Advanced Java 2
Platform

How TO PROGRAM

Deitel™ Books, Cyber Classrooms, Complete Training Courses and
Web-Based Training published by Prentice Hall

How to Program Series
Advanced Java'" 2 Platform How to Program
C How to Program, 3/E
C++ How to Program, 3/E
C# How to Program
e-Business and e-Commerce How to Program
Internet and World Wide Web How
to Program, 2/E
Java"™ How to Program, 4/E
Perl How to Program
Visual Basic® 6 How to Program
Visual Basic® .NET How to Program
Visual C++® .NET How to Program
Wireless Internet & Mobile Business How
to Program
XML How to Program

Multimedia Cyber Classroom and

Web-Based Training Series

(for information regarding Deite]™ Web-based

training visit wow.ptgtraining.com)

Advanced Java"™ 2 Platform Multimedia
Cyber Classroom

C++ Multimedia Cyber Classroom, 3/E

C# Multimedia Cyber Classroom, 3/E

e-Business and e-Commerce Multimedia
Cyber Classroom

Internet and World Wide Web Multimedia
Cyber Classroom, 2/E

Java"' 2 Multimedia Cyber Classroom, 4/E

Perl Multimedia Cyber Classroom

Visual Basic® 6 Multimedia Cyber Classroom

Visual Basic® .NET Multimedia Cyber
Classroom

Visual C++® .NET Multimedia Cyber Classroom

Wireless Internet & Mobile Business
Programming Multimedia Cyber Classroom

XML Multimedia Cyber Classroom

To communicate with the authors, send email to:
deitel@deitel.com

The Complete Training Course Series
The Complete Advanced Java'™ 2 Platform
Training Course
The Complete C++ Training Course, 3/E
The Complete C# Training Course, 3/E
The Complete e-Business and e-Commerce
Programming Training Course
The Complete Internet and World Wide Web
Programming Training Course
The Complete Java™ 2 Training Course, 3/E
The Complete Perl Training Course
The Complete Visual Basic® 6 Training Course
The Complete Visual Basic® .NET
Training Course
The Complete Visual C++® .NET
Training Course
The Complete Wireless Internet & Mobile
Business Programming Training Course
The Complete XML Training Course

.NET Series

C# How to Program

Visual Basic® .NET How to Program
Visual C++® NET How to Program

Visual Studio® Series

Getting Started with M icrosoft® Visual C++"" 6
with an Introduction to MFC

Visual Basic® 6 How to Program

C# How to Program

Visual Basic® .NET How to Program

Visual C++® .NET How to Program

For Managers Series
e-Business and e-Commerce for Managers

Coming Soon
e-books and e-whitepapers

For information on corporate on-site seminars and public seminars offered by Deitel & Associates,

Inc. worldwide, visit:

www.deitel.com

For continuing updates on Prentice Hall and Deitel & Associates, Inc. publications visit the Prentice

Hall Web site

www.prenhall.com/deitel

Advanced Java 2

Platform
HOW TO PROGRAM

H. M. Deitel

Deitel & Associates, Inc.

P. J. Deitel

Deitel & Associates, Inc.

S. E. Santry

Deitel & Associates, Inc.

PRENTICE HALL, Upper Saddle River, New Jersey
07458

Library of Congress Cataloging-in-Publication Data
on File

Vice President and Editorial Director: Marcia Horton
Acquisitions Editor: Petra J. Recter

Assistant Editor: Sarah Burrows

Project Manager: Crissy Statuto

Editorial Assistant: Karen Schultz

Production Editor: Camille Trentacoste

Managing Editor: David A. George

Executive Managing Editor: Vince O’Brien

Chapter Opener and Cover Designer: Tamara Newnam Cavallo
Art Director: Heather Scott

Marketing Manager: Jennie Burger

Manufacturing Buyer: Pat Brown

Manufacturing Manager: Trudy Pisciotti

Assistant Vice President of Production and Manufacturing: David W. Riccardi

© 2001 by Prentice-Hall, Inc.
Upper Saddle River, New Jersey 07458

The authors and publisher of this book have used their best efforts in preparing this book. These efforts include
the development, research, and testing of the theories and programs to determine their effectiveness. The authors
and publisher make no warranty of any kind, expressed or implied, with regard to these programs or to the docu-
mentation contained in this book. The authors and publisher shall not be liable in any event for incidental or con-
sequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks and registered trademarks. Where those designations appear in this book, and Prentice Hall and the authors
were aware of a trademark claim, the designations have been printed in initial caps or all caps. All product names
mentioned remain trademarks or registered trademarks of their respective owners.

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America
10987654321
ISBN 0-13-034151-7

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Pearson Education Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

In loving memory of our Uncle and Granduncle
Joseph Deitel:

“His pleasure was giving.”

Harvey and Paul Deitel
For my brother Tim, who, by his example, always has
challenged me to excel.

Sean

Trademarks

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in
the United States and other countries. Prentice Hall is independent of Sun Microsystems, Inc.

Copyright © 2000 Microsoft Corporation, One Microsoft Way, Redmond, Washington 98052-6399
U.S.A. All rights reserved.

Netscape Communicator browser window© 1999 Netscape Communications Corporation. Used with
permission. Netscape Communications has not authorized, sponsored, endorsed, or approved this
publication and is not responsible for its content.

Openwave, the Openwave logo, and UP.SDK are trademarks of Openwave Systems Inc. All
rightsreserved."

Palm OS, Palm Computing, HandFAX, HandSTAMP, HandWEB, Graffiti, HotSync, iMEssenger,
MultiMail, Palm.Net, PalmConnect, PalmGlove, PalmModem, PalmPoint, PalmPrint, PalmSource,
and the Palm Platform Compatible Logo are registered trademarks of Palm, Inc. Palm, the Palm logo,
MyPalm, PalmGear, PalmPix, PalmPower, AnyDay, EventClub, HandMAIL, the HotSync Logo,
PalmGlove, Palm Powered, the Palm trade dress, Smartcode, Simply Palm, We Sync and Wireless
Refresh are trademarks of Palm, Inc.

Contents

Preface
1 Introduction
1.1 Introduction
1.2 Architecture of the Book
1.2.1 Advanced GUI, Graphics and JavaBeans
1.2.2 Distributed Systems
1.2.3 Web Services
1.24 Enterprise Java
1.2.5 Enterprise Case Study
1.2.6 XML
1.3 Tour of the Book
1.4 Running Example Code
1.5 Design Patterns
1.5.1 History of Object-Oriented Design Patterns
1.5.2 Design Patterns Discussion
1.5.3 Concurrency Patterns
1.54 Architectural Patterns
1.5.5 Further Study on Design Patterns
2 Advanced Swing Graphical User Interface
Components
2.1 Introduction
2.2 WebBrowser Using JEditorPane and JToolBar
221 Swing Text Components and HTML Rendering
222 Swing Toolbars
2.3 Swing Actions
2.4 JSplitPane and JTabbedPane

XXi

NN AW N -

NN NN — —
NN D OO 0

29
30
30
31
33
39
45

vill

25
2.6
2.7
2.8
29

3.1
32
33
34
3.5
3.6

4.1
4.2
4.3

4.4

4.5

5

Contents

Multiple-Document Interfaces

Drag and Drop

Internationalization

Accessibility

Internet and World Wide Web Resources

Model-View-Controller

Introduction

Model-View-Controller Architecture
Observable Class and Observer Interface

JList

JTable

JTree

3.6.1 Using DefaultTreeModel

3.6.2 Custom TreeModel Implementation

Graphics Programming with Java 2D and Java 3D
Introduction

Coordinates, Graphics Contexts and Graphics Objects

Java 2D API

4.3.1 Java 2D Shapes

432 Java 2D Image Processing

Java 3D API

4.4.1 Obtaining and Installing the Java 3D API

442 Java 3D Scenes

443 A Java 3D Example

A Java 3D Case Study: A 3D Game with Custom Behaviors

Case Study: Java 2D GUI Application with

Design Patterns

5.1
52
53
54
55
5.6

5.7
5.8
59

6.1
6.2

Introduction

Application Overview

MysShape Class Hierarchy

Deitel DrawingModel

Deitel Drawing Views

Deitel Drawing Controller Logic

5.6.1 MyShapeControllers for Processing User Input
5.6.2 MyShapeControllers and Factory Method Design Pattern
5.6.3 Drag-and-Drop Controller
DrawingInternalFrame Component

ZoomDialog, Action and Icon Components
DeitelDrawing Application

JavaBeans Component Model
Introduction
Using Beans in Forte for Java Community Edition

52
56
62
71
78

85
86
86
88

107

111

115

117

123

135
136
136
138
140
146
160
161
161
163
179

219
220
220
221
242
254
260
260
272
276
287
304
309

321
322
323

Contents

6.3
6.4
6.5
6.6
6.7
6.8

6.9

7.1
7.2
7.3
7.4
7.5
7.6
1.7
7.8

7.9
7.10

7.11
7.12
7.13

7.14

7.15
7.16

8.1
8.2
8.3
8.4

Preparing a Class to be a JavaBean
Creating a JavaBean: Java Archive Files
JavaBean Properties

Bound Properties

Indexed Properties and Custom Events
Customizing JavaBeans for Builder Tools
6.8.1 PropertyEditors

6.8.2 Customizers

Internet and World Wide Web Resources

Security

Introduction

Ancient Ciphers to Modern Cryptosystems
Secret-Key Cryptography

Public-Key Cryptography

Cryptanalysis

Key Agreement Protocols

Key Management

Java Cryptography Extension (JCE)

7.8.1 Password-Based Encoding with JCE
7.8.2 Decorator Design Pattern

Digital Signatures

Public-Key Infrastructure, Certificates and Certification Authorities
7.10.1 Java Keystores and keytool

Java Policy Files

Digital Signatures for Java Code
Authentication

7.13.1 Kerberos

7.13.2 Single Sign-On

7.13.3 Java Authentication and Authorization Service (JAAS)
Secure Sockets Layer (SSL)

7.14.1 Java Secure Socket Extension (JSSE)
Java Language Security and Secure Coding
Internet and World Wide Web Resources

Java Database Connectivity (JDBC)
Introduction

Relational-Database Model

Relational Database Overview: The books Database
Structured Query Language (SQL)

8.4.1 Basic SELECT Query

8.4.2 WHERE Clause

8.4.3 ORDER BY Clause

8.4.4 Merging Data from Multiple Tables: Joining
8.4.5 INSERT INTO Statement

8.4.6 UPDATE Statement

8.4.7 DELETE FROM Statement

337
340
345
347
355
364
371
375
379

386
387
388
389
390
393
393
394
395
395
405
406
407
409
410
413
417
417
417
418
423
424
429
430

444
445
446
447
452
453
454
456
459
460
461
462

X Contents

8.5 Creating Database books in Cloudscape 463
8.6 Manipulating Databases with JDBC 464
8.6.1 Connecting to and Querying a JDBC Data Source 464
8.6.2 Querying the books Database 470
8.7 Case Study: Address-Book Application 479
8.7.1 PreparedStatements 480
8.7.2 Transaction Processing 482
8.7.3 Address-Book Application 482
8.8 Stored Procedures 515
8.9 Batch Processing 515
8.10 Processing Multiple ResultsSets or Update Counts 517
8.11 Updatable ResultSets 518
8.12 JDBC 2.0 Optional Package javax.sql 519
8.12.1 DataSource 519
8.12.2 Connection Pooling 519
8.12.3 RowSets 520
8.13 Internet and World Wide Web Resources 520
9 Servlets 530
9.1 Introduction 531
9.2 Servlet Overview and Architecture 533
9.2.1 Interface Servlet and the Servlet Life Cycle 534
922 HttpServlet Class 536
9.2.3 HttpServletRequest Interface 537
924 HttpServletResponse Interface 538
9.3 Handling HTTP get Requests 539
9.3.1 Setting Up the Apache Tomcat Server 543
9.3.2 Deploying a Web Application 545
9.4 Handling HTTP get Requests Containing Data 549
9.5 Handling HTTP post Requests 552
9.6 Redirecting Requests to Other Resources 556
9.7 Session Tracking 559
9.7.1 Cookies 560
9.7.2 Session Tracking with HttpSession 569
9.8 Multi-Tier Applications: Using JDBC from a Servlet 577
9.9 HttpUtils Class 584
9.10 Internet and World Wide Web Resources 585
10 JavaServer Pages (JSP) 593
10.1 Introduction 594
10.2 JavaServer Pages Overview 595
10.3 A First JavaServer Page Example 596
10.4 Implicit Objects 598
10.5 Scripting 599
10.5.1 Scripting Components 600
10.5.2 Scripting Example 601

10.6 Standard Actions 604

Contents

10.6.1 <jsp:include> Action
10.6.2 <jsp:forward> Action
10.6.3 <jsp:plugin> Action

10.6.4 <jsp:useBean> Action

10.7 Directives
10.7.1 page Directive
10.7.2 include Directive
10.8 Custom Tag Libraries
10.8.1 Simple Custom Tag
10.8.2 Custom Tag with Attributes
10.8.3 Evaluating the Body of a Custom Tag
10.9 Internet and World Wide Web Resources
11 Case Study: Servlet and JSP Bookstore
11.1 Introduction
11.2 Bookstore Architecture
11.3 Entering the Bookstore
11.4 Obtaining the Book List from the Database
11.5 Viewing a Book’s Details
11.6 Adding an Item to the Shopping Cart
11.7 Viewing the Shopping Cart
11.8 Checking Out
11.9 Processing the Order
11.10 Deploying the Bookstore Application in J2EE 1.2.1
11.10.1 Configuring the books Data Source
11.10.2 Launching the Cloudscape Database and J2EE Servers
11.10.3 Launching the J2EE Application Deployment Tool
11.10.4 Creating the Bookstore Application
11.10.5 Creating BookServlet and AddToCartServlet Web Components
11.10.6 Adding Non-Servlet Components to the Application
11.10.7 Specifying the Web Context, Resource References, INDI
Names and Welcome Files
11.10.8 Deploying and Executing the Application
12 Java-Based Wireless Applications
Development and J2ME
12.1 Introduction
122 WelcomeServlet Overview
12.3 TipTestServlet Overview
12.3.1 Internet Explorer Request
12.3.2 WAP Request
12.3.3 Pixo i-mode Request
12.3.4 J2ME Client Request
12.4 Java 2 Micro Edition

12.4.1 Connected Limited Device Configuration (CLDC)
12.4.2 Mobile Information Device Profile (MIDP)

Xl

605
610
613
617
634
634
636
638
639
643
647
653

660
661
662
664
667
676
683
686
689
693
694
695
695
696
697
698
704

706
709

716
717
720
726
739
746
751
755
757
758
759

Xl

12.5
12.6

13
13.1
13.2
13.3
13.4
13.5
13.6

13.7

14
14.1
14.2

14.3

14.4

14.5

15
15.1
15.2
15.3
15.4
15.5

15.6
15.7
15.8

Contents

12.4.3 TipTestMIDlet Overview 761
Installation Instructions 781
Internet and World Wide Web Resources 785
Remote Method Invocation 790
Introduction 791
Case Study: Creating a Distributed System with RMI 792
Defining the Remote Interface 792
Implementing the Remote Interface 793
Compiling and Executing the Server and the Client 807
Case Study: Deitel Messenger with Activatable Server 809
13.6.1 Activatable Deitel Messenger ChatServer 810
13.6.2 Deitel Messenger Client Architecture and Implementation 820
13.6.3 Running the Deitel Messenger Server and Client Applications 836
Internet and World Wide Web Resources 840
Session EJBs and Distributed Transactions 846
Introduction 847
EJB Overview 847
14.2.1 Remote Interface 848
14.2.2 Home Interface 848
14.2.3 EJB Implementation 849
1424 EJB Container 849
Session Beans 849
14.3.1 Stateful Session EJBs 849
14.3.2 Deploying Session EJBs 862
14.3.3 Stateless Session EJBs 869
EJB Transactions 879
14.4.1 MoneyTransfer EJB Home and Remote Interfaces 879
14.4.2 Bean-Managed Transaction Demarcation 881
14.4.3 Container-Managed Transaction Demarcation 886
1444 MoneyTransfer EJB Client 892
14.4.5 Deploying the MoneyTransfer EJB 898
Internet and World Wide Web Resources 900
Entity EJBs 904
Introduction 905
Entity EJB Overview 905
Employee Entity EJB 906
Employee EJB Home and Remote Interfaces 906
Employee EJB with Bean-Managed Persistence 908
15.5.1 Employee EJB Implementation 908
155.2 Employee EJB Deployment 918
Employee EJB with Container-Managed Persistence 920
Employee EJB Client 925
Internet and World Wide Web Resources 934

Contents

16
16.1
16.2
16.3

16.4

16.5

17
17.1
17.2
17.3
17.4

17.5
17.6

18

Messaging with JMS

Introduction

Installation and Configuration of J2EE 1.3
Point-To-Point Messaging

16.3.1 Voter Application: Overview

16.3.2 Voter Application: Sender Side

16.3.3 Voter Application: Receiver Side

16.3.4 Voter Application: Configuring and Running
Publish/Subscribe Messaging

16.4.1 Weather Application: Overview

16.4.2 Weather Application: Publisher Side

16.4.3 Weather Application: Subscriber Side

16.4.4 Weather Application: Configuring and Running
Message-Driven Enterprise JavaBeans

16.5.1 Voter Application: Overview

16.5.2 Voter Application: Receiver Side

16.5.3 Voter Application: Configuring and Running

Enterprise Java Case Study: Architectural Overview
Introduction

Deitel Bookstore

System Architecture

Enterprise JavaBeans

17.4.1 Entity EJBs

17.4.2 Stateful Session EJBs

Servlet Controller Logic

XSLT Presentation Logic

Enterprise Java Case Study: Presentation

and Controller Logic

18.1
18.2
18.3

18.4

18.5

Introduction

XMLServlet Base Class

Shopping Cart Servlets

18.3.1 AddToCartServlet

18.3.2 ViewCartServlet

18.3.3 RemoveFromCartServlet
18.3.4 UpdateCartServlet
18.3.5 CheckoutServlet

Product Catalog Servlets

18.4.1 GetAllProductsServlet
18.4.2 GetProductServlet
18.4.3 ProductSearchServlet
Customer Management Servlets

18.5.1 RegisterServlet

18.5.2 LoginServlet

18.5.3 ViewOrderHistoryServlet

Xl

937
938
939
940
940
941
945
951
951
952
953
958
967
968
968
969
978

990
991
992
992
993
993
995
995
995

1009
1010
1011
1022
1023
1023
1034
1034
1039
1040
1040
1046
1049
1053
1053
1057
1060

XIv

19
19.1
19.2
19.3

19.4

19.5

19.6

20
20.1
20.2

20.3

20.4

20.5

18.54 ViewOrderServlet
18.5.5 GetPasswordHintServlet

Enterprise Java Case Study: Business Logic Part 1
Introduction

EJB Architecture

ShoppingCart Implementation

19.3.1 ShoppingCart Remote Interface
19.3.2 ShoppingCartEJB Implementation
19.3.3 ShoppingCartHome Interface
Product Implementation

19.4.1 Product Remote Interface

1942 ProductEJB Implementation

19.4.3 ProductHome Interface

1944 ProductModel

Order Implementation

19.5.1 Order Remote Interface

19.5.2 orderEJB Implementation

19.5.3 OrderHome Interface

19.5.4 OrderModel

OrderProduct Implementation

19.6.1 OrderProduct Remote Interface
19.6.2 OrderProductEJB Implementation
19.6.3 OrderProductHome Interface
19.64 oOrderProductPK Primary-Key Class
19.6.5 OrderProductModel

Enterprise Java Case Study: Business Logic Part 2
Introduction

Customer Implementation

20.2.1 Customer Remote Interface

20.2.2 CustomerEJB Implementation

20.2.3 CustomerHome Interface

20.2.4 CustomerModel

Address Implementation

20.3.1 Address Remote Interface

20.3.2 AddressEJB Implementation

20.3.3 AddressHome Interface

20.34 AddressModel

SequenceFactory Implementation

20.4.1 SequenceFactory Remote Interface
20.4.2 SequenceFactoryEJB Implementation
20.4.3 SequenceFactoryHome Interface

Deitel Bookstore Application Deployment with J2EE
20.5.1 Deploying Deitel Bookstore CMP Entity EJBs
20.5.2 Deploying Deitel Bookstore Servlets

Contents

1064
1067

1073
1074
1074
1075
1075
1077
1084
1085
1085
1086
1088
1089
1094
1095
1095
1101
1101
1107
1107
1108
1110
1111
1113

1117
1118
1118
1119
1119
1126
1127
1131
1134
1134
1138
1138
1144
1144
1145
1147
1149
1149
1156

Contents

21

21.1
21.2
213

21.4
21.5
21.6

22
22.1
222
223
224
225
22.6

22.7

22.8

22.9

23
23.1
232
233
23.4
235
23.6
237
23.8

23.9
23.10

Application Servers
Introduction

J2EE Specification and Benefits
Commercial Application Servers

21.3.1 BEA WebLogic 6.0

21.3.2 iPlanet Application Server 6.0

21.3.3 IBM WebSphere Advanced Application Server 4.0

21.34 JBoss 2.2.2 Application Server
Deploying the Deitel Bookstore on BEA WebLogic
Deploying the Deitel Bookstore on IBM WebSphere
Internet and World Wide Web Resources

Jini

Introduction

Installing Jini

Configuring the Jini Runtime Environment

Starting the Required Services

Running the Jini LookupBrowser

Discovery

22.6.1 Unicast Discovery

22.6.2 Multicast Discovery

Jini Service and Client Implementations

22.7.1 Service Interfaces and Supporting Classes
22.7.2 Service Proxy and Service Implementations
22.7.3 Registering the Service with Lookup Services
22.7.4 Jini Service Client

Introduction to High-Level Helper Utilities

22.8.1 Discovery Utilities

22.8.2 Entry Utilities

22.8.3 Lease Utilities

22.84 JoinManager Utility

22.8.5 Service Discovery Utilities

Internet and World Wide Web Resources

JavaSpaces
Introduction

JavaSpaces Service Properties
JavaSpaces Service
Discovering the JavaSpaces Service
JavasSpace Interface
Defining an Entry

Write Operation

Read and Take Operations
23.8.1 Read Operation
23.8.2 Take Operation
Notify Operation

Method snapshot

XV

1161
1162
1162
1163
1163
1164
1165
1165
1165
1191
1193

1196
1197
1198
1198
1199
1203
1204
1204
1209
1214
1214
1217
1220
1223
1232
1232
1242
1244
1248
1252
1253

1258
1259
1260
1260
1262
1264
1265
1266
1269
1269
1273
1276
1281

XVI

23.11

23.12

23.13

24
24.1
24.2
24.3

24.4

25
25.1
25.2
25.3
25.4
25.5

25.6

25.7
25.8

259
25.10

26

Updating Entries with Jini Transaction Service

23.11.1 Defining the User Interface

23.11.2 Discovering the TransactionManager Service
23.11.3 Updating an Entry

Case Study: Distributed Image Processing

23.12.1 Defining an Image Processor

23.12.2 Partitioning an Image into Smaller Pieces

23.12.3 Compiling and Running the Example

Internet and World Wide Web Resources

Java Management Extensions (JMX) (on CD)
Introduction

Installation

Case Study

24.3.1 Instrument Resources

24.3.2 Implementation of the JMX Management Agent
24.3.3 Broadcasting and Receiving Notifications

24.3.4 Management Application

2435 Compiling and Running the Example

Internet and World Wide Web Resources

Jiro (on CD)

Introduction

Installation

Starting Jiro

Dynamic vs. Static Services

Dynamic Services

25.5.1 Dynamic-Service Implementation

Static Services

25.6.1 Locating Static Services with Class ServiceFinder
25.6.2 Event Service

25.6.3 Log Service

25.6.4 Scheduling Service

Dynamic Service Deployment

25.7.1 Dynamic—Service Usage

Management Policies

25.8.1 Policy—Management Deployment
Closing Notes on the Printer Management Solution
Internet and World Wide Web Resources

Common Object Request Broker Architecture

(CORBA): Part 1 (on CD)

26.1
26.2
26.3

Introduction

Step-by-Step

First Example: SystemClock

26.3.1 SystemClock.idl

26.3.2 SystemClockImpl.java

Contents

1284
1285
1287
1289
1294
1295
1301
1312
1314

1319
1320
1322
1322
1322
1338
1342
1346
1357
1360

1364
1365
1366
1367
1369
1369
1370
1380
1380
1381
1389
1391
1392
1395
1409
1420
1428
1429

1435
1436
1441
1442
1443
1444

Contents

26.4
26.5
26.6

26.7
26.8

26.9
26.10

27

26.3.3 SystemClockClient.java
26.3.4 Running the Example
Technical/Architectural Overview
CORBA Basics

Example: AlarmClock

26.6.1 AlarmClock.idl

26.6.2 AlarmClockImpl.java
26.6.3 AlarmClockClient.java
Distributed Exceptions

Case Study: Chat

26.8.1 chat.idl

26.8.2 ChatServerImpl.java
26.8.3 DeitelMessenger.java
26.8.4 Running Chat

26.8.5 Issues

Comments and Comparisons

Internet and World Wide Web Resources

Common Object Request Broker Architecture

(CORBA): Part 2 (on CD)

27.1
27.2

27.3
27.4

27.5
27.6

27.7

27.8
27.9

28
28.1
28.2
283
284

Introduction

Static Invocation Interface (SII), Dynamic Invocation Interface (DII)
and Dynamic Skeleton Interface (DSI)

BOAs, POAs and TIEs

CORBAservices

27.4.1 Naming Service

27.4.2 Security Service

27.4.3 Object Transaction Service

27.4.4 Persistent State Service

27.4.5 Event and Notification Services

EJBs and CORBAcomponents

CORBA vs. RMI

27.6.1 When to Use RMI

27.6.2 When to Use CORBA

27.6.3 RMI-IIOP

RMIMessenger Case Study Ported to RMI-IIOP
27.7.1 ChatsServer RMI-IIOP Implementation
2772 chatclient RMI-IIOP Implementation
2773 Compiling and Running the ChatServer and ChatClient
Future Directions

Internet and World Wide Web Resources

Peer-to-Peer Applications and JXTA
Introduction

Client/Server and Peer-to-Peer Applications
Centralized vs. Decentralized Network Applications
Peer Discovery and Searching

XVl

1449
1452
1453
1458
1468
1468
1469
1472
1476
1480
1482
1483
1488
1493
1493
1498
1499

1508
1509

1510
1514
1516
1516
1517
1518
1519
1520
1523
1529
1529
1530
1530
1531
1532
1538
1542
1543
1543

1548
1549
1549
1550
1551

XVill

28.5
28.6
28.7
28.8
28.9
28.10
28.11
28.12

28.13
28.14

29
29.1
29.2
29.3
29.4

Al
A2
A3
A4

A5
A.6
A7

B.1
B.2
B.3
B4

B.S
B.6

B.7
B.8
B.9

Case Study: Deitel Instant Messenger
Defining the Service Interface

Defining the Service implementation
Registering the Service

Find Other Peers

Compiling and Running the Example
Improving Deitel Instant Messenger
Deitel Instant Messenger with Multicast Sockets
28.12.1 Registering the Peer

28.12.2 Finding Other Peers
Introduction to JXTA

Internet and World Wide Web Resources

Introduction to Web Services and SOAP
Introduction

Simple Object Access Protocol (SOAP)

SOAP Weather Service

Internet and World Wide Web Resources

Creating Markup with XML (on CD)
Introduction
Introduction to XML Markup
Parsers and Well-Formed XML Documents
Characters
A4l Characters vs. Markup
A4.2 White Space, Entity References and Built-In Entities
CDATA Sections and Processing Instructions
XML Namespaces
Internet and World Wide Web Resources

Document Type Definition (DTD) (on CD)
Introduction

Parsers, Well-Formed and Valid XML Documents

Document Type Declaration

Element Type Declarations

B.4.1 Sequences, Pipe Characters and Occurrence Indicators
B4.2 EMPTY, Mixed Content and ANY

Attribute Declarations

Attribute Types

B.6.1 Tokenized Attribute Type (ID, IDREF, ENTITY, NMTOKEN)
B.6.2 Enumerated Attribute Types

Conditional Sections

Whitespace Characters

Internet and World Wide Web Resources

Contents

1551
1553
1555
1562
1564
1571
1571
1572
1572
1577
1588
1590

1594
1595
1596
1602
1608

1611
1612
1612
1615
1616
1616
1616
1618
1620
1623

1627
1628
1628
1629
1630
1631
1634
1636
1638
1638
1643
1644
1645
1647

Contents

C

C.1
C.2
C3
C4
Cs
C.6
C.7

D

Document Object Model (DOM™) (on CD)
Introduction

DOM with Java

Setup Instructions

DOM Components

Creating Nodes

Traversing the DOM

Internet and World Wide Web Resources

XSL: Extensible Stylesheet Language

Transformations (XSLT) (on CD)

D.1
D.2
D3
D.4
D.5
D.6
D.7
D.8
D.9

E

E.l
E.2
E3

F.1
F.2

F.3

Introduction

Applying XSLTs with Java

Templates

Creating Elements and Attributes
Iteration and Sorting

Conditional Processing

Combining Style Sheets

Variables

Internet and World Wide Web Resources

Downloading and Installing J2EE 1.2.1 (on CD)
Introduction

Installation

Configuration

E.3.1 JDBC Drivers and Data Sources

E.3.2 HTTP properties

Java Community ProcessSM (JCP) (on CD)

Introduction

Participants

F.2.1 Program Management Office
F.2.2 Executive Committee
F.2.3 Experts

F.2.4 Members

F25 Public Participation
Java Community Process

F.3.1 Initiation Phase

F3.2 Community Draft Phase
F33 Public Draft Phase
F.3.4 Final Phase

F.3.5 Maintenance Phase

Java Native Interface (JNI) (on CD)

Introduction

XIX

1652
1653
1654
1657
1657
1665
1668
1671

1676
1677
1677
1679
1680
1683
1687
1690
1695
1695

1699
1699
1699
1700
1700
1700

1701
1701
1701
1701
1701
1702
1702
1702
1702
1702
1703
1704
1704
1704

1705
1706

XX

G.2
G3
G4
G.5
G.6

H.1
H.2
H.3

H.4

H.5

H.6

I.1
1.2
I3
L4
L5
1.6
L7

Getting Started with Java Native Interface

Accessing Java Methods and Objects from Native Code
JNI and Arrays

Handling Exceptions with JNI

Internet and World Wide Web Resources

Career Opportunities (on CD)
Introduction

Resources for the Job Seeker

Online Opportunities for Employers

H.3.1 Posting Jobs Online

H.3.2 Problems with Recruiting on the Web
H.3.3 Diversity in the Workplace
Recruiting Services

H.4.1 Testing Potential Employees Online
Career Sites

H.5.1 Comprehensive Career Sites

H.5.2 Technical Positions

H.5.3 Wireless Positions

H5.4 Contracting Online

H.S5.5 Executive Positions

H.5.6 Students and Young Professionals
H.5.7 Other Online Career Services
Internet and World Wide Web Resources

Unicode® (on CD)

Introduction

Unicode Transformation Formats
Characters and Glyphs
Advantages/Disadvantages of Unicode
Unicode Consortium’s Web Site
Using Unicode

Character Ranges

Index

Contents

1706
1710
1718
1722
1733

1738
1739
1740
1741
1743
1745
1745
1746
1747
1748
1748
1749
1750
1750
1751
1752
1753
1754

1762
1763
1764
1765
1766
1766
1767
1770

1774

1.1
1.2

2.2
2.3

24

25

2.6
2.7

2.8
29

2.10

2.12
2.13

Illustrations

Introduction

Gang-of-four 23 design patterns.

Gang-of-four design patterns used in Advanced Java 2 Platform
How to Program.

21

22

Advanced Swing Graphical User Interface Components

WebBrowserPane subclass of JEditorPane for viewing Web
sites and maintaining URL history.

Toolbars for navigating the Web in Internet Explorer and Mozilla.
WebToolBar JToolBar subclass for navigating URLs in a
WebBrowserPane.

WebBrowser application for browsing Web sites using
WebBrowserPane and WebToolBar.

ActionSample application demonstrating the Command design
pattern with Swing Actions.

Action class static keys for Action properties.
FavoritesWebBrowser application for displaying two Web pages
side-by-side using JSplitPane.

Tabbed interface of Display Properties dialog box in Windows 2000.
TabbedPaneWebBrowser application using JTabbedPane to browse
multiple Web sites concurrently.

MDIWebBrowser application using JDesktopPane and
JInternalFrames to browse multiple Web sites concurrently.
DnDWebBrowser application for browsing Web sites that also
accepts drag-and-drop operations for viewing HTML pages.
WebToolBar that uses ResourceBundles for internationalization.
MyAbstractAction AbstractAction subclass that provides
set methods for Action properties.

31
34

35

38

40
45

45
48

49

52

57
63

66

2.14
2.15

2.16

2.17

2.18
2.19
2.20
221
222
2.23

3.1
32
33
34
3.5
3.6
3.7
3.8
39
3.10

3.11
3.12

3.13
3.14
3.15

3.16
3.17

3.18

3.19

Illustrations

WebBrowser that uses ResourceBundles for internationalization.
BrowserLauncher application for selecting a Locale and
launching an internationalized WebBrowser.

Properties file for default Locale (US English)—
StringsAndLabels.properties.

Properties file for French Locale—

StringsAndLabels_fr FR.properties.

ActionSample2 demonstrates Accessibility package.
Actions sampleAction and exitAction of ActionSample2.
AccessibleDescription of sampleButton.
AccessibleDescription of exitButton.

Sample Action menu item description.

Exit menu item description.

Model-View-Controller

Model-view-controller architecture.

Delegate-model architecture in Java Swing components.
AccountManager application MVC architecture.
Account Observable class that represents a bank account.

AbstractAccountView abstract base class for observing Accounts.

AccountTextView for displaying observed Account information
in a JTextField.

AccountBarGraphView for rendering observed Account
information as a bar graph.

AssetPieChartView for rendering multiple observed asset
Accounts as a pie chart.

AccountController for obtaining user input to modify Account
information.

AccountManager application for displaying and modifying Account
information using the model-view-controller architecture.

JList and ListModel delegate-model architecture.
PhilosophersJList application demonstrating JList and
DefaultListModel.

TableModel interface methods and descriptions.

JTable and TableModel delegate-model architecture.
PhilosophersJdTable application demonstrating JTable and
DefaultTableModel.

JTree showing a hierarchy of philosophers.
PhilosophersJdTree application demonstrating JTree and
DefaultTreeModel.

FileSystemModel implementation of interface TreeModel

to represent a file system.

FileTreeFrame application for browsing and editing a file system
using JTree and FileSystemModel.

67
68
70
71
72
77
77
78

78
78

87
87
89
89
91
93
94
97
102

105
108

108
111
112

112
116

117

123

129

lllustrations

4
4.1
4.2
43
4.4
45
4.6
47
48
49
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
421
422
4.23
4.24
425
4.26
427
428

52
53
54
5.5
5.6
5.7
5.8

5.9

5.10

Graphics Programming with Java 2D and Java 3D
Java coordinate system. Units are measured in pixels.

Some Java 2D classes and interfaces.

The seven state attributes of a Java 2D graphics context.

Demonstrating some Java 2D shapes.

Demonstrating Java 2D paths.

Class ImagePanel allows for displaying and filtering Buf feredImages.

Java2DImageFilter interface for creating Java 2D image filters.
Classes that implement Buf feredImageOp and RasterOp.
InvertFilter inverts colors in a Buf feredImage.
SharpenFilter sharpens edges in a Buf feredImage.
BlurFilter blurs the colors in a Buf feredImage.
ColorFilter changes the colors in a Buf feredImage.
Java 2D image-processing application GUIL.

Java 3D Group, Leaf and NodeComponent subclasses.
Creating a Java 3D SimpleUniverse with content.
Demonstrating MouseRotate behavior.

Demonstrating MouseTranslate behavior.

Demonstrating MouseZoom behavior.

Demonstrating changing color in Java 3D.

Demonstrating texture mapping in Java 3D.

ControlPanel provides Swing controls for Java3DWor1ld.
GUI for Java3DWorld and ControlPanel.

Class Java3DWorld1l creates the 3D-game environment.
Implementing collision detection in a Java 3D application.
Behavior that enables the user to navigate a 3D shape.

Keys for navigating the 3D scene in Navigator.
Implementing a position-checking Behavior.

Implementing Swing controls for the Java3DWorldl.

137
138
139
140
144
147
150
151
152
153
153
154
156
162
163
170
171
172
173
174
175
179
181
198
200
204
205
210

Case Study: Java 2D GUI Application with Design Patterns

Deitel Drawing application showing randomly drawn shapes
(Exercise 5.8) and a ZoomDrawingView (Fig. 5.13).

Large-scale view of drawing from Fig. 5.1.

MyShape abstract base class for drawing objects.

MyLine subclass of class MyShape that represents a line.
MyRectangle subclass of class MyShape that represents a rectangle.
MyOval subclass of class MyShape that represents an oval.
MyText subclass of class MyShape that represents a string of text.
MyImage subclass of class MyShape that represents a JPEG
image in a drawing.

DrawingModel Observable class that represents a drawing
containing multiple MyShapes.

DrawingFileReaderWriter utility class for saving drawings
to files and loading drawings from files.

Sample XML document generated by DrawingFileReaderWriter.

223
223
224
230
232
234
235

240

243

245
252

5.12
5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20
5.21
522

5.23

5.24

5.25
5.26
5.27
5.28

5.29

6.1
6.2
6.3
6.4
6.5

6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15

Illustrations

DrawingView class for displaying MyShapes in a DrawingModel.
ZoomDrawingView subclass of DrawingView for displaying
scaled MyShapes.

MyShapeController abstract base class for controllers that handle
mouse input.

BoundedShapeController MyShapeController subclass for
controlling MyLines, MyOvals and MyRectangles.
MyLineController MyShapeController subclass for
drawing MyLines.

MyTextController MyShapeController subclass for

adding My Text instances to a drawing.
MyShapeControllerFactory class for creating appropriate
MyShapeController for given MyShape type.
DragAndDropController for moving MyShapes between
drawings and adding JPEG images to drawings using drag and drop.
DragSourceListener interface methods and their descriptions.
DropTargetListener interface methods and their descriptions.
TransferableShape enables DragAndDropController

to transfer MyShape objects through drag-and-drop operations.
DrawingInternalFrame class that provides a user interface

for creating drawings.

DrawingFileFilter is a FileFilter subclass that enables
users to select Deitel Drawing files from JFileChooser dialogs.
ZoomDialog for displaying DrawingModels in a scalable view.
AbstractDrawingAction abstract base class for Actions.

GradientIcon implementation of interface Icon that draws a gradient.

DeitelDrawing application that uses a multiple-document interface for
displaying and modifying DeitelDrawing drawings.
SplashScreen class for displaying a logo while the application loads.

JavaBeans Component Model

Forte for Java Community Edition 2.0.

Install New JavaBean... menu item.

Install JavaBean dialog.

Select JavaBean and Palette Category dialogs.
Beans tab in the Component Palette and tooltip for
LogoAnimator JavaBean.

Filesystems tab in the Explorer window.
Development directory selected in Explorer window.
New... menu item.

New...- Template Chooser dialog.

GUI Editing tab of Forte.

Component Inspector and Form windows.
Source Editor window.

Beans tab of the Component Palette.
LogoAnimator icon.

LogoAnimator animation in the Form window.

254

258

261

266

267

269

273

276
284
285

285

287

304
305
306
307

309
317

324
324
324
325

325
325
326
326
326
327
327
328
328
328
329

lllustrations

6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40

6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48
6.49
6.50
6.51
6.52
6.53
6.54
6.55

6.56

6.57
6.58

Component Inspector with LogoAnimator Properties sheet.

Component Inspector drop down-menu for the background property.

Changing background color of LogoAnimator.
AnimationWindow selected in Explorer.

Selecting FlowLayout in the Explorer menu.

Swing tab of the Component Palette.

JButton icon in the Component Palette.

Adding a JButton to AnimationWindow.

Editing text property of JButton.

Component Palette Selection mode.

Component Palette Connection mode.

Select Connection mode.

Connecting JButton and LogoAnimator.

Connection Wizard dialog.

Select actionPerformed event.

Selecting method startAnimation for the target component.
Select Execute from Explorer menu.

AnimationWindow running in Forte.

Definition of class LogoAnimator.

Compile option in the Source Editor menu.

Method file manifest .tmp for the LogoAnimator bean.

Add images directory to LogoAnimator.jar.

Manifest tab of JAR Packager dialog.

LogoAnimator2 with property animationDelay.
LogoAnimator2 bean with property animationDelay exposed
in Forte’s Component Inspector.

Definition for class SliderFieldPanel.

Manifest file for the S1liderFieldPanel JavaBean.

Change properties currentValue and maximumvalue.

Select propertyChange event.

Select animationDelay property of LogoAnimator2.

Select currentValue Bound Property.

JFrame with LogoAnimator2 and SliderFieldPanel.
ColorEvent custom-event class indicating a color change.
ColorListener interface for receiving colorChanged notifications.
Definition of class ColorSliderPanel.

Manifest file for the ColorSliderPanel JavaBean.

Selecting colorChanged method in Connection Wizard.
Selecting setBackground method for target LogoAnimator2.
Entering user code in Connection Wizard.

Using the ColorSliderPanel to change the background color of
LogoAnimator2.

SliderFieldPanelBeanInfo exposes properties and events for
SliderFieldPanel.

Properties and events exposed by SliderFieldPanelBeanInfo.
MaximumValueEditor is a PropertyEditor for
SliderFieldPanel’s maximumValue property.

329
330
330
331
331
332
332
332
332
333
333
333
334
334
335
335
336
336
337
341
341
344
344
345

347
348
353
353
354
354
354
355
356
356
357
362
362
363
363

363

364
368

372

Vi

6.59

6.60

6.61
6.62

6.63
6.64

7.1
7.2
7.3
7.4
7.5
7.6

7.7

7.8

7.9

7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18

7.19

7.20
7.21
7.22
7.23
7.24
7.25

8.1
8.2

8.3
8.4

Illustrations

MinimumValueEditor is a PropertyEditor for
SliderFieldPanel’s minimumvValue property.
MaximumValueEditor and MinimumvalueEditor pull-down
menus in Forte.

SliderFieldPanel values constrained by PropertyEditors.
SliderFieldPanelCustomizer custom GUI for modifying
SliderFieldPanel beans.

Select Customize from Component Inspector menu.
SliderFieldpPanel’s Customizer Dialog.

Security

Encrypting and decrypting a message using a symmetric secret key.
Distributing a session key with a key distribution center.

Encrypting and decrypting a message using public-key cryptography.
Authentication with a public-key algorithm

Creating a digital envelope.

EncipherDecipher application for demonstrating Password-Based
Encryption.

EncipherDecipher before and after encrypting contents.

A portion of the VeriSign digital certificate. (Courtesy of VeriSign, Inc.)
Some permissions available in the Java 2 security model.
AuthorizedFileWriter writes to file using a security manager.
Policy file grants permission to write to file authorized. txt.
Policy file grants permission to the specified codebase.

Applet that browses a user’s local filesystem.

File listing for FileTreeApplet.jar.

HTML file for FileTreeApplet.

Java Plug-in security warning when loading a signed applet.
FileTreeApplet browsing the D:\jdk1l.3.1\ directory.
AuthenticateNT uses the NTLoginModule to authenticate a
user and invoke a PrivilegedAction.
WriteFileActionisa PrivilegedAction for writing a
simple text file.

Configuration file for authentication using NTLoginModule.

JAAS policy file for granting permissions to a Principal and codebase.

Policy file for JAAS application.

LoginServer uses an SSLServerSocket for secure communication.

LoginClient communicates with LoginServer via SSL.
Two sample executions of class LoginClient.

Java Database Connectivity (JDBC)
Relational-database structure of an Employee table.

Result set formed by selecting Department and Location data
from the Employee table.

authors table from books.

Data from the authors table of books.

373

375
375

376
379
379

391
391
393
394
395

396
405
408
411
411
413
413
414
414
415
416
416

419

421
422
422
422
425
427
429

447

447
448
448

lllustrations

8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16

8.17
8.18
8.19

8.20

8.21

8.22
8.23
8.24
8.25
8.26
8.27
8.28

8.29
8.30
8.31
8.32
8.33
8.34
8.35

8.36

8.37

8.38

8.39

publishers table from books.

Data from the publishers table of books.
authorISBN table from books.

Data from the authorISBN table of books.
titles table from books.

Data from the titles table of books.

Table relationships in books.

SQL query keywords.

authorID and lastName from the authors table.
Titles with copyrights after 1999 from table titles.
Authors whose last name starts with D from the authors table.

The only author from the authors table whose last name contains i

as the second letter.

Authors from table authors in ascending order by 1lastName.
Authors from table authors in descending order by lastName.
Authors from table authors in ascending order by lastName
and by firstName.

Books from table titles whose title ends with How to Program

in ascending order by title.
Authors and the ISBN numbers for the books they have written in
ascending order by lastName and firstName.

Table Authors after an INSERT INTO operation to add a record.

Table authors after an UPDATE operation to change a record.
Table authors after a DELETE operation to remove a record.
Executing Cloudscape from a command prompt in Windows 2000.
Displaying the authors table from the books database.
JDBC driver types.

ResultSetTableModel enables a JTable to display the
contents of a ResultSet.

ResultsSet constants for specifying ResultSet type.
ResultsSet constants for specifying result set properties.
DisplayQueryResults for querying database books .
Table relationships in database addressbook.
AddressBookEntry bean represents an address book entry.
AddressBookDataAccess interface describes the methods
for accessing the addressbook database.
DataAccessException is thrown when there is a problem
accessing the data source.

CloudscapeDataAccess implements interface
AddressBookDataAccess to perform the connection to the
database and the database interactions.
AddressBookEntryFrame for viewing and editing an
AddressBookEntry.

AddressBook application class that enables the user to interact
with the addressbook database.

Screen captures of the AddressBook application.

Vil

448
448
449
449
450
450
451
453
453
455
455

456
457
457

458

458

459
461
462
462
464
464
467

470
474
475
476
480
483
486

487

488

500

503
511

vill

8.40
8.41
8.42

9.1
9.2
9.3
9.4
9.5
9.6

9.7

9.8
9.9
9.10
9.11
9.12

9.13
9.14
9.15

9.16
9.17
9.18

9.19
9.20
9.21

9.22
9.23
9.24
9.25

9.26
9.27
9.28

9.29
9.30

10
10.1

Illustrations

Statement and PreparedStatement methods for batch updates.
Return values of method executeBatch.

Statement methods that enable processing of multiple results returned
by method execute.

Servlets

Methods of interface Servlet (package javax.servlet).
Other methods of class HttpServlet.

Some methods of interface HttpServletRequest.

Some methods of interface HttpServletResponse.
WelcomeServlet that responds to a simple HTTP get request.
HTML document in which the form’s action invokes

WelcomeServlet through the alias welcomel specified in web . xml.

Tomcat documentation home page. (Courtesy of The Apache

Software Foundation.)

Web application standard directories.

Deployment descriptor (web .xml) for the advjhtpl Web application.
Web application directory and file structure for WelcomeServlet.
WelcomeServlet2 responds to a get request that contains data.
HTML document in which the form’s action invokes

WelcomeServlet2 through the alias welcome2 specified in web .xml.

Deployment descriptor information for servlet WelcomeServlet2.
WelcomeServlet3 responds to a post request that contains data.
HTML document in which the form’s action invokes

WelcomeServlet3 through the alias welcome3 specified in web .xml.

Deployment descriptor information for servlet WelcomeServlet3.
Redirecting requests to other resources.

RedirectServlet.html document to demonstrate redirecting
requests to other resources.

Deployment descriptor information for servlet RedirectServlet.
Storing user data on the client computer with cookies.
CookieSelectLanguage.html document for selecting a
programming language and posting the data to the CookieServlet.
Deployment descriptor information for servlet CookieServlet.
Important methods of class Cookie.

Maintaining state information with HttpSession objects.
SessionSelectLanguage.html document for selecting a
programming language and posting the data to the SessionServlet.
Deployment descriptor information for servlet WelcomeServlet2.
Multi-tier Web-based survey using XHTML, servlets and JDBC.
Survey.html document that allows users to submit survey responses
to SurveyServlet.

Deployment descriptor information for servlet SurveyServlet.
HttpUtils class methods.

JavaServer Pages (JSP)
Using a JSP expression to insert the date and time in a Web page.

515
516

517

535
537
537
538
540

54

544
545
546
548
549

551
552
553

554
555
556

558
559
561

565
568
568
569

571
577
578

582

584
584

596

lllustrations

10.2
10.3
10.4
10.5
10.6
10.7

10.8

10.9

10.10
10.11

10.12

10.13
10.14
10.15
10.16
10.17
10.18

10.19
10.20
10.21

10.22

10.23

10.24

10.25
10.26
10.27
10.28

10.29
10.30
10.31
10.32
10.33
10.34

JSP implicit objects.

JSP escape sequences.

Scripting a JavaServer Page—welcome. jsp.

JSP standard actions.

Action <jsp:include> attributes.

Banner (banner .html) to include across the top of the XHTML
document created by Fig. 10.10.

Table of contents (toc .html) to include down the left side of the
XHTML document created by Fig. 10.10.

JSP clock2. jsp to include as the main content in the XHTML
document created by Fig. 10.10.

JSP include. jsp Includes resources with <jsp:include>.
JSP forwardl. jsp receives a £irstName parameter, adds a
date to the request parameters and forwards the request to
forward2. jsp for further processing.

JSP forward2. jsp receives a request (from forwardl.jsp

in this example) and uses the request parameters as part of the response
to the client.

Attributes of the <jsp :plugin> action.

An applet to demonstrate <jsp:plugin> in Fig. 10.15.

Using <jsp:plugin> to embed a Java 2 applet in a JSP.
Attributes of the <jsp :useBean> action.

Rotator bean that maintains a set of advertisements.

JSP adrotator.jsp uses a Rotator bean to display a different
advertisement on each request to the page.

Attributes of the <jsp: setProperty> action.

GuestBean stores information for one guest.

GuestDataBean performs database access on behalf of
guestBookLogin.jsp.

JavaServer page guestBookLogin. jsp enables the user to submit a

first name, a last name and an e-mail address to be placed in the guest book.

JavaServer page guestBookView. jsp displays the contents of the
guest book.

JavaServer page guestBookErrorPage . jsp responds to exceptions
in guestBookLogin. jsp and guestBookView. jsp.

JSP guest book sample output windows.

JSP directives.

Attributes of the page directive.

JSP includeDirective. jsp demonstrates including content

at translation-time with directive include.

Attributes of the taglib directive.

JSP customTagWelcome. jsp uses a simple custom tag.
WelcomeTagHandler custom tag handler.

Custom tag library descriptor file advjhtpl-taglib.tld.
Specifying attributes for a custom tag.

Welcome2TagHandler custom tag handler for a tag with an attribute.

598
601
601
604
605

606

607

608
608

611

612
613
614
616
618
618

620
622
623

624

626

629

631
633
634
635

637
639
639
641
642
644
645

10.35
10.36
10.37
10.38
10.39

11

11.1
112
113
11.4
11.5
11.6
11.7

11.8

11.9

11.10
11.11
11.12
11.13
11.14
11.15
11.16
11.17

11.18
11.19

11.20
11.21
11.22
11.23

Element tag for the welcome2 custom tag.

Using a custom tag that interacts with its body.

GuestBookTag custom tag handler.
GuestBookTagExtraInfo used by the container to define
scripting variables in a JSP that uses the guest1list custom tag.
Element tag for the guestlist custom tag.

Case Study: Serviet and JSP Bookstore
Bug2Bug .com bookstore component interactions.

Servlet and JSP components for bookstore case study.
Bookstore home page (index.html).

Shared cascading style sheet (styles.css) used to apply

common formatting across XHTML documents rendered on the client.

TitlesBean for obtaining book information from the books
database and creating an ArrayList of BookBean objects.
BookBean that represents a single book’s information and
defines the XML format of that information.

JSP books . jsp returns to the client an XHTML document
containing the book list.

BooksServlet obtains the XML representation of a book and
applies an XSL transformation to output an XHTML document
as the response to the client.

XSL style sheet (books .xs1) that transforms a book’s XML
representation into an XHTML document.

CartItemBeans contain a BookBean and the quantity of
a book in the shopping cart.

AddToCartServlet places an item in the shopping cart and
invokes viewCart . jsp to display the cart contents.

JSP viewCart . jsp obtains the shopping cart and outputs an
XHTML document with the cart contents in tabular format.
Order form (order.html) in which the user inputs name, address
and credit-card information to complete an order.

JSP process. jsp performs the final order processing.
Application Deployment Tool main window.

New Application window.

Application Deployment Tool main window after creating a
new application.

New Web Component Wizard - Introduction window.
New Web Component Wizard - WAR File General
Properties window.

Add Files to .WAR - Add Content Files window.

Add Files to .WAR - Add Class Files window.

Choose Root Directory window.

Add Files to .WAR - Add Class Files window after selecting

the root directory in which the files are located.
11.24 New Web Component Wizard - WAR File General Properties
window after selecting the file BookServlet.class.

Illustrations

646
647
649

652
653

662
663
665
666
667
670

674

676
681
683
685
686
689
693
697
697

698
699

699
700
700
701
701

702

lllustrations

11.25 New Web Component Wizard - Choose Component Type window.

11.26 New Web Component Wizard - Component General Properties
window.

11.27 New Web Component Wizard - Component Aliases window.

11.28 Application Deployment Tool window after deploying
BookServlet and AddToCartServlet.

11.29 Add Files to .WAR - Add Content Files window.

11.30 Add Files to .WAR - Add Class Files window.

11.31 Specifying the Web Context in the Application Deployment Tool.

11.32 Specifying the Resource Ref’s in the Application Deployment Tool.

11.33 Specifying the Resource Ref’s in the Application Deployment Tool.

11.34 Specifying the welcome file in the File Ref’s tab of the Application
Deployment Tool.

11.35 Application Deployment Tool toolbar buttons for updating
application files and deploying applications.

11.36 Deploy JSP and Serviet Bookstore - Introduction window.

12 Java-Based Wireless Applications Development

and J2ME

12.1 Three-tier architecture for Tip Test.

12.2 Database contents of tips.sql.

12.3 Class WelcomeServlet sends an introductory screen that
provides game directions to a client.

12.4 Interface ClientUserAgentHeaders contains unique
User-Agent header substrings for all clients.

12.5 WelcomeServlet output (index.html) for XHTML client.

12.6 WelcomeServlet output (index.wml) for WAP client. (Image of
UP.SDK courtesy Openwave Systems Inc. Openwave, the Openwave logo,
and UP.SDK are trademarks of Openwave Systems Inc. All rights reserved.)

12.7 WelcomeServlet output (index.html) for i-mode client. (Courtesy
of Pixo, Inc.)

12.8 WelcomeServlet output (index.txt) for J2ME client. (Courtesy
of Sun Microsystems, Inc.)

129 TipTestServlet handles game logic and sends Tip Test to clients.

12.10 XHTMLTipQuestion.xsl transforms XML Tip-Test question to
XHTML document.

12.11 Internet Explorer Tip-Test question output screen.

12.12 XHTMLTipAnswer.xsl transforms XML Tip-Test answer to
XHTML document.

12.13 Internet Explorer Tip-Test answer output screen.

12.14 wWAPTipQuestion.xsl transforms XML Tip-Test question to
WML document.

12.15 Openwave UP simulator Tip-Test question screen. (Image of UP.SDK
courtesy Openwave Systems Inc. Openwave, the Openwave logo, and
UP.SDK are trademarks of Openwave Systems Inc. All rights reserved.)

12.16 WAPTipAnswer .xsl transforms answer to WML document.

Xl

703

703
703

704
705
706
707
707
708
708

709
709

718
718

720

723

723

724

725

725
726

741
743

744
746

746

748
749

Xl

12.17

12.18

12.19
12.20

12.21
12.22
12.23
12.24
12.25

12.26

12.27
12.28
12.29
12.30
12.31
12.32

12.33
12.34

12.35

13
13.1
13.2

13.3
13.4

13.5
13.6

13.7
13.8
13.9
13.10
13.11
13.12

Illustrations

Openwave UP simulator Tip-Test answer screen. (Image of UP.SDK
courtesy Openwave Systems Inc. Openwave, the Openwave logo, and
UP.SDK are trademarks of Openwave Systems Inc. All rights reserved.)
IMODETipQuestion.xsl transforms XML Tip-Test question to
cHTML document.

Pixo i-mode browser Tip-Test question screen. (Courtesy of Pixo, Inc.)
IMODETipAnswer.xs1 transforms XML Tip-Test answer to cHTML
document.

Pixo i-mode browser Tip-Test answer screen. (Courtesy of Pixo, Inc.)
J2ME client Tip-Test question screen. (Courtesy of Sun Microsystems, Inc.)
J2ME client Tip-Test answer screen. (Courtesy of Sun Microsystems, Inc.)
J2ME java.io, java.lang and java.util packages.

MIDP javax.microedition.lcdui and
javax.microedition.io packages.

MIDP javax.microedition.rms and
javax.microedition.midlet packages.

TipTestMIDlet downloads Tip Test from TipTestServlet.

J2ME user-interface API class hierarchy.

TipTestMIDlet main screen. (Courtesy of Sun Microsystems, Inc.)
TipTestMIDlet welcome screen. (Courtesy of Sun Microsystems, Inc.)
TipTestMIDlet information screen. (Courtesy of Sun Microsystems, Inc.)
TipTestMIDlet Tip-Test question screen. (Courtesy of Sun
Microsystems, Inc.)

TipTestMIDlet Tip-Test answer screen. (Courtesy of Sun
Microsystems, Inc.)

Deployment descriptor to run WelcomeServlet and
TipTestServlet.

Case-study browser URLSs.

Remote Method Invocation

WeatherService interface.

WeatherServiceImpl class implements remote interface
WeatherService.

WeatherBean stores weather forecast for one city.
WeatherServiceClient client for WeatherService
remote object.

WeatherListModel is a ListModel implementation for
storing weather information.

WeatherCellRenderer is a custom ListCellRenderer
for displaying WeatherBeans in a JList.

WeatherItem displays weather information for one city.
Running the rmiregistry.

Executing the WeatherServiceImpl remote object.
WeatherServiceClient application window.

