And now for something completely different.

Monty Python’s Flying Circus

1.1 Introduction 1
1.2 The Task of a Computer Designer 3
1.3 Technology and Computer Usage Trends 6
1.4 Cost and Trends in Cost 8
1.5 Measuring and Reporting Performance 18
1.6 Quantitative Principles of Computer Design 29
1.7 Putting It All Together: The Concept of Memory Hierarchy 39
1.8 Fallacies and Pitfalls 44
1.9 Concluding Remarks 51
1.10 Historical Perspective and References 53

Exercises 60

11 | Introduction

Computer technology has made incredible progress in the past half century. In
1945, there were no stored-program computers. Today, a few thousand dollars
will purchase a personal computer that has more performance, more main memo-
ry, and more disk storage than a computer bought in 1965 for $1 million. This
rapid rate of improvement has come both from advances in the technology used
to build computers and from innovation in computer design. While technological
improvements have been fairly steady, progress arising from better computer
architectures has been much less consistent. During the first 25 years of elec-
tronic computers, both forces made a major contribution; but beginning in about
1970, computer designers became largely dependent upon integrated circuit tech-
nology. During the 1970s, performance continued to improve at about 25% to
30% per year for the mainframes and minicomputers that dominated the industry.
The late 1970s saw the emergence of the microprocessor. The ability of the
microprocessor to ride the improvements in integrated circuit technology more
closely than the less integrated mainframes and minicomputers led to a higher
rate of improvement—roughly 35% growth per year in performance.

2 Chapter 1 Fundamentals of Computer Design

This growth rate, combined with the cost advantages of a mass-produced
microprocessor, led to an increasing fraction of the computer business being
based on microprocessors. In addition, two significant changes in the computer
marketplace made it easier than ever before to be commercially successful with a
new architecture. First, the virtual elimination of assembly language program-
ming reduced the need for object-code compatibility. Second, the creation of
standardized, vendor-independent operating systems, such as UNIX, lowered the
cost and risk of bringing out a new architecture. These changes made it possible
to successively develop a new set of architectures, called RISC architectures, in
the early 1980s. Since the RISC-based microprocessors reached the market in the
mid 1980s, these machines have grown in performance at an annual rate of over
50%. Figure 1.1 shows this difference in performance growth rates.

350

DEC Alpha

300

250 1.58x per year

200
SPECint rating

DEC Alpha

150

IBM Power2
DEC Alpha
100
1.35x per year

FIGURE 1.1 Growth in microprocessor performance since the mid 1980s has been substantially higher than in ear-

lier years. This chart plots the performance as measured by the SPECint benchmarks. Prior to the mid 1980s, micropro-
cessor performance growth was largely technology driven and averaged about 35% per year. The increase in growth since
then is attributable to more advanced architectural ideas. By 1995 this growth leads to more than a factor of five difference
in performance. Performance for floating-point-oriented calculations has increased even faster.

1.2 The Task of a Computer Designer 3

The effect of this dramatic growth rate has been twofold. First, it has signifi-
cantly enhanced the capability available to computer users. As a simple example,
consider the highest-performance workstation announced in 1993, an IBM
Power-2 machine. Compared with a CRAY Y-MP supercomputer introduced in
1988 (probably the fastest machine in the world at that point), the workstation of-
fers comparable performance on many floating-point programs (the performance
for the SPEC floating-point benchmarks is similar) and better performance on in-
teger programs for a price that is less than one-tenth of the supercomputer!

Second, this dramatic rate of improvement has led to the dominance of micro-
processor-based computers across the entire range of the computer design. Work
stations and PCs have emerged as major products in the computer industry.
Minicomputers, which were traditionally made from off-the-shelf logic or from
gate arrays, have been replaced by servers made using microprocessors. Main
frames are slowly being replaced with multiprocessors consisting of small num-
bers of off-the-shelf microprocessors. Even high-end supercomputers are being
built with collections of microprocessors.

Freedom from compatibility with old designs and the use of microprocessor
technology led to a renaissance in computer design, which emphasized both ar-
chitectural innovation and efficient use of technology improvements. This renais-
sance is responsible for the higher performance growth shown in Figure 1.1—a
rate that is unprecedented in the computer industry. This rate of growth has com-
pounded so that by 1995, the difference between the highest-performance micro-
processors and what would have been obtained by relying solely on technology is
more than a factor of five. This text is about the architectural ideas and accom-
panying compiler improvements that have made this incredible growth rate possi-
ble. At the center of this dramatic revolution has been the development of a
guantitative approach to computer design and analysis that uses empirical obser-
vations of programs, experimentation, and simulation as its tools. It is this style
and approach to computer design that is reflected in this text.

Sustaining the recent improvements in cost and performance will require con-
tinuing innovations in computer design, and the authors believe such innovations
will be founded on this quantitative approach to computer design. Hence, this
book has been written not only to document this design style, but also to stimu-
late you to contribute to this progress.

1.2 | The Task of a Computer Designer

The task the computer designer faces is a complex one: Determine what
attributes are important for a new machine, then design a machine to maximize
performance while staying within cost constraints. This task has many aspects,
including instruction set design, functional organization, logic design, and imple-

mentation. The implementation may encompass integrated circuit design,

Chapter 1 Fundamentals of Computer Design

packaging, power, and cooling. Optimizing the design requires familiarity with a
very wide range of technologies, from compilers and operating systems to logic
design and packaging.

In the past, the terrmomputer architectureften referred only to instruction
set design. Other aspects of computer design were c¢alfgdmentationpften
insinuating that implementation is uninteresting or less challenging. The authors
believe this view is not only incorrect, but is even responsible for mistakes in the
design of new instruction sets. The architect's or designer’s job is much more
than instruction set design, and the technical hurdles in the other aspects of the
project are certainly as challenging as those encountered in doing instruction set
design. This is particularly true at the present when the differences among in-
struction sets are small (see Appendix C).

In this book the ternmstruction set architectunefers to the actual programmer-
visible instruction set. The instruction set architecture serves as the boundary be-
tween the software and hardware, and that topic is the focus of Chapter 2. The im-
plementation of a machine has two components: organization and hardware. The
termorganizationincludes the high-level aspects of a computer’s design, such as
the memory system, the bus structure, and the internal CPU (central processing
unit—where arithmetic, logic, branching, and data transfer are implemented)
design. For example, two machines with the same instruction set architecture but
different organizations are the SPARCstation-2 and SPARCstatidtatware
is used to refer to the specifics of a machine. This would include the detailed
logic design and the packaging technology of the machine. Often a line of ma-
chines contains machines with identical instruction set architectures and nearly
identical organizations, but they differ in the detailed hardware implementation.
For example, two versions of the Silicon Graphics Indy differ in clock rate and in
detailed cache structure. In this book the warchitectureis intended to cover
all three aspects of computer design—instruction set architecture, organization,
and hardware.

Computer architects must design a computer to meet functional requirements
as well as price and performance goals. Often, they also have to determine what
the functional requirements are, and this can be a major task. The requirements
may be specific features, inspired by the market. Application software often
drives the choice of certain functional requirements by determining how the ma-
chine will be used. If a large body of software exists for a certain instruction set
architecture, the architect may decide that a new machine should implement an
existing instruction set. The presence of a large market for a particular class of
applications might encourage the designers to incorporate requirements that
would make the machine competitive in that market. Figure 1.2 summarizes
some requirements that need to be considered in designing a new machine. Many
of these requirements and features will be examined in depth in later chapters.

Once a set of functional requirements has been established, the architect must
try to optimize the design. Which design choices are optimal depends, of course,
on the choice of metrics. The most common metrics involve cost and perfor-

1.2 The Task of a Computer Designer 5

Functional requirements Typical features required or supported

Application area Target of computer

General purpose Balanced performance for a range of tasks (Ch 2,3,4,5)

Scientific High-performance floating point (App A,B)

Commercial Support for COBOL (decimal arithmetic); support for databases and trans

processing (Ch 2,7)

Level of software compatibility = Determines amount of existing software for machine
At programming language Most flexible for designer; need new compiler (Ch 2,8)

Object code or binary compatible Instruction set architecture is completely defined—little flexibility—but n
vestment needed in software or porting programs

Operating system requirements Necessary features to support chosen OS (Ch 5,7)

Size of address space Very important feature (Ch 5); may limit applications

Memory management Required for modern OS; may be paged or segmented (Ch 5)

Protection Different OS and application needs: page vs. segment protection (Ch 5)

Standards Certain standards may be required by marketplace

Floating point Format and arithmetic: IEEE, DEC, IBM (App A)

I/O bus For 1/0O devices: VME, SCSI, Fiberchannel (Ch 7)

Operating systems UNIX, DOS, or vendor proprietary

Networks Support required for different networks: Ethernet, ATM (Ch 6)

Programming languages Languages (ANSI C, Fortran 77, ANSI COBOL) affect instruction set (G
FIGURE 1.2 Summary of some of the most important functional requirements an architect faces . The left-hand col-

umn describes the class of requirement, while the right-hand column gives examples of specific features that might be
needed. The right-hand column also contains references to chapters and appendices that deal with the specific issues.

mance. Given some application domain, the architect can try to quantify t

formance of the machine by a set of programs that are chosen to represent tha
n some

application domain. Other measurable requirements may be important i

action

oin-

h2)

he per-

markets; reliability and fault tolerance are often crucial in transaction processing

environments. Throughout this text we will focus on optimizing machine
performance.

In choosing between two designs, one factor that an architect must consider is

cost/

design complexity. Complex designs take longer to complete, prolonging time to

market. This means a design that takes longer will need to have higher

mance to be competitive. The architect must be constantly aware of the impact of

his design choices on the design time for both hardware and software.
In addition to performance, cost is the other key parameter in optimizin

performance. In addition to cost, designers must be aware of important trends in
both the implementation technology and the use of computers. Such trends not

perfor-

g cost/

only impact future cost, but also determine the longevity of an architecture. The

next two sections discuss technology and cost trends.

Chapter 1 Fundamentals of Computer Design

1.3 | Technology and Computer Usage Trends

If an instruction set architecture is to be successful, it must be designed to survive
changes in hardware technology, software technology, and application character-
istics. The designer must be especially aware of trends in computer usage and in
computer technology. After all, a successful new instruction set architecture may

last decades—the core of the IBM mainframe has been in use since 1964. An ar-
chitect must plan for technology changes that can increase the lifetime of a suc-
cessful machine.

Trends in Computer Usage

The design of a computer is fundamentally affected both by how it will be used
and by the characteristics of the underlying implementation technology. Changes
in usage or in implementation technology affect the computer design in different
ways, from motivating changes in the instruction set to shifting the payoff from
important techniques such as pipelining or caching.

Trends in software technology and how programs will use the machine have a
long-term impact on the instruction set architecture. One of the most important
software trends is the increasing amount of memory used by programs and their
data. The amount of memory needed by the average program has grown by a fac-
tor of 1.5 to 2 per year! This translates to a consumption of address bits at a rate
of approximately 1/2 bit to 1 bit per year. This rapid rate of growth is driven both
by the needs of programs as well as by the improvements in DRAM technology
that continually improve the cost per bit. Underestimating address-space growth
is often the major reason why an instruction set architecture must be abandoned.
(For further discussion, see Chapter 5 on memory hierarchy.)

Another important software trend in the past 20 years has been the replace-
ment of assembly language by high-level languages. This trend has resulted in a
larger role for compilers, forcing compiler writers and architects to work together
closely to build a competitive machine. Compilers have become the primary
interface between user and machine.

In addition to this interface role, compiler technology has steadily improved,
taking on newer functions and increasing the efficiency with which a program
can be run on a machine. This improvement in compiler technology has included
traditional optimizations, which we discuss in Chapter 2, as well as transforma-
tions aimed at improving pipeline behavior (Chapters 3 and 4) and memory sys-
tem behavior (Chapter 5). How to balance the responsibility for efficient
execution in modern processors between the compiler and the hardware contin-
ues to be one of the hottest architecture debates of the 1990s. Improvements in
compiler technology played a major role in making vector machines (Appendix
B) successful. The development of compiler technology for parallel machines is
likely to have a large impact in the future.

1.3 Technology and Computer Usage Trends 7

Trends in Implementation Technology

To plan for the evolution of a machine, the designer must be especially aware of
rapidly occurring changes in implementation technology. Three implementation
technologies, which change at a dramatic pace, are critical to modern implemen-
tations:

« Integrated circuit logic technologyTransistor density increases by about
50% per year, quadrupling in just over three years. Increases in die size are less
predictable, ranging from 10% to 25% per year. The combined effect is a
growth rate in transistor count on a chip of between 60% and 80% per year. De-
vice speed increases nearly as fast; however, metal technology used for wiring
does not improve, causing cycle times to improve at a slower rate. We discuss
this further in the next section.

« Semiconductor DRAM-Density increases by just under 60% per year, quadru-
pling in three years. Cycle time has improved very slowly, decreasing by about
one-third in 10 years. Bandwidth per chip increases as the latency decreases. Ir
addition, changes to the DRAM interface have also improved the bandwidth;
these are discussed in Chapter 5. In the past, DRAM (dynamic random-access
memory) technology has improved faster than logic technology. This differ-
ence has occurred because of reductions in the number of transistors per
DRAM cell and the creation of specialized technology for DRAMs. As the im-
provement from these sources diminishes, the density growth in logic technol-
ogy and memory technology should become comparable.

« Magnetic disk technologyRecently, disk density has been improving by
about 50% per year, almost quadrupling in three years. Prior to 1990, density
increased by about 25% per year, doubling in three years. It appears that disk
technology will continue the faster density growth rate for some time to come.
Access time has improved by one-third in 10 years. This technology is central
to Chapter 6.

These rapidly changing technologies impact the design of a microprocessor
that may, with speed and technology enhancements, have a lifetime of five or
more years. Even within the span of a single product cycle (two years of design
and two years of production), key technologies, such as DRAM, change suffi-
ciently that the designer must plan for these changes. Indeed, designers often de
sign for the next technology, knowing that when a product begins shipping in
volume that next technology may be the most cost-effective or may have perfor-
mance advantages. Traditionally, cost has decreased very closely to the rate a
which density increases.

These technology changes are not continuous but often occur in discrete steps.
For example, DRAM sizes are always increased by factors of four because of the
basic design structure. Thus, rather than doubling every 18 months, DRAM tech-
nology quadruples every three years. This stepwise change in technology leads tc

Chapter 1 Fundamentals of Computer Design

thresholds that can enable an implementation technique that was previously im-
possible. For example, when MOS technology reached the point where it could
put between 25,000 and 50,000 transistors on a single chip in the early 1980s, it
became possible to build a 32-bit microprocessor on a single chip. By eliminating
chip crossings within the processor, a dramatic increase in cost/performance was
possible. This design was simply infeasible until the technology reached a certain
point. Such technology thresholds are not rare and have a significant impact on a
wide variety of design decisions.

14 | Cost and Trends in Cost

Although there are computer designs where costs tend to be ignored—
specifically supercomputers—cost-sensitive designs are of growing importance.
Indeed, in the past 15 years, the use of technology improvements to achieve low-
er cost, as well as increased performance, has been a major theme in the comput-
er industry. Textbooks often ignore the cost half of cost/performance because
costs change, thereby dating books, and because the issues are complex. Yet an
understanding of cost and its factors is essential for designers to be able to make
intelligent decisions about whether or not a new feature should be included in de-
signs where cost is an issue. (Imagine architects designing skyscrapers without
any information on costs of steel beams and concrete.) This section focuses on
cost, specifically on the components of cost and the major trends. The Exercises
and Examples use specific cost data that will change over time, though the basic
determinants of cost are less time sensitive.

Entire books are written about costing, pricing strategies, and the impact of
volume. This section can only introduce you to these topics by discussing some
of the major factors that influence cost of a computer design and how these fac-
tors are changing over time.

The Impact of Time, Volume, Commodization,
and Packaging

The cost of a manufactured computer component decreases over time even with-
out major improvements in the basic implementation technology. The underlying
principle that drives costs down is tle&arning curve—manufacturing costs de-
crease over time. The learning curve itself is best measured by chasgie-n

the percentage of manufactured devices that survives the testing procedure.
Whether it is a chip, a board, or a system, designs that have twice the yield will
have basically half the cost. Understanding how the learning curve will improve
yield is key to projecting costs over the life of the product. As an example of the
learning curve in action, the cost per megabyte of DRAM drops over the long
term by 40% per year. A more dramatic version of the same information is shown

1.4 Cost and Trends in Cost 9

in Figure 1.3, where the cost of a new DRAM chip is depicted over its lifetime.
Between the start of a project and the shipping of a product, say two years, the
cost of a new DRAM drops by a factor of between five and 10 in constant dollars.
Since not all component costs change at the same rate, designs based on projec
ed costs result in different cost/performance trade-offs than those using current
costs. The caption of Figure 1.3 discusses some of the long-term trends in DRAM

cost.
80 1
16 MB

70 1

60

50

4 MB

Dollars per 40
DRAM chip 256 KB

30

64 KB Final chip cost

FIGURE 1.3 Prices of four generations of DRAMs over time in 1977 dollars, showing the learning curve at work. A
1977 dollar is worth about $2.44 in 1995; most of this inflation occurred in the period of 1977-82, during which the value
changed to $1.61. The cost of a megabyte of memory has dropped incredibly during this period, from over $5000 in 1977 to
just over $6 in 1995 (in 1977 dollars)! Each generation drops in constant dollar price by a factor of 8 to 10 over its lifetime.
The increasing cost of fabrication equipment for each new generation has led to slow but steady increases in both the start-
ing price of a technology and the eventual, lowest price. Periods when demand exceeded supply, such as 1987-88 and
1992-93, have led to temporary higher pricing, which shows up as a slowing in the rate of price decrease.

10

Chapter 1 Fundamentals of Computer Design

Cost of integrated circuit :

Volume is a second key factor in determining cost. Increasing volumes affect
cost in several ways. First, they decrease the time needed to get down the learning
curve, which is partly proportional to the number of systems (or chips) manufac-
tured. Second, volume decreases cost, since it increases purchasing and manufac-
turing efficiency. As a rule of thumb, some designers have estimated that cost
decreases about 10% for each doubling of volume. Also, volume decreases the
amount of development cost that must be amortized by each machine, thus
allowing cost and selling price to be closer. We will return to the other factors in-
fluencing selling price shortly.

Commoditiesare products that are sold by multiple vendors in large volumes
and are essentially identical. Virtually all the products sold on the shelves of gro-
cery stores are commodities, as are standard DRAMs, small disks, monitors, and
keyboards. In the past 10 years, much of the low end of the computer business
has become a commodity business focused on building IBM-compatible PCs.
There are a variety of vendors that ship virtually identical products and are highly
competitive. Of course, this competition decreases the gap between cost and sell-
ing price, but it also decreases cost. This occurs because a commodity market has
both volume and a clear product definition. This allows multiple suppliers to
compete in building components for the commodity product. As a result, the
overall product cost is lower because of the competition among the suppliers of
the components and the volume efficiencies the suppliers can achieve.

Cost of an Integrated Circuit

Why would a computer architecture book have a section on integrated circuit
costs? In an increasingly competitive computer marketplace where standard
parts—disks, DRAMs, and so on—are becoming a significant portion of any sys-
tem’s cost, integrated circuit costs are becoming a greater portion of the cost that
varies between machines, especially in the high-volume, cost-sensitive portion of
the market. Thus computer designers must understand the costs of chips to under-
stand the costs of current computers. We follow here the U.S. accounting ap-
proach to the costs of chips.

While the costs of integrated circuits have dropped exponentially, the basic
procedure of silicon manufacture is unchangedwafer is still tested and
chopped intaiesthat are packaged (see Figures 1.4 and 1.5). Thus the cost of a
packaged integrated circuit is

Cost of die + Cost of testing die + Cost of packaging and final test
Final test yield

In this section, we focus on the cost of dies, summarizing the key issues in testing
and packaging at the end. A longer discussion of the testing costs and packaging
costs appears in the Exercises.

1.4 Cost and Trends in Cost 11

FIGURE 1.4 Photograph of an 8-inch wafer containing Intel Pentium microprocessors. The die size is 480.7 mm?
and the total number of dies is 63. (Courtesy Intel.)

FIGURE 1.5 Photograph of an 8-inch wafer containing PowerPC 601 microprocessors. The die size is 122 mmZ2. The
number of dies on the wafer is 200 after subtracting the test dies (the odd-looking dies that are scattered around). (Courtesy
IBM.)

Chapter 1 Fundamentals of Computer Design

To learn how to predict the number of good chips per wafer requires first
learning how many dies fit on a wafer and then learning how to predict the per-
centage of those that will work. From there it is simple to predict cost:

Cost of wafer
Dies per wafex Die yield

Cost of die=

The most interesting feature of this first term of the chip cost equation is its sensi-
tivity to die size, shown below.

The number of dies per wafer is basically the area of the wafer divided by the
area of the die. It can be more accurately estimated by

Tt x (Wafer diameter/f _ nix Wafer diameter
Die area 2 x Die area

Dies per wafer

The first term is the ratio of wafer arga?) to die area. The second compensates
for the “square peg in a round hole” problem—rectangular dies near the periphery
of round wafers. Dividing the circumferenael) by the diagonal of a square die is
approximately the number of dies along the edge. For example, a wafer 2@.cm (
inch) in diameter produce3.14x 100-(3.1« 20 1.41= 269 1-cmdies.

EXAMPLE Find the number of dies per 20-cm wafer for a die that is 1.5 cm on a side.

ANSWER The total die area is 2.25 cm?. Thus

2
Dies per wafer mx(2072) _mx20 _ 314 62.8_ 110

2.25 2% 225 225 212

But this only gives the maximum number of dies per wafer. The critical ques-
tion is, What is the fraction or percentage of good dies on a wafer number, or the
die yield? A simple empirical model of integrated circuit yield, which assumes
that defects are randomly distributed over the wafer and that yield is inversely
proportional to the complexity of the fabrication process, leads to the following:

Defects per unit area Die argd
o a

Die yield = Wafer yieldx El+

wherewafer yieldaccounts for wafers that are completely bad and so need not be
tested. For simplicity, we'll just assume the wafer yield is 100%. Defects per unit
area is a measure of the random and manufacturing defects that occur. In 1995,
these values typically range between 0.6 and 1.2 per square centimeter, depend-
ing on the maturity of the process (recall the learning curve, mentioned earlier).
Lastly, a is a parameter that corresponds roughly to the number of masking lev-
els, a measure of manufacturing complexity, critical to die yield. For today’s mul-
tilevel metal CMOS processes, a good estimatieSs3.0.

1.4 Cost and Trends in Cost 13

EXAMPLE

ANSWER

Find the die yield for dies that are 1 cm on a side and 1.5 cm on a side,

assuming a defect density of 0.8 per cm?.

The total die areas are 1 cm? and 2.25 cm?. For the smaller die the yield is

0.8x 173

3 0 - 0.49

Die yield = H1+
For the larger die, it is

0.8x 2.25]

-3
3 O =0.24

ia vield = O
Die yield = |:|1+

The bottom line is the number of good dies per wafer, which comes from mul-
tiplying dies per wafer by die yield. The examples above predict 132 good 1-cm
dies from the 20-cm wafer and 26 good 2.25-afies. Most high-end micro-
processors fall between these two sizes, with some being as large as2i5 cm
1995. Low-end processors are sometimes as small as 6,8vbite processors
used for embedded control (in printers, automobiles, etc.) are often just®.5 cm
(Figure 1.22 on page 63 in the Exercises shows the die size and technology for sev-
eral current microprocessors.) Occasionally dies become pad limited: the amount
of die area is determined by the perimeter rather than the logic in the interior. This
may lead to a higher yield, since defects in empty silicon are less serious!

Processing a 20-cm-diameter wafer in a leading-edge technology with 3—4
metal layers costs between $3000 and $4000 in 1995. Assuming a processed wa
fer cost of $3500, the cost of the 1%tie is around $27, while the cost per die
of the 2.25-crfi die is about $140, or slightly over 5 times the cost for a die that is
2.25 times larger.

What should a computer designer remember about chip costs? The manufac-
turing process dictates the wafer cost, wafer yieldnd defects per unit area, so
the sole control of the designer is die area. Sinisetypically 3 for the advanced
processes in use today, die costs are proportional to the fourth (or higher) power
of the die area:

Cost of die = f (Die aréi

The computer designer affects die size, and hence cost, both by what functions
are included on or excluded from the die and by the number of I/O pins.

Before we have a part that is ready for use in a computer, the part must be
tested (to separate the good dies from the bad), packaged, and tested again afte
packaging. These steps all add costs. These processes and their contribution t
cost are discussed and evaluated in Exercise 1.8.

14

Chapter 1 Fundamentals of Computer Design

Distribution of Cost in a System: An Example

To put the costs of silicon in perspective, Figure 1.6 shows the approximate cost
breakdown for a color desktop machine in the late 1990s. While costs for units
like DRAMs will surely drop over time from those in Figure 1.6, costs for units
whose prices have already been cut, like displays and cabinets, will change very
little. Furthermore, we can expect that future machines will have larger memories
and disks, meaning that prices drop more slowly than the technology improve-
ment.

The processor subsystem accounts for only 6% of the overall cost. Although in
a mid-range or high-end design this number would be larger, the overall break-
down across major subsystems is likely to be similar.

System Subsystem Fraction of total

Cabinet Sheet metal, plastic 1%
Power supply, fans 2%
Cables, nuts, bolts 1%
Shipping box, manuals 0%
Subtotal 4%

Processor board Processor 6%
DRAM (64 MB) 36%
Video system 14%
1/0 system 3%
Printed circuit board 1%
Subtotal 60%

I/O devices Keyboard and mouse 1%
Monitor 22%
Hard disk (1 GB) 7%
DAT drive 6%
Subtotal 36%

FIGURE 1.6 Estimated distribution of costs of the components in a low-end, late
1990s color desktop workstation assuming 100,000 units. Notice that the largest single
item is memory! Costs for a high-end PC would be similar, except that the amount of memory
might be 16-32 MB rather than 64 MB. This chart is based on data from Andy Bechtolsheim
of Sun Microsystems, Inc. Touma [1993] discusses workstation costs and pricing.

Cost Versus Price—Why They Differ and By How Much

Costs of components may confine a designer’s desires, but they are still far from
representing what the customer must pay. But why should a computer architec-
ture book contain pricing information? Cost goes through a humber of changes

1.4 Cost and Trends in Cost 15

before it becomes price, and the computer designer should understand how a de
sign decision will affect the potential selling price. For example, changing cost
by $1000 may change price by $3000 to $4000. Without understanding the rela-
tionship of cost to price the computer designer may not understand the impact on
price of adding, deleting, or replacing components. The relationship between
price and volume can increase the impact of changes in cost, especially at the low
end of the market. Typically, fewer computers are sold as the price increases. Fur-
thermore, as volume decreases, costs rise, leading to further increases in price
Thus, small changes in cost can have a larger than obvious impact. The relation-
ship between cost and price is a complex one with entire books written on the
subject. The purpose of this section is to give you a simple introduction to what
factors determine price and typical ranges for these factors.

The categories that make up price can be shown either as a tax on cost or as
percentage of the price. We will look at the information both ways. These differ-
ences between price and cost also depend on where in the computer marketplac
a company is selling. To show these differences, Figures 1.7 and 1.8 on page 16
show how the difference between cost of materials and list price is decomposed,
with the price increasing from left to right as we add each type of overhead.

Direct costsrefer to the costs directly related to making a product. These in-
clude labor costs, purchasing components, scrap (the leftover from yield), and
warranty, which covers the costs of systems that fail at the customer’s site during
the warranty period. Direct cost typically adds 20% to 40% to component cost.
Service or maintenance costs are not included because the customer typically
pays those costs, although a warranty allowance may be included here or in gross
margin, discussed next.

The next addition is called tlggoss marginthe company’s overhead that can-
not be billed directly to one product. This can be thought of as indirect cost. It in-
cludes the company’'s research and development (R&D), marketing, sales,
manufacturing equipment maintenance, building rental, cost of financing, pretax
profits, and taxes. When the component costs are added to the direct cost anc
gross margin, we reach thaverage selling price-ASP in the language of
MBAs—the money that comes directly to the company for each product sold.
The gross margin is typically 20% to 55% of the average selling price, depending
on the uniqueness of the product. Manufacturers of low-end PCs generally have
lower gross margins for several reasons. First, their R&D expenses are lower.
Second, their cost of sales is lower, since they use indirect distribution (by mail,
phone order, or retail store) rather than salespeople. Third, because their products
are less unique, competition is more intense, thus forcing lower prices and often
lower profits, which in turn lead to a lower gross margin.

List priceand average selling price are not the same. One reason for this is that
companies offer volume discounts, lowering the average selling price. Also, if the
product is to be sold in retail stores, as personal computers are, stores want to
keep 40% to 50% of the list price for themselves. Thus, depending on the distri-
bution system, the average selling price is typically 50% to 75% of the list price.

16

Chapter 1 Fundamentals of Computer Design

List
price

Average
33.3% discount

Average
selling
price

25% | Direct costs

Component
costs

100%

Component
75% costs

A

N

A

Add 33% for
direct costs

50%

12.5%

37.5%

Gross
margin

33.3%

Direct costs

8.3%

Component
costs

25%

=
Add 100% for
gross margin

Gross
margin

Direct costs

Component
costs

A

Add 50% for

average discount

FIGURE 1.7 The components of price for a mid-range product in a workstation com-
pany. Each increase is shown along the bottom as a tax on the prior price. The percentages
of the new price for all elements are shown on the left of each column.

Average
selling
price

25% | Direct costs

Component

100% costs

Component
75% costs

N

AN
Add 33% for
direct costs

25%

19%

56%

List
price
45%
Average
discount
Gross 14% Gross
margin margin
Direct costs 10% | Direct costs
Component 31% | Component
costs costs
A

Add 33% for
gross margin

N

Add 80% for

_/

average discount

FIGURE 1.8 The components of price for a desktop product in a personal computer
company. A larger average discount is used because of indirect selling, and a lower gross

margin is required.

1.4 Cost and Trends in Cost 17

As we said, pricing is sensitive to competition: A company may not be able to
sell its product at a price that includes the desired gross margin. In the worst case,
the price must be significantly reduced, lowering gross margin until profit be-
comes negative! A company striving for market share can reduce price and profit
to increase the attractiveness of its products. If the volume grows sufficiently,
costs can be reduced. Remember that these relationships are extremely comple;
and to understand them in depth would require an entire book, as opposed to one
section in one chapter. For example, if a company cuts prices, but does not obtain
a sufficient growth in product volume, the chief impact will be lower profits.

Many engineers are surprised to find that most companies spend only 4% (in
the commodity PC business) to 12% (in the high-end server business) of their in-
come on R&D, which includes all engineering (except for manufacturing and
field engineering). This is a well-established percentage that is reported in com-
panies’ annual reports and tabulated in national magazines, so this percentage i
unlikely to change over time.

The information above suggests that a company uniformly applies fixed-
overhead percentages to turn cost into price, and this is true for many companies.
But another point of view is that R&D should be considered an investment. Thus
an investment of 4% to 12% of income means that every $1 spent on R&D should
lead to $8 to $25 in sales. This alternative point of view then suggests a different
gross margin for each product depending on the number sold and the size of the
investment.

Large, expensive machines generally cost more to develop—a machine cost-
ing 10 times as much to manufacture may cost many times as much to develop.
Since large, expensive machines generally do not sell as well as small ones, the
gross margin must be greater on the big machines for the company to maintain a
profitable return on its investment. This investment model places large machines
in double jeopardy—because there are fewer anltithey require larger R&D
costs—and gives one explanation for a higher ratio of price to cost versus smaller
machines.

The issue of cost and cost/performance is a complex one. There is no single
target for computer designers. At one extrehigh-performance desigspares
no cost in achieving its goal. Supercomputers have traditionally fit into this cate-
gory. At the other extreme Isw-cost designwhere performance is sacrificed to
achieve lowest cost. Computers like the IBM PC clones belong here. Between
these extremes wost/performance desigwhere the designer balances cost ver-
sus performance. Most of the workstation manufacturers operate in this region. In
the past 10 years, as computers have downsized, both low-cost design and cost
performance design have become increasingly important. Even the supercom-
puter manufacturers have found that cost plays an increasing role. This section
has introduced some of the most important factors in determining cost; the next
section deals with performance.

18

Chapter 1 Fundamentals of Computer Design

15 | Measuring and Reporting Performance

When we say one computer is faster than another, what do we mean? The com-
puter user may say a computer is faster when a program runs in less time, while
the computer center manager may say a computer is faster when it completes
more jobs in an hour. The computer user is interested in redwuespgpnse
time—the time between the start and the completion of an event—also referred to
asexecution timeThe manager of a large data processing center may be interest-
ed in increasinghroughput—the total amount of work done in a given time.

In comparing design alternatives, we often want to relate the performance of
two different machines, say X and Y. The phrase “X is faster than Y” is used here
to mean that the response time or execution time is lower on X than on 'Y for the
given task. In particular, “X ia times faster than Y” will mean

Execution timq(
Execution timg B

Since execution time is the reciprocal of performance, the following relationship
holds:

1
Execution time{ Performancg Performancg
"= Execution time, - 1 - Performance
Performancg

The phrase “the throughput of X is 1.3 times higher than Y” signifies here that
the number of tasks completed per unit time on machine X is 1.3 times the num-
ber completed on Y.

Because performance and execution time are reciprocals, increasing perfor-
mance decreases execution time. To help avoid confusion between the terms
increasingand decreasingwe usually say “improve performance” or “improve
execution time” when we meancreaseperformance andecreaseexecution
time.

Whether we are interested in throughput or response time, the key measure-
ment is time: The computer that performs the same amount of work in the least
time is the fastest. The difference is whether we measure one task (response time)
or many tasks (throughput). Unfortunately, time is not always the metric quoted
in comparing the performance of computers. A number of popular measures have
been adopted in the quest for a easily understood, universal measure of computer
performance, with the result that a few innocent terms have been shanghaied
from their well-defined environment and forced into a service for which they
were never intended. The authors’ position is that the only consistent and reliable
measure of performance is the execution time of real programs, and that all pro-
posed alternatives to time as the metric or to real programs as the items measured

1.5 Measuring and Reporting Performance 19

have eventually led to misleading claims or even mistakes in computer design.
The dangers of a few popular alternatives are showraliacies and Pitfalls,
section 1.8.

Measuring Performance

Even execution time can be defined in different ways depending on what we
count. The most straightforward definition of time is calladl-clock time re-
sponse timeor elapsed timgwhich is the latency to complete a task, including
disk accesses, memory accesses, input/output activities, operating system over-
head—everything. With multiprogramming the CPU works on another program
while waiting for I/O and may not necessarily minimize the elapsed time of one
program. Hence we need a term to take this activity into aco8Bht.timerec-
ognizes this distinction and means the time the CPU is compuathipcluding
the time waiting for I/O or running other programs. (Clearly the response time
seen by the user is the elapsed time of the program, not the CPU time.) CPU time
can be further divided into the CPU time spent in the program, aaskedCPU
time and the CPU time spent in the operating system performing tasks requested
by the program, callesystem CPU time

These distinctions are reflected in the UNIX time command, which returns
four measurements when applied to an executing program:

90.7u 12.9s 2:39 65%

User CPU time is 90.7 seconds, system CPU time is 12.9 seconds, elapsed time i
2 minutes and 39 seconds (159 seconds), and the percentage of elapsed time th:
is CPU time is (90.7 + 12.9)/159 or 65%. More than a third of the elapsed time in
this example was spent waiting for I1/O or running other programs or both. Many
measurements ignore system CPU time because of the inaccuracy of operating
systems’ self-measurement (the above inaccurate measurement came from UNIX)
and the inequity of including system CPU time when comparing performance be-
tween machines with differing system codes. On the other hand, system code on
some machines is user code on others, and no program runs without some operat
ing system running on the hardware, so a case can be made for using the sum o
user CPU time and system CPU time.

In the present discussion, a distinction is maintained between performance
based on elapsed time and that based on CPU time. Theyteiem performance
is used to refer to elapsed time onuatoadedsystem, whileCPU performance
refers touserCPU time on an unloaded system. We will concentrate on CPU per-
formance in this chapter.

20

Chapter 1 Fundamentals of Computer Design

Choosing Programs to Evaluate Performance

Dhrystone does not use floating point. Typical programs don't ...

Rick RichardsonClarification of Dhrystong1988)

This program is the result of extensive research to determine the instruction mix
of a typical Fortran program. The results of this program on different machines
should give a good indication of which machine performs better under a typical
load of Fortran programs. The statements are purposely arranged to defeat opti-
mizations by the compiler.

H. J. Curnow and B. A. Wichmann [1976], Comments in the Whetstone Benchmark

A computer user who runs the same programs day in and day out would be the
perfect candidate to evaluate a new computer. To evaluate a new system the user
would simply compare the execution time of harkload—the mixture of pro-

grams and operating system commands that users run on a machine. Few are in
this happy situation, however. Most must rely on other methods to evaluate ma-
chines and often other evaluators, hoping that these methods will predict per-
formance for their usage of the new machine. There are four levels of programs
used in such circumstances, listed below in decreasing order of accuracy of pre-
diction.

1. Real programs-While the buyer may not know what fraction of time is spent

on these programs, she knows that some users will run them to solve real prob-
lems. Examples are compilers for C, text-processing software like TeX, and CAD
tools like Spice. Real programs have input, output, and options that a user can se-
lect when running the program.

2. Kernels—Several attempts have been made to extract small, key pieces from

real programs and use them to evaluate performance. Livermore Loops and Lin-
pack are the best known examples. Unlike real programs, no user would run kernel
programs, for they exist solely to evaluate performance. Kernels are best used to
isolate performance of individual features of a machine to explain the reasons for

differences in performance of real programs.

3. Toybenchmarks-Toy benchmarks are typically between 10 and 100 lines of
code and produce a result the user already knows before running the toy program.
Programs like Sieve of Eratosthenes, Puzzle, and Quicksort are popular because
they are small, easy to type, and run on almost any computer. The best use of such
programs is beginning programming assignments.

4. Synthetic benchmarksSimilar in philosophy to kernels, synthetic bench-
marks try to match the average frequency of operations and operands of a large set
of programs. Whetstone and Dhrystone are the most popular synthetic benchmarks.

1.5 Measuring and Reporting Performance 21

A description of these benchmarks and some of their flaws appears in section 1.8
on page 44. No user runs synthetic benchmarks, because they don’t compute any
thing a user could want. Synthetic benchmarks are, in fact, even further removed
from reality because kernel code is extracted from real programs, while synthetic
code is created artificially to match an average execution profile. Synthetic bench-
marks are not evepiecesof real programs, while kernels might be.

Because computer companies thrive or go bust depending on price/perfor-
mance of their products relative to others in the marketplace, tremendous re-
sources are available to improve performance of programs widely used in
evaluating machines. Such pressures can skew hardware and software engineel
ing efforts to add optimizations that improve performance of synthetic programs,
toy programs, kernels, and even real programs. The advantage of the last of these
is that adding such optimizations is more difficult in real programs, though not
impossible. This fact has caused some benchmark providers to specify the rules
under which compilers must operate, as we will see shortly.

Benchmark Suites

Recently, it has become popular to put together collections of benchmarks to try
to measure the performance of processors with a variety of applications. Of
course, such suites are only as good as the constituent individual benchmarks.
Nonetheless, a key advantage of such suites is that the weakness of any one
benchmark is lessened by the presence of the other benchmarks. This is especial
ly true if the methods used for summarizing the performance of the benchmark
suite reflect the time to run the entire suite, as opposed to rewarding performance
increases on programs that may be defeated by targeted optimizations. In the re-
mainder of this section, we discuss the strengths and weaknesses of different
methods for summarizing performance.

Benchmark suites are made of collections of programs, some of which may be
kernels, but many of which are typically real programs. Figure 1.9 describes the
programs in the popular SPEC92 benchmark suite used to characterize perfor-
mance in the workstation and server markets.The programs in SPEC92 vary from
collections of kernels (nasa7) to small, program fragments (tomcatv, ora, alvinn,
swm256) to applications of varying size (spice2g6, gcc, compress). We will see
data on many of these programs throughout this text. In the next subsection, we
show how a SPEC92 report describes the machine, compiler, and OS configura-
tion, while in section 1.8 we describe some of the pitfalls that have occurred in
attempting to develop the benchmark suite and to prevent the benchmark circum-
vention that makes the results not useful for comparing performance among
machines.

