
Advanced Java 2
Platform
HOW TO PROGRAM

Deitel™ Books, Cyber Classrooms, Complete Training Courses and
Web-Based Training published by Prentice Hall

How to Program Series
Advanced Java™ 2 Platform How to Program
C How to Program, 3/E
C++ How to Program, 3/E
C# How to Program
e-Business and e-Commerce How to Program
Internet and World Wide Web How

to Program, 2/E
Java™ How to Program, 4/E
Perl How to Program
Visual Basic® 6 How to Program
Visual Basic® .NET How to Program
Visual C++® .NET How to Program
Wireless Internet & Mobile Business How

to Program
XML How to Program

Multimedia Cyber Classroom and
Web-Based Training Series
(for information regarding Deitel™ Web-based
training visit www.ptgtraining.com)
Advanced Java™ 2 Platform Multimedia

Cyber Classroom
C++ Multimedia Cyber Classroom, 3/E
C# Multimedia Cyber Classroom, 3/E
e-Business and e-Commerce Multimedia

Cyber Classroom
Internet and World Wide Web Multimedia

Cyber Classroom, 2/E
Java™ 2 Multimedia Cyber Classroom, 4/E
Perl Multimedia Cyber Classroom
Visual Basic® 6 Multimedia Cyber Classroom
Visual Basic® .NET Multimedia Cyber

Classroom
Visual C++® .NET Multimedia Cyber Classroom
Wireless Internet & Mobile Business

Programming Multimedia Cyber Classroom
XML Multimedia Cyber Classroom

The Complete Training Course Series
The Complete Advanced Java™ 2 Platform

Training Course
The Complete C++ Training Course, 3/E
The Complete C# Training Course, 3/E
The Complete e-Business and e-Commerce

Programming Training Course
The Complete Internet and World Wide Web

Programming Training Course
The Complete Java™ 2 Training Course, 3/E
The Complete Perl Training Course
The Complete Visual Basic® 6 Training Course
The Complete Visual Basic® .NET

Training Course
The Complete Visual C++® .NET

Training Course
The Complete Wireless Internet & Mobile

Business Programming Training Course
The Complete XML Training Course

.NET Series
C# How to Program
Visual Basic® .NET How to Program
Visual C++® .NET How to Program

Visual Studio® Series
Getting Started with Microsoft® Visual C++™ 6

with an Introduction to MFC
Visual Basic® 6 How to Program
C# How to Program
Visual Basic® .NET How to Program
Visual C++® .NET How to Program

For Managers Series
e-Business and e-Commerce for Managers

Coming Soon
e-books and e-whitepapers

To communicate with the authors, send email to:

deitel@deitel.com

For information on corporate on-site seminars and public seminars offered by Deitel & Associates,
Inc. worldwide, visit:

www.deitel.com

For continuing updates on Prentice Hall and Deitel & Associates, Inc. publications visit the Prentice
Hall Web site

www.prenhall.com/deitel

Advanced Java 2
Platform
HOW TO PROGRAM

H. M. Deitel
Deitel & Associates, Inc.

P. J. Deitel
Deitel & Associates, Inc.

S. E. Santry
Deitel & Associates, Inc.

PRENTICE HALL, Upper Saddle River, New Jersey
07458

Library of Congress Cataloging-in-Publication Data
on File

Vice President and Editorial Director: Marcia Horton
Acquisitions Editor: Petra J. Recter
Assistant Editor: Sarah Burrows
Project Manager: Crissy Statuto
Editorial Assistant: Karen Schultz
Production Editor: Camille Trentacoste
Managing Editor: David A. George
Executive Managing Editor: Vince O’Brien
Chapter Opener and Cover Designer: Tamara Newnam Cavallo
Art Director: Heather Scott
Marketing Manager: Jennie Burger
Manufacturing Buyer: Pat Brown
Manufacturing Manager: Trudy Pisciotti
Assistant Vice President of Production and Manufacturing: David W. Riccardi

© 2001 by Prentice-Hall, Inc.
Upper Saddle River, New Jersey 07458

The authors and publisher of this book have used their best efforts in preparing this book. These efforts include
the development, research, and testing of the theories and programs to determine their effectiveness. The authors
and publisher make no warranty of any kind, expressed or implied, with regard to these programs or to the docu-
mentation contained in this book. The authors and publisher shall not be liable in any event for incidental or con-
sequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks and registered trademarks. Where those designations appear in this book, and Prentice Hall and the authors
were aware of a trademark claim, the designations have been printed in initial caps or all caps. All product names
mentioned remain trademarks or registered trademarks of their respective owners.

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-034151-7

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Pearson Education Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

In loving memory of our Uncle and Granduncle
Joseph Deitel:

“His pleasure was giving.”

 Harvey and Paul Deitel

For my brother Tim, who, by his example, always has
challenged me to excel.

 Sean

Trademarks

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in
the United States and other countries. Prentice Hall is independent of Sun Microsystems, Inc.

Copyright © 2000 Microsoft Corporation, One Microsoft Way, Redmond, Washington 98052-6399
U.S.A. All rights reserved.

Netscape Communicator browser window© 1999 Netscape Communications Corporation. Used with
permission. Netscape Communications has not authorized, sponsored, endorsed, or approved this
publication and is not responsible for its content.

Openwave, the Openwave logo, and UP.SDK are trademarks of Openwave Systems Inc. All
rightsreserved."

Palm OS, Palm Computing, HandFAX, HandSTAMP, HandWEB, Graffiti, HotSync, iMEssenger,
MultiMail, Palm.Net, PalmConnect, PalmGlove, PalmModem, PalmPoint, PalmPrint, PalmSource,
and the Palm Platform Compatible Logo are registered trademarks of Palm, Inc. Palm, the Palm logo,
MyPalm, PalmGear, PalmPix, PalmPower, AnyDay, EventClub, HandMAIL, the HotSync Logo,
PalmGlove, Palm Powered, the Palm trade dress, Smartcode, Simply Palm, We Sync and Wireless
Refresh are trademarks of Palm, Inc.

Contents

Preface xxi

1 Introduction 1
1.1 Introduction 2
1.2 Architecture of the Book 3

1.2.1 Advanced GUI, Graphics and JavaBeans 3
1.2.2 Distributed Systems 4
1.2.3 Web Services 5
1.2.4 Enterprise Java 5
1.2.5 Enterprise Case Study 6
1.2.6 XML 7

1.3 Tour of the Book 7
1.4 Running Example Code 18
1.5 Design Patterns 19

1.5.1 History of Object-Oriented Design Patterns 20
1.5.2 Design Patterns Discussion 22
1.5.3 Concurrency Patterns 25
1.5.4 Architectural Patterns 26
1.5.5 Further Study on Design Patterns 27

2 Advanced Swing Graphical User Interface
Components 29
2.1 Introduction 30
2.2 WebBrowser Using JEditorPane and JToolBar 30

2.2.1 Swing Text Components and HTML Rendering 31
2.2.2 Swing Toolbars 33

2.3 Swing Actions 39
2.4 JSplitPane and JTabbedPane 45

VIII Contents

2.5 Multiple-Document Interfaces 52
2.6 Drag and Drop 56
2.7 Internationalization 62
2.8 Accessibility 71
2.9 Internet and World Wide Web Resources 78

3 Model-View-Controller 85
3.1 Introduction 86
3.2 Model-View-Controller Architecture 86
3.3 Observable Class and Observer Interface 88
3.4 JList 107
3.5 JTable 111
3.6 JTree 115

3.6.1 Using DefaultTreeModel 117
3.6.2 Custom TreeModel Implementation 123

4 Graphics Programming with Java 2D and Java 3D 135
4.1 Introduction 136
4.2 Coordinates, Graphics Contexts and Graphics Objects 136
4.3 Java 2D API 138

4.3.1 Java 2D Shapes 140
4.3.2 Java 2D Image Processing 146

4.4 Java 3D API 160
4.4.1 Obtaining and Installing the Java 3D API 161
4.4.2 Java 3D Scenes 161
4.4.3 A Java 3D Example 163

4.5 A Java 3D Case Study: A 3D Game with Custom Behaviors 179

5 Case Study: Java 2D GUI Application with
Design Patterns 219
5.1 Introduction 220
5.2 Application Overview 220
5.3 MyShape Class Hierarchy 221
5.4 Deitel DrawingModel 242
5.5 Deitel Drawing Views 254
5.6 Deitel Drawing Controller Logic 260

5.6.1 MyShapeControllers for Processing User Input 260
5.6.2 MyShapeControllers and Factory Method Design Pattern 272
5.6.3 Drag-and-Drop Controller 276

5.7 DrawingInternalFrame Component 287
5.8 ZoomDialog, Action and Icon Components 304
5.9 DeitelDrawing Application 309

6 JavaBeans Component Model 321
6.1 Introduction 322
6.2 Using Beans in Forte for Java Community Edition 323

Contents IX

6.3 Preparing a Class to be a JavaBean 337
6.4 Creating a JavaBean: Java Archive Files 340
6.5 JavaBean Properties 345
6.6 Bound Properties 347
6.7 Indexed Properties and Custom Events 355
6.8 Customizing JavaBeans for Builder Tools 364

6.8.1 PropertyEditors 371
6.8.2 Customizers 375

6.9 Internet and World Wide Web Resources 379

7 Security 386
7.1 Introduction 387
7.2 Ancient Ciphers to Modern Cryptosystems 388
7.3 Secret-Key Cryptography 389
7.4 Public-Key Cryptography 390
7.5 Cryptanalysis 393
7.6 Key Agreement Protocols 393
7.7 Key Management 394
7.8 Java Cryptography Extension (JCE) 395

7.8.1 Password-Based Encoding with JCE 395
7.8.2 Decorator Design Pattern 405

7.9 Digital Signatures 406
7.10 Public-Key Infrastructure, Certificates and Certification Authorities 407

7.10.1 Java Keystores and keytool 409
7.11 Java Policy Files 410
7.12 Digital Signatures for Java Code 413
7.13 Authentication 417

7.13.1 Kerberos 417
7.13.2 Single Sign-On 417
7.13.3 Java Authentication and Authorization Service (JAAS) 418

7.14 Secure Sockets Layer (SSL) 423
7.14.1 Java Secure Socket Extension (JSSE) 424

7.15 Java Language Security and Secure Coding 429
7.16 Internet and World Wide Web Resources 430

8 Java Database Connectivity (JDBC) 444
8.1 Introduction 445
8.2 Relational-Database Model 446
8.3 Relational Database Overview: The books Database 447
8.4 Structured Query Language (SQL) 452

8.4.1 Basic SELECT Query 453
8.4.2 WHERE Clause 454
8.4.3 ORDER BY Clause 456
8.4.4 Merging Data from Multiple Tables: Joining 459
8.4.5 INSERT INTO Statement 460
8.4.6 UPDATE Statement 461
8.4.7 DELETE FROM Statement 462

X Contents

8.5 Creating Database books in Cloudscape 463
8.6 Manipulating Databases with JDBC 464

8.6.1 Connecting to and Querying a JDBC Data Source 464
8.6.2 Querying the books Database 470

8.7 Case Study: Address-Book Application 479
8.7.1 PreparedStatements 480
8.7.2 Transaction Processing 482
8.7.3 Address-Book Application 482

8.8 Stored Procedures 515
8.9 Batch Processing 515
8.10 Processing Multiple ResultSets or Update Counts 517
8.11 Updatable ResultSets 518
8.12 JDBC 2.0 Optional Package javax.sql 519

8.12.1 DataSource 519
8.12.2 Connection Pooling 519
8.12.3 RowSets 520

8.13 Internet and World Wide Web Resources 520

9 Servlets 530
9.1 Introduction 531
9.2 Servlet Overview and Architecture 533

9.2.1 Interface Servlet and the Servlet Life Cycle 534
9.2.2 HttpServlet Class 536
9.2.3 HttpServletRequest Interface 537
9.2.4 HttpServletResponse Interface 538

9.3 Handling HTTP get Requests 539
9.3.1 Setting Up the Apache Tomcat Server 543
9.3.2 Deploying a Web Application 545

9.4 Handling HTTP get Requests Containing Data 549
9.5 Handling HTTP post Requests 552
9.6 Redirecting Requests to Other Resources 556
9.7 Session Tracking 559

9.7.1 Cookies 560
9.7.2 Session Tracking with HttpSession 569

9.8 Multi-Tier Applications: Using JDBC from a Servlet 577
9.9 HttpUtils Class 584
9.10 Internet and World Wide Web Resources 585

10 JavaServer Pages (JSP) 593
10.1 Introduction 594
10.2 JavaServer Pages Overview 595
10.3 A First JavaServer Page Example 596
10.4 Implicit Objects 598
10.5 Scripting 599

10.5.1 Scripting Components 600
10.5.2 Scripting Example 601

10.6 Standard Actions 604

Contents XI

10.6.1 <jsp:include> Action 605
10.6.2 <jsp:forward> Action 610
10.6.3 <jsp:plugin> Action 613
10.6.4 <jsp:useBean> Action 617

10.7 Directives 634
10.7.1 page Directive 634
10.7.2 include Directive 636

10.8 Custom Tag Libraries 638
10.8.1 Simple Custom Tag 639
10.8.2 Custom Tag with Attributes 643
10.8.3 Evaluating the Body of a Custom Tag 647

10.9 Internet and World Wide Web Resources 653

11 Case Study: Servlet and JSP Bookstore 660
11.1 Introduction 661
11.2 Bookstore Architecture 662
11.3 Entering the Bookstore 664
11.4 Obtaining the Book List from the Database 667
11.5 Viewing a Book’s Details 676
11.6 Adding an Item to the Shopping Cart 683
11.7 Viewing the Shopping Cart 686
11.8 Checking Out 689
11.9 Processing the Order 693
11.10 Deploying the Bookstore Application in J2EE 1.2.1 694

11.10.1 Configuring the books Data Source 695
11.10.2 Launching the Cloudscape Database and J2EE Servers 695
11.10.3 Launching the J2EE Application Deployment Tool 696
11.10.4 Creating the Bookstore Application 697
11.10.5 Creating BookServlet and AddToCartServlet Web Components 698
11.10.6 Adding Non-Servlet Components to the Application 704
11.10.7 Specifying the Web Context, Resource References, JNDI

Names and Welcome Files 706
11.10.8 Deploying and Executing the Application 709

12 Java-Based Wireless Applications
Development and J2ME 716
12.1 Introduction 717
12.2 WelcomeServlet Overview 720
12.3 TipTestServlet Overview 726

12.3.1 Internet Explorer Request 739
12.3.2 WAP Request 746
12.3.3 Pixo i-mode Request 751
12.3.4 J2ME Client Request 755

12.4 Java 2 Micro Edition 757
12.4.1 Connected Limited Device Configuration (CLDC) 758
12.4.2 Mobile Information Device Profile (MIDP) 759

XII Contents

12.4.3 TipTestMIDlet Overview 761
12.5 Installation Instructions 781
12.6 Internet and World Wide Web Resources 785

13 Remote Method Invocation 790
13.1 Introduction 791
13.2 Case Study: Creating a Distributed System with RMI 792
13.3 Defining the Remote Interface 792
13.4 Implementing the Remote Interface 793
13.5 Compiling and Executing the Server and the Client 807
13.6 Case Study: Deitel Messenger with Activatable Server 809

13.6.1 Activatable Deitel Messenger ChatServer 810
13.6.2 Deitel Messenger Client Architecture and Implementation 820
13.6.3 Running the Deitel Messenger Server and Client Applications 836

13.7 Internet and World Wide Web Resources 840

14 Session EJBs and Distributed Transactions 846
14.1 Introduction 847
14.2 EJB Overview 847

14.2.1 Remote Interface 848
14.2.2 Home Interface 848
14.2.3 EJB Implementation 849
14.2.4 EJB Container 849

14.3 Session Beans 849
14.3.1 Stateful Session EJBs 849
14.3.2 Deploying Session EJBs 862
14.3.3 Stateless Session EJBs 869

14.4 EJB Transactions 879
14.4.1 MoneyTransfer EJB Home and Remote Interfaces 879
14.4.2 Bean-Managed Transaction Demarcation 881
14.4.3 Container-Managed Transaction Demarcation 886
14.4.4 MoneyTransfer EJB Client 892
14.4.5 Deploying the MoneyTransfer EJB 898

14.5 Internet and World Wide Web Resources 900

15 Entity EJBs 904
15.1 Introduction 905
15.2 Entity EJB Overview 905
15.3 Employee Entity EJB 906
15.4 Employee EJB Home and Remote Interfaces 906
15.5 Employee EJB with Bean-Managed Persistence 908

15.5.1 Employee EJB Implementation 908
15.5.2 Employee EJB Deployment 918

15.6 Employee EJB with Container-Managed Persistence 920
15.7 Employee EJB Client 925
15.8 Internet and World Wide Web Resources 934

Contents XIII

16 Messaging with JMS 937
16.1 Introduction 938
16.2 Installation and Configuration of J2EE 1.3 939
16.3 Point-To-Point Messaging 940

16.3.1 Voter Application: Overview 940
16.3.2 Voter Application: Sender Side 941
16.3.3 Voter Application: Receiver Side 945
16.3.4 Voter Application: Configuring and Running 951

16.4 Publish/Subscribe Messaging 951
16.4.1 Weather Application: Overview 952
16.4.2 Weather Application: Publisher Side 953
16.4.3 Weather Application: Subscriber Side 958
16.4.4 Weather Application: Configuring and Running 967

16.5 Message-Driven Enterprise JavaBeans 968
16.5.1 Voter Application: Overview 968
16.5.2 Voter Application: Receiver Side 969
16.5.3 Voter Application: Configuring and Running 978

17 Enterprise Java Case Study: Architectural Overview 990
17.1 Introduction 991
17.2 Deitel Bookstore 992
17.3 System Architecture 992
17.4 Enterprise JavaBeans 993

17.4.1 Entity EJBs 993
17.4.2 Stateful Session EJBs 995

17.5 Servlet Controller Logic 995
17.6 XSLT Presentation Logic 995

18 Enterprise Java Case Study: Presentation
and Controller Logic 1009
18.1 Introduction 1010
18.2 XMLServlet Base Class 1011
18.3 Shopping Cart Servlets 1022

18.3.1 AddToCartServlet 1023
18.3.2 ViewCartServlet 1023
18.3.3 RemoveFromCartServlet 1034
18.3.4 UpdateCartServlet 1034
18.3.5 CheckoutServlet 1039

18.4 Product Catalog Servlets 1040
18.4.1 GetAllProductsServlet 1040
18.4.2 GetProductServlet 1046
18.4.3 ProductSearchServlet 1049

18.5 Customer Management Servlets 1053
18.5.1 RegisterServlet 1053
18.5.2 LoginServlet 1057
18.5.3 ViewOrderHistoryServlet 1060

XIV Contents

18.5.4 ViewOrderServlet 1064
18.5.5 GetPasswordHintServlet 1067

19 Enterprise Java Case Study: Business Logic Part 1 1073
19.1 Introduction 1074
19.2 EJB Architecture 1074
19.3 ShoppingCart Implementation 1075

19.3.1 ShoppingCart Remote Interface 1075
19.3.2 ShoppingCartEJB Implementation 1077
19.3.3 ShoppingCartHome Interface 1084

19.4 Product Implementation 1085
19.4.1 Product Remote Interface 1085
19.4.2 ProductEJB Implementation 1086
19.4.3 ProductHome Interface 1088
19.4.4 ProductModel 1089

19.5 Order Implementation 1094
19.5.1 Order Remote Interface 1095
19.5.2 OrderEJB Implementation 1095
19.5.3 OrderHome Interface 1101
19.5.4 OrderModel 1101

19.6 OrderProduct Implementation 1107
19.6.1 OrderProduct Remote Interface 1107
19.6.2 OrderProductEJB Implementation 1108
19.6.3 OrderProductHome Interface 1110
19.6.4 OrderProductPK Primary-Key Class 1111
19.6.5 OrderProductModel 1113

20 Enterprise Java Case Study: Business Logic Part 2 1117
20.1 Introduction 1118
20.2 Customer Implementation 1118

20.2.1 Customer Remote Interface 1119
20.2.2 CustomerEJB Implementation 1119
20.2.3 CustomerHome Interface 1126
20.2.4 CustomerModel 1127

20.3 Address Implementation 1131
20.3.1 Address Remote Interface 1134
20.3.2 AddressEJB Implementation 1134
20.3.3 AddressHome Interface 1138
20.3.4 AddressModel 1138

20.4 SequenceFactory Implementation 1144
20.4.1 SequenceFactory Remote Interface 1144
20.4.2 SequenceFactoryEJB Implementation 1145
20.4.3 SequenceFactoryHome Interface 1147

20.5 Deitel Bookstore Application Deployment with J2EE 1149
20.5.1 Deploying Deitel Bookstore CMP Entity EJBs 1149
20.5.2 Deploying Deitel Bookstore Servlets 1156

Contents XV

21 Application Servers 1161
21.1 Introduction 1162
21.2 J2EE Specification and Benefits 1162
21.3 Commercial Application Servers 1163

21.3.1 BEA WebLogic 6.0 1163
21.3.2 iPlanet Application Server 6.0 1164
21.3.3 IBM WebSphere Advanced Application Server 4.0 1165
21.3.4 JBoss 2.2.2 Application Server 1165