Participants of Deite]Messenger case study.

ChatsServer remote interface for Deitel Messenger chat server.

750

751
753

754
755
757
757
758

759

760
762
773
775
77
777

779

780

781
784

793

794
799

801

803

805
805
807
808
808
809
810

lllustrations

13.13
13.14
13.15

13.16
13.17
13.18
13.19

13.20

13.21
13.22

13.23
13.24

13.25
13.26
13.27
13.28
13.29

14
14.1
14.2
143
14.4

14.5
14.6

14.7
14.8
14.9
14.10
14.11
14.12
14.13
14.14

14.15

StoppableChatServer remote interface for stopping a
ChatServer remote object.

ChatServerImpl implementation of remote interfaces ChatServer
and StoppableChatServer as Activatable remote objects.
ChatServerAdministrator application for starting and stopping
the Chat Server remote object.

Policy file for ChatServer’s ActivationGroup.

ChatcClient remote interface to enable RMI callbacks.

ChatMessage is a serializable class for transmitting messages over RML

MessageManager interface for classes that implement communication
logic for a ChatClient.

RMIMessageManager remote object and MessageManager
implementation for managing ChatClient communication.
MessageListener interface for receiving new messages.
DisconnectListener interface for receiving server disconnect
notifications.

ClientGUI provides a graphical user interface for the Deitel
Messenger client.

DeitelMessenger launches a chat client using classes ClientGUI
and RMIMessageManager.

Policy file for the RMI activation daemon.

File listing for the HTTP server’s download directory.

Policy file for Chat ServerAdministrator.

Policy file for the DeitelMessenger client.

Sample conversation using Deitel Messenger.

Session EJBs and Distributed Transactions
Methods of interface javax.ejb.EJBObject.

Methods of interface javax.ejb.EJBHome.
InterestCalculator remote interface for calculating simple interest.
InterestCalculatorHome interface for creating
InterestCalculator EJBs.

InterestCalculatorEJB implementation of
InterestCalculator remote interface.
InterestCalculatorClient for interacting with
InterestCalculator EJB.

Creating New Application in Application Deployment Tool.
Specifying EAR file for New Application.

Creating a New Enterprise Bean.

Adding InterestCalculator EJB classes.

Selecting InterestCalculator EJB classes to add.

Result of adding InterestCalculator EJB classes.
Specifying Enterprise Bean Class for InterestCalculator EJB.
Specifying InterestCalculator EJB classes and Stateful
Session Bean Type.

Specifying Container Managed Transactions for
InterestCalculator EJB.

Xl

811

811

816
818
820
821

822

823
827

827

827

836
837
838
838
839
839

848
849
850

851

852

854
862
863
863
864
864
865
865

866

866

XIv

14.16
14.17
14.18
14.19
14.20
14.21

14.22
14.23
14.24
14.25

14.26
14.27

14.28

14.29
14.30
14.31
14.32
14.33
14.34
14.35

15
15.1
15.2
153

15.4
15.5
15.6
15.7

15.8
15.9

16
16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8

Illustrations

XML deployment descriptor for InterestCalculator EJB.
Specifying JNDI Name for InterestCalculator EJB.

Deploying enterprise application to localhost.

Specifying the Application Deployment Tool should Return Client Jar.
Successful completion of deployment process.

MathTool remote interface for calculating factorials and generating
Fibonacci series.

MathToolEJB implementation of MathTool remote interface.
MathToolHome interface for creating MathTool EJBs.
MathToolClient for interacting with MathTool EJB.
MoneyTrans fer remote interface for transferring money and

getting account balances.

MoneyTransferHome interface for creating MoneyTransfer EJBs.
MoneyTransferEJB implementation of MoneyTransfer remote
interface using bean-managed transaction demarcation.
MoneyTransferEJB implementation of MoneyTransfer remote
interface using container-managed transaction demarcation.

Transaction types for container-managed transaction demarcation.
MoneyTransferEJBClient for interacting with MoneyTransfer EJB.
Resource References dialog of New Enterprise Bean Wizard.
Add Resource Reference for BankABC.

Add Resource Reference for BankXYZ.

Selecting Bean-Managed Transactions.

Selecting Container-Managed Transactions.

Entity EJBs

Employee remote interface for setting and getting Employee information.
EmployeeHome interface for finding and creating Employee EJBs.
EmployeeEJB implementation of Employee remote interface using
bean-managed persistence.

General dialog of New Enterprise Bean Wizard.

Bean-Managed Persistence sclected in Entity Settings dialog.
Resource References dialog in New Enterprise Bean Wizard.
EmployeeEJB implementation of Employee remote interface using
container-managed persistence.

Container-Managed Persistence selected in Entity Settings dialog.
EmployeeEJBClient for interacting with Employee EJB.

Messaging with JMS

Setting environment variables for J2EE 1.3 installation.
Point-to-point messaging model.

Voter application overview.

Voter class submits votes as messages to queue.

Voter application votes for favorite programming language
VoteCollector class retrieves and tallies votes.
VoteCollector tallies and displays votes.
VoteListener class receives messages from the queue.

867
867
868
868
869

870
870
873
874

880
880

881

887
891
892
898
899
899
900
900

906
908

909
919
919
920

921
924
926

939
940
940
941
945
945
948
949

lllustrations

16.9

16.10
16.11
16.12
16.13
16.14
16.15
16.16
16.17

16.18

16.19
16.20
16.21
16.22
16.23
16.24
16.25
16.26
16.27
16.28
16.29
16.30
16.31
16.32
16.33
16.34
16.35
16.36
16.37
16.38
16.39
16.40
16.41
16.42

17
17.1
17.2
17.3
17.4
17.5
17.6
17.7

17.8

TallyPanel class displays candidate name and tally.
Publish/subscribe messaging model.

Weather application overview.

WeatherPublisher class publishes messages to Weather topic.
WeatherPublisher publishing weather update messages.
WeatherSubscriber class allows user to receive weather updates.
WeatherSubscriber selecting cities for weather updates.
WeatherSubscriber having received updated weather conditions.
WeatherListener class subscribes to Weather topic to receive
weather forecasts.

WeatherDisplay displays WeatherBeans in a JList using a |
WeatherCellRenderer.

Voter application overview.

CandidateHome interface for Candidate EJB.

Candidate remote interface for Candidate EJB.
CandidateEJB class to maintain candidate tallies.
VoteCollectorEJB class tallies votes from Votes queue.
TallyDisplay displays candidate tallies from database.
TallyDisplay displays candidate tallies from database.
TallyPanel class displays the name and tally for a candidate.

EJB JAR settings for VoteCollectorApp application.

Add class files for Candidate EJB.

General settings for Candidate EJB.

Entity settings for Candidate EJB.

Entity tab for candidate EJB.

Database settings for Candidate EJB.

SQL generation for Candidate EJB.

SQL warning for Candidate EJB.

EJB JAR settings for VoteCollector EJB.

Add class file for VoteCollector EJB.

General settings for VoteCollector EJB.

Transaction management settings for the VoteCollector EJB.
Message-Driven Bean settings for VoteCollector EJB.
Enterprise Bean References for VoteCollector EJB.

Setting JNDI names for VoteCollectorApp.

Deploying the VoteCollector application.

Enterprise Java Case Study: Architectural Overview
Three-tier application model in Deitel Bookstore.

Detailed architecture of Deitel Bookstore Enterprise Java case study.
XML file generated by GetProductServlet.

XSL transformation for generating XHTML from GetProductServlet.
XHTML document generated by XSLT in GetProductServlet.

XSL transformation for generating WML from GetProductServlet.
WML document generated by XSLT in GetProductServlet.

(Image © 2001 Nokia Mobile Phones.)

XSL transformation for generating cHTML from GetProductServlet.

XV

950
952
952
953
958
958
963
964

964

965
968
969
969
970
972
975
977
977
979
979
980
980
981
981
982
982
983
983
984
984
985
985
986
986

992
994
996
996
998
1000

1001
1003

XVI

17.9

18

Illustrations

cHTML document generated by XSLT in GetProductServlet.
(Image courtesy of Pixo, Inc.)

Enterprise Java Case Study: Presentation and

Controller Logic

18.1
18.2

18.3
18.4
18.5
18.6
18.7
18.8
18.9
18.10

18.11
18.12

18.13
18.14
18.15
18.16

18.17
18.18

18.19
18.20

18.21

19
19.1
19.2

19.3

XMLServlet base class for servlets in the Deitel Bookstore.
Configuration file for enabling support for various client types
(clients.xml).

DTD for clients.xml.

ClientModel for representing supported clients.

Flow of client requests and data returned in the Deitel Bookstore

for XHTML clients.

AddToCartServlet for adding products to a shopping cart.
ViewCartServlet for viewing contents of shopping cart.
ViewCartServlet XSL transformation for XHTML browsers
(XHTML/viewCart .xsl).

ViewCartServlet XSL transformation for i-mode browsers
(cHTML/viewCart .xsl). (Image courtesy of Pixo, Inc.)
ViewCartServlet XSL transformation for WML browsers
(WML/viewCart.xsl). (Image © 2001 Nokia Mobile Phones.)
RemoveFromCartServlet for removing products from shopping cart.
UpdateCartServlet for updating quantities of products in
shopping cart.

CheckoutsServlet for placing Orders. (Images courtesy Pixo,
Inc. or © 2001 Nokia Mobile Phones.)
GetAllProductsServlet for viewing the product catalog.
(Images courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.)
GetProductServlet for viewing product details. (Images courtesy
Pixo, Inc. or © 2001 Nokia Mobile Phones.)
ProductSearchServlet for searching product catalog. (Images
courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.)
RegisterServlet for registering new Customers.
LoginServlet for authenticating registered Customers.
(Images courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.)

ViewOrderHistoryServlet for viewing customer’s previously placed

Orders. (Images courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.)
ViewOrderServlet for viewing details of an order. (Images courtesy
Pixo, Inc. or © 2001 Nokia Mobile Phones.)
GetPasswordHintServlet for viewing a Customer’s password
hint. (Images courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.)

Enterprise Java Case Study: Business Logic Part 1
Communication between Get ProductServlet and Product EJB.
ShoppingCart remote interface for adding, removing and updating
Products, checking out and calculating the Order’s total cost.
ShoppingCartEJB implementation of ShoppingCart remote
interface.

1004

1011
1020
1021
1021
1024
1024
1026
1029
1031

1034
1036

1038

1040

1043

1046

1050
1053

1057

1061

1065

1068

1076

1076

1077

lllustrations

19.4

19.5
19.6
19.7

19.8
19.9
19.10
19.11

19.12
19.13
19.14
19.15
19.16
19.17
19.18
19.19
19.20
19.21

19.22
19.23

19.24
19.25
19.26
19.27
19.28

20
20.1

20.2
20.3

20.4
20.5
20.6
20.7
20.8
20.9
20.10
20.11
20.12

ShoppingCartHome interface for creating ShoppingCart EJB
instances.

ShoppingCart general deployment settings.

ShoppingCart EJB references.

Product remote interface for modifying details of Product EJB
instances.

ProductEJB implementation of Product remote interface.

ProductHome interface for finding and creating Product EJB instances.

ProductModel class for serializing Product data.
XMLGenerator interface for generating XML Elements for
public properties.

Product general deployment settings.

Product Entity and deployment settings.

order remote interface for modifying details of Order EJB instances.
OrderEJB implementation of Order remote interface.
orderHome interface for finding and creating Order EJB instances.
OrderModel class for serializing Order data.

Order general deployment settings.

Order entity and deployment settings.

order EJB references.

OrderProduct remote interface for modifying details of
orderProduct EJB instances.

OrderProductEJB implementation of OrderProduct remote
interface.

OorderProductHome interface for finding and creating
OrderProduct EJB instances.

OrderProductPK primary-key class for OrderProduct EJB.
OorderProductModel class for serializing OrderProduct data.
orderProduct general deployment settings.

OrderProduct entity and deployment settings.

orderProduct EJB references.

Enterprise Java Case Study: Business Logic Part 2
Customer remote interface for modifying Customer details, getting an
Order history and password hint.

CustomerEJB implementation of Customer remote interface.
CustomerHome interface for creating and finding Customer

EJB instances.

CustomerModel for serializing Customer data.

Customer general deployment settings.

Customer entity and deployment settings.

Customer EJB References.

Address remote interface for modifying Address details.
AddressEJB implementation of Address remote interface.

AddressHome interface for creating and finding Address EJB instances.

AddressModel for serializing Address EJB data.
Address General deployment settings.

XVl

1084
1084
1085

1085
1086
1089
1089

1093
1093
1093
1095
1095
1101
1102
1105
1105
1106

1107

1108

1111
1112
1113
1115
1115
1116

1119
1120

1126
1127
1132
1132
1133
1134
1134
1138
1139
1143

XVill

20.13
20.14
20.15
20.16

20.17

20.18
20.19
20.20
20.21
20.22
20.23
20.24
20.25
20.26
20.27
20.28
20.29

20.30
20.31
20.32
20.33
20.34
20.35
20.36
20.37

20.38
20.39

21

21.1
21.2
213
21.4

21.5
21.6

21.7

21.8
21.9

Illustrations

Address entity and deployment settings.

Address EJB references.

SequenceFactory remote interface for generating primary keys.
SequenceFactoryEJB implementation of SequenceFactory
remote interface.

SequenceFactoryHome interface for finding SequenceFactory
EJB instances.

SequenceFactory general deployment settings.
SequenceFactory entity and deployment settings.

AddAing an EJB to an enterprise application.

Creating an EJB JAR file.

Specifying the Root Directory for EJB classes.

Adding EJB classes to an EJB JAR file.

Results of adding EJB classes to an EJB JAR file.

Specifying classes for EJB, home interface and remote interface.
Setting Bean Type to Entity.

Configuring container-managed fields and primary-key class.
Specifying other EJBs referenced by this EJB.

Specifying Container-Managed Transactions for EJB business
methods.

XML descriptor generated by Application Deployment Tool.
Specifying EJB Deployment Settings.

Configuring EJB Database Settings.

Dialog indicating methods that require WHERE clauses for SQL queries.
Specifying SQL query for method £indByCustomerID.
Deployment settings for Deitel Bookstore servlets.

Setting the Context Root for the Deitel Bookstore servlets.

Setting the CLIENT LIST Context Parameter for the Deitel
Bookstore servlets.

Servlet EJB References.

Supporting files for inclusion in servlet WAR file.

Application Servers

Application server required APIs.

WebLogic administration console. (Courtesy BEA Systems.)

JDBC Connection pool properties. (Courtesy of BEA Systems, Inc.)
Weblogic-ejb-jar.xml defines WebLogic deployment
properties for Bookstore case study.

Optional tags for weblogic-ejb-jar.xml not used in text.
Weblogic-cmp-rdbms-jar-address.xml defines WebLogic
CMP database properties for EJB Address.
WebLogic-cmp-rdbms-jar-Customer.xml defines WebLogic
CMP database properties for EJB CustomerEJB.

Some WebLogic Query Language operations and examples.
Weblogic-cmp-rdbms-jar-order.xml defines WebLogic CMP
database properties for EJB OrderEJB.

1143
1144
1145

1145

1147
1147
1148
1149
1150
1150
1151
1151
1152
1152
1153
1154

1154
1155
1155
1156
1156
1157
1157
1158

1158

1159
1159

1163
1167
1167

1168
1176

1178

1180
1183

1184

lllustrations

21.10
21.11
21.12

21.13
21.14

22
22.1
22.2
223
224
225
22.6
22.7
22.8
22.9
22.10

22.11
22.12
22.13

22.14
22.15
22.16

22.17
22.18

22.19
22.20
22.21

22.22
22.23
2224
22.25
22.26
22.27
22.28

22.29

Weblogic-cmp-rdbms-jar-orderProduct .xml defines
WebLogic CMP database properties for the OrderProduct EJB.
weblogic-cmp-rdbms-jar-product .xml defines WebLogic
CMP database properties for the Product EJB.

Weblogic-cmp-rdbms-jar-sequence.xml defines WebLogic

CMP database properties for the SequenceFactory EJB.
Weblogic.xml Web application deployment descriptor.
WHERE clauses for bookstore finder methods.

Jini

StartService window.

WebServer configuration tab.

RMID configuration tab.

Specifying the RMID log directory.

Reggie lookup service configuration tab.

Run panel for starting and stopping Jini basic services.
LookupBrowser configuration tab.

LookupBrowser application window.

Registrar menu for viewing computers that provide lookup services.
UnicastDiscovery performs unicast discovery to locate Jini
lookup services.

Policy file that grants Al11Permission to all code.
UnicastDiscovery application output.
MulticastDiscovery performs multicast discovery to locate
Jini lookup services.

MulticastDiscovery application output.

Seminar maintains the location and title of a seminar.
SeminarInterface defines the methods available from the
SeminarInfo Jini service.

BackEndInterface defines methods available to the
SeminarInfo service proxy.

SeminarProxy is a service proxy that clients use to communicate
with the SeminarInfo service.

SeminarInfo implements the SeminarInfo Jini service.
Content of SeminarInfo.txt.

SeminarInfoService registers the SeminarInfo service
with lookup services.

UnicastSeminarInfoClient is a client for the SeminarInfo service.

SeminarService.jar contents.
SeminarClient.jar contents.
SeminarServiceDownload. jar contents.

Web server configuration for SeminarInfo service.
UnicastSeminarInfoClient application output.
UnicastDiscoveryUtility uses class

LookupLocatorDiscovery to facilitate lookup service discovery.

Using MulticastDiscovery to obtain sample data for testing
UnicastDiscoveryUtility.

XIX

1185

1187

1189
1190
1193

1200
1200
1201
1201
1202
1202
1203
1204
1204

1205
1208
1209

1210
1213
1215

1216

1216

1217
1218
1220

1220
1224
1228
1230
1230
1230
1231

1232

1236

XX

22.30
22.31

22.32
22.33
22.34

22.35

22.36
22.37

22.38

23
23.1
232

233
23.4
23.5
23.6
23.7
23.8
239
23.10
23.11
23.12
23.13
23.14
23.15
23.16
23.17
23.18
23.19
23.20
23.21
23.22
23.23
23.24

23.25
23.26
23.27
23.28

Illustrations

UnicastDiscoveryUtility application output. 1237
GeneralDiscoveryUtility uses class LookupDiscoveryManager

o perform both unicast and multicast lookup service discovery. 1238
GeneralDiscoveryUtility application output. 1242
Standard Jini Entry attributes. 1242
SeminarProvider subclass of Entry for describing the Seminar

provider as a Jini attribute. 1243
SeminarInfoleaseService uses class LeaseRenewalManager

to manage SeminarInfo service leasing. 1244
SeminarServiceWithLeasing.jar contents. 1248
SeminarInfoJdJoinService uses class JoinManager to facilitate
registering the SeminarInfo service and manage its leasing. 1249
SeminarServiceJoinManager. jar contents. 1251
JavaSpaces

Discovering a JavaSpaces service. 1262
AttendeeCounter is an Entry for keeping track of registrations

for a seminar on a particular day. 1265
Writing an Entry into a JavaSpaces service. 1267
Results of running the WriteOperation application. 1269
Reading an Entry from JavaSpaces service. 1270
Results of running the ReadOperation application. 1273
Taking an Entry from a JavaSpaces service. 1273
Results of running the TakeOperation application. 1276
EntryListener for NotifyOperation application. 1277
Receiving notifications when matching Entrys are written into JavaSpace. 1278
NotifyOperation Output samples. 1280
Removing entries from JavaSpaces service using method snapshot. 1281
SnapshotUsage Output window. 1284
UpdateInputWindow user interface. 1285
Finding Jini TransactionManager. 1288
Updating an entry using Jini TransactionManager. 1290
WriteOperation Output and UpdatelnputWindow user interface. 1293
UpdateOperation Output and ReadOperation Output. 1294
Structure of the ImageProcessor distributed application. 1294
ImageEntry defines the Entrys to store in the JavaSpaces service. 1295
Image processing node that uses the JavaSpaces service. 1296
Class Filters applies a Java 2D filter to an image. 1299
Image-processing distributed system client. 1302
Partitioning an image into smaller pieces and storing subimages in a

JavaSpaces service. 1307
Partitioning and reforming an image. 1310
Displaying an image. 1312

GUI from ImageProcessorMain and ImageCollector applications. 1313
Images before and after blurring. 1313

lllustrations

24
24.1
24.2
243

24.4
245

24.6
247
24.8
249
24.10

24.11
24.12

24.13
24.14
24.15
24.16
24.17
24.18

25
25.1
25.2
25.3
25.4
25.5

25.6

25.7

25.8

259

25.10
25.11
25.12
25.13
25.14
25.15
25.16
25.17

Java Management Extensions (JMX)

JMX’s three-level management architecture.

Architecture of case study management application.

Defining the PrinterMBean interface that exposes the printer’s
management capabilities.

Defining an event listener for the printer to handle out-of-paper,
low-toner, and paper-jam events.

Printer MBean implementation class that represents the management
contact point for all applications wishing to manage the printer.
Printer simulation class capable of triggering three events.

JMX Agent Architecture.

Creating and starting a management agent.

Notification broadcaster MBean interface.

Notification broadcaster MBean implementation that broadcasts
events generated by the printer.

Receiving event notifications from the MBean server and handling
the printer-specific events.

Connecting to the MBeanServer remotely and creating a
PrinterSimulator MBean.

GUI for the management application.

Initial output window.

Printer status after an out-of-paper event occurred.

Printer status after an add-paper action is taken.

Printer status after a paper-jam event occurred.

Printer status after a cancel pending print jobs action is taken.

Jiro
Jiro technology three-tier management architecture.
Jiro GUI: Igniter initial screen.

GUI with Display Console checked after the start process is completed.

PrinterManagement interface definition.
PrinterManagementImpl implementation of interface
PrinterManagement.

PrinterEventListener used by all classes subscribed for
events from Printer.

Custom error class thrown by Printer.

Printer simulator implementation.
PrinterManagementImpl.properties file.
Deployment results.

PrinterManagementStarter dynamic service instantiator program.

Finds dynamic service proxies within a lookup service.
Management console user interface.

Checking printer status.

Igniter showing printer out-of-paper event.
PrinterClientGUI showing printer out-of-paper event.
OutofPaperPolicy interface.

XXI

1321
1323

1324

1325

1325
1332
1339
1339
1342

1343

1344

1347
1348
1358
1358
1359
1359
1360

1366
1367
1368
1370

1371

1379
1382
1383
1391
1395
1396
1397
1400
1407
1408
1408
1410

XXII lllustrations
25.18 oOutofPaperPolicy implementation. 1411
25.19 outofPaperPolicyImpl.properties property file for

OutofPaperPolicyImpl. 1415
25.20 Low toner policy interface. 1415
25.21 Low toner policy implementation. 1416
25.22 Property file for LowTonerPolicyImpl. 1420
25.23 Contents of PrinterManagementService.jar. 1421
25.24 Contents of PrinterManagementService-ifc.jar 1422
25.25 Contents of PrinterManagementService-ifc.jar. 1422
25.26 Contents of PrinterManagementService-impl.jar. 1423
25.27 Command line arguments for jarpackw. 1423
25.28 Command line arguments for jardeploy. 1424
25.29 Management policies instantiating utility. 1424
25.30 Igniter displaying out-of-paper event. 1426
25.31 oOutofPaperPolicy handling out-of-paper event. 1427
25.32 Log contents after events handled by management policies. 1427
25.33 Detailed log information for a specified entry. 1428
25.34 Printer management solution work flow diagram. 1430
26 Common Object Request Broker Architecture
(CORBA): Part 1
26.1 IDL definition for server SystemClock. 1443
26.2 A Javainterface generated by id1j. 1444
26.3 SystemClockOperations interface generated by id1j. 1445
26.4 Implementation of the SystemClock server. 1445
26.5 Client that connects to SystemClock. 1449
26.6 Call path from a client to a distributed object. 1453
26.7 Object Management Architecture reference model. Courtesy of Object

Management Group, Inc. 1455
26.8 ORB request-interface structure. Courtesy of Object Management

Group, Inc. 1455
26.9 IDL keywords, types and their mappings to Java keywords. 1458
26.10 IDL file testing many of the IDL keywords and types. 1459
26.11 IDL-generated file StructMap . java (re-formatted for clarity). 1464
26.12 IDL-generated file InterfaceNameOperations.java

(re-formatted for clarity). 1465
26.13 IDL-generated file InterfaceName . java (re-formatted for clarity). 1466
26.14 Deadlock caused by client calling a server that calls the client. 1468
26.15 alarmclockl.idl. 1468
26.16 AlarmClockImpl is the AlarmClock server implementation. 1469
26.17 ClockClientGUTI informs the user when the alarm has sounded. 1472
26.18 AlarmClockClient is the AlarmClock client. 1474
26.19 A user-defined CORBA exception (DatabaseException) and

an operation capable of throwing the exception. 1478
26.20 The generated DatabaseException.java file (reformatted for clarity). 1478
26.21 alarmclock2.idl is the IDL for the AlarmClock example. 1478

lllustrations

26.22
26.23
26.24
26.25

26.26
26.27
26.28
26.29

27

Excerpt from AlarmClockImpl. java.

ChatServer, ChatClient and ChatMessage interface definitions.
ChatServerImpl implementation of the CORBA ChatServer.
CORBAMessageManager implementation of interface
MessageManager using CORBA.

DeitelMessenger application for launching the CORBA chat client.
chat.idl with ChatMessage changed to be a valuetype.
Keywords specific to valuetypes.

ChatMessageImpl is the ChatMessage implementation.

Common Object Request Broker Architecture

(CORBA): Part 2

27.1
27.2
273
27.4
27.5
27.6

27.7
27.8
27.9

27.10

28
28.1
28.2
283

28.4
28.5

28.6
28.7
28.8
28.9

28.10
28.11
28.12
28.13

SystemClockClient modified to support DII.

Persistent State Definition Language example.

Supplier-to-consumer flow using the Event/Notification Service.

IDL keywords to support the CORBA Component Model.

CORBA component types and descriptions.

Customer component IDL definition demonstrating keywords
publishes and emits for issuing events.

ChatServerImpl implements the Deitel messenger Chat Server
using RMI-IIOP.

ChatServerAdministrator application for starting and stopping
RMI-IIOP ChatServer.

RMIIIOPMessageManager implements the ChatClient and
MessageManager interfaces using RMI-IIOP.
DeitelMessenger creates a ClientGUI and
RMIIIOPMessageManager to launch the RMI-IIOP messenger client.

Peer-to-Peer Applications and JXTA

Common P2P applications.

Sample windows of Deitel Instant Messenger.

Interface IMService specifies how service proxy interacts with

the service.

Interface IMPeer specifies interaction between peers.

Class Message defines an object for sending and receiving
messages between peers.

IMServiceImpl service implementation for our case study.

Class IMPeerListener is the GUI that starts peer communication.
Class IMPeerImpl is the IMPeer implementation.

Class IMServiceManager registers IMServiceImpl with
lookup services.

Class PeerList is the GUI for finding peers.
MulticastSendingThread broadcasts DatagramPackets.
Interface IMConstants defines Deitel-Instant-Messenger constants.
Class MulticastReceivingThread uses threads to add and
remove peers.

XX

1479
1482
1484

1489
1493
1496
1497
1497

1511
1520
1522
1523
1526

1527

1532

1535

1539

1541

1550
1552

1553
1553

1554
1555
1557
1560

1562
1564
1572
1575

1577

XXIV

28.14

28.15

28.16

29
29.1
29.2
293
29.4
29.5
29.6
29.7
29.8
29.9

Al
A2
A3
A4
A5
A6

B.1
B.2
B.3
B4
B.5
B.6
B.7
B.8
B.9
B.10
B.11
B.12
B.13
B.14

C.1
C2
C3
C4

Illustrations

Interface PeerDiscoveryListener listens for when peers are
added and removed from peer groups.

Modified PeerList enables the use of classes
MulticastReceivingThread and PeerDiscoveryListener
in the Deitel Instant Messenger.

JXTA low-level protocols.

Intfroduction to Web Services and SOAP

Class SimpleService.

SOAP package administration tool.

Description of deployed service.

Client making a SOAP request.

SOAP implementation of class WeatherService.

SOAP implementation of class WeatherServiceClient.
Apache SOAP Admin page.

Apache SOAP Service Deployment Descriptor Template.
SOAP WeatherService Client.

Creating Markup with XML

Simple XML document containing a message.
XML document missing an end tag.
Whitespace characters in an XML document.
Using a CDATA section.

Demonstrating XML namespaces.

Using default namespaces.

Document Type Definition (DTD)

XML document declaring its associated DTD.
Validation by using an external DTD.

Invalid XML document.

Occurrence indicators.

Example of a mixed-content element.

Changing a pipe character to a comma in a DTD.
Declaring attributes.

XML document with ID and IDREF attribute types .
Error displayed when an invalid ID is referenced.
XML document that contains an ENTITY attribute type.

Error generated when a DTD contains a reference to an undefined entity.

Conditional sections in a DTD.
XML document that conforms to conditional.dtd.
Processing whitespace in an XML document.

Document Object Model (DOM™)
Article marked up with XML tags.

XMLInfo displays information about XML input.
DOM classes and interfaces.

Some Document methods.

1582

1583
1590

1597
1598
1599
1599
1602
1605
1607
1608
1608

1613
1615
1616
1618
1620
1622

1630
1631
1631
1632
1635
1636
1637
1639
1640
1642
1642
1644
1645
1646

1654
1654
1658
1658

lllustrations XXV

C5
C.6
C.7
C.8
C9
C.10
C.11
C.12
C.13
C.14

D
D.1
D.2
D3
D4
D.5
D.6
D.7
D.8
D.9
D.10
D.11
D.12
D.13
D.14
D.15
D.16
D.17
D.18
D.19
D.20
D.21
D.22

G.1
G.2
G3

G4
G.S5
G.6
G.7

G.8

Node methods. 1659
Some node types. 1659
Element methods. 1659
Simple example that replaces an existing text node. 1660
Class definition for MyErrorHandler. 1663
Input document (intro.xml) and output from ReplaceText.java. 1664
Building an XML document with the DOM. 1665
Output for buildXml. java. 1668
Traversing the DOM. 1668
Sample execution of TraverseDOM. java. 1671

XSL: Extensible Stylesheet Language Transformations (XSLT)

Java application that performs XSL transformations. 1677
Simple template. 1679
Sample input XML document intro.xml. 1680
Results of XSL transformation. 1680
XML document containing a list of sports. 1681
Using XSLT to create elements and attributes. 1681
Default XSLT templates. 1682
Output of transformation. 1683
Book table of contents as XML. 1684
Transforming XML data into XHTML. 1684
Output of the transformation. 1686
Day planner XML document. 1687
Using conditional elements. 1688
XSLT document being imported. 1690
Importing another XSLT document. 1691
Transformation results. 1692
Combining style sheets using xs1:include. 1692
XSLT document for rendering the author’s name. 1693
XSLT document for rendering chapter names. 1693
Output of an XSLT document using element include. 1694
Demonstrating xsl:variable. 1695
Result of variables.xsl transformation. 1695

Java Native Interface (JNI)

JNIPrintWrapper loads a library and declares a native method. 1707
JNIPrintWrapper .h header file generated by javah. 1708
JNIPrintWrapperImpl.cpp implements the javah header to print a
message.1709

JNIPrintMain calls the native method via the wrapper class. 1710
JNIPIWrapper encapsulates the native methods and loads the library. 1710
PIContainer returns the PI member of java.lang.Math. 1711
JNIPIWrapper .h is the javah generated header file for the native

functions. 1711

JNIPIWrapperImpl.cpp demonstrates method calls and object
construction. 1712

XXVI

G.9
G.10
G.11

G.12
G.13
G.14

G.15
G.16

G.17
G.18

G.19

G.20
G.21
G.22

G.23
G.24

G.25
G.26

H.1
H.2
H.3
H.4

H.5
H.6

I.1
12
I3
L4

Illustrations

Signature type mappings.
JNIPIMain calls each native method via the wrapper class.

JNIStaticWrapper loads INIMathLibrary and declares native

method printStaticMembers.

MathConstants contains common math constants from Math.
JNIStaticWrapper.h javah generated header file.
JNIStaticWrapperImpl accesses and prints static members of
the given MathConstants class.

JNIStaticMain prints static math constants via the wrapper class.

JNIArrayWrapper loads INIArrayLibrary and displays the
numbers in the returned array.

JNIArrayWrapper .h javah generated header file.
JNIArrayWrapperImpl.cpp demonstrates primitive and Object
array creation and control.

JNIArray loads library and calls INIArrayWrapper to print

10 numbers.

ImageSizeException used when image is too large.
PixelTintException is used for invalid pixel tint values.
JNITintWrapper loads the native library and wraps the native
function.

JNITintWrapper.h javah generated JNI header file.
JNITintImages .cpp tints an array of SRGB color values to
demonstrate exception handling.

JNIPanel creates the application GUI and calls the native method.
JNIImageFrame serves as an entry point for the application.

Career Opportunities

The Monster.com home page. (Courtesy of Monster.com.)
FlipDog.com job search. (Courtesy of Flipdog.com.)

List of a job seeker’s criteria.

Advantage Hiring, Inc.’s Net-Interview™ service. (Courtesy of
Advantage Hiring, Inc.)

Cruel World online career services. (Courtesy of Cruel World.)
eLance . com request for proposal (RFP) example. (Courtesy
of eLance, Inc.]

Unicode®

Correlation between the three encoding forms.
Various glyphs of the character A.

Java program that uses Unicode encoding.
Some character ranges.

1713
1714

1715
1715
1715

1716
1717

1718
1718

1719

1721
1722
1722

1723
1723

1724
1728
1731

1741
1742
1744

1747
1749

1752

1765
1765
1767
1770

Preface

Live in fragments no longer. Only connect.
Edward Morgan Forster

Welcome to Advanced Java 2 Platform How to Program and the exciting world of ad-
vanced-programming concepts with the three major Java platforms—Java™ 2 Enterprise
Edition (J2EE), Java 2 Standard Edition (J2SE) and Java 2 Micro Edition (J2ME). Little
did we know when we attended the November 1995 Internet/World Wide Web conference
in Boston what that session would yield—four editions of Java How To Program (the
world’s best-selling Java textbook), and now this book about Java software-development
technologies for upper-level college courses and professional developers.

Before Java appeared, we were convinced that C++ would replace C as the dominant
application-development language and systems-programming language for the next
decade. However, the combination of the World Wide Web and Java now increases the
prominence of the Internet in information-systems planning and implementation. Organi-
zations want to integrate the Internet “seamlessly” into their information systems. Java is
more appropriate than C++ for this purpose—as evidenced by Sun Microsystems’
announcement in 2001 that over 96% of enterprise application servers support J2EE.

Advanced Java 2 Platform How to Program is the first book in our Advanced How to
Program series. We discuss Java technologies that may be unfamiliar and challenging to
the average Java programmer. We structured each chapter discussion to provide the reader
with an introduction to leading-edge and complex Java technologies, rather than provide a
detailed analysis of every nuance of each topic. In fact, each topic we present could be a
600-800 page book in itself.

We use a different approach with the examples in this book than that of programming
examples in our previous books. We provide fewer programs, but these programs are more
substantial and illustrate sophisticated coding practices. We integrate many technologies to
create a book for developers that enables you to “go beyond” and experiment with the most

XXII Preface

up-to-date technologies and most widely employed design concepts. What better way to
learn than to work with actual technologies and code?

When determining the appropriate topics for this book, we read dozens of journals,
reviewed the Sun Microsystems Web site and participated in numerous trade shows. We
audited our material against the latest technologies presented at the JavaOne conference—
the leading Java-developer conference sponsored by Sun Microsystems—and at other pop-
ular Java conferences. We also reviewed books on specialized Java topics. After this exten-
sive research, we created an outline for this book and sent it for professional review by Java
experts. We found so many topics we wanted to include that we wound up with over 1800
pages of material (several hundred of those pages appear as PDF documents on the CD that
accompanies this book). We apologize if this is inconvenient, but the material and the
number of topics are voluminous. We will most likely split the next edition into two vol-
umes.

This book benefitted from an unusually large pool of excellent reviewers and the
detailed documentation that Sun makes available on their Web site (www.sun.com). We
were excited to have a number of reviewers from Sun and many other distinguished
industry reviewers. We wanted experienced developers to review our code and discussions,
so we could offer “expert advice” from people who actually work with the technologies in
industry.

We are pleased to include a discussion of application servers in Chapter 21. The three
most popular application server software products are BEA’s WebLogic, IBM’s Web-
Sphere and Sun/Netscape’s iPlanet. Originally, we had planned to include all three on the
book’s accompanying CD, but we have included only WebLogic and WebSphere. iPlanet
was about to publish a new version as this book went to publication. By mutual agreement
between iPlanet and Deitel & Associates, Inc., we decided not to include this software, but
iPlanet provides a link to a site specific to this book—www.iplanet.com/
ias_deitel—where readers can download the latest iPlanet software. We also include
a discussion of how to deploy our case study on the iPlanet server. You can find this dis-
cussion on our Web site—www.deitel.com.

We moved four chapters from Java How to Program, Third Edition—RMI, Servlets,
JavaBeans and JDBC—to Advanced Java 2 Platform How to Program. Prentice Hall has
published a paperback supplement (ISBN: 0-13-074367-4) containing these four chapters
for readers who have purchased Java How to Program, Fourth Edition.

The world of Java is growing so rapidly that Advanced Java 2 Platform How to Pro-
gram and its companion text, Java How to Program, Fourth Edition, total 3400 pages! The
books are so large that we had to put several chapters from each on the accompanying CDs.
This creates tremendous challenges and opportunities for us as authors, for our publisher—
Prentice Hall, for instructors, for students and for professionals. We hope you enjoy the
results of these challenges as much as we have enjoyed the process of tackling them.

Features of Advanced Java 2 Platform How to Program
This book contains many features including:

e Full-Color Presentation. This book is in full color to enable readers to see sample
outputs as they would appear on a color monitor. Also, we now syntax color all
the Java code, as do many of today’s Java integrated development environments
and code editors. Our syntax-coloring conventions are as follows:

Preface XX

keywords appear in dark blue

JSP delimiters appear in red
all other code appears in black

“Code Washing.” This is our own term for the process we use to format the pro-
grams in the book with a carefully commented, open layout. The code is in full
color and grouped into small, well-documented pieces. This greatly improves
code readability—an especially important goal for us given that this book contains
almost 40,000 lines of code.

Advanced Graphical User Interface (GUI) Design. Starting with Chapter 2, we
use advanced Java Swing features to create real-world Java components, includ-
ing a Web-browser application with a multiple-document interface. In Chapter 3,
we introduce the Model-View-Controller (MVC) architecture and its implemen-
tation in the Swing API. In Chapters 4 and 5, we create 2D graphics and 3D
worlds. The Java 2D Drawing Application with Design Patterns Case Study in
Chapter 5 presents a complex drawing program with which the user can create
shapes in various colors and gradients. We are also pleased to add Java 3D cover-
age. One of the book’s adopters said these chapters were ideal for a course in ad-
vanced GUI programming. (We wanted to include multimedia programming with
the Java Media Framework, but instead we decided to include this material in the
companion book, Java How to Program, Fourth Edition.)

Enterprise Java and Our Enterprise Java Case Study. Developers use Java for
building “heavy-duty” enterprise applications. Chapters 711, 14-16 and 21 explore
the necessary components for implementing enterprise solutions—including securi-
ty, database manipulation, servlets, JavaServer Pages, distributed transactions, mes-
sage-oriented middleware and application servers. In Chapter 7, Security, we
discuss secure communications and secure programming. Chapters 17-20 showcase
an Enterprise Java Case Study that integrates many technologies, such as Enterprise
JavaBeans, servlets, RMI-IIOP, XML, XSLT, XHTML, (and for wireless applica-
tion development) WML and cHTML—into an online-bookstore application. The
Deitel Bookstore demonstrates how to use the MVC architecture introduced in
Chapter 3 to build enterprise applications. This bookstore uses technologies to pro-
vide support for almost any type of client, including cell phones, mobile devices and
Web browsers. In this world of networks and wireless networks, business informa-
tion must be delivered securely and reliably to the intended recipients.

Distributed Systems. Enterprise applications are usually so complex that they run
more efficiently when program components are distributed among different ma-
chines in organizations’ networks. This book introduces several technologies for
building distributed systems—Remote Method Invocation (RMI), Jini, JavaSpac-
es, Java Management Extensions (JMX), Jiro and Common Object Request Bro-
ker Architecture (CORBA). CORBA, controlled by the Object Management
Group (OMG), is a mature distributed computing technology for integrating dis-
tributed components written in many disparate languages. Java was originally in-
tended for networks of programmable devices—1Jini assumes that technology role

XXIV

Preface

now. JMX and Jiro are technologies specifically for network management (LANSs,
W AN:Ss, intranets, the Internet, extranets, etc.).

Java 2 Micro Edition (J2ME) and Wireless Applications. It is estimated that by
2003, more people worldwide will access the Internet through wireless devices
than through desktop computers. The Java platform for wireless devices with lim-
ited capabilities such as cell phones and personal digital assistants is Java 2 Micro
Edition (J2ME). Chapter 12, Wireless Java-Based Applications Development and
J2ME, contains a case study that sends content from a centralized data store to
several wireless clients, including a J2ME client.

Web Services. Web services are applications that expose public interfaces usable
by other applications over the Web. The area of Web services builds on existing
protocols, such as HTTP, and communicate with XML-based messages. Directory
services enable clients to perform lookups to discover available Web services. The
Simple Object Access Protocol (SOAP) uses XML to provide communication in
many Web services. Many of the technologies in this book can be used to build
Web services.

Employing Design Patterns. The book’s largest case studies—such as the Java
2D drawing program in Chapter 5, the three-tier servlet and JavaServer Pages case
study in Chapter 11, the three-tier wireless application in Chapter 12 and the De-
itel Bookstore Enterprise Case Study in Chapters 17-20—each contain thousands
of lines of code. Larger systems, such as automated teller machines or air-traffic
control systems, can contain hundreds of thousands, or even millions, of lines of
code. Effective design is crucial to the proper construction of such complex sys-
tems. Over the past decade, the software engineering industry has made signifi-
cant progress in the field of design patterns—proven architectures for
constructing flexible and maintainable object-oriented software. ! Using design
patterns can substantially reduce the complexity of the design process. We used
many design patterns when building the software in this book. Chapter 1 introduc-
es design patterns, discusses why they are useful and lists those design patterns we
use throughout this book

XML. XML (Extensible Markup Language) use is exploding in the software-de-
velopment industry and we use it pervasively throughout the text. As a platform-
independent syntax for creating markup languages, XML’s data portability inte-
grates well with Java’s portable applications and services. If you do not know
XML, Appendices A-D of this book provide an introduction to XML. Appendices
A and B introduce XML basics and DTDs, which define standard XML document
structures. Appendix C introduces the Document Object Model (DOM) API for
manipulating XML documents. Appendix D covers XSLT (Extensible Stylesheet
Language Transformations—an XML vocabulary for transforming XML docu-
ments into other text-based documents.

Peer-to-Peer Applications. Peer-to-peer (P2P) applications—such as instant mes-
saging and document-sharing programs—have become extremely popular. Chap-

1. Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns; Elements of
Reusable Object-Oriented Software. (Massachusetts: Addison-Wesley, 1995).

Preface XXV

ter 28, Peer-to-Peer Applications and JXTA, introduces this architecture, in which
each node performs both client and server duties. JXTA (short for the term “Jux-
tapose”), defines protocols for implementing peer-to-peer applications. This chap-
ter includes two P2P application case studies—one written with Jini and RMI and
the other written in multicast sockets and RMI. Both implement a P2P instant mes-
saging application. We wanted a capstone example for Jini and decided this chap-
ter should have it. The first case study is somewhat centralized—and therefore not
a “true” P2P application (some developers think that Jini has too much overhead
for a peer-to-peer application). We developed the second to demonstrate a lighter-
weight, decentralized implementation.

e Appendix H, Career Opportunities. This appendix introduces career services on
the Internet. We explore online career services from both the employer’s and em-
ployee’s perspectives. We suggest Web sites at which you can submit applica-
tions, search for jobs and review applicants (if you are interested in hiring
someone). We also review services that build recruiting pages directly into e-busi-
nesses. One of our reviewers told us that he had just gone through a job search
largely using the Internet and this chapter would have expanded his search dramat-
ically.

e Appendix I, Unicode. This appendix overviews the Unicode Standard. As com-
puter systems evolved worldwide, computer vendors developed numeric repre-
sentations of character sets and special symbols for the local languages spoken in
different countries. In some cases, different representations were developed for
the same languages. Such disparate character sets made communication between
computer systems difficult. Java supports the Unicode Standard (maintained by a
non-profit organization called the Unicode Consortium), which defines a single
character set with unique numeric values for characters and special symbols in
most spoken languages. This appendix discusses the Unicode Standard, overviews
the Unicode Consortium Web site (unicode.org) and shows a Java example
that displays “Welcome” in many different languages.

e Bibliography and Resources. Chapters in this book contain bibliographies when
appropriate and URLs that offer additional information about the technologies.
We did this so those readers who would like to study a topic further could begin
with the resources we found helpful when developing this book.

Some Notes to Instructors

A World of Object Orientation

When we wrote the first edition of Java How to Program, universities were still emphasiz-
ing procedural programming in languages like Pascal and C. The leading-edge courses
were using object-oriented C++, but these courses were generally mixing a substantial
amount of procedural programming with object-oriented programming—something that
C++ lets you do, but Java does not. By the third edition of Java How to Program, many
universities were switching from C++ to Java in their introductory curricula, and instructors
were emphasizing a pure object-oriented programming approach. In parallel with this ac-
tivity, the software engineering community was standardizing its approach to modeling ob-

XXVI Preface

ject-oriented systems with the UML, and the design-patterns movement was taking shape.
This book takes a 100% object-oriented approach and emphasizes Java design patterns and
adherence to Java idiom.

The prerequisite for this book is Java How to Program, Fourth Edition (or equivalent
Java knowledge), which provides a solid foundation in Java programming. Java How to
Program, Fourth Edition includes the following chapters and appendices, for a more
detailed Table of Contents, visit www.deitel.com: Introduction to Computers, the
Internet and the Web; Introduction to Java Applications; Introduction to Java Applets; Con-
trol Structures: Part 1; Control Structures: Part 2; Methods; Arrays; Object-Based Program-
ming; Object-Oriented Programming; Strings and Characters; Graphics and Java 2D;
Graphical User Interface Components: Part 1; Graphical User Interface Components: Part
2; Exception Handling; Multithreading; Files and Streams; Networking; Multimedia:
Images, Animation, Audio and Video; Data Structures; Java Ultilities Package and Bit
Manipulation; Collections; Java Media Framework and Java Sound; Java Demos; Java
Resources; Operator Precedence Chart; ASCII Character Set; Number Systems; Creating
HTML Documentation with javadoc; Elevator Events and Listener Interfaces; Elevator
Model; Elevator View; Career Opportunities; Unicode; Bibliography.

Students Like Java

Students are highly motivated by the fact that they are learning a leading-edge language (Ja-
va) and a leading-edge programming paradigm (object-oriented programming) for building
entire systems. Java immediately gives them an advantage when they head into a world in
which the Internet and the World Wide Web have a massive prominence and corporations
need enterprise systems programmers. Students quickly discover that they can do great
things with Java, so they are willing to put in the extra effort. Java helps programmers un-
leash their creativity. We see this in the Java and advanced Java courses Deitel & Associ-
ates, Inc. teaches.

Focus of the Book

Our goal was clear—produce an advanced Java textbook for higher-level university cours-
es in computer programming for students with intermediate-level Java programming expe-
rience, and offer the depth and the rigorous treatment of theory and practice demanded by
professionals. To meet these goals, we produced a book that challenges Java programmers.
We present clear examples of advanced topics and often overlooked topics. We adhere to
Java idiom and follow sophisticated coding style and practices (i.e., not just the code for-
matting, but the idiomatic use of Java API’s, constructs and technologies). This book pre-
sents substantial Java applications that readers can use to start working with these
technologies immediately.

Evolution of Advanced Java 2 Platform How to Program

Advanced Java 2 Platform How to Program was finished fresh on the heels of Java How
to Program, Fourth Edition. Hundreds of thousands of university students and profession-
als worldwide have learned Java from our texts. Upon publication in September 2001, Ad-
vanced Java 2 Platform How to Program will be used in universities, corporations and
government organizations worldwide. Deitel & Associates, Inc. taught Java courses inter-
nationally to thousands of students as we were writing the various editions of Java How to

Preface XXVII

Program and Advanced Java 2 Platform How to Program. We carefully monitored the ef-
fectiveness of material and tuned the books accordingly.

Conceptualization of Java

We believe in Java. Its conceptualization by Sun Microsystems, the creator of Java, was
brilliant. Sun based the new language on C and C++, two of the world’s most widely used
implementation languages. This immediately gave Java a huge pool of highly skilled pro-
grammers who were implementing most of the world’s new operating systems, communi-
cations systems, database systems, personal-computer applications and systems software.
Sun removed the more complex and error-prone C/C++ features (such as explicit pointers,
operator overloading and multiple inheritance, among others). They kept the language con-
cise by removing special-purpose features used by only small segments of the program-
ming community. They made the language truly portable for implementing Internet-based
and Web-based applications, and they included features developers need such as strings,
graphics, GUI components, exception handling, multithreading, multimedia (audio, imag-
es, animation and video), prepackaged data structures, file processing, database processing,
Internet and Web-based client/server networking, distributed computing and enterprise
computing. Then they made the language available at no charge to millions of potential
programmers worldwide.

2.5 Million Java Developers

Java was promoted in 1995 as a means of adding “dynamic content” to Web pages. Instead
of Web pages with only text and static graphics, Web pages could now “come alive” with au-
dios, videos, animations, interactivity—and soon, 3D imaging. But we saw much more in
Java than this. Java’s features are precisely what businesses and organizations need to meet
today’s information-processing requirements. So we immediately viewed Java as having the
potential to become one of the world’s key general-purpose programming languages. In fact,
Java has revolutionized software development with multimedia-intensive, platform-indepen-
dent, object-oriented code for conventional, Internet-, Intranet- and Extranet-based applica-
tions and applets. Java now has 2.5 million developers worldwide—a stunning
accomplishment when considering that it has been available publicly for only six years. No
other programming language has ever acquired such a large developer base so quickly.

Teaching Approach

Advanced Java 2 Platform How to Program, First Edition contains a rich collection of ex-
amples, exercises and projects drawn from many fields to provide readers with a chance to
solve interesting real-world problems. The book concentrates on the principles of good
software engineering and stresses program clarity, especially important when creating sub-
stantial programs like those covered in this book. We avoid arcane terminology and syntax
specifications in favor of teaching by example. Our code examples have been tested on
popular Java platforms. We are educators who teach edge-of-the-practice topics in industry
classrooms worldwide. The text emphasizes good pedagogy.

Learning Java via the live-code™ Approach
The book is loaded with live-code™ examples. This is how we teach and write about pro-
gramming, and is the focus of each of our multimedia Cyber Classrooms and Web-based

XXVIII Preface

training courses. We present each new concept in the context of a complete, working Java
program, immediately followed by screen captures that show the program’s output. We call
this style of teaching and writing our live-code™ approach. We use the language to teach
the language. Reading these programs (almost 40,000 lines of code) is much like entering
and running them on a computer.

Java Programming from Chapter Two

Advanced Java 2 Platform How to Program, “jumps right in” with substantial programs
right from Chapter 2. This is the beginning of an aggressive pace that challenges readers
with graphical, multithreaded, database-intensive, network-based programming. Through-
out the book, readers learn by implementing impressive projects.

World Wide Web Access
All the code for Advanced Java 2 Platform How to Program is on the CD that accompanies
this book. The code also is available at the following Web sites:

www.deitel.com
www.prenhall.com/deitel

Objectives

Each chapter begins with Objectives that inform the reader what to expect and provides an
opportunity, after reading the chapter, to determine if the reader has met these objectives.
It is a confidence builder and a source of positive reinforcement.

Quotations

The learning objectives are followed by quotations. Some are humorous, some are philo-
sophical and some offer interesting insights. Our readers enjoy relating the quotations to
the chapter material. The quotations are worth a “second look™ after you read each chapter.

Outline
The chapter outline helps the reader approach the material in top-down fashion. This, too,
helps students anticipate what is to come and set a comfortable and effective learning pace.

Almost 40,000 Lines of Code in 126 Example Programs (with Program Outputs)

We present Java features in the context of complete, working Java programs. The programs
in this book are substantial, with hundreds to thousands of lines of code (e.g., 10,000 lines
of code for the bookstore case study example). Students should use the program code from
the CD that accompanies the book and run each program while studying that program in
the text.

841 Illustrations/Figures

Many of the figures are code examples, but this book still offers many charts, line drawings
and program outputs. For example, Chapter 4 and 5, Graphics Programming with Java 2D
and Java 3D, provides stunning graphics, and the architectural overview of the Enterprise
Java case study in Chapter 17 is impressive.

Preface XXIX

235 Programming Tips

We have included programming tips to help students focus on important aspects of program
development. We highlight numerous tips in the form of Good Programming Practices,
Common Programming Errors, Testing and Debugging Tips, Performance Tips, Portabil-
ity Tips, Software Engineering Observations and Look-and-Feel Observations. These tips
and practices represent the best we have gleaned from decades of programming and teach-
ing experience. One of our students—a mathematics major—told us that she feels this ap-
proach is like the highlighting of axioms, theorems and corollaries in mathematics books;
it provides a basis on which to build good software.

Good Programming Practices

@ We highlight Good Programming Practices techniques for writing programs that are clearer,
more understandable, more debuggable and more maintainable.

—a- Common Programming Errors
@ Focusing on these Common Programming Errors helps readers avoid making the same errors.

NC | When we first designed this “tip type,” we thought we would use it strictly to tell people how
to test and debug Java programs. In fact, many of the tips describe aspects of Java that re-
duce the likelihood of “bugs” and thus simplify the testing and debugging process.

Performance Tips

i We have included 13 Performance Tips that highlight opportunities for improving program
“ performance—making programs run faster or minimizing the amount of memory that they
occupy.

@ One of Java’s “claims to fame” is “universal” portability, so some programmers assume that

if they implement an application in Java, the application will automatically be “perfectly”
portable across all Java platforms. Unfortunately, this is not always the case. We include Port-
ability Tips fo help readers write portable code and to provide insights on how Java achieves
its high degree of portability.

The object-oriented programming paradigm requires a complete rethinking about the way
we build software systems. Java is an effective language for performing good software engi-
neering. The Software Engineering Observations highlight architectural and design issues
that affect the construction of software systems, especially large-scale systems.

& e

Q" gﬁi, We provide Look-and-Feel Observations fo highlight graphical user interface conventions.

@29 These observations help readers design their own graphical user interfaces in conformance
with industry norms.

Summary (949 Summary bullets)

Each chapter ends with additional pedagogical devices. We present a thorough, bullet-list-
style summary of the chapter. On average, there are 26 summary bullets per chapter. This
helps the readers review and reinforce key concepts.

XXX Preface

Terminology (1904 Terms)
We include in a Terminology section an alphabetized list of the important terms defined in
the chapter—again, further reinforcement. On average, there are 51 terms per chapter.

394 Self-Review Exercises and Answers (Count Includes Separate Parts)
Self-review exercises and answers are included for self-study. These reinforce the knowl-
edge the reader gained from the chapter.

189 Exercises (Count Includes Separate Parts)

Each chapter concludes with a set of exercises. The exercises cover many areas. This en-
ables instructors to tailor their courses to the unique needs of their audiences and to vary
course assignments each semester. Instructors can use these exercises to form homework
assignments, quizzes and examinations. The solutions for most of the exercises are includ-
ed on the Instructor’s Manual CD that is available only to instructors through their Pren-
tice-Hall representatives. [NOTE: Please do not write to us requesting the instructor’s
manual. Distribution of this publication is strictly limited to college professors teach-
ing from the book. Instructors may obtain the Instructor’s manual only from their
Prentice Hall representatives. We regret that we cannot provide the solutions to pro-
fessionals.] Solutions to approximately half of the exercises are included on the Advanced
Java 2 Platform Multimedia Cyber Classroom CD, which also is part of The Complete Ad-
vanced Java 2 Platform Training Course. For ordering instructions, please see the last few
pages of this book or visit www.deitel.com.

Approximately 3,080 Index Entries (with approximately 4648 Page References)

This book includes an extensive index. This helps the reader find any term or concept by
keyword. The index is useful to developers who use the book as a reference. The terms in
the Terminology sections generally appear in the index (along with many more index items
from each chapter).

“Double Indexing” of Java live-code™ Examples and Exercises

Advanced Java 2 Platform How to Program has 126 live-code™ examples and 189 exer-
cises (including parts). Many exercises are challenging problems or projects that require
substantial effort. We have “double indexed” the live-code™ examples. For every Java
source-code program in the book, we took the file name with the . jawva extension, such as
WebBrowser. java and indexed it both alphabetically (in this case under “W”) and as a
subindex item under “Examples.” This makes it easier to find examples using particular
features.

Software Included with Advanced Java 2 Platform How to
Program

There are a number of for-sale Java products available. However, you do not need them to
get started with Java. We wrote Advanced Java 2 Platform How to Program using the Java
2 Software Development Kit (J2SDK) Standard Edition Version 1.3.1 for Windows and
Linux (Intel x86) and other software programs that we include on the CD that accompanies
this book. For your convenience, Sun’s J2SDK also can be downloaded from the Sun Mi-
crosystems Java Web site java.sun.com/j2se. We include some of the most popular

Preface XXXI

server software so you can set up and run live systems. This software includes BEA We-
bLogic Server™, Version 6.0 (Windows/Linux) with Service Pack 2, 30-Day Trial, Enter-
prise Edition, 6.0, Testdrive; IBM® WebSphere® Application Server, Advanced Single
Server Edition, Version 4.0 for Windows NT® and Windows® 2000 Evaluation Copy, and
Apache Tomcat 3.2.3 from the Apache Software Foundation. We also include Informix
Software’s Cloudscape 3.6.4 database software. With Sun’s cooperation, we also were able
to include on the CD a powerful Java integrated development environment (IDE)—Sun
Microsystem’s Forte for Java Community Edition. Forte is a professional IDE written in
Java that includes a graphical user interface designer, code editor, compiler, visual debug-
ger and more. J2SDK 1.3.1 must be installed before installing Forte. If you have any ques-
tions about using this software, please read the introductory Forte documentation on the
CD. We will provide additional information on our Web site www.deitel.com.