22 Chapter 1 Fundamentals of Computer Design

Benchmark Source Lines of code Description

espresso C 13,500 Minimizes Boolean functions.

li C 7,413 A lisp interpreter written in C that solves the 8-queens problem.

eqntott C 3,376 Translates a Boolean equation into a truth table.

compress Cc 1,503 Performs data compression on a 1-MB file using Lempel-Ziv
coding.

sc C 8,116 Performs computations within a UNIX spreadsheet.

gcc C 83,589 Consists of the GNU C compiler converting preprocessed files into
optimized Sun-3 machine code.

spice2g6 FORTRAN 18,476 Circuit simulation package that simulates a small circuit.

doduc FORTRAN 5,334 A Monte Carlo simulation of a nuclear reactor component.

mdljdp2 FORTRAN 4,458 A chemical application that solves equations of motion for a model
of 500 atoms. This is similar to modeling a structure of liquid argon.

waveb FORTRAN 7,628 A two-dimensional electromagnetic patrticle-in-cell simulation used
to study various plasma phenomena. Solves equations of motion on
a mesh involving 500,000 particles on 50,000 grid points for 5 time
steps.

tomcatv FORTRAN 195 A mesh generation program, which is highly vectorizable.

ora FORTRAN 535 Traces rays through optical systems of spherical and plane surfaces.

mdljsp2 FORTRAN 3,885 Same as mdljdp2, but single precision.

alvinn C 272 Simulates training of a neural network. Uses single precision.

ear C 4,483 An inner ear model that filters and detects various sounds and
generates speech signals. Uses single precision.

swm256 FORTRAN 487 A shallow water model that solves shallow water equations using
finite difference equations with a 256256 grid. Uses single
precision.

su2cor FORTRAN 2,514 Computes masses of elementary particles from Quark-Gluon theory.

hydro2d FORTRAN 4,461 An astrophysics application program that solves hydrodynamijcal
Navier Stokes equations to compute galactical jets.

nasa7 FORTRAN 1,204 Seven kernels do matrix manipulation, FFTs, Gaussian elimination,
vortices creation.

fpppp FORTRAN 2,718 A gquantum chemistry application program used to calculate two

electron integral derivatives.

FIGURE 1.9 The programs in the SPEC92 benchmark suites. The top six entries are the integer-oriented programs,
from which the SPECint92 performance is computed. The bottom 14 are the floating-point-oriented benchmarks from which
the SPECfp92 performance is computed.The floating-point programs use double precision unless stated otherwise. The
amount of nonuser CPU activity varies from none (for most of the FP benchmarks) to significant (for programs like gcc and
compress). In the performance measurements in this text, we use the five integer benchmarks (excluding sc) and five FP
benchmarks: doduc, mdljdp2, ear, hydro2d, and su2cor.

1.5 Measuring and Reporting Performance 23

Reporting Performance Results

The guiding principle of reporting performance measurements shouépize
ducibility—list everything another experimenter would need to duplicate the re-
sults. Compare descriptions of computer performance found in refereed scientific
journals to descriptions of car performance found in magazines sold at supermar-
kets. Car magazines, in addition to supplying 20 performance metrics, list all op-
tional equipment on the test car, the types of tires used in the performance test,
and the date the test was made. Computer journals may have only seconds of exe
cution labeled by the name of the program and the name and model of the com-
puter—spice takes 187 seconds on an IBM RS/6000 Powerstation 590. Left to
the reader’'s imagination are program input, version of the program, version of
compiler, optimizing level of compiled code, version of operating system,
amount of main memory, number and types of disks, version of the CPU—all of
which make a difference in performance. In other words, car magazines have
enough information about performance measurements to allow readers to dupli-
cate results or to question the options selected for measurements, but compute
journals often do not!

A SPEC benchmark report requires a fairly complete description of the ma-
chine, the compiler flags, as well as the publication of both the baseline and opti-
mized results. As an example, Figure 1.10 shows portions of the SPECfp92
report for an IBM RS/6000 Powerstation 590. In addition to hardware, software,
and baseline tuning parameter descriptions, a SPEC report contains the actua
performance times, shown both in tabular form and as a graph.

The importance of performance on the SPEC benchmarks motivated vendors
to add many benchmark-specific flags when compiling SPEC programs; these
flags often caused transformations that would be illegal on many programs or
would slow down performance on others. To restrict this process and increase the
significance of the SPEC results, the SPEC organization createskbne per-
formancemeasurement in addition to the optimized performance measurement.
Baseline performance restricts the vendor to one compiler and one set of flags for
all the programs in the same language (C or FORTRAN). Figure 1.10 shows the
parameters for the baseline performance; in sectionFalicies and Pitfalls,
we'll see the tuning parameters for the optimized performance runs on this
machine.

Comparing and Summarizing Performance

Comparing performance of computers is rarely a dull event, especially when the
designers are involved. Charges and countercharges fly across the Internet; one i
accused of underhanded tactics and the other of misleading statements. Since ca
reers sometimes depend on the results of such performance comparisons, it is un
derstandable that the truth is occasionally stretched. But more frequently
discrepancies can be explained by differing assumptions or lack of information.

24 Chapter 1 Fundamentals of Computer Design

Hardware

Software

Powerstation 590
66.67 MHz POWER2

Model number
CPU

FPU Integrated
Number of CPUs 1

Primary cache 32KBI+256KBD off chig

Secondary cache None
Other cache None
Memory 128 MB
Disk subsystem 2x2.0 GB
Other hardware None

O/S and version
Compilers and version

Other software See below
File system type AIXIIFS
System state Single user

AlX version 3.2.5

C SET++ for AIX C/C++ version 2.
XL FORTRAN/6000 version 3.1

SPECbase_fp92 tuning parameters/notes/summary of changes:
FORTRAN flags: -O3 -garch=pwrx -ghsflt -gqnofold -bnso -Bl:/lib/syscalss.exp
C flags: -O3 -garch=pwrx -Q -qtune=pwrx -ghssngl -bnso -bl:/lib/syscalls.exp

FIGURE 1.10 The machine, software, and baseline tuning parameters for the SPECfp92 report on an IBM RS/6000

Powerstation 590. SPECfp92 means that this is the report for the floating-point (FP) benchmarks in the 1992 release (the
earlier release was renamed SPEC89) The top part of the table describes the hardware and software. The bottom describes
the compiler and options used for the baseline measurements, which must use one compiler and one set of flags for all the
benchmarks in the same language. The tuning parameters and flags for the tuned SPEC92 performance are given in Figure

1.18 on page 49. Data from SPEC [1994].

We would like to think that if we could just agree on the programs, the experi-
mental environments, and the definitionfaster,then misunderstandings would
be avoided, leaving the networks free for scholarly discourse. Unfortunately,
that’s not the reality. Once we agree on the basics, battles are then fought over
what is the fair way to summarize relative performance of a collection of pro-
grams. For example, two articles on summarizing performance in the same jour-
nal took opposing points of view. Figure 1.11, taken from one of the articles, is an

example of the confusion that can arise.

Computer A Computer B Computer C
Program P1 (secs) 1 10 20
Program P2 (secs) 1000 100 20
Total time (secs) 1001 110 40

FIGURE 1.11 Execution times of two programs on three machines.

of Smith [1988].

Data from Figure |

1.5 Measuring and Reporting Performance 25

Using our definition of faster than, the following statements hold:
A is 10 times faster than B for program P1.
B is 10 times faster than A for program P2.
A is 20 times faster than C for program P1.
C is 50 times faster than A for program P2.
B is 2 times faster than C for program P1.
C is 5 times faster than B for program P2.

Taken individually, any one of these statements may be of use. Collectively, how-
ever, they present a confusing picture—the relative performance of computers A,
B, and C is unclear.

Total Execution Time: A Consistent Summary Measure
The simplest approach to summarizing relative performance is to use total execu-
tion time of the two programs. Thus

B is 9.1 times faster than A for programs P1 and P2.
C is 25 times faster than A for programs P1 and P2.
C is 2.75 times faster than B for programs P1 and P2.

This summary tracks execution time, our final measure of performance. If the
workload consisted of running programs P1 and P2 an equal number of times, the
statements above would predict the relative execution times for the workload on
each machine.

An average of the execution times that tracks total execution timeasitie
metic mean

n
1 .
; z Time,
i=1
where Timgis the execution time for théh program of a total af in the work-

load. If performance is expressed as a rate, then the average that tracks total exe
cution time is thdharmonic mean

n
n

z 1

Rat

S

where Ratgis a function of 1/ Timgthe execution time for théh of n programs
in the workload.

26

Chapter 1 Fundamentals of Computer Design

Weighted Execution Time
The question arises: What is the proper mixture of programs for the workload?
Are programs P1 and P2 in fact run equally in the workload as assumed by the
arithmetic mean? If not, then there are two approaches that have been tried for
summarizing performance. The first approach when given an unequal mix of pro-
grams in the workload is to assign a weighting fasfao each program to indi-
cate the relative frequency of the program in that workload. If, for example, 20%
of the tasks in the workload were program P1 and 80% of the tasks in the work-
load were program P2, then the weighting factors would be 0.2 and 0.8. (Weight-
ing factors add up to 1.) By summing the products of weighting factors and
execution times, a clear picture of performance of the workload is obtained. This
is called theveighted arithmetic mean

n

z Weight x Time

i=1

where Weightis the frequency of thi¢h program in the workload and Tifris the
execution time of that program. Figure 1.12 shows the data from Figure 1.11 with
three different weightings, each proportional to the execution time of a workload
with a given mix. Theveighted harmonic meaof rates will show the same rela-

tive performance as the weighted arithmetic means of execution times. The defi-
nition is

1

N oo

Z Weight

L Ratg

A B C W(1) W(2) W(3)
Program P1 (secs) 1.00 10.00 20.00 0.50 0.909 0.999
Program P2 (secs) 1000.00 100.00 20.00 0.50 0.091 0.001
Arithmetic mean:W(1) 500.50 55.00 20.00
Arithmetic mean:W(2) 91.91 18.19 20.00
Arithmetic mean:W(3) 2.00 10.09 20.00
FIGURE 1.12 Weighted arithmetic mean execution times using three weightings. W(1) equally weights the programs,

resulting in a mean (row 3) that is the same as the unweighted arithmetic mean. W(2) makes the mix of programs inversely

proportional to the execution times on machine B; row 4 shows the arithmetic mean for that weighting. W(3) weights the

programs in inverse proportion to the execution times of the two programs on machine A; the arithmetic mean is given in the

last row. The net effect of the second and third weightings is to “normalize” the weightings to the execution times of programs

running on that machine, so that the running time will be spent evenly between each program for that machine. For a set of

n programs each taking Time; on one machine, the equal-time weightings on that machine are
1

w; =

j=1

= —_—
; ol

1.5 Measuring and Reporting Performance 27

Normalized Execution Time and the Pros and Cons
of Geometric Means
A second approach to unequal mixture of programs in the workload is to nor-
malize execution times to a reference machine and then take the average of the
normalized execution times. This is the approach used by the SPEC benchmarks,
where a base time on a VAX-11/780 is used for reference. This measurement
gives a warm fuzzy feeling, because it suggests that performance of new pro-
grams can be predicted by simply multiplying this number times its performance
on the reference machine.

Average normalized execution time can be expressed as either an arithmetic or
geometricmean. The formula for the geometric mean is

n n
JH Execution time ratip
i=1

where Execution time ratiés the execution time, normalized to the reference ma-

chine, for thath program of a total afi in the workload. Geometric means also
have a nice property for two samplesaXd Y:

Geometric meafX;) @D
- = Geometric mea|
Geometric meap ¥ n

|
As a result, taking either the ratio of the means or the mean of the ratios yields the
same result. In contrast to arithmetic means, geometric means of normalized exe-
cution times are consistent no matter which machine is the reference. Hence, the
arithmetic mean shouldot be used to average normalized execution times. Fig-
ure 1.13 shows some variations using both arithmetic and geometric means of
normalized times.

Normalized to A Normalized to B Normalized to C
A B C A B C A B C
Program P1 1.0 10.0 20.0 0.1 1.0 2.0 0.05 0.5 1,0
Program P2 1.0 0.1 0.02 10.0 1.0 0.2 50.0 5.0 1/0
Arithmetic mean 1.0 5.05 10.01 5.05 1.0 1.1 25.03 2.75 10
Geometric mean 1.0 1.0 0.63 1.0 1.0 0.63 1.58 1.58 1.0
Total time 1.0 0.11 0.04 9.1 1.0 0.36 25.03 2.75 1.0
FIGURE 1.13 Execution times from Figure 1.11 normalized to each machine. The arithmetic mean performance varies

depending on which is the reference machine—in column 2, B’s execution time is five times longer than A’s, while the re-
verse is true in column 4. In column 3, C is slowest, but in column 9, C is fastest. The geometric means are consistent inde-
pendent of normalization—A and B have the same performance, and the execution time of C is 0.63 of A or B (1/1.58 is
0.63). Unfortunately, the total execution time of A is 10 times longer than that of B, and B in turn is about 3 times longer
than C. As a point of interest, the relationship between the means of the same set of numbers is always harmonic mean <
geometric mean < arithmetic mean.

28

Chapter 1 Fundamentals of Computer Design

Because the weightings in weighted arithmetic means are set proportionate to
execution times on a given machine, as in Figure 1.12, they are influenced not
only by frequency of use in the workload, but also by the peculiarities of a partic-
ular machine and the size of program input. The geometric mean of normalized
execution times, on the other hand, is independent of the running times of the in-
dividual programs, and it doesn’t matter which machine is used to normalize. If a
situation arose in comparative performance evaluation where the programs were
fixed but the inputs were not, then competitors could rig the results of weighted
arithmetic means by making their best performing benchmark have the largest in-
put and therefore dominate execution time. In such a situation the geometric
mean would be less misleading than the arithmetic mean.

The strong drawback to geometric means of normalized execution times is
that they violate our fundamental principle of performance measurement—they
do not predict execution time. The geometric means from Figure 1.13 suggest
that for programs P1 and P2 the performance of machines A and B is the same,
yet this would only be true for a workload that ran program P1 100 times for ev-
ery occurrence of program P2 (see Figure 1.12 on page 26). The total execution
time for such a workload suggests that machines A and B are about 50% faster
than machine C, in contrast to the geometric mean, which says machine C is fast-
er than A and B! In general therenis workloadfor three or more machines that
will match the performance predicted by the geometric means of normalized exe-
cution times. Our original reason for examining geometric means of normalized
performance was to avoid giving equal emphasis to the programs in our work-
load, but is this solution an improvement?

An additional drawback of using geometric mean as a method for summariz-
ing performance for a benchmark suite (as SPEC92 does) is that it encourages
hardware and software designers to focus their attention on the benchmarks
where performance is easiest to improve rather than on the benchmarks that are
slowest. For example, if some hardware or software improvement can cut the
running time for a benchmark from 2 seconds to 1, the geometric mean will re-
ward those designers with the same overall mark that it would give to designers
that improve the running time on another benchmark in the suite from 10,000
seconds to 5000 seconds. Of course, everyone interested in running the second
program thinks of the second batch of designers as their heroes and the first
group as useless. Small programs are often easier to “crack,” obtaining a large but
unrepresentative performance improvement, and the use of geometric mean re-
wards such behavior more than a measure that reflects total running time.

The ideal solution is to measure a real workload and weight the programs ac-
cording to their frequency of execution. If this can’t be done, then normalizing so
that equal time is spent on each program on some machine at least makes the rel-
ative weightings explicit and will predict execution time of a workload with that
mix. The problem above of unspecified inputs is best solved by specifying the in-
puts when comparing performance. If results must be normalized to a specific
machine, first summarize performance with the proper weighted measure and
then do the normalizing.

1.6 Quantitative Principles of Computer Design 29

16 | Quantitative Principles of Computer Design

Now that we have seen how to define, measure, and summarize performance, we
can explore some of the guidelines and principles that are useful in design and
analysis of computers. In particular, this section introduces some important ob-
servations about designing for performance and cost/performance, as well as two
equations that we can use to evaluate design alternatives.

Make the Common Case Fast

Perhaps the most important and pervasive principle of computer design is to
make the common case fast: In making a design trade-off, favor the frequent case
over the infrequent case. This principle also applies when determining how to
spend resources, since the impact on making some occurrence faster is higher if
the occurrence is frequent. Improving the frequent event, rather than the rare
event, will obviously help performance, too. In addition, the frequent case is of-
ten simpler and can be done faster than the infrequent case. For example, when
adding two numbers in the CPU, we can expect overflow to be a rare circum-
stance and can therefore improve performance by optimizing the more common
case of no overflow. This may slow down the case when overflow occurs, but if
that is rare, then overall performance will be improved by optimizing for the nor-
mal case.

We will see many cases of this principle throughout this text. In applying this
simple principle, we have to decide what the frequent case is and how much per-
formance can be improved by making that case faster. A fundamental law, called
Amdahl’'s Lawcan be used to quantify this principle.

Amdahl’s Law

The performance gain that can be obtained by improving some portion of a com-
puter can be calculated using Amdahl's Law. Amdahl's Law states that the per-
formance improvement to be gained from using some faster mode of execution is
limited by the fraction of the time the faster mode can be used.

Amdahl's Law defines thepeedupthat can be gained by using a particular
feature. What is speedup? Suppose that we can make an enhancement to a ma
chine that will improve performance when it is used. Speedup is the ratio

Performance for entire task using the enhancement when possible

Speedup - : - -
Performance for entire task without using the enhancement
Alternatively,
. Executon tmefor entre tag without usng the erhancement
Speedup

Execution time for entire task using the enhancement when possible

Chapter 1 Fundamentals of Computer Design

Speedup tells us how much faster a task will run using the machine with the en-
hancement as opposed to the original machine.

Amdahl’s Law gives us a quick way to find the speedup from some enhance-
ment, which depends on two factors:

1. The fraction of the computation time in the original machine that can be
converted to take advantage of the enhancem&nt example, if 20
seconds of the execution time of a program that takes 60 seconds in total can
use an enhancement, the fraction is 20/60. This value, which we will call
Fractionnhancedis always less than or equal to 1.

2. The improvement gained by the enhanced execution mode; that is, how much
faster the task would run if the enhanced mode were used for the entire pro-
gram—This value is the time of the original mode over the time of the en-
hanced mode: If the enhanced mode takes 2 seconds for some portion of the
program that can completely use the mode, while the original mode took 5 sec-
onds for the same portion, the improvement is 5/2. We will call this value,
which is always greater than 1, Speeg#Bnced

The execution time using the original machine with the enhanced mode will be
the time spent using the unenhanced portion of the machine plus the time spent
using the enhancement:

. . . . H 1 — Fracti Framior&nhanced%
= — Fractio t—
Execution timge,, = Execution timgy x D(IO nhanced Speedup . cedl
The overall speedup is the ratio of the execution times:
Execution timgy 1
Speeduiveral= Exzcition timeg, Fraction,,nanced

1 - Fractio +
(I r%nhancea Speedugnhanced

EXAMPLE Suppose that we are considering an enhancement that runs 10 times fast-
er than the original machine but is only usable 40% of the time. What is
the overall speedup gained by incorporating the enhancement?

ANSWER Fractionynnanced= 0-4
Speeduphhanced 10

1
Speedug,era" :—04 = m: 1.56
0.6+ E

1

1.6 Quantitative Principles of Computer Design 31

EXAMPLE

ANSWER

Amdahl's Law expresses the law of diminishing returns: The incremental im-
provement in speedup gained by an additional improvement in the performance
of just a portion of the computation diminishes as improvements are added. An
important corollary of Amdahl’'s Law is that if an enhancement is only usable for
a fraction of a task, we can’t speed up the task by more than the reciprocal of 1
minus that fraction.

A common mistake in applying Amdahl’'s Law is to confuse “fraction of time
converted to use an enhancement” and “fraction of time after enhancement is in
use.” If, instead of measuring the time that eealld usethe enhancement in a
computation, we measure the tirafter the enhancement is in use, the results
will be incorrect! (Try Exercise 1.2 to see how wrong.)

Amdahl’'s Law can serve as a guide to how much an enhancement will im-
prove performance and how to distribute resources to improve cost/performance.
The goal, clearly, is to spend resources proportional to where time is spent. We
can also use Amdahl’s Law to compare two design alternatives, as the following
Example shows.

Implementations of floating-point (FP) square root vary significantly in
performance. Suppose FP square root (FPSQR) is responsible for 20% of
the execution time of a critical benchmark on a machine. One proposal is
to add FPSQR hardware that will speed up this operation by a factor of
10.The other alternative is just to try to make all FP instructions run faster;
FP instructions are responsible for a total of 50% of the execution time.
The design team believes that they can make all FP instructions run two
times faster with the same effort as required for the fast square root. Com-
pare these two design alternatives.

We can compare these two alternatives by comparing the speedups:

1 1
Speeduppsor= —————5 = 54, = 1.22
(1-0.2) + ‘1_-5 0.82

1 1
Speedupp= ——————— === =1.33
(1-05 +g_.g 0.75

Improving the performance of the FP operations overall is better because
of the higher frequency. .

In the above Example, we needed to know the time consumed by the new and
improved FP operations; often it is difficult to measure these times directly. In the
next section, we will see another way of doing such comparisons based on the

32

Chapter 1 Fundamentals of Computer Design

use of an equation that decomposes the CPU execution time into three separate
components. If we know how an alternative affects these three components, we
can determine its overall performance effect. Furthermore, it is often possible to
build simulators that measure these components before the hardware is actually
designed.

The CPU Performance Equation

Most computers are constructed using a clock running at a constant rate. These
discrete time events are callgcks clock ticks, clock periods, clocks, cycles

clock cyclesComputer designers refer to the time of a clock period by its dura-
tion (e.g., 2 ns) or by its rate (e.g., 500 MHz). CPU time for a program can then
be expressed two ways:

CPU time= CPU clock cycles for a program Clock cycle time

or

CPU time _CPU clock cycles for a program
Clock rate

In addition to the number of clock cycles needed to execute a program, we can
also count the number of instructions executed-irskeuction path lengtlor in-
struction coun{IC). If we know the number of clock cycles and the instruction
count we can calculate the average numbelazk cycles per instructiofCPlI):

_ CPU clock cycles for a program
CPI = IC

This CPU figure of merit provides insight into different styles of instruction sets
and implementations, and we will use it extensively in the next four chapters.

By transposing instruction count in the above formula, clock cycles can be de-
fined as ICx CPI. This allows us to use CPI in the execution time formula:

CPUtime= ICx CPk Clock cycle time
or

__|CxCPI
CPU time " Clock rate

Expanding the first formula into the units of measure shows how the pieces fit
together:

Instructions_ Clock cycles, Seconds _ Seconds_ .
x - = = CPU time
Program Instruction Clock cycle Program

As this formula demonstrates, CPU performance is dependent upon three charac-
teristics: clock cycle (or rate), clock cycles per instruction, and instruction count.
Furthermore, CPU time isqually dependent on these three characteristics: A
10% improvement in any one of them leads to a 10% improvement in CPU time.

1.6 Quantitative Principles of Computer Design 33

Unfortunately, it is difficult to change one parameter in complete isolation
from others because the basic technologies involved in changing each character-
istic are also interdependent:

« Clock cycle time-Hardware technology and organization
« CPI—Organization and instruction set architecture
« Instruction count-Instruction set architecture and compiler technology

Luckily, many potential performance improvement techniques primarily improve
one component of CPU performance with small or predictable impacts on the
other two.

Sometimes it is useful in designing the CPU to calculate the number of total
CPU clock cycles as

n
CPU clock cycles :z CPI, x IC;
i=1

where IG represents number of times instructida executed in a program and
CPlj represents the average number of clock cycles for instruclibis form can

be used to express CPU time as
ol 0
CPUtime= 0% CPIxIC{x Clock cycle time
= U
and overall CPI as

n
$ CPLxIC;

n
i=1 0 ICi 0
CPl = ———m—————— = CPIl, X z————————;
Instruction count _zl '~ Onstruction count
i=

The latter form of the CPI calculation multiplies each individual; ?the frac-
tion of occurrences of that instruction in a program.j GRbuld be measured and

not just calculated from a table in the back of a reference manual since it must in-
clude cache misses and any other memory system inefficiencies.

Consider our earlier example, here modified to use measurements of the fre-
guency of the instructions and of the instruction CPI values, which, in practice,
are easier to obtain.

EXAMPLE Suppose we have made the following measurements:

Frequency of FP operations = 25%
Average CPI of FP operations = 4.0
Average CPI of other instructions = 1.33
Frequency of FPSQR= 2%

CPIl of FPSQR =20

34

Chapter 1 Fundamentals of Computer Design

ANSWER

Assume that the two design alternatives are to reduce the CPI of FPSQR
to 2 or to reduce the average CPI of all FP operations to 2. Compare these
two design alternatives using the CPU performance equation.

First, observe that only the CPI changes; the clock rate and instruction
count remain identical. We start by finding the original CPI with neither en-
hancement:

IC,

n
- = . X
CPloriginal Zlcpl' Unstruction court

(4% 25%) + (1.33x 75% = 2.0

We can compute the CPI for the enhanced FPSQR by subtracting the
cycles saved from the original CPI:

CPIWith new FPSQR: Cploriginal_ 2%x (Cplold FPSQR™ CPIOf new FPSQR onlz/
2.0— 2%x (20- 3 = 1.64

We can compute the CPI for the enhancement of all FP instructions the
same way or by summing the FP and non-FP CPIs. Using the latter gives
us

CPI = (75%x 1.33 + (25%x 2.0 = 1.5

new FP ~

Since the CPI of the overall FP enhancement is lower, its performance will
be better. Specifically, the speedup for the overall FP enhancement is

CPU tim&igina _ IC x Clock cyclex CPlgina
CPU time, gp IC xClock cyclex CPlg, gp

CPI_. .
- original =42V _ 133

SpeeduRey, rp =

Happily, this is the same speedup we obtained using Amdahl’'s Law on
page 31. .

It is often possible to measure the constituent parts of the CPU performance
equation. This is a key advantage for using the CPU performance equation versus
Amdahl’s Law in the above example. In particular, it may be difficult to measure
things such as the fraction of execution time for which a set of instructions is re-
sponsible. In practice this would probably be computed by summing the product
of the instruction count and the CPI for each of the instructions in the set. Since
the starting point is often individual instruction count and CPI measurements, the
CPU performance equation is incredibly useful.

1.6 Quantitative Principles of Computer Design 35

Measuring the Components of CPU Performance

To use the CPU performance equation to determine performance, we need mea:
surements of the individual components of the equation. Building and using tools
to measure aspects of a design is a large part of a designer’s job—at least for de
signers who base their decisions on quantitative principles!

To determine the clock cycle, we need only determine one number. Of course,
this is easy for an existing CPU, but estimating the clock cycle time of a design in
progress is very difficult. Low-level tools, calléohing estimator®r timing veri-
fiers are used to analyze the clock cycle time for a completed design. It is much
more difficult to estimate the clock cycle time for a design that is not completed,
or for an alternative for which no design exists. In practice, designers determine a
target cycle time and estimate the impact on cycle time by examining what they
believe to be the critical paths in a design. The difficulty is that control, rather
than the data path of a processor, often turns out to be the critical path, and con-
trol is often the last thing to be done and the hardest to estimate timing for. So,
designers rely heavily on estimates and on their experience and then do whatevel
is needed to try to make their clock cycle target. This sometimes means changing
the organization so that the CPI of some instructions increases. Using the CPU
performance equation, the impact of this trade-off can be calculated.

The other two components of the CPU performance equation are easier to
measure. Measuring the instruction count for a program can be done if we have a
compiler for the machine together with tools that measure the instruction set be-
havior. Of course, compilers for existing instruction set architectures are not a
problem, and even changes to the architecture can be explored using modern
compiler organizations that provide the ability to retarget the compiler easily. For
new instruction sets, developing the compiler early is critical to making intelli-
gent decisions in the design of the instruction set.

Once we have a compiled version of a program that we are interested in mea-
suring, there are two major methods we can apply to obtain instruction count in-
formation. In most cases, we want to know not only the total instruction count,
but also the frequency of different classes of instructions (calleishgtrection
mix). The first way to obtain such data is an instruction set simulator that inter-
prets the instructions. The major drawbacks of this approach are speed (since em:
ulating the instruction set is slow) and the possible need to implement substantial
infrastructure, since to handle large programs the simulator will need to provide
support for operating system functions. One advantage of an instruction set simu-
lator is that it can measure almost any aspect of instruction set behavior accurate-
ly and can also potentially simulate systems programs, such as the operating
system. Typical instruction set simulators run from 10 to 1000 times slower than
the program might, with the performance depending both on how carefully the
simulator is written and on the relationship between the architectures of the simu-
lated machine and host machine.

The alternative approach uses execution-based monitoring. In this approach,
the binary program is modified to incluthstrumentation codesuch as a counter

36

Chapter 1 Fundamentals of Computer Design

in every basic block. The program is run and the counter values are recorded. It is
then simple to determine the instruction distribution by examining the static ver-
sion of the code and the values of the counters, which tell us how often each in-
struction is executed. This technique is obviously very fast, since the program is
executed, rather than interpreted. Typical instrumentation code increases the exe-
cution time by 1.1 to 2.0 times. This technique is even usable when the architec-
tures of the machine being simulated and the machine being used for the
simulator differ. In such a case, the program that instruments the code does a sim-
ple translation between the instruction sets. This translation need not be very effi-
cient—even a sloppy translation will usually lead to a much faster measurement
system than complete simulation of the instruction set.

Measuring the CPI is more difficult, since it depends on the detailed processor
organization as well as the instruction stream. For very simple processors, it may
be possible to compute a CPI for every instruction from a table and simply multi-
ply these values by the number of instances of each instruction type. However,
this simplistic approach will not work with most modern processors. Since these
processors were built using techniques such as pipelining and memory hierar-
chies, instructions do not have simple cycle counts but instead depend on the
state of the processor when the instruction is executed. Designers often use aver-
age CPI values for instructions, but these average CPIs are computed by measur-
ing the effects of the pipeline and cache structure.

To determine the CPI for an instruction in a modern processor, it is often use-
ful to separate the component arising from the memory system and the compo-
nent determined by the pipeline, assuming a perfect memory system. This is
useful both because the simulation techniques for evaluating these contributions
are different and because the memory system contribution is added as an average
to all instructions, while the processor contribution is more likely to be instruc-
tion specific. Thus, we can compute the CPI for each instructias,

CPI = Pipeline CPJ+ Memory system CPI

In the next section, we’ll see how memory system CPI can be computed, at least
for simple memory hierarchies. Chapter 5 discusses more sophisticated memory
hierarchies and performance modeling.

The pipeline CPI is typically modeled by simulating the pipeline structure us-
ing the instruction stream. For simple pipelines, it may be sufficient to model the
performance of each basic block individually, ignoring the cross basic block in-
teractions. In such cases, the performance of each basic block, together with the
frequency counts for each basic block, can be used to determine the overall CPI
as well as the CPI for each instruction. In Chapter 3, we will examine simple
pipeline structures where this approximation is valid. Since the pipeline behavior
of each basic block is simulated only once, this is much faster than a full simula-
tion of every instruction execution. Unfortunately, in our exploration of advanced
pipelining in Chapter 4, we’ll see that full simulations of the program are neces-
sary to estimate the performance of sophisticated pipelines.

1.6 Quantitative Principles of Computer Design 37

Using the CPU Performance Equations: More Examples

The real measure of computer performance is time. Changing the instruction set
to lower the instruction count, for example, may lead to an organization with a
slower clock cycle time that offsets the improvement in instruction count. When
comparing two machines, you must look at all three components to understand
relative performance.

EXAMPLE Suppose we are considering two alternatives for our conditional branch
instructions, as follows:

CPU A: A condition code is set by a compare instruction and followed
by a branch that tests the condition code.

CPU B: A compare is included in the branch.

On both CPUs, the conditional branch instruction takes 2 cycles, and all
other instructions take 1 clock cycle. On CPU A, 20% of all instructions
executed are conditional branches; since every branch needs a compare,
another 20% of the instructions are compares. Because CPU A does not
have the compare included in the branch, assume that its clock cycle time
is 1.25 times faster than that of CPU B. Which CPU is faster? Suppose
CPU A’s clock cycle time was only 1.1 times faster?

ANSWER Since we are ignoring all systems issues, we can use the CPU perfor-
mance formula:

CPI, = 0.20x 2+0.80x 1= 1.2

since 20% are branches taking 2 clock cycles and the rest of the instruc-
tions take 1 cycle each.The performance of CPU A is then

CPU timg, = IC, x 1.2x Clock cycle timg

Clock cycle timeg is 1.25 x Clock cycle time,, since A has a clock rate that
is 1.25 times higher. Compares are not executed in CPU B, so 20%/80%
or 25% of the instructions are now branches taking 2 clock cycles, and the
remaining 75% of the instructions take 1 cycle. Hence,

CPlg = 0.25x 2+ 0.75¢< 1= 1.25

Because CPU B doesn't execute compares, ICg = 0.8 x IC,. Hence, the
performance of CPU B is

CPU timg; = ICg x CPIg x Clock cycle timg
0.8% IC, x 1.25% (1 1.25¢ Clock cycle timg)
1.25x IC, x Clock cycle timg

38

Chapter 1 Fundamentals of Computer Design

Under these assumptions, CPU A, with the shorter clock cycle time, is
faster than CPU B, which executes fewer instructions.

If CPU A were only 1.1 times faster, then Clock cycle timeg is
1.10x Clock cycle timﬁ , and the performance of CPU B is

CPU timg; = ICg x CPIg x Clock cycle timg
0.8% IC, x1.25% (1.10¢ Clock cycle timg)
1.10x IC, x Clock cycle timg,

With this improvement CPU B, which executes fewer instructions, is now
faster. .

Locality of Reference

While Amdahl's Law is a theorem that applies to any system, other important
fundamental observations come from properties of programs. The most important
program property that we regularly exploitasality of referencePrograms tend

to reuse data and instructions they have used recently. A widely held rule of
thumb is that a program spends 90% of its execution time in only 10% of the
code. An implication of locality is that we can predict with reasonable accuracy
what instructions and data a program will use in the near future based on its ac-
cesses in the recent past.

To examine locality, 10 application programs in the SPEC92 benchmark suite
were measured to determine what percentage of the instructions were responsible
for 80% and for 90% of the instructions executed. The data are shown in Figure
1.14.

Locality of reference also applies to data accesses, though not as strongly as to
code accesses. Two different types of locality have been obs&erafdoral lo-
cality states that recently accessed items are likely to be accessed in the near fu-
ture. Figure 1.14 shows one effect of temporal locdipatial localitysays that
items whose addresses are near one another tend to be referenced close together
in time. We will see these principles applied in the next section.

1.7 Putting It All Together: The Concept of Memory Hierarchy 39

O [oeeee e

BOUp [reeerreesrrmsrremseenneeenne S

AOU | rememmmmmmmm el

Fraction of the 3000 [rrreerreee e

program

20%

10%

0%

compress
eqntott
espresso
doduc
ear
hydro2d
mdljdp
su2cor

SPEC benchmark

FIGURE 1.14 This plot shows what percentage of the instructions are responsible for

80% and for 90% of the instruction executions. The total bar height indicates the fraction of
the instructions that account for 90% of the instruction executions while the dark portion indi-
cates the fraction of the instructions responsible for 80% of the instruction executions. For ex-
ample, in compress about 9% of the code accounts for 80% of the executed instructions and
16% accounts for 90% of the executed instructions. On average, 90% of the instruction execu-
tions comes from 10% of the instructions in the integer programs and 14% of the instructions
in the FP programs. The programs are described in more detail in Figure 1.9 on page 22.

1.7

Putting It All Together:
The Concept of Memory Hierarchy

In the Putting It All Togethesections that appear near the end of every chapter,
we show real examples that use the principles in that chapter. In this first chapter,
we discuss a key idea in memory systems that will be the sole focus of our atten-
tion in Chapter 5.

To begin, let's look at a simple axiom of hardware desBmaller is faster
Smaller pieces of hardware will generally be faster than larger pieces. This sim-
ple principle is particularly applicable to memories built from the same technolo-
gy for two reasons. First, in high-speed machines, signal propagation is a major
cause of delay; larger memories have more signal delay and require more levels
to decode addresses. Second, in most technologies we can obtain smaller memc
ries that are faster than larger memories. This is primarily because the designer
can use more power per memory cell in a smaller design. The fastest memories
are generally available in smaller numbers of bits per chip at any point in time,
and they cost substantially more per byte.

40

Chapter 1 Fundamentals of Computer Design

The important exception to the smaller-is-faster rule arises from differences in
power consumption. Designs with higher power consumption will be faster and
also usually larger. Such power differences can come from changes in technolo-
gy, such as the use of ECL versus CMOS, or from a change in the design, such as
the use of static memory cells rather than dynamic memory cells. If the power in-
crease is sufficient, it can overcome the disadvantage arising from the size in-
crease. Thus, the smaller-is-faster rule applies only when power differences do
not exist or are taken into account.

Increasing memory bandwidth and decreasing the time to access memory are
both crucial to system performance, and many of the organizational techniques
we discuss will focus on these two metrics. How can we improve these two mea-
sures? The answer lies in combining the principles we discussed in this chapter
together with the rule that smaller is faster.

The principle of locality of reference says that the data most recently used is
very likely to be accessed again in the near future. Making the common case fast
suggests that favoring accesses to such data will improve performance. Thus, we
should try to keep recently accessed items in the fastest memory. Because smaller
memories will be faster, we want to use smaller memories to try to hold the most
recently accessed items close to the CPU and successively larger (and slower)
memories as we move farther away from the CPU. Furthermore, we can also em-
ploy more expensive and higher-powered memory technologies for those memo-
ries closer to the CPU, because they are much smaller and the cost and power
impact is lessened by the small size of the memories. This type of organization is
called amemory hierarchyFigure 1.15 shows a multilevel memory hierarchy, in-
cluding typical sizes and speeds of access. Two important levels of the memory
hierarchy are the cache and virtual memory.

CPU

Memory
bus 1/0 bus .
Memory — 1/0 devices

Disk

memory
Register Cache Memory reference
reference reference reference

Size: 200 B 64 KB 32 MB 2GB

Speed: 5ns 10 ns 100 ns 5ms

FIGURE 1.15 These are the levels in a typical memory hierarchy. As we move farther
away from the CPU, the memory in the level becomes larger and slower. The sizes and ac-
cess times are typical for a low- to mid-range desktop machine in late 1995. Figure 1.16
shows the wider range of values in use.

1.7 Putting It All Together: The Concept of Memory Hierarchy 41

A cacheis a small, fast memory located close to the CPU that holds the most
recently accessed code or data. When the CPU finds a requested data item in th
cache, it is called eache hitWhen the CPU does not find a data item it needs in
the cache, aache mis®ccurs. A fixed-size block of data, calledlack contain-
ing the requested word is retrieved from the main memory and placed into the
cache. Temporal locality tells us that we are likely to need this word again in the
near future, so placing it in the cache where it can be accessed quickly is useful.
Because of spatial locality, there is high probability that the other data in the
block will be needed soon.

The time required for the cache miss depends on both the latency of the mem-
ory and its bandwidth, which determines the time to retrieve the entire block. A
cache miss, which is handled by hardware, usually causes the CPU to pause, o
stall, until the data are available.

Likewise, not all objects referenced by a program need to reside in main memo-
ry. If the computer hagirtual memorythen some objects may reside on disk. The
address space is usually broken into fixed-size blocks, qadiges At any time,
each page resides either in main memory or on disk. When the CPU references ar
item within a page that is not present in the cache or main menmagedaultoc-
curs, and the entire page is moved from the disk to main memory. Since page faults
take so long, they are handled in software and the CPU is not stalled. The CPU
usually switches to some other task while the disk access occurs. The cache anc
main memory have the same relationship as the main memory and disk.

Figure 1.16 shows the range of sizes and access times of each level in the
memory hierarchy for machines ranging from low-end desktops to high-end
servers. Chapter 5 focuses on memory hierarchy design and contains a detailec
example of a real system hierarchy.