21.4 Deploying the Deitel Bookstore on BEA WebLogic 1165
21.5 Deploying the Deitel Bookstore on IBM WebSphere 1191
21.6 Internet and World Wide Web Resources 1193

22 Jini 1196
22.1 Introduction 1197
22.2 Installing Jini 1198
22.3 Configuring the Jini Runtime Environment 1198
22.4 Starting the Required Services 1199
22.5 Running the Jini LookupBrowser 1203
22.6 Discovery 1204

22.6.1 Unicast Discovery 1204
22.6.2 Multicast Discovery 1209

22.7 Jini Service and Client Implementations 1214
22.7.1 Service Interfaces and Supporting Classes 1214
22.7.2 Service Proxy and Service Implementations 1217
22.7.3 Registering the Service with Lookup Services 1220
22.7.4 Jini Service Client 1223

22.8 Introduction to High-Level Helper Utilities 1232
22.8.1 Discovery Utilities 1232
22.8.2 Entry Utilities 1242
22.8.3 Lease Utilities 1244
22.8.4 JoinManager Utility 1248
22.8.5 Service Discovery Utilities 1252

22.9 Internet and World Wide Web Resources 1253

23 JavaSpaces 1258
23.1 Introduction 1259
23.2 JavaSpaces Service Properties 1260
23.3 JavaSpaces Service 1260
23.4 Discovering the JavaSpaces Service 1262
23.5 JavaSpace Interface 1264
23.6 Defining an Entry 1265
23.7 Write Operation 1266
23.8 Read and Take Operations 1269

23.8.1 Read Operation 1269
23.8.2 Take Operation 1273

23.9 Notify Operation 1276
23.10 Method snapshot 1281

XVI Contents

23.11 Updating Entries with Jini Transaction Service 1284
23.11.1 Defining the User Interface 1285
23.11.2 Discovering the TransactionManager Service 1287
23.11.3 Updating an Entry 1289

23.12 Case Study: Distributed Image Processing 1294
23.12.1 Defining an Image Processor 1295
23.12.2 Partitioning an Image into Smaller Pieces 1301
23.12.3 Compiling and Running the Example 1312

23.13 Internet and World Wide Web Resources 1314

24 Java Management Extensions (JMX) (on CD) 1319
24.1 Introduction 1320
24.2 Installation 1322
24.3 Case Study 1322

24.3.1 Instrument Resources 1322
24.3.2 Implementation of the JMX Management Agent 1338
24.3.3 Broadcasting and Receiving Notifications 1342
24.3.4 Management Application 1346
24.3.5 Compiling and Running the Example 1357

24.4 Internet and World Wide Web Resources 1360

25 Jiro (on CD) 1364
25.1 Introduction 1365
25.2 Installation 1366
25.3 Starting Jiro 1367
25.4 Dynamic vs. Static Services 1369
25.5 Dynamic Services 1369

25.5.1 Dynamic-Service Implementation 1370
25.6 Static Services 1380

25.6.1 Locating Static Services with Class ServiceFinder 1380
25.6.2 Event Service 1381
25.6.3 Log Service 1389
25.6.4 Scheduling Service 1391

25.7 Dynamic Service Deployment 1392
25.7.1 Dynamic–Service Usage 1395

25.8 Management Policies 1409
25.8.1 Policy–Management Deployment 1420

25.9 Closing Notes on the Printer Management Solution 1428
25.10 Internet and World Wide Web Resources 1429

26 Common Object Request Broker Architecture
(CORBA): Part 1 (on CD) 1435
26.1 Introduction 1436
26.2 Step-by-Step 1441
26.3 First Example: SystemClock 1442

26.3.1 SystemClock.idl 1443
26.3.2 SystemClockImpl.java 1444

Contents XVII

26.3.3 SystemClockClient.java 1449
26.3.4 Running the Example 1452

26.4 Technical/Architectural Overview 1453
26.5 CORBA Basics 1458
26.6 Example: AlarmClock 1468

26.6.1 AlarmClock.idl 1468
26.6.2 AlarmClockImpl.java 1469
26.6.3 AlarmClockClient.java 1472

26.7 Distributed Exceptions 1476
26.8 Case Study: Chat 1480

26.8.1 chat.idl 1482
26.8.2 ChatServerImpl.java 1483
26.8.3 DeitelMessenger.java 1488
26.8.4 Running Chat 1493
26.8.5 Issues 1493

26.9 Comments and Comparisons 1498
26.10 Internet and World Wide Web Resources 1499

27 Common Object Request Broker Architecture
(CORBA): Part 2 (on CD) 1508
27.1 Introduction 1509
27.2 Static Invocation Interface (SII), Dynamic Invocation Interface (DII)

and Dynamic Skeleton Interface (DSI) 1510
27.3 BOAs, POAs and TIEs 1514
27.4 CORBAservices 1516

27.4.1 Naming Service 1516
27.4.2 Security Service 1517
27.4.3 Object Transaction Service 1518
27.4.4 Persistent State Service 1519
27.4.5 Event and Notification Services 1520

27.5 EJBs and CORBAcomponents 1523
27.6 CORBA vs. RMI 1529

27.6.1 When to Use RMI 1529
27.6.2 When to Use CORBA 1530
27.6.3 RMI-IIOP 1530

27.7 RMIMessenger Case Study Ported to RMI-IIOP 1531
27.7.1 ChatServer RMI-IIOP Implementation 1532
27.7.2 ChatClient RMI-IIOP Implementation 1538
27.7.3 Compiling and Running the ChatServer and ChatClient 1542

27.8 Future Directions 1543
27.9 Internet and World Wide Web Resources 1543

28 Peer-to-Peer Applications and JXTA 1548
28.1 Introduction 1549
28.2 Client/Server and Peer-to-Peer Applications 1549
28.3 Centralized vs. Decentralized Network Applications 1550
28.4 Peer Discovery and Searching 1551

XVIII Contents

28.5 Case Study: Deitel Instant Messenger 1551
28.6 Defining the Service Interface 1553
28.7 Defining the Service implementation 1555
28.8 Registering the Service 1562
28.9 Find Other Peers 1564
28.10 Compiling and Running the Example 1571
28.11 Improving Deitel Instant Messenger 1571
28.12 Deitel Instant Messenger with Multicast Sockets 1572

28.12.1 Registering the Peer 1572
28.12.2 Finding Other Peers 1577

28.13 Introduction to JXTA 1588
28.14 Internet and World Wide Web Resources 1590

29 Introduction to Web Services and SOAP 1594
29.1 Introduction 1595
29.2 Simple Object Access Protocol (SOAP) 1596
29.3 SOAP Weather Service 1602
29.4 Internet and World Wide Web Resources 1608

A Creating Markup with XML (on CD) 1611
A.1 Introduction 1612
A.2 Introduction to XML Markup 1612
A.3 Parsers and Well-Formed XML Documents 1615
A.4 Characters 1616

A.4.1 Characters vs. Markup 1616
A.4.2 White Space, Entity References and Built-In Entities 1616

A.5 CDATA Sections and Processing Instructions 1618
A.6 XML Namespaces 1620
A.7 Internet and World Wide Web Resources 1623

B Document Type Definition (DTD) (on CD) 1627
B.1 Introduction 1628
B.2 Parsers, Well-Formed and Valid XML Documents 1628
B.3 Document Type Declaration 1629
B.4 Element Type Declarations 1630

B.4.1 Sequences, Pipe Characters and Occurrence Indicators 1631
B.4.2 EMPTY, Mixed Content and ANY 1634

B.5 Attribute Declarations 1636
B.6 Attribute Types 1638

B.6.1 Tokenized Attribute Type (ID, IDREF, ENTITY, NMTOKEN) 1638
B.6.2 Enumerated Attribute Types 1643

B.7 Conditional Sections 1644
B.8 Whitespace Characters 1645
B.9 Internet and World Wide Web Resources 1647

Contents XIX

C Document Object Model (DOM™) (on CD) 1652
C.1 Introduction 1653
C.2 DOM with Java 1654
C.3 Setup Instructions 1657
C.4 DOM Components 1657
C.5 Creating Nodes 1665
C.6 Traversing the DOM 1668
C.7 Internet and World Wide Web Resources 1671

D XSL: Extensible Stylesheet Language
Transformations (XSLT) (on CD) 1676
D.1 Introduction 1677
D.2 Applying XSLTs with Java 1677
D.3 Templates 1679
D.4 Creating Elements and Attributes 1680
D.5 Iteration and Sorting 1683
D.6 Conditional Processing 1687
D.7 Combining Style Sheets 1690
D.8 Variables 1695
D.9 Internet and World Wide Web Resources 1695

E Downloading and Installing J2EE 1.2.1 (on CD) 1699
E.1 Introduction 1699
E.2 Installation 1699
E.3 Configuration 1700

E.3.1 JDBC Drivers and Data Sources 1700
E.3.2 HTTP properties 1700

F Java Community ProcessSM (JCP) (on CD) 1701
F.1 Introduction 1701
F.2 Participants 1701

F.2.1 Program Management Office 1701
F.2.2 Executive Committee 1701
F.2.3 Experts 1702
F.2.4 Members 1702
F.2.5 Public Participation 1702

F.3 Java Community Process 1702
F.3.1 Initiation Phase 1702
F.3.2 Community Draft Phase 1703
F.3.3 Public Draft Phase 1704
F.3.4 Final Phase 1704
F.3.5 Maintenance Phase 1704

G Java Native Interface (JNI) (on CD) 1705
G.1 Introduction 1706

XX Contents

G.2 Getting Started with Java Native Interface 1706
G.3 Accessing Java Methods and Objects from Native Code 1710
G.4 JNI and Arrays 1718
G.5 Handling Exceptions with JNI 1722
G.6 Internet and World Wide Web Resources 1733

H Career Opportunities (on CD) 1738
H.1 Introduction 1739
H.2 Resources for the Job Seeker 1740
H.3 Online Opportunities for Employers 1741

H.3.1 Posting Jobs Online 1743
H.3.2 Problems with Recruiting on the Web 1745
H.3.3 Diversity in the Workplace 1745

H.4 Recruiting Services 1746
H.4.1 Testing Potential Employees Online 1747

H.5 Career Sites 1748
H.5.1 Comprehensive Career Sites 1748
H.5.2 Technical Positions 1749
H.5.3 Wireless Positions 1750
H.5.4 Contracting Online 1750
H.5.5 Executive Positions 1751
H.5.6 Students and Young Professionals 1752
H.5.7 Other Online Career Services 1753

H.6 Internet and World Wide Web Resources 1754

I Unicode® (on CD) 1762
I.1 Introduction 1763
I.2 Unicode Transformation Formats 1764
I.3 Characters and Glyphs 1765
I.4 Advantages/Disadvantages of Unicode 1766
I.5 Unicode Consortium’s Web Site 1766
I.6 Using Unicode 1767
I.7 Character Ranges 1770

Index 1774

Illustrations

1 Introduction
1.1 Gang-of-four 23 design patterns. 21
1.2 Gang-of-four design patterns used in Advanced Java 2 Platform

How to Program. 22

2 Advanced Swing Graphical User Interface Components
2.1 WebBrowserPane subclass of JEditorPane for viewing Web

sites and maintaining URL history. 31
2.2 Toolbars for navigating the Web in Internet Explorer and Mozilla. 34
2.3 WebToolBar JToolBar subclass for navigating URLs in a

WebBrowserPane. 35
2.4 WebBrowser application for browsing Web sites using

WebBrowserPane and WebToolBar. 38
2.5 ActionSample application demonstrating the Command design

pattern with Swing Actions. 40
2.6 Action class static keys for Action properties. 45
2.7 FavoritesWebBrowser application for displaying two Web pages

side-by-side using JSplitPane. 45
2.8 Tabbed interface of Display Properties dialog box in Windows 2000. 48
2.9 TabbedPaneWebBrowser application using JTabbedPane to browse

multiple Web sites concurrently. 49
2.10 MDIWebBrowser application using JDesktopPane and

JInternalFrames to browse multiple Web sites concurrently. 52
2.11 DnDWebBrowser application for browsing Web sites that also

accepts drag-and-drop operations for viewing HTML pages. 57
2.12 WebToolBar that uses ResourceBundles for internationalization. 63
2.13 MyAbstractAction AbstractAction subclass that provides

set methods for Action properties. 66

II Illustrations

2.14 WebBrowser that uses ResourceBundles for internationalization. 67
2.15 BrowserLauncher application for selecting a Locale and

launching an internationalized WebBrowser. 68
2.16 Properties file for default Locale (US English)—

StringsAndLabels.properties. 70
2.17 Properties file for French Locale—

StringsAndLabels_fr_FR.properties. 71
2.18 ActionSample2 demonstrates Accessibility package. 72
2.19 Actions sampleAction and exitAction of ActionSample2. 77
2.20 AccessibleDescription of sampleButton. 77
2.21 AccessibleDescription of exitButton. 78
2.22 Sample Action menu item description. 78
2.23 Exit menu item description. 78

3 Model-View-Controller
3.1 Model-view-controller architecture. 87
3.2 Delegate-model architecture in Java Swing components. 87
3.3 AccountManager application MVC architecture. 89
3.4 Account Observable class that represents a bank account. 89
3.5 AbstractAccountView abstract base class for observing Accounts. 91
3.6 AccountTextView for displaying observed Account information

in a JTextField. 93
3.7 AccountBarGraphView for rendering observed Account

information as a bar graph. 94
3.8 AssetPieChartView for rendering multiple observed asset

Accounts as a pie chart. 97
3.9 AccountController for obtaining user input to modify Account

information. 102
3.10 AccountManager application for displaying and modifying Account

information using the model-view-controller architecture. 105
3.11 JList and ListModel delegate-model architecture. 108
3.12 PhilosophersJList application demonstrating JList and

DefaultListModel. 108
3.13 TableModel interface methods and descriptions. 111
3.14 JTable and TableModel delegate-model architecture. 112
3.15 PhilosophersJTable application demonstrating JTable and

DefaultTableModel. 112
3.16 JTree showing a hierarchy of philosophers. 116
3.17 PhilosophersJTree application demonstrating JTree and

DefaultTreeModel. 117
3.18 FileSystemModel implementation of interface TreeModel

to represent a file system. 123
3.19 FileTreeFrame application for browsing and editing a file system

using JTree and FileSystemModel. 129

 Illustrations III

4 Graphics Programming with Java 2D and Java 3D
4.1 Java coordinate system. Units are measured in pixels. 137
4.2 Some Java 2D classes and interfaces. 138
4.3 The seven state attributes of a Java 2D graphics context. 139
4.4 Demonstrating some Java 2D shapes. 140
4.5 Demonstrating Java 2D paths. 144
4.6 Class ImagePanel allows for displaying and filtering BufferedImages. 147
4.7 Java2DImageFilter interface for creating Java 2D image filters. 150
4.8 Classes that implement BufferedImageOp and RasterOp. 151
4.9 InvertFilter inverts colors in a BufferedImage. 152
4.10 SharpenFilter sharpens edges in a BufferedImage. 153
4.11 BlurFilter blurs the colors in a BufferedImage. 153
4.12 ColorFilter changes the colors in a BufferedImage. 154
4.13 Java 2D image-processing application GUI. 156
4.14 Java 3D Group, Leaf and NodeComponent subclasses. 162
4.15 Creating a Java 3D SimpleUniverse with content. 163
4.16 Demonstrating MouseRotate behavior. 170
4.17 Demonstrating MouseTranslate behavior. 171
4.18 Demonstrating MouseZoom behavior. 172
4.19 Demonstrating changing color in Java 3D. 173
4.20 Demonstrating texture mapping in Java 3D. 174
4.21 ControlPanel provides Swing controls for Java3DWorld. 175
4.22 GUI for Java3DWorld and ControlPanel. 179
4.23 Class Java3DWorld1 creates the 3D-game environment. 181
4.24 Implementing collision detection in a Java 3D application. 198
4.25 Behavior that enables the user to navigate a 3D shape. 200
4.26 Keys for navigating the 3D scene in Navigator. 204
4.27 Implementing a position-checking Behavior. 205
4.28 Implementing Swing controls for the Java3DWorld1. 210

5 Case Study: Java 2D GUI Application with Design Patterns
5.1 Deitel Drawing application showing randomly drawn shapes

(Exercise 5.8) and a ZoomDrawingView (Fig. 5.13). 223
5.2 Large-scale view of drawing from Fig. 5.1. 223
5.3 MyShape abstract base class for drawing objects. 224
5.4 MyLine subclass of class MyShape that represents a line. 230
5.5 MyRectangle subclass of class MyShape that represents a rectangle. 232
5.6 MyOval subclass of class MyShape that represents an oval. 234
5.7 MyText subclass of class MyShape that represents a string of text. 235
5.8 MyImage subclass of class MyShape that represents a JPEG

image in a drawing. 240
5.9 DrawingModel Observable class that represents a drawing

containing multiple MyShapes. 243
5.10 DrawingFileReaderWriter utility class for saving drawings

to files and loading drawings from files. 245
5.11 Sample XML document generated by DrawingFileReaderWriter. 252

IV Illustrations

5.12 DrawingView class for displaying MyShapes in a DrawingModel. 254
5.13 ZoomDrawingView subclass of DrawingView for displaying

scaled MyShapes. 258
5.14 MyShapeController abstract base class for controllers that handle

mouse input. 261
5.15 BoundedShapeController MyShapeController subclass for

controlling MyLines, MyOvals and MyRectangles. 266
5.16 MyLineController MyShapeController subclass for

drawing MyLines. 267
5.17 MyTextController MyShapeController subclass for

adding MyText instances to a drawing. 269
5.18 MyShapeControllerFactory class for creating appropriate

MyShapeController for given MyShape type. 273
5.19 DragAndDropController for moving MyShapes between

drawings and adding JPEG images to drawings using drag and drop. 276
5.20 DragSourceListener interface methods and their descriptions. 284
5.21 DropTargetListener interface methods and their descriptions. 285
5.22 TransferableShape enables DragAndDropController

to transfer MyShape objects through drag-and-drop operations. 285
5.23 DrawingInternalFrame class that provides a user interface

for creating drawings. 287
5.24 DrawingFileFilter is a FileFilter subclass that enables

users to select Deitel Drawing files from JFileChooser dialogs. 304
5.25 ZoomDialog for displaying DrawingModels in a scalable view. 305
5.26 AbstractDrawingAction abstract base class for Actions. 306
5.27 GradientIcon implementation of interface Icon that draws a gradient. 307
5.28 DeitelDrawing application that uses a multiple-document interface for

displaying and modifying DeitelDrawing drawings. 309
5.29 SplashScreen class for displaying a logo while the application loads. 317

6 JavaBeans Component Model
6.1 Forte for Java Community Edition 2.0. 324
6.2 Install New JavaBean... menu item. 324
6.3 Install JavaBean dialog. 324
6.4 Select JavaBean and Palette Category dialogs. 325
6.5 Beans tab in the Component Palette and tooltip for

LogoAnimator JavaBean. 325
6.6 Filesystems tab in the Explorer window. 325
6.7 Development directory selected in Explorer window. 326
6.8 New... menu item. 326
6.9 New...- Template Chooser dialog. 326
6.10 GUI Editing tab of Forte. 327
6.11 Component Inspector and Form windows. 327
6.12 Source Editor window. 328
6.13 Beans tab of the Component Palette. 328
6.14 LogoAnimator icon. 328
6.15 LogoAnimator animation in the Form window. 329

 Illustrations V

6.16 Component Inspector with LogoAnimator Properties sheet. 329
6.17 Component Inspector drop down-menu for the background property. 330
6.18 Changing background color of LogoAnimator. 330
6.19 AnimationWindow selected in Explorer. 331
6.20 Selecting FlowLayout in the Explorer menu. 331
6.21 Swing tab of the Component Palette. 332
6.22 JButton icon in the Component Palette. 332
6.23 Adding a JButton to AnimationWindow. 332
6.24 Editing text property of JButton. 332
6.25 Component Palette Selection mode. 333
6.26 Component Palette Connection mode. 333
6.27 Select Connection mode. 333
6.28 Connecting JButton and LogoAnimator. 334
6.29 Connection Wizard dialog. 334
6.30 Select actionPerformed event. 335
6.31 Selecting method startAnimation for the target component. 335
6.32 Select Execute from Explorer menu. 336
6.33 AnimationWindow running in Forte. 336
6.34 Definition of class LogoAnimator. 337
6.35 Compile option in the Source Editor menu. 341
6.36 Method file manifest.tmp for the LogoAnimator bean. 341
6.37 Add images directory to LogoAnimator.jar. 344
6.38 Manifest tab of JAR Packager dialog. 344
6.39 LogoAnimator2 with property animationDelay. 345
6.40 LogoAnimator2 bean with property animationDelay exposed

in Forte’s Component Inspector. 347
6.41 Definition for class SliderFieldPanel. 348
6.42 Manifest file for the SliderFieldPanel JavaBean. 353
6.43 Change properties currentValue and maximumValue. 353
6.44 Select propertyChange event. 354
6.45 Select animationDelay property of LogoAnimator2. 354
6.46 Select currentValue Bound Property. 354
6.47 JFrame with LogoAnimator2 and SliderFieldPanel. 355
6.48 ColorEvent custom-event class indicating a color change. 356
6.49 ColorListener interface for receiving colorChanged notifications. 356
6.50 Definition of class ColorSliderPanel. 357
6.51 Manifest file for the ColorSliderPanel JavaBean. 362
6.52 Selecting colorChanged method in Connection Wizard. 362
6.53 Selecting setBackground method for target LogoAnimator2. 363
6.54 Entering user code in Connection Wizard. 363
6.55 Using the ColorSliderPanel to change the background color of