The CD also contains the book’s examples and a Web page with links to the Deitel &
Associates, Inc. Web site (www.deitel.com), the Prentice Hall Web site (www.pren-
hall.com/deitel) and the many Web sites listed at the end of each chapter. If you
have access to the Internet, this Web page can be loaded into your Web browser to give you
quick access to all the resources. Finally, because we wrote much more than we originally
intended, a number of chapters and appendices have been off-loaded to the CD.

Ancillary Package for Advanced Java 2 Platform How to
Program

Advanced Java 2 Platform How to Program has extensive ancillary materials for instruc-
tors teaching from the book. The Instructor’s Manual CD contains solutions to the vast ma-
jority of the end-of-chapter exercises. We also provide PowerPoint® slides containing all
the code and figures in the text. You are free to customize these slides to meet your own
classroom needs. Prentice Hall provides a Companion Web Site (www .prenhall.com/
deitel) that includes resources for instructors and students. For instructors, the Web site
has a Syllabus Manager for course planning, links to the PowerPoint slides and reference
materials from the appendices of the book (such as the character sets and Web resources).
For students, the Web site provides chapter objectives, true/false exercises with instant
feedback, chapter highlights and reference materials. [NOTE: Please do not write to us
requesting the instructor’s manual. Distribution of this publication is strictly limited
to college professors teaching from the book. Instructors may obtain the solutions
manual only from their regular Prentice Hall representatives. We regret that we can-
not provide the solutions to professionals.]

Advanced Java 2 Platform Multimedia Cyber Classroom (CD
and Web-Based Training Versions) and The Complete
Advanced Java 2 Platform Training Course

We have prepared an interactive, CD-based, software version of Advanced Java 2 Platform
How to Program, called the Advanced Java 2 Platform Multimedia Cyber Classroom. It is
loaded with features for learning and reference. The Cyber Classroom is wrapped with the
textbook at a discount in The Complete Advanced Java 2 Platform Training Course. If you
already have the book and would like to purchase the Advanced Java 2 Platform Multime-
dia Cyber Classroom (ISBN: 0-13-091276-x) separately, please visit www.infor-

XXXII Preface

mit.com/cyberclassrooms. All Deitel Cyber Classrooms are generally available in
CD and Web-based training formats.

The CD has an introduction with the authors overviewing the Cyber Classroom’s fea-
tures. Many of the live-code™ examples in the textbook truly “come alive” in the Cyber
Classroom. If you are viewing a program and want to execute it, you click the lightning bolt
icon and the program will run. You will immediately see—and hear for the audio-based
multimedia programs—the program’s outputs. If you want to modify a program and see
and hear the effects of your changes, simply click the floppy-disk icon that causes the
source code to be “lifted off” the CD and “dropped into” one of your own directories so you
can edit the text, recompile the program and try out your new version. Click the audio icon
and one of the authors will talk about the program and “walk you through” the code.

The Cyber Classroom also provides navigational aids including extensive hyper-
linking. The Cyber Classroom is browser based, so it remembers recent sections you have
visited and allows you to move forward or backward among these sections. The thousands
of index entries are hyperlinked to their text occurrences. You can search for a term using
the “find” feature and the Cyber Classroom locates its occurrences throughout the text. The
Table of Contents entries are “hot”—so clicking a chapter name takes you to that chapter.

Students tell us that they particularly like the fact that solutions to about half the exer-
cises in the book are included with the Cyber Classroom. Studying and running these extra
programs is a great way for students to enhance their learning experience.

Students and professional users of our Cyber Classrooms tell us they like the interac-
tivity and that the Cyber Classroom is an effective reference because of the extensive
hyperlinking and other navigational features. We received an email from a person who said
that he lives “in the boonies” and cannot take a live course at a university, so the Cyber
Classroom was the solution to his educational needs.

Professors tell us that their students enjoy using the Cyber Classroom, spend more time
on the course and master more of the material than in textbook-only courses. We have pub-
lished (and will be publishing) many other Cyber Classroom and Complete Training
Course products. For a complete list of the available and forthcoming Cyber Classrooms
and Complete Training Courses, see the Deitel™ Series page at the beginning of this book
or the product listing and ordering information at the end of this book. You can also visit
www.deitel.comor www.prenhall.com/deitel for more information.

Acknowledgments

One of the great pleasures of writing a textbook is acknowledging the efforts of the many
people whose names may not appear on the cover, but whose hard work, cooperation,
friendship and understanding were crucial to the production of the book.

Several people at Deitel & Associates, Inc. devoted long hours to this project. We
would like to acknowledge the efforts of our full-time Deitel & Associates, Inc. colleagues
Jonathan Gadzik, Tem Nieto, Su Zhang, Kyle Lomeli, Matthew Kowalewski, Rashmi
Jayaprakash, Kate Steinbuhler, Abbey Deitel and Betsy DuWaldt.

e Jonathan Gadzik, a graduate of the Columbia University School of Engineering
and Applied Science (BS in Computer Science) co-authored Chapter 1, Introduc-
tion, and Chapter 12, Java-Based Wireless Applications Development and J2ME,
and contributed to Chapter 4 and the design patterns material throughout the book.
He also reviewed Chapter 28, Peer-to-Peer Applications.

Preface XXXIII

¢ Tem Nieto, a graduate of the Massachusetts Institute of Technology, is Director of
Product Development at Deitel & Associates. Tem teaches XML, Java, Internet and
Web, C, C++ and Visual Basic seminars and works with us on textbook writing,
course development and multimedia-authoring efforts. He is co-author with us of In-
ternet & World Wide Web How to Program (Second Edition), XML How to Pro-
gram, Perl How to Program and Visual Basic 6 How to Program. In Advanced Java
2 Platform How to Program, First Edition Tem updated Chapters 5, 6, 8 and 12 of
XML How to Program for inclusion as Appendices A—-D—Creating Markup with
XML, XML Document Type Definitions, XML Document Object Model (DOM)
and XSL (Extensible Stylesheet Language Transformations)—respectively.

¢ SuZhang, a graduate of McGill University with a Masters in Computer Science, co-
authored Chapters 22, 23, 24 and 25—]Jini, JavaSpaces, Jiro and JMX, respectively.

¢ Kyle Lomeli, a graduate of Oberlin College in Computer Science co-authored Chap-
ters 24 and 25 (JMX and Jiro). He contributed to Chapter 3, MVC; Chapter 7, Secu-
rity; Chapter 13, RMI and Chapter 23, JavaSpaces, and he reviewed Chapter 12.

¢ Matthew Kowalewski, a graduate of Bentley College with a major in Accounting
Information Systems and Director of Wireless Development at Deitel & Associ-
ates, Inc., contributed to Chapter 12.

* Rashmi Jayaprakash, a graduate of Boston University with a major in Computer
Science, co-authored Appendix I, Unicode.

¢ Kate Steinbuhler, a graduate of Boston College with majors in English and Com-
munications, co-authored Appendix H, Career Opportunities, and managed the
permissions process.

* Abbey S. Deitel, a graduate of Carnegie Mellon University with a BS in Industrial
Management and President of Deitel & Associates, Inc., co-authored Chapter 7,
Security.

e Betsy DuWaldt, a graduate of Metropolitan State College of Denver with a degree
in Technical Communications (Writing and Editing Emphasis) and a minor in
Computer Information Systems, is Editorial Director at Deitel & Associates, Inc.
She co-authored the Preface, helped prepare the manuscript for publication and
edited the index.

We would like to thank the participants in our Deitel & Associates, Inc. College Intern-
ship Prograrn.2

e Chris Henson, a Masters student at Brandeis University (Computer Science), co-
authored Chapter 6, JavaBeans Component Model, and Chapter 29, Web Servic-
es. He contributed to the accessibility section of Chapter 2, reviewed Chapters 21

2. The Deitel & Associates, Inc. College Internship Program offers a limited number of salaried posi-
tions to Boston-area college students majoring in Computer Science, Information Technology, Mar-
keting, English or Technical Writing. Students work at our corporate headquarters in Sudbury,
Massachusetts full-time in the summers and part-time during the academic year. Full-time positions
are available to college graduates. For more information about this competitive program, please con-
tact Abbey Deitel at deitel@deitel . com and check our Web site, www.deitel.com.

XXXIV

Preface

and 22, 23, 25 and Appendix I and applied technical reviews to Chapters 2, 6, 8,
14, 15 and 29.

Audrey Lee, a Senior at Wellesley College in Computer Science and Mathemat-
ics, co-authored Chapter 16, Java Message Service and contributed to Chapters 7,
13, 18 and Appendices F and I.

Jeffrey Hamm, a Sophomore in Computer Science at Northeastern University, co-
authored Chapter 21, Appendix E and Appendix G, Java Native Interface (JNI).

Varun Ganapathi, a Sophomore in Computer Science and Electrical Engineering at
Cornell University, co-authored Chapter 28, contributed to Chapter 12 and imple-
mented the i-mode and WML clients in the Chapter 18 case study.

Sasha Devore, a graduate of Massachusetts Institute of Technology in Electrical
Engineering and Electrical Science, 2001, co-authored Chapter 4, Graphics Pro-
gramming with Java 2D and Java 3D.

A. James O'Leary, a sophomore in Computer Science and Psychology at Rensse-
laer Polytechnic Institute, co-authored Chapter 7, Security.

Susan Warren, a Junior in Computer Science at Brown University, worked on the
Instructor’s Manual and ancillary materials for Chapters 9 and 10.

Eugene Izumo, a Sophomore in Computer Science at Brown University, worked
on the Instructor’s Manual and ancillary materials for Chapters 9 and 10.

Vincent He, a Senior in Management and Computer Science at Boston College,
worked on the Instructor’s Manual for Chapter 8.

Christina Carney, a Senior in Psychology and Business at Framingham State Col-
lege helped prepare the Preface and the bibliography for several chapters.

Amy Gips, a Sophomore in Marketing and Finance at Boston College, co-authored
Appendix F, Java Community Process, and researched URLSs for several chapters.
Amy also researched the quotes for the entire book and helped prepare the Preface.

Fabian Morgan (a Summer 2000 intern from MIT) wrote the initial versions of the
examples for Chapters 5, 8, 14, 15 and the Enterprise Java case study in Chapters
17-20.

Josh Gould (a Summer 2000 intern from Clark University) worked on Chapters 9
and 10.

We also would like to thank two business colleagues who contributed to the book.

Carlos Valcarcel co-authored Chapters 26 and 27. Carlos is an independent OO/
Java/CORBA architect with EinTech, Inc., in New York. Carlos has been working
with Java since November 1995 and CORBA since mid-1996. His clients range
from investment banks and insurance companies to software vendors. Please feel
free to send questions and comments to Carlos at carlos@eintech.com. Car-
los would like to thank his wife Becky and daughter Lindley for their patience and
understanding during the writing of these two chapters.

"If there is a bright center to the universe, the two of you are it.”

Preface XXXV

e Kelby Zorgdrager served as a technical consultant on Chapter 22, Jini, Chapter 23,
JavaSpaces, Chapter 24, JMX and Chapter 25, Jiro. He has been working with
Java since its beginning stages of JDK 1.0. Over the past 5 years, Kelby has
worked for Sun Microsystems as a Java Instructor where he developed course ma-
terials and presented to over 3500 students worldwide. During Kelby's last year at
Sun, he worked as a Software Engineer on the development of the Jiro Technolo-
gy. Kelby has spoken at internationally recognized industry conferences, includ-
ing JavaOne. Currently, Kelby is working as the Director of Architecture for
eCarCredit.com, where he uses Java to create cutting-edge technological so-
lutions for the Auto Finance Industry. In Kelby's spare time, he provides indepen-
dent consulting services, and enjoys spending time with his wife Beth, daughter
Aubreigh, and Winston the St. Bernard. Kelby can be reached at
advanced_java@zorgdrager.ord.

We also would like to thank those people who helped us obtain commercial application
server software for the CD that accompanies this book and those people who helped us
complete the deployment instructions for our Deitel Bookstore case study on the three most
popular application servers. Our thanks to Katherine Barnhisel of BEA Systems; Sheila
Richardson, John Botsford, Jason McGee and Kevin Vaughan of IBM; and Holly Sharp,
Heather Sutherland, Sharada Achanta, Patrick Dorsey and Deepak Balakrishna of iPlanet.

We are fortunate to have been able to work on this project with the talented and dedi-
cated team of publishing professionals at Prentice Hall. We especially appreciate the
extraordinary efforts of our computer science editor, Petra Recter and her boss—our mentor
in publishing—Marcia Horton, Editor-in-Chief of Prentice-Hall’s Engineering and Com-
puter Science Division. Vince O’Brien and Camille Trentacoste did a marvelous job han-
dling production.

The Advanced Java 2 Platform Multimedia Cyber Classroom was developed in par-
allel with Advanced Java 2 Platform How to Program. We sincerely appreciate the “new
media” insight, savvy and technical expertise of our e-media editor-in-chief, mentor and
friend Mark Taub. He and our e-media editor, Karen McLean, did a remarkable job
bringing the Advanced Java 2 Platform Multimedia Cyber Classroom to publication under
a tight schedule. Michael Ruel did a marvelous job as Cyber Classroom project manager.

We owe special thanks to the creativity of Tamara Newnam Cavallo
(smart_art@earthlink.net) who did the art work for our programming tips icons
and the cover. She created the delightful bug creature who shares with you the book’s pro-
gramming tips. Barbara Deitel contributed the bugs’ names on the front cover.

We sincerely appreciate the efforts of our reviewers:

Jeff Allen (Sun Microsystems)
Dibyendu Baksi (Sun Microsystems)
Tim Boudreau (Sun Microsystems)
Paul Byrne (Sun Microsystems)
Onno Kluyt (Sun Microsystems)
Peter Korn (Sun Microsystems)

Petr Kozel (Sun Microsystems)

Jon Nyquist (Sun Microsystems)
Tomas Pavek (Sun Microsystems)

XXXVI Preface

Martin Ryzl (Sun Microsystems)
Davanum Srinivas (JNI-FAQ Manager, Sun Microsystems)
Brandon Taylor (Sun Microsystems)

Vicki Allan (Utah State University)

Javaid Aslam (Analyst/Application Developer, Tektronix)

Henry Balen (CORBA author)

Kathy Barshatzky (Javakathy.com)

Don Benish (Ben-Cam Intermedia)

Keith Bigelow (Lutris)

Darrin Bishop (Levi, Ray and Shoup, Inc.)

Ron Braithwaite (Nutriware)

Carl Burnham (Southpoint)

John Conley (DeVry Institute)

Charles Costarella (Antelope Valley College)

Jonathan Earl (Technical Training Consultants)

Jesse Glick (NetBeans)

Ken Gilmore (Amdocs, Inc.)

Jason Gordon (Verizon)

Christopher Green (Colorado Springs Technical Consultants)

Michele Guy (XOR)

Deborah Hooker (Mnemosyne Consulting)

Elizabeth Kallman (Los Alamos National Library)

Salvi Karuppaswamy (EDS)

Jodi Krochalis (Compuware)

Anthony Levensalor (Compuware)

Derek Lane (President of Gunslinger Software and Consulting, Inc.)

Rick Loek (Callidus Software)

Ashish Makhijani (Senior Analyst, Programmer)

Paul McLachlan (Compuware)

Randy Meyers (NetCom)

Paul Monday (Imation)

Steven Newton (Lead Programmer/Analyst, Standard Insurance Company)

Victor Peters (NextStepEducation)

Bryan Plaster (Valtech)

Brian Pontarelli (Consultant)

Srikanth Raju (Staff Engineer, Sun Microsystems)

Robin Rowe (MovieEditor.com)

Michael Schmaltz (Accenture)

Joshua Sharff (Joshua Sharff Associates)

Dan Shellman (Software Engineer)

Jon Siegel (OMG)

Uma Subbiah (Unigraphics)

Arun Taksali (jataayusoft)

Vadim Tkachenko (Sera Nova)

Kim Topley (Author of Core Java Foundation Classes and Core Swing: Advanced
Programming, both published by Prentice Hall)

John Varghese (University of Rochester)

Xinju Wang (Emerald Solutions)

Karen Wieslewski (Titan Insurance)

Jesse Wilkins (Metalinear Media)

Preface XXXVII

Under a tight time schedule, they scrutinized every aspect of the text and made countless
suggestions for improving the accuracy and completeness of the presentation.

We would sincerely appreciate your comments, criticisms, corrections, and sugges-
tions for improving the text. Please address all correspondence to:

deitel@deitel.com

We will respond immediately. Well, that’s it for now. Welcome to the exciting world
of Java programming. We hope you enjoy this look at leading-edge computer applications
development. Good luck!

Dr. Harvey M. Deitel
Paul J. Deitel
Sean E. Santry

About the Authors

Dr. Harvey M. Deitel, CEO of Deitel & Associates, Inc., has 40 years experience in the
computing field including extensive industry and academic experience. He is one of the
world’s leading computer science instructors and seminar presenters. Dr. Deitel earned
B.S. and M.S. degrees from the Massachusetts Institute of Technology and a Ph.D. from
Boston University. He has 20 years of college teaching experience including earning tenure
and serving as the Chairman of the Computer Science Department at Boston College before
founding Deitel & Associates, Inc. with his son Paul J. Deitel. He is author or co-author of
dozens of books and multimedia packages and is currently writing many more. With trans-
lations published in Japanese, Russian, Spanish, Italian, Basic Chinese, Traditional Chi-
nese, Korean, French, Polish and Portuguese, the Deitel's texts have earned international
recognition. Dr. Deitel has delivered professional seminars internationally to major corpo-
rations, government organizations and various branches of the military.

Paul J. Deitel, Chief Technical Officer of Deitel & Associates, Inc., is a graduate of
the Massachusetts Institute of Technology’s Sloan School of Management where he
studied Information Technology. Through Deitel & Associates, Inc. he has delivered
Internet and World Wide Web courses and programming language classes for industry cli-
ents including Sun Microsystems, EMCQ, IBM, BEA Systems, Visa International, Progress
Software, Boeing, Fidelity, Hitachi, Cap Gemini, Compaq, Art Technology, White Sands
Missile Range, NASA at the Kennedy Space Center, the National Severe Storm Labora-
tory, Rogue Wave Software, Lucent Technologies, Computervision, Cambridge Tech-
nology Partners, Adra Systems, Entergy, CableData Systems, Banyan, Stratus, Concord
Communications and many other organizations. He has lectured on Java and C++ for the
Boston Chapter of the Association for Computing Machinery, and has taught satellite-
based courses through a cooperative venture of Deitel & Associates, Inc., Prentice Hall and
the Technology Education Network. He and his father, Dr. Harvey M. Deitel, are the
world’s best-selling Computer Science textbook authors.

Sean E. Santry, Director of Software Development with Deitel & Associates, Inc., is
a graduate of Boston College where he studied computer science and philosophy. At
Boston College he performed original research on the application of metaphysical systems
to object-oriented software design. Through Deitel & Associates, Inc. he has delivered
advanced and introductory courses for industry clients including Sun Microsystems,

XXXVII Preface

EMCZ, Dell, Compaq, Boeing and others. He has contributed to several Deitel publications,
including Java How to Program, Fourth Edition; XML How to Program; C++ How to Pro-
gram, Third Edition; C How to Program, Third Edition; e-Business and e-Commerce How
to Program and e-Business and e-Commerce for Managers. Before joining Deitel & Asso-
ciates, he developed e-business applications with a leading Boston-area consulting firm.

About Deitel & Associates, Inc.

Deitel & Associates, Inc. is an internationally recognized corporate training and content-
creation organization specializing in Internet/World Wide Web software technology, e-
business/e-commerce software technology and computer programming languages educa-
tion. Deitel & Associates, Inc. is a member of the World Wide Web Consortium. The com-
pany provides courses on Internet and World Wide Web programming, object technology
and major programming languages. The founders of Deitel & Associates, Inc. are Dr. Har-
vey M. Deitel and Paul J. Deitel. The company’s clients include many of the world’s largest
computer companies, government agencies, branches of the military and business organi-
zations. Through its publishing partnership with Prentice Hall, Deitel & Associates, Inc.
publishes leading-edge programming textbooks, professional books, interactive CD-ROM-
based multimedia Cyber Classrooms, Complete Training Courses and Web-based training
courses. Deitel & Associates, Inc. and the authors can be reached via e-mail at

deitel@deitel.com

To learn more about Deitel & Associates, Inc., its publications and its worldwide corporate
on-site curriculum, see the last few pages of this book and visit:

www.deitel.com

Individuals wishing to purchase Deitel books, Cyber Classrooms, Complete Training
Courses and Web-based training courses can do so through

www.deitel.com

Bulk orders by corporations and academic institutions should be placed directly with Pren-
tice Hall. See the last few pages of this book for worldwide ordering details.

The World Wide Web Consortium (W3C)

%rﬁ Deitel & Associates, Inc. is a member of the World Wide Web Consortium
(W3C). The W3C was founded in 1994 “to develop common protocols for
N the evolution of the World Wide Web.” As a W3C member, we hold a seat
MEMBER o, the W3C Advisory Committee (our Advisory Committee representative
is our Chief Technology Officer, Paul Deitel). Advisory Committee members help provide
“strategic direction” to the W3C through meetings around the world. Member organizations
also help develop standards recommendations for Web technologies (such as HTML, XML
and many others) through participation in W3C activities and groups. Membership in the
W3C is intended for companies and large organizations. For information on becoming a
member of the W3C visit www.w3 .org/Consortium/Prospectus/Joining.

Introduction

Objectives

* To understand the organization of the book.

* To understand various setup issues in deploying the
book’s examples.

* To understand the elements of design patterns and
how they are used throughout the book.

* To tour the book.

Before beginning, plan carefully.

Marcus Tullius Cicero

Things are always at their best in the beginning

Blaise Pascal

High thoughts must have high language.

Aristophanes

Our life is frittered away be detail ... Simplify, simplify
Henry Thoreau

Look with favor upon a bold beginning.
Virgil

1 think I'm beginning to learn something about it.
Auguste Renoir

2 Introduction Chapter 1

Outline

1.1 Introduction
1.2 Architecture of the Book
1.2.1 Advanced GUI, Graphics and JavaBeans
1.2.2 Distributed Systems
1.2.3 Web Services
1.2.4 Enterprise Java
1.2.5 Enterprise Case Study
1.26 XML
1.3 Tour of the Book
1.4 Running Example Code
1.5 Design Patterns
1.5.1 History of Object-Oriented Design Patterns
1.5.2 Design Patterns Discussion
1.5.3 Concurrency Patterns
1.5.4 Architectural Patterns
1.5.5 Further Study on Design Patterns

Works Cited * Bibliography

1.1 Infroduction

Welcome to the world of advanced Java 2 Platform programming! We have worked hard
to create what we hope will be an informative, entertaining and challenging learning expe-
rience for you.

The Java technologies you will learn are intended for developers and software engi-
neers. Advanced Java 2 Platform How to Program presumes knowledge of either Java How
to Program: Fourth Edition (ISBN: 0-13-034151-7) or The Complete Java Training
Course, Fourth Edition ISBN: 0-13-064931-7), which teach the fundamentals of Java and
object-oriented programming. Advanced Java 2 Platform How to Program presents many
advanced Java topics and introduces many new topics, using almost 40,000 lines of com-
plete, working code and numerous illustrations to demonstrate the concepts. We integrate
these technologies into substantial applications and enterprise systems that demonstrate
how the pieces fit together. We call this our Live-Code™ approach.

We introduce technologies from the three Java editions—Java 2 Standard Edition
(J2SE), Java 2 Enterprise Edition (J2EE) and Java 2 Micro Edition (J2ME). The beginning
chapters of this book demonstrate several high-end concepts from J2SE (Java How to Pro-
gram, Fourth Edition presents J2SE through the intermediate level). Advanced Java 2 Plat-
form How to Program highlights many advanced features of J2EE, providing enterprise
applications as examples. Finally, we introduce the exciting, leading-edge technologies of
J2ME and wireless applications programming.

Chapter 1 Introduction 3

Object-oriented programming and design patterns are essential for building applica-
tions using the many technologies introduced in this book. These tools encourage modu-
larity, allowing programmers to design classes and programs effectively. Design patterns
in particular have proven critical to producing the substantial programs we present in this
book.

Many of the book’s applications integrate the Extensible Markup Language (XML), the
standard for creating markup languages that describe structured data in a platform-indepen-
dent manner. Everything from common Web pages to complex order-tracking and busi-
ness-to-business (B2B) systems can use XML. XML’s data portability complements the
portability of programs built for the Java 2 Platform. XML’s capabilities for describing data
enable systems built with disparate technologies to share data without concerns for binary
compatibility, which is key to developing interoperable distributed systems in Java. We
assume knowledge of XML and Java’s XML APIs. However, Appendices A-D also pro-
vide an introduction to XML and Java’s XML APIs for those of you who are not yet
familiar with these topics. It is highly recommended that you read these appendices first, if
you are not already familiar with XML.

As you read this book, you may want to refer to our Web site www.deitel.com for
updates and additional information on the cutting-edge technologies you will be learning.

1.2 Architecture of the Book

There are several broad technology categories that comprise Advanced Java 2 Platform
How to Program. Many of these technologies are inter-related. We begin with a discussion
of these categories and an overview of the architecture of the book. The chapters can be
grouped into several advanced topics—advanced GUI and graphics, distributed systems,
Web services, Enterprise Java and XML technologies.

1.2.1 Advanced GUI, Graphics and JavaBeans

Chapters 2—6

Graphical user interfaces help users interact effectively and efficiently with applications.
When creating substantial client applications, it is important to create simple and attractive
user interfaces that enable users to work with your application in an intuitive and conve-
nient manner. Java’s Swing API provides graphical user interface components common to
many windowed applications and platforms. Java How to Program, Fourth Edition pro-
vides an introduction to GUI concepts with Swing. In Chapter 2 of Advanced Java 2 Plat-
form How to Program, we introduce several more advanced Swing components and use
them to create substantial applications such as a Web browser with a multiple-document
interface. We also introduce Java’s capabilities for building applications for global deploy-
ment (through internationalization) and for building accessible applications for people
with disabilities (using the Accessibility APIs).

A fundamental theme in Advanced Java 2 Platform How to Program is the importance
of design patterns for building object-oriented systems. We use several design patterns
when building the programming examples in this book. This chapter (Section 1.5) intro-
duces design patterns, discusses why they are important and lists by chapter those design
patterns we use in the book. Chapter 3 introduces the Model-View-Controller (MVC) archi-

4 Introduction Chapter 1

tecture, which is based on several design patterns. This widely applicable architecture sep-
arates the presentation of data (e.g., a bar-chart showing bank-account information) from
the underlying data representation (e.g., tables in a database) and the control logic for those
data (e.g., event handlers for buttons and text fields in a user interface). In Chapter 3, we
discuss the MVC architecture and its implementation in the Swing API. In later chapters,
we revisit the MVC architecture and use it to build substantial Enterprise Java applications.

In Chapter 4, we present Java’s support for graphics. Java provides the Java 2D™ API
for creating two-dimensional graphics and the Java 3D™ API for creating three-dimen-
sional, virtual worlds. We introduce and demonstrate these APIs and provide examples
including a three-dimensional game.

Chapter 5 contains a substantial case study—a Java 2D drawing application with
design patterns—in which we present a complex drawing program as a capstone for the
advanced GUI portion of the book. Using MVC and several other design patterns, and the
capabilities of Java’s Swing components and Java 2D, our drawing application provides
several types of shapes, various colors, gradients, image capabilities and more. Users can
choose multiple views for a drawing, including a zoomed detail view.

The JavaBeans component model enables developers to “componentize” their applica-
tions, making those applications more flexible and the application components more reus-
able. We introduce JavaBeans (often called simply beans) in the context of an animation
application in Chapter 6. JavaBeans allow programmers to create components for building
applications; programmers called component assemblers then can assemble these compo-
nents, along with existing components, to create applications, applets or even new beans.
In fact, most of the GUI components presented in earlier chapters are JavaBeans.

1.2.2 Distributed Systems

Chapters 13, 22-28

When creating substantial applications, often it is more efficient, or even necessary, for
concurrent tasks to be performed on different computers. Distributed systems technologies
enable applications to execute across several computers on a network. For a distributed sys-
tem to function correctly, application components executing on different computers
throughout a network must be able to communicate with one another. Advanced Java 2
Platform How to Program presents several technologies for building distributed systems.

Chapter 13 introduces Remote Method Invocation (RMI), which allows Java objects
located on different computers or executing in different virtual machines to interact as if
they were on the same computer or in the same virtual machine. Each object invokes
methods on the other objects and RMI handles the marshalling (i.e., collecting and pack-
aging) of arguments and return values passed between remote objects. We present several
RMI examples, including a distributed chat application.

Java also provides higher-level APIs for building distributed systems, including Jini and
JavaSpaces. Jini (Chapter 22) enables devices or software programs on a LAN to interoperate
without the need to install special device drivers, and with reduced administrative overhead.
Jini provides true “plug-and-play” support for devices—just plug a printer into a network and
that printer’s services become available to everyone on that network. JavaSpaces is a Jini ser-
vice that provides a simple but powerful API for building distributed systems. We demon-
strate JavaSpaces technology by building a distributed image processing application.

Chapter 1 Introduction 5

As networks grow in complexity and as companies depend on those networks more
heavily for conducting business, network management grows in importance. The Java
Management Extensions (JMX, Chapter 24) and Jiro (Chapter 25) are two complementary
technologies for building distributed network management applications in Java.

In Chapters 26-27, we introduce CORBA—the Common Object Request Broker Archi-
tecture. CORBA allows programs written in various languages, with varying implementa-
tions running in disparate locations, to communicate with each other as easily as if they
were in the same process address space. In these chapters, we introduce the fundamentals
of CORBA and compare CORBA with other distributed-systems technologies, such as
RMI. We also introduce RMI-1I0OP, which enables RMI to interoperate with CORBA.

In Chapter 28, we discuss fundamental concepts of peer-to-peer (P2P) applications,
where each application performs both client and server functions, thus distributing pro-
cessing and information across many computers. We present two different implementations
of a P2P instant-messaging application. The first implementation uses Jini technology and
the second uses multicast sockets and RMI.

1.2.3 Web Services

Chapters 9-12, 29

The popularity of the Web and its importance for conducting business have exploded in re-
cent years. The field of Web services is concerned with building services that enable infor-
mation sharing, commerce and other interactions between businesses, between businesses
and consumers, etc., using standard Web protocols. Web services have come about through
an evolution of existing Web technologies, such as HTML forms, and enterprise technolo-
gies, such as messaging and Electronic Document Interchange (EDI) systems. Web servic-
es rely upon existing protocols and standards.

Chapter 9 introduces serviets. Servlets can generate documents dynamically (e.g.,
XHTML documents) to send to clients in response to requests for information. Chapter 10
introduces Java Server Pages (JSP), which also deliver dynamic content to clients. JSPs
dynamically serve Web content by using scriptlets and JavaBeans components in the con-
text of a document. These documents are translated into servlets by the JSP container—i.e.,
the server application responsible for handling requests for JSPs. Chapter 11 presents a case
study that serves as a capstone to the technology presented in Chapters 9 and 10. The case
study integrates JavaBeans, servlets, JSPs, XML and XSLT to create an online bookstore.

Several new technologies, such as the Wireless Application Protocol (WAP), Wireless
Markup Language (WML), i-mode and Java 2 Micro Edition (J2ME) have emerged for use
with wireless devices. Chapter 12 introduces these wireless technologies, and uses them to
construct a three-tier application that uses servlets and XML to deliver content to several
wireless devices.

Chapter 29 introduces Web services—applications that expose public interfaces usable
by other applications over the Web. Web services are accessible through HTTP and other
Web protocols, and communicate with XML-based messages. Directory services enable
clients to perform lookups to discover available Web services. The Simple Object Access
Protocol (SOAP) uses XML to provide communication in many Web services. SOAP
allows applications to make remote procedure calls to a Web service’s public methods. In
this chapter, we implement a weather service that provides local forecasts from the National
Weather Service, using SOAP.

6 Introduction Chapter 1

1.2.4 Enterprise Java

Chapters 7, 8, 14-16, 21

Java has become enormously popular for building enterprise applications. Sun originally
conceived of Java as a programming language for building small programs embedded in
Web pages; since its inception, Java has grown into an industrial strength, enterprise-devel-
opment language. At the 2001 JavaOne conference, Sun Microsystems announced that over
96% of enterprise application servers support the Java 2 Enterprise Edition.

Security is a primary concern for Java applications of all types, including enterprise
applications. In Chapter 7 we introduce the fundamentals of security, including cryptog-
raphy, digital signatures, authentication, authorization and public-key infrastructure. We
also introduce Java’s sandbox security model, the Java Cryptography Extensions (JCE),
the Java Secure Sockets Extensions (JSSE) and the Java Authentication and Authorization
Services (JAAS).

An integral part of powerful software applications is the storage, retrieval and display
of data. Substantial amounts of data are organized and stored in databases. Programmers
often need to interact with databases to update or retrieve information. Chapter 8 introduces
Java Database Connectivity (JDBC) for manipulating databases. We present examples that
interact with the Cloudscape database management system from Informix Software. Cloud-
scape is available for download at www.cloudscape.com.

Business logic forms the core functionality of an enterprise application. Business logic
is responsible for implementing the complex business rules that businesses require for
transaction and information processing. In Chapter 14, we introduce the Enterprise Java-
Bean (EJB) component model for building enterprise application business logic. In partic-
ular, we discuss session EJBs for business logic, and distributed transactions, which enable
EJBs to work across multiple databases and still maintain data integrity. In Chapter 15, we
present entity EJBs, which enable developers to build and object-based layer for accessing
information in long-term storage, such as a database.

Enterprise applications require extensive services and support at runtime for accessing
databases, enabling distributed transactions, maintaining performance, etc. Application
servers provide a rich runtime environment for enterprise application components. In
Chapter 21, we introduce the three most popular commercial application servers—BEA’s
WebLogic, IBM’s WebSphere and the iPlanet Application Server. We also provide com-
plete instructions for deploying an enterprise-application case study on BEA’s WebLogic
and IBM’s WebSphere.

1.2.5 Enterprise Case Study

Chapters 17-20

Chapters 17-20 present a capstone application for the Enterprise Java topics presented in
Advanced Java 2 Platform How to Program—an Enterprise Java case study that integrates
many Java technologies into a substantial 10,000 lines of code online bookstore applica-
tion. In this case study, we build the Deitel Bookstore enterprise application using Enter-
prise JavaBeans with container-managed persistence, servlets, RMI-IIOP, XML, XSLT,
XHTML, WML and cHTML. A fundamental feature of this example is that the bookstore
uses XML and XSLT to provide support for virtually any type of client, including standard

Chapter 1 Introduction 7

Web browsers and mobile devices, such as cell phones. The modular, extensible architec-
ture enables developers to implement support for additional client types simply by provid-
ing appropriate XSLT documents that translate XML documents into content appropriate
for those client types. The Deitel Bookstore case study also demonstrates the Model-View-
Controller (MVC) architecture in the context of an Enterprise Java application.

1.2.6 XML

Appendices A-D

Many examples throughout Advanced Java 2 Platform How to Program use XML. As a
platform-independent language for creating markup languages, XML integrates well with
Java applications. Unlike HTML, with which Web designers use to format information for
display, XML provides structure and semantics for application data, but it does not format
data. Developers can create XML grammars that define the structure for data and make
those data interoperable with other applications. The Java API for XML parsing (JAXP)
provides the Java 2 Platform with a common API for manipulating XML parsers and XML
data across platforms. The Document Object Model, Level 2 API (DOM) is backed by the
World Wide Web Consortium (W3C) as a standard API for building and manipulating
XML documents. Using this API, developers can leverage the cross-platform capabilities
of Java and XML to build powerful distributed systems.

We introduce the basics of XML in Appendix A, Creating XML Markup. Appendix B
introduces Document Type Definitions (DTDs) for defining standard document structures
against which XML parsers can validate XML documents. DTDs are crucial for building
XML documents that interoperate across many applications. Appendix C introduces the
Document Object Model (DOM) API and its use in the Java API for XML Processing
(JAXP). Appendix D introduces Extensible Stylesheet Language Transformations (XSLT),
which is an XML grammar for transforming XML documents into other XML documents.
We use XSLT in several examples to transform raw XML data into appropriate markup for
Web clients, such as standard Web browsers and cell phones.

1.3 Tour of the Book

In this section, we include walkthroughs of each chapter and outline the many Java tech-
nologies discussed in Advanced Java 2 Platform How to Program. There will be terms in
these sections that are unfamiliar to you—they will be defined in the chapters of the book.
Many chapters end with an Internet and World Wide Web Resources section that provides
a listing of Web sites you should visit to enhance your knowledge of the technologies dis-
cussed in that chapter. You may also want to visit the Web sites www.deitel.com and
www.prenhall.com/deitel to keep informed of the latest information, book errata
and additional teaching and learning resources.

Chapter 1—Introduction

This chapter overviews the technologies presented in Advanced Java 2 Platform How to
Program and introduces the architecture of the book—advanced GUI and graphics, distrib-
uted systems, Web services, Enterprise Java and XML technologies. We include a tour of
the book with a brief overview of each chapter. We provide installation, and execution in-

8 Introduction Chapter 1

structions for the examples in this book. We also discuss design patterns and how we use
them to architect our examples.

Chapter 2—Advanced Swing Graphical User Interface Components

Advanced Swing components enable developers to build functionally rich user interfaces.
The Swing graphical user interface components were introduced with the Java Foundation
Classes (JFC) as a downloadable extension to Java 1.1 and became standard in the Java 2
Platform. Swing provides a much richer set of GUI components than Java’s original Ab-
stract Windowing Toolkit (AWT), including advanced features such as a pluggable look-
and-feel, lightweight component rendering and an enriched component set. This chapter in-
troduces Swing components with which you can enrich your application GUISs.

Many of the examples in this chapter use the JEditorPane class extensively, which
is capable of rendering styled content, such as HTML pages. We also present the first of
our inline design patterns discussions. Swing Actions implement the Command design
pattern to build reusable user interface logic. We also introduce useful Swing components
such as JSplitPane, JTabbedPane and multiple-document-interface components for
organizing GUI elements. Swing provides mechanisms for building applications for mul-
tiple languages and countries, and for disabled users. Building internationalized applica-
tions ensures that applications will be ready for use around the world in many languages.
Accessibility ensures that users with disabilities will be able to use applications through
commonly available utilities, such as screen readers. We show how developers can use
Swing to build Java applications that are accessible to users in other countries and users
with disabilities.

Chapter 3—Model-View-Controller

Advanced Swing components, including the JTree and JTable components enable de-
velopers to build flexible, data-driven graphical user interfaces in Java. The Model-View-
Controller (MVC) architecture abstracts the GUI (the view) from the underlying data (the
model). A controller determines how the application handles user interactions, such as
mouse and keyboard events. The Swing components implement a variation of the MVC ar-
chitecture that combines the view and controller to form a delegate. For example, a JTree
is a delegate (i.e., combined view and controller) for its TreeModel (the model). The
TreeModel contains the raw data to be presented in, and modified by, the JTree. The
JTree provides a visual representation of the data and processes user interactions, such as
renaming nodes in the tree. The benefit of this architecture is that each component can
change without requiring changes in the other components. Furthermore, several delegates,
views and controllers may be associated with a single model. MV C has many uses in desk-
top applications, enterprise applications, simulations and other types of programs. In this
chapter, we discuss MVC in general and its variant, the delegate-model architecture. We
also introduce the Observer design pattern, which is one part of the MVC architecture. Af-
ter reading this chapter, you will be able to take advantage of advanced Swing components
that use the delegate-model architecture, such as JList, JTable and JTree.

Chapter 4—Graphics Programming with Java 2D™ and Java 3D™

The graphical features provided by the Java 2D API and the graphical user interface en-
hancements available in the Swing GUI components provide many tools for developing
rich graphical content by incorporating line art, text and imaging in a single graphics model.

Chapter 1 Introduction 9

Developers can use these tools to build custom graphics and images as well as visual rep-
resentations of data. The Java 2D API also provides advanced capabilities for text layout
and manipulation. Imaging technology in the Java 2D API allows for manipulation of fixed
resolution images, and includes filters for blurring and sharpening images as well as other
image-processing tools. The Java 2D API also provides support for delivering graphical
content to different devices by defining a logical coordinate system that is translated appro-
priately for a given output device such as a printer or monitor. We also introduce the Java
3D API for developing three-dimensional, virtual worlds in Java. The Java 3D API pro-
vides technologies for manipulating 3D objects. For example, the programmer can rotate,
scale and translate 3D objects. Other advanced features include applying textures to 3D ob-
jects using texture mapping and varying the lighting effects on 3D objects by changing the
colors and positions of light sources. We implement an application that allows the user to
manipulate a 3D object with the mouse. We then present a substantial 3D game in which
the user navigates a shape through a 3D scene full of “flying” obstacles. The goal of the
game is to move this shape to a specific target point without colliding with any of the mov-
ing obstacles.

Chapter 5—Case Study: Java 2D Drawing Application with Design Patterns

The case study in this chapter implements a substantial Java application that integrates the
many Java features and techniques presented in Chapters 2—4. We present a graphics appli-
cation case study that uses the GUI capabilities of Chapters 2 and 3 and the two-dimension-
al graphics capabilities of Chapter 4, as well as the flexible capabilities of XML. The case
study emphasizes the Model-View-Controller architecture (Chapter 3) to provide multiple
views of a single drawing such as a detail view and a complete view. A multiple document
interface (Chapter 2) allows users to modify multiple drawings in parallel. Swing Actions
(Chapter 2) provide reusable user-interaction logic for menu and toolbar functionality. The
case study also uses the Drag-and-Drop API to enable users to move shapes between draw-
ings and to drop JPEG images onto a drawing from the local file system. We use several
design patterns including the Factory Method, Adapter State and Template Method design
patterns.

Chapter 6—JavaBeans Component Model

In this chapter, we take a deeper look into developing Java components based on the Java-
Beans component architecture. JavaBeans (beans) allow developers to reap the benefits of
rapid application development in Java by assembling predefined software components to
create powerful applications and applets. Graphical programming and design environ-
ments (often called builder tools) that support beans provide programmers with tremendous
flexibility by allowing programmers to reuse existing components. A programmer can in-
tegrate these components to create applets, applications or even new beans for reuse by oth-
ers. JavaBeans and other component-based technologies have led to a new type of
programmer—the component assembler, who uses pre-built components to create richer
functionality. Component assemblers do not need to know the implementation details of
components, but they need to know what services the components provide. Component as-
semblers can make beans communicate through the beans’ well-defined services (i.e.,
methods), typically without writing any code (the builder tool often generates code, which
is sometimes hidden from the component assembler—depending on the tool). Indeed, a
component assembler can create complex applications simply by “connecting the dots.”

10 Infroduction Chapter 1

This chapter shows you how to use existing beans and how to create new beans. After
studying this chapter, you will have a foundation in JavaBeans programming that will en-
able you to develop applications and applets rapidly using the more advanced features of
integrated development environments that support beans.

Chapter 7—Security

Security is a primary concern in the development of software systems. This chapter discuss-
es the issues associated with security and introduces Java technologies to that ensure suc-
cessful, secure transactions. Among these technologies is the Java Cryptography Extension
(JCE), which supports secret-key encryption and digital signatures. The Java Secure Sock-
et Extension (JSSE) supports the Secure Sockets Layer (SSL) protocol—one of the most
widely used tools for securing Internet communications. JSSE provides encryption, mes-
sage integrity checks and authentication of servers and clients. Java also provides the Java
Authentication and Authorization Service (JAAS) for authenticating users and granting per-
missions. The basis for Java security is the sandbox security model in which applets and
applications execute. The sandbox is a protected environment that prevents Java programs
from accessing protected resources. The program must be granted specific permissions to
access system resources, such as the files on a user’s computer and servers on the Internet.
Permissions may be granted through policy files.

Chapter 8—Java Database Connectivity (JDBC)

Access and storage of data are integral to creating powerful software applications. This
chapter discusses Java’s support of database manipulation. Today’s most popular database
systems are relational databases. We present examples using Cloudscape 3.6.4—a pure-
Java database management system from Informix Software. Cloudscape is available free
for download (for learning and development purposes) at www.cloudscape.com and
is on the CD that accompanies this book. Java programmers communicate with databases
and manipulate their data using the Java Database Connectivity (JDBC) API. A JDBC driv-
er implements the interface to a particular database. This chapter introduces JDBC and uses
it to connect to a Cloudscape database, then to manipulate its content. We use the Struc-
tured Query Language (SQL) to extract information from, and insert information into, a da-
tabase. We then use JDBC and SQL to create an address-book application that stores,
updates and deletes addresses. Several later chapters use the techniques shown in this chap-
ter to build data-driven Web and enterprise applications.

Chapter 9—Servlets

Servlets extend the functionality of servers—typically Web servers. Servlets are effective
for developing Web-based solutions that interact with databases on behalf of clients, dy-
namically generate custom content to be displayed by browsers, and maintain unique ses-
sion information for each client. Many developers feel that servlets are the right solution
for database-intensive applications that communicate with so-called thin clients—appli-
cations that require minimal client-side processing capability. Clients connect to the serv-
er using standard protocols, such as HyperText Transfer Protocol (HTTP), available on
most client platforms through Web browsers (and other applications). Thus, the applica-
tion logic can be written once and reside on the server for access by clients. The Java Serv-
let API allows developers to add functionality to Web servers for handling client requests.
Unlike the Common Gateway Interface (CGI), in which a separate process may be started

Chapter 1 Introduction 11

for each client request, servlets typically are threads in a single JVM process. Servlets also
are reusable across Web servers and across platforms. This chapter demonstrates the
Web’s request/response mechanism (primarily with HTTP get and post requests), ses-
sion-tracking capabilities, redirecting requests to other resources and interacting with da-
tabases through JDBC.

Chapter 10—Java Server Pages (JSP)

This chapter introduces an extension of servlet technology called Java Server Pages (JSP).
JSPs enable delivery of dynamically generated Web content and are used primarily for de-
veloping presentation logic in Enterprise Java applications. JSPs may contain Java code in
the form of scriptlets and may also use JavaBeans components. Custom tag libraries enable
Web-page designers unfamiliar with Java to enhance Web pages with powerful dynamic
content and processing capabilities created by Java developers. To increase performance,
each JSP is compiled into a Java Servlet—this normally occurs the first time each JSP is
requested by a client. Subsequent client requests are fulfilled by the compiled servlet.

Chapter 11—Case Study: Servlets and JSP Bookstore

This chapter is a capstone for our presentation of JSPs and servlets. Here, we implement a
bookstore Web application that integrates JDBC, XML, JSP and servlet technologies. We
discuss additional servlet features as they are encountered in the case study. This chapter
deploys the bookstore application on the J2EE 1.2.1 reference implementation application
server software. The J2EE 1.2.1 reference implementation includes the Apache Tomcat
JSP and servlet container. After reading this chapter, you will be able to implement a sub-
stantial distributed Web application with many components, and you will be able to deploy
that application on the J2EE 1.2.1 application server.

Chapter 12— Java-Based Wireless Applications Development and J2ME

One topic of particular interest in e-business and e-commerce applications is wireless Internet
technology. Wireless technology turns e-business into m-business, or mobile business. It al-
lows you to connect to the Internet any time from almost any place. You can use it to conduct
online transactions, make purchases, trade stocks and send e-mail. New technologies already
enable the wireless office, where computers, phones and other office equipment are net-
worked without cables. This chapter introduces some of the more popular wireless technolo-
gies, including WAP, i-mode and the Java 2 Platform Micro Edition™ (J2ME). J2ME brings
Java technology to embedded devices and consumer devices that have limited processing
power and memory. J2ME includes specialized APIs for many consumer devices, including
cellular phones, smart cards, Internet appliances and PDAs (personal digital assistants), such
as Palm™ and PocketPC. The K Virtual Machine—a trimmed-down version of the Java vir-
tual machine for consumer devices—provides the essential features for executing Java code
on these devices. Using servlets and XML, we present a case study of a three-tier application
that sends a game for several wireless device types.

Chapter 13—Remote Method Invocation (RMI)

This chapter introduces Remote Method Invocation (RMI)—a technology for building dis-
tributed systems in Java. Using RMI, Java objects can be located on computers across a net-
work, yet still interact as if they resided on a single computer. Java objects can perform
lookups to find remote objects on the network and invoke methods across a local area net-

12 Infroduction Chapter 1

work (LAN) or even the Internet. RMI allows Java-object-to-Java-object distributed com-
munication. Once a Java object registers as being remotely accessible (i.e., it is a remote
object), a client can “look up” that Java object and obtain a reference that allows the client
to use that object remotely. The method call syntax is identical to the syntax for calling
methods of other objects in the same program. RMI handles the marshalling (i.e., collecting
and packaging) of data across the network; RMI also enables Java programs to transfer
complete Java objects using Java’s object-serialization mechanism. The programmer need
not be concerned with the details of transmitting data over the network.

Chapter 14—Session Enterprise JavaBeans (EJBs) and Distributed Transactions
Enterprise JavaBeans (EJBs) enable Java developers to build robust multi-tier applica-
tions. In a multi-tier application the responsibilities of providing services to a client can be
divided among multiple servers. A typical two-tier application consists of the client-tier
and the server-tier. A three-tier architecture often makes use of an application server as a
middle-tier between the client Web browser and a database server. Enterprise JavaBeans
provide a framework for building middle-tier business-logic implementations. Using RMI
and EJB Containers, Enterprise JavaBeans also allow for business logic to be distributed
across a network. We introduce Enterprise JavaBeans (EJBs), which provide a component
model for building business logic in enterprise Java applications. We discuss session EJBs
in their two forms: stateful and stateless. We demonstrate how to develop both stateless and
stateful session EJBs. We also introduce EJB support for distributed transactions, which
help to ensure data integrity across databases and across application servers. We show how
to build EJBs that take advantage of J2EE’s distributed transaction support to update data
across multiple databases atomically.

Chapter 15—Entity Enterprise JavaBeans (EJBs)

This chapter continues our discussion of Enterprise JavaBeans with an introduction to en-
tity Enterprise JavaBeans. Unlike session EJBs, entity EJBs store data in long-term stor-
age, such as in a database. Entity EJBs provide an object-oriented representation of
persistent data, such as data stored in an RDBMS or legacy application. Entity EJBs can be
used to build powerful and flexible data applications. There are two types of entity EJBs—
those that use bean-managed persistence and those that use container-managed persis-
tence. Entity EJBs that use bean-managed persistence implement code for storing and re-
trieving data from the persistent data sources they represent. For example, an entity EJB
that uses bean-managed persistence might use the JDBC API to store and retrieve data in a
relational database. Entity EJBs that use container-managed persistence rely on the EJB
container to implement the data-access calls to their persistent data sources. The developer
must supply information about the persistent data source when deploying the EJB. This
chapter provides a demonstration of both types of entity EIBs.

Chapter 16—Java Message Service (JMS)

The Java Message Service (JMS) provides an API for integrating enterprise Java applica-
tions with message-oriented middleware (MOM) systems. Message-oriented middleware
enables applications to communicate by sending messages to one another. Message-orient-
ed middleware is a popular technology for building loosely coupled applications. This
chapter introduces the two basic messaging system models—point-to-point and publish/
subscribe. We demonstrate Java’s interfaces for both of these models. We also provide an
introduction to message-driven EJBs—a new feature of J2EE version 1.3.

Chapter 1 Infroduction 13

Chapter 17—E-Business Case Study: Architectural Overview

The technologies that comprise the Java 2 Enterprise Edition (J2EE) enable developers to
build robust, scalable enterprise applications. In this case study, we build an e-business ap-
plication using several features of J2EE, including servlets, Enterprise JavaBeans, XML
and XSLT. We also integrate wireless technology, including WAP/WML and i-mode/
cHTML. In this chapter, we present an overview of the Deitel Bookstore case study archi-
tecture, which uses the MVC design pattern in an enterprise application context. In the fol-
lowing chapters, we present the controller logic implementation with servlets (Chapter 18)
and the business logic and data abstraction implementation with EJBs (Chapters 19 and 20).

Chapter 18—E-Business Case Study: Presentation and Controller Logic

This chapter presents the implementation of the controller and presentation logic for the
Deitel Bookstore case study. Controller logic in an application is responsible for handling
user requests. The Java servlets in the Deitel Bookstore implement the controller logic for
the application. Every user request is handled by a servlet that takes the appropriate action,
based on the request type (e.g., a request to view the store catalog) and presents content to
the client. We use XSLT transformations to implement the presentation logic for the appli-
cation—the view in MVC. After invoking business-logic methods to process a client re-
quest, the servlets generate XML documents that contain content to be presented to the
client. These XML documents are not specific to any particular type of client (e.g., Web
browser, cell phone, etc.); they simply describe the data supplied by the business logic. An
XSL transformation is applied to the XML documents to present the information to the user
in the appropriate format. For example, an XSL transformation might generate an XHTML
document to present to a Web browser, or a WML document to present to a WAP browser.
XSL transformations are needed for each type of client the application supports. We could
enable the application to support other types of clients simply by implementing additional
sets of style sheets and editing a configuration file.

Chapter 19—E-Business Case Study: Business Logic Part I

In this chapter, we present the EJB business logic for the shopping-cart e-business model
and entity EJBs for maintaining product inventory of the Deitel Bookstore case study. The
primary goal of an on-line store application is to enable customers to purchase products.
EJB business logic implements the business rules that govern this process. We implement
the business logic for managing the set of products a customer wishes to purchase as a
ShoppingCart EJB. The ShoppingCart EJB enforces business rules that define how
products are added to the shopping cart, how shopping carts are created and how customers
complete their purchases. We also present entity EJBs that represent on-line store products
and orders. After reading this chapter, you will understand the use of EJBs in an e-business
application context, as well as more advanced EJB topics, such as custom primary-key
classes and many-to-many relationships.

Chapter 20—Enterprise Java Case Study: Business Logic Part 2

In this chapter we present the business logic for managing customers in our Deitel Book-
store case study. Maintaining information about the customers of an online store can make
purchases more convenient by storing billing and shipping information on the server. The
online store’s marketing department may also use gathered data for distribution of market-
ing materials and analyzing demographic information. We also present an entity EJB that

14 Infroduction Chapter 1

generates unique IDs for the Customer, Order and Address EJBs. Instances of these EJBs
are created when new customer’s register and when customer’s place new orders. Relation-
al databases require unique primary keys to maintain referential integrity and perform que-
ries. We provide the SequenceFactory EJB to generate these unique IDs because not
all databases can generate these primary-key values automatically.

Chapter 21—Application Servers

This chapter introduces several commercial application servers—an application server is
software that integrates server-side logic components to allow communication between
components and tiers of a software architecture. Application servers also manage the per-
sistence, life cycles, security and various other services for logic components. We discuss
the concepts behind application servers and introduce three popular commercial applica-
tion servers, including BEA’s WebLogic, IBM’s WebSphere and the iPlanet Application
Server. We present a detailed walkthrough of deploying the Deitel Bookstore application
on BEA’s WebLogic and IBM’s WebSphere, both of which we include on the CD-ROM
that accompanies this book. As we went to publication, iPlanet was about to release a new
version of their application server. Please visit www.iplanet.com/ias_deitel to
download the latest version. We also will provide complete deployment instructions for the
Deitel Bookstore case study on iPlanet at our Web site, www.deitel.com.

Chapter 22—]Jini

Jini Technology is an advanced set of network protocols, programming models and services
that enable true plug-and-play interactions between networked Jini-enabled devices and soft-
ware components. Jini technology allows distributed-systems developers to discover and use
Jini-enabled resources on the network. The heart and soul of Jini comes from its robust and
standardized network protocols, including multicast request protocol, multicast announce-
ment protocol and unicast discovery protocol. Jini-enabled resources—or services—use these
three protocols to locate and interact with other services. Beyond the network protocols, Jini
technology provides the infrastructure required to use the protocols. This infrastructure exists
as a set of classes that hide the low-level details of the protocols, allowing developers to focus
on functionality instead of implementation. This chapter overviews Jini technology, introduc-
es the network protocols that support Jini services and demonstrates Jini technology with a
substantial Jini application. Later in the book (Chapter 29, Peer-to-Peer Applications and JX-
TA) we use Jini to build and instant-messaging application.

Chapter 23— JavaSpaces

Objects that take part in distributed systems must be able to communicate with one another
and share information. The JavaSpaces service is a Jini service that implements a simple,
high-level architecture for building distributed systems using a distributed repository for
objects and three simple operations—read, write and take. JavaSpaces services support
transactions through the Jini transaction manager, and a notification mechanism that noti-
fies an object when an entry that matches a given template is written to the JavaSpaces ser-
vice. In the first half of this chapter, we present fundamental JavaSpaces technology
concepts and use simple examples to demonstrate operations, transactions and notifica-
tions. The case study at the end of this chapter uses JavaSpaces services to build an image-
processing application that distributes the work of applying filters to images across many
programs on separate computers.

Chapter 1 Introduction 15

Chapter 24— Java Management Extensions (JMX) (on CD)

This chapter introduces the Java Management Extensions (JMX), which were developed by
Sun and other network-management industry leaders to define a component framework for
building intelligent network-management applications. JMX defines a three-level manage-
ment architecture—instrumentation level, agent level and manager level. The instrumenta-
tion level allows clients to interact with objects (called managed resources) by exposing
public interfaces to those objects. The agent level contains JMX agents, which enable com-
munication between remote clients and managed resources. The manager level contains ap-
plications (clients) that access and interact with managed resources via the JMX agents.
JMX also provides support for existing management protocols—such as SNMP—so devel-
opers can integrate JMX solutions with existing management applications. This chapter
discusses JMX architecture and presents a case study that uses JMX capabilities to manage
a network printer simulator.

Chapter 25—]iro (on CD)

This chapter serves as an introduction to Sun’s Jiro technology, a Java-based technology
that provides infrastructure for developing management solutions for distributed resources
on heterogeneous networks. Jiro is an implementation of the Federated Management Ar-
chitecture (FMA) specification, which defines a standard protocol for communication be-
tween heterogeneous managed resources (such as devices, systems, applications). Jiro
technology supports a three-tier architecture of management solutions. The top tier is the
client tier. The client locates and communicates with the management services. The middle
tier provides both static and dynamic management services. The bottom tier consists of the
heterogeneous managed resources. Jiro is a complementary technology to JMX and can be
used to build management solutions. The chapter concludes with a similar case study to the
JMX case study presented in Chapter 24.