Level 1 2 3 4
Called Registers Cache Main memory Disk storage
Typical size <1KB <4 MB <4 GB >1GB
Implementation technology ~ Custom memory withOn-chip or off- CMOS DRAM Magnetic disk
multiple ports, chip CMOS
CMOS or BICMOS SRAM
Access time (in ns) 2-5 3-10 80-400 5,000,000
Bandwidth (in MB/sec) 4000-32,000 800-5000 400-2000 4-32
Managed by Compiler Hardware Operating system Operating
system/user
Backed by Cache Main memory Disk Tape
FIGURE 1.16 The typical levels in the hierarchy slow down and get larger as we move away from the CPU. Sizes

are typical for a large workstation or small server. The implementation technology shows the typical technology used for
these functions. The access time is given in nanoseconds for typical values in 1995; these times will decrease over time.
Bandwidth is given in megabytes per second, assuming 64- to 256-bit paths between levels in the memory hierarchy. As we
move to lower levels of the hierarchy, the access times increase, making it feasible to manage the transfer less responsively.

42

Chapter 1 Fundamentals of Computer Design

EXAMPLE

ANSWER

Performance of Caches: The Basics

Because of locality and the higher speed of smaller memories, a memory hierar-
chy can substantially improve performance. There are several ways that we can
look at the performance of a memory hierarchy and its impact on CPU perfor-
mance. Let’s start with an example that uses Amdahl’s Law to compare a system
with and without a cache.

Suppose a cache is 10 times faster than main memory, and suppose that
the cache can be used 90% of the time. How much speedup do we gain
by using the cache?

This is a simple application of Amdahl’s Law.

1

Speedup = % of time cache can be used

-0 1
(1— % of time cache can be uged Speedup using cache

Speedup :—1—09
(1-09+ 1o

Speedup ﬁz 5.3

Hence, we obtain a speedup from the cache of about 5.3 times. .

In practice, we do not normally use Amdahl’'s Law for evaluating memory hi-
erarchies. Most machines will include a memory hierarchy, and the key issue is
really how to design that hierarchy, which depends on more detailed measure-
ments. An alternative method is to expand our CPU execution time equation to
account for the number of cycles during which the CPU is stalled waiting for a
memory access, which we call thremory stall cyclesThe performance is then
the product of the clock cycle time and the sum of the CPU cycles and the memo-
ry stall cycles:

CPU execution time= (CPU clock cycles Memory stall cyche€lock cycle
This equation assumes that the CPU clock cycles include the time to handle a

cache hit, and that the CPU is stalled during a cache miss. In Chapter 5, we will
analyze memory hierarchies in more detail, examining both these assumptions.

1.7 Putting It All Together: The Concept of Memory Hierarchy 43

The number of memory stall cycles depends on both the number of misses and
the cost per miss, which is called théss penalty

Memory stall cycles= Number of misses Miss penalty
IC x Misses per instruction Miss penalty
IC x Memory references per instructisn Miss ratsliss penalty

The advantage of the last form is that the components can be easily measured: W
already know how to measure IC (instruction count), and measuring the number
of memory references per instruction can be done in the same fashion, since eact
instruction requires an instruction access and we can easily decide if it requires a
data access. The componéfiss rateis simply the fraction of cache accesses
that result in a miss (i.e., number of accesses that miss divided by number of ac-
cesses). Miss rates are typically measured with cache simulators thatrtadee a

of the instruction and data references, simulate the cache behavior to determine
which references hit and which miss, and then report the hit and miss totals. The
miss rate is one of the most important measures of cache design, but, as we will
see in Chapter 5, not the only measure.

EXAMPLE Assume we have a machine where the CPl is 2.0 when all memory ac-
cesses hitin the cache.The only data accesses are loads and stores, and
these total 40% of the instructions. If the miss penalty is 25 clock cycles
and the miss rate is 2%, how much faster would the machine be if all in-
structions were cache hits?

ANSWER First compute the performance for the machine that always hits:

CPU execution time= (CPU clock cycles Memory stall cychke€lock cycle
= (IC x CPI+ 0) x Clock cycle
= IC x 2.0x Clock cycle

Now for the machine with the real cache, first we compute memory stall
cycles:

Memory stall cycles= I&G Memory references per instruckion Missxatéss penalty
IC x(1+ 0.4) x0.02x 25
IC x0.7

where the middle term (1 + 0.4) represents one instruction access and 0.4
data accesses per instruction. The total performance is thus

CPU execution timg,.,. = (IC x 2.0+ 1C x 0.7) x Clock cycle
= 2.7x ICx Clock cycle

The performance ratio is the inverse of the execution times:

44 Chapter 1 Fundamentals of Computer Design

CPU execution timgghe _ 2.7x ICx Clock cycle
CPU executiontime 2.0x ICx Clock cycle

=1.35

The machine with no cache misses is 1.35 times faster. .

18 | Fallacies and Pitfalls

The purpose of this section, which will be found in every chapter, is to explain
some commonly held misbeliefs or misconceptions that you should avoid. We
call such misbelieffallacies.When discussing a fallacy, we try to give a counter-
example. We also discupgfalls—easily made mistakes. Often pitfalls are gen-
eralizations of principles that are true in a limited context. The purpose of these
sections is to help you avoid making these errors in machines that you design.

Fallacy: MIPS is an accurate measure for comparing performance among

computers.

One alternative to time as the metric is MIPSdlion instructions per second
For a given program, MIPS is simply

Instruction n lock r,
MIPS = struction count - Clock rate

Execution timex 10° cPIx 1P

Some find this rightmost form convenient since clock rate is fixed for a machine
and CPI is usually a small number, unlike instruction count or execution time.
Relating MIPS to time,

. . _ Instructon count
Execution time ——— "~
MIPS x 1¢°

Since MIPS is a rate of operations per unit time, performance can be specified as
the inverse of execution time, with faster machines having a higher MIPS rating.

The good news about MIPS is that it is easy to understand, especially by a

customer, and faster machines means bigger MIPS, which matches intuition. The
problem with using MIPS as a measure for comparison is threefold:

MIPS is dependent on the instruction set, making it difficult to compare MIPS
of computers with different instruction sets.

MIPS varies between programs on the same computer.

Most importantly, MIPS can vary inversely to performance!

1.8 Fallacies and Pitfalls 45

EXAMPLE

ANSWER

The classic example of the last case is the MIPS rating of a machine with option-
al floating-point hardware. Since it generally takes more clock cycles per float-
ing-point instruction than per integer instruction, floating-point programs using
the optional hardware instead of software floating-point routines take less time
but have dower MIPS rating. Software floating point executes simpler instruc-

tions, resulting in a higher MIPS rating, but it executes so many more that overall
execution time is longer.

We can even see such anomalies with optimizing compilers.

Assume we build an optimizing compiler for the load-store machine for
which the measurements in Figure 1.17 have been made. The compiler
discards 50% of the arithmetic logic unit (ALU) instructions, although it
cannot reduce loads, stores, or branches. Ignoring systems issues and
assuming a 2-ns clock cycle time (500-MHz clock rate) and 1.57 unopti-
mized CPI, what is the MIPS rating for optimized code versus unoptimized
code? Does the ranking of MIPS agree with the ranking of execution time?

Instruction type Frequency Clock cycle count
ALU ops 43% 1
Loads 21% 2
Stores 12% 2
Branches 24% 2

FIGURE 1.17 Measurements of the load-store machine.

We know that CPlynoptimized = 1.57, SO

500MHz
MIPSJnoptimized: —— =3185

1.57x 10
The performance of unoptimized code is

. _ <9
CPU tlm%noptimized - ICunoptimized>< 1.57x (2x 10)
_ =9
= 3.14x 10" x ICunoptimized
For optimized code:

_ (043 x1+021x 2+ 0.1% 2 024 2

Cl:’loptimized - 1— (0.43/ 3

1.73

since half the ALU instructions are discarded (0.43/2) and the instruction
count is reduced by the missing ALU instructions. Thus,

MIPS = S00MHz _ 5599

timized —
OPIMIZEE 1 73% 18

46

Chapter 1 Fundamentals of Computer Design

The performance of optimized code is

. <9
CchPU tlm%ptimized = (0.785x lgmoptimize() x1.73x (2% 107)

= 2.72x 10°x1IC

unoptimized

The optimized code is 3.14/2.72 = 1.15 times faster, but its MIPS rating is
lower: 289 versus 318! .

As examples such as this one show, MIPS can fail to give a true picture of per-
formance because it does not track execution time.

Fallacy: MFLOPS is a consistent and useful measure of performance.

Another popular alternative to execution timenidlion floating-point operations
per second abbreviated megaFLOPS or MFLOR8t always pronounced
“megaflops.” The formula for MFLOPS is simply the definition of the acronym:

MELOPS = Number of floating-point operations in a program

Execution time in seconds io

Clearly, a MFLOPS rating is dependent on the machine and on the program.
Since MFLOPS is intended to measure floating-point performance, it is not appli-
cable outside that range. Compilers, as an extreme example, have a MFLOPS rat-
ing near nil no matter how fast the machine, since compilers rarely use floating-
point arithmetic.

This term is less innocent than MIPS. Based on operations rather than instruc-
tions, MFLOPS is intended to be a fair comparison between different machines.
The belief is that the same program running on different computers would exe-
cute a different number of instructions but the same number of floating-point op-
erations. Unfortunately, MFLOPS is not dependable because the set of floating-
point operations is not consistent across machines. For example, the Cray C90
has no divide instruction, while the Intel Pentium has divide, square root, sine,
and cosine. Another perceived problem is that the MFLOPS rating changes not
only on the mixture of integer and floating-point operations but also on the mix-
ture of fast and slow floating-point operations. For example, a program with
100% floating-point adds will have a higher rating than a program with 100%
floating-point divides. (We discuss a proposed solution to this problem in Exer-
cise 1.15 (b).)

Furthermore, like any other performance measure, the MFLOPS rating for a
single program cannot be generalized to establish a single performance metric for
a computer. Since MFLOPS is really just a constant divided by execution time for
a specific program and specific input, MFLOPS is redundant to execution time,
our principal measure of performance. And unlike execution time, it is tempting

1.8 Fallacies and Pitfalls 47

to characterize a machine with a single MIPS or MFLOPS rating without naming
the program, specifying the 1/O, or describing the versions of the OS and com-
pilers.

Fallacy: Synthetic benchmarks predict performance for real programs.

The best known examples of such benchmarks are Whetstone and Dhrystone.
These are not real programs and, as such, may not reflect program behavior for
factors not measured. Compiler and hardware optimizations can artificially in-
flate performance of these benchmarks but not of real programs. The other side of
the coin is that because these benchmarks are not natural programs, they don't re
ward optimizations of behaviors that occur in real programs. Here are some
examples:

« Optimizing compilers can discard 25% of the Dhrystone code; examples in-
clude loops that are only executed once, making the loop overhead instructions
unnecessary. To address these problems the authors of the benchmark “re-
quire” both optimized and unoptimized code to be reported. In addition, they
“forbid” the practice of inline-procedure expansion optimization, since Dhry-
stone’s simple procedure structure allows elimination of all procedure calls at
almost no increase in code size.

« Most Whetstone floating-point loops execute small nhumbers of times or in-
clude calls inside the loop. These characteristics are different from many real
programs. As a result Whetstone underrewards many loop optimizations and
gains little from techniques such as multiple issue (Chapter 4) and vectorization
(Appendix B).

« Compilers can optimize a key piece of the Whetstone loop by noting the rela-
tionship between square root and exponential, even though this is very unlikely
to occur in real programs. For example, one key loop contains the following
FORTRAN code:

X = SQRT(EXP(ALOG(X)/T1))
It could be compiled as if it were
X=EXPALOG(X)/((2 xT1))
since
SQRT(EXP(X)) = ZQ% X2 EXP(X/2)

It would be surprising if such optimizations were ever invoked except in this syn-
thetic benchmark. (Yet one reviewer of this book found several compilers that
performed this optimization!) This single change converts all calls to the square
root function in Whetstone into multiplies by 2, surely improving performance—
if Whetstone is your measure.

48

Chapter 1 Fundamentals of Computer Design

Fallacy: Benchmarks remain valid indefinitely.

Several factors influence the usefulness of a benchmark as a predictor of real per-
formance and some of these may change over time. A big factor influencing the
usefulness of a benchmark is the ability of the benchmark to resist “cracking,”
also known as benchmark engineering or “benchmarksmanship.” Once a bench-
mark becomes standardized and popular, there is tremendous pressure to improve
performance by targeted optimizations or by aggressive interpretation of the rules
for running the benchmark. Small kernels or programs that spend their time in a
very small number of lines of code are particularly vulnerable.

For example, despite the best intentions, the initial SPEC89 benchmark suite
included a small kernel, called matrix300, which consisted of eight different 300
x 300 matrix multiplications. In this kernel, 99% of the execution time was in a
single line (see SPEC [1989]). Optimization of this inner loop by the compiler
(using an idea called blocking, discussed in Chapter 5) for the IBM Powerstation
550 resulted in performance improvement by a factor of more than 9 over an ear-
lier version of the compiler! This benchmark tested compiler performance and
was not, of course, a good indication of overall performance, nor of this particu-
lar optimization.

Even after the elimination of this benchmark, vendors found methods to tune
the performance of individual benchmarks by the use of different compilers or
preprocessors, as well as benchmark-specific flags. While the baseline perfor-
mance measurements restrict this (the rules for baseline tuning appear on pages
57-58), the tuned or optimized performance does not. In fact, benchmark-specific
flags are allowed, even if they are illegal and lead to incorrect compilation in gen-
eral! This has resulted in long lists of options, as Figure 1.18 shows. This incredi-
ble list of impenetrable options used in the tuned measurements for an IBM
Powerstation 590, which is not significantly different from the option lists used
by other vendors, makes it clear why the baseline measurements were needed.
The performance difference between the baseline and tuned numbers can be sub-
stantial. For the SPECfp92 benchmarks on the Powerstation 590, the overall per-
formance (which by SPEC92 rules is summarized by geometric mean) is 1.2
times higher for the optimized programs. For some benchmarks, however, the
difference is considerably larger: For the nasa7 kernels, the optimized perfor-
mance is 2.1 times higher than the baseline!

Benchmark engineering is sometimes applied to the runtime libraries. For ex-
ample, SPEC92 added a spreadsheet to the SPEC92 integer benchmarks (called
sc). Like any spreadsheet, sc spends a great deal of its time formatting data for
the screen, a function that is handled in a UNIX runtime library. Normally such
screen /O is synchronous—each I/O is completed before the next one is done.
This increases the runtime substantially. Several companies observed that when
the benchmark is run, its output goes to a file, in which case the 1/O need not be
synchronous. Instead the 1/0O can be done to a memory buffer that is flushed to
disk after the program completes, thus taking the 1/O time out of the measure-

1.8 Fallacies and Pitfalls 49

SPECfp92 Tuning parameters/Notes/Summary of changes:

Software: KAP for IBM FORTRAN Ver. 3.1 Beta, VAST-2 for XL FORTRAN Ver. 4.03 Beta, KAP for IBM C, Ver. 1.3

all: -O3 -garch=pwrx -Bl:/lib/syscalls.exp

013: -gnosave -P -Wp,-ea478,-lindxx:dcsol,-Sv01.f:v06.f -Iblas
015:
039:
034:
047:
048:
052:
056:
077:
078:
089:
090:
093:
094:

-P -Wp,-ea478,-fz,-Isi:coeray,-Ssi.f:coeray.f -Iblas
-Pk -Wp,-r=3,-inline,-ur=8,-ur2=2 00,-ind=2,-in11=2
-Pk -Wp,-r=3,-inline,-ur=4

-Q-Pk -Wp,-r=3,-0=4,-ag=a

-Pk -Wp,-inline,-r=3,-ur=2,-ur=10 0

-Q -Q-input-hidden -ghsflt -Dfloat=double -qassert-typeptr -gproclocal -gqmaxmem=9999999 +K4 +Kargs=ur2=1
-qproclocal -Dfloat=double -qunroll=2 -ghsflt -gqmaxmem=999999 +K4 -Kargs=-ar1=2:-ur2=5000
-O3 -gstrict -garch=ppc -gmaxmem=-1 -Pk -Wp,-inline,-r=3,-ur=2,-ur2=9999

-qhsflt -P -Wp,-ea278,-fz,-me -ghot

-gnosave -ghssngl -Pk -Wp,-inline=trngv,-r=3,-ur=2,-ur2=9999

-P -Wp,-ea,-f1 -ghot

-DTIMES -P -Wp,-eaj78,-Rvpetst:vpenta:fftst -gfloat=nosqrt -lesslp2

-P -Wp,-ea78 -lesslp2

FIGURE 1.18 The tuning parameters for the SPECfp92 report on an IBM RS/6000 Powerstation 590. This is the por-
tion of the SPEC report for the tuned performance corresponding to that in Figure 1.10 on page 24. These parameters de-
scribe the compiler and preprocessor (two versions of KAP and a version of VAST-2) as well as the options used for the
tuned SPEC92 numbers. Each line shows the option used for one of the SPECfp92 benchmarks. The benchmarks are iden-
tified by number but appear in the same order as given in Figure 1.9 on page 22. Data from SPEC [1994].

ment loop. One company even went a step farther, realizing that the file is never
read, and tossed the 1/0 completely. If the benchmark was meant to indicate real
performance of a spreadsheet-like program, these “optimizations” have defeated
such goals. Perhaps even worse than the fact that this creative engineering make
the program perform differently is that it makes it impossible to compare among
vendors’ machines, which was the key reason SPEC was created.

Ongoing improvements in technology can also change what a benchmark
measures. Consider the benchmark gcc, considered one of the most realistic anc
challenging of the SPEC92 benchmarks. Its performance is a combination of
CPU time and real system time. Since the input remains fixed and real system
time is limited by factors, including disk access time, that improve slowly, an in-
creasing amount of the runtime is system time rather than CPU time. This may be
appropriate. On the other hand, it may be appropriate to change the input over
time, reflecting the desire to compile larger programs. In fact, the SPEC92 input
was changed to include four copies of each input file used in SPEC89; while this
increases runtime, it may or may not reflect the way compilers are actually being

50

Chapter 1 Fundamentals of Computer Design

used. Over a long period of time, these changes may make even a well-chosen
benchmark obsolete.

Fallacy: Peak performance tracks observed performance.

One definition of peak performance is performance a machine is “guaranteed not
to exceed.” The gap between peak performance and observed performance is typ-
ically a factor of 10 or more in supercomputers. (See Appendix B on vectors for
an explanation.) Since the gap is so large, peak performance is not useful in pre-
dicting observed performance unless the workload consists of small programs
that normally operate close to the peak.

As an example of this fallacy, a small code segment using long vectors ran on
the Hitachi S810/20 at 236 MFLOPS and on the Cray X-MP at 115 MFLOPS.
Although this suggests the S810 is 2.05 times faster than the X-MP, the X-MP
runs a program with more typical vector lengths 1.97 times faster than the S810.
These data are shown in Figure 1.19.

Cray Hitachi
Measurement X-MP S810/20 Performance
A(i)=B(i) »C(i)+D(i)* E(i) (vector length 2.6 secs 1.3 secs Hitachi 2.05
1000 done 100,000 times) times faster
Vectorized FFT 3.9 secs 7.7 secs Cray 1.97
(vector lengths 64,32,...,2) times faster

FIGURE 1.19 Measurements of peak performance and actual performance for the Hi-
tachi S810/20 and the Cray X-MP. Data from pages 18-20 of Lubeck, Moore, and Mendez
[1985]. Also see Fallacies and Pitfalls in Appendix B.

While the use of peak performance has been rampant in the supercomputer
business, its use in the microprocessor business is just as misleading. For exam-
ple, in 1994 DEC announced a version of the Alpha microprocessor capable of
executing 1.2 billion instructions per second at its 300-MHz clock rate.The only
way this processor can achieve this performance is for two integer instructions
and two floating-point instructions to be executed each clock cycle. This machine
has a peak performance that is almost 50 times the peak performance of the fast-
est microprocessor reported in the first SPEC benchmark report in 1989 (a MIPS
M/2000, which had a 25-MHz clock). The overall SPEC92 number of the DEC
Alpha processor, however, is only about 15 times higher on integer and 25 times
higher on FP. This rate of performance improvement is still spectacular, even if
peak performance is not a good indicator.

The authors hope that peak performance can be quarantined to the super-
computer industry and eventually eradicated from that domain. In any case, ap-
proaching supercomputer performance is not an excuse for adopting dubious
supercomputer marketing habits.

1.9 Concluding Remarks 51

1.9

| Concluding Remarks

This chapter has introduced a number of concepts that we will expand upon as we
go through this book. The major ideas in instruction set architecture and the alter-
natives available will be the primary subjects of Chapter 2. Not only will we see
the functional alternatives, we will also examine quantitative data that enable us
to understand the trade-offs. The quantitative princidieke the common case
fast, will be a guiding light in this next chapter, and the CPU performance equa-
tion will be our major tool for examining instruction set alternatives. Chapter 2
concludes with a hypothetical instruction set, called DLX, which is designed on
the basis of observations of program behavior that we will make in the chapter.

In Chapter 2, we will include a sectioBrosscutting Issueshat specifically
addresses interactions between topics addressed in different chapters. In that sec
tion within Chapter 2, we focus on the interactions between compilers and in-
struction set design. Thigrosscutting Issuesection will appear in all future
chapters, with the exception of Chapter 4 on advanced pipelining. In later chap-
ters, theCrosscutting Issuesections describe interactions between instruction
sets and implementation techniques.

In Chapters 3 and 4 we turn our attention to pipelining, the most common im-
plementation technique used for making faster processors. Pipelining overlaps
the execution of instructions and thus can achieve lower CPIs and/or lower clock
cycle times. As in Chapter 2, the CPU performance equation will be our guide in
the evaluation of alternatives. Chapter 3 starts with a review of the basics of ma-
chine organization and control and moves through the basic ideas in pipelining,
including the control of more complex floating-point pipelines. The chapter con-
cludes with an examination and analysis of the R4000. At the end of Chapter 3,
you will be able to understand the pipeline design of almost every processor built
before 1990. Chapter 4 is an extensive examination of advanced pipelining tech-
nigues that attempt to get higher performance by exploiting more overlap among
instructions than the simple pipelines in use in the 1980s. This chapter begins
with an extensive discussion of basic concepts that will prepare you not only for
the wide range of ideas examined in Chapter 4, but also to understand and ana:
lyze new techniques that will be introduced in the coming years. Chapter 4 uses
examples that span about 20 years, drawing from the first modern supercom-
puters (the CDC 6600 and IBM 360/91) to the latest processors that first reached
the market in 1995. Throughout Chapters 3 and 4, we will repeatedly look at
techniques that rely either on clever hardware techniques or on sophisticated
compiler technology. These alternatives are an exciting aspect of pipeline design,
likely to continue through the decade of the 1990s.

In Chapter 5 we turn to the all-important area of memory system design. The
Putting It All Togethersection in this chapter serves as a basic introduction. We
will examine a wide range of techniques that conspire to make memory look
infinitely large while still being as fast as possible. The simple equations we

52

Chapter 1 Fundamentals of Computer Design

develop in this chapter will serve as a starting point for the quantitative evaluation
of the many techniques used for memory system design. As in Chapters 3 and 4,
we will see that hardware-software cooperation has become a key to high-perfor-
mance memory systems, just as it has to high-performance pipelines.

In Chapters 6 and 7, we move away from a CPU-centric view and discuss is-
sues in storage systems and in system interconnect. We apply a similar quantita-
tive approach, but one based on observations of system behavior and using an
end-to-end approach to performance analysis. Chapter 6 addresses the important
issue of how to efficiently store and retrieve data using primarily lower-cost mag-
netic storage technologies. As we saw earlier, such technologies offer better cost
per bit by a factor of 50-100 over DRAM. Magnetic storage is likely to remain
advantageous wherever cost or nonvolatility (it keeps the information after the
power is turned off) are important. In Chapter 6, our focus is on examining the
performance of magnetic storage systems for typical 1/O-intensive workloads,
which are the counterpart to the CPU benchmarks we saw in this chapter. We ex-
tensively explore the idea of RAID-based systems, which use many small disks,
arranged in a redundant fashion to achieve both high performance and high avail-
ability. Chapter 7 also discusses the primary interconnection technology used for
I/0O devices, namely buses. This chapter explores the topic of system interconnect
more broadly, including large-scale MPP interconnects and networks used to al-
low separate computers to communicate. We put special emphasis on the emerg-
ing new networking standards developing around ATM.

Our final chapter returns to the issue of achieving higher performance through
the use of multiple processors, or multiprocessors. Instead of using parallelism to
overlap individual instructions, it uses parallelism to allow multiple instruction
streams to be executed simultaneously on different processors. Our focus is on
the dominant form of multiprocessors, shared-memory multiprocessors, though
we introduce other types as well and discuss the broad issues that arise in any
multiprocessor. Here again, we explore a variety of techniques, focusing on the
important ideas first introduced in the 1980s as well as those that are developing
as this book goes to press.

We conclude this book with a variety of appendices that introduce you to im-
portant topics not covered in the eight chapters. Appendix A covers the topic of
floating-point arithmetic—a necessary ingredient for any high-performance ma-
chine. The incorrect implementation of floating-point divide in the Intel Pentium
processor, which led to an estimated impact in excess of $300 million, should
serve as a clear reminder about the importance of floating point! Appendix B cov-
ers the topic of vector machines. In the scientific market, such machines are a via-
ble alternative to the multiprocessors discussed in Chapter 8. Although vector
machines do not dominate supercomputing the way they did in the 1980s, they
still include many important concepts in pipelining, parallelism, and memory
systems that are useful in different machine organizations. Appendix C surveys
the most popular RISC instruction set architectures and contrasts the differences
among them, using DLX as a starting point. Appendix D examines the popular

1.10 Historical Perspective and References 53

80x86 instruction set—the most heavily used instruction set architecture in exist-
ence. Appendix D compares the design of the 80x86 instruction set with that of
the RISC machines described in Chapter 2 and in Appendix C. Finally, Appendix
E discusses implementation issues in coherence protocols.

1. 10 | Historical Perspective and References

If... history... teaches us anything, it is that man in his quest for knowledge and
progress, is determined and cannot be deterred.

John F. Kennedy, Address at Rice University (1962)

A section of historical perspectives closes each chapter in the text. This section
provides historical background on some of the key ideas presented in the chapter.
The authors may trace the development of an idea through a series of machines o
describe significant projects. If you're interested in examining the initial develop-
ment of an idea or machine or interested in further reading, references are provided
at the end of the section.

The First General-Purpose Electronic Computers

J. Presper Eckert and John Mauchly at the Moore School of the University of
Pennsylvania built the world’s first electronic general-purpose computer. This
machine, called ENIAC (Electronic Numerical Integrator and Calculator), was
funded by the U.S. Army and became operational during World War Il, but it was
not publicly disclosed until 1946. ENIAC was used for computing artillery firing
tables. The machine was enormous—100 feet long, 8 1/2 feet high, and several
feet wide—far beyond the size of any computer built today. Each of the 20 10-
digit registers was 2 feet long. In total, there were 18,000 vacuum tubes.

While the size was three orders of magnitude bigger than the size of machines
built today, it was more than five orders of magnitude slower, with an add taking
200 microseconds. The ENIAC provided conditional jumps and was programma-
ble, which clearly distinguished it from earlier calculators. Programming was
done manually by plugging up cables and setting switches and required from a
half-hour to a whole day. Data were provided on punched cards. The ENIAC was
limited primarily by a small amount of storage and tedious programming.

In 1944, John von Neumann was attracted to the ENIAC project. The group
wanted to improve the way programs were entered and discussed storing
programs as numbers; von Neumann helped crystallize the ideas and wrote a
memo proposing a stored-program computer called EDVAC (Electronic Discrete
Variable Automatic Computer). Herman Goldstine distributed the memo and put
von Neumann’s name on it, much to the dismay of Eckert and Mauchly, whose
names were omitted. This memo has served as the basis for the commonly usec
term von Neumann computefhe authors and several early inventors in the

54

Chapter 1 Fundamentals of Computer Design

computer field believe that this term gives too much credit to von Neumann, who
wrote up the ideas, and too little to the engineers, Eckert and Mauchly, who
worked on the machines. For this reason, this term will not appear in this book.

In 1946, Maurice Wilkes of Cambridge University visited the Moore School
to attend the latter part of a series of lectures on developments in electronic com-
puters. When he returned to Cambridge, Wilkes decided to embark on a project to
build a stored-program computer named EDSAC, for Electronic Delay Storage
Automatic Calculator. The EDSAC became operational in 1949 and was the
world’s first full-scale, operational, stored-program computer [Wilkes, Wheeler,
and Gill 1951; Wilkes 1985, 1995]. (A small prototype called the Mark |, which
was built at the University of Manchester and ran in 1948, might be called the
first operational stored-program machine.) The EDSAC was an accumulator-
based architecture. This style of instruction set architecture remained popular un-
til the early 1970s. (Chapter 2 starts with a brief summary of the EDSAC instruc-
tion set.)

In 1947, Eckert and Mauchly applied for a patent on electronic computers.
The dean of the Moore School, by demanding the patent be turned over to the
university, may have helped Eckert and Mauchly conclude they should leave.
Their departure crippled the EDVAC project, which did not become operational
until 1952.

Goldstine left to join von Neumann at the Institute for Advanced Study at
Princeton in 1946. Together with Arthur Burks, they issued a report based on the
1944 memo [1946]. The paper led to the IAS machine built by Julian Bigelow at
Princeton’s Institute for Advanced Study. It had a total of 1024 40-bit words and
was roughly 10 times faster than ENIAC. The group thought about uses for the
machine, published a set of reports, and encouraged visitors. These reports and
visitors inspired the development of a number of new computers. The paper by
Burks, Goldstine, and von Neumann was incredible for the period. Reading it to-
day, you would never guess this landmark paper was written 50 years ago, as
most of the architectural concepts seen in modern computers are discussed there.

Recently, there has been some controversy about John Atanasoff, who built a
small-scale electronic computer in the early 1940s [Atanasoff 1940]. His ma-
chine, designed at lowa State University, was a special-purpose computer that
was never completely operational. Mauchly briefly visited Atanasoff before he
built ENIAC. The presence of the Atanasoff machine, together with delays in fil-
ing the ENIAC patents (the work was classified and patents could not be filed un-
til after the war) and the distribution of von Neumann’s EDVAC paper, were used
to break the Eckert-Mauchly patent [Larson 1973]. Though controversy still
rages over Atanasoff’'s role, Eckert and Mauchly are usually given credit for
building the first working, general-purpose, electronic computer [Stern 1980].
Atanasoff, however, demonstrated several important innovations included in later
computers. One of the most important was the use of a binary representation for
numbers. Atanasoff deserves much credit for his work, and he might fairly be
given credit for the world’s first special-purpose electronic computer. Another

1.10 Historical Perspective and References 55

early machine that deserves some credit was a special-purpose machine built by
Konrad Zuse in Germany in the late 1930s and early 1940s. This machine was
electromechanical and, because of the war, never extensively pursued.

In the same time period as ENIAC, Howard Aiken was designing an electro-
mechanical computer called the Mark-I at Harvard. The Mark-1 was built by a
team of engineers from IBM. He followed the Mark-1 by a relay machine, the
Mark-11, and a pair of vacuum tube machines, the Mark-lll and Mark-IV. The
Mark-11l and Mark-1V were being built after the first stored-program machines.
Because they had separate memories for instructions and data, the machines wer
regarded as reactionary by the advocates of stored-program computers. The tern
Harvard architecturewas coined to describe this type of machine. Though clear-
ly different from the original sense, this term is used today to apply to machines
with a single main memory but with separate instruction and data caches.

The Whirlwind project [Redmond and Smith 1980] began at MIT in 1947 and
was aimed at applications in real-time radar signal processing. While it led to
several inventions, its overwhelming innovation was the creation of magnetic
core memory, the first reliable and inexpensive memory technology. Whirlwind
had 2048 16-bit words of magnetic core. Magnetic cores served as the main
memory technology for nearly 30 years.

Commercial Developments

In December 1947, Eckert and Mauchly formed Eckert-Mauchly Computer Cor-
poration. Their first machine, the BINAC, was built for Northrop and was shown
in August 1949. After some financial difficulties, the Eckert-Mauchly Computer
Corporation was acquired by Remington-Rand, where they built the UNIVAC I,
designed to be sold as a general-purpose computer. First delivered in June 1951
the UNIVAC | sold for $250,000 and was the first successful commercial com-
puter—48 systems were built! Today, this early machine, along with many other
fascinating pieces of computer lore, can be seen at the Computer Museum in
Boston, Massachusetts.

IBM, which earlier had been in the punched card and office automation busi-
ness, didn’t start building computers until 1950. The first IBM computer, the
IBM 701, shipped in 1952 and eventually sold 19 units. In the early 1950s, many
people were pessimistic about the future of computers, believing that the market
and opportunities for these “highly specialized” machines were quite limited.

Several books describing the early days of computing have been written by the
pioneers [Wilkes 1985, 1995; Goldstine 1972]. There are numerous independent
histories, often built around the people involved [Slater 1987], as well as a jour-
nal, Annals of the History of Computinggvoted to the history of computing.

The history of some of the computers invented after 1960 can be found in
Chapter 2 (the IBM 360, the DEC VAX, the Intel 80x86, and the early RISC
machines), Chapters 3 and 4 (the pipelined processors, including Stretch and the
CDC 6600), and Appendix B (vector processors including the TI ASC, CDC Star,
and Cray processors).

56

Chapter 1 Fundamentals of Computer Design

Development of Quantitative Performance Measures:
Successes and Failures

In the earliest days of computing, designers set performance goals—ENIAC was
to be 1000 times faster than the Harvard Mark-1, and the IBM Stretch (7030) was
to be 100 times faster than the fastest machine in existence. What wasn't clear,
though, was how this performance was to be measured. In looking back over the
years, it is a consistent theme that each generation of computers obsoletes the
performance evaluation techniques of the prior generation.

The original measure of performance was time to perform an individual oper-
ation, such as addition. Since most instructions took the same execution time, the
timing of one gave insight into the others. As the execution times of instructions
in a machine became more diverse, however, the time for one operation was no
longer useful for comparisons. To take these differences into accoumstraia-
tion mixwas calculated by measuring the relative frequency of instructions in a
computer across many programs. The Gibson mix [Gibson 1970] was an early
popular instruction mix. Multiplying the time for each instruction times its
weight in the mix gave the user theerage instruction execution timg@f mea-
sured in clock cycles, average instruction execution time is the same as average
CPIl.) Since instruction sets were similar, this was a more accurate comparison
than add times. From average instruction execution time, then, it was only a small
step to MIPS (as we have seen, the one is the inverse of the other). MIPS has the
virtue of being easy for the layman to understand, hence its popularity.

As CPUs became more sophisticated and relied on memory hierarchies and
pipelining, there was no longer a single execution time per instruction; MIPS
could not be calculated from the mix and the manual. The next step was bench-
marking using kernels and synthetic programs. Curnow and Wichmann [1976]
created the Whetstone synthetic program by measuring scientific programs writ-
ten in Algol 60. This program was converted to FORTRAN and was widely used
to characterize scientific program performance. An effort with similar goals to
Whetstone, the Livermore FORTRAN Kernels, was made by McMahon [1986]
and researchers at Lawrence Livermore Laboratory in an attempt to establish a
benchmark for supercomputers. These kernels, however, consisted of loops from
real programs.

As it became clear that using MIPS to compare architectures with different in-
structions sets would not work, a notion of relative MIPS was created. When the
VAX-11/780 was ready for announcement in 1977, DEC ran small benchmarks
that were also run on an IBM 370/158. IBM marketing referred to the 370/158 as
a 1-MIPS computer, and since the programs ran at the same speed, DEC market-
ing called the VAX-11/780 a 1-MIPS computer. Relative MIPS for a machine M
was defined based on some reference machine as

Performancg,

= e X
MIPSw Performancgerence MIPSreterence

1.10 Historical Perspective and References 57

The popularity of the VAX-11/780 made it a popular reference machine for rela-
tive MIPS, especially since relative MIPS for a 1-MIPS computer is easy to
calculate: If a machine was five times faster than the VAX-11/780, for that bench-
mark its rating would be 5 relative MIPS. The 1-MIPS rating was unquestioned
for four years, until Joel Emer of DEC measured the VAX-11/780 under a time-
sharing load. He found that the VAX-11/780 native MIPS rating was 0.5. Subse-
guent VAXes that run 3 native MIPS for some benchmarks were therefore called
6-MIPS machines because they run six times faster than the VAX-11/780. By the
early 1980s, the term MIPS was almost universally used to mean relative MIPS.

The 1970s and 1980s marked the growth of the supercomputer industry, which
was defined by high performance on floating-point-intensive programs. Average
instruction time and MIPS were clearly inappropriate metrics for this industry,
hence the invention of MFLOPS. Unfortunately customers quickly forget the
program used for the rating, and marketing groups decided to start quoting peak
MFLOPS in the supercomputer performance wars.

SPEC (System Performance and Evaluation Cooperative) was founded in the
late 1980s to try to improve the state of benchmarking and make a more valid ba-
sis for comparison. The group initially focused on workstations and servers in the
UNIX marketplace, and that remains the primary focus of these benchmarks to-
day. The first release of SPEC benchmarks, now called SPEC89, was a substan
tial improvement in the use of more realistic benchmarks. SPEC89 was replaced
by SPEC92. This release enlarged the set of programs, made the inputs to some
benchmarks bigger, and specified new run rules. To reduce the large number of
benchmark-specific compiler flags and the use of targeted optimizations, in 1994
SPEC introduced rules for compilers and compilation switches to be used in de-
termining the SPEC92 baseline performance:

1. The optimization options are safe: it is expected that they could generally be
used on any program.
2. The same compiler and flags are used for all the benchmarks.

3. No assertion flags, which would tell the compiler some fact it could not derive,
are allowed.

4. Flags that allow inlining of library routines normally considered part of the lan-
guage are allowed, though other such inlining hints are disallowed by rule 5.

5. No program names or subroutine names are allowed in flags.
6. Feedback-based optimization is not allowed.

7. Flags that change the default size of a data item (for example, single precision
to double precision) are not allowed.

58

Chapter 1 Fundamentals of Computer Design

Specifically permitted are flags that direct the compiler to compile for a particular
implementation and flags that allow the compiler to relax certain numerical
accuracy requirements (such as left-to-right evaluation). The intention is that the
baseline results are what a casual user could achieve without extensive effort.

SPEC also has produced system-oriented benchmarks that can be used to
benchmark a system including 1/0 and OS functions, as well as a throughput-
oriented measure (SPECrate), suitable for servers. What has become clear is that
maintaining the relevance of these benchmarks in an area of rapid performance
improvement will be a continuing investment.

Implementation-Independent Performance Analysis

As the distinction between architecture and implementation pervaded the com-
puting community in the 1970s, the question arose whether the performance of
an architecture itself could be evaluated, as opposed to an implementation of the
architecture. Many of the leading people in the field pursued this notion. One of
the ambitious studies of this question performed at Carnegie Mellon University is
summarized in Fuller and Burr [1977]. Three quantitative measures were invented
to scrutinize architectures:

« S—Number of bytes for program code

« M—Number of bytes transferred between memory and the CPU during pro-
gram execution for code and data (S measures size of code at compile time,
while M is memory traffic during program execution.)

« R—Number of bytes transferred between registers in a canonical model of a
CPU

Once these measures were taken, a weighting factor was applied to them to
determine which architecture was “best.” The VAX architecture was designed in
the height of popularity of the Carnegie Mellon study, and by those measures it
does very well. Architectures created since 1985, however, have poorer measures
than the VAX using these metrics, yet their implementations do well against the
VAX implementations. For example, Figure 1.20 compares S, M, and CPU time
for the VAXstation 3100, which uses the VAX instruction set, and the DECstation
3100, which doesn't. The DECstation 3100 is about three to five times faster,
even though its S measure is 35% to 70% worse and its M measure is 5% to 15%
worse. The attempt to evaluate architecture independently of implementation was
a valiant, if not successful, effort.