LogoAnimator2. 363
6.56 SliderFieldPanelBeanInfo exposes properties and events for

SliderFieldPanel. 364
6.57 Properties and events exposed by SliderFieldPanelBeanInfo. 368
6.58 MaximumValueEditor is a PropertyEditor for

SliderFieldPanel’s maximumValue property. 372

VI Illustrations

6.59 MinimumValueEditor is a PropertyEditor for
SliderFieldPanel’s minimumValue property. 373

6.60 MaximumValueEditor and MinimumValueEditor pull-down
menus in Forte. 375

6.61 SliderFieldPanel values constrained by PropertyEditors. 375
6.62 SliderFieldPanelCustomizer custom GUI for modifying

SliderFieldPanel beans. 376
6.63 Select Customize from Component Inspector menu. 379
6.64 SliderFieldPanel’s Customizer Dialog. 379

7 Security
7.1 Encrypting and decrypting a message using a symmetric secret key. 391
7.2 Distributing a session key with a key distribution center. 391
7.3 Encrypting and decrypting a message using public-key cryptography. 393
7.4 Authentication with a public-key algorithm 394
7.5 Creating a digital envelope. 395
7.6 EncipherDecipher application for demonstrating Password-Based

Encryption. 396
7.7 EncipherDecipher before and after encrypting contents. 405
7.8 A portion of the VeriSign digital certificate. (Courtesy of VeriSign, Inc.) 408
7.9 Some permissions available in the Java 2 security model. 411
7.10 AuthorizedFileWriter writes to file using a security manager. 411
7.11 Policy file grants permission to write to file authorized.txt. 413
7.12 Policy file grants permission to the specified codebase. 413
7.13 Applet that browses a user’s local filesystem. 414
7.14 File listing for FileTreeApplet.jar. 414
7.15 HTML file for FileTreeApplet. 415
7.16 Java Plug-in security warning when loading a signed applet. 416
7.17 FileTreeApplet browsing the D:\jdk1.3.1\ directory. 416
7.18 AuthenticateNT uses the NTLoginModule to authenticate a

user and invoke a PrivilegedAction. 419
7.19 WriteFileAction is a PrivilegedAction for writing a

simple text file. 421
7.20 Configuration file for authentication using NTLoginModule. 422
7.21 JAAS policy file for granting permissions to a Principal and codebase. 422
7.22 Policy file for JAAS application. 422
7.23 LoginServer uses an SSLServerSocket for secure communication. 425
7.24 LoginClient communicates with LoginServer via SSL. 427
7.25 Two sample executions of class LoginClient. 429

8 Java Database Connectivity (JDBC)
8.1 Relational-database structure of an Employee table. 447
8.2 Result set formed by selecting Department and Location data

from the Employee table. 447
8.3 authors table from books. 448
8.4 Data from the authors table of books. 448

 Illustrations VII

8.5 publishers table from books. 448
8.6 Data from the publishers table of books. 448
8.7 authorISBN table from books. 449
8.8 Data from the authorISBN table of books. 449
8.9 titles table from books. 450
8.10 Data from the titles table of books. 450
8.11 Table relationships in books. 451
8.12 SQL query keywords. 453
8.13 authorID and lastName from the authors table. 453
8.14 Titles with copyrights after 1999 from table titles. 455
8.15 Authors whose last name starts with D from the authors table. 455
8.16 The only author from the authors table whose last name contains i

as the second letter. 456
8.17 Authors from table authors in ascending order by lastName. 457
8.18 Authors from table authors in descending order by lastName. 457
8.19 Authors from table authors in ascending order by lastName

and by firstName. 458
8.20 Books from table titles whose title ends with How to Program

in ascending order by title. 458
8.21 Authors and the ISBN numbers for the books they have written in

ascending order by lastName and firstName. 459
8.22 Table Authors after an INSERT INTO operation to add a record. 461
8.23 Table authors after an UPDATE operation to change a record. 462
8.24 Table authors after a DELETE operation to remove a record. 462
8.25 Executing Cloudscape from a command prompt in Windows 2000. 464
8.26 Displaying the authors table from the books database. 464
8.27 JDBC driver types. 467
8.28 ResultSetTableModel enables a JTable to display the

contents of a ResultSet. 470
8.29 ResultSet constants for specifying ResultSet type. 474
8.30 ResultSet constants for specifying result set properties. 475
8.31 DisplayQueryResults for querying database books. 476
8.32 Table relationships in database addressbook. 480
8.33 AddressBookEntry bean represents an address book entry. 483
8.34 AddressBookDataAccess interface describes the methods

for accessing the addressbook database. 486
8.35 DataAccessException is thrown when there is a problem

accessing the data source. 487
8.36 CloudscapeDataAccess implements interface

AddressBookDataAccess to perform the connection to the
database and the database interactions. 488

8.37 AddressBookEntryFrame for viewing and editing an
AddressBookEntry. 500

8.38 AddressBook application class that enables the user to interact
with the addressbook database. 503

8.39 Screen captures of the AddressBook application. 511

VIII Illustrations

8.40 Statement and PreparedStatement methods for batch updates. 515
8.41 Return values of method executeBatch. 516
8.42 Statement methods that enable processing of multiple results returned

by method execute. 517

9 Servlets
9.1 Methods of interface Servlet (package javax.servlet). 535
9.2 Other methods of class HttpServlet. 537
9.3 Some methods of interface HttpServletRequest. 537
9.4 Some methods of interface HttpServletResponse. 538
9.5 WelcomeServlet that responds to a simple HTTP get request. 540
9.6 HTML document in which the form’s action invokes

WelcomeServlet through the alias welcome1 specified in web.xml. 54
9.7 Tomcat documentation home page. (Courtesy of The Apache

Software Foundation.) 544
9.8 Web application standard directories. 545
9.9 Deployment descriptor (web.xml) for the advjhtp1 Web application. 546
9.10 Web application directory and file structure for WelcomeServlet. 548
9.11 WelcomeServlet2 responds to a get request that contains data. 549
9.12 HTML document in which the form’s action invokes

WelcomeServlet2 through the alias welcome2 specified in web.xml. 551
9.13 Deployment descriptor information for servlet WelcomeServlet2. 552
9.14 WelcomeServlet3 responds to a post request that contains data. 553
9.15 HTML document in which the form’s action invokes

WelcomeServlet3 through the alias welcome3 specified in web.xml. 554
9.16 Deployment descriptor information for servlet WelcomeServlet3. 555
9.17 Redirecting requests to other resources. 556
9.18 RedirectServlet.html document to demonstrate redirecting

requests to other resources. 558
9.19 Deployment descriptor information for servlet RedirectServlet. 559
9.20 Storing user data on the client computer with cookies. 561
9.21 CookieSelectLanguage.html document for selecting a

programming language and posting the data to the CookieServlet. 565
9.22 Deployment descriptor information for servlet CookieServlet. 568
9.23 Important methods of class Cookie. 568
9.24 Maintaining state information with HttpSession objects. 569
9.25 SessionSelectLanguage.html document for selecting a

programming language and posting the data to the SessionServlet. 571
9.26 Deployment descriptor information for servlet WelcomeServlet2. 577
9.27 Multi-tier Web-based survey using XHTML, servlets and JDBC. 578
9.28 Survey.html document that allows users to submit survey responses

to SurveyServlet. 582
9.29 Deployment descriptor information for servlet SurveyServlet. 584
9.30 HttpUtils class methods. 584

10 JavaServer Pages (JSP)
10.1 Using a JSP expression to insert the date and time in a Web page. 596

 Illustrations IX

10.2 JSP implicit objects. 598
10.3 JSP escape sequences. 601
10.4 Scripting a JavaServer Page—welcome.jsp. 601
10.5 JSP standard actions. 604
10.6 Action <jsp:include> attributes. 605
10.7 Banner (banner.html) to include across the top of the XHTML

document created by Fig. 10.10. 606
10.8 Table of contents (toc.html) to include down the left side of the

XHTML document created by Fig. 10.10. 607
10.9 JSP clock2.jsp to include as the main content in the XHTML

document created by Fig. 10.10. 608
10.10 JSP include.jsp Includes resources with <jsp:include>. 608
10.11 JSP forward1.jsp receives a firstName parameter, adds a

date to the request parameters and forwards the request to
forward2.jsp for further processing. 611

10.12 JSP forward2.jsp receives a request (from forward1.jsp
in this example) and uses the request parameters as part of the response
to the client. 612

10.13 Attributes of the <jsp:plugin> action. 613
10.14 An applet to demonstrate <jsp:plugin> in Fig. 10.15. 614
10.15 Using <jsp:plugin> to embed a Java 2 applet in a JSP. 616
10.16 Attributes of the <jsp:useBean> action. 618
10.17 Rotator bean that maintains a set of advertisements. 618
10.18 JSP adrotator.jsp uses a Rotator bean to display a different

advertisement on each request to the page. 620
10.19 Attributes of the <jsp:setProperty> action. 622
10.20 GuestBean stores information for one guest. 623
10.21 GuestDataBean performs database access on behalf of

guestBookLogin.jsp. 624
10.22 JavaServer page guestBookLogin.jsp enables the user to submit a

first name, a last name and an e-mail address to be placed in the guest book. 626
10.23 JavaServer page guestBookView.jsp displays the contents of the

guest book. 629
10.24 JavaServer page guestBookErrorPage.jsp responds to exceptions

in guestBookLogin.jsp and guestBookView.jsp. 631
10.25 JSP guest book sample output windows. 633
10.26 JSP directives. 634
10.27 Attributes of the page directive. 635
10.28 JSP includeDirective.jsp demonstrates including content

at translation-time with directive include. 637
10.29 Attributes of the taglib directive. 639
10.30 JSP customTagWelcome.jsp uses a simple custom tag. 639
10.31 WelcomeTagHandler custom tag handler. 641
10.32 Custom tag library descriptor file advjhtp1-taglib.tld. 642
10.33 Specifying attributes for a custom tag. 644
10.34 Welcome2TagHandler custom tag handler for a tag with an attribute. 645

X Illustrations

10.35 Element tag for the welcome2 custom tag. 646
10.36 Using a custom tag that interacts with its body. 647
10.37 GuestBookTag custom tag handler. 649
10.38 GuestBookTagExtraInfo used by the container to define

scripting variables in a JSP that uses the guestlist custom tag. 652
10.39 Element tag for the guestlist custom tag. 653

11 Case Study: Servlet and JSP Bookstore
11.1 Bug2Bug.com bookstore component interactions. 662
11.2 Servlet and JSP components for bookstore case study. 663
11.3 Bookstore home page (index.html). 665
11.4 Shared cascading style sheet (styles.css) used to apply

common formatting across XHTML documents rendered on the client. 666
11.5 TitlesBean for obtaining book information from the books

database and creating an ArrayList of BookBean objects. 667
11.6 BookBean that represents a single book’s information and

defines the XML format of that information. 670
11.7 JSP books.jsp returns to the client an XHTML document

containing the book list. 674
11.8 BookServlet obtains the XML representation of a book and

applies an XSL transformation to output an XHTML document
as the response to the client. 676

11.9 XSL style sheet (books.xsl) that transforms a book’s XML
representation into an XHTML document. 681

11.10 CartItemBeans contain a BookBean and the quantity of
a book in the shopping cart. 683

11.11 AddToCartServlet places an item in the shopping cart and
invokes viewCart.jsp to display the cart contents. 685

11.12 JSP viewCart.jsp obtains the shopping cart and outputs an
XHTML document with the cart contents in tabular format. 686

11.13 Order form (order.html) in which the user inputs name, address
and credit-card information to complete an order. 689

11.14 JSP process.jsp performs the final order processing. 693
11.15 Application Deployment Tool main window. 697
11.16 New Application window. 697
11.17 Application Deployment Tool main window after creating a

new application. 698
11.18 New Web Component Wizard - Introduction window. 699
11.19 New Web Component Wizard - WAR File General

Properties window. 699
11.20 Add Files to .WAR - Add Content Files window. 700
11.21 Add Files to .WAR - Add Class Files window. 700
11.22 Choose Root Directory window. 701
11.23 Add Files to .WAR - Add Class Files window after selecting
the root directory in which the files are located. 701
11.24 New Web Component Wizard - WAR File General Properties
window after selecting the file BookServlet.class. 702

 Illustrations XI

11.25 New Web Component Wizard - Choose Component Type window. 703
11.26 New Web Component Wizard - Component General Properties

window. 703
11.27 New Web Component Wizard - Component Aliases window. 703
11.28 Application Deployment Tool window after deploying

BookServlet and AddToCartServlet. 704
11.29 Add Files to .WAR - Add Content Files window. 705
11.30 Add Files to .WAR - Add Class Files window. 706
11.31 Specifying the Web Context in the Application Deployment Tool. 707
11.32 Specifying the Resource Ref’s in the Application Deployment Tool. 707
11.33 Specifying the Resource Ref’s in the Application Deployment Tool. 708
11.34 Specifying the welcome file in the File Ref’s tab of the Application

Deployment Tool. 708
11.35 Application Deployment Tool toolbar buttons for updating

application files and deploying applications. 709
11.36 Deploy JSP and Servlet Bookstore - Introduction window. 709

12 Java-Based Wireless Applications Development
and J2ME
12.1 Three-tier architecture for Tip Test. 718
12.2 Database contents of tips.sql. 718
12.3 Class WelcomeServlet sends an introductory screen that

provides game directions to a client. 720
12.4 Interface ClientUserAgentHeaders contains unique

User-Agent header substrings for all clients. 723
12.5 WelcomeServlet output (index.html) for XHTML client. 723
12.6 WelcomeServlet output (index.wml) for WAP client. (Image of

UP.SDK courtesy Openwave Systems Inc. Openwave, the Openwave logo,
and UP.SDK are trademarks of Openwave Systems Inc. All rights reserved.) 724

12.7 WelcomeServlet output (index.html) for i-mode client. (Courtesy
of Pixo, Inc.) 725

12.8 WelcomeServlet output (index.txt) for J2ME client. (Courtesy
of Sun Microsystems, Inc.) 725

12.9 TipTestServlet handles game logic and sends Tip Test to clients. 726
12.10 XHTMLTipQuestion.xsl transforms XML Tip-Test question to

XHTML document. 741
12.11 Internet Explorer Tip-Test question output screen. 743
12.12 XHTMLTipAnswer.xsl transforms XML Tip-Test answer to

XHTML document. 744
12.13 Internet Explorer Tip-Test answer output screen. 746
12.14 WAPTipQuestion.xsl transforms XML Tip-Test question to

WML document. 746
12.15 Openwave UP simulator Tip-Test question screen. (Image of UP.SDK

courtesy Openwave Systems Inc. Openwave, the Openwave logo, and
UP.SDK are trademarks of Openwave Systems Inc. All rights reserved.) 748

12.16 WAPTipAnswer.xsl transforms answer to WML document. 749

XII Illustrations

12.17 Openwave UP simulator Tip-Test answer screen. (Image of UP.SDK
courtesy Openwave Systems Inc. Openwave, the Openwave logo, and
UP.SDK are trademarks of Openwave Systems Inc. All rights reserved.) 750

12.18 IMODETipQuestion.xsl transforms XML Tip-Test question to
cHTML document. 751

12.19 Pixo i-mode browser Tip-Test question screen. (Courtesy of Pixo, Inc.) 753
12.20 IMODETipAnswer.xsl transforms XML Tip-Test answer to cHTML

document. 754
12.21 Pixo i-mode browser Tip-Test answer screen. (Courtesy of Pixo, Inc.) 755
12.22 J2ME client Tip-Test question screen. (Courtesy of Sun Microsystems, Inc.) 757
12.23 J2ME client Tip-Test answer screen. (Courtesy of Sun Microsystems, Inc.) 757
12.24 J2ME java.io, java.lang and java.util packages. 758
12.25 MIDP javax.microedition.lcdui and

javax.microedition.io packages. 759
12.26 MIDP javax.microedition.rms and

javax.microedition.midlet packages. 760
12.27 TipTestMIDlet downloads Tip Test from TipTestServlet. 762
12.28 J2ME user-interface API class hierarchy. 773
12.29 TipTestMIDlet main screen. (Courtesy of Sun Microsystems, Inc.) 775
12.30 TipTestMIDlet welcome screen. (Courtesy of Sun Microsystems, Inc.) 777
12.31 TipTestMIDlet information screen. (Courtesy of Sun Microsystems, Inc.) 777
12.32 TipTestMIDlet Tip-Test question screen. (Courtesy of Sun

Microsystems, Inc.) 779
12.33 TipTestMIDlet Tip-Test answer screen. (Courtesy of Sun

Microsystems, Inc.) 780
12.34 Deployment descriptor to run WelcomeServlet and

TipTestServlet. 781
12.35 Case-study browser URLs. 784

13 Remote Method Invocation
13.1 WeatherService interface. 793
13.2 WeatherServiceImpl class implements remote interface

WeatherService. 794
13.3 WeatherBean stores weather forecast for one city. 799
13.4 WeatherServiceClient client for WeatherService

remote object. 801
13.5 WeatherListModel is a ListModel implementation for

storing weather information. 803
13.6 WeatherCellRenderer is a custom ListCellRenderer

for displaying WeatherBeans in a JList. 805
13.7 WeatherItem displays weather information for one city. 805
13.8 Running the rmiregistry. 807
13.9 Executing the WeatherServiceImpl remote object. 808
13.10 WeatherServiceClient application window. 808
13.11 Participants of DeitelMessenger case study. 809
13.12 ChatServer remote interface for Deitel Messenger chat server. 810

 Illustrations XIII

13.13 StoppableChatServer remote interface for stopping a
ChatServer remote object. 811

13.14 ChatServerImpl implementation of remote interfaces ChatServer
and StoppableChatServer as Activatable remote objects. 811

13.15 ChatServerAdministrator application for starting and stopping
the ChatServer remote object. 816

13.16 Policy file for ChatServer’s ActivationGroup. 818
13.17 ChatClient remote interface to enable RMI callbacks. 820
13.18 ChatMessage is a serializable class for transmitting messages over RMI. 821
13.19 MessageManager interface for classes that implement communication

logic for a ChatClient. 822
13.20 RMIMessageManager remote object and MessageManager

implementation for managing ChatClient communication. 823
13.21 MessageListener interface for receiving new messages. 827
13.22 DisconnectListener interface for receiving server disconnect

notifications. 827
13.23 ClientGUI provides a graphical user interface for the Deitel

Messenger client. 827
13.24 DeitelMessenger launches a chat client using classes ClientGUI

and RMIMessageManager. 836
13.25 Policy file for the RMI activation daemon. 837
13.26 File listing for the HTTP server’s download directory. 838
13.27 Policy file for ChatServerAdministrator. 838
13.28 Policy file for the DeitelMessenger client. 839
13.29 Sample conversation using Deitel Messenger. 839

14 Session EJBs and Distributed Transactions
14.1 Methods of interface javax.ejb.EJBObject. 848
14.2 Methods of interface javax.ejb.EJBHome. 849
14.3 InterestCalculator remote interface for calculating simple interest. 850
14.4 InterestCalculatorHome interface for creating

InterestCalculator EJBs. 851
14.5 InterestCalculatorEJB implementation of

InterestCalculator remote interface. 852
14.6 InterestCalculatorClient for interacting with

InterestCalculator EJB. 854
14.7 Creating New Application in Application Deployment Tool. 862
14.8 Specifying EAR file for New Application. 863
14.9 Creating a New Enterprise Bean. 863
14.10 Adding InterestCalculator EJB classes. 864
14.11 Selecting InterestCalculator EJB classes to add. 864
14.12 Result of adding InterestCalculator EJB classes. 865
14.13 Specifying Enterprise Bean Class for InterestCalculator EJB. 865
14.14 Specifying InterestCalculator EJB classes and Stateful

Session Bean Type. 866
14.15 Specifying Container Managed Transactions for

InterestCalculator EJB. 866

XIV Illustrations

14.16 XML deployment descriptor for InterestCalculator EJB. 867
14.17 Specifying JNDI Name for InterestCalculator EJB. 867
14.18 Deploying enterprise application to localhost. 868
14.19 Specifying the Application Deployment Tool should Return Client Jar. 868
14.20 Successful completion of deployment process. 869
14.21 MathTool remote interface for calculating factorials and generating

Fibonacci series. 870
14.22 MathToolEJB implementation of MathTool remote interface. 870
14.23 MathToolHome interface for creating MathTool EJBs. 873
14.24 MathToolClient for interacting with MathTool EJB. 874
14.25 MoneyTransfer remote interface for transferring money and

getting account balances. 880
14.26 MoneyTransferHome interface for creating MoneyTransfer EJBs. 880
14.27 MoneyTransferEJB implementation of MoneyTransfer remote

interface using bean-managed transaction demarcation. 881
14.28 MoneyTransferEJB implementation of MoneyTransfer remote

interface using container-managed transaction demarcation. 887
14.29 Transaction types for container-managed transaction demarcation. 891
14.30 MoneyTransferEJBClient for interacting with MoneyTransfer EJB. 892
14.31 Resource References dialog of New Enterprise Bean Wizard. 898
14.32 Add Resource Reference for BankABC. 899
14.33 Add Resource Reference for BankXYZ. 899
14.34 Selecting Bean-Managed Transactions. 900
14.35 Selecting Container-Managed Transactions. 900