Chapter 26—Common Object Request Broker Architecture (CORBA): Part 1 (on CD)
In this chapter, we introduce the Common Object Request Broker Architecture (CORBA).
CORBA is an industry-standard, high-level distributed object framework for building pow-
erful and flexible service-oriented applications. We investigate the essential details of
CORBA as defined in the Object Management Group (OMG) specifications. We discuss
the Object Request Broker (ORB)—the core of the CORBA infrastructure—and describe
how it makes CORBA a powerful distributed object framework. We discuss the Java In-
terface Definition Language (JavalDL)—the official mapping of Java to CORBA. Live-
code examples demonstrate how to write CORBA-compliant distributed code using Java.
Both client-side and server-side JavalDL are demonstrated. A feature of the chapter is a
case study that implements the Deitel Messenger application using CORBA.

Chapter 27—Common Object Request Broker Architecture (CORBA): Part 2 (on CD)

This chapter continues the discussion of CORBA. We introduce the Dynamic Invocation
Interface as well as CORBA services, including the Naming, Security, Object Transaction
and Persistent State services. The discussion continues with a comparison of RMI and
CORBA; we also introduce RMI-IIOP, used to integrate RMI with CORBA. Finally, we
present an alternate implementation of the Deitel Messenger application using RMI-IIOP.

16 Infroduction Chapter 1

Chapter 28—Peer-to-Peer Applications and JXTA

Instant-messaging applications and document-sharing systems such as AOL Instant Mes-
sengerTM and Gnutella have exploded in popularity, transforming the way users interact
with one another over networks. In a peer-to-peer (P2P) application, each node performs
both client and server functions. Such applications distribute processing responsibilities
and information to many computers, thus reclaiming otherwise wasted computing power
and storage space, and eliminating central points of failure. In this chapter, we introduce
the fundamental concepts of peer-to-peer applications. Using Jini (Chapter 22), RMI
(Chapter 13) and multicast sockets, we present two peer-to-peer application case studies of
instant-messaging systems. The first implementation uses Jini and RMI, and the second
uses multicast sockets and RMI. Finally, we introduce JXTA (short for “juxtapose”)—a
new open-source technology from Sun MicrosystemsTM that defines common protocols for
implementing peer-to-peer applications.

Chapter 29—Introduction to Web Services with SOAP

Interoperability, or seamless communication and interaction between different software
systems, is a primary goal of many businesses and organizations that rely heavily on com-
puters and electronic networks. This chapter introduces Web services with Simple Object
Access Protocol (SOAP), a protocol designed to address this issue. Web services can be
Web accessible applications, such as Web pages with dynamic content. More specifically,
Web services expose public interfaces for Web-based applications to use. SOAP is a pro-
tocol that uses XML to make remote-procedure calls over HTTP to provide interoperability
between disparate Web-based applications.

Appendix A—Creating Markup with XML (on CD)

XML is enormously important in Advanced Java 2 Platform How to Program and is inte-
grated into examples throughout the book. We have included a substantial introduction to
XML in Appendices A-D. Appendix A introduces the fundamentals of XML. We discuss
the properties of the XML character set, called Unicode—the standard aimed at providing
a flexible character set for all the world’s languages. (Appendix I introduces Unicode.) We
provide a brief overview of parsers—programs that process XML documents and their da-
ta. We also overview the requirements for a well-formed document (i.e., a document that is
syntactically correct). We discuss elements, which hold data in XML documents. Several
elements can have the same name (resulting in naming collisions); we introduce namespac-
es, which differentiate these elements to avoid these collisions.

Appendix B—XML Document Type Definitions (on CD)

A Document Type Definition (DTD) is a structural definition for an XML document, spec-
ifying the type, order, number and attributes of the elements in an XML document as well
as other information. By defining the structure of an XML document, a DTD reduces the
validation and error-checking work of the application using the document. We discuss
well-formed and valid documents (i.e., documents that conform to a DTD). This appendix
shows how to specify different element and attribute types, values and defaults that de-
scribe the structure of the XML document.

Chapter 1 Introduction 17

Appendix C—XML Document Object Model (DOM) (on CD)

The W3C Document Object Model (DOM) is an API for XML that is platform and lan-
guage independent. The DOM API provides a standard API (i.e., methods, objects, etc.) for
manipulating XML-document contents. The Java API for XML Processing (JAXP) pro-
vides DOM support for Java programs. XML documents are hierarchically structured, so
the DOM represents XML documents as tree structures. Using DOM, programs can modify
the content, structure and formatting of documents dynamically. This appendix examines
several important DOM capabilities, including the ability to retrieve data, insert data and
replace data. We also demonstrate how to create and traverse documents using the DOM.

Appendix D—XSLT: Extensible Stylesheet Language Transformations (on CD)

XSL was designed to manipulate the rich and sophisticated data contained in an XML doc-
ument. XSL has two major functions: formatting XML documents and transforming them
into other data formats such as XHTML, Rich Text Format (RTF), etc. In this appendix, we
discuss the subset of XSL called XSLT. XSLT uses XPath—a language of expressions for
accessing portions of XML documents—to match nodes for transforming an XML docu-
ment into another text document. We use JAXP—which includes XSLT support—in our
examples. An XSL stylesheet contains templates with which elements and attributes can be
matched. New elements and attributes can be created to facilitate a transformation.

Appendix E—Downloading and Installing J2EE (on CD)

We use the Java 2 Enterprise Edition extensively in this book to create substantial enter-
prise applications. This appendix provides instructions for downloading and installing
Sun’s reference implementation of the J2EE.

Appendix F—Java Community Process (JCP) (on CD)

This appendix provides an overview of the Java Community Processes (JCP), which Sun
Microsystems started in 1998. The JCP (www . jcp . org) allows Java individuals, organi-
zations and corporations to participate in the development of new technologies and APIs
for the Java Platform. Sun has integrated a number of technologies developed through the
Java Community Process into the Java 2 Platform Software Development Kits, including
the XML parsing specification.

Appendix G—]Java Native Interface (JNI) (on CD)

The Java Native Interface (JNI) allows programmers to access pre-built applications and
libraries written in other languages. JNI allows programmers to work in Java without re-
quiring developers to rebuild existing libraries. JNI can be useful in time-critical applica-
tions—programmers may write a piece of the application in assembly code and link this
program with Java to provide better performance. In this appendix, we explain how to in-
tegrate Java with C++ libraries. Included are the most common uses and functions of JNI.
We show how Java programs can call native functions stored in compiled libraries, and
how native code can access Java objects, methods and member variables from C++. Under-
standing these examples requires familiarity with C++.

Appendix H—Career Opportunities (on CD)
The Internet presents valuable resources and services for job seekers and employers. Auto-
matic search features allow employees to scan the Web for open positions. Employers also

18 Infroduction Chapter 1

can find job candidates using the Internet. This greatly reduces the amount of time spent pre-
paring and reviewing resumes, as well as travel expenses for distance recruiting and inter-
viewing. In this chapter, we explore career services on the Web from the perspectives of job
seekers and employers. We introduce comprehensive job sites, industry-specific sites (includ-
ing site geared specifically for Java and wireless programmers) and contracting opportunities.

Appendix I—Unicode (on CD)

This appendix introduces the Unicode Standard—a character-set-encoding standard that
facilitates the production and distribution of software. As computer systems evolved world-
wide, computer vendors developed numeric representations of character sets and special
symbols for the local languages in different countries. In some cases, different representa-
tions were developed for the same languages. Such disparate character sets made commu-
nication between computer systems difficult. XML and XML-derived languages, such as
WML, support the Unicode Standard, which defines a single character set with unique nu-
meric values for characters and special symbols for most of the world’s languages. In this
appendix, we discuss the Unicode Standard and the Unicode Consortium (www.uni-
code.org)—a non-profit organization that maintains the Unicode Standard.

1.4 Running Example Code

Many example programs in Advanced Java 2 Platform How to Program are quite complex
and require special software to execute. For example, Chapters 17-20 present a J2EE case
study that requires an application server, which provides a runtime environment and ser-
vices for an enterprise application. This case study also requires a database. For this and
many other programs we provide installation, deployment and execution instructions in the
text and at our Web site, www.deitel.com.

At the time of this writing, Java 2 Enterprise Edition reference implementation version
1.2.1 was the current, released version of J2EE, and version 1.3 was in beta release. We will
update installation instructions on our Web site when Sun releases version 1.3, which will
include several enhancements and updates. For example, version 1.3 implements the Java
messaging Service (JMS 1.0.2), J2EE Connector Technology and the Java API for XML
Processing (JAXP 1.1). Java Servlets (version 2.3) implement filters, a lightweight transfer
framework for requests and responses, monitoring application lifecyles and better interna-
tionalization support. The Java Server Pages implementation (version 1.2) features
improved runtime support for tag libraries and translation time JSP page validation. The 1.3
Enterprise JavaBeans implementation (EJB 2.0) supports message-driven enterprise beans,
interoperability between EJB containers and Container-Managed Persistence 2.0.

The examples in Advanced Java 2 Platform How to Program use Sun’s standard
naming convention for packages. We place each example in an appropriately named sub-
package of package com.deitel. For example, the WebBrowser example in Chapter
2, Advanced Swing Graphical User Interfaces, contains the package declaration

package com.deitel.advjhtpl.gui.webbrowser;

The acronym advjhtpl in the package name indicates that this package is from Ad-
vanced Java 2 Platform How to Program, First Edition. This package structure requires
that you compile the examples into the corresponding directory structure.

Chapter 1 Infroduction 19

Managing packages with Java’s command-line compiler and tools can be cumber-
some, so we recommend that readers use an integrated development environment to sim-
plify the development and execution of the examples and exercises in this book. We used
Sun’s Forte for Java Community Edition—which derives from the open-source NetBeans
IDE (www.netbeans.org)—to develop the code examples for this book. We have
included Forte for Java, Community Edition version 2.0 and the Java 2 Standard Edition
SDK version 1.3.1 on the CD that accompanies this book. For tutorials on how to install
Forte and how to develop applications with it, please refer to Forte’s help system or the doc-
umentation at:

www.sun.com/forte/ffj/documentation/index.html

Most Java development environments enable developers to load directory structures con-
taining Java packages directly into those environments. To facilitate working with the code
in this way, we have provided the complete directory structure, with source files in the ap-
propriate locations, on the CD-ROM that accompanies this book. We recommend that you
copy this directory structure from the CD-ROM that accompanies this book to your hard
drive. Once you have copied the directory structure, you can load the examples according
to the instructions for your development environment.

For readers who wish to use command-line tools for compiling and executing the pro-
grams in this book, we also provide separate folders with the examples for each chapter. To
compile and execute the examples from the command line, copy the folder for the particular
chapter or example onto your hard drive. For example, if you copy the ch02 directory to
the C:\examples directory on your hard drive, you can compile the WebBrowser
example using the commands

cd C:\examples\ch02\fig02_ 01
javac -d . WebBrowser.java WebBrowserPane.java WebToolBar.java

The command-line argument -4 . specifies that the Java compiler should create the resulting
.class files in the appropriate directory structure. To execute the example, you must pro-
vide the fully qualified package name for the class that defines method main. For example,

java com.deitel.advjhtpl.gui.webbrowser.WebBrowser

1.5 Design Patterns

Most code examples presented in introductory Java books—such as our Java How to Pro-
gram, Fourth edition—contain fewer than 150 lines of code. These examples do not require
an extensive design process, because they use only a few classes and illustrate rudimentary
programming concepts. However, most of the programs in Advanced Java How to Pro-
gram, such as the Java 2D case study (Chapter 5), the three-tier Wireless application (Chap-
ter 12) and the Deitel Bookstore (Chapters 17-20), are much more complex. Such large
applications can require thousands of lines of code, contain many interactions among ob-
jects and involve many user interactions. For such software, it is important to employ prov-
en, effective design strategies. Systems such as automated-teller machines and air-traffic
control systems can contain millions, or even hundreds of millions, of lines of code. Effec-
tive design is absolutely crucial to the proper construction of such complex systems.

20 Infroduction Chapter 1

Over the past decade, the software engineering industry has made significant progress
in the field of design patterns—proven architectures for constructing flexible and maintain-
able object-oriented software.! Using design patterns can reduce the complexity of the
design process substantially. Well-designed object-oriented software allows designers to
reuse and integrate pre-existing components into future systems. Design patterns benefit
system developers by

e helping to construct reliable software using proven architectures and accumulated
industry expertise

e promoting design and code reuse in future systems

* helping to identify common mistakes and pitfalls that occur when building sys-
tems

e helping to design systems independently of the languages in which they will ulti-
mately be implemented

e establishing a common design vocabulary among developers
e shortening the design phase in a software-development process

The notion of using design patterns to construct software systems originated in the
field of architecture. Architects use established architectural design elements, such as
arches and columns, when designing buildings. Designing with arches and columns is a
proven strategy for constructing sound buildings—these elements may be viewed as archi-
tectural design patterns.

1.5.1 History of Object-Oriented Design Patterns

During 1991-1994, Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides—col-
lectively known as the “gang of four’—combined their expertise in writing the book De-
sign Patterns, Elements of Reusable Object-Oriented Software (Addison-Wesley: 1995).
This book showed that design patterns evolved naturally through years of industry experi-
ence. John Vlissides states that “the single most important activity in pattern writing is re-
flection.”? This statement implies that to create patterns, developers must reflect on, and
document, their successes (and failures) when designing and implementing software sys-
tems. Developers use design patterns to capture and use this collective experience, which
ultimately helps them share similar successes with other developers.

The gang-of-four book described 23 design patterns, each providing a solution to a
common software design problem. The book groups design patterns into three categories—
creational, structural and behavioral design patterns. Figure 1.1 lists these design patterns.

Creational design patterns describe techniques for instantiating objects (or groups of
objects). These design patterns address issues related to the creation of objects, such as pre-
venting a system from creating more than one object of a class (e.g., Singleton) or deferring
until execution time the decision as to what types of objects are created (e.g., Factory
Method). For example, suppose we are designing a 3-D drawing program, in which the user
can create several 3-D geometric objects, such as cylinders, spheres, cubes, tetrahedrons,
etc. At compile time, the program does not know what types of shapes the user will choose
to add to the drawing. Based on user input at runtime, this program should determine the
class from which to instantiate an object. If the user chooses to create a cylinder, the pro-
gram should “know” to instantiate an object of class Cylinder and add it to the drawing.

Chapter 1 Infroduction 21

When the user decides what geometric object to draw, the program should determine the
specific subclass from which to instantiate that object.

Structural design patterns describe common ways to organize classes and objects in a
system. Developers often find two problems with poor organization. The first is that classes
are assigned too many responsibilities. Such classes may damage information hiding and
violate encapsulation, because each class may have access to information that belongs in a
separate class. The second problem is that classes can overlap responsibilities. Burdening
a design with unnecessary classes wastes time for designers because they will spend hours
trying to extend or modify classes that should not even exist in the system. As we will see,
structural design patterns help developers avoid these problems.

Behavioral design patterns assign responsibilities to objects. These patterns also pro-
vide proven strategies to model how objects collaborate with one another and offer special
behaviors appropriate for a wide variety of applications. The Observer pattern is a classic
example of collaborations between objects and of assigning responsibilities to objects. For
example, GUI components use this patterns to communicate with their listeners, which
respond to user interactions. A listener observes state changes in a particular component by
registering to handle that component’s events. When the user interacts with the component,
that component notifies its listeners (also known as its observers) that the component’s
state has changed (e.g., a button has been pressed).

1.5.2 Design Patterns Discussion

Design patterns are implemented in code as sets of classes and objects. To use design pat-
terns effectively, designers must familiarize themselves with the most popular and effective
patterns used in the software-engineering industry. Throughout this book, we discuss fun-
damental object-oriented design patterns and architectures, as well as their importance in
constructing well-engineered software. We discuss each design pattern as it is used in a par-
ticular code example or case study. Figure 1.2 lists those design patterns that we used and
in which chapter we used them.

Creational Structural Behavioral
Abstract Factory Adapter Chain-of-Responsibility
Builder Bridge Command
Factory Method Composite Iterator
Prototype Decorator Interpreter
Singleton Facade Observer
Flyweight Mediator
Proxy Memento
State
Strategy
Template Method
Visitor

Fig. 1.1 Gang-of-four 23 design patterns.

22 Infroduction Chapter 1

Creational design Structural design Behavioral design
Chapter patterns patterns patterns
2 Command

Observer

5 Factory Method Adapter State

Singleton Template Method
7 Decorator
12 Factory Method Command
24 Facade Chain-of-Responsibility

Fig. 1.2 Gang-of-four design patterns used in Advanced Java 2 Platform How fo
Program.

Note that Fig. 1.2 does not include every design pattern specified in Fig. 1.1. We used
only those patterns that were appropriate for solving specific design problems that we
encountered when writing the examples and case studies in this book. We now list other
popular “gang-of-four” design patterns that are useful in building software, even though we
did not use them when building the examples for this book.

Prototype

Sometimes, a system must make a copy of an object but will not know that object’s class
until run time. For example, consider a drawing program that contains several “shape”
classes (e.g., classes Line, Oval and Rectangle, etc.) that extend an abstract super-
class Shape. The user of this program should, at any time, be able to create, copy and paste
new instances of Shape classes to add those shapes to drawings. The Prototype design pat-
tern enables the user to accomplish this. This design pattern allows an object—called a pro-
totype—to clone itself. The prototype is similar to a rubber stamp that can be used to create
several identical “imprints.” In software, every prototype must belong to a class that imple-
ments a common interface that allows the prototype to clone itself. For example, the Java
API provides method clone from interface java.lang.Cloneable—any object
from a class that implements interface Cloneable uses method clone to make a copy
of itself. Specifically, method clone creates a copy of an object, then returns a reference
to that object. In the drawing program, if we designate class Line as the prototype, then it
should implement interface Cloneable. To create a new line in our drawing, we clone
the Line prototype—this prototype will return a reference to a different Line object. To
copy a preexisting line, we clone that Line object. Developers often use method clone
to prevent altering an object through its reference, because method clone returns a refer-
ence to an object’s copy, rather than return the object’s actual reference.

Bridge

Suppose we are designing a Button class for both the Windows and Macintosh operating
systems. Class But ton contains specific button information such as an ActionListener
and a String label. We design classes Win32Button and MacButton to extend class
Button. Class Win32Button contains “look-and-feel” information on how to display a

Chapter 1 Infroduction 23

Button on the Windows operating system, and class MacButton contains “look-and-feel”
information on how to display a Button on the Macintosh operating system.

Two problems arise from this approach. First, if we create new Button subclasses,
we must create corresponding Win32Button and MacButton subclasses. For example,
if we create class ImageButton (a Button with an overlapping Image) that extends
class Button, we must create additional subclasses Win32ImageButton and Mac-
ImageButton. In fact, we must create Button subclasses for every operating system
we wish to support, which increases development time. The second problem is that when a
new operating system enters the market, we must create additional Button subclasses
specific to that operating system.

The Bridge design pattern avoids these problems by separating an abstraction (e.g., a
Button) and its implementations (e.g., Win32Button, MacButton, etc.) into separate
class hierarchies. For example, the Java AWT classes use the Bridge design pattern to
enable designers to create AWT Button subclasses without needing to create corre-
sponding subclasses specific to each operating system. Each AWT Button maintains a
reference to a ButtonPeer, which is the superclass for platform-specific implementa-
tions, such as Win32ButtonPeer, MacButtonPeer, etc. When a programmer creates
a Button object, class Button determines which platform-specific ButtonPeer
object to create and stores a reference to that But tonPeer object—this reference is the
“bridge” in the Bridge design pattern. When the programmer invokes methods on the
Button object, the Button object invokes the appropriate method on its ButtonPeer
object to fulfill the request. If a designer creates Button subclass ImageButton, the
designer does not need to create a corresponding Win32ImageButton or MacImage-
Button class. Class ImageButton “is a” Button, so when a programmer invokes an
ImageButton method—such as setImage—on an ImageButton object, the
Button superclass translates that method invocation into an appropriate ButtonPeer
method invocation—such as drawImage.

@ Designers often use the Bridge design pattern to enhance the platform independence of their
systems. We can design Button subclasses without worrying about how an operating sys-
tem implements each subclass.

Iterator

Designers use data structures such as arrays, linked lists and hash tables to organize data in
aprogram. The Iterator design pattern allows objects to access individual objects from data
structures without knowing that data structure’s implementation or how it stores object ref-
erences. Instructions for traversing the data structure and accessing its elements are stored
in a separate object called an iterator. Each data structure has an associated iterator imple-
mentation capable of traversing that data structure. Other objects can use this iterator,
which implements a standard interface, regardless of the underlying data structure or im-
plementation. Interface Tterator from package java.util uses the Iterator design
pattern. Consider a system that contains Sets, Vectors and Lists. The algorithm for re-
trieving data from each structure differs among the classes. With the Iterator design pattern,
each class contains a reference to an Iterator that stores traversal information specific
to each data structure. For objects of these classes, we invoke an object’s i terator meth-
od to obtain a reference to an Iterator for that object. We invoke method next of the

24 Infroduction Chapter 1

Iterator toreceive the next element in the structure without having to concern ourselves
with the details of traversal implementation.

Memento

Consider a drawing program that allows a user to draw graphics. Occasionally the user may
position a graphic improperly in the drawing area. The program can offer an “undo” feature
that allows the user to unwind such errors. Specifically, the program would restore the
drawing area’s original state (before the user placed the graphic). More sophisticated draw-
ing programs offer a history, which stores several states in a list, so the user can restore the
program to any state in the history.The Memento design pattern allows an object to save its
state, so that—if necessary—the user can restore the object to its former state.

The Memento design pattern requires three types of objects. The originator object
occupies some state—the set of attribute values at a specific time in program execution. In
our drawing-program example, the drawing area is the originator, because it occupies sev-
eral states. The drawing area’s initial state is that the area contains no elements. The
memento object stores a copy of all attributes associated with the originator’s state. The
memento is stored as the first item in the history list, which acts as the caretaker object—
the object that contains references to all memento objects associated with the originator.

Now, suppose the user draws a circle in the drawing area. The area now occupies a
different state—the area contains a circle object centered at specified x-y coordinates. The
drawing area then uses another memento to store this information. This memento is stored
as the second item in the history list. The history list displays all mementos on screen, so
the user can select which state to restore. Suppose the user wishes to remove the circle—if
the user selects the first memento from the list, the drawing area uses the first memento to
restore itself to a blank area.

Strategy
Package java.awt offers several LayoutManagers, such classes FlowLayout,
BorderLayout and GridLayout, with which developers build graphical user interfac-
es. Each LayoutManager arranges GUI components in a Container object—howev-
er, each LayoutManager implementation uses a different algorithm to arrange these
components. A FlowLayout arranges components in a left-to-right sequence, a Boxr-
derLayout places components into five distinct regions and a GridLayout arranges
components in row-column format. Interface LayoutManager plays the role of the straz-
egy in the Strategy design pattern.

The Strategy design pattern allows developers to encapsulate a set of algorithms—called
a strategy—that each have the same function (e.g., arrange GUI components) but different
implementations. For example, interface LayoutManager (the strategy) is the set of algo-
rithms that arranges GUI components. Each concrete LayoutManager subclass (e.g., the
FlowLayout, BorderLayout and GridLayout objects) implements method
addLayoutComponent to provide a specific component-arrangement algorithm.

1.5.3 Concurrency Patterns

Many additional design patterns have been created since the publication of the gang-of-four
book, which introduced patterns involving object-oriented systems. Some of these new pat-
terns involve specific types of object-oriented systems, such as concurrent, distributed or
parallel systems. Multithreaded programming languages such as Java allow designers to

Chapter 1 Infroduction 25

specify concurrent activities—that is, activities that operate in parallel with one another.
Improper design of concurrent systems can introduce concurrency problems. For example,
two objects attempting to alter shared data at the same time could corrupt that data. In ad-
dition, if two objects wait for one another to finish tasks, and if neither can complete their
task, these objects could potentially wait forever—a situation called deadlock. Using Java,
Doug Lea and Mark Grand created a set of concurrency patterns for multithreaded design
architectures to prevent various problems associated with multithreading. We provide a
partial list of these design patterns:

e The Single-Threaded Execution design pattern prevents several threads from in-
voking the same method of another object concurrently.3 In Java, developers can
use the synchronized keyword to apply this pattern.

* The Balking design pattern ensures that a method will balk—that is, return with-
out performing any actions—if an object occupies a state that cannot execute that
method.* A variation of this pattern is that the method throws an exception de-
scribing why that method is unable to execute—for example, a method throwing
an exception when accessing a data structure that does not exist.

* The Read/Write Lock design pattern allows multiple threads to obtain concurrent
read access on an object but prevents multiple threads from obtaining concurrent
write access on that object. Only one thread at a time may obtain write access on
an objecst—when that thread obtains write access, the object is locked to all other
threads.

e The Two-Phase Termination design pattern ensures that a thread frees resourc-
es—such as other spawned threads—in memory (phase one) before terminating
(phase two).% In Java, a Thread object can use this pattern in method run. For
instance, method run can contain an infinite loop that is terminated by some state
change—upon termination, method run can invoke a private method respon-
sible for stopping any other spawned threads (phase one). The thread then termi-
nates after method run terminates (phase two). In Chapter 13, the
ChatServerAdministrator and ChatServer classes of the RMI Deitel
Messenger application use this design pattern, which we describe in greater detail.

1.5.4 Architectural Patterns

Design patterns allow developers to design specific parts of systems, such as abstracting
object instantiations, aggregating classes into larger structures or assigning responsibilities
to objects. Architectural patterns, on the other hand, provide developers with proven strat-
egies for designing subsystems and specifying how they interact with each other.”

For example, the Model-View-Controller architectural pattern separates application
data (contained in the model) from graphical presentation components (the view) and input-
processing logic (the controller). In the design for a simple text editor, the user inputs text
from the keyboard and formats this text using the mouse. The program stores this text and
format information into a series of data structures, then displays this information on screen
for the user to read what has been inputted. The model, which contains the application data,
might contain only the characters that make up the document. When a user provides some
input, the controller modifies the model’s data with the given input. When the model

26 Infroduction Chapter 1

changes, it notifies the view of the change so the view can update its presentation with the
changed data—e.g., the view might display characters using a particular font, with a par-
ticular size. Chapter 3 discusses Model-View-Controller architecture in detail, and our Java
2D drawing application in Chapter 5 and the Enterprise Java case study in Chapters 17-20
use this architecture extensively.

The Layers architectural pattern divides functionality into separate sets of system
responsibilities called layers. For example, three-tier applications, in which each tier con-
tains a unique system component, is an example of the Layers architectural pattern. This
type of application contains three components that assume a unique responsibility. The
information tier (also called the “bottom tier”) maintains data for the application, typically
storing the data in a database. The client tier (also called the “top tier”) is the application’s
user interface, such as a standard Web browser. The middle tier acts as an intermediary
between the information tier and the client tier by processing client-tier requests, reading
data from and writing data to the database. In this book, the three-tier architectures in the
Deitel bookstore application (Chapter 11), the wireless application case study (Chapter 12)
and the Enterprise Java case study (Chapters 17-20) all use the Layers architectural pattern.
We discuss the nuances of each architecture in its respective chapter.

Using architectural patterns promotes extensibility when designing systems, because
designers can modify a component without having to modify another. For example, a text
editor that uses the Model-View-Controller architectural pattern is extensible; designers
can modify the view that displays the document outline but would not have to modify the
model, other views or controllers. A system designed with the Layers architectural pattern
is also extensible; designers can modify the information tier to accommodate a particular
database product, but they would not have to modify either the client tier or the middle tier
extensively.

1.5.5 Further Study on Design Patterns

We hope that you will pursue further study of design patterns. We recommend that you visit
the URLs and read the books we mention below as you study patterns throughout this book.
We especially encourage you to read the gang-of-four book.

Design Patterns

www.hillside.net/patterns
This page has links to information on design patterns and languages.

www.hillside.net/patterns/books/
This site lists books on design patterns.

www.netobjectives.com/design.htm
This site overviews design patterns and motivates their importance.

umbc7 .umbc.edu/~tarr/dp/dp.html
This site links to design patterns Web sites, tutorials and papers.

www.links2go.com/topic/Design_Patterns
This site links to sites and information on design patterns.

www.c2.com/ppr/
This site discusses recent advances in design patterns and ideas for future projects.

Chapter 1 Infroduction 27

Design Patterns in Java

www.research.umbc.edu/~tarr/cs491/£all00/cs491.html
This site is for a Java design patterns course at the University of Maryland. It contains numerous ex-
amples of how to apply design patterns in Java.

www.enteract.com/~bradapp/javapats.html
This site discusses Java design patterns and presents design patterns in distributed computing.

www.meurrens.org/ip-Links/java/designPatterns/
This site displays numerous links to resources and information on Java design patterns.

Architectural Patterns

compsci.about.com/science/compsci/library/weekly/aa030600a.htm
This site provides an overview the Model-View-Controller architecture.

www.Jjavaworld.com/javaworld/jw-04-1998/jw-04-howto.html
This site contains an article discussing how Swing components use Model-View-Controller architec-
ture.

www.ootips.org/mvc-pattern.html
This site provides information and tips on using MVC.

www.ftech.co.uk/~honeyg/articles/pda.htm
This site includes an article on the importance of architectural patterns in software.

www.tml.hut.fi/Opinnot/Tik-109.450/1998/niska/s1d001.htm
This site provides information about architectural patterns, design patterns and idioms (patterns tar-
geting a specific language).

WORKS CITED
1. E. Gamma, et al, Design Patterns; Elements of Reusable Object-Oriented Software (Boston,
MA: Addison-Wesley, 1995) 1-31.

2. J. Vlissides, Pattern Hatching; Design Patterns Applied (Boston, MA: Addison-Wesley, 1998)
146.

3. M. Grand, Patterns in Java; A Catalog of Reusable Design Patterns Illustrated with UML (New
Yor, NY: John Wiley and Sons, 1998) 399-407.

4. M. Grand, 417-420.
5. M. Grand, 431-439.
6. M. Grand, 449-453.
7. R. Hartman. “Building on Patterns.” Application Development Trends May 2001: 19-26.

BIBLIOGRAPHY

Carey, J., B. Carlson and T. Graser. San Francisco™ Design Patterns: Blueprint for Building Soft-
ware. Boston, MA: Addison-Wesley, 2000.

Coad, P., M. Mayfield and Jon Kern. Java Design; Building Better Apps and Applets, Second Edi-
tion. Englewood Cliffs, NJ: Yourdon Press, 1999.

Cooper, J. Java Design Patterns; A Tutorial. Boston, MA: Addition-Wesley, 2000.

Lea, D., Concurrent Programing in Java, Second Edition: Design Principles and Patterns. Boston,
MA: Addison-Wesley, 1999.

28 Infroduction Chapter 1

Gamma, R., R. Helm, R. Johnson and J. Vlissides. Design Patterns; Elements of Reusable Object-
Oriented Software. Boston, MA: Addison-Wesley, 1995.

Vlissides, J. “Composite a la Java, Part 1.” Java Report, 6: no. 6 (2001): 69-70, 72.

Vlissides, J. “Pattern Hatching; GoF a la Java.” Java Report Online (March 2001) <www . javare-
port.com/html/from_pages/article.asp?id=355>.

Advanced Swing
Graphical User Interface
Components

Objectives

* To be able to use Swing components to enhance I i
A i f
application GUISs. / aua™ °2

* To be able to use Swing text components to view
styled documents.

* To understand the Command design pattern and its
implementation in Swing.

* To be able to develop applications with multiple-
document interfaces.

* To understand how to implement drag-and-drop
support.

* To learn how to prepare internationalized
applications.

* To understand how to use Swing to create accessible
applications for people with disabilities.

The best investment is in the tools of one’s own trade.
Benjamin Franklin

Every action must be due to one or other of seven causes:
chance, nature, compulsion, habit, reasoning, anger or
appetite.

Aristotle

Happiness, like an old friend, is inclined to drop in
unexpectedly—when you are working hard on something else.
Ray Inman

30 Advanced Swing Graphical User Interfface Components Chapter 2

Outline

2.1 Introduction

22 webBrowser Using JEditorPane and JToolBar
2.2.1 Swing Text Components and HTML Rendering
222 Swing Toolbars

23 Swing Actions

24 JSplitPane and JTabbedPane

2.5 Multiple-Document Interfaces

2.6 Drag and Drop

2.7 Internationalization

2.8 Accessibility

2.9 Internet and World Wide Web Resources

Summary ¢ Terminology ¢ Self-Review Exercises ® Answers to Self-Review Exercises * Exercises

2.1 Introduction

In this chapter, we introduce Swing components that enable developers to build function-
ally rich user interfaces. The Swing graphical user interface components were introduced
with the Java Foundation Classes (JFC) as a downloadable extension to the Java 1.1 Plat-
form, then became a standard extension in the Java 2 Platform. Swing provides a more
complete set of GUI components than the Abstract Windowing Toolkit (AWT), including
advanced features such as a pluggable look and feel, lightweight component rendering and
drag-and-drop capabilities.

We introduce the JEditorPane class for rendering styled content, such as HTML
pages, and build a simple Web browser. We continue our discussion of design patterns by
introducing Swing Actions, which implement the Command design pattern. Swing
Actions enable developers to build reusable, user-interface logic components. We also
introduce JSplitPane, JTabbedPane and multiple-document-interface components
for organizing GUI elements.

Java provides mechanisms for building applications for multiple languages and coun-
tries, and for disabled users. Building internationalized applications ensures that applica-
tions will be ready for use around the world in many languages and countries. Accessibility
ensures that disabled users will be able to use applications through commonly available
utilities, such as screen readers. We show how Swing components enable Java developers
to build applications that are accessible to users with disabilities.

2.2 WebBrowser Using JEditorPane and JToolBar

In this section, we use Swing components to build a simple Web browser. We introduce
Swing’s advanced text-rendering capabilities and containers for grouping commonly used
interface elements for convenient user access.

Chapter 2 Advanced Swing Graphical User Interfface Components 31

2.2.1 Swing Text Components and HTML Rendering

Many applications present text to the user for viewing and editing. This text may consist of
plain, unformatted characters, or it may consist of richly styled characters that use multiple
fonts and extensive formatting. Swing provides three basic types of text components for
presenting and editing text. Class JTextComponent is the base class for all Swing text
components, including JTextField, JTextArea and JEditorPane.

JTextField is a single-line text component suitable for obtaining simple user input
or displaying information such as form field values, calculation results and so on. JPass-
wordField is a subclass of JTextField suitable for obtaining user passwords. These
components do not perform any special text styling. Rather, they present all text in a single
font and color. JTextArea, like JTextField and JPasswordField, also does not
style its text. However, JTextArea does provide a larger visible area and supports larger
plain-text documents.

JEditorPane provides enhanced text-rendering capabilities. JEditorPane sup-
ports styled documents that include formatting, font and color information. JEditor-
Pane is capable of rendering HTML documents as well as Rich Text Format (RTF)
documents. We use class JEditorPane to render HTML pages for a simple Web-
browser application. JTextPane is a JEditorPane subclass that renders only styled
documents, and not plain text. JTextPane provides developers with fine-grained control
over the style of each character and paragraph in the rendered document.

WebBrowserPane (Fig.2.1) extends class JEditorPane to create a Web-
browsing component that maintains a history of visited URLs. Line 16 creates a List for
keeping track of visited URLs. Line 23 invokes method setEditable of class JEAi-
torPane to disable text editing in the WebBrowserPane. JEditorPane enables
hyperlinks in HTML documents only if the JEditorPane is not editable.

1

2

3

4 package com.deitel.advjhtpl.gui.webbrowser;
5

6

7 import java.util.*;

8 import java.net.*;

9 import java.io.*;
10

12 import javax.swing.*;
14 public class WebBrowserPane extends JEditorPane {

16 private List history = new ArrayList();
17 private int historyIndex;

Fig. 2.1 WebBrowserPane subclass of JEditorPane for viewing Web sites
and maintaining URL history (part 1 of 3).

32

Advanced Swing Graphical User Interfface Components

Chapter 2

public WebBrowserPane ()
{

setEditable(false);

public void goToURL(URL url)
{
displayPage(url);
history.add(url);
historyIndex = history.size() - 1;

public URL forward()

{
historyIndex++;

if (historyIndex >= history.size())
historyIndex = history.size() - 1;

URL url = (URL) history.get(historyIndex);

displayPage(url);

return url;

public URL back()

{
historyIndex--;

if (historyIndex <)
historyIndex = 0;

URL url = (URL) history.get(historyIndex);

displayPage(url);

return url;

private void displayPage(URL pageURL)
{

WebBrowserPane subclass of JEditorPane for viewing Web sites

and maintaining URL history (part 2 of 3).

Chapter 2 Advanced Swing Graphical User Interfface Components 33

69 try {

70 setPage(pageURL) ;

71 }

74 catch (IOException ioException) {
75 ioException.printStackTrace();
76 }

77 }

78 3}

Fig. 2.1 WebBrowserPane subclass of JEditorPane for viewing Web sites

and maintaining URL history (part 3 of 3).

Method goToURL (lines 27-32) navigates the WebBrowserPane to the given URL.
Line 29 invokes method displayPage of class WebBrowserPane to display the given
URL. Line 30 invokes method add of interface List to add the URL to the browser his-
tory. Line 31 updates the historyIndex to ensure that methods back and forward
navigate to the appropriate URL.

Method forward (lines 35-47) navigates the WebBrowserPane to the next page
in the URL history. Line 37 increments historyIndex, and lines 43—44 retrieve the
URL from the history List and display the URL in WebBrowserPane. If the his-
toryIndex is past the last page in the history, line 41 sets historyIndex to the
last URL in history.

Method back (lines 50-63) navigates WebBrowserPane to the previous page in the
URL history. Line 52 decrements historyIndex, and lines 55-56 ensure that histo-
ryIndex does not fall below 0. Lines 59-60 retrieve the URL and display it in the Web-
BrowserPane.

Method displayPage takes as an argument a URL to display in the WebBrowser-
Pane. Line 70 invokes method setPage of class JEditorPane to display the page that
the URL references. Lines 74—76 catch an IOException if there is an error loading the
page from the given URL.

2.2.2 Swing Toolbars

Toolbars are GUI containers typically located below an application’s menus. Toolbars con-
tain buttons and other GUI components for commonly used features, such as cut, copy and
paste, or navigation buttons for a Web browser. Figure 2.2 shows toolbars in Internet Ex-
plorer and Mozilla.

Class javax. swing.JdToolBar enables developers to add toolbars to Swing user
interfaces. JToolBar also enables users to modify the appearance of the JToolBar in a
running application. For example, the user can drag the JToolBar from the top of a
window and "dock" the JToolBar on the side or bottom of the window. Users also can
drag the JToolBar away from the application window (Fig. 2.4) to create a floating
JToolBar (i.e., a JToolBar displayed in its own window). Developers can set
JToolBar properties that enable or disable dragging and floating.

34 Advanced Swing Graphical User Interfface Components Chapter 2

3 Deitel & Associates, Inc. - Microsoft Internet Explorer |0 il
Toolbar J File Edit View Favorites Tools Help |
|e-» EdaaPFB- 860 -Hwi
JAddress I@ htkp: ffwe, deitel, comy bﬁ \\ j
|Histary |

Iava™, C, C++, Wisual Basic®, Object Technology, &
—-—— w3 On-Site Seminars Delivered Warldwide (Cantact Us For on-si

deitel@deitel.com
978.579.9911

4908 Boston Post Road, Suite 200, Sudby Ma 01776 Too'bor
& . - oston Post Road, Suite , Sudbury,
Associares Inc. buttons
Wigit us at booth #1423
at JavaOne . .
Full-time and Summer-Internship Jc
Moscone Center, San Francisco
JavaOne™ Conference Available Immediately for Computer Scieny
June 4-8, 2001 Technology Graduates and Students at out
Corparate Training Curriculurm =
4) | b
|&] [o mkemnet 4

Deitel & Associates, Inc. - Mozilla {Build ID: 2001050515} 23 =10 il
Ele Edit Wew Search Go Bookmarks Tasks Help Debug oA ./ ./
L4 14

¢ ¢ Jawa™, C, C++, Visual Easit®J Object Technology, and Internet and Warld Wide
On-Site Seminars Delivered Warldwide {Contact Us For on-site seminats on any pro|

deitelf@deicel. com
978,579.9911

& AsSOCIATES INC. 4908 Boston Post Road, Suite 200, Sudbury, MA 01776

Wisit us at booth #1423

at Javatne ~ .
Full-time and Summer-Internship Jo
Moscone Center, San Francisco
I'::g':;_;"gg;‘i Available Immediately for Computer Scienc
' Technology Graduates and Students at our q
Corparate Training Curriculum
Naital iates Tne kb -zl hick

Fig. 2.2 Toolbars for navigating the Web in Internet Explorer and Mozilla.

WebToolBar (Fig. 2.3) extends class JToolBar to provide commonly used navi-
gation components for a WebBrowserPane. WebToolBar provides backButton
(line 20) for navigating to the previous page, forwardButton (line 21) for navigating to
the next page and urlTextField to allow the user to enter a URL (line 22).

The WebToolBar constructor (lines 25-96) takes as an argument a WebBrowser-
Pane for displaying Web pages. Lines 34—53 create urlTextField and its associated
ActionListener. When a user types a URL and hits the Enter key, line 44 invokes
method goToURL of class WebBrowserPane to display the user-entered URL.

Lines 56-57 create backButton, which allows the user to navigate to the previously
viewed Web site. Recall that class WebBrowserPane maintains a history of visited
URLSs. When the user selects backButton, line 65 invokes method back of class Web-

Chapter 2 Advanced Swing Graphical User Interfface Components 35

BrowserPane to navigate to the previous URL. Method back returns the destination
URL, which line 68 displays in urlTextField. This ensures that urlTextField
shows the proper URL for the Web site displayed in the WebBrowserPane.

Lines 74-75 create forwardButton, which allows the user to navigate forward
through the WebBrowserPane’s history of visited URLs. When the user activates
forwardButton, line 83 invokes method forward of class WebBrowserPane to
navigate to the next URL in the WebBrowserPane’s URL history. Line 86 displays the
URL in urlTextField.

package com.deitel.advjhtpl.gui.webbrowser;

import java.awt.*;
import java.awt.event.*;
10 import java.net.*;

NVONOCGTAWN—

13 import javax.swing.*;
14 import javax.swing.event.*;

15

16 public class WebToolBar extends JToolBar
17 implements HyperlinkListener {

18

19 private WebBrowserPane webBrowserPane;
20 private JButton backButton;

21 private JButton forwardButton;

22 private JTextField urlTextField;

23

24

25 public WebToolBar(WebBrowserPane browser)
26 {

27 super("Web Navigation");

28

29

30 webBrowserPane = browser;

31 webBrowserPane.addHyperlinkListener(this);
32

33

34 urlTextField = new JTextField():
35 urlTextField.addActionListener (

36 new ActionListener() {

37

Fig. 2.3 WebToolBar JToolBar subclass for navigating URLs in a
WebBrowserPane (part 1 of 3).

36

Advanced Swing Graphical User Interfface Components Chapter 2

public void actionPerformed(ActionEvent event)
{

try {
URL url = new URL(urlTextField.getText()):
webBrowserPane.goToURL(url);

catch (MalformedURLException urlException) {
urlException.printStackTrace() ;

backButton = new JButton(new ImageIcon(
getClass () .getResource ()))

backButton.addActionListener (
new ActionListener() {

public void actionPerformed(ActionEvent event)

{

URL url = webBrowserPane.back();

urlTextField.setText(url.toString()):;

forwardButton = new JButton(new ImageIcon (
getClass () .getResource ()))

forwardButton.addActionListener (
new ActionListener() {

public void actionPerformed(ActionEvent event)

{

URL url = webBrowserPane.forward():;

urlTextField.setText (url.toString()):

WebToolBar JToolBar subclass for navigating URLs in a
WebBrowserPane (part 2 of 3).

Chapter 2 Advanced Swing Graphical User Interfface Components 37

92 add(backButton);

93 add(forwardButton);

94 add(urlTextField);

96 }

99 public void hyperlinkUpdate(HyperlinkEvent event)
100 {

102 if (event.getEventType() ==

103 HyperlinkEvent .EventType.ACTIVATED) {
106 URL url = event.getURL();

109 webBrowserPane.goToURL(url);

110 urlTextField.setText (url.toString());
111 }

112 }

113 3}

Fig. 23 WebToolBar JToolBar subclass for navigating URLs in

WebBrowserPane (part 3 of 3).

Based on class JToolBar’s inheritance hierarchy, each JToolBar also is a
java.awt.Container and therefore can contain other GUI components. Lines 92-94
add backButton, forwardButton and urlTextField to the WebToolBar by
invoking method add of class JToolBar. A JToolBar has property orientation
that specifies how the JToolBar will arrange its child components. The default is hori-
zontal orientation, so the JToolBar lays out these components next to one another, left to
right.

Class WebBrowserPane renders HTML pages, which may contain hyperlinks to
other Web pages. When a user activates a hyperlink in a WebBrowserPane (e.g., by
clicking on the hyperlink), the WebBrowserPane issues a HyperlinkEvent of type
HyperlinkEvent .EventType.ACTIVATED. Class WebToolBar implements
interface HyperlinkListener to listen for HyperlinkEvents. There are several
HyperlinkEvent types. Method hyperlinkUpdate (lines 99—112) invokes method
getEventType of class HyperlinkEvent to check the event type (lines 102—-103)
and retrieves the HyperlinkEvent’s URL (line 106). This is the URL of the user-
selected hyperlink. Line 109 invokes method goToURL of class WebBrowserPane to
navigate to the selected URL, and line 110 updates urlTextField to display the
selected URL.

38 Advanced Swing Graphical User Interfface Components Chapter 2

Class WebBrowser (Fig. 2.4) uses a WebBrowserPane and WebToolBar to
create a simple Web-browser application. Line 26 creates a WebBrowserPane, and line
27 creates a WebToolBar for this WebBrowserPane. Lines 31-33 add the Web-
BrowserPane and WebToolBar to the WebBrowser’s content pane.

1

2

3

4 package com.deitel.advjhtpl.gui.webbrowser;
5

6

7 import java.awt.*;

8 import java.awt.event.*;

9 import java.net.*;

10

12 import javax.swing.*;
13 import javax.swing.event.*;

14

15 public class WebBrowser extends JFrame {

16

17 private WebToolBar toolBar;

18 private WebBrowserPane browserPane;

19

20

21 public WebBrowser ()

22 {

23 super ():

24

25

26 browserPane = new WebBrowserPane();

27 toolBar = new WebToolBar(browserPane);
28

29

30 Container contentPane = getContentPane();
31 contentPane.add(toolBar, BorderLayout.);
32 contentPane.add(new JScrollPane(browserPane),
33 BorderLayout .CENTER) ;

34 }

35

36

37 public static void main(String argsl[])

38 {

39 WebBrowser browser = new WebBrowser();

40 browser.setDefaultCloseOperation ();
41 browser.setSize (o):

42 browser.setVisible(true);

43 }

4)

Fig. 24 WebBrowser application for browsing Web sites using
WebBrowserPane and WebToolBar (part 1 of 2).

Chapter 2 Advanced Swing Graphical User Interfface Components 39

FADeitel Web Browser 3 -0 x
=]

€

Copacsoms DEMEL 6 DETEL 85
Al i XML How to Program i

Books o)

Downloads A # Catalog Page More Info
FAQs * Sample Chapters (in Adobe Acrobat PDF fi

? ”hrtp:mwm.prenhall.com!deltel!

Multimedia Products
Visual C+#J++ Options : * Companion Website (' Tesxt Support IWat
What's Coming Soon
Value Added
Packages

#* Downloads
- Cloraing for Spring 2007 courses
* MMore CD information

Author - Coring Soon

INTFRNETR

ot i & Internet & World Wide Web How to [
] [

=0l x|

Eig%Deitel Web Browser

Prentice Hall

Computer Science

(2001
Books &3 web Navigation - =10l x|

Downloads » Gatal | @ ” % |ht‘t iiveaie prenhall ; ideitel] |
& X Lprenhall.comideitel
raQs ® Samp & P p

Multimedia Products) ;
* Cotnpardon Website (w/ Text Support Mat
Visual C++J++ Options
What's Coming Soon ® Downloads

Value Added _ -
Packages Coming for Sering 2007 courses

IMore CD information
- Cloring Soon
[Author
Meet the Authors VL i Internet & World Wide Web How to

Deitel Buzz

-

Author Home Page

[v]

Fig. 24 WebBrowser application for browsing Web sites using
WebBrowserPane and WebToolBar (part 2 of 2).

2.3 Swing Actions

Applications often provide users with several different ways to perform a given task. For
example, in a word processor there might be an Edit menu with menu items for cutting,
copying and pasting text. There also might be a toolbar that has buttons for cutting, copying
and pasting text. There also might be a pop-up menu to allow users to right click on a doc-
ument to cut, copy or paste text. The functionality the application provides is the same in
each case—the developer provides the various interface components for the user’s conve-
nience. However, the same GUI component instance (e.g., a JButton for cutting text)

40 Advanced Swing Graphical User Interfface Components Chapter 2

cannot be used for menus and toolbars and pop-up menus, so the developer must code the
same functionality three times. If there were many such interface items, repeating this func-
tionality would become tedious and error-prone.

The Command design pattern solves this problem by enabling developers to define the
functionality (e.g., copying text) once in a reusable object that the developer then can add
to a menu, toolbar or pop-up menu. This design pattern is called Command because it
defines a user command or instruction. The Act ion interface defines required methods for
the Java Swing implementation of the Command design pattern.

An Action represents user-interface logic and properties for GUI components that
represent that logic, such as the label for a button, the text for a tool tip and the mnemonic
key for keyboard access. The logic takes the form of an actionPerformed method that
the event mechanism invokes in response to the user activating an interface component
(e.g., the user clicking a JButton). Interface Action extends interface ActionLis-
tener, which enables Actions to process ActionEvents generated by GUI compo-
nents. Once a developer defines an Action, the developer can add that Action to a
JMenu or JToolBar, just as if the Action were a JMenuItem or JButton. For
example, when a developer adds an Action to a JMenu, the JMenu creates a JMenu-
Item for the Action and uses the Action properties to configure the JMenuItem.

Actions provide an additional benefit in that the developer can enable or disable all
GUI components associated with an Action by enabling or disabling the Action itself.
For example, copying text from a document first requires that the user select the text to be
copied. If there is no selected text, the program should not allow the user to perform a copy
operation. If the application used a separate JMenuItem in a JMenu and JButton in a
JToolBar for copying text, the developer would need to disable each of these GUI com-
ponents individually. Using Actions, the developer could disable the Action for
copying text, which also would disable all associated GUI components.

ActionSample (Fig.2.5) demonstrates two Actiomns. Lines 15-16 declare
Action references sampleAction and exitAction.

package com.deitel.advjhtpl.gui.actions;

import java.awt.*;
import java.awt.event.*;

NVONOCOTRARWN=—

10 import javax.swing.*;

12 public class ActionSample extends JFrame {

13

14

15 private Action sampleAction;
16 private Action exitAction;
17

Fig. 25 ActionSample application demonstrating the Command design
patftern with Swing Actions (part 1 of 4).

Chapter 2 Advanced Swing Graphical User Interfface Components

41

public ActionSample()
{

super () ;

sampleAction = new AbstractAction() {

public void actionPerformed(ActionEvent event)

{

JOptionPane.showMessageDialog(ActionSample.this,
)i

exitAction.setEnabled(true);
}
};

sampleAction.putValue(Action. o):

sampleAction.putValue(Action. , new ImageIcon(
getClass () .getResource ()))i

sampleAction.putValue(Action. ,
)i

sampleAction.putValue(Action. p
new Integer())i

exitAction = new AbstractAction() {

public void actionPerformed(ActionEvent event)
{

JOptionPane.showMessageDialog(ActionSample.this,
);
System.exit ();:
}
};

exitAction.putValue(Action. 0):

exitAction.putValue(Action. , new ImageIcon (
getClass () .getResource ()))

ActionSample application demonstrating the Command design
pattern with Swing Actions (part 2 of 4).

42 Advanced Swing Graphical User Interfface Components Chapter 2

70

71

72 exitAction.putvalue(Action. o
73)i

74

75

76 exitAction.putvalue(Action. ,
77 new Integer()):

78

79

80 exitAction.setEnabled(false);

81

82

83 JMenu fileMenu = new JMenu();
84

85

86

87 fileMenu.add(sampleAction);

88 fileMenu.add(exitAction);

89

90 fileMenu.setMnemonic ()

91

92

93 JMenuBar menuBar = new JMenuBar();

94 menuBar.add(fileMenu);

95 setJMenuBar (menuBar) ;

96

97

98 JToolBar toolBar = new JToolBar();

99

100

101

102 toolBar.add(sampleAction);

103 toolBar.add(exitAction);

104

105

106 JButton sampleButton = new JButton();
107 sampleButton.setAction(sampleAction);
108

109

110 JButton exitButton = new JButton(exitAction);
111

112

113 JPanel buttonPanel = new JPanel();

114 buttonPanel.add(sampleButton);

115 buttonPanel.add(exitButton);

116

117

118 Container container = getContentPane();
119 container.add(toolBar, BorderLayout.);
120 container.add(buttonPanel, BorderLayout.) ;
121 }

Fig. 25 ActionSample application demonstrating the Command design
patftern with Swing Actions (part 3 of 4).

Chapter 2 Advanced Swing Graphical User Interfface Components 43

122

123

124 public static void main(String args[])

125 {

126 ActionSample sample = new ActionSample():;

127 sample.setDefaultCloseOperation ();
128 sample.pack() ;

129 sample.setVisible(true);

130 }

131 3

[using Actions 10l x| [EiMessage x| [using Actions 10l x|

File

He

Sample Action

ﬁ_ The samplefction was imvoked

1.8

Sample Action

[J

‘ @ et ‘

[EEE [5

File |

Sample Action i

e LY

x|

The exitAction was invoked

Fig. 2.5 ActionSample application demonstrating the Command design
pattern with Swing Actions (part 4 of 4).

Lines 24-35 create an anonymous inner class that extends class AbstractAction
and assigns the instance to reference sampleAction. Class AbstractAction facili-
tates creating Act ion objects. Class AbstractAction implements interface Action,
but is marked abstract because class AbstractAction does not provide an imple-
mentation for method actionPerformed. Lines 26-34 implement method action-
Performed. The Swing event mechanism invokes method actionPerformed when
the user activates a GUI component associated with sampleAction. We show how to
create these GUI components shortly. Lines 29-30 in method actionPerformed dis-
play a JOoptionPane message dialog to inform the user that sampleAction was
invoked. Line 33 then invokes method setEnabled of interface Action on the exi-
tAction reference. This enables the exitAction and its associated GUI components.
Note that Actions are enabled by default. We disabled the exitAction (line 80) to
demonstrate that this disables the GUI components associated with that Action.

After instantiating an AbstractAction subclass to create sampleAction, lines
38-50 repeatedly invoke method putValue of interface Action to configure sam-
pleAction properties. Each property has a key and a value. Interface Action defines
the keys as public constants, which we list in Fig. 2.6. GUI components associated with
sampleAction use the property values we assign for GUI component labels, icons, tool-
tips and so on. Line 38 invokes method putvalue of interface Action with arguments
Action.NAME and "Sample Action". This assigns sampleAction’s name, which
GUI components use as their label. Lines 41-42 invoke method putValue of interface
Action with key Action.SMALL_ICON and an ImageIcon value, which GUI com-
ponents use as their Icon. Lines 45-46 set the Action’s tool tip using key

44 Advanced Swing Graphical User Interfface Components Chapter 2

Action.SHORT_DESCRIPTION. Lines 49-50 set the Action’s mnemonic key using
key Action.MNEMONIC_KEY. When the Action is placed in a JMenu, the mnemonic
key provides keyboard access to the Action. Lines 53-80 create the exitActionina
similar way to sampleAction, with an appropriate name, icon, description and mne-
monic key. Line 80 invokes method setEnabled of interface Action with argument
false to disable the exitAction. We use this to demonstrate that disabling an
Action also disables the Action’s associated GUI components.

Line 83 creates the £ileMenu JMenu, which contains JMenuItems corresponding
to sampleAction and exitAction. Class JMenu overloads method add with a ver-
sion that takes an Action argument. This overloaded add method returns a reference to
the JMenuItem that it creates. Lines 87—88 invoke method add of class JMenu to add
sampleAction and exitAction to the menu. We have no need for the JMenuItem
references that method add returns, so we ignore them. Line 90 sets the £ileMenu mne-
monic key, and lines 93-95 add the £ileMenu to a JMenuBar and invoke method set-
JMenuBar of class JFrame to add the JMenuBar to the application.

Line 98 creates a new JToolBar. Like JMenu, JToolBar also provides overloaded
method add for adding Actions to JToolBars. Method add of class JToolBar
returns a reference to the JButton created for the given Action. Lines 102—103 invoke
method add of class JToolBar to add the sampleAction and exitAction to the
JToolBar. We have no need for the JButton references that method add returns, so
we ignore them.

Class JButton provides method setAction for configuring a JButton with
properties of an Action. Line 106 creates JButton sampleButton. Line 107 invokes
method setAction of class JButton with a sampleAction argument to configure
sampleButton. Line 110 demonstrates an alternative way to configure a JBut ton with
properties from an Action. The JButton constructor is overloaded to accept an
Action argument. The constructor configures the JButton using properties from the
given Action.

According to the Java 2 SDK documentation, it is preferable to create JButtons and
JMenuItems, invoke method setAction then add the JButton or JMenuItem (o its
container, rather than adding the Action to the container directly. This is because most
GUI-building tools do not support adding Actions to containers directly.

Lines 113-120 add the newly created JButtons to a JPanel and lay out the
JToolBar and JPanel in the JFrame’s content pane. Note that in the first screen capture
of Fig. 2.5, the JButtons for exitAction appear grayed-out. This is because the exi-
tActionisdisabled. After invoking the sampleAction, the exitActionis enabled
and appears in full color. Note also the tool tips, icons and labels on each GUI component.
Each of these items was configured using properties of the respective Action object.