1.10 Historical Perspective and References 59

M
S (megabytes code + CPU time
(code size in bytes) data transferred) (in secs)
Program VAX 3100 DEC 3100 VAX 3100 DEC3100 VAX3100 DEC 3100
Gnu C Compiler 409,600 688,128 18 21 291 90
Common TeX 158,720 217,088 67 78 449 95
spice 223,232 372,736 99 106 352 94

FIGURE 1.20 Code size and CPU time of the VAXstation 3100 and DECstation 3100 for Ghu C Compiler, TeX, and
spice. Both machines were announced the same day by the same company, and they run the same operating system and
similar technology. The difference is in the instruction sets, compilers, clock cycle time, and organization.

References

AMDAHL, G. M. [1967]. “Validity of the single processor approach to achieving large scale comput-
ing capabilities,”Proc. AFIPS 1967 Spring Joint Computer Conf.(8@ril), Atlantic City, N.J.,
483-485.

ATANASOFF, J. V. [1940]. “Computing machine for the solution of large systems of linear equations,”
Internal Report, lowa State University, Ames.

BELL, C. G. [1984]. “The mini and micro industrie$£EE Computef7:10 (October), 14-30.

BELL, C. G., J. C. MDGE, AND J. E. McNAMARA [1978]. A DEC View of Computer Engineering
Digital Press, Bedford, Mass.

BURKS, A. W., H. H. GLDSTINE, AND J.VON NEUMANN [1946]. “Preliminary discussion of the logi-
cal design of an electronic computing instrument,” Report to the U.S. Army Ordnance Department,
p. 1; also appears Papers of John von Neuma, Aspray and A. Burks, eds., MIT Press, Cam-
bridge, Mass., and Tomash Publishers, Los Angeles, Calif., 1987, 97-146.

CURNOW, H. J.AND B. A. WICHMANN [1976]. “A synthetic benchmarkThe Computer J19:1.

FLEMMING, P. J.AND J. J. WALLACE [1986]. “How not to lie with statistics: The correct way to
summarize benchmarks result€8mm. ACM29:3 (March), 218-221.

FULLER, S. H.AND W. E. BURR [1977]. “Measurement and evaluation of alternative computer
architectures,Computerl0:10 (October), 24-35.

GiBsoN, J. C. [1970]. “The Gibson mix,” Rep. TR. 00.2043, IBM Systems Development Division,
Poughkeepsie, N.Y. (Research done in 1959.)

GOLDSTINE, H. H. [1972].The Computer: From Pascal to von Neuma®nnceton University Press,
Princeton, N.J.

JAIN, R. [1991].The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation, and Modelifgey, New York.

LARsON, E. R. [1973]. “Findings of fact, conclusions of law, and order for judgment,” File No. 4-67,
Civ. 138,Honeywell v. Sperry Rand and lllinois Scientific Developmé:8, District Court for the
State of Minnesota, Fourth Division (October 19).

LuBECK, O., J. MOORE, AND R. MENDEZ[1985]. “A benchmark comparison of three supercomputers:
Fujitsu VP-200, Hitachi S810/20, and Cray X-MP/2@mputerl8:12 (December), 10-24.

McCMAHON, F. M. [1986]. “The Livermore FORTRAN kernels: A computer test of numerical perfor-
mance range,” Tech. Rep. UCRL-55745, Lawrence Livermore National Laboratory, Univ. of Cali-
fornia, Livermore (December).

RebMOND, K. C.AND T. M. SviTH [1980]. Project Whirlwind—The History of a Pioneer Computer,

60

Chapter 1 Fundamentals of Computer Design

Digital Press, Boston.
SHURKIN, J. [1984] Engines of the Mind: A History of the Computét. W. Norton, New York.
SLATER, R. [1987].Portraits in Silicon MIT Press, Cambridge, Mass.

SmITH, J. E. [1988]. “Characterizing computer performance with a single numBenim. ACM
31:10 (October), 1202-1206.

SPEC [1989]SPEC Benchmark Suite Release D€tober 2, 1989.
SPEC [1994]SPEC Newslettgdune).

STeRN, N. [1980]. “Who invented the first electronic digital computefyinals of the History of
Computing2:4 (October), 375-376.

ToumA, W. R [1993]. The Dynamics of the Computer Industry: Modeling the Supply of Work-
stations and Their Componenkuwer Academic, Boston.

WEICKER, R. P. [1984]. “Dhrystone: A synthetic systems programming benchmadgim. ACM
27:10 (October), 1013-1030.

WILKES, M. V. [1985].Memoirs of a Computer PioneéWIT Press, Cambridge, Mass.
WILKES, M. V. [1995].Computing Perspectivellorgan Kaufmann, San Francisco.

WILKES, M. V., D. J. WHEELER, AND S. GLL [1951]. The Preparation of Programs for an Electronic
Digital Computer Addison-Wesley, Cambridge, Mass.

EXERCISES

Each exercise has a difficulty rating in square brackets and a list of the chapter sections it

depends on in angle brackets. See the Preface for a description of the difficulty scale.

1.1 [20/10/10/15] <1.6> In this exercise, assume that we are considering enhancing a ma-
chine by adding a vector mode to it. When a computation is run in vector mode it is 20 times
faster than the normal mode of execution. We call the percentage of time that could be spent

using vector mode thgercentage of vectorizatidrectors are discussed in Appendix B, but
you don’t need to know anything about how they work to answer this question!

a. [20] <1.6> Draw a graph that plots the speedup as a percentage of the computation

performed in vector mode. Label thaxis “Net speedup” and label thaxis “Percent
vectorization.”

b. [10] <1.6> What percentage of vectorization is needed to achieve a speedup of 2?

c. [10] <1.6> What percentage of vectorization is needed to achieve one-half the maxi-
mum speedup attainable from using vector mode?

d. [15] <1.6> Suppose you have measured the percentage of vectorization for programs
to be 70%. The hardware design group says they can double the speed of the vector

rate with a significant additional engineering investment. You wonder whether the

compiler crew could increase the use of vector mode as another approach to increasing

performance. How much of an increase in the percentage of vectorization (relative to

current usage) would you need to obtain the same performance gain? Which invest-

ment would you recommend?

1.2 [15/10] <1.6> Assume—as in the Amdahl's Law Example on page 30—that we make

an enhancement to a computer that improves some mode of execution by a factor of 10. En-

hanced mode is used 50% of the time, measured as a percentage of the executioertime

Exercises 61

the enhanced mode is in uRecall that Amdahl's Law depends on the fraction of the orig-
inal, unenhanced@xecution time that could make use of enhanced mode. Thus, we cannot
directly use this 50% measurement to compute speedup with Amdahl’'s Law.

a. [15] <1.6> What is the speedup we have obtained from fast mode?

b. [10] <1.6> What percentage of the original execution time has been converted to fast
mode?

1.3 [15] <1.6> Show that the problem statements in the Examples on page 31 and page 33
are the same.

1.4 [15] <1.6> Suppose we are considering a change to an instruction set. The base ma-
chine initially has only loads and stores to memory, and all operations work on the registers.
Such machines are callemhd-storemachines (see Chapter 2). Measurements of the load-
store machine showing tlrestruction mixand clock cycle counts per instruction are given

in Figure 1.17 on page 45.

Let’'s assume that 25% of tleithmetic logic unit{ALU) operations directly use a loaded
operand that is not used again.

We propose adding ALU instructions that have one source operand in memory. These new
register-memory instructiortzave a clock cycle count of 2. Suppose that the extended in-
struction set increases the clock cycle count for branches by 1, but it does not affect the
clock cycle time. (Chapter 3, on pipelining, explains why adding register-memory instruc-
tions might slow down branches.) Would this change improve CPU performance?

1.5 [15] <1.7> Assume that we have a machine that with a perfect cache behaves as given
in Figure 1.17.

With a cache, we have measured that instructions have a miss rate of 5%, data reference:
have a miss rate of 10%, and the miss penalty is 40 cycles. Find the CPI for each instruction
type with cache misses and determine how much faster the machine is with no cache misse:
versus with cache misses.

1.6 [20] <1.6> After graduating, you are asked to become the lead computer designer at
Hyper Computers, Inc. Your study of usage of high-level language constructs suggests that
procedure calls are one of the most expensive operations. You have invented a scheme tha
reduces the loads and stores normally associated with procedure calls and returns. The firs
thing you do is run some experiments with and without this optimization. Your experiments
use the same state-of-the-art optimizing compiler that will be used with either version of
the computer. These experiments reveal the following information:

« The clock rate of the unoptimized version is 5% higher.
« Thirty percent of the instructions in the unoptimized version are loads or stores.

= The optimized version executes two-thirds as many loads and stores as the unopti-
mized version. For all other instructions the dynamic execution counts are unchanged.

» Allinstructions (including load and store) take one clock cycle.
Which is faster? Justify your decision quantitatively.

1.7 [15/15/8/12] <1.6,1.8> The Whetstone benchmark contains 195,578 basic floating-

Chapter 1 Fundamentals of Computer Design

point operations in a single iteration, divided as shown in Figure 1.21.

Operation Count
Add 82,014
Subtract 8,229
Multiply 73,220
Divide 21,399
Convert integer to FP 6,006
Compare 4,710
Total 195,578

FIGURE 1.21 The frequency of floating-point
operations in the Whetstone benchmark.

Whetstone was run on a Sun 3/75 using the F77 compiler with optimization turned on. The
Sun 3/75 is based on a Motorola 68020 running at 16.67 MHz, and it includes a floating-
point coprocessor. The Sun compiler allows the floating point to be calculated with the co-
processor or using software routines, depending on compiler flags. A single iteration of
Whetstone took 1.08 seconds using the coprocessor and 13.6 seconds using software. As-
sume that the CPI using the coprocessor was measured to be 10, while the CPI using soft-
ware was measured to be 6.

a. [15] <1.6,1.8> What is the MIPS rating for both runs?

o

[15] <1.6> What is the total number of instructions executed for both runs?

o

[8] <1.6> On the average, how many integer instructions does it take to perform a
floating-point operation in software?

d. [12] <1.8> What is the MFLOPS rating for the Sun 3/75 with the floating-point co-
processor running Whetstone? (Assume all the floating-point operations in Figure
1.21 count as one operation.)

1.8 [15/10/15/15/15] <1.3,1.4> This exercise estimates the complete packaged cost of a
microprocessor using the die cost equation and adding in packaging and testing costs. We
begin with a short description of testing cost and follow with a discussion of packaging
issues.

Testing is the second term of the chip cost equation:

Cost of die + Cost of testing die + Cost of packaging
Final test yield

Cost of integrated circuit :

Testing costs are determined by three components:

Cost of testing per how Average die test time
Die yield

Cost of testing die=

Exercises 63

Since bad dies are discarded, die yield is in the denominator in the equation—the good must
shoulder the costs of testing those that fail. (In practice, a bad die may take less time to test,
but this effect is small, since moving the probes on the die is a mechanical process that takes
a large fraction of the time.) Testing costs about $50 to $500 per hour, depending on the
tester needed. High-end designs with many high-speed pins require the more expensive
testers. For higher-end microprocessors test time would run $300 to $500 per hour. Die
tests take about 5 to 90 seconds on average, depending on the simplicity of the die and the
provisions to reduce testing time included in the chip.

The cost of a package depends on the material used, the number of pins, and the die ares
The cost of the material used in the package is in part determined by the ability to dissipate
power generated by the die. For examplelaatic quad flat packPQFP) dissipating less

than 1 watt, with 208 or fewer pins, and containing a die up to 1 cm on a side costs $2 in
1995. A cerami@in grid array (PGA) can handle 300 to 600 pins and a larger die with
more power, but it costs $20 to $60. In addition to the cost of the package itself is the cost
of the labor to place a die in the package and then bond the pads to the pins, which adds
from a few cents to a dollar or two to the cost. Some good dies are typically lost in the as-
sembly process, thereby further reducing yield. For simplicity we assume the final test yield
is 1.0; in practice it is at least 0.95. We also ignore the cost of the final packaged test.

This exerciseequires the information provided in Figure 1.22.

Microprocessor I?rlﬁrﬁge)a Pins Technology Estimated wafer cost ($) Package
MIPS 4600 77 208 CMOS, Q63M 3200 PQFP
PowerPC 603 85 240 CMOS, @.64M 3400 PQFP

HP 71x0 196 504 CMOS, Q83M 2800 Ceramic PGA
Digital 21064A 166 431 CMOS, 054.5M 4000 Ceramic PGA
SuperSPARC/60 256 293 BICMOS, 0,6.5M 4000 Ceramic PGA

FIGURE 1.22 Characteristics of microprocessors. The technology entry is the process type, line width, and
number of interconnect levels.

a. [15] <1.4> For each of the microprocessors in Figure 1.22, compute the number of
good chips you would get per 20-cm wafer using the model on page 12. Assume a de-
fect density of one defect per €na wafer yield of 95%, and assumnes 3.

b. [10] <1.4> For each microprocessor in Figure 1.22, compute the cost per projected
good die before packaging and testing. Use the number of good dies per wafer from
part (a) of this exercise and the wafer cost from Figure 1.22.

c. [15]<1.3> Both package cost and test cost are proportional to pin count. Using the ad-
ditional assumption shown in Figure 1.23, compute the cost per good, tested, and
packaged part using the costs per good die from part (b) of this exercise.

d. [15] <1.3> There are wide differences in defect densities between semiconductor
manufacturers. Find the costs for the largest processor in Figure 1.22 (total cost in-
cluding packaging), assuming defect densities are 0.6 peamthassuming that de-
fect densities are 1.2 per ém

64

Chapter 1 Fundamentals of Computer Design

Package type Pin count Package cost Testtime Test cost per hour
$) (secs) ®)
PQFP <220 12 10 300
PQFP <300 20 10 320
Ceramic PGA <300 30 10 320
Ceramic PGA <400 40 12 340
Ceramic PGA <450 50 13 360
Ceramic PGA <500 60 14 380
Ceramic PGA >500 70 15 400

FIGURE 1.23 Package and test characteristics.

e. [15] <1.3> The parameter depends on the complexity of the process. Additional
metal levels result in increased complexity. For exanophight be approximated by
the number of interconnect levels. For the Digital 21064a with 4.5 levels of intercon-
nect, estimate the cost of working, packaged, and testedalie 8 and ifa = 4.5.
Assume a defect density of 0.8 defects pe%.cm

1.9 [12] <1.5> One reason people may incorrectly average rates with an arithmetic mean
is that it always gives an answer greater than or equal to the geometric mean. Show that for
any two positive integers, a and b, the arithmetic mean is always greater than or equal to the
geometric mean. When are the two equal?

1.10 [12] <1.5> For reasons similar to those in Exercise 1.9, some people use arithmetic
instead of the harmonic mean. Show that for any two positive rates, r and s, the arithmetic
mean is always greater than or equal to the harmonic mean. When are the two equal?

1.11 [15/15] <1.5> Some of the SPECfp92 performance results from the SPEC92 News-
letter of June 1994 [SPEC 94] are shown in Figure 1.24. The SPECratio is simply the run-
time for a benchmark divided into the VAX 11/780 time for that benchmark. The SPECfp92
number is computed as the geometric mean of the SPECratios. Let's see how a weighted
arithmetic mean compares.

a. [15] <1.5> Calculate the weights for a workload so that running times on the VAX-
11/780 will be equal for each of the 14 benchmarks (given in Figure 1.24).

b. [15] <1.5> Using the weights computed in part (a) of this exercise, calculate the
weighted arithmetic means of the execution times of the 14 programs in Figure 1.24.

1.12 [15/15/15] <1.6,1.8> Three enhancements with the following speedups are proposed
for a new architecture:

Speedup= 30
Speedup=20
Speedug= 10

Only one enhancement is usable at a time.

Exercises 65

VAX-11/780 DEC 3000 Model 800 IBM Powerstation Intel Xpress Pentium
Program name Time SPECratio 590 SPECratio 815\100 SPECratio
spice2g6 23,944 97 128 64
doduc 1,860 137 150 84
mdljdp2 7,084 154 206 98
waveb 3,690 123 151 57
tomcatv 2,650 221 465 74
ora 7,421 165 181 97
alvinn 7,690 385 739 157
ear 25,499 617 546 215
mdljsp2 3,350 76 96 48
swm256 12,696 137 244 43
su2cor 12,898 259 459 57
hydro2d 13,697 210 225 83
nasa’ 16,800 265 344 61
fpppp 9,202 202 303 119
Geometric mean 8,098 187 256 81

FIGURE 1.24 SPEC92 performance for SPECfp92. The DEC 3000 uses a 200-MHz Alpha microprocessor (21064) and
a 2-MB off-chip cache. The IBM Powerstation 590 uses a 66.67-MHz Power-2. The Intel Xpress uses a 100-MHz Pentium
with a 512-KB off-chip secondary cache. Data from SPEC [1994].

a. [15]<1.6> If enhancements 1 and 2 are each usable for 30% of the time, what fraction
of the time must enhancement 3 be used to achieve an overall speedup of 10?

b. [15] <1.6,1.8> Assume the distribution of enhancement usage is 30%, 30%, and 20%
for enhancements 1, 2, and 3, respectively. Assuming all three enhancements are in
use, for what fraction of the reduced execution time is no enhancement in use?

c. [15] <1.6> Assume for some benchmark, the fraction of use is 15% for each of en-
hancements 1 and 2 and 70% for enhancement 3. We want to maximize performance.
If only one enhancement can be implemented, which should it be? If two enhance-
ments can be implemented, which should be chosen?

1.13 [15/10/10/12/10] <1.6,1.8> Your company has a benchmark that is considered repre-
sentative of your typical applications. One of the older-model workstations does not have a
floating-point unit and must emulate each floating-point instruction by a sequence of inte-
ger instructions. This older-model workstation is rated at 120 MIPS on this benchmark. A
third-party vendor offers an attached processor that is intended to give a “mid-life kicker”
to your workstation. That attached processor executes each floating-point instruction on a
dedicated processor (i.e., no emulation is necessary). The workstation/attached processo!
rates 80 MIPS on the same benchmark. The following symbols are used to answer parts (a)-
(e) of this exercise.

66

Chapter 1 Fundamentals of Computer Design

I—Number of integer instructions executed on the benchmark.

F—Number of floating-point instructions executed on the benchmark.

Y—Number of integer instructions to emulate a floating-point instruction.

W—Time to execute the benchmark on the workstation alone.

B—Time to execute the benchmark on the workstation/attached processor combination.

a. [15] <1.6,1.8> Write an equation for the MIPS rating of each configuration using the
symbols above. Document your equation.

b. [10] <1.6> For the configuration without the coprocessor, we measure that EE8
Y =50, and W = 4. Find I.

c. [10] <1.6> What is the value of B?

d. [12]<1.6,1.8> What is the MFLOPS rating of the system with the attached processor
board?

e. [10] <1.6,1.8> Your colleague wants to purchase the attached processor board even
though the MIPS rating for the configuration using the board is less than that of the
workstation alone. Is your colleague’s evaluation correct? Defend your answer.

1.14 [15/15/10] <1.5,1.8> Assume the two programs in Figure 1.11 on page 24 each exe-
cute 100 million floating-point operations during execution.

a. [15] <1.5,1.8> Calculate the MFLOPS rating of each program.

b. [15] <1.5,1.8> Calculate the arithmetic, geometric, and harmonic means of MFLOPS
for each machine.

c. [10]<1.5,1.8> Which of the three means matches the relative performance of total ex-
ecution time?

1.15[10/12] <1.8,1.6> One problem cited with MFLOPS as a measure is that not all
FLOPS are created equal. To overcome this problem, normalized or weighted MFLOPS
measures were developed. Figure 1.25 shows how the authors of the “Livermore Loops”
benchmark calculate the number of normalized floating-point operations per program ac-
cording to the operations actually found in the source code. Thustiie MFLOPSat-

ing is not the same as tm®rmalized MFLOPSating reported in the supercomputer
literature, which has come as a surprise to a few computer designers.

Real FP operations Normalized FP operations
Add, Subtract, Compare, Multiply 1
Divide, Square root 4
Functions (Exp, Sin, ...) 8

FIGURE 1.25 Real versus normalized floating-point operations. The number of normal-
ized floating-point operations per real operation in a program used by the authors of the Liv-
ermore FORTRAN Kernels, or “Livermore Loops,” to calculate MFLOPS. A kernel with one
Add, one Divide, and one Sin would be credited with 13 normalized floating-point operations.
Native MFLOPS won't give the results reported for other machines on that benchmark.

Exercises 67

Let’'s examine the effects of this weighted MFLOPS measure. The spice program runs on
the DECstation 3100 in 94 seconds. The number of floating-point operations executed in
that program are listed in Figure 1.26.

Floating-point operation Times executed
addD 25,999,440
subD 18,266,439
mulD 33,880,810
divD 15,682,333
compareD 9,745,930
negD 2,617,846
absD 2,195,930
convertD 1,581,450
Total 109,970,178

FIGURE 1.26 Floating-point operations in spice.

a. [10] <1.8,1.6> What is the native MFLOPS for spice on a DECstation 3100?

b. [12] <1.8,1.6> Using the conversions in Figure 1.25, what is the normalized
MFLOPS?

1.16 [30] <1.5,1.8> Devise a program in C that gets the peak MIPS rating for a computer.
Run it on two machines to calculate the peak MIPS. Now run the SPEC92 gcc on both ma-
chines. How well do peak MIPS predict performance of gcc?

1.17 [30] <1.5,1.8> Devise a program in C or FORTRAN that gets the peak MFLOPS rat-
ing for a computer. Run it on two machines to calculate the peak MFLOPS. Now run the
SPEC92 benchmark spice on both machines. How well do peak MFLOPS predict perfor-
mance of spice?

1.18 [Discussion] <1.5> What is an interpretation of the geometric means of execution
times? What do you think are the advantages and disadvantages of using total execution
times versus weighted arithmetic means of execution times using equal running time on the
VAX-11/780 versus geometric means of ratios of speed to the VAX-11/780?

Instruction Set
Principles and
Examples

An Add the number in storage locatininto the accumulator.

E n If the number in the accumulator is greater than or equal to
zero execute next the order which stands in storage location
otherwise proceed serially.

Z Stop the machine and ring the warning bell.

Wilkes and Renwick
Selection from the List of 18 Machine
Instructions for the EDSA(949)

2.1 Introduction 69

2.2 Classifying Instruction Set Architectures 70
2.3 Memory Addressing 73
2.4 Operations in the Instruction Set 80
2.5 Type and Size of Operands 85
2.6 Encoding an Instruction Set 87
2.7 Crosscutting Issues: The Role of Compilers 89
2.8 Putting It All Together: The DLX Architecture 96
2.9 Fallacies and Pitfalls 108
2.10 Concluding Remarks 111
2.11 Historical Perspective and References 112

Exercises 118

21 | Introduction

In this chapter we concentrate on instruction set architecture—the portion of the
machine visible to the programmer or compiler writer. This chapter introduces
the wide variety of design alternatives available to the instruction set architect. In
particular, this chapter focuses on four topics. First, we present a taxonomy of in-
struction set alternatives and give some qualitative assessment of the advantage
and disadvantages of various approaches. Second, we present and analyze sor
instruction set measurements that are largely independent of a specific instruction
set. Third, we address the issue of languages and compilers and their bearing or
instruction set architecture. Finally, tRatting It All Togethesection shows how
these ideas are reflected in the DLX instruction set, which is typical of recent in-
struction set architectures. The appendices add four examples of these recent ar
chitectures—MIPS, Power PC, Precision Architecture, SPARC—and one older
architecture, the 80x86. Before we discuss how to classify architectures, we need
to say something about instruction set measurement.

Throughout this chapter, we examine a wide variety of architectural measure-
ments. These measurements depend on the programs measured and on th

70

Chapter 2 Instruction Set Principles and Examples

compilers used in making the measurements. The results should not be inter-
preted as absolute, and you might see different data if you did the measurement
with a different compiler or a different set of programs. The authors believe that
the measurements shown in these chapters are reasonably indicative of a class of
typical applications. Many of the measurements are presented using a small set of
benchmarks, so that the data can be reasonably displayed and the differences
among programs can be seen. An architect for a new machine would want to ana-
lyze a much larger collection of programs to make his architectural decisions. All
the measurements shown atgnamie—that is, the frequency of a measured
event is weighed by the number of times that event occurs during execution of the
measured program.

We begin by exploring how instruction set architectures can be classified and
analyzed.

2.2 | Classifying Instruction Set Architectures

The type of internal storage in the CPU is the most basic differentiation, so in this
section we will focus on the alternatives for this portion of the architecture. The
major choices are a stack, an accumulator, or a set of registers. Operands may be
named explicitly or implicitly: The operands irstack architecturare implicitly

on the top of the stack, in @etcumulator architecturene operand is implicitly

the accumulator, andeneral-purpose register architecturégsve only explicit
operands—either registers or memory locations. The explicit operands may be
accessed directly from memory or may need to be first loaded into temporary
storage, depending on the class of instruction and choice of specific instruction.
Figure 2.1 shows how the code seque@iceA + B would typically appear on

these three classes of instruction sets. As Figure 2.1 shows, there are really two
classes of register machines. One can access memory as part of any instruction,
calledregister-memonarchitecture, and one can access memory only with load
and store instructions, calléolad-storeor register-registerarchitecture. A third

class, not found in machines shipping today, keeps all operands in memory and is
called anemory-memorgrchitecture.

Register Register
Stack Accumulator (register-memory) (load-store)
Push A Load A Load R1A Load R1A
PushB Add B Add R1,B Load R2,B
Add Store C Store C,R1 Add R3,R1,R2
Pop C Store C,R3
FIGURE 2.1 The code sequence for C = A + B for four instruction sets. It is assumed

that A, B, and C all belong in memory and that the values of A and B cannot be destroyed.

2.2 Classifying Instruction Set Architectures 71

Although most early machines used stack or accumulator-style architectures,
virtually every machine designed after 1980 uses a load-store register architec-
ture. The major reasons for the emergence of general-purpose register (GPR) ma
chines are twofold. First, registers—like other forms of storage internal to the
CPU—are faster than memory. Second, registers are easier for a compiler to use
and can be used more effectively than other forms of internal storage. For exam-
ple, on a register machine the expressiorB) — (C+D) — (ExF) may be eval-
uated by doing the multiplications in any order, which may be more efficient
because of the location of the operands or because of pipelining concerns (see
Chapter 3). But on a stack machine the expression must be evaluated left to right,
unless special operations or swaps of stack positions are done.

More importantly, registers can be used to hold variables. When variables are
allocated to registers, the memory traffic reduces, the program speeds up (since
registers are faster than memory), and the code density improves (since a registe
can be named with fewer bits than can a memory location). Compiler writers
would prefer that all registers be equivalent and unreserved. Older machines
compromise this desire by dedicating registers to special uses, effectively de-
creasing the number of general-purpose registers. If the number of truly general-
purpose registers is too small, trying to allocate variables to registers will not be
profitable. Instead, the compiler will reserve all the uncommitted registers for use
in expression evaluation.

How many registers are sufficient? The answer of course depends on how they
are used by the compiler. Most compilers reserve some registers for expression
evaluation, use some for parameter passing, and allow the remainder to be allo-
cated to hold variables.

Two major instruction set characteristics divide GPR architectures. Both char-
acteristics concern the nature of operands for a typical arithmetic or logical in-
struction (ALU instruction). The first concerns whether an ALU instruction has
two or three operands. In the three-operand format, the instruction contains a re-
sult and two source operands. In the two-operand format, one of the operands is
both a source and a result for the operation. The second distinction among GPR
architectures concerns how many of the operands may be memory addresses i
ALU instructions. The number of memory operands supported by a typical ALU
instruction may vary from none to three. Combinations of these two attributes are
shown in Figure 2.2, with examples of machines. Although there are seven possi-
ble combinations, three serve to classify nearly all existing machines. As we
mentioned earlier, these three are register-register (also called load-store), register.
memory, and memory-memory.

72 Chapter 2 Instruction Set Principles and Examples

Number of memory Maximum number of
addresses operands allowed Examples
0 3 SPARC, MIPS, Precision Architecture, PowerPC, ALPHA
1 2 Intel 80x86, Motorola 68000
2 2 VAX (also has three-operand formats)
3 3 VAX (also has two-operand formats)

FIGURE 2.2 Possible combinations of memory operands and total operands per typical ALU instruction with ex-

amples of machines. Machines with no memory reference per ALU instruction are called load-store or register-register
machines. Instructions with multiple memory operands per typical ALU instruction are called register-memory or memory-
memory, according to whether they have one or more than one memory operand.

The advantages and disadvantages of each of these alternatives are shown in
Figure 2.3. Of course, these advantages and disadvantages are not absolutes:
They are qualitative and their actual impact depends on the compiler and imple-
mentation strategy. A GPR machine with memory-memory operations can easily
be subsetted by the compiler and used as a register-register machine. One of the
most pervasive architectural impacts is on instruction encoding and the number
of instructions needed to perform a task.We will see the impact of these architec-
tural alternatives on implementation approaches in Chapters 3 and 4.

Type Advantages Disadvantages

Register- Simple, fixed-length instruction encoding. SimpleHigher instruction count than architectures with
register code-generation model. Instructions take similarmemory references in instructions. Some instruc-
(0,3) numbers of clocks to execute (see Ch 3). tions are short and bit encoding may be wasteful.
Register- Data can be accessed without loading first. Operands are not equivalent since a source oper-
memory Instruction format tends to be easy to encode anahd in a binary operation is destroyed. Encoding a
(1,2) yields good density. register number and a memory address in each

instruction may restrict the number of registers.
Clocks per instruction varies by operand location.

Memory- Most compact. Doesn’'t waste registers for Large variation in instruction size, especially far
memory temporaries. three-operand instructions. Also, large variation
(3,3) in work per instruction. Memory accesses credte

memory bottleneck.

FIGURE 2.3 Advantages and disadvantages of the three most common types of general-purpose register ma-
chines. The notation (m, n) means m memory operands and n total operands. In general, machines with fewer alternatives
make the compiler’s task simpler since there are fewer decisions for the compiler to make. Machines with a wide variety of
flexible instruction formats reduce the number of bits required to encode the program. A machine that uses a small number
of bits to encode the program is said to have good instruction density—a smaller number of bits do as much work as a larger
number on a different architecture. The number of registers also affects the instruction size.

2.3 Memory Addressing 73

Summary: Classifying Instruction Set Architectures

Here and in subsections at the end of sections 2.3 to 2.7 we summarize those
characteristics we would expect to find in a new instruction set architecture,
building the foundation for the DLX architecture introduced in section 2.8. From
this section we should clearly expect the use of general-purpose registers. Figure
2.3, combined with the following chapter on pipelining, lead to the expectation of
a register-register (also called load-store) architecture.

With the class of architecture covered, the next topic is addressing operands.

2.3 | Memory Addressing

Independent of whether the architecture is register-register or allows any operand
to be a memory reference, it must define how memory addresses are interpretec
and how they are specified. We deal with these two topics in this section. The

measurements presented here are largely, but not completely, machine indepen
dent. In some cases the measurements are significantly affected by the compiler
technology. These measurements have been made using an optimizing compiler
since compiler technology is playing an increasing role.

Interpreting Memory Addresses

How is a memory address interpreted? That is, what object is accessed as &
function of the address and the length? All the instruction sets discussed in this
book are byte addressed and provide access for bytes (8 bits), half words (16
bits), and words (32 bits). Most of the machines also provide access for double
words (64 bits).

There are two different conventions for ordering the bytes within a word.
Little Endian byte order puts the byte whose address is “x...x00" at the least-
significant position in the word (the little endig Endianbyte order puts the
byte whose address is “x...x00” at the most-significant position in the word (the
big end). In Big Endian addressing, the address of a datum is the address of the
most-significant byte; while in Little Endian, the address of a datum is the ad-
dress of the least-significant byte. When operating within one machine, the byte
order is often unnoticeable—only programs that access the same locations as
both words and bytes can notice the difference. Byte order is a problem when ex-
changing data among machines with different orderings, however. Little Endian
ordering also fails to match normal ordering of words when strings are compared.
Strings appear “SDRAWKCAB?” in the registers.

In many machines, accesses to objects larger than a byte nalisfneel An
access to an object of sizdbytes at byte addregsis aligned ifA mods =0.

Figure 2.4shows the addresses at which an access is aligned or misaligned.

74

Chapter 2 Instruction Set Principles and Examples

Object addressed Aligned at byte offsets Misaligned at byte offsets
Byte 0,1,2,3,4,5,6,7 Never

Half word 0,2,4,6 1,3,5,7

Word 0,4 1,2,3,5,6,7

Double word 0 1,2,3,4,5,6,7

FIGURE 2.4 Aligned and misaligned accesses of objects. The byte offsets are specified
for the low-order three bits of the address.

Why would someone design a machine with alignment restrictions? Misalign-
ment causes hardware complications, since the memory is typically aligned on a
word or double-word boundary. A misaligned memory access will, therefore,
take multiple aligned memory references.Thus, even in machines that allow mis-
aligned access, programs with aligned accesses run faster.

Even if data are aligned, supporting byte and half-word accesses requires an
alignment network to align bytes and half words in registers. Depending on the
instruction, the machine may also need to sign-extend the quantity. On some ma-
chines a byte or half word does not affect the upper portion of a register. For
stores only the affected bytes in memory may be altered. (Although all the ma-
chines discussed in this book permit byte and half-word accesses to memory,
only the Intel 80x86 supports ALU operations on register operands with a size
shorter than a word.)

Addressing Modes

We now know what bytes to access in memory given an address. In this sub-

section we will look at addressing modes—how architectures specify the address

of an object they will access. In GPR machines, an addressing mode can specify a
constant, a register, or a location in memory. When a memory location is used,

the actual memory address specified by the addressing mode is cakdéfedd¢he

tive address

Figure 2.5 shows all the data-addressing modes that have been used in recent
machines. Immediates or literals are usually considered memory-addressing
modes (even though the value they access is in the instruction stream), although
registers are often separated. We have kept addressing modes that depend on the
program counter, calledlC-relative addressingseparate. PC-relative addressing
is used primarily for specifying code addresses in control transfer instructions.
The use of PC-relative addressing in control instructions is discussed in section
2.4.

Figure 2.5 shows the most common names for the addressing modes, though
the names differ among architectures. In this figure and throughout the book, we
will use an extension of the C programming language as a hardware description
notation. In this figure, only one non-C feature is used: The left arrgus(used

2.3 Memory Addressing

75

Addressing
mode Example instruction Meaning When used
Register Add R4,R3 Regs[R4] — Regs[R4]+ When a value is in a register.
Regs[R3]
Immediate Add R4,#3 Regs[R4] — Regs[R4]+3 For constants.
Displacement Add R4,100(R1) Regs[R4] — Regs[R4]+ Accessing local variables.
Mem[100+Regs[R1]]
Register deferred Add R4,(R1) Regs[R4] — Regs[R4]+ Accessing using a pointer or a
or indirect Mem[Regs[R1]] computed address.
Indexed AddR3,(R1+R2) Regs[R3] ~ Regs[R3]+ Sometimes useful in array
Mem[Regs[R1]+Regs[R2]] addressingR1 = base of array;
R2 = index amount.
Direct or Add R1,(1001) Regs[R1] ~ Regs[R1]+ Sometimes useful for accessing
absolute Mem[1001] static data; address constant may
need to be large.
Memory indirect Add R1,@(R3) Regs[R1] ~ Regs[R1]+ If R3is the address of a pointe
or memory Mem[Mem[Regs[R3]]] p, then mode yieldsp.
deferred
Autoincrement Add R1,(R2)+ Regs[R1] ~Regs[R1]+ Useful for stepping through ar-
Mem[Regs[R2]] rays within a loopR2 points to
Regs[R2] —Regs[R2]+ d start of array; each reference in-
crementR2 by size of an ele-
ment,d.
Autodecrement Add R1,—+R2) Regs[R2] ~Regs[R2}- d Same use as autoincrement.
Regs[R1] ~ Regs[R1]+ Autodecrement/increment can
Mem[Regs[R2]] also act as push/pop to imple-
ment a stack.
Scaled Add Regs[R1] ~ Regs[R1]+ Used to index arrays. May be
R1,100(R2)[R3] Mem([100+Regs[R2]+Regs applied to any indexed address-
[R3]* d ing mode in some machines.

FIGURE 2.5 Selection of addressing modes with examples, meaning, and usage. The extensions to C used in the
hardware descriptions are defined above. In autoincrement/decrement and scaled addressing modes, the variable d desig-
nates the size of the data item being accessed (i.e., whether the instruction is accessing 1, 2, 4, or 8 bytes); this means that
these addressing modes are only useful when the elements being accessed are adjacent in memory. In our measurements,
we use the first name shown for each mode.

for assignment. We also use the ailvlgmas the name for main memory and the ar-

ray Regs for registers. Thudviem[Regs[R1]] refers to the contents of the mem-

ory location whose address is given by the contents of regis¥d).1Later, we will

introduce extensions for accessing and transferring data smaller than a word.
Addressing modes have the ability to significantly reduce instruction counts;

they also add to the complexity of building a machine and may increase the aver-

age CPI (clock cycles per instruction) of machines that implement those modes.

76

Chapter 2 Instruction Set Principles and Examples

Thus, the usage of various addressing modes is quite important in helping the ar-
chitect choose what to include.

Figure 2.6 shows the results of measuring addressing mode usage patterns in
three programs on the VAX architecture. We use the VAX architecture for a few
measurements in this chapter because it has the fewest restrictions on memory
addressing. For example, it supports all the modes shown in Figure 2.5. Most
measurements in this chapter, however, will use the more recent load-store archi-
tectures to show how programs use instruction sets of current machines.

As Figure 2.6 shows, immediate and displacement addressing dominate ad-
dressing mode usage. Let's look at some properties of these two heavily used
modes.

TeX 1%
Memory indirect spice 6%
gcc | 1%
TeX |[0%
Scaled spice 16%
gce Il 6%
TeX 24%
Register deferred spice 3%
gec N 11%
TeX 43%
Immediate spice 17%
gec [39%
TeX 32%
Displacement gpjce 55%
e ——— .
0% 10% 20% 30% 40% 50% 60%
Frequency of the addressing mode

FIGURE 2.6 Summary of use of memory addressing modes (including immediates).

The data were taken on a VAX using three programs from SPEC89. Only the addressing
modes with an average frequency of over 1% are shown. The PC-relative addressing modes,
which are used almost exclusively for branches, are not included. Displacement mode in-
cludes all displacement lengths (8, 16, and 32 bit). Register modes, which are not counted,
account for one-half of the operand references, while memory addressing modes (including
immediate) account for the other half. The memory indirect mode on the VAX can use dis-
placement, autoincrement, or autodecrement to form the initial memory address; in these
programs, almost all the memory indirect references use displacement mode as the base. Of
course, the compiler affects what addressing modes are used; we discuss this further in sec-
tion 2.7. These major addressing modes account for all but a few percent (0% to 3%) of the
memory accesses.

Displacement Addressing Mode

The major question that arises for a displacement-style addressing mode is that of
the range of displacements used. Based on the use of various displacement sizes,
a decision of what sizes to support can be made. Choosing the displacement field

2.3 Memory Addressing 77

sizes is important because they directly affect the instruction length. Measure-
ments taken on the data access on a load-store architecture using our benchmar
programs are shown in Figure 2.7. We will look at branch offsets in the next sec-
tion—data accessing patterns and branches are so different, little is gained by
combining them.

3000 [

AT/ i AR

Floating-point average g

20%
Percentage of
displacement

15%

10%

5%

0%

Number of bits needed for a displacement value

FIGURE 2.7 Displacement values are widely distributed. The x axis is log, of the displacement; that is, the size of a
field needed to represent the magnitude of the displacement. These data were taken on the MIPS architecture, showing the
average of five programs from SPECint92 (compress, espresso, egntott, gcc, li) and the average of five programs from
SPECfp92 (dudoc, ear, hydro2d, mdljdp2, su2cor). Although there are a large number of small values in this data, there are
also a fair number of large values. The wide distribution of displacement values is due to multiple storage areas for variables
and different displacements used to access them. The different storage areas and their access patterns are discussed fur-
ther in section 2.7. The graph shows only the magnitude of the displacement and not the sign, which is heavily affected by
the storage layout. The entry corresponding to 0 on the x axis shows the percentage of displacements of value 0. The vast
majority of the displacements are positive, but a majority of the largest displacements (14+ bits) are negative. Again, this is
due to the overall addressing scheme used by the compiler and might change with a different compilation scheme. Since
this data was collected on a machine with 16-bit displacements, it cannot tell us anything about accesses that might want to
use a longer displacement. Such accesses are broken into two separate instructions—the first of which loads the upper 16
bits of a base register. By counting the frequency of these “load high immediate” instructions, which have limited use for
other purposes, we can bound the number of accesses with displacements potentially larger than 16 bits. Such an analysis
indicates that we may actually require a displacement longer than 16 bits for about 1% of immediates on SPECint92 and
1% of those for SPECfp92. Relating this data to the graph above, if it were widened to 32 bits we would see 1% of immedi-
ates collectively between sizes 16 and 31 for both SPECint92 and SPECfp92. And if the displacement is larger than 15 bits,
it is likely to be quite a bit larger since such constants are large, as shown in Figure 2.9 on page 79.To evaluate the choice
of displacement length, we might also want to examine a cumulative distribution, as shown in Exercise 2.1 (see Figure 2.32
on page 119). In summary, 12 bits of displacement would capture about 75% of the full 32-bit displacements and 16 bits
should capture about 99%.

