −126 ≤ −1022 −1022 ≤ −16382

Exponent bias 127 1023

FIGURE A.7 Format parameters for the IEEE 754 floating-point standard. The first row
gives the number of bits in the significand. The blanks are unspecified parameters.

A.4 Floating-Point Multiplication A-17

from

. A
nt,

mul-
ing-
deal
ndles
esult.

stored
xpo-
them is slightly awkward, because it requires that the bias be subtracted
their sum.

The simplest floating-point operation is multiplication, so we discuss it first
binary floating-point number x is represented as a significand and an expone
x = s × 2e. The formula

(s1 × 2e1) • (s2 × 2e2) = (s1 • s2) × 2e1+e2

shows that a floating-point multiply algorithm has several parts. The first part
tiplies the significands using ordinary integer multiplication. Because float
point numbers are stored in sign-magnitude form, the multiplier need only
with unsigned numbers (although we have seen that Booth recoding ha
signed two’s complement numbers painlessly). The second part rounds the r
If the significands are unsigned p-bit numbers (e.g., p = 24 for single precision),
then the product can have as many as 2p bits and must be rounded to a p-bit num-
ber. The third part computes the new exponent. Because exponents are
with a bias, this involves subtracting the bias from the sum of the biased e
nents.

E X A M P L E How does the multiplication of the single precision numbers

1 10000010 000… = -1 × 23

0 10000011 000… = 1 × 24

proceed in binary?

Exponent Fraction Represents

e = Emin − 1 f = 0 ±0

e = Emin − 1 f ≠ 0
0.f × 2

Emin

Emin ≤ e ≤ Emax — 1.f × 2e

e = Emax + 1 f = 0 ± ∞

e = Emax + 1 f ≠ 0 NaN

FIGURE A.8 Representation of special values. When the exponent of a number falls out-
side the range Emin ≤ e ≤ Emax, then that number has a special interpretation as indicated in
the table.

A.4 Floating-Point Multiplication

A-18 Appendix A Computer Arithmetic

the
s are
 2.
ig-

cant
A N S W E R When unpacked, the significands are both 1.0, their product is 1.0, and so
the result is of the form

1 ???????? 000…

To compute the exponent, use the formula

biased exp (e1 + e2) = biased exp(e1) + biased exp(e2) − bias

From Figure A.7, the bias is 127 = 011111112, so in two’s complement
–127 is 100000012. Thus the biased exponent of the product is

 10000010
 10000011

+ 10000001

 10000110

Since this is 134 decimal, it represents an exponent of 134 − bias = 134
− 127 = 7, as expected. ■

The interesting part of floating-point multiplication is rounding. Some of
different cases that can occur are illustrated in Figure A.9. Since the case
similar in all bases, the figure uses human-friendly base 10, rather than base

In the figure, p = 3, so the final result must be rounded to three significant d
its. The three most-significant digits are in boldface. The fourth most-signifi
digit (marked with an arrow) is the round digit, denoted by r.

FIGURE A.9 Examples of rounding a multiplication. Using base 10 and p = 3, parts (a)
and (b) illustrate that the result of a multiplication can have either 2p − 1 or 2p digits, and
hence the position where a 1 is added when rounding up (just left of the arrow) can vary. Part
(c) shows that rounding up can cause a carry-out.

a)

✕

b)

c)

1.23
6.78

8.3394

2.83
4.47

12.6501

1.28
7.81

09.9968

r = 9 > 5 so round up
rounds to 8.34

r = 5 and a following digit = 0 so round up
rounds to 1.27 101

r = 6 > 5 so round up
rounds to 1.00 101

✕

✕

✕

✕

A.4 Floating-Point Multiplication A-19

d re-
o the
di-
g by
ithm

 the
1 to
, the

r of

e

t

.

f P).
If the round digit is less than 5, then the bold digits represent the rounde
sult. If the round digit is greater than 5 (as in (a)), then 1 must be added t
least-significant bold digit. If the round digit is exactly 5 (as in (b)), then ad
tional digits must be examined to decide between truncation or incrementin
1. It is only necessary to know if any digits past 5 are nonzero. In the algor
below, this will be recorded in a sticky bit. Comparing (a) and (b) in the figure
shows that there are two possible positions for the round digit (relative to
least-significant digit of the product). Case (c) illustrates that when adding
the least-significant bold digit, there may be a carry-out. When this happens
final significand must be 10.0.

There is a straightforward method of handling rounding using the multiplie
Figure A.2 (page A-4) together with an extra sticky bit. If p is the number of bits
in the significand, then the A, B, and P registers should be p bits wide. Multiply
the two significands to obtain a 2p-bit product in the (P,A) registers (se
Figure A.10). During the multiplication, the first p − 2 times a bit is shifted into

the A register, OR it into the sticky bit. This will be used in halfway cases. Les
represent the sticky bit, g (for guard) the most-significant bit of A, and r (for
round) the second most-significant bit of A. There are two cases:

1. The high-order bit of P is 0. Shift P left 1 bit, shifting in the g bit from A. Shift-
ing the rest of A is not necessary.

2. The high-order bit of P is 1. Set s := s ∨ r and r := g, and add 1 to the exponent

Now if r = 0, P is the correctly rounded product. If r = 1 and s = 1, then P + 1
is the product (where by P + 1 we mean adding 1 to the least-significant bit o

FIGURE A.10 The two cases of the floating-point multiply algorithm. The top line
shows the contents of the P and A registers after multiplying the significands, with p = 6. In
case (1), the leading bit is 0, and so the P register must be shifted. In case (2), the leading bit
is 1, no shift is required, but both the exponent and the round and sticky bits must be adjusted.
The sticky bit is the logical OR of the bits marked s.

Product

Case (1): x
0
 = 0

Shift needed

Case (2): x
0
 = 1

Increment exponent

Adjust binary point,
add 1 to exponent to compensate

rnd sticky

rnd sticky x2 x3 x4 x5x0 . x1

x1 . x2 x3 x4 x5 g

x0 x1 . x2 x3 x4 x5 g r ss s s

P A

A-20 Appendix A Computer Arithmetic

least
s to

so

en in
f the
an-
If r = 1 and s = 0, we are in a halfway case, and round up according to the
significant bit of P. As an example, apply the decimal version of these rule
Figure A.9(b). After the multiplication, P = 126 and A = 501, with g = 5, r = 0,
s = 1. Since the high-order digit of P is nonzero, case (2) applies and r := g, so
that r = 5, as the arrow indicates in Figure A.9. Since r = 5, we could be in a
halfway case, but s = 1 indicates that the result is in fact slightly over 1/2,
add 1 to P to obtain the correctly rounded product.

The precise rules for rounding depend on the rounding mode and are giv
Figure A.11. Note that P is nonnegative, that is, it contains the magnitude o
result. A good discussion of more efficient ways to implement rounding is in S
toro, Bewick, and Horowitz [1989].

E X A M P L E In binary with p = 4, show how the multiplication algorithm computes the
product −5 × 10 in each of the four rounding modes.

A N S W E R In binary, −5 is −1.0102 × 22 and 10 = 1.0102 × 23. Applying the
integer multiplication algorithm to the significands gives 011001002, so
P = 01102, A = 01002, g = 0, r = 1, and s = 0. The high-order bit of P is 0,
so case (1) applies. Thus P becomes 11002, and since the result is neg-
ative, Figure A.11 gives

 round to −∞ 11012 add 1 since r ∨ s = 1 ∨ 0 = TRUE

 round to +∞ 11002

 round to 0 11002

 round to nearest 11002 no add since r ∧ p0 = 1 ∧ 0 = FALSE and

r ∧ s = 1 ∧ 0 = FALSE

The exponent is 2 + 3 = 5, so the result is −1.1002 × 25 = −48, except when
rounding to −∞, in which case it is −1.1012 × 25 = −52. ■

Rounding mode Sign of result ≥ 0 Sign of result < 0

-∞ +1 if r ∨ s

+∞ +1 if r ∨ s

0

Nearest +1 if r ∧ p0 or r ∧ s +1 if r ∧ p0 or r ∧ s

FIGURE A.11 Rules for implementing the IEEE rounding modes. Let S be the magni-
tude of the preliminary result. Blanks mean that the p most-significant bits of S are the actual
result bits. If the condition listed is true, add 1 to the pth most-significant bit of S. The symbols
r and s represent the round and sticky bits, while p0 is the pth most-significant bit of S.

A.4 Floating-Point Multiplication A-21

n sin-
. If
-

ts. So
-bit

e.

s. In
-
. For

.125

e ex-
fted
me-

will
ading
rmal,

r than

 ex-

ing-
ul-

ing-
, let-
ven
sys-

n be
 test-

t the

Overflow occurs when the rounded result is too large to be represented. I
gle precision, this occurs when the result has an exponent of 128 or highere1
and e2 are the two biased exponents, then 1 ≤ ei ≤ 254, and the exponent calcula
tion e1 + e2 − 127 gives numbers between 1 + 1 − 127 and 254 + 254 − 127, or
between −125 and 381. This range of numbers can be represented using 9 bi
one way to detect overflow is to perform the exponent calculations in a 9
adder (see Exercise A.12). Remember that you must check for overflow after
rounding—the example in Figure A.9(c) shows that this can make a differenc

Denormals

Checking for underflow is somewhat more complex because of denormal
single precision, if the result has an exponent less than −126, that does not neces
sarily indicate underflow, because the result might be a denormal number
example, the product of (1 × 2-64) with (1 × 2-65) is 1 × 2-129, and −129 is below
the legal exponent limit. But this result is a valid denormal number, namely 0
× 2-126. In general, when the unbiased exponent of a product dips below −126, the
resulting product must be shifted right and the exponent incremented until th
ponent reaches −126. If this process causes the entire significand to be shi
out, then underflow has occurred. The precise definition of underflow is so
what subtle—see section A.7 for details.

When one of the operands of a multiplication is denormal, its significand
have leading zeros, and so the product of the significands will also have le
zeros. If the exponent of the product is less than –126, then the result is deno
so right shift and increment the exponent as before. If the exponent is greate
–126, the result may be a normalized number. In this case, left shift the product
(while decrementing the exponent) until either it becomes normalized or the
ponent drops to –126.

Denormal numbers present a major stumbling block to implementing float
point multiplication, because they require performing a variable shift in the m
tiplier, which wouldn’t otherwise be needed. Thus, high-performance, float
point multipliers often do not handle denormalized numbers, but instead trap
ting software handle them. A few practical codes frequently underflow, e
when working properly, and these programs will run quite a bit slower on
tems that require denormals to be processed by a trap handler.

So far we haven’t mentioned how to deal with operands of zero. This ca
handled by either testing both operands before beginning the multiplication or
ing the product afterward. If you test afterward, be sure to handle the case 0× ∞
properly: this results in NaN, not 0. Once you detect that the result is 0, se
biased exponent to 0. Don’t forget about the sign. The sign of a product is theXOR

of the signs of the operands, even when the result is 0.

A-22 Appendix A Computer Arithmetic

t de-
t. A
can
In the
tains
tion.
 the
 con-
se is

ng

tion
ust

rform
o see

end)

 The
ed to

t just

up is
so a
Precision of Multiplication

In the discussion of integer multiplication, we mentioned that designers mus
cide whether to deliver the low-order word of the product or the entire produc
similar issue arises in floating-point multiplication, where the exact product
be rounded to the precision of the operands or to the next higher precision.
case of integer multiplication, none of the standard high-level languages con
a construct that would generate a “single times single gets double” instruc
The situation is different for floating point. Many languages allow assigning
product of two single-precision variables to a double-precision one, and the
struction can also be exploited by numerical algorithms. The best-known ca
using iterative refinement to solve linear systems of equations.

Typically, a floating-point operation takes two inputs with p bits of precision and
returns a p-bit result. The ideal algorithm would compute this by first performi
the operation exactly, and then rounding the result to p bits (using the current
rounding mode). The multiplication algorithm presented in the previous sec
follows this strategy. Even though hardware implementing IEEE arithmetic m
return the same result as the ideal algorithm, it doesn’t need to actually pe
the ideal algorithm. For addition, in fact, there are better ways to proceed. T
this, consider some examples.

First, the sum of the binary 6-bit numbers 1.100112 and 1.100012 × 2−5: When
the summands are shifted so they have the same exponent, this is

1.10011
+ .0000110001

Using a 6-bit adder (and discarding the low-order bits of the second add
gives

 1.10011
 + .00001

 1.10100

The first discarded bit is 1. This isn’t enough to decide whether to round up.
rest of the discarded bits, 0001, need to be examined. Or actually, we just ne
record whether any of these bits are nonzero, storing this fact in a sticky bi
as in the multiplication algorithm. So for adding two p-bit numbers, a p-bit adder
is sufficient, as long as the first discarded bit (round) and the OR of the rest of the
bits (sticky) are kept. Then Figure A.11 can be used to determine if a round-
necessary, just as with multiplication. In the example above, sticky is 1,
round-up is necessary. The final sum is 1.101012.

A.5 Floating-Point Addition

A.5 Floating-Point Addition A-23

 bit;

6 bits

ed to

 mul-
ide

p to
nt bit
d bits
is

end-
addi-
it is
e, the
Here’s another example:

 1.11011
+ .0101001

A 6-bit adder gives

1.11011
+ .01010

 10.00101

Because of the carry-out on the left, the round bit isn’t the first discarded
rather, it is the low-order bit of the sum (1). The discarded bits, 01, are OR’ed to-
gether to make sticky. Because round and sticky are both 1, the high-order
of the sum, 10.00102, must be rounded up for the final answer of 10.00112.

Next, consider subtraction and the following example:

 1.00000
– .00000101111

The simplest way of computing this is to convert −.000001011112 to its two’s
complement form, so the difference becomes a sum

 1.00000
 + 1.11111010001

Computing this sum in a 6-bit adder gives

 1.00000
 +1.11111

 0.11111

Because the top bits canceled, the first discarded bit (the guard bit) is need
fill in the least-significant bit of the sum, which becomes 0.1111102, and the sec-
ond discarded bit becomes the round bit. This is analogous to case (1) in the
tiplication algorithm (see page A-19). The round bit of 1 isn’t enough to dec
whether to round up. Instead, we need to OR all the remaining bits (0001) into a
sticky bit. In this case, sticky is 1, so the final result must be rounded u
0.111111. This example shows that if subtraction causes the most significa
to cancel, then one guard bit is needed. It is natural to ask whether two guar
are needed for the case when the two most-significant bits cancel. The answer
no, because if x and y are so close that the top two bits of x − y cancel, then x − y
will be exact, so guard bits aren’t needed at all.

To summarize, addition is more complex than multiplication because, dep
ing on the signs of the operands, it may actually be a subtraction. If it is an
tion, there can be carry-out on the left, as in the second example. If
subtraction, there can be cancellation, as in the third example. In each cas

A-24 Appendix A Computer Arithmetic

 ex-

point
ns

nents

et
o

f

y-
e
n

hen
com-

 the

n
e-

and
2.
position of the round bit is different. However, we don’t need to compute the
act sum and then round. We can infer it from the sum of the high-order p bits to-
gether with the round and sticky bits.

The rest of this section is devoted to a detailed discussion of the floating-
addition algorithm. Let a1 and a2 be the two numbers to be added. The notatio
ei and si are used for the exponent and significand of the addends ai. This means
that the floating-point inputs have been unpacked and that si has an explicit lead-
ing bit. To add a1 and a2, perform these eight steps.

1. If e1< e2, swap the operands. This ensures that the difference of the expo
satisfies d = e1 − e2 ≥ 0. Tentatively set the exponent of the result to e1.

2. If the signs of a1 and a2 differ, replace s2 by its two’s complement.

3. Place s2 in a p-bit register and shift it d = e1 − e2 places to the right (shifting in
1’s if s2 was complemented in previous step). From the bits shifted out, sg
to the most-significant bit, r to the next most-significant bit, and set sticky t
the OR of the rest.

4. Compute a preliminary significand S = s1 + s2 by adding s1 to the p-bit register
containing s2. If the signs of a1 and a2 are different, the most-significant bit o
S is 1, and there was no carry-out, then S is negative. Replace S with its two’s
complement. This can only happen when d = 0.

5. Shift S as follows. If the signs of a1 and a2 are the same and there was a carr
out in step 4, shift S right by one, filling in the high-order position with 1 (th
carry-out). Otherwise shift it left until it is normalized. When left shifting, o
the first shift fill in the low-order position with the g bit. After that, shift in
zeros. Adjust the exponent of the result accordingly.

6. Adjust r and s. If S was shifted right in step 5, set r := low-order bit of S before
shifting and s := g OR r OR s. If there was no shift, set r := g, s := r OR s. If there
was a single left shift, don’t change r and s. If there were two or more left
shifts, r := 0, s := 0. (In the last case, two or more shifts can only happen w
a1 and a2 have opposite signs and the same exponent, in which case the
putation s1 + s2 in step 4 will be exact.)

7. Round S using Figure A.11; namely, if a table entry is non-empty, add 1 to
low-order bit of S. If rounding causes carry-out, shift S right and adjust the ex-
ponent. This is the significand of the result.

8. Compute the sign of the result. If a1 and a2 have the same sign, this is the sig
of the result. If a1 and a2 have different signs, then the sign of the result d
pends on which of a1, a2 is negative, whether there was a swap in step 1,
whether S was replaced by its two’s complement in step 4. See Figure A.1

A.5 Floating-Point Addition A-25
E X A M P L E Use the algorithm to compute the sum (−1.0012 × 2–2) + (−1.1112 × 20)

A N S W E R s1 = 1.001, e1 = −2, s2 = 1.111, e2 = 0

1. e1 < e2, so swap. d = 2. Tentative exp = 0.

2. Signs of both operands negative, don’t negate s2.

3. Shift s2 (1.001 after swap) right by 2, giving s2 = .010, g = 0, r = 1,
s = 0.

4. 1.111
 + .010

 (1)0.001 S = 0.001, with a carry-out.

5. Carry-out, so shift S right, S = 1.000, exp = exp + 1, so exp = 1.

6. r = low-order bit of sum = 1, s = g ∨ r ∨ s = 0 ∨ 1 ∨ 0 = 1.

7. r AND s = TRUE, so Figure A.11 says round up, S = S + 1 or S = 1.001.

8. Both signs negative, so sign of result is negative. Final answer:
−S × 2exp = −1.0012 × 21. ■

E X A M P L E Use the algorithm to compute the sum (−1.0102) + 1.1002

A N S W E R s1 = 1.010, e1 = 0, s2 = 1.100, e2 = 0

1. No swap, d = 0, tentative exp = 0.

2. Signs differ, replace s2 with 0.100.

3. d = 0, so no shift. r = g = s = 0.

swap compl sign(a1) sign(a2) sign(result)

Yes + – –

Yes – + +

No No + – +

No No – + –

No Yes + – –

No Yes – + +

FIGURE A.12 Rules for computing the sign of a sum when the addends have different
signs. The swap column refers to swapping the operands in step 1, while the compl column
refers to performing a two’s complement in step 4. Blanks are “don’t care.”

A-26 Appendix A Computer Arithmetic

y re-
ire an

t, and
cur.
 step
, so
le
ari-

dds,
time

. The
ips
]) is
ncy

ve the
. The
e the
 ac-
4 will

er
si-

et-
r

4. 1.010
+ 0.100

 1.110 Signs are different, most-significant bit is 1, no carry-
out, so must two’s complement sum, giving S = 0.010.

5. Shift left twice, so S = 1.000, exp = exp − 2, or exp = −2.

6. Two left shifts, so r = g = s = 0.

7. No addition required for rounding.

8. Answer is sign × S × 2exp or sign × 1.000 × 2–2. Get sign from Figure
A.12. Since complement but no swap and sign(a1) is −, the sign of
sum is +. Thus answer = 1.0002 × 2–2. ■

Speeding Up Addition

Let’s estimate how long it takes to perform the algorithm above. Step 2 ma
quire an addition, step 4 requires one or two additions, and step 7 may requ
addition. If it takes T time units to perform a p-bit add (where p = 24 for single
precision, 53 for double), then it appears the algorithm will take at least 4T time
units. But that is too pessimistic. If step 4 requires two adds, then a1 and a2 have
the same exponent and different signs. But in that case the difference is exac
so no round-up is required in step 7. Thus only three additions will ever oc
Similarly, it appears that a variable shift may be required both in step 3 and
5. But if |e1 − e2| ≤ 1, then step 3 requires a right shift of at most one place
only step 5 needs a variable shift. And if |e1 − e2| > 1, then step 3 needs a variab
shift, but step 5 will require a left shift of at most one place. So only a single v
able shift will be performed. Still, the algorithm requires three sequential a
which, in the case of a 53-bit double-precision significand, can be rather
consuming.

A number of techniques can speed up addition. One is to use pipelining
Putting It All Together section gives examples of how some commercial ch
pipeline addition. Another method (used on the Intel 860 [Kohn and Fu 1989
to perform two additions in parallel. We now explain how this reduces the late
from 3T to T.

There are three cases to consider. First, suppose that both operands ha
same sign. We want to combine the addition operations from steps 4 and 7
position of the high-order bit of the sum is not known ahead of time, becaus
addition in step 4 may or may not cause a carry-out. Both possibilities are
counted for by having two adders. The first adder assumes the add in step
not result in a carry-out. Thus the values of r and s can be computed before the
add is actually done. If r and s indicate a round-up is necessary, the first add
will compute S = s1 + s2 + 1, where the notation +1 means adding 1 at the po
tion of the least-significant bit of s1. This can be done with a regular adder by s
ting the low-order carry-in bit to 1. If r and s indicate no round-up, the adde
computes S = s1 + s2 as usual. One extra detail: when r = 1, s = 0, you will also

A.5 Floating-Point Addition A-27

 ad-
 car-
are
s not
 but
 to re-

nt.
isn’t
ent

all the

 is
in

ever,
it of

ther as-
an be

s

e

ca-
teps

wick,
d at
need to know the low-order bit of the sum, which can also be computed in
vance very quickly. The second adder covers the possibility that there will be
ry-out. The values of r and s and the position where the round-up 1 is added
different from above, but again they can be quickly computed in advance. It i
known whether there will be a carry-out until after the add is actually done,
that doesn’t matter. By doing both adds in parallel, one adder is guaranteed
duce the correct answer.

The next case is when a1 and a2 have opposite signs, but the same expone
The sum a1 + a2 is exact in this case (no round-up is necessary), but the sign
known until the add is completed. So don’t compute the two’s complem
(which requires an add) in step 2, but instead compute s1 + s2 + 1 and s1 + s2 +1 in
parallel. The first sum has the result of simultaneously complementing s1 and
computing the sum, resulting in s2 − s1. The second sum computes s1 − s2. One of
these will be nonnegative and hence the correct final answer. Once again,
additions are done in one step using two adders operating in parallel.

The last case, when a1 and a2 have opposite signs and different exponents,
more complex. If |e1−e2| > 1, the location of the leading bit of the difference is
one of two locations, so there are two cases just as in addition. When |e1−e2| = 1,
cancellation is possible and the leading bit could be almost anywhere. How
only if the leading bit of the difference is in the same position as the leading b
s1 could a round-up be necessary. So one adder assumes a round-up, the o
sumes no round-up. Thus the addition of step 4 and the rounding of step 7 c
combined. However, there is still the problem of the addition in step 2!

To eliminate this addition, consider the following diagram of step 4:

|—— p ——|
s1 1.xxxxxxx
s2 – 1yyzzzzz

If the bits marked z are all 0, then the high-order p bits of S = s1 − s2 can be com-
puted as s1 + s2 + 1. If at least one of the z bits is 1, use s1 + s2. So s1 − s2 can be
computed with one addition. However, we still don’t know g and r for the two’s
complement of s2, which are needed for rounding in step 7.

To compute s1 − s2 and get the proper g and r bits, combine steps 2 and 4 a
follows. Don’t complement s2 in step 2. Extend the adder used for computingS
two bits to the right (call the extended sum S′). If the preliminary sticky bit (com-
puted in step 3) is 1, compute S′ = s′1 + s′2 , where s′1 has two 0 bits tacked onto
the right, and s′2 has preliminary g and r appended. If the sticky bit is 0, comput
s′1 + s′2 + 1. Now the two low-order bits of S′ have the correct values of g and r
(the sticky bit was already computed properly in step 3). Finally, this modifi
tion can be combined with the modification that combines the addition from s
4 and 7 to provide the final result in time T, the time for one addition.

A few more details need to be considered, as discussed in Santoro, Be
and Horowitz [1989] and Exercise A.17. Although the Santoro paper is aime

A-28 Appendix A Computer Arithmetic

nt is
itude

 if
expo-
e a
l, the

ift

it
 usual
lt is
to 0.

 in-
55 in
.

oat-
al-

-
nt

rithm
 be

y bit.
ever,
le for
quo-
multiplication, much of the discussion applies to addition as well. Also releva
Exercise A.19, which contains an alternate method for adding signed magn
numbers.

Denormalized Numbers

Unlike multiplication, for addition very little changes in the above description
one of the inputs is a denormal number. There must be a test to see if the
nent field is 0. If it is, then when unpacking the significand there will not b
leading 1. By setting the biased exponent to 1 when unpacking a denorma
algorithm works unchanged.

To deal with denormalized outputs, step 5 must be modified slightly. ShS
until it is normalized, or until the exponent becomes Emin (that is, the biased ex-
ponent becomes 1). If the exponent is Emin and, after rounding, the high-order b
of S is 1, then the result is a normalized number and should be packed in the
way, by omitting the 1. If, on the other hand, the high-order bit is 0, the resu
denormal. When the result is unpacked, the exponent field must be set
Section A.7 discusses the exact rules for detecting underflow.

Incidentally, detecting overflow is very easy. It can only happen if step 5
volves a shift right and the biased exponent at that point is bumped up to 2
single precision (or 2047 for double precision), or if this occurs after rounding

In this section, we’ll discuss floating-point division and remainder.

Iterative Division

We earlier discussed an algorithm for integer division. Converting it into a fl
ing-point division algorithm is similar to converting the integer multiplication
gorithm into floating point. The formula

(s1 × 2e1) / (s2 × 2e2) = (s1 / s2) × 2e1–e2

shows that if the divider computes s1/s2, then the final answer will be this quo
tient multiplied by 2e1−e2. Referring to Figure A.2(b) (page A-4), the alignme
of operands is slightly different from integer division. Load s2 into B and s1 into
P. The A register is not needed to hold the operands. Then the integer algo
for division (with the one small change of skipping the very first left shift) can
used, and the result will be of the form q0.q1⋅⋅⋅ . To round, simply compute two
additional quotient bits (guard and round) and use the remainder as the stick
The guard digit is necessary because the first quotient bit might be 0. How
since the numerator and denominator are both normalized, it is not possib
the two most-significant quotient bits to be 0. This algorithm produces one
tient bit in each step.

A.6 Division and Remainder

A.6 Division and Remainder A-29

ther
ed in
hen
t al-
ms,
e

ero,
 based
has
A different approach to division converges to the quotient at a quadratic ra
than a linear rate. An actual machine that uses this algorithm will be discuss
section A.10. First, we will describe the two main iterative algorithms, and t
we will discuss the pros and cons of iteration when compared with the direc
gorithms. There is a general technique for constructing iterative algorith
called Newton’s iteration, shown in Figure A.13. First, cast the problem in th

form of finding the zero of a function. Then, starting from a guess for the z
approximate the function by its tangent at that guess and form a new guess
on where the tangent has a zero. If xi is a guess at a zero, then the tangent line
the equation

y − f (xi) = f ′(xi)(x − xi)

This equation has a zero at

A.6.1 x = xi +1 = xi −

To recast division as finding the zero of a function, consider f(x) = x–1 – b.

Since the zero of this function is at 1/b, applying Newton’s iteration to it will give
an iterative method of computing 1/b from b. Using f ′(x) = −1/x2, Equation A.6.1
becomes

A.6.2 xi +1 = xi − = xi + xi – xi
2 b = xi(2 − xib)

FIGURE A.13 Newton’s iteration for zero finding. If xi is an estimate for a zero of f, then
xi+1 is a better estimate. To compute xi+1, find the intersection of the x axis with the tangent
line to f at f(xi).

x
x

i + 1
x

i

f(x)

f(x
i
)

f(xi)

f ′ (xi)

1 xi⁄ b–

1 xi
2⁄–

A-30 Appendix A Computer Arithmetic

d? To

-

f the
 in
r ap-

r func-

e

 slow
lf-
dent
ver-
Thus, we could implement computation of a/b using the following method:

1. Scale b to lie in the range 1 ≤ b < 2 and get an approximate value of 1/b (call
it x0) using a table lookup.

2. Iterate xi+1 = xi(2 − xib) until reaching an xn that is accurate enough.

3. Compute axn and reverse the scaling done in step 1.

Here are some more details. How many times will step 2 have to be iterate
say that xi is accurate to p bits means that  (xi − 1/b)/(1/b) = 2−p, and a simple al-
gebraic manipulation shows that when this is so, then (xi+1 − 1/b)/(1/b) = 2−2p.
Thus the number of correct bits doubles at each step. Newton’s iteration isself-
correcting in the sense that making an error in xi doesn’t really matter. That is, it
treats xi as a guess at 1/b and returns xi+1 as an improvement on it (roughly dou
bling the digits). One thing that would cause xi to be in error is rounding error.
More importantly, however, in the early iterations we can take advantage o
fact that we don’t expect many correct bits by performing the multiplication
reduced precision, thus gaining speed without sacrificing accuracy. Anothe
plication of Newton’s iteration is discussed in Exercise A.20.

The second iterative division method is sometimes called Goldschmidt’s
algorithm. It is based on the idea that to compute a/b, you should multiply the nu-
merator and denominator by a number r with rb ≈ 1. In more detail, let x0 = a and
y0 = b. At each step compute xi+1 = rixi and yi+1 = riyi. Then the quotient xi+1/yi+1
= xi/yi = a/b is constant. If we pick ri so that yi → 1, then xi → a/b, so the xi con-
verge to the answer we want. This same idea can be used to compute othe
tions. For example, to compute the square root of a, let x0 = a and y0 = a, and at
each step compute xi+1 = ri

2xi, yi+1 = riyi. Then xi+1/yi+1
2 = xi/yi

2 = 1/a, so if the ri
are chosen to drive xi → 1, then yi → . This technique is used to comput
square roots on the TI 8847.

Returning to Goldschmidt’s division algorithm, set x0 = a and y0 = b, and write b
= 1 − δ, where  δ < 1. If we pick r0 = 1 + δ, then y1 = r0y0 = 1 − δ 2. We next pick
r1 = 1 + δ 2, so that y2 = r1y1 = 1 − δ 4, and so on. Since  δ < 1, yi → 1. With this
choice of ri, the xi will be computed as xi+1 = r ixi = (1 + δ 2

i)xi = (1 + (1 − b)2i)xi, or

A.6.3 xi+1 = a [1 + (1 − b)] [1 + (1 − b)2] [1 + (1 − b)4] ⋅⋅⋅ [1 + (1 − b)2 i]

There appears to be two problems with this algorithm. First, convergence is
when b is not near 1 (that is, δ is not near 0); and second, the formula isn’t se
correcting—since the quotient is being computed as a product of indepen
terms, an error in one of them won’t get corrected. To deal with slow con
gence, if you want to compute a/b, look up an approximate inverse to b (call it
b′), and run the algorithm on ab′/bb′. This will converge rapidly since bb′ ≈ 1.

a

A.6 Division and Remainder A-31

ith a
old-
cise

full

nver-

 does
-
rlier

t we

e

-

are.
Fur-
nlike

 the
eliv-
ton’s
To deal with the self-correction problem, the computation should be run w
few bits of extra precision to compensate for rounding errors. However, G
schmidt’s algorithm does have a weak form of self-correction, in that the pre
value of the ri does not matter. Thus, in the first few iterations, when the
precision of 1 – δ

2i is not needed you can choose ri to be a truncation of 1 + δ
2i,,

which may make these iterations run faster without affecting the speed of co
gence. If ri is truncated, then yi is no longer exactly 1 – δ

2i. Thus, Equation A.6.3
can no longer be used, but it is easy to organize the computation so that it
not depend on the precise value of ri. With these changes, Goldschmidt’s algo
rithm is as follows (the notes in brackets show the connection with our ea
formulas).

1. Scale a and b so that 1 ≤ b < 2.

2. Look up an approximation to 1/b (call it b′) in a table.

3. Set x0 = ab′ and y0 = bb′.

4. Iterate until xi is close enough to a/b:

Loop

r ≈ 2 − y [if yi = 1 + δi, then r ≈ 1 − δi]

y = y × r [yi+1 = yi × r ≈ 1 − δi
2]

xi+1 = xi × r [xi+1 = xi × r]

End loop

The two iteration methods are related. Suppose in Newton’s method tha
unroll the iteration and compute each term xi+ 1 directly in terms of b, instead of
recursively in terms of xi. By carrying out this calculation (see Exercise A.22), w
discover that

xi+1 = x0(2 − x0b) [(1 + (x0b − 1)2] [1 + (x0b − 1)4] … [1 + (x0b − 1)2i]

This formula is very similar to Equation A.6.3. In fact they are identical if a, b in
A.6.3 are replaced with ax0, bx0 and a = 1. Thus if the iterations were done to infi
nite precision, the two methods would yield exactly the same sequence xi.

The advantage of iteration is that it doesn’t require special divide hardw
Instead, it can use the multiplier (which, however, requires extra control).
ther, on each step, it delivers twice as many digits as in the previous step—u
ordinary division, which produces a fixed number of digits at every step.

There are two disadvantages with inverting by iteration. The first is that
IEEE standard requires division to be correctly rounded, but iteration only d
ers a result that is close to the correctly rounded answer. In the case of New
iteration, which computes 1/b instead of a/b directly, there is an additional
problem. Even if 1/b was correctly rounded, there is no guarantee that a/b will be.

A-32 Appendix A Computer Arithmetic

ve a
re is
nt in

sult

r
,

e
by 1
21.
 the
han
n
tipli-
ch as
An-
com-
n be
0.

nc-

ed,
An example in decimal with p = 2 is a = 13, b = 51. Then a/b = .2549…, which
rounds to .25. But 1/b = .0196…, which rounds to .020, and then a × .020 = .26,
which is off by 1. The second disadvantage is that iteration does not gi
remainder. This is especially troublesome if the floating-point divide hardwa
being used to perform integer division, since a remainder operation is prese
almost every high-level language.

Traditional folklore has held that the way to get a correctly rounded re
from iteration is to compute 1/b to slightly more than 2p bits, compute a/b to
slightly more than 2p bits, and then round to p bits. However, there is a faste
way, which apparently was first implemented on the TI 8847. In this methoda/b
is computed to about 6 extra bits of precision, giving a preliminary quotient q. By
comparing qb with a (again with only 6 extra bits), it is possible to quickly decid
whether q is correctly rounded or whether it needs to be bumped up or down
in the least significant place. This algorithm is explored further in Exercise A.

One factor to take into account when deciding on division algorithms is
relative speed of division and multiplication. Since division is more complex t
multiplication, it will run more slowly. A common rule of thumb is that divisio
algorithms should try to achieve a speed that is about one-third that of mul
cation. One argument in favor of this rule is that there are real programs (su
some versions of spice) where the ratio of division to multiplication is 1:3.
other place where a factor of 3 arises is in the standard iterative method for
puting square root. This method involves one division per iteration, but it ca
replaced by one using three multiplications. This is discussed in Exercise A.2

Floating-Point Remainder

For nonnegative integers, integer division and remainder satisfy

a = (a DIV b)b + a REM b, 0 ≤ a REM b < b

A floating-point remainder x REM y can be similarly defined as x = INT(x/y)y + x
REM y. How should x/y be converted to an integer? The IEEE remainder fu
tion uses the round-to-even rule. That is, pick n = INT (x/y) so that  x/y − n ≤
1/2. If two different n satisfy this relation, pick the even one. Then REM is de-
fined to be x − yn. Unlike integers where 0 ≤ a REM b < b, for floating-point
numbers  x REM y ≤ y/2. Although this defines REM precisely, it is not a practi-
cal operational definition, because n can be huge. In single precision, n could
be as large as 2127/2–126 = 2253 ≈ 1076.

There is a natural way to compute REM if a direct division algorithm is used.
Proceed as if you were computing x/y. If x = s12

e1 and y = s22
e2 and the divider is

as in Figure A.2(b) (page A-4), then load s1 into P and s2 into B. After e1 − e2
division steps, the P register will hold a number r of the form x − yn satisfying
0 ≤ r < y. Since the IEEE remainder satisfies  REM ≤ y/2, REM is equal to either
r or r − y. It is only necessary to keep track of the last quotient bit produc
which is needed to resolve halfway cases. Unfortunately, e1 − e2 can be a lot of

A.6 Division and Remainder A-33

 are
ent

 the

-
divi-

evi-

gs,
ider

t to

ives

 sys-
e had

ation

tions

ent
ere
Berke-
-

in

ns
nts.
 the
-
2

ty.
steps, and floating-point units typically have a maximum amount of time they
allowed to spend on one instruction. Thus, it is usually not possible to implem
REM directly. None of the chips discussed in section A.10 implements REM, but
they could by providing a remainder-step instruction—this is what is done on
Intel 8087 family. A remainder step takes as arguments two numbers x and y, and
performs divide steps until either the remainder is in P or n steps have been per
formed, where n is a small number, such as the number of steps required for
sion in the highest-supported precision. Then REM can be implemented as a
software routine that calls the REM step instruction  (e1 − e2)/n times, initially
using x as the numerator, but then replacing it with the remainder from the pr
ous REM step.

REM can be used for computing trigonometric functions. To simplify thin
imagine that we are working in base 10 with five significant figures, and cons
computing sin x. Suppose that x = 7. Then we can reduce by π = 3.1416 and com-
pute sin(7) = sin(7 − 2 × 3.1416) = sin(0.7168) instead. But suppose we wan
compute sin(2.0 × 105). Then 2 × 105/3.1416 = 63661.8, which in our five-place
system comes out to be 63662. Since multiplying 3.1416 times 63662 g
200000.5392, which rounds to 2.0000 × 105, argument reduction reduces 2 × 105

to 0, which is not even close to being correct. The problem is that our five-place
tem does not have the precision to do correct argument reduction. Suppose w
the REM operator. Then we could compute 2 × 105 REM 3.1416 and get −.53920.
However, this is still not correct because we used 3.1416, which is an approxim
for π. The value of 2 × 105 REM π is −.071513.