Figure 2.6 summarizes Action properties. Each property name is a static constant
in interface Action and acts as a key for setting or retrieving the property value.

In the following sections we demonstrate two alternative ways to create Swing
Action instances. The first uses named inner classes. The second defines a generic
AbstractAction subclass that provides a constructor for commonly used properties
and set methods for each individual Action property.

Chapter 2 Advanced Swing Graphical User Interfface Components 45

Name Description

Name to be used for GUI-component labels.
Descriptive text for use in tooltips.
Icon for displaying in GUI-component labels.

Mnemonic key for keyboard access (e.g., for accessing menus and
menu items using the keyboard).

Accelerator key for keyboard access (e.g., using the Ctrl key).
Key for retrieving command string to be used in Act ionEvents.

Descriptive text, e.g., for application help.

Fig. 2.6 Actionclass static keys for Action properties.

2.4 JSplitPane and JTabbedPane

JSplitPane and JTabbedPane are container components that enable developers to
present large amounts of information in a small screen area. JSplitPane accomplishes this
by dividing two components with a divider users can reposition to expand and contract the
visible areas of the JSplitPane’s child components (Fig. 2.7). JTabbedPane uses a file-
folder-style tab interface to arrange many components through which the user can browse.

[File[]
2 New]
"3 Open...

JSplitPanes can contain only two child components. However, each child component
may contain nested components.

FavoritesWebBrowser (Fig. 2.7) is an application that uses a JSplitPane to
show two WebBrowserPane components side-by-side in a single application window.
On the left side, the JSplitPane contains a WebBrowserPane that displays a static
HTML page containing links to the user’s favorite Web sites. Activating the links in this
favorites page displays the URL contents in the WebBrowserPane on the right side of
the JSplitPane. This is a common user interface arrangement in Web browsers, such as
Internet Explorer and Netscape Navigator.

package com.deitel.advjhtpl.gui.splitpane;

import java.awt.*;
import java.awt.event.*;
import java.net.*;

—ONVONOCGAWN=—

——

Fig. 2.7 FavoritesWebBrowser application for displaying two Web pages
side-by-side using JSplitPane (part 1 of 3).

46 Advanced Swing Graphical User Interfface Components Chapter 2
12
13 import javax.swing.*;
14 import javax.swing.event.*;
15
16
17 import com.deitel.advijhtpl.gui.webbrowser.*;
18
19 public class FavoritesWebBrowser extends JFrame {
20
21 private WebToolBar toolBar;
22 private WebBrowserPane browserPane;
23 private WebBrowserPane favoritesBrowserPane;
24
25
26 public FavoritesWebBrowser ()
27 {
28 super ():
29
30
31 browserPane = new WebBrowserPane() ;
32 toolBar = new WebToolBar(browserPane);
33
34
35 favoritesBrowserPane = new WebBrowserPane();
36
37
38
39 favoritesBrowserPane.addHyperlinkListener(toolBar);
40
41
42 favoritesBrowserPane.goToURL (
43 getClass () .getResource ())
44
45
46
47 JSplitPane splitPane = new JSplitPane (
48 JSplitPane. ,
49 new JScrollPane(favoritesBrowserPane),
50 new JScrollPane(browserPane));
51
52
53 splitPane.setDividerLocation ();
54
55
56 splitPane.setOneTouchExpandable(true);
57
58
59 Container contentPane = getContentPane();
60 contentPane.add(toolBar, BorderLayout.):
61 contentPane.add(splitPane, BorderLayout.);
62 }
63

Fig. 2.7 FavoritesWebBrowser application for displaying two Web pages

side-by-side using JSplitPane (part 2 of 3).

Chapter 2 Advanced Swing Graphical User Interfface Components 47

64

65 public static void main(String argsl[])

66 {

67 FavoritesWebBrowser browser = new FavoritesWebBrowser() ;
68 browser.setDefaultCloseOperation ():

69 browser.setSize(’)

70 browser.setVisible(true);

71 }

72)

[Deitel Web Browser

ol

Favorite Sites Prentice Hall
Computer Science
® java sun. com
® developer java sun.com —_—
. Mln—: - [
Products
® Deitel at Pi:%nceHan frooees
* Google Books

Downloads

FAQs

Multimedia Products
Visual C++/J++ Options
What's Coming Soon

Value Added
Packages

[Author
Meet the Authors
Deitel Buzz

% Hhﬂp:fﬂ\wtvv.prenha\l cormideitel

[Deitel web Browser

<€

Prentice Hall
Computer Science

Books

Downloads

FAQs

ADVANCED JAVA
oW 0P

Multimedia Products
Visual C++J++ Options.
What's Coming Soon

Value Added
Packages

[Author

Meet the Authors

Deitel Buzz

Fig. 2.7 FavoritesWebBrowser application for displaying fwo Web pages
side-by-side using JSplitPane (part 3 of 3).

Lines 31-32 create a WebBrowserPane for displaying Web pages and a Web-
ToolBar for navigating this WebBrowserPane. Line 35 creates an additional Web-
Browser pane called favoritesBrowserPane, which the application will use to dis-
play favorites.html. This HTML document contains hyperlinks to some favorite
Web sites. Line 39 invokes method addHyperlinkListener of class WebBrowser-

48 Advanced Swing Graphical User Interfface Components Chapter 2

Pane to register the toolBar as a HyperlinkListener for favorites-
BrowserPane. When a user activates a link in favoritesBrowserPane, toolBar
will receive the HyperlinkEvent and display the activated URL in browserPane.
This way the user can activate links in favoritesBrowserPane and display those
links in browserPane. Lines 42—43 invoke method goToURL of class WebBrowser-
Pane to load favorites.html in favoritesBrowserPane.

Lines 47-50 create a JSplitPane. This JSplitPane constructor takes as its first
argument an integer that indicates the JSplitPane orientation. The constant JSplit-
Pane.HORIZONTAL_SPLIT specifies the JSplitPane should display its child com-
ponents side-by-side. The constant JSplitPane.VERTICAL_ SPLIT would specify
that the JSplitPane should display its child components one on top of the other. The
second and third arguments to this JSplitPane constructor are the components to be
divided in the JSplitPane. In this case, we add favoritesBrowserPane to the left
side of the JSplitPane and browserPane to the right side of the JSplitPane. We
place each WebBrowserPane in a JScrollPane to allow the user to scroll if the con-
tent exceeds the visible area.

Line 53 invokes method setDividerLocation of class JSplitPane to set the
exact divider position between favoritesBrowserPane and browserPane. Line
56 invokes method setOneTouchExpandable of class JSplitPane to add two but-
tons to the divider that enable the user to expand or collapse the divider to one side or the
other with a single click. Note the arrows on the divider in Fig. 2.7.

Good Programming Practice 2.1

@ Place child components in JScrollPanes before adding the components to a JSplit-
Pane. This ensures that the user will be able to view all the content in each child component
by scrolling if necessary.

JTabbedPane presents multiple components in separate tabs, which the user can
navigate using a mouse or keyboard. Dialog boxes often use components similar to
JTabbedPanes. For example, Fig. 2.8 shows the Display Properties tabbed dialog in
Windows 2000.

[Display Properties 21|

Background ereen Saver | Appearance | Wb | Elfeclsl Semngs

Active Tab / - \ Other Tabs

- Sereen Saver

30 Flying Objects (OpenGL] Settings. Preview

I~ Password protected Wait 153: minutes

- Energy saving features of monitar
T adjust the power settings for your monitor,
click Power.

Poer.. |

0k || Cancdl | i |

Fig. 2.8 Tabbed interface of Display Properties dialog box in Windows 2000.

Chapter 2 Advanced Swing Graphical User Interfface Components 49

TabbedPaneWebBrowser (Fig.2.9) uses a JTabbedPane to enable users to
browse multiple Web pages at once in a single application window. The user invokes an
Action to add a new WebBrowserPane to the JTabbedPane. Each time the user
adds a new WebBrowserPane, the JTabbedPane creates a new tab and places the
WebBrowserPane in this new tab.

1

2

3

4 package com.deitel.advjhtpl.gui.tabbedpane;
5

6

7 import java.awt.*;

8 import java.awt.event.*;

9

10

11 import javax.swing.*;

12

13

14 import com.deitel.advjhtpl.gui.webbrowser.*;
15

16 public class TabbedPaneWebBrowser extends JFrame {

18

19 private JTabbedPane tabbedPane = new JTabbedPane();
20

21

22 public TabbedPaneWebBrowser ()

23 {

24 super () ;
25

26

27 createNewTab () ;

28

29

30 getContentPane() .add(tabbedPane) ;
31

32

33

34 JMenu fileMenu = new JMenu();
35 fileMenu.add(new NewTabAction());
36 fileMenu.addSeparator () ;

37 fileMenu.add(new ExitAction());
38 fileMenu.setMnemonic ();

39

40 JMenuBar menuBar = new JMenuBar();
41 menuBar.add(fileMenu);

42 setJMenuBar (menuBar) ;

43

44 }

45

Fig. 29 TabbedPaneWebBrowser application using JTabbedPane to
browse multiple Web sites concurrently (part 1 of 3).

50

Advanced Swing Graphical User Interfface Components Chapter 2

private void createNewTab ()
{

JPanel panel = new JPanel(new BorderLayout());

WebBrowserPane browserPane = new WebBrowserPane() ;
WebToolBar toolBar = new WebToolBar(browserPane) ;

panel.add(toolBar, BorderLayout.):
panel.add(new JScrollPane(browserPane),
BorderLayout.):

tabbedPane.addTab (+ tabbedPane.getTabCount (),
panel);

private class NewTabAction extends AbstractAction {

public NewTabAction()
{

putvValue(Action. y);:
putValue(Action. ,

)i
putvValue(Action. , new Integer ())

public void actionPerformed(ActionEvent event)
{

createNewTab () ;
}

private class ExitAction extends AbstractAction {

public ExitAction()
{

putValue(Action. o)i
putValue(Action. P
putvValue(Action. , new Integer ()):

TabbedPaneWebBrowser application using JTabbedPane to
browse multiple Web sites concurrently (part 2 of 3).

Chapter 2 Advanced Swing Graphical User Interfface Components 51

98

99 public void actionPerformed(ActionEvent event)
100 {

101 System.exit ():

102 }

103 }

104

105

106 public static void main(String args[])

107 {

108 TabbedPaneWebBrowser browser = new TabbedPaneWebBrowser() ;
109 browser.setDefaultCloseOperation ():
110 browser.setSize(r):

111 browser.setVisible(true);

112 }

113 3}

Fig. 2.9 TabbedPaneWebBrowser application using JTabbedPane to
browse multiple Web sites concurrently (part 3 of 3).

Line 19 creates a new JTabbedPane, to which the user will add WebBrowser-
Panes. Line 27 invokes method createNewTab of class TabbedPaneWebBrowser
to create the first WebBrowserPane and place it in the JTabbedPane. Line 30 adds the
JTabbedPane to the TabbedPaneWebBrowser’s content pane. Lines 34-42 create
the File menu, which contains an Act ion for creating new WebBrowserPanes (line 35)
and an Action for exiting the application (line 37). We discuss these actions in detail
momentarily.

Method createNewTab (lines 46—-64) creates a new WebBrowserPane and adds
it to the JTabbedPane. Line 50 creates a JPanel for laying out the WebBrowser-
Pane and its WebToolBar. Lines 53-59 create a WebBrowserPane and a Web-
ToolBar and add them to the JPanel. Lines 62-63 invoke method addTab of class
JTabbedPane to add the JPanel containing the WebBrowserPane and WebT-
oolBar to the application’s JTabbedPane. Method addTab of class JTabbedPane
takes as a String argument the title for the new tab and as a Component argument the
Component to display in the new tab. Although a developer may add any Component
instance to a JTabbedPane to create a new tab, developers most commonly lay out com-
ponents in a JPanel and add the JPanel to the JTabbedPane.

Figure 2.9 also demonstrates a second way to create Action instances. Lines 67-84
define inner class NewTabAction, which extends AbstractAction. The New-
TabAction constructor (lines 70-77) configures the Action by invoking method
putValue for the Action name, tool tip and mnemonic key. Lines 80-83 define method
actionPerformed and invoke method createNewTab (line 82) to create a new tab
in the JTabbedPane containing a WebBrowserPane and WebToolBar.

Lines 87-103 define inner class ExitAction, which also extends AbstractAc-
tion. The ExitAction constructor (lines 90-96) configures the Act ion name, tool tip
and mnemonic key by invoking method putvalue. Method act ionPer£formed (lines
99-102) invokes static method exit of class System to exit the application.

52 Advanced Swing Graphical User Interfface Components Chapter 2

2.5 Multiple-Document Interfaces

Most applications provide a single-document interface—users can view and edit only one
document at a time. For example, most Web browsers allow users to view only one Web
page. To view multiple Web pages, users must launch additional Web browsers. Multiple
document interfaces allow users to view multiple documents in a single application. Each
document appears in a separate window in the application. The user can arrange, resize,
iconify (i.e., minimize) and maximize these separate document windows like application
windows on the desktop. For example, a digital photograph-editing application could use a
multiple document interface to enable users to view and edit multiple photographs at once.
The user could place the photograph windows side-by-side to compare the photographs or
copy part of one photograph and paste it into the other.

Java Swing provides classes JDesktopPane and JInternalFrame for building
multiple-document interfaces. These class names reinforce the idea that each document is
a separate window (JInternalFrame) inside the application’s desktop (FJDesktop-
Pane), just as other applications are separate windows (e.g., JFrames) on the operating
system’s desktop. JInternalFrames behave much like JFrames. Users can maximize,
iconify, resize, open and close JInternalFrames. JInternalFrames have title bars
with buttons for iconifying, maximizing and closing. Users also can move JInternal-
Frames within the JDesktopPane.

MDIWebBrowser (Fig. 2.10) uses JInternalFrames and a JDesktopPane to
enable users to browse multiple Web sites within a single application window. Line 20 cre-
ates a JDesktopPane, which is a container for JInternalFrames. Line 32 adds the
JDesktopPane to the JFrame’s content pane. Lines 36—44 construct the application
menu. The File menu includes an Act ion for creating new browser windows (line 37) and
an Action for exiting the application (line 39).

1

2

3

4

5 package com.deitel.advjhtpl.gui.mdi;

6

7

8 import java.awt.*;

9 import java.awt.event.*;

10

11

12 import javax.swing.*;

13

14

15 import com.deitel.advijhtpl.gui.webbrowser.*;
16

17 public class MDIWebBrowser extends JFrame {
18

19
20 JDesktopPane desktopPane = new JDesktopPane();

Fig. 2.10 MDIWebBrowser application using JDesktopPane and JInter-
nalFrames to browse multiple Web sites concurrently (part 1 of 4).

Chapter 2 Advanced Swing Graphical User Interfface Components 53

21

22

23 public MDIWebBrowser ()

24 {

25 super ();

26

27

28 createNewWindow () ;

29

30

31 Container contentPane = getContentPane():;
32 contentPane.add(desktopPane);

33

34

35

36 JMenu fileMenu = new JMenu();

37 fileMenu.add(new NewWindowAction());

38 fileMenu.addSeparator() ;

39 fileMenu.add(new ExitAction());

40 fileMenu.setMnemonic ();

41

42 JMenuBar menuBar = new JMenuBar() ;

43 menuBar.add(fileMenu);

44 setJMenuBar (menuBar) ;

45 }

46

47

48 private void createNewWindow()

49 {

50

51

52 JInternalFrame frame = new JInternalFrame (
53 ’

54 true,

55 true,

56 true,

57 true);

58

59

60 WebBrowserPane browserPane = new WebBrowserPane() ;
61 WebToolBar toolBar = new WebToolBar(browserPane);
62

63

64 Container contentPane = frame.getContentPane() ;
65 contentPane.add(toolBar, BorderLayout.NORTH) ;
66 contentPane.add(new JScrollPane(browserPane),
67 BorderLayout.)i

68

69

70 frame.setSize(o);

71

Fig. 2.10 MDIWebBrowser application using JDesktopPane oand JInter-
nalFrames to browse multiple Web sites concurrently (part 2 of 4).

54 Advanced Swing Graphical User Interfface Components Chapter 2

73 int offset = * desktopPane.getAllFrames() .length;
74 frame.setLocation(offset, offset);

77 desktopPane.add(frame);

80 frame.setVisible(true);

84 private class NewWindowAction extends AbstractAction {

87 public NewWindowAction/()
88 {

90 putvValue(Action.NAME,);

91 putvValue(Action.SHORT_ DESCRIPTION,

92)

93 putValue(Action.MNEMONIC_KEY, new Integer ());

97 public void actionPerformed(ActionEvent event)
98 {
99 createNewWindow() ;

100 }

104 private class ExitAction extends AbstractAction {

107 public ExitAction()
108 {

110 putValue(Action.NAME,)
111 putValue(Action.SHORT DESCRIPTION,
112 putvValue(Action.MNEMONIC_ KEY, new Integer());

116 public void actionPerformed(ActionEvent event)
117 {

118 System.exit ()

119 }

Fig. 2.10 MDIWebBrowser application using JDesktopPane oand JInter-
nalFrames to browse multiple Web sites concurrently (part 3 of 4).

Chapter 2 Advanced Swing Graphical User Interfface Components 55

122
123 public static void main(String argsl[])
124 {
125 MDIWebBrowser browser = new MDIWebBrowser();
126 browser.setDefaultCloseOperation ():
127 browser.setSize(’);
128 browser.setVisible(true);
129 }
130 3}
Iconified JInternalFrame JInternalFrames Iconify
Maximize
E;i MDI Web Browser ;IEI
File Close
Browser
‘ @ || } “hﬁp Mo deitel.com/!
r [Browser
| & ” b3 ||rmp [hurwna prenhiall corn/deitels |
2 Ir Position
DE|‘|| Prentice Hall D-E"Il. g_ D-E”Il. the
& AssOcCiare Computer Science d mouse
over any
= - cormner of
Doows m a child
Books window
Downloads to resize
FAQs ADUNGED A the
M.II"ilﬂEdiﬂ FrnduAl:ts WindOW (if
Vil Gi-i e+ Oplions o J resizing is
JBromaee ‘] vl | allowed).
E,; MDI Web Browser
File
Blerowser (i o of E
| { ” p 3 ||m1p [hwwewr prenhall com/deitel |
Prentice Hall -E"Il. g -E”Il. B o
Computer Science s Maximized
JInternalFrame

Books

Downloads

FAQs ADVANCED Java
Multimedia Products —Hon IO PR

Visual C++J++ Options
What's Coming Soon

Value Added
Packages

|Author

Fig. 2.10 MDIWebBrowser application using JDesktopPane oand JInter-
nalFrames to browse multiple Web sites concurrently (part 4 of 4).

56 Advanced Swing Graphical User Interfface Components Chapter 2

Method createNewWindow (lines 48-81) creates a new JInternalFrame in
response to the user invoking NewWindowAction. Lines 52-57 create a new JInter-
nalFrame with the title "Browsexr". The four boolean arguments to the JInter-
nalFrame constructor specify that the JInternalFrame is resizable, closable,
maximizable and iconifiable. Lines 60—61 create a WebBrowserPane and WebToolBar
for displaying and navigating Web pages. Like a JFrame, a JInternalFrame has acon-
tent pane. Line 64 invokes method getContentPane to get the JInternalFrame’s
content pane, and lines 65—67 lay out the WebToolBar and WebBrowserPane in the
content pane. A JInternalFrame has zero size when first created, so line 70 invokes
method setSize of class JInternalFrame to size the JInternalFrame appropri-
ately. To prevent new JInternalFrames from obscuring other JInternalFrames in
the JDesktopPane, lines 73-74 invoke method setLocation of class JInternal-
Frame to position the new JInternalFrame at an offset from the previously created
JInternalFrame. Line 77 invokes method add of class JDesktopPane to add the
JInternalFrame to the display, and line 80 invokes method setVisible of class
JInternalFrame to make the JInternalFrame visible.

= JInternalFrames have no size and are invisible by default. When creating a new JIn-
= ternalFrame, be sure to invoke method setSize to size the JInternalFrame and
setVisible(true) to make the JInternalFrame visible.

Class MDIWebBrowser uses two Actions—NewWindowAction for creating
new Web browser windows and ExitAction for exiting the application. Lines 84-101
declare inner class NewWindowAct ion, which extends class AbstractAction. Lines
90-93 invoke method putVvalue of interface Action to configure NewWindowAc-
tion properties. Method actionPerformed (lines 97-100) invokes method creat-
eNewWindow to create a new Web browser window each time the user invokes
NewWindowAction. Class ExitAction (lines 104-120) also invokes method
putValue to configure the Action (lines 110-112) and implements method action-
Performed (lines 116—119) to exit the application (line 118) when invoked.

2.6 Drag and Drop

Drag and drop is a common way to manipulate data in a GUIL. Most GUIs emulate real-
world desktops, with icons that represent the objects on a virtual desk. Drag and drop en-
ables users to move items around the desktop and to move and copy data among applica-
tions using mouse gestures. A gesture is a mouse movement that corresponds to a drag-
and-drop operation, such as dragging a file from one folder and dropping the file into an-
other folder.

Two Java APIs enable drag-and-drop data transfer between applications. The data
transfer API—package java.awt.datatransfer—enables copying and moving
data within a single application or among multiple applications. The drag-and-drop API
enables Java applications to recognize drag-and-drop gestures and to respond to drag-and-
drop operations. A drag-and-drop operation uses the data transfer API to transfer data from
the drag source to the drop target. For example, a user could begin a drag gesture in a file-
manager application (the drag source) to drag a file from a folder and drop the file on a Java
application (the drop target). The Java application would use the drag-and-drop API to rec-

Chapter 2 Advanced Swing Graphical User Interfface Components 57

ognize that a drag-and-drop operation occurred and would use the data transfer API to
retrieve the data transferred through the drag-and-drop operation.

DnDWebBrowser (Fig. 2.11) is a Web-browsing application that also allows users to
drop a file onto the WebBrowserPane to view the file contents. For example, a user
could drag an HTML file from the host operating system’s file manager and drop the file
on the WebBrowserPane to render the HTML. DnDWebBrowser uses the drag-and-
drop API to recognize drag-and-drop operations and the data transfer API to retrieve the
transferred data. Lines 32-33 create a WebBrowserPane component for viewing Web
pages and a WebToolBar to provide navigation controls.

The WebBrowserPane in class DnDWebBrowser acts as a drop target (i.e., a user
can drop a dragged object on the WebBrowserPane). Lines 37-38 invoke method set -
DropTarget of class WebBrowserPane and create a new DropTarget object. The
first argument to the DropTarget constructor is the java .awt . Component that pro-
vides the GUI target onto which a user can drop objects. In this case, the Component is a
WebBrowserPane. The second argument specifies the types of drag-and-drop operations
that the DropTarget supports. Class DnDConstants specifies constant
ACTION_COPY for allowing a DropTarget to accept a drag-and-drop operation for
copying a dragged object. Other operations include ACTION_MOVE for moving an object
and ACTION_LINK for creating a link to an object (e.g., a symbolic link on a UNIX file-
system). The third argument to the DropTarget constructor is the DropTargetLis-
tener to be notified of drag-and-drop operation events.

Class DropTargetHandler (lines 48-126) implements interface DropTar-
getListener to listen for drag-and-drop operation events related to a DropTarget.
The drag-and-drop subsystem invokes method drop (lines 51-100) of interface
DropTargetListener when the user drops an object on a DropTarget. Line 54
invokes method getTransferable of class DropTargetDropEvent to retrieve the
Transferable object that the wuser dropped. Interface java.awt.data-
transfer.Transferable declares methods that represent an object that can be trans-
ferred among applications. As part of the datatransfer API, interface Transferable rep-
resents objects that may be transferred through the system clipboard (e.g., via cut-and-paste
operations) and objects that are transferred through drag and drop.

package com.deitel.advjhtpl.gui.dnd;

import java.awt.*;

import java.awt.dnd.*;

import java.awt.datatransfer.*;
10 import java.util.*;

11 import java.io.*;

12 import java.net.*;

NVOONOGTAWN=—

Fig. 2.11 DnDWebBrowser application for browsing Web sites that also accepts
drag-and-drop operations for viewing HTML pages (part 1 of 5).

58 Advanced Swing Graphical User Interfface Components Chapter 2

15 import javax.swing.*;

16 import javax.swing.event.*;

19 import com.deitel.advijhtpl.gui.webbrowser.*;
21 public class DnDWebBrowser extends JFrame {
23 private WebToolBar toolBar;

24 private WebBrowserPane browserPane;

27 public DnDWebBrowser ()
28 {
29 super ():

32 browserPane = new WebBrowserPane() ;
33 toolBar = new WebToolBar(browserPane);

37 browserPane.setDropTarget (new DropTarget(browserPane,
38 DnDConstants. , new DropTargetHandler()));

41 Container contentPane = getContentPane();

42 contentPane.add(toolBar, BorderLayout.);
43 contentPane.add(new JScrollPane(browserPane),
44 BorderLayout.);

48 private class DropTargetHandler implements DropTargetListener {
51 public void drop(DropTargetDropEvent event)
52 {

54 Transferable transferable = event.getTransferable():;

57 if (transferable.isDataFlavorSupported (
58 DataFlavor.)) |

61 event .acceptDrop(DnDConstants.):

64 try {

Fig. 2.11 DnDWebBrowser application for browsing Web sites that also accepts
drag-and-drop operations for viewing HTML pages (part 2 of 5).

Chapter 2 Advanced Swing Graphical User Interfface Components 59

67 java.util.List fileList =

68 (java.util.List) transferable.getTransferData (
69 DataFlavor.);

71 Iterator iterator = fileList.iterator():;

73 while (iterator.hasNext()) {

74 File file = (File) iterator.next();

77 browserPane.goToURL(file.toURL());

81 event .dropComplete(true);

85 catch (UnsupportedFlavorException flavorException) {
86 flavorException.printStackTrace() ;
87 event .dropComplete(false);

91 catch (IOException ioException) {
92 ioException.printStackTrace();
93 event .dropComplete(false);

98 else
99 event .rejectDrop() ;

103 public void dragEnter(DropTargetDragEvent event)
104 {

106 if (event.isDataFlavorSupported (
107 DataFlavor.))

109 event .acceptDrag(DnDConstants.):

112 else
113 event .rejectDrag() ;

117 public void dragExit(DropTargetEvent event) {}

Fig. 2.11 DnDWebBrowser application for browsing Web sites that also accepts
drag-and-drop operations for viewing HTML pages (part 3 of 5).

60

Advanced Swing Graphical User Interfface Components Chapter 2

Drag source
g Jnddress ID DM JawaProjectsisrcicomideiteliadwibtp L\ guilsplitpane ™
Mame 4 | S\zel Type

Drop target \ € || > H

Mouse cursor dragging
favorites.html. —_|

public void dragOver(DropTargetDragEvent event) {}

public void dropActionChanged(DropTargetDragEvent event)
{}

public static void main(String argsl[])

{
DnDWebBrowser browser = new DnDWebBrowser();
browser.setDefaultCloseOperation ():
browser.setSize(o):
browser.setVisible(true);

}

[Sopipane =lolx|

|[e-»-m@m@BHE >

J File

1KE HTML Dan
3KB CLASSFil

Fay Type: HTML Document KB J8WA File
Size: 686 bytes

gl | 2

|Type: HTML Docurnent Size: |686 bytes |@ My Computer v

24 Drag-and-Drop Web Browser 2 (o] x|

Fig. 2.11

DnDWebBrowser application for browsing Web sites that also accepts
drag-and-drop operations for viewing HTML pages (part 4 of 5).

Chapter 2 Advanced Swing Graphical User Interfface Components 61

E;i Drag-and-Drop Web Browser i =olx|
KE

WebBrowserPane Favorite Sites

displaying

favorites.html. Lo ® java sun com

® developer java sun. com
® Detel & Associates, [nc

® Dieitel at Prentice Hall
® Google

Fig. 2.11 DnDWebBrowser application for browsing Web sites that also accepts
drag-and-drop operations for viewing HTML pages (part 5 of 5).

Lines 57-58 invoke method isDataFlavorSupported of interface Transfer-
able to determine the type of data the Transferable object contains. The datatransfer
API defines class DataFlavor to represent types of data contained in a Transfer-
able object. Class DataFlavor provides several static constants that developers can
use for comparison to common DataFlavors. Lines 57-58 determine if the Trans-
ferable object supports DataFlavor.javaFileListFlavor, which represents a
List of Files. If a user drags one or more Files from the host operating system’s file
manager, the dropped Transferable object will support DataFlavor.java-
FileListFlavor. If the Transferable object supports this DataFlavor, line 61
invokes method acceptDrop of class DropTargetDropEvent to indicate that the
drop operation is allowed for this DropTarget.

Lines 67-69 retrieve the List of Files from the Transferable object by
invoking method getTransferData of interface Transferable. Lines 73-78
iterate the List of Files, displaying each by invoking method goToURL of class Web-
BrowserPane. Line 80 invokes method dropComplete of class DropTarget-
DropEvent with a true argument to indicate that the drag-and-drop operation was
successful. If the DataFlavor was not DataFlavor.javaFileListFlavor, line
99 invokes method rejectDrop of class DropTargetDropEvent to reject the drag-
and-drop operation.

The drag-and-drop subsystem invokes method dragEnter of interface
DropTargetListener (lines 103—114) when a drag-and-drop operation enters a
DropTarget (e.g., the user drags the mouse into the DropTarget). Lines 106-107
check the DataFlavors that the Transferable object supports. If the Transfer-
able object supports DataFlavor.javaFileListFlavor, line 109 invokes
method acceptDrag of class DropTargetDragEvent to indicate that this

62 Advanced Swing Graphical User Interfface Components Chapter 2

DropTarget allows the drag-and-drop operation. If the Transferable object does
not support DataFlavor.javaFileListFlavor, line 113 invokes method
rejectDrag of class DropTargetDragEvent to indicate that the DropTarget
does not allow this drag-and-drop operation. The operating system may provide a visual
cue to the user to indicate that the DropTarget does not allow the drag-and-drop oper-
ation, for example, by changing the mouse cursor.

The drag-and-drop subsystem invokes method dragExit (line 117) of interface
DropTargetListener when the drag-and-drop operation leaves the DropTarget
and method dragOver (line 120) when the drag-and-drop operation passes over the
DropTarget. If the user changes the drop action (e.g., from DndCon-
stants.ACTION_COPY to DndConstants.ACTION_MOVE by pressing the Ctrl
key), the drag-and-drop subsystem invokes method dropActionChanged (line 123).
We provide empty implementations of these methods because we do not require any spe-
cial handling for these events.

2.7 Internationalization

Internationalization is the process of preparing an application for distribution in multiple
locales. A locale identifies the language, currency, character set, date formats and other
items most widely used for presenting information in a particular country or region. For ex-
ample, in the U. S. locale, the language is English, the currency is the U. S. dollar and the
date format is month/day/year. In the United Kingdom locale, the language also is English,
but the currency is the British pound and the date format is day/month/year. Applications
to be distributed in multiple locales must display information in the correct language and
with appropriate date, currency and other formats.

To internationalize an application, a developer must replace hard-coded strings that the
user might see, such as labels, tooltips and error messages, with strings contained in a
ResourceBundle. A ResourceBundle is a Java properties file that maps keys to
string values. For example, a ResourceBundle could contain the key exitButton-
Label with the string value Exit. Instead of hard coding the string Exit on a
JButton’s label, the developer could retrieve the label from the ResourceBundle.
The developer could then provide multiple versions of the ResourceBundle that use the
same keys, but provide string values in different languages. For example, the developer
could provide a ResourceBundle that contains French translations of each string value.

The developer also must use locale-sensitive classes to format data, such as dates,
times and currencies, using locale-specific formats. There are several locale-sensitive
classes that can perform this formatting, such as NumberFormat and DateFormat. A
locale-sensitive class uses information about the appropriate locale to produce its output.
For example, method format of class DateFormat takes as arguments a Date and a
Locale and returns an appropriately formatted String for the given Locale (e.g., the
string 3/8/2001 for the U. S. Locale).

Internationalized applications also must use Unicode characters. Unicode is a stan-
dard for encoding characters for most of the world’s languages. Java uses Unicode to rep-
resent all characters, but it is possible that data generated by other applications may not
use Unicode. Such data would need to be converted to Unicode before including it in an
internationalized application. For more information about Unicode, please see Appendix
I, Unicode.

Chapter 2 Advanced Swing Graphical User Interfface Components 63

Figure 2.12 presents an internationalized WebToolBar class. The WebToolBar
constructor (lines 27-104) takes as an additional argument the Locale for which the
WebToolBar should be localized. Lines 30-31 load the ResourceBundle named
StringsAndLabels for the given Locale by invoking static method get-
Bundle of class ResourceBundle. Line 33 invokes method getString of class
ResourceBundle to retrieve the toolBarTitle string from the Resource-
Bundle. Line 33 also invokes method setName of class JToolBar to set the
JToolBar’s name to the retrieved value.

package com.deitel.advjhtpl.gui.il8n;

import java.awt.*;
import java.awt.event.*;
import java.net.*;
10 import java.util.*;

NVOONOGTTAWN=—

13 import javax.swing.*;
14 import javax.swing.event.*;

17 import com.deitel.advjhtpl.gui.webbrowser.WebBrowserPane;
18 import com.deitel.advjhtpl.gui.actions.MyAbstractAction;

20 public class WebToolBar extends JToolBar

21 implements HyperlinkListener {

22

23 private WebBrowserPane webBrowserPane;

24 private JTextField urlTextField;

25

26

27 public WebToolBar(WebBrowserPane browser, Locale locale)
28 {

29

30 ResourceBundle resources = ResourceBundle.getBundle(
31 , locale);

32

33 setName (resources.getString());

34

35

36 webBrowserPane = browser;

37 webBrowserPane.addHyperlinkListener(this);

38

39

40 urlTextField = new JTextField();

Fig. 2.12 WebToolBar that uses ResourceBundles for infernationalization
(part 1 of 3).

64 Advanced Swing Graphical User Interfface Components Chapter 2

41 urlTextField.addActionListener (
42 new ActionListener() {

45 public void actionPerformed(ActionEvent event)
46 {

48 try {

49 URL url = new URL(urlTextField.getText());
50 webBrowserPane .goToURL(url);

54 catch (MalformedURLException urlException) {
55 urlException.printStackTrace() ;

62 MyAbstractAction backAction = new MyAbstractAction() {

64 public void actionPerformed(ActionEvent event)

65 {

67 URL url = webBrowserPane.back();

70 urlTextField.setText (url.toString());
72 }i

74 backAction.setSmallIcon(new ImageIcon (
75 getClass () .getResource ()))

77 backAction.setShortDescription (
78 resources.getString ())
81 MyAbstractAction forwardAction = new MyAbstractAction() {

83 public void actionPerformed(ActionEvent event)

84 {

86 URL url = webBrowserPane.forward() ;

89 urlTextField.setText (url.toString());

Fig. 2.12 WebToolBar that uses ResourceBundles for infernationalization
(part 2 of 3).

Chapter 2 Advanced Swing Graphical User Interfface Components 65

93 forwardAction.setSmallIcon(new ImageIcon (
94 getClass () .getResource ()))

96 forwardAction.setShortDescription (

97 resources.getString())

100 add(backAction);
101 add(forwardAction);
102 add(urlTextField);

107 public void hyperlinkUpdate(HyperlinkEvent event)
108 {

110 if (event.getEventType() ==
111 HyperlinkEvent .EventType.) {

114 URL url = event.getURL();

117 webBrowserPane .goToURL(event.getURL());
118 urlTextField.setText (url.toString()):;

121)

Fig. 2.12 WebToolBar that uses ResourceBundles for infernationalization
(part 3 of 3).

Lines 62-78 create an instance of class MyAbstractAction (Fig. 2.13) for the
WebToolBar’s backAction. Lines 64-71 implement method actionPerformed.
Lines 74-75 load the Icon for backAction, and lines 77-78 retrieve the international-
ized tooltip text for backAction from the ResourceBundle. Lines 81-97 create the
forwardAction in a similar manner.

The internationalized WebToolBar class also replaces the forward and back JBut -
tons with Actions. Abstract class MyAbstractAction (Fig. 2.13) extends class
AbstractAction to provide ser methods for commonly used Action properties. The
MyAbstractAction constructor (lines 19-27) takes as arguments the name, Icon,
description and mnemonic key for the Action. Lines 23-26 invoke the appropriate set
methods to configure the Action to the given values. Each ser method invokes method
putValue of interface Action with the appropriate key and the given value.

Figure 2.14 presents an internationalized WebBrowser class. Class WebBrowser
has a single user-visible string, which is the application window title. The WebBrowser
constructor (lines 26-42) takes as an argument the Locale for which the application
should be localized. Lines 28-29 invoke stat ic method getBundle of class Resour-

66 Advanced Swing Graphical User Interfface Components Chapter 2

ceBundle to load the ResourceBundle containing the appropriate internationalized
strings. Line 31 invokes method getString of class ResourceBundle to retrieve the
applicationTitle string.

package com.deitel.advjhtpl.gui.actions;

import java.awt.event.*;

NVOONOCGTRAWN—

10 import javax.swing.*;

12 public abstract class MyAbstractAction extends AbstractAction {

15 public MyAbstractAction() {}

19 public MyAbstractAction(String name, Icon icon,
20 String description, Integer mnemonic)

21 {

23 setName (name);

24 setSmallIcon(icon);

25 setShortDescription(description);
26 setMnemonic(mnemonic);

30 public void setName(String name)
31 {
32 putvValue(Action. , name);
33 }

36 public void setSmallIcon(Icon icon)
37 {
38 putValue(Action. , icon);

39 }

42 public void setShortDescription(String description)
43 {
44 putValue(Action. , description);
45 }

Fig.2.13 MyAbstractAction AbstractAction subclass that provides set
methods for Act ion properties (part 1 of 2).

Chapter 2

Advanced Swing Graphical User Interfface Components

67

48 pub
49 {

51 }

55 public abstract void actionPerformed(ActionEvent event);

56 1}

lic void setMnemonic(Integer mnemonic)

putvValue(Action. , mMnemonic);

Fig. 2.13 MyAbstractAction AbstractAction subclass that provides set

methods for Act ion properties (part 2 of 2).

1
2
3
4 packag
5
6
7 import
8 import
9 import
10 import
11
12
13 import
14 import
15
16

17 import
19 public
21 pri

22 pri
23 pri

26 pub
27 {

e com.deitel.advjhtpl.gui.il8n;

java.awt.*;
java.awt.event.*;
java.net.*;
java.util.*;

javax.swing.*;
javax.swing.event.*;
com.deitel.advjhtpl.gui.webbrowser.WebBrowserPane;
class WebBrowser extends JFrame {

vate ResourceBundle resources;

vate WebToolBar toolBar;

vate WebBrowserPane browserPane;

lic WebBrowser(Locale locale)

resources = ResourceBundle.getBundle (
, locale);

setTitle(resources.getString()

browserPane = new WebBrowserPane() ;
toolBar = new WebToolBar(browserPane, locale);

Fig. 2.14 WebBrowser that uses ResourceBundles for infernationalization

(part 1 of 2).

68 Advanced Swing Graphical User Interfface Components Chapter 2

37

38 Container contentPane = getContentPane();

39 contentPane.add(toolBar, BorderLayout.);
40 contentPane.add(new JScrollPane(browserPane),
41 BorderLayout.) ;

42 }

43 3}

Fig. 2.14 WebBrowser that uses ResourceBundles for infernationalization
(part 2 of 2).

Class BrowserLauncher (Fig.2.15) provides a JComboBox for selecting a
Locale and launching an internationalized WebBrowser. Line 25 creates the JCom-
boBox and lines 28-34 add sample Locales to the JComboBox. When the user selects
a Locale from the JComboBox, lines 43—44 invoke method launchBrowser of class
BrowserLauncher to launch a new WebBrowser. Method launchBrowser (lines
57-63) creates a new WebBrowser for the given Locale, sets its size and displays it.

The properties files of Fig. 2.16 and Fig. 2.17 contain internationalized strings for the
default Locale (Locale.US) and the French Locale (Locale . FRANCE). In a proper-
ties file, the # character begins a single-line comment. Each property has a key, followed
by an equals sign, followed by a value.

Note in Fig. 2.17 that the backToolTip value represents special characters (e.g.,
characters with accents) as Unicode escape sequences (line 3). Unicode can represent over
65,000 unique characters. A Unicode escape sequence begins with \u and contains four
hexadecimal digits that represent the special character. Java uses Unicode characters by
default and requires Unicode characters for proper internationalization.

1

2

3

4 package com.deitel.advjhtpl.gui.il8n;
5

6

7 import java.awt.*;

8 import java.awt.event.*;

9 import java.util.*;

10

11

12 import javax.swing.*;

13

14 public class BrowserLauncher extends JFrame {
15

16

17 private JComboBox localeComboBox;
18

19
20 public BrowserLauncher ()
21 {

Fig. 2.156 BrowserLauncher application for selecting a Locale and launching
an infernationalized WebBrowsexr (part 1 of 3).

Chapter 2 Advanced Swing Graphical User Interfface Components 69

22 super ();

25 localeComboBox = new JComboBox() ;

28 localeComboBox.addItem(Locale.);

31 localeComboBox.addItem(Locale.);

34 localeComboBox.addItem(new Locale(o))

37 localeComboBox.addItemListener (
38 new ItemListener() {

40 public void itemStateChanged(ItemEvent event)
41 {

42 if (event.getStateChange() == ItemEvent.

43 launchBrowser((Locale)

44 localeComboBox.getSelectedItem());

50 Container contentPane = getContentPane();

51 contentPane.setLayout (new FlowLayout());

52 contentPane.add(new JLabel ()):
53 contentPane.add(localeComboBox) ;

57 private void launchBrowser(Locale locale)

58 {

59 WebBrowser browser = new WebBrowser(locale);

60 browser.setDefaultCloseOperation ()i
61 browser.setSize(o);

62 browser.setVisible(true);

66 public static void main(String args[])

67 {

68 BrowserLauncher launcher = new BrowserLauncher();
69 launcher.setDefaultCloseOperation ()i
70 launcher.setSize(0) ;

71 launcher.setVisible(true);

73 1}

Fig. 2.156 BrowserLauncher application for selecting a Locale and launching
an infernationalized WebBrowser (part 2 of 3).

70 Advanced Swing Graphical User Interfface Components Chapter 2

[ﬁi Deitel Web Browser

= [g ? ||ht‘[pﬁ\nwprenhall cnmfdewtelﬂ

_Inlx]
Previous Page

DR el DOTLL 6 DOEL
Boous

Books

D>

Downloads

FAQs

Multimedia Products
Visual C++.J++ Options
What's Coming Soon

Value Added
Pachkages

ADVANCED JAVA
——HOW TO FOGRAM—

[Author
Meet the Authors
Deitel Buzz

«a Logiciel de Navigation de Deitel

: =1 i ﬁ ? ||ht‘[pﬁ\nwprenhall comideitelf

Select Locale | en_UIS v‘ Page précédente

Tl O DOTEL 6 DETEL
Boous

Books

D>

Downloads

FAQs ADVWANCED JAVA

Multimedia Products |8

Visual C++.J++ Options
What's Coming Soon

Value Added
Packages

[Author

Meet the Authors
Deitel Buzz

[»]

Fig. 2.156 BrowserLauncher application for selecting a Locale and launching
an internationalized WebBrowser (part 3 of 3).

applicationTitle =

toolBarTitle =

NOOBAWN=—=

Fig. 2.16 Properties file for default Locale (US English)—
StringsAndLabels.properties (part 1 of 2).

Chapter 2 Advanced Swing Graphical User Interfface Components 71

9 forwardToolTip =

12 backToolTip =

Fig. 2.16 Properties file for default Locale (US English)—
StringsAndLabels.properties (part 2 of 2).

1

2

3 DbackToolTip =

4

5

6 applicationTitle =
7

8

9 toolBarTitle =
10

11

12 forwardToolTip =

Fig. 2.17 Properties file for French Locale—
StringsAndLabels_ fr FR.properties.

The filenames for properties files enable internationalized applications to load the
proper resources for the selected Locale. Note the names in the above figure captions for
the properties files. The properties file for the default Locale (i.e., the Locale used if
there is none specified) is named StringsAndLabels.properties. The properties
file for Locale.FRANCE is named StringsAndLabels_ fr FR.properties.
This name specifies that this is an internationalized version of the StringsAndLabels
properties file for the French language (£r) in the country of France (FR). The lowercase
language abbreviation is an ISO Language Code for the French language. The uppercase
country abbreviation is an ISO Country Code for the country of France. Together, the ISO
Language Code and ISO Country Code specify a locale. The list of ISO Language codes is
available at www.ics.uci.edu/pub/ietf/http/related/iso639.txt. The
list of ISO Country Codes is available at www.chemie.fu-berlin.de/diverse/
doc/ISO_3166.html.

2.8 Accessibility

Accessibility refers to the level of an application’s usability for people with disabilities. To
make an application accessible means to ensure that the application works for people with
disabilities. Many software applications are inaccessible to people with visual, learning or
mobility impairments. A high level of accessibility is difficult to achieve because there are
many different disabilities, language barriers, hardware and software inconsistencies and
so on. As greater numbers of people use computers, it is imperative that application design-
ers increase the accessibility of their applications. Recent legislation in the United States
has brought accessibility to the forefront of Web and application development.

72 Advanced Swing Graphical User Interfface Components Chapter 2

The Swing API designers took advantage of the Java Accessibility API to build acces-
sibility features into every Swing component to facilitate creating accessible Java applica-
tions. As a result, Java developers who use the Swing APIs to build application GUIs need
only use the Swing APIs properly to enable most accessibility features. For example, when
creating GUI elements such as JButtons and JMenuItems, developers should provide
tooltip text that describes the component and mnemonic keys or accelerator keys for
enabling keyboard access. These simple properties enable accessibility tools, such as
screen readers, to convey important descriptive information to the user. Enabling keyboard
access makes applications easier to navigate for all users, and also allows accessibility tools
to navigate the application more easily.

When it is not appropriate for a GUI component to have a tooltip or label, developers
can use methods setAccessibleName and setAccessibleDescription of
class AccessibilityContext to provide descriptive text. Each Swing component
contains an AccessibilityContext for enabling the component’s accessibility fea-
tures. Assistive technologies (e.g., screen readers, input devices) then use the Java Access
Bridge to interact with the Java application to take advantage of the developer-provided
descriptive text.

Class Actionsample2 (Fig. 2.18) modifies class ActionSample (Fig.2.5) to
demonstrate adding accessible component names and descriptions to Swing components.

Action actionSample (lines 26—50) now contains accessible text in the dialog box
that opens when actionSample is fired. Lines 36-37 declare an AccessibleContext
object for the JOptionPane action by calling method getAccessibleContext on
action. Line 38 calls method setAccessibleName to set action’s name in Acces-
sibleContext actionContext. Lines 39-41 call method setAccessible-
Description of class AccessibleContext to set actionSample’s description.
Line 53 specify a name for actionSample and lines 60-61 specify a short description.
Lines 64-65 assign a mnemonic key to actionSample.

Action exitAction (lines 68—92) now contains accessible text in the dialog box
that opens when exitSample is fired. Lines 78-79 obtain an AccessibleContext
for the JOptionPane by invoking method getAccessibleContext. Line 80 calls
method setAccessibleName to specify a name for the JOptionPane’s Accessible-
Context. Lines 81-83 call method setAccessibleContext. Line 96 specifies a
name for exitAction by invoking method putVvalue of interface Action. Lines
102-103 associate a short description with exitAction. Lines 106-107 assign a
mnenonic key to exitAction.

package com.deitel.advjhtpl.gui.actions;

import java.awt.*;
import java.awt.event.*;

NVOONOGBAWN=—

Fig. 2.18 ActionSample2 demonstrates Accessibility package (part 1
of 5).

Chapter 2

Advanced Swing Graphical User Interfface Components

73

11 import javax.accessibility.*;
12 import javax.swing.*;

14 public class ActionSample2 extends JFrame {

17 private Action sampleAction;
18 private Action exitAction;

21 public ActionSample2 ()

22 {

23 super (

26 sampleAction = new AbstractAction() {

public void actionPerformed(ActionEvent event)

JOptionPane action = new JOptionPane (
)

AccessibleContext actionContext =
action.getAccessibleContext () ;

actionContext.setAccessibleName (

actionContext.setAccessibleDescription (

+)i

action.createDialog(ActionSample2.this,
) .setVisible(true);

exitAction.setEnabled(true);

53 sampleAction.putValue(Action. o)

56 sampleAction.putValue(Action.
getClass () .getResource ()))i

60 sampleAction.putvalue(Action. ,

):

, new ImageIcon/(

Fig. 2.18 ActionSample2 demonstrates Accessibility package (part 2

of 5).

74 Advanced Swing Graphical User Interfface Components Chapter 2

64 sampleAction.putValue(Action. o
65 new Integer ())

68 exitAction = new AbstractAction() {

70 public void actionPerformed(ActionEvent event)

71 {

73 JOptionPane exit = new JOptionPane (
74)

78 AccessibleContext exitContext =

79 exit.getAccessibleContext () ;

80 exitContext.setAccessibleName ():

81 exitContext.setAccessibleDescription (

82 +

83 +) ;

86 exit.createDialog(ActionSample2.this,
87) .setVisible(true);

90 System.exit ():
91 }
92 }i

95 exitAction.putvalue(Action. o):

98 exitAction.putvalue(Action. , new ImageIcon (
99 getClass () .getResource ()))

102 exitAction.putvValue(Action. r
103)i

106 exitAction.putvValue(Action. ,
107 new Integer())i

110 exitAction.setEnabled(false);

113 JMenu fileMenu = new JMenu ():

Fig. 2.18 ActionSample2 demonstrates Accessibility package (part 3
of 5).

Chapter 2 Advanced Swing Graphical User Interfface Components 75

114

115

116

117 fileMenu.add(sampleAction);

118 fileMenu.add(exitAction);

119

120 fileMenu.setMnemonic ():

121

122

123 JMenuBar menuBar = new JMenuBar();

124 menuBar.add(fileMenu);

125 setJMenuBar (menuBar) ;

126

127

128 JToolBar toolBar = new JToolBar();

129

130

131

132 toolBar.add(sampleAction);

133 toolBar.add(exitAction);

134

135

136

137 AccessibleContext toolContext =

138 toolBar.getAccessibleContext () ;

139 toolContext.setAccessibleName ();:
140 toolContext.setAccessibleDescription (

141 +)i
142

143

144 JButton sampleButton = new JButton();

145 sampleButton.setAction(sampleAction);
146

147

148

149 AccessibleContext sampleContext =

150 sampleButton.getAccessibleContext () ;
151 sampleContext.setAccessibleName ():
152 sampleContext .setAccessibleDescription (
153 +)
154

155

156 JButton exitButton = new JButton(exitAction);
157

158

159

160 AccessibleContext exitContext =

161 exitButton.getAccessibleContext () ;

162 exitContext.setAccessibleName ():
163 exitContext.setAccessibleDescription (

164 +)i
165

Fig. 2.18 ActionSample2 demonstrates Accessibility package (part 4
of 5).

76 Advanced Swing Graphical User Interfface Components Chapter 2

166

167 JPanel buttonPanel = new JPanel();

168 buttonPanel.add(sampleButton);

169 buttonPanel.add(exitButton);

170

171

172 Container container = getContentPane();

173 container.add(toolBar, BorderLayout.) :
174 container.add(buttonPanel, BorderLayout.) ;
175

176 }

177

178

179 public static void main(String argsl[])

180 {

181 ActionSample2 sample = new ActionSample2();
182 sample.setDefaultCloseOperation ()
183 sample.pack() ;

184 sample.setVisible(true);

185 }

186 1}

Fig. 2.18 ActionSample2 demonstrates Accessibility package (part 5
of 5).

Line 120 adds a mnemonic key for the File menu to enable keyboard access to this
menu. Lines 137-138 obtain the AccessibleContext for toolBar. Line 139 sets a
name for toolBar by invoking method setAccessibleName. Lines 140-141 set a
description for toolBar by invoking method setAccessibleDescription. Lines
149—-150 obtain an AccessibleContext for JButton sampleButton. Line 151
sets a name for sampleButton by invoking method setAccessibleName. Lines
152-153 set a description for sampleButton by invoking method setAccessible-
Description. Lines 160-161 obtain an AccessibleContext for JButton
exitButton. Line 162 sets a name for exitButton by invoking method setAcces-
sibleName. Lines 163—-164 set a description for exitButton by invoking method
setAccessibleDescription.

We will download the Java Access Bridge and a demonstration of JAWS for Windows
3.7 to demonstrate the accessibility features of ActionSample2. The Java Access
Bridge allows assistive programs in Windows to use the accessibility information of a Java
program. The Java Access Bridge can be downloaded at

java.sun.com/products/accessbridge

JAWS for Windows is a screen reader from Henter-Joyce (www.hJj .com). A demonstra-
tion version of JAWS can be downloaded at

www.hj.com/JAWS/JAWS37DemoOp . htm

Download and install both programs to try the rest of the example in this section.

With the Access Bridge installed and JAWS running in the background, execute
ActionSample2. JAWS reads the name of the new window that opens. The GUI of
ActionSample2 (Fig. 2.19) is identical to the original ActionSample (Fig. 2.5).

Chapter 2 Advanced Swing Graphical User Interfface Components 77

Switch between the buttons by pressing Tab to move forward or Shift + Tab to move back-
ward. JAWS reads the name of the new button whenever the focus changes. To press the
button that holds the focus, press the space bar. The sampleAction dialog opens and
JAWS reads its name. Pressing the space bar or the Enter key closes the dialog. The Exit
button is now available in the GUI. Switch the focus to the larger button labeled Sample
Action (not the one in the tool bar) and press Insert + F1. This JAWS command reads the
description attached to the button’s AccessibleContext (Fig. 2.20). Do the same
command on the EXit button to hear its description (Fig.2.21). ActionSample2’s
Actions are also available through the File menu. The File menu’s mnemonic key is the
underlined letter F. Pressing Alt + F opens the File menu and causes JAWS to read the
menu name (Fig. 2.22). The arrow keys move the cursor within the menu. JAWS reads the
name of each menu item as it is selected (Fig. 2.23). Pressing the space bar, Enter key, or
a mnemonic key activates one of the Actions.

=10l x| x|
File

The leAction was invoked,
2@ |
Sample Action ‘ ‘ . Exit ‘

=

File
! The exitAction was invoked.
‘ Sample Action ‘ ‘ . Exit ‘ -

=

ol x]
Sample Action

: !Eﬁn I @ =i

Fig. 2.19 Actions sampleAction and exitAction of
ActionSample?2.

"SampleButton produces a sampleAction event."

E‘%Using Actions

/

‘ Samplenction ‘ .Exit ‘

Fig. 2.20 AccessibleDescription of sampleButton.

78 Advanced Swing Graphical User Interfface Components Chapter 2

"ExitButton produces an exitAction event."

File

2@
‘ .Samplencﬂon H - ‘

w Using Actions ! V

Fig. 2.21 AccessibleDescription of exitButton.

"Sample Action."

E‘%Using Actions

@ Exit ‘

Fig. 2.22 Sample Action menu item description.

"EXIHT."

/i1

Sample Action
. Exit ‘

Fig. 2.23 Exit menu item description.

2.9 Internet and World Wide Web Resources

Swing

java.sun.com/products/jfc/tsc
The Swing Connection contains technical articles and documentation for Swing components.

www.javaworld.com/javaworld/topicalindex/jw-ti-foundation.html
JavaWorld collection of Swing-related articles.

Chapter 2 Advanced Swing Graphical User Interfface Components 79

Internationalization

www.ibm.com/developerworks/theme/international-index.html
IBM offers links to internationalization resources including multilingual software and international
calendars.

developer.java.sun.com/developer/technicalArticles/Intl/index.html
This site provides numerous articles on learning how to localize and internationalize various Java pro-
grams.

www.onjava.com/pub/a/onjava/2001/04/12/internationalization.html
This article, Java Internationalization and Localization, by Jaric Sng describes the steps for access-
ing, installing, and determining fonts, focusing on Japanese, Chinese, and Korean.

java.sun.com/j2se/l.3/docs/guide/intl
This site supplies a guide to Java internationalization. It includes a detailed section on formatting cur-
rencies, time zones, dates, texts, messages and other international dissimilarities.

Accessibility

java.sun.com/products/jfc/jaccess-1.3/doc/guide.html
Sun Microsystems has improved Java accessibility through Java Accessibility API and Java Accessi-
bility Utilities. Check out a detailed description of these packages at this site.

developer.java.sun.com/developer/earlyAccess/jaccesshelper

The Java Accessibility Helper examines Java programs for accessibility issues and provides a report
that details changes needed to be made. This is an early-access download and requires a free registra-
tion with the Java Developer Connection Web site.

www.ibm.com/able/snsjavag.html

"IBM Guidelines for Writing Accessible Applications Using 100% Pure Java," by Richard S. Schwer-
dtfeger, states the necessary features that should be provided to create full accessibility. In addition,
this online guidebook discusses the various programs to achieve accessibility.

www.sun.com/access/developers/access.quick.ref.html
This site simply emphasizes the importance of accessibility and gives tips on making applications ac-
cessible.

www.w3.0rg/WAI

The World Wide Web Consortium’s Web Accessibility Initiative (WAI) site promotes design of uni-
versally accessible Web sites. This site will help you keep up-to-date with current guidelines and
forthcoming recommendations for Web accessibility.

www.sSun.com/access/gnome
GNOME Developer’s Site provides information on various assistive technologies, such as screen
magnifiers and screen keyboards for Linux and Unix platforms that use the GNOME user interface.

www.voice-assistant.com
The Voice Mate V4 assists the blind with using a computer. It speaks the menu options and characters
as they are typed.

www.magnifiers.org
On this site, you can find information and downloads for screen magnifiers.

www.voicerecognition.com
This site contains information on various voice-recognition products.

trace.wisc.edu/world/web
This site explains how to make Web sites more accessible to disabled users. It also gives multiple ref-
erences to other sites on Web accessibility.

80 Advanced Swing Graphical User Interfface Components Chapter 2

www.access-board.gov/508.htm
Electronic version of Section 508 of the Rehabilitation Act, which mandates that government agen-
cies provide accessible electronic access to information from federal agencies.

SUMMARY

* Swing provides three basic types of text components for presenting and editing text. Class JTex~-
tComponent is the base class for all Swing text components, including JTextField, JTex-
tArea and JEditorPane.