78

Chapter 2 Instruction Set Principles and Examples

Immediate or Literal Addressing Mode

Immediates can be used in arithmetic operations, in comparisons (primarily for
branches), and in moves where a constant is wanted in a register. The last case oc-
curs for constants written in the code, which tend to be small, and for address
constants, which can be large. For the use of immediates it is important to know
whether they need to be supported for all operations or for only a subset. The
chart in Figure 2.8 shows the frequency of immediates for the general classes of
integer operations in an instruction set.

Loads 10%
45%

Compares 87%
77%

ALU operations 58%
78%

All instructions 35%
10%

0% 50% 100%
Percentage of operations that use immediates

o Integer average m Floating-point average

FIGURE 2.8 We see that for ALU operations about one-half to three-quarters of the
operations have an immediate operand, while 75% to 85% of compare operations use

an immediate operation. (For ALU operations, shifts by a constant amount are included as
operations with immediate operands.) For loads, the load immediate instructions load 16 bits
into either half of a 32-bit register. These load immediates are not loads in a strict sense be-
cause they do not reference memory. In some cases, a pair of load immediates may be used
to load a 32-bit constant, but this is rare. The compares include comparisons against zero
that are done in conditional branches based on this comparison. These measurements were
taken on the DLX architecture with full compiler optimization (see section 2.7). The compiler
attempts to use simple compares against zero for branches whenever possible, because
these branches are efficiently supported in the architecture. Note that the bottom bars show
that integer programs use immediates in about one-third of the instructions, while floating-
point programs use immediates in about one-tenth of the instructions. Floating-point pro-
grams have many data transfers and operations on floating-point data that do not have im-
mediate forms in the DLX instruction set. (These percentages are the averages of the same 10
programs as in Figure 2.7 on page 77.)

Another important instruction set measurement is the range of values for im-
mediates. Like displacement values, the sizes of immediate values affect instruc-
tion lengths. As Figure 2.9 shows, immediate values that are small are most
heavily used. Large immediates are sometimes used, however, most likely in ad-
dressing calculations. The data in Figure 2.9 were taken on a VAX because, un-

2.3 Memory Addressing 79

like recent load-store architectures, it supports 32-bit long immediates. For these
measurements the VAX has the drawback that many of its instructions have zero
as an implicit operand. These include instructions to compare against zero and to
store zero into a word. Because of the use of these instructions, the measurement
show less frequent use of zero than on architectures without such instructions.

60%

50% | gee

40%

30%

20%

10%

0%

0 4 8 12 16 20 24 28 32
Number of bits needed for an immediate value

FIGURE 2.9 The distribution of immediate values is shown. The x axis shows the num-
ber of bits needed to represent the magnitude of an immediate value—0 means the immedi-
ate field value was 0. The vast majority of the immediate values are positive: Overall, less
than 6% of the immediates are negative.These measurements were taken on a VAX, which
supports a full range of immediates and sizes as operands to any instruction. The measured
programs are gcc, spice, and TeX. Note that 50% to 70% of the immediates fit within 8 bits
and 75% to 80% fit within 16 bits.

Summary: Memory Addressing

First, because of their popularity, we would expect a new architecture to support
at least the following addressing modes: displacement, immediate, and register
deferred. Figure 2.6 on page 76 shows they represent 75% to 99% of the address
ing modes used in our measurements. Second, we would expect the size of the
address for displacement mode to be at least 12 to 16 bits, since the caption in
Figure 2.7 on page 77 suggests these sizes would capture 75% to 99% of the dis
placements. Third, we would expect the size of the immediate field to be at least
8 to 16 bits. As the caption in Figure 2.9 suggests, these sizes would capture 50%
to 80% of the immediates.

80

Chapter 2 Instruction Set Principles and Examples

Operator type

Examples

Arithmetic and logical

Integer arithmetic and logical operations: add, and, subtract, or

Data transfer

Loads-stores (move instructions on machines with memory addressing)

Control

Branch, jump, procedure call and return, traps

System

Operating system call, virtual memory management instructions

Floating point

Floating-point operations: add, multiply

Decimal Decimal add, decimal multiply, decimal-to-character conversions

String String move, string compare, string search

Graphics Pixel operations, compression/decompression operations
FIGURE 2.10 Categories of instruction operators and examples of each. All machines generally provide a full set of

operations for the first three categories. The support for system functions in the instruction set varies widely among archi-
tectures, but all machines must have some instruction support for basic system functions. The amount of support in the in-
struction set for the last four categories may vary from none to an extensive set of special instructions. Floating-point
instructions will be provided in any machine that is intended for use in an application that makes much use of floating point.
These instructions are sometimes part of an optional instruction set. Decimal and string instructions are sometimes primi-
tives, as in the VAX or the IBM 360, or may be synthesized by the compiler from simpler instructions. Graphics instructions
typically operate on many smaller data items in parallel; for example, performing eight 8-bit additions on two 64-bit operands.

2.4 | Operations in the Instruction Set

The operators supported by most instruction set architectures can be categorized,
as in Figure 2.10. One rule of thumb across all architectures is that the most
widely executed instructions are the simple operations of an instruction set. For
example, Figure 2.11 shows 10 simple instructions that account for 96% of in-
structions executed for a collection of integer programs running on the popular
Intel 80x86. Hence the implementor of these instructions should be sure to make
these fast, as they are the common case.

Because the measurements of branch and jump behavior are fairly indepen-
dent of other measurements, we examine the use of control-flow instructions
next.

Instructions for Control Flow

There is no consistent terminology for instructions that change the flow of con-
trol. In the 1950s they were typically callé@nsfers Beginning in 1960 the
namebranch began to be used. Later, machines introduced additional names.
Throughout this book we will ugamp when the change in control is uncondi-
tional andoranchwhen the change is conditional.

2.4 Operations in the Instruction Set 81

Integer average

Rank 80x86 instruction (% total executed)
1 load 22%
2 conditional branch 20%
3 compare 16%
4 store 12%
5 add 8%
6 and 6%
7 sub 5%
8 move register-register 4%
9 call 1%
10 return 1%

Total 96%

FIGURE 2.11 The top 10 instructions for the 80x86. These percent-
ages are the average of the same five SPECint92 programs as in
Figure 2.7 on page 77.

We can distinguish four different types of control-flow change:
1. Conditional branches

2. Jumps

3. Procedure calls

4. Procedure returns

We want to know the relative frequency of these events, as each event is different,
may use different instructions, and may have different behavior. The frequencies
of these control-flow instructions for a load-store machine running our bench-
marks are shown in Figure 2.12.

Call/return 13%
11%

Jump 406/%
0

81%

Conditional branch 86%

0% 50% 100%

Frequency of branch classes

o Integer average @ Floating-point average

FIGURE 2.12 Breakdown of control flow instructions into three classes: calls or re-

turns, jumps, and conditional branches. Each type is counted in one of three bars. Con-
ditional branches clearly dominate. The programs and machine used to collect these
statistics are the same as those in Figure 2.7.

82

Chapter 2 Instruction Set Principles and Examples

The destination address of a control flow instruction must always be specified.
This destination is specified explicitly in the instruction in the vast majority of
cases—procedure return being the major exception—since for return the target is
not known at compile time. The most common way to specify the destination is to
supply a displacement that is added toptegram counteror PC. Control flow
instructions of this sort are call®C-relative PC-relative branches or jumps are
advantageous because the target is often near the current instruction, and specify-
ing the position relative to the current PC requires fewer bits. Using PC-relative
addressing also permits the code to run independently of where it is loaded. This
property, callecposition independencean eliminate some work when the pro-
gram is linked and is also useful in programs linked during execution.

To implement returns and indirect jumps in which the target is not known at
compile time, a method other than PC-relative addressing is required. Here, there
must be a way to specify the target dynamically, so that it can change at runtime.
This dynamic address may be as simple as nhaming a register that contains the tar-
get address; alternatively, the jump may permit any addressing mode to be used
to supply the target address.These register indirect jumps are also useful for three
other important featuresaseor switch statements found in many programming
languages (which select among one of several alternatiygsgmically shared
libraries (which allow a library to be loaded only when it is actually invoked by
the program), andirtual functionsin object-oriented languages like C++ (which
allow different routines to be called depending on the type of the data). In all
three cases the target address is not known at compile time, and hence is usually
loaded from memory into a register before the register indirect jump.

As branches generally use PC-relative addressing to specify their targets, a
key question concerns how far branch targets are from branches. Knowing the
distribution of these displacements will help in choosing what branch offsets to
support and thus will affect the instruction length and encoding. Figure 2.13
shows the distribution of displacements for PC-relative branches in instructions.
About 75% of the branches are in the forward direction.

Since most changes in control flow are branches, deciding how to specify the
branch condition is important. The three primary techniques in use and their ad-
vantages and disadvantages are shown in Figure 2.14.

One of the most noticeable properties of branches is that a large number of the
comparisons are simple equality or inequality tests, and a large number are com-
parisons with zero. Thus, some architectures choose to treat these comparisons as
special cases, especially itampare and brancmstruction is being used. Fig-
ure 2.15 shows the frequency of different comparisons used for conditional
branching. The data in Figure 2.8 said that a large percentage of the comparisons
had an immediate operand, and while not shown, 0 was the most heavily used im-
mediate. When we combine this with the data in Figure 2.15, we can see that a
significant percentage (over 50%) of the integer compares in branches are simple
tests for equality with 0.

2.4 Operations in the Instruction Set 83

40%
35%
30%
25%
20%
15%
10%

5%

0% §
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bits of branch displacement

FIGURE 2.13 Branch distances in terms of number of instructions between the target

and the branch instruction. The most frequent branches in the integer programs are to tar-
gets that are four to seven instructions away. This tells us that short displacement fields often
suffice for branches and that the designer can gain some encoding density by having a short-
er instruction with a smaller branch displacement. These measurements were taken on a
load-store machine (DLX architecture). An architecture that requires fewer instructions for the
same program, such as a VAX, would have shorter branch distances. Similarly, the number
of bits needed for the displacement may change if the machine allows instructions to be ar-
bitrarily aligned. A cumulative distribution of this branch displacement data is shown in Exer-
cise 2.1 (see Figure 2.32 on page 119). The programs and machine used to collect these
statistics are the same as those in Figure 2.7.

Name How condition is tested Advantages Disadvantages

Condition Special bits are set by ALU opera- Sometimes condition CC is extra state. Condition codes

code (CC) tions, possibly under program is set for free. constrain the ordering of instruc-
control. tions since they pass information

from one instruction to a branch.

Condition Test arbitrary register with the result Simple. Uses up a register.

register of a comparison.

Compareand Compare is part of the branch. OftenOne instruction rather May be too much work per

branch compare is limited to subset. than two for a branch. instruction.

FIGURE 2.14 The major methods for evaluating branch conditions, their advantages, and their disadvantages.
Although condition codes can be set by ALU operations that are needed for other purposes, measurements on programs
show that this rarely happens. The major implementation problems with condition codes arise when the condition code is
set by a large or haphazardly chosen subset of the instructions, rather than being controlled by a bit in the instruction. Ma-
chines with compare and branch often limit the set of compares and use a condition register for more complex compares.
Often, different techniques are used for branches based on floating-point comparison versus those based on integer com-
parison. This is reasonable since the number of branches that depend on floating-point comparisons is much smaller than
the number depending on integer comparisons.

Procedure calls and returns include control transfer and possibly some state
saving; at a minimum the return address must be saved somewhere. Some archi

Chapter 2 Instruction Set Principles and Examples

Less than/ greater than or 7%

equal 40%
Greater than/ less than or 7%

equal 23%
86%
Equal/ not equal 37%

0% 50% 100%

Frequency of comparison types in branches

o Integer average @ Floating-point average

FIGURE 2.15 Frequency of different types of compares in conditional branches. This
includes both the integer and floating-point compares in branches. Remember that earlier
data in Figure 2.8 indicate that most integer comparisons are against an immediate operand.
The programs and machine used to collect these statistics are the same as those in
Figure 2.7.

tectures provide a mechanism to save the registers, while others require the com-
piler to generate instructions. There are two basic conventions in use to save
registersCaller savingmeans that the calling procedure must save the registers
that it wants preserved for access after the CGalllee savingmeans that the
called procedure must save the registers it wants to use. There are times when
caller save must be used because of access patterns to globally visible variables
in two different procedures. For example, suppose we have a procedure P1 that
calls procedure P2, and both procedures manipulate the global vari#fbRl

had allocatec to a register it must be sure to sav® a location known by P2
before the call to P2. A compiler’s ability to discover when a called procedure
may access register-allocated quantities is complicated by the possibility of sepa-
rate compilation and situations where P2 may not toubhit can call another
procedure, P3, that may acces8ecause of these complications, most compil-

ers will conservatively caller saxany variable that may be accessed during a
call.

In the cases where either convention could be used, some programs will be
more optimal with callee save and some will be more optimal with caller save. As
a result, the most sophisticated compilers use a combination of the two mecha-
nisms, and the register allocator may choose which register to use for a variable
based on the convention. Later in this chapter we will examine the mismatch be-
tween sophisticated instructions for automatically saving registers and the needs
of the compiler.

2.5 Type and Size of Operands 85

Summary: Operations in the Instruction Set

From this section we see the importance and popularity of simple instructions:

load, store, add, subtract, move register-register, and, shift, compare equal, com-
pare not equal, branch, jump, call, and return. Although there are many options
for conditional branches, we would expect branch addressing in a new architec-
ture to be able to jump to about 100 instructions either above or below the branch,
implying a PC-relative branch displacement of at least 8 bits. We would also ex-

pect to see register-indirect and PC-relative addressing for jump instructions to

support returns as well as many other features of current systems.

2.5 | Type and Size of Operands

How is the type of an operand designated? There are two primary alternatives:
First, the type of an operand may be designated by encoding it in the opcode—
this is the method used most often. Alternatively, the data can be annotated with
tags that are interpreted by the hardware. These tags specify the type of the oper
and, and the operation is chosen accordingly. Machines with tagged data, howev-
er, can only be found in computer museums.

Usually the type of an operand—for example, integer, single-precision float-
ing point, character—effectively gives its size. Common operand types include
character (1 byte), half word (16 bits), word (32 bits), single-precision floating
point (also 1 word), and double-precision floating point (2 words). Characters are
almost always in ASCII and integers are almost universally represented as two’s
complement binary numbers. Until the early 1980s, most computer manufactur-
ers chose their own floating-point representation. Almost all machines since that
time follow the same standard for floating point, the IEEE standard 754. The
IEEE floating-point standard is discussed in detail in Appendix A.

Some architectures provide operations on character strings, although such op-
erations are usually quite limited and treat each byte in the string as a single char-
acter. Typical operations supported on character strings are comparisons and
moves.

For business applications, some architectures support a decimal format, usu-
ally calledpacked decimabr binary-coded decimat4 bits are used to encode
the values 0-9, and 2 decimal digits are packed into each byte. Numeric charactel
strings are sometimes calledpacked decimahnd operations—calleglacking
and unpacking—are usually provided for converting back and forth between
them.

Our benchmarks use byte or character, half word (short integer), word (inte-
ger), and floating-point data types. Figure 2.16 shows the dynamic distribution of
the sizes of objects referenced from memory for these programs. The frequency
of access to different data types helps in deciding what types are most important
to support efficiently. Should the machine have a 64-bit access path, or would

86

Chapter 2 Instruction Set Principles and Examples

taking two cycles to access a double word be satisfactory? How important is it to
support byte accesses as primitives, which, as we saw earlier, require an alignment
network? In Figure 2.16, memory references are used to examine the types of data
being accessed. In some architectures, objects in registers may be accessed as
bytes or half words. However, such access is very infrequent—on the VAX, it ac-
counts for no more than 12% of register references, or roughly 6% of all operand
accesses in these programs. The successor to the VAX not only removed opera-
tions on data smaller than 32 bits, it also removed data transfers on these smaller
sizes: The first implementations of the Alpha required multiple instructions to read

or write bytes or half words.

Note that Figure 2.16 was measured on a machine with 32-bit addresses: On a
64-bit address machine the 32-bit addresses would be replaced by 64-bit address-
es. Hence as 64-bit address architectures become more popular, we would expect
that double-word accesses will be popular for integer programs as well as float-
ing-point programs.

Double word | 0%
69%
Word 74%
31%
Half word 19%
0%
Byte 7%
0%
0% 20% 40% 60% 80%

Frequency of reference by size

o Integer average @ Floating-point average

FIGURE 2.16 Distribution of data accesses by size for the benchmark programs. Ac-
cess to the major data type (word or double word) clearly dominates each type of program.
Half words are more popular than bytes because one of the five SPECint92 programs (eqn-
tott) uses half words as the primary data type, and hence they are responsible for 87% of the
data accesses (see Figure 2.31 on page 110). The double-word data type is used solely for
double-precision floating-point in floating-point programs. These measurements were taken
on the memory traffic generated on a 32-bit load-store architecture.

Summary: Type and Size of Operands

From this section we would expect a new 32-bit architecture to support 8-, 16-,
and 32-bit integers and 64-bit IEEE 754 floating-point data; a new 64-bit address
architecture would need to support 64-bit integers as well. The level of support
for decimal data is less clear, and it is a function of the intended use of the ma-
chine as well as the effectiveness of the decimal support.

2.6 Encoding an Instruction Set 87

2.6 | Encoding an Instruction Set

Clearly the choices mentioned above will affect how the instructions are encoded
into a binary representation for execution by the CPU. This representation affects
not only the size of the compiled program, it affects the implementation of the
CPU, which must decode this representation to quickly find the operation and its
operands. The operation is typically specified in one field, calledptb@de As

we shall see, the important decision is how to encode the addressing modes with
the operations.

This decision depends on the range of addressing modes and the degree of in
dependence between opcodes and modes. Some machines have one to five ope
ands with 10 addressing modes for each operand (see Figure 2.5 on page 75). Fo
such a large number of combinations, typically a sepaddeess specifieis
needed for each operand: the address specifier tells what addressing mode is use
to access the operand. At the other extreme is a load-store machine with only one
memory operand and only one or two addressing modes; obviously, in this case,
the addressing mode can be encoded as part of the opcode.

When encoding the instructions, the number of registers and the number of ad-
dressing modes both have a significant impact on the size of instructions, since the
addressing mode field and the register field may appear many times in a single in-
struction. In fact, for most instructions many more bits are consumed in encoding
addressing modes and register fields than in specifying the opcode. The architect
must balance several competing forces when encoding the instruction set:

1. The desire to have as many registers and addressing modes as possible.

2. The impact of the size of the register and addressing mode fields on the aver-
age instruction size and hence on the average program size.

3. Adesire to have instructions encode into lengths that will be easy to handle in
the implementation. As a minimum, the architect wants instructions to be in
multiples of bytes, rather than an arbitrary length. Many architects have cho-
sen to use a fixed-length instruction to gain implementation benefits while sac-
rificing average code size.

Since the addressing modes and register fields make up such a large percent
age of the instruction bits, their encoding will significantly affect how easy it is
for an implementation to decode the instructions. The importance of having easi-
ly decoded instructions is discussed in Chapter 3.

Figure 2.17 shows three popular choices for encoding the instruction set. The
first we callvariable since it allows virtually all addressing modes to be with all
operations. This style is best when there are many addressing modes and opera
tions. The second choice we chi¥ed since it combines the operation and the

88

Chapter 2 Instruction Set Principles and Examples

Operation & Address Address Address Address
no. of operands | specifier 1 field 1 specifier n field n

(a) Variable (e.g., VAX)

Operation Address Address Address
field 1 field 2 field 3

(b) Fixed (e.g., DLX, MIPS, Power PC, Precision Architecture, SPARC)

Operation Address Address
specifier field

Operation Address Address Address
specifier 1 specifier 2 field

Operation Address Address Address
specifier field 1 field 2

(c) Hybrid (e.g., IBM 360/70, Intel 80x86)

FIGURE 2.17 Three basic variations in instruction encoding. The variable format can
support any number of operands, with each address specifier determining the addressing
mode for that operand. The fixed format always has the same number of operands, with the
addressing modes (if options exist) specified as part of the opcode (see also Figure C.3 on
page C-4). Although the fields tend not to vary in their location, they will be used for different
purposes by different instructions. The hybrid approach will have multiple formats specified
by the opcode, adding one or two fields to specify the addressing mode and one or two fields
to specify the operand address (see also Figure D.7 on page D-12).

addressing mode into the opcode. Often fixed encoding will have only a single
size for all instructions; it works best when there are few addressing modes and
operations. The trade-off between variable encoding and fixed encoding is size of
programs versus ease of decoding in the CPU. Variable tries to use as few bits as
possible to represent the program, but individual instructions can vary widely in
both size and the amount of work to be performed. For example, the VAX integer
add can vary in size between 3 and 19 bytes and vary between 0 and 6 in data
memory references. Given these two poles of instruction set design, the third al-
ternative immediately springs to mind: Reduce the variability in size and work of
the variable architecture but provide multiple instruction lengths so as to reduce
code size. Thilybrid approach is the third encoding alternative.

2.7 Crosscutting Issues: The Role of Compilers 89

To make these general classes more specific, this book contains several exam
ples. Fixed formats of five machines can be seen in Figure C.3 on page C-4 and
the hybrid formats of the Intel 80x86 can be seen in Figure D.8 on page D-13.

Let’s look at a VAX instruction to see an example of the variable encoding:

addI3 r1,737(r2),(r3)

The nameddi3 means a 32-bit integer add instruction with three operands, and
this opcode takes 1 byte. A VAX address specifier is 1 byte, generally with the
first 4 bits specifying the addressing mode and the second 4 bits specifying the
register used in that addressing mode. The first operand specifierirdicates
register addressing using register 1, and this specifier is 1 byte long. The second
operand specifier#37(r2) —indicates displacement addressing. It has two
parts: The first part is a byte that specifies the 16-bit indexed addressing mode
and base register2(); the second part is the 2-byte-long displaceni&T)(The

third operand specifier—3)—specifies register indirect addressing mode using
register 3. Thus, this instruction has two data memory accesses, and the total
length of the instruction is

1+(1)+(1+2) + (1) = 6 bytes

The length of VAX instructions varies between 1 and 53 bytes.

Summary: Encoding the Instruction Set

Decisions made in the components of instruction set design discussed in prior
sections determine whether or not the architect has the choice between variable
and fixed instruction encodings. Given the choice, the architect more interested in
code size than performance will pick variable encoding, and the one more inter-
ested in performance than code size will pick fixed encoding. In Chapters 3 and
4, the impact of variability on performance of the CPU will be discussed further.

We have almost finished laying the groundwork for the DLX instruction set
architecture that will be introduced in section 2.8. But before we do that, it will
be helpful to take a brief look at recent compiler technology and its effect on pro-
gram properties.

2.7 | Crosscutting Issues: The Role of Compilers

Today almost all programming is done in high-level languages. This develop-
ment means that since most instructions executed are the output of a compiler, ar
instruction set architecture is essentially a compiler target. In earlier times, archi-
tectural decisions were often made to ease assembly language programming. Be
cause performance of a computer will be significantly affected by the compiler,
understanding compiler technology today is critical to designing and efficiently
implementing an instruction set. In earlier days it was popular to try to isolate the

Chapter 2 Instruction Set Principles and Examples

compiler technology and its effect on hardware performance from the architec-
ture and its performance, just as it was popular to try to separate an architecture
from its implementation. This separation is essentially impossible with today’s
compilers and machines. Architectural choices affect the quality of the code that
can be generated for a machine and the complexity of building a good compiler
for it. Isolating the compiler from the hardware is likely to be misleading. In this
section we will discuss the critical goals in the instruction set primarily from the
compiler viewpoint. What features will lead to high-quality code? What makes it
easy to write efficient compilers for an architecture?

The Structure of Recent Compilers

To begin, let’s look at what optimizing compilers are like today. The structure of
recent compilers is shown in Figure 2.18.

Dependencies Function

Language dependent; Transform language to
machine independent common intermediate form

ront-end per
language

Intermediate
representation

Somewhat language dependent,
largely machine independent

For example, procedure inlining
and loop transformations

High-level
optimizations

Small language dependencies; Including global and local
machine dependencies slight Global optimizations + register
(e.g., register counts/types) optimizer allocation

Highly machine dependent; Detailed instruction selection
language independent Code generator ; . and machine-dependent
optimizations; may include

or be followed by assembler

FIGURE 2.18 Current compilers typically consist of two to four passes, with more
highly optimizing compilers having more passes. A pass is simply one phase in which
the compiler reads and transforms the entire program. (The term phase is often used inter-
changeably with pass.) The optimizing passes are designed to be optional and may be
skipped when faster compilation is the goal and lower quality code is acceptable. This struc-
ture maximizes the probability that a program compiled at various levels of optimization will
produce the same output when given the same input. Because the optimizing passes are also
separated, multiple languages can use the same optimizing and code-generation passes.
Only a new front end is required for a new language. The high-level optimization mentioned
here, procedure inlining, is also called procedure integration.

2.7 Crosscutting Issues: The Role of Compilers 91

A compiler writer’s first goal is correctness—all valid programs must be com-
piled correctly. The second goal is usually speed of the compiled code. Typically,
a whole set of other goals follows these two, including fast compilation, debug-
ging support, and interoperability among languages. Normally, the passes in the
compiler transform higher-level, more abstract representations into progressively
lower-level representations, eventually reaching the instruction set. This structure
helps manage the complexity of the transformations and makes writing a bug-
free compiler easier.

The complexity of writing a correct compiler is a major limitation on the
amount of optimization that can be done. Although the multiple-pass structure
helps reduce compiler complexity, it also means that the compiler must order and
perform some transformations before others. In the diagram of the optimizing
compiler in Figure 2.18, we can see that certain high-level optimizations are per-
formed long before it is known what the resulting code will look like in detalil.
Once such a transformation is made, the compiler can’t afford to go back and re-
visit all steps, possibly undoing transformations. This would be prohibitive, both
in compilation time and in complexity. Thus, compilers make assumptions about
the ability of later steps to deal with certain problems. For example, compilers
usually have to choose which procedure calls to expand inline before they know
the exact size of the procedure being called. Compiler writers call this problem
thephase-orderingroblem

How does this ordering of transformations interact with the instruction set ar-
chitecture? A good example occurs with the optimization cglleal common
subexpression eliminatiofhis optimization finds two instances of an expression
that compute the same value and saves the value of the first computation in a
temporary. It then uses the temporary value, eliminating the second computation
of the expression. For this optimization to be significant, the temporary must be
allocated to a register. Otherwise, the cost of storing the temporary in memory
and later reloading it may negate the savings gained by not recomputing the ex-
pression. There are, in fact, cases where this optimization actually slows down
code when the temporary is not register allocated. Phase ordering complicates
this problem, because register allocation is typically done near the end of the glo-
bal optimization pass, just before code generation. Thus, an optimizer that per-
forms this optimizatiormustassume that the register allocator will allocate the
temporary to a register.

Optimizations performed by modern compilers can be classified by the style
of the transformation, as follows:

1. High-level optimizationsire often done on the source with output fed to later
optimization passes.

2. Local optimization®ptimize code only within a straight-line code fragment
(called abasic blockby compiler people).

92

Chapter 2 Instruction Set Principles and Examples

3. Global optimizationgxtend the local optimizations across branches and intro-
duce a set of transformations aimed at optimizing loops.

4. Register allocation

5. Machine-dependent optimizatioagempt to take advantage of specific archi-
tectural knowledge.

Because of the central role that register allocation plays, both in speeding up
the code and in making other optimizations useful, it is one of the most impor-
tant—if not the most important—optimizations. Recent register allocation algo-
rithms are based on a technique caligaph coloring The basic idea behind
graph coloring is to construct a graph representing the possible candidates for al-
location to a register and then to use the graph to allocate registers. Although the
problem of coloring a graph is NP-complete, there are heuristic algorithms that
work well in practice.

Graph coloring works best when there are at least 16 (and preferably more)
general-purpose registers available for global allocation for integer variables and
additional registers for floating point. Unfortunately, graph coloring does not
work very well when the number of registers is small because the heuristic algo-
rithms for coloring the graph are likely to fail. The emphasis in the approach is to
achieve 100% allocation of active variables.

It is sometimes difficult to separate some of the simpler optimizations—Ilocal
and machine-dependent optimizations—from transformations done in the code
generator. Examples of typical optimizations are given in Figure 2.19. The last
column of Figure 2.19 indicates the frequency with which the listed optimizing
transforms were applied to the source program. The effect of various optimiza-
tions on instructions executed for two programs is shown in Figure 2.20.

The Impact of Compiler Technology on the Architect’s
Decisions

The interaction of compilers and high-level languages significantly affects how
programs use an instruction set architecture. There are two important questions:
How are variables allocated and addressed? How many registers are needed to al-
locate variables appropriately? To address these questions, we must look at the
three separate areas in which current high-level languages allocate their data:

« Thestackis used to allocate local variables. The stack is grown and shrunk on
procedure call or return, respectively. Objects on the stack are addressed rela-
tive to the stack pointer and are primarily scalars (single variables) rather than
arrays. The stack is used for activation recardsas a stack for evaluating ex-
pressions. Hence values are almost never pushed or popped on the stack.

2.7 Crosscutting Issues: The Role of Compilers 93

Percentage of the total num-

Optimization name Explanation ber of optimizing transforms

High-level At or near the source level; machine-
independent

Procedure integration Replace procedure call by procedure body N.M.

Local Within straight-line code

Common subexpression elimination Replace two instances of the same 18%
computation by single copy

Constant propagation Replace all instances of a variable that 22%
is assigned a constant with the constant

Stack height reduction Rearrange expression tree to minimize re- N.M.
sources needed for expression evaluation

Global Across a branch

Global common subexpression Same as local, but this version crosses 13%

elimination branches

Copy propagation Replace all instances of a variatileat 11%
has been assigned(i.e.,A = X) with X

Code motion Remove code from a loop that computes 16%
same value each iteration of the loop

Induction variable elimination Simplify/eliminate array-addressing 2%
calculations within loops

Machine-dependent Depends on machine knowledge

Strength reduction Many examples, such as replace multiply N.M.
by a constant with adds and shifts

Pipeline scheduling Reorder instructions to improve pipeline N.M.
performance

Branch offset optimization Choose the shortest branch displacement N.M.

that reaches target

FIGURE 2.19 Major types of optimizations and examples in each class. The third column lists the static frequency with
which some of the common optimizations are applied in a set of 12 small FORTRAN and Pascal programs. The percentage
is the portion of the static optimizations that are of the specified type. These data tell us about the relative frequency of oc-
currence of various optimizations. There are nine local and global optimizations done by the compiler included in the mea-
surement. Six of these optimizations are covered in the figure, and the remaining three account for 18% of the total static
occurrences. The abbreviation N.M. means that the number of occurrences of that optimization was not measured. Machine-
dependent optimizations are usually done in a code generator, and none of those was measured in this experiment. Data
from Chow [1983] (collected using the Stanford UCODE compiler).

« Theglobal data areads used to allocate statically declared objects, such as glo-
bal variables and constants. A large percentage of these objects are arrays o
other aggregate data structures.

« Theheapis used to allocate dynamic objects that do not adhere to a stack dis-
cipline. Objects in the heap are accessed with pointers and are typically not
scalars.

94

Chapter 2 Instruction Set Principles and Examples

Program and compiler
optimization level

hydro I 3
hydro | 2
hydro | 1
hydro | 0 i, 1 00%
lilevel 3
li level 2

lilevel 1 89%

li level O 100%

0% 20% 40% 60% 80% 100%
Percent of unoptimized instructions executed

m Branches/calls © FLOPs m Loads-stores m Integer ALU

FIGURE 2.20 Change in instruction count for the programs hydro2d and li from the SPEC92 as compiler optimi-

zation levels vary. Level O is the same as unoptimized code. These experiments were perfomed on the MIPS compilers.
Level 1 includes local optimizations, code scheduling, and local register allocation. Level 2 includes global optimizations,
loop transformations (software pipelining), and global register allocation. Level 3 adds procedure integration.

Register allocation is much more effective for stack-allocated objects than for
global variables, and register allocation is essentially impossible for heap-allocated
objects because they are accessed with pointers. Global variables and some stack
variables are impossible to allocate because thewnlm®ed which means that
there are multiple ways to refer to the address of a variable, making it illegal to put
it into a register. (Most heap variables are effectively aliased for today’s compiler
technology.) For example, consider the following code sequence, &heterns
the address of a variable andereferences a pointer:

p=_&a —gets address of ain p
a=.. — assigns to a directly
*P= .. —uses ptoassignto a
il -- accesses a

The variablea could not be register allocated across the assignmemt vath-

out generating incorrect code. Aliasing causes a substantial problem because it is
often difficult or impossible to decide what objects a pointer may refer to. A
compiler must be conservative; many compilers will not alloaatdocal vari-

ables of a procedure in a register when there is a pointer that may referato

the local variables.

2.7 Crosscutting Issues: The Role of Compilers 95

How the Architect Can Help the Compiler Writer

Today, the complexity of a compiler does not come from translating simple state-
ments like A = B + C. Most programs doeally simple,and simple translations
work fine. Rather, complexity arises because programs are large and globally
complex in their interactions, and because the structure of compilers means that
decisions must be made about what code sequence is best one step at a time.

Compiler writers often are working under their own corollary of a basic prin-
ciple in architectureMake the frequent cases fast and the rare case cofirkat.
is, if we know which cases are frequent and which are rare, and if generating
code for both is straightforward, then the quality of the code for the rare case may
not be very important—but it must be correct!

Some instruction set properties help the compiler writer. These properties
should not be thought of as hard and fast rules, but rather as guidelines that will
make it easier to write a compiler that will generate efficient and correct code.

1. Regularity—Whenever it makes sense, the three primary components of an in-
struction set—the operations, the data types, and the addressing modes—
should beorthogonal Two aspects of an architecture are said to be orthogonal
if they are independent. For example, the operations and addressing modes are
orthogonal if for every operation to which a certain addressing mode can be
applied, all addressing modes are applicable. This helps simplify code genera-
tion and is particularly important when the decision about what code to gener-
ate is split into two passes in the compiler. A good counterexample of this
property is restricting what registers can be used for a certain class of instruc-
tions. This can result in the compiler finding itself with lots of available regis-
ters, but none of the right kind!

2. Provide primitives, not solutiorsSpecial features that “match” a language
construct are often unusable. Attempts to support high-level languages may
work only with one language, or do more or less than is required for a correct
and efficient implementation of the language. Some examples of how these at-
tempts have failed are given in section 2.9.

3. Simplify trade-offs among alternativefOne of the toughest jobs a compiler
writer has is figuring out what instruction sequence will be best for every seg-
ment of code that arises. In earlier days, instruction counts or total code size
might have been good metrics, but—as we saw in the last chapter—this is no
longer true. With caches and pipelining, the trade-offs have become very com-
plex. Anything the designer can do to help the compiler writer understand the
costs of alternative code sequences would help improve the code. One of the
most difficult instances of complex trade-offs occurs in a register-memory
architecture in deciding how many times a variable should be referenced be-
fore it is cheaper to load it into a register. This threshold is hard to compute
and, in fact, may vary among models of the same architecture.

Chapter 2 Instruction Set Principles and Examples

4. Provide instructions that bind the quantities known at compile ésneon-
stants—A compiler writer hates the thought of the machine interpreting at
runtime a value that was known at compile time. Good counterexamples of
this principle include instructions that interpret values that were fixed at com-
pile time. For instance, the VAX procedure call instructicatis() dynami-
cally interprets a mask saying what registers to save on a call, but the mask is
fixed at compile time. However, in some cases it may not be known by the
caller whether separate compilation was used.

Summary: The Role of Compilers

This section leads to several recommendations. First, we expect a new instruction
set architecture to have at least 16 general-purpose registers—not counting sepa-
rate registers for floating-point numbers—to simplify allocation of registers using
graph coloring. The advice on orthogonality suggests that all supported address-
ing modes apply to all instructions that transfer data. Finally, the last three pieces
of advice of the last subsection—provide primitives instead of solutions, simplify
trade-offs between alternatives, don't bind constants at runtime—all suggest that
it is better to err on the side of simplicity. In other words, understand that less is
more in the design of an instruction set.

2.8 | Putting It All Together: The DLX Architecture

In many places throughout this book we will have occasion to refer to a comput-
er's “machine language.” The machine we use is a mythical computer called
“MIX.” MIX is very much like nearly every computer in existence, except that it
is, perhaps, nicer ... MIXis the world’s first polyunsaturated computer. Like most
machines, it has an identifying number—the 1009. This number was found by tak-
ing 16 actual computers which are very similar to MIX and on which MIX can be
easily simulated, then averaging their number with equal weight:

{360 + 650 + 709 + 7070 + U3 + SS80 + 1107 + 1604 + G20 + B220 + S2000
+ 920 + 601 + H800 + PDP-4 + II)/16~ 1009.

The same number may be obtained in a simpler way by taking Roman numerals.

Donald Knuth,The Art of Computer Programming, Volume I: Fundamental Algorithms

In this section we will describe a simple load-store architecture called DLX (pro-
nounced “Deluxe”). The authors believe DLX to be the world’s second polyun-
saturated computer—the average of a number of recent experimental and
commercial machines that are very similar in philosophy to DLX. Like Knuth,

2.8 Putting It All Together: The DLX Architecture 97

we derived the name of our machine from an average expressed in Romatr
numerals:

(AMD 29K, DECstation 3100, HP 850, IBM 801, Intel i860, MIPS M/120A,
MIPS M/1000, Motorola 88K, RISC I, SGI 4D/60, SPARCstation-1, Sun-4/110,
Sun-4/260) / 13 = 560 = DLX.

The instruction set architecture of DLX and its ancestors was based on obser
vations similar to those covered in the last sections. (In section 2.11 we discus:
how and why these architectures became popular.) Reviewing our expectation:
from each section:

« Section 2.2-Use general-purpose registers with a load-store architecture.

» Section 2.3-Support these addressing modes: displacement (with an address
offset size of 12 to 16 bits), immediate (size 8 to 16 bits), and register deferred.

« Section 2.4-Support these simple instructions, since they will dominate the
number of instructions executed: load, store, add, subtract, move register-
register, and, shift, compare equal, compare not equal, branch (with a PC-rela
tive address at least 8 bits long), jump, call, and return.

« Section 2.5-Support these data sizes and types: 8-, 16-, and 32-bit integers anc
64-bit IEEE 754 floating-point numbers.

« Section 2.6-Use fixed instruction encoding if interested in performance and
use variable instruction encoding if interested in code size.

« Section 2.7Provide at least 16 general-purpose registers plus separate floating-
point registers, be sure all addressing modes apply to all data transfer instruc
tions, and aim for a minimalist instruction set.

We introduce DLX by showing how it follows these recommendations. Like
most recent machines, DLX emphasizes
« A simple load-store instruction set

« Design for pipelining efficiency, including a fixed instruction set encoding
(discussed in Chapter 3)

« Efficiency as a compiler target

DLX provides a good architectural model for study, not only because of the re-
cent popularity of this type of machine, but also because it is an easy architecture
to understand. We will use this architecture again in Chapters 3 and 4, and i
forms the basis for a number of exercises and programming projects.

98

Chapter 2 Instruction Set Principles and Examples

Registers for DLX

DLX has 32 32-bit general-purpose registers (GPRs), named RO, R1, ..., R31.
Additionally, there is a set of floating-point registers (FPRs), which can be used
as 32 single-precision (32-bit) registers or as even-odd pairs holding double-
precision values. Thus, the 64-bit floating-point registers are named FO, F2, ...,
F28, F30. Both single- and double-precision floating-point operations (32-bit and
64-bit) are provided.