Traditionally, there have been two approaches to computing periodic func
with large arguments. The first is to return an error for their value when x is large.
The second is to store π to a very large number of places and do exact argum
reduction. The REM operator is not much help in either of these situations. Th
is a third approach that has been used in some math libraries, such as the
ley UNIX 4.3bsd release. In these libraries, π is computed to the nearest floating
point number. Let’s call this machine π, and denote it by π ′. Then when comput-
ing sin x, reduce x using x REM π ′. As we saw in the above example, x REM π ′ is
quite different from x REM π when x is large, so that computing sin x as sin(x REM

π ′) will not give the exact value of sin x. However, computing trigonometric
functions in this fashion has the property that all familiar identities (such as s2 x
+ cos2 x = 1) are true to within a few rounding errors. Thus, using REM together
with machine p¢π provides a simple method of computing trigonometric functio
that is accurate for small arguments and still may be useful for large argume

When REM is used for argument reduction, it is very handy if it also returns
low-order bits of n (where x REM y = x − ny). This is because a practical imple
mentation of trigonometric functions will reduce by something smaller than π.
For example, it might use π/2, exploiting identities such as sin(x − π/2) = −cos x,
sin(x − π) = −sin x. Then the low bits of n are needed to choose the correct identi

A-34 Appendix A Computer Arithmetic

onal

per-
s a

m-
d
 per-

hat is
nce.
t be-
tion
n be

re not
ment

dd
 from

d
ia

rs by

 A.7
t are
Before leaving the subject of floating-point arithmetic, we present a few additi
topics.

Fused Multiply-Add

Probably the most common use of floating-point units is performing matrix o
ations, and the most frequent matrix operation is multiplying a matrix time
matrix (or vector), which boils down to computing an inner product, x1⋅y1 + x2⋅y2
+ … + xn⋅yn. Computing this requires a series of multiply-add combinations.

Motivated by this, the IBM RS/6000 introduced a single instruction that co
putes ab + c, the fused multiply-add. Although this requires being able to rea
three operands in a single instruction, it has the potential for improving the
formance of computing inner products.

The fused multiply-add computes ab + c exactly and then rounds. Although
rounding only once increases the accuracy of inner products somewhat, t
not its primary motivation. There are two main advantages of rounding o
First, as we saw in the previous sections, rounding is expensive to implemen
cause it may require an addition. By rounding only once, an addition opera
has been eliminated. Second, the extra accuracy of fused multiply-add ca
used to compute correctly rounded division and square root when these a
available directly in hardware. Fused multiply-add can also be used to imple
efficient floating-point multiple-precision packages.

The implementation of correctly rounded division using fused multiply-a
has many details, but the main idea is simple. Consider again the example
section A.6 (page A-32), which was computing a/b with a = 13, b = 51. Then 1/b
rounds to b′ = .020, and ab′ rounds to q′ = .26, which is not the correctly rounde
quotient. Applying fused multiply-add twice will correctly adjust the result, v
the formulas

r = a − bq′

q′′ = q′ + rb′

Computing to two-digit accuracy, bq′ = 51 × .26 rounds to 13, and so r = a − bq′
would be 0, giving no adjustment. But using fused multiply-add gives r = a − bq′
= 13 − (51 × .26) = −.26, and then q′′ = q′ + rb′ = .26 − .0052 = .2548, which
rounds to the correct quotient, .25. More details can be found in the pape
Montoye, Hokenek, and Runyon [1990] and Markstein [1990].

Precisions

The standard specifies four precisions: single, single extended, double, and dou-
ble extended. The properties of these precisions are summarized in Figure
(page A-16). Implementations are not required to have all four precisions, bu

A.7 More on Floating-Point Arithmetic

A.7 More on Floating-Point Arithmetic A-35

 or all
ouble

ent-
pport

reci-
ver,

s do
th of
hitec-

f

reci-
sider

this
ave
ithm
ult
om-
 sim-
les of
al

y pre-
erg
xam-

lt of
n fur-

uce
t only
put-
 sug-
 fact,
encouraged to support either the combination of single and single extended
of single, double, and double extended. Because of the widespread use of d
precision in scientific computing, double precision is almost always implem
ed. Thus the computer designer usually only has to decide whether to su
double extended and, if so, how many bits it should have.

The Motorola 68882 and Intel 387 coprocessors implement extended p
sion using the smallest allowable size of 80 bits (64 bits of significand). Howe
many of the more recently designed, high-performance floating-point chip
not implement 80-bit extended precision. One reason is that the 80-bit wid
extended precision is awkward for 64-bit buses and registers. Some new arc
tures, such as SPARC V8 and PA-RISC, specify a 128-bit extended (or quad) pre-
cision. They have established a de facto convention for quad that has 15 bits o
exponent and 113 bits of significand.

Although most high-level languages do not provide access to extended p
sion, it is very useful to writers of mathematical software. As an example, con
writing a library routine to compute the length of a vector (x,y) in the plane,
namely, . If x is larger than 2Emax/2, then computing this in the obvious
way will overflow. This means that either the allowable exponent range for
subroutine will be cut in half, or a more complex algorithm using scaling will h
to be employed. But if extended precision is available, then the simple algor
will work. Computing the length of a vector is a simple task, and it is not diffic
to come up with an algorithm that doesn’t overflow. However, there are more c
plex problems for which extended precision means the difference between a
ple, fast algorithm and a much more complex one. One of the best examp
this is binary-to-decimal conversion. An efficient algorithm for binary-to-decim
conversion that makes essential use of extended precision is very readabl
sented in Coonen [1984]. This algorithm is also briefly sketched in Goldb
[1991]. Computing accurate values for transcendental functions is another e
ple of a problem that is made much easier if extended precision is present.

One very important fact about precision concerns double rounding. To illus-
trate in decimals, suppose that we want to compute 1.9 × 0.66, and that single pre-
cision is two digits, while extended precision is three digits. The exact resu
the product is 1.254. Rounded to extended precision, the result is 1.25. Whe
ther rounded to single precision, we get 1.2. However, the result of 1.9 × 0.66 cor-
rectly rounded to single precision is 1.3. Thus, rounding twice may not prod
the same result as rounding once. Suppose you want to build hardware tha
does double-precision arithmetic. Can you simulate single precision by com
ing first in double precision and then rounding to single? The above example
gests that you can’t. However, double rounding is not always dangerous. In
the following rule is true (this is not easy to prove, but see Exercise A.25).

If x and y have p-bit significands, and x + y is computed exactly and
then rounded to q places, a second rounding to p places will not
change the answer if q ≥ 2p +2. This is true not only for addition, but
also for multiplication, division, and square root.

x2 y2+

A-36 Appendix A Computer Arithmetic

reci-
and

ero,
set a
t
ple-

ption
lue of

t
 an
alue

ost
,

r or
i-
fact,

usual
s so
like-
affect
 dis-

entify
 mul-

ply
ay be

, its
ally
 sup-
ue of
In our example above, q = 3 and p = 2, so q ≥ 2p + 2 is not true. On the other
hand, for IEEE arithmetic, double precision has q = 53, p = 24, so q = 53 ≥ 2p +
2 = 50. Thus, single precision can be implemented by computing in double p
sion—that is, computing the answer exactly and then rounding to double—
then rounding to single precision.

Exceptions

The IEEE standard defines five exceptions: underflow, overflow, divide by z
inexact, and invalid. By default, when these exceptions occur, they merely
flag and the computation continues. The flags are sticky, meaning that once se
they remain set until explicitly cleared. The standard strongly encourages im
mentations to provide a trap-enable bit for each exception. When an exce
with an enabled trap handler occurs, a user trap handler is called, and the va
the associated exception flag is undefined. In section A.3 we mentioned tha
has the value NaN and 1/0 is ∞. These are examples of operations that raise
exception. By default, computing sets the invalid flag and returns the v
NaN. Similarly 1/0 sets the divide-by-zero flag and returns ∞.

The underflow, overflow, and divide-by-zero exceptions are found in m
other systems. The invalid exception is for the result of operations such as
0/0, or ∞ − ∞, which don’t have any natural value as a floating-point numbe
as ±∞. The inexact exception is peculiar to IEEE arithmetic and occurs when e
ther the result of an operation must be rounded or when it overflows. In
since 1/0 and an operation that overflows both deliver ∞, the exception flags must
be consulted to distinguish between them. The inexact exception is an un
“exception,” in that it is not really an exceptional condition because it occur
frequently. Thus, enabling a trap handler for the inexact exception will most
ly have a severe impact on performance. Enabling a trap handler doesn’t
whether an operation is exceptional except in the case of underflow. This is
cussed below.

The IEEE standard assumes that when a trap occurs, it is possible to id
the operation that trapped and its operands. On machines with pipelining or
tiple arithmetic units, when an exception occurs, it may not be enough to sim
have the trap handler examine the program counter. Hardware support m
necessary to identify exactly which operation trapped.

Another problem is illustrated by the following program fragment.

r1 = r2 / r3

r2 = r4 + r5

These two instructions might well be executed in parallel. If the divide traps
argument r2 could already have been overwritten by the addition, especi
since addition is almost always faster than division. Computer systems that
port trapping in the IEEE standard must provide some way to save the val

3–

3–

1–

A.7 More on Floating-Point Arithmetic A-37

 first

e

 in-
xam-

esn’t
n this
s be-
hout
 trap
l pro-

ore
if an
rmal.
is set
e ra-
g a
late

1.0

n the

a re-
e ex-

d
led.
nce

unded,
d
ts in
ence
s this
r2 , either in hardware or by having the compiler avoid such a situation in the
place. This kind of problem is not peculiar to floating point. In the sequence

r1 = 0(r2)

r2 = r3

it would be efficient to execute r2 = r3 while waiting for memory. But if access-
ing 0(r2) causes a page fault, r2 might no longer be available for restarting th
instruction r1 = 0(r2) .

One approach to this problem, used in the MIPS R3010, is to identify
structions that may cause an exception early in the instruction cycle. For e
ple, an addition can overflow only if one of the operands has an exponent of Emax,
and so on. This early check is conservative: It might flag an operation that do
actually cause an exception. However, if such false positives are rare, the
technique will have excellent performance. When an instruction is tagged a
ing possibly exceptional, special code in a trap handler can compute it wit
destroying any state. Remember that all these problems occur only when
handlers are enabled. Otherwise, setting the exception flags during norma
cessing is straightforward.

Underflow

We have alluded several times to the fact that detection of underflow is m
complex than for the other exceptions. The IEEE standard specifies that
underflow trap handler is enabled, the system must trap if the result is deno
On the other hand, if trap handlers are disabled, then the underflow flag
only if there is a loss of accuracy—that is, if the result must be rounded. Th
tionale is, if no accuracy is lost on an underflow, there is no point in settin
warning flag. But if a trap handler is enabled, the user might be trying to simu
flush-to-zero and should therefore be notified whenever a result dips below ×
2Emin.

So if there is no trap handler, the underflow exception is signaled only whe
result is denormal and inexact. But the definitions of denormal and inexact are
both subject to multiple interpretations. Normally, inexact means there was
sult that couldn’t be represented exactly and had to be rounded. Consider th
ample (in a base 2 floating-point system with 3-bit significands) of (1.112 × 2−2) ×
(1.112 × 2Emin) = 0.1100012 × 2Emin, with round to nearest in effect. The delivere
result is 0.112 × 2Emin, which had to be rounded, causing inexact to be signa
But is it correct to also signal underflow? Gradual underflow loses significa
because the exponent range is bounded. If the exponent range were unbo
the delivered result would be 1.102 × 2Emin-1, exactly the same answer obtaine
with gradual underflow. The fact that denormalized numbers have fewer bi
their significand than normalized numbers therefore doesn’t make any differ
in this case. The commentary to the standard [Cody et al. 1984] encourage

A-38 Appendix A Computer Arithmetic

ever
 the

o the
flow
 re-

rmal.

g the
sig-

g ei-
ns.
lt of
flow
abled,
rflow

re is

ation
ntial
sult,
g er-
n if it

point
 inte-
ad to

 for
cre-
ity of
will
p, and
as the criterion for setting the underflow flag. That is, it should be set when
the delivered result is different from what would be delivered in a system with
same fraction size, but with a very large exponent range. However, owing t
difficulty of implementing this scheme, the standard allows setting the under
flag whenever the result is denormal and different from the infinitely precise
sult.

There are two possible definitions of what it means for a result to be deno
Consider the example of 1.102 × 2-1 multiplied by 1.012 × 2Emin. The exact prod-
uct is 0.1111 × 2Emin. The rounded result is the normal number 1.002 × 2Emin.
Should underflow be signaled? Signaling underflow means that you are usin
before rounding rule, because the result was denormal before rounding. Not
naling underflow means that you are using the after rounding rule, because the
result is normalized after rounding. The IEEE standard provides for choosin
ther rule; however, the one chosen must be used consistently for all operatio

To illustrate these rules, consider floating-point addition. When the resu
an addition (or subtraction) is denormal, it is always exact. Thus the under
flag never needs to be set for addition. That’s because if traps are not en
then no exception is raised. And if traps are enabled, the value of the unde
flag is undefined, so again it doesn’t need to be set.

One final subtlety should be mentioned concerning underflow. When the
no underflow trap handler, the result of an operation on p-bit numbers that causes
an underflow is a denormal number with p − 1 or fewer bits of precision. When
traps are enabled, the trap handler is provided with the result of the oper
rounded to p bits and with the exponent wrapped around. Now there is a pote
double-rounding problem. If the trap handler wants to return the denormal re
it can’t just round its argument, because that might lead to a double-roundin
ror. Thus, the trap handler must be passed at least one extra bit of informatio
is to be able to deliver the correctly rounded result.

The previous section showed that many steps go into implementing floating-
operations. However, each floating-point operation eventually reduces to an
ger operation. Thus, increasing the speed of integer operations will also le
faster floating point.

Integer addition is the simplest operation and the most important. Even
programs that don’t do explicit arithmetic, addition must be performed to in
ment the program counter and to calculate addresses. Despite the simplic
addition, there isn’t a single best way to perform high-speed addition. We
discuss three techniques that are in current use: carry lookahead, carry ski
carry select.

A.8 Speeding Up Integer Addition

A.8 Speeding Up Integer Addition A-39

log-
ircuit
m

2)

to

This

rry-

tical

 about

arry
Carry Lookahead

An n-bit adder is just a combinational circuit. It can therefore be written by a
ic formula whose form is a sum of products and can be computed by a c
with two levels of logic. How do you figure out what this circuit looks like? Fro
Equation A.2.1 (page A-2) the formula for the ith sum can be written as

A.8.1 si = ai bi ci + ai bi ci + ai bi ci + ai bi ci

where ci is both the carry-in to the ith adder and the carry-out from the (i−1)-st
adder.

The problem with this formula is that although we know the values of ai and
bi—they are inputs to the circuit—we don’t know ci. So our goal is to write ci in
terms of ai and bi. To accomplish this, we first rewrite Equation A.2.2 (page A-
as

A.8.2 ci = gi -1+ p i -1c i -1, g i -1= a i -1b i -1, p i -1 = a i -1 + b i -1

Here is the reason for the symbols p and g: If gi−1 is true, then ci is certainly
true, so a carry is generated. Thus, g is for generate. If pi−1 is true, then if ci−1 is
true, it is propagated to ci. Start with Equation A.8.1 and use Equation A.8.2
replace ci with gi–1 + pi–1ci–1. Then, use Equation A.8.2 with i − 1 in place of i to
replace ci–1 with ci–2, and so on. This gives the result

A.8.3 ci = g i–1 + p i–1 gi–2 + p i–1 pi–2gi−3 + ⋅⋅⋅ + p i–1 pi–2 ⋅⋅⋅ p1 g0 + p i–1 pi–2 ⋅⋅⋅ p1p0c0

An adder that computes carries using Equation A.8.3 is called a carry-looka-
head adder, or CLA. A CLA requires one logic level to form p and g, two levels
to form the carries, and two for the sum, for a grand total of five logic levels.
is a vast improvement over the 2n levels required for the ripple-carry adder.

Unfortunately, as is evident from Equation A.8.3 or from Figure A.14, a ca
lookahead adder on n bits requires a fan-in of n + 1 at the OR gate as well as at the
rightmost AND gate. Also, the pn–1 signal must drive n AND gates. In addition, the
rather irregular structure and many long wires of Figure A.14 make it imprac
to build a full carry-lookahead adder when n is large.

However, we can use the carry-lookahead idea to build an adder that has
log2n logic levels (substantially fewer than the 2n required by a ripple-carry
adder) and yet has a simple, regular structure. The idea is to build up the p’s and
g’s in steps. We have already seen that

c1 = g0 + c0p0

This says there is a carry-out of the 0th position (c1) either if there is a carry gen-
erated in the 0th position, or if there is a carry into the 0th position and the c
propagates. Similarly,

c2 = G01 + P01c0

A-40 Appendix A Computer Arithmetic

t two

bits
G01 means there is a carry generated out of the block consisting of the firs
bits. P01 means that a carry propagates through this block. P and G have the fol-
lowing logic equations:

 G01 = g1 + p1g0

 P01 = p1p0

More generally, for any j with i < j, j + 1 < k, we have the recursive relations

A.8.4 ck+1 = Gik + Pikci

A.8.5 Gik = Gj+1,k + Pj+1,kGij

A.8.6 Pik = Pij Pj+1,k

Equation A.8.5 says that a carry is generated out of the block consisting of i
through k inclusive if it is generated in the high-order part of the block (j + 1, k)
or if it is generated in the low-order part of the block (i,j) and then propagated
through the high part. These equations will also hold for i ≤ j < k if we set Gii = gi

and Pii = pi.

E X A M P L E Express P03 and G03 in terms of p’s and g’s.

A N S W E R Using Equation A.8.6, P03 = P01P23 = P00P11P22P33. Since Pii = pi, P03 =
p0p1p2p3. For G03, Equation A.8.5 says G03 = G23 + P23G01 = (G33 +
P33G22) + (P22P33)(G11 + P11G00) = g3 + p3g2 + p3 p2 g1 + p3 p2 p1g0.

■

FIGURE A.14 Pure carry-lookahead circuit for computing the carry-out c n of an n-bit
adder.

g
n–1 p

n–1

c
n

g
n–2

p
n–2

g
n–3

p
1

g
0

p
0

c
0

c
n
= g

n–1
+ p

n–1
g

n–2
+ . . . +p

n–1
p

n–2
. . . p

1
g

0

+ p

n–1
p

n–2
. . . p

0
c

0

A.8 Speeding Up Integer Addition A-41

of a
rious
d
he
put

ree

must
s is

e-to-

dded

sing
With these preliminaries out of the way, we can now show the design
practical CLA. The adder consists of two parts. The first part computes va
values of P and G from pi and gi, using Equations A.8.5 and A.8.6; the secon
part uses these P and G values to compute all the carries via Equation A.8.4. T
first part of the design is shown in Figure A.15. At the top of the diagram, in
numbers a7⋅⋅⋅a0 and b7⋅⋅⋅b0 are converted to p’s and g’s using cells of type 1. Then
various P’s and G’s are generated by combining cells of type 2 in a binary-t
structure. The second part of the design is shown in Figure A.16. By feedingc0 in
at the bottom of this tree, all the carry bits come out at the top. Each cell
know a pair of (P,G) values in order to do the conversion, and the value it need
written inside the cells. Now compare Figures A.15 and A.16. There is a on
one correspondence between cells, and the value of (P,G) needed by the carry-
generating cells is exactly the value known by the corresponding (P,G) generat-
ing cells. The combined cell is shown in Figure A.17. The numbers to be a
flow into the top and downward through the tree, combining with c0 at the bottom
and flowing back up the tree to form the carries. Note that one thing is mis
from Figure A.17: a small piece of extra logic to compute c8 for the carry-out of
the adder.

FIGURE A.15 First part of carry-lookahead tree. As signals flow from the top to the bot-
tom, various values of P and G are computed.

1 1 1 1 1 1

1

1 1

2

2

2

2

2

a
7

b
7

a
6

b
6

a
5

b
5

a
4

b
4

a
3

b
3

a
2

b
2

a
1

b
1

a
0

b
0

p
0

g
0

p
1

g
1

g
7

p
7

G
6, 7

P
6, 7

G
4, 5

P
4, 5

G
2, 3

P
2, 3

G
0 ,1

P
0 ,1

G
4, 7

P
4, 7

G
0, 3

P
0, 3

G
0, 7

P
0, 7

g
i
 = a

i
b

i
p

i
 = a

i
 + b

i
G

i, k
 = G

j+1, k
 + P

j+1, k
 G

i, j

P
i, k

 = P
i, j

 P
j+1,k

P
i, j

G
i, j

G
j+1, k

 a
i

b
i

P
j+1, k

2 2

2

A-42 Appendix A Computer Arithmetic
FIGURE A.16 Second part of carry-lookahead tree. Signals flow from the bottom to the
top, combining with P and G to form the carries.

FIGURE A.17 Complete carry-lookahead tree adder. This is the combination of Figures
A.15 and A.16. The numbers to be added enter at the top, flow to the bottom to combine with
c 0, and then flow back up to compute the sum bits.

c
7

c
6

c
5

c
4

c
3

c
2

c
1

c
0

p
0

g
0

p
2

g
2

P 0, 1

G
0, 1

p
4

g
4

p
6

g
6

c
6

c
4

c
2

c
0

c
0

c
4

c
0

c
j+1

= G
i j

+ P
i j

c
i

c
i

P
i, j

G
i, j

c
i

p
4, 5

G
4, 5

P
0, 3

G
0, 3

A A

A

B

B

s
7

a
7

b
7

c
7

A A A A A A

B

B B B

+ +

B

s
1

a
1

b
1

s
0

a
0

b
0

c
6 c

5
c

4
c

3
c

2
c

1
c

0

c
0

c
0

P
0, 3

G
0, 3

c
4

c
0

s
i a

i
b

i

s
i
= a

i
p

i
= a

i
+ b

i
g

i
= a

i
b

i

g
i

p
i

c
i G

i, k
P

i, k
c

i

c
i

P
i j

G
ij

c
j +1

P
j +1,k

G
j +1,k

b
i

c
i

c
2

c
4c

6

B

A.8 Speeding Up Integer Addition A-43

cially

 ex-
ght of
-
eased
bet-
 lev-

ill be
es to
ows
lf of

ka-
lled a
r this
The bits in a CLA must pass through about log2 n logic levels, compared with
2n for a ripple-carry adder. This is a substantial speed improvement, espe
for a large n. Whereas the ripple-carry adder had n cells, however, the CLA has
2n cells, although in our layout they will take n log n space. The point is that a
small investment in size pays off in a dramatic improvement in speed.

A number of technology-dependent modifications can improve CLAs. For
ample, if each node of the tree has three inputs instead of two, then the hei
the tree will decrease from log2 n to log3 n. Of course, the cells will be more com
plex and thus might operate more slowly, negating the advantage of the decr
height. For technologies where rippling works well, a hybrid design might be
ter. This is illustrated in Figure A.18. Carries ripple between adders at the top
el, while the “B” boxes are the same as those in Figure A.17. This design w
faster if the time to ripple between four adders is faster than the time it tak
traverse a level of “B” boxes. (To make the pattern more clear, Figure A.18 sh
a 16-bit adder, so the 8-bit adder of Figure A.17 corresponds to the right ha
Figure A.18.)

Carry-Skip Adders

A carry-skip adder sits midway between a ripple-carry adder and a carry-loo
head adder, both in terms of speed and cost. (A carry-skip adder is not ca
CSA, as that name is reserved for carry-save adders.) The motivation fo
adder comes from examining the equations for P and G. For example,

P03 = p0 p1 p2 p3

G03 = g3 + p3 g2
 + p3 p2 g1 + p3 p2 p1 g0

FIGURE A.18 Combination of CLA and ripple-carry adder. In the top row, carries ripple
within each group of four boxes.

c
15

c
14

c
13

c
12

P
12, 15

P
8, 15

c
8

c
0

P
0, 7

c
8

c
4

c
0

c
0

G
0, 3

P
0, 3

c
1

c
2

c
3

C

B

B

C C C

B

A-44 Appendix A Computer Arithmetic

rip-
n the
t be
 is 0,
block
st
 fed

d
d
rry-

le, by

 time

arry

dder

ys to
nif-
 by
illus-
erior
lock
e large
here
Computing P is much simpler than computing G, and a carry-skip adder only
computes the P’s. Such an adder is illustrated in Figure A.19. Carries begin
pling simultaneously through each block. If any block generates a carry, the
carry-out of a block will be true, even though the carry-in to the block may no
correct yet. If at the start of each add operation the carry-in to each block
then no spurious carry-outs will be generated. Thus, the carry-out of each
can thus be thought of as if it were the G signal. Once the carry-out from the lea
significant block is generated, it not only feeds into the next block, but is also
through the AND gate with the P signal from that next block. If the carry-out an
P signals are both true, then the carry skips the second block and is ready to fee
into the third block, and so on. The carry-skip adder is only practical if the ca
in signals can be easily cleared at the start of each operation—for examp
precharging in CMOS.

To analyze the speed of a carry-skip adder, let’s assume that it takes 1
unit for a signal to pass through two logic levels. Then it will take k time units for
a carry to ripple across a block of size k, and it will take 1 time unit for a carry to
skip a block. The longest signal path in the carry-skip adder starts with a c
being generated at the 0th position. If the adder is n-bits wide, then it takes k time
units to ripple through the first block, n/k − 2 time units to skip blocks, and k
more to ripple through the last block. To be specific: If we have a 20-bit a
broken into groups of 4 bits, it will take 4 + (20/4 − 2) + 4 = 11 time units to per-
form an add. Some experimentation reveals that there are more efficient wa
divide 20 bits into blocks. For example, consider five blocks with the least-sig
icant 2 bits in the first block, the next 5 bits in the second block, followed
blocks of size 6, 5, and 2. Then the add time is reduced to 9 time units. This
trates an important general principle. For a carry-skip adder, making the int
blocks larger will speed up the adder. In fact, the same idea of varying the b
sizes can sometimes speed up other adder designs as well. Because of th
amount of rippling, a carry-skip adder is most appropriate for technologies w
rippling is fast.

FIGURE A.19 Carry-skip adder. This is a 20-bit carry-skip adder (n = 20) with each block 4-bits wide (k = 4).

a
3

b
3

a
2

b
2

a
1

b
1

a
0

b
0

c
4

c
0

P
4, 7

c
8

c
12

P
12, 15 P

8, 11

a
19

a
18

b
19

b
18

c
16

c
20

A.8 Speeding Up Integer Addition A-45

r-
g the
een
n in
 the

k is
 in

tead
fur-

om
1 bit
skip

ts for
rry-

arry-
ices,
ty of
. For
uxes,
leared
Carry-Select Adder

A carry-select adder works on the following principle: Two additions are pe
formed in parallel, one assuming the carry-in is 0 and the other assumin
carry-in is 1. When the carry-in is finally known, the correct sum (which has b
precomputed) is simply selected. An example of such a design is show
Figure A.20. An 8-bit adder is divided into two halves, and the carry-out from

lower half is used to select the sum bits from the upper half. If each bloc
computing its sum using rippling (a linear-time algorithm), then the design
Figure A.20 is twice as fast at 50% more cost. However, note that the c4 signal
must drive many muxes, which may be very slow in some technologies. Ins
of dividing the adder into halves, it could be divided into quarters for a still
ther speedup. This is illustrated in Figure A.21. If it takes k time units for a block
to add k-bit numbers, and if it takes one time unit to compute the mux input fr
the two carry-out signals, then for optimal operation each block should be
wider than the next, as shown in Figure A.21. Therefore, as in the carry-
adder, the best design involves variable-sized blocks.

As a summary of this section, the asymptotic time and space requiremen
the different adders are given in Figure A.22. (The times for carry-skip and ca
select come from a careful choice of block size. See Exercise A.27 for the c
skip adder.) These different adders shouldn’t be thought of as disjoint cho
but rather as building blocks to be used in constructing an adder. The utili
these different building blocks is highly dependent on the technology used
example, the carry-select adder works well when a signal can drive many m
and the carry-skip adder is attractive in technologies where signals can be c

FIGURE A.20 Simple carry-select adder. At the same time that the sum of the low-order
4 bits are being computed, the high-order bits are being computed twice in parallel: once as-
suming that c4 = 0 and once assuming c4 = 1.

c
0

s
0

s
1

s
2

s
3

c
4

s
4

a
4

b
4

s
5

s
6

s
7

1

0
a

3
b

3
a

2
b

2
a

1
b

1
a

0
b

0

a
7

b
7

a
4

b
4

A-46 Appendix A Computer Arithmetic

 use-
The

 as it
aster,
 re-

irly
the
 for
m

at the start of each operation. Knowing the asymptotic behavior of adders is
ful in understanding them, but relying too much on that behavior is a pitfall.
reason is that asymptotic behavior is only important as n grows very large. But n
for an adder is the bits of precision, and double precision today is the same
was 20 years ago—about 53 bits. Although it is true that as computers get f
computations get longer—and thus have more rounding error, which in turn
quires more precision—this effect grows very slowly with time.

The multiplication and division algorithms presented in section A.2 are fa
slow, producing 1 bit per cycle (although that cycle might be a fraction of
CPU instruction cycle time). In this section we discuss various techniques
higher-performance multiplication and division, including the division algorith
used in the Pentium chip.

FIGURE A.21 Carry-select adder. As soon as the carry-out of the rightmost block is
known, it is used to select the other sum bits.

Adder Time Space

Ripple O(n) O(n)

CLA O(log n) O(n log n)

Carry skip O() O(n)

Carry select O() O(n)

FIGURE A.22 Asymptotic time and space requirements for four different types of
adders.

A.9 Speeding Up Integer Multiplication and Division

c
13

c
8

c
4 c

0

s
0

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

1

00

1

s
10

s
11

s
12

s
13

c
13

c
8

1

s
14

s
15

s
16

s
17

s
18

0

n

n

A.9 Speeding Up Integer Multiplication and Division A-47

it is
 op-
ffer
oni-
o-

ver
 (see
irect-

on
 to be
 To
-
ust fit
er is

r
e

quire

ture.
t be
 ordi-

 cor-
-

Shifting Over Zeros

Although the technique of shifting over zeros is not currently used much,
instructive to consider. It is distinguished by the fact that its execution time is
erand dependent. Its lack of use is primarily attributable to its failure to o
enough speedup over bit-at-a-time algorithms. In addition, pipelining, synchr
zation with the CPU, and good compiler optimization are difficult with alg
rithms that run in variable time. In multiplication, the idea behind shifting o
zeros is to add logic that detects when the low-order bit of the A register is 0
Figure A.2(a) on page A-4) and, if so, skips the addition step and proceeds d
ly to the shift step—hence the term shifting over zeros.

What about shifting for division? In nonrestoring division, an ALU operati
(either an addition or subtraction) is performed at every step. There appears
no opportunity for skipping an operation. But think about division this way:
compute a/b, subtract multiples of b from a, and then report how many subtrac
tions were done. At each stage of the subtraction process the remainder m
into the P register of Figure A.2(b) (page A-4). In the case when the remaind
a small positive number, you normally subtract b; but suppose instead you only
shifted the remainder and subtracted b the next time. As long as the remainde
was sufficiently small (its high-order bit 0), after shifting it still would fit into th
P register, and no information would be lost. However, this method does re
changing the way we keep track of the number of times b has been subtracted
from a. This idea usually goes under the name of SRT division, for Sweeney,
Robertson, and Tocher, who independently proposed algorithms of this na
The main extra complication of SRT division is that the quotient bits canno
determined immediately from the sign of P at each step, as they can be in
nary nonrestoring division.

More precisely, to divide a by b where a and b are n-bit numbers, load a and b
into the A and B registers, respectively, of Figure A.2 (page A-4).

SRT Division 1. If B has k leading zeros when expressed using n bits, shift all the registers left
k bits.

2. For i = 0, n − 1,

(a) If the top three bits of P are equal, set qi = 0 and shift (P,A) one bit left.

(b) If the top three bits of P are not all equal and P is negative, set qi = −1
(also written as 1), shift (P,A) one bit left, and add B.

(c) Otherwise set qi = 1, shift (P,A) one bit left, and subtract B.

End loop

3. If the final remainder is negative, correct the remainder by adding B, and
rect the quotient by subtracting 1 from q0. Finally, the remainder must be shift
ed k bits right, where k is the initial shift.

A-48 Appendix A Computer Arithmetic

 in-
just

 de-
ain-

,

hm.

P

on),

its.
n.
eces-
A numerical example is given in Figure A.23. Although we are discussing
teger division, it helps in explaining the algorithm to imagine the binary point
left of the most-significant bit. This changes Figure A.23 from 010002/00112 to
0.10002/.00112. Since the binary point is changed in both the numerator and
nominator, the quotient is not affected. The (P,A) register pair holds the rem
der and is a two’s complement number. For example, if P contains 111102 and
A = 0, then the remainder is 1.11102 = −1/8. If r is the value of the remainder
then −1 ≤ r < 1.

Given these preliminaries, we can now analyze the SRT division algorit
The first step of the algorithm shifts b so that b ≥ 1/2. The rule for which ALU op-
eration to perform is this: If −1/4 ≤ r < 1/4 (true whenever the top three bits of
are equal), then compute 2r by shifting (P,A) left one bit; else if r < 0 (and hence
r < −1/4, since otherwise it would have been eliminated by the first conditi
then compute 2r + b by shifting and then adding, else r ≥ 1/4 and subtract b from
2r. Using b ≥ 1/2, it is easy to check that these rules keep −1/2 ≤ r < 1/2. For non-
restoring division, we only have  r ≤ b, and we need P to be n + 1 bits wide. But
for SRT division, the bound on r is tighter, namely −1/2 ≤ r < 1/2. Thus, we can
save a bit by eliminating the high-order bit of P (and b and the adder). In particu-
lar, the test for equality of the top three bits of P becomes a test on just two b

The algorithm might change slightly in an implementation of SRT divisio
After each ALU operation, the P register can be shifted as many places as n
sary to make either r ≥ 1/4 or r < −1/4. By shifting k places, k quotient bits are set

FIGURE A.23 SRT division of 1000 2/00112. The quotient bits are shown in bold, using the
notation 1 for −1.

00000
00010

00100

01000
+ 10100

11100
11000

10000
+ 01100

11100
+ 01100

01000

1000
0000

0000

0001

0001
0010

0101

Divide 8 = 1000 by 3 = 0011. B contains 0011.
step 1: B had two leading 0s, so shift left by 2. B now contains 1100.
step 2.1: Top three bits are equal. This is case (a), so
 set q

0
 = 0 and shift.

step 2.2: Top three bits not equal and P > 0 is case (c), so
 set q

1
 = 1 and shift.

 Subtract B.
step 2.3: Top bits equal is case (a), so
 set q

2
 = 0 and shift.

step 2.4: Top three bits unequal is case (b), so
 set q

3
 = –1 and shift.

 Add B.
step 3. Remainder is negative so restore it and subtract 1 from q.

Must undo the shift in step 1, so right shift by 2 to get true remainder.
 Remainder = 10, quotient = 0101 – 1 = 0010.

P A

A.9 Speeding Up Integer Multiplication and Division A-49

ed as

d on
lt of

sion,
ra-
al re-
t not
 di-
s
 be-

nt
way
nega-
 bits
of the

 can

f P;

sive

 bits.

ffer
s sec-

rrent
thods

those
 tech-

, it is
of
s to
 will
equal to zero all at once. For this reason SRT division is sometimes describ
one that keeps the remainder normalized to  r ≥ 1/4.

Notice that the value of the quotient bit computed in a given step is base
which operation is performed in that step (which in turn depends on the resu
the operation from the previous step). This is in contrast to nonrestoring divi
where the quotient bit computed in the ith step depends on the result of the ope
tion in the same step. This difference is reflected in the fact that when the fin
mainder is negative, the last quotient bit must be adjusted in SRT division, bu
in nonrestoring division. However, the key fact about the quotient bits in SRT
vision is that they can include 1. Although Figure A.23 shows the quotient bit
being stored in the low-order bits of A, an actual implementation can’t do this
cause you can’t fit the three values −1, 0, 1 into one bit. Furthermore, the quotie
must be converted to ordinary two’s complement in a full adder. A common
to do this is to accumulate the positive quotient bits in one register and the
tive quotient bits in another, and then subtract the two registers after all the
are known. Because there is more than one way to write a number in terms
digits −1, 0, 1, SRT division is said to use a redundant quotient representation.

The differences between SRT division and ordinary nonrestoring division
be summarized as follows:

1. ALU decision rule: In nonrestoring division, it is determined by the sign o
in SRT, it is determined by the two most-significant bits of P.

2. Final quotient: In nonrestoring division, it is immediate from the succes
signs of P; in SRT, there are three quotient digits (1, 0, 1), and the final quo-
tient must be computed in a full n-bit adder.

3. Speed: SRT division will be faster on operands that produce zero quotient

The simple version of the SRT division algorithm given above does not o
enough of a speedup to be practical in most cases. However, later on in thi
tion we will study variants of SRT division that are quite practical.

Speeding Up Multiplication with a Single Adder

As mentioned before, shifting-over zero techniques are not used much in cu
hardware. We now discuss some methods that are in widespread use. Me
that increase the speed of multiplication can be divided into two classes:
that use a single adder and those that use multiple adders. Let’s first discuss
niques that use a single adder.

In the discussion of addition we noted that, because of carry propagation
not practical to perform addition with two levels of logic. Using the cells
Figure A.17, adding two 64-bit numbers will require a trip through seven cell
compute the P’s and G’s, and seven more to compute the carry bits, which

A-50 Appendix A Computer Arithmetic

-4,
ion in

-bit
ration
 is in-

 over

with
t be
 into
e
order
dd cell

hard-
of the
e fed
 ac-
 the
lled
 there
tion is
at
require at least 28 logic levels. In the simple multiplier of Figure A.2 on page A
each multiplication step passes through this adder. The amount of computat
each step can be dramatically reduced by using carry-save adders (CSA). A carry-
save adder is simply a collection of n independent full adders. A multiplier using
such an adder is illustrated in Figure A.24. Each circle marked “+” is a single
full adder, and each box represents one bit of a register. Each addition ope
results in a pair of bits, stored in the sum and carry parts of P. Since each add
dependent, only two logic levels are involved in the add—a vast improvement
28.

To operate the multiplier in Figure A.24, load the sum and carry bits of P
zero and perform the first ALU operation. (If Booth recoding is used, it migh
a subtraction rather than an addition.) Then shift the low-order sum bit of P
A, as well as shifting A itself. The n − 1 high-order bits of P don’t need to b
shifted because on the next cycle the sum bits are fed into the next lower
adder. Each addition step is substantially increased in speed, since each a
is working independently of the others, and no carry is propagated.