* JTextField is a single-line text component suitable for obtaining simple user input or display-
ing information such as form field values, calculation results and so on. JPasswordField is a
subclass of JTextField suitable for obtaining user passwords.

* JEditorPane provides enhanced text-rendering capabilities. JEditorPane supports styled
documents that include formatting, font and color information. JEditorPane is capable of ren-
dering HTML documents as well as Rich Text Format (RTF) documents.

* Toolbars are GUI containers typically located below an application’s menus. Toolbars contain but-
tons and other GUI components for commonly used features, such as cut, copy and paste, or nav-
igation buttons for a Web browser.

¢ (Class javax.swing.JToolBar enables developers to add toolbars to Swing user interfaces.
JToolBar also enables users to modify the appearance of the JToolBar in a running application.

» Users can drag a JToolBar from the top of a windows and "dock" the JToolBars on the side
or bottom. Users also can drag the JToolBar away from the application window to create a float-
ing JToolBar.

* Based on JToolBar’s inheritance hierarchy, each JToolBar also is a java.awt.Con-
tainer and therefore can contain other GUI components.

* A JToolBar has property orientation that specifies how the JToolBar will arrange its
child components. The default is horizontal orientation, which indicates that the JToolBar lays
out its child components next to one another.

* The Command design pattern enables developers to define requests (e.g., a user request to copy
text) once in a reusable object that the developer then can add to a menu, toolbar or pop-up menu.
This design pattern is called Command because it defines a user command or instruction.

* An Action, which implements the Command design pattern, represents user-interface logic and
properties for GUI components that represent that logic, such as the label for a button, the text for
a tool tip and the mnemonic key for keyboard access.

* The logic for an Action takes the form of an act ionPerformed method that the event mech-
anism invokes in response to the user activating an interface component (e.g., the user clicking a
JButton).

* Interface Action extends interface ActionListener, which enables Actions to process
ActionEvents generated by GUI components. Actions provide an additional benefit in that
the developer can enable or disable all GUI components associated with an Action by enabling
or disabling the Action itself.

¢ that sampleAction was invoked. Line 33 then invokes method setEnabled of interface
Action on the exitAction reference. This enables the exitAction and its associated GUI
components. Note that Actions are enabled by default. We disabled the exitAction (line 80)
to demonstrate that this disables the GUI components associated with that Action.

e JSplitPane and JTabbedPane are container components that enable developers to present
large amounts of information in a small screen area.

Chapter 2 Advanced Swing Graphical User Interfface Components 81

¢ JSplitPane divides two components with a divider that users can reposition to expand and con-
tract the visible areas of the JSplitPane’s child components. JSplitPanes can contain only
two child components, although each child component may contain nested components.

¢ The constant JSplitPane .HORIZONTAL_SPLIT specifies the JSplitPane should display
its child components side-by-side. The constant JSplitPane.VERTICAL_SPLIT specifies
that the JSplitPane should display its child components one on top of the other.

¢ Adding child components to JScrollPanes before adding those components to a JSplit-
Pane ensures that the user will be able to view all the content in each child component by scrolling
if necessary.

* JTabbedPane presents multiple components in separate tabs, which the user can navigate using
a mouse or keyboard. Dialog boxes often use components similar to JTabbedPanes.

* Multiple document interfaces allow users to view multiple documents in a single application. Each
document appears in a separate window in the application. The user can arrange, resize, iconify
(i.e., minimize) and maximize these separate document windows like application windows on the
desktop.

¢ JInternalFrames behave much like JFrames. Users can maximize, iconify, resize, open and
close JInternalFrames. JInternalFrames have title bars with buttons for iconifying,
maximizing and closing. Users also can move JInternalFrames within the JDesktopPane.

* JInternalFrames have no size and are invisible by default. When creating a new JInter-
nalFrame, be sure to invoke method setSize to size the JInternalFrame and setVis-
ible(true) to make the JInternalFrame visible.

* Drag and drop enables users to move items around the desktop and to move and copy data among
applications using mouse gestures. A gesture is a mouse movement that corresponds to a drag-and-
drop operation, such as dragging a file from one folder and dropping the file into another folder.

e The data transfer API—package java.awt .datatransfer—enables copying and moving
data within a single application or among multiple applications. The drag-and-drop API enables
Java applications to recognize drag-and-drop gestures and to respond to drag-and-drop operations.

e A drag-and-drop operation uses the data transfer API to transfer data from the drag source to the
drop target. Applications can use the drag-and-drop API to recognize drag-and-drop operations
and use the data transfer API to retrieve the data transferred through those drag-and-drop opera-
tions.

e The drag-and-drop subsystem invokes method drop of interface DropTargetListener
when the user drops an object on a DropTarget.

* Interface java.awt.datatransfer.Transferable declares methods that represent an
object that can be transferred among applications. As part of the datatransfer API, interface
Transferable represents objects that may be transferred through the system clipboard (e.g.,
via cut-and-paste operations) and objects that are transferred through drag and drop.

* Internationalization is the process of preparing an application for distribution in multiple locales.
A locale identifies the language, currency, character set, date formats and other items most widely
used for presenting information in a particular country or region.

» Applications to be distributed in multiple locales must display information in the correct language
and with appropriate date, currency and other formats.

* A ResourceBundle is a Java properties file that maps keys to string values. For example, a
ResourceBundle could contain the key exitButtonLabel with the string value Exit. In-
stead of hard coding the string Exit on a JButton’s label, the developer could retrieve the label
from the ResourceBundle. The developer could then provide multiple versions of the Re-
sourceBundle that use the same keys, but provide string values in different languages.

Advanced Swing Graphical User Interfface Components Chapter 2

The developer also must use locale-sensitive classes to format data, such as dates, times and cur-
rencies, using locale-specific formats. There are several locale-sensitive classes that can perform
this formatting, such as NumberFormat and DateFormat.

Internationalized applications also must use Unicode characters. Unicode is a standard for encod-
ing characters for most of the world’s languages. Java uses Unicode to represent all characters.

The filenames for properties files enable internationalized applications to load the proper resourc-
es for the selected Locale. These filenames must use a lowercase language abbreviation—called
an ISO Language Code—and an uppercase country abbreviation—called an ISO Country Code.

Accessibility refers to the level of an application’s usability for people with disabilities. To make
an application accessible means to ensure that the application works for people with disabilities.

Many software applications are inaccessible to people with visual, learning or mobility impair-
ments. A high level of accessibility is difficult to achieve because there are many different disabil-
ities, language barriers, hardware and software inconsistencies and so on.

Recent legislation in the United States has brought accessibility to the forefront of Web and appli-
cation development.

The Swing API designers took advantage of the Java Accessibility API to build accessibility fea-
tures into every Swing component to facilitate creating accessible Java applications. As a result,
Java developers who use the Swing APIs to build application GUIs need only use the Swing APIs
properly to enable most accessibility features.

Developers should provide tooltip text that describes each component and mnemonic keys or ac-
celerator keys for enabling keyboard access. These simple properties enable accessibility tools,
such as screen readers, to convey important descriptive information to the user. Enabling keyboard
access makes applications easier to navigate for all users, and also allows accessibility tools to
navigate the application more easily.

Methods setAccessibleName and setAccessibleDescription of class Accessi-
bilityContext enable developers to provide descriptive text for components. Each Swing
component contains an AccessibilityContext for enabling the component’s accessibility
features.

Assistive technologies (e.g., screen readers, input devices) can use the Java Access Bridge to in-
teract with Java applications to take advantage of the developer-provided descriptive text.

TERMINOLOGY
AbstractAction class drag and drop
accessibility drag-and-drop gesture

AccessibleContext class

Action interface

Action.ACCELERATOR_KEY constant

Action.ACTION_ COMMAND_ KEY constant

Action.MNEMONIC_KEY constant

Action.NAME constant

Action.SHORT_ DESCRIPTION constant

Action.SMALL_ICON constant

addHyperlinkListener method of class
JEditorPane

Command design pattern

DataFlavor.javaFileListFlavor
constant

DnDConstants class

drag-and-drop operation
DropTarget class
DropTargetDragEvent class
DropTargetDropEvent class
DropTargetListener interface
HyperlinkEvent class
HyperlinkEvent .EventType.
ACTIVATED constant
HyperlinkListener interface
iconify
internationalization
Java Access Bridge
JDesktopPane class
JEditorPane class

Chapter 2 Advanced Swing Graphical User Interfface Components 83

JInternalFrame class putValue method of interface Action
JPasswordField class ResourceBundle class

JSplitPane class screen reader

JSplitPane.HORIZONTAL_ SPLIT constant setAccessibleDescription method of
JSplitPane.VERTICAL_ SPLIT constant class AccessibleContext
JTabbedPane class setAccessibleName method of class
JTextArea class AccessibleContext
JTextComponent class setEditable method of class JEditorPane
JTextField class setEnabled method of interface Action
JToolBar class tab

Locale class toolbar

maximize tooltip

multiple-document interface Transferable interface

orientation property of class JToolBar

SELF-REVIEW EXERCISES

2.1 State which of the following are frue and which are false. If false, explain why.

a) The Abstract Windowing Toolkit provides a richer set of components than the Swing
component set.

b) Swing provides a pluggable look and feel that enables components to change their ap-
pearance.

c) JEditorPane is capable of rendering only plain text, not richly styled text.

d) Toolbars—implemented by class JToolBar—enable developers to provide users with
quick access to commonly used user-interface elements, such as cut, copy and paste.

e) Interface Action provides set and get methods for each Action property.

f) JsplitPanes can contain any number of child components.

2.2 Fill in the blanks in each of the following:

a) The drag-and-drop API uses the API to transfer data through drag-and-drop
operations.
b) A multiple document interface uses instances of class for individual win-

dows, which are contained in a .

¢) The JInternalFrame constructor takes four boolean arguments that indicate whether the
window is and .

d A identifies the language, currency, character set, date formats and other
items most widely used for presenting information in a particular country or region.

e) refers to the level of an application’s usability for people with disabilities.

ANSWERS TO SELF-REVIEW EXERCISES

2.1 a) False. Swing provides a richer set of components than the older AWT. b) True. c) False.
JEditorPane can render HTML and RTF documents, which can contain rich styling information.
d) True. e) False. Interface Action provides method putvValue, which enables programmers to
specify the property name and value as a key/value pair.) False. Each JSplitPane may contain
exactly two child components, but each child component may contain its own child components.

2.2 a) data transfer API. b) JInternalFrame, JDesktopPane. ¢) resizable, closable, max-
imizable, iconifiable. d) Locale. e) Accessibility.

EXERCISES

23 Modity class WebToolBar (Fig. 2.3) to include a JComboBox from which the user can se-
lect URLSs from the history.

84 Advanced Swing Graphical User Interfface Components Chapter 2

24 Create an image-viewing application that supports drag-and-drop loading of images. When
the user drags and drops a image file onto the application window, load that image in an ImageIcon
and display the ImageIcon in a JPanel.

25 Modify class ActionSample2 (Fig. 2.18) to use ResourceBundles for all user-visible
Strings in the application. If you know a language other than English, provide a ResourceBun-
dle that contains Strings in that language.

2.6 Making an application accessible requires that the application provides keyboard navigation
for all the application’s functionality. Unplug your mouse from your computer and try using various
programs, such as word processors, Web browsers and the Java programs in this chapter. What about
these applications makes it difficult to navigate without a mouse? Is there functionality that you can-
not access using a keyboard?

Model-View-Controller

Objectives

* To understand the model-view-controller (MVC) Bealwing ™ °2
architecture for separating data, presentation and user / at
input logic.

* To understand the Observer design pattern.

* To understand MVC’s use in Java’s Swing GUI
components.

* To understand the default model implementations for
Swing components.

* To understand the use of TableModels to represent
tabular data for JTables.

* To understand tree data structures and their use as
TreeModels for JTrees.

The universe is wider than our views of it.

Henry David Thoreau

Let all your views in life be directed to a solid, however
moderate, independence; ...

Junius

1 think that I shall never see

A poem as lovely as a tree.
Joyce Kilmer

86 Model-View-Controller Chapter 3

Outline

3.1 Introduction
3.2 Model-View-Controller Architecture
3.3 Observable Class and observer Interface
3.4 JList
3.5 JTable
3.6 JTree
3.6.1 Using DefaultTreeModel
3.6.2 Custom TreeModel Implementation

Summary ¢ Terminology * Self-Review Exercises * Answers to Self-Review Exercises * Exercises

3.1 Introduction

In this chapter, we introduce the model-view-controller architecture (MVC) and its partic-
ular application in Java’s Swing classes. The MV C architecture uses object-oriented design
principles to modularize applications into data components, presentation components and
input-processing components. Data components maintain the raw application data, such as
the text of a document in a word processor or the locations of the pieces in a game of chess.
The presentation components most commonly provide a visual representation of applica-
tion data—for example a 3D graphic showing the chessboard and the arrangement of piec-
es. The input-processing components handle input from the user, such as dragging the
mouse to move a piece on the chess board.

MVC has many uses in desktop applications, enterprise applications, simulations and
other types of programs. In this chapter, we discuss MVC in general and its variant, the del-
egate-model architecture. We also introduce the Observer design pattern, which is a design
pattern built into the MVC architecture. After reading this chapter, you will be able to
design your own programs using MVC. You also will be able to take advantage of
advanced Swing components that use the delegate-model architecture, such as JList,
JTable and JTree.

3.2 Model-View-Controller Architecture

The model-view-controller architecture (MVC) separates application data (contained in the
model) from graphical presentation components (the view) and input-processing logic (the
controller). MVC originally appeared in Smalltalk-80 as a method for separating user in-
terfaces from underlying application data.! Figure 3.1 shows the relationships between
components in MVC. In our Enterprise Java case study (Chapters 17-20), we will show that
MVC is applicable across a wide range of problems and can make applications easier to
maintain and extend.

The controller implements logic for processing user input. The model contains appli-
cation data, and the view generates a presentation of the data stored in the model. When a

1. E. Gamma et al., Design Patterns (New York: Addison-Wesley Publishing Company, 1995), 4.

Chapter 3 Model-View-Controller 87

modifies notifies

Controller ——— » View

Fig. 3.1 Model-view-controller architecture.

user provides some input (e.g., by typing text in a word processor,) the controller modi-
fies the model with the given input. It is important to note that the model contains only
the raw application data. In a simple text editor, the model might contain only the char-
acters that make up the document. When the model changes, it notifies the view of the
change, so that the view can update its presentation with the changed data. The view in
a word processor might display the characters on the screen in a particular font, with a
particular size, etc.

MVC does not restrict an application to a single view and controller. In a word pro-
cessor, for example, there might be two views of a single document model. One view might
display the document as an outline, and the other might display the document in a print-
preview window. The word processor also may implement multiple controllers, such as a
controller for handling keyboard input and a controller for handling mouse selections. If
either controller makes a change in the model, both the outline view and the print-preview
window show the change immediately, because the model notifies all views of any
changes. A developer can provide additional views and controllers for the model without
changing the existing components.

Java’s Swing components implement a variation of MVC that combines the view and
controller into a single object, called a delegate (Fig. 3.2). The delegate provides both a
graphical presentation of the model and an interface for modifying the model. For example,
every JButton has an associated ButtonModel for which the JButton is a delegate.
The ButtonModel maintains state information, such as whether the JButton is pressed
and whether the JButton is enabled, as well as a list of ActionListeners. The
JButton provides a graphical presentation (e.g., a rectangle on the screen with a label and
a border) and modifies the ButtonModel’s state (e.g., when the user presses the
JButton). We discuss several Swing components that implement the delegate-model
architecture throughout this chapter.

modifies

Delegate

notifies Model

~_ @~

Fig. 3.2 Delegate-model architecture in Java Swing components.

88 Model-View-Controller Chapter 3

3.3 Observable Class and Observer Interface

The Observer design pattern enables loose coupling between an object and its dependent ob-
jects.2 Loosely coupled objects interact by invoking methods declared in well-known inter-
faces, instead of invoking methods declared in particular classes. Using interface methods
prevents each object from relying on the other objects’ concrete class type. For example, Ja-
va’s event-handling mechanism uses loose coupling to notify objects of events. If an object
needs to handle certain events, it implements the appropriate listener interface (e.g.,
ActionListener). Objects that generate events invoke listener interface methods to no-
tify listening objects of events. This loose coupling enables a JButton, for example, to
send an ActionEvent to a JFrame subclass that implements ActionListener. The
JButton interacts with the JFrame subclass only through method actionPerformed
of interface ActionListener, and not through any method that is specific to the
JFrame subclass. The JButton can send ActionEvents to other objects that also im-
plement interface ActionListener (e.g., a programmer-defined class or an inner class).

Class java.util.Observable represents a model in MVC, or the subject in the
Observer design pattern. Class Observable provides method addObserver, which
takes a java.util.Observer argument. Interface Observer represents the view in
MVC and enables loose coupling between an Obsexrvable object and its Observers.
When the Observable object changes, it notifies each registered Observer of the
change. The Observer can be an instance of any class that implements interface
Observer; because the Observable object invokes methods defined in interface
Observer, the objects remain loosely coupled. We discuss the details of this interaction
in the example that follows.

The example in Fig. 3.4-Fig. 3.10. uses the MVC architecture, class Observable
and interface Observer to implement an AccountManager application for managing
bank account information. Figure 3.3 illustrates the application’s MVC architecture. The
AccountController accepts user input in the form of dollar amounts entered in a
JTextField. The user then selects a JButton, either to withdraw or deposit the given
amount, and the AccountController modifies the Account to execute the transac-
tion. Class Account is an Observable object that acts as the application’s model.
When the AccountController performs the withdrawal or deposit, the Account
notifies each view (AccountTextView, AccountBarGraphView and Account-
PieChartView) that the Account information has changed. Each view updates its dis-
play with the modified Account information.

Class Account (Fig. 3.4) represents a bank account in the AccountManager
application (Fig. 3.10). Class Account extends class Observable (line 9) and acts as a
model in the application. Class Account has balance and name properties that repre-
sent the amount of money in the Account and a short description of the Account. The
Account constructor (lines 18-22) initializes the name and balance properties.

Method setBalance (lines 25-35) changes the model by updating the account
balance. The MVC architecture requires the model to notify its views when the model
changes. Line 31 invokes method setChanged of class Observable to set the model’s
changed flag. Line 34 invokes method notifyObservers of class Observable to
notify all Account Observers (i.e., views) of the change. An Observable object

2. E. Gamma et al., Design Patterns (New York: Addison-Wesley Publishing Company, 1995), 293.

Chapter 3 Model-View-Controller 89

must invoke method setChanged before invoking method notifyObservers.
Method notifyObservers invokes method update of interface Observer for each
registered Observer. Method getBalance (lines 38—41) simply returns the current
Account balance. Method getBalance does not modify the model, so method get -
Balance does not invoke setChanged or notifyObservers.

Common Programming Error 3.1

@ Failing to invoke method setChanged before invoking method notifyObserversisa

logic error. If method setChanged has not been invoked, method notifyObservers
considers the Observable object unchanged and will not invoke each Observer’s up-
date method.

AccountController
modifies Account by SIS A
withdrawing and depositing
funds.
AccountController Account AccountBarGraphView
v
Account notfifies each
view that the Account AccountPieChartView
has changed.

Each view updates its display to
reflect the new Account
information.

Fig. 3.3 AccountManager application MVC architecture.

1

2

3

4 package com.deitel.advjhtpl.mvc.account;
5

6

7 import java.util.Observable;

8

9 public class Account extends Observable {
10

11

12 private double balance;

13

14

15 private String name;

16

17

18 public Account (String accountName, double openingDeposit)
19 {

Fig. 3.4 Account Observable class that represents a bank account (part 1 of 2).

90

Model-View-Controller

Chapter 3

72)

name = accountName;
setBalance(openingDeposit);

private void setBalance(double accountBalance)

{
balance = accountBalance;

setChanged() ;

notifyObservers () ;

public double getBalance()
{

return balance;

}

public void withdraw(double amount)
throws IllegalArgumentException
{
if (amount <)
throw new IllegalArgumentException (

setBalance(getBalance() - amount);

public void deposit(double amount)
throws IllegalArgumentException
{

if (amount <)
throw new IllegalArgumentException (

setBalance(getBalance() + amount);

public String getName ()
{

return name;

}

);

.
I

Fig. 3.4

Account Observable class that represents a bank account (part 2 of 2).

Chapter 3 Model-View-Controller 91

Method notifyObservers does not guarantee the order in which it notifies Observ-
ers. Method notifyObservers as implemented in class Observable notifies Ob-
servers in the order the Observers were registered, but this behavior may be different
in Observable subclasses or in different Java implementations.

%Method notifyObservers has no relation to methods notify and notifyAll of
class object. Multithreaded programs use methods notify and notifyAll to wake up
Threads waiting to obtain an Object’s monitor.

Method withdraw (lines 44-53) subtracts the given amount from the Account
balance. If the given amount is negative, lines 48—49 throw an I1legalArgument -
Exception. Line 52 subtracts the withdrawn amount from the current balance and
invokes method setBalance to update the Account. Method setBalance will notify
Observers that the model was changed, so that the Observers can update their displays.

Method deposit (lines 56-65) adds the amount input to the Account balance. If
the amount is negative, lines 60-61 throw an I1legalArgumentException. Line
64 adds the deposit amount to the current balance and invokes method setBalance
to update the Account. Method getName (lines 68—71) returns the Account name.

Application AccountManager presents Account information to the user through
three views: AccountTextView, AccountBarGraphView and AccountPie-
ChartVview. Each view presents a different visual representation of the Account informa-
tion. AbstractAccountView (Fig. 3.5) is an abstract base class for these Account
views that provides common functionality, such as registering as an Account observer.
Class AbstractAccountView implements interface Observer, which allows each
AbstractAccountView subclass to register as an Observer of an Account. .

1
2
3
4 package com.deitel.advjhtpl.mvc.account;
5
6
7 import java.util.*;
8 import java.awt.*;
9
10

11 import javax.swing.JPanel;
12 import javax.swing.border.*;

14 public abstract class AbstractAccountView extends JPanel
15 implements Observer {

18 private Account account;

Fig. 3.5 AbstractAccountView absfract base class for observing Accounts
(part 1 of 2).

92 Model-View-Controller Chapter 3

21 public AbstractAccountView(Account observableAccount)

22 throws NullPointerException
23 {

25 if (observableAccount == null)
26 throw new NullPointerException();

29 account = observableAccount;

32 account .addObserver(this);

35 setBackground(Color.white);
36 setBorder(new MatteBorder(1, 1, 1, 1, Color.black));

40 public Account getAccount ()
41 {
42 return account;

43 }

46 protected abstract void updateDisplay () ;

49 public void update(Observable observable, Object object)
50 {

51 updateDisplay () ;

52 }

53 1}

Fig. 3.5 AbstractAccountView absfract base class for observing Accounts
(part 2 of 2).

Class AbstractAccountView extends JPanel because AbstractAccount-
View implementations provide graphical presentations of Account data. Line 18
declares a private member variable for the Account that the AbstractAccount-
View will observe. The constructor (lines 21-37) sets the account member variable to
the new Account (line 29). Line 32 invokes method addObserver of class Observ-
able to register the newly created AbstractAccountView instance as an Observer
of the new Account. The Account will now notify this AbstractAccountView of
any modifications to the Account. Lines 35-36 set the AbstractAccountView’s
background color and border.

Method getAccount (lines 40-43) returns the AbstractAccountView’s
account. Method updateDisplay (line 46) is marked abstract, requiring each
AbstractAccountView subclass to provide an appropriate implementation for dis-
playing the Account information. For example, AbstractAccountView subclass
AccountTextView provides an updateDisplay implementation that shows the

Chapter 3 Model-View-Controller 93

Account balance in a JTextField. Method update (lines 49-52) invokes method
updateDisplay each time an Account notifies the AbstractAccountView of a
change. Interface Observer defines method update, which takes as an Observable
argument a reference to the Observable instance that issued the update. An Observ-
able object issues an update by invoking method notifyObservers of class
Observable. Method notifyObservers invokes method update for each regis-
tered Observer. An Observer that listens for updates from multiple Observable
objects can use the Observable argument to determine which Observable object
issued the update. The Object argument (line 50) contains optional data the Observ-
able object may pass to an overloaded version of method notifyObservers. This
Object could contain information about the specific data that changed in the model.

AccountTextView (Fig. 3.6) extends AbstractAccountView to provide a
text-based view of Account data. Line 16 creates a JTextField in which Account-
TextView displays the Account balance. Lines 19-20 create a NumberFormat field
to format the Account balance as U. S. dollars. The AccountTextView constructor
(lines 23-35) invokes the AbstractAccountView constructor with the given
Account to perform required initialization (line 25). Line 28 makes the balanceTex-
tField uneditable to prevent users from modifying the balance directly. Lines 31-32 add
a JLabel and the balanceTextField to the AccountTextView. Line 34 invokes
method updateDisplay to display the current Account balance.

1

2

3

4 package com.deitel.advjhtpl.mvc.account;
5

6

7 import java.util.*;

8 import java.text.NumberFormat;
9

10

11 import javax.swing.*;

12

13 public class AccountTextView extends AbstractAccountView {

16 private JTextField balanceTextField = new JTextField ()

19 private NumberFormat moneyFormat =
20 NumberFormat .getCurrencyInstance(Locale.);

23 public AccountTextView(Account account)
24 {
25 super (account);

Fig. 3.6 AccountTextView for displaying observed Account information in a
JTextField (part 1 of 2).

94 Model-View-Controller Chapter 3

28 balanceTextField.setEditable();
31 add(new JLabel ()):
32 add(balanceTextField);

34 updateDisplay () ;

38 public void updateDisplay ()
39 {

41 balanceTextField.setText (moneyFormat.format (
42 getAccount () .getBalance()));

44)

Fig. 3.6 AccountTextView for displaying observed Account information in a
JTextField (part 2 of 2).

Method updateDisplay (lines 38—43) implements abstract method updateDis-
play of class AbstractAccountView. Lines 41-42 set the balanceTextField’s
text to the formatted Account balance. Recall that method update of class Abstrac-
tAccountView invokes method updateDisplay each time method update
receives a notification from the Account model.

AccountBarGraphView (Fig. 3.7) extends AbstractAccountView to pro-
vide a bar-graph view of Account data. Method paintComponent (lines 21-57) draws
a bar graph for the current Account balance. Line 24 invokes method paintCompo-
nent of the superclass to follow the proper painting sequence. Line 27 gets the current
Account balance. Line 32 calculates the length in pixels of the Account’s bar graph.
The entire graph is 200 pixels wide and represents -$5,000 to +$5,000, so we divide the
Account balance by $10,000 and multiply by 200 pixels to calculate the length of the the
bar. If the Account balance is positive, lines 36—37 draw the bar graph in black. If the
Account balance is negative, lines 42—43 draw the bar graph in red.

package com.deitel.advjhtpl.mvc.account;

import java.awt.*;

NVOONOGTAWN=—

10 import javax.swing.*;

11

Fig. 3.7 AccountBarGraphView for rendering observed Account informa-
fion as a bar graph (part 1 of 3).

Chapter 3 Model-View-Controller 95

12 public class AccountBarGraphView extends AbstractAccountView {

15 public AccountBarGraphView(Account account)
16 {
17 super(account);

18 }

21 public void paintComponent(Graphics g)
22 {

24 super.paintComponent(g);

27 double balance = getAccount() .getBalance();

32 int barLength = (int) ((balance /) *):

35 if (balance >=) {
36 g.setColor(Color.black);
37 g.fillRect (’ , barLength,);

41 else {
42 g.setColor(Color.red);
43 g.fillRect (+ barLength, , -barLength,) ;

.setColor(Color.black);
.drawLine(5, ‘ ')i
.drawLine (o g v):

B
[«]
QQQ

.setFont (new Font (, Font.PLAIN,))i
.drawString(o Bg)i

. drawString (7 7) 7

.drawString (o ’);

o
w
QQQQ

60 public void updateDisplay ()
61 {

62 repaint () ;

63 }

Fig. 3.7 AccountBarGraphView for rendering observed Account informa-
fion as a bar graph (part 2 of 3).

96 Model-View-Controller Chapter 3

64

65

66 public Dimension getPreferredSize()
67 {

68 return new Dimension(o):
69 }

70

71

72 public Dimension getMinimumSize ()
73 {

74 return getPreferredSize();

75 }

76

77

78 public Dimension getMaximumSize ()
79 {

80 return getPreferredSize();

81 }

82

Fig. 3.7 AccountBarGraphView for rendering observed Account informa-
tion as a bar graph (part 3 of 3).

Method updateDisplay (lines 60-63) invokes method repaint (line 62) to
update the bar graph’s display. AbstractAccountView method update invokes
method updateDisplay each time the Account model notifies the view of a change
in the model. Method getPreferredSize (lines 66-69) overrides method get-
PreferredsSize of class JPanel. Line 68 returns a new Dimension object that spec-
ifies the AccountBarGraphView’s preferred size as 210 pixels wide by 50 pixels tall.
Most LayoutManagers use method getPreferredSize to determine how much
space to allocate for each component. Lines 72-81 override methods getMinimumsSize
and getMaximumSize to return the AccountBarGraphView’s preferred size.

AssetPieChartView (Fig. 3.8) provides a pie-chart view of multiple asset
Accounts. AssetPieChartView shows the percentage of total assets held in each
Account as wedges in the pie chart. AssetPieChartView defines method add-
Account (line 25-42), which adds an Account to the List of Accounts shown in
the pie chart. If the given Account reference is null, line 29 throws aNullPointer-
Exception. Otherwise, line 32 adds the Account to accounts. Line 35 invokes
method getRandomColor and adds the random Color to the colors Map. Asset -
PieChartView uses this color to draw the Account’s wedge in the pie chart. The
Account object itself is the Color’s key in the Map. Line 38 invokes method add-
Observer of class Account to register the AssetPieChartView for Account
updates. Line 41 invokes method repaint the display the pie chart with the new
Account’s information.

Method removeAccount (lines 45-58) removes an Account from the pie chart.
Line 48 invokes method deleteObserver of class Account to unregister the Asset -
PieChartView as an Observer of the Account. Line 51 removes the Account
from List accounts, and line 54 removes the Account’s color from HashMap
colors. Line 57 invokes method repaint to update the pie-chart display.

Chapter 3 Model-View-Controller 97
1

2

3

4 package com.deitel.advjhtpl.mvc.account;
5

6

7 import java.awt.*;

8 import java.util.*;

9 import java.util.List;
10

12 import
13 import

15 public
16 imp

19 pri

22 pri

javax.swing.*;
javax.swing.border. *;

class AssetPieChartView extends JPanel
lements Observer {

vate List accounts = new ArrayList();

vate Map colors = new HashMap():;

25 public void addAccount(Account account)

if (account == null)
throw new NullPointerException();

accounts.add(account);

colors.put(account, getRandomColor());

account.addObserver(this);

repaint () ;

45 public void removeAccount (Account account)

46 {

account.deleteObserver(this);

accounts.remove(account);

Fig. 3.8 AssetPieChartView forrendering multiple observed asset Accounts

as

a pie chart (part 1 of 5).

98 Model-View-Controller Chapter 3

54 colors.remove(account);

57 repaint () ;

61 public void paintComponent(Graphics g)
62 {

64 super.paintComponent(g);

67 drawPieChart(g);

70 drawLegend(g);

74 private void drawPieChart(Graphics g)
75 {

77 double totalBalance = getTotalBalance();
80 double percentage

81 int startAngle =
82 int arcAngle = 0;

~

~ |

84 Iterator accountIterator = accounts.iterator();
85 Account account = null;

88 while (accountIterator.hasNext()) {

21 account = (Account) accountIterator.next();

94 if (!includeAccountInChart(account))
95 continue;

98 percentage = account.getBalance() / totalBalance;

101 arcAngle = (int) Math.round(percentage *):

104 g.setColor((Color) colors.get(account));

Fig. 3.8 AssetPieChartView forrendering multiple observed asset Accounts
as a pie chart (part 2 of 5).

Chapter 3 Model-View-Controller

99

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

g.fillArc(5, 5, o , startAngle, arcAngle);

startAngle += arcAngle;

private void drawLegend(Graphics g)

{
Iterator accountIterator = accounts.iterator();
Account account = null;

Font font = new Font(, Font.BOLD,):
g.setFont(font);

FontMetrics metrics = getFontMetrics(font);
int ascent = metrics.getMaxAscent();
int offsetY = ascent + 2;

for (int i = 1; accountIterator.hasNext(); i++) {

account = (Account) accountIterator.next():;

g.setColor((Color) colors.get(account));
g.fillRect(, offsetY * i, ascent, ascent);

g.setColor(Color.black);
g.drawString(account.getName(), ,
offsetY * i + ascent);

private double getTotalBalance()
{

double sum = ;

Iterator accountIterator = accounts.iterator();
Account account = null;

Fig. 3.8

AssetPieChartView forrendering multiple observed asset Accounts

as a pie chart (part 3 of 5).

100 Model-View-Controller Chapter 3

156 while (accountIterator.hasNext()) {
157 account = (Account) accountIterator.next();

160 if (includeAccountInChart(account))
161 sum += account.getBalance();

162 }

164 return sum;

169 protected boolean includeAccountInChart(Account account)
170 {

173 return account.getBalance() > ;

177 private Color getRandomColor ()
178 {

180 int red = (int) (Math.random() *) ;
181 int green = (int) (Math.random() *):
182 int blue = (int) (Math.random() *);

185 return new Color(red, green, blue);

189 public void update(Observable observable, Object object)
190 {

191 repaint () ;

192 }

195 public Dimension getPreferredSize()
196 {
197 return new Dimension(,) ;

198 }

201 public Dimension getMinimumSize()
202 {
203 return getPreferredSize();

204 }

Fig. 3.8 AssetPieChartView forrendering multiple observed asset Accounts
as a pie chart (part 4 of 5).

Chapter 3 Model-View-Controller 101

206

207 public Dimension getMaximumSize ()
208 {

209 return getPreferredSize();

210 }

211 3

Fig. 3.8 AssetPieChartView forrendering multiple observed asset Accounts
as a pie chart (part 5 of 5).

Method paintComponent (lines 61-71) invokes methods drawPieChart (line
67) and drawLegend (line 70) to draw the pie chart and chart legend, respectively.
Method drawPieChart (lines 74-112) draws a pie-chart wedge for each Account.
Line 77 invokes method getTotalBalance to get the total balance for all Accounts.
Lines 80-111 calculate the percentage of the total balance held in each Account and draw
the wedges. Line 91 gets the next Account from accountIterator. Line 94 invokes
method includeAccountInChart to determine if the pie chart should include the cur-
rent Account. If the chart should not include the Account, line 95 continues the
while loop to the next iteration. Line 98 calculates the percentage of the total assets held
in the current Account. Line 101 calculates the size of the Account’s pie wedge. Line
104 gets the Account’s color from Map colors and invokes method setColor of
class Graphics. Line 107 invokes method £il11Arc of class Graphics to draw the
Account’s pie wedge. The first four arguments to method £111Arc specify the position
and diameter of the arc, respectively. The third argument—startAngle—specifies the
angle at which the arc should begin. The fourth argument—arcAngle—specifies the
degrees of arc sweep. Line 101 sets the startAngle for the next pie wedge.

Method drawLegend (lines 115-145) draws a legend (shown in Fig. 3.10) to show
which color represents each Account. The legend shows each color square and Account
name in a list along the right side of the pie chart. Lines 137-138 set the Font in which to
draw the Account. Lines 121-128 use a FontMetrics object to calculate the heights
of characters in the current Font. Line 127 invokes method getMaxAscent of class
FontMetrics to get the maximum ascent (i.e., maximum height above the baseline) of
characters in the current Font. Line 128 calculates of £setY by adding 2 to the Font’s
maximum ascent. We use of £setY to determine the position at which to draw each
Account’s color square and name. Lines 131-144 draw the legend item for each
Account. Line 134 gets the next Account from accountIterator. Lines 137-138
draw the color square, and lines 141-143 draw the Account name.

Method getTotalBalance (lines 148-165) calculates the total balance for all
included Accounts. Line 160 invokes method includeAccountInChart to deter-
mine whether the calculation should include the current Account. If the calculation
should include the Account, line 161 adds the Account’s balance to variable sum.

Method includeAccountInChart (lines 169-174) returns a boolean indi-
cating whether the Account should be included in the pie chart. AssetPieChartView
shows only asset Accounts (i.e., Accounts with positive balances). Line 173 returns
true only if the Account balance is greater than zero. Subclasses can override this
method to include and exclude Accounts based on other criteria.

102 Model-View-Controller Chapter 3

Method getRandomColor (lines 177-186) generates a random Color. Asset-
PieChartView uses this method to generate a different Color for each Account in
the pie chart. Lines 180-182 calculate random values for the red, green and blue
Color components. Line 185 creates a new Color object using the random red, green
and blue values and returns the new Color to the caller.

Method update (lines 189-192) invokes method repaint to update the pie-chart
display. Method getPreferredsize (lines 195-198) returns the AssetPieChart-
View’s preferred size, which provides enough space to draw the pie chart and legend.

AccountController (Fig. 3.9) implements the controller in the MVC architec-
ture. AccountController provides a user interface for modifying Account data.
AccountController extends JPanel (line 14), because it provides a set of GUI com-
ponents for depositing and withdrawing Account funds.

Line 28 sets the account member variable to the Account that AccountCon-
troller will control. Line 31 creates a JTextField into which users can enter an
amount to withdraw from, or deposit in, the controlled Account. Line 34 creates a
JButton for depositing the given amount into the Account. The depositButton’s
ActionListener (lines 37-55) invokes method deposit of class Account to deposit
the amount entered in amountTextField (lines 44-45). If method parseDouble (line
44) throws a NumberFormatException because the text entered was not a valid number,
lines 48—53 catch the exception and display an error message to the user.

1

2

3

4

5 package com.deitel.advjhtpl.mvc.account;
6

7

8 import java.awt.*;

9 import java.awt.event.*;

10

11

12 import javax.swing.*;

13

14 public class AccountController extends JPanel {
15

16

17 private Account account;

18

19
20 private JTextField amountTextField;
21
22

23 public AccountController(Account controlledAccount)
24 {

25 super () ;

26

Fig. 3.9 AccountController for obtaining user input to modify Account
information (part 1 of 3).

Chapter 3

Model-View-Controller

103

account = controlledAccount;

amountTextField = new JTextField():

JButton depositButton = new JButton();

depositButton.addActionListener (
new ActionListener () {

public void actionPerformed(ActionEvent event)

{
try {

account.deposit (Double.parseDouble (
amountTextField.getText ())):;
}

catch (NumberFormatException exception) {
JOptionPane.showMessageDialog (
AccountController.this,

4

JOptionPane.ERROR_MESSAGE) ;

JButton withdrawButton = new JButton()

withdrawButton.addActionListener(
new ActionListener() {

public void actionPerformed(ActionEvent event)

{
try {

account .withdraw(Double.parseDouble (
amountTextField.getText ()));
}

catch (NumberFormatException exception) {
JOptionPane.showMessageDialog (
AccountController.this,
JOptionPane.ERROR _MESSAGE) ;
}

AccountController for obtaining user input to modify Account
information (part 2 of 3).

104 Model-View-Controller Chapter 3

79 }

80 }

81)i

82

83

84 setLayout (new FlowLayout());
85 add(new JLabel ())
86 add(amountTextField);

87 add(depositButton);

88 add(withdrawButton);

89 }

90

Fig. 3.9 AccountController for obtaining user input to modify Account
information (part 3 of 3).

Line 59 creates a JButton for withdrawing the given amount from the Account.
The withdrawButton’s ActionListener (lines 62-80) invokes method with-
draw of class Account to withdraw the amount entered in amountTextField (lines
69-70). If method parseDouble (line 69) throws a NumberFormatException,
because the text entered was not a valid number, lines 73—78 catch the exception and dis-
play an error message to the user. Lines 84-88 lay out amountTextField, a JLabel,
depositButton and withdrawButton.

AccountManager (Fig. 3.10) is an application that uses MVC to manage Account
information. Lines 22 creates a new Account with the name Account 1 and a $1,000.00
balance. Line 25 invokes method getAccountPanel of class AccountManager to
create a JPanel containing view and controller components for account1. Line 28 creates
a new Account with the name Account 2 and a $3,000.00 balance. Line 31 invokes
method createAccountPanel to create a JPanel containing view and controller com-
ponents for account2. Lines 34-35 create an AssetPieChartView for displaying
accountl and account2 information in a pie chart. Lines 38—39 invoke method add-
Account of class AssetPieChartView to add account1 and account2 to the pie
chart. Lines 42-47 create a JPanel with a TitledBorder for the AssetPieChart-
View. Lines 50-54 lay out the JPanels for each account and AssetPieChartView.

Method createAccountPanel creates a JPanel containing an AccountCon-
troller, AccountTextView and AccountBarGraphView for the given
Account. Lines 64-68 create a JPanel with a TitledBorder to contain the
Account’s GUI components. Lines 71-72 create an AccountTextView for the
Account. Lines 75-76 create an AccountBarGraphView for the Account. Lines
79-80 create an AccountController for the Account. Lines 83-85 lay out the
AccountTextView, AccountBarGraphView and AccountController com-
ponents on accountPanel.

Figure 3.10 shows sample AccountManager output. Notice as you run the program
that the views reflect each withdrawal or deposit immediately. For example, depositing
1500.00 in Account 1 causes the AccountTextView for Account 1 to display
$2,500.00, the AccountBarGraphview for Account 1 to display a larger bar
graph and AssetPieChartView to display a larger wedge for Account 1. With-
drawing 4623 .12 from Account 2 causes a new balance of ($1, 623 .12) (parentheses

Chapter 3 Model-View-Controller 105

indicate a negative balance) to be shown, a red bar graph to be displayed and the Account
2 wedge from AssetPieChartView to be removed. If both Accounts have negative
balances, AssetPieChartView removes both Accounts from the pie chart.

1

2

3

4 package com.deitel.advjhtpl.mvc.account;
5

6

7 import java.awt.*;

8 import java.awt.event.*;

9

10

11 import javax.swing.*;
12 import javax.swing.border.*;

14 public class AccountManager extends JFrame {

17 public AccountManager ()
18 {
19 super () :

22 Account accountl = new Account (o);:

25 JPanel accountlPanel = createAccountPanel(accountl);

28 Account account2 = new Account (o);

31 JPanel account2Panel = createAccountPanel(account2);

34 AssetPieChartView pieChartView =
35 new AssetPieChartView() ;

38 pieChartView.addAccount (accountl);
39 pieChartView.addAccount(account2);
42 JPanel pieChartPanel = new JPanel();

44 pieChartPanel.setBorder (
45 new TitledBorder ())i

Fig. 3.10 AccountManager application for displaying and modifying Account
information using the model-view-controller architecture (part 1 of 3).

106 Model-View-Controller Chapter 3

47 pieChartPanel.add(pieChartView);

48

49

50 Container contentPane = getContentPane();
51 contentPane.setLayout (new GridLayout(3,));
52 contentPane.add(accountlPanel);

53 contentPane.add(account2Panel);

54 contentPane.add(pieChartPanel);

55

56 setSize(o)

57

58 }

59

60

61 private JPanel createAccountPanel(Account account)
62 {

63

64 JPanel accountPanel = new JPanel();

65

66

67 accountPanel . setBorder (

68 new TitledBorder(account.getName()));
69

70

71 AccountTextView accountTextView =

72 new AccountTextView(account);

73

74

75 AccountBarGraphView accountBarGraphView =
76 new AccountBarGraphView(account);

77

78

79 AccountController accountController =

80 new AccountController(account);

81

82

83 accountPanel.add(accountController);

84 accountPanel.add(accountTextView);

85 accountPanel.add(accountBarGraphView);
86

87 return accountPanel;

88

89 }

90

91

92 public static void main(String args[])

93 {

94 AccountManager manager = new AccountManager();
95 manager.setDefaultCloseOperation(EXIT ON_CLOSE);
96 manager.setVisible ():

97 }

98)

Fig. 3.10 AccountManager application for displaying and modifying Account
information using the model-view-controller architecture (part 2 of 3).

Chapter 3 Model-View-Controller 107

E;Accuunt Manager -|EI 5[@Accuunt Manager ;IEIII
Account 1

Account 1

Amount: Deposit Withdraw Amount: [1500.00 Deposit Withdraw
0

-$5.000 # +55,000 -$5.000 B0 +$5,000
Balance: [$1,000.00 _ Balance: [$2,500.00 _

Account 2 Account 2
Amount: Deposit Withdraw Amount: Deposit Withdraw
-$5,000 30 56,000 -§5.000 50 +55.000
Balance: [$3,000.00 4_7 Balance: [$3,000.00 4_7
Assets Assets
Account 1 Account 1
Account 2 Account 2

[&4 account Manager 131 x| [E4 account Manager 10l x|

Account 1

Account 1

Amount: {1500.00 Deposit Withdraw Amount: [3210.93 Deposit Withdraw

-$5,000 $0 +$5,000 -§5,000 $0 +§5,000
Balance: [$2,500.00 _ Balance: [(§710.93) #

Account 2

Account 2

Amount: [4523.12 Deposit Withdraw Amount: [4523.12 Deposit Withdraw
-$5,000 $0 +$5,000 -§5,000 $0 +§5,000
Balance: [(§1,623.12) ‘ Balance: [(§1,623.12) ‘

Assets

Assets

Account 1

Account 1
Account 2

Account 2

Fig. 3.10 AccountManager application for displaying and modifying Account
information using the model-view-conftroller architecture (part 3 of 3).

3.4 JList

JList is a Swing component that implements the delegate-model architecture. JList acts
as a delegate for an underlying ListModel (Fig. 3.11). Interface ListModel defines
methods for getting list elements, getting the size of the list and registering and unregistering
ListDataListeners. A ListModel notifies each registered ListDataListener
of each change in the ListModel.

Class PhilosophersJdList (Fig. 3.12) uses a JList and DefaultListModel
to display a list of philosophers. Class DefaultListModel provides a basic List-
Model implementation. Line 23 creates a new DefaultListModel, and lines 24-31
add several philosophers to the DefaultListModel. Line 34 creates a new JList and

108 Model-View-Controller Chapter 3

modifies

JList ListModel
notifies

v

Fig. 3.11 JList and ListModel delegate-model architecture.

passes the philosophers DefaultListModel to the JList constructor. The
JList constructor registers the JList as a ListDataListener of the Default-
ListModel, so that updates to the DefaultListModel will be reflected in the
JList. Lines 37-38 set the JList’s selection mode to allow the user to select only one
philosopher at a time. The selection modes are constant integer values defined in interface
ListSelectionModel. For example, MULTIPLE_INTERVAL_SELECTION allows
the user to select multiple, separate intervals in the JList.

package com.deitel.advjhtpl.mvc.list;

import java.awt.¥*;
import java.awt.event.*;

NVOONOCTTRAWN—

10 import javax.swing.*;

12 public class PhilosophersJList extends JFrame {

13

14 private DefaultListModel philosophers;

15 private JList list;

16

17

18 public PhilosophersJList ()

19 {

20 super () ;

21

22

23 philosophers = new DefaultListModel() ;

24 philosophers.addElement ();

25 philosophers.addElement ();

26 philosophers.addElement ();

27 philosophers.addElement ():
28 philosophers.addElement ():
29 philosophers.addElement ():

30 philosophers.addElement ();
31 philosophers.addElement ():

32

Fig. 3.12 PhilosophersJList application demonstrating JList and
DefaultListModel (part 1 of 3).

Chapter 3 Model-View-Controller 109

34 list = new JList(philosophers);

37 list.setSelectionMode (
38 ListSelectionModel.SINGLE_SELECTION) ;

41 JButton addButton = new JButton();
42 addButton.addActionListener (
43 new ActionListener() {

45 public void actionPerformed(ActionEvent event)
46 {

48 String name = JOptionPane.showInputDialog (
49 PhilosophersJList.this,) ;

52 philosophers.addElement (name) ;

58 JButton removeButton =
59 new JButton();

61 removeButton.addActionListener (
62 new ActionListener() {

64 public void actionPerformed(ActionEvent event)
65 {

67 philosophers.removeElement (
68 list.getSelectedvalue());

74 JPanel inputPanel = new JPanel();
75 inputPanel.add(addButton);
76 inputPanel.add(removeButton);

78 Container container = getContentPane();
79 container.add(list, BorderLayout.CENTER) ;
80 container.add(inputPanel, BorderLayout.NORTH) ;

82 setDefaultCloseOperation(EXIT ON_CLOSE);
83 setSize(0);
84 setVisible(true);

Fig. 3.12 PhilosophersJList application demonstrating JList and
DefaultListModel (part 2 of 3).

110 Model-View-Controller

Chapter 3

89 public static void main(String args[])
91 new PhilosophersJList();
fe4Favarite Philosophers — 13l x| i Favorite Philosophers 18l x|
 sarmasonr | s | [T p———
Socrates Gocrates
Plato Plato
Aristotie Aristotle
5t Thomas Aquinas 5t. Thomas Aquinas
Soren Kierkegaard Soren Kierkegaard
Immanuel Kant Immanuel Kant
Friedrich Mietzsche Friedrich Mietzsche
Hannah Arendt Harnah Arendt
E\g_{iFavurite Philosophers 1Ol x| Eg_"g'Favorite Philosophers 10l x|
‘ Add Phil H EEm Phil % q| Remove Selected Philosopher |
Socrates Socrates
Plato Plato
Aristotle Aristotle

St. Thornas Aguinas
Soren Kierkegaard
Immanuel Kant
Harninah Arendt

St. Thamas Aguinas
Soren Kierkegaard
Irmmanuel Kant
Harnah Arendt

E Enter Name
[Thomas More |
(o | e

Eg_"g'Favorite Philosophers

| o [pra |

Socrates

Plato %
Aristotle

St Thamas Aguinas

Soren Kierkegaard

Irmmanuel Kant

Harnah Arendt

Thomas hiore

Fig. 3.12 PhilosophersJList application demonstrating JLiist and
DefaultListModel (part 3 of 3).

Lines 41-55 create a JButton for adding new philosophers to the DefaultList-
Model. Lines 48—49 in method actionPerformed invoke static method show-
InputDialog of class JOptionPane to prompt the user for the philosopher’s name.

Chapter 3 Model-View-Controller 111

Line 52 invokes method addElement of class DefaultListModel to add the new
philosopher to the list. The DefaultListModel will notify the JList that the model
changed, and the JList will update the display to include the new list item.

Lines 58-71 create a JButton for deleting a philosopher from the DefaultList-
Model. Lines 67-68 in method actionPerformed invoke method getSelected-
Value of class JList to get the currently selected philosopher and invoke method
removeElement of class DefaultListModel to remove the philosopher. The
DefaultListModel will notify the JList that the model changed, and the JList
will update the display to remove the deleted philosopher. Lines 74-84 lay out the GUI
components and set JFrame properties for the application window.

3.5 JTable

JTable is another Swing component that implements the delegate-model architecture.
JTables are delegates for tabular data stored in TableModel implementations. Inter-
face TableModel declares methods for retrieving and modifying data (e.g., the value in
a certain table cell) and for retrieving and modifying metadata (e.g., the number of columns
and rows). The JTable delegate invokes TableModel methods to build its view of the
TableModel and to modify the TableModel based on user input.

Figure 3.13 describes the methods defined in interface TableModel. Custom imple-
mentations of interface TableModel can use arbitrary internal representations of the tabular
data. For example, the DefaultTableModel implementation uses Vectors to store the
rows and columns of data. In Chapter 8, JDBC, we implement interface TableModel to
create a TableModel that represents data stored in a JDBC ResultSet. Figure 3.14 illus-
trates the delegate-model relationship between JTable and TableModel.

Method Description

void addTableModelListener(TableModelListener listener)

Add a TableModelListener to the TableModel. The TableModel
will notify the TableModelListener of changes in the TableModel.

void removeTableModelListener(TableModelListener listener)
Remove a previously added TableModelListener from the TableModel.
Class getColumnClass(int columnIndex)
Get the Class object for values in the column with specified columnIndex.
int getColumnCount ()
Get the number of columns in the TableModel.
String getColumnName(int columnIndex)
Get the name of the column with the given columnIndex.
int getRowCount ()
Get the number of rows in the TableModel.

Fig. 3.13 TableModel interface methods and descriptions (part 1 of 2).

112 Model-View-Controller Chapter 3

Method Description

Object getValueAt(int rowIndex, int columnIndex)

Get an Object reference to the value stored in the TableModel at the given
row and column indices.

void setValueAt(Object value, int rowIndex, int columnIndex)
Set the value stored in the TableModel at the given row and column indices.
boolean isCellEditable(int rowIndex, int columnIndex)

Return true if the cell at the given row and column indices is editable.

Fig. 3.13 TableModel interface methods and descriptions (part 2 of 2).

modifies

JTable TableModel
notifies

v

Fig. 3.14 JTable and TableModel delegate-model architecture.

PhilosophersJdTable (Fig. 3.15) displays philosopher information in a JTable
using a DefaultTableModel. Class DefaultTableModel implements interface
TableModel and uses Vectors to represent the rows and columns of data. Line 24 cre-
ates the philosophers DefaultTableModel. Lines 27-29 add columns to the
DefaultTableModel for the philosophers’ first names, last names and years in which
they lived. Lines 32-53 create rows for seven philosophers. Each row is a String array
whose elements are the philosopher’s first name, last name and the year in which the phi-
losopher lived, respectively. Method addRow of class DefaultTableModel adds each
philosopher to the DefaultTableModel. Line 56 creates the JTable that will act as a
delegate for the philosophers DefaultTableModel.

Lines 59-72 create a JButton and ActionListener for adding a new philoso-
pher to the DefaultTableModel. Line 66 in method actionPerformed creates a
String array of three empty elements. Line 69 adds the empty String array to the
DefaultTableModel. This causes the JTable to display a blank row at the bottom of
the JTable. The user can then type the philosopher’s information directly into the
JTable cells. This demonstrates the JTable delegate acting as a controller, because it
modifies the DefaultTableModel based on user input.

1
2
3 package com.deitel.advjhtpl.mvc.table;

Fig. 3.15 PhilosophersJdTable application demonstrating JTable and
DefaultTableModel (part 1 of 4).

Chapter 3 Model-View-Controller

113

4

5

6 import java.awt.*;

7 import java.awt.event.*;
8
9

10 import javax.swing.*;
11 import javax.swing.table.*;

13 public class PhilosophersJTable extends JFrame {

15 private DefaultTableModel philosophers;

16 private JTable table;

17

18

19 public PhilosophersJTable ()

20 {

21 super ():

22

23

24 philosophers = new DefaultTableModel() ;

25

26

27 philosophers.addColumn ():

28 philosophers.addColumn ():

29 philosophers.addColumn ();

30

31

32 String[] socrates = { o o }
33 philosophers.addRow(socrates);

34

35 string[] plato = { 0 o };
36 philosophers.addRow(plato);

37

38 String[] aquinas = { 0 '

39 philosophers.addRow(aquinas);

40

41 String[] kierkegaard = { o o
42 };

43 philosophers.addRow(kierkegaard);

44

45 string[] kant = { o 0 }i
46 philosophers.addRow(kant);

47

48 Sstring[] nietzsche = { 5 0
49 };

50 philosophers.addRow(nietzsche);

51

52 String[] arendt = { y o }:
53 philosophers.addRow(arendt);

54

Fig. 3.15 PhilosophersJdTable application demonstrating JTable and
DefaultTableModel (part 2 of 4).

114 Model-View-Controller Chapter 3

55

56 table = new JTable(philosophers);

57

58

59 JButton addButton = new JButton();
60 addButton.addActionListener (

61 new ActionListener () {

62

63 public void actionPerformed(ActionEvent event)
64 {

65

66 String[] philosopher = { , , }:
67

68

69 philosophers.addRow(philosopher);

70 }

71 }

72);

73

74

75 JButton removeButton =

76 new JButton():
77

78 removeButton.addActionListener (

79 new ActionListener() {

80

81 public void actionPerformed(ActionEvent event)
82 {

83

84 philosophers.removeRow (

85 table.getSelectedRow());

86 }

87 }

88):

89

90

91 JPanel inputPanel = new JPanel();

92 inputPanel.add(addButton);

93 inputPanel.add(removeButton);

94

95 Container container = getContentPane();

96 container.add(new JScrollPane(table),

97 BorderLayout.) ;

98 container.add(inputPanel, BorderLayout.)
99

100 setDefaultCloseOperation ():

101 setSize(0)

102 setVisible(true);

103

104 }

105

Fig. 3.15 PhilosophersJdTable application demonstrating JTable and
DefaultTableModel (part 3 of 4).

Chapter 3 Model-View-Controller 115
107 public static void main(String args[])
109 new PhilosophersJTable() ;
] g 2 5] ; .
E‘-‘j,jFavorlte Philosophers i o =13 E‘-‘j,jFavorlte Philosophers o =13
| aaaphi || Rem p | | aaaphi || mi P
|

First Name [Last Name [Years First Name [Last Name Years
Socrates 469-399 B.C. Socrates 469-399 B.C.
Plato 428-347 B.C. Plato 428-347 B.C.
Thomas Aguinas 1225-1274 Thomas Aguinas 1225-1274
Soren Kietkegaard 1813-1855 Soren Kietkegaard 1813-1855
Immanuel Kant 1724-1804 Immanuel Kant 1724-1804
Friedrich Mietzsche 1844-1500 Hannah Arendt 1006-1575
Hannah k Arendt 1906-1975
] F: - B] P .y i
E‘i_ijFavurlte Philosophers 8 =13 E‘i_ijFavurlte Philosophers i =13

Bk st | * aosoner || st |
L)

Firgt Name [Last Name I Years Firgt Name [Last Name I Years
Gocrates 469-393 B.C Gocrates 469-393 B.C
Plato 428-347 B.C. Plato 428-347 B.C.
Thomas Aruinas 1226-1274 Thomas Aruinas 1226-1274
Saoren Kierkegaard 1813-1855 Saoren Kierkegaard 1813-1855
Immanuel Kant 1724-1804 Immanuel Kant 1724-1804
Hannah Arendt 1906-1975 Hannah Arendt 1906-1975

Thomas Morel T]

Fig. 3.15 PhilosophersJdTable application demonstrating JTable and
DefaultTableModel (part 4 of 4).