15 Entity EJBs
15.1 Employee remote interface for setting and getting Employee information. 906
15.2 EmployeeHome interface for finding and creating Employee EJBs. 908
15.3 EmployeeEJB implementation of Employee remote interface using

bean-managed persistence. 909
15.4 General dialog of New Enterprise Bean Wizard. 919
15.5 Bean-Managed Persistence selected in Entity Settings dialog. 919
15.6 Resource References dialog in New Enterprise Bean Wizard. 920
15.7 EmployeeEJB implementation of Employee remote interface using

container-managed persistence. 921
15.8 Container-Managed Persistence selected in Entity Settings dialog. 924
15.9 EmployeeEJBClient for interacting with Employee EJB. 926

16 Messaging with JMS
16.1 Setting environment variables for J2EE 1.3 installation. 939
16.2 Point-to-point messaging model. 940
16.3 Voter application overview. 940
16.4 Voter class submits votes as messages to queue. 941
16.5 Voter application votes for favorite programming language 945
16.6 VoteCollector class retrieves and tallies votes. 945
16.7 VoteCollector tallies and displays votes. 948
16.8 VoteListener class receives messages from the queue. 949

 Illustrations XV

16.9 TallyPanel class displays candidate name and tally. 950
16.10 Publish/subscribe messaging model. 952
16.11 Weather application overview. 952
16.12 WeatherPublisher class publishes messages to Weather topic. 953
16.13 WeatherPublisher publishing weather update messages. 958
16.14 WeatherSubscriber class allows user to receive weather updates. 958
16.15 WeatherSubscriber selecting cities for weather updates. 963
16.16 WeatherSubscriber having received updated weather conditions. 964
16.17 WeatherListener class subscribes to Weather topic to receive

weather forecasts. 964
16.18 WeatherDisplay displays WeatherBeans in a JList using a |

WeatherCellRenderer. 965
16.19 Voter application overview. 968
16.20 CandidateHome interface for Candidate EJB. 969
16.21 Candidate remote interface for Candidate EJB. 969
16.22 CandidateEJB class to maintain candidate tallies. 970
16.23 VoteCollectorEJB class tallies votes from Votes queue. 972
16.24 TallyDisplay displays candidate tallies from database. 975
16.25 TallyDisplay displays candidate tallies from database. 977
16.26 TallyPanel class displays the name and tally for a candidate. 977
16.27 EJB JAR settings for VoteCollectorApp application. 979
16.28 Add class files for Candidate EJB. 979
16.29 General settings for Candidate EJB. 980
16.30 Entity settings for Candidate EJB. 980
16.31 Entity tab for Candidate EJB. 981
16.32 Database settings for Candidate EJB. 981
16.33 SQL generation for Candidate EJB. 982
16.34 SQL warning for Candidate EJB. 982
16.35 EJB JAR settings for VoteCollector EJB. 983
16.36 Add class file for VoteCollector EJB. 983
16.37 General settings for VoteCollector EJB. 984
16.38 Transaction management settings for the VoteCollector EJB. 984
16.39 Message-Driven Bean settings for VoteCollector EJB. 985
16.40 Enterprise Bean References for VoteCollector EJB. 985
16.41 Setting JNDI names for VoteCollectorApp. 986
16.42 Deploying the VoteCollector application. 986

17 Enterprise Java Case Study: Architectural Overview
17.1 Three-tier application model in Deitel Bookstore. 992
17.2 Detailed architecture of Deitel Bookstore Enterprise Java case study. 994
17.3 XML file generated by GetProductServlet. 996
17.4 XSL transformation for generating XHTML from GetProductServlet. 996
17.5 XHTML document generated by XSLT in GetProductServlet. 998
17.6 XSL transformation for generating WML from GetProductServlet. 1000
17.7 WML document generated by XSLT in GetProductServlet.

(Image © 2001 Nokia Mobile Phones.) 1001
17.8 XSL transformation for generating cHTML from GetProductServlet. 1003

XVI Illustrations

17.9 cHTML document generated by XSLT in GetProductServlet.
(Image courtesy of Pixo, Inc.) 1004

18 Enterprise Java Case Study: Presentation and
Controller Logic
18.1 XMLServlet base class for servlets in the Deitel Bookstore. 1011
18.2 Configuration file for enabling support for various client types

(clients.xml). 1020
18.3 DTD for clients.xml. 1021
18.4 ClientModel for representing supported clients. 1021
18.5 Flow of client requests and data returned in the Deitel Bookstore

for XHTML clients. 1024
18.6 AddToCartServlet for adding products to a shopping cart. 1024
18.7 ViewCartServlet for viewing contents of shopping cart. 1026
18.8 ViewCartServlet XSL transformation for XHTML browsers

(XHTML/viewCart.xsl). 1029
18.9 ViewCartServlet XSL transformation for i-mode browsers

(cHTML/viewCart.xsl). (Image courtesy of Pixo, Inc.) 1031
18.10 ViewCartServlet XSL transformation for WML browsers

(WML/viewCart.xsl). (Image © 2001 Nokia Mobile Phones.) 1034
18.11 RemoveFromCartServlet for removing products from shopping cart. 1036
18.12 UpdateCartServlet for updating quantities of products in

shopping cart. 1038
18.13 CheckoutServlet for placing Orders. (Images courtesy Pixo,

Inc. or © 2001 Nokia Mobile Phones.) 1040
18.14 GetAllProductsServlet for viewing the product catalog.

(Images courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.) 1043
18.15 GetProductServlet for viewing product details. (Images courtesy

Pixo, Inc. or © 2001 Nokia Mobile Phones.) 1046
18.16 ProductSearchServlet for searching product catalog. (Images

courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.) 1050
18.17 RegisterServlet for registering new Customers. 1053
18.18 LoginServlet for authenticating registered Customers.

(Images courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.) 1057
18.19 ViewOrderHistoryServlet for viewing customer’s previously placed

Orders. (Images courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.) 1061
18.20 ViewOrderServlet for viewing details of an order. (Images courtesy

Pixo, Inc. or © 2001 Nokia Mobile Phones.) 1065
18.21 GetPasswordHintServlet for viewing a Customer’s password

hint. (Images courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.) 1068

19 Enterprise Java Case Study: Business Logic Part 1
19.1 Communication between GetProductServlet and Product EJB. 1076
19.2 ShoppingCart remote interface for adding, removing and updating

Products, checking out and calculating the Order’s total cost. 1076
19.3 ShoppingCartEJB implementation of ShoppingCart remote

interface. 1077

 Illustrations XVII

19.4 ShoppingCartHome interface for creating ShoppingCart EJB
instances. 1084

19.5 ShoppingCart general deployment settings. 1084
19.6 ShoppingCart EJB references. 1085
19.7 Product remote interface for modifying details of Product EJB

instances. 1085
19.8 ProductEJB implementation of Product remote interface. 1086
19.9 ProductHome interface for finding and creating Product EJB instances. 1089
19.10 ProductModel class for serializing Product data. 1089
19.11 XMLGenerator interface for generating XML Elements for

public properties. 1093
19.12 Product general deployment settings. 1093
19.13 Product Entity and deployment settings. 1093
19.14 Order remote interface for modifying details of Order EJB instances. 1095
19.15 OrderEJB implementation of Order remote interface. 1095
19.16 OrderHome interface for finding and creating Order EJB instances. 1101
19.17 OrderModel class for serializing Order data. 1102
19.18 Order general deployment settings. 1105
19.19 Order entity and deployment settings. 1105
19.20 Order EJB references. 1106
19.21 OrderProduct remote interface for modifying details of

OrderProduct EJB instances. 1107
19.22 OrderProductEJB implementation of OrderProduct remote

interface. 1108
19.23 OrderProductHome interface for finding and creating

OrderProduct EJB instances. 1111
19.24 OrderProductPK primary-key class for OrderProduct EJB. 1112
19.25 OrderProductModel class for serializing OrderProduct data. 1113
19.26 OrderProduct general deployment settings. 1115
19.27 OrderProduct entity and deployment settings. 1115
19.28 OrderProduct EJB references. 1116

20 Enterprise Java Case Study: Business Logic Part 2
20.1 Customer remote interface for modifying Customer details, getting an

Order history and password hint. 1119
20.2 CustomerEJB implementation of Customer remote interface. 1120
20.3 CustomerHome interface for creating and finding Customer

EJB instances. 1126
20.4 CustomerModel for serializing Customer data. 1127
20.5 Customer general deployment settings. 1132
20.6 Customer entity and deployment settings. 1132
20.7 Customer EJB References. 1133
20.8 Address remote interface for modifying Address details. 1134
20.9 AddressEJB implementation of Address remote interface. 1134
20.10 AddressHome interface for creating and finding Address EJB instances. 1138
20.11 AddressModel for serializing Address EJB data. 1139
20.12 Address General deployment settings. 1143

XVIII Illustrations

20.13 Address entity and deployment settings. 1143
20.14 Address EJB references. 1144
20.15 SequenceFactory remote interface for generating primary keys. 1145
20.16 SequenceFactoryEJB implementation of SequenceFactory

remote interface. 1145
20.17 SequenceFactoryHome interface for finding SequenceFactory

EJB instances. 1147
20.18 SequenceFactory general deployment settings. 1147
20.19 SequenceFactory entity and deployment settings. 1148
20.20 AddAing an EJB to an enterprise application. 1149
20.21 Creating an EJB JAR file. 1150
20.22 Specifying the Root Directory for EJB classes. 1150
20.23 Adding EJB classes to an EJB JAR file. 1151
20.24 Results of adding EJB classes to an EJB JAR file. 1151
20.25 Specifying classes for EJB, home interface and remote interface. 1152
20.26 Setting Bean Type to Entity. 1152
20.27 Configuring container-managed fields and primary-key class. 1153
20.28 Specifying other EJBs referenced by this EJB. 1154
20.29 Specifying Container-Managed Transactions for EJB business

methods. 1154
20.30 XML descriptor generated by Application Deployment Tool. 1155
20.31 Specifying EJB Deployment Settings. 1155
20.32 Configuring EJB Database Settings. 1156
20.33 Dialog indicating methods that require WHERE clauses for SQL queries. 1156
20.34 Specifying SQL query for method findByCustomerID. 1157
20.35 Deployment settings for Deitel Bookstore servlets. 1157
20.36 Setting the Context Root for the Deitel Bookstore servlets. 1158
20.37 Setting the CLIENT_LIST Context Parameter for the Deitel

Bookstore servlets. 1158
20.38 Servlet EJB References. 1159
20.39 Supporting files for inclusion in servlet WAR file. 1159

21 Application Servers
21.1 Application server required APIs. 1163
21.2 WebLogic administration console. (Courtesy BEA Systems.) 1167
21.3 JDBC Connection pool properties. (Courtesy of BEA Systems, Inc.) 1167
21.4 Weblogic-ejb-jar.xml defines WebLogic deployment

properties for Bookstore case study. 1168
21.5 Optional tags for weblogic-ejb-jar.xml not used in text. 1176
21.6 Weblogic-cmp-rdbms-jar-address.xml defines WebLogic

CMP database properties for EJB Address. 1178
21.7 WebLogic-cmp-rdbms-jar-Customer.xml defines WebLogic

CMP database properties for EJB CustomerEJB. 1180
21.8 Some WebLogic Query Language operations and examples. 1183
21.9 Weblogic-cmp-rdbms-jar-order.xml defines WebLogic CMP

database properties for EJB OrderEJB. 1184

 Illustrations XIX

21.10 Weblogic-cmp-rdbms-jar-orderProduct.xml defines
WebLogic CMP database properties for the OrderProduct EJB. 1185

21.11 weblogic-cmp-rdbms-jar-product.xml defines WebLogic
CMP database properties for the Product EJB. 1187

21.12 Weblogic-cmp-rdbms-jar-sequence.xml defines WebLogic
CMP database properties for the SequenceFactory EJB. 1189

21.13 Weblogic.xml Web application deployment descriptor. 1190
21.14 WHERE clauses for bookstore finder methods. 1193

22 Jini
22.1 StartService window. 1200
22.2 WebServer configuration tab. 1200
22.3 RMID configuration tab. 1201
22.4 Specifying the RMID log directory. 1201
22.5 Reggie lookup service configuration tab. 1202
22.6 Run panel for starting and stopping Jini basic services. 1202
22.7 LookupBrowser configuration tab. 1203
22.8 LookupBrowser application window. 1204
22.9 Registrar menu for viewing computers that provide lookup services. 1204
22.10 UnicastDiscovery performs unicast discovery to locate Jini

lookup services. 1205
22.11 Policy file that grants AllPermission to all code. 1208
22.12 UnicastDiscovery application output. 1209
22.13 MulticastDiscovery performs multicast discovery to locate

Jini lookup services. 1210
22.14 MulticastDiscovery application output. 1213
22.15 Seminar maintains the location and title of a seminar. 1215
22.16 SeminarInterface defines the methods available from the

SeminarInfo Jini service. 1216
22.17 BackEndInterface defines methods available to the

SeminarInfo service proxy. 1216
22.18 SeminarProxy is a service proxy that clients use to communicate

with the SeminarInfo service. 1217
22.19 SeminarInfo implements the SeminarInfo Jini service. 1218
22.20 Content of SeminarInfo.txt. 1220
22.21 SeminarInfoService registers the SeminarInfo service

with lookup services. 1220
22.22 UnicastSeminarInfoClient is a client for the SeminarInfo service. 1224
22.23 SeminarService.jar contents. 1228
22.24 SeminarClient.jar contents. 1230
22.25 SeminarServiceDownload.jar contents. 1230
22.26 Web server configuration for SeminarInfo service. 1230
22.27 UnicastSeminarInfoClient application output. 1231
22.28 UnicastDiscoveryUtility uses class

LookupLocatorDiscovery to facilitate lookup service discovery. 1232
22.29 Using MulticastDiscovery to obtain sample data for testing

UnicastDiscoveryUtility. 1236

XX Illustrations

22.30 UnicastDiscoveryUtility application output. 1237
22.31 GeneralDiscoveryUtility uses class LookupDiscoveryManager

o perform both unicast and multicast lookup service discovery. 1238
22.32 GeneralDiscoveryUtility application output. 1242
22.33 Standard Jini Entry attributes. 1242
22.34 SeminarProvider subclass of Entry for describing the Seminar

provider as a Jini attribute. 1243
22.35 SeminarInfoLeaseService uses class LeaseRenewalManager

to manage SeminarInfo service leasing. 1244
22.36 SeminarServiceWithLeasing.jar contents. 1248
22.37 SeminarInfoJoinService uses class JoinManager to facilitate

registering the SeminarInfo service and manage its leasing. 1249
22.38 SeminarServiceJoinManager.jar contents. 1251

23 JavaSpaces
23.1 Discovering a JavaSpaces service. 1262
23.2 AttendeeCounter is an Entry for keeping track of registrations

for a seminar on a particular day. 1265
23.3 Writing an Entry into a JavaSpaces service. 1267
23.4 Results of running the WriteOperation application. 1269
23.5 Reading an Entry from JavaSpaces service. 1270
23.6 Results of running the ReadOperation application. 1273
23.7 Taking an Entry from a JavaSpaces service. 1273
23.8 Results of running the TakeOperation application. 1276
23.9 EntryListener for NotifyOperation application. 1277
23.10 Receiving notifications when matching Entrys are written into JavaSpace. 1278
23.11 NotifyOperation Output samples. 1280
23.12 Removing entries from JavaSpaces service using method snapshot. 1281
23.13 SnapshotUsage Output window. 1284
23.14 UpdateInputWindow user interface. 1285
23.15 Finding Jini TransactionManager. 1288
23.16 Updating an entry using Jini TransactionManager. 1290
23.17 WriteOperation Output and UpdateInputWindow user interface. 1293
23.18 UpdateOperation Output and ReadOperation Output. 1294
23.19 Structure of the ImageProcessor distributed application. 1294
23.20 ImageEntry defines the Entrys to store in the JavaSpaces service. 1295
23.21 Image processing node that uses the JavaSpaces service. 1296
23.22 Class Filters applies a Java 2D filter to an image. 1299
23.23 Image-processing distributed system client. 1302
23.24 Partitioning an image into smaller pieces and storing subimages in a

JavaSpaces service. 1307
23.25 Partitioning and reforming an image. 1310
23.26 Displaying an image. 1312
23.27 GUI from ImageProcessorMain and ImageCollector applications. 1313
23.28 Images before and after blurring. 1313

 Illustrations XXI

24 Java Management Extensions (JMX)
24.1 JMX’s three-level management architecture. 1321
24.2 Architecture of case study management application. 1323
24.3 Defining the PrinterMBean interface that exposes the printer’s

management capabilities. 1324
24.4 Defining an event listener for the printer to handle out-of-paper,

low-toner, and paper-jam events. 1325
24.5 Printer MBean implementation class that represents the management

contact point for all applications wishing to manage the printer. 1325
24.6 Printer simulation class capable of triggering three events. 1332
24.7 JMX Agent Architecture. 1339
24.8 Creating and starting a management agent. 1339
24.9 Notification broadcaster MBean interface. 1342
24.10 Notification broadcaster MBean implementation that broadcasts

events generated by the printer. 1343
24.11 Receiving event notifications from the MBean server and handling

the printer-specific events. 1344
24.12 Connecting to the MBeanServer remotely and creating a

PrinterSimulator MBean. 1347
24.13 GUI for the management application. 1348
24.14 Initial output window. 1358
24.15 Printer status after an out-of-paper event occurred. 1358
24.16 Printer status after an add-paper action is taken. 1359
24.17 Printer status after a paper-jam event occurred. 1359
24.18 Printer status after a cancel pending print jobs action is taken. 1360

25 Jiro
25.1 Jiro technology three-tier management architecture. 1366
25.2 Jiro GUI: Igniter initial screen. 1367
25.3 GUI with Display Console checked after the start process is completed. 1368
25.4 PrinterManagement interface definition. 1370
25.5 PrinterManagementImpl implementation of interface

PrinterManagement. 1371
25.6 PrinterEventListener used by all classes subscribed for

events from Printer. 1379
25.7 Custom error class thrown by Printer. 1382
25.8 Printer simulator implementation. 1383
25.9 PrinterManagementImpl.properties file. 1391
25.10 Deployment results. 1395
25.11 PrinterManagementStarter dynamic service instantiator program. 1396
25.12 Finds dynamic service proxies within a lookup service. 1397
25.13 Management console user interface. 1400
25.14 Checking printer status. 1407
25.15 Igniter showing printer out-of-paper event. 1408
25.16 PrinterClientGUI showing printer out-of-paper event. 1408
25.17 OutofPaperPolicy interface. 1410

XXII Illustrations

25.18 OutofPaperPolicy implementation. 1411
25.19 OutofPaperPolicyImpl.properties property file for

OutofPaperPolicyImpl. 1415
25.20 Low toner policy interface. 1415
25.21 Low toner policy implementation. 1416
25.22 Property file for LowTonerPolicyImpl. 1420
25.23 Contents of PrinterManagementService.jar. 1421
25.24 Contents of PrinterManagementService-ifc.jar 1422
25.25 Contents of PrinterManagementService-ifc.jar. 1422
25.26 Contents of PrinterManagementService-impl.jar. 1423
25.27 Command line arguments for jarpackw. 1423
25.28 Command line arguments for jardeploy. 1424
25.29 Management policies instantiating utility. 1424
25.30 Igniter displaying out-of-paper event. 1426
25.31 OutofPaperPolicy handling out-of-paper event. 1427
25.32 Log contents after events handled by management policies. 1427
25.33 Detailed log information for a specified entry. 1428
25.34 Printer management solution work flow diagram. 1430

26 Common Object Request Broker Architecture
(CORBA): Part 1
26.1 IDL definition for server SystemClock. 1443
26.2 A Java interface generated by idlj. 1444
26.3 SystemClockOperations interface generated by idlj. 1445
26.4 Implementation of the SystemClock server. 1445
26.5 Client that connects to SystemClock. 1449
26.6 Call path from a client to a distributed object. 1453
26.7 Object Management Architecture reference model. Courtesy of Object

Management Group, Inc. 1455
26.8 ORB request-interface structure. Courtesy of Object Management

Group, Inc. 1455
26.9 IDL keywords, types and their mappings to Java keywords. 1458
26.10 IDL file testing many of the IDL keywords and types. 1459
26.11 IDL-generated file StructMap.java (re-formatted for clarity). 1464
26.12 IDL-generated file InterfaceNameOperations.java

(re-formatted for clarity). 1465
26.13 IDL-generated file InterfaceName.java (re-formatted for clarity). 1466
26.14 Deadlock caused by client calling a server that calls the client. 1468
26.15 alarmclock1.idl. 1468
26.16 AlarmClockImpl is the AlarmClock server implementation. 1469
26.17 ClockClientGUI informs the user when the alarm has sounded. 1472
26.18 AlarmClockClient is the AlarmClock client. 1474
26.19 A user-defined CORBA exception (DatabaseException) and

an operation capable of throwing the exception. 1478
26.20 The generated DatabaseException.java file (reformatted for clarity). 1478
26.21 alarmclock2.idl is the IDL for the AlarmClock example. 1478