There are two drawbacks to carry-save adders. First, they require more
ware because there must be a copy of register P to hold the carry outputs
adder. Second, after the last step, the high-order word of the result must b
into an ordinary adder to combine the sum and carry parts. One way to
complish this is by feeding the output of P into the adder used to perform
addition operation. Multiplying with a carry-save adder is sometimes ca
redundant multiplication because P is represented using two registers. Since
are many ways to represent P as the sum of two registers, this representa
redundant. The term carry-propagate adder (CPA) is used to denote an adder th

FIGURE A.24 Carry-save multiplier. Each circle represents a (3,2) adder working inde-
pendently. At each step, the only bit of P that needs to be shifted is the low-order sum bit.

B

A

P

Sum bits

Carry bits

c
i

a
i

c
i+1

s
i

b
i

Shift

+ + + + + +

+

A.9 Speeding Up Integer Multiplication and Division A-51

carry

am-
lled

te
ing.

e is
 in-

 the

iven

ires

h re-
as a
ll at
is not a CSA. A propagate adder may propagate its carries using ripples,
lookahead, or some other method.

Another way to speed up multiplication without using extra adders is to ex
ine k low-order bits of A at each step, rather than just one bit. This is often ca
higher-radix multiplication. As an example, suppose that k = 2. If the pair of bits
is 00, add 0 to P; if it is 01, add B. If it is 10, simply shift b one bit left before add-
ing it to P. Unfortunately, if the pair is 11, it appears we would have to compub
+ 2b. But this can be avoided by using a higher radix version of Booth recod
Imagine A as a base 4 number: When the digit 3 appears, change it to 1 and add 1
to the next higher digit to compensate. An extra benefit of using this schem
that just like ordinary Booth recoding, it works for negative as well as positive
tegers (section A.2).

The precise rules for radix-4 Booth recoding are given in Figure A.25. At
ith multiply step, the two low-order bits of the A register contain a2i and a2i+1.
These two bits, together with the bit just shifted out (a2i−1), are used to select the
multiple of b that must be added to the P register. A numerical example is g
in Figure A.26. Another name for this multiplication technique is overlapping
triplets, since it looks at 3 bits to determine what multiple of b to use, whereas
ordinary Booth recoding looks at 2 bits.

Besides having more complex control logic, overlapping triplets also requ
that the P register be 1 bit wider to accommodate the possibility of 2b or −2b be-
ing added to it. It is possible to use a radix-8 (or even higher) version of Boot
coding. In that case, however, it will be necessary to use the multiple 3B
potential summand. Radix-8 multipliers normally compute 3B once and for a
the beginning of a multiplication operation.

Low-order bits of A Last bit shifted out

2i + 1 2i 2i − 1 Multiple

0 0 0 0

0 0 1 +b

0 1 0 +b

0 1 1 +2b

1 0 0 −2b

1 0 1 −b

1 1 0 −b

1 1 1 0

FIGURE A.25 Multiples of b to use for radix-4 Booth recoding. For example, if the two
low-order bits of the A register are both 1, and the last bit to be shifted out of the A register
was 0, then the correct multiple is −b, obtained from the second to last row of the table.

A-52 Appendix A Computer Arithmetic

 im-
bit
agram
dder
 with
ds to
re in
y be

s as
t of
lica-
, al-
 not
 in
d by

array
ular
 A.28.
first
. The
s the

nts in
as a
tional
he
Faster Multiplication with Many Adders

If the space for many adders is available, then multiplication speed can be
proved. Figure A.27 shows a simple array multiplier for multiplying two 5-
numbers, using three CSAs and one propagate adder. Part (a) is a block di
of the kind we will use throughout this section. Parts (b) and (c) show the a
in more detail. All the inputs to the adder are shown in (b); the actual adders
their interconnections are shown in (c). Each row of adders in (c) correspon
a box in (a). The picture is “twisted” so that bits of the same significance a
the same column. In an actual implementation, the array would most likel
laid out as a square instead.

The array multiplier in Figure A.27 performs the same number of addition
the design in Figure A.24, so its latency is not dramatically different from tha
a single carry-save adder. However, with the hardware in Figure A.27, multip
tion can be pipelined, increasing the total throughput. On the other hand
though this level of pipelining is sometimes used in array processors, it is
used in any of the single-chip, floating-point accelerators discussed
section A.10. Pipelining is discussed in general in Chapters 3 and 4 an
Kogge [1981] in the context of multipliers.

Sometimes the space budgeted on a chip for arithmetic may not hold an
large enough to multiply two double-precision numbers. In this case, a pop
design is to use a two-pass arrangement such as the one shown in Figure
The first pass through the array “retires” 5 bits of B. Then the result of this
pass is fed back into the top to be combined with the next three summands
result of this second pass is then fed into a CPA. This design, however, lose
ability to be pipelined.

If arrays require as many addition steps as the much cheaper arrangeme
Figures A.2 and A.24, why are they so popular? First of all, using an array h
smaller latency than using a single adder—because the array is a combina
circuit, the signals flow through it directly without being clocked. Although t

FIGURE A.26 Multiplication of –7 times –5 using radix-4 Booth recoding. The column
labeled L contains the last bit shifted out the right end of A.

00000
+ 11011

11011
11110

+ 01010
01000
00010

1001

1001
1110

1110
0011

Multiply –7 = 1001 times –5 = 1011. B contains 1011.
Low order bits of A are 0, 1; L=0, so add B.

Shift right by two bits, shifting in 1s on the left.
Low order bits of A are 1, 0; L=0, so add –2b.

Shift right by two bits.
Product is 35 = 0100011.

P A

0

0
1

L

A.9 Speeding Up Integer Multiplication and Division A-53

ime

 ame-
n in
o put
uns at
two-pass adder of Figure A.28 would normally still use a clock, the cycle t
for passing through k arrays can be less than k times the clock that would be
needed for designs like the ones in Figures A.2 or A.24. Second, the array is
nable to various schemes for further speedup. One of them is show
Figure A.29. The idea of this design is that two adds proceed in parallel or, t
it another way, each stream passes through only half the adders. Thus, it r
almost twice the speed of the multiplier in Figure A.27. This even/odd multiplier

FIGURE A.27 An array multiplier. The 5-bit number in A is multiplied by b4b3b2b1b0. Part
(a) shows the block diagram, (b) shows the inputs to the array, and (c) expands the array to
show all the adders.

b
4
A b

3
A

b
2
A b

1
A b

0
A

b
0

a
1

b
0

a
0

b
0

A

b
1

A

b
2

A

b
3

A

b
4

A

b
4

a
1

b
4

a
0

b
0

a
4 b

0
A

b
1

A

b
2

A

b
1

a
4

p
9

p
8

p
7

p
6

p
5

p
4

p
3

p
2

p
1

p
0

(a)

(b)

(c)

CSA

CSA

CSA

Propagate adder

A-54 Appendix A Computer Arithmetic

ed up
 A.2
k into
y in
ough
le to
a, al-

(
-

rath-
 as a
re
eed

-
 why
is popular in VLSI because of its regular structure. Arrays can also be speed
using asynchronous logic. One of the reasons why the multiplier of Figure
(page A-4) needs a clock is to keep the output of the adder from feeding bac
the input of the adder before the output has fully stabilized. Thus, if the arra
Figure A.28 is long enough so that no signal can propagate from the top thr
the bottom in the time it takes for the first adder to stabilize, it may be possib
avoid clocks altogether. Williams et al. [1987] discuss a design using this ide
though it is for dividers instead of multipliers.

The techniques of the previous paragraph still have a multiply time of On),
but the time can be reduced to log n using a tree. The simplest tree would com
bine pairs of summands b0A ⋅⋅⋅ bn–1A, cutting the number of summands from n to
n/2. Then these n/2 numbers would be added in pairs again, reducing to n/4, and
so on, and resulting in a single sum after log n steps. However, this simple binary
tree idea doesn’t map into full (3,2) adders, which reduce three inputs to two
er than reducing two inputs to one. A tree that does use full adders, known
Wallace tree, is shown in Figure A.30. When computer arithmetic units we
built out of MSI parts, a Wallace tree was the design of choice for high-sp
multipliers. There is, however, a problem with implementing it in VLSI. If you try
to fill in all the adders and paths for the Wallace tree of Figure A.30, you will dis
cover that it does not have the nice, regular structure of Figure A.27. This is
VLSI designers have often chosen to use other log n designs such as the binary
tree multiplier, which is discussed next.

FIGURE A.28 Multipass array multiplier. Multiplies two 8-bit numbers with about half the
hardware that would be used in a one-pass design like that of Figure A.27. At the end of the
second pass, the bits flow into the CPA. The inputs used in the first pass are marked in bold.

CSA

CPA

b
5
A

b
2
A

b
6
A

b
3
A

b
7
A

b
4
A

b
1
A b

0
A

CSA

CSA

A.9 Speeding Up Integer Multiplication and Division A-55

2,1)
f car-
ther

 two
rithm

a-
e of

 fol-

not
The problem with adding summands in a binary tree is coming up with a (
adder that combines two digits and produces a single-sum digit. Because o
ries, this isn’t possible using binary notation, but it can be done with some o
representation. We will use the signed-digit representation 1, 1, and 0, which we
used previously to understand Booth’s algorithm. This representation has
costs. First, it takes 2 bits to represent each signed digit. Second, the algo
for adding two signed-digit numbers ai and bi is complex and requires examining
aiai–1ai–2 and bibi–1bi–2. Although this means you must look 2 bits back, in bin
ry addition you might have to look an arbitrary number of bits back becaus
carries.

We can describe the algorithm for adding two signed-digit numbers as
lows. First, compute sum and carry bits si and ci+1 using Figure A.31. Then com-
pute the final sum as si + ci. The tables are set up so that this final sum does
generate a carry.

FIGURE A.29 Even/odd array. The first two adders work in parallel. Their results are fed
into the third and fourth adders, which also work in parallel, and so on.

b
2
A

b
4
A b

3
Ab

5
A

b
1
A b

0
A

CSA

CSA

b
6
A

b
7
A

CSA

CSA

CSA

CPA

CSA

A-56 Appendix A Computer Arithmetic

htfor-

se
arry-
s fi-
E X A M P L E What is the sum of the signed-digit numbers 1102 and 0012 ?

A N S W E R The two low-order bits sum to 0 + 1 = 11, the next pair sums to 1 + 0 = 01,
and the high-order pair sums to 1 + 0 = 01, so the sum is 11+ 010 + 0100
= 1012.

This, then, defines a (2,1) adder. With this in hand, we can use a straig
ward binary tree to perform multiplication. In the first step it adds b0A + b1A in
parallel with b2A + b3A, ⋅⋅⋅, bn–2A + bn–1A. The next step adds the results of the
sums in pairs, and so on. Although the final sum must be run through a c
propagate adder to convert it from signed-digit form to two’s complement, thi
nal add step is necessary in any multiplier using CSAs.

FIGURE A.30 Wallace tree multiplier. An example of a multiply tree that computes a prod-
uct in 0(log n) steps.

FIGURE A.31 Signed-digit addition table. The leftmost sum shows that when computing
1 + 1, the sum bit is 0 and the carry bit is 1.

CSA

CSA

CSA

CSA

b
7
A b

6
A b

5
A b

4
A b

3
A b

2
A b

1
A b

0
A

CSA

CSA

Propagate adder

1
+ 1
1 0

1
+ 1
0 0

1
+ 1
1 0

0
+ 0
0 0

x

y
1

+ 0
1 1
0 1

x

y
1

+ 0
0 1
1 1

if 0 and 0
otherwise

x ≥ y ≥ if 0 and 0
otherwise

x ≥ y ≥

A.9 Speeding Up Integer Multiplication and Division A-57

it tree
d has
rent
ined.

ngle
e is a
divi-
ave
e for

 cy-
regis-
ecide
ding
uess

ere
guess
 more
uite

work
 SRT

s to
ld be
ich is
rry-
dant
 pick

 you

n

To summarize, both Wallace trees and signed-digit trees are log n multipliers.
The Wallace tree uses fewer gates but is harder to lay out. The signed-dig
has a more regular structure, but requires 2 bits to represent each digit an
more complicated add logic. As with adders, it is possible to combine diffe
multiply techniques. For example, Booth recoding and arrays can be comb
In Figure A.27 instead of having each input be biA, we could have it be bibi–1A.
To avoid having to compute the multiple 3b, we can use Booth recoding.

Faster Division with One Adder

The two techniques we discussed for speeding up multiplication with a si
adder were carry-save adders and higher-radix multiplication. However, ther
difficulty when trying to utilize these approaches to speed up nonrestoring
sion. If the adder in Figure A.2(b) on page A-4 is replaced with a carry-s
adder, then P will be replaced with two registers, one for the sum bits and on
the carry bits (compare with the multiplier in Figure A.24). At the end of each
cle, the sign of P is uncertain (since P is the unevaluated sum of the two
ters), yet it is the sign of P that is used to compute the quotient digit and d
the next ALU operation. When a higher radix is used, the problem is deci
what value to subtract from P. In the paper-and-pencil method, you have to g
the quotient digit. In binary division there are only two possibilities. We w
able to finesse the problem by initially guessing one and then adjusting the
based on the sign of P. This doesn’t work in higher radices because there are
than two possible quotient digits, rendering quotient selection potentially q
complicated: You would have to compute all the multiples of b and compare them
to P.

Both the carry-save technique and higher-radix division can be made to
if we use a redundant quotient representation. Recall from our discussion of
division (page A-47) that by allowing the quotient digits to be −1, 0, or 1, there is
often a choice of which one to pick. The idea in the previous algorithm wa
choose 0 whenever possible, because that meant an ALU operation cou
skipped. In carry-save division, the idea is that, because the remainder (wh
the value of the (P,A) register pair) is not known exactly (being stored in ca
save form), the exact quotient digit is also not known. But thanks to the redun
representation, the remainder doesn’t have to be known precisely in order to
a quotient digit. This is illustrated in Figure A.32, where the x axis represents ri,
the remainder after i steps. The line labeled qi = 1 shows the value that ri+ 1 would
be if we choose qi = 1, and similarly for the lines qi = 0 and qi = −1. We can
choose any value for qi, as long as ri+1 = 2ri – qib satisfies  ri+1 ≤ b. The al-
lowable ranges are shown in the right half of Figure A.32. This shows that
don’t need to know the precise value of ri in order to choose a quotient digit qi.
You only need to know that r lies in an interval small enough to fit entirely withi
one of the overlapping bars shown in the right half of Figure A.32.

A-58 Appendix A Computer Arithmetic

f the
mation
-
rry-

t gives

 out
at we
r.
two

t
r

in
ows

its of

t

This is the basis for using carry-save adders. Look at the high-order bits o
carry-save adder and sum them in a propagate adder. Then use this approxi
of r (together with the divisor, b) to compute qi, usually by means of a lookup ta
ble. The same technique works for higher-radix division (whether or not a ca
save adder is used). The high-order bits P can be used to index a table tha
one of the allowable quotient digits.

The design challenge when building a high-speed SRT divider is figuring
how many bits of P and B need to be examined. For example, suppose th
take a radix of 4, use quotient digits of 2, 1, 0, 1, 2, but have a propagate adde
How many bits of P and B need to be examined? Deciding this involves
steps. For ordinary radix-2 nonrestoring division, because at each stage  r ≤ b,
the P buffer won’t overflow. But for radix 4, ri+1 = 4ri – qib is computed at each
stage, and if ri is near b, then 4ri will be near 4b, and even the largest quotien
digit will not bring r back to the range  ri+1 ≤ b. In other words, the remainde
might grow without bound. However, restricting  ri ≤ 2b/3 makes it easy to
check that ri will stay bounded.

After figuring out the bound that ri must satisfy, we can draw the diagram
Figure A.33, which is analogous to Figure A.32. For example, the diagram sh
that if ri is between (1/12)b and (5/12)b, we can pick q = 1, and so on. Or to put it
another way, if r/b is between 1/12 and 5/12, we can pick q = 1. Suppose the di-
vider examines 5 bits of P (including the sign bit) and 4 bits of b (ignoring the
sign, since it is always nonnegative). The interesting case is when the high b
P are 00011xxx⋅⋅⋅, while the high bits of b are 1001xxx⋅⋅⋅. Imagine the binary
point at the left end of each register. Since we truncated, r (the value of P con-
catenated with A) could have a value from 0.00112 to 0.01002, and b could have a
value from .10012 to .10102. Thus r/b could be as small as 0.00112/.10102 or as
large as 0.01002/.10012. But 0.00112/.10102 = 3/10 < 1/3 would require a quotien

FIGURE A.32 Quotient selection for radix-2 division. The x axis represents the ith re-
mainder, which is the quantity in the (P,A) register pair. The y axis shows the value of the re-
mainder after one additional divide step. Each bar on the right-hand graph gives the range of
ri values for which it is permissible to select the associated value of qi.

b–b

–b

b–b 0

q
i
= –1

q
i
= 0 q

i
= 1

q
i
= –1

q
i
= 0

q
i
= 1

r
i

r
i

r
i +1

 = 2r
i
– q

i
b

A.9 Speeding Up Integer Multiplication and Division A-59

n
t
t-
am is

nted,
his in
 same

. (It is
ally.)
r ex-
 it is

about
bit of 1, while 0.01002/.10012 = 4/9 > 5/12 would require a quotient bit of 2. I
other words, 5 bits of P and 4 bits of b aren’t enough to pick a quotient bit. I
turns out that 6 bits of P and 4 bits of b are enough. This can be verified by wri
ing a simple program that checks all the cases. The output of such a progr
shown in Figure A.34.

E X A M P L E Using 8-bit registers, compute 149/5 using radix-4 SRT division.

A N S W E R Follow the SRT algorithm on page A-47, but replace the quotient selection
rule in step 2 with one that uses Figure A.34. See Figure A.35. ■

The Pentium uses a radix-4 SRT division algorithm like the one just prese
except that it uses a carry-save adder. Exercises A.34(c) and A.35 explore t
detail. Although these are simple cases, all SRT analyses proceed in the
way. First compute the range of ri, then plot ri against ri+1 to find the quotient
ranges, and finally write a program to compute how many bits are necessary
sometimes also possible to compute the required number of bits analytic
Various details need to be considered in building a practical SRT divider. Fo
ample, the quotient lookup table has a fairly regular structure, which means
usually cheaper to encode it as a PLA rather than in ROM. For more details
SRT division, see Burgess and Williams [1995].

FIGURE A.33 Quotient selection for radix-4 division with quotient digits –2, –1, 0, 1, 2.

2b
3

–2b
3

2b
3

5b
12

b
3

b
6

b
12

0

q
i
 = –2 q

i
 = –1 q

i
 = 1q

i
 = 0 q

i
 = 2

r
i

r
i +1

= 4r
i
– q

i
b

q
i
= 2

q
i
= 1

r
i

q
i
= 0

q
i
= –2

q
i
= –1

–2b
3

r
i +1

A-60 Appendix A Computer Arithmetic
 b Range of P q b Range of P q

8 −12 −7 −2 12 −18 −10 −2

8 −6 −3 −1 12 −10 −4 −1

8 −2 1 0 12 –4 3 0

8 2 5 1 12 3 9 1

8 6 11 2 12 9 17 2

9 −14 −8 −2 13 −19 −11 −2

9 −7 −3 −1 13 −10 −4 −1

9 −3 2 0 13 −4 3 0

9 2 6 1 13 3 9 1

9 7 13 2 13 10 18 2

10 −15 −9 −2 14 −20 −11 −2

10 −8 −3 −1 14 −11 −4 −1

10 −3 2 0 14 −4 3 0

10 2 7 1 14 3 10 1

10 8 14 2 14 10 19 2

11 −16 −9 −2 15 −22 −12 −2

11 −9 −3 −1 15 −12 −4 −1

11 −3 2 0 15 −5 4 0

11 2 8 1 15 3 11 1

11 8 15 2 15 11 21 2

FIGURE A.34 Quotient digits for radix-4 SRT division with a propagate adder. The top
row says that if the high-order 4 bits of b are 10002 = 8, and if the top 6 bits of P are between
1101002 = −12 and 1110012 = −7, then −2 is a valid quotient digit.

A.10 Putting It All Together A-61

exas
ideal
trac-
88
In this section, we will compare the Weitek 3364, the MIPS R3010, and the T
Instruments 8847 (see Figures A.36 and A.37). In many ways, these are
chips to compare. They each implement the IEEE standard for addition, sub
tion, multiplication, and division on a single chip. All were introduced in 19

FIGURE A.35 Example of radix-4 SRT division. Division of 149 by 5.

A.10 Putting It All Together

Features MIPS R3010 Weitek 3364 TI 8847

Clock cycle time (ns) 40 50 30

Size (mil2) 114,857 147,600 156,180

Transistors 75,000 165,000 180,000

Pins 84 168 207

Power (watts) 3.5 1.5 1.5

Cycles/add 2 2 2

Cycles/mult 5 2 3

Cycles/divide 19 17 11

Cycles/sq root – 30 14

FIGURE A.36 Summary of the three floating-point chips discussed in this section.
The cycle times are for production parts available in June 1989. The cycle counts are for
double-precision operations.

P
000000000
000010010

001001010

100101010
+ 011000000

111101010
110101000

010100000
+ 101000000

111100000
+ 010100000

010000000

A
10010101
10100000

1000000

000002

000002
00020

0202

Divide 149 by 5. B contains 00000101.
step 1:

step 2.1:

step 2.2:

step 2.3:

step 2.4:

step 3:

Answer:

B had 5 leading 0s, so shift left by 5. B now
contains 10100000, so use b = 10 section of table.
Top 6 bits of P are 2, so
shift left by 2. From table, can pick q to be
0 or 1. Choose q

0
 = 0.

Top 6 bits of P are 9, so
shift left 2. q

1
 = 2.

Subtract 2b.
Top bits = –3, so
shift left 2. Can pick 0 or –1 for q, pick q

2
 = 0.

Top bits = –11, so
shift left 2. q

3
 = –2.

Add 2b.
Remainder is negative, so restore
by adding b and subtract 1 from q.
q = 0202 – 1 = 29.
To get remainder, undo shift in step 1 so
remainder = 010000000 >> 5 = 4.

A-62 Appendix A Computer Arithmetic

, they
t al.
Ries

ition
 nor
ment
vail-
d pre-
which
cision

her
es/op
ip are
bers

stem.
n the
ard-
com-
rforms

car-
ach
indi-
 the
re in
A.2
utput
ix-4
The
ike

ivi-
 for
p a

uses
itek
and run with a cycle time of about 40 nanoseconds. However, as we will see
use quite different algorithms. The Weitek chip is well described in Birman e
[1990], the MIPS chip is described in less detail in Rowen, Johnson, and
[1988], and details of the TI chip can be found in Darley et al. [1989].

These three chips have a number of things in common. They perform add
and multiplication in parallel, and they implement neither extended precision
a remainder step operation. (Recall from section A.6 that it is easy to imple
the IEEE remainder function in software if a remainder step instruction is a
able.) The designers of these chips probably decided not to provide extende
cision because the most influential users are those who run portable codes,
can’t rely on extended precision. However, as we have seen, extended pre
can make for faster and simpler math libraries.

In the summary of the three chips given in Figure A.36, note that a hig
transistor count generally leads to smaller cycle counts. Comparing the cycl
numbers needs to be done carefully, because the figures for the MIPS ch
those for a complete system (R3000/3010 pair), while the Weitek and TI num
are for stand-alone chips and are usually larger when used in a complete sy

The MIPS chip has the fewest transistors of the three. This is reflected i
fact that it is the only chip of the three that does not have any pipelining or h
ware square root. Further, the multiplication and addition operations are not
pletely independent because they share the carry-propagate adder that pe
the final rounding (as well as the rounding logic).

Addition on the R3010 uses a mixture of ripple, CLA, and carry select. A
ry-select adder is used in the fashion of Figure A.20 (page A-45). Within e
half, carries are propagated using a hybrid ripple-CLA scheme of the type
cated in Figure A.18 (page A-43). However, this is further tuned by varying
size of each block, rather than having each fixed at 4 bits (as they a
Figure A.18). The multiplier is midway between the designs of Figures
(page A-4) and A.27 (page A-53). It has an array just large enough so that o
can be fed back into the input without having to be clocked. Also, it uses rad
Booth recoding and the even-odd technique of Figure A.29 (page A-55).
R3010 can do a divide and multiply in parallel (like the Weitek chip but unl
the TI chip). The divider is a radix-4 SRT method with quotient digits −2, −1, 0,
1, and 2, and is similar to that described in Taylor [1985]. Double-precision d
sion is about four times slower than multiplication. The R3010 shows that
chips using an O(n) multiplier, an SRT divider can operate fast enough to kee
reasonable ratio between multiply and divide.

The Weitek 3364 has independent add, multiply, and divide units. It also
radix-4 SRT division. However, the add and multiply operations on the We

A.10 Putting It All Together A-63

) add
take
ven
yle of
te 3

reci-
e la-

 the

both
ware

 mul-
 to
 ra-
dix.
ing

ed of
nd
 two-
done
tion
e first

passes
-digit
era-
the
ase, a
arry-
e TI

with
e di-
 dif-
t is
chip are pipelined. The three addition stages are (1) exponent compare, (2
followed by shift (or vice versa), and (3) final rounding. Stages (1) and (3)
only a half-cycle, allowing the whole operation to be done in two cycles, e
though there are three pipeline stages. The multiplier uses an array of the st
Figure A.28 but uses radix-8 Booth recoding, which means it must compu
times the multiplier. The three multiplier pipeline stages are (1) compute 3b, (2)
pass through array, and (3) final carry-propagation add and round. Single p
sion passes through the array once, double precision twice. Like addition, th
tency is two cycles.

The Weitek chip uses an interesting addition algorithm. It is a variant on
carry-skip adder pictured in Figure A.19 (page A-44). However, Pij , which is the
logical AND of many terms, is computed by rippling, performing one AND per rip-
ple. Thus, while the carries propagate left within a block, the value of Pij is propa-
gating right within the next block, and the block sizes are chosen so that
waves complete at the same time. Unlike the MIPS chip, the 3364 has hard
square root, which shares the divide hardware. The ratio of double-precision
tiply to divide is 2:17. The large disparity between multiply and divide is due
the fact that multiplication uses radix-8 Booth recoding, while division uses a
dix-4 method. In the MIPS R3010, multiplication and division use the same ra

The notable feature of the TI 8847 is that it does division by iteration (us
the Goldschmidt algorithm discussed in section A.6). This improves the spe
division (the ratio of multiply to divide is 3:11), but means that multiplication a
division cannot be done in parallel as on the other two chips. Addition has a
stage pipeline. Exponent compare, fraction shift, and fraction addition are
in the first stage, normalization and rounding in the second stage. Multiplica
uses a binary tree of signed-digit adders and has a three-stage pipeline. Th
stage passes through the array, retiring half the bits; the second stage
through the array a second time; and the third stage converts from signed
form to two’s complement. Since there is only one array, a new multiply op
tion can only be initiated in every other cycle. However, by slowing down
clock, two passes through the array can be made in a single cycle. In this c
new multiplication can be initiated in each cycle. The 8847 adder uses a c
select algorithm rather than carry lookahead. As mentioned in section A.6, th
carries 60 bits of precision in order to do correctly rounded division.

These three chips illustrate the different trade-offs made by designers
similar constraints. One of the most interesting things about these chips is th
versity of their algorithms. Each uses a different add algorithm, as well as a
ferent multiply algorithm. In fact, Booth recoding is the only technique tha
universally used by all the chips.

A-64 Appendix A Computer Arithmetic

TI 8847

MIPS R3010

Figure continued on next page

A.11 Fallacies and Pitfalls A-65

 fre-
ave
even
ding
out

rsions
s not
s.
Fallacy: Underflows rarely occur in actual floating-point application code.

Although most codes rarely underflow, there are actual codes that underflow
quently. SDRWAVE [Kahaner 1988], which solves a one-dimensional w
equation, is one such example. This program underflows quite frequently,
when functioning properly. Measurements on one machine show that ad
hardware support for gradual underflow would cause SDRWAVE to run ab
50% faster.

Fallacy: Conversions between integer and floating point are rare.

In fact, in spice they are as frequent as divides. The assumption that conve
are rare leads to a mistake in the SPARC version 8 instruction set, which doe
provide an instruction to move from integer registers to floating-point register

Weitek 3364

FIGURE A.37 Chip layout for the TI 8847, MIPS R3010, and Weitek 3364. In the left-hand columns are the photomicro-
graphs; the right-hand columns show the corresponding floor plans.

A.11 Fallacies and Pitfalls

A-66 Appendix A Computer Arithmetic

 its

ec-
point
mory
form

. Be-
zeros,

nary
nt,”

oth
xed
oses
 sec-
 in-

 to

ging
con-
 an
 is,
aste

ages
d

ners,
than
Pitfall: Don’t increase the speed of a floating-point unit without increasing
memory bandwidth.

A typical use of a floating-point unit is to add two vectors to produce a third v
tor. If these vectors consist of double-precision numbers, then each floating-
add will use three operands of 64 bits each, or 24 bytes of memory. The me
bandwidth requirements are even greater if the floating-point unit can per
addition and multiplication in parallel (as most do).

Pitfall: −x is not the same as 0 − x.

This is a fine point in the IEEE standard that has tripped up some designers
cause floating-point numbers use the sign/magnitude system, there are two
+0 and −0. The standard says that 0 − 0 = +0, whereas −(0) = −0. Thus −x is not
the same as 0 − x when x = 0.

The earliest computers used fixed point rather than floating point. In “Prelimi
Discussion of the Logical Design of an Electronic Computing Instrume
Burks, Goldstine, and von Neumann [1946] put it like this:

There appear to be two major purposes in a “floating” decimal point system b
of which arise from the fact that the number of digits in a word is a constant fi
by design considerations for each particular machine. The first of these purp
is to retain in a sum or product as many significant digits as possible and the
ond of these is to free the human operator from the burden of estimating and
serting into a problem “scale factors” — multiplicative constants which serve
keep numbers within the limits of the machine.

There is, of course, no denying the fact that human time is consumed in arran
for the introduction of suitable scale factors. We only argue that the time so
sumed is a very small percentage of the total time we will spend in preparing
interesting problem for our machine. The first advantage of the floating point
we feel, somewhat illusory. In order to have such a floating point, one must w
memory capacity which could otherwise be used for carrying more digits per
word. It would therefore seem to us not at all clear whether the modest advant
of a floating binary point offset the loss of memory capacity and the increase
complexity of the arithmetic and control circuits.

This enables us to see things from the perspective of early computer desig
who believed that saving computer time and memory were more important
saving programmer time.

A.12 Historical Perspective and References

A.12 Historical Perspective and References A-67

ivi-
good
llace
us-

s is
der.
LAs

ung
n be
ore

jima

for-
DEC
for-
 like
its of
way
 from

lues
e a

ble
ll for
t has

This
t and

6
d
 inter-
e po-
base
int

float-
ffer-
her a
han
all.

us,
s. In

tiva-
nent
The original papers introducing the Wallace tree, Booth recoding, SRT d
sion, overlapped triplets, and so on, are reprinted in Swartzlander [1990]. A
explanation of an early machine (the IBM 360/91) that used a pipelined Wa
tree, Booth recoding, and iterative division is in Anderson et al. [1967]. A disc
sion of the average time for single-bit SRT division is in Freiman [1961]; thi
one of the few interesting historical papers that does not appear in Swartzlan

The standard book of Mead and Conway [1980] discouraged the use of C
as not being cost effective in VLSI. The important paper by Brent and K
[1982] helped combat that view. An example of a detailed layout for CLAs ca
found in Ngai and Irwin [1985] or in Weste and Eshraghian [1993], and a m
theoretical treatment is given by Leighton [1992]. Takagi, Yasuura, and Ya
[1985] provide a detailed description of a signed-digit tree multiplier.

Before the ascendancy of IEEE arithmetic, many different floating-point
mats were in use. Three important ones were used by the IBM/370, the
VAX, and the Cray. Here is a brief summary of these older formats. The VAX
mat is closest to the IEEE standard. Its single-precision format (F format) is
IEEE single precision in that it has a hidden bit, 8 bits of exponent, and 23 b
fraction. However, it does not have a sticky bit, which causes it to round half
cases up instead of to even. The VAX has a slightly different exponent range
IEEE single: Emin is −128 rather than −126 as in IEEE, and Emax is 126 instead of
127. The main differences between VAX and IEEE are the lack of special va
and gradual underflow. The VAX has a reserved operand, but it works lik
signaling NaN: it traps whenever it is referenced. Originally, the VAX’s dou
precision (D format) also had 8 bits of exponent. However, as this is too sma
many applications, a G format was added; like the IEEE standard, this forma
11 bits of exponent. The VAX also has an H format, which is 128 bits long.

The IBM/370 floating-point format uses base 16 rather than base 2.
means it cannot use a hidden bit. In single precision, it has 7 bits of exponen
24 bits (6 hex digits) of fraction. Thus, the largest representable number is 127

 =
24 × 27

 = 229
, compared with 228

 for IEEE. However, a number that is normalize
in the hexadecimal sense only needs to have a nonzero leading digit. When
preted in binary, the three most-significant bits could be zero. Thus, there ar
tentially fewer than 24 bits of significance. The reason for using the higher
was to minimize the amount of shifting required when adding floating-po
numbers. However, this is less significant in current machines, where the
ing-point add time is usually fixed independently of the operands. Another di
ence between 370 arithmetic and IEEE arithmetic is that the 370 has neit
round digit nor a sticky digit, which effectively means that it truncates rather t
rounds. Thus, in many computations, the result will systematically be too sm
Unlike the VAX and IEEE arithmetic, every bit pattern is a valid number. Th
library routines must establish conventions for what to return in case of error
the IBM FORTRAN library, for example, returns 2!

Arithmetic on Cray computers is interesting because it is driven by a mo
tion for the highest possible floating-point performance. It has a 15-bit expo

4–

A-68 Appendix A Computer Arithmetic

e a
g of

ics of
, and

 un-
es!
 W.
y of
with
 vis-
s, the
as fi-

 im-
ntains
. Ac-
what
ed on
 oth-
EFI-
erg
e in

ews-
. A
e to
Col-
ro-
s on

ffect
s an

plain-
was
d di-
or is
 the

nown
blic.
 re-
e an
field and a 48-bit fraction field. Addition on Cray computers does not hav
guard digit, and multiplication is even less accurate than addition. Thinkin
multiplication as a sum of p numbers, each 2p bits long, Cray computers drop the
low-order bits of each summand. Thus, analyzing the exact error characterist
the multiply operation is not easy. Reciprocals are computed using iteration
division of a by b is done by multiplying a times 1/b. The errors in multiplication
and reciprocation combine to make the last three bits of a divide operation
reliable. At least Cray computers serve to keep numerical analysts on their to

The IEEE standardization process began in 1977, inspired mainly by
Kahan and based partly on Kahan’s work with the IBM 7094 at the Universit
Toronto [Kahan 1968]. The standardization process was a lengthy affair,
gradual underflow causing the most controversy. (According to Cleve Moler,
itors to the U.S. were advised that the sights not to be missed were Las Vega
Grand Canyon, and the IEEE standards committee meeting.) The standard w
nally approved in 1985. The Intel 8087 was the first major commercial IEEE
plementation and appeared in 1981, before the standard was finalized. It co
features that were eliminated in the final standard, such as projective bits
cording to Kahan, the length of double-extended precision was based on
could be implemented in the 8087. Although the IEEE standard was not bas
any existing floating-point system, most of its features were present in some
er system. For example, the CDC 6600 reserved special bit patterns for IND
NITE and INFINITY, while the idea of denormal numbers appears in Goldb
[1967] as well as in Kahan [1968]. Kahan was awarded the 1989 Turing priz
recognition of his work on floating point.

Although floating point rarely attracts the interest of the general press, n
papers were filled with stories about floating-point division in November 1994
bug in the division algorithm used on all of Intel’s Pentium chips had just com
light. It was discovered by Thomas Nicely, a math professor at Lynchburg
lege in Virginia. Nicely found the bug when doing calculations involving recip
cals of prime numbers. News of Nicely’s discovery first appeared in the pres
the front page of the November 7 issue of Electronic Engineering Times. Intel’s
immediate response was to stonewall, asserting that the bug would only a
theoretical mathematicians. Intel told the press, “This doesn’t even qualify a
errata . . . even if you’re an engineer, you’re not going to see this.”

Under more pressure, Intel issued a white paper, dated November 30, ex
ing why they didn’t think the bug was significant. One of their arguments
based on the fact that if you pick two floating-point numbers at random an
vide one into the other, the chance that the resulting quotient will be in err
about 1 in 9 billion. However, Intel neglected to explain why they thought that
typical customer accessed floating-point numbers randomly.

Pressure continued to mount on Intel. One sore point was that Intel had k
about the bug before Nicely discovered it, but had decided not to make it pu
Finally, on December 20, Intel announced that they would unconditionally
place any Pentium chip that used the faulty algorithm and that they would tak
unspecified charge against earnings, which turned out to be $300 million.

A.12 Historical Perspective and References A-69

ction
 to a
tient
PLA
these
e divi-
8 ta-
ut of

ned

 fairly

o-

ment,
-

-

f this
nt to
l stan-

c,

binary
The Pentium uses a simple version of SRT division as discussed in se
A.9. The bug was introduced when they converted the quotient lookup table
PLA. Evidently there were a few elements of the table containing the quo
digit 2 that Intel thought would never be accessed, and they optimized the
design using this assumption. The resulting PLA returned 0 rather than 2 in
situations. However, those entries were really accessed, and this caused th
sion bug. Even though the effect of the faulty PLA was to cause 5 out of 204
ble entries to be wrong, the Pentium only computes an incorrect quotient 1 o
9 billion times on random inputs. This is explored in Exercise A.34.

References

ANDERSON, S. F., J. G. EARLE, R. E. GOLDSCHMIDT, AND D. M. POWERS [1967]. “The IBM System/
360 Model 91: Floating-point execution unit,” IBM J. Research and Development 11, 34–53. Re-
printed in Swartzlander [1990].

Good description of an early high-performance floating-point unit that used a pipeli
Wallace-tree multiplier and iterative division.

BELL, C. G. AND A. NEWELL [1971]. Computer Structures: Readings and Examples, McGraw-Hill,
New York.

BIRMAN, M., A. SAMUELS, G. CHU, T. CHUK, L. HU, J. MCLEOD, AND J. BARNES [1990]. “Develop-
ing the WRL3170/3171 SPARC floating-point coprocessors,” IEEE Micro 10:1, 55–64.

These chips have the same floating-point core as the Weitek 3364, and this paper has a
detailed description of that floating-point design.

BRENT, R. P. AND H. T. KUNG [1982]. “A regular layout for parallel adders,” IEEE Trans. on Com-
puters C-31, 260–264.

This is the paper that popularized CLAs in VLSI.