Lines 75-88 create a JButton and ActionListener for removing a philosopher
from the DefaultTableModel. Lines 84-85 in method actionPerformed retrieve
the currently selected row in the JTable delegate and invoke method removeRow of class
DefaultTableModel to remove the selected row. The DefaultTableModel notifies
the JTable that the DefaultTableModel has changed, and the JTable removes the
appropriate row from the display. Lines 96-97 add the JTable to a JScrollPane. JTa-
bles will not display their column headings unless placed within a JScrollPane.

3.6 JTree

JTree is one of the more complex Swing components that implements the delegate-model
architecture. TreeModels represent hierarchical data, such as family trees, certain types
of file systems, company management structures and document outlines. JTrees act as
delegates (i.e., combined view and controller) for TreeModels.

116 Model-View-Controller Chapter 3

To describe tree data structures, it is common to use terms that more commonly
describe family trees.> A tree data structure consists of a set of nodes (i.e., members or ele-
ments of the tree) that are related as parents, children, siblings, ancestors and descendents.
A parent is a node that has other nodes as its children. A child is a node that has a parent.
Sibling nodes are two or more nodes that share the same parent. An ancestor is a node that
has children that also have children. A descendent is a node whose parent also has a parent.
A tree must have one node—called the root node—that is the parent or ancestor of all other
nodes in the tree. [Note: Unlike in a family tree, in a tree data structure a child node can
have only one parent.]

Figure 3.16 shows the relationships among nodes in a tree. The IJTree contains a hier-
archy of philosophers whose root is node Philosophers. Node Philosophers has
seven child nodes, representing the major eras of philosophy—Ancient, Medieval,
Renaissance, Early Modern, Enlightenment, 19th Century and 20th
Century. Each philosopher (e.g., Socrates, St. Thomas Aquinas and Immanuel
Kant) is a child of the philosopher’s era and is a descendent of node Philosophers.
Nodes Socrates, Plato and Aristotle are sibling nodes, because they share the
same parent node (Ancient).

E‘%Favorite Philosophers 10l =|

| Add Philosopt || R Selected Philosopher |

= Fhilosophers
@ [J Ancient
D Socrates
[y Plata
[aristotle
@ I Medieval
D 5t Thamas Aguinas
@ [J Renaissance
D Thomas More
@ [Early Modern
D John Locke
@ [Enlightenment
D Immanuel Kant
% CJ18th Century
D Soren Kierkegaard
[Friedrich Nistzsche
% 3 20th Century
D Hannah Arendt

Fig. 3.16 JTree showing a hierarchy of philosophers.

3. Note that nodes in the tree data structures we discuss in this section each have only a single parent,
unlike a family tree.

Chapter 3 Model-View-Controller 117

3.6.1 Using DefaultTreeModel

Interface TreeModel declares methods for representing a tree data structure in a JTree.
Objects of any class can represent nodes in a TreeModel. For example, a Person class
could represent a node in a family tree TreeModel. Class Defaul t TreeModel provides
a default TreeModel implementation. Interface TreeNode defines common operations
for nodes in a DefaultTreeModel, such as getParent and getAllowsChildren.
Interface MutableTreeNode extends interface TreeNode to represent a node that can
change, either by adding or removing child nodes or by changing the Object associated
with the node. Class DefaultMutableTreeNode provides a MutableTreeNode im-
plementation suitable for use in a DefaultTreeModel.

Although a TreeModel implementation can use objects of any class to represent the Tree-
Model’s nodes, the TreeModel implementation must be able to determine the hierarchical
relationships among those objects. For example, a Person class would have to provide
methods such as getParent and getChildren for use in a family tree TreeModel.

JTree employs two interfaces to implement the JTree’s delegate functionality.
Interface TreeCellRenderer represents an object that creates a view for each node in
the JTree. Class DefaultTreeCellRenderer implements interface TreeCell-
Renderer and extends class JLabel to provide a TreeCellRenderer default imple-
mentation. Interface TreeCellEditor represents an object for controlling (i.e., editing)
each node in the JTree. Class DefaultTreeCellEditor implements interface
TreeCellEditor and uses a JTextField for the TreeCellEditor default imple-
mentation.

PhilosophersJdTree (Fig. 3.17) uses a DefaultTreeModel to represent a set
of philosophers. The DefaultTreeModel organizes the philosophers hierarchically
according to their associated eras in the history of philosophy. Lines 2627 invoke method
createPhilosopherTree to get the root, DefaultMutableTreeNode, which
contains all the philosopher nodes. Line 30 creates a DefaultTreeModel and passes the
philosophersNode DefaultMutableTreeNode to the DefaultTreeModel
constructor. Line 33 creates a JTree and passes DefaultTreeModel philoso-
phers to the JTree constructor.

package com.deitel.advjhtpl.mvc.tree;

import java.awt.*;
import java.awt.event.*;
import java.util.*;

import javax.swing.*;
import javax.swing.tree.*;

N—=O0OVONOCURAWN=—

Fig. 3.17 PhilosophersJTree application demonstrating JTree and
DefaultTreeModel (part 1 of 6).

118

Model-View-Controller Chapter 3

13

14 public class PhilosophersJTree extends JFrame {
15

16 private JTree tree;

17 private DefaultTreeModel philosophers;

18 private DefaultMutableTreeNode rootNode;

19

20

21 public PhilosophersJTree()

22 {

23 super ();

24

25

26 DefaultMutableTreeNode philosophersNode =
27 createPhilosopherTree() ;

28

29

30 philosophers = new DefaultTreeModel(philosophersNode) ;
31

32

33 tree = new JTree(philosophers);

34

35

36 JButton addButton = new JButton()i
37 addButton.addActionListener (

38 new ActionListener() {

39

40 public void actionPerformed(ActionEvent event)
41 {

42 addElement () ;

43 }

44 }

45)i

46

47

48 JButton removeButton =

49 new JButton();

50

51 removeButton.addActionListener (

52 new ActionListener() {

53

54 public void actionPerformed(ActionEvent event)
55 {

56 removeElement () ;

57 }

58 }

59);

60

61

62 JPanel inputPanel = new JPanel();

63 inputPanel.add(addButton);

64 inputPanel.add(removeButton);

Fig. 3.17 PhilosophersJTree application demonstrating JTree and

DefaultTreeModel (part 2 of 6).

Chapter 3 Model-View-Controller 119

65

66 Container container = getContentPane();

67

68 container.add(new JScrollPane(tree),

69 BorderLayout . CENTER) ;

70

71 container.add(inputPanel, BorderLayout.NORTH);
72

73 setDefaultCloseOperation(EXIT ON_CLOSE);
74 setSize(o):

75 setVisible(true);

76

77 }

78

79

80 private void addElement ()

81 {

82

83 DefaultMutableTreeNode parent = getSelectedNode();
84

85

86 if (parent == null) {

87 JOptionPane.showMessageDialog (

88 PhilosophersJTree.this, ,
89 , JOptionPane.ERROR_MESSAGE) ;
90

91 return;

92 }

93

94

95 String name = JOptionPane.showInputDialog(
96 PhilosophersJTree.this,);
97

98

99 philosophers.insertNodeInto (

100 new DefaultMutableTreeNode(name),

101 parent, parent.getChildCount());

102

103 }

104

105

106 private void removeElement ()

107 {

108

109 DefaultMutableTreeNode selectedNode = getSelectedNode() ;
110

111

112 if (selectedNode != null)

113 philosophers.removeNodeFromParent (selectedNode) ;
114 }

115

Fig. 3.17 PhilosophersJTree application demonstrating JTree and
DefaultTreeModel (part 3 of 6).

120 Model-View-Controller Chapter 3

116

117 private DefaultMutableTreeNode getSelectedNode ()
118 {

119

120 return (DefaultMutableTreeNode)

121 tree.getLastSelectedPathComponent () ;

122 }

123

124

125 private DefaultMutableTreeNode createPhilosopherTree ()
126 {

127

128 DefaultMutableTreeNode rootNode =

129 new DefaultMutableTreeNode ():
130

131

132 DefaultMutableTreeNode ancient =

133 new DefaultMutableTreeNode ():

134 rootNode.add(ancient);

135

136 ancient.add(new DefaultMutableTreeNode ());
137 ancient.add(new DefaultMutableTreeNode ())
138 ancient.add(new DefaultMutableTreeNode ())
139

140

141 DefaultMutableTreeNode medieval =

142 new DefaultMutableTreeNode ():

143 rootNode.add(medieval);

144

145 medieval.add(new DefaultMutableTreeNode (

146)):

147

148

149 DefaultMutableTreeNode renaissance =

150 new DefaultMutableTreeNode ():
151 rootNode.add(renaissance);

152

153 renaissance.add(new DefaultMutableTreeNode (

154)):

155

156

157 DefaultMutableTreeNode earlyModern =

158 new DefaultMutableTreeNode ();
159 rootNode.add(earlyModern);

160

161 earlyModern.add(new DefaultMutableTreeNode (

162)):

163

164

165 DefaultMutableTreeNode enlightenment =

166 new DefaultMutableTreeNode () ;
167 rootNode.add(enlightenment);

Fig. 3.17 PhilosophersJTree application demonstrating JTree and
DefaultTreeModel (part 4 of 6).

Chapter 3 Model-View-Controller 121

169 enlightenment.add(new DefaultMutableTreeNode (
170))i

173 DefaultMutableTreeNode nineteenth =
174 new DefaultMutableTreeNode ():
175 rootNode.add(nineteenth);

177 nineteenth.add(new DefaultMutableTreeNode (
178))i

180 nineteenth.add(new DefaultMutableTreeNode (
181))

184 DefaultMutableTreeNode twentieth =
185 new DefaultMutableTreeNode ()2
186 rootNode.add(twentieth);

188 twentieth.add(new DefaultMutableTreeNode (
189))i

191 return rootNode;

196 public static void main(String args[])
197 {
198 new PhilosophersJTree();

:%%Favnrite Philosophers

| aaapni || ®

(] Philosophers
@ [Ancient
[acrates
[Plato
[aristotia
@] Medieval
@[] Renaissance
©- 23 Early Modern
©- 23 Enlightenment
@ [16th Century
[soren kierkegaard
D Friedrich hietzsche
I

—a

EEiFavorite Philosophers — 13l x|

‘ Add Phil H Ri Phil {\l

i Fhilosophers
@ 3 Ancient
[socrates
[Plato
[aristotle
@ [Medieval
@[] Renaissance
© 3 Early Mardern
© 3 Enlightenment
@ 3 16th Century
[soren Kierkegaard

© [T 20th Century

Fig. 3.17 PhilosophersJTree application demonstrating JTree and
DefaultTreeModel (part 5 of 6).

122 Model-View-Controller Chapter 3

\’nq;Favuritthilnsuphers O] x
=]

‘ Add Phi H Rem Phi |
1)

[Philosophars a3
§ [Ancient

D Socrates

[Plate

[aristotie
© [Medieval ’—
© [Renaissance Ok %
©- [T Early Modern
©- [Enlightenment
9 C319th Century

D Soren Kierkegaard
@ [20th Century

Enter Name:

[Parmenides |

i3 Favorite Philosophers 18l x|

| Aaaph Ji P |

1 Philosophers
@] Ancient
[sacrates
[Plata
[Aristotle
[Parmenides
@] Medieval
@[] Renaissance
©- (23 Early Mardern
©- 3 Enlightenment
@ [16th Century
[soren Kierkegaard

—=

Fig. 3.17 PhilosophersJdTree application demonstrating JTree and
DefaultTreeModel (part 6 of 6).

Lines 3645 create a JButton and an ActionListener for adding a philosopher
to the philosophers DefaultTreeModel. Line 42 in method actionPer-
formed invokes method addElement to add a new philosopher. Lines 48-59 create a
JButton and an ActionListener for removing a philosopher from the philoso-
phers DefaultTreeModel. Line 56 invokes method removeElement to remove
the currently selected philosopher from the model.

Method addElement (lines 80—103) gets the currently selected node in the JTree
by invoking method getSelectedNode (line 83). Method addElement inserts the
new philosopher node as a child of the currently selected node. If there is no node currently
selected, line 91 returns from method addElement without adding a new node. Lines 95—
96 invoke static method showInputDialog of class JOptionPane to prompt the
user for the new philosopher’s name. Lines 99-101 invoke method insertNodeInto of
class DefaultTreeModel to insert the new philosopher in the model. Line 100 creates
a new DefaultMutableTreeNode for the given philosopher. Line 101 specifies the
parent node to which the new philosopher should be added. The final argument to method
insertNodeInto specifies the index at which the new node should be inserted. Line
101 invokes method getChildCount of class DefaultMutableTreeNode to get
the total number of children in node parent, which will cause the new node to be added
as the last child of parent.

Chapter 3 Model-View-Controller 123

Method removeElement (lines 106-114) invokes method getSelectedNode
(line 109) to get the currently selected node in the JTree. If selectedNode is not
null, line 113 invokes method removeNodeFromParent of class DefaultTree-
Model to remove selectedNode from the model. Method get SelectedNode (lines
117-122) invokes method getLastSelectedPathComponent of class JTree to
get a reference to the currently selected node (line 121). Line 120 casts the selected node to
DefaultMutableTreeNode and returns the reference to the caller.

Method createPhilosopherTree (lines 125-192) creates DefaultMu-
tableTreeNodes for several philosophers and for the eras in which the philosophers
lived. Lines 128-129 create a DefaultMutableTreeNode for the tree’s root. Class
DefaultMutableTreeNode has property userObject that stores an Object that
contains the node’s data. The String passed to the DefaultMutableTreeNode con-
structor (line 129) is the userObject for rootNode. The JTree’s TreeCellRen-
derer will invoke method toString of class DefaultMutableTreeNode to get a
String to display for this node in the JTree.

Method toString of class DefaultMutableTreeNode returns the value re-
turned by its userObject’s toString method.

Lines 132-134 create a DefaultMutableTreeNode for the ancient era of phi-
losophy and add node ancient as a child of rootNode (line 134). Lines 136—138 create
DefaultMutableTreeNodes for three ancient philosophers and add each Default-
MutableTreeNode as a child of DefaultMutableTreeNode ancient. Lines
141-189 create several additional DefaultMutableTreeNodes for other eras in the
history of philosophy and for philosophers in those eras. Line 191 returns rootNode,
which now contains the era and philosopher DefaultMutableTreeNodes as its chil-
dren and descendents, respectively.

3.6.2 Custom TreeModel Implementation

If the DefaultTreeModel implementation is not sufficient for an application, develop-
ers also can provide custom implementations of interface TreeModel. FileSystem-
Model (Fig. 3.18) implements interface TreeModel to provide a model of a computer’s
file system. A file system consists of directories and files arranged in a hierarchy. Line 17
declares a File reference root that serves as the root node in the hierarchy. This File
is a directory that contains files and other directories. The FileSystemModel construc-
tor (lines 23-26) takes a File argument for the FileSystemModel root. Method ge-
tRoot (lines 29-32) returns the FileSystemModel’s root node.

1
2
3 package com.deitel.advjhtpl.mvc.tree.filesystem;
4
5
6

import java.io.*;

Fig. 3.18 FileSystemModel implementation of inferface TreeModel fo
represent a file system (part 1 of 5).

124 Model-View-Controller Chapter 3

7 import java.util.*;

10 import javax.swing.*;
11 import javax.swing.tree.*;
12 import javax.swing.event.*;

14 public class FileSystemModel implements TreeModel {

17 private File root;

20 private Vector listeners = new Vector();

23 public FileSystemModel(File rootDirectory)
24 {

25 root = rootDirectory;

26 }

29 public Object getRoot ()
30 {
31 return root;

32 }
35 public Object getChild(Object parent, int index)
36 {

38 File directory = (File) parent;

41 String[] children = directory.list();

45 return new TreeFile(directory, children[index]);

49 public int getChildCount(Object parent)
50 {

52 File file = (File) parent;

55 if (file.isDirectory()) {

57 String[] fileList = file.list();

Fig. 3.18 FileSystemModel implementation of interface TreeModel fo
represent a file system (part 2 of 5).

Chapter 3 Model-View-Controller 125

59 if (fileList != null)
60 return file.list() .length;
61 }

63 return 0;

67 public boolean isLeaf(Object node)
68 {

69 File file = (File) node;

70 return file.isFile();

74 public int getIndexOfChild(Object parent, Object child)
75 {

77 File directory = (File) parent;

80 File file = (File) child;

83 Sstring[] children = directory.list();

86 for (int i = 0; i < children.length; i++) {

88 if (file.getName() .equals(children[i 1)) {

91 return i;
93 }

95 return ;

101 public void valueForPathChanged(TreePath path,
102 Object value)
103 {

105 File oldFile = (File) path.getLastPathComponent () ;

108 String fileParentPath = oldFile.getParent();

Fig. 3.18 FileSystemModel implementation of interface TreeModel fo
represent a file system (part 3 of 5).

126 Model-View-Controller Chapter 3

111 String newFileName = (String) value;

115 File targetFile = new File(
116 fileParentPath, newFileName);

119 oldFile.renameTo(targetFile);

122 File parent = new File(fileParentPath);

125 int[] changedChildrenIndices =
126 { getIndexOfChild(parent, targetFile) };

129 Object[] changedChildren = { targetFile };

132 fireTreeNodesChanged(path.getParentPath(),
133 changedChildrenIndices, changedChildren);

139 private void fireTreeNodesChanged(TreePath parentPath,
140 int[] indices, Object[] children)
141 {

143 TreeModelEvent event = new TreeModelEvent(this,
144 parentPath, indices, children);

146 Iterator iterator = listeners.iterator();
147 TreeModelListener listener = null;

150 while (iterator.hasNext()) {
151 listener = (TreeModelListener) iterator.next();
152 listener.treeNodesChanged(event);

157 public void addTreeModelListener (
158 TreeModelListener listener)
159 {

160 listeners.add(listener);

161 }

Fig. 3.18 FileSystemModel implementation of inferface TreeModel to
represent a file system (part 4 of 5).

Chapter 3 Model-View-Controller 127

164 public void removeTreeModelListener (
165 TreeModelListener listener)

166 {

167 listeners.remove(listener);

168 }

172 private class TreeFile extends File {

175 public TreeFile(File parent, String child)
176 {

177 super (parent, child);

178 }

182 public String toString()
183 {
184 return getName () ;

Fig. 3.18 FileSystemModel implementation of inferface TreeModel fo
represent a file system (part 5 of 5).

When building its view of a TreeModel, a JTree repeatedly invokes method get -
Child (lines 35-46) to traverse the TreeModel’s nodes. Method getChild returns
argument parent’s child node at the given index. The nodes in a TreeModel need not
implement interface TreeNode or interface MutableTreeNode; any Object can be
a node in a TreeModel. In class FileSystemModel, ecach node is a File. Line 38
casts Object reference parent to a File reference. Line 41 invokes method 1ist of
class File to get a list of file names in directory. Line 45 returns a new TreeFile
object for the File at the given index. JTree invokes method toString of class
TreeFile to get a label for the node in the JTree.

Method getChildCount (lines 49—64) returns the number of children contained in
argument parent. Line 52 casts Object reference parent to a File reference named
file.If £ile is a directory (line 55), lines 57-60 get a list of file names in the directory
and return the 1ength of the list. If £i1e is not a directory, line 63 returns 0, to indicate
that £ile has no children.

A JTree invokes method isLeaf of class FileSystemModel (lines 67-71) to
determine if Object argument node is a leaf node—a node that does not contain chil-
dren.* In a file system, only directories can contain children, so line 70 returns true only
if argument node is a file (not a directory).

4. Leaf node controls the initial screen display of the expand handle.

128 Model-View-Controller Chapter 3

Method getIndex0OfChild (lines 74-98) returns argument child’s index in the
given parent node. For example, if child were the third node in parent, method
getIndexO£fChild would return zero-based index 2. Lines 77 and 80 get File refer-
ences for the parent and child nodes, respectively. Line 83 gets a list of files, and lines
86-93 search through the list for the given child. If the filname in the list matches the
given child (line 88), line 91 returns the index i. Otherwise, line 95 returns -1, to indicate
that parent did not contain child.

The JTree delegate invokes method valueForPathChanged (lines 101-135)
when the user edits a node in the tree. A user can click on a node in the JTree and edit the
node’s name, which corresponds to the associated File object’s file name. When a user
edits a node, JTree invokes method valueForPathChanged and passes a TreePath
argument that represents the changed node’s location in the tree, and an Object that con-
tains the node’s new value. In this example, the new value is a new file name String for
the associated File object. Line 105 invokes method getLastPathComponent of
class TreePath to obtain the File object to rename. Line 108 gets oldFile’s parent
directory. Line 111 casts argument value, which contains the new file name, to a String.
Lines 115-116 create File object targetFile using the new file name. Line 119
invokes method renameTo of class File to rename oldFile to targetFile.

After renaming the file, the FileSystemModel must notify its TreeModelLis-
teners of the change by issuing a TreeModelEvent. A TreeModelEvent that indi-
cates a node change includes a reference to the TreeModel that generated the event, the
TreePath of the changed nodes’ parent node, an integer array containing the changed
nodes’ indices and an Object array containing references to the changed nodes them-
selves. Line 122 creates a File object for the renamed file’s parent directory. Lines 125—
126 create an integer array for the indices of changed nodes. Line 128 creates an Object
array of changed nodes. The integer and Object arrays have only one element each
because only one node changed. If multiple nodes were changed, these arrays would need
to include elements for each changed node. Lines 132—-133 invoke method £ireTreeN-
odesChanged to issue the TreeModelEvent.

__—‘ﬁ JTree uses the index and Object arrays in a TreeModelEvent to determine which
nodes in the JTree need to be updated. This method improves performance by updating only
the nodes that have changed, and not the entire JTree.

Method £ireTreeNodesChanged (lines 139-154) issues a TreeModelEvent to
all registered TreeModelListeners, indicating that nodes in the TreeModel have
changed. TreePath argument parentPath is the path to the parent whose child nodes
changed. The integer and Object array arguments contain the indices of the changed nodes
and references to the changed nodes, respectively. Lines 143—144 create the TreeModel
event with the given event data. Lines 150-153 iterate through the list of TreeModelLis-
teners, sending the TreeModelEvent to each. Methods addTreeModelListener
(lines 157-161) and removeTreeModelListener (lines 164-168) allow TreeMod-
elListeners to register and unregister for TreeModelEvents.

Inner-class TreeFile (lines 172—-186) overrides method toString of superclass
File. Method toString of class File returns a String containing the File’s full
path name (e.g., D: \Temp\README . TXT). Method toString of class TreeFile
(lines 182-185) overrides this method to return only the File’s name (e.g.,

Chapter 3 Model-View-Controller 129

README.TXT). Class JTree uses a DefaultTreeCellRenderer to display each
node in its TreeModel. The DefaultTreeCellRenderer invokes the node’s
toString method to get the text for the DefaultTreeCellRenderer’s label. Class
TreeFile overrides method toString of class File so the DefaultTreeCell-
Renderer will show only the File’s name in the JTree, instead of the full path.

FileTreeFrame (Fig. 3.19) uses a JTree and aFileSystemModel to allow the
user to view and modify a file system. The user interface consists of a JTree that shows
the file system and a JTextArea that shows information about the currently selected file.
Lines 33-34 create the uneditable JTextArea for displaying file information. Lines 37—
38 create a FileSystemModel whose root is directory. Line 41 creates a JTree
for the FileSystemModel. Line 44 sets the JTree’s editable property to true, to
allow users to rename files displayed in the JTree.

1
2
3
4 package com.deitel.advjhtpl.mvc.tree.filesystem;
5
6
7 import java.io.*;
8 import java.awt.*;
9 import java.awt.event.*;
10

12 import javax.swing.*;
13 import javax.swing.tree.*;
14 import javax.swing.event.*;

16 public class FileTreeFrame extends JFrame {

19 private JTree fileTree;

22 private FileSystemModel fileSystemModel;

25 private JTextArea fileDetailsTextArea;

28 public FileTreeFrame(String directory)
29 {
30 super ()i

33 fileDetailsTextArea = new JTextArea();
34 fileDetailsTextArea.setEditable(false);

Fig. 3.19 FileTreeFrame applicatfion for browsing and editing a file system using
JTree and FileSystemModel (part 1 of 3).

130

Model-View-Controller

36

37 fileSystemModel = new FileSystemModel (

38 new File(directory));

39

40

41 fileTree = new JTree(fileSystemModel);
42

43

44 fileTree.setEditable(true);

45

46

47 fileTree.addTreeSelectionListener (

48 new TreeSelectionListener() {

49

50

51

52 public void wvalueChanged (

53 TreeSelectionEvent event)

54 {

55 File file = (File)

56 fileTree.getLastSelectedPathComponent () ;
57

58 fileDetailsTextArea.setText (

59 getFileDetails(file));

60 }

61 }

62)i

63

64

65 JSplitPane splitPane = new JSplitPane (

66 JSplitPane.HORIZONTAL_ SPLIT, true,

67 new JScrollPane(fileTree),

68 new JScrollPane(fileDetailsTextArea));
69

70 getContentPane() .add(splitPane);

71

72 setDefaultCloseOperation(EXIT ON_CLOSE);
73 setSize(o):

74 setVisible(true);

75

76

77

78 private String getFileDetails(File file)

79

80

81 if (file == null)

82 return ;

83

84

85 StringBuffer buffer = new StringBuffer();
86 buffer.append (+ file.getName() +);
87 buffer.append (+ file.getPath() +);
Fig. 3.19 FileTreeFrame application for browsing and editing a file system using

JTree and FileSystemModel (part 2 of 3).

Chapter 3

Chapter 3 Model-View-Controller 131
88 buffer.append (+ file.length() +);
89
90 return buffer.toString() ;
91 }
92
93
94 public static void main(String args[])
95 {
96
97 if (args.length != 1)
98 System.err.println(
99)i
100
101
102 else
103 new FileTreeFrame(argsl[1);:
104 }
105 3
& 1Tree FileSystem Viewer i ;IEIEI &4 1Tree FileSystem Viewer F ol x|
[DJavaProjectsisrs ame: cam T DiwavaProjectsisre AMame: README. TXT
@ deom :|Path: DJavaProjectsisrcicom @ Jcom Fath: DiJavaProjecisisiciREADME. TXT
& asitel size:0 ® O deitel Size: 1468
@ 7 advihtp1 & [T advjhtpi
© Jcourses & [courses
@ Jjhtpa @ [jhtpd
& J misc @ [misc
[README.TXT]
D stariclienthat D startclient bat

[DJavaPrajectsiste
@ Jcom
@ 7 deitel
@] advihtpl
& Jcourses
& Jintpd
@ [misc
[README 15T,

[startelient bat [%

\’-%JTree FileSystem ¥iewer

:Mame: README. 15T

:|Path: D\JavaProjectsisrc\README. 15T

=10l

=10l x|
J File Edit View Favortes Tools Help |
le-»-m@Edg i xa|E
J Address ID D\ JavaPrajectsisre j
harne | siee [Type © |
startserver.bat 1KE MS-DOS Batch File
Estartnammg.hat 1 KB M5-DOS Batch File
startdient‘hat 1 KB M3-DOS Batch File
README.IST ZKB 15TFile
(I misc File Folder
eom File Folder
|6 objeck(s) |2.32 KE |@. MMy Computer 4

Fig. 3.19 FileTreeFrame capplication for browsing and editing a file system using

JTree and FileSystemModel (part 3 of 3).

Lines 47-62 create a TreeSelectionListener to listen for TreeSelection-
Events in the JTree. Lines 55-56 of method valueChanged get the selected File
object from the JTree. Lines 58-59 invoke method getFileDetails to retrieve infor-
mation about the selected File and to display the details in £fileDetailsTextArea.
Lines 65-69 create a JSplitPane to separate the JTree and JTextArea. Lines 67
and 68 place the JTree and JTextArea in JScrollPanes. Line 70 adds the
JSplitPane to the JFrame.

Method getFileDetails (lines 78-91) takes a File argument and returns a
String containing the File’s name, path and length. If the File argumentisnull, line
81 returns an empty String. Line 85 creates a StringBuffer, and lines 86—88 append

132 Model-View-Controller Chapter 3

the File’s name, path and length. Line 90 invokes method toString of class String-
Buffer and returns the result to the caller.

Method main (lines 94-104) executes the FileTreeFrame application. Lines 97—
99 check the command-line arguments to ensure that the user provided a path for the
FileTreeModel’s root. If the user did not provide a command-line argument, lines 98—
99 display the program’s usage instructions. Otherwise, line 103 creates a new File-
TreeFrame and passes the command-line argument to the constructor.

In this chapter, we introduced the model-view-controller architecture, the Observer
design pattern and the delegate-model architecture used by several Swing components. In
later chapters, we use MVC to build a Java2D paint program (Chapter 6), database-aware
programs (Chapter 8, JDBC) and an Enterprise Java case study (Chapters 16—19).

SUMMARY

¢ The model-view-controller (MVC) architecture separates application data (contained in the mod-
el) from graphical presentation components (the view) and input-processing logic (the controller).

* The Java Foundation Classes (more commonly referred to as Swing components) implement a
variation of MVC that combines the view and the controller into a single object, called a delegate.
The delegate provides both a graphical presentation of the model and an interface for modifying
the model.

* Every JButton has an associated ButtonModel for which the JButton is a delegate. The
ButtonModel maintains the state information, such as whether the IJButton is clicked, wheth-
er the JButton is enabled as well as a list of ActionListeners. The JButton provides a
graphical presentation (e.g., a rectangle on the screen, with a label and a border) and modifies the
ButtonModel’s state (e.g., when the user clicks the JButton).

* The Observer design pattern is a more general application of MVC that provides loose coupling
between an object and its dependent objects.

* Class java.util.Observablerepresents a model in MVC, or the subject in the Observer de-
sign pattern. Class Observable provides method addObserver, which takes a ja-
va.util.Observer argument.

* Interface Observer represents the view in MVC, or the observer in the Observer design pattern.
When the Observable object changes, it notifies each registered Observer of the change.

¢ The model-view-controller architecture requires the model to notify its views when the model
changes. Method setChanged of class Observable sets the model’s changed flag. Method
notifyObservers of class Observable notifies all Observers (i.c., views) of the change.

* An Observable object must invoke method setChanged before invoking method notify-
Observers. Method notifyObservers invokes method update of interface Observer
for each registered Observer.

e JList is a Swing component that implements the delegate-model architecture. JList acts as a
delegate for an underlying ListModel.

* Interface ListModel defines methods for getting list elements, getting the size of the list and
registering and unregistering ListDataListeners. A ListModel notifies each registered
ListDataListener of each change in the ListModel.

* JTable is another Swing component that implements the delegate-model architecture. JTa-
bles are delegates for tabular data stored in TableModel implementations.

* JTree is one of the more complex Swing components that implements the delegate-model archi-
tecture. TreeModels represent hierarchical data, such as family trees, file systems, company

Chapter 3

Model-View-Controller 133

management structures and document outlines. JTrees act as delegates (i.e., combined view and
controller) for TreeModels.

To describe tree data structures, it is common to use family-tree terminology. A tree data structure
consists of a set of nodes (i.e., members or elements of the tree) that are related as parents, children,
siblings, ancestors and descendents.

Interface TreeModel defines methods that describe a tree data structure suitable for representa-
tion in a JTree. Objects of any class can represent nodes in a TreeModel. For example, a Per-
son class could represent a node in a family tree TreeModel.

Class DefaultTreeModel provides a default TreeModel implementation. Interface
TreeNode defines common operations for nodes in a DefaultTreeModel, such as get-
Parent and getAllowsChildren.

Interface MutableTreeNode extends interface TreeNode to represent a node that can change,
either by addition or removal of child nodes or by change of the Object associated with the node.
Class DefaultMutableTreeNode provides a MutableTreeNode implementation suitable
for use in a DefaultTreeModel.

Interface TreeCellRenderer represents an object that creates a view for each node in the
JTree. Class DefaultTreeCellRenderer implements interface TreeCellRenderer
and extends class JLabel to provide a TreeCellRenderer default implementation.

Interface TreeCellEditor represents an object for controlling (i.e., editing) each node in the
JTree. Class DefaultTreeCellEditor implements interface TreeCellEditor and
uses a JTextField to provide a TreeCellEditor default implementation.

If the DefaultTreeModel implementation is not sufficient for an application, developers can

also provide custom implementations of interface TreeModel.

TERMINOLOGY

ancestor

child

controller

DefaultListModel class

DefaultMutableTreeNode class

DefaultTableModel class

DefaultTreeCellEditor class

DefaultTreeCellRenderer class

DefaultTreeModel class

delegate

delegate-model architecture

descendent

getChild method of interface TreeModel

getChildAtIndex method of
interface TreeModel

getChildCount method of interface
TreeModel

getIndexO£fChild method of
interface TreeModel

isLeaf method of interface TreeModel

JList class

JTable class

JTree class

ListModel interface
ListSelectionModel interface
model
model-view-controller architecture
MutableTreeNode interface
notifyObservers method of
class Observable
Observable class
Observer design pattern
Observer interface
parent
setChanged method of class Observable
sibling
TableModel interface
TreeCellEditor interface
TreeCellRenderer interface
TreeModel interface
TreeNode interface
update method of interface Observer
valueForPathChanged method of
interface TreeModel
view

134 Model-View-Controller Chapter 3

SELF-REVIEW EXERCISES

3.1 What more general design pattern does the model-view-controller (MVC) architecture use?
3.2 How does the variation of MVC implemented in the Swing packages differ from regular MVC?
33 List the Swing classes that use MVC.

34 What type of data does a TableModel contain, and what Swing class is a TableModel
delegate?

3.5 What interfaces does a JTree employ to provide its delegate functionality for a TreeModel?

ANSWERS TO SELF-REVIEW EXERCISES

3.1 The model-view-controller architecture uses the more general Observer design pattern to
separate a model (i.e., a subject) from its views (i.e., its observers).

3.2 The Swing packages use a version of MVC known as the delegate-model architecture, in
which the view and controller are combined into a single object to form a delegate.

3.3 Most Swing classes use MVC, including JButton, JList, JTable and JTree.

3.4 A TableModel contains tabular data, such as data from a database table or spreadsheet.
JTable is a delegate for TableModels.

3.5 A JTree uses a TreeCellRenderer to provide a view of its nodes and a Tree-
CellEditor to provide a controller for its nodes.

EXERCISES

3.1 Create class LiabilityPieChartView as a subclass of class AssetPieChartView
(Fig. 3.8) that includes only liability Accounts (i.e., Accounts with negative balances). Modify
class AccountManager (Fig. 3.10) to include a LiabilityPieChartView, in addition to the
AssetPieChartView.

3.2 Create a new version of class AccountBarGraphView (Fig. 3.7) that shows multiple
Accounts in a single bar graph. [Hint: Try modeling your class after AssetPieChartView to
include multiple Accounts.]

33 Enhance your solution to Exercise 3.2 to allow transfers between accounts. Modify class
AccountController (Fig. 3.9) to include a JComboBox to select the destination account and a
JButton to perform the transfer.

34 Create a TreeModel implementation named XMLTreeModel that provides a read-only
model of an XML document. Create a program that uses a JTree to display the XML document. If
you are not familiar with XML, please see Appendices A—D.

Graphics Programming
with Java 2D and
Java 3D

Objectives

* To be able to use the Java 2D API to draw various
shapes and general paths.

* To be able to specify Paint and Stroke
characteristics of shapes displayed with
Graphics2D.

* To be able to manipulate images using Java 2D image
processing.

* To use the Java 3D API and Java 3D Utility classes to
create three-dimensional graphics scenes.

* To manipulate the texture and lighting of three-
dimensional objects with Java 3D.

Sit in reverie and watch the changing color of the waves that
break upon the idle seashore of the mind.
Henry Wadsworth Longfellow

Art is not a mirror to reflect the world, but a hammer with
which to shape it.
Vladimir Mayakovsky

... work transforms talent into genius.
Anna Povlova

A work that aspires, however humbly, to the condition of art

should carry its justification in every line.
Joseph Conrad

136 Graphics Programming with Java 2D and Java 3D Chapter 4

Outline

4.1 Introduction
4.2 Coordinates, Graphics Contexts and Graphics Objects
4.3 Java 2D API
4.3.1 Java 2D Shapes
4.3.2 Java 2D Image Processing
44 Java 3D API
4.4.1 Obtaining and Installing the Java 3D API
44.2 Java 3D Scenes
44.3 A Java 3D Example
4.5 A Java 3D Case Study: A 3D Game with Custom Behaviors

Summary * Terminology ¢ Self-Review Exercises ® Answers to Self-Review Exercises * Exercises

4.1 Introduction

Over the past few years, developers have strived to integrate cutting-edge graphics and an-
imation in their applets and applications. However, the original Java AWT graphics pack-
ages have provided a limited means to achieve such goals. Now, with the Java 2D™ API
and Java 3D™ API, developers can implement more sophisticated graphics applications—
such as games, screen savers, splash screens and 3D GUI’s.

This chapter overviews several of Java’s 2D and 3D graphics capabilities. We begin
with a brief introduction to fundamental graphics topics, such as coordinate systems and
graphics contexts. Next, we discuss several Java 2D capabilities, such as controlling how
to fill shapes with colors and patterns. We also introduce how to blur, invert, sharpen and
change the color of an image using Java 2D’s image processing capabilities. In the second
half of our graphics discussion, we present the Java 3D API. Using the Java 3D utility
classes, we build an application that allows the user to manipulate (rotate, scale and trans-
late) 3D objects with a mouse. The application has a control panel that allows the user both
to apply textures to 3D objects using texture mapping and to vary the lighting effects on 3D
objects by changing the color of a light source.

4.2 Coordinates, Graphics Contexts and Graphics Objects

Java’s 2D coordinate system (Fig. 4.1) is a scheme for identifying every point on the
screen. By default, the upper left corner of a GUI component has the coordinates (0, 0). The
y-coordinate is the vertical distance moving down from the upper left corner. The x-coor-
dinate is the horizontal distance moving right from the upper left corner.

A Java graphics context enables drawing on the screen. A Graphics object manages
a graphics context by controlling how information is drawn. Graphics objects contain
methods for drawing, font manipulation, color manipulation and the like. Every application
that performs drawing on the screen uses Graphics object to manage the application’s
graphics context.

Chapter 4 Graphics Programming with Java 2D and Java 3D 137

©.0
+X X-AXis

%%

+y

y-AXis \

Fig. 4.1 Java coordinate system. Units are measured in pixels.

Class Graphics is an abstract class (i.e., a Graphics object cannot be instan-
tiated). This contributes to Java’s portability. Drawing is performed differently on each
platform that supports Java so there cannot be one class that implements drawing capabil-
ities on all systems. For example, the graphics capabilities that enable a PC running
Microsoft Windows to draw a rectangle are different from the graphics capabilities that
enable a UNIX workstation to draw a rectangle—and those are both different from the
graphics capabilities that enable a Macintosh to draw a rectangle. For each platform, a
Graphics subclass implements all the drawing capabilities. This implementation is
hidden by the Graphics class, which supplies the interface that enables us to write pro-
grams that use graphics in a platform-independent manner.

Class Component is the superclass for many of the classes in the java.awt
package. Method paint of class Component is called when the contents of the Compo-
nent should be painted—either in response to the Component first being shown or
damage needing repair—such as resizing the Component window. Method paint takes
a Graphics reference as an argument. When a Component needs to be painted, the
system passes a Graphics reference to method paint. This Graphics reference is a
reference to the platform-specific Graphics subclass. The developer should not call
method paint directly, because drawing graphics is an event driven process. To request
the system to call paint, a developer can invoke method repaint of class Compo-
nent. Method repaint requests a call to method update of class Component as soon
as possible, to clear the Component’s background of any previous drawing. Method
update then calls paint directly.

Class JComponent—a Component subclass—is the superclass for many of the
classes in the javax.swing package. The Swing painting mechanism calls method
paintComponent of class JComponent when the contents of the JComponent
should be painted. Method paintComponent—which takes as an argument a
Graphics object—helps the Swing components paint properly. The Graphics object
is passed to the paintComponent method by the system when a paintComponent
operation is required for a JComponent. The developer should not call method paint-
Component directly. If the developer needs to call paintComponent, a call is made to
method repaint of class Component—exactly as discussed earlier for method
repaint of class Component.

138 Graphics Programming with Java 2D and Java 3D Chapter 4

4.3 Java 2D API

The Java 2D™ API provides advanced 2D graphics capabilities for developers who re-
quire detailed and complex graphical manipulations in their programs. The Java 2D API is
part of the Java 2 Platform, Standard Edition. The Java 2D API includes features for pro-
cessing line art, text and images in packages java.awt.image, java.awt.color,
java.awt.font, java.awt.geom, java.awt.print and java.awt.im-
age.renderable. Figure 4.2 describes several of the Java 2D classes and interfaces

covered in this chapter.

Class/Interface

Description

Classes and interfaces from package java.awt

Graphics2D

BasicStroke

GradientPaint
TexturePaint
Paint

Shape

Stroke

Graphics subclass for rendering 2D shapes, text and images.

Defines a basic set of rendering attributes for the outlines of graphics
primitives.

Provides a way to fill and outline 2D shapes with a linear color gradient.
Provides a way to fill and outline shapes with texture images.

Defines how color patterns can be generated for rendering operations.
Provides definitions for geometrical objects.

Provides methods for obtaining the outline of a geometrical shape.

Classes and interfaces from package java.awt .geom

GeneralPath

Line2D

RectangularShape

BufferedImage

ColorModel

Represents a path constructed from straight lines, quadratic curves and
cubic curves.

Represents a line in coordinate space.

Base class for geometrical shapes with rectangular frames. Subclasses
include Arc2D, E11ipse2D, Rectangle2D and
RoundRectangle2D.

Describes an Image with a buffer of colored pixel data composed of a
ColorModel and a Raster.

Defines methods for translating a numerical pixel value to a color.

Classes and interfaces from package java.awt .image

Raster

Kernel

Is part of a Buf feredImage that describes sample values in a rectan-
gular array of pixels.

Describes a 2D array used for filtering Buf feredImages.

Fig. 4.2 Some Java 2D classes and interfaces (part 1 of 2).

Chapter 4 Graphics Programming with Java 2D and Java 3D 139

Class/Interface Description

BufferedImageOp Defines methods that perform operations on Buf feredImages (e.g.
blurring a Buf feredImage)

RasterOp Describes single-input/single-output processes performed on
Rasters.

Fig. 4.2 Some Java 2D classes and inferfaces (part 2 of 2).

Class java.awt.Graphics2D enables drawing with the Java 2D APIL Class
Graphics2Dis a subclass of class Graphics, so it has all the capabilities for managing
the application’s graphics context discussed earlier in this chapter. To access the
Graphics2D capabilities, we cast the Graphics reference passed to paint to a
Graphics2D reference.

Java 2D can render three types of built-in graphics objects—termed graphics prim-
itives—images, text and geometrical shapes. There are seven Graphics2D state
attributes that determine how graphics primitives are rendered—clipping, compositing,
font, paint, rendering hints, stroke and transforms. Figure 4.3 describes each of these
seven attributes. The attributes form a pipeline that processes the graphics primitives to
produce the final image. The first stage in the pipeline determines which of the primitives
to render. A draw method then draws the primitive—method draw for shapes, method
drawString for text and method drawImage for images. The pipeline applies any
transformations, fills and strokes during the drawing process. The next stage is to ras-
terize the drawn shape—convert the shape to a two-dimensional array of numerical pixel
values called a raster. At this stage, the pipeline invokes any image-processing opera-
tions on the raster. The raster is then clipped, colored and combined with the current
drawing—known as compositing. Finally, the image is rendered—drawn—on an output
device, such as a screen or printer.

Attribute Description

Clipping Defines the area in which rendering operations take effect. Any geometrical
shape, including text, can be used as a clipping region.

Compositing Is a Set of blending rules that control how the pixels in a source image mix
with the pixels in a destination image.

Font Fonts are created from shapes that represent the characters to be drawn—
called glyphs. Text is rendered by drawing and filling the glyphs.

Paint Determines the colors, patterns and gradients for filling and outlining a shape.

Rendering Hints ~ Specify techniques and methods that help to optimize drawing.

Fig. 4.3 The seven state attributes of a Java 2D graphics context (part 1 of 2).

140 Graphics Programming with Java 2D and Java 3D Chapter 4

Attribute Description
Stroke Determines the outline of the shape to be drawn.
Transform Defines ways to perform linear transformations—an operation that changes

the shape of an image.

Fig. 4.3 The seven state aftributes of a Java 2D graphics context (part 2 of 2).

The Java 2D API provides hints and rules that instruct the graphics engine how to per-
form these operations. The following sections present several features of image and geo-
metrical shape-rendering processes.

4.3.1 Java 2D Shapes

In this section, we present several Java 2D shape classes from package java .awt .geom,
including Ellipse2D.Double, Line2D.Double, Rectangle2D.Double,
RoundRectangle2D.Double and Arc2D.Double. Each class represents a shape
with dimensions specified as double-precision floating-point values. Each class can also be
represented with single-precision floating-point values (e.g., E11ipse2D.Float). In
each case, class Double is a static inner class contained in the class to the left of the
dot operator (e.g., E1L11ipse2D).

Class Sshapes (Fig. 4.4) demonstrates several Java 2D shapes and rendering attributes
(such as thick lines), filling shapes with patterns and drawing dashed lines. These are just
a few of the many capabilities Java 2D provides.

1
2
3
4
5 import java.awt.*;
6 import java.awt.event.*;
7 import java.awt.geom.*;
8 import java.awt.image.*;
9
10
11 import javax.swing.*;
12
13 public class Shapes extends JFrame {
14
15
16 public Shapes|()
17 {
18 super(" ");
19 }
20

Fig. 4.4 Demonstrating some Java 2D shapes (part 1 of 3).

Chapter 4

Graphics Programming with Java 2D and Java 3D

141

public void paint(Graphics g)

{

super.paint(g);

Graphics2D graphics2D = (Graphics2D) g;

graphics2D.setPaint(new GradientPaint
(5, , Color. , , , Color.
graphics2D.fill(new Ellipse2D.Double (

graphics2D.setPaint(Color.)
graphics2D.setStroke(new BasicStroke (
graphics2D.draw(

new Rectangle2D.Double (0 o v

BufferedImage bufferedImage = new BufferedImage (

, , BufferedImage.):

Graphics2D graphics = bufferedImage.createGraphics();

graphics.setColor(Color.)
graphics.fillRect(0, 0, ’)i
graphics.setColor(Color. H

graphics.drawRect(1, 1, 6,
graphics.setColor(Color.
graphics.fillRect(1, 1, 3,
graphics.setColor(Color.)
graphics.fillRect(4, 4, 3,

~ N~~~
Ne Ne N ~—

~e

graphics2D.setPaint (new TexturePaint (
bufferedImage, new Rectangle(o

graphics2D.£ill(new RoundRectangle2D.Double (

7 ’ ’ ’ ’))i

graphics2D.setPaint(Color.) ;
graphics2D.setStroke(new BasicStroke (
graphics2D.draw(new Arc2D.Double (

7 7 2 2 2 2 Arc2D.)
graphics2D.setPaint(Color.) ;
graphics2D.draw(new Line2D.Double (o
float dashes[] = { };
graphics2D.setPaint(Color.)i

I

Fig. 4.4

Demonstrating some Java 2D shapes (part 2 of 3).

142 Graphics Programming with Java 2D and Java 3D Chapter 4

74 graphics2D.setStroke(new BasicStroke (
75 , BasicStroke. , BasicStroke. ’
76 , dashes,))
77 graphics2D.draw(new Line2D.Double (o o o))i
78
79 }
80
81
82 public static void main(String args[])
83 {
84 Shapes application = new Shapes();
85 application.setDefaultCloseOperation (
86 JFrame.):
87
88 application.setSize(’)
89 application.setVisible(true);
90 }
91
E‘%Drawing 2D shapes _|EI|1|
’ G EEME.
(EEEEEEE
IAEEEEEE
IDEEEEEE
IDEEEEEE
IDEEEEEE
IEEEE]
HEEEENE
‘EEEEE

Fig. 4.4 Demonstrating some Java 2D shapes (part 3 of 3).

Line 28 casts the Graphics reference received by paint to a Graphics2D refer-
ence to allow access to Java 2D features. The first shape we draw is an oval filled with grad-
ually changing colors. Lines 31-32 invoke method setPaint of class Graphics2D to
set the Paint object that determines the color for the shape to display. A Paint object is
an object of any class that implements interface java.awt .Paint. The Paint object
can be something as simple as one of the predefined Color objects (class Color imple-
ments Paint), or the Paint object can be an instance of the Java 2D API’s Gradient-
Paint, SystemColor or TexturePaint classes. In this case, we use a
GradientPaint object.

Class GradientPaint paints a shape in gradually changing colors—a gradient.
The GradientPaint constructor used here requires seven arguments. The first two
arguments specify the starting coordinate for the gradient. The third argument specifies the
starting Color for the gradient. The fourth and fifth arguments specify the ending coordi-
nate for the gradient. The sixth argument specifies the ending Color for the gradient. The
last argument specifies whether the gradient is cyclic (Exrue) or acyclic (Ealse). The two
coordinates determine the direction of the gradient. The second coordinate (35, 100) is
down and to the right of the first coordinate (5, 30); therefore, the gradient goes down and
to the right at an angle. Since this gradient is cyclic (exrue), the color starts with blue, grad-
ually becomes yellow, then gradually returns to blue. If the gradient is acyclic, the color
transitions from the first color specified (e.g., blue) to the second color (e.g., yellow).

Chapter 4 Graphics Programming with Java 2D and Java 3D 143

Line 33 uses method £i11 of class Graphics2D to draw a filled Shape object. The
Shape object is an instance of any class that implements interface Shape (package
java.awt)—in this case, an instance of class Ellipse2D.Double. The
Ellipse2D.Double constructor receives four arguments that specify the bounding
rectangle for the ellipse to display.

Next we draw a red rectangle with a thick border. Line 36 uses method setPaint to
set the Paint object to Color.red. Line 37 uses method setStroke of class
Graphics2D to set the characteristics of the rectangle’s border. Method setStroke
requires a Stroke object as its argument. The Stroke object is an instance of any class
that implements interface Stroke (package java.awt)—in this case, an instance of
class BasicStroke. Class BasicStroke provides a variety of constructors to specify
the line width, how the line ends (called the end caps), how lines join together (called line
Jjoins) and the dash attributes of the line (if it is a dashed line). The constructor here specifies
that the line should be 10 pixels wide.

Lines 38-39 invoke method draw of Graphics2D to draw a Shape object—in this
case, an instance of class Rectangle2D.Double. The Rectangle2D.Double con-
structor receives four arguments specifying the upper left x-coordinate, upper left y-coor-
dinate, width and height of the rectangle measured in pixels.

Next we draw a rounded rectangle filled with a pattern created in a BufferedImage
(package java.awt.image) object. Lines 42-43 create the Buf feredImage object.
Class BufferedImage can produce images in color and gray scale. This particular
Buf feredImage is 10 pixels wide and 10 pixels tall. The third constructor argument
Buf feredImage.TYPE_INT_RGB specifies that the image is stored in color using the
Red Green Blue (RGB) color scheme.

To create the fill pattern for the rounded rectangle, we must first draw into the Buf -
feredImage. Line 45 creates a Graphics2D object for drawing on the Buf fered-
Image. Lines 46-53 use methods setColor, £illRect and drawRect (discussed
earlier in this chapter) to create the pattern.

Lines 56-57 set the Paint object to a new TexturePaint (package java.awt)
object. A TexturePaint object uses the image stored in its associated Buf fered-
Image as the fill texture for a filled-in shape. The second argument specifies the Rect -
angle area from the Buf feredImage that will be replicated through the texture. In this
case, the Rectangle is the same size as the Buf feredImage. However, a smaller por-
tion of the Buf feredImage can be used.

Lines 58-59 invoke method £i11 of Graphics2D to draw a filled Shape object—
RoundRectangle2D.Double. The RoundRectangle2D.Double constructor
receives six arguments specifying the rectangle dimensions and the arc width and arc
height—measured in pixels—used to determine the rounding of the corners.

Next we draw a oblong arc with a thick white line. Line 62 sets the Paint object to
Color.white. Line 63 sets the Stroke object to a new BasicStroke for a line 6
pixels wide. Lines 64—65 use method draw of class Graphics2D to draw a Shape
object—in this case, an Arc2D.Double. The Arc2D.Double constructor’s first four
arguments specifying the upper left x-coordinate, upper left y-coordinate, width and height
of the bounding rectangle for the arc. The fifth argument specifies the start angle measured
in degrees. The sixth argument specifies the arc angle. The start angle and arc angles are
measured relative to the shape’s bounding rectangle. The last argument specifies how the

144 Graphics Programming with Java 2D and Java 3D Chapter 4

arc is closed. Constant Arc2D. PIE indicates that the arc is closed by drawing two lines.
One line from the arc’s starting point to the center of the bounding rectangle and one line
from the center of the bounding rectangle to the ending point. Class Are2D provides two
other static constants for specifying how the arc is closed. Constant Arc2D.CHORD
draws a line from the starting point to the ending point. Constant Arc2D. OPEN specifies
that the arc is not closed.

Finally, we draw two lines using Line2D objects—one solid and one dashed. Line 68
sets the Paint object to Color.green. Line 69 uses method draw of class
Graphics2D to draw a Shape object—in this case, an instance of class
Line2D.Double. The Line2D.Double constructor’s arguments specify starting
coordinates and ending coordinates of the line.

Line 71 defines a two-element £loat array. This array describes the length—in
pixels—of the dashes and spaces in the dashed line. In this case, each dash will be 10 pixels
long and each space will be two pixels long. To create dashes of different lengths in a pattern,
simply provide the lengths of each dash as an element in the array. Line 73 sets the Paint
object to Color.yellow. Lines 74-76 set the Stroke object to a new BasicStroke.
The line will be 4 pixels wide and will have rounded ends (BasicStroke .CAP_ROUND).
If lines join together (as in a rectangle at the corners), the joining of the lines will be rounded
(BasicStroke.JOIN_ROUND). The dashes argument specifies the dash lengths for
the line. The last argument indicates the starting subscript in the dashes array for the first
dash in the pattern. Line 77 then draws a line with the current Stroke.

Next we present a general path—a shape constructed from lines and complex curves.
A general path is represented with an object of class GeneralPath (package
java.awt.geom). Class Shapes2 (Fig. 4.5) demonstrates drawing a general path in
the shape of a five-pointed star.

import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;

NVOONOCTTRARWN—

10 import javax.swing.*;

12 public class Shapes2 extends JFrame {

16 public Shapes2()
17 {

18 super(" "oy,

20 getContentPane() . setBackground(Color.)

Fig. 4.5 Demonstrating Java 2D paths (part 1 of 3).

Chapter 4 Graphics Programming with Java 2D and Java 3D

145

public void paint(Graphics g)
{

super.paint(g);

int xPoints][]

{ r r 4 ’ 1 r r I I };

int yPoints[]

{ 4 r 4 4 4 4 ’ 4 4 };

Graphics2D graphics2D = (Graphics2D) g;

GeneralPath star = new GeneralPath() ;

star.moveTo(xPoints|[1, yPoints[1);

for (int count = 1; count < xPoints.length; count++)
star.lineTo(xPoints[count], yPoints[count]);

star.closePath() ;

graphics2D.translate(0)i
for (int count = 1; count <= ; count++) {
graphics2D.rotate(Math. /):

graphics2D.setColor(new Color(
(int) (Math.random() *),
(int) (Math.random() *),
)

(int) (Math.random() *))i

graphics2D.£fill(star);

public static void main(String argsl[])
{
Shapes2 application = new Shapes2():;
application.setDefaultCloseOperation (
JFrame.):

Demonstrating Java 2D paths (part 2 of 3).

146 Graphics Programming with Java 2D and Java 3D Chapter 4

76 application.setSize(5);:
77 application.setVisible(true);
78 }
79 3}
E‘%Drawing 2D Shapes _I- _ID ll

Fig. 4.5 Demonstrating Java 2D paths (part 3 of 3).

Lines 29-32 define two int arrays representing the x- and y-coordinates of the points
in the star. Line 37 defines GeneralPath object star. Line 40 uses method moveTo
of class GeneralPath to specify the first point in the star. The £or structure at lines
43-44 uses method 1ineTo of class GeneralPath to draw a line to the next point in the
star. Each new call to 1ineTo draws a line from the previous point to the current point.
Line 47 uses method closePath of class GeneralPath to draw a line from the last
point to the point specified in the last call to moveTo. This completes the general path.

Line 50 uses method translate of class Graphics2D to move the drawing origin
to location (200, 200). All drawing operations now use location (200, 200) as (0, 0). The
for structure at lines 53—65 draws the star 20 times by rotating it around the new origin
point. Line 56 uses method rotate of class Graphics2D to rotate the next displayed
shape. The argument specifies the rotation angle in radians (360° = 2x radians). Line 65
uses Graphics2D method £i11 to draw a filled version of the star.

4.3.2 Java 2D Image Processing

Image processing is the manipulation of digital images by applying filters—mathematical
operations that change images. Java 2D provides an image-processing API to shield devel-
opers from the mathematics behind filters. Compression filters, measurement filters and en-
hancement filters constitute the three major image-processing categories. Compression
filters reduce a digital image’s memory usage, resulting in reduced storage size and faster
transmission of complex digital images. Some common applications of compression filters
include high-definition television (HDTV), video phones and virtual reality. Measurement

Chapter 4 Graphics Programming with Java 2D and Java 3D 147

filters collect data from digital images. Measurement filters play a crucial role in the field of
image recognition and machine vision (e.g., for printed circuit board inspection and assem-
bly-line welding robots). Enhancement filters—filters that alter certain physical aspects of
an image—often restore corrupted images to their original form. Sometimes, the processes
of creating, storing or transmitting a digital image introduces data corruption such as noise,
motion blurring and color loss. Enhancement filters can remove noise, sharpen edges and
brighten colors to recover the original image. For example, satellite images use enhancement
filters to remove noise created from capturing images at such lengthy distances.

Java 2D image-processing filters operate on objects of class Buf feredImage, which
separates image data into two components—a Raster and a ColorModel. A Raster—
composed of a DataBuffer and a SampleModel—organizes and stores the data that
determine a pixel’s color. Each pixel is composed of samples—number values that represent
the pixel’s color components. The DataBuf fer stores the raw sample data for an image.
The SampleModel accesses the sample values in the DataBuffer for any given pixel.
The ColorModel is an interpreter for the Raster, taking the sample values for each pixel
in the Raster and converting them to the appropriate color. The ColorModel converts
the sample data to different colors depending on the color scale of the image. Two common
color scales are grayscale and RGB. In grayscale, every pixel is represented by one sample
interpreted as a color between black and white. In RGB, each pixel is represented by three
samples that correspond to the red, green and blue color components of the pixel.