 Illustrations XXIII

26.22 Excerpt from AlarmClockImpl.java. 1479
26.23 ChatServer, ChatClient and ChatMessage interface definitions. 1482
26.24 ChatServerImpl implementation of the CORBA ChatServer. 1484
26.25 CORBAMessageManager implementation of interface

MessageManager using CORBA. 1489
26.26 DeitelMessenger application for launching the CORBA chat client. 1493
26.27 chat.idl with ChatMessage changed to be a valuetype. 1496
26.28 Keywords specific to valuetypes. 1497
26.29 ChatMessageImpl is the ChatMessage implementation. 1497

27 Common Object Request Broker Architecture
(CORBA): Part 2
27.1 SystemClockClient modified to support DII. 1511
27.2 Persistent State Definition Language example. 1520
27.3 Supplier-to-consumer flow using the Event/Notification Service. 1522
27.4 IDL keywords to support the CORBA Component Model. 1523
27.5 CORBA component types and descriptions. 1526
27.6 Customer component IDL definition demonstrating keywords

publishes and emits for issuing events. 1527
27.7 ChatServerImpl implements the Deitel messenger ChatServer

using RMI-IIOP. 1532
27.8 ChatServerAdministrator application for starting and stopping

RMI-IIOP ChatServer. 1535
27.9 RMIIIOPMessageManager implements the ChatClient and

MessageManager interfaces using RMI-IIOP. 1539
27.10 DeitelMessenger creates a ClientGUI and

RMIIIOPMessageManager to launch the RMI-IIOP messenger client. 1541

28 Peer-to-Peer Applications and JXTA
28.1 Common P2P applications. 1550
28.2 Sample windows of Deitel Instant Messenger. 1552
28.3 Interface IMService specifies how service proxy interacts with

the service. 1553
28.4 Interface IMPeer specifies interaction between peers. 1553
28.5 Class Message defines an object for sending and receiving

messages between peers. 1554
28.6 IMServiceImpl service implementation for our case study. 1555
28.7 Class IMPeerListener is the GUI that starts peer communication. 1557
28.8 Class IMPeerImpl is the IMPeer implementation. 1560
28.9 Class IMServiceManager registers IMServiceImpl with

lookup services. 1562
28.10 Class PeerList is the GUI for finding peers. 1564
28.11 MulticastSendingThread broadcasts DatagramPackets. 1572
28.12 Interface IMConstants defines Deitel-Instant-Messenger constants. 1575
28.13 Class MulticastReceivingThread uses threads to add and

remove peers. 1577

XXIV Illustrations

28.14 Interface PeerDiscoveryListener listens for when peers are
added and removed from peer groups. 1582

28.15 Modified PeerList enables the use of classes
MulticastReceivingThread and PeerDiscoveryListener
in the Deitel Instant Messenger. 1583

28.16 JXTA low-level protocols. 1590

29 Introduction to Web Services and SOAP
29.1 Class SimpleService. 1597
29.2 SOAP package administration tool. 1598
29.3 Description of deployed service. 1599
29.4 Client making a SOAP request. 1599
29.5 SOAP implementation of class WeatherService. 1602
29.6 SOAP implementation of class WeatherServiceClient. 1605
29.7 Apache SOAP Admin page. 1607
29.8 Apache SOAP Service Deployment Descriptor Template. 1608
29.9 SOAP WeatherService Client. 1608

A Creating Markup with XML
A.1 Simple XML document containing a message. 1613
A.2 XML document missing an end tag. 1615
A.3 Whitespace characters in an XML document. 1616
A.4 Using a CDATA section. 1618
A.5 Demonstrating XML namespaces. 1620
A.6 Using default namespaces. 1622

B Document Type Definition (DTD)
B.1 XML document declaring its associated DTD. 1630
B.2 Validation by using an external DTD. 1631
B.3 Invalid XML document. 1631
B.4 Occurrence indicators. 1632
B.5 Example of a mixed-content element. 1635
B.6 Changing a pipe character to a comma in a DTD. 1636
B.7 Declaring attributes. 1637
B.8 XML document with ID and IDREF attribute types . 1639
B.9 Error displayed when an invalid ID is referenced. 1640
B.10 XML document that contains an ENTITY attribute type. 1642
B.11 Error generated when a DTD contains a reference to an undefined entity. 1642
B.12 Conditional sections in a DTD. 1644
B.13 XML document that conforms to conditional.dtd. 1645
B.14 Processing whitespace in an XML document. 1646

C Document Object Model (DOM™)
C.1 Article marked up with XML tags. 1654
C.2 XMLInfo displays information about XML input. 1654
C.3 DOM classes and interfaces. 1658
C.4 Some Document methods. 1658

 Illustrations XXV

C.5 Node methods. 1659
C.6 Some node types. 1659
C.7 Element methods. 1659
C.8 Simple example that replaces an existing text node. 1660
C.9 Class definition for MyErrorHandler. 1663
C.10 Input document (intro.xml) and output from ReplaceText.java. 1664
C.11 Building an XML document with the DOM. 1665
C.12 Output for buildXml.java. 1668
C.13 Traversing the DOM. 1668
C.14 Sample execution of TraverseDOM.java. 1671

D XSL: Extensible Stylesheet Language Transformations (XSLT)
D.1 Java application that performs XSL transformations. 1677
D.2 Simple template. 1679
D.3 Sample input XML document intro.xml. 1680
D.4 Results of XSL transformation. 1680
D.5 XML document containing a list of sports. 1681
D.6 Using XSLT to create elements and attributes. 1681
D.7 Default XSLT templates. 1682
D.8 Output of transformation. 1683
D.9 Book table of contents as XML. 1684
D.10 Transforming XML data into XHTML. 1684
D.11 Output of the transformation. 1686
D.12 Day planner XML document. 1687
D.13 Using conditional elements. 1688
D.14 XSLT document being imported. 1690
D.15 Importing another XSLT document. 1691
D.16 Transformation results. 1692
D.17 Combining style sheets using xsl:include. 1692
D.18 XSLT document for rendering the author’s name. 1693
D.19 XSLT document for rendering chapter names. 1693
D.20 Output of an XSLT document using element include. 1694
D.21 Demonstrating xsl:variable. 1695
D.22 Result of variables.xsl transformation. 1695

G Java Native Interface (JNI)
G.1 JNIPrintWrapper loads a library and declares a native method. 1707
G.2 JNIPrintWrapper.h header file generated by javah. 1708
G.3 JNIPrintWrapperImpl.cpp implements the javah header to print a

message.1709
G.4 JNIPrintMain calls the native method via the wrapper class. 1710
G.5 JNIPIWrapper encapsulates the native methods and loads the library. 1710
G.6 PIContainer returns the PI member of java.lang.Math. 1711
G.7 JNIPIWrapper.h is the javah generated header file for the native

functions. 1711
G.8 JNIPIWrapperImpl.cpp demonstrates method calls and object

construction. 1712

XXVI Illustrations

G.9 Signature type mappings. 1713
G.10 JNIPIMain calls each native method via the wrapper class. 1714
G.11 JNIStaticWrapper loads JNIMathLibrary and declares native

method printStaticMembers. 1715
G.12 MathConstants contains common math constants from Math. 1715
G.13 JNIStaticWrapper.h javah generated header file. 1715
G.14 JNIStaticWrapperImpl accesses and prints static members of

the given MathConstants class. 1716
G.15 JNIStaticMain prints static math constants via the wrapper class. 1717
G.16 JNIArrayWrapper loads JNIArrayLibrary and displays the

numbers in the returned array. 1718
G.17 JNIArrayWrapper.h javah generated header file. 1718
G.18 JNIArrayWrapperImpl.cpp demonstrates primitive and Object

array creation and control. 1719
G.19 JNIArray loads library and calls JNIArrayWrapper to print

10 numbers. 1721
G.20 ImageSizeException used when image is too large. 1722
G.21 PixelTintException is used for invalid pixel tint values. 1722
G.22 JNITintWrapper loads the native library and wraps the native

function. 1723
G.23 JNITintWrapper.h javah generated JNI header file. 1723
G.24 JNITintImages.cpp tints an array of sRGB color values to

demonstrate exception handling. 1724
G.25 JNIPanel creates the application GUI and calls the native method. 1728
G.26 JNIImageFrame serves as an entry point for the application. 1731

H Career Opportunities
H.1 The Monster.com home page. (Courtesy of Monster.com.) 1741
H.2 FlipDog.com job search. (Courtesy of Flipdog.com.) 1742
H.3 List of a job seeker’s criteria. 1744
H.4 Advantage Hiring, Inc.’s Net-Interview™ service. (Courtesy of

Advantage Hiring, Inc.) 1747
H.5 Cruel World online career services. (Courtesy of Cruel World.) 1749
H.6 eLance.com request for proposal (RFP) example. (Courtesy

of eLance, Inc.] 1752

I Unicode®
I.1 Correlation between the three encoding forms. 1765
I.2 Various glyphs of the character A. 1765
I.3 Java program that uses Unicode encoding. 1767
I.4 Some character ranges. 1770

Preface

Live in fragments no longer. Only connect.
Edward Morgan Forster

Welcome to Advanced Java 2 Platform How to Program and the exciting world of ad-
vanced-programming concepts with the three major Java platforms—Java™ 2 Enterprise
Edition (J2EE), Java 2 Standard Edition (J2SE) and Java 2 Micro Edition (J2ME). Little
did we know when we attended the November 1995 Internet/World Wide Web conference
in Boston what that session would yield—four editions of Java How To Program (the
world’s best-selling Java textbook), and now this book about Java software-development
technologies for upper-level college courses and professional developers.

Before Java appeared, we were convinced that C++ would replace C as the dominant
application-development language and systems-programming language for the next
decade. However, the combination of the World Wide Web and Java now increases the
prominence of the Internet in information-systems planning and implementation. Organi-
zations want to integrate the Internet “seamlessly” into their information systems. Java is
more appropriate than C++ for this purpose—as evidenced by Sun Microsystems’
announcement in 2001 that over 96% of enterprise application servers support J2EE.

Advanced Java 2 Platform How to Program is the first book in our Advanced How to
Program series. We discuss Java technologies that may be unfamiliar and challenging to
the average Java programmer. We structured each chapter discussion to provide the reader
with an introduction to leading-edge and complex Java technologies, rather than provide a
detailed analysis of every nuance of each topic. In fact, each topic we present could be a
600–800 page book in itself.

We use a different approach with the examples in this book than that of programming
examples in our previous books. We provide fewer programs, but these programs are more
substantial and illustrate sophisticated coding practices. We integrate many technologies to
create a book for developers that enables you to “go beyond” and experiment with the most

XXII Preface

up-to-date technologies and most widely employed design concepts. What better way to
learn than to work with actual technologies and code?

When determining the appropriate topics for this book, we read dozens of journals,
reviewed the Sun Microsystems Web site and participated in numerous trade shows. We
audited our material against the latest technologies presented at the JavaOne conference—
the leading Java-developer conference sponsored by Sun Microsystems—and at other pop-
ular Java conferences. We also reviewed books on specialized Java topics. After this exten-
sive research, we created an outline for this book and sent it for professional review by Java
experts. We found so many topics we wanted to include that we wound up with over 1800
pages of material (several hundred of those pages appear as PDF documents on the CD that
accompanies this book). We apologize if this is inconvenient, but the material and the
number of topics are voluminous. We will most likely split the next edition into two vol-
umes.

This book benefitted from an unusually large pool of excellent reviewers and the
detailed documentation that Sun makes available on their Web site (www.sun.com). We
were excited to have a number of reviewers from Sun and many other distinguished
industry reviewers. We wanted experienced developers to review our code and discussions,
so we could offer “expert advice” from people who actually work with the technologies in
industry.

We are pleased to include a discussion of application servers in Chapter 21. The three
most popular application server software products are BEA’s WebLogic, IBM’s Web-
Sphere and Sun/Netscape’s iPlanet. Originally, we had planned to include all three on the
book’s accompanying CD, but we have included only WebLogic and WebSphere. iPlanet
was about to publish a new version as this book went to publication. By mutual agreement
between iPlanet and Deitel & Associates, Inc., we decided not to include this software, but
iPlanet provides a link to a site specific to this book—www.iplanet.com/
ias_deitel—where readers can download the latest iPlanet software. We also include
a discussion of how to deploy our case study on the iPlanet server. You can find this dis-
cussion on our Web site—www.deitel.com.

We moved four chapters from Java How to Program, Third Edition—RMI, Servlets,
JavaBeans and JDBC—to Advanced Java 2 Platform How to Program. Prentice Hall has
published a paperback supplement (ISBN: 0-13-074367-4) containing these four chapters
for readers who have purchased Java How to Program, Fourth Edition.

The world of Java is growing so rapidly that Advanced Java 2 Platform How to Pro-
gram and its companion text, Java How to Program, Fourth Edition, total 3400 pages! The
books are so large that we had to put several chapters from each on the accompanying CDs.
This creates tremendous challenges and opportunities for us as authors, for our publisher—
Prentice Hall, for instructors, for students and for professionals. We hope you enjoy the
results of these challenges as much as we have enjoyed the process of tackling them.

Features of Advanced Java 2 Platform How to Program
This book contains many features including:

• Full-Color Presentation. This book is in full color to enable readers to see sample
outputs as they would appear on a color monitor. Also, we now syntax color all
the Java code, as do many of today’s Java integrated development environments
and code editors. Our syntax-coloring conventions are as follows:

Preface XXIII

comments appear in green
keywords appear in dark blue
constants and literal values appear in light blue
JSP delimiters appear in red
all other code appears in black

• “Code Washing.” This is our own term for the process we use to format the pro-
grams in the book with a carefully commented, open layout. The code is in full
color and grouped into small, well-documented pieces. This greatly improves
code readability—an especially important goal for us given that this book contains
almost 40,000 lines of code.

• Advanced Graphical User Interface (GUI) Design. Starting with Chapter 2, we
use advanced Java Swing features to create real-world Java components, includ-
ing a Web-browser application with a multiple-document interface. In Chapter 3,
we introduce the Model-View-Controller (MVC) architecture and its implemen-
tation in the Swing API. In Chapters 4 and 5, we create 2D graphics and 3D
worlds. The Java 2D Drawing Application with Design Patterns Case Study in
Chapter 5 presents a complex drawing program with which the user can create
shapes in various colors and gradients. We are also pleased to add Java 3D cover-
age. One of the book’s adopters said these chapters were ideal for a course in ad-
vanced GUI programming. (We wanted to include multimedia programming with
the Java Media Framework, but instead we decided to include this material in the
companion book, Java How to Program, Fourth Edition.)

• Enterprise Java and Our Enterprise Java Case Study. Developers use Java for
building “heavy-duty” enterprise applications. Chapters 7–11, 14–16 and 21 explore
the necessary components for implementing enterprise solutions—including securi-
ty, database manipulation, servlets, JavaServer Pages, distributed transactions, mes-
sage-oriented middleware and application servers. In Chapter 7, Security, we
discuss secure communications and secure programming. Chapters 17–20 showcase
an Enterprise Java Case Study that integrates many technologies, such as Enterprise
JavaBeans, servlets, RMI-IIOP, XML, XSLT, XHTML, (and for wireless applica-
tion development) WML and cHTML—into an online-bookstore application. The
Deitel Bookstore demonstrates how to use the MVC architecture introduced in
Chapter 3 to build enterprise applications. This bookstore uses technologies to pro-
vide support for almost any type of client, including cell phones, mobile devices and
Web browsers. In this world of networks and wireless networks, business informa-
tion must be delivered securely and reliably to the intended recipients.

• Distributed Systems. Enterprise applications are usually so complex that they run
more efficiently when program components are distributed among different ma-
chines in organizations’ networks. This book introduces several technologies for
building distributed systems—Remote Method Invocation (RMI), Jini, JavaSpac-
es, Java Management Extensions (JMX), Jiro and Common Object Request Bro-
ker Architecture (CORBA). CORBA, controlled by the Object Management
Group (OMG), is a mature distributed computing technology for integrating dis-
tributed components written in many disparate languages. Java was originally in-
tended for networks of programmable devices—Jini assumes that technology role

XXIV Preface

now. JMX and Jiro are technologies specifically for network management (LANs,
WANs, intranets, the Internet, extranets, etc.).

• Java 2 Micro Edition (J2ME) and Wireless Applications. It is estimated that by
2003, more people worldwide will access the Internet through wireless devices
than through desktop computers. The Java platform for wireless devices with lim-
ited capabilities such as cell phones and personal digital assistants is Java 2 Micro
Edition (J2ME). Chapter 12, Wireless Java-Based Applications Development and
J2ME, contains a case study that sends content from a centralized data store to
several wireless clients, including a J2ME client.

• Web Services. Web services are applications that expose public interfaces usable
by other applications over the Web. The area of Web services builds on existing
protocols, such as HTTP, and communicate with XML-based messages. Directory
services enable clients to perform lookups to discover available Web services. The
Simple Object Access Protocol (SOAP) uses XML to provide communication in
many Web services. Many of the technologies in this book can be used to build
Web services.

• Employing Design Patterns. The book’s largest case studies—such as the Java
2D drawing program in Chapter 5, the three-tier servlet and JavaServer Pages case
study in Chapter 11, the three-tier wireless application in Chapter 12 and the De-
itel Bookstore Enterprise Case Study in Chapters 17–20—each contain thousands
of lines of code. Larger systems, such as automated teller machines or air-traffic
control systems, can contain hundreds of thousands, or even millions, of lines of
code. Effective design is crucial to the proper construction of such complex sys-
tems. Over the past decade, the software engineering industry has made signifi-
cant progress in the field of design patterns—proven architectures for
constructing flexible and maintainable object-oriented software.1 Using design
patterns can substantially reduce the complexity of the design process. We used
many design patterns when building the software in this book. Chapter 1 introduc-
es design patterns, discusses why they are useful and lists those design patterns we
use throughout this book

• XML. XML (Extensible Markup Language) use is exploding in the software-de-
velopment industry and we use it pervasively throughout the text. As a platform-
independent syntax for creating markup languages, XML’s data portability inte-
grates well with Java’s portable applications and services. If you do not know
XML, Appendices A–D of this book provide an introduction to XML. Appendices
A and B introduce XML basics and DTDs, which define standard XML document
structures. Appendix C introduces the Document Object Model (DOM) API for
manipulating XML documents. Appendix D covers XSLT (Extensible Stylesheet
Language Transformations—an XML vocabulary for transforming XML docu-
ments into other text-based documents.

• Peer-to-Peer Applications. Peer-to-peer (P2P) applications—such as instant mes-
saging and document-sharing programs—have become extremely popular. Chap-

1. Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns; Elements of
Reusable Object-Oriented Software. (Massachusetts: Addison-Wesley, 1995).

Preface XXV

ter 28, Peer-to-Peer Applications and JXTA, introduces this architecture, in which
each node performs both client and server duties. JXTA (short for the term “Jux-
tapose”), defines protocols for implementing peer-to-peer applications. This chap-
ter includes two P2P application case studies—one written with Jini and RMI and
the other written in multicast sockets and RMI. Both implement a P2P instant mes-
saging application. We wanted a capstone example for Jini and decided this chap-
ter should have it. The first case study is somewhat centralized—and therefore not
a “true” P2P application (some developers think that Jini has too much overhead
for a peer-to-peer application). We developed the second to demonstrate a lighter-
weight, decentralized implementation.

• Appendix H, Career Opportunities. This appendix introduces career services on
the Internet. We explore online career services from both the employer’s and em-
ployee’s perspectives. We suggest Web sites at which you can submit applica-
tions, search for jobs and review applicants (if you are interested in hiring
someone). We also review services that build recruiting pages directly into e-busi-
nesses. One of our reviewers told us that he had just gone through a job search
largely using the Internet and this chapter would have expanded his search dramat-
ically.

• Appendix I, Unicode. This appendix overviews the Unicode Standard. As com-
puter systems evolved worldwide, computer vendors developed numeric repre-
sentations of character sets and special symbols for the local languages spoken in
different countries. In some cases, different representations were developed for
the same languages. Such disparate character sets made communication between
computer systems difficult. Java supports the Unicode Standard (maintained by a
non-profit organization called the Unicode Consortium), which defines a single
character set with unique numeric values for characters and special symbols in
most spoken languages. This appendix discusses the Unicode Standard, overviews
the Unicode Consortium Web site (unicode.org) and shows a Java example
that displays “Welcome” in many different languages.

• Bibliography and Resources. Chapters in this book contain bibliographies when
appropriate and URLs that offer additional information about the technologies.
We did this so those readers who would like to study a topic further could begin
with the resources we found helpful when developing this book.

Some Notes to Instructors

A World of Object Orientation
When we wrote the first edition of Java How to Program, universities were still emphasiz-
ing procedural programming in languages like Pascal and C. The leading-edge courses
were using object-oriented C++, but these courses were generally mixing a substantial
amount of procedural programming with object-oriented programming—something that
C++ lets you do, but Java does not. By the third edition of Java How to Program, many
universities were switching from C++ to Java in their introductory curricula, and instructors
were emphasizing a pure object-oriented programming approach. In parallel with this ac-
tivity, the software engineering community was standardizing its approach to modeling ob-

XXVI Preface

ject-oriented systems with the UML, and the design-patterns movement was taking shape.
This book takes a 100% object-oriented approach and emphasizes Java design patterns and
adherence to Java idiom.