BURGESS, N. AND T. WILLIAMS [1995]. “Choices of operand truncation in the SRT division alg
rithm,” IEEE Trans. on Computers 44:7.

Analyzes how many bits of divisor and remainder need to be examined in SRT division.

BURKS, A. W., H. H. GOLDSTINE, AND J. VON NEUMANN [1946]. “Preliminary discussion of the logi-
cal design of an electronic computing instrument,” Report to the U.S. Army Ordnance Depart
p. 1; also appears in Papers of John von Neumann, W. Aspray and A. Burks, eds., MIT Press, Cam
bridge, Mass., and Tomash Publishers, Los Angeles, Calif., 1987, 97–146.

CODY, W. J., J. T. COONEN, D. M. GAY, K. HANSON, D. HOUGH, W. KAHAN, R. KARPINSKI,
J. PALMER, F. N. RIS, AND D. STEVENSON [1984]. “A proposed radix- and word-length-indepen
dent standard for floating-point arithmetic,” IEEE Micro 4:4, 86–100.

Contains a draft of the 854 standard, which is more general than 754. The significance o
article is that it contains commentary on the standard, most of which is equally releva
754. However, be aware that there are some differences between this draft and the fina
dard.

COONEN, J. [1984]. Contributions to a Proposed Standard for Binary Floating-Point Arithmeti
Ph.D. Thesis, Univ. of Calif., Berkeley.

The only detailed discussion of how rounding modes can be used to implement efficient
decimal conversion.

A-70 Appendix A Computer Arithmetic

nc-

ve all

rfor-

ic,”

ard.

,

 float-

y-

hms.
DARLEY, H. M., ET AL. [1989]. “Floating point/integer processor with divide and square root fu
tions,” U.S. Patent 4,878,190, October 31, 1989.

Pretty readable as patents go. Gives a high-level view of the TI 8847 chip, but doesn’t ha
the details of the division algorithm.

DEMMEL, J. W. AND X. LI [1994]. “Faster numerical algorithms via exception handling,” IEEE
Trans. on Computers 43:8, 983–992.

A good discussion of how the features unique to IEEE floating point can improve the pe
mance of an important software library.

FREIMAN, C. V. [1961]. “Statistical analysis of certain binary division algorithms,” Proc. IRE 49:1,
91–103.

Contains an analysis of the performance of shifting-over-zeros SRT division algorithm.

GOLDBERG, D. [1991]. “What every computer scientist should know about floating-point arithmet
Computing Surveys 23:1, 5–48.

Contains an in-depth tutorial on the IEEE standard from the software point of view.

GOLDBERG, I. B. [1967]. “27 bits are not enough for 8-digit accuracy,” Comm. ACM 10:2, 105–106.

This paper proposes using hidden bits and gradual underflow.

GOSLING, J. B. [1980]. Design of Arithmetic Units for Digital Computers, Springer-Verlag, New
York.

A concise, well-written book, although it focuses on MSI designs.

HAMACHER, V. C., Z. G. VRANESIC, AND S. G. ZAKY [1984]. Computer Organization, 2nd ed.,
McGraw-Hill, New York.

Introductory computer architecture book with a good chapter on computer arithmetic.

HWANG, K. [1979]. Computer Arithmetic: Principles, Architecture, and Design, Wiley, New York.

This book contains the widest range of topics of the computer arithmetic books.

IEEE [1985]. “IEEE standard for binary floating-point arithmetic,” SIGPLAN Notices 22:2, 9–25.

IEEE 754 is reprinted here.

KAHAN, W. [1968]. “7094-II system support for numerical analysis,” SHARE Secretarial Distribu-
tion SSD-159.

This system had many features that were incorporated into the IEEE floating-point stand

KAHANER, D. K. [1988]. “Benchmarks for ‘real’ programs,” SIAM News (November).

The benchmark presented in this article turns out to cause many underflows.

KNUTH, D. [1981]. The Art of Computer Programming, vol. II, 2nd ed., Addison-Wesley, Reading
Mass.

Has a section on the distribution of floating-point numbers.

KOGGE, P. [1981]. The Architecture of Pipelined Computers, McGraw-Hill, New York.

Has brief discussion of pipelined multipliers.

KOHN, L. AND S.-W. FU [1989]. “A 1,000,000 transistor microprocessor,” IEEE Int’l Solid-State Cir-
cuits Conf., 54–55.

There are several articles about the i860, but this one contains the most details about its
ing-point algorithms.

KOREN, I. [1989]. Computer Arithmetic Algorithms, Prentice Hall, Englewood Cliffs, N.J.

LEIGHTON, F. T. [1992]. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, H
percubes, Morgan Kaufmann, San Mateo, Calif.

This is an excellent book, with emphasis on the complexity analysis of algorit
Section 1.2.1 has a nice discussion of carry-lookahead addition on a tree.

A.12 Historical Perspective and References A-71

00

uare

n.

/

-

ulti-

,

in the

ve,
MAGENHEIMER, D. J., L. PETERS, K. W. PETTIS, AND D. ZURAS [1988]. “Integer multiplication and
division on the HP Precision architecture,” IEEE Trans. on Computers 37:8, 980–990.

Gives rationale for the integer- and divide-step instructions in the Precision architecture.

MARKSTEIN, P. W. [1990]. “Computation of elementary functions on the IBM RISC System/60
processor,” IBM J. of Research and Development 34:1, 111–119.

Explains how to use fused muliply-add to compute correctly rounded division and sq
root.

MEAD, C. AND L. CONWAY [1980]. Introduction to VLSI Systems, Addison-Wesley, Reading, Mass.

MONTOYE, R. K., E. HOKENEK, AND S. L. RUNYON [1990]. “Design of the IBM RISC System/6000
floating-point execution,” IBM J. of Research and Development 34:1, 59–70.

Describes one implementation of fused multiply-add.

NGAI, T.-F. AND M. J. IRWIN [1985]. “Regular, area-time efficient carry-lookahead adders,” Proc.
Seventh IEEE Symposium on Computer Arithmetic, 9–15.

Describes a CLA like that of Figure A.17, where the bits flow up and then come back dow

PATTERSON, D.A. AND J.L. HENNESSY [1994]. Computer Organization and Design: The Hardware
Software Interface, Morgan Kaufmann, San Francisco.

Chapter 4 is a gentler introduction to the first third of this appendix.

PENG, V., S. SAMUDRALA , AND M. GAVRIELOV [1987]. “On the implementation of shifters, multipli-
ers, and dividers in VLSI floating point units,” Proc. Eighth IEEE Symposium on Computer Arith
metic, 95–102.

Highly recommended survey of different techniques actually used in VLSI designs.

ROWEN, C., M. JOHNSON, AND P. RIES [1988]. “The MIPS R3010 floating-point coprocessor,” IEEE
Micro 53–62 (June).

SANTORO, M. R., G. BEWICK, AND M. A. HOROWITZ [1989]. “Rounding algorithms for IEEE multi-
pliers,” Proc. Ninth IEEE Symposium on Computer Arithmetic, 176–183.

A very readable discussion of how to efficiently implement rounding for floating-point m
plication.

SCOTT, N. R. [1985]. Computer Number Systems and Arithmetic, Prentice Hall, Englewood Cliffs,
N.J.

SWARTZLANDER, E., ED. [1990]. Computer Arithmetic, IEEE Computer Society Press, Los Alamitos
Calif.

A collection of historical papers in two volumes.

TAKAGI , N., H. YASUURA, AND S. YAJIMA [1985].“High-speed VLSI multiplication algorithm with a
redundant binary addition tree,” IEEE Trans. on Computers C-34:9, 789–796.

A discussion of the binary-tree signed multiplier that was the basis for the design used
TI 8847.

TAYLOR, G. S. [1981]. “Compatible hardware for division and square root,” Proc. Fifth IEEE Sympo-
sium on Computer Arithmetic, 127–134.

Good discussion of a radix-4 SRT division algorithm.

TAYLOR, G. S. [1985]. “Radix 16 SRT dividers with overlapped quotient selection stages,” Proc. Sev-
enth IEEE Symposium on Computer Arithmetic, 64–71.

Describes a very sophisticated high-radix division algorithm.

WESTE, N. AND K. ESHRAGHIAN [1993]. Principles of CMOS VLSI Design: A Systems Perspecti
2nd ed., Addison-Wesley, Reading, Mass.

This textbook has a section on the layouts of various kinds of adders.

A-72 Appendix A Computer Arithmetic

g the

ent-

 the

-in

 how

ble-

on,
rith-

gers

ting-
WILLIAMS , T. E., M. HOROWITZ, R. L. ALVERSON, AND T. S. YANG [1987]. “A self-timed chip for di-
vision,” Advanced Research in VLSI, Proc. 1987 Stanford Conf., MIT Press, Cambridge, Mass.

Describes a divider that tries to get the speed of a combinational design without usin
area that would be required by one.

E X E R C I S E S

A.1 [12] <A.2> Using n bits, what is the largest and smallest integer that can be repres
ed in the two’s complement system?

A.2 [20/25] <A.2> In the subsection Signed Numbers (page A-7), it was stated that two’s
complement overflows when the carry into the high-order bit position is different from
carry-out from that position.

a. [20] <A.2> Give examples of pairs of integers for all four combinations of carry
and carry-out. Verify the rule stated above.

b. [25] <A.2> Explain why the rule is always true.

A.3 [12] <A.2> Using 4-bit binary numbers, multiply −8 × −8 using Booth recoding.

A.4 [15] <A.2> Equations A.2.1 and A.2.2 are for adding two n-bit numbers. Derive sim-
ilar equations for subtraction, where there will be a borrow instead of a carry.

A.5 [25] <A.2> On a machine that doesn’t detect integer overflow in hardware, show
you would detect overflow on a signed addition operation in software.

A.6 [15/15/20] <A.3> Represent the following numbers as single-precision and dou
precision IEEE floating-point numbers.

a. [15] <A.3> 10.

b. [15] <A.3> 10.5.

c. [20] <A.3> 0.1.

A.7 [12/12/12/12/12] <A.3> Below is a list of floating-point numbers. In single precisi
write down each number in binary, in decimal, and give its representation in IEEE a
metic.

a. [12] <A.3> The largest number less than 1.

b. [12] <A.3> The largest number.

c. [12] <A.3> The smallest positive normalized number.

d. [12] <A.3> The largest denormal number.

e. [12] <A.3> The smallest positive number.

A.8 [15] <A.3> Is the ordering of nonnegative floating-point numbers the same as inte
when denormalized numbers are also considered?

A.9 [20] <A.3> Write a program that prints out the bit patterns used to represent floa
point numbers on your favorite computer. What bit pattern is used for NaN?

Exercises A-73

-

look

 be

a-
y per-

ead?

uct

lized
t can

ute

n-
A.10 [15] <A.4> Using p = 4, show how the binary floating-point multiply algorithm com
putes the product of 1.875 × 1.875.

A.11 [12/10] <A.4> Concerning the addition of exponents in floating-point multiply:

a. [12] <A.4> What would the hardware that implements the addition of exponents
like?

b. [10] <A.4> If the bias in single precision were 129 instead of 127, would addition
harder or easier to implement?

A.12 [15/12] <A.4> In the discussion of overflow detection for floating-point multiplic
tion, it was stated that (for single precision) you can detect an overflowed exponent b
forming exponent addition in a 9-bit adder.

a. [15] <A.4> Give the exact rule for detecting overflow.

b. [12] <A.4> Would overflow detection be any easier if you used a 10-bit adder inst

A.13 [15/10] <A.4> Floating-point multiplication:

a. [15] <A.4> Construct two single-precision floating-point numbers whose prod
doesn’t overflow until the final rounding step.

b. [10] <A.4> Is there any rounding mode where this phenomenon cannot occur?

A.14 [15] <A.4> Give an example of a product with a denormal operand but a norma
output. How large was the final shifting step? What is the maximum possible shift tha
occur when the inputs are double-precision numbers?

A.15 [15] <A.5> Use the floating-point addition algorithm on page A-24 to comp
1.0102 − .10012 (in 4-bit precision) .

A.16 [10/15/20/20/20] <A.5> In certain situations, you can be sure that a + b is exactly rep-
resentable as a floating-point number, that is, no rounding is necessary.

a. [10] <A.5> If a, b have the same exponent and different signs, explain why a + b is
exact. This was used in the subsection Speeding Up Addition on page A-27.

b. [15] <A.5> Give an example where the exponents differ by 1, a and b have different
signs, and a + b is not exact.

c. [20] <A.5> If a ≥ b ≥ 0, and the top two bits of a cancel when computing a − b, explain
why the result is exact (this fact is mentioned on page A-23).

d. [20] <A.5> If a ≥ b ≥ 0, and the exponents differ by 1, show that a − b is exact unless
the high order bit of a − b is in the same position as that of a (mentioned in Speeding
Up Addition, page A-27).

e. [20] <A.5> If the result of a − b or a + b is denormal, show that the result is exact (me
tioned in the subsection Underflow, page A-38).

A.17 [15/20] <A.5> Fast floating-point addition (using parallel adders) for p = 5.

a. [15] <A.5> Step through the fast addition algorithm for a + b, where a = 1.01112 and
b = .110112.

A-74 Appendix A Computer Arithmetic

-up

teps

ncom-

e un-

 sign

n al-

 The

ber

w.

i-

int
ra-
(a)?

itial
gnore

 time
s). Us-
ould
)?
b. [20] <A.5> Suppose the rounding mode is toward +∞. What complication arises in the
above example for the adder that assumes a carry-out? Suggest a solution.

A.18 [12] <A.4,A.5> How would you use two parallel adders to avoid the final round
addition in floating-point multiplication?

A.19 [30/10] <A.5> This problem presents a way to reduce the number of addition s
in floating-point addition from three to two using only a single adder.

a. [30] <A.5> Let A and B be integers of opposite signs, with a and b be their magni-
tudes. Show that the following rules for manipulating the unsigned numbers a and b
gives A + B.

1. Complement one of the operands.

2. Using end around carry to add the complemented operand and the other (u
plemented) one.

3. If there was a carry-out, the sign of the result is the sign associated with th
complemented operand.

4. Otherwise, if there was no carry-out, complement the result, and give it the
of the complemented operand.

b. [10] <A.5> Use the above to show how steps 2 and 4 in the floating-point additio
gorithm can be performed using only a single addition.

A.20 [20/15/20/15/20/15] <A.6> Iterative square root.

a. [20] <A.6> Use Newton’s method to derive an iterative algorithm for square root.
formula will involve a division.

b. [15] <A.6> What is the fastest way you can think of to divide a floating-point num
by 2?

c. [20] <A.6> If division is slow, then the iterative square root routine will also be slo

Use Newton’s method on f(x) = 1/x2 − a to derive a method that doesn’t use any div
sions.

d. [15] <A.6> Assume that the ratio division by 2 : floating-point add : floating-po
multiply is 1:2:4. What ratios of multiplication time to divide time makes each ite
tion step in the method of part(c) faster than each iteration in the method of part

e. [20] <A.6> When using the method of part(a), how many bits need to be in the in
guess in order to get double-precision accuracy after three iterations? (You may i
rounding error.)

f. [15] <A.6> Suppose that when Spice runs on the TI 8847, it spends 16.7% of its
in the square root routine (this percentage has been measured on other machine
ing the values in Figure A.36 and assuming three iterations, how much slower w
Spice run if square root was implemented in software using the method of part(a

A.21 [10/20/15/15/15] <A.6> Correctly rounded iterative division. Let a and b be floating-
point numbers with p-bit significands (p = 53 in double precision). Let q be the exact quo-
tient q = a/b, 1 ≤ q < 2. Suppose that q is the result of an iteration process, that q has a few

Exercises A-75

e

nt is

 an-
unded

t for
uld be
t? The
ers.

ake
extra bits of precision, and that 0 < q − q < 2−p . For the following, it is important that
q < q, even when q can be exactly represented as a floating-point number.

a. [10] <A.6> If x is a floating-point number, and 1 ≤ x < 2, what is the next representabl
number after x?

b. [20] <A.6> Show how to compute q′ from q, where q′ has p + 1 bits of precision and

 q − q′  < 2−p.

c. [15] <A.6> Assuming round to nearest, show that the correctly rounded quotie

either q′, q′ − 2−p, or q′ + 2−p.

d. [15] <A.6> Give rules for computing the correctly rounded quotient from q′ based on
the low-order bit of q′ and the sign of a − bq′.

e. [15] <A.6> Solve part(c) for the other three rounding modes.

A.22 [15] <A.6> Verify the formula on page A-31. [Hint: If xn = x0(2 − x0b) × Π i=1, n [1 +
(1 − x0b)2i], then 2 − xnb = 2 − x0b(2 − x0b) Π[1 + (1 − x0b)2i] = 2 − [1 − (1 − x0b)2] Π[1
+ (1 − x0b)2i].]

A.23 [15] <A.7> Our example that showed that double rounding can give a different
swer from rounding once used the round-to-even rule. If halfway cases are always ro
up, is double rounding still dangerous?

A.24 [10/10/20/20] <A.7> Some of the cases of the italicized statement in the Precisions
subsection (page A-34) aren’t hard to demonstrate.

a. [10] <A.7> What form must a binary number have if rounding to q bits followed by
rounding to p bits gives a different answer than rounding directly to p bits?

b. [10] <A.7> Show that for multiplication of p-bit numbers, rounding to q bits followed
by rounding to p bits is the same as rounding immediately to p bits if q ≥ 2p.

c. [20] <A.7> If a and b are p-bit numbers with the same sign, show that rounding a + b
to q bits followed by a rounding to p bits is the same as rounding immediately to p bits
if q ≥ 2p + 1.

d. [20] <A.7> Do part (c) when a and b have opposite signs.

A.25 [Discussion] <A.7> In the MIPS approach to exception handling, you need a tes
determining whether two floating-point operands could cause an exception. This sho
fast and also not have too many false positives. Can you come up with a practical tes
performance cost of your design will depend on the distribution of floating-point numb
This is discussed in Knuth [1981] and the Hamming paper in Swartzlander [1990].

A.26 [12/12/10] <A.8> Carry-skip adders.

a. [12] <A.8> Assuming that time is proportional to logic levels, how long does it t
an n-bit adder divided into (fixed) blocks of length k bits to perform an addition?

b. [12] <A.8> What value of k gives the fastest adder?

c. [10] <A.8> Explain why the carry-skip adder takes time .0 n()

A-76 Appendix A Computer Arithmetic

ing

 of

 top

the

ed

al

t

 and
e the

e input

.

aw
4 SRT
ain-
s due

, but
rithm
os-
A.27 [10/15/20] <A.8> Complete the details of the block diagrams for the follow
adders.

a. [10] <A.8> In Figure A.15, show how to implement the “1” and “2” boxes in terms
AND and OR gates.

b. [15] <A.8> In Figure A.18, what signals need to flow from the adder cells in the
row into the “C” cells? Write the logic equations for the “C” box.

c. [20] <A.8> Show how to extend the block diagram in A.17 so it will produce
carry-out bit c8.

A.28 [15] <A.9> For ordinary Booth recoding, the multiple of b used in the ith step is
simply ai–1 − ai. Can you find a similar formula for radix-4 Booth recoding (overlapp
triplets)?

A.29 [20] <A.9> Expand Figure A.29 in the fashion of A.27, showing the individu
adders.

A.30 [25] <A.9> Write out the analogue of Figure A.25 for radix-8 Booth recoding.

A.31 [18] <A.9> Suppose that an–1. . .a1a0 and bn–1. . .b1b0 are being added in a signed-digi
adder as illustrated in the Example on page A-56. Write a formula for the ith bit of the sum,
si, in terms of ai, ai–1, ai–2, bi, bi–1, and bi–2.

A.32 [15] <A.9> The text discussed radix-4 SRT division with quotient digits of −2, −1, 0,
1, 2. Suppose that 3 and −3 are also allowed as quotient digits. What relation replaces  ri
≤ 2b/3?

A.33 [25/20/30] <A.9> Concerning the SRT division table, Figure A.34:

a. [25] <A.9> Write a program to generate the results of Figure A.34.

b. [20] <A.9> Note that Figure A.34 has a certain symmetry with respect to positive
negative values of P. Can you find a way to exploit the symmetry and only stor
values for positive P?

c. [30] <A.9> Suppose a carry-save adder is used instead of a propagate adder. Th
to the quotient lookup table will be k bits of divisor, and l bits of remainder, where the
remainder bits are computed by summing the top l bits of the sum and carry registers
What are k and l? Write a program to generate the analogue of Figure A.34.

A.34 [12/12/12]<A.9,A.12>The first several million Pentium chips produced had a fl
that caused division to sometimes return the wrong result. The Pentium uses a radix-
algorithm similar to the one illustrated in the Example on page A-59 (but with the rem
der stored in carry-save format: see Exercise A.33(c)). According to Intel, the bug wa
to five incorrect entries in the quotient lookup table.

a. [12] <A.9,A.12> The bad entries should have had a quotient of plus or minus 2
instead had a quotient of 0. Because of redundancy, it’s conceivable that the algo
could “recover” from a bad quotient digit on later iterations. Show that this is not p
sible for the Pentium flaw.

Exercises A-77

ger
irst,
e very

ill

 oc-
ting

t the

 that
sion

 not
to the
nt of
b. [12] <A.9,A.12> Since the operation is a floating-point divide rather than an inte
divide, the SRT division algorithm on page A-47 must be modified in two ways. F
step 1 is no longer needed, since the divisor is already normalized. Second, th
first remainder may not satisfy the proper bound ( r  ≤ 2b/3 for Pentium, see page A-
58). Show that skipping the very first left shift in step 2(a) of the SRT algorithm w
solve this problem.

c. [12] <A.9,A.12> If the faulty table entries were indexed by a remainder that could
cur at the very first divide step (when the remainder is the divisor), random tes
would quickly reveal the bug. This didn’t happen. What does that tell you abou
remainder values that index the faulty entries?

A.35 [12/12/12] <A.6,A.9> The discussion of the remainder-step instruction assumed
division was done using a bit-at-a-time algorithm. What would have to change if divi
were implemented using a higher-radix method?

A.36 [25] <A.9> In the array of Figure A.28, the fact that an array can be pipelined is
exploited. Can you come up with a design that feeds the output of the bottom CSA in
bottom CSAs instead of the top one, and that will run faster than the arrangeme
Figure A.28?

B

Vector Processors 2
e

r.

ems

ever

 can
I’m certainly not inventing vector processors. There are three

kinds that I know of existing today. They are represented by th

Illiac-IV, the (CDC) Star processor, and the TI (ASC) processo

Those three were all pioneering processors.... One of the probl

of being a pioneer is you always make mistakes and I never, n

want to be a pioneer. It’s always best to come second when you

look at the mistakes the pioneers made.

Seymour Cray
Public Lecture at Lawrence Livermore Laboratories
on the Introduction of the CRAY-1 (1976)

B.1 Why Vector Processors? B-1

B.2 Basic Vector Architecture B-3

B.3 Two Real-World Issues: Vector Length and Stride B-15

B.4 Effectiveness of Compiler Vectorization B-22

B.5 Enhancing Vector Performance B-23

B.6 Putting It All Together: Performance of Vector Processors B-29

B.7 Fallacies and Pitfalls B-35

B.8 Concluding Remarks B-37

B.9 Historical Perspective and References B-38

Exercises B-43
evel
ruc-
ntly
 have
 dis-

5.) Yet
ieve.

ipe-
s and
 cor-

ny
In Chapters 3 and 4 we looked at pipelining and exploitation of instruction-l
parallelism in detail and saw that pipeline scheduling, issuing multiple inst
tions per clock cycle, and more deeply pipelining a processor could significa
improve the performance of a processor. (This appendix assumes that you
read Chapter 3 completely and at least skimmed Chapter 4; in addition, the
cussion on vector memory systems assumes that you have read Chapter
there are limits on the performance improvement that pipelining can ach
These limits are set by two primary factors:

■ Clock cycle time—The clock cycle time can be decreased by making the p
lines deeper, but a deeper pipeline will increase the pipeline dependence
result in a higher CPI. At some point, each increase in pipeline depth has a
responding increase in CPI. As we saw in Chapter 3’s Fallacies and Pitfalls,
very deep pipelining can slow down a processor.

■ Instruction fetch and decode rate—This obstacle, sometimes called the Flynn
bottleneck (based on Flynn [1966]), makes it difficult to fetch and issue ma

B.1 Why Vector Processors?

B-2

Appendix B Vector Processors

lt to

ruc-
t as

s-

tific
se a
ncy.
tive
rfor-
ach-
tterns
 com-
mory

ting-
on is
ents

f the

ious

s-
by the

 ex-
ced,

e vec-
ly in-
high
amor-
n to a
e for

ior is
nch
instructions per clock. This obstacle is one reason that it has been difficu
build processors with high clock rates and very high issue rates.

The dual limitations imposed by deeper pipelines and issuing multiple inst
tions can be viewed from the standpoint of either clock rate or CPI: It is jus
difficult to schedule a pipeline that is n times deeper as it is to schedule a proce
sor that issues n instructions per clock cycle.

High-speed, pipelined processors are particularly useful for large scien
and engineering applications. A high-speed pipelined processor will usually u
cache to avoid forcing memory reference instructions to have very long late
Unfortunately, big, long-running, scientific programs often have very large ac
data sets that are sometimes accessed with low locality, yielding poor pe
mance from the memory hierarchy. This problem could be overcome by not c
ing these structures if it were possible to determine the memory-access pa
and pipeline the memory accesses efficiently. Novel cache architectures and
piler assistance through blocking and prefetching are decreasing these me
hierarchy problems, but they continue to be serious in some applications.

Vector processors provide high-level operations that work on vectors—linear
arrays of numbers. A typical vector operation might add two 64-element, floa
point vectors to obtain a single 64-element vector result. The vector instructi
equivalent to an entire loop, with each iteration computing one of the 64 elem
of the result, updating the indices, and branching back to the beginning.

Vector instructions have several important properties that solve most o
problems mentioned above:

■ The computation of each result is independent of the computation of prev
results, allowing a very deep pipeline without generating any data hazards. E
sentially, the absence of data hazards was determined by the compiler or
programmer when she decided that a vector instruction could be used.

■ A single vector instruction specifies a great deal of work—it is equivalent to
ecuting an entire loop. Thus, the instruction bandwidth requirement is redu
and the Flynn bottleneck is considerably mitigated.

■ Vector instructions that access memory have a known access pattern. If th
tor’s elements are all adjacent, then fetching the vector from a set of heavi
terleaved memory banks works very well (as we saw in section 5.6). The
latency of initiating a main memory access versus accessing a cache is
tized, because a single access is initiated for the entire vector rather tha
single word. Thus, the cost of the latency to main memory is seen only onc
the entire vector, rather than once for each word of the vector.

■ Because an entire loop is replaced by a vector instruction whose behav
predetermined, control hazards that would normally arise from the loop bra
are nonexistent.

B.2 Basic Vector Architecture

B-3

f scalar
 to in-

ivid-
tions
e ad-
ltiple
e op-

ssors

us a
ral
ng-
haz-
point
. The
 dis-

ector
hitec-
gister
2, X-
ujitsu
uters
era-

 were
 ar-
s at
s suc-

om-
 the

 We
l
rchi-

For these reasons, vector operations can be made faster than a sequence o
operations on the same number of data items, and designers are motivated
clude vector units if the applications domain can use them frequently.

As mentioned above, vector processors pipeline the operations on the ind
ual elements of a vector. The pipeline includes not only the arithmetic opera
(multiplication, addition, and so on), but also memory accesses and effectiv
dress calculations. In addition, most high-end vector processors allow mu
vector operations to be done at the same time, creating parallelism among th
erations on different elements. In this appendix, we focus on vector proce
that gain performance by pipelining and instruction overlap.

A vector processor typically consists of an ordinary pipelined scalar unit pl
vector unit. All functional units within the vector unit have a latency of seve
clock cycles. This allows a shorter clock cycle time and is compatible with lo
running vector operations that can be deeply pipelined without generating
ards. Most vector processors allow the vectors to be dealt with as floating-
numbers, as integers, or as logical data. Here we will focus on floating point
scalar unit is basically no different from the type of advanced pipelined CPU
cussed in Chapter 3.

There are two primary types of architectures for vector processors: vector-
register processors and memory-memory vector processors. In a vector-register
processor, all vector operations—except load and store—are among the v
registers. These architectures are the vector counterpart of a load-store arc
ture. All major vector computers shipped since the late 1980s use a vector-re
architecture; these include the Cray Research processors (CRAY-1, CRAY-
MP, Y-MP, and C-90), the Japanese supercomputers (NEC SX/2 and SX/3, F
VP200 and VP400, and the Hitachi S820), as well as the mini-supercomp
(Convex C-1 and C-2). In a memory-memory vector processor, all vector op
tions are memory to memory. The first vector computers were of this type, as
CDC’s vector computers. From this point on we will focus on vector-register
chitectures only; we will briefly return to memory-memory vector architecture
the end of the appendix (section B.7) to discuss why they have not been a
cessful as vector-register architectures.

We begin with a vector-register processor consisting of the primary c
ponents shown in Figure B.1. This processor, which is loosely based on
CRAY-1, is the foundation for discussion throughout most of this appendix.
will call it DLXV; its integer portion is DLX, and its vector portion is the logica
vector extension of DLX. The rest of this section examines how the basic a
tecture of DLXV relates to other processors.

B.2 Basic Vector Architecture

B-4

Appendix B Vector Processors

gle
4 el-
 write
ra-
hort-
tural
 eight
ir of
ly a

The primary components of the instruction set architecture of DLXV are

■ Vector registers—Each vector register is a fixed-length bank holding a sin
vector. DLXV has eight vector registers, and each vector register holds 6
ements. Each vector register must have at least two read ports and one
port in DLXV. This will allow a high degree of overlap among vector ope
tions to different vector registers. (We do not consider the problem of a s
age of vector register ports. In real machines this would result in a struc
hazard.) The read and write ports, which total at least 16 read ports and
write ports, are connected to the functional unit inputs or outputs by a pa
crossbars. (The CRAY-1 manages to implement the register file with on
single port per register using some clever implementation techniques.)

FIGURE B.1 The basic structure of a vector-register architecture, DLXV. This proces-
sor has a scalar architecture just like DLX. There are also eight 64-element vector registers,
and all the functional units are vector functional units. Special vector instructions are defined
both for arithmetic and for memory accesses. We show vector units for logical and integer
operations. These are included so that DLXV looks like a standard vector processor, which
usually includes these units. However, we will not be discussing these units except in the
Exercises. The vector and scalar registers have a significant number of read and write ports
to allow multiple simultaneous vector operations. These ports are connected to the inputs and
outputs of the vector functional units by a set of crossbars (shown in thick gray lines). In
section B.5 we add chaining, which will require additional interconnect capability.

Main memory

Vector
registers

Scalar
registers

FP add/subtract

FP multiply

FP divide

Integer

Logical

Vector
load-store

B.2 Basic Vector Architecture

B-5

r-
from
eg-
n in
c-
se the
 units

ec-
ed,
ith a

uld

the
r load-
ating-
 sca-
bars.

clud-
units,

with
era-
gical

s.

pera-

le-
ation
tored

d
nd is
DLX

ory.
rs,
ctor-
s B.3
■ Vector functional units—Each unit is fully pipelined and can start a new ope
ation on every clock cycle. A control unit is needed to detect hazards, both
conflicts for the functional units (structural hazards) and from conflicts for r
ister accesses (data hazards). DLXV has five functional units, as show
Figure B.1. For simplicity, we will focus exclusively on the floating-point fun
tional units. Depending on the vector processor, scalar operations either u
vector functional units or use a dedicated set. We assume the functional
are shared, but again, for simplicity, we ignore potential conflicts.

■ Vector load-store unit—This is a vector memory unit that loads or stores a v
tor to or from memory. The DLXV vector loads and stores are fully pipelin
so that words can be moved between the vector registers and memory w
bandwidth of one word per clock cycle, after an initial latency. This unit wo
also normally handle scalar loads and stores.

■ A set of scalar registers—Scalar registers can also provide data as input to
vector functional units, as well as compute addresses to pass to the vecto
store unit. These are the normal 32 general-purpose registers and 32 flo
point registers of DLX, though more read and write ports are needed. The
lar registers are also connected to the functional units by the pair of cross

Figure B.2 shows the characteristics of some typical vector processors, in
ing the size and count of the registers, the number and types of functional
and the number of load-store units.

In DLXV, vector operations use the same names as DLX operations, but
the letter “V” appended. These are double-precision, floating-point vector op
tions. (We have omitted single-precision FP operations and integer and lo
operations for simplicity.) Thus, ADDV is an add of two double-precision vector
The vector instructions take as their input either a pair of vector registers (ADDV)
or a vector register and a scalar register, designated by appending “SV” (ADDSV).
In the latter case, the value in the scalar register is used as the input for all o
tions—the operation ADDSV will add the contents of a scalar register to each e
ment in a vector register. Most vector operations have a vector destin
register, though a few (population count) produce a scalar value, which is s
to a scalar register. The names LV and SV denote vector load and vector store, an
they load or store an entire vector of double-precision data. One opera
the vector register to be loaded or stored; the other operand, which is a
general-purpose register, is the starting address of the vector in mem
Figure B.3 lists the DLXV vector instructions. In addition to the vector registe
we need two additional special-purpose registers: the vector-length and ve
mask registers. We will discuss these registers and their purpose in section
and B.5, respectively.

B-6

Appendix B Vector Processors

Processor
Year

announced

Clock
rate

(MHz) Registers

Elements per
register (64-bit

elements) Functional units
Load-store

units

CRAY-1 1976 80 8 64 6: add, multiply, reciprocal,
integer add, logical, shift

1

CRAY X-MP
CRAY Y-MP

1983
1988

120
166

8 64 8: FP add, FP multiply, FP re-
ciprocal, integer add, 2 logical,
shift, population count/parity

2 loads
1 store

CRAY-2 1985 166 8 64 5: FP add, FP multiply, FP re-
ciprocal/sqrt, integer (add shift,
population count), logical

1

Fujitsu
VP100/200

1982 133 8–256 32–1024 3: FP or integer add/logical,
multiply, divide

2

Hitachi
S810/820

1983 71 32 256 4: 2 integer add/logical,
1 multiply-add, and 1 multiply/
divide–add unit

4

Convex C-1 1985 10 8 128 4: multiply, add, divide, integer/
logical

1

NEC SX/2 1984 160 8 + 8192 256 variable 16: 4 integer add/logical, 4 FP
multiply/divide, 4 FP add,
4 shift

8

DLXV 1990 200 8 64 5: multiply, divide, add,
integer add, logical

1

Cray C-90 1991 240 8 128 8: FP add, FP multiply, FP re-
ciprocal, integer add, 2 logical,
shift, population count/parity

4

Convex C-4 1994 135 16 128 3: each is full integer, logical,
and FP (including multiply-add)

NEC SX/4 1995 400 8 + 8192 256 variable 16: 4 integer add/logical, 4 FP
multiply/divide, 4 FP add,
4 shift

8

Cray J-90 1995 100 8 64 4: FP add, FP multiply, FP re-
ciprocal, integer/logical

Cray T-90 1996 ~500 8 128 8: FP add, FP multiply, FP re-
ciprocal, integer add, 2 logical,
shift, population count/parity

4

FIGURE B.2 Characteristics of several vector-register architectures. The vector functional units include all operation
units used by the vector instructions. The functional units are floating point unless stated otherwise. If the processor is a
multiprocessor, the entries correspond to the characteristics of one processor. Each vector load-store unit represents the
ability to do an independent, overlapped transfer to or from the vector registers. The Fujitsu VP200’s vector registers are
configurable: The size and count of the 8 K 64-bit entries may be varied inversely to one another (e.g., eight registers each
1 K elements long, or 128 registers each 64 elements long). The NEC SX/2 has eight fixed registers of length 256, plus 8 K
of configurable 64-bit registers. The reciprocal unit on the CRAY processors is used to do division (and square root on the
CRAY-2). Add pipelines perform floating-point add and subtract. The multiply/divide–add unit on the Hitachi S810/820 per-
forms an FP multiply or divide followed by an add or subtract (while the multiply-add unit performs a multiply followed by an
add or subtract). Note that most processors use the vector FP multiply and divide units for vector integer multiply and divide,
just like DLX, and several of the processors use the same units for FP scalar and FP vector operations. Several of the
machines have different clock rates in the vector and scalar units; the clock rates shown are for the vector units.

B.2 Basic Vector Architecture

B-7

XV.
dix:

e so-

h-

he

in
A vector processor is best understood by looking at a vector loop on DL
Let’s take a typical vector problem, which will be used throughout this appen

Y = a × X + Y

X and Y are vectors, initially resident in memory, and a is a scalar. This is th
called SAXPY or DAXPY loop that forms the inner loop of the Linpack benc
mark. (SAXPY stands for single-precision a × X plus Y; DAXPY for double-
precision a × X plus Y.) Linpack is a collection of linear algebra routines, and t

Instruction Operands Function

ADDV
ADDSV

V1,V2,V3
V1,F0,V2

Add elements of V2 and V3, then put each result in V1.
Add F0 to each element of V2, then put each result in V1.

SUBV
SUBVS
SUBSV

V1,V2,V3
V1,V2,F0
V1,F0,V2

Subtract elements of V3 from V2, then put each result in V1.
Subtract F0 from elements of V2, then put each result in V1.
Subtract elements of V2 from F0, then put each result in V1.

MULTV
MULTSV

V1,V2,V3
V1,F0,V2

Multiply elements of V2 and V3, then put each result in V1.
Multiply F0 by each element of V2, then put each result in V1.

DIVV
DIVVS
DIVSV

V1,V2,V3
V1,V2,F0
V1,F0,V2

Divide elements of V2 by V3, then put each result in V1.
Divide elements of V2 by F0, then put each result in V1.
Divide F0 by elements of V2, then put each result in V1.

LV V1,R1 Load vector register V1 from memory starting at address R1.

SV R1,V1 Store vector register V1 into memory starting at address R1.

LVWS V1,(R1,R2) Load V1 from address at R1 with stride in R2, i.e., R1+i × R2.

SVWS (R1,R2),V1 Store V1 from address at R1 with stride in R2, i.e., R1+i × R2.

LVI V1,(R1+V2) Load V1 with vector whose elements are at R1+V2(i) , i.e., V2 is an index.

SVI (R1+V2),V1 Store V1 to vector whose elements are at R1+V2(i) , i.e., V2 is an index.

CVI V1,R1 Create an index vector by storing the values 0, 1 × R1, 2 × R1,...,63 × R1
into V1.

S--V
S--SV

V1,V2
F0,V1

Compare the elements (EQ, NE, GT, LT, GE, LE) in V1 and V2. If condition is true,
put a 1 in the corresponding bit vector; otherwise put 0. Put resulting bit vector
vector-mask register (VM). The instruction S--SV performs the same compare but
using a scalar value as one operand.