The value of RO is always 0. We shall see later how we can use this register to
synthesize a variety of useful operations from a simple instruction set.

A few special registers can be transferred to and from the integer registers. An
example is the floating-point status register, used to hold information about the
results of floating-point operations. There are also instructions for moving be-
tween a FPR and a GPR.

Data types for DLX

The data types are 8-bit bytes, 16-bit half words, and 32-bit words for integer data
and 32-bit single precision and 64-bit double precision for floating point. Half
words were added to the minimal set of recommended data types supported
because they are found in languages like C and popular in some programs, such as
the operating systems, concerned about size of data structures. They will also
become more popular as Unicode becomes more widely used. Single-precision
floating-point operands were added for similar reasons. (Remember the early
warning that you should measure many more programs before designing an
instruction set.)

The DLX operations work on 32-bit integers and 32- or 64-bit floating point.
Bytes and half words are loaded into registers with either zeros or the sign bit
replicated to fill the 32 bits of the registers. Once loaded, they are operated on
with the 32-bit integer operations.

Addressing modes for DLX data transfers

The only data addressing modes are immediate and displacement, both with 16-
bit fields. Register deferred is accomplished simply by placing 0 in the 16-bit dis-
placement field, and absolute addressing with a 16-bit field is accomplished by
using register 0 as the base register. This gives us four effective modes, although
only two are supported in the architecture.

DLX memory is byte addressable in Big Endian mode with a 32-bit address. As
it is a load-store architecture, all memory references are through loads or stores
between memory and either the GPRs or the FPRs. Supporting the data types
mentioned above, memory accesses involving the GPRs can be to a byte, to a half
word, or to a word. The FPRs may be loaded and stored with single-precision or
double-precision words (using a pair of registers for DP). All memory accesses
must be aligned.

2.8 Putting It All Together: The DLX Architecture 99

DLX Instruction Format

Since DLX has just two addressing modes, these can be encoded into the opcode
Following the advice on making the machine easy to pipeline and decode, all in-
structions are 32 bits with a 6-bit primary opcode. Figure 2.21 shows the instruc-
tion layout. These formats are simple while providing 16-bit fields for
displacement addressing, immediate constants, or PC-relative branch addresses.

I-type instruction
6 5 5 16

Opcode rsl rd Immediate

Encodes: Loads and stores of bytes, words, half words
All immediates (rd < rs1 op immediate)

Conditional branch instructions (rs1 is register, rd unused)
Jump register, jump and link register
(rd = 0, rs1 = destination, immediate = 0)

R-type instruction
6 5 5 5 11

Opcode rsl rs2 rd func

Register—register ALU operations: rd < rs1 func rs2
Function encodes the data path operation: Add, Sub, . ..
Read/write special registers and moves

J-type instruction
6 26

Opcode Offset added to PC

Jump and jump and link
Trap and return from exception

FIGURE 2.21 Instruction layout for DLX. All instructions are encoded in one of three
types.

DLX Operations

DLX supports the list of simple operations recommended above plus a few oth-
ers. There are four broad classes of instructions: loads and stores, ALU opera-
tions, branches and jumps, and floating-point operations.

Any of the general-purpose or floating-point registers may be loaded or stored,
except that loading RO has no effect. Single-precision floating-point numbers oc-
cupy a single floating-point register, while double-precision values occupy a pair.
Conversions between single and double precision must be done explicitly. The
floating-point format is IEEE 754 (see Appendix A). Figure 2.22 gives examples

100

Chapter 2 Instruction Set Principles and Examples

Example instruction

Instruction name

Meaning

LW R1,30(R2) Load word Regs[R1] ~3, Mem[30+Regs[R2]]
LW R1,1000(R0) Load word Regs[R1] 3, Mem[1000+0Q]
LB R1,40(R3) Load byte Regs[R1] «3, (Mem[40+Regs[R3]] o) 2* ##

Mem[40+Regs[R3]]

LBU R1,40(R3)

Load byte unsigned

Regs[R1] g, 0 24 ## Mem[40+Regs[R3]]

LH R1,40(R3)

Load half word

Regs[R1] <3, (Mem[40+Regs[R3]] o) 16 ##
Mem[40+Regs[R3[#Mem[41+Regs[R3]]

LF FO0,50(R3) Load float Regs[F0] « 30 Mem[50+Regs[R3]]

LD F0,50(R2) Load double Regs[FO[#Regs[Fl] g4 Mem[50+Regs[R2]]

SW R3,500(R4) Store word Mem[500+Regs[R4]] ~3, Regs[R3]

SF F0,40(R3) Store float Mem[40+Regs[R3]] 3, Regs[FO]

SD FO0,40(R3) Store double Mem[40+Regs[R3]] 3, Regs[FO];
Mem[44+Regs[R3]] 3, Regs[F1]

SH R3,502(R2) Store half Mem[502+Regs[R2]] 16 Regs[R3] 16.31

SB R2,41(R3) Store byte Mem[41+Regs[R3]] ~g Regs[R2] 24 31

FIGURE 2.22 The load and store instructions in DLX.

All use a single addressing mode and require that the memory

value be aligned. Of course, both loads and stores are available for all the data types shown.

of the load and store instructions. A complete list of the instructions appears in
Figure 2.25 (page 104). To understand these figures we need to introduce a few
additional extensions to our C description language:

« A subscriptis appended to the symbolvhenever the length of the datum be-
ing transferred might not be clear. Thus, means transfer ambit quantity.
We usex, y — zto indicate thaz should be transferred koandy.

« A subscript is used to indicate selection of a bit from a field. Bits are labeled
from the most-significant bit starting at 0. The subscript may be a single digit
(e.g.,Regs[R4] yields the sign bit of R4) or a subrange (6:ggs[R3] 24.31
yields the least-significant byte of R3).

« The variableMemused as an array that stands for main memory, is indexed by
a byte address and may transfer any number of bytes.

= A superscript is used to replicate a field (e0d?, yields a field of zeros of
length 24 bits).

« The symbok# is used to concatenate two fields and may appear on either side
of a data transfer.

2.8 Putting It All Together: The DLX Architecture 101

A summary of the entire description language appears on the back inside
cover. As an example, assuming that R8 and R10 are 32-bit registers:

Regs[R10] 1531 « 16(Mem[Regs[R8]] 0)8 ## Mem[Regs[R8]]

means that the byte at the memory location addressed by the contents of R8 is
sign-extended to form a 16-bit quantity that is stored into the lower half of R10.
(The upper half of R10 is unchanged.)

All ALU instructions are register-register instructions. The operations include
simple arithmetic and logical operations: add, subtrat, OR, XOR, and shifts.
Immediate forms of all these instructions, with a 16-bit sign-extended immediate,
are provided. The operatidtHl (load high immediate) loads the top half of a
register, while setting the lower half to 0. This allows a full 32-bit constant to be
built in two instructions, or a data transfer using any constant 32-bit address in
one extra instruction.

As mentioned above, RO is used to synthesize popular operations. Loading a
constant is simply an add immediate where one of the source operands is RO, anc
a register-register move is simply an add where one of the sources is RO. (We
sometimes use the mnemotnic, standing for load immediate, to represent the
former and the mnemoni¢OMor the latter.)

There are also compare instructions, which compare two registers<{=>,
<, 2). If the condition is true, these instructions place a 1 in the destination regis-
ter (to represent true); otherwise they place the value 0. Because these operation
“set” a register, they are called set-equal, set-not-equal, set-less-than, and so on
There are also immediate forms of these compares. Figure 2.23 gives some ex-
amples of the arithmetic/logical instructions.

Example instruction Instruction name Meaning
ADD R1,R2,R3 Add Regs[R1] — Regs[R2]+Regs[R3]
ADDI R1,R2 #3 Add immediate Regs[R1] — Regs[R2]+3
LHI R1,#42 Load high immediate Regs[R1] . 42##016
SLLI R1,R2,#5 Shift left logical Regs[R1] ~ Regs[R2]<<5
immediate
SLT R1,R2,R3 Set less than if (Regs[R2]<Regs[R3])
Regs[R1l] ~1lelse Regs[R1] ~0

FIGURE 2.23 Examples of arithmetic/logical instructions on DLX, both with and without im-
mediates.

Control is handled through a set of jumps and a set of branches. The four jump
instructions are differentiated by the two ways to specify the destination address
and by whether or not a link is made. Two jumps use a 26-bit signed offset added

102

Chapter 2 Instruction Set Principles and Examples

to the program counter (of the instruction sequentially following the jump) to de-
termine the destination address; the other two jump instructions specify a register
that contains the destination address. There are two flavors of jumps: plain jump,
and jump and link (used for procedure calls). The latter places the return
address—the address of the next sequential instruction—in R31.

All branches are conditional. The branch condition is specified by the in-
struction, which may test the register source for zero or nonzero; the register may
contain a data value or the result of a compare. The branch target address is spec-
ified with a 16-bit signed offset that is added to the program counter, which is
pointing to the next sequential instruction. Figure 2.24 gives some typical branch
and jump instructions. There is also a branch to test the floating-point status reg-
ister for floating-point conditional branches, described below.

Example instruction Instruction name Meaning
J name Jump PC—name; (PC+4)-2 %) <name<
(PC+a)r2 %)
JAL name Jump and link Regs[R31] —PC+4;PC —name;
(PC+4)-2 25) < name < ((PC+4)+2 25)
JALR R2 Jump and link register Regs[R31] ~PC+4; PC —Regs[R2]
JR R3 Jump register PC~ Regs[R3]
BEQZ R4,name Branch equal zero if (Regs[R4]==0) PC ~hame;
(PC+4)-2 1°) <name< (PC+4)+2 %)
BNEZ R4,name Branch not equal zero if (Regs[R4]!=0) PC ~name;
(PC+4)2 ®) <name< (PC+)+2 %)

FIGURE 2.24 Typical control-flow instructions in DLX. All control instructions, except jumps to an address in a register,
are PC-relative. If the register operand is RO, BEQZwill always branch, but the compiler will usually prefer to use a jump with
a longer offset over this “unconditional branch.”

Floating-point instructions manipulate the floating-point registers and indicate
whether the operation to be performed is single or double precision. The opera-
tions MOVFandMOVIxopy a single-precisiorMOVIF or double-precisionMOVp
floating-point register to another register of the same type. The operations
MOVFP2landMOVI2FP move data between a single floating-point register and an
integer register; moving a double-precision value to two integer registers requires
two instructions. Integer multiply and divide that work on 32-bit floating-point
registers are also provided, as are conversions from integer to floating point and
vice versa.

The floating-point operations are add, subtract, multiply, and divide; a Buffix
is used for double precision and a sulfiss used for single precision (e.g0ODD
ADDF, SUBD SUBF, MULTD MULTF, DIVD, DIVF). Floating-point compares set a

2.8 Putting It All Together: The DLX Architecture 103

bit in the special floating-point status register that can be tested with a pair of
branchesBFPT and BFPF, branch floating-point true and branch floating-point
false.

One slightly unusual DLX characteristic is that it uses the floating-point unit
for integer multiplies and divides. As we shall see in Chapters 3 and 4, the control
for the slower floating-point operations is much more complicated than for inte-
ger addition and subtraction. Since the floating-point unit already handles float-
ing point multiply and divide, it is not much harder for it to perform the relatively
slow operations of integer multiply and divide. Hence DLX requires that oper-
ands to be multiplied or divided be placed in floating-point registers.

Figure 2.25 contains a list of all DLX operations and their meaning. To give
an idea which instructions are popular, Figure 2.26 shows the frequency of in-
structions and instruction classes for five SPECint92 programs and Figure 2.27
shows the same data for five SPECfp92 programs. To give a more intuitive feel-
ing, Figures 2.28 and 2.29 show the data graphically for all instructions that are
responsible on average for more than 1% of the instructions executed.

Effectiveness of DLX

It would seem that an architecture with simple instruction formats, simple ad-
dress modes, and simple operations would be slow, in part because it has to exe
cute more instructions than more sophisticated designs. The performance
equation from the last chapter reminds us that execution time is a function of
more than just instruction count:

CPUtime = Instructioncountx CPIx Clock cycletime

To see whether reduction in instruction count is offset by increases in CPI or
clock cycle time, we need to compare DLX to a sophisticated alternative.

One example of a sophisticated instruction set architecture is the VAX. In the
mid 1970s, when the VAX was designed, the prevailing philosophy was to create
instruction sets that were close to programming languages to simplify compilers.
For example, because programming languages had loops, instruction sets shoulc
have loop instructions, not just simple conditional branches; they needed call in-
structions that saved registers, not just simple jump and links; they needed case
instructions, not just jump indirect; and so on. Following similar arguments, the
VAX provided a large set of addressing modes and made sure that all addressing
modes worked with all operations. Another prevailing philosophy was to mini-
mize code size. Recall that DRAMs have grown in capacity by a factor of four
every three years; thus in the mid 1970s DRAM chips contained less than 1/1000
the capacity of today’s DRAMS, so code space was also critical. Code space was

104

Chapter 2 Instruction Set Principles and Examples

Instruction type/opcode

Instruction meaning

Data transfers Move data between registers and memory, or between the integer and FP or specjal
registers; only memory address mode is 16-bit displacement + contents of a GPR

LB,LBU,SB Load byte, load byte unsigned, store byte

LH,LHU,SH Load half word, load half word unsigned, store half word

LW,SW Load word, store word (to/from integer registers)

LF,LD,SF,SD Load SP float, load DP float, store SP float, store DP float

MOVI2S, MOVS2I Move from/to GPR to/from a special register

MOVF, MOVD Copy one FP register or a DP pair to another register or pair

MOVFP2|,MOVI2FP Move 32 bits from/to FP registers to/from integer registers

Arithmetic/logical Operations on integer or logical data in GPRs; signed arithmetic trap on overflow

ADD,ADDI,ADDU, ADDUI Add, add immediate (all immediates are 16 bits); signed and unsigned

SUB,SUBI,SUBU, SUBUI Subtract, subtract immediate; signed and unsigned

MULT,MULTU,DIV,DIVU Multiply and divide, signed and unsigned; operands must be FP registers; all operations
take and yield 32-bit values

AND,ANDI And, and immediate

OR,0ORI,XOR,XORI Or, or immediate, exclusive or, exclusive or immediate

LHI Load high immediate—Iloads upper half of register with immediate

SLL, SRL, SRA, SLLI, Shifts: both immediateS__I) and variable form§_) ; shifts are shift left logical, right

SRLI, SRAI logical, right arithmetic

S S | Set conditional: “__" may beT,GT,LE,GE,EQ,NE

Control Conditional branches and jumps; PC-relative or through register

BEQZ,BNEZ Branch GPR equal/not equal to zero; 16-bit offset from PC+4

BFPT,BFPF Test comparison bit in the FP status register and branch; 16-bit offset from PC+4

J,JR Jumps: 26-bit offset from PC+4d)(or target in registedR)

JAL, JALR Jump and link: save PC+4 in R31, target is PC-relafixe)(or a registerJALR)

TRAP Transfer to operating system at a vectored address

RFE Return to user code from an exception; restore user mode

Floating point FP operations on DP and SP formats

ADDD,ADDF Add DP, SP numbers

SUBD,SUBF Subtract DP, SP numbers

MULTD,MULTF Multiply DP, SP floating point

DIVD,DIVF Divide DP, SP floating point

CVTF2D, CVTF2, Convert instructionsCVTx2y converts from type to typey, wherex andy arel

CVTD2F, CVTD2l, (integer),D (double precision), df (single precision). Both operands are FPRs.

CVTI2F, CVTI2D

_D,_F DP and SP compares: “__"lT,GT,LE,GE,EQ,NE ; sets bit in FP status register

FIGURE 2.25 Complete list of the instructions in DLX.

The formats of these instructions are shown in Figure 2.21.

SP = single precision; DP = double precision. This list can also be found on the page preceding the back inside cover.

2.8 Putting It All Together: The DLX Architecture 105

Integer
Instruction compress egntott espresso gcc (ccl) li average
load 19.8% 30.6% 20.9% 22.8% 31.3% 26%
store 5.6% 0.6% 5.1% 14.3% 16.7% 9%
add 14.4% 8.5% 23.8% 14.6% 11.1% 14%
sub 1.8% 0.3% 0.5% 0%
mul 0.1% 0%
div 0%
compare 15.4% 26.5% 8.3% 12.4% 5.4% 14%
load imm 8.1% 1.5% 1.3% 6.8% 2.4% 4%
cond branch 17.4% 24.0% 15.0% 11.5% 14.6% 17%
jump 1.5% 0.9% 0.5% 1.3% 1.8% 1%
call 0.1% 0.5% 0.4% 1.1% 3.1% 1%
return, jmp ind 0.1% 0.5% 0.5% 1.5% 3.5% 1%
shift 6.5% 0.3% 7.0% 6.2% 0.7% 4%
and 2.1% 0.1% 9.4% 1.6% 2.1% 3%
or 6.0% 5.5% 4.8% 4.2% 6.2% 5%
other (xor, not) 1.0% 2.0% 0.5% 0.1% 1%
load FP 0%
store FP 0%
add FP 0%
sub FP 0%
mul FP 0%
div FP 0%
compare FP 0%
mov reg-reg FP 0%
other FP 0%

FIGURE 2.26 DLX instruction mix for five SPECint92 programs. Note that integer register-register move instructions

are included in the add instruction. Blank entries have the value 0.0%.

de-emphasized in fixed-length instruction sets like DLX. For example, DLX ad-
dress fields always use 16 bits, even when the address is very small. In contrast
the VAX allows instructions to be a variable number of bytes, so there is little
wasted space in address fields.

Designers of VAX machines later performed a quantitative comparison of
VAX and a DLX-like machine for implementations with comparable organiza-
tions. Their choices were the VAX 8700 and the MIPS M2000. The differing

106 Chapter 2 Instruction Set Principles and Examples
Instruction doduc ear hydro2d mdljdp2 su2cor FP average
load 1.4% 0.2% 0.1% 1.1% 3.6% 1%
store 1.3% 0.1% 0.1% 1.3% 1%
add 13.6% 13.6% 10.9% 4.7% 9.7% 11%
sub 0.3% 0.2% 0.7% 0%
mul 0%
div 0%
compare 3.2% 3.1% 1.2% 0.3% 1.3% 2%
load imm 2.2% 0.2% 2.2% 0.9% 1%
cond branch 8.0% 10.1% 11.7% 9.3% 2.6% 8%
jump 0.9% 0.4% 0.4% 0.1% 0%
call 0.5% 1.9% 0.3% 1%
return, jmp ind 0.6% 1.9% 0.3% 1%
shift 2.0% 0.2% 2.4% 1.3% 2.3% 2%
and 0.4% 0.1% 0.3% 0%
or 0.2% 0.1% 0.1% 0.1% 0%
other (xor, not) 0%
load FP 23.3% 19.8% 24.1% 25.9% 21.6% 23%
store FP 5.7% 11.4% 9.9% 10.0% 9.8% 9%
add FP 8.8% 7.3% 3.6% 8.5% 12.4% 8%
sub FP 3.8% 3.2% 7.9% 10.4% 5.9% 6%
mul FP 12.0% 9.6% 9.4% 13.9% 21.6% 13%
div FP 2.3% 1.6% 0.9% 0.7% 1%
compare FP 4.2% 6.4% 10.4% 9.3% 0.8% 6%
mov reg-reg FP 2.1% 1.8% 5.2% 0.9% 1.9% 2%
other FP 2.4% 8.4% 0.2% 0.2% 1.2% 2%

FIGURE 2.27 DLX instruction mix for five programs from SPECfp92 . Note that integer register-register move instruc-
tions are included in the add instruction. Blank entries have the value 0.0%.

goals for VAX and MIPS have led to very different architectures. The VAX goals,
simple compilers and code density, led to powerful addressing modes, powerful
instructions, efficient instruction encoding, and few registers. The MIPS goals
were high performance via pipelining, ease of hardware implementation, and
compatibility with highly optimizing compilers. These goals led to simple in-
structions, simple addressing modes, fixed-length instruction formats, and a large
number of registers.

Figure 2.30 shows the ratio of the number of instructions executed, the ratio of
CPlIs, and the ratio of performance measured in clock cycles. Since the organizations

2.8 Putting It All Together: The DLX Architecture

107

and 3%
shift 4%
or | 5%
store int 9%
compare int | 13%
add int] 14%
conditional branch . 16%
load int] 26%

0%

10% 15% 20% 25%

Total dynamic count

5%

m compress

o eqgntott m espresso m gcc o i

FIGURE 2.28 Graphical display of instructions executed of the five programs from

SPECIint92 in Figure 2.26.

These instruction classes collectively are responsible on average

for 92% of instructions executed.

add int

mul FP

load FP

shitt JIFH 29%
mov reg FP B 2%
compare FP Il %
sub FP N o
add FP I 50,
conditional branch N 5%
store FP N %

N 1%
R 13%
I 23%

0%

10% 15% 20% 25%

Total dynamic count

5%

m doduc

@ ear m su2cor

o hydro2d

m mdljdp2

FIGURE 2.29 Graphical display of instructions executed of the five programs from

SPECfp92 in Figure 2.27.

These instruction classes collectively are responsible on average

for just under 90% of instructions executed.

108 Chapter 2 Instruction Set Principles and Examples

were similar, clock cycle times were assumed to be the same. MIPS executes about
twice as many instructions as the VAX, while the CPI for the VAX is about six times
larger than that for the MIPS. Hence the MIPS M2000 has almost three times the
performance of the VAX 8700. Furthermore, much less hardware is needed to build
the MIPS CPU than the VAX CPU. This cost/performance gap is the reason the
company that used to make the VAX has dropped it and is now making a machine
similar to DLX.

4.0

Performance

35 ratio

3.0

25

MIPS/IVAX 2.0

o Instructions
executed ratio

1.5
1.0
0.5 [
D—D\D\ﬂ___n—n/ﬂ/‘n\u CPI ratio
0.0 L L T . . L L)
g & A L Q o QO Q& A
S & 2 L & © o S
Q Cl & L & S & &
2 K N & R e\,’@ BN

SPEC 89 benchmarks

FIGURE 2.30 Ratio of MIPS M2000 to VAX 8700 in instructions executed and performance in clock cycles using

SPEC89 programs. On average, MIPS executes a little over twice as many instructions as the VAX, but the CPI for the VAX
is almost six times the MIPS CPI, yielding almost a threefold performance advantage. (Based on data from Bhandarkar and
Clark [1991].)

29 | Fallacies and Pitfalls

Time and again architects have tripped on common, but erroneous, beliefs. In this

section we look at a few of them.

2.9 Fallacies and Pitfalls 109

Pitfall: Designing a “high-level” instruction set feature specifically oriented
to supporting a high-level language structure.

Attempts to incorporate high-level language features in the instruction set have
led architects to provide powerful instructions with a wide range of flexibility.
But often these instructions do more work than is required in the frequent case, or
they don't exactly match the requirements of the language. Many such efforts
have been aimed at eliminating what in the 1970s was calleskthantic gap
Although the idea is to supplement the instruction set with additions that bring
the hardware up to the level of the language, the additions can generate what
Wulf [1981] has called aemantic clash

... by giving too much semantic content to the instruction, the machine designer

made it possible to use the instruction only in limited contfxtd3]

More often the instructions are simply overkill—they are too general for the
most frequent case, resulting in unneeded work and a slower instruction. Again,
the VAX CALLSis a good exampleALLS uses a callee-save strategy (the regis-
ters to be saved are specified by the calbee}he saving is done by the call in-
struction in the caller. ThEALLS instruction begins with the arguments pushed
on the stack, and then takes the following steps:

1. Align the stack if needed.

2. Push the argument count on the stack.

3. Save the registers indicated by the procedure call mask on the stack (as men
tioned in section 2.7). The mask is kept in the called procedure’s code—this
permits callee save to be done by the caller even with separate compilation.

4. Push the return address on the stack, then push the top and base of stack poin
ers for the activation record.

Clear the condition codes, which sets the trap enables to a known state.
Push a word for status information and a zero word on the stack.

Update the two stack pointers.

© N o U

Branch to the first instruction of the procedure.

The vast majority of calls in real programs do not require this amount of over-
head. Most procedures know their argument counts, and a much faster linkage
convention can be established using registers to pass arguments rather than th
stack. Furthermore, th@ALLSinstruction forces two registers to be used for link-
age, while many languages require only one linkage register. Many attempts to
support procedure call and activation stack management have failed to be useful,
either because they do not match the language needs or because they are to
general and hence too expensive to use.

110

Chapter 2 Instruction Set Principles and Examples

The VAX designers provided a simpler instructioB, that is much faster
since it only pushes the return PC on the stack and jumps to the procedure.
However, most VAX compilers use the more costiy LS instructions. The call
instructions were included in the architecture to standardize the procedure link-
age convention. Other machines have standardized their calling convention by
agreement among compiler writers and without requiring the overhead of a com-
plex, very general-procedure call instruction.

Fallacy: There is such a thing as a typical program.

Many people would like to believe that there is a single “typical” program that
could be used to design an optimal instruction set. For example, see the synthetic
benchmarks discussed in Chapter 1. The data in this chapter clearly show that
programs can vary significantly in how they use an instruction set. For example,
Figure 2.31 shows the mix of data transfer sizes for four of the SPEC92 pro-
grams: It would be hard to say what is typical from these four programs. The
variations are even larger on an instruction set that supports a class of applica-
tions, such as decimal instructions, that are unused by other applications.

S 100%

0%
Double word | 0%
0%

0%

= 100%
Word 12%
78%

0%
0%
Half word ™ 87%
4%
0%
0%
Byte | 1%

[19%

0% 50% 100%

Frequency of reference by size

| m hydro2d m ear o eqgntott m compress

FIGURE 2.31 Data reference size of four programs from SPEC92. Although you can cal-
culate an average size, it would be hard to claim the average is typical of programs.
Fallacy: An architecture with flaws cannot be successful.

The 80x86 provides a dramatic example: The architecture is one only its creators
could love (see Appendix D). Succeeding generations of Intel engineers have

2.10 Concluding Remarks 111

tried to correct unpopular architectural decisions made in designing the 80x86.
For example, the 80x86 supports segmentation, whereas all others picked paging;
the 80x86 uses extended accumulators for integer data, but other machines ust
general-purpose registers; and it uses a stack for floating-point data when every-
one else abandoned execution stacks long before. Despite these major difficul-
ties, the 80x86 architecture—because of its selection as the microprocessor in the
IBM PC—has been enormously successful.

Fallacy: You can design a flawless architecture.

All architecture design involves trade-offs made in the context of a set of hard-
ware and software technologies. Over time those technologies are likely to
change, and decisions that may have been correct at the time they were made
look like mistakes. For example, in 1975 the VAX designers overemphasized the
importance of code-size efficiency, underestimating how important ease of de-
coding and pipelining would be 10 years later. Almost all architectures eventually
succumb to the lack of sufficient address space. However, avoiding this problem
in the long run would probably mean compromising the efficiency of the archi-
tecture in the short run.

2. 10 | Concluding Remarks

The earliest architectures were limited in their instruction sets by the hardware
technology of that time. As soon as the hardware technology permitted, architects
began looking for ways to support high-level languages. This search led to three
distinct periods of thought about how to support programs efficiently. In the
1960s, stack architectures became popular. They were viewed as being a gooc
match for high-level languages—and they probably were, given the compiler
technology of the day. In the 1970s, the main concern of architects was how to re-
duce software costs. This concern was met primarily by replacing software with
hardware, or by providing high-level architectures that could simplify the task of
software designers. The result was both the high-level-language computer archi-
tecture movement and powerful architectures like the VAX, which has a large
number of addressing modes, multiple data types, and a highly orthogonal archi-
tecture. In the 1980s, more sophisticated compiler technology and a renewed em-
phasis on machine performance saw a return to simpler architectures, based
mainly on the load-store style of machine.

Today, there is widespread agreement on instruction set design. However, in
the next decade we expect to see change in the following areas:

« The 32-bit address instruction sets are being extended to 64-bit addresses, ex
panding the width of the registers (among other things) to 64 bits. Appendix C
gives three examples of architectures that have gone from 32 bits to 64 bits.

112

Chapter 2 Instruction Set Principles and Examples

« Given the popularity of software for the 80x86 architecture, many companies
are looking to see if changes to load-store instruction sets can significantly im-
prove performance when emulating the 80x86 architecture.

« Inthe next two chapters we will see that conditional branches can limit the per-
formance of aggressive computer designs. Hence there is interest in replacing
conditional branches with conditional completion of operations, such as condi-
tional move (see Chapter 4).

« Chapter 5 explains the increasing role of memory hierarchy in performance of
machines, with a cache miss on some machines taking almost as many instruc-
tion times as page faults took on earlier machines. Hence there are investiga-
tions into hiding the cost of cache misses by prefetching and by allowing
caches and CPUs to proceed while servicing a miss (see Chapter 5).

« Appendix A describes new operations to enhance floating-point performance,
such as operations that perform a multiply and an add. Support for quadruple
precision, at least for data transfer, may also be coming down the line.

Between 1970 and 1985 many thought the primary job of the computer archi-
tect was the design of instruction sets. As a result, textbooks of that era empha-
size instruction set design, much as computer architecture textbooks of the 1950s
and 1960s emphasized computer arithmetic. The educated architect was expected
to have strong opinions about the strengths and especially the weaknesses of the
popular machines. The importance of binary compatibility in quashing innova-
tions in instruction set design was unappreciated by many researchers and text-
book writers, giving the impression that many architects would get a chance to
design an instruction set.

The definition of computer architecture today has been expanded to include
design and evaluation of the full computer system—not just the definition of the
instruction set—and hence there are plenty of topics for the architect to study.
(You may have guessed this the first time you lifted this book.) Hence the bulk of
this book is on design of computers versus instruction sets. Readers interested in
instruction set architecture may be satisfied by the appendices: Appendix C com-
pares four popular load-store machines with DLX. Appendix D describes the
most widely used instruction set, the Intel 80x86, and compares instruction
counts for it with that of DLX for several programs.

2.11 | Historical Perspective and References

One’s eyebrows should rise whenever a future architecture is developed with a
stack- or register-oriented instruction sgi. 20]

Meyers [1978]

2.11 Historical Perspective and References 113

The earliest computers, including the UNIVAC I, the EDSAC, and the IAS ma-
chines, were accumulator-based machines. The simplicity of this type of machine
made it the natural choice when hardware resources were very constrained. The
first general-purpose register machine was the Pegasus, built by Ferranti, Ltd. in
1956. The Pegasus had eight general-purpose registers, with RO always being zerc
Block transfers loaded the eight registers from the drum.

In 1963, Burroughs delivered the B5000. The B5000 was perhaps the first ma-
chine to seriously consider software and hardware-software trade-offs. Barton
and the designers at Burroughs made the B5000 a stack architecture (as describe
in Barton [1961]). Designed to support high-level languages such as ALGOL,
this stack architecture used an operating system (MCP) written in a high-level
language. The B5000 was also the first machine from a U.S. manufacturer to sup-
port virtual memory. The B6500, introduced in 1968 (and discussed in Hauck and
Dent [1968]), added hardware-managed activation records. In both the B5000
and B6500, the top two elements of the stack were kept in the CPU and the rest of
the stack was kept in memory. The stack architecture yielded good code density,
but only provided two high-speed storage locations. The authors of both the orig-
inal IBM 360 paper [Amdahl, Blaauw, and Brooks 1964] and the original PDP-
11 paper [Bell et al. 1970] argue against the stack organization. They cite three
major points in their arguments against stacks:

1. Performance is derived from fast registers, not the way they are used.

2. The stack organization is too limiting and requires many swap and copy oper-
ations.

3. The stack has a bottom, and when placed in slower memory there is a perfor-
mance loss.

Stack-based machines fell out of favor in the late 1970s and, except for the Intel
80x86 floating-point architecture, essentially disappeared. For example, except
for the 80x86, none of the machines listed in the SPEC reports uses a stack.

The termcomputer architecturgvas coined by IBM in the early 1960s. Amdahl,
Blaauw, and Brooks [1964] used the term to refer to the programmer-visible portion
of the IBM 360 instruction set. They believed th&mily of machines of the same
architecture should be able to run the same software. Although this idea may seem
obvious to us today, it was quite novel at that time. IBM, even though it was the lead-
ing company in the industry, h&ide different architectures before the 360. Thus, the
notion of a company standardizing on a single architecture was a radical one. The 36C
designers hoped that six different divisions of IBM could be brought together by de-
fining a common architecture. Their definition of architecture was

... the structure of a computer that a machine language programmer must under-
stand to write a correct (timing independent) program for that machine.

114

Chapter 2 Instruction Set Principles and Examples

The term “machine language programmer” meant that compatibility would hold,
even in assembly language, while “timing independent” allowed different imple-
mentations.

The IBM 360 was the first machine to sell in large quantities with both byte
addressing using 8-bit bytes and general-purpose registers. The 360 also had
register-memory and limited memory-memory instructions.

In 1964, Control Data delivered the first supercomputer, the CDC 6600. As
Thornton [1964] discusses, he, Cray, and the other 6600 designers were the first
to explore pipelining in depth. The 6600 was the first general-purpose, load-store
machine. In the 1960s, the designers of the 6600 realized the need to simplify ar-
chitecture for the sake of efficient pipelining. This interaction between architec-
tural simplicity and implementation was largely neglected during the 1970s by
microprocessor and minicomputer designers, but it was brought back in the
1980s.

In the late 1960s and early 1970s, people realized that software costs were
growing faster than hardware costs. McKeeman [1967] argued that compilers and
operating systems were getting too big and too complex and taking too long to
develop. Because of inferior compilers and the memory limitations of machines,
most systems programs at the time were still written in assembly language. Many
researchers proposed alleviating the software crisis by creating more powerful,
software-oriented architectures. Tanenbaum [1978] studied the properties of
high-level languages. Like other researchers, he found that most programs are
simple. He then argued that architectures should be designed with this in mind
and should optimize program size and ease of compilation. Tanenbaum proposed
a stack machine with frequency-encoded instruction formats to accomplish these
goals. However, as we have observed, program size does not translate directly to
cost/performance, and stack machines faded out shortly after this work.

Strecker’s article [1978] discusses how he and the other architects at DEC re-
sponded to this by designing the VAX architecture. The VAX was designed to
simplify compilation of high-level languages. Compiler writers had complained
about the lack of complete orthogonality in the PDP-11. The VAX architecture
was designed to be highly orthogonal and to allow the mapping of a high-level-
language statement into a single VAX instruction. Additionally, the VAX design-
ers tried to optimize code size because compiled programs were often too large
for available memories.

The VAX-11/780 was the first machine announced in the VAX series. It is one
of the most successful and heavily studied machines ever built. The cornerstone
of DEC'’s strategy was a single architecture, VAX, running a single operating sys-
tem, VMS. This strategy worked well for over 10 years. The large number of pa-
pers reporting instruction mixes, implementation measurements, and analysis of
the VAX make it an ideal case study [Wiecek 1982; Clark and Levy 1982]. Bhan-
darkar and Clark [1991] give a quantitative analysis of the disadvantages of the
VAX versus a RISC machine, essentially a technical explanation for the demise
of the VAX.

2.11 Historical Perspective and References 115

While the VAX was being designed, a more radical approach, daiigd
level-language computer architectufidLLCA), was being advocated in the re-
search community. This movement aimed to eliminate the gap between high-lev-
el languages and computer hardware—what Gagliardi [1973] called the
“semantic gap"—by bringing the hardware “up to” the level of the programming
language. Meyers [1982] provides a good summary of the arguments and a his-
tory of high-level-language computer architecture projects.

HLLCA never had a significant commercial impact. The increase in memory
size on machines and the use of virtual memory eliminated the code-size prob-
lems arising from high-level languages and operating systems written in high-
level languages. The combination of simpler architectures together with software
offered greater performance and more flexibility at lower cost and lower com-
plexity.

In the early 1980s, the direction of computer architecture began to swing away
from providing high-level hardware support for languages. Ditzel and Patterson
[1980] analyzed the difficulties encountered by the high-level-language architec-
tures and argued that the answer lay in simpler architectures. In another paper
[Patterson and Ditzel 1980], these authors first discussed the idea of reduced in-
struction set computers (RISC) and presented the argument for simpler ar-
chitectures. Their proposal was rebutted by Clark and Strecker [1980].

The simple load-store machines from which DLX is derived are commonly
called RISC architectures. The roots of RISC architectures go back to machines
like the 6600, where Thornton, Cray, and others recognized the importance of in-
struction set simplicity in building a fast machine. Cray continued his tradition of
keeping machines simple in the CRAY-1. However, DLX and its close relatives
are built primarily on the work of three research projects: the Berkeley RISC pro-
cessor, the IBM 801, and the Stanford MIPS processor. These architectures have
attracted enormous industrial interest because of claims of a performance advan-
tage of anywhere from two to five times over other machines using the same tech-
nology.

Begun in 1975, the IBM project was the first to start but was the last to be-
come public. The IBM machine was designed as an ECL minicomputer, while
the university projects were both MOS-based microprocessors. John Cocke is
considered to be the father of the 801 design. He received both the Eckert-
Mauchly and Turing awards in recognition of his contribution. Radin [1982] de-
scribes the highlights of the 801 architecture. The 801 was an experimental
project that was never designed to be a product. In fact, to keep down cost and
complexity, the machine was built with only 24-bit registers.

In 1980, Patterson and his colleagues at Berkeley began the project that was tc
give this architectural approach its name (see Patterson and Ditzel [1980]). They
built two machines called RISC-I and RISC-II. Because the IBM project was not
widely known or discussed, the role played by the Berkeley group in promoting
the RISC approach was critical to the acceptance of the technology. The Berkeley

116

Chapter 2 Instruction Set Principles and Examples

group went on to build RISC machines targeted toward Smalltalk, described by
Ungar et al. [1984], and LISP, described by Taylor et al. [1986].

In 1981, Hennessy and his colleagues at Stanford published a description of
the Stanford MIPS machine. Efficient pipelining and compiler-assisted schedul-
ing of the pipeline were both key aspects of the original MIPS design.

These early RISC machines—the 801, RISC-Il, and MIPS—had much in
common. Both university projects were interested in designing a simple machine
that could be built in VLSI within the university environment. All three machines
used a simple load-store architecture, fixed-format 32-bit instructions, and em-
phasized efficient pipelining. Patterson [1985] describes the three machines and
the basic design principles that have come to characterize what a RISC machine
is. Hennessy [1984] provides another view of the same ideas, as well as other is-
sues in VLSI processor design.

In 1985, Hennessy published an explanation of the RISC performance advan-
tage and traced its roots to a substantially lower CPl—under 2 for a RISC ma-
chine and over 10 for a VAX-11/780 (though not with identical workloads). A
paper by Emer and Clark [1984] characterizing VAX-11/780 performance was
instrumental in helping the RISC researchers understand the source of the perfor-
mance advantage seen by their machines.

Since the university projects finished up, in the 1883ime frame, the tech-
nology has been widely embraced by industry. Many manufacturers of the early
computers (those made before 1986) claimed that their products were RISC ma-
chines. However, these claims were often born more of marketing ambition than
of engineering reality.

In 1986, the computer industry began to announce processors based on the
technology explored by the three RISC research projects. Moussouris et al.
[1986] describe the MIPS R2000 integer processor, while Kane's book [1986] is
a complete description of the architecture. Hewlett-Packard converted their exist-
ing minicomputer line to RISC architectures; the HP Precision Architecture is de-
scribed by Lee [1989]. IBM never directly turned the 801 into a product. Instead,
the ideas were adopted for a new, low-end architecture that was incorporated in
the IBM RT-PC and described in a collection of papers [Waters 1986]. In 1990,
IBM announced a new RISC architecture (the RS 6000), which is the first super-
scalar RISC machine (see Chapter 4). In 1987, Sun Microsystems began deliver-
ing machines based on the SPARC architecture, a derivative of the Berkeley
RISC-Il machine; SPARC is described in Garner et al. [1988]. The PowerPC
joined the forces of Apple, IBM, and Motorola. Appendix C summarizes several
RISC architectures.