The prerequisite for this book is Java How to Program, Fourth Edition (or equivalent
Java knowledge), which provides a solid foundation in Java programming. Java How to
Program, Fourth Edition includes the following chapters and appendices, for a more
detailed Table of Contents, visit www.deitel.com: Introduction to Computers, the
Internet and the Web; Introduction to Java Applications; Introduction to Java Applets; Con-
trol Structures: Part 1; Control Structures: Part 2; Methods; Arrays; Object-Based Program-
ming; Object-Oriented Programming; Strings and Characters; Graphics and Java 2D;
Graphical User Interface Components: Part 1; Graphical User Interface Components: Part
2; Exception Handling; Multithreading; Files and Streams; Networking; Multimedia:
Images, Animation, Audio and Video; Data Structures; Java Utilities Package and Bit
Manipulation; Collections; Java Media Framework and Java Sound; Java Demos; Java
Resources; Operator Precedence Chart; ASCII Character Set; Number Systems; Creating
HTML Documentation with javadoc; Elevator Events and Listener Interfaces; Elevator
Model; Elevator View; Career Opportunities; Unicode; Bibliography.

Students Like Java
Students are highly motivated by the fact that they are learning a leading-edge language (Ja-
va) and a leading-edge programming paradigm (object-oriented programming) for building
entire systems. Java immediately gives them an advantage when they head into a world in
which the Internet and the World Wide Web have a massive prominence and corporations
need enterprise systems programmers. Students quickly discover that they can do great
things with Java, so they are willing to put in the extra effort. Java helps programmers un-
leash their creativity. We see this in the Java and advanced Java courses Deitel & Associ-
ates, Inc. teaches.

Focus of the Book
Our goal was clear—produce an advanced Java textbook for higher-level university cours-
es in computer programming for students with intermediate-level Java programming expe-
rience, and offer the depth and the rigorous treatment of theory and practice demanded by
professionals. To meet these goals, we produced a book that challenges Java programmers.
We present clear examples of advanced topics and often overlooked topics. We adhere to
Java idiom and follow sophisticated coding style and practices (i.e., not just the code for-
matting, but the idiomatic use of Java API’s, constructs and technologies). This book pre-
sents substantial Java applications that readers can use to start working with these
technologies immediately.

Evolution of Advanced Java 2 Platform How to Program
Advanced Java 2 Platform How to Program was finished fresh on the heels of Java How
to Program, Fourth Edition. Hundreds of thousands of university students and profession-
als worldwide have learned Java from our texts. Upon publication in September 2001, Ad-
vanced Java 2 Platform How to Program will be used in universities, corporations and
government organizations worldwide. Deitel & Associates, Inc. taught Java courses inter-
nationally to thousands of students as we were writing the various editions of Java How to

Preface XXVII

Program and Advanced Java 2 Platform How to Program. We carefully monitored the ef-
fectiveness of material and tuned the books accordingly.

Conceptualization of Java
We believe in Java. Its conceptualization by Sun Microsystems, the creator of Java, was
brilliant. Sun based the new language on C and C++, two of the world’s most widely used
implementation languages. This immediately gave Java a huge pool of highly skilled pro-
grammers who were implementing most of the world’s new operating systems, communi-
cations systems, database systems, personal-computer applications and systems software.
Sun removed the more complex and error-prone C/C++ features (such as explicit pointers,
operator overloading and multiple inheritance, among others). They kept the language con-
cise by removing special-purpose features used by only small segments of the program-
ming community. They made the language truly portable for implementing Internet-based
and Web-based applications, and they included features developers need such as strings,
graphics, GUI components, exception handling, multithreading, multimedia (audio, imag-
es, animation and video), prepackaged data structures, file processing, database processing,
Internet and Web-based client/server networking, distributed computing and enterprise
computing. Then they made the language available at no charge to millions of potential
programmers worldwide.

2.5 Million Java Developers
Java was promoted in 1995 as a means of adding “dynamic content” to Web pages. Instead
of Web pages with only text and static graphics, Web pages could now “come alive” with au-
dios, videos, animations, interactivity—and soon, 3D imaging. But we saw much more in
Java than this. Java’s features are precisely what businesses and organizations need to meet
today’s information-processing requirements. So we immediately viewed Java as having the
potential to become one of the world’s key general-purpose programming languages. In fact,
Java has revolutionized software development with multimedia-intensive, platform-indepen-
dent, object-oriented code for conventional, Internet-, Intranet- and Extranet-based applica-
tions and applets. Java now has 2.5 million developers worldwide—a stunning
accomplishment when considering that it has been available publicly for only six years. No
other programming language has ever acquired such a large developer base so quickly.

Teaching Approach
Advanced Java 2 Platform How to Program, First Edition contains a rich collection of ex-
amples, exercises and projects drawn from many fields to provide readers with a chance to
solve interesting real-world problems. The book concentrates on the principles of good
software engineering and stresses program clarity, especially important when creating sub-
stantial programs like those covered in this book. We avoid arcane terminology and syntax
specifications in favor of teaching by example. Our code examples have been tested on
popular Java platforms. We are educators who teach edge-of-the-practice topics in industry
classrooms worldwide. The text emphasizes good pedagogy.

Learning Java via the live-code™ Approach
The book is loaded with live-code™ examples. This is how we teach and write about pro-
gramming, and is the focus of each of our multimedia Cyber Classrooms and Web-based

XXVIII Preface

training courses. We present each new concept in the context of a complete, working Java
program, immediately followed by screen captures that show the program’s output. We call
this style of teaching and writing our live-code™ approach. We use the language to teach
the language. Reading these programs (almost 40,000 lines of code) is much like entering
and running them on a computer.

Java Programming from Chapter Two
Advanced Java 2 Platform How to Program, “jumps right in” with substantial programs
right from Chapter 2. This is the beginning of an aggressive pace that challenges readers
with graphical, multithreaded, database-intensive, network-based programming. Through-
out the book, readers learn by implementing impressive projects.

World Wide Web Access
All the code for Advanced Java 2 Platform How to Program is on the CD that accompanies
this book. The code also is available at the following Web sites:

www.deitel.com
www.prenhall.com/deitel

Objectives
Each chapter begins with Objectives that inform the reader what to expect and provides an
opportunity, after reading the chapter, to determine if the reader has met these objectives.
It is a confidence builder and a source of positive reinforcement.

Quotations
The learning objectives are followed by quotations. Some are humorous, some are philo-
sophical and some offer interesting insights. Our readers enjoy relating the quotations to
the chapter material. The quotations are worth a “second look” after you read each chapter.

Outline
The chapter outline helps the reader approach the material in top-down fashion. This, too,
helps students anticipate what is to come and set a comfortable and effective learning pace.

Almost 40,000 Lines of Code in 126 Example Programs (with Program Outputs)
We present Java features in the context of complete, working Java programs. The programs
in this book are substantial, with hundreds to thousands of lines of code (e.g., 10,000 lines
of code for the bookstore case study example). Students should use the program code from
the CD that accompanies the book and run each program while studying that program in
the text.

841 Illustrations/Figures
Many of the figures are code examples, but this book still offers many charts, line drawings
and program outputs. For example, Chapter 4 and 5, Graphics Programming with Java 2D
and Java 3D, provides stunning graphics, and the architectural overview of the Enterprise
Java case study in Chapter 17 is impressive.

Preface XXIX

235 Programming Tips
We have included programming tips to help students focus on important aspects of program
development. We highlight numerous tips in the form of Good Programming Practices,
Common Programming Errors, Testing and Debugging Tips, Performance Tips, Portabil-
ity Tips, Software Engineering Observations and Look-and-Feel Observations. These tips
and practices represent the best we have gleaned from decades of programming and teach-
ing experience. One of our students—a mathematics major—told us that she feels this ap-
proach is like the highlighting of axioms, theorems and corollaries in mathematics books;
it provides a basis on which to build good software.

Good Programming Practices
We highlight Good Programming Practices techniques for writing programs that are clearer,
more understandable, more debuggable and more maintainable. 0.0

Common Programming Errors
Focusing on these Common Programming Errors helps readers avoid making the same errors. 0.0

Testing and Debugging Tips
When we first designed this “tip type,” we thought we would use it strictly to tell people how
to test and debug Java programs. In fact, many of the tips describe aspects of Java that re-
duce the likelihood of “bugs” and thus simplify the testing and debugging process. 0.0

Performance Tips
We have included 13 Performance Tips that highlight opportunities for improving program
performance—making programs run faster or minimizing the amount of memory that they
occupy. 0.0

Portability Tips
One of Java’s “claims to fame” is “universal” portability, so some programmers assume that
if they implement an application in Java, the application will automatically be “perfectly”
portable across all Java platforms. Unfortunately, this is not always the case. We include Port-
ability Tips to help readers write portable code and to provide insights on how Java achieves
its high degree of portability. 0.0

Software Engineering Observations
The object-oriented programming paradigm requires a complete rethinking about the way
we build software systems. Java is an effective language for performing good software engi-
neering. The Software Engineering Observations highlight architectural and design issues
that affect the construction of software systems, especially large-scale systems. 0.0

Look-and-Feel Observations
We provide Look-and-Feel Observations to highlight graphical user interface conventions.
These observations help readers design their own graphical user interfaces in conformance
with industry norms. 0.0

Summary (949 Summary bullets)
Each chapter ends with additional pedagogical devices. We present a thorough, bullet-list-
style summary of the chapter. On average, there are 26 summary bullets per chapter. This
helps the readers review and reinforce key concepts.

XXX Preface

Terminology (1904 Terms)
We include in a Terminology section an alphabetized list of the important terms defined in
the chapter—again, further reinforcement. On average, there are 51 terms per chapter.

394 Self-Review Exercises and Answers (Count Includes Separate Parts)
Self-review exercises and answers are included for self-study. These reinforce the knowl-
edge the reader gained from the chapter.

189 Exercises (Count Includes Separate Parts)
Each chapter concludes with a set of exercises. The exercises cover many areas. This en-
ables instructors to tailor their courses to the unique needs of their audiences and to vary
course assignments each semester. Instructors can use these exercises to form homework
assignments, quizzes and examinations. The solutions for most of the exercises are includ-
ed on the Instructor’s Manual CD that is available only to instructors through their Pren-
tice-Hall representatives. [NOTE: Please do not write to us requesting the instructor’s
manual. Distribution of this publication is strictly limited to college professors teach-
ing from the book. Instructors may obtain the Instructor’s manual only from their
Prentice Hall representatives. We regret that we cannot provide the solutions to pro-
fessionals.] Solutions to approximately half of the exercises are included on the Advanced
Java 2 Platform Multimedia Cyber Classroom CD, which also is part of The Complete Ad-
vanced Java 2 Platform Training Course. For ordering instructions, please see the last few
pages of this book or visit www.deitel.com.

Approximately 3,080 Index Entries (with approximately 4648 Page References)
This book includes an extensive index. This helps the reader find any term or concept by
keyword. The index is useful to developers who use the book as a reference. The terms in
the Terminology sections generally appear in the index (along with many more index items
from each chapter).

“Double Indexing” of Java live-code™ Examples and Exercises
Advanced Java 2 Platform How to Program has 126 live-code™ examples and 189 exer-
cises (including parts). Many exercises are challenging problems or projects that require
substantial effort. We have “double indexed” the live-code™ examples. For every Java
source-code program in the book, we took the file name with the.java extension, such as
WebBrowser.java and indexed it both alphabetically (in this case under “W”) and as a
subindex item under “Examples.” This makes it easier to find examples using particular
features.

Software Included with Advanced Java 2 Platform How to
Program
There are a number of for-sale Java products available. However, you do not need them to
get started with Java. We wrote Advanced Java 2 Platform How to Program using the Java
2 Software Development Kit (J2SDK) Standard Edition Version 1.3.1 for Windows and
Linux (Intel x86) and other software programs that we include on the CD that accompanies
this book. For your convenience, Sun’s J2SDK also can be downloaded from the Sun Mi-
crosystems Java Web site java.sun.com/j2se. We include some of the most popular

Preface XXXI

server software so you can set up and run live systems. This software includes BEA We-
bLogic Server™, Version 6.0 (Windows/Linux) with Service Pack 2, 30-Day Trial, Enter-
prise Edition, 6.0, Testdrive; IBM® WebSphere® Application Server, Advanced Single
Server Edition, Version 4.0 for Windows NT® and Windows® 2000 Evaluation Copy, and
Apache Tomcat 3.2.3 from the Apache Software Foundation. We also include Informix
Software’s Cloudscape 3.6.4 database software. With Sun’s cooperation, we also were able
to include on the CD a powerful Java integrated development environment (IDE)—Sun
Microsystem’s Forte for Java Community Edition. Forte is a professional IDE written in
Java that includes a graphical user interface designer, code editor, compiler, visual debug-
ger and more. J2SDK 1.3.1 must be installed before installing Forte. If you have any ques-
tions about using this software, please read the introductory Forte documentation on the
CD. We will provide additional information on our Web site www.deitel.com.

The CD also contains the book’s examples and a Web page with links to the Deitel &
Associates, Inc. Web site (www.deitel.com), the Prentice Hall Web site (www.pren-
hall.com/deitel) and the many Web sites listed at the end of each chapter. If you
have access to the Internet, this Web page can be loaded into your Web browser to give you
quick access to all the resources. Finally, because we wrote much more than we originally
intended, a number of chapters and appendices have been off-loaded to the CD.

Ancillary Package for Advanced Java 2 Platform How to
Program
Advanced Java 2 Platform How to Program has extensive ancillary materials for instruc-
tors teaching from the book. The Instructor’s Manual CD contains solutions to the vast ma-
jority of the end-of-chapter exercises. We also provide PowerPoint® slides containing all
the code and figures in the text. You are free to customize these slides to meet your own
classroom needs. Prentice Hall provides a Companion Web Site (www.prenhall.com/
deitel) that includes resources for instructors and students. For instructors, the Web site
has a Syllabus Manager for course planning, links to the PowerPoint slides and reference
materials from the appendices of the book (such as the character sets and Web resources).
For students, the Web site provides chapter objectives, true/false exercises with instant
feedback, chapter highlights and reference materials. [NOTE: Please do not write to us
requesting the instructor’s manual. Distribution of this publication is strictly limited
to college professors teaching from the book. Instructors may obtain the solutions
manual only from their regular Prentice Hall representatives. We regret that we can-
not provide the solutions to professionals.]

Advanced Java 2 Platform Multimedia Cyber Classroom (CD
and Web-Based Training Versions) and The Complete
Advanced Java 2 Platform Training Course
We have prepared an interactive, CD-based, software version of Advanced Java 2 Platform
How to Program, called the Advanced Java 2 Platform Multimedia Cyber Classroom. It is
loaded with features for learning and reference. The Cyber Classroom is wrapped with the
textbook at a discount in The Complete Advanced Java 2 Platform Training Course. If you
already have the book and would like to purchase the Advanced Java 2 Platform Multime-
dia Cyber Classroom (ISBN: 0-13-091276-x) separately, please visit www.infor-

XXXII Preface

mit.com/cyberclassrooms. All Deitel Cyber Classrooms are generally available in
CD and Web-based training formats.

The CD has an introduction with the authors overviewing the Cyber Classroom’s fea-
tures. Many of the live-code™ examples in the textbook truly “come alive” in the Cyber
Classroom. If you are viewing a program and want to execute it, you click the lightning bolt
icon and the program will run. You will immediately see—and hear for the audio-based
multimedia programs—the program’s outputs. If you want to modify a program and see
and hear the effects of your changes, simply click the floppy-disk icon that causes the
source code to be “lifted off” the CD and “dropped into” one of your own directories so you
can edit the text, recompile the program and try out your new version. Click the audio icon
and one of the authors will talk about the program and “walk you through” the code.

The Cyber Classroom also provides navigational aids including extensive hyper-
linking. The Cyber Classroom is browser based, so it remembers recent sections you have
visited and allows you to move forward or backward among these sections. The thousands
of index entries are hyperlinked to their text occurrences. You can search for a term using
the “find” feature and the Cyber Classroom locates its occurrences throughout the text. The
Table of Contents entries are “hot”—so clicking a chapter name takes you to that chapter.

Students tell us that they particularly like the fact that solutions to about half the exer-
cises in the book are included with the Cyber Classroom. Studying and running these extra
programs is a great way for students to enhance their learning experience.

Students and professional users of our Cyber Classrooms tell us they like the interac-
tivity and that the Cyber Classroom is an effective reference because of the extensive
hyperlinking and other navigational features. We received an email from a person who said
that he lives “in the boonies” and cannot take a live course at a university, so the Cyber
Classroom was the solution to his educational needs.

Professors tell us that their students enjoy using the Cyber Classroom, spend more time
on the course and master more of the material than in textbook-only courses. We have pub-
lished (and will be publishing) many other Cyber Classroom and Complete Training
Course products. For a complete list of the available and forthcoming Cyber Classrooms
and Complete Training Courses, see the Deitel™ Series page at the beginning of this book
or the product listing and ordering information at the end of this book. You can also visit
www.deitel.com or www.prenhall.com/deitel for more information.

Acknowledgments
One of the great pleasures of writing a textbook is acknowledging the efforts of the many
people whose names may not appear on the cover, but whose hard work, cooperation,
friendship and understanding were crucial to the production of the book.

Several people at Deitel & Associates, Inc. devoted long hours to this project. We
would like to acknowledge the efforts of our full-time Deitel & Associates, Inc. colleagues
Jonathan Gadzik, Tem Nieto, Su Zhang, Kyle Lomeli, Matthew Kowalewski, Rashmi
Jayaprakash, Kate Steinbuhler, Abbey Deitel and Betsy DuWaldt.

• Jonathan Gadzik, a graduate of the Columbia University School of Engineering
and Applied Science (BS in Computer Science) co-authored Chapter 1, Introduc-
tion, and Chapter 12, Java-Based Wireless Applications Development and J2ME,
and contributed to Chapter 4 and the design patterns material throughout the book.
He also reviewed Chapter 28, Peer-to-Peer Applications.

Preface XXXIII

• Tem Nieto, a graduate of the Massachusetts Institute of Technology, is Director of
Product Development at Deitel & Associates. Tem teaches XML, Java, Internet and
Web, C, C++ and Visual Basic seminars and works with us on textbook writing,
course development and multimedia-authoring efforts. He is co-author with us of In-
ternet & World Wide Web How to Program (Second Edition), XML How to Pro-
gram, Perl How to Program and Visual Basic 6 How to Program. In Advanced Java
2 Platform How to Program, First Edition Tem updated Chapters 5, 6, 8 and 12 of
XML How to Program for inclusion as Appendices A–D—Creating Markup with
XML, XML Document Type Definitions, XML Document Object Model (DOM)
and XSL (Extensible Stylesheet Language Transformations)—respectively.

• Su Zhang, a graduate of McGill University with a Masters in Computer Science, co-
authored Chapters 22, 23, 24 and 25—Jini, JavaSpaces, Jiro and JMX, respectively.

• Kyle Lomeli, a graduate of Oberlin College in Computer Science co-authored Chap-
ters 24 and 25 (JMX and Jiro). He contributed to Chapter 3, MVC; Chapter 7, Secu-
rity; Chapter 13, RMI and Chapter 23, JavaSpaces, and he reviewed Chapter 12.

• Matthew Kowalewski, a graduate of Bentley College with a major in Accounting
Information Systems and Director of Wireless Development at Deitel & Associ-
ates, Inc., contributed to Chapter 12.

• Rashmi Jayaprakash, a graduate of Boston University with a major in Computer
Science, co-authored Appendix I, Unicode.

• Kate Steinbuhler, a graduate of Boston College with majors in English and Com-
munications, co-authored Appendix H, Career Opportunities, and managed the
permissions process.

• Abbey S. Deitel, a graduate of Carnegie Mellon University with a BS in Industrial
Management and President of Deitel & Associates, Inc., co-authored Chapter 7,
Security.

• Betsy DuWaldt, a graduate of Metropolitan State College of Denver with a degree
in Technical Communications (Writing and Editing Emphasis) and a minor in
Computer Information Systems, is Editorial Director at Deitel & Associates, Inc.
She co-authored the Preface, helped prepare the manuscript for publication and
edited the index.

We would like to thank the participants in our Deitel & Associates, Inc. College Intern-
ship Program.2

• Chris Henson, a Masters student at Brandeis University (Computer Science), co-
authored Chapter 6, JavaBeans Component Model, and Chapter 29, Web Servic-
es. He contributed to the accessibility section of Chapter 2, reviewed Chapters 21

2. The Deitel & Associates, Inc. College Internship Program offers a limited number of salaried posi-
tions to Boston-area college students majoring in Computer Science, Information Technology, Mar-
keting, English or Technical Writing. Students work at our corporate headquarters in Sudbury,
Massachusetts full-time in the summers and part-time during the academic year. Full-time positions
are available to college graduates. For more information about this competitive program, please con-
tact Abbey Deitel at deitel@deitel.com and check our Web site, www.deitel.com.

XXXIV Preface

and 22, 23, 25 and Appendix I and applied technical reviews to Chapters 2, 6, 8,
14, 15 and 29.

• Audrey Lee, a Senior at Wellesley College in Computer Science and Mathemat-
ics, co-authored Chapter 16, Java Message Service and contributed to Chapters 7,
13, 18 and Appendices F and I.

• Jeffrey Hamm, a Sophomore in Computer Science at Northeastern University, co-
authored Chapter 21, Appendix E and Appendix G, Java Native Interface (JNI).