POP R1,VM Count the 1s in the vector-mask register and store count in R1.

CVM Set the vector-mask register to all 1s.

MOVI2S
MOVS2I

VLR,R1
R1,VLR

Move contents of R1 to the vector-length register.
Move the contents of the vector-length register to R1.

MOVF2S
MOVS2F

VM,F0
F0,VM

Move contents of F0 to the vector-mask register.
Move contents of vector-mask register to F0.

FIGURE B.3 The DLXV vector instructions. Only the double-precision FP operations are shown. In addition to the vector
registers, there are two special registers, VLR (discussed in section B.3) and VM (discussed in section B.5). The operations
with stride are explained in section B.3, and the use of the index creation and indexed load-store operations are explained
in section B.5.

B-8 Appendix B Vector Processors

 the
op,
but it

r reg-
is re-
routines for performing Gaussian elimination constitute what is known as
Linpack benchmark. The DAXPY routine, which implements the above lo
represents a small fraction of the source code of the Linpack benchmark,
accounts for most of the execution time for the benchmark.

For now, let us assume that the number of elements, or length, of a vecto
ister (64) matches the length of the vector operation we are interested in. (Th
striction will be lifted shortly.)

E X A M P L E Show the code for DLX and DLXV for the DAXPY loop. Assume that the
starting addresses of X and Y are in Rx and Ry, respectively.

A N S W E R Here is the DLX code.

 LD F0,a

 ADDI R4,Rx,#512 ;last address to load

Loop: LD F2,0(Rx) ;load X(i)

 MULTD F2,F0,F2 ;a × X(i)

 LD F4,0(Ry) ;load Y(i)

 ADDD F4,F2,F4 ;a × X(i) + Y(i)

 SD 0(Ry),F4 ;store into Y(i)

 ADDI Rx,Rx,#8 ;increment index to X

 ADDI Ry,Ry,#8 ;increment index to Y

 SUB R20,R4,Rx ;compute bound

 BNEZ R20,Loop ;check if done

Here is the code for DLXV for DAXPY.

LD F0,a ;load scalar a

LV V1,Rx ;load vector X

MULTSV V2,F0,V1 ;vector-scalar multiply

LV V3,Ry ;load vector Y

ADDV V4,V2,V3 ;add

SV Ry,V4 ;store the result

There are some interesting comparisons between the two code segments
in this Example. The most dramatic is that the vector processor greatly re-
duces the dynamic instruction bandwidth, executing only six instructions
versus almost 600 for DLX. This reduction occurs both because the vector
operations work on 64 elements and because the overhead instructions
that constitute nearly half the loop on DLX are not present in the DLXV
code. ■

B.2 Basic Vector Architecture B-9

the

n all
once
, the
on
lin-
e in

 three
ng the

 pro-
. The
er,
re re-
plic-
, the
th.
the
lly
nvoy
eated

t, the
d in
of in-
 vec-
ess

ing of
r se-
tor se-

s
ector

 vec-
lt, to
Another important difference is the frequency of pipeline interlocks. In
straightforward DLX code every ADDD must wait for a MULTD, and every SD must
wait for the ADDD. On the vector processor, each vector instruction operates o
the vector elements independently. Thus, pipeline stalls are required only
per vector operation, rather than once per vector element. In this example
pipeline-stall frequency on DLX will be about 64 times higher than it is
DLXV. The pipeline stalls can be eliminated on DLX by using software pipe
ing or loop unrolling (as we saw in Chapter 4). However, the large differenc
instruction bandwidth cannot be reduced.

Vector Execution Time

The execution time of a sequence of vector operations primarily depends on
factors: the length of the vectors being operated on, structural hazards amo
operations, and the data dependences. Given the vector length and the initiation
rate, which is the rate at which a vector unit consumes new operands and
duces new results, we can compute the time for a single vector instruction
initiation rate is usually one per clock cycle for individual operations. Howev
some supercomputers have vector instructions that can produce two or mo
sults per clock, and others have units that may not be fully pipelined. For sim
ity, we assume that initiation rates are one throughout this appendix. Thus
execution time for a single vector instruction is approximately the vector leng

To simplify the discussion of vector execution and its timing, we will use
notion of a convoy, which is the set of vector instructions that could potentia
begin execution together in one clock period. (Although the concept of a co
is used in vector compilers, no standard terminology exists. Hence, we cr
the term convoy.) The instructions in a convoy must not contain any structural or
data hazards (though we will relax this later); if such hazards were presen
instructions in the potential convoy would need to be serialized and initiate
different convoys. To keep the analysis simple, we assume that a convoy
structions must complete execution before any other instructions (scalar or
tor) can begin execution. We will relax this in section B.6 by using a l
restrictive, but more complex, method for issuing instructions.

Accompanying the notion of a convoy is a timing metric, called a chime, that
can be used for estimating the performance of a vector sequence consist
convoys. A chime is an approximate measure of execution time for a vecto
quence; a chime measurement is independent of vector length. Thus, a vec
quence that consists of m convoys executes in m chimes, and for a vector length
of n, this is approximately m × n clock cycles. A chime approximation ignore
some processor-specific overheads, many of which are dependent on v
length. Hence, measuring time in chimes is a better approximation for long
tors. We will use the chime measurement, rather than clock cycles per resu
explicitly indicate that certain overheads are being ignored.

B-10 Appendix B Vector Processors

ecu-
s any
e
tor

 of a
er of
 one

am-
ould

arate
If we know the number of convoys in a vector sequence, we know the ex
tion time in chimes. One source of overhead ignored in measuring chimes i
limitation on initiating multiple vector instructions in a clock cycle. If only on
vector instruction can be initiated in a clock cycle (the reality in most vec
processors), the chime count will underestimate the actual execution time
convoy. Because the vector length is typically much greater than the numb
instructions in the convoy, we will simply assume that the convoy executes in
chime.

E X A M P L E Show how the following code sequence lays out in convoys, assuming a
single copy of each vector functional unit:

LV V1,Rx ;load vector X

MULTSV V2,F0,V1 ;vector-scalar multiply

LV V3,Ry ;load vector Y

ADDV V4,V2,V3 ;add

SV Ry,V4 ;store the result

How many chimes will this vector sequence take? How many chimes per
FLOP (floating-point operation) are needed?

A N S W E R The first convoy is occupied by the first LV instruction. The MULTSV is de-
pendent on the first LV, so it cannot be in the same convoy. The second
LV instruction can be in the same convoy as the MULTSV. The ADDV is de-
pendent on the second LV, so it must come in yet a third convoy, and finally
the SV depends on the ADDV, so it must go in a following convoy. This leads
to the following layout of vector instructions into convoys:

1. LV

2. MULTSV LV

3. ADDV

4. SV

The sequence requires four convoys and hence takes four chimes. Note
that although we allow the MULTSV and the LV both to execute in convoy
2, most vector machines will take two clock cycles to initiate the instruc-
tions. Since the sequence takes a total of four chimes and there are two
floating-point operations per result, the number of chimes per FLOP is
two. ■

The chime approximation is reasonably accurate for long vectors. For ex
ple, for 64-element vectors, the time in chimes is four, so the sequence w
take about 256 clock cycles. The overhead of issuing convoy 2 in two sep
clocks would be small.

B.2 Basic Vector Architecture B-11

tion.
ector
tor

unc-
 con-
o not
s. Of
ts for
lap is
m of
tart-
 fol-
Another source of overhead is far more significant than the issue limita
The most important source of overhead ignored by the chime model is v
start-up time. The start-up time comes from the pipelining latency of the vec
operation and is principally determined by how deep the pipeline is for the f
tional unit used. The start-up time increases the effective time to execute a
voy to more than one chime. Because of our assumption that convoys d
overlap in time, the start-up time delays the execution of subsequent convoy
course the instructions in successive convoys have either structural conflic
some functional unit or are data dependent, so the assumption of no over
reasonable. The actual time to complete a convoy is determined by the su
the vector length and the start-up time. If vector lengths were infinite, this s
up overhead would be amortized, but finite vector lengths expose it, as the
lowing Example shows.

E X A M P L E Assume the start-up overhead for functional units is shown in Figure B.4.

Show the time that each convoy can begin and the total number of cycles
needed. How does the time compare to the chime approximation for a
vector of length 64?

A N S W E R Figure B.5 provides the answer in convoys, assuming that the vector
length is n:

One tricky question is when we assume the vector sequence is done; this
determines whether the start-up time of the SV is visible or not. We as-
sume that the instructions following cannot fit in the same convoy, and we

Unit Start-up overhead

Load and store unit 12 cycles

Multiply unit 7 cycles

Add unit 6 cycles

FIGURE B.4 Start-up overhead.

Convoy Starting time First-result time Last-result time

1. LV 0 12 11 + n

2. MULTSV LV 12 + n 12 + n + 12 23 + 2n

3. ADDV 24 + 2n 24 + 2n + 6 29 + 3n

4. SV 30 + 3n 30 + 3n + 12 41 + 4n

FIGURE B.5 Starting times and first- and last-result times for convoys
1 through 4. The vector length is n.

B-12 Appendix B Vector Processors

r-
e or

situa-
lore

nc-
ne

deep
eter-
ces-
s is
 four

ore
 are
 for
V,
 func-
have already assumed that convoys do not overlap. Thus the total time is
given by the time until the last vector instruction in the last convoy com-
pletes. This is an approximation, and the start-up time of the last vector
instruction may be seen in some sequences and not in others. For sim-
plicity, we always include it.

The time per result for a vector of length 64 is 4 + (42/64) = 4.65 clock
cycles, while the chime approximation would be 4. The execution time
with start-up overhead is 1.16 times higher. ■

For simplicity, we will use the chime approximation for running time, inco
porating start-up time effects only when we want more detailed performanc
to illustrate the benefits of some enhancement. For long vectors, a typical
tion, the overhead effect is not that large. Later in the appendix we will exp
ways to reduce start-up overhead.

Start-up time for an instruction comes from the pipeline depth for the fu
tional unit implementing that instruction. If the initiation rate is to be kept at o
clock cycle per result, then

For example, if an operation takes 10 clock cycles, it must be pipelined 10
to achieve an initiation rate of one per clock cycle. Pipeline depth, then, is d
mined by the complexity of the operation and the clock cycle time of the pro
sor. The pipeline depths of functional units vary widely—from two to 20 stage
not uncommon—though the most heavily used units have pipeline depths of
to eight clock cycles.

For DLXV, we will use the same pipeline depths as the CRAY-1, though m
modern processors might have units with lower latency. All functional units
fully pipelined. As shown in Figure B.6, pipeline depths are six clock cycles
floating-point add and seven clock cycles for floating-point multiply. On DLX
as on most vector processors, independent vector operations using different
tional units can issue in the same convoy.

Operation Start-up penalty

Vector add 6

Vector multiply 7

Vector divide 20

Vector load 12

FIGURE B.6 Start-up penalties on DLXV. These are the start-up penalties in clock cycles
for DLXV vector operations.

Pipeline depth Total functional unit time
Clock cycle time

---=

B.2 Basic Vector Architecture B-13

than
e to
 sup-
ich

tion

e for
For
the
d 17
 op-

the
. This
 5.6.
eful

g for

port
ultiple

bility
ndent

 deter-
l. The
Vector Load-Store Units and Vector Memory Systems

The behavior of the load-store vector unit is significantly more complicated
that of the arithmetic functional units. The start-up time for a load is the tim
get the first word from memory into a register. If the rest of the vector can be
plied without stalling, then the vector initiation rate is equal to the rate at wh
new words are fetched or stored. Unlike simpler functional units, the initia
rate may not necessarily be one clock cycle.

Typically, penalties for start-ups on load-store units are higher than thos
arithmetic functional units—up to 50 clock cycles on some processors.
DLXV we will assume a start-up time of 12 clock cycles; by comparison,
CRAY-1 and CRAY X-MP have load-store start-up times of between nine an
clock cycles. Figure B.6 summarizes the start-up penalties for DLXV vector
erations.

To maintain an initiation rate of one word fetched or stored per clock,
memory system must be capable of producing or accepting this much data
is usually done by creating multiple memory banks, as discussed in section
As we will see in the next section, having significant numbers of banks is us
for dealing with vector loads or stores that access rows or columns of data.

Most vector processors use memory banks rather than simple interleavin
two primary reasons:

1. Many vector computers support multiple loads or stores per clock. To sup
multiple simultaneous accesses, the memory system needs to have m
banks and be able to control the addresses to the banks independently.

2. As we will see in the next section, many vector processors support the a
to load or store data words that are not sequential. In such cases, indepe
bank addressing, rather than interleaving, is required.

In Chapter 5 we saw that the desired access rate and the bank access time
mined how many banks were needed to access a memory without a stal
next Example shows how these timings work out in a vector processor.

E X A M P L E Suppose we want to fetch a vector of 64 elements starting at byte address
136, and a memory access takes six clocks. How many memory banks
must we have? With what addresses are the banks accessed? When will
the various elements arrive at the CPU?

A N S W E R Six clocks per access require at least six banks, but because we want the
number of banks to be a power of two, we choose to have eight banks.
Figure B.7 shows what byte addresses each bank accesses within each
time period. Remember that a bank begins a new access as soon as it
has completed the old access.

B-14 Appendix B Vector Processors
Figure B.8 shows the timing for the first few sets of accesses for an
eight-bank system with a six-clock-cycle access latency. There are two
important observations about Figures B.7 and B.8: First, notice that the
exact address fetched by a bank is largely determined by the lower-order
bits in the bank number; however, the initial access to a bank is always
within eight double words of the starting address. Second, notice that
once the initial latency is overcome (six clocks in this case), the pattern
is to access a bank every n clock cycles, where n is the total number of
banks (n = 8 in this case).

■

Beginning Bank
at clock no. 0 1 2 3 4 5 6 7

0 192 136 144 152 160 168 176 184

6 256 200 208 216 224 232 240 248

14 320 264 272 280 288 296 304 312

22 384 328 336 344 352 360 368 376

FIGURE B.7 Memory addresses (in bytes) by bank number and time slot at
which access begins. The exact time when a bank transmits its data is given by
the address it accesses minus the starting address, divided by eight, plus the mem-
ory latency (six clocks). It is important to observe that bank 0 accesses a word in
the next block (i.e., it accesses 192 rather than 128 and then 256 rather than 192,
and so on). If bank 0 were to start at the lower address, we would require an extra
cycle to transmit the data, and we would transmit one value unnecessarily. While
this problem is not severe for this example, if we had 64 banks, up to 63 unneces-
sary clock cycles and transfers could occur. The fact that bank 0 does not access
a word in the same block of eight distinguishes this type of memory system from
interleaved memory. Normally, interleaved memory systems combine the bank ad-
dress and the base starting address by concatenation rather than addition. Also,
interleaved memories are almost always implemented with synchronized access.
Memory banks require address latches for each bank, which are not normally
needed in a system with only interleaving. This timing diagram is drawn as if all
banks access in clock 0, clock 16, etc. In practice, since the bus allocations needed
to return the words are staggered, the actual accesses are often staggered.

FIGURE B.8 Access timing for the first 64 double-precision words of the load.
After the six-clock-cycle initial latency, eight double-precision words are returned every
eight clock cycles.

Action
Memory
access

Next access
+ deliver last

8 words

Next access
+ deliver last

8 words

Deliver
last

8 words

Time
0 6 14 22 62 70

B.3 Two Real-World Issues: Vector Length and Stride B-15

 the
ation
emory
M,
needs
at sup-
ses in
n the
ore

u do
with
r the

mber
un-
ram
. In
ple,

ing

ore.
ector

ter
 the

-
an or
The number of banks in the memory system and the pipeline depth in
functional units are essentially counterparts, since they determine the initi
rates for operations using these units. The processor cannot access a m
bank faster than the memory cycle time. Thus, if memory is built from DRA
where the memory cycle time is about twice the access time, the processor
twice as many banks as the above Example shows. For memory systems th
port multiple simultaneous vector accesses or allow nonsequential acces
vector loads or stores, the number of memory banks should be larger tha
minimum, otherwise, memory bank conflicts will exist. We explore this in m
detail in the next section.

This section deals with two issues that arise in real programs: What do yo
when the vector length in a program is not exactly 64? How do you deal
nonadjacent elements in vectors that reside in memory? First, let’s conside
issue of vector length.

Vector-Length Control

A vector-register processor has a natural vector length determined by the nu
of elements in each vector register. This length, which is 64 for DLXV, is
likely to match the real vector length in a program. Moreover, in a real prog
the length of a particular vector operation is often unknown at compile time
fact, a single piece of code may require different vector lengths. For exam
consider this code:

 do 10 i = 1,n

10 Y(i) = a ∗ X(i) + Y(i)

The size of all the vector operations depends on n, which may not even be known
until runtime! The value of n might also be a parameter to a procedure contain
the above loop and therefore be subject to change during execution.

The solution to these problems is to create a vector-length register (VLR). The
VLR controls the length of any vector operation, including a vector load or st
The value in the VLR, however, cannot be greater than the length of the v
registers. This solves our problem as long as the real length is less than themaxi-
mum vector length (MVL) defined by the processor.

What if the value of n is not known at compile time, and thus may be grea
than MVL? To tackle the second problem where the vector is longer than
maximum length, a technique called strip mining is used. Strip mining is the gen
eration of code such that each vector operation is done for a size less th

B.3 Two Real-World Issues:
Vector Length and Stride

B-16 Appendix B Vector Processors

 un-
tions
ons,
trip-
ngth.
or

R-
is to
. The
of

ch
a-
 vec-
ion.
equal to the MVL. We could strip-mine the loop in the same manner that we
rolled loops in Chapter 4: Create one loop that handles any number of itera
that is a multiple of MVL and another loop that handles any remaining iterati
which must be less than MVL. In practice, compilers usually create a single s
mined loop that is parameterized to handle both portions by changing the le
The strip-mined version of the DAXPY loop written in FORTRAN, the maj
language used for scientific applications, is shown with C-style comments:

low = 1

VL = (n mod MVL) /*find the odd size piece*/

do 1 j = 0,(n / MVL) /*outer loop*/

do 10 i = low, low+VL-1 /*runs for length VL*/

Y(i) = a * X(i) + Y(i) /*main operation*/

10 continue

low = low+VL /*start of next vector*/

VL = MVL /*reset the length to max*/

1 continue

The term n/MVL represents truncating integer division (which is what FO
TRAN does) and is used throughout this section. The effect of this loop
block the vector into segments which are then processed by the inner loop
length of the first segment is (n mod MVL) and all subsequent segments are
length MVL. This is depicted in Figure B.9.

The inner loop of the code above is vectorizable with length VL, which is equal
to either (n mod MVL) or MVL. The VLR register must be set twice—once at ea
place where the variable VL in the code is assigned. With multiple vector oper
tions executing in parallel, the hardware must copy the value of VLR when a
tor operation issues, in case VLR is changed for a subsequent vector operat

FIGURE B.9 A vector of arbitrary length processed with strip mining. All blocks but the
first are of length MVL, utilizing the full power of the vector processor. In this figure, the vari-
able m is used for the expression (n mod MVL).

1..m (m+1)..
m+MVL

(m+
MVL+1)
.. m+2 *

MVL

(m+2 *
MVL+1)
..m+3 *

MVL

. . . (n–MVL
+1).. n

Range of i

Value of j n/MVL1 2 3 . . .0

. . .

. . .

B.3 Two Real-World Issues: Vector Length and Stride B-17

ad of
rom
to the
truc-

d per

ined

mes.

 con-

r se-
 quite

r se-

he
 in a

 for
d in
 incre-
struc-
ns,

d with
In addition to the start-up overhead, we need to account for the overhe
executing the strip-mined loop. This strip-mining overhead, which arises f
the need to reinitiate the vector sequence and set the VLR, effectively adds
vector start-up time, assuming that a convoy does not overlap with other ins
tions. If that overhead for a convoy is 10 cycles, then the effective overhea
64 elements increases by 10 cycles, or 0.15 cycles per element.

There are two key factors that contribute to the running time of a strip-m
loop consisting of a sequence of convoys:

1. The number of convoys in the loop, which determines the number of chi
We use the notation Tchime for the execution time in chimes.

2. The overhead for each strip-mined sequence of convoys. This overhead
sists of the cost of executing the scalar code for strip mining each block, Tloop,
plus the vector start-up cost for each convoy, Tstart.

There may also be a fixed overhead associated with setting up the vecto
quence the first time. In recent vector processors this overhead has become
small, so we ignore it.

The components can be used to state the total running time for a vecto
quence operating on a vector of length n, which we will call Tn:

The values of Tstart, Tloop, and Tchime are compiler and processor dependent. T
register allocation and scheduling of the instructions affect both what goes
convoy and the start-up overhead of each convoy.

For simplicity, we will use a constant value for Tloop on DLXV. Based on a va-
riety of measurements of CRAY-1 vector execution, the value chosen is 15
Tloop. At first glance, you might think that this value is too small. The overhea
each loop requires setting up the vector starting addresses and the strides,
menting counters, and executing a loop branch. In practice, these scalar in
tions can be totally or partially overlapped with the vector instructio
minimizing the time spent on these overhead functions. The value of Tloop of
course depends on the loop structure, but the dependence is slight compare
the connection between the vector code and the values of Tchime and Tstart.

E X A M P L E What is the execution time on DLXV for the vector operation A = B × s,
where s is a scalar and the length of the vectors A and B is 200?

A N S W E R Assume the addresses of A and B are initially in Ra and Rb, s is in Fs, and
recall that for DLX (and DLXV) R0 always holds 0. Since (200 mod 64) =
8, the first iteration of the strip-mined loop will execute for a vector length

Tn
n

MVL
------------- Tloop Tstart+()× n T×

chime
+=

B-18 Appendix B Vector Processors
of eight elements, and the following iterations will execute for a vector
length of 64 elements. The starting byte addresses of the next segment of
each vector is eight times the vector length. Since the vector length is ei-
ther eight or 64, we increment the address registers by 8 × 8 = 64 after the
first segment and 8 × 64 = 512 for latter segments. The total number of
bytes in the vector is 8 × 200 = 1600, and we test for completion by com-
paring the address of the next vector segment to the initial address plus
1600. Here is the actual code:

ADDI R2,R0,#1600 ;total # bytes in vector

ADD R2,R2,Ra ;address of the end of A vector

ADDI R1,R0,#8 ;loads length of 1st segment

MOVI2S VLR,R1 ;load vector length in VLR

ADDI R1,R0,#64 ;length in bytes of 1st segment

ADDI R3,R0,#64 ;vector length other segments

Loop: LV V1,Rb ;load B

MULTSV V2,Fs,V1 ;vector * scalar

SV Ra,V2 ;store A

ADD Ra,Ra,R1 ;address of next segment of A

ADD Rb,Rb,R1 ;address of next segment of B

ADDI R1,R0,#512 ;load byte offset next segment

MOVI2S VLR,R3 ;set length to 64 element

SUB R4,R2,Ra ;at the end of A?

BNEZ R4,Loop ;if not, go back

The three vector instructions in the loop are dependent and must go into
three convoys, hence Tchime = 3. Let’s use our basic formula:

The value of Tstart is the sum of

■ The vector load start-up of 12 clock cycles

■ A seven-clock-cycle start-up for the multiply

■ A 12-clock-cycle start-up for the store.

Thus, the value of Tstart is given by

Tstart = 12 + 7 + 12 = 31

So, the overall value becomes

T200 = 660 + 4 × 31= 784

Tn
n

MVL
-------------- Tloop Tstart+()× n T

chime
×+=

T200 4 15 Tstart+() 200 3×+×=

T200 60 4 Tstart×() 600+ + 660 4 Tstart×()+= =

B.3 Two Real-World Issues: Vector Length and Stride B-19

bove
ld
d 0.9

 will
 using
er-
loop
revi-
o be
epa-
The execution time per element with all start-up costs is then 784/200 =
3.9, compared with a chime approximation of three. In section B.6, we will
be more ambitious—allowing overlapping of separate convoys. ■

Figure B.10 shows the overhead and effective rates per element for the a
example (A = B × s) with various vector lengths. A chime counting model wou
lead to three clock cycles per element, while the two sources of overhead ad
clock cycles per element in the limit.

The next few sections introduce enhancements that reduce this time. We
see how to reduce the number of convoys and hence the number of chimes
a technique called chaining. The loop overhead can be reduced by further ov
lapping the execution of vector and scalar instructions, allowing the scalar
overhead in one iteration to be executed while the vector instructions in the p
ous instruction are completing. Finally, the vector start-up overhead can als
eliminated, using a technique that allows overlap of vector instructions in s
rate convoys.

FIGURE B.10 This shows the total execution time per element and the total overhead
time per element, versus the vector length for the Example on page B-17. For short vec-
tors the total start-up time is more than one-half of the total time, while for long vectors it re-
duces to about one-third of the total time. The sudden jumps occur when the vector length
crosses a multiple of 64, forcing another iteration of the strip-mining code and execution of a
set of vector instructions. These operations increase Tn by Tloop + Tstart.

Total time
per element

Total
overhead
per element

10

Clock
cycles

30 50 70 90 110 130 150 170 190
0

1

2

3

4

5

6

7

8

Vector size

9

B-20 Appendix B Vector Processors

 adja-
ward

w of

cated
ajor

ents
were
f
 size
, we

tems.
que to

gister
he
a-
s

dja-
r than
ns
 and
 vector
 stride
e sci-
hat is
these
ntig-

ple
f the
Vector Stride

The second problem this section addresses is that the position in memory of
cent elements in a vector may not be sequential. Consider the straightfor
code for matrix multiply:

do 10 i = 1,100

do 10 j = 1,100

A(i,j) = 0.0

do 10 k = 1,100

10 A(i,j) = A(i,j)+B(i,k) * C(k,j)

At the statement labeled 10 we could vectorize the multiplication of each ro
B with each column of C and strip-mine the inner loop with k as the index vari-
able.

To do so, we must consider how adjacent elements in B and adjacent elements
in C are addressed. As we discussed in section 5.3, when an array is allo
memory it is linearized and must be laid out in either row-major or column-m
order. This linearization means that either the elements in the row or the elem
in the column are not adjacent in memory. For example, if the above loop
written in FORTRAN, which allocates column-major order, the elements oB

that are accessed by iterations in the inner loop are separated by the row
times 8 (the number of bytes per entry) for a total of 800 bytes. In Chapter 5
saw that blocking could be used to improve the locality in cache-based sys
In vector processors we do not have caches, so we need another techni
fetch elements of a vector that are not adjacent in memory.

This distance separating elements that are to be gathered into a single re
is called the stride. In the current example, using column-major layout for t
matrices means that matrix C has a stride of 1, or 1 double word (8 bytes), sep
rating successive elements, and matrix B has a stride of 100, or 100 double word
(800 bytes).

Once a vector is loaded into a vector register it acts as if it had logically a
cent elements. Thus a vector-register processor can handle strides greate
one, called nonunit strides, using only vector-load and vector-store operatio
with stride capability. This ability to access nonsequential memory locations
to reshape them into a dense structure is one of the major advantages of a
processor over a cache-based processor. Caches inherently deal with unit
data, so that while increasing block size can help reduce miss rates for larg
entific data sets, increasing block size can have a negative effect for data t
accessed with nonunit stride. While blocking techniques can solve some of
problems (see section 5.3), the ability to efficiently access data that is not co
uous remains an advantage for vector processors on certain problems.

On DLXV, where the addressable unit is a byte, the stride for our exam
would be 800. The value must be computed dynamically, since the size o
matrix may not be known at compile time, or—just like vector length—may

B.3 Two Real-World Issues: Vector Length and Stride B-21

e the
LXV

o a

s and
d and

eater
peed if
time in
ible to
ss time.
s and

 rel-
 con-
 unit
umber
ease
de of
ad a

ks, a
nes,
com-
ximum
tride
change for different executions of the same statement. The vector stride, lik
vector starting address, can be put in a general-purpose register. Then the D
instruction LVWS (load vector with stride) can be used to fetch the vector int
vector register. Likewise, when a nonunit stride vector is being stored, SVWS

(store vector with stride) can be used. In some vector processors the load
stores always have a stride value stored in a register, so that only a single loa
a single store instruction are required.

Complications in the memory system can occur from supporting strides gr
than one. In Chapter 5 we saw that memory accesses could proceed at full s
the number of memory banks was at least as large as the memory-access
clock cycles. Once nonunit strides are introduced, however, it becomes poss
request accesses from the same bank at a higher rate than the memory-acce
When multiple accesses contend for a bank, a memory bank conflict occur
one access must be stalled. A bank conflict, and hence a stall, will occur if

E X A M P L E Suppose we have 16 memory banks with a read latency of 12 clocks. How
long will it take to complete a 64-element vector load with a stride of 1?
With a stride of 32?

A N S W E R Since the number of banks is larger than the read latency, for a stride of
1, the load will take 12 + 64 = 76 clock cycles, or 1.2 clocks per element.
The worst possible stride is a value that is a multiple of the number of
memory banks, as in this case with a stride of 32 and 16 memory banks.
Every access to memory will collide with the previous one. This leads to
a read latency of 12 clock cycles per element and a total time for the
vector load of 768 clock cycles. ■

Memory bank conflicts will not occur if the stride and number of banks are
atively prime with respect to each other and there are enough banks to avoid
flicts in the unit-stride case. When there are no bank conflicts, multiword and
strides run at the same rates. Increasing the number of memory banks to a n
greater than the minimum to prevent stalls with a stride of length 1 will decr
the stall frequency for some other strides. For example, with 64 banks, a stri
32 will stall on every other access, rather than every access. If we originally h
stride of 8 and 16 banks, every other access would stall; while with 64 ban
stride of 8 will stall on every eighth access. If we have multiple memory pipeli
we will also need more banks to prevent conflicts. In 1995, most vector super
puters have at least 64 banks, and some have as many as 1024 in the ma
memory configuration. Because bank conflicts can still occur in nonunit s
cases, many programmers favor unit stride accesses whenever possible.

Least common multiple (Stride, Number of banks)
Stride

--- Memory-access latency<

B-22 Appendix B Vector Processors

ode.
 data
ences?

 how
 no

s ex-
eth-
re the
eview

tific
Club
entific
s in

X-MP.
udies
ilers
will
Two factors affect the success with which a program can be run in vector m
The first factor is the structure of the program itself: Do the loops have true
dependences, or can they be restructured so as not to have such depend
This factor is influenced by the algorithms chosen and, to some extent, by
they are coded. The second factor is the capability of the compiler. While
compiler can vectorize a loop where no parallelism among the loop iteration
ists, there is tremendous variation in the ability of compilers to determine wh
er a loop can be vectorized. The techniques used to vectorize programs a
same as those discussed in Chapter 4 for uncovering ILP; here we simply r
how well these techniques work.

As an indication of the level of vectorization that can be achieved in scien
programs, let's look at the vectorization levels observed for the Perfect
benchmarks, mentioned in Chapter 1. These benchmarks are large, real sci
applications. Figure B.11 shows the percentage of floating-point operation

each benchmark and the percentage executed in vector mode on the CRAY
The wide variation in level of vectorization has been observed by several st
of the performance of applications on vector processors. While better comp
might improve the level of vectorization in some of these programs, most

B.4 Effectiveness of Compiler Vectorization

Benchmark name FP operations
FP operations executed

in vector mode

ADM 23% 68%

DYFESM 26% 95%

FLO52 41% 100%

MDG 28% 27%

MG3D 31% 86%

OCEAN 28% 58%

QCD 14% 1%

SPICE 16% 7%

TRACK 9% 23%

TRFD 22% 10%

FIGURE B.11 Level of vectorization among the Perfect Club benchmarks when exe-
cuted on the CRAY X-MP. The first column contains the percentage of operations that are
floating point, while the second contains the percentage of FP operations executed in vector
instructions.

B.5 Enhancing Vector Performance B-23

le, a
of a

ing
 data
sors
 de-
 will

 dis-
vector
 that

sed in
xecu-
ssors
require rewriting to achieve significant increases in vectorization. For examp
new program or a significant rewrite will be needed to obtain the benefits
vector processor on SPICE.

There is also tremendous variation in how well compilers do in vectoriz
programs. As a summary of the state of vectorizing compilers, consider the
in Figure B.12, which shows the extent of vectorization for different proces
using a test suite of 100 hand-written FORTRAN kernels. The kernels were
signed to test vectorization capability and can all be vectorized by hand; we
see several examples of these loops in the Exercises.

Three techniques for improving the performance of vector processors are
cussed in this section. The first deals with making a sequence of dependent
operations run faster. The other two deal with expanding the class of loops
can be run in vector mode. The first technique, chaining, originated in the CRAY-
1, but is now supported on most vector processors. The techniques discus
the second and third parts of this section combat the effects of conditional e
tion and sparse matrices. The extensions are taken from a variety of proce
including the most recent supercomputers.

Processor Compiler
Completely
vectorized

Partially
vectorized

Not
vectorized

CDC CYBER-205 VAST-2 V2.21 62 5 33

Convex C-series FC5.0 69 5 26

CRAY X-MP CFT77 V3.0 69 3 28

CRAY X-MP CFT V1.15 50 1 49

CRAY-2 CFT2 V3.1a 27 1 72

ETA-10 FTN 77 V1.0 62 7 31

Hitachi S810/820 FORT77/HAP V20-2B 67 4 29

IBM 3090/VF VS FORTRAN V2.4 52 4 44

NEC SX/2 FORTRAN77 / SX V.040 66 5 29

FIGURE B.12 Result of applying vectorizing compilers to the 100 FORTRAN test kernels. For each
processor we indicate how many loops were completely vectorized, partially vectorized, and unvectorized.
These loops were collected by Callahan, Dongarra, and Levine [1988]. Two different compilers for the CRAY
X-MP show the large dependence on compiler technology.

B.5 Enhancing Vector Performance

B-24 Appendix B Vector Processors

epa-
e vec-
p of
ed to

-
d be-
are
le-
t the
ing
ina-

ctor
g re-
 of

ough-

s the
rmits

ber of
up) of
ved,
bove

bove
one
en in

era-
ions
 ver-

tion
 not
Chaining—The Concept of Forwarding Extended
to Vector Registers

Consider the simple vector sequence

MULTV V1,V2,V3

ADDV V4,V1,V5

In DLXV, as it currently stands, these two instructions must be put into two s
rate convoys, since the instructions are dependent. On the other hand, if th
tor register, V1 in this case, is treated not as a single entity but as a grou
individual registers, then the ideas of forwarding can be conceptually extend
work on individual elements of a vector. This insight, which will allow the ADDV

to start earlier in this example, is called chaining. Chaining allows a vector opera
tion to start as soon as the individual elements of its vector source operan
come available: The results from the first functional unit in the chain
“forwarded” to the second functional unit. In practice, chaining is often imp
mented by allowing the processor to read and write a particular register a
same time, albeit to different elements. Early implementations of chain
worked like forwarding, but this restricted the timing of the source and dest
tion instructions in the chain. Recent implementations use flexible chaining,
which allows a vector instruction to chain to essentially any other active ve
instruction, assuming that no structural hazard is generated. Flexible chainin
quires more read and write ports for the vector register file, but it is the form
chaining used in most recent machines. We assume this type of chaining thr
out the rest of this appendix.

Even though a pair of operations depend on one another, chaining allow
operations to proceed in parallel on separate elements of the vector. This pe
the operations to be scheduled in the same convoy and reduces the num
chimes required. For the sequence above, a sustained rate (ignoring start-
two floating-point operations per clock cycle, or one chime, can be achie
even though the operations are dependent! The total running time for the a
sequence becomes

Vector length + Start-up timeADDV + Start-up timeMULTV

Figure B.13 shows the timing of a chained and an unchained version of the a
pair of vector instructions with a vector length of 64. This convoy requires
chime; however, because it uses chaining, the start-up overhead will be se
the actual timing of the convoy. In Figure B.13, the total time for chained op
tion is 77 clock cycles, or 1.2 cycles per result. With 128 floating-point operat
done in that time, 1.7 FLOPs per clock cycle are obtained. For the unchained
sion, there are 141 clock cycles or 0.9 FLOPs per clock cycle.

Although chaining allows us to reduce the chime component of the execu
time by putting two dependent instructions in the same convoy, it does

B.5 Enhancing Vector Performance B-25

e, we
 the
ector
ppli-

s, for
ke at

only

ctor
ces-

erate
rams
not
e use

run in
f state-
 can-

o far;
s for
trices
eliminate the start-up overhead. If we want an accurate running time estimat
must count the start-up time both within and across convoys. With chaining
number of chimes for a sequence is determined by the number of different v
functional units available in the processor and the number required by the a
cation. In particular, no convoy can contain a structural hazard. This mean
example, that a sequence containing two vector memory instructions must ta
least two convoys, and hence two chimes, on a processor like DLXV with
one vector load-store unit.

We will see in section B.6 that chaining plays a major role in boosting ve
performance. In fact, chaining is so important that virtually every vector pro
sor now supports flexible chaining.

Conditionally Executed Statements

In the last section, we saw that many programs only achieved low to mod
levels of vectorization. Because of Amdahl’s Law, the speedup on such prog
will be very limited. Two reasons why higher levels of vectorization are
achieved are the presence of conditionals (if statements) inside loops and th
of sparse matrices. Programs that contain if statements in loops cannot be
vector mode using the techniques we have discussed so far because the i
ments introduce control dependences into a loop. Likewise, sparse matrices
not be efficiently implemented using any of the capabilities we have seen s
this is one factor in the lack of vectorization for SPICE. We discuss strategie
dealing with conditional execution here, leaving the discussion of sparse ma
to the following subsection.

Consider the following loop:

do 100 i = 1, 64

if (A(i). ne. 0) then

A(i) = A(i) – B(i)

endif

100 continue

FIGURE B.13 Timings for a sequence of dependent vector operations ADDV and
MULTV, both unchained and chained. The 6- and 7-clock-cycle delays are the latency of
the adder and multiplier.

Unchained

Chained

Total = 77

Total = 141
7 64

7 64

MULTV

64

ADDV

64

MULTV ADDV

6

6

B-26 Appendix B Vector Processors

tion
ich
t the
 into
oces-

trol
ions

hen
nly
gister
in the
ter is
 af-
t vec-
 be
 in

ask
w the

e ex-
ll re-
 the
a con-
vec-
r the
eros
sing
ector

le the
ll oc-
an a
This loop cannot normally be vectorized because of the conditional execu
of the body; however, if the inner loop could be run for the iterations for wh
A(i) ≠ 0, then the subtraction could be vectorized. In Chapter 4, we saw tha
conditionally executed instructions could turn such control dependences
data dependences, enhancing the ability to parallelize the loop. Vector pr
sors can benefit from an equivalent capability for vectors.