Prior to the RISC architecture movement, the major trend had been highly mi-
crocoded architectures aimed at reducing the semantic gap. DEC, with the VAX,
and Intel, with the IAPX 432, were among the leaders in this approach. Today it
is hard to find a computer company without a RISC product. With the 1994 an-
nouncement that Hewlett Packard and Intel will eventually have a common archi-
tecture, the end of the 1970s architectures draws near.

2.11 Historical Perspective and References 117

References
AMDAHL, G. M., G. A. BAaauw, AND F. P. BROOKS JR. [1964]. “Architecture of the IBM System
360,”IBM J. Research and Developm@ (April), 87-101.

BARTON, R. S. [1961]. “A new approach to the functional design of a compe¢. Western Joint
Computer Conf.393-396.

BELL, G., R. @QDY, H. MCFARLAND, B. DELAGI, J. O’LAUGHLIN, R. NOONAN, AND W. WULF
[1970]. “A new architecture for mini-computers: The DEC PDP-Ptgc. AFIPS SJIC(657-675.

BHANDARKAR, D., AND D. W. Q.ARK [1991]. “Performance from architecture: Comparing a RISC
and a CISC with similar hardware organizatio&dc. Fourth Conf. on Architectural Support for
Programming Languages and Operating SystdiBEE/ACM (April), Palo Alto, Calif., 310-19.

CHow, F. C. [1983].A Portable Machine-Independent Global Optimizer—Design and Measure-
ments Ph.D. Thesis, Stanford Univ. (December).

CLARK, D. AND H. LEVY [1982]. “Measurement and analysis of instruction set use in the VAX-11/
780,” Proc. Ninth Symposium on Computer Architec{éeril), Austin, Tex., 9-17.

CLARK, D. AND W. D. SrRECKER [1980]. “Comments on ‘the case for the reduced instruction set
computer’,”"Computer Architecture Nev&6 (October), 34-38.

CRAWFORD, J.AND P. GELSINGER[1988]. Programming the 8038&ybex Books, Alameda, Calif.

DiTzEL, D. R.AND D. A. PATTERSON [1980]. “Retrospective on high-level language computer archi-
tecture,” inProc. Seventh Annual Symposium on Computer ArchitedtarBaule, France (June),
97-104.

EMER, J. SAND D. W. Q.ARK [1984]. “A characterization of processor performance in the VAX-11/
780,” Proc. 11th Symposium on Computer Architec{Utee), Ann Arbor, Mich., 301-310.

GAGLIARDI, U. O. [1973]. “Report of workshop 4—Software-related advances in computer hardware,”
Proc. Symposium on the High Cost of Softwhtenlo Park, Calif., 99-120.

GARNER, R., A. AGARWAL, F. BRIGGS E. BROWN, D. HOUGH, B. DY, S. KLEIMAN, S. MUNCHNIK,
M. NAMJOO, D. PATTERSON J. FENDLETON, AND R. Tuck [1988]. “Scalable processor architecture
(SPARC),”"COMPCON, IEEEMarch), San Francisco, 278-283.

HAuck, E. A.,AND B. A. DENT [1968]. “Burroughs’ B6500/B7500 stack mechanisfrbc. AFIPS
SJCG 245-251.

HENNESSY, J. [1984]. “VLSI processor architecturdEEE Trans. on ComputeiG-33:11 (Decem-
ber), 1221-1246.

HENNESSY, J. [1985]. “VLSI RISC processorsyLS| Systems Desigfl:10 (October), 22-32.

HENNESSY, J., N. dUPP| F. BASKETT, AND J. GLL [1981]. “MIPS: A VLSI processor architecture,”
Proc. CMU Conf. on VLSI Systems and Computati(@stober), Computer Science Press,
Rockville, Md.

KANE, G. [1986].MIPS R2000 RISC Architectyrérentice Hall, Englewood Cliffs, N.J.
LEE, R. [1989]. “Precision architectureComputer22:1 (January), 78-91.

Levy, H. AND R. EckHOUSE [1989]. Computer Programming and Architecture: The VAXgital
Press, Boston.

LUNDE, A. [1977]. “Empirical evaluation of some features of instruction set processor architecture,”
Comm. ACM20:3 (March), 143-152.

McKEemAN, W. M. [1967]. “Language directed computer desidPrdc. 1967 Fall Joint Computer
Conf.,Washington, D.C., 413-417.

MEYERS G. J. [1978]. “The evaluation of expressions in a storage-to-storage architeCamgter
Architecture New3:3 (October), 20-23.

118

Chapter 2 Instruction Set Principles and Examples

MEYERS G. J. [1982]Advances in Computer Architectund ed., Wiley, New York.

MOUSSOURIS J., L. QRUDELE, D. FREITAS, C. HANSEN, E. HUDSON, S. RRzYBYLSKI, T. RORDAN,
AND C. ROWEN [1986]. “A CMOS RISC processor with integrated system functioRsgdc.
COMPCON, IEEEMarch), San Francisco, 191.

PATTERSON D. [1985]. “Reduced instruction set compute3gmm. ACM28:1 (January), 8-21.

PATTERSON D. A. AND D. R. DTzEL [1980]. “The case for the reduced instruction set computer,”
Computer Architecture Nevés6 (October), 25-33.

RADIN, G. [1982]. “The 801 minicomputerProc. Symposium Architectural Support for Program-
ming Languages and Operating SystéMarch), Palo Alto, Calif., 39-47.

STRECKER W. D. [1978]. “VAX-11/780: A virtual address extension of the PDP-11 famitygc.
AFIPS National Computer Corf7, 967—980.

TANENBAUM, A. S. [1978]. “Implications of structured programming for machine architecture,”
Comm. ACM21:3 (March), 237-246.

TAYLOR, G., P. HLFINGER, J. LARUS, D. PATTERSON AND B. ZORN [1986]. “Evaluation of the SPUR
LISP architecture,Proc. 13th Symposium on Computer Architectdemé), Tokyo.

THORNTON, J. E. [1964]. “Parallel operation in Control Data 66@rdc. AFIPS Fall Joint Com-
puter Conf26, part 2, 33—40.

UNGAR, D., R. BAuU, P. FOLEY, D. SAMPLES, AND D. PATTERSON [1984]. “Architecture of SOAR:
Smalltalk on a RISC,Proc. 11th Symposium on Computer Architec{dtene), Ann Arbor, Mich.,
188-197.

WAKERLY, J. [1989]Microcomputer Architecture and Programminly,Wiley, New York.

WATERS, F.,ED. [1986].IBM RT Personal Computer TechnolotfM, Austin, Tex., SA 23-1057.

WIECEK, C. [1982]. “A case study of the VAX 11 instruction set usage for compiler execlRi@,”’
Symposium on Architectural Support for Programming Languages and Operating Systems
(March), IEEE/ACM, Palo Alto, Calif., 177-184.

WULF, W. [1981]. “Compilers and computer architectur€gmputerl4:7 (July), 41-47.

EXERCISES

2.1 [20/15/10] <2.3,2.8> We are designing instruction set formats for a load-store archi-
tecture and are trying to decide whether it is worthwhile to have multiple offset lengths for
branches and memory references. We have decided that both branch and memory refer-
ences can have only 0-, 8-, and 16-bit offsets. The length of an instruction would be equal
to 16 bits + offset length in bits. ALU instructions will be 16 bits. Figure 2.32 contains the
data in cumulative form. Assume an additional bit is needed for the sign on the offset.

For instruction set frequencies, use the data for DLX from the average of the five bench-
marks for the load-store machine in Figure 2.26. Assume that the miscellaneous instruc-
tions are all ALU instructions that use only registers.

a. [20]<2.3,2.8> Suppose offsets were permitted to be 0, 8, or 16 bits in length, including
the sign bit. What is the average length of an executed instruction?

b. [15] <2.3,2.8> Suppose we wanted a fixed-length instruction and we chose a 24-bit
instruction length (for everything, including ALU instructions). For every offset of
longer than 8 bits, an additional instruction is required. Determine the number of

Exercises 119

Offset bits Cumulative data references Cumulative branches
0 17% 0%
1 17% 0%
2 23% 24%
3 32% 49%
4 40% 64%
5 48% 79%
6 54% 87%
7 57% 93%
8 60% 98%
9 61% 99%
10 69% 100%
11 71% 100%
12 75% 100%
13 78% 100%
14 80% 100%
15 100% 100%

FIGURE 2.32 The second and third columns contain the cumulative percentage of the

data references and branches, respectively, that can be accommodated with the
corresponding number of bits of magnitude in the displacement. These are the average
distances of all 10 programs in Figure 2.7.

instruction bytes fetched in this machine with fixed instruction size versus those
fetched with a byte-variable-sized instruction as defined in part (a).

c. [10]<2.3,2.8> Now suppose we use a fixed offset length of 16 bits so that no addition-
al instruction is ever required. How many instruction bytes would be required? Com-
pare this result to your answer to part (b), which used 8-bit fixed offsets that used
additional instruction words when larger offsets were required.

2.2 [15/10] <2.2> Several researchers have suggested that adding a register-memory ad-
dressing mode to a load-store machine might be useful. The idea is to replace sequences o

LOAD R1,0(Rb)

ADD R2,R2,R1
by

ADD R2,0(Rb)

Assume the new instruction will cause the clock cycle to increase by 10%. Use the instruc-
tion frequencies for the gcc benchmark on the load-store machine from Figure 2.26. The
new instruction affects only the clock cycle and not the CPI.

120

Chapter 2 Instruction Set Principles and Examples

a. [15] <2.2> What percentage of the loads must be eliminated for the machine with the
new instruction to have at least the same performance?

b. [10] <2.2> Show a situation in a multiple instruction sequence where a load of R1 fol-
lowed immediately by a use of R1 (with some type of opcode) could not be replaced
by a single instruction of the form proposed, assuming that the same opcode exists.

2.3 [20] <2.2>Your task is to compare the memory efficiency of four different styles of
instruction set architectures. The architecture styles are

1. Accumulator—All operations occur between a single register and a memory location.
2. Memory-memory-All three operands of each instruction are in memory.

3. Stack—All operations occur on top of the stack. Only push and pop access memory;
all other instructions remove their operands from stack and replace them with the re-
sult. The implementation uses a stack for the top two entries; accesses that use other
stack positions are memory references.

4. Load-store-All operations occur in registers, and register-to-register instructions
have three operands per instruction. There are 16 general-purpose registers, and regis-
ter specifiers are 4 bits long.

To measure memory efficiency, make the following assumptions about all four instruction
sets:

» The opcode is always 1 byte (8 bits).

« Allmemory addresses are 2 bytes (16 bits).

» All data operands are 4 bytes (32 bits).

» Allinstructions are an integral number of bytes in length.

There are no other optimizations to reduce memory traffic, and the varaBlgS andD
are initially in memory.

Invent your own assembly language mnemonics and write the best equivalent assembly
language code for the high-level-language fragment given. Write the four code sequences
for

A=B+C;
B=A+C;
D=A-B;

Calculate the instruction bytes fetched and the memory-data bytes transferred. Which ar-
chitecture is most efficient as measured by code size? Which architecture is most efficient
as measured by total memory bandwidth required (code + data)?

2.4 [Discussion] <2.2—-2.9> What are theonomicarguments (i.e., more machines sold)
for and against changing instruction set architecture?

2.5 [25] <2.1-2.5> Find an instruction set manual for some older machine (libraries and
private bookshelves are good places to look). Summarize the instruction set with the
discriminating characteristics used in Figure 2.2. Write the code sequence for this machine

Exercises 121

for the statements in Exercise 2.3. The size of the data need not be 32 bits as in Exercise 2.
if the word size is smaller in the older machine.

2.6 [20] <2.8> Consider the following fragment of C code:

for (i=0; i<=100; i++)
{All] = B[i] + C;}

Assume thaf andB are arrays of 32-bit integers, a@iéindi are 32-bit integers. Assume

that all data values and their addresses are kept in memory (at addresses 0, 5000, 1500, ar
2000 forA, B, C, andi , respectively) except when they are operated on. Assume that values
in registers are lost between iterations of the loop.

Write the code for DLX; how many instructions are required dynamically? How many
memory-data references will be executed? What is the code size in bytes?

2.7 [20] <App. D> Repeat Exercise 2.6, but this time write the code for the 80x86.

2.8 [20] <2.8> For this question use the code sequence of Exercise 2.6, but put the scalar
data—the value af, the value ofC, and the addresses of the array variables (but not the
actual array)—in registers and keep them there whenever possible.

Write the code for DLX; how many instructions are required dynamically? How many
memory-data references will be executed? What is the code size in bytes?

2.9 [20] <App. D> Make the same assumptions and answer the same questions as the prior
exercise, but this time write the code for the 80x86.

2.10 [15] <2.8>When designing memory systems it becomes useful to know the frequency
of memory reads versus writes and also accesses for instructions versus data. Using the av
erage instruction-mix information for DLX in Figure 2.26, find

« the percentage of all memory accesses for data
» the percentage of data accesses that are reads
» the percentage of all memory accesses that are reads
Ignore the size of a datum when counting accesses.

2.11 [18] <2.8> Compute the effective CPI for DLX using Figure 2.26. Suppose we have
made the following measurements of average CPI for instructions:

Instruction Clock cycles
All ALU instructions 1.0
Loads-stores 1.4

Conditional branches
Taken 2.0
Not taken 15
Jumps 1.2

122

Chapter 2 Instruction Set Principles and Examples

Assume that 60% of the conditional branches are taken and that all instructions in the mis-
cellaneous category of Figure 2.26 are ALU instructions. Average the instruction frequen-
cies of gcc and espresso to obtain the instruction mix.

2.12 [20/10] <2.3,2.8> Consider adding a new index addressing mode to DLX. The ad-
dressing mode adds two registers and an 11-bit signed offset to get the effective address.

Our compiler will be changed so that code sequences of the form

ADD R1, R1, R2
LW Rd, 100(R1)(or store)

will be replaced with a load (or store) using the new addressing mode. Use the overall
average instruction frequencies from Figure 2.26 in evaluating this addition.

a. [20] <2.3,2.8> Assume that the addressing mode can be used for 10% of the displace-
ment loads and stores (accounting for both the frequency of this type of address cal-
culation and the shorter offset). What is the ratio of instruction count on the enhanced
DLX compared to the original DLX?

b. [10] <2.3,2.8> If the new addressing mode lengthens the clock cycle by 5%, which
machine will be faster and by how much?

2.13 [25/15] <2.7> Find a C compiler and compile the code shown in Exercise 2.6 for one
of the machines covered in this book. Compile the code both optimized and unoptimized.

a. [25] <2.7> Find the instruction count, dynamic instruction bytes fetched, and data ac-
cesses done for both the optimized and unoptimized versions.

b. [15]<2.7> Try to improve the code by hand and compute the same measures as in part
(a) for your hand-optimized version.

2.14 [30] <2.8> Small synthetic benchmarks can be very misleading when used for mea-
suring instruction mixes. This is particularly true when these benchmarks are optimized. In
this exercise and Exercises 2.15-2.17, we want to explore these differences. These pro-
gramming exercises can be done with any load-store machine.

Compile Whetstone with optimization. Compute the instruction mix for the top 20 most
frequently executed instructions. How do the optimized and unoptimized mixes compare?
How does the optimized mix compare to the mix for spice on the same or a similar
machine?

2.15 [30] <2.8> Follow the same guidelines as the prior exercise, but this time use Dhry-
stone and compare it with TeX.

2.16 [30] <2.8> Many computer manufacturers now include tools or simulators that allow
you to measure the instruction set usage of a user program. Among the methods in use are
machine simulation, hardware-supported trapping, and a compiler technique that instru-
ments the object-code module by inserting counters. Find a processor available to you that
includes such a tool. Use it to measure the instruction set mix for one of TeX, gcc, or spice.
Compare the results to those shown in this chapter.

2.17 [30] <2.3,2.8> DLX has only three operand formats for its register-register opera-
tions. Many operations might use the same destination register as one of the sources. We

Exercises 123

could introduce a new instruction format into DLX calleglitRat has only two operands

and is a total of 24 bits in length. By using this instruction type whenever an operation had
only two different register operands, we could reduce the instruction bandwidth required
for a program. Modify the DLX simulator to count the frequency of register-register oper-
ations with only two different register operands. Using the benchmarks that come with the
simulator, determine how much more instruction bandwidth DLX requires than DLX with
the R, format.

2.18 [25] <App. C> How much do the instruction set variations among the RISC machines
discussed in Appendix C affect performance? Choose at least three small programs (e.g., ¢
sort), and code these programs in DLX and two other assembly languages. What is the re-
sulting difference in instruction count?

It is quite a three-pipe problem.

Sir Arthur Conan Doyle
The Adventures of Sherlock Holmes

3.1 What Is Pipelining? 125

3.2 The Basic Pipeline for DLX 132
3.3 The Major Hurdle of Pipelining—Pipeline Hazards 139
3.4 Data Hazards 146
3.5 Control Hazards 161
3.6 What Makes Pipelining Hard to Implement? 178

3.7 Extending the DLX Pipeline to Handle Multicycle Operations 187

3.8 Crosscutting Issues: Instruction Set Design and Pipelining 199
3.9 Putting It All Together: The MIPS R4000 Pipeline 201
3.10 Fallacies and Pitfalls 209
3.11 Concluding Remarks 211
3.12 Historical Perspective and References 212

Exercises 214

3.1 | What Is Pipelining?

Pipelining is an implementation technique whereby multiple instructions are
overlapped in execution. Today, pipelining is the key implementation technique
used to make fast CPUs.

A pipeline is like an assembly line. In an automobile assembly line, there are
many steps, each contributing something to the construction of the car. Each step
operates in parallel with the other steps, though on a different car. In a computer
pipeline, each step in the pipeline completes a part of an instruction. Like the
assembly line, different steps are completing different parts of different instruc-
tions in parallel. Each of these steps is callpipa stageor apipe segmeniThe
stages are connected one to the next to form a pipe—instructions enter at one
end, progress through the stages, and exit at the other end, just as cars would i
an assembly line.

In an automobile assembly lindyroughputis defined as the number of cars
per hour and is determined by how often a completed car exits the assembly line.
Likewise, the throughput of an instruction pipeline is determined by how often an
instruction exits the pipeline. Because the pipe stages are hooked together, all the

126

Chapter 3 Pipelining

stages must be ready to proceed at the same time, just as we would require in an
assembly line. The time required between moving an instruction one step down
the pipeline is anachine cycleBecause all stages proceed at the same time, the
length of a machine cycle is determined by the time required for the slowest pipe
stage, just as in an auto assembly line, the longest step would determine the time
between advancing the line. In a computer, this machine cycle is usually one
clock cycle (sometimes it is two, rarely more), although the clock may have
multiple phases.

The pipeline designer’s goal is to balance the length of each pipeline stage,
just as the designer of the assembly line tries to balance the time for each step in
the process. If the stages are perfectly balanced, then the time per instruction on
the pipelined machine—assuming ideal conditions—is equal to

Time per instruction on unpipelined machine
Number of pipe stages

Under these conditions, the speedup from pipelining equals the number of pipe
stages, just as an assembly line witstages can ideally produce carsmes as

fast. Usually, however, the stages will not be perfectly balanced; furthermore,
pipelining does involve some overhead. Thus, the time per instruction on the
pipelined machingvill not have its minimum possible value, yet it can be close.

Pipelining yields a reduction in the average execution time per instruction.
Depending on what you consider as the base line, the reduction can be viewed as
decreasing the number of clock cycles per instruction (CPI), as decreasing the
clock cycle time, or as a combination. If the starting point is a machine that takes
multiple clock cycles per instruction, then pipelining is usually viewed as reduc-
ing the CPI. This is the primary view we will take. If the starting point is a ma-
chine that takes one (long) clock cycle per instruction, then pipelining decreases
the clock cycle time.

Pipelining is an implementation technique that exploits parallelism among the
instructions in a sequential instruction stream. It has the substantial advantage
that, unlike some speedup techniques (see Chapter 8 and Appendix B), it is not
visible to the programmer. In this chapter we will first cover the concept of pipe-
lining using DLX and a simple version of its pipeline. We use DLX because its
simplicity makes it easy to demonstrate the principles of pipelining. In addition,
to simplify the diagrams we do not include the jump instructions of DLX; adding
them does not involve new concepts—only bigger diagrams. The principles of
pipelining in this chapter apply to more complex instruction sets than DLX or its
RISC relatives, although the resulting pipelines are more complex. Using the
DLX example, we will look at the problems pipelining introduces and the perfor-
mance attainable under typical situations. Section 3.9 examines the MIPS R4000
pipeline, which is similar to other recent machines with extensive pipelining.
Chapter 4 looks at more advanced pipelining techniques being used in the
highest-performance processors.

3.1 What Is Pipelining? 127

Before we proceed to basic pipelining, we need to review a simple implemen-
tation of an unpipelined version of DLX.

A Simple Implementation of DLX

To understand how DLX can be pipelined, we need to understand how it is imple-
mentedwithout pipelining. This section shows a simple implementation where
every instruction takes at most five clock cycles. We will extend this basic imple-
mentation to a pipelined version, resulting in a much lower CPI. Our unpipelined
implementation is not the most economical or the highest-performance imple-
mentation without pipelining. Instead, it is designed to lead naturally to a pipe-
lined implementation. We will indicate where the implementation could be
improved later in this section. Implementing the instruction set requires the intro-
duction of several temporary registers that are not part of the architecture; these
are introduced in this section to simplify pipelining.

In sections 3.1-3.5 we focus on a pipeline for an integer subset of DLX that
consists of load-store word, branch, and integer ALU operations. Later in the
chapter, we will incorporate the basic floating-point operations. Although we dis-
cuss only a subset of DLX, the basic principles can be extended to handle all the
instructions.

Every DLX instruction can be implemented in at most five clock cycles. The
five clock cycles are as follows.

1. Instruction fetch cyclélF):

IR « Mem[PC]
NPC -~ PC+4

Operation: Send out the PC and fetch the instruction from memory into the
instruction register (IR); increment the PC by 4 to address the next sequential
instruction. The IR is used to hold the instruction that will be needed on sub-
sequent clock cycles; likewise the register NPC is used to hold the next se-
quential PC.

2. Instruction decode/register fetch cy¢lB):

A ~ Regs[R .10 |;

B ~ Regs[iR 11,15 I
Imm ~ (IR 16) " ##IR 16.31)

Operation:Decode the instruction and access the register file to read the regis-
ters. The outputs of the general-purpose registers are read into two temporary
registers (A and B) for use in later clock cycles.The lower 16 bits of the IR are
also sign-extended and stored into the temporary register Imm, for use in the
next cycle.

128

Chapter 3 Pipelining

Decoding is done in parallel with reading registers, which is possible be-
cause these fields are at a fixed location in the DLX instruction format (see
Figure 2.21 on page 99). This technique is knowrixasl-field decoding
Note that we may read a register we don't use, which doesn’t help but also
doesn’t hurt. Because the immediate portion of an instruction is located in an
identical place in every DLX format, the sign-extended immediate is also cal-
culated during this cycle in case it is needed in the next cycle.

. Execution/effective address cy¢eX):

The ALU operates on the operands prepared in the prior cycle, performing one
of four functions depending on the DLX instruction type.

« Memory reference:

ALUOutput ~ A+ Imm,
Operation The ALU adds the operands to form the effective address and
places the result into the register ALUOutput.

« Register-Register ALU instruction:

ALUOutput ~ A func B;

Operation:The ALU performs the operation specified by the function code on
the value in register A and on the value in register B. The result is placed in
the temporary register ALUOutput.

« Register-immediate ALU instruction:

ALUOQutput ~ A op Imm;

Operation: The ALU performs the operation specified by the opcode on the
value in register A and on the value in register Imm. The result is placed in the
temporary register ALUOutput.

« Branch:

ALUOutput — NPC + Imm;
Cond ~(A 0p0)

Operation: The ALU adds the NPC to the sign-extended immediate value in
Imm to compute the address of the branch target. Register A, which has been
read in the prior cycle, is checked to determine whether the branch is taken.
The comparison operationp is the relational operator determined by the
branch opcode; for examplap is “==" for the instructiorBEQZ

The load-store architecture of DLX means that effective address and execu—

tion cycles can be combined into a single clock cycle, since no instruction needs

3.1 What Is Pipelining? 129

to simultaneously calculate a data address, calculate an instruction target address
and perform an operation on the data. The other integer instructions not included
above are jumps of various forms, which are similar to branches.

4. Memory access/branch completion cy@UeM):
The PC is updated for all instructio ~ NPC;
« Memory reference:

LMD ~ Mem[ALUOutput] or
Mem[ALUOutput] < B;

Operation: Access memory if needed. If instruction is a load, data returns
from memory and is placed in the LMD (load memory data) register; if it is a
store, then the data from the B register is written into memory. In either case
the address used is the one computed during the prior cycle and stored in the
register ALUOutput.

« Branch:
if (cond) PC ~ ALUOutput

Operation:If the instruction branches, the PC is replaced with the branch des-
tination address in the register ALUOutput.

5. Write-back cycléWB):
« Register-Register ALU instruction:
Regs[IR 16.20 1 < ALUOutput;
« Register-immediate ALU instruction:
Regs[IR 11.15 1 < ALUOutput;
» Load instruction:
Regs[IR 11.15 1 <« LMD;
Operation: Write the result into the register file, whether it comes from the
memory system (which is in LMD) or from the ALU (which is in ALUOut-
put); the register destination field is also in one of two positions depending on
the function code.
Figure 3.1 shows how an instruction flows through the datapath. At the end of

each clock cycle, every value computed during that clock cycle and required on a
later clock cycle (whether for this instruction or the next) is written into a storage

130 Chapter 3 Pipelining

device, which may be memory, a general-purpose register, the PC, or a temporary
register (i.e., LMD, Imm, A, B, IR, NPC, ALUOutput, or Cond). The temporary
registers hold values between clock cycles for one instruction, while the other
storage elements are visible parts of the state and hold values between successive

instructions.
) : Execute/ : :]
Instruction fetch Instruction decode/ : address : Memory § Wiite
register fetch : calculation : access : back
M
u
X
Add NPC
: | geren ETEC L
4 : i “e7 taken~O" :
PC

. (Al —
Instruction _», Registers :
memory : :

Data
memory

—

L
16 @ 32 :
@ Imm

FIGURE 3.1 The implementation of the DLX datapath allows every instruction to be executed in four or five clock

cycles. Although the PC is shown in the portion of the datapath that is used in instruction fetch and the registers are shown
in the portion of the datapath that is used in instruction decode/register fetch, both of these functional units are read as well
as written by an instruction. Although we show these functional units in the cycle corresponding to where they are read, the
PC is written during the memory access clock cycle and the registers are written during the write back clock cycle. In both
cases, the writes in later pipe stages are indicated by the multiplexer output (in memory access or write back) that carries a
value back to the PC or registers. These backward-flowing signals introduce much of the complexity of pipelining, and we
will look at them more carefully in the next few sections.

In this implementation, branch and store instructions require four cycles and
all other instructions require five cycles. Assuming the branch frequency of 12%
and a store frequency of 5% from the last chapter, this leads to an overall CPI of
4.83. This implementation, however, is not optimal either in achieving the best
performance or in using the minimal amount of hardware given the performance

3.1 What Is Pipelining? 131

level. The CPI could be improved without affecting the clock rate by completing
ALU instructions during the MEM cycle, since those instructions are idle during
that cycle. Assuming ALU instructions occupy 47% of the instruction mix, as we
measured in Chapter 2, this improvement would lead to a CPI of 4.35, or an im-
provement of 4.82/4.35 = 1.1. Beyond this simple change, any other attempts to
decrease the CPI may increase the clock cycle time, since such changes woulc
need to put more activity into a clock cycle. Of course, it may still be beneficial to
trade an increase in the clock cycle time for a decrease in the CPI, but this re-
quires a detailed analysis and is unlikely to produce large improvements, espe-
cially if the initial distribution of work among the clock cycles is reasonably
balanced.

Although all machines today are pipelined, this multicycle implementation is
a reasonable approximation of how most machines would have been imple-
mented in earlier times. A simple finite-state machine could be used to implement
the control following the five-cycle structure shown above. For a much more
complex machine, microcode control could be used. In either event, an instruc-
tion sequence like that above would determine the structure of the control.

In addition to these CPI improvements, there are some hardware redundancies
that could be eliminated in this multicycle implementation. For example, there
are two ALUs: one to increment the PC and one used for effective address and
ALU computation. Since they are not needed on the same clock cycle, we could
merge them by adding additional multiplexers and sharing the same ALU. Like-
wise, instructions and data could be stored in the same memory, since the data
and instruction accesses happen on different clock cycles.

Rather than optimize this simple implementation, we will leave the design as
it is in Figure 3.1, since this provides us with a better base for the pipelined im-
plementation.

As an alternative to the multicycle design discussed in this section, we could
also have implemented the machine so that every instruction takes one long clock
cycle. In such cases, the temporary registers would be deleted, since there woulc
not be any communication across clock cycles within an instruction. Every in-
struction would execute in one long clock cycle, writing the result into the data
memory, registers, or PC at the end of the clock cycle. The CPI would be one for
such a machine. However, the clock cycle would be roughly equal to five times
the clock cycle of the multicycle machine, since every instruction would need to
traverse all the functional units. Designers would never use this single-cycle im-
plementation for two reasons. First, a single-cycle implementation would be very
inefficient for most machines that have a reasonable variation among the amount
of work, and hence in the clock cycle time, needed for different instructions. Sec-
ond, a single-cycle implementation requires the duplication of functional units
that could be shared in a multicycle implementation. Nonetheless, this single-
cycle datapath allows us to illustrate how pipelining can improve the clock cycle
time, as opposed to the CPI, of a machine.

132

Chapter 3 Pipelining

32 | The Basic Pipeline for DLX

We can pipeline the datapath of Figure 3.1 with almost no changes by starting a
new instruction on each clock cycle. (See why we chose that design!) Each of the
clock cycles from the previous section becompipa stagea cycle in the pipe-

line. This results in the execution pattern shown in Figure 3.2, which is the typi-
cal way a pipeline structure is drawn. While each instruction takes five clock
cycles to complete, during each clock cycle the hardware will initiate a new in-
struction and will be executing some part of the five different instructions.

Clock number
Instruction number 1 2 3 4 5 6 7 8 9
Instructioni IF ID EX MEM WB
Instructioni + 1 IF ID EX MEM WB
Instructioni + 2 IF ID EX MEM WB
Instructioni + 3 IF ID EX MEM WB
Instructioni + 4 IF ID EX MEM WB

FIGURE 3.2 Simple DLX pipeline. On each clock cycle, another instruction is fetched and begins its five-cycle execution.
If an instruction is started every clock cycle, the performance will be up to five times that of a machine that is not pipelined.
The names for the stages in the pipeline are the same as those used for the cycles in the implementation on pages 127—
129: IF = instruction fetch, ID = instruction decode, EX = execution, MEM = memory access, and WB = write back.

Your instinct is right if you find it hard to believe that pipelining is as simple
as this, because it's not. In this and the following sections, we will make our DLX
pipeline “real” by dealing with problems that pipelining introduces.

To begin with, we have to determine what happens on every clock cycle of the
machine and make sure we don't try to perform two different operations with the
same datapath resource on the same clock cycle. For example, a single ALU can-
not be asked to compute an effective address and perform a subtract operation at
the same time. Thus, we must ensure that the overlap of instructions in the pipe-
line cannot cause such a conflict. Fortunately, the simplicity of the DLX instruc-
tion set makes resource evaluation relatively easy. Figure 3.3 shows a simplified
version of the DLX datapath drawn in pipeline fashion. As you can see, the major
functional units are used in different cycles and hence overlapping the execution
of multiple instructions introduces relatively few conflicts. There are three obser-
vations on which this fact rests.

First, the basic datapath of the last section already used separate instruction
and data memories, which we would typically implement with separate instruc-
tion and data caches (discussed in Chapter 5). The use of separate caches elimi-
nates a conflict for a single memory that would arise between instruction fetch

3.2 The Basic Pipeline for DLX 133

Time (in clock cycles)

CC1

Program execution order (in instructions)

FIGURE 3.3 The pipeline can be thought of as a series of datapaths shifted in time. This shows the overlap among
the parts of the datapath, with clock cycle 5 (CC 5) showing the steady state situation. Because the register file is used as
a source in the ID stage and as a destination in the WB stage, it appears twice. We show that it is read in one stage and
written in another by using a solid line, on the right or left, respectively, and a dashed line on the other side. The abbreviation
IM is used for instruction memory, DM for data memory, and CC for clock cycle.

and data memory access. Notice that if our pipelined machine has a clock cycle
that is equal to that of the unpipelined version, the memory system must deliver
five times the bandwidth. This is one cost of higher performance.

Second, the register file is used in the two stages: for reading in ID and for
writing in WB. These uses are distinct, so we simply show the register file in two
places. This does mean that we need to perform two reads and one write every
clock cycle. What if a read and write are to the same register? For now, we ignore
this problem, but we will focus on it in the next section.

Third, Figure 3.3 does not deal with the PC. To start a new instruction every
clock, we must increment and store the PC every clock, and this must be done
during the IF stage in preparation for the next instruction. The problem arises

134 Chapter 3 Pipelining

when we consider the effect of branches, which changes the PC also, but not until
the MEM stage. This is not a problem in our multicycle, unpipelined datapath,
since the PC is written once in the MEM stage. For now, we will organize our
pipelined datapath to write the PC in IF and write either the incremented PC or
the value of the branch target of an earlier branch. This introduces a problem in
how branches are handled that we will explain in the next section and explore in
detail in section 3.5.

Because every pipe stage is active on every clock cycle, all operations in a
pipe stage must complete in one clock cycle and any combination of operations
must be able to occur at once. Furthermore, pipelining the datapath requires that
values passed from one pipe stage to the next must be placed in registers.
Figure 3.4 shows the DLX pipeline with the appropriate registers, gafietine
registers or pipeline latches between each pipeline stage. The registers are
labeled with the names of the stages they connect. Figure 3.4 is drawn so that
connections through the pipeline registers from one stage to another are clear.

IF/ID ID/EX EXIMEM MEM/WB
4 M
u Branch
X taken
Zero? [7
IRe..10
PC M
) R11.15 u
Instruction| IR . X
memory —4 MEM/WB.IR Registers
M Data
By u memory [| M
— X u
[x
extend

FIGURE 3.4 The datapath is pipelined by adding a set of registers, one between each pair of pipe stages. The reg-
isters serve to convey values and control information from one stage to the next. We can also think of the PC as a pipeline
register, which sits before the IF stage of the pipeline, leading to one pipeline register for each pipe stage. Recall that the
PC is an edge-triggered register written at the end of the clock cycle; hence there is no race condition in writing the PC. The
selection multiplexer for the PC has been moved so that the PC is written in exactly one stage (IF). If we didn’t move it, there
would be a conflict when a branch occurred, since two instructions would try to write different values into the PC. Most of
the datapaths flow from left to right, which is from earlier in time to later. The paths flowing from right to left (which carry the
register write-back information and PC information on a branch) introduce complications into our pipeline, which we will
spend much of this chapter overcoming.

3.2 The Basic Pipeline for DLX 135

All of the registers needed to hold values temporarily between clock cycles
within one instruction are subsumed into these pipeline registers. The fields of the
instruction register (IR), which is part of the IF/ID register, are labeled when they
are used to supply register names. The pipeline registers carry both data and contro
from one pipeline stage to the next. Any value needed on a later pipeline stage mus
be placed in such a register and copied from one pipeline register to the next, until it
is no longer needed. If we tried to just use the temporary registers we had in our
earlier unpipelined datapath, values could be overwritten before all uses were com-
pleted. For example, the field of a register operand used for a write on a load or
ALU operation is supplied from the MEM/WB pipeline register rather than from
the IF/ID register. This is because we want a load or ALU operation to write the
register designated by that operation, not the register field of the instruction current-
ly transitioning from IF to ID! This destination register field is simply copied from
one pipeline register to the next, until it is needed during the WB stage.

Any instruction is active in exactly one stage of the pipeline at a time; there-
fore, any actions taken on behalf of an instruction occur between a pair of pipeline
registers. Thus, we can also look at the activities of the pipeline by examining
what has to happen on any pipeline stage depending on the instruction type. Fig-
ure 3.5 shows this view. Fields of the pipeline registers are named so as to show
the flow of data from one stage to the next. Notice that the actions in the first two
stages are independent of the current instruction type; they must be independent
because the instruction is not decoded until the end of the ID stage. The IF activity
depends on whether the instruction in EX/MEM is a taken branch. If so, then the
branch target address of the branch instruction in EX/MEM is written into the PC
at the end of IF; otherwise the incremented PC will be written back. (As we said
earlier, this effect of branches leads to complications in the pipeline that we deal
with in the next few sections.) The fixed-position encoding of the register source
operands is critical to allowing the registers to be fetched during ID.

To control this simple pipeline we need only determine how to set the control
for the four multiplexers in the datapath of Figure 3.4. The two multiplexers in
the ALU stage are set depending on the instruction type, which is dictated by the
IR field of the ID/EX register. The top ALU input multiplexer is set by whether
the instruction is a branch or not, and the bottom multiplexer is set by whether the
instruction is a register-register ALU operation or any other type of operation.
The multiplexer in the IF stage chooses whether to use the value of the incre-
mented PC or the value of the EXMEM.ALUOutput (the branch target) to write
into the PC. This multiplexer is controlled by the field EX/MEM.cond. The
fourth multiplexer is controlled by whether the instruction in the WB stage is a
load or a ALU operation. In addition to these four multiplexers, there is one addi-
tional multiplexer needed that is not drawn in Figure 3.4, but whose existence is
clear from looking at the WB stage of an ALU operation. The destination register
field is in one of two different places depending on the instruction type (register-
register ALU versus either ALU immediate or load). Thus, we will need a multi-
plexer to choose the correct portion of the IR in the MEM/WB register to specify
the register destination field, assuming the instruction writes a register.

136 Chapter 3 Pipelining
Stage Any instruction
IF IFID.IR ~ Mem[PC];
IFID.NPC,PC — (if (EX/MEM.opcode == branch) & EX/MEM.cond){EX/IMEM.
ALUOutput} else {PC+4});
ID IDEEXA ~ Regs[IFID.R .10 I;ID/EXB — Regs[IF/ID.R 11.15 I
ID/IEXNPC ~ IF/ID.NPC; ID/EX.IR < IF/ID.R;
IDEXIMm « (IFIDIR 1) ##FIDIR 16,31 :
ALU instruction Load or store instruction Branch instruction
EX EXMEM.IR ~ ID/EX.IR; EXMEM.IR < ID/EX.IR
EX/MEM.ALUOutput EX/MEM.ALUOutput EX/MEM.ALUOutput
IDIEX.A func ID/IEX.B; ID/EX.A + ID/EX.Imm; ID/EX.NPC+ID/EX.Imm;
or
EX/MEM.ALUOutput
ID/IEX.A op IDIEX.Imm;
EX/MEM.cond - O; EX/IMEM.cond ~ O; EX/MEM.cond
EX/MEM.B- ID/EX.B; (IDIEEX.A 0p0);
MEM MEMMB.R — EXMEM.IR; MEMMWB.IR ~ EXMEM.IR;
MEM/WB.ALUOutput MEM/WB.LMD —
EX/MEM.ALUOutput; Mem[EX/MEM.ALUOutput];
or
Mem[EX/MEM.ALUOutput]
EX/MEM.B;
WB Regs[MEMMWBL.IR 16.20] ~ For load only:
MEM/WB.ALUOutput; RegsiIMEMMWBL.IR 11.15 1 «
or MEM/WB.LMD;
RegsIMEMMWBL.IR 11.15] «
MEM/WB.ALUOutput;

FIGURE 3.5 Events on every pipe stage of the DLX pipeline.

Let’s review the actions in the stages that are specific to

the pipeline organization. In IF, in addition to fetching the instruction and computing the new PC, we store the incremented
PC both into the PC and into a pipeline register (NPC) for later use in computing the branch target address. This structure
is the same as the organization in Figure 3.4, where the PC is updated in IF from one or two sources. In ID, we fetch the
registers, extend the sign of the lower 16 bits of the IR, and pass along the IR and NPC. During EX, we perform an ALU
operation or an address calculation; we pass along the IR and the B register (if the instruction is a store). We also set the
value of cond to 1 if the instruction is a taken branch. During the MEM phase, we cycle the memory, write the PC if needed,
and pass along values needed in the final pipe stage. Finally, during WB, we update the register field from either the ALU
output or the loaded value. For simplicity we always pass the entire IR from one stage to the next, though as an instruction
proceeds down the pipeline, less and less of the IR is needed.