• Varun Ganapathi, a Sophomore in Computer Science and Electrical Engineering at
Cornell University, co-authored Chapter 28, contributed to Chapter 12 and imple-
mented the i-mode and WML clients in the Chapter 18 case study.

• Sasha Devore, a graduate of Massachusetts Institute of Technology in Electrical
Engineering and Electrical Science, 2001, co-authored Chapter 4, Graphics Pro-
gramming with Java 2D and Java 3D.

• A. James O'Leary, a sophomore in Computer Science and Psychology at Rensse-
laer Polytechnic Institute, co-authored Chapter 7, Security.

• Susan Warren, a Junior in Computer Science at Brown University, worked on the
Instructor’s Manual and ancillary materials for Chapters 9 and 10.

• Eugene Izumo, a Sophomore in Computer Science at Brown University, worked
on the Instructor’s Manual and ancillary materials for Chapters 9 and 10.

• Vincent He, a Senior in Management and Computer Science at Boston College,
worked on the Instructor’s Manual for Chapter 8.

• Christina Carney, a Senior in Psychology and Business at Framingham State Col-
lege helped prepare the Preface and the bibliography for several chapters.

• Amy Gips, a Sophomore in Marketing and Finance at Boston College, co-authored
Appendix F, Java Community Process, and researched URLs for several chapters.
Amy also researched the quotes for the entire book and helped prepare the Preface.

• Fabian Morgan (a Summer 2000 intern from MIT) wrote the initial versions of the
examples for Chapters 5, 8, 14, 15 and the Enterprise Java case study in Chapters
17–20.

• Josh Gould (a Summer 2000 intern from Clark University) worked on Chapters 9
and 10.

We also would like to thank two business colleagues who contributed to the book.

• Carlos Valcarcel co-authored Chapters 26 and 27. Carlos is an independent OO/
Java/CORBA architect with EinTech, Inc., in New York. Carlos has been working
with Java since November 1995 and CORBA since mid-1996. His clients range
from investment banks and insurance companies to software vendors. Please feel
free to send questions and comments to Carlos at carlos@eintech.com. Car-
los would like to thank his wife Becky and daughter Lindley for their patience and
understanding during the writing of these two chapters.

 "If there is a bright center to the universe, the two of you are it.”

Preface XXXV

• Kelby Zorgdrager served as a technical consultant on Chapter 22, Jini, Chapter 23,
JavaSpaces, Chapter 24, JMX and Chapter 25, Jiro. He has been working with
Java since its beginning stages of JDK 1.0. Over the past 5 years, Kelby has
worked for Sun Microsystems as a Java Instructor where he developed course ma-
terials and presented to over 3500 students worldwide. During Kelby's last year at
Sun, he worked as a Software Engineer on the development of the Jiro Technolo-
gy. Kelby has spoken at internationally recognized industry conferences, includ-
ing JavaOne. Currently, Kelby is working as the Director of Architecture for
eCarCredit.com, where he uses Java to create cutting-edge technological so-
lutions for the Auto Finance Industry. In Kelby's spare time, he provides indepen-
dent consulting services, and enjoys spending time with his wife Beth, daughter
Aubreigh, and Winston the St. Bernard. Kelby can be reached at
advanced_java@zorgdrager.org.

We also would like to thank those people who helped us obtain commercial application
server software for the CD that accompanies this book and those people who helped us
complete the deployment instructions for our Deitel Bookstore case study on the three most
popular application servers. Our thanks to Katherine Barnhisel of BEA Systems; Sheila
Richardson, John Botsford, Jason McGee and Kevin Vaughan of IBM; and Holly Sharp,
Heather Sutherland, Sharada Achanta, Patrick Dorsey and Deepak Balakrishna of iPlanet.

We are fortunate to have been able to work on this project with the talented and dedi-
cated team of publishing professionals at Prentice Hall. We especially appreciate the
extraordinary efforts of our computer science editor, Petra Recter and her boss—our mentor
in publishing—Marcia Horton, Editor-in-Chief of Prentice-Hall’s Engineering and Com-
puter Science Division. Vince O’Brien and Camille Trentacoste did a marvelous job han-
dling production.

The Advanced Java 2 Platform Multimedia Cyber Classroom was developed in par-
allel with Advanced Java 2 Platform How to Program. We sincerely appreciate the “new
media” insight, savvy and technical expertise of our e-media editor-in-chief, mentor and
friend Mark Taub. He and our e-media editor, Karen McLean, did a remarkable job
bringing the Advanced Java 2 Platform Multimedia Cyber Classroom to publication under
a tight schedule. Michael Ruel did a marvelous job as Cyber Classroom project manager.

We owe special thanks to the creativity of Tamara Newnam Cavallo
(smart_art@earthlink.net) who did the art work for our programming tips icons
and the cover. She created the delightful bug creature who shares with you the book’s pro-
gramming tips. Barbara Deitel contributed the bugs’ names on the front cover.

We sincerely appreciate the efforts of our reviewers:

Jeff Allen (Sun Microsystems)
Dibyendu Baksi (Sun Microsystems)
Tim Boudreau (Sun Microsystems)
Paul Byrne (Sun Microsystems)
Onno Kluyt (Sun Microsystems)
Peter Korn (Sun Microsystems)
Petr Kozel (Sun Microsystems)
Jon Nyquist (Sun Microsystems)
Tomas Pavek (Sun Microsystems)

XXXVI Preface

Martin Ryzl (Sun Microsystems)
Davanum Srinivas (JNI-FAQ Manager, Sun Microsystems)
Brandon Taylor (Sun Microsystems)

Vicki Allan (Utah State University)
Javaid Aslam (Analyst/Application Developer, Tektronix)
Henry Balen (CORBA author)
Kathy Barshatzky (Javakathy.com)
Don Benish (Ben-Cam Intermedia)
Keith Bigelow (Lutris)
Darrin Bishop (Levi, Ray and Shoup, Inc.)
Ron Braithwaite (Nutriware)
Carl Burnham (Southpoint)
John Conley (DeVry Institute)
Charles Costarella (Antelope Valley College)
Jonathan Earl (Technical Training Consultants)
Jesse Glick (NetBeans)
Ken Gilmore (Amdocs, Inc.)
Jason Gordon (Verizon)
Christopher Green (Colorado Springs Technical Consultants)
Michele Guy (XOR)
Deborah Hooker (Mnemosyne Consulting)
Elizabeth Kallman (Los Alamos National Library)
Salvi Karuppaswamy (EDS)
Jodi Krochalis (Compuware)
Anthony Levensalor (Compuware)
Derek Lane (President of Gunslinger Software and Consulting, Inc.)
Rick Loek (Callidus Software)
Ashish Makhijani (Senior Analyst, Programmer)
Paul McLachlan (Compuware)
Randy Meyers (NetCom)
Paul Monday (Imation)
Steven Newton (Lead Programmer/Analyst, Standard Insurance Company)
Victor Peters (NextStepEducation)
Bryan Plaster (Valtech)
Brian Pontarelli (Consultant)
Srikanth Raju (Staff Engineer, Sun Microsystems)
Robin Rowe (MovieEditor.com)
Michael Schmaltz (Accenture)
Joshua Sharff (Joshua Sharff Associates)
Dan Shellman (Software Engineer)
Jon Siegel (OMG)
Uma Subbiah (Unigraphics)
Arun Taksali (jataayusoft)
Vadim Tkachenko (Sera Nova)
Kim Topley (Author of Core Java Foundation Classes and Core Swing: Advanced

Programming, both published by Prentice Hall)
John Varghese (University of Rochester)
Xinju Wang (Emerald Solutions)
Karen Wieslewski (Titan Insurance)
Jesse Wilkins (Metalinear Media)

Preface XXXVII

Under a tight time schedule, they scrutinized every aspect of the text and made countless
suggestions for improving the accuracy and completeness of the presentation.

We would sincerely appreciate your comments, criticisms, corrections, and sugges-
tions for improving the text. Please address all correspondence to:

deitel@deitel.com

We will respond immediately. Well, that’s it for now. Welcome to the exciting world
of Java programming. We hope you enjoy this look at leading-edge computer applications
development. Good luck!

Dr. Harvey M. Deitel
Paul J. Deitel
Sean E. Santry

About the Authors
Dr. Harvey M. Deitel, CEO of Deitel & Associates, Inc., has 40 years experience in the
computing field including extensive industry and academic experience. He is one of the
world’s leading computer science instructors and seminar presenters. Dr. Deitel earned
B.S. and M.S. degrees from the Massachusetts Institute of Technology and a Ph.D. from
Boston University. He has 20 years of college teaching experience including earning tenure
and serving as the Chairman of the Computer Science Department at Boston College before
founding Deitel & Associates, Inc. with his son Paul J. Deitel. He is author or co-author of
dozens of books and multimedia packages and is currently writing many more. With trans-
lations published in Japanese, Russian, Spanish, Italian, Basic Chinese, Traditional Chi-
nese, Korean, French, Polish and Portuguese, the Deitel's texts have earned international
recognition. Dr. Deitel has delivered professional seminars internationally to major corpo-
rations, government organizations and various branches of the military.

Paul J. Deitel, Chief Technical Officer of Deitel & Associates, Inc., is a graduate of
the Massachusetts Institute of Technology’s Sloan School of Management where he
studied Information Technology. Through Deitel & Associates, Inc. he has delivered
Internet and World Wide Web courses and programming language classes for industry cli-
ents including Sun Microsystems, EMC2, IBM, BEA Systems, Visa International, Progress
Software, Boeing, Fidelity, Hitachi, Cap Gemini, Compaq, Art Technology, White Sands
Missile Range, NASA at the Kennedy Space Center, the National Severe Storm Labora-
tory, Rogue Wave Software, Lucent Technologies, Computervision, Cambridge Tech-
nology Partners, Adra Systems, Entergy, CableData Systems, Banyan, Stratus, Concord
Communications and many other organizations. He has lectured on Java and C++ for the
Boston Chapter of the Association for Computing Machinery, and has taught satellite-
based courses through a cooperative venture of Deitel & Associates, Inc., Prentice Hall and
the Technology Education Network. He and his father, Dr. Harvey M. Deitel, are the
world’s best-selling Computer Science textbook authors.

Sean E. Santry, Director of Software Development with Deitel & Associates, Inc., is
a graduate of Boston College where he studied computer science and philosophy. At
Boston College he performed original research on the application of metaphysical systems
to object-oriented software design. Through Deitel & Associates, Inc. he has delivered
advanced and introductory courses for industry clients including Sun Microsystems,

XXXVIII Preface

EMC2, Dell, Compaq, Boeing and others. He has contributed to several Deitel publications,
including Java How to Program, Fourth Edition; XML How to Program; C++ How to Pro-
gram, Third Edition; C How to Program, Third Edition; e-Business and e-Commerce How
to Program and e-Business and e-Commerce for Managers. Before joining Deitel & Asso-
ciates, he developed e-business applications with a leading Boston-area consulting firm.

About Deitel & Associates, Inc.
Deitel & Associates, Inc. is an internationally recognized corporate training and content-
creation organization specializing in Internet/World Wide Web software technology, e-
business/e-commerce software technology and computer programming languages educa-
tion. Deitel & Associates, Inc. is a member of the World Wide Web Consortium. The com-
pany provides courses on Internet and World Wide Web programming, object technology
and major programming languages. The founders of Deitel & Associates, Inc. are Dr. Har-
vey M. Deitel and Paul J. Deitel. The company’s clients include many of the world’s largest
computer companies, government agencies, branches of the military and business organi-
zations. Through its publishing partnership with Prentice Hall, Deitel & Associates, Inc.
publishes leading-edge programming textbooks, professional books, interactive CD-ROM-
based multimedia Cyber Classrooms, Complete Training Courses and Web-based training
courses. Deitel & Associates, Inc. and the authors can be reached via e-mail at

deitel@deitel.com

To learn more about Deitel & Associates, Inc., its publications and its worldwide corporate
on-site curriculum, see the last few pages of this book and visit:

www.deitel.com

Individuals wishing to purchase Deitel books, Cyber Classrooms, Complete Training
Courses and Web-based training courses can do so through

www.deitel.com

Bulk orders by corporations and academic institutions should be placed directly with Pren-
tice Hall. See the last few pages of this book for worldwide ordering details.

The World Wide Web Consortium (W3C)
Deitel & Associates, Inc. is a member of the World Wide Web Consortium
(W3C). The W3C was founded in 1994 “to develop common protocols for
the evolution of the World Wide Web.” As a W3C member, we hold a seat
on the W3C Advisory Committee (our Advisory Committee representative

is our Chief Technology Officer, Paul Deitel). Advisory Committee members help provide
“strategic direction” to the W3C through meetings around the world. Member organizations
also help develop standards recommendations for Web technologies (such as HTML, XML
and many others) through participation in W3C activities and groups. Membership in the
W3C is intended for companies and large organizations. For information on becoming a
member of the W3C visit www.w3.org/Consortium/Prospectus/Joining.

1
Introduction

Objectives
• To understand the organization of the book.
• To understand various setup issues in deploying the

book’s examples.
• To understand the elements of design patterns and

how they are used throughout the book.
• To tour the book.
Before beginning, plan carefully.
Marcus Tullius Cicero

Things are always at their best in the beginning
Blaise Pascal

High thoughts must have high language.
Aristophanes

Our life is frittered away be detail … Simplify, simplify
Henry Thoreau

Look with favor upon a bold beginning.
Virgil

I think I’m beginning to learn something about it.
Auguste Renoir

2 Introduction Chapter 1

1.1 Introduction
Welcome to the world of advanced Java 2 Platform programming! We have worked hard
to create what we hope will be an informative, entertaining and challenging learning expe-
rience for you.

The Java technologies you will learn are intended for developers and software engi-
neers. Advanced Java 2 Platform How to Program presumes knowledge of either Java How
to Program: Fourth Edition (ISBN: 0-13-034151-7) or The Complete Java Training
Course, Fourth Edition (ISBN: 0-13-064931-7), which teach the fundamentals of Java and
object-oriented programming. Advanced Java 2 Platform How to Program presents many
advanced Java topics and introduces many new topics, using almost 40,000 lines of com-
plete, working code and numerous illustrations to demonstrate the concepts. We integrate
these technologies into substantial applications and enterprise systems that demonstrate
how the pieces fit together. We call this our Live-Code™ approach.

We introduce technologies from the three Java editions—Java 2 Standard Edition
(J2SE), Java 2 Enterprise Edition (J2EE) and Java 2 Micro Edition (J2ME). The beginning
chapters of this book demonstrate several high-end concepts from J2SE (Java How to Pro-
gram, Fourth Edition presents J2SE through the intermediate level). Advanced Java 2 Plat-
form How to Program highlights many advanced features of J2EE, providing enterprise
applications as examples. Finally, we introduce the exciting, leading-edge technologies of
J2ME and wireless applications programming.

Outline

1.1 Introduction
1.2 Architecture of the Book

1.2.1 Advanced GUI, Graphics and JavaBeans
1.2.2 Distributed Systems
1.2.3 Web Services
1.2.4 Enterprise Java
1.2.5 Enterprise Case Study
1.2.6 XML

1.3 Tour of the Book
1.4 Running Example Code
1.5 Design Patterns

1.5.1 History of Object-Oriented Design Patterns
1.5.2 Design Patterns Discussion
1.5.3 Concurrency Patterns
1.5.4 Architectural Patterns
1.5.5 Further Study on Design Patterns

Works Cited • Bibliography

Chapter 1 Introduction 3

Object-oriented programming and design patterns are essential for building applica-
tions using the many technologies introduced in this book. These tools encourage modu-
larity, allowing programmers to design classes and programs effectively. Design patterns
in particular have proven critical to producing the substantial programs we present in this
book.

Many of the book’s applications integrate the Extensible Markup Language (XML), the
standard for creating markup languages that describe structured data in a platform-indepen-
dent manner. Everything from common Web pages to complex order-tracking and busi-
ness-to-business (B2B) systems can use XML. XML’s data portability complements the
portability of programs built for the Java 2 Platform. XML’s capabilities for describing data
enable systems built with disparate technologies to share data without concerns for binary
compatibility, which is key to developing interoperable distributed systems in Java. We
assume knowledge of XML and Java’s XML APIs. However, Appendices A–D also pro-
vide an introduction to XML and Java’s XML APIs for those of you who are not yet
familiar with these topics. It is highly recommended that you read these appendices first, if
you are not already familiar with XML.

As you read this book, you may want to refer to our Web site www.deitel.com for
updates and additional information on the cutting-edge technologies you will be learning.

1.2 Architecture of the Book
There are several broad technology categories that comprise Advanced Java 2 Platform
How to Program. Many of these technologies are inter-related. We begin with a discussion
of these categories and an overview of the architecture of the book. The chapters can be
grouped into several advanced topics—advanced GUI and graphics, distributed systems,
Web services, Enterprise Java and XML technologies.

1.2.1 Advanced GUI, Graphics and JavaBeans

Chapters 2–6
Graphical user interfaces help users interact effectively and efficiently with applications.
When creating substantial client applications, it is important to create simple and attractive
user interfaces that enable users to work with your application in an intuitive and conve-
nient manner. Java’s Swing API provides graphical user interface components common to
many windowed applications and platforms. Java How to Program, Fourth Edition pro-
vides an introduction to GUI concepts with Swing. In Chapter 2 of Advanced Java 2 Plat-
form How to Program, we introduce several more advanced Swing components and use
them to create substantial applications such as a Web browser with a multiple-document
interface. We also introduce Java’s capabilities for building applications for global deploy-
ment (through internationalization) and for building accessible applications for people
with disabilities (using the Accessibility APIs).

A fundamental theme in Advanced Java 2 Platform How to Program is the importance
of design patterns for building object-oriented systems. We use several design patterns
when building the programming examples in this book. This chapter (Section 1.5) intro-
duces design patterns, discusses why they are important and lists by chapter those design
patterns we use in the book. Chapter 3 introduces the Model-View-Controller (MVC) archi-

4 Introduction Chapter 1

tecture, which is based on several design patterns. This widely applicable architecture sep-
arates the presentation of data (e.g., a bar-chart showing bank-account information) from
the underlying data representation (e.g., tables in a database) and the control logic for those
data (e.g., event handlers for buttons and text fields in a user interface). In Chapter 3, we
discuss the MVC architecture and its implementation in the Swing API. In later chapters,
we revisit the MVC architecture and use it to build substantial Enterprise Java applications.

In Chapter 4, we present Java’s support for graphics. Java provides the Java 2D™ API
for creating two-dimensional graphics and the Java 3D™ API for creating three-dimen-
sional, virtual worlds. We introduce and demonstrate these APIs and provide examples
including a three-dimensional game.

Chapter 5 contains a substantial case study—a Java 2D drawing application with
design patterns—in which we present a complex drawing program as a capstone for the
advanced GUI portion of the book. Using MVC and several other design patterns, and the
capabilities of Java’s Swing components and Java 2D, our drawing application provides
several types of shapes, various colors, gradients, image capabilities and more. Users can
choose multiple views for a drawing, including a zoomed detail view.

The JavaBeans component model enables developers to “componentize” their applica-
tions, making those applications more flexible and the application components more reus-
able. We introduce JavaBeans (often called simply beans) in the context of an animation
application in Chapter 6. JavaBeans allow programmers to create components for building
applications; programmers called component assemblers then can assemble these compo-
nents, along with existing components, to create applications, applets or even new beans.
In fact, most of the GUI components presented in earlier chapters are JavaBeans.

1.2.2 Distributed Systems

Chapters 13, 22–28
When creating substantial applications, often it is more efficient, or even necessary, for
concurrent tasks to be performed on different computers. Distributed systems technologies
enable applications to execute across several computers on a network. For a distributed sys-
tem to function correctly, application components executing on different computers
throughout a network must be able to communicate with one another. Advanced Java 2
Platform How to Program presents several technologies for building distributed systems.

Chapter 13 introduces Remote Method Invocation (RMI), which allows Java objects
located on different computers or executing in different virtual machines to interact as if
they were on the same computer or in the same virtual machine. Each object invokes
methods on the other objects and RMI handles the marshalling (i.e., collecting and pack-
aging) of arguments and return values passed between remote objects. We present several
RMI examples, including a distributed chat application.

Java also provides higher-level APIs for building distributed systems, including Jini and
JavaSpaces. Jini (Chapter 22) enables devices or software programs on a LAN to interoperate
without the need to install special device drivers, and with reduced administrative overhead.
Jini provides true “plug-and-play” support for devices—just plug a printer into a network and
that printer’s services become available to everyone on that network. JavaSpaces is a Jini ser-
vice that provides a simple but powerful API for building distributed systems. We demon-
strate JavaSpaces technology by building a distributed image processing application.

Chapter 1 Introduction 5

As networks grow in complexity and as companies depend on those networks more
heavily for conducting business, network management grows in importance. The Java
Management Extensions (JMX, Chapter 24) and Jiro (Chapter 25) are two complementary
technologies for building distributed network management applications in Java.

In Chapters 26–27, we introduce CORBA—the Common Object Request Broker Archi-
tecture. CORBA allows programs written in various languages, with varying implementa-
tions running in disparate locations, to communicate with each other as easily as if they
were in the same process address space. In these chapters, we introduce the fundamentals
of CORBA and compare CORBA with other distributed-systems technologies, such as
RMI. We also introduce RMI-IIOP, which enables RMI to interoperate with CORBA.