The extension that is commonly used for this capability is vector-mask
control. The vector-mask control uses a Boolean vector of length MVL to con
the execution of a vector instruction just as conditionally executed instruct
use a Boolean condition to determine whether an instruction is executed. W
the vector-mask register is enabled, any vector instructions executed operate o
on the vector elements whose corresponding entries in the vector-mask re
are 1. The entries in the destination vector register that correspond to a 0
mask register are unaffected by the vector operation. If the vector-mask regis
set by the result of a condition, only elements satisfying the condition will be
fected. Clearing the vector-mask register sets it to all 1s, making subsequen
tor instructions operate on all vector elements. The following code can now
used for the above loop, assuming that the starting addresses of A and B areRa

and Rb, respectively:

LV V1,Ra ;load vector A into V1

LV V2,Rb ;load vector B

LD F0,#0 ;load FP zero into F0

SNESV F0,V1 ;sets VM(i) to 1 if V1(i) ≠F0

SUBV V1,V1,V2 ;subtract under vector mask

CVM ;set the vector mask to all 1s

SV Ra,V1 ;store the result in A

Most recent vector processors provide vector-mask control. The vector-m
capability described here is available on some processors, but others allo
use of the vector mask with only a subset of the vector instructions.

Using a vector-mask register does, however, have disadvantages. When w
amined conditionally executed instructions, we saw that such instructions sti
quire execution time when the condition is not satisfied. Nonetheless,
elimination of a branch and the associated control dependences can make
ditional instruction faster even if it sometimes does useless work. Similarly,
tor instructions executed with a vector mask still take execution time, even fo
elements where the mask is 0. Likewise, even with a significant number of z
in the mask, using vector-mask control may still be significantly faster than u
scalar mode. In fact, the large difference in potential performance between v
and scalar mode makes the inclusion of vector-mask instructions critical.

Second, in some vector processors the vector mask serves only to disab
storing of the result into the destination register, and the actual operation sti
curs. Thus, if the operation in the above example were a divide rather th

B.5 Enhancing Vector Performance B-27

ight
on as

te in
ed in
parse

n
e vec-
 pro-

ays to

 be-
rmal

sses
 result
 on in

or
e
d with
subtract and the test was on B rather than A, false floating-point exceptions m
result since a division by 0 would occur. Processors that mask the operati
well as the storing of the result avoid this problem.

Sparse Matrices

There are techniques for allowing programs with sparse matrices to execu
vector mode. In a sparse matrix, the elements of a vector are usually stor
some compacted form and then accessed indirectly. Assuming a simplified s
structure, we might see code that looks like this:

do 100 i = 1,n

100 A(K(i)) = A(K(i)) + C(M(i))

This code implements a sparse vector sum on the arrays A and C, using index vec-
tors K and M to designate the nonzero elements of A and C. (A and C must have the
same number of nonzero elements—n of them.) Another common representatio
for sparse matrices uses a bit vector to say which elements exist and a dens
tor for the nonzero elements. Often both representations exist in the same
gram. Sparse matrices are found in many codes, and there are many w
implement them, depending on the data structure used in the program.

A primary mechanism for supporting sparse matrices is scatter-gather opera-
tions using index vectors. The goal of such operations is to support moving
tween a dense representation (i.e., zeros are not included) and no
representation (i.e., the zeros are included) of a sparse matrix. A gather operation
takes an index vector and fetches the vector whose elements are at the addre
given by adding a base address to the offsets given in the index vector. The
is a nonsparse vector in a vector register. After these elements are operated
dense form, the sparse vector can be stored in expanded form by a scatter store,
using the same index vector. Hardware support for such operations is calledscat-
ter-gather and appears on several processors. The instructions LVI (load vector
indexed) and SVI (store vector indexed) provide these operations in DLXV. F
example, assuming that Ra, Rc, Rk, and Rm contain the starting addresses of th
vectors in the above sequence, the inner loop of the sequence can be code
vector instructions such as

LV Vk,Rk ;load K

LVI Va,(Ra+Vk) ;load A(K(I))

LV Vm,Rm ;load M

LVI Vc,(Rc+Vm) ;load C(M(I))

ADDV Va,Va,Vc ;add them

SVI (Ra+Vk),Va ;store A(K(I))

B-28 Appendix B Vector Processors

. The
-

ll the
ro-

ists.
ters.

faster
 of a
ovide

c-
 posi-
od to

is all

-
ple-

ition-
olds
 ver-
n-

 A
e

This technique allows code with sparse matrices to be run in vector mode
source code above would never be automatically vectorized by a compiler be
cause the compiler cannot know that the elements of K are distinct values, and
thus that no dependences exist. Instead, a programmer directive would te
compiler that it could run the loop in vector mode; without such directives, p
grams such as SPICE will not be vectorized even if the hardware support ex

A scatter-gather capability is included on many of the recent supercompu
Such operations rarely run at one element per clock, but they are still much
than the alternative, which may be a scalar loop. If the sparsity properties
matrix change, a new index vector must be computed. Many processors pr
support for computing the index vector quickly. The CVI (create vector index) in-
struction in DLXV creates an index vector given a stride (m), where the values in
the index vector are 0, m, 2 × m, ..., 63 × m. Some processors provide an instru
tion to create a compressed index vector whose entries correspond to the
tions with a 1 in the mask register. Other vector architectures provide a meth
compress a vector. In DLXV, we define the CVI instruction to always create a
compressed index vector using the vector mask. When the vector mask
ones, a standard index vector will be created.

The indexed loads-stores and the CVI instruction provide an alternative meth
od to support conditional vector execution. Here is a vector sequence that im
ments the loop we saw on page B-25:

LV V1,Ra ;load vector A into V1

LD F0,#0 ;load FP zero into F0

SNESV F0,V1 ;sets the VM to 1 if V1(i) ≠F0

CVI V2,#8 ;generates indices in V2

POP R1,VM ;find the number of 1’s in VM

MOVI2S VLR,R1 ;load vector length register

CVM ;clears the mask

LVI V3,(Ra+V2) ;load the nonzero A elements

LVI V4,(Rb+V2) ;load corresponding B elements

SUBV V3,V3,V4 ;do the subtract

SVI (Ra+V2),V3 ;store A back

Whether the implementation using scatter-gather is better than the cond
ally executed version depends on the frequency with which the condition h
and the cost of the operations. Ignoring chaining, the running time of the first
sion (on page B-25) is 5n + c1. The running time of the second version, using i
dexed loads and stores with a running time of one element per clock, is 4n + 4 × f
× n + c2, where f is the fraction of elements for which the condition is true (i.e.,
≠ 0). If we assume that the values of c1 and c2 are comparable, or that they ar
much smaller than n, we can find when this second technique is better.

B.6 Putting It All Together: Performance of Vector Processors B-29

ts are
ndex
ment

ssors
a pro-
tained
essor
ople
ting

on on

 by
ute
 B.3.
sing

 pro-
 and
iffer-

 two
We want Time1 ≥ Time2, so

That is, the second method is faster if less than one-quarter of the elemen
nonzero. In many cases the frequency of execution is much lower. If the i
vector can be reused, or if the number of vector statements within the if state
grows, the advantage of the scatter-gather approach will increase sharply.

In this section we look at different measures of performance for vector proce
and what they tell us about the processor. To determine the performance of
cessor on a vector problem we must look at the start-up cost and the sus
rate. The simplest and best way to report the performance of a vector proc
on a loop is to give the execution time of the vector loop. For vector loops pe
often give the MFLOPS (millions of floating-point operations per second) ra
rather than execution time. We use the notation Rn for the MFLOPS rating on a
vector of length n. Using the measurements Tn (time) or Rn (rate) is equivalent if
the number of FLOPs is agreed upon (see Chapter 1 for a longer discussi
MFLOPS). In any event, either measurement should include the overhead.

In this section we examine the performance of DLXV on our DAXPY loop
looking at performance from different viewpoints. We will continue to comp
the execution time of a vector loop using the equation developed in section
At the same time, we will look at different ways to measure performance u
the computed time. The constant values for Tloop used in this section introduce
some small amount of error, which will be ignored.

Measures of Vector Performance

Because vector length is so important in establishing the performance of a
cessor, length-related measures are often applied in addition to time
MFLOPS. These length-related measures tend to vary dramatically across d
ent processors and are interesting to compare. (Remember, though, that time is al-
ways the measure of interest when comparing the relative speed of
processors.) Three of the most important length-related measures are

B.6 Putting It All Together:
Performance of Vector Processors

Time1 5 n()=

Time2 4n 4 f n××+=

5n 4n 4 f n××+≥
1
4
--- f≥

B-30 Appendix B Vector Processors

ure
o not
n real

ode.
.

V.
ure

ith

s one
-

MHz
-up
tional
rt-up
lloca-

iza-
 by
; we
 ex-

 to
tions
ing
■ R∞—The MFLOPS rate on an infinite-length vector. Although this meas
may be of interest when estimating peak performance, real problems d
have unlimited vector lengths, and the overhead penalties encountered i
problems will be larger.

■ N1/2—The vector length needed to reach one-half of R∞. This is a good mea-
sure of the impact of overhead.

■ Nv—The vector length needed to make vector mode faster than scalar m
This measures both overhead and the speed of scalars relative to vectors

Let’s look at these measures for our DAXPY problem running on DLX
When chained, the inner loop of the DAXPY code in convoys looks like Fig
B.14 (assuming that Rx and Ry hold starting addresses).

Recall our performance equation for the execution time of a vector loop wn
elements, Tn:

Chaining allows the loop to run in three chimes (and no less, since there i
memory pipeline); thus Tchime = 3. If Tchime were a complete indication of per
formance, the loop would run at a MFLOPS rate of 2/3 × clock rate (since there
are 2 FLOPs per iteration). Thus, based only on the chime count, a 200-
DLXV would run this loop at 133 MFLOPS assuming no strip-mining or start
overhead. There are several ways to improve the performance: add addi
vector load-store units, allow convoys to overlap to reduce the impact of sta
overheads, and decrease the number of loads required by vector register a
tion. We will examine the first two extensions in this section. The last optim
tion is actually used for the Cray-1, DLXV’s cousin, to boost the performance
50%. Reducing the number of loads requires an interprocedural optimization
examine this transformation in Exercise B.6. Before we examine the first two
tensions, let’s see what the real performance, including overhead, is.

The Peak Performance of DLXV on DAXPY

First, we should determine what the peak performance, R∞, really is, since we
know it must differ from the ideal 133-MFLOPS rate. For now, we continue
use the simplifying assumption that a convoy cannot start until all the instruc
in an earlier convoy have completed; later we will remove this restriction. Us

LV V1,Rx MULTSV
V2,F0,V1

Convoy 1: chained load and multiply

LV V3,Ry ADDV V4,V2,V3 Convoy 2: second load and ADD, chained

SV Ry,V4 Convoy 3: store the result

FIGURE B.14 The chained inner loop of the DAXPY code in convoys.

Tn Tbase
n

MVL
-------------- Tloop Tstart+()× n T

chime
×+ +=

B.6 Putting It All Together: Performance of Vector Processors B-31

 the

e the-
iffer-
cycles

ance
 the
ger!
this simplification, the start-up overhead for the vector sequence is simply
sum of the start-up times of the instructions:

Using MVL = 64, Tloop = 15, Tstart= 49, and Tchime = 3 in the performance
equation, and assuming that n is not an exact multiple of 64, the time for an n-
element operation is

The sustained rate is actually over 4 clock cycles per iteration, rather than th
oretical rate of 3 chimes, which ignores overhead. The major part of the d
ence is the cost of the start-up overhead for each block of 64 elements (49
versus 15 for the loop overhead).

We can now compute R∞ for a 200-MHz clock as

The numerator is independent of n, hence

The performance without the start-up overhead, which is the peak perform
given the vector functional unit structure, is now 1.33 times higher. In actuality
gap between peak and sustained performance for this benchmark is even lar

Sustained Performance of DLXV on the Linpack Benchmark

The Linpack benchmark is a Gaussian elimination on a 100 × 100 matrix. Thus,
the vector element lengths range from 99 down to 1. A vector of length k is used k
times. Thus, the average vector length is given by

Tstart 12 7 12 6 12+ + + + 49= =

Tn
n
64
------ 15 49+() 3n+×=

n 64+() 3n+=

4n 64+=

R∞
Operations per iteration Clock rate×

Clock cycles per iteration
-- 

 
n ∞→
lim=

R∞
Operations per iteration Clock rate×

Clock cycles per iteration()
n ∞→
lim

--=

Clock cycles per iteration()
n ∞→
lim

Tn
n

------ 
 

n ∞→
lim

4n 64+
n

------------------ 
 

n ∞→
lim 4= = =

R∞
2 200 MHz×

4
-------------------------------- 100 MFLOPS= =

B-32 Appendix B Vector Processors

ing a

 this
ctice,

 vec-
ctor-
OPs.
tly
Now we can obtain an accurate estimate of the performance of DAXPY us
vector length of 66.

The peak number, ignoring start-up overhead, is 1.64 times higher than
estimate of sustained performance on the real vector lengths. In actual pra
the Linpack benchmark contains a nontrivial fraction of code that cannot be
torized. Although this code accounts for less than 20% of the time before ve
ization, it runs at less than one-tenth of the performance when counted as FL
Thus, Amdahl’s Law tells us that the overall performance will be significan
lower than the performance estimated from analyzing the inner loop.

Since vector length has a significant impact on performance, the N1/2 and Nv
measures are often used in comparing vector machines.

E X A M P L E What is N1/2 for just the inner loop of DAXPY for DLXV with a 200-MHz
clock?

A N S W E R Using R∞ as the peak rate, we want to know the vector length that will
achieve about 50 MFLOPS. We start with the formula for MFLOPS as-
suming that the measurement is made for N1/2 elements:

Simplifying this and then assuming N1/2 ≤ 64, so that
, yields

i
2

i 1=

99

∑

i

i 1=

99

∑
--------------- 66.3=

T66 2 15 49+() 66 3×+× 128 198+ 326= = =

R66
2 66 200××

326
------------------------------ MFLOPS 81 MFLOPS= =

MFLOPS
FLOPs executed in N1 2⁄ iterations

Clock cycles to execute N1 2⁄ iterations
--- Clock cycles

Second
------------------------------ 10

6–××=

50
2 N1 2⁄×

T
N1 2⁄

---------------------- 200×=

Tn 64≤ 1 64× 3 n×+=

T
N1 2⁄

8 N1 2⁄×=

1 64× 3 N1 2⁄×+ 8 N1 2⁄×=

5 N1 2⁄× 64=
N1 2⁄ 12.8=

B.6 Putting It All Together: Performance of Vector Processors B-33

er-
is is

ces-
ared
ble
So N1/2 = 13; that is, a vector of length 13 gives approximately one-half
the peak performance for the DAXPY loop on DLXV. ■

E X A M P L E What is the vector length, Nv, such that the vector operation runs faster
than the scalar?

A N S W E R Again, we know that Nv < 64. The time to do one iteration in scalar mode
can be estimated as 10 + 12 + 12 + 7 + 6 +12 = 59 clocks, where 10 is the
estimate of the loop overhead, known to be somewhat less than the strip-
mining loop overhead. In the last problem, we showed that this vector loop
runs in vector mode in time clock cycles. Therefore,

For the DAXPY loop, vector mode is faster than scalar as long as the vec-
tor has at least two elements. This number is surprisingly small, as we will
see in the next section (Fallacies and Pitfalls). ■

DAXPY Performance on an Enhanced DLXV

DAXPY, like many vector problems, is memory limited. Consequently, p
formance could be improved by adding more memory-access pipelines. Th
the major architectural difference between the CRAY X-MP (and later pro
sors) and the CRAY-1. The CRAY X-MP has three memory pipelines, comp
with the CRAY-1’s single memory pipeline, and the X-MP has more flexi
chaining. How does this affect performance?

E X A M P L E What would be the value of T66 for DAXPY on DLXV if we added two more
memory pipelines?

A N S W E R With three memory pipelines all the instructions fit in one convoy and take
one chime. The start-up overheads are the same, so

Tn 64≤ 64 3 n×+=

64 3N
v

+ 59N
v

=

N
v

64
56
------=

Nv 2=

T66
66
64
------ Tloop Tstart+() 66 T

chime
×+×=

T66 2 15 49+() 66 1×+× 194= =

B-34 Appendix B Vector Processors

lap
ions.
ional
 issue
very

able
nvoy
ulta-

avoid
ector

ate
uming
rlap
s will
oys

isters
ance
With three memory pipelines, we have reduced the clock-cycle count for
sustained performance from 326 to 194, a factor of 1.7. Note the effect of
Amdahl’s Law: We improved the theoretical peak rate, as measured by
the number of chimes by a factor of 3, but only achieved an overall im-
provement of a factor of 1.7 in sustained performance. ■

Another improvement could come from allowing different convoys to over
and also allowing the scalar loop overhead to overlap with the vector instruct
This requires that one vector operation be allowed to begin using a funct
unit before another operation has completed and complicates the instruction
logic. Allowing this overlap eliminates the separate start-up overhead for e
convoy except the first and hides the loop overhead as well.

To achieve the maximum hiding of strip-mining overhead, we need to be
to overlap strip-mined instances of the loop, allowing two instances of a co
as well as possibly two instances of the scalar code to be in execution sim
neously. This requires the same techniques we looked at in Chapter 4 to
WAR hazards, although because no overlapped read and write of a single v
element is possible, copying can be avoided. This technique, called tailgating,
was used in the Cray-2. Alternatively, we could unroll the outer loop to cre
several instances of the vector sequence using different register sets (ass
sufficient registers), just as we did in Chapter 4. By allowing maximum ove
of the convoys and the scalar loop overhead, the start-up and loop overhead
only be seen once per vector sequence, independent of the number of conv
and the instructions in each convoy. In this way a processor with vector reg
can have both low start-up overhead for short vectors and high peak perform
for very long vectors.

E X A M P L E What would be the values of R∞ and T66 for DAXPY on DLXV if we added
two more memory pipelines and allowed the strip-mining and start-up
overhead to be fully overlapped?

A N S W E R R∞
Operations per iteration Clock rate×

Clock cycles per iteration
-- 

 
n ∞→
lim=

Clock cycles per iteration()
n ∞→
lim

Tn
n

------ 
 

n ∞→
lim=

B.7 Fallacies and Pitfalls B-35

. The-

ance

peed.
ful in
vector

d.

 long
,

e Cray
er, the
5 the
 the
nes,
Since the overhead is only seen once, Tn = n + 49 + 15 = n + 64. Thus,

Adding the extra memory pipelines and more flexible issue logic yields an
improvement in peak performance of a factor of 4. However, T66 = 130, so
for shorter vectors, the sustained performance improvement is about 326/
130 = 2.5 times. ■

In summary, we have examined several measures of vector performance
oretical peak performance can be calculated based purely on the value of Tchime
as

By including the loop overhead, we can calculate values for peak perform
for an infinite-length vector (R∞) and also for sustained performance, Rn for a
vector of length n, which is computed as

Using these measures we also can find N1/2 and Nv, which give us another way of
looking at the start-up overhead for vectors and the ratio of vector to scalar s
A wide variety of measures of performance of vector processors are use
understanding the range of performance that applications may see on a
processor.

Pitfall: Concentrating on peak performance and ignoring start-up overhea

Early vector processors such as the TI ASC and the CDC STAR-100 had
start-up times. For some vector problems, Nv could be greater than 100! Today
the supercomputers from Japan often have higher sustained rates than th
Research processors. But with start-up overheads that are 50–100% high
faster sustained rates often provide no real advantage. On the CYBER-20
start-up overhead for DAXPY is 158 clock cycles, substantially increasing
break-even point. With a single vector unit, which contains 2 memory pipeli

B.7 Fallacies and Pitfalls

Tn
n

------ 
 

n ∞→
lim

n 64+
n

--------------- 
 

n ∞→
lim 1= =

R∞
2 200 MHz×

1
-------------------------------- 400 MFLOPS= =

Number of FLOPs per iteration Clock rate×
T

chime

--

Rn
Number of FLOPs per iteration n× Clock rate×

Tn
---=

B-36 Appendix B Vector Processors

PY

ntil
new-
ER-
red
e as
 the
ajor

 of

ca-

ymour
tively
ssors
 with
rfor-
s the

fast
e Liv-
ing
rent
erfor-

essor.

nd-
the CYBER-205 can sustain a rate of 2 clocks per iteration. The time for DAX
for a vector of length n is therefore roughly 158 + 2n. If the clock rates of the
CRAY-1 and the CYBER-205 were identical, the CRAY-1 would be faster u
n > 64. Because the CRAY-1 clock is also faster (even though the 205 is
er), the crossover point is over 100. Comparing a four-vector-pipeline CYB
205 (the maximum-size processor) with the CRAY X-MP that was delive
shortly after the 205, the 205 completes two results per clock cycle—twic
fast as the X-MP. However, vectors must be longer than about 200 for
CYBER-205 to be faster. The problem of start-up overhead has been the m
difficulty for the memory-memory vector architectures, hence their lack
popularity.

Pitfall: Increasing vector performance, without comparable increases in s
lar performance.

This was a problem on many early vector processors, and a place where Se
Cray rewrote the rules. Many of the early vector processors had compara
slow scalar units (as well as large start-up overheads). Even today, proce
with higher peak vector performance can be outperformed by a processor
lower vector performance but better scalar performance. Good scalar pe
mance keeps down overhead costs (strip mining, for example) and reduce
impact of Amdahl’s Law. A good example of this comes from comparing a
scalar processor and a vector processor with lower scalar performance. Th
ermore FORTRAN kernels are a collection of 24 scientific kernels with vary
degrees of vectorization. Figure B.15 shows the performance of two diffe
processors on this benchmark. Despite the vector processor's higher peak p
mance, its low scalar performance makes it slower than a fast scalar proc
The next fallacy is closely related.

Fallacy: You can get vector performance without providing memory ba
width.

Processor Minimum rate for any loop Maximum rate for any loop Harmonic mean of all 24 loops

MIPS M/120-5 0.80 MFLOPS 3.89 MFLOPS 1.85 MFLOPS

Stardent-1500 0.41 MFLOPS 10.08 MFLOPS 1.72 MFLOPS

FIGURE B.15 Performance measurements for the Livermore FORTRAN kernels on two different processors. Both
the MIPS M/120-5 and the Stardent-1500 (formerly the Ardent Titan-1) use a 16.7-MHz MIPS R2000 chip for the main CPU.
The Stardent-1500 uses its vector unit for scalar FP and has about half the scalar performance (as measured by the mini-
mum rate) of the MIPS M/120, which uses the MIPS R2010 FP chip. The vector processor is more than a factor of 2.5 times
faster for a highly vectorizable loop (maximum rate). However, the lower scalar performance of the Stardent-1500 negates
the higher vector performance when total performance is measured by the harmonic mean on all 24 loops.

B.8 Concluding Remarks B-37

Y
 typi-
e, a
e it is
iler
e kept
LOP
and-
ore

alar
uters,

ting
e pro-
d five
gainst
van-

omes
 the

ws

 per
r was
-1
elow
out 6
em
 or
his

r dis-
se of

vector
ve unit
isad-
 num-
s use
low-

ector
 con-

, if the
As we saw with the DAXPY loop, memory bandwidth is quite important. DAXP
requires 1.5 memory references per floating-point operation, and this ratio is
cal of many scientific codes. Even if the floating-point operations took no tim
CRAY-1 could not increase the performance of the vector sequence used, sinc
memory limited. The CRAY-1 performance on Linpack jumped when the comp
used clever transformations to change the computation so that values could b
in the vector registers. This lowered the number of memory references per F
and improved the performance by nearly a factor of 2! Thus, the memory b
width on the CRAY-1 became sufficient for a loop that formerly required m
bandwidth.

In the late 1980s rapid performance increases in efficiently pipelined sc
processors led to a dramatic closing of the gap between vector supercomp
costing millions of dollars, and fast, pipelined, VLSI microprocessors cos
less than tens of thousands of dollars. In Chapter 1, we saw that a desk-sid
cessor offered nearly the performance of a vector supercomputer introduce
years earlier for less than a tenth of the price. Comparing that processor a
its contemporary, a Cray C-90, would show a reduced price-performance ad
tage, but still exceeding a factor of three times. While the price advantage c
from the use of microprocessor technology, the high performance comes from
exploitation of instruction-level parallelism in the microprocessor, which allo
CPIs to be under 1.

For scientific programs, an interesting counterpart to CPI is clock cycles
FLOP, or CPF. We saw in this chapter that for vector processors this numbe
typically in the range of 2 (for a CRAY X-MP style processor) to 4 (for a CRAY
style processor); a C-90 might reduce this number further but probably not b
1 to 1.5. In Chapter 4, we saw that the pipelined processor varied from ab
(for DLX) down to about 2.5 (for a superscalar DLX with no memory syst
losses running a DAXPY-type loop). For processors like an IBM Power-2
MIPS R8000 with multiple memory pipelines and a multiply-add instruction, t
number could be as low as 1.

In addition to the use of vectors rather than multiple issue, the other majo
tinction between vector machines and advanced scalar machines is the u
vector memory systems versus caches. As we saw earlier in this appendix,
memory systems can have significant advantages when accesses do not ha
stride. This performance advantage, however, comes at a significant price d
vantage. To keep the start-up penalties of vector loads small and to keep the
ber of required memory banks reasonable, many high-end vector machine
SRAM for the main memory. While SRAM has an access time several times
er than that of DRAM, it costs roughly 10 times as much per bit!

Recent trends in vector processor design have focused on high peak-v
performance and multiprocessing. Meanwhile, high-speed scalar processors
centrate on keeping the ratio of peak to sustained performance near 1. Thus

B.8 Concluding Remarks

B-38 Appendix B Vector Processors

rs will
 CPF

ance
 vec-

ector
essors
cond,
ered
ory

sign-
 per-
rily
ssor-
stems,
mory
s. New
he for

es are
both
tions
rall, a
an an
, how-
peed
 sub-
ium

972])
ere
the

eline
n vec-
n sca-
n was

arch
d a
 had
 the
peak rates advance comparably, the sustained rates of the scalar processo
advance more quickly, and the scalar processors will continue to close the
gap. These multiple-issue scalar processors can rival or exceed the perform
of vector processors with comparable clock speeds, especially for levels of
torization below 70%.

In 1994, we saw two dramatic demonstrations that the gap between v
processors and superscalars may disappear in the future. First, microproc
with clock rates exceeding those of the high-end Cray C-90 appeared. Se
microprocessors such as the MIPS R8000 (TFP) and the IBM Power-2 deliv
CPF numbers competitive with vector processors by issuing multiple mem
references and FP operations per cycle. In the near future, it is likely that de
ers will be able to use the advances in silicon technology to achieve low CPF
formance while also achieving a high clock rate. At that point it may be prima
the memory systems that distinguish vector processors from microproce
based superscalars. Advances in compiler technology for cache-based sy
such as blocking and prefetching, are closing the performance gap in the me
system, while cache-based systems continue to have large cost advantage
cache organizations, such as that used in the R8000 (a large pipelined cac
all FP data), are also helping to close the performance gap. New advanc
likely to further narrow the advantages of vector-oriented memory systems
by reducing the performance gap and by narrowing the range of applica
where a vector memory system is better than a cache-based system. Ove
Cray C-90 processor has a SPECfp rating that is about 1.8 times higher th
R8000 processor and a price almost 20 times higher. On some benchmarks
ever, the C-90 is over five times faster; while on others it is about half the s
of the R8000. Whether the range of applications for which the C-90 has a
stantial performance advantage will remain large enough to justify the prem
price for vector computers remains to be seen.

The first vector processors were the CDC STAR-100 (see Hintz and Tate [1
and the TI ASC (see Watson [1972]), both announced in 1972. Both w
memory-memory vector processors. They had relatively slow scalar units—
STAR used the same units for scalars and vectors—making the scalar pip
extremely deep. Both processors had high start-up overhead and worked o
tors of several hundred to several thousand elements. The crossover betwee
lar and vector could be over 50 elements. It appears that not enough attentio
paid to the role of Amdahl’s Law on these two processors.

Cray, who worked on the 6600 and the 7600 at CDC, founded Cray Rese
and introduced the CRAY-1 in 1976 (see Russell [1978]). The CRAY-1 use
vector-register architecture to significantly lower start-up overhead. He also
efficient support for nonunit stride and invented chaining. Most importantly,

B.9 Historical Perspective and References

B.9 Historical Perspective and References B-39

hing
tor in

arily
rs are
ssor.

205
ance

ipe-
ided
 ex-
 per-

ere
rt the

these
 unit
cause
 scat-
catter-
s that
of non-
of the
r non-
lined
 205
cent

3]).
ning
 Re-
con-
f the
mo-
ed
 The
ines;
y one
RAY

mini-
0.5 to
 Al-
most
CRAY-1 was the fastest scalar processor in the world at that time. This matc
of good scalar and vector performance was probably the most significant fac
making the CRAY-1 a success. Some customers bought the processor prim
for its outstanding scalar performance. Many subsequent vector processo
based on the architecture of this first commercially successful vector proce
Baskett and Keller [1977] provide a good evaluation of the CRAY-1.

In 1981, CDC started shipping the CYBER-205 (see Lincoln [1982]). The
had the same basic architecture as the STAR, but offered improved perform
all around as well as expandability of the vector unit with up to four vector p
lines, each with multiple functional units and a wide load-store pipe that prov
multiple words per clock. The peak performance of the CYBER-205 greatly
ceeded the performance of the CRAY-1. However, on real programs, the
formance difference was much smaller.

The CDC STAR processor and its descendant, the CYBER-205, w
memory-memory vector processors. To keep the hardware simple and suppo
high bandwidth requirements (up to three memory references per FLOP),
processors did not efficiently handle nonunit stride. While most loops have
stride, a nonunit stride loop had poor performance on these processors be
memory-to-memory data movements were required to gather together (and
ter back) the nonadjacent vector elements; these operations used special s
gather instructions. In addition, there was special support for sparse vector
used a bit vector to represent the zeros and nonzeros and a dense vector
zero values. These more complex vector operations were slow because
long memory latency, and it was often faster to use scalar mode for sparse o
unit stride operations. Schneck [1987] described several of the early pipe
processors (e.g., Stretch) through the first vector processors, including the
and CRAY-1. Dongarra [1986] did another good survey, focusing on more re
processors.

In 1983, Cray Research shipped the first CRAY X-MP (see Chen [198
With an improved clock rate (9.5 ns versus 12.5 on the CRAY-1), better chai
support, and multiple memory pipelines, this processor maintained the Cray
search lead in supercomputers. The CRAY-2, a completely new design
figurable with up to four processors, was introduced later. A major feature o
CRAY-2 was the use of DRAM, which made it possible to have very large me
ries. The first CRAY-2 with its 256 M word (60-bit words) memory contain
more memory than the total of all the Cray machines shipped to that point!
CRAY-2 had a much faster clock than the X-MP, but also much deeper pipel
however, it lacked chaining, had an enormous memory latency, and had onl
memory pipe per processor. In general, the CRAY-2 is only faster than the C
X-MP on problems that require its very large main memory.

The 1980s also saw the arrival of smaller-scale vector processors, called
supercomputers. Priced at roughly one-tenth the cost of a supercomputer ($
$1 million versus $5 to $10 million), these processors caught on quickly.
though many companies joined the market, the two companies that were

B-40 Appendix B Vector Processors

ector
size
n the

ity of
sing
con-
 com-
n in

arket-
3]),
(see
-MP

k per-
ead,
8 in
ffer-
 Japa-

ver-
ycle
rally
puters

s split
n the
, un-

ent-
cost-
orts

to 16
991.
ced
vail-
hine,
(500
 the
 for
ory

. In

per-
ered
in a
successful were Convex and Alliant. Convex started with a uniprocessor v
processor (C-1) and now offers a small multiprocessor (C-2); they empha
Cray software capability. One of the keys to the success of Convex has bee
effectiveness of their compiler (see Figure B.12 on page B-23) and the qual
their Unix OS implementation. The Convex example illustrates the increa
importance of software—even in the supercomputer business. Alliant [1987]
centrated more on the multiprocessor aspects; they built an eight-processor
puter, with each processor offering vector capability. Alliant ceased operatio
the early 1990s.

In 1983, processor vendors from Japan entered the supercomputer m
place, starting with the Fujitsu VP100 and VP200 (Miura and Uchida [198
and later expanding to include the Hitachi S810 and the NEC SX/2
Watanabe [1987]). These processors have proved to be close to the CRAY X
in performance. In general, these three processors have much higher pea
formance than the CRAY X-MP. However, because of large start-up overh
their typical performance is often lower than the CRAY X-MP (see Figure 1.1
Chapter 1). The CRAY X-MP favored a multiple-processor approach, first o
ing a two-processor version and later a four-processor. In contrast, the three
nese processors had expandable vector capabilities.

In 1988, Cray Research introduced the CRAY Y-MP—a bigger and faster
sion of the X-MP. The Y-MP allows up to eight processors and lowers the c
time to 6 ns. With a full complement of eight processors, the Y-MP was gene
the fastest supercomputer, though the single-processor Japanese supercom
may be faster than a one-processor Y-MP. In late 1989 Cray Research wa
into two companies, both aimed at building high-end processors available i
early 1990s. Seymour Cray headed the spin-off, Cray Computer Corporation
til its demise in 1995. Their initial processor, the CRAY-3, was to be implem
ed in gallium arsenide, but they were unable to develop a reliable and
effective implementation technology. The CRAY-3 was cancelled and eff
were aimed at the CRAY-4, scheduled for delivery in 1995–96.

Cray Research focused on the C90, a new high-end processor with up
processors and a clock rate of 240 MHz. This processor was delivered in 1
Typical configurations are about $15 million. In 1993, Cray Research introdu
their first highly parallel processor, the T3D. In 1995, they announced the a
ability of both a new low-end vector machine, the J90, and a high-end mac
the T90. The T90 is much like the C90, but offers a clock that is twice as fast
MHz), using three-dimensional packaging and optical clock distribution. Like
C90, the T90 costs in the tens of millions, though a single CPU is available
$2,500,000. The J90 is a CMOS-based vector machine using DRAM mem
starting at $250,000, but with typical configurations running about $1 million
mid 1995, Silicon Graphics acquired Cray Research, Inc.

In the early 1980s, CDC spun out a group, called ETA, to build a new su
computer, the ETA-10, capable of 10 gigaFLOPS. The ETA processor deliv
in the late 1980s (see Fazio [1987]) and used low-temperature CMOS

B.9 Historical Perspective and References B-41

ory-
ved

 CDC,
esign

t al.
ure
VF is
0/VF

data
ersity
olfe

der-
e, and
ssed
super-
bo-

ion
3, the
arks

archi-
cien-
ice-
to an
arge-
rscalar
erfor-

pter 8,
e role

,

-

configuration with up to 10 processors. Each processor retained the mem
memory architecture based on the CYBER-205. Although the ETA-10 achie
enormous peak performance, its scalar speed was not comparable. In 1989
the first supercomputer vendor, closed ETA and left the supercomputer d
business.

In 1986, IBM introduced the System/370 vector architecture (see Moore e
[1987]) and its first implementation in the 3090 Vector Facility. The architect
extends the System/370 architecture with 171 vector instructions. The 3090/
integrated into the 3090 CPU. Unlike most other vector processors, the 309
routes its vectors through the cache.

The basis for modern vectorizing compiler technology and the notion of
dependence was developed by Kuck and his colleagues [1974] at the Univ
of Illinois. Banerjee [1979] developed the test named after him. Padua and W
[1986] gave a good overview of vectorizing compiler technology.

Benchmark studies of various supercomputers, including attempts to un
stand the performance differences, have been undertaken by Lubeck, Moor
Mendez [1985], Bucher [1983], and Jordan [1987]. In Chapter 1, we discu
several benchmark suites aimed at scientific usage and often employed for
computer benchmarking, including Linpack and the Lawrence Livermore La
ratories FORTRAN kernels. The University of Illinois coordinated the collect
of a set of benchmarks for supercomputers, called the Perfect Club. In 199
Perfect Club was integrated into SPEC, which will release a set of benchm
aimed at high-end scientific processing sometime in 1995.

In less than 20 years vector processors have gone from unproven, new
tectures to playing a significant role in the goal to provide engineers and s
tists with ever-larger amounts of computing power. The enormous pr
performance advantages of microprocessor technology may bring this era
end. Recently, Cray, NEC, Fujitsu, and Convex announced and delivered l
scale multiprocessors based on microprocessors. By using advanced supe
microprocessors, designers can build processors that exceed the peak p
mance of the fastest vector processors. The challenge, as we saw in Cha
lies in programming these processors. As progress is made on this front, th
of vector processors in science and engineering may continue to decrease.

References

ALLIANT COMPUTER SYSTEMS CORP. [1987]. Alliant FX/Series: Product Summary (June), Acton,
Mass.

BANERJEE, U. [1979]. Speedup of Ordinary Programs, Ph.D. Thesis, Dept. of Computer Science
Univ. of Illinois at Urbana-Champaign (October).

BASKETT, F. AND T. W. KELLER [1977]. “An Evaluation of the CRAY-1 Processor,” in High Speed
Computer and Algorithm Organization, D. J. Kuck, D. H. Lawrie, and A. H. Sameh, eds., Academ
ic Press, San Diego, 71–84.

B-42 Appendix B Vector Processors

-

ns,”

ing

ain-

put-

-

-

r

m,”

re,”
BUCHER, I. Y. [1983]. “The computational speed of supercomputers,” Proc. SIGMETRICS Conf. on
Measuring and Modeling of Computer Systems, ACM (August), 151–165.

CALLAHAN , D., J. DONGARRA, AND D. LEVINE [1988]. “Vectorizing compilers: A test suite and re
sults,” Supercomputing ‘88, ACM/IEEE (November), Orlando, Fla., 98–105.

CHEN, S. [1983]. “Large-scale and high-speed multiprocessor system for scientific applicatio
Proc. NATO Advanced Research Work on High Speed Computing (June); also in K. Hwang, ed.,
“Superprocessors: Design and applications,” IEEE (August), 1984.

DONGARRA, J. J. [1986]. “A survey of high performance processors,” COMPCON, IEEE (March), 8–
11.

FAZIO, D. [1987]. “It’s really much more fun building a supercomputer than it is simply invent
one,” COMPCON, IEEE (February), 102–105.

FLYNN, M. J. [1966]. “Very high-speed computing systems,” Proc. IEEE 54:12 (December), 1901–
1909.

HINTZ, R. G. AND D. P. TATE [1972]. “Control data STAR-100 processor design,” COMPCON, IEEE
(September), 1–4.