This section presents an application that demonstrates how to create and filter
Buf feredImages. We build filters that blur, sharpen, invert and change the color scale
of a BufferedImage. These are “fundamental” filters found in mass graphics programs,
such as Paint Shop Pro. Our application allows the user to apply a series of filters to a
Buf feredImage to demonstrate the effects of multiple filters. Sample filter results
appear in the screen captures of Fig. 4.13. The application consists of three distinct parts:

1. ImagePanel—a JPanel extended to provide image-processing capabilities.

2. Java2DImageFilter—an interface for image-processing filters that will alter
the image in an ImagePanel. The classes that implement interface Java2D-
ImageFilter include BlurFilter, SharpenFilter, InvertFilter
and ColorChangeFilter.

3. Java2DExample—a GUI that displays the filtered image and presents the user
with a menu for selecting image filters.

Class ImagePanel (Fig. 4.6) allows a user to experiment with applying various fil-
ters to an image. ImagePanel contains an image and methods for filtering that image.
Lines 18—19 declare two Buf feredImage references—displayImage and origi-
nalImage. The image filters manipulate displayImage, and originalImage
stores a copy of the original image so the user can view the original image.

1
2
3
4 package com.deitel.advjhtpl.java2d;

Fig. 4.6 Class ImagePanel allows for displaying and filtering Buf feredImages
(part 1 of 3).

148 Graphics Programming with Java 2D and Java 3D Chapter 4

import
import
import
import

5

6

7

8

9

10

11

12

13 import
14 import
15

16 public
17

18 pri
19
20

pri
pri

java.awt.*;
java.awt.event.*;
java.awt.image.*;
java.net.*;

javax.swing. *;

javax.swing.event.*;

class ImagePanel extends JPanel {
vate BufferedImage displayImage;

vate BufferedImage originalImage;
vate Image image;

23 public ImagePanel(URL imageURL)

24 {

image =
Toolkit.getDefaultToolkit () .createImage(imageURL) ;

MediaTracker mediaTracker = new MediaTracker(this);
mediaTracker.addImage(image,)

try {
mediaTracker.waitForAll();

}

catch (InterruptedException interruptedException) {
interruptedException.printStackTrace() ;
}

originalImage = new BufferedImage(image.getWidth(null),
image.getHeight (null), BufferedImage.);

displayImage = originalImage;

Graphics2D graphics = displayImage.createGraphics():;
graphics.drawImage(image, null, null);

55 public void applyFilter(Java2DImageFilter filter)

56 {

Fig. 4.6 Class ImagePanel allows for displaying and filtering Buf feredImages
(part 2 of 3).

Chapter 4 Graphics Programming with Java 2D and Java 3D 149

57

58 displayImage = filter.processImage(displayImage);
59 repaint () ;

60 }

61

62

63 public void displayOriginalImage ()

64 {

65 displayImage = new BufferedImage(image.getwWidth(null),
66 image.getHeight (null), BufferedImage.):
67

68 Graphics2D graphics = displayImage.createGraphics():;
69 graphics.drawImage(originalImage, null, null);

70 repaint () ;

71 }

72

73

74 public void paintComponent(Graphics g)

75 {

76 super.paintComponent(g);

77 Graphics2D graphics = (Graphics2D) g;

78 graphics.drawImage(displayImage, 0, 0, null);

79 }

80

81

82 public Dimension getPreferredSize()

83 {

84 return new Dimension(displayImage.getWidth(),

85 displayImage.getHeight());

86 }

87

88

89 public Dimension getMinimumSize()

90 {

91 return getPreferredSize();

92 }

93

Fig. 4.6 Closs ImagePanel allows for displaying and filtering Buf feredImages
(part 3 of 3).

The ImagePanel constructor (lines 23—52) accepts as an argument a URL that spec-
ifies the file containing the image to filter. Lines 25-26 create an Image object—
image—from this file. Lines 29-30 instantiate a MediaTracker for image loading.
Method waitForAll (line 34) of class MediaTracker ensures that image is loaded
into memory before we filter this image.

Lines 43-46 create BufferedImages displayImage and originalImage.
The Buf feredImage constructor accepts three arguments—the image’s width, height
and type. We use predefined type TYPE_INT_RGB, which defines three 8-bit segments
each representing a red, green and blue color components. Line 49 creates a Graphics2D
object for rendering displayImage. Line 50 renders the loaded image on
ImagePanel using method drawImage of class Graphics2D.

150 Graphics Programming with Java 2D and Java 3D Chapter 4

Method applyFilter (lines 55-60) applies an Java2DImageFilter to dis-
playImage. Line 58 invokes method processImage of class Java2DImageFilter,
which passes displayImage as a parameter. Method processImage applies an image
filter to displayImage. Line 59 calls method repaint, which indicates that
ImagePanel needs to be redrawn. In turn, a system call is made to method paintCom-
ponent of class ImagePanel. Method paintComponent (lines 74-79) draws dis-
playImage onto ImagePanel. Line 77 casts the Graphics object to a Graphics2D
object to access Graphics2D methods. The Graphics2D’s method drawImage (line
78) renders displayImage in the ImagePanel

We provide a means to reconstruct the original image after the program applies fil-
ters to displayImage. Method displayOriginal (lines 63-71) creates a new
BufferedImage that contains a copy of originalImage so the user can apply a
new set of filters to displayImage. Lines 65-66 recreate displayImage as a new
Buf feredImage. Line 68 creates a Graphics2D fordisplayImage. Line 69 calls
method drawImage of class Graphics2D, which draws originalImage into
displayImage.

We now implement our image-processing filters—BlurFilter, Sharpen-
Filter, InvertFilter and ColorFilter. Our filters implement interface
Java2DImageFilter (Fig.4.7). Classes that implement Java2DImageFilter
must implement method processImage (line 13). Method processImage accepts a
Buf feredImage to filter and returns the filtered Buf feredImage

The Java2DImageFilters in this application use well-known Java 2D image-pro-
cessing operations. Java 2D has several image filters that operate on Buf feredImages.
Interfaces BufferedImageOp and RasterOp serve as the base classes for Java 2D
image filters. Method £ilter of interfaces Buf feredImageOp and RasterOp takes
as arguments two images—the source image and the destination image. All classes that
implement Buf feredImageOp and RasterOp apply a filter to the source image to pro-
duce the destination image. A BufferedImageOp processes a BufferedImage,
while a RasterOp processes only the Raster associated with a Buf feredImage.
Several Java 2D image filters implement Buf feredImageOp and/or RasterOp
(Fig. 4.8).

1

2

3

4 package com.deitel.advjhtpl.java2d;
5

6

7 import java.awt.*;

8 import java.awt.image.*;

9

10 public interface ImageFilter {

11

12

13 public BufferedImage processImage(BufferedImage image);
14 3

Fig. 4.7 Java2DImageFilter inferface for creating Java 2D image filters.

Chapter 4

Class

Graphics Programming with Java 2D and Java 3D 151

Implements Interfaces

Description

AffineTransformOp BufferedImageOp Performs linear mapping from 2D coordi-
RasterOp nates in the source image to 2D coordi-
nates in the destination image. (Example:
Rotate an image about a point in the
image.)

BandCombineOp RasterOp Performs a linear combination of the
bands in a Raster. (Example: Change
the color palette in an image.)

ColorConvertOp BufferedImageOp Performs color conversion on each pixel

RasterOp in the source image. (Example: Convert
from RGB color to gray scale.)

ConvolveOp BufferedImageOp Combines source pixel values with sur-

RasterOp rounding pixel values to derive destina-
tion pixel values. (Example: Sharpen
edges in an image.)

LookupOp BufferedImageOp Performs a lookup operation on the

RasterOp source image to create the destination
image. (Example: Invert the RGB colors
in an image.)

RescaleOp BufferedImageOp Rescale the data in the source image by a

RescaleOp scalar plus offset. (Example: Darken the
coloring of an image.)
Fig. 4.8 Classes that implement Buf feredImageOp and RasterOp.

We now present each Java2DImageFilter in our application. Class Invert-
Filter (Fig. 4.9), which implements interface Java2DImageFilter, inverts the
color of the pixels in a Buf feredImage. Each pixel consists of three samples—=8-bit R,
G and B integers. An 8-bit color sample takes on an integer in the range 0-255. By inverting
the numerical value of the pixel sample, we can invert the color of the pixel. Line 15 creates
an array to hold the inverted integers. Lines 17—18 invert the array values.

InvertFilter uses a LookupOp—a subclass of Buf feredImageOp—to
invert the colors. Class Buf feredImageOp—the base class for most Java 2D filters—
operates on two images (the source image and the destination image). All classes that
implement Buf feredImageOp filter the source image to produce the destination
image. A LookupOp is an array indexed by source pixel color values and contains desti-
nation pixel color values. Lines 21-22 create a new LookupOp—invertFilter. The
LookupOp constructor takes as arguments a ByteLookUpTable that contains the
lookup array table—invertArray—and a RenderingHints. The Rendering-
Hints object describes optimizations for the rendering engine. In this application, no
optimizations are needed, so RenderingHints is null. Line 25 invokes method
filter of class LookupOp, which processes image with invertFilter and
returns the filtered image.

152 Graphics Programming with Java 2D and Java 3D Chapter 4

1

2

3

4 package com.deitel.advjhtpl.java2d;

5

6

7 import java.awt.image.*;

8

9 public class InvertFilter implements Java2DImageFilter {
10

11

12 public BufferedImage processImage(BufferedImage image)
13 {

14

15 bytel[] invertArray = new bytel 1;

16

17 for (int counter = 0; counter < ; counter++)
18 invertArray[counter] = (byte) (- counter);
19
20
21 BufferedImageOp invertFilter = new LookupOp (
22 new ByteLookupTable(0, invertArray), null);
23
24
25 return invertFilter.filter(image, null);
26
27 }
28)

Fig. 49 InvertFilter invertscolorsin a Buf feredImage.

Class SharpenFilter (Fig. 4.10) is a filter that detects and enhances edges—dif-
ferences in the sample values of neighboring pixels—in an image. A sharpening filter first
detects edges by determining differences in neighboring pixel sample values, then
enhances the edge by increasing the difference between the sample values. Sharpen-
Filter uses a ConvolveOp—another subclass of Buf feredImageOp—to create
the sharpening filter. A ConvolveOp combines the colors of a source pixel and its sur-
rounding neighbors to determine the color of the corresponding destination pixel. Lines
15-18 create sharpenMatrix—the values used in the ConvolveOp. Lines 21-23
create the ConvolveOp—sharpenFilter—passing three parameters (a Kernel,
an integer edge hint and a RenderingHints object). The Kernel—a 2D array—spec-
ifies how a ConvolveOp filter should combine neighboring pixel values. Every
ConvolveOp is built from a Kernel. The Kernel constructor takes as arguments a
width, height and an array of values. Using these arguments, a two-dimensional array is
constructed from the array values. Edge hints instruct the filter how to alter pixels at the
perimeter of the image. EDGE_NO_OP (line 23) instructs sharpenFilter to copy the
source pixels at the perimeter of image directly to the destination image without modifi-
cation. Line 26 invokes method £ilter of class ConvolveOp, which takes as an argu-
ment a Buf feredImage. Method £ilter returns the filtered image.

Chapter 4 Graphics Programming with Java 2D and Java 3D 153

1

2

3

4 package com.deitel.advjhtpl.java2d;

5

6

7 import java.awt.image.*;

8

9 public class SharpenFilter implements Java2DImageFilter {
10

11

12 public BufferedImage processImage(BufferedImage image)
13 {

14

15 float[] sharpenMatrix = {

]6 4 4 4

17 ’ ’ ’

18 5 ' };

19
20
21 BufferedImageOp sharpenFilter =
22 new ConvolveOp(new Kernel(3, 3, sharpenMatrix),
23 , null);
24

25

26 return sharpenFilter.filter(image, null);

27

28 }

29

Fig. 410 SharpenFilter sharpensedgesin a BufferedImage.

Class BlurFilter (Fig. 4.11) uses a ConvolveOp to blur a Buf feredImage.
A blurring filter smooths distinct edges by averaging each pixel value with that of its eight
neighboring pixels. Lines 14-17 create blurMatrix—an array of values for con-
structing the Kernel. Lines 20-21 create ConvolveOp blurFilter using the
default constructor, which takes as an argument a Kernel constructed from blurMa-
trix. The default constructor uses EDGE_ZERO_FILL for the edge hint and a null
RenderingHints. EDGE ZERO_FILL specifies that pixels at the outer edge of the
destination Buf feredImage be set to 0—this is the default. Line 24 invokes blurF-
ilter’s method £ilter on image.

package com.deitel.advjhtpl.java2d;

import java.awt.image.*;

NOOAWN=—

8 public class BlurFilter implements Java2DImageFilter {

Fig. 4.11 BlurFilter blurs the colorsin a Buf feredImage (part 1 of 2).

154 Graphics Programming with Java 2D and Java 3D Chapter 4

11 public BufferedImage processImage(BufferedImage image)
12 {

14 float[] blurMatrix =
15 / ’
16 / ’
17 / ’

NN N
~

NN
~

20 BufferedImageOp blurFilter = new ConvolwveOp (
21 new Kernel(3, 3, blurMatrix));

24 return blurFilter.filter(image, null);

Fig. 4.11 BlurFilter blurs the colorsin o Buf feredImage (part 2 of 2).

Class ColorFilter (Fig. 4.12) alters the color bands in a BufferedImage.
There are three color bands in a TYPE_INT RGB BufferedImage—red, green and
blue. Each color band is defined by three coefficients that represent the R, G and B compo-
nents in the band. The standard red color band consists of 1.0£ R, 0.0£ Gand 0.0£ B
color components—i.e. the standard red band consists entirely of red. Likewise, the stan-
dard green color band consists of 0.0£ R, 1.0f G and 0.0£ B, while the standard blue
color band consists of 0.0£ R, 0.0£ G and 1.0£ B. We can change image colors by
altering the values of the R, G and B coefficients in a color band.

1

2

3

4 package com.deitel.advjhtpl.java2d;

5

6

7 import java.awt.image.*;

8

9 public class ColorFilter implements Java2DImageFilter {
10

11

12 public BufferedImage processImage(BufferedImage image)
13 {

14

15 float[]1[] colorMatrix = {

]6 { ’ ’ }I

17 { o ’ },

18 { ; o });

19

Fig. 4.12 ColorFilter changes the colorsin a Buf feredImage (part 1 of 2).

Chapter 4 Graphics Programming with Java 2D and Java 3D 155

21 BandCombineOp changeColors =
22 new BandCombineOp(colorMatrix,) ;

25 Raster sourceRaster = image.getRaster():;
27 WritableRaster displayRaster =
28 sourceRaster.createCompatibleWritableRaster () ;

31 changeColors.filter(sourceRaster, displayRaster);

34 return new BufferedImage(image.getColorModel (),
35 displayRaster, true, null);

38 1}

Fig. 4.12 ColorFilter changes the colorsin a Buf feredImage (part 2 of 2).

Lines 15-18 create colorMatrix—a 2D array that represents a nonstandard color
space—the aggregation of red, green and blue color bands. The red band (line 16) is the
same as in the standard space. The green and blue bands (lines 17-18) assume color values
from all three color components—green and blue will contain elements of R, G and B.
Lines 21-22 create a BandCombineOp—a subclass of RasterOp. Class RasterOp is
the base class for filters that operate on Rasters. A BandCombineOp operates on the
color bands of a Raster. Every BufferedImage contains a Raster. The Raster
organizes and stores the samples that determine the pixel colors in the Buf feredImage.

Line 25 calls method getRaster of class Buf feredImage, which returns the
Raster associated with image—sourceRaster. Lines 27-28 call method create-
CompatibleWriteableRaster of class Raster, which returns dis-
playRaster—a WriteableRaster compatible with sourceRaster. Compatible
Rasters contain the same number of bands. A WriteableRaster allows sample data
to be written while a Raster is read-only. Line 31 invokes method £ilter of class
BandCombineOp, which takes as arguments a source Raster and a destination
WriteableRaster. The source Raster is filtered and written into the destination
WriteableRaster.

Lines 34-35 construct a BufferedImage. This BufferedImage constructor
takes four arguments—a ColorModel, a Raster, a boolean and a Hashtable. We
use the ColorModel of the original image, accessed through method getColorModel
of class Image (line 34). Class ColorModel converts Raster data to colors depending
on the color scale of the image. The Raster argument to the BufferedImage con-
structor is our displayRaster. The boolean value indicates whether the Raster has
been premultiplied with alpha values. Each pixel is a small square. A curve in an image
may require that only a portion of a pixel be colored—the alpha values tell the Raster
how much of the pixel to cover. The Hashtable contains String/object properties and
isnull in this case. Buf feredImage’s constructor will throw a RasterFormatEx-

156 Graphics Programming with Java 2D and Java 3D Chapter 4

ception if the number and types of bands in the Raster do not match the number and
types of bands required by the ColorModel.

Class Java2DExample (Fig. 4.13) provides a user interface for applying Java2D-
ImageFilters to ImagePanels. Lines 23-26 declare the Java2DImageFilters.
Lines 34—37 initialize the Java2DImageFilters. Lines 40—41 create imagePanel—
the ImagePanel to be filtered. Lines 44-45 create £ilterMenu—the menu of
Java2DImageFilters. Lines 52-54 create the first JMenuItem for filterMenu—
originalMenuItem. An ItemListener invokes imagePanel’s display-
Original method when originalMenuItem is selected (lines 56-66). Lines 69-76
call method createMenuItem (lines 93-116) for each of the four Java2DImage-
Filters. This method creates a JMenuItem for the filter with the appropriate title and
mnemonic. ImagePanel invokes method applyFilter when the JMenuItem is
selected (line 108). Java2DExample contains method main (lines 119-125), for starting
the application.

package com.deitel.advjhtpl.java2d;

import java.awt.*;
import java.awt.event.*;
import java.awt.image.*;
10 import java.lang.*;

11 import java.net.*;

NVOONOCOTRARWN=—

14 import javax.swing.*;
15 import javax.swing.event.*;

16

17 public class Java2DExample extends JFrame {
18

19 private JMenu filterMenu;

20 private ImagePanel imagePanel;

21

22

23 private Java2DImageFilter invertFilter;
24 private Java2DImageFilter sharpenFilter;
25 private Java2DImageFilter blurFilter;

26 private Java2DImageFilter colorFilter;
27

28

29 public Java2DExample ()

30 {

31 super ()
32

33

34 blurFilter = new BlurFilter();

Fig. 4.13 Java 2D image-processing application GUI (part 1 of 4).

Chapter 4 Graphics Programming with Java 2D and Java 3D 157

35 sharpenFilter = new SharpenFilter();

36 invertFilter = new InvertFilter();

37 colorFilter = new ColorFilter();

38

39

40 imagePanel = new ImagePanel (

41 Java2DExample.class.getResource ())
42

43

44 JMenuBar menuBar = new JMenuBar () ;

45 setJMenuBar (menuBar) ;

46

47

48 filterMenu = new JMenu () ;
49 filterMenu.setMnemonic ():

50

51

52 JMenuItem originalMenuItem =

53 new JMenuItem()

54 originalMenuItem.setMnemonic ();

55

56 originalMenuItem.addActionListener (

57 new ActionListener() {

58

59

60 public void actionPerformed(ActionEvent action)
61 {

62 imagePanel.displayOriginalImage() ;
63 }

64

65 }

66):

67

68

69 JMenuItem invertMenulItem = createMenuItem(
70 , , invertFilter);

71 JMenuItem sharpenMenuItem = createMenuItem(
72 , , sharpenFilter);

73 JMenuItem blurMenuItem = createMenuItem(
74 o , blurFilter);

75 JMenuItem changeColorsMenuItem = createMenuItem(
76 ’ , colorFilter);

77

78

79 filterMenu.add(originalMenuItem) ;

80 filterMenu.add(invertMenulItem) ;

81 filterMenu.add(sharpenMenuItem) ;

82 filterMenu.add(blurMenuItem);

83 filterMenu.add(changeColorsMenuItem) ;

84

85

86 menuBar.add(filterMenu);

87

Fig. 4.13 Java 2D image-processing application GUI (part 2 of 4).

158 Graphics Programming with Java 2D and Java 3D Chapter 4

88 getContentPane() .add(imagePanel, BorderLayout);:

93 public JMenuItem createMenultem(String menuItemName,
94 char mnemonic, final Java2DImageFilter filter)
95 {

97 JMenuItem menulItem = new JMenuItem(menuItemName) ;

100 menuItem.setMnemonic(mnemonic);

102 menultem.addActionListener (
103 new ActionListener() {

106 public void actionPerformed(ActionEvent action)
107 {
108 imagePanel.applyFilter(filter);

114 return menultem;

119 public static void main(String args[])

120 {

121 Java2DExample application = new Java2DExample();

122 application.setDefaultCloseOperation ():
123 application.pack();

124 application.setVisible(true);

_Iolx _lalx] —lolx]

Image Filters Image Filters | Image Filters

Display Original
Imnsert
Sharpen

Blur

Change Colors

DEITEL" bemi DEITEL" i

Fig. 4.13 Java 2D image-processing application GUI (part 3 of 4).

Chapter 4

Graphics Programming with Java 2D and Java 3D

159

_lolx]

Image Filters

53 o 20 LUIETEY

Display Original

Blur
Change Colors

53 a0 LMETEY

Image Filters

Display Original
Invert
Sharpen

53 a0 LMIEIEY

Image Filters
e w m——
WA B30
l-‘&z— s "
t 4

g
_—
2=

Display Original
Invert

Sharpen

53 a0 LMIEIEY

Image Filters

Fig. 4.13 Java 2D image-processing application GUI (part 4 of 4).

This concludes our discussion of the Java 2D API. This section has presented several
of the features that make Java 2D a powerful 2D graphics API. We discussed geometrical
shape-rendering processes, including how to create and fill shapes with different colors and
patterns, how to draw a GeneralPath and how to apply transforms to Java 2D shapes.
We also introduced and discussed Java 2D image processing, including how to create and
apply filters to Buf feredImages.

160 Graphics Programming with Java 2D and Java 3D Chapter 4

4.4 Java 3D API

We live in a 3D world. Our vision enables us to see in three dimensions—x, y, and z coor-
dinates. Many of the surfaces onto which graphics are displayed—for example, monitors
and printed pages—are flat. 3D-graphics programming enables us to render realistic mod-
els of our 3D world onto a 2D-viewing surface. 3D graphics have advanced to the point that
nearly anything you can see around you can be modeled—represented numerically by
shape and size—and rendered—drawn on your computer screen.

There now exists an increasing number of 3D-computer-graphics applications—from
flight simulators and medical-imaging equipment to 3D games and screen savers. Rapid
advances in computer hardware have resulted in tremendous growth in the 3D-graphics
industry. Developments in high-performance hardware led to developments in high-per-
formance 3D graphics APIs—beginning in the 1970s with Siggraph’s CORE API, con-
tinuing in the 1980s with SGI’s OpenGL and on through today with Microsoft’s Direct3D
and Java 3D™.!

Sophisticated 3D graphics require sophisticated graphics algorithms that often involve
complex math. However, the Java 3D API provides robust and advanced 3D-graphics capa-
bilities to Java developers while hiding the mathematics behind graphics algorithms. Java 3D
is a high-level graphics-programming API. Java 3D handles all the necessary low-level
graphics calls, so developers can create high-performance 3D-graphics scenes without having
to understand any underlying hardware. Like Java, Java 3D is write once run anywhere™.
Java 3D applications will run in the same way across different 3D graphics platforms.

Sun Microsystems designed the Java 3D API with four major goals in mind—appli-
cation portability, hardware independence, performance scalability and the ability to pro-
duce 3D graphics over a network.” Simplifying of complex graphics operations played a
key role in developing the Java 3D API. Some of the markets and applications for the Java
3D API include®

* 3D-data visualization

e collaborative applications

e gaming (especially network-based multiplayer systems)
e business graphics

e interactive educational systems

* molecular modeling and viewing (MCAD)

e 3D-Web development

* 3D-GUI development

1. Sun Microsystems, Inc., “The Fourth Generation of 3D Graphics API’s has arrived!” 25 January
2000. <java.sun.com/products/java-media/3D/collateral/wp_mktg/
j3d_wp.pd£f>.

2. Sun Microsystems, Inc., “The Java 3D API: For Developers and End Users,” 1 December 1998.
<http://java.sun.com/products/java-media/3D/collateral/presenta-
tion/s1d004.html>.

3. Sun Microsystems, Inc., “The Java 3D API: For Developers and End Users,” 1 December 1998.
<http://java.sun.com/products/java-media/3D/collateral/presenta-
tion/s1d015.html>.

Chapter 4 Graphics Programming with Java 2D and Java 3D 161

Java 3D offers several features that these markets use to develop their 3D-applications:

e Behavior—Java 3D supports multiple types of behavior including animation and
motion, collision detection (detecting when two objects collide) and morphing
(transforming an image into another image).

e Fog—Java 3D supports fog content that restricts viewers ability to see certain ob-
jects in the scene. For example, fog helps to create a realistic model of a rainstorm
in a 3D game.

* Geometry—Java 3D has built-in 3D-geometric primitives for creating geometric
shapes. Java 3D can render scenes generated by existing 3D authoring tools, such
as 3DStudioMax, VRML and Lightwave3D.

e Light—Lights allow you to illuminate objects in a 3D scene. Java 3D supports dif-
ferent forms of light and control over color, direction and intensity.

e Sound—A unique feature of Java 3D is support for 3D sound.

e Texture—Java 3D supports texture mapping for attaching images over 3D-geo-
metric models.

Next, we present an overview of the Java 3D API—we examine the structure of a Java
3D scene by presenting an application that incorporates 3D geometry, lights and interactive
animation. In the next section, we explain how to obtain and install the Java 3D API so you
can run the examples in this chapter and create your own 3D content.

4.4.1 Obtaining and Installing the Java 3D API

The Java 3D API requires that you have the Java 2 Platform, Standard Edition and either
OpenGL or Direct3D installed on your computer—Java 3D uses OpenGL or Direct3D graph-
ics libraries to render 3D scenes. You can obtain OpenGL from www.opengl .org. You
can obtain Direct3D—part of Microsoft’s DirectX API—from www.microsoft.com/
directx/.

The Java 3D APl is not integrated in the core Java 2 Platform. To use the Java 3D API,
you must install the appropriate Java extension and utility packages. The Java 3D API
packages differ slightly depending on which low-level graphics libraries are installed on
your computer. The version of Java 3D used in this chapter requires the OpenGL graphics
library and Windows 2000 Operating System. The version of Java 3D packages you install
depends on your operating system and graphics API. You can obtain the Java 3D packages
and installation instructions from java.sun.com/products/java-media/3D/
download.html.

4.4.2 Java 3D Scenes

Pictures rendered with Java3D are called scenes. A scene—also called a virtual universe—
is 3D space that contains a set of shapes. The root of the Java 3D scene is a VirtualUni-
verse object. The VirtualUniverse has a coordinate system for describing the loca-
tion of scene graphs it contains. Each Java 3D scene is described by a number of scene
graphs—hierarchical structures that specify attributes of a 3D environment. Each scene

162 Graphics Programming with Java 2D and Java 3D Chapter 4

graph attaches to the VirtualUniverse at a specified point in the VirtualUni-
verse’s coordinate system. A scene graph is composed of an internal coordinate system
and a number of branch graphs. Each scene graph has an internal coordinate system, so de-
velopers can attach scene graphs with different coordinate systems in the same Virtu-
alUniverse. Class Locale is the root node in a scene graph, which contains the
attachment coordinate for the VirtualUniverse and a number of branch graphs. There
are two types of branch graphs in Java 3D—content-branch graphs and view-branch
graphs. Content-branch graphs specify content in 3D scenes, such as geometry, lighting,
textures, fog and behaviors. View-branch graphs contain viewing platforms—collections of
objects that specify the perspective, position, orientation and scale in 3D scenes. The view-
ing platform is also called the viewpoint.

The Java 3D class SceneGraphObject is the base class for all objects in a branch
graph. A SceneGraphObject may contain a Group, which represents a node that con-
tains multiple children. The children of a Group may be other Groups, Leafs or Node-
Components. Leafs specify geometry, lights and sound in content-branch graphs and
the viewing-platform components in the view-branch graph. NodeComponent objects
specify the various components of Groups and Leafs such as texture and coloring
attributes. Figure 4.14 lists some Java 3D Group, Leaf and NodeComponent sub-
classes.

Class Description

Partial list of Java3D Group classes
BranchGroup A scene-graph’s root Node that attaches to a Locale.
Switch Can render either a single child or a mask of children.

TransformGroup Contains a single transformation (e.g., translation, rotation or scaling).

Fartial list of Java3D Leaf classes

Behavior Contains methods for gathering user input (e.g., key presses and mouse
clicks) and describing objects’ behavior upon certain events (e.g., colli-
sions).

Light Describes a set of parameters for Java 3D light sources.

Shape3D Describes 3D-geometric objects.

ViewPlatform Controls the viewpoint for a 3D scene.

Partial list of Java3D NodeComponent classes

Appearance Specifies Shape3D attributes, such as coloring and texture.

Material Describes an illuminated object’s properties (e.g., reflective color and shini-
ness).

Texture Specifies properties for texture mapping—a technique for drawing 2D

images over 3D geometric models.

Fig. 4.14 Java 3D Group. Leaf and NodeComponent subclasses.

Chapter 4 Graphics Programming with Java 2D and Java 3D 163

4.4.3 A Java 3D Example

This section creates an interactive Java 3D scene. The application demonstrates how to cre-
ate and use Java 3D Geometry and Lights. A Java Swing GUI enables the user to
change the properties of the shapes and lights in the 3D scene. The application demon-
strates mouse behaviors—i.e., using the mouse to rotate, scale and translate the 3D-shapes.
The application consists of three classes—Java3DWorld (Fig. 4.15), ControlPanel
(Fig. 4.21) and Java3DExample (Fig. 4.22). Figure 4.16-Fig. 4.20 show sample screen
captures demonstrating the features of this application.

Class Java3DWor1ld (Fig. 4.15) creates the Java 3D environment using geometry,
transforms and lighting. Lines 19-22 import the Java 3D utility packages which simplify
the scene-content creation. Class Java3DWorld extends class Canvas3D (line 24), a
java.awt.Canvas subclass for 3D rendering. We use a Canvas3D as the drawing sur-
face for our 3D graphics application. Lines 26-38 declare the Java 3D objects we use in the
application. We discuss each object’s function momentarily.

package com.deitel.advjhtpl.java3d;

NVONOCOTRARWN—

import java.awt.event.*;
10 import java.awt.*;
11 import java.net.*;

14 import javax.swing.event.*;
15 import javax.media.j3d.*;
16 import javax.vecmath.*;

19 import com.sun.j3d.utils.universe.*;

20 import com.sun.j3d.utils.image.*;

21 import com.sun.j3d.utils.geometry.*;

22 import com.sun.j3d.utils.behaviors.mouse.*;

23

24 public class Java3DWorld extends Canvas3D {
25

26 private Appearance appearance;

27 private Box shape;

28 private Color3f lightColor;

29 private Light ambientLight;

30 private Light directionalLight;

31 private Material material;

32 private SimpleUniverse simpleUniverse;
33 private TextureLoader textureLoader;
34

Fig. 4.156 Creating a Java 3D SimpleUniverse with content (part 1 of 5).

164 Graphics Programming with Java 2D and Java 3D Chapter 4

36 private TransformGroup transformGroup;

38 private String imageName;

41 public Java3DWorld(String imageFileName)
42 {

43 super(SimpleUniverse.getPreferredConfiguration());

45 imageName = imageFileName;

48 simpleUniverse = new SimpleUniverse(this);

51 ViewingPlatform viewPlatform =
52 simpleUniverse.getViewingPlatform() ;

54 viewPlatform.setNominalViewingTransform() ;

57 BranchGroup branchGroup = createScene():;

60 simpleUniverse.addBranchGraph(branchGroup);

65 public BranchGroup createScene()
66 {
67 BranchGroup scene = new BranchGroup();

70 transformGroup = new TransformGroup() ;
73 transformGroup.setCapability(

74 TransformGroup.):

76 transformGroup.setCapability(
77 TransformGroup.);

80 scene.addChild(transformGroup);

83 BoundingSphere bounds = new BoundingSphere (
84 new Point3d(o o) s);

86 appearance = new Appearance();
87 material = new Material();

Fig. 4.15 Creating a Java 3D SimpleUniverse with content (part 2 of 5).

Chapter 4 Graphics Programming with Java 2D and Java 3D 165

88 appearance.setMaterial (material);

89

90 String rgb = new String();

91

92

93 textureLoader = new TextureLoader (

94 Java3DWorld.class.getResource(imageName), rgb, this);
95

96

97 texturelLoader.getTexture() .setCapability(

98 Texture.) ;

99

100

101 textureLoader.getTexture () .setEnable(false);
102

103

104 appearance.setTexture(textureLoader.getTexture());
105

106

107 Box shape = new Box(, , ,

108 Box. | Box. ,
109 appearance) ;

110

111

112 transformGroup.addChild(shape);

113

114

115 ambientLight = new AmbientLight();

116 ambientLight.setInfluencingBounds(bounds);
117

118

119 directionalLight = new DirectionalLight();
120

121 lightColor = new Color3f();

122

123

124 directionalLight.setColor(lightColor);

125

126

127

128 directionalLight.setCapability(

129 DirectionalLight.);
130

131 directionalLight.setCapability(

132 DirectionalLight.):
133

134 directionalLight.setCapability(

135 DirectionalLight.):

136

137 directionalLight.setCapability(

138 DirectionalLight.);

139

140 directionalLight.setInfluencingBounds(bounds);

Fig. 4.15 Creating a Java 3D SimpleUniverse with content (part 3 of 5).

166 Graphics Programming with Java 2D and Java 3D Chapter 4

141

142

143 scene.addChild(ambientLight);

144 scene.addChild(directionalLight);

145

146

147 MouseRotate rotateBehavior = new MouseRotate() ;
148 rotateBehavior.setTransformGroup(transformGroup);
149 rotateBehavior.setSchedulingBounds(bounds) ;

150

151

152 MouseTranslate translateBehavior = new MouseTranslate();
153 translateBehavior.setTransformGroup(transformGroup);
154 translateBehavior.setSchedulingBounds (

155 new BoundingBox(new Point3d(" r),
156 new Point3d(o o)))

157

158

159 MouseZoom scaleBehavior = new MouseZoom() ;

160 scaleBehavior.setTransformGroup(transformGroup);
161 scaleBehavior.setSchedulingBounds (bounds);

162

163

164 scene.addChild(scaleBehavior);

165 scene.addChild(rotateBehavior);

166 scene.addchild(translateBehavior);

167

168 scene.compile() ;

169

170 return scene;

171

172 }

173

174

175 public void changeColor(Color color)

176 {

177 lightColor.set(color);

178 directionalLight.setColor(lightColor);

179 }

180

181

182 public void updateTexture(boolean texturevalue)

183 {

184 textureLoader.getTexture() .setEnable(texturevValue);
185 }

186

187

188 public void setImageName(String imageFileName)

189 {

190 imageName = imageFileName;

191 }

192

Fig. 4.15 Creating a Java 3D SimpleUniverse with content (part 4 of 5).

Chapter 4 Graphics Programming with Java 2D and Java 3D 167

193

194 public String getImageName ()

195 {

196 return imageName;

197 }

198

199

200 public Dimension getPreferredSize()
201 {

202 return new Dimension/(,) ;
203 }

204

205

206 public Dimension getMinimumSize()
207 {

208 return getPreferredSize();

209 }

210 3}

Fig. 4.156 Creating a Java 3D SimpleUniverse with content (part 5 of 5).

The Java3DWor1ld constructor (lines 41-62) accepts as a String argument the
image file for texture mapping. Class SimpleUniverse, which creates a Java 3D scene,
encapsulates all the objects in the virtual universe and viewing platform. By using a Sim-
pleUniverse, developers create and attach content-branch graphs—the SimpleUni-
verse uses this information to construct the 3D scene.

The first step in creating a Java 3D scene is to initialize the Canvas3D (line 43). The
Canvas3D constructor takes as an argument a java.awt .GraphicsConfigura-
tion (line 43). Method getPreferredConfiguration of class SimpleUni-
verse returns the system’s java.awt . GraphicsConfiguration, which specifies
a graphics device, such as a computer monitor. Line 48 invokes the SimpleUniverse
constructor, passing the Canvas3D as an argument. This constructor creates a Java 3D
SimpleUniverse with the Canvas3D as the drawing surface. Class SimpleUni-
verse creates and configures the objects in the view branch graph. Lines 51-54 configure
the viewing distance—the length between the viewer and the canvas—for our 3D scene. All
objects in the view branch graph are members of class ViewingPlatform. Method
getViewingPlatform of class SimpleUniverse returns a reference to the View-
ingPlatform created inside the SimpleUniverse (lines 51-52). Method setNom-
inalvViewingTransform of class ViewPlatform sets the viewing distance for our
3D scene to the nominal (i.e., default) distance of PI /4 .0. We now create content for our
Java 3D scene.

In this application, we add one content branch-graph to the SimpleUniverse. Line
57 calls method createScene (lines 65-172), which returns a content BranchGroup.
Class BranchGroup is the root node of a scene graph in a Java 3D scene. The Branch-
Group contains the children Groups, Leafs and NodeComponents that describe the
Java 3D scene. Line 60 attaches the content BranchGroup to the SimpleUniverse
using method addBranchGraph of class SimpleUniverse.

Method createScene creates, constructs and compiles the BranchGroup content.
Line 67 creates an instance of class BranchGroup. Line 70 creates a TransformGroup.

168 Graphics Programming with Java 2D and Java 3D Chapter 4

Class TransformGroup—a subclass of Group—specifies transformational behavior
such as rotation, scaling and translation. Lines 73-77 set the READ and WRITE capability
bits for the TransformGroup using method setCapabilityBits of the Trans-
formGroup. Capability bits are integer flags that specify whether a given object should
allow its properties to be read or written during execution. Line 80 calls method addchild
of class BranchGroup, which adds the TransformGroup to the BranchGroup.

__—‘@ By default, Java 3D sets an object’s properties so they cannot be changed during run-time.
Java 3D does this to increase run-time performance.

Lines 83—84 create a BoundingSphere. Class BoundingSphere creates a spher-
ical bounding volume, which specifies the volume of space in which Lights and Beha-
viors affect geometry in the scene. Outside the bounding volume, the Lights and
Behaviors have no impact on the scene’s geometry. Lines 83—-84 create a Bounding-
Sphere that is centered at the origin and has a 100 meter radius.

Line 86 creates the Appearance that describes the visual attributes of shapes. Lines
87 creates a default Material object. Class Material specifies the properties of an
illuminated object—any object defined within the bounds of a Light. The default Mate-
rial constructor specifies that objects in ambient white light will appear grey. The default
Material constructor also enables any objects with the associated Material to be illu-
minated in the 3D scene. Line 88 calls method setMaterial of class Appearance to
set the Material to the default material, although we could have created a Material
object that would make the shape’s surface reflect like a mirror or shine like metal.

Lines 93-104 create and load the image for texture mapping. Class
com.sun.j3d.utils.image.TextureLoader loads an Image for texturing. The
TextureLoader constructor takes as arguments the image file (imageName), the
image format (rgb) and an ImageObserver. Lines 97-98 invoke method setCapa-
bility of class TextureLoader with argument ALLOW_ENABLE_WRITE so the user
can apply textures to the Texture object during execution. Every TextureLoader has
an associated Texture object that contains the texturing attributes. Line 101 disables tex-
ture mapping using method setEnable of class Texture, although the user can enable
it in runtime. Method setTexture of class Appearance sets the Texture object in
Appearance to our Texture (line 104).

Lines 107-109 create a 3D Box—the shape that appears in our scene. The Box con-
structor takes as arguments three £1oats for the length, width and height, a set of integer
flags that indicate the position information to generate and an Appearance object. Posi-
tion information is generated when geometry is created—by default only spatial coordi-
nates are generated. To ensure proper lighting and texture mapping for geometry, line 108
instructs the compiler to generate additional position information. Line 112 uses method
addchild of class Trans formGroup to add the Box to the TransformGroup so the
user can perform transformations on the Box.

Line 115 creates an AmbientLight for the scene. Class AmbientLight is a uni-
form light source that illuminates all objects within its boundary. AmbientLight will not
illuminate those objects outside its boundary. Line 116 calls method setInfluencing-
Bounds to set the AmbientLight boundary using the BoundingSphere we created
in line 86. Lines 119-140 create a DirectionalLight for the scene. Class Direc-

Chapter 4 Graphics Programming with Java 2D and Java 3D 169

tionalLight describes a light source that travels between two points—the source and
destination. Line 119 creates a DirectionalLight using the default constructor. Line
121 creates a Color3 £ object—a color defined by three £1oats that represent the RGB
color components. Line 124 calls method setColor of DirectionalLight to set the
light source color. Lines 128—138 set the capability bits to allow the user to alter the color
and direction of the DirectionalLight. Lines 143-144 add the two light sources to
the BranchGroup. All objects in the BranchGroup will be illuminated—as long as
these objects are enabled for illumination.

Lines 147-161 create different behaviors for the Box. We use MouseBehavior class
in utility package com.sun.j3d.utils.behavior.mouse. Lines 147-149 create an
instance of class MouseRotate, which stores a rotational transformation for an object con-
trolled with the left mouse button. By moving the mouse while pressing the left mouse button,
the user controls the rotation of the Box. Line 148 calls method setTransformGroup of
class MouseRotate to gather the rotation information from the TransformGroup. Line
149 calls method setSchedulingBounds of MouseRotate to set MouseRotate’s
bounding volume. Figure 4.16 shows the output when the user rotates the Box.

Class MouseTranslate—another subclass of MouseBehavior creates a
behavior that controls the translation (i.e., the displacement) of shapes when the user
presses the right mouse button, then drags the mouse. Line 152 creates an instance of
MouseTranslate. Line 153 calls method setTransformGroup of class Mouse-
Translate to gather the translational information from the TransformGroup. Lines
154-156 call method setSchedulingBounds, passing as an argument a Bound-
ingBox. Class BoundingBox creates a cubic boundary. BoundingBox’s constructors
takes as arguments two Point3d objects, which represent the upper-right and lower-left
vertices of the cube. Outside this BoundingBox, the MouseTranslate behavior does
not work. Figure 4.17 shows the output when the user translates the Box.

Class MouseZoom—another subclass of MouseBehavior—controls the shape’s size
when the user presses either the middle mouse button (on a three-button mouse) or the Alt key
and left button (on a two-button mouse), then drags the mouse. Line 159 creates an instance
of class mouseZoom. Line 160 calls method setTransformGroup of class Mouse-
Zoom to gather the scaling information from the TransformGroup. Line 161 calls method
setSchedulingBounds, passing the BoundingSphere we created earlier in method
createScene. Figure 4.18 demonstrates the output when the user scales the Box.

Lines 164—166 add the three MouseBehaviors to the BranchGroup. Line 168 calls
method compile of class BranchGroup. Compiling a BranchGroup informs the Java
3D engine to optimize rendering the scene using the capability bits set by the developer.

To toggle texture mapping and lighting during execution, we implement methods that
update the Appearance and DirectionalLight. Method changeColor (lines
175-179) uses a Color object to set the DirectionalLight color. Line 177 creates a
Color3D object from the Color argument and passes it to method setColor of the
DirectionalLight. Figure 4.19 shows the output as the user alters the color for
DirectionalLight.

Method updateTexture (lines 182-185) toggles texture mapping of the shapes in
the scene. This method takes a boolean argument that specifies whether to enable texture
mapping for the 3D shape. Figure 4.20 shows the output when the user enables texture

mapping.

170 Graphics Programming with Java 2D and Java 3D Chapter 4

Java 3D Graphics Demo 10l =|

Transformation Instructions

Rotation - Left Mouse Button
Translation - Right Mouse Button
Scale - Alt + Left Mouse Button

Texture Controls

[Z] Apply Texture Map to Image

Direct Lighting Color Contols

il

Java 3D Graphics Demo 10l =|

Transformation Instructions

Rotation - Left Mouse Button
Translation - Right Mouse Button
Scale - Alt + Left Mouse Button

Texture Controls

[Z] Apply Texture Map to Image

Direct Lighting Color Contols

il

Fig. 4.16 Demonstrating MouseRotate behavior.

Chapter 4 Graphics Programming with Java 2D and Java 3D 171

Java 3D Graphics Demo 10l =|

Transformation Instructions

Rotation - Left Mouse Button
Translation - Right Mouse Button
Scale - Alt + Left Mouse Button

Texture Controls

[Z] Apply Texture Map to Image

Direct Lighting Color Contols

Java 3D Graphics Demo 10l =|

. =

Rotation - Left Mouse Button
Translation - Right Mouse Button
Scale - Alt + Left Mouse Button

Texture Controls

[Z] Apply Texture Map to Image

Direct Lighting Color Contols

Fig. 4.17 Demonstrating MouseTranslate behavior.

172 Graphics Programming with Java 2D and Java 3D
=k
Transformation Instructions
Rotation - Left Mouse Button
Translation - Right Mouse Button
Scale - Alt + Left Mouse Button
Texture Controls
[Z] Apply Texture Map to Image
‘ Direct Lighting Color Contols
R L 1k 1
G L 1k 1
B L 1k 1
=k

Transformation Instructions

Rotation - Left Mouse Button
Translation - Right Mouse Button
Scale - Alt + Left Mouse Button

Texture Controls

[Z] Apply Texture Map to Image

Direct Lighting Color Contols

Fig. 4.18 Demonstrating MouseZoom behavior.

Chapter 4

Chapter 4 Graphics Programming with Java 2D and Java 3D 173

=k
Transformation Instructions
Rotation - Left Mouse Button
Translation - Right Mouse Button
Scale - Alt + Left Mouse Button
Texture Controls
[Z] Apply Texture Map to Image
Direct Lighting Color Contols
R L { BOR § 1
G :l_) y
B :l_) y
=k

o

Transformation Instructions
Rotation - Left Mouse Button
Translation - Right Mouse Button
Scale - Alt + Left Mouse Button
Texture Controls
[Z] Apply Texture Map to Image
Direct Lighting Color Contols
R
G
B 24

Fig. 4.19 Demonstrating changing color in Java 3D.

174 Graphics Programming with Java 2D and Java 3D Chapter 4

wa 30 Graphics Demo | ﬂ

Transformation Instructions
Rotation - Left Mouse Button

Translation - Right Mouse Button
Scale - Alt + Left Mouse Button

Texture Controls

[Z] Apphy Texture Map to Image

Direct Lighting Color Contols
I T |
R
g ° T |
B [: o 1
Java 3D Graphics Demo - olx|

Transformation Instructions

Rotation - Left Mouse Button
Translation - Right Mouse Button
Scale - Alt + Left Mouse Button

Texture Controls

[v] Apply Texture Map to Image

Direct Lighting Color Contols
R {) 1
G s 1k 1
B [1k 1

Fig. 4.20 Demonstrating texture mapping in Java 3D.

Chapter 4 Graphics Programming with Java 2D and Java 3D 175

The user controls the DirectionalLight properties and texture mapping in the
Java3DWorld using class ControlPanel (Fig.4.21). Lines 18-21 declare three
JSliders and one JCheckbox for the user to interact with the 3D application. Line 24
declares a reference to a Java3DWorld object to access its updateTexture and
changeColor methods.

1

2

3

4 package com.deitel.advjhtpl.java3d;
5

6

7 import java.awt.*;

8 import java.awt.event.*;

9

10

11 import javax.swing.*;
12 import javax.swing.border.*;
13 import javax.swing.event.*;

14

15 public class ControlPanel extends JPanel {

16

17

18 private JSlider redSlider, greenSlider, blueSlider;
19

20

21 private JCheckBox textureCheckBox;

22

23

24 private Java3DWorld java3DWorld;

25

26

27 public ControlPanel(Java3DWorld tempJ3DWorld)

28 {

29 java3DWorld = tempJ3DWorld;

30

31

32 JPanel instructionPanel = new JPanel();

33

34 TitledBorder titledBorder =

35 new TitledBorder ()
36

37 titledBorder.setTitleJustification(TitledBorder.)
38 instructionPanel.setBorder(titledBorder);

39

40 JLabel rotationInstructions =

41 new JLabel (,
42 SwingConstants.):

43

44 JLabel translationInstructions =

45 new JLabel (’
46 SwingConstants.);

Fig. 421 ControlPanel provides Swing controls for Java3DWorld (part 1 of 4).

176 Graphics Programming with Java 2D and Java 3D Chapter 4

47

48 JLabel scalingInstructions =

49 new JLabel (,
50 SwingConstants.) ;

51

52

53 instructionPanel.add(rotationInstructions);

54 instructionPanel.add(translationInstructions);
55 instructionPanel.add(scalingInstructions);

56

57

58 JPanel texturePanel = new JPanel();

59

60 TitledBorder textureBorder =

61 new TitledBorder ()i

62

63 textureBorder.setTitleJustification(TitledBorder.)
64 texturePanel.setBorder(textureBorder);

65

66 textureCheckBox = new JCheckBox (

67)i

68

69 texturePanel.add(textureCheckBox) ;

70

71

72 textureCheckBox.addItemListener (

73 new ItemListener() {

74

75

76 public void itemStateChanged(ItemEvent event)
77 {

78 if(event.getStateChange() == ItemEvent.
79 Java3DWorld.updateTexture(true);
80 else

81 Java3DWorld.updateTexture(false);
82 }

83

84 }

85) ;

86

87

88 JPanel topPanel = new JPanel (

89 new GridLayout(2, 1, 0,))

90

91 topPanel.add(instructionPanel) ;

92 topPanel.add(texturePanel);

93

94

95 JPanel colorPanel = new JPanel (

96 new FlowLayout (FlowLayout. ’ ,))i
97

98 TitledBorder colorBorder =

99 new TitledBorder ();

Fig. 421 ControlPanel provides Swing controls for Java3DWor1ld (part 2 of 4).

Chapter 4 Graphics Programming with Java 2D and Java 3D 177

100

101 colorBorder.setTitleJustification(TitledBorder.);
102 colorPanel.setBorder(colorBorder);

103

104 JLabel redLabel = new JLabel ()

105 JLabel greenLabel = new JLabel ();

106 JLabel blueLabel = new JLabel () ;

107

108

109 redSlider = new JSlider(

110 SwingConstants. , 0, ’):
111

112 redSlider.setMajorTickSpacing ():

113 redSlider.setPaintTicks(true);

114

115

116 greenSlider = new JSlider(

117 SwingConstants. . 0, o):
118

119 greenSlider.setMajorTickSpacing () ;

120 greenSlider.setPaintTicks(true);

121

122

123 blueSlider = new JSlider(

124 SwingConstants. . 0, o)i
125

126 blueSlider.setMajorTickSpacing ():

127 blueSlider.setPaintTicks(true);

128

129

130 ChangeListener slideListener = new ChangeListener() {
131

132

133 public void stateChanged(ChangeEvent event)
134 {

135 Color color = new Color(

136 redSlider.getValue(), greenSlider.getValue(),
137 blueSlider.getvalue()):

138

139 Java3DWorld.changeColor(color);

140 }

141

142 };

143

144

145 redSlider.addChangeListener(slideListener);
146 greenSlider.addChangeListener(slideListener);
147 blueSlider.addChangeListener(slideListener);
148

149

150 colorPanel.add(redLabel);

151 colorPanel.add(redSlider);

152 colorPanel.add(greenLabel);

Fig. 421 ControlPanel provides Swing controls for Java3DWor1ld (part 3 of 4).

178 Graphics Programming with Java 2D and Java 3D Chapter 4

153 colorPanel.add(greenSlider);
154 colorPanel.add(blueLabel);
155 colorPanel.add(blueSlider);

158 Java3DWorld.changeColor (
159 new Color(redsSlider.getValue(),
160 greenSlider.getValue(), blueSlider.getValue()));

163 setLayout (new GridLayout(2, 1, 0,))

166 add(topPanel);
167 add(colorPanel);

172 public Dimension getPreferredSize()
173 {
174 return new Dimension(,);

175 }

178 public Dimension getMinimumSize()
179 {
180 return getPreferredSize();

181 }

Fig. 421 ControlPanel providesSwing controls for Java3DWor1ld (part 4 of 4).

There are three sets of controls for the Java3DWor1ld—transformation, texture map-
ping and lighting controls. The translations are controlled using MouseTranslate,
MouseRotate and MouseZoom—no Swing components are needed to control the
Java3DWorld transforms. Lines 32-55 create a JPanel that contains JLabels with
instructions for applying transforms to the scene using the mouse.

Lines 58-69 create a JPanel with texture-mapping controls. The JCheckBox reg-
ulates the texture mapping in the application. Lines 72—85 attach an ItemListener to
textureCheckBox. When the user selects this JCheckBox, line 79 calls method
updateTexture of Java3DWor1ld to enable texture mapping. If the user deselects the
JCheckBox, line 81 disables texture mapping.

Lines 104—127 create three JS1liders that can assume an integer 0-255, inclusive.
Lines 130-142 create a ChangeListener for the JS1idexrs. When the user accesses a
JSlider, line 139 calls method changeColor of Java3DWorld to change the
shape’s color in the 3D scene.

Class Java3DExample (Fig. 4.22) contains the Java3DWorld and Control-
Panel. The Java3DExample constructor (lines 21-32) creates the Java3DWorld
object by passing a String argument that specifies the image used for texture mapping
(line 25). Line 26 creates controlPanel, passing the Java3DWorld as an argument.
Method main (lines 35-41) executes the application.

Chapter 4 Graphics Programming with Java 2D and Java 3D 179

1

2

3

4

5 package com.deitel.advjhtpl.java3d;
6

7

8 import java.awt.*;

9 import java.awt.event.*;

10

12 import javax.swing.*;
13 import javax.swing.event.*;

14

15 public class Java3DExample extends JFrame {

16

17 private Java3DWorld java3DWorld;

18 private JPanel controlPanel;

19

20

21 public Java3DExample ()

22 {

23 super ():

24

25 java3DWorld = new Java3DWorld();
26 controlPanel = new ControlPanel(java3DwWorld);

27

28

29 getContentPane() .add(java3DWorld, BorderLayout.);
30 getContentPane() .add(controlPanel, BorderLayout.);
31

32 }

33

34

35 public static void main(String args[])

36 {

37 Java3DExample application = new Java3DExample();

38 application.setDefaultCloseOperation ();
39 application.pack() ;

40 application.setVisible(true);

41 }

42)

Fig. 422 GUlfor Java3DWorld and ControlPanel.

4.5 A Java 3D Case Study: A 3D Game with Custom Behaviors

In Section 4.4.3, we demonstrated how the Java 3D MouseBehavior utility classes add
interactive behavior to a 3D scene. The utility behavior classes provide a simple and con-
venient way to add interaction to our 3D applications. However, some applications—such
as computer games—require custom behaviors (e.g., collision detection, navigation and
position checking). In this section, we demonstrate how to implement custom behaviors us-
ing the javax.media.j3d.Behavior class. We demonstrate collision detection

180 Graphics Programming with Java 2D and Java 3D Chapter 4

among scene obstacles, navigation through a 3D scene and position checking of a user-nav-
igated shape to determine when it has reached its target. We also introduce how to animate
shapes using Interpolators. We examine how to use additional Node and Group
subclasses, such as Switches and Text3Ds. The final product is a 3D game in which the
user navigates a shape through a 3D scene full of “flying” obstacles. The goal of the game
is to move this shape to a specific target point without having the shape collide with any of
the moving obstacles.

Class Java3DWworldl (Fig. 4.23) creates the 3D game’s objects, behaviors and ani-
mation. Class Java3DWorldl extends class Canvas3D (line 22). Lines 25-54 declare
constants for setting various parameters in our 3D scene. Line 56 declares the Swi tch that
contains the flying shapes. Class Switch extends Java 3D class Group. A Switch
object specifies which of its children to render. Line 57 declares the BoundingSphere
for scheduling bounds for the scene graph. Line 59 declares the SimpleUniverse that
contains the Locale and view branch graph for our application. Line 61 declares the
String that describes the image file for texturing shapes.

The Java3DWorldl constructor (lines 64—85) accepts as an argument a String
that represents the image file for texturing the target shape. Line 66 initializes the
Canvas3D by invoking the superclass constructor with a GraphicsConfiguration
argument. Method getPreferredConfiguration of class SimpleUniverse
returns the system’s java.awt.GraphicsConfiguration, which specifies a
graphics-output device. Line 71 creates a SimpleUniverse with the Canvas3D as the
drawing surface. Class SimpleUniverse creates the Java 3D scene that encapsulates all
the shapes in the virtual universe and viewing platform. Lines 74—77 configure the scene’s
viewing distance to the default value (PI/4.0). Line 80 calls method createScene
(lines 65-248) to create a BranchGroup that line 60 attaches to the SimpleUniverse.

Method createScene constructs the BranchGroup content. Line 93 creates the
Switch object that contains the scenes in our 3D game by calling method initialize-
Switch (lines 285-297). This method takes an int argument (DEFAULT_SCENE) that
specifies the default scene to display upon creation. Lines 288-294 set the Switch group’s
capability bits to allow the Switch (and its children) to be read and written at run time. In
this application, we implement collision detection—lines 293-294 set the capability bit that
allows collision reporting. Upon collision—i.e., when two shapes intersect—the Java 3D
engine compiles the scene-graph path to the object that triggered the collision. When
method initializeSwitch returns the Switch to method createScene, line 96
calls method initializeSwitch again to create a Switch that contains various
shapes in the scene. Line 100 creates a BranchGroup that aggregates the shapes in
switch (line 103). Line 106 attaches the BranchGroup to the Switch of scenes. Line
109 attaches the Switch of scenes to the root sceneBranchGraph. Lines 112-113
create the BoundingSphere for setting the bounds for the sceneBranchGraph.

The 3D game features a scene with several 3D obstacles that “fly” across the screen.
These obstacles rotate and translate at random. Rotation and translation are types of trans-
formations. We discussed in the previous section that a TransformGroup holds the
information about a spatial transformation and applies transformations