In Chapter 28, we discuss fundamental concepts of peer-to-peer (P2P) applications,
where each application performs both client and server functions, thus distributing pro-
cessing and information across many computers. We present two different implementations
of a P2P instant-messaging application. The first implementation uses Jini technology and
the second uses multicast sockets and RMI.

1.2.3 Web Services

Chapters 9–12, 29
The popularity of the Web and its importance for conducting business have exploded in re-
cent years. The field of Web services is concerned with building services that enable infor-
mation sharing, commerce and other interactions between businesses, between businesses
and consumers, etc., using standard Web protocols. Web services have come about through
an evolution of existing Web technologies, such as HTML forms, and enterprise technolo-
gies, such as messaging and Electronic Document Interchange (EDI) systems. Web servic-
es rely upon existing protocols and standards.

Chapter 9 introduces servlets. Servlets can generate documents dynamically (e.g.,
XHTML documents) to send to clients in response to requests for information. Chapter 10
introduces Java Server Pages (JSP), which also deliver dynamic content to clients. JSPs
dynamically serve Web content by using scriptlets and JavaBeans components in the con-
text of a document. These documents are translated into servlets by the JSP container—i.e.,
the server application responsible for handling requests for JSPs. Chapter 11 presents a case
study that serves as a capstone to the technology presented in Chapters 9 and 10. The case
study integrates JavaBeans, servlets, JSPs, XML and XSLT to create an online bookstore.

Several new technologies, such as the Wireless Application Protocol (WAP), Wireless
Markup Language (WML), i-mode and Java 2 Micro Edition (J2ME) have emerged for use
with wireless devices. Chapter 12 introduces these wireless technologies, and uses them to
construct a three-tier application that uses servlets and XML to deliver content to several
wireless devices.

Chapter 29 introduces Web services—applications that expose public interfaces usable
by other applications over the Web. Web services are accessible through HTTP and other
Web protocols, and communicate with XML-based messages. Directory services enable
clients to perform lookups to discover available Web services. The Simple Object Access
Protocol (SOAP) uses XML to provide communication in many Web services. SOAP
allows applications to make remote procedure calls to a Web service’s public methods. In
this chapter, we implement a weather service that provides local forecasts from the National
Weather Service, using SOAP.

6 Introduction Chapter 1

1.2.4 Enterprise Java

Chapters 7, 8, 14–16, 21
Java has become enormously popular for building enterprise applications. Sun originally
conceived of Java as a programming language for building small programs embedded in
Web pages; since its inception, Java has grown into an industrial strength, enterprise-devel-
opment language. At the 2001 JavaOne conference, Sun Microsystems announced that over
96% of enterprise application servers support the Java 2 Enterprise Edition.

Security is a primary concern for Java applications of all types, including enterprise
applications. In Chapter 7 we introduce the fundamentals of security, including cryptog-
raphy, digital signatures, authentication, authorization and public-key infrastructure. We
also introduce Java’s sandbox security model, the Java Cryptography Extensions (JCE),
the Java Secure Sockets Extensions (JSSE) and the Java Authentication and Authorization
Services (JAAS).

An integral part of powerful software applications is the storage, retrieval and display
of data. Substantial amounts of data are organized and stored in databases. Programmers
often need to interact with databases to update or retrieve information. Chapter 8 introduces
Java Database Connectivity (JDBC) for manipulating databases. We present examples that
interact with the Cloudscape database management system from Informix Software. Cloud-
scape is available for download at www.cloudscape.com.

Business logic forms the core functionality of an enterprise application. Business logic
is responsible for implementing the complex business rules that businesses require for
transaction and information processing. In Chapter 14, we introduce the Enterprise Java-
Bean (EJB) component model for building enterprise application business logic. In partic-
ular, we discuss session EJBs for business logic, and distributed transactions, which enable
EJBs to work across multiple databases and still maintain data integrity. In Chapter 15, we
present entity EJBs, which enable developers to build and object-based layer for accessing
information in long-term storage, such as a database.

Enterprise applications require extensive services and support at runtime for accessing
databases, enabling distributed transactions, maintaining performance, etc. Application
servers provide a rich runtime environment for enterprise application components. In
Chapter 21, we introduce the three most popular commercial application servers—BEA’s
WebLogic, IBM’s WebSphere and the iPlanet Application Server. We also provide com-
plete instructions for deploying an enterprise-application case study on BEA’s WebLogic
and IBM’s WebSphere.

1.2.5 Enterprise Case Study

Chapters 17–20
Chapters 17–20 present a capstone application for the Enterprise Java topics presented in
Advanced Java 2 Platform How to Program—an Enterprise Java case study that integrates
many Java technologies into a substantial 10,000 lines of code online bookstore applica-
tion. In this case study, we build the Deitel Bookstore enterprise application using Enter-
prise JavaBeans with container-managed persistence, servlets, RMI-IIOP, XML, XSLT,
XHTML, WML and cHTML. A fundamental feature of this example is that the bookstore
uses XML and XSLT to provide support for virtually any type of client, including standard

Chapter 1 Introduction 7

Web browsers and mobile devices, such as cell phones. The modular, extensible architec-
ture enables developers to implement support for additional client types simply by provid-
ing appropriate XSLT documents that translate XML documents into content appropriate
for those client types. The Deitel Bookstore case study also demonstrates the Model-View-
Controller (MVC) architecture in the context of an Enterprise Java application.

1.2.6 XML

Appendices A–D
Many examples throughout Advanced Java 2 Platform How to Program use XML. As a
platform-independent language for creating markup languages, XML integrates well with
Java applications. Unlike HTML, with which Web designers use to format information for
display, XML provides structure and semantics for application data, but it does not format
data. Developers can create XML grammars that define the structure for data and make
those data interoperable with other applications. The Java API for XML parsing (JAXP)
provides the Java 2 Platform with a common API for manipulating XML parsers and XML
data across platforms. The Document Object Model, Level 2 API (DOM) is backed by the
World Wide Web Consortium (W3C) as a standard API for building and manipulating
XML documents. Using this API, developers can leverage the cross-platform capabilities
of Java and XML to build powerful distributed systems.

We introduce the basics of XML in Appendix A, Creating XML Markup. Appendix B
introduces Document Type Definitions (DTDs) for defining standard document structures
against which XML parsers can validate XML documents. DTDs are crucial for building
XML documents that interoperate across many applications. Appendix C introduces the
Document Object Model (DOM) API and its use in the Java API for XML Processing
(JAXP). Appendix D introduces Extensible Stylesheet Language Transformations (XSLT),
which is an XML grammar for transforming XML documents into other XML documents.
We use XSLT in several examples to transform raw XML data into appropriate markup for
Web clients, such as standard Web browsers and cell phones.

1.3 Tour of the Book
In this section, we include walkthroughs of each chapter and outline the many Java tech-
nologies discussed in Advanced Java 2 Platform How to Program. There will be terms in
these sections that are unfamiliar to you—they will be defined in the chapters of the book.
Many chapters end with an Internet and World Wide Web Resources section that provides
a listing of Web sites you should visit to enhance your knowledge of the technologies dis-
cussed in that chapter. You may also want to visit the Web sites www.deitel.com and
www.prenhall.com/deitel to keep informed of the latest information, book errata
and additional teaching and learning resources.

Chapter 1—Introduction
This chapter overviews the technologies presented in Advanced Java 2 Platform How to
Program and introduces the architecture of the book—advanced GUI and graphics, distrib-
uted systems, Web services, Enterprise Java and XML technologies. We include a tour of
the book with a brief overview of each chapter. We provide installation, and execution in-

8 Introduction Chapter 1

structions for the examples in this book. We also discuss design patterns and how we use
them to architect our examples.

Chapter 2—Advanced Swing Graphical User Interface Components
Advanced Swing components enable developers to build functionally rich user interfaces.
The Swing graphical user interface components were introduced with the Java Foundation
Classes (JFC) as a downloadable extension to Java 1.1 and became standard in the Java 2
Platform. Swing provides a much richer set of GUI components than Java’s original Ab-
stract Windowing Toolkit (AWT), including advanced features such as a pluggable look-
and-feel, lightweight component rendering and an enriched component set. This chapter in-
troduces Swing components with which you can enrich your application GUIs.

Many of the examples in this chapter use the JEditorPane class extensively, which
is capable of rendering styled content, such as HTML pages. We also present the first of
our inline design patterns discussions. Swing Actions implement the Command design
pattern to build reusable user interface logic. We also introduce useful Swing components
such as JSplitPane, JTabbedPane and multiple-document-interface components for
organizing GUI elements. Swing provides mechanisms for building applications for mul-
tiple languages and countries, and for disabled users. Building internationalized applica-
tions ensures that applications will be ready for use around the world in many languages.
Accessibility ensures that users with disabilities will be able to use applications through
commonly available utilities, such as screen readers. We show how developers can use
Swing to build Java applications that are accessible to users in other countries and users
with disabilities.

Chapter 3—Model-View-Controller
Advanced Swing components, including the JTree and JTable components enable de-
velopers to build flexible, data-driven graphical user interfaces in Java. The Model-View-
Controller (MVC) architecture abstracts the GUI (the view) from the underlying data (the
model). A controller determines how the application handles user interactions, such as
mouse and keyboard events. The Swing components implement a variation of the MVC ar-
chitecture that combines the view and controller to form a delegate. For example, a JTree
is a delegate (i.e., combined view and controller) for its TreeModel (the model). The
TreeModel contains the raw data to be presented in, and modified by, the JTree. The
JTree provides a visual representation of the data and processes user interactions, such as
renaming nodes in the tree. The benefit of this architecture is that each component can
change without requiring changes in the other components. Furthermore, several delegates,
views and controllers may be associated with a single model. MVC has many uses in desk-
top applications, enterprise applications, simulations and other types of programs. In this
chapter, we discuss MVC in general and its variant, the delegate-model architecture. We
also introduce the Observer design pattern, which is one part of the MVC architecture. Af-
ter reading this chapter, you will be able to take advantage of advanced Swing components
that use the delegate-model architecture, such as JList, JTable and JTree.

Chapter 4—Graphics Programming with Java 2D™ and Java 3D™
The graphical features provided by the Java 2D API and the graphical user interface en-
hancements available in the Swing GUI components provide many tools for developing
rich graphical content by incorporating line art, text and imaging in a single graphics model.

Chapter 1 Introduction 9

Developers can use these tools to build custom graphics and images as well as visual rep-
resentations of data. The Java 2D API also provides advanced capabilities for text layout
and manipulation. Imaging technology in the Java 2D API allows for manipulation of fixed
resolution images, and includes filters for blurring and sharpening images as well as other
image-processing tools. The Java 2D API also provides support for delivering graphical
content to different devices by defining a logical coordinate system that is translated appro-
priately for a given output device such as a printer or monitor. We also introduce the Java
3D API for developing three-dimensional, virtual worlds in Java. The Java 3D API pro-
vides technologies for manipulating 3D objects. For example, the programmer can rotate,
scale and translate 3D objects. Other advanced features include applying textures to 3D ob-
jects using texture mapping and varying the lighting effects on 3D objects by changing the
colors and positions of light sources. We implement an application that allows the user to
manipulate a 3D object with the mouse. We then present a substantial 3D game in which
the user navigates a shape through a 3D scene full of “flying” obstacles. The goal of the
game is to move this shape to a specific target point without colliding with any of the mov-
ing obstacles.

Chapter 5—Case Study: Java 2D Drawing Application with Design Patterns
The case study in this chapter implements a substantial Java application that integrates the
many Java features and techniques presented in Chapters 2–4. We present a graphics appli-
cation case study that uses the GUI capabilities of Chapters 2 and 3 and the two-dimension-
al graphics capabilities of Chapter 4, as well as the flexible capabilities of XML. The case
study emphasizes the Model-View-Controller architecture (Chapter 3) to provide multiple
views of a single drawing such as a detail view and a complete view. A multiple document
interface (Chapter 2) allows users to modify multiple drawings in parallel. Swing Actions
(Chapter 2) provide reusable user-interaction logic for menu and toolbar functionality. The
case study also uses the Drag-and-Drop API to enable users to move shapes between draw-
ings and to drop JPEG images onto a drawing from the local file system. We use several
design patterns including the Factory Method, Adapter State and Template Method design
patterns.

Chapter 6—JavaBeans Component Model
In this chapter, we take a deeper look into developing Java components based on the Java-
Beans component architecture. JavaBeans (beans) allow developers to reap the benefits of
rapid application development in Java by assembling predefined software components to
create powerful applications and applets. Graphical programming and design environ-
ments (often called builder tools) that support beans provide programmers with tremendous
flexibility by allowing programmers to reuse existing components. A programmer can in-
tegrate these components to create applets, applications or even new beans for reuse by oth-
ers. JavaBeans and other component-based technologies have led to a new type of
programmer—the component assembler, who uses pre-built components to create richer
functionality. Component assemblers do not need to know the implementation details of
components, but they need to know what services the components provide. Component as-
semblers can make beans communicate through the beans’ well-defined services (i.e.,
methods), typically without writing any code (the builder tool often generates code, which
is sometimes hidden from the component assembler—depending on the tool). Indeed, a
component assembler can create complex applications simply by “connecting the dots.”

10 Introduction Chapter 1

This chapter shows you how to use existing beans and how to create new beans. After
studying this chapter, you will have a foundation in JavaBeans programming that will en-
able you to develop applications and applets rapidly using the more advanced features of
integrated development environments that support beans.

Chapter 7—Security
Security is a primary concern in the development of software systems. This chapter discuss-
es the issues associated with security and introduces Java technologies to that ensure suc-
cessful, secure transactions. Among these technologies is the Java Cryptography Extension
(JCE), which supports secret-key encryption and digital signatures. The Java Secure Sock-
et Extension (JSSE) supports the Secure Sockets Layer (SSL) protocol—one of the most
widely used tools for securing Internet communications. JSSE provides encryption, mes-
sage integrity checks and authentication of servers and clients. Java also provides the Java
Authentication and Authorization Service (JAAS) for authenticating users and granting per-
missions. The basis for Java security is the sandbox security model in which applets and
applications execute. The sandbox is a protected environment that prevents Java programs
from accessing protected resources. The program must be granted specific permissions to
access system resources, such as the files on a user’s computer and servers on the Internet.
Permissions may be granted through policy files.

Chapter 8—Java Database Connectivity (JDBC)
Access and storage of data are integral to creating powerful software applications. This
chapter discusses Java’s support of database manipulation. Today’s most popular database
systems are relational databases. We present examples using Cloudscape 3.6.4—a pure-
Java database management system from Informix Software. Cloudscape is available free
for download (for learning and development purposes) at www.cloudscape.com and
is on the CD that accompanies this book. Java programmers communicate with databases
and manipulate their data using the Java Database Connectivity (JDBC) API. A JDBC driv-
er implements the interface to a particular database. This chapter introduces JDBC and uses
it to connect to a Cloudscape database, then to manipulate its content. We use the Struc-
tured Query Language (SQL) to extract information from, and insert information into, a da-
tabase. We then use JDBC and SQL to create an address-book application that stores,
updates and deletes addresses. Several later chapters use the techniques shown in this chap-
ter to build data-driven Web and enterprise applications.

Chapter 9—Servlets
Servlets extend the functionality of servers—typically Web servers. Servlets are effective
for developing Web-based solutions that interact with databases on behalf of clients, dy-
namically generate custom content to be displayed by browsers, and maintain unique ses-
sion information for each client. Many developers feel that servlets are the right solution
for database-intensive applications that communicate with so-called thin clients—appli-
cations that require minimal client-side processing capability. Clients connect to the serv-
er using standard protocols, such as HyperText Transfer Protocol (HTTP), available on
most client platforms through Web browsers (and other applications). Thus, the applica-
tion logic can be written once and reside on the server for access by clients. The Java Serv-
let API allows developers to add functionality to Web servers for handling client requests.
Unlike the Common Gateway Interface (CGI), in which a separate process may be started

Chapter 1 Introduction 11

for each client request, servlets typically are threads in a single JVM process. Servlets also
are reusable across Web servers and across platforms. This chapter demonstrates the
Web’s request/response mechanism (primarily with HTTP get and post requests), ses-
sion-tracking capabilities, redirecting requests to other resources and interacting with da-
tabases through JDBC.

Chapter 10—Java Server Pages (JSP)
This chapter introduces an extension of servlet technology called Java Server Pages (JSP).
JSPs enable delivery of dynamically generated Web content and are used primarily for de-
veloping presentation logic in Enterprise Java applications. JSPs may contain Java code in
the form of scriptlets and may also use JavaBeans components. Custom tag libraries enable
Web-page designers unfamiliar with Java to enhance Web pages with powerful dynamic
content and processing capabilities created by Java developers. To increase performance,
each JSP is compiled into a Java Servlet—this normally occurs the first time each JSP is
requested by a client. Subsequent client requests are fulfilled by the compiled servlet.

Chapter 11—Case Study: Servlets and JSP Bookstore
This chapter is a capstone for our presentation of JSPs and servlets. Here, we implement a
bookstore Web application that integrates JDBC, XML, JSP and servlet technologies. We
discuss additional servlet features as they are encountered in the case study. This chapter
deploys the bookstore application on the J2EE 1.2.1 reference implementation application
server software. The J2EE 1.2.1 reference implementation includes the Apache Tomcat
JSP and servlet container. After reading this chapter, you will be able to implement a sub-
stantial distributed Web application with many components, and you will be able to deploy
that application on the J2EE 1.2.1 application server.

Chapter 12—Java-Based Wireless Applications Development and J2ME
One topic of particular interest in e-business and e-commerce applications is wireless Internet
technology. Wireless technology turns e-business into m-business, or mobile business. It al-
lows you to connect to the Internet any time from almost any place. You can use it to conduct
online transactions, make purchases, trade stocks and send e-mail. New technologies already
enable the wireless office, where computers, phones and other office equipment are net-
worked without cables. This chapter introduces some of the more popular wireless technolo-
gies, including WAP, i-mode and the Java 2 Platform Micro Edition™ (J2ME). J2ME brings
Java technology to embedded devices and consumer devices that have limited processing
power and memory. J2ME includes specialized APIs for many consumer devices, including
cellular phones, smart cards, Internet appliances and PDAs (personal digital assistants), such
as Palm™ and PocketPC. The K Virtual Machine—a trimmed-down version of the Java vir-
tual machine for consumer devices—provides the essential features for executing Java code
on these devices. Using servlets and XML, we present a case study of a three-tier application
that sends a game for several wireless device types.

Chapter 13—Remote Method Invocation (RMI)
This chapter introduces Remote Method Invocation (RMI)—a technology for building dis-
tributed systems in Java. Using RMI, Java objects can be located on computers across a net-
work, yet still interact as if they resided on a single computer. Java objects can perform
lookups to find remote objects on the network and invoke methods across a local area net-

12 Introduction Chapter 1

work (LAN) or even the Internet. RMI allows Java-object-to-Java-object distributed com-
munication. Once a Java object registers as being remotely accessible (i.e., it is a remote
object), a client can “look up” that Java object and obtain a reference that allows the client
to use that object remotely. The method call syntax is identical to the syntax for calling
methods of other objects in the same program. RMI handles the marshalling (i.e., collecting
and packaging) of data across the network; RMI also enables Java programs to transfer
complete Java objects using Java’s object-serialization mechanism. The programmer need
not be concerned with the details of transmitting data over the network.

Chapter 14—Session Enterprise JavaBeans (EJBs) and Distributed Transactions
Enterprise JavaBeans (EJBs) enable Java developers to build robust multi-tier applica-
tions. In a multi-tier application the responsibilities of providing services to a client can be
divided among multiple servers. A typical two-tier application consists of the client-tier
and the server-tier. A three-tier architecture often makes use of an application server as a
middle-tier between the client Web browser and a database server. Enterprise JavaBeans
provide a framework for building middle-tier business-logic implementations. Using RMI
and EJB Containers, Enterprise JavaBeans also allow for business logic to be distributed
across a network. We introduce Enterprise JavaBeans (EJBs), which provide a component
model for building business logic in enterprise Java applications. We discuss session EJBs
in their two forms: stateful and stateless. We demonstrate how to develop both stateless and
stateful session EJBs. We also introduce EJB support for distributed transactions, which
help to ensure data integrity across databases and across application servers. We show how
to build EJBs that take advantage of J2EE’s distributed transaction support to update data
across multiple databases atomically.

Chapter 15—Entity Enterprise JavaBeans (EJBs)
This chapter continues our discussion of Enterprise JavaBeans with an introduction to en-
tity Enterprise JavaBeans. Unlike session EJBs, entity EJBs store data in long-term stor-
age, such as in a database. Entity EJBs provide an object-oriented representation of
persistent data, such as data stored in an RDBMS or legacy application. Entity EJBs can be
used to build powerful and flexible data applications. There are two types of entity EJBs—
those that use bean-managed persistence and those that use container-managed persis-
tence. Entity EJBs that use bean-managed persistence implement code for storing and re-
trieving data from the persistent data sources they represent. For example, an entity EJB
that uses bean-managed persistence might use the JDBC API to store and retrieve data in a
relational database. Entity EJBs that use container-managed persistence rely on the EJB
container to implement the data-access calls to their persistent data sources. The developer
must supply information about the persistent data source when deploying the EJB. This
chapter provides a demonstration of both types of entity EJBs.

Chapter 16—Java Message Service (JMS)
The Java Message Service (JMS) provides an API for integrating enterprise Java applica-
tions with message-oriented middleware (MOM) systems. Message-oriented