JORDAN, K. E. [1987]. “Performance comparison of large-scale scientific processors: Scalar m
frames, mainframes with vector facilities, and supercomputers,” Computer 20:3 (March), 10–23.

KUCK, D., P. P. BUDNIK, S.-C. CHEN, D. H. LAWRIE, R. A. TOWLE, R. E. STREBENDT, E. W. DAVIS,
JR., J. HAN, P. W. KRASKA, AND Y. MURAOKA [1974]. “Measurements of parallelism in ordinary
FORTRAN programs,” Computer 7:1 (January), 37–46.

LINCOLN, N. R. [1982]. “Technology and design trade offs in the creation of a modern supercom
er,” IEEE Trans. on Computers C-31:5 (May), 363–376.

LUBECK, O., J. MOORE, AND R. MENDEZ [1985]. “A benchmark comparison of three super
computers: Fujitsu VP-200, Hitachi S810/20, and CRAY X-MP/2,” Computer 18:1 (January),
10–29.

MIRANKER, G. S., J. RUBENSTEIN, AND J. SANGUINETTI [1988]. “Squeezing a Cray-class super
computer into a single-user package,” COMPCON, IEEE (March), 452–456.

MIURA, K. AND K. UCHIDA [1983]. “FACOM vector processing system: VP100/200,” Proc. NATO
Advanced Research Work on High Speed Computing (June); also in K. Hwang, ed., “Super-
processors: Design and applications,” IEEE (August 1984), 59–73.

MOORE, B., A. PADEGS, R. SMITH, AND W. BUCHOLZ [1987]. “Concepts of the System/370 vecto
architecture,” Proc. 14th Symposium on Computer Architecture (June), ACM/IEEE, Pittsburgh,
282–292.

PADUA, D. AND M. WOLFE [1986]. “Advanced compiler optimizations for supercomputers,” Comm.
ACM 29:12 (December), 1184–1201.

RUSSELL, R. M. [1978]. “The CRAY-1 processor system,” Comm. of the ACM 21:1 (January), 63–72.

SCHNECK, P. B. [1987]. Superprocessor Architecture, Kluwer Academic Publishers, Norwell, Mass.

SMITH, B. J. [1981]. “Architecture and applications of the HEP multiprocessor system,” Real-Time
Signal Processing IV 298 (August), 241–248.

SPORER, M., F. H. MOSS, AND C. J. MATHAIS [1988]. “An introduction to the architecture of the
Stellar Graphics supercomputer,” COMPCON, IEEE (March), 464.

WATANABE, T. [1987]. “Architecture and performance of the NEC supercomputer SX syste
Parallel Computing 5, 247–255.

WATSON, W. J. [1972]. “The TI ASC—A highly modular and flexible super processor architectu
Proc. AFIPS Fall Joint Computer Conf., 221–228.

Exercises B-43

ded in

per-
n in

ion

 in the

any
s one

esult

ere
s are

ssum-

op.

ine
n takes
E X E R C I S E S

In these Exercises assume DLXV has a clock rate of 200 MHz and that Tloop = 15. Use the
start-up times from the appendix, and assume that the store latency is always inclu
the running time.

B.1 [10] <B.1,B.2> Write a DLXV vector sequence that achieves the peak MFLOPS
formance of the processor (use the functional unit and instruction descriptio
section B.2). Assuming a 200-MHz clock rate, what is the peak MFLOPS?

B.2 [20/15/15] <B.1–B.6> Consider the following vector code run on a 200-MHz vers
of DLXV for a fixed vector length of 64:

LV V1,Ra
MULTV V2,V1,V3
ADDV V4,V1,V3
SV Rb,V2
SV Rc,V4

Ignore all strip-mining overhead, but assume that the store latency must be included
time to perform the loop. The entire sequence produces 64 results.

a. [20] <B.1–B.5> Assuming no chaining and a single memory pipeline, how m
chimes are required? How many clock cycles per result (including both stores a
result) does this vector sequence require, including start-up overhead?

b. [15] <B.1–B.5> If the vector sequence is chained, how many clock cycles per r
does this sequence require, including overhead?

c. [15] <B.1–B.6> Suppose DLXV had three memory pipelines and chaining. If th
were no bank conflicts in the accesses for the above loop, how many clock cycle
required per result for this sequence?

B.3 [20/20/15/15/20/20/20] <B.2–B.6> Consider the following FORTRAN code:

do 10 i=1,n
A(i) = A(i) + B(i)
B(i) = x * B(i)

10 continue

Use the techniques of section B.6 to estimate performance throughout this Exercise, a
ing a 200-MHz version of DLXV.

a. [20] <B.2–B.6> Write the best DLXV vector code for the inner portion of the lo
Assume x is in F0 and the addresses of A and B are in Ra and Rb, respectively.

b. [20] <B.2–B.6> Find the total time for this loop on DLXV (T100). What is the MFLOP
rating for the loop (R100)?

c. [15] <B.2–B.6> Find R∞ for this loop.

d. [15] <B.2–B.6> Find N1/2 for this loop.

e. [20] <B.2–B.6> Find Nv for this loop. Assume the scalar code has been pipel
scheduled so that each memory reference takes six cycles and each FP operatio
three cycles. Assume the scalar overhead is also Tloop.

B-44 Appendix B Vector Processors

hat

ch a

rds,

 64-

ith a
.

e-
le ex-

n

f this

ow

ques
f. [20] <B.2–B.6> Assume DLXV has two memory pipelines. Write vector code t
takes advantage of the second memory pipeline. Show the layout in convoys.

g. [20] <B.2–B.6> Compute T100 and R100 for DLXV with two memory pipelines.

B.4 [20/10] <B.3> Suppose we have a version of DLXV with eight memory banks (ea
double word wide) and a memory-access time of eight cycles.

a. [20] <B.3> If a load vector of length 64 is executed with a stride of 20 double wo
how many cycles will the load take to complete?

b. [10] <B.3> What percentage of the memory bandwidth do you achieve on a
element load at stride 20 versus stride 1?

B.5 [12/12] <B.4–B.6> Consider the following loop:

C = 0.0
do 10 i=1,64

A(i) = A(i) + B(i)
C = C + A(i)

10 continue

a. [12] <B.4–B.6> Split the loop into two loops: one with no dependence and one w
dependence. Write these loops in FORTRAN—as a source-to-source transformation
This optimization is called loop fission.

b. [12] <B.4–B.6> Write the DLXV vector code for the loop without a dependence.

B.6 [20/15/20/20] <B.4–B.6> The compiled Linpack performance of the CRAY-1 (d
signed in 1976) was almost doubled by a better compiler in 1989. Let's look at a simp
ample of how this might occur. Consider the DAXPY-like loop (where k is a parameter to
the procedure containing the loop):

do 10 i=1,64
do 10 j=1,64
Y(k,j) = a * X(i,j) + Y(k,j)

10 continue

a. [20] <B.4–B.6> Write the straightforward code sequence for just the inner loop i
DLXV vector instructions.

b. [15] <B.4–B.6> Using the techniques of section B.6, estimate the performance o
code on DLXV by finding T64 in clock cycles. You may assume that Tloop of overhead
is incurred for each iteration of the outer loop. What limits the performance?

c. [20] <B.4–B.6> Rewrite the DLXV code to reduce the performance limitation; sh
the resulting inner loop in DLXV vector instructions. (Hint: Think about what estab-
lishes Tchime; can you affect it?) Find the total time for the resulting sequence.

d. [20] <B.4–B.6> Estimate the performance of your new version, using the techni
of section B.6 and finding T64.

B.7 [15/15/25] <B.5> Consider the following code.

do 10 i=1,64
if (B(i) .ne. 0) then

A(i) = A(i) / B(i)
10 continue

Exercises B-45

.

,
t one
 that
 if

a Hita-
 more
xam-
es:

g-
II
plex-

VII.

VII.

oop
rite the
Assume that the addresses of A and B are in Ra and Rb, respectively, and that F0 contains 0

a. [15] <B.5> Write the DLXV code for this loop using the vector-mask capability.

b. [15] <B.5> Write the DLXV code for this loop using scatter-gather.

c. [25] <B.5> Estimate the performance (T100 in clock cycles) of these two vector loops
assuming a divide latency of 20 cycles. Assume that all vector instructions run a
result per clock, independent of the setting of the vector-mask register. Assume
50% of the entries of B are 0. Considering hardware costs, which would you build
the above loop were typical?

B.8 [15/20/15/15] <B.1–B.6> In Fallacies and Pitfalls of Chapter 1, we saw that the dif-
ference between peak and sustained performance could be large: For one problem,
chi S810 had a peak speed twice as high as that of the CRAY X-MP, while for another
realistic problem, the CRAY X-MP was twice as fast as the Hitachi processor. Let’s e
ine why this might occur using two versions of DLXV and the following code sequenc

C Code sequence 1
do 10 i=1,10000

A(i) = x * A(i) + y * A(i)
10 continue

C Code sequence 2
do 10 i=1,100

A(i) = x * A(i)
10 continue

Assume there is a version of DLXV (call it DLXVII) that has two copies of every floatin
point functional unit with full chaining among them. Assume that both DLXV and DLXV
have two load-store units. Because of the extra functional units and the increased com
ity of assigning operations to units, all the overheads (T

loop
 and T

start
) are doubled.

a. [15] <B.1–B.6> Find the number of clock cycles for code sequence 1 on DLXV.

b. [20] <B.1–B.6> Find the number of clock cycles on code sequence 1 for DLX
How does this compare to DLXV?

c. [15] <B.1–B.6> Find the number of clock cycles on code sequence 2 for DLXV.

d. [15] <B.1–B.6> Find the number of clock cycles on code sequence 2 for DLX
How does this compare to DLXV?

B.9 [20] <B.4> Here is a tricky piece of code with two-dimensional arrays. Does this l
have dependences? Can these loops be written so they are parallel? If so, how? Rew
source code so that it is clear that the loop can be vectorized, if possible.

do 290 j = 2,n
do 290 i = 2,j

aa(i,j)= aa(i-1,j) * aa(i-1,j)+bb(i,j)
290 continue

B-46 Appendix B Vector Processors

arate

s are

 recur-

 the
e loop

part
se of
iativ-
 how-
ilers
iently

 add
o 16-

code
cur-
B.10 [12/15] <B.4> Consider the following loop:

do 10 i = 2,n
 A(i) = B

10 C(i) = A(i-1)

a. [12] <B.4> Show there is a loop-carried dependence in this code fragment.

b. [15] <B.4> Rewrite the code in FORTRAN so that it can be vectorized as two sep
vector sequences.

B.11 [15/25] <B.4> As we saw in Chapter 4 and in section B.4, some loop structure
not easily vectorized. One common structure is a reduction—a loop that reduces an array
to a single value by repeated application of an operation. This is a special case of a
rence. A common example occurs in dot product:

dot = 0.0

do 10 i=1,64

10 dot = dot + A(i) * B(i)

This loop has an obvious loop-carried dependence (on dot) and cannot be vectorized in a
straightforward fashion. The first thing a good vectorizing compiler would do is split
loop to separate out the vectorizable portion and the recurrence and perhaps rewrite th
as

do 10 i=1,64

10 dot(i) = A(i) * B(i)

do 20 i=2,64

20 dot(1) = dot(1) + dot(i)

The variable dot has been expanded into a vector; this transformation is called scalar ex-
pansion. We can try to vectorize the second loop either relying strictly on the compiler (
(a), or with hardware support as well, part (b)). There is an important caveat in the u
vector techniques for reduction. To make reduction work, we are relying on the assoc
ity of the operator being used for the reduction. Because of rounding and finite range,
ever, floating-point arithmetic is not strictly associative. For this reason, most comp
require the programmer to indicate whether associativity can be used to more effic
compile reductions.

a. [15] <B.4> One simple scheme for compiling the loop with the recurrence is to
sequences of progressively shorter vectors—two 32-element vectors, then tw
element vectors, and so on. This technique has been called recursive doubling. It is
faster than doing all the operations in scalar mode. Show how the FORTRAN
would look for execution of the second loop in the code fragment above using re
sive doubling.

Exercises B-47

the op-
ister.

t the
 with
Also,
ht cy-
artial

e
XV
n, and

me
 could

r pro-
r by fo-
at the
the pro-
ropo-
zable.

sors—
? What
b. [25] <B.4> In some vector processors, the vector registers are addressable, and
erands to a vector operation may be two different parts of the same vector reg
This allows another solution for the reduction, called partial sums. The key idea in
partial sums is to reduce the vector to m sums where m is the total latency through the
vector functional unit, including the operand read and write times. Assume tha
DLXV vector registers are addressable (e.g., you can initiate a vector operation
the operand V1(16), indicating that the input operand began with element 16).
assume that the total latency for adds, including operand read and write, is eig
cles. Write a DLXV code sequence that reduces the contents of V1 to eight p
sums. It can be done with one vector operation.

B.12 [40] <B.2–B.5> Extend the DLX simulator to be a DLXV simulator, including th
ability to count clock cycles. Write some short benchmark programs in DLX and DL
assembly language. Measure the speedup on DLXV, the percentage of vectorizatio
usage of the functional units.

B.13 [50] <B.4> Modify the DLX compiler to include a dependence checker. Run so
scientific code and loops through it and measure what percentage of the statements
be vectorized.

B.14 [Discussion] Some proponents of vector processors might argue that the vecto
cessors have provided the best path to ever-increasing amounts of processor powe
cusing their attention on boosting peak vector performance. Others would argue th
emphasis on peak performance is misplaced because an increasing percentage of
grams are dominated by nonvector performance. (Remember Amdahl’s Law?) The p
nents would respond that programmers should work to make their programs vectori
What do you think about this argument?

B.15 [Discussion] Consider the points raised in Concluding Remarks (section B.8). This
topic—the relative advantages of pipelined scalar processors versus FP vector proces
is the source of much debate in the 1990s. What advantages do you see for each side
would you do in this situation?

C

Survey of RISC
Architectures 11
RISC: any computer announced after 1985.

Steven Przybylski
A Designer of the Stanford MIPS

C.1 Introduction C-1

C.2 Addressing Modes and Instruction Formats C-3

C.3 Instructions: The DLX Subset C-5

C.4 Instructions: Common Extensions to DLX C-9

C.5 Instructions Unique to MIPS C-13

C.6 Instructions Unique to SPARC C-15

C.7 Instructions Unique to PowerPC C-18

C.8 Instructions Unique to PA-RISC C-19

C.9 Concluding Remarks C-22

C.10 References C-25
tures

d for
ure
imilar.
with
 are

00
e in
We cover four examples of reduced instruction set computer (RISC) architec
in this appendix:

■ Hewlett Packard PA-RISC

■ IBM and Motorola PowerPC

■ SGI MIPS

■ SPARC, developed originally by Sun Microsystems

We also include a discussion of DLX, the instruction set architecture invente
this book. (A review of DLX can be found on the back inside cover or in Fig
2.25 of Chapter 2.) There has never been another class of computers so s
This similarity allows the presentation of four architectures in 25 pages,
DLX thrown in for good measure! Characteristics of these architectures
found in Figure C.1.

Readers of the first edition will note that the Intel i860 and Motorola M880
now sleep with the fishes; HP PA-RISC and IBM PowerPC took their plac

C.1 Introduction

C-2

Appendix C Survey of RISC Architectures

igital
us

four

lder
veral
puters
e of

de
ub-
ok is

this appendix. Had we space for another architecture in our figures, the D
Alpha AXP would join this group. Its similarities to MIPS made it the obvio
candidate for omission.

After discussing the addressing modes and instruction formats of our
RISC architectures, we present the survey of the instructions in three steps:

■ Instructions found in DLX

■ Instructions not found in DLX but found in two or more architectures

■ The unique instructions and characteristics of each architecture

We conclude with a speculation about the future directions for RISCs.
The one complication in this second edition appendix is that some of the o

RISCs have been extended over the years. As this book will be in print for se
years, we decided to describe the latest version of the architectures, as com
with these instruction sets will be common soon even if they are not at the tim
this writing: MIPS IV, PA-RISC 1.1; and SPARC version 9. We will also allu
to version 2.0 of the PA-RISC instruction set occasionally, which will be p
lished and shipped in systems shortly after the second edition of this bo
complete. We give the evolution of the instruction sets in the final section.

DLX MIPS I PA-RISC PowerPC SPARC V8

Date announced 1990 1986 1986 1993 1987

Instruction size (bits) 32 32 32 32 32

Address space (size, model) 32 bits, flat 32 bits, flat 48 bits,
 segmented

32 bits, flat 32 bits, flat

Data alignment Aligned Aligned Aligned Unaligned Aligned

Data addressing modes 2 2 5 4 2

Protection Page Page Page Page Page

Minimum page size 4 KB 4 KB 4 KB 4 KB 8 KB

I/O Memory
mapped

Memory
mapped

Memory
mapped

Memory
mapped

Memory
mapped

Integer registers (number,
model, size)

31 GPR × 32
bits

31 GPR × 32
bits

31 GPR × 32
bits

32 GPR × 32
bits

31 GPR × 32
bits

Separate floating-point
registers

32 × 32 or
16 × 64 bits

16 × 32 or
16 × 64 bits

56 × 32 or
28 × 64 bits

32 × 32 or
32 × 64 bits

32 × 32 or
16 × 64 bits

Floating-point format IEEE 754
single, double

IEEE 754
single, double

IEEE 754
single, double

IEEE 754
single, double

IEEE 754
single, double

FIGURE C.1 Summary of the first version of five recent architectures. Except for number of data address modes and
some instruction set details, the integer instruction sets of these architectures are very similar. Contrast this to Figure C.12
on page C-23. Later versions of these architectures all support a flat, 64-bit address space.

C.2 Addressing Modes and Instruction Formats

C-3

cture.
dress

ith

s-
is al-
g is
 ad-

 sup-
func-
 but
 the
 and

 ad-
imary
tend

Figure C.2 shows the data addressing modes supported by each archite
Since all have one register that always has the value 0 when used in ad
modes—in fact, it is r0 in every architecture—the absolute address mode w
limited range can be synthesized using r0 as the base in displacement addres
ing. (Register 0 can be changed by ALU operations in PowerPC; register 0
ways zero in the other machines.) Similarly, register-indirect addressin
synthesized by using displacement addressing with an offset of 0. Simplified
dressing modes is one distinguishing feature of RISC architectures.

References to code are normally PC-relative, although register indirect is
ported for returning from procedures, for case statements, and for pointer
tion calls. One variation is that PC-relative branch addresses in everything
DLX are shifted left 2 bits before being added to the PC, thereby increasing
branch distance. This works because the length of all instructions is 32 bits
instructions must be aligned on 32-bit words in memory.

Figure C.3 shows the format of instructions, which includes the size of the
dress in the instructions. Each instruction set architecture uses these four pr
instruction formats. The primary differences are subtle, concerning how to ex
constant fields to 32 bits. Figure C.4 shows the variations.

C.2 Addressing Modes and Instruction Formats

Addressing mode DLX MIPS IV PA-RISC 1.1 PowerPC SPARC V9

Register + offset (displacement or based) √ √ √ √ √
Register + register (indexed) — √ (FP) √ √ √
Register + scaled register (scaled) — — √ — —

Register + offset & update register — — √ √ —

Register + register & update register — — √ √ —

FIGURE C.2 Summary of data addressing modes. PA-RISC also has short address versions of the offset addressing
modes. MIPS IV has indexed addressing for floating-point loads and stores. (These addressing modes are described in
Figure 2.5, page 75.)

C-4

Appendix C Survey of RISC Architectures

FIGURE C.3 Instruction formats for five architectures. These four formats are found in all five architectures. (The su-
perscript notation in this figure means something different from our standard notation; it shows the width of a field in bits.)
Although the register fields are located in similar pieces of the instruction, be aware that the destination and two source fields
are scrambled. Here are the meanings of the abbreviations: Op = the main opcode, Opx = an opcode extension, Rd = the
destination register, Rs1 = source register 1, Rs2 = source register 2, and Const = a constant (used as an immediate or as
an address). Version 2.0 of PA-RISC will include a 16-bit add immediate format and a 17-bit address for calls. Note that our
discussion of DLX in Chapters 2 and 3 numbers bits from left to right, while this figure uses right-to-left numbering.

Opcode Register Constant

DLX

MIPS

PowerPC

PA-RISC

SPARC

DLX

MIPS

PowerPC

PA-RISC

SPARC

DLX

MIPS

PowerPC

PA-RISC

SPARC

DLX

MIPS

PowerPC

PA-RISC

SPARC

Register-register

Register-immediate

Branch

Jump/call

Op6

31 25 20 15 10 0

31 25 20 15 0

31 25

31 25

20 15 0

0

Rs15 Rs25 Rd5

Rs15 Rd5 Const16

Const5

Rs15 Rd5 Const16

Rs15 Opx5
/Rs25 Const16

Opx6

Opx3

Opx11

Rs15 Const14 Opx2

O C

Opx2

O C

Rs25 Rs15

Rs15

Const11

Const19

Const26

Const26

Const24

Const11

Const30

Const5

Const16

Const16

Rs15 Rd5

Rd5 Rs15

Rs25 Rd5

Rd5

Opx6 Const11

Opx6 Rs15 1 Const13

Rs15 Rs25 Rd5

Rd5 Rs15

Rs15

Rs25 Opx11

Opx6

Opx11

Opx11Rs215 Rs125 Rd5

Opx80Rd5 Opx6 Rs25

Op6

Op6

Op6

Op6

Op6

Op6

Op6

Op2

Op2

Op2

Op2

Op6

Op6

Op6

Op6

Op6

Op6

Op6

Op6

31 29 24 18 13 12 4 0

31 29 24 18 13 12 0

31 29 18 12 1 0

31 29 20 15 12 1 0

C.3 Instructions: The DLX Subset

C-5

rting

 as
und
listed
ting
and

rt se-
ted by
will

 nor-

anch,
erent

The similarities of each architecture allow simultaneous descriptions, sta
with the operations equivalent to DLX.

DLX Instructions

Almost every instruction found in DLX is found in the other architectures,
Figure C.5 shows. (For reference, definitions of the DLX instructions are fo
in Figure 2.25 of Chapter 2 and on the back inside cover.) Instructions are
under four categories: data transfer; arithmetic, logical; control; and floa
point. A fifth category in the figure shows conventions for register usage
pseudo-instructions on each architecture. If a DLX instruction requires a sho
quence of instructions in other architectures, these instructions are separa
semicolons in Figure C.5. (To avoid confusion, the destination register
always be the leftmost operand in this appendix, independent of the notation
mally used with each architecture.)

Every architecture must have a scheme for compare and conditional br
but despite all the similarities, each of these architectures has found a diff
way to perform the operation.

Format: instruction category DLX MIPS IV PA-RISC 1.1 PowerPC SPARC V9

Branch: all Sign Sign Sign Sign Sign

Jump/call: all Sign — Sign Sign Sign

Register-immediate: data transfer Sign Sign Sign Sign Sign

Register-immediate: arithmetic Sign Sign Sign Sign Sign

Register-immediate: logical Sign Zero — Zero Sign

FIGURE C.4 Summary of constant extension. The constants in the jump and call instructions of MIPS are not sign ex-
tended since they only replace the lower 28 bits of the PC, leaving the upper 4 bits unchanged (PA-RISC has no logical
immediate instructions).

C.3 Instructions: The DLX Subset

C-6

Appendix C Survey of RISC Architectures

ge

Instruction name DLX MIPS IV PA-RISC 1.1 PowerPC SPARC V9

Data transfer
(instruction formats) R–I R–I R–I, R–R R–I, R–R R–I, R–R

Load byte signed LB LB LDB;
EXTRS,8,31

LBZ; EXTSB LDSB

Load byte unsigned LBU LBU LDB,LDBX,LDBS LBZ LDUB

Load half word signed LH LH LDH;
EXTRS16,31

LHA LDSH

Load half word
unsigned

LHU LHU LDH,LDHX,LDHS LHZ LDUH

Load word LW LW LDW,LDWX, LDWS LW LD

Load SP float LF LWC1 FLDWX,FLDWS LFS LDF

Load DP float LD LDC1 FLDDX,FLDDS LFD LDDF

Store byte SB SB STB,STBX,STBS STB STB

Store half word SH SH STH,STHX,STHS STH STH

Store word SW SW STW,STWX,STWS STW ST

Store SP float SF SWC1 FSTWX,FSTWS STFS STF

Store DP float SD SWD1 FSTDX,FSTDS STFD STDF

Read, write
special registers

MOVS2I,
MOVI2S

MF, MT_ MFCTL, MTCTL MFSPR, MF_,
MTSPR, MT_

RD,WR,
RDPR,WRPR,
LDXFSR, STXFSR

Move int. to FP reg. MOVI2FP MFC1 STW; FLDWX STW; LDFS ST; LDF

Move FP to int. reg. MOVFP2I MTC1 FSTWX; LDW STFS; LW STF; LD

Arithmetic, logical
(instruction formats) R–R, R–I R–R, R–I R–R, R–I R–R, R–I R–R, R–I

Add ADDU,ADDUI ADDU,
ADDIU

ADDL, LD0,
ADDI, UADDCM

ADD,ADDI ADD

Add (trap if overflow) ADD,ADDI ADD,
ADDI

ADDO, ADDIO ADDO;
MCRXR; BC

ADDcc; TVS

Sub SUBU,SUBUI SUBU SUB,SUBI SUBF SUB

Sub (trap if overflow) SUB,SUBI SUB SUBTO,SUBIO SUBF/oe SUBcc; TVS

Multiply MULTU,
MULTUI

MULT,
MULTU

SHiADD; ...;
(i=1,2,3)

MULLW,
MULLI

MULX

Multiply (trap if ovf) MULT,MULTI — SHiADDO; ...; — —

Divide DIVU,DIVUI DIV,DIVU DS; ...; DS DIVW DIVX

Divide (trap if ovf) DIV,DIVI — — — —

And AND,ANDI AND,ANDI AND AND,ANDI AND

Or OR,ORI OR,ORI OR OR,ORI OR

Xor XOR,XORI XOR,XORI XOR XOR,XORI XOR

Figure continued on next pa

C.3 Instructions: The DLX Subset

C-7

ge
Instruction Name DLX MIPS IV PA-RISC 1.1 PowerPC SPARC V9

Arithmetic (continued)
(instruction formats) R–I R–I R–I, R–R R–I, R–R R–I, R–R

Load high part register LHI LUI LDIL ADDIS SETHI (B fmt.)

Shift left logical SLL,SLLI SLLV,SLL ZDEP 31-i,
32-i

RLWINM SLL

Shift right logical SRL,SRLI SRLV,SRL EXTRU 31, 32-i RLWINM 32-i SRL

Shift right arithmetic SRA,SRAI SRAV,SRA EXTRS 31, 32-i SRAW SRA

Compare S_(<, >, ≤, ≥,
=, ≠)

SLT/I,
SL/ITU

COMB CMP(I)CLR SUBcc r0,...

Control
(instruction formats) B, J/C B, J/C B, J/C B, J/C B, J/C

Branch on integer
compare

BEQ,BNE BEQ,BNE,
B_Z
(<,>, ≤, ≥)

COMB, COMIB BC BR_Z, BPcc
(<, >, ≤, ≥, =, ≠)

Branch on floating-
point compare

BFPT,BFPF BC1T,BC1F FSTWX f0; LDW
t; BB t

BC FBPfcc
(<, >, ≤, ≥, =,...)

Jump, jump register J,JR J,JR BL r0, BLR r0 B, BCLR,
BCCTR

BA, JMPL
r0,...

Call, call register JAL,JALR JAL,JALR BL, BLE BL,BLA,
BCLRL,
BCCTRL

CALL, JMPL

Trap TRAP BREAK BREAK TW, TWI Ticc, SIR

Return from interrupt RFE JR; RFE RFI,RFIR RFI DONE, RETRY,
RETURN

Floating point
(instruction formats) R–R R–R R–R R–R R–R

Add single, double ADDF,
ADDD

ADD.S,
ADD.D

FADD
FADD/dbl

FADDS,
FADD

FADDS,
FADDD

Sub single, double SUBF,
SUBD

SUB.S,
SUB.D

FSUB
FSUB/dbl

FSUBS,
FSUB

FSUBS,
FSUBD

Mult single, double MULF,
MULD

MUL.S,
MUL.D

FMPY
FMPY/dbl

FMULS,
FMUL

FMULS,
FMULD

Div single, double DIVF,
DIVD

DIV.S,
DIV.D

FDIV,
FDIV/dbl

FDIVS,
FDIV

FDIVS,
FDIVD

Compare _F, _D
(<, >, ≤, ≥, =,
...)

C_.S, C_.D
(<, >, ≤, ≥, =,
...)

FCMP, FCMP/
dbl
(<, =, >)

FCMP FCMPS,
FCMPD

Move R–R MOVF MOV.S FCPY FMV FMOVS/D/Q

Convert
(single,double,integer)
to
 (single,double,integer)

CVTF2D,
CVTD2F,
CVTF2I,
CVTD2I,
CVTI2F,
CVTI2D

CVT.S.D,
CVT.D.S,
CVT.S.W,
CVT.D.W,
CVT.W.S,
CVT.W.D

FCNVFF,s,d
FCNVFF,d,s
FCNVXF,s,s
FCNVXF,d,d
FCNVFX,s,s
FCNVFX,d,s

—,
FRSP,
—,
FCTIW,
—,
—

FSTOD,
FDTOS,
FSTOI,
FDTOI,
FITOS,
FITOD

Figure continued on next pa

C-8 Appendix C Survey of RISC Architectures

tatus
r
 in-
ta-
plicit

d and
 IEEE
nd-
it op-
alue is
ion

the
tial-
des
condi-
e in-

ster.”
oint
ondi-
Compare and Conditional Branch

SPARC uses the traditional four condition code bits stored in the program s
word: negative, zero, carry, and overflow. They can be set on any arithmetic o
logical instruction; unlike earlier architectures, this setting is optional on each
struction. An explicit option leads to fewer problems in pipelined implemen
tion. Although condition codes can be set as a side effect of an operation, ex
compares are synthesized with a subtract using r0 as the destination. SPARC
conditional branches test condition codes to determine all possible unsigne
signed relations. Floating point uses separate condition codes to encode the
754 conditions, requiring a floating-point compare instruction. Version 9 expa
ed SPARC branches in four ways: a separate set of condition codes for 64-b
erations; a branch that tests the contents of a register and branches if the v
=,≠,<,≤,≥, or ≥ 0 (see MIPS below); three more sets of floating-point condit
codes; and branch instructions that encode static branch prediction.

PowerPC also uses four condition codes: less than, greater than, equal, and
summary overflow, but it has eight copies of them. This redundancy allows
PowerPC instructions to use different condition codes without conflict, essen
ly giving PowerPC eight extra 4-bit registers. Any of these eight condition co
can be the target of a compare instruction, and any can be the source of a
tional branch. The integer instructions have an option bit that behaves as if th
teger op was followed by a compare to zero that sets the first condition “regi
PowerPC also lets the second “register” be optionally set by floating-p
instructions. PowerPC provides logical operations among these eight 4-bit c
tion code registers (CRAND, CROR, CRXOR, CRNAND, CRNOR, CREQV), allowing more
complex conditions to be tested by a single branch.

Instruction Name DLX MIPS IV PA-RISC 1.1 PowerPC SPARC V9

Conventions

Register with value 0 r0 r0 r0 r0 (ad-
dressing)

r0

Return address reg. r31 r31 r2, r31 link
(special)

r31

No-op ADD
r0,r0,r0

SLL
r0,r0,r0

OR r0,r0,r0 ORI
r0,r0,#0

SETHI r0,0

Move R–R integer ADD
...,r0,...

ADD
...,r0,...

OR ...,r0,... OR rx, ry,
ry

OR ...,r0,...

Operand order OP
Rd,Rs1,Rs2

OP
Rd,Rs1,Rs2

OP Rs1,Rs2,Rd OP
Rd,Rs1,Rs2

OP Rs1,Rs2,Rd

FIGURE C.5 Instructions equivalent to DLX. Dashes mean the operation is not available in that architecture, or not syn-
thesized in a few instructions. Such a sequence of instructions is shown separated by semicolons. If there are several choices
of instructions equivalent to DLX, they are separated by commas. Note that in the “Arithmetic, logical” category all machines
but SPARC use separate instruction mnemonics to indicate an immediate operand; SPARC offers immediate versions of
these instructions but uses a single mnemonic. (Of course these are separate opcodes!)

C.4 Instructions: Common Extensions to DLX C-9

y two

er to
e full

udes
an or

the-
r

ons;
ng-
test.

ost

 least-

ries.
rchi-
uage,
MIPS uses the contents of registers to evaluate conditional branches. An
registers can be compared for equality (BEQ) or inequality (BNE) and then the
branch is taken if the condition holds. The set-on-less-than instructions (SLT,
SLTI , SLTU, SLTIU) compare two operands and then set the destination regist
1 if less and to 0 otherwise. These instructions are enough to synthesize th
set of relations. Because of the popularity of comparisons to 0, MIPS incl
special compare-and-branch instructions for all such comparisons: greater th
equal to zero (BGEZ), greater than zero (BGTZ), less than or equal to zero (BLEZ),
and less than zero (BLTZ). Of course, equal and not equal to zero can be syn
sized using r0 with BEQ and BNE. Like SPARC, MIPS I uses a condition code fo
floating point with separate floating-point compare and branch instructi
MIPS IV expands this to eight floating-point condition codes, with the floati
point comparisons and branch instructions specifying the condition to set or

PA-RISC has many branch options, which we’ll see in section C.8. The m
straightforward is a compare and branch instruction (COMB), which compares two
registers, then branches depending on the standard relations, and tests the
significant bit of the result of the comparison.

Figure C.6 summarizes the four schemes used for conditional branches.

Figure C.7 lists instructions not found in Figure C.5 in the same four catego
Instructions are put in this list if they appear in more than one of the four a
tectures. The instructions are defined using the hardware description lang
which is described on the page facing the inside back cover.

DLX MIPS IV PA-RISC 1.1 PowerPC SPARC V9

Number of condition code bits
(integer and FP)

1 FP 8 FP 1 FP 8 × 4 both 2 × 4 integer,
4 × 2 FP

Basic compare instructions
(integer and FP)

1 integer,
1 FP

1 integer,
1 FP

4 integer,
1 FP

4 integer,
2 FP

1 FP

Basic branch instructions
(integer and FP)

1 integer,
1 FP

2 integer,
1 FP

7 integer 1 both 3 integer,
1 FP

Compare register with register/
const and branch

=,≠ =,≠ =,≠,<,≤,>,≥,
even, odd

— —

Compare register to zero and
branch

=,≠ =,≠,<,≤,>,≥ =,≠,<,≤,>,≥,
even, odd

— =,≠,<,≤,>,≥

FIGURE C.6 Summary of five approaches to conditional branches. Floating-point branch on PA-RISC is accom-
plished by copying the FP status register into an integer register and then using the branch on bit instruction to test the FP
comparison bit. Integer compare on SPARC is synthesized with an arithmetic instruction that sets the condition codes using
r0 as the destination. PA-RISC 2.0 will have eight floating-point condition code bits.

C.4 Instructions: Common Extensions to DLX

C-10 Appendix C Survey of RISC Architectures

e

Name Definition MIPS IV PA-RISC 1.1 PowerPC SPARC V9

Data transfer

Atomic swap R/M
(for semaphores)

Temp←Rd;
Rd← Mem[x];
Mem[x]←Temp

LL;SC — (see C.8) LWARX;
STWCX

CASA,
CASX

Load 64-bit integer Rd←64 Mem[x] LD (in 2.0) LD LDX

Store 64-bit int. Mem[x]←64 Rd SD (in 2.0) STD STX

Load 32-bit int.
unsigned

Rd32..63←32 Mem[x];
Rd0..31 ←32 0

LWU (in 2.0) LWZ LDUW

Load 32-bit int.
signed

Rd32..63←32 Mem[x];

Rd0..31 ←32 Mem[x]0
32

LW (in 2.0) LWA LDSW

Prefetch Cache[x]←hint PREF, PREFX LDWX, LDWS,
STWX,STWS

DCBT,
DCBTST

PREFETCH

Load coprocessor Coprocessor←Mem[x] LWCi CLDWX,CLDWS — —

Store coprocessor Mem[x]←Coprocessor SWCi CSTWX,CSTWS — —

Endian (Big/Little Endian?) Either Either Either Either

Cache flush (Flush cache block at
this address)

CP0op FDC, FIC DCBF FLUSH

Shared memory
synchronization

(All prior data transfers
complete before next
data transfers may start)

SYNC SYNC SYNC MEMBAR

Arithmetic, logical

64-bit integer
arithmetic ops

Rd←64Rs1 op64 Rs2 DADD,DSUB
DMULT, DDIV

(in 2.0) ADD,SUBF,
MULLD,
DIVD

ADD,
SUB, MULX,
S/UDIVX

64-bit integer
logical ops

Rd←64Rs1 op64 Rs2 AND,OR,XOR (in 2.0) AND,OR,XOR AND,OR,XOR

64-bit shifts Rd←64Rs1 op64 Rs2 DSLL,DSRA,
DSRL

(in 2.0) SLD,SRAD,
SRLD

SLLX,
SRAX, SRLX

Conditional move if (cond) Rd← Rs MOVN/Z SUBc,n;
ADD

— MOVcc,
MOVr

Support for multi-
word integer add

CarryOut,Rd ← Rs1 +
Rs2 + OldCarryOut

ADU;SLTU;
ADDU

ADDC ADDC,
ADDE.

ADDcc

Support for multi-
word integer sub

CarryOut,Rd ← Rs1
Rs2 + OldCarryOut

SUBU;SLTU;
SUBU

SUBB SUBFC,
SUBFE.

SUBcc

And not Rd ← Rs1 & ~(Rs2) — ANDCM ANDC ANDN

Or not Rd ← Rs1 | ~(Rs2) — — ORC ORN

Add high
immediate

Rd0..15←Rs10..15 +
(Const<<16);

— ADDIL (R–I) ADDIS
(R–I)

—

Coprocessor
operations

(Defined by
coprocessor)

COPi COPR,i — IMPDEPi

Figure continued on next pag

C.4 Instructions: Common Extensions to DLX C-11

t:

with
ores
n 8.5

 and
fines
struc-
e ex-
erPC
 mode
; 64-
A-

tion
oon,
Although most of the categories are self-explanatory, a few bear commen

■ The “atomic swap” row means a primitive that can exchange a register
memory without interruption. This is useful for operating system semaph
in uniprocessor as well as for multiprocessor synchronization (see sectio
of Chapter 8).