Basic Performance Issues in Pipelining

Pipelining increases the CPU instruction throughput—the number of instructions
completed per unit of time—but it does not reduce the execution time of an indi-
vidual instruction. In fact, it usually slightly increases the execution time of each
instruction due to overhead in the control of the pipeline. The increase in instruc-
tion throughput means that a program runs faster and has lower total execution
time, even though no single instruction runs faster!

3.2 The Basic Pipeline for DLX 137

The fact that the execution time of each instruction does not decrease puts lim-
its on the practical depth of a pipeline, as we will see in the next section. In addi-
tion to limitations arising from pipeline latency, limits arise from imbalance
among the pipe stages and from pipelining overhead. Imbalance among the pipe
stages reduces performance since the clock can run no faster than the time neede
for the slowest pipeline stage. Pipeline overhead arises from the combination of
pipeline register delay and clock skew. The pipeline registers add setup time,
which is the time that a register input must be stable before the clock signal that
triggers a write occurs, plus propagation delay to the clock cycle. Clock skew,
which is maximum delay between when the clock arrives at any two registers,
also contributes to the lower limit on the clock cycle. Once the clock cycle is as
small as the sum of the clock skew and latch overhead, no further pipelining is
useful, since there is no time left in the cycle for useful work.

EXAMPLE Consider the unpipelined machine in the previous section. Assume that it
has 10-ns clock cycles and that it uses four cycles for ALU operations and
branches and five cycles for memory operations. Assume that the relative
frequencies of these operations are 40%, 20%, and 40%, respectively.
Suppose that due to clock skew and setup, pipelining the machine adds
1 ns of overhead to the clock. Ignoring any latency impact, how much
speedup in the instruction execution rate will we gain from a pipeline?

ANSWER The average instruction execution time on the unpipelined machine is

Average instruction execution time = Clock cycle x Average CPI

10 ns x ((40% + 20%) x 4 + 40% x 5)
10 nsx4.4

= 44 ns

In the pipelined implementation, the clock must run at the speed of the
slowest stage plus overhead, which will be 10 + 1 or 11 ns; this is the av-
erage instruction execution time. Thus, the speedup from pipelining is

Average instruction time unpipelined
Average instruction time pipelined
- 44 ns

11ns

Speedup from pipelining =
= 4 times

The 1-ns overhead essentially establishes a limit on the effectiveness of
pipelining. If the overhead is not affected by changes in the clock cycle,
Amdahl's Law tells us that the overhead limits the speedup. .

Alternatively, if our base machine already has a CPI of 1 (with a longer clock
cycle), then pipelining will enable us to have a shorter clock cycle. The datapath
of the previous section can be made into a single-cycle datapath by simply re-
moving the latches and letting the data flow from one cycle of execution to the
next. How would the speedup of the pipelined version compare to the single-
cycle machine?

138

Chapter 3 Pipelining

EXAMPLE

ANSWER

Assume that the times required for the five functional units, which operate
in each of the five cycles, are as follows: 10 ns, 8 ns, 10 ns, 10 ns, and 7
ns. Assume that pipelining adds 1 ns of overhead. Find the speedup ver-
sus the single-cycle datapath.

Since the unpipelined machine executes all instructions in a single clock
cycle, its average time per instruction is simply the clock cycle time. The

clock cycle time is equal to the sum of the times for each step in the exe-
cution:

Average instruction execution time = 10+8+10 +10 +7
= 45ns

The clock cycle time on the pipelined machine must be the largest time
for any stage in the pipeline (10 ns) plus the overhead of 1 ns, for a total
of 11 ns. Since the CPl is 1, this yields an average instruction execution
time of 11 ns. Thus,

Average instruction time unpipelined
Average instruction time pipelined
_45ns
11ns

Speedup from pipelining

= 4.1 times

Pipelining can be thought of as improving the CPI, which is what we typi-
cally do, as increasing the clock rate—especially compared to another
pipelined machine, or sometimes as doing both. .

Because the latches in a pipelined design can have a significant impact on the
clock speed, designers have looked for latches that permit the highest possible
clock rate. The Earle latch (invented by J. G. Earle [1965]) has three properties
that make it especially useful in pipelined machines. First, it is relatively insen-
sitive to clock skew. Second, the delay through the latch is always a constant two-
gate delay, avoiding the introduction of skew in the data passing through the
latch. Finally, two levels of logic can be performed in the latch without increasing
the latch delay time. This means that two levels of logic in the pipeline can be
overlapped with the latch, so the overhead from the latch can be hidden. We will
not be analyzing the pipeline designs in this chapter at this level of detail. The in-
terested reader should see Kunkel and Smith [1986].

The pipeline we now have for DLX would function just fine for integer
instructions if every instruction were independent of every other instruction in the
pipeline. In reality, instructions in the pipeline can depend on one another; this is
the topic of the next section. The complications that arise in the floating-point
pipeline will be treated in section 3.7, and section 3.9 will look at a complete real
pipeline.

3.3 The Major Hurdle of Pipelining—Pipeline Hazards 139

3.3

The Major Hurdle of Pipelining—
Pipeline Hazards

There are situations, calléthzards that prevent the next instruction in the in-
struction stream from executing during its designated clock cycle. Hazards re-
duce the performance from the ideal speedup gained by pipelining. There are
three classes of hazards:

1. Structural hazardsarise from resource conflicts when the hardware cannot
support all possible combinations of instructions in simultaneous overlapped
execution.

2. Data hazardsarise when an instruction depends on the results of a previous
instruction in a way that is exposed by the overlapping of instructions in the
pipeline.

3. Control hazardsarise from the pipelining of branches and other instructions
that change the PC.

Hazards in pipelines can make it necessastath the pipeline. In Chapter 1,
we mentioned that the processor could stall on an event such as a cache mis:s
Stalls arising from hazards in pipelined machines are more complex than the sim-
ple stall for a cache miss. Eliminating a hazard often requires that some instruc-
tions in the pipeline be allowed to proceed while others are delayed. For the
pipelines we discuss in this chapter, when an instruction is stalled, all instructions
issued later than the stalled instruction—and hence not as far along in the
pipeline—are also stalled. Instructions isswdlier than the stalled instruc-
tion—and hence farther along in the pipeline—must continue, since otherwise
the hazard will never clear. As a result, no new instructions are fetched during the
stall. In contrast to this process of stalling only a portion of the pipeline, a cache
miss stallsall the instructions in the pipeline both before and after the instruction
causing the miss. (For the simple pipelines of this chapter there is no advantage
in selecting stalling instructions on a cache miss, but in future chapters we will
examine pipelines and caches that reduce cache miss costs by selectively stalling
on a cache miss.) We will see several examples of how pipeline stalls operate in
this section—don’t worry, they aren’t as complex as they might sound!

Performance of Pipelines with Stalls

A stall causes the pipeline performance to degrade from the ideal performance.
Let’s look at a simple equation for finding the actual speedup from pipelining,
starting with the formula from the previous section.

140

Chapter 3 Pipelining

Speedup from pipelining

Average instruction time unpipelined
Average instruction time pipelined
_ CPI unpipelined x Clock cycle unpipelined
CPI pipelined x Clock cycle pipelined
_ CPl unpipelined « Clock cycle unpipelined
CPI pipelined Clock cycle pipelined

Speedup from pipelining

Remember that pipelining can be thought of as decreasing the CPI or the clock
cycle time. Since it is traditional to use the CPI to compare pipelines, let's start

with that assumption. The ideal CPI on a pipelined machine is almost always 1.

Hence, we can compute the pipelined CPI:

CPI pipelined = Ideal CPI + Pipeline stall clock cycles per instruction
1 + Pipeline stall clock cycles per instruction

If we ignore the cycle time overhead of pipelining and assume the stages are per-

fectly balanced, then the cycle time of the two machines can be equal, leading to

CPI unpipelined
1 + Pipeline stall cycles per instruction

Speedup =

One important simple case is where all instructions take the same number of cy-
cles, which must also equal the number of pipeline stages (also calldgpthe

of the pipeling In this case, the unpipelined CPI is equal to the depth of the pipe-
line, leading to

Pipeline depth

Speedup = T - -
peedup 1 + Pipeline stall cycles per instruction

If there are no pipeline stalls, this leads to the intuitive result that pipelining can
improve performance by the depth of the pipeline.

Alternatively, if we think of pipelining as improving the clock cycle time, then
we can assume that the CPI of the unpipelined machine, as well as that of the
pipelined machine, is 1. This leads to

CPI unpipelined < Clock cycle unpipelined
CPI pipelined Clock cycle pipelined
1 y Clock cycle unpipelined
1 + Pipeline stall cycles per instruction ~ Clock cycle pipelined

In cases where the pipe stages are perfectly balanced and there is no overhead,
the clock cycle on the pipelined machine is smaller than the clock cycle of the un-
pipelined machine by a factor equal to the pipelined depth:

3.3 The Major Hurdle of Pipelining—Pipeline Hazards 141

Clock cycle unpipelined
Pipeline depth
Clock cycle unpipelined
Clock cycle pipelined

Clock cycle pipelined

Pipeline depth =

This leads to the following:

Speedun from pielining = 1 » Clock cycle unpipelined
P P PIp g 1 + Pipeline stall cycles per instruction ~ Clock cycle pipelined
1

= AT - — x Pipelin th
1 + Pipeline stall cycles per instruction peline dep

Thus, if there are no stalls, the speedup is equal to the number of pipeline stages
matching our intuition for the ideal case.

Structural Hazards

When a machine is pipelined, the overlapped execution of instructions requires
pipelining of functional units and duplication of resources to allow all possible
combinations of instructions in the pipeline. If some combination of instructions
cannot be accommodated because of resource conflicts, the machine is said t
have astructural hazard The most common instances of structural hazards arise
when some functional unit is not fully pipelined. Then a sequence of instructions
using that unpipelined unit cannot proceed at the rate of one per clock cycle. An-
other common way that structural hazards appear is when some resource has nc
been duplicated enough to allow all combinations of instructions in the pipeline
to execute. For example, a machine may have only one register-file write port, but
under certain circumstances, the pipeline might want to perform two writes in a
clock cycle. This will generate a structural hazard. When a sequence of instruc-
tions encounters this hazard, the pipeline will stall one of the instructions until
the required unit is available. Such stalls will increase the CPI from its usual ideal
value of 1.

Some pipelined machines have shared a single-memory pipeline for data and
instructions. As a result, when an instruction contains a data-memory reference, it
will conflict with the instruction reference for a later instruction, as shown in
Figure 3.6. To resolve this, we stall the pipeline for one clock cycle when the data
memory access occurs. Figure 3.7 shows our pipeline datapath figure with the
stall cycle added. A stall is commonly callegipeline bubbleor justbubble
since it floats through the pipeline taking space but carrying no useful work. We
will see another type of stall when we talk about data hazards.

Rather than draw the pipeline datapath every time, designers often just indi-
cate stall behavior using a simpler diagram with only the pipe stage names, as in
Figure 3.8. The form of Figure 3.8 shows the stall by indicating the cycle when
no action occurs and simply shifting instruction 3 to the right (which delays its

142 Chapter 3 Pipelining
Time (in clock cycles)
cc1 ccz ccs ¢ cca i ccs i cce ioccv i ccs
Load Mem
Instruction 1
Instruction 2

Instruction 3

Instruction 4

FIGURE 3.6 A machine with only one memory port will generate a conflict whenever a memory reference occurs.
In this example the load instruction uses the memory for a data access at the same time instruction 3 wants to fetch an in-

struction from memory.

execution start and finish by one cycle). The effect of the pipeline bubble is actu-
ally to occupy the resources for that instruction slot as it travels through the pipe-
line, just as Figure 3.7 shows. Although Figure 3.7 shows how the stall is actually
implemented, the performance impact indicated by the two figures is the same:
Instruction 3 does not complete until clock cycle 9, and no instruction completes
during clock cycle 8.

3.3 The Major Hurdle of Pipelining—Pipeline Hazards

143

Load

Instruction 1

Instruction 2

Stall

Instruction 3

FIGURE 3.7 The structural hazard causes pipeline bubbles to be inserted.
during clock cycle 8, when instruction 3 would normally have finished. Instruction 1 is assumed to not be a load or store;
otherwise, instruction 3 cannot start execution.

Time (in clock cycles)

CC1

Mem

CC2

CC3

Mem

CC4

CC5

CC6

cc7 : ccs

The effect is that no instruction will finish

144 Chapter 3 Pipelining

Clock cycle number

Instruction 1 2 3 4 5 6 7 8 9 10

Load instruction IF ID EX MEM WB

Instructioni + 1 IF ID EX MEM WB

Instructioni + 2 IF ID EX MEM WB

Instructioni + 3 stall IF ID EX MEM WB

Instructioni + 4 IF ID EX MEM WB

Instructioni + 5 IF ID EX MEM

Instructioni + 6 IF ID EX
FIGURE 3.8 A pipeline stalled for a structural hazard—a load with one memory port. As shown here, the load instruc-

tion effectively steals an instruction-fetch cycle, causing the pipeline to stall—no instruction is initiated on clock cycle 4 (which
normally would initiate instruction / + 3). Because the instruction being fetched is stalled, all other instructions in the pipeline
before the stalled instruction can proceed normally. The stall cycle will continue to pass through the pipeline, so that no in-
struction completes on clock cycle 8. Sometimes these pipeline diagrams are drawn with the stall occupying an entire hori-
zontal row and instruction 3 being moved to the next row; in either case, the effect is the same, since instruction 3 does not
begin execution until cycle 5. We use the form above, since it takes less space.

EXAMPLE Let’'s see how much the load structural hazard might cost. Suppose that
data references constitute 40% of the mix, and that the ideal CPI of the
pipelined machine, ignoring the structural hazard, is 1. Assume that the
machine with the structural hazard has a clock rate that is 1.05 times high-
er than the clock rate of the machine without the hazard. Disregarding any
other performance losses, is the pipeline with or without the structural
hazard faster, and by how much?

ANSWER There are several ways we could solve this problem. Perhaps the simplest
is to compute the average instruction time on the two machines:

Average instruction time €PI x Clock cycle time

Since it has no stalls, the average instruction time for the ideal machine is
simply the Clock cycle time;y,. The average instruction time for the ma-
chine with the structural hazard is

Average instruction time = CPI x Clock cycle time
Clock cycle time
1.05

ideal

(1+04x1)x

1.3 x Clock cycle time;yqq

Clearly, the machine without the structural hazard is faster; we can use
the ratio of the average instruction times to conclude that the machine
without the hazard is 1.3 times faster.

3.3 The Major Hurdle of Pipelining—Pipeline Hazards 145

EXAMPLE

ANSWER

As an alternative to this structural hazard, the designer could provide
a separate memory access for instructions, either by splitting the cache
into separate instruction and data caches, or by using a set of buffers,
usually called instruction buffers, to hold instructions. Both the split cache
and instruction buffer ideas are discussed in Chapter 5. .

If all other factors are equal, a machine without structural hazards will always
have a lower CPI. Why, then, would a designer allow structural hazards? There
are two reasons: to reduce cost and to reduce the latency of the unit. Pipelining all
the functional units, or duplicating them, may be too costly. For example, ma-
chines that support both an instruction and a data cache access every cycle (tc
prevent the structural hazard of the above example) require twice as much total
memory bandwidth and often have higher bandwidth at the pins. Likewise, fully
pipelining a floating-point multiplier consumes lots of gates. If the structural haz-
ard would not occur often, it may not be worth the cost to avoid it. It is also usual-
ly possible to design an unpipelined unit, or one that isn’t fully pipelined, with a
somewhat shorter total delay than a fully pipelined unit. The shorter latency
comes from the lack of pipeline registers that introduce overhead. For example,
both the CDC 7600 and the MIPS R2010 floating-point unit choose shorter laten-
cy (fewer clocks per operation) versus full pipelining. As we will see shortly, re-
ducing latency has other performance benefits and may overcome the disadvantage
of the structural hazard.

Many recent machines do not have fully pipelined floating-point units. For
example, suppose we had an implementation of DLX with a floating-point
multiply unit but no pipelining. Assume the multiplier could accept a new
multiply operation every five clock cycles. (This rate is called the repeat or
initiation interval.) Will this structural hazard have a large or small perfor-
mance impact on mdljdp2 running on DLX? For simplicity, assume that
the floating-point multiplies are uniformly distributed.

From Chapter 2 we find that floating-point multiply has a frequency of
14% in mdljdp2. Our proposed pipeline can handle up to a 20% frequency
of floating-point multiplies—one every five clock cycles. This means that
the performance benefit of fully pipelining the floating-point multiply on
mdljdp2 is likely to be limited, as long as the floating-point multiplies are
not clustered but are distributed uniformly. In the best case, multiplies are
overlapped with other operations, and there is no performance penalty at
all. In the worst case, the multiplies are all clustered with no intervening
instructions, and 14% of the instructions take 5 cycles each. Assuming a
base CPI of 1, this amounts to an increase of 0.7 in the CPI.

146

Chapter 3 Pipelining

In practice, examining the performance of mdljdp2 on a machine with
a five-cycle-deep FP multiply pipeline shows that this structural hazard
increases execution time by less than 3%. One reason this loss is so low
is that data hazards (the topic of the next section) cause the pipeline to
stall, preventing multiply instructions that might cause structural hazards
from being initiated. Of course, other benchmarks make heavier use of
floating-point multiply or have fewer data hazards, and thus would show a
larger impact. In the rest of this chapter we will examine the contributions
of these different types of stalls in the DLX pipeline. .

34 | Data Hazards

A major effect of pipelining is to change the relative timing of instructions by
overlapping their execution. This introduces data and control hazards. Data haz-
ards occur when the pipeline changes the order of read/write accesses to oper-
ands so that the order differs from the order seen by sequentially executing
instructions on an unpipelined machine. Consider the pipelined execution of
these instructions:

ADD R1,R2,R3
SuB R4,R1,R5
AND R6,R1,R7
OR R8,R1,R9
XOR R10,R1,R11

All the instructions after thaDDuse the result of th&DDinstruction. As shown in
Figure 3.9, theADDinstruction writes the value of R1 in the WB pipe stage, but
the SUBInstruction reads the value during its ID stage. This problem is called a
data hazard Unless precautions are taken to prevent it S@instruction will

read the wrong value and try to use it. In fact, the value used IspBiastruc-

tion is not even deterministic: Though we might think it logical to assume that
SuUBwould always use the value of R1 that was assigned by an instruction prior to
ADD this is not always the case. If an interrupt should occur betweabiznd
SuBinstructions, the WB stage of ta®@Dwill complete, and the value of R1 at
that point will be the result of th&DD This unpredictable behavior is obviously
unacceptable.

The AND instruction is also affected by this hazard. As we can see from
Figure 3.9, the write of R1 does not complete until the end of clock cycle 5. Thus,
the ANDinstruction that reads the registers during clock cycle 4 will receive the
wrong results.

The XORinstruction operates properly, because its register read occurs in
clock cycle 6, after the register write. TBRinstruction can also be made to
operate without incurring a hazard by a simple implementation technique, im-
plied in our pipeline diagrams. The technique is to perform the register file reads
in the second half of the cycle and the writes in the first half. This technique,

3.4 Data Hazards 147

Time (in clock cycles)

CC1 CC2 CC3 CC4 CC5 CC6

ADD R1,R2,R3 IM

SUB R4, R1, R5 IM © Reg —|: DM [Reg :

Program execution order (in instructions)

AND R6, R1, R7 IM : Reg | DM

ORRS8, R1, R9 IM

XOR R10, R1, R11

FIGURE 3.9 The use of the result of the ADDinstruction in the next three instructions causes a hazard, since the
register is not written until after those instructions read it.

which is hinted at in earlier figures by placing the dashed box around the register
file, allows theORinstruction in the example in Figure 3.9 to execute correctly.

The next subsection discusses a technique to eliminate the stalls for the hazarc
involving theSuBandANDinstructions.

Minimizing Data Hazard Stalls By Forwarding

The problem posed in Figure 3.9 can be solved with a simple hardware technique
called forwarding (also calledbypassingand sometimeshort-circuiting. The

key insight in forwarding is that the result is not really needed bguBentil af-

ter theADDactually produces it. If the result can be moved from wherabine

148

Chapter 3 Pipelining

produces it, the EX/MEM register, to where t8gB needs it, the ALU input
latches, then the need for a stall can be avoided. Using this observation, forward-
ing works as follows:

1. The ALU result from the EX/MEM register is always fed back to the ALU
input latches.

2. If the forwarding hardware detects that the previous ALU operation has writ-
ten the register corresponding to a source for the current ALU operation, con-
trol logic selects the forwarded result as the ALU input rather than the value
read from the register file.

Notice that with forwarding, if theUBis stalled, theADDwill be completed and
the bypass will not be activated. This is also true for the case of an interrupt be-
tween the two instructions.

As the example in Figure 3.9 shows, we need to forward results not only from
the immediately previous instruction, but possibly from an instruction that started
two cycles earlier. Figure 3.10 shows our example with the bypass paths in place
and highlighting the timing of the register read and writes. This code sequence
can be executed without stalls.

Forwarding can be generalized to include passing a result directly to the func-
tional unit that requires it: A result is forwarded from the output of one unit to the
input of another, rather than just from the result of a unit to the input of the same
unit. Take, for example, the following sequence:

ADD RLR2R3
LW R4,0(R1)
sw 12(R1),R4

To prevent a stall in this sequence, we would need to forward the values of R1
and R4 from the pipeline registers to the ALU and data memory inputs.
Figure 3.11 shows all the forwarding paths for this example. In DLX, we may re-
quire a forwarding path from any pipeline register to the input of any functional
unit. Because the ALU and data memory both accept operands, forwarding paths
are needed to their inputs from both the ALU/MEM and MEM/WB registers. In
addition, DLX uses a zero detection unit that operates during the EX cycle, and
forwarding to that unit will be needed as well. Later in this section we will ex-
plore all the necessary forwarding paths and the control of those paths.

3.4 Data Hazards 149

Time (in clock cycles)

CC1 CC2 CC3 CC4 CC5 CC6

ADD R1,R2,R3| IM

SUB R4, R1, RS IM " Re : DE] Reg
+RL, : Reg ': : : M M :

Program execution order (in instructions)

I -
AND R6, R1, R7 M © Reg —I: DM

ALU

OR RS, R1, R9 IM : Reg

XOR R10, R1, R11

FIGURE 3.10 A set of instructions that depend on the ~ ADDresult use forwarding paths to avoid the data hazard.

The inputs for the SUBand ANDinstructions forward from the EX/MEM and the MEM/WB pipeline registers, respectively, to
the first ALU input. The ORreceives its result by forwarding through the register file, which is easily accomplished by reading
the registers in the second half of the cycle and writing in the first half, as the dashed lines on the registers indicate. Notice
that the forwarded result can go to either ALU input; in fact, both ALU inputs could use forwarded inputs from either the same
pipeline register or from different pipeline registers. This would occur, for example, if the ANDinstruction was AND
R6, R1, R4

150 Chapter 3 Pipelining

Time (in clock cycles)

CC1 CC2 CC3 CC4 CC5 CCé6

ADD R1,R2,R3 IM

LW R4, O(R1)

SW 12(R1), R4

-~ Program execution order (in instructions)

FIGURE 3.11 Stores require an operand during MEM, and forwarding of that operand is shown

here. The result of the load is forwarded from the memory output in MEM/WB to the memory input to be
stored. In addition, the ALU output is forwarded to the ALU input for the address calculation of both the load
and the store (this is no different than forwarding to another ALU operation). If the store depended on an
immediately preceding ALU operation (not shown above), the result would need to be forwarded to prevent
a stall.

Data Hazard Classification

A hazard is created whenever there is a dependence between instructions, and
they are close enough that the overlap caused by pipelining would change the or-
der of access to an operand. Our example hazards have all been with register op-
erands, but it is also possible for a pair of instructions to create a dependence by
writing and reading the same memory location. In our DLX pipeline, however,
memory references are always kept in order, preventing this type of hazard from
arising. Cache misses could cause the memory references to get out of order if we
allowed the processor to continue working on later instructions, while an earlier
instruction that missed the cache was accessing memory. For the DLX pipeline
we stall the entire pipeline on a cache miss, effectively making the instruction

3.4 Data Hazards 151

that contained the miss run for multiple clock cycles. In the next chapter, we will
discuss machines that allow loads and stores to be executed in an order differen
from that in the program, which will introduce new problems. All the data haz-
ards discussed in this chapter involve registers within the CPU.

Data hazards may be classified as one of three types, depending on the orde

of read and write accesses in the instructions. By convention, the hazards are
named by the ordering in the program that must be preserved by the pipeline.
Consider two instructionisandj, with i occurring beforg. The possible data haz-

ards are

RAW (read after write)}— j tries to read a source befarerites it, sg incor-
rectly gets the old value. This is the most common type of hazard and the kind
that we used forwarding to overcome in Figures 3.10 and 3.11.

WAW (write after write)— j tries to write an operand before it is writteniby

The writes end up being performed in the wrong order, leaving the value writ-
ten byi rather than the value written Ilpyin the destination. This hazard is
present only in pipelines that write in more than one pipe stage (or allow an in-
struction to proceed even when a previous instruction is stalled). The DLX in-
teger pipeline writes a register only in WB and avoids this class of hazards. If
we made two changes to the DLX pipeline, WAW hazards would be possible.
First, we could move write back for an ALU operation into the MEM stage,
since the data value is available by then. Second, suppose that the data memor
access took two pipe stages. Here is a sequence of two instructions showing the
execution in this revised pipeline, highlighting the pipe stage that writes the re-
sult:

LW R1,0(R2) IF ID EX MEM1 MEM2 WB
ADD R1,R2,R3 IF ID EX wB

Unless this hazard is avoided, execution of this sequence on this revised pipe-
line will leave the result of the first write (th&) in R1, rather than the result
of the ADD

Allowing writes in different pipe stages introduces other problems, since two
instructions can try to write during the same clock cycle. When we discuss the
DLX FP pipeline (section 3.7), which has both writes in different stages and
different pipeline lengths, we will deal with both write conflicts and WAW
hazards in detail.

WAR (write after read)— j tries to write a destination before it is readiby

soi incorrectly gets the new value. This cannot happen in our example pipeline
because all reads are early (in ID) and all writes are late (in WB). This hazard
occurs when there are some instructions that write results early in the instruc-
tion pipeline, and other instructions that read a source late in the pipeline.

152

Chapter 3 Pipelining

Because of the natural structure of a pipeline, which typically reads values be-
fore it writes results, such hazards are rare. Pipelines for complex instruction
sets that support autoincrement addressing and require operands to be read late
in the pipeline could create a WAR hazard. If we modified the DLX pipeline as

in the above example and also read some operands late, such as the source value
for a store instruction, a WAR hazard could occur. Here is the pipeline timing

for such a potential hazard, highlighting the stage where the conflict occurs:

SW O(R1),R2 IF ID EX MEM1 MEM2 WB
ADD R2,R3,R4 IF ID EX wB

If the SWreads R2 during the second half of its MEM2 stage andlibevrites

R2 during the first half of its WB stage, tBawill incorrectly read and store

the value produced by ti®D In the DLX pipeline, reading all operands from

the register file during ID avoids this hazard; however, in the next chapter, we
will see how these hazards occur more easily when instructions are executed
out of order.

Note that the RARread after readftase is not a hazard.

Data Hazards Requiring Stalls

Unfortunately, not all potential data hazards can be handled by bypassing.
Consider the following sequence of instructions:

LW R1,0(R2)
SUB R4RLR5
AND R6RLR7
OR R8,R1,R9

The pipelined datapath with the bypass paths for this example is shown in
Figure 3.12. This case is different from the situation with back-to-back ALU op-
erations. Theéwinstruction does not have the data until the end of clock cycle 4
(its MEM cycle), while thesuBinstruction needs to have the data by the begin-
ning of that clock cycle. Thus, the data hazard from using the result of a load in-
struction cannot be completely eliminated with simple hardware. As Figure 3.12
shows, such a forwarding path would have to operate backward in time—a capa-
bility not yet available to computer designers! ¥#aforward the result immedi-
ately to the ALU from the MEM/WB registers for use in g&xbDoperation, which
begins two clock cycles after the load. Likewise,@@nstruction has no prob-

lem, since it receives the value through the register file. F@@UB@struction,

the forwarded result arrives too late—at the end of a clock cycle, when it is need-
ed at the beginning.

3.4 Data Hazards 153

<«———— Program execution order (in instructions)

LW R1, 0(R2)

SUB R4, R1, R5

AND R6, R1, R7

ORR8, R1, R9

FIGURE 3.12 The load instruction can bypass its results to the
that would mean forwarding the result in “negative time.”

Time (in clock cycles)

CC1 CcC3 CC4 CC5
IM —I: DM || Reg

SUB since

ANDand ORinstructions, but not to the

The load instruction has a delay or latency that cannot be eliminated by for-
warding alone. Instead, we need to add hardware, cajigubhne interlock to
preserve the correct execution pattern. In genenaipeline interlockdetects a
hazard and stalls the pipeline until the hazard is cleared. In this case, the interlock
stalls the pipeline, beginning with the instruction that wants to use the data until
the source instruction produces it. This pipeline interlock introduces a stall or
bubble, just as it did for the structural hazard in section 3.3. The CPI for the
stalled instruction increases by the length of the stall (one clock cycle in this
case). The pipeline with the stall and the legal forwarding is shown in
Figure 3.13. Because the stall causes the instructions starting wigugte
move one cycle later in time, the forwarding to #idDinstruction now goes
through the register file, and no forwarding at all is needed faRiTestruction.

The insertion of the bubble causes the number of cycles to complete this se-
guence to grow by one. No instruction is started during clock cycle 4 (and none

154 Chapter 3 Pipelining

Time (in clock cycles)

CC1 CcC2 cCs3 CcC4 CC5 CcC6

© Reg —I: DM 1% AEQ
| C —
SUB R4, R, R5 M © Reg Bubble) —|: DM [
- |
AND R6, R1, R7 IM Bubble * Reg

LW R1,0(R2)| IM

Program execution order (in instructions)

-
OR R8, R1, R9 Bubble IM © Reg

FIGURE 3.13 The load interlock causes a stall to be inserted at clock cycle 4, delaying the SUBinstruction and
those that follow by one cycle. This delay allows the value to be successfully forwarded on the next clock cycle.

finishes during cycle 6). Figure 3.14 shows the pipeline before and after the stall us-
ing a diagram containing only the pipeline stages. We will make extensive use of this
more concise form for showing interlocks and stalls in this chapter and the next.

LW R1,0(R2) IF ID EX MEM WB

SUB R4,R1,R5 IF ID EX MEM WB

AND R6,R1,R7 IF ID EX MEM WB

OR R8,R1,R9 IF ID EX MEM WB

LW R1,0(R2) IF ID EX MEM WB

SUB R4,R1,R5 IF ID stall EX MEM WB

AND R6,R1,R7 IF stall ID EX MEM WB

OR R8,R1,R9 stall IF ID EX MEM WB

FIGURE 3.14 In the top half, we can see why a stall is needed: the MEM cycle of the load produces a value that is
needed in the EX cycle of the SUB which occurs at the same time. This problem is solved by inserting a stall, as shown
in the bottom half.

3.4 Data Hazards 155

EXAMPLE Suppose that 30% of the instructions are loads, and half the time the in-
struction following a load instruction depends on the result of the load. If
this hazard creates a single-cycle delay, how much faster is the ideal pipe-
lined machine (with a CPI of 1) that does not delay the pipeline than the
real pipeline? Ignore any stalls other than pipeline stalls.

ANSWER The ideal machine will be faster by the ratio of the CPIs. The CPI for an
instruction following a load is 1.5, since it stalls half the time. Because
loads are 30% of the mix, the effective CPI is (0.7 x 1 + 0.3 x 1.5) = 1.15.
This means that the ideal machine is 1.15 times faster. .

In the next subsection we consider compiler techniques to reduce these penal-
ties. After that, we look at how to implement hazard detection, forwarding, and
interlocks.

Compiler Scheduling for Data Hazards

Many types of stalls are quite frequent. The typical code-generation pattern for a
statement such as A = B + C produces a stall for a load of the second data value
(C). Figure 3.15 shows that the store of A need not cause another stall, since the
result of the addition can be forwarded to the data memory for use by the store.

Rather than just allow the pipeline to stall, the compiler could try to schedule
the pipeline to avoid these stalls by rearranging the code sequence to eliminate
the hazard. For example, the compiler could try to avoid generating code with a
load followed by the immediate use of the load destination register. This tech-
nique, calledpipeline schedulingr instruction schedulingwas first used in the
1960s and became an area of major interest in the 1980s, as pipelined machine:
became more widespread.

LWR1,B IF ID EX MEM wB

LWR2,C IF ID EX MEM wB

ADD R3,R1,R2 IF ID stall EX MEM WB

SWARS3 IF stall ID EX MEM WB

FIGURE 3.15 The DLX code sequence for A=B + C. The ADDinstruction must be stalled to allow the load of C to com-
plete. The SWheed not be delayed further because the forwarding hardware passes the result from the MEM/WB directly to
the data memory input for storing.

EXAMPLE Generate DLX code that avoids pipeline stalls for the following sequence:

a=b+c;
d=e-f;

Assume loads have a latency of one clock cycle.

156 Chapter 3 Pipelining

ANSWER Here is the scheduled code:
LW Rb,b
LW Rc,c
LW Re,e ; swap instructions to avoid stall
ADD Ra,Rb,Rc
LW Rf,f
SW a,Ra ; store/load exchanged to avoid stall
SuB Rd,Re,Rf
SwW d,Rd

Both load interlocks (LWRc, ¢ to ADDRa, Rb, Rc and LWRf, f to

SUBRd, Re, Rf) have been eliminated. There is a dependence between
the ALU instruction and the store, but the pipeline structure allows the re-
sult to be forwarded. Notice that the use of different registers for the first
and second statements was critical for this schedule to be legal. In partic-
ular, if the variable e was loaded into the same register as b or c, this
schedule would be illegal. In general, pipeline scheduling can increase
the register count required. In the next chapter, we will see that this in-
crease can be substantial for machines that can issue multiple instruc-
tions in one clock. .

Many modern compilers try to use instruction scheduling to improve pipeline
performance. In the simplest algorithms, the compiler simply schedules using
other instructions in the same basic blockasic blockis a straight-line code se-
guence with no transfers in or out, except at the beginning or end. Scheduling
such code sequences is easy, since we know that every instruction in the block is
executed if the first one is. We can simply make a graph of the dependences
among the instructions and order the instructions so as to minimize the stalls. For
a simple pipeline like the DLX integer pipeline with only short latencies (the only
delay is one cycle on loads), a scheduling strategy focusing on basic blocks is ad-
equate. Figure 3.16 shows the frequency that stalls are required for load results,
assuming a single-cycle delay for loads. As you can see, this process is more ef-
fective for floating-point programs that have significant amounts of parallelism
among instructions. As pipelining becomes more extensive and the effective
pipeline latencies grow, more ambitious scheduling schemes are needed; these
are discussed in detail in the next chapter.

Implementing the Control for the DLX Pipeline

The process of letting an instruction move from the instruction decode stage (ID)
into the execution stage (EX) of this pipeline is usually caflettuction issug

an instruction that has made this step is said to isaued For the DLX integer
pipeline, all the data hazards can be checked during the ID phase of the pipeline.

3.4 Data Hazards 157

45%

41%

40%

35%

30%

25%

Fraction of loads that cause a stall 20% 20%

20%

15% [
10% 10%

10%

5%

0%

o X O L N ¢ & $
FF & ¢TI
00@ & R & € 9

Benchmark

FIGURE 3.16 Percentage of the loads that result in a stall with the DLX pipeline. This
chart shows the frequency of stalls remaining in scheduled code that was globally optimized
before scheduling. Global optimization actually makes scheduling relatively harder because
there are fewer candidates for scheduling into delay slots, as we discuss in Fallacies and Pit-
falls. The pipeline slot after a load is often called the load delay or delay slot. In general, it is
easier to schedule the delay slots in FP programs, since they are more regular and the anal-
ysis is easier. Hence fewer loads stall in the FP programs: an average of 13% of the loads
versus 25% on the integer programs. The actual performance impact depends on the load
frequency, which varies from 19% to 34% with an average of 24%.The contribution to CPI
runs from 0.01 cycles per instruction to 0.15 cycles per instruction.

If a data hazard exists, the instruction is stalled before it is issued. Likewise, we
can determine what forwarding will be needed during ID and set the appropriate
controls then. Detecting interlocks early in the pipeline reduces the hardware
complexity because the hardware never has to suspend an instruction that has up
dated the state of the machine, unless the entire machine is stalled. Alternatively,
we can detect the hazard or forwarding at the beginning of a clock cycle that uses
an operand (EX and MEM for this pipeline). To show the differences in these two
approaches, we will show how the interlock for a RAW hazard with the source
coming from a load instruction (calledaad interlock can be implemented by a
check in ID, while the implementation of forwarding paths to the ALU inputs can
be done during EX. Figure 3.17 lists the variety of circumstances that we must
handle.

158

Chapter 3 Pipelining

Example code
Situation sequence Action
No dependence LW R1,45(R2) No hazard possible because no dependence
ADD R5,R6,R7 exists on R1 in the immediately following
SUB R8,R6,R7 three instructions.
OR R9,R6,R7
Dependence LW R1,45(R2) Comparators detect the use of R1 inA®
requiring stall ADD R5, R1,R7 and stall theADD(andSUBandOR before the
SUB R8,R6,R7 ADDbegins EX.
OR R9,R6,R7
Dependence LW R1,45(R2) Comparators detect use of R1S0Band for-
overcome by ADD R5,R6,R7 ward result of load to ALU in time f@UBto
forwarding SUB RS, R1,R7 begin EX.
OR R9,R6,R7
Dependence LW R1,45(R2) No action required because the read of R1 by
with accesses in ADD R5,R6,R7 ORoccurs in the second half of the ID phase,
order SUB R8,R6,R7 while the write of the loaded data occurred |in
ORR9, R1,R7 the first half.

FIGURE 3.17 Situations that the pipeline hazard detection hardware can see by com-

paring the destination and sources of adjacent instructions.

This table indicates that the

only comparison needed is between the destination and the sources on the two instructions
following the instruction that wrote the destination. In the case of a stall, the pipeline depen-
dences will look like the third case once execution continues. Of course hazards that involve
RO can be ignored since the register always contains 0, and the test above could be extended

to do this.

Let’s start with implementing the load interlock. If there is a RAW hazard with

the source instruction being a load, the load instruction will be in the EX stage
when an instruction that needs the load data will be in the ID stage. Thus, we can
describe all the possible hazard situations with a small table, which can be direct-
ly translated to an implementation. Figure 3.18 shows a table that detects all load
interlocks when the instruction using the load result is in the ID stage.

Opcode field of ID/EX

(ID/IEX.IR g..B Opcode field of IF/ID (IF/ID.IR .5 Matching operand fields

Load Register-register ALU ID/EX.IR ..15==IF/ID.IRg.. 10
Load Register-register ALU ID/EX.IR . .15==IF/ID.IR11..15
Load Load, store, ALU immediate, or branch ID/EX4IR 15==IF/ID.IRg_.10

FIGURE 3.18 The logic to detect the need for load interlocks during the ID stage of an instruction requires three

comparisons.

Lines 1 and 2 of the table test whether the load destination register is one of the source registers for a

register-register operation in ID. Line 3 of the table determines if the load destination register is a source for a load or store
effective address, an ALU immediate, or a branch test. Remember that the IF/ID register holds the state of the instruction in
ID, which potentially uses the load result, while ID/EX holds the state of the instruction in EX, which is the potential load

instruction.

3.4 Data Hazards 159

Once a hazard has been detected, the control unit must insert the pipeline stall
and prevent the instructions in the IF and ID stages from advancing. As we said in
section 3.2, all the control information is carried in the pipeline registers. (Carry-
ing the instruction along is enough, since all control is derived from it.) Thus,
when we detect a hazard we need only change the control portion of the ID/EX
pipeline register to all 0s, which happens to be a no-op (