■ The 64-bit data transfer and operation rows show how MIPS, PowerPC,
SPARC define 64-bit addressing and integer operations. SPARC simply de
all register and addressing operations to be 64 bits, adding only special in
tions for 64-bit shifts, data transfers, and branches. MIPS includes the sam
tensions, plus it adds separate 64-bit signed arithmetic instructions. Pow
added 64-bit right shift, load, store, divide, and compare and has a separate
determining whether instructions are interpreted as 32- or 64-bit operations
bit operations will not work in a machine that only supports 32-bit mode. P
RISC is expanded to 64-bit addressing and operations in version 2.0.

■ The “prefetch” instruction supplies an address and hint to the implementa
about the data. Hints include that the data is likely to be read or written s

Name Definition MIPS IV PA-RISC 1.1 PowerPC SPARC V9

Control

Optimized delayed
branches

(Branch not always
delayed)

BEQL,BNEL,
B_ZL
(<, >, ≤, ≥)

COMBT,n,
COMBF,n

— BPcc,A
FPBcc,A

Conditional trap if (COND)
{R31←PC; PC ←0..0#i}

T_,T_I
(=, ≠, <, >, ≤, ≥)

SUBc,n;
BREAK

TW, TD,
TWI, TDI

Tcc

No. control regs. Misc. regs (virtual
memory, interrupts,...)

≈12 32 33 29

Floating point

Multiply & Add Fd ← (Fs1 × Fs2) + Fs3 MADD.S/D — (see C.8) FMADD/S

Multiply & Sub Fd ← (Fs1 × Fs2) – Fs3 MSUB.S/D — (see C.8) FMSUB/S

Neg Mult & Add Fd ← –((Fs1 × Fs2)+Fs3) NMADD.S/D FNMADD/S

Neg Mult & Sub Fd ←–((Fs1 × Fs2)–Fs3) NMSUB.S/D FNMSUB/S

Square Root Fd ← SQRT(Fs) SQRT.S/D FSQRTsgl/
dbl

FSQRT/S FSQRTS/D

Conditional Move if (cond) Fd←Fs MOVF/T,
MOVF/T.S/D,

FTEST;FCPY — FMOVcc

Negate Fd ← Fs ^ x80000000 NEG.S/D (in 2.0) FNEG FNEGS/D/Q

Absolute value Fd ← Fs & x7FFFFFFF ABS.S/D FABS/dbl FABS FABSS/D/Q

FIGURE C.7 Instructions not found in DLX but found in two or more of the four architectures.

C-12 Appendix C Survey of RISC Architectures

es.
gisters
IPS
ing.)

tus
dian
ent-

ions.

plete

 pro-

igure
iately,
 is no

three
. The
the
ion at
only
noth-

 non-
s
have
 the
t in-

ext
(i.e.,

this
exit

fea-
ique
likely to be read or written only once, or likely to be read or written many tim
Prefetch does not cause exceptions. MIPS has a version that adds two re
to get the address for floating-point programs, unlike non-floating-point M
programs. (See pages 412–414 in Chapter 5 to learn more about prefetch

■ In the “Endian” row, “Big or Little” means there is a bit in the program sta
register that allows the processor to act either as Big Endian or Little En
(see page 73 in Chapter 2). This can be accomplished by simply complem
ing some of the least-significant bits of the address in data transfer instruct

■ The “shared memory synchronization” helps with cache-coherent multi-
processors: All loads and stores executed before the instruction must com
before loads and stores after it can start. (See section 8.5 of Chapter 8.)

■ The “coprocessor operations” row lists several categories that allow for the
cessor to be extended with special-purpose hardware.

One difference that needs a longer explanation is the optimized branches. F
C.8 shows the options. The PowerPC offers branches that take effect immed
like branches on earlier architectures. This avoids executing NOPs when there
instruction to fill the delay slot; all the rest offer delayed branches. The other
provide a version of delayed branch that makes it easier to fill the delay slot
SPARC “annulling” branch executes the instruction in the delay slot only if
branch is taken; otherwise the instruction is annulled. This means the instruct
the target of the branch can safely be copied into the delay slot since it will
be executed if the branch is taken. The restrictions are that the target is not a
er branch and that the target is known at compile time. (SPARC also offers a
delayed jump because an unconditional branch with the annul bit set doenot
execute the following instruction.) Recent versions of the MIPS architecture
added a branch likely instruction that also annuls the following instruction if
branch is not taken. PA-RISC allows almost any instruction to annul the nex
struction, including branches. Its “nullifying” branch option will execute the n
instruction depending on the direction of the branch and whether it is taken
if a forward branch is not taken or a backward branch is taken). Presumably
choice was made to optimize loops, allowing the instructions following the
branch and the looping branch to execute in the common case.

Now that we have covered the similarities, we will focus on the unique
tures of each architecture, ordering them by length of description of the un
features from shortest to longest.

 (Plain) Branch Delayed branch Annulling delayed branch

Found in architectures PowerPC DLX, MIPS,
PA-RISC, SPARC

MIPS, SPARC PA-RISC

Execute following
instruction

Only if branch
not taken

Always Only if branch taken If forward branch not
taken or backward
branch taken

FIGURE C.8 When the instruction following the branch is executed for three types of branches.

C.5 Instructions Unique to MIPS C-13

 this
re the
rig-

rare
am-
 try
 mis-
tions

.9

s in-
hap-

stem
en co-
ad by

n

ing

r

MIPS has gone through four generations of instruction set evolution, and
evolution has generally added features found in other architectures. Here a
salient unique features of MIPS, the first several of which were found in the o
inal instruction set.

Nonaligned Data Transfers

MIPS has special instructions to handle misaligned words in memory. A
event in most programs, it is included for COBOL programs where the progr
mer can force misalignment by declarations. Although most RISCs trap if you
to load a word or store a word to a misaligned address, on all architectures
aligned words can be accessed without traps by using four load byte instruc
and then assembling the result using shifts and logical ORs. The MIPS load and
store word left and right instructions (LWL, LWR, SWL, SWR) allow this to be done in
just two instructions: LWL loads the left portion of the register and LWR loads the
right portion of the register. SWL and SWR do the corresponding stores. Figure C
shows how they work. There are also 64-bit versions of these instructions.

TLB Instructions

TLB misses are handled in software in MIPS, so the instruction set also ha
structions for manipulating the registers of the TLB (see pages 455–456 in C
ter 5 for more on TLBs). These registers are considered part of the “sy
coprocessor” and thus can be accessed by the instructions that move betwe
processor registers and integer registers. The contents of a TLB entry are re
loading via read indexed TLB entry (TLBR) and written using either write indexed
TLB entry (TLBWI) or write random TLB entry (TLBWR). The TLB contents are
searched using probe TLB for matching entry (TLBP).

Remaining Instructions

Below is a list of the remaining unique details of the MIPS architecture:

■ NOR—This logical instruction calculates ~(Rs1 | Rs2).

■ Constant shift amount—Non-variable shifts use the 5-bit constant field show
in the register-register format in Figure C.3.

■ SYSCALL—This special trap instruction is used to invoke the operat
system.

■ Move to/from control registers—CTCi and CFCi move between the intege
registers and control registers.

C.5 Instructions Unique to MIPS

C-14 Appendix C Survey of RISC Architectures

ed
This
MB

-
, and
 in a
4-bit

pli-
alue
■ Jump/call not PC-relative—The 26-bit address of jumps and calls is not add
to the PC. It is shifted left 2 bits and replaces the lower 28 bits of the PC.
would only make a difference if the program were located near a 256-
boundary.

■ Load linked/store conditional—This pair of instructions gives MIPS atomic op
erations for semaphores, allowing data to be read from memory, modified
stored without fear of interrupts or other machines accessing the data
multiprocessor (see section 8.5 of Chapter 8). There are both 32- and 6
versions of these instructions.

■ Reciprocal and reciprocal square root—These instructions, which do not fol-
low IEEE 754 guidelines of proper rounding, are included apparently for ap
cations that value speed of divide and square root more than they v
accuracy.

FIGURE C.9 MIPS instructions for unaligned word reads. This figure assumes opera-
tion in Big Endian mode. Case 1 first loads the 3 bytes 101,102, and 103 into the left of R2,
leaving the least-significant byte undisturbed. The following LWR simply loads byte 104 into
the least-significant byte of R2, leaving the other bytes of the register unchanged using LWL.
Case 2 first loads byte 203 into the most-significant byte of R4, and the following LWR loads
the other 3 bytes of R4 from memory bytes 204, 205, and 206. LWL reads the word with the
first byte from memory, shifts to the left to discard the unneeded byte(s), and changes only
those bytes in Rd. The byte(s) transferred are from the first byte until the lowest-order byte of
the word. The following LWR addresses the last byte, right shifts to discard the unneeded
byte(s), and finally changes only those bytes of Rd. The byte(s) transferred are from the last
byte up to the highest-order byte of the word. Store word left (SWL) is simply the inverse of
LWL, and store word right (SWR) is the inverse of LWR. Changing to Little Endian mode flips
which bytes are selected and discarded. (If big-little, left-right, load-store seem confusing,
don’t worry, it works!)

100 101 102 103

104 105 106 107

200 201 202 203

204 205 206 207

Case 1
Before

After

After

M[100] D DA V

M[104]

R2

R2

R2

E

J

D

D

O

A

A

H

V

V

N

N

E

LWL R2, 101:

LWR R2, 104:

Case 2
Before

After

After

M[200]

M[204]

R4

R4

R4

A V E

J

D

D

O

O

A

H

H

V

N

N

E

LWL R4, 203:

LWR R4, 206:

C.6 Instructions Unique to SPARC C-15

d

a PC-

cu-
ions
pts
pos-

 for
used,
 the
a cir-
urve

sters
 (Giv-
 have
128 to
ons,

er-
 call-
the
 the

uc-
tion
me.
e.
ould
 The
ture
nera-
e for
■ Conditional procedure call instructions—BGEZAL saves the return address an
branches if the content of Rs1 is greater than or equal to zero, and BLTZAL does
the same for less than zero. The purpose of these instructions is to get
relative call. (There are “likely” versions of these instructions as well.)

There is no specific provision in the MIPS architecture for floating-point exe
tion to proceed in parallel with integer execution, but the MIPS implementat
of floating point allow this to happen by checking to see if arithmetic interru
are possible early in the cycle (see Appendix A). Normally interrupts are not
sible when integer and floating point operate in parallel.

Several features are unique to SPARC.

Register Windows

The primary unique feature of SPARC is register windows, an optimization
reducing register traffic on procedure calls. Several banks of registers are
with a new one allocated on each procedure call. Although this could limit
depth of procedure calls, the limitation is avoided by operating the banks as
cular buffer, providing unlimited depth. The knee of the cost-performance c
seems to be six to eight banks.

SPARC can have between two and 32 windows, typically using eight regi
each for the globals, locals, incoming parameters, and outgoing parameters.
en each window has 16 unique registers, an implementation of SPARC can
as few as 40 physical registers and as many as 520, although most have
136, so far.) Rather than tie window changes with call and return instructi
SPARC has the separate instructions SAVE and RESTORE. SAVE is used to “save”
the caller’s window by pointing to the next window of registers in addition to p
forming an add instruction. The trick is that the source registers are from the
er’s window of the addition operation, while the destination register is in
callee’s window. SPARC compilers typically use this instruction for changing
stack pointer to allocate local variables in a new stack frame. RESTORE is the in-
verse of SAVE, bringing back the caller’s window while acting as an add instr
tion, with the source registers from the callee’s window and the destina
register in the caller’s window. This automatically deallocates the stack fra
Compilers can also make use of it for generating the callee’s final return valu

The danger of register windows is that the larger number of registers c
slow down the clock rate. This was not the case for early implementations.
SPARC architecture (with register windows) and the MIPS R2000 architec
(without) have been built in several technologies since 1987. For several ge
tions the SPARC clock rate has not been slower than the MIPS clock rat

C.6 Instructions Unique to SPARC

C-16 Appendix C Survey of RISC Architectures

times
ration
pipe-
ined

tores.
/out-
mory-

 level
trap
ed to

reby
 this

 The
 and
ssed:
ad-
t al.
era-
cant

f the
ecide
ands,
ed on
be put
be an

in-
as a
implementations in similar technologies, probably because cache-access
dominate register-access times in these implementations. The current gene
machines took different implementation strategies—superscalar vs. super
lining—and it’s unlikely that the number of registers by themselves determ
the clock rate in either machine.

Another data transfer feature is alternate space option for loads and s
This simply allows the memory system to identify memory accesses to input
put devices, or to control registers for devices such as the cache and me
management unit.

Fast Traps

Version 9 SPARC includes support to make traps fast. It expands the single
of traps to at least four levels, allowing the window overflow and underflow
handlers to be interrupted. The extra levels mean the handler does not ne
check for page faults or misaligned stack pointers explicitly in the code, the
making the handler faster. Two new instructions were added to return from
multilevel handler: RETRY (which retries the interrupted instruction) and DONE

(which does not). To support user-level traps, the instruction RETURN will return
from the trap in nonprivileged mode.

Support for LISP and Smalltalk

The primary remaining arithmetic feature is tagged addition and subtraction.
designers of SPARC spent some time thinking about languages like LISP
Smalltalk, and this influenced some of the features of SPARC already discu
register windows, conditional trap instructions, calls with 32-bit instruction
dresses, and multiword arithmetic (see Taylor et al. [1986] and Ungar e
[1984]). A small amount of support is offered for tagged data types with op
tions for addition, subtraction, and hence comparison. The two least-signifi
bits indicate whether the operand is an integer (coded as 00), so TADDcc and
TSUBcc set the overflow bit if either operand is not tagged as an integer or i
result is too large. A subsequent conditional branch or trap instruction can d
what to do. (If the operands are not integers, software recovers the oper
checks the types of the operands, and invokes the correct operation bas
those types.) It turns out that the misaligned memory access trap can also
to use for tagged data, since loading from a pointer with the wrong tag can
invalid access. Figure C.10 shows both types of tag support.

Overlapped Integer and Floating-Point Operations

SPARC allows floating-point instructions to overlap execution with integer
structions. To recover from an interrupt during such a situation, SPARC h
queue of pending floating-point instructions and their addresses. RDPR allows the

C.6 Instructions Unique to SPARC C-17

usion

phore.

-bit
 in

ction
t re-

and.
processor to empty the queue. The second floating-point feature is the incl
of floating-point square root instructions FSQRTS, FSQRTD, and FSQRTQ.

Remaining Instructions

The remaining unique features of SPARC are

■ JMPL uses Rd to specify the return address register, so specifying r31 makes it
similar to JALR in DLX and specifying r0 makes it like JR.

■ LDSTUB loads the value of the byte into Rd and then stores FF16 into the ad-
dressed byte. This version 8 instruction can be used to implement a sema

■ CASA (CASXA) atomically compares a value in a processor register to 32
(64-bit) value in memory; if and only if they are equal, it swaps the value
memory with the value in a second processor register. This version 9 instru
can be used to construct wait-free synchronization algorithms that do no
quire the use of locks.

■ XNOR calculates the exclusive or with the complement of the second oper

FIGURE C.10 SPARC uses the two least-significant bits to encode different data
types for the tagged arithmetic instructions. (a) Integer arithmetic, which takes a single
cycle as long as the operands and the result are integers. (b) The misaligned trap can be
used to catch invalid memory accesses, such as trying to use an integer as a pointer. For
languages with paired data like LISP, an offset of –3 can be used to access the even word of
a pair (CAR) and +1 can be used for the odd word of a pair (CDR).

(a) Add, sub, or
compare integers
(coded as 00)

(b) Loading via
valid pointer
(coded as 11)

00 (R5)

00 (R6)

00 (R7)

11

3

(R4)

00 (Word
address)

TADDcc r7, r5, r6

LD rD, r4, -3

+
–

–

C-18 Appendix C Survey of RISC Architectures

an
ot.

his

di-
 will

per-

uble-
struc-
oint

ines:

urn ad-
 called
ro-
ess a
ot go

r the
nt reg-
exe-
 will

 the
redic-
 3.5),

 Either
■ BPcc, BPr, and FBPcc include a branch prediction bit so that the compiler c
give hints to the machine about whether a branch is likely to be taken or n

■ ILLTRAP causes an illegal instruction trap. Muchnick [1988] explains how t
is used for proper execution of aggregate returning procedures in C.

■ POPC counts the number of bits set to one in an operand.

■ Non-faulting loads allow compilers to move load instructions ahead of con
tional control structures that control their use. Hence, non-faulting loads
be executed speculatively.

■ Quadruple precision floating-point arithmetic and data transfer allow the
floating-point registers to act as eight 128-bit registers for floating-point o
ations and data transfers.

■ Multiple-precision floating-point results for multiply mean that two single-
precision operands can result in a double-precision product and two do
precision operands can result in a quadruple-precision product. These in
tions can be useful in complex arithmetic and some models of floating-p
calculations.

PowerPC is the result of several generations of IBM commercial RISC mach
IBM RT/PC, IBM Power-1, and IBM Power-2.

Branch Registers: Link and Counter

Rather than dedicate one of the 32 general-purpose registers to save the ret
dress on procedure call, PowerPC puts the address into a special register
the link register. Since many procedures will return without calling another p
cedure, link doesn’t always have to be saved away. Making the return addr
special register makes the return jump faster since the hardware need n
through the register read pipeline stage for return jumps.

In a similar vein, PowerPC has a count register to be used in for loops where
the program iterates for a fixed number of times. By using a special registe
branch hardware can determine quickly whether a branch based on the cou
ister is likely to branch, since the value of the register is known early in the
cution cycle. Tests of the value of the count register in a branch instruction
automatically decrement the count register.

Given that the count register and link register are already located with
hardware that controls branches, and that one of the problems in branch p
tion is getting the target address early in the pipeline (see Chapter 3, section
the PowerPC architects decided to make a second use of these registers.

C.7 Instructions Unique to PowerPC

C.8 Instructions Unique to PA-RISC C-19

upple-
t ad-

nnot
 the in-

le

gs

ne

s the
 the

y
 that

’s or

6

nifi-
PA-
chine.
as we
r in-
register can hold a target address of a conditional branch. Thus PowerPC s
ments its basic conditional branch with two instructions that get the targe
dress from these registers (BCLR, BCCTR).

Remaining Instructions

Unlike other RISC machines, register 0 is not hardwired to the value 0. It ca
be used as a base register, but in base+index addressing it can be used as
dex. The other unique features of the PowerPC are

■ Load multiple and store multiple save or restore up to 32 registers in a sing
instruction.

■ LSW and STSW permit fetching and storing of fixed and variable-length strin
that have arbitrary alignment.

■ Rotate with mask instructions support bit field extraction and insertion. O
version rotates the data and then performs logical AND with a mask of ones,
thereby extracting a field. The other version rotates the data but only place
bits into the destination register where there is a corresponding 1 bit in
mask, thereby inserting a field.

■ Algebraic right shift sets the carry bit (CA) if the operand is negative and an
one bits are shifted out. Thus a signed divide by any constant power of two
rounds toward zero can be accomplished with a SRAWI followed by ADDZE,
which adds CA to the register.

■ CBTLZ will count leading zeros.

■ SUBFIC computes (immediate – RA), which can be used to develop a one
two’s complement.

■ Logical shifted immediate instructions shift the 16-bit immediate to the left 1
bits before performing AND, OR, or XOR.

PA-RISC was expanded slightly in 1990 with version 1.1 and changed sig
cantly in 2.0 with 64-bit extensions that will be in systems shipped in 1996.
RISC perhaps has the most unusual features of any commercial RISC ma
For example, it has the most addressing modes, instruction formats, and,
shall see, several instructions that are really the combination of two simple
structions.

C.8 Instructions Unique to PA-RISC

C-20 Appendix C Survey of RISC Architectures

to not
tion
l-
hus
owing
ns,
e in-

h in-
ions
tead,
hine.
veral

the-
 add,
Nullification

As shown in Figure C.8 on page C-12, several RISC machines can choose
execute the instruction following a delayed branch, in order to improve utiliza
of the branch slot. This is called nullification in PA-RISC, and it has been genera
ized to apply to any arithmetic-logical instruction as well as to all branches. T
an add instruction can add two operands, store the sum, and cause the foll
instruction to be skipped if the sum is zero. Like conditional move instructio
nullification allows PA-RISC to avoid branches in cases where there is just on
struction in the then part of an if statement.

A Cornucopia of Conditional Branches

Given nullification, PA-RISC did not need to have separate conditional branc
structions. The inventors could have recommended that nullifying instruct
precede unconditional branches, thereby simplifying the instruction set. Ins
PA-RISC has the largest number of conditional branches of any RISC mac
Figure C.11 shows the conditional branches of PA-RISC. As you can see, se
are really combinations of two instructions.

Synthesized Multiply and Divide

PA-RISC provides several primitives so that multiply and divide can be syn
sized in software. Instructions that shift one operand 1, 2, or 3 bits and then

Name Instruction Notation

COMB Compare and branch if (cond(Rs1,Rs2)) {PC ← PC + offset12}

COMIB Compare imm. and branch if (cond(imm5,Rs2)) {PC ← PC + offset12}

MOVB Move and branch Rs2 ← Rs1,
if (cond(Rs1,0))

{PC ← PC + offset12}

MOVIB Move immediate and branch Rs2 ← imm5,
if (cond(imm5,0))

{PC ← PC + offset12}

ADDB Add and branch Rs2 ← Rs1 + Rs2,
if (cond(Rs1 + Rs2,0))

{PC ← PC + offset12}

ADDIB Add imm. and branch Rs2 ← imm5 + Rs2,
if (cond(imm5 + Rs2,0))

{PC ← PC + offset12}

BB Branch on bit if (cond(Rs p,0) {PC ← PC + offset12}

BVB Branch on variable bit if (cond(Rs sar ,0) {PC ← PC + offset12}

FIGURE C.11 The PA-RISC conditional branch instructions. The 12-bit offset is called offset12 in this table, and the
5-bit immediate is called imm5. The 16 conditions are =, <, ≤, odd, signed overflow, unsigned no overflow, zero or no over-
flow unsigned, never, and their respective complements. The BB instruction selects one of the 32 bits of the register and
branches depending if its value is 0 or 1. The BVB selects the bit to branch using the shift amount register, a special-purpose
register. The subscript notation specifies a bit field.

C.8 Instructions Unique to PA-RISC C-21

the
sign
ds in
ng
ases
bles

as-
ulti-
s by
e-

igit,
 has

eci-
ition
o test
arith-
up-

 and

or
ign-
ctly
ft un-

gister
 low-
ISC
r 1.

on or
trapping or not on overflow, are useful in multiplies. Divide step performs
critical step of nonrestoring divide, adding or subtracting depending on the
of the prior result. Magenheimer et al. [1988] measured the size of operan
multiplies and divides to show how well the multiply step would work. Usi
these data for C programs, Muchnick [1988] found that by making special c
the average multiply by a constant takes 6 clock cycles and multiply of varia
takes 24 clock cycles. PA-RISC has 10 instructions for these operations.

The original SPARC architecture used similar optimizations, but with incre
ing number of transistors the instruction set was expanded to include full m
ply and divide operations. PA-RISC gives some support along these line
putting a full 32-bit integer multiply in the floating-point unit; however, the int
ger data must first be moved to floating-point registers.

Decimal Operations

COBOL programs will compute on decimal values, stored as 4 bits per d
rather than converting back and forth between binary and decimal. PA-RISC
instructions that will convert the sum from a normal 32-bit add into proper d
mal digits. It also provides logical and arithmetic operations that set the cond
codes to test for carries of digit, bytes, or half words. These operations als
whether bytes or half words are zero. These operations would be useful in
metic on 8-bit ASCII characters. Five PA-RISC instructions provide decimal s
port.

Remaining Instructions

Here are some remaining PA-RISC instructions:

■ Branch vectored shifts an index register left 3 bits, adds it to a base register
then branches to the calculated address. It is used for case statements.

■ Extract and deposit instructions allow arbitrary bit fields to be selected from
inserted into registers. Variations include whether the extracted field is s
extended, whether the bit field is specified directly in the instruction or indire
in another register, and whether the rest of the register is set to zero or le
changed. PA-RISC has 12 such instructions.

■ To simplify use of 32-bit address constants, PA-RISC includes ADDIL, which
adds a left-adjusted 21-bit constant to a register and places the result in re
1. The following data transfer instruction uses offset addressing to add the
er 11 bits of the address to register 1. This pair of instructions allows PA-R
to add a 32-bit constant to a base register, at the cost of changing registe

■ PA-RISC has nine debug instructions that can set breakpoints on instructi
data addresses and return the trapped addresses.

C-22 Appendix C Survey of RISC Architectures

em-

ost
e in-

bout
ple,

n
Ver-

e
 that

d the
se reg-
he ef-
 that
ffset:
ns turn
akes

truc-
con-
es in
uess
tures
eity,

rmat
gle

here
■ Load and clear instructions provide a semaphore that reads a value from m
ory and then writes zero.

■ Store bytes short optimizes unaligned data moves, moving either the leftm
or the rightmost bytes in a word to the effective address depending on th
struction options and condition code bits.

■ Loads and stores work well with caches by having options that give hints a
whether to load data into the cache if it’s not already in the cache. For exam
load with a destination of register 0 is defined to be a cache hint.

■ Multiply/add and multiply/subtract are floating-point operations that ca
launch two independent floating-point operations in a single instruction.
sion 2.0 of PA-RISC will have fused multiply-add like the PowerPC.

In addition to instructions, here are a few features that distinguish PA-RISC:

■ The segmented address space above the 232 boundary means that there must b
instructions to manipulate the segment registers and branch instructions
can leave the current segment.

■ The data addressing modes use either a 14-bit offset or a 5-bit offset, an
sum of the base register and the immediate can be used to update the ba
ister. The decision of whether to use only the base register or the sum as t
fective address is optional. For 5-bit offsets there is a bit in the instruction
makes the decision, but in the 14-bit offsets it depends on the sign bit o
Negative means use the sum, positive means use the register. These optio
the standard 6-integer data transfers into 20 instructions. PA-RISC 2.0 m
the set of addressing options more orthogonal.

This appendix covers the addressing modes, instruction formats, and all ins
tions found in four recent RISC architectures. Although the later sections
centrate on the differences, it would not be possible to cover four architectur
these few pages if there were not so many similarities. In fact, we would g
that more than 90% of the instructions executed for any of these architec
would be found in Figure C.5 on pages C-6–C-8. To contrast this homogen
Figure C.12 gives a summary for four architectures from the 1970s in a fo
similar to that shown in Figure C.1 on page C-2. (Imagine trying to write a sin
appendix in this style for those architectures.) In the history of computing, t
has never been such widespread agreement on computer architecture.

C.9 Concluding Remarks

C.9 Concluding Remarks C-23

truc-
ogy of
 or de-

32
This style of architectures cannot remain static, however. Like people, ins
tion sets tend to get bigger as they get older. Figure C.13 shows the geneal
these instruction sets, and Figure C.14 shows which features were added to
leted from generations of machines over time.

IBM 360/370 Intel 8086 Motorola 68000 DEC VAX

Date announced 1964/1970 1978 1980 1977

Instruction size(s) (bits) 16,32,48 8,16,24,32, 40,48 16,32,48,64,80 8,16,24,32,..., 4

Addressing (size, model) 24 bits, flat/
31 bits, flat

4+16 bits,
segmented

24 bits, flat 32 bits, flat

Data aligned? Yes 360/ No 370 No 16-bit aligned No

Data addressing modes 2/3 5 9 ≥ 14

Protection Page None Optional Page

Page size 2 KB & 4 KB — 0.25 to 32 KB 0.5 KB

I/O Opcode Opcode Memory mapped Memory mapped

Integer registers (size,
model, number)

16 GPR × 32 bits 8 dedicated data ×
16 bits

8 data & 8 address
× 32 bits

15 GPR × 32 bits

Separate floating-point
registers

4 × 64 bits Optional:
8 × 80 bits

Optional:
8 × 80 bits

0

Floating-point format IBM (floating
hexadecimal)

IEEE 754 single,
double, extended

IEEE 754 single,
double, extended

DEC

FIGURE C.12 Summary of four 1970s architectures. Unlike the architectures in Figure C.1 on page C-2, there is little
agreement between these architectures in any category. (See Appendix D for more details on the 8086; in fact, the descrip-
tion of just this one machine is as long as this whole appendix!)

C-24 Appendix C Survey of RISC Architectures
FIGURE C.13 The lineage of RISC instruction sets. Commercial machines are shown in
plain text and research machines in bold . The CDC-6600 and Cray-1 were load-store ma-
chines with register 0 fixed at 0, and separate integer and floating-point registers. Instructions
could not cross word boundaries. An early IBM research machine led to the 801 and America
research projects, with the 801 leading to the unsuccessful RT/PC and America leading to the
successful Power architecture. Some people who worked on the 801 later joined Hewlett
Packard to work on the PA-RISC. The two university projects were the basis of MIPS and
SPARC machines. DEC shipped workstations using MIPS microprocessors for three years
before they brought out their own RISC instruction set, Alpha, which is very similar to MIPS III.

1960

1965

1970

1975

1980

1985

1990

1995

CDC 6600
1963

IBM ASC 1968

IBM 801
1975

America
 1985

Power-1
1990

PowerPC
1993

Power-2
1993

RT/PC
1986

PA-RISC
1986

CRAY 1
1976

Berkeley RISC-1
1981

SPARC v8
1987

SPARC v9
1994

Stanford MIPS
1982

MIPS I
1986

MIPS II
1989

MIPS III
1992

Alpha
1992

MIPS IV
1994

C.10 References C-25
BHANDARKAR, D. P. [1995]. Alpha Architecture and Implementations, Digital Press, Newton, Mass.

HEWLETT PACKARD [1994]. PA-RISC 1.1 Architecture Reference Manual, 3rd ed.

IBM [1994]. The PowerPC Architecture, Morgan Kaufmann, San Francisco.

KANE, G. [1988]. MIPS RISC Architecture, Prentice Hall, Englewood Cliffs, N. J.

MAGENHEIMER, D. J., L. PETERS, K. W. PETTIS, AND D. ZURAS [1988]. “Integer multiplication and
division on the HP Precision Architecture,” IEEE Trans. on Computers, 37:8, 980–990.

MUCHNICK, S. S. [1988]. “Optimizing compilers for SPARC,” Sun Technology (Summer) 1:3, 64–77.

SILICON GRAPHICS [1994]. MIPS IV Instruction Set, Revision 2.2.

SITES, R. L. (ED.) [1992]. Alpha Architecture Reference Manual, Digital Press, Newton, Mass.

SUN MICROSYSTEMS [1989]. The SPARC Architectural Manual, Version 8, Part No. 800-1399-09,

PA-RISC SPARC MIPS Power

Feature 1.0 1.1 2.0 v. 8 v. 9 I II III IV 1 2 PC

Interlocked loads √ " " √ " + " " √ " "

Load/store FP double √ " " √ " + " " √ " "

Semaphore √ " " √ " + " " √ " "

Square root √ " " √ " + " " + "

Single-precision FP ops √ " " √ " √ " " " +

Memory synchronization √ " " √ " + " " √ " "

Coprocessor √ " " √ – √ " " "

Base + index addressing √ " " √ " + √ " "

≈ 32 64-bit FP registers " " + + " √ " "

Annulling delayed branch √ " " √ " + " "

Branch register contents √ " " + √ " " "

Big or Little Endian + " + √ " " " +

Branch prediction bit + + " " √ " "

Conditional move + + √ " –

Prefetch data into cache + + + √ " "

64-bit addressing/ int. ops + + + " +

32-bit multiply, divide + " + √ " " " √ " "

Load/store FP quad + + –

Fused FP mul/add + + √ " "

String instructions √ " " √ " –

FIGURE C.14 Features added to RISC machines. √ means in the original machine, + means added later, " means con-
tinued from prior machine, and – means removed from architecture.

C.10 References

C-26 Appendix C Survey of RISC Architectures
August 25, 1989.

TAYLOR, G., P. HILFINGER, J. LARUS, D. PATTERSON, AND B. ZORN [1986]. “Evaluation of the SPUR
LISP architecture,” Proc. 13th Symposium on Computer Architecture (June), Tokyo.

UNGAR, D., R. BLAU, P. FOLEY, D. SAMPLES, AND D. PATTERSON [1984]. “Architecture of SOAR:
Smalltalk on a RISC,” Proc. 11th Symposium on Computer Architecture (June), Ann Arbor, Mich.,
188–197.

WEAVER, D. L. AND T. GERMOND [1994]. The SPARC Architectural Manual, Version 9, Prentice
Hall, Englewood Cliffs, N. J.

WEISS, S. AND J. E. SMITH [1994]. Power and PowerPC, Morgan Kaufmann, San Francisco.

	Computer Architecture Design
	1.

Fundamentals of

 Computer Design
	1.1

Introduction
	1.2

The Task of a Computer Designer
	1.3

Technology and Computer Usage Trends
	1.4

 Cost and Trends in Cost
	1.5 Measuring and Reporting Performance
	1.6 Quantitative Principles of Computer Design
	1.7 Putting It All Together:

 The Concept of Memory Hierarchy
	1.8 Fallacies and Pitfalls
	1.9 Concluding Remarks
	1.10 Historical Perspective and References
	- References
	- Exercises

	2. Instruction Set

Principles and

 Examples
	2.1

Introduction
	2.2

Classifying Instruction Set Architectures
	2.3

Memory Addressing
	2.4 Operations in the Instruction Set
	2.5 Type and Size of Operands
	2.6 Encoding an Instruction Set
	2.7 Crosscutting Issues: The Role of Compilers
	2.8 Putting It All Together: The DLX Architecture
	2.9 Fallacies and Pitfalls
	2.10 Concluding Remarks
	2.11 Historical Perspective and References
	- References
	- Exercises

	3.

Pipelining
	3.1

 What Is Pipelining?
	3.2

 The Basic Pipeline for DLX
	3.3 The Major Hurdle of Pipelining.

Pipeline Hazards
	3.4 Data Hazards
	3.5 Control Hazards
	3.6 What Makes Pipelining Hard to Implement?
	3.7 Extending the DLX Pipeline to

 Handle Multicycle Operations
	3.8 Crosscutting Issues:

Instruction Set Design and Pipelining
	3.9 Putting It All Together:

 The MIPS R4000 Pipeline
	3.10 Fallacies and Pitfalls
	3.11 Concluding Remarks
	3.12 Historical Perspective and References
	- References
	- Exercises

	4.

Advanced Pipelining

and Instruction-

Level Parallelism

	4.1

Instruction-Level Parallelism:

Concepts and Challenges
	4.2 Overcoming Data Hazards

 with Dynamic Scheduling
	4.3 Reducing Branch Penalties

 with Dynamic Hardware Prediction
	4.4 Taking Advantage of More ILP

with Multiple Issue
	4.5 Compiler Support for Exploiting ILP
	4.6 Hardware Support for Extracting

More Parallelism
	4.7 Studies of ILP
	4.8 Putting It All Together: The PowerPC 620
	4.9 Fallacies and Pitfalls
	4.10 Concluding Remarks
	4.11 Historical Perspective and References
	- References
	- Exercises

	5.

Memory-Hierarchy

 Design
	5.1

Introduction
	5.2

The ABCs of Caches
	5.3 Reducing Cache Misses
	5.4 Reducing Cache Miss Penalty
	5.5 Reducing Hit Time
	5.6 Main Memory
	5.7 Virtual Memory
	5.8 Protection and Examples of Virtual Memory
	5.9 Crosscutting Issues in the Design of

Memory Hierarchies
	5.10 Putting It All Together:

The Alpha AXP 21064 Memory Hierarchy
	5.11 Fallacies and Pitfalls
	5.12 Concluding Remarks
	5.13 Historical Perspective and References
	- References
	- Exercises

	6.

Storage Systems
	6.1

Introduction
	6.2

Types of Storage Devices
	6.3

Buses.Connecting I/O Devices to CPU/Memory
	6.4 I/O Performance Measures
	6.5 Reliability, Availability, and RAID
	6.6 Crosscutting Issues:

Interfacing to an Operating System
	6.7 Designing an I/O System
	6.8 Putting It All Together:

UNIX File System Performance
	6.9 Fallacies and Pitfalls
	6.10 Concluding Remarks
	6.11 Historical Perspective and References
	- References
	- Exercises

	7.

Interconnection

Networks
	7.1

Introduction
	7.2

A Simple Network
	7.3

 Connecting the Interconnection Network

to the Computer
	7.4

Interconnection Network Media
	7.5 Connecting More Than Two Computers
	7.6 Practical Issues for Commercial

 Interconnection Networks
	7.7 Examples of Interconnection Networks
	7.8 Crosscutting Issues for

Interconnection Networks
	7.9 Internetworking
	7.10 Putting It All Together:

 An ATM Network of Workstations
	7.11 Fallacies and Pitfalls
	7.12 Concluding Remarks
	7.13 Historical Perspective and References
	- References
	- Exercises

	8.

Multiprocessors
	8.1

Introduction
	8.2

 Characteristics of Application Domains
	8.3 Centralized Shared-Memory Architectures
	8.4 Distributed Shared-Memory Architectures
	8.5 Synchronization
	8.6 Models of Memory Consistency
	8.7 Crosscutting Issues
	8.8 Putting It All Together:

 The SGI Challenge Multiprocessor
	8.9 Fallacies and Pitfalls
	8.10 Concluding Remarks
	8.11 Historical Perspective and References
	- References
	- Exercises

	Appendix
	A.

Computer Arithmetic
	A.1

Introduction
	A.2

 Basic Techniques of Integer Arithmetic
	A.3 Floating Point
	A.4 Floating-Point Multiplication
	A.5 Floating-Point Addition
	A.6 Division and Remainder
	A.7 More on Floating-Point Arithmetic
	A.8 Speeding Up Integer Addition
	A.9 Speeding Up Integer Multiplication and Division
	A.10 Putting It All Together
	A.11 Fallacies and Pitfalls
	A.12 Historical Perspective and References
	- References
	- Exercises

	B

. Vector Processors
	B.1

Why Vector Processors?
	B.2

 Basic Vector Architecture
	B.3 Two Real-World Issues:

Vector Length and Stride
	B.4 Effectiveness of Compiler Vectorization
	B.5 Enhancing Vector Performance
	B.6 Putting It All Together:

 Performance of Vector Processors
	B.7 Fallacies and Pitfalls
	B.8 Concluding Remarks
	B.9 Historical Perspective and References
	- References
	- Exercises

	C.

Survey of RISC

Architectures

	C.1

Introduction
	C.2

Addressing Modes and Instruction Formats
	C.3

Instructions: The DLX Subset
	C.4 Instructions: Common Extensions to DLX
	C.5 Instructions Unique to MIPS
	C.6 Instructions Unique to SPARC
	C.7 Instructions Unique to PowerPC
	C.8 Instructions Unique to PA-RISC
	C.9 Concluding Remarks
	C.10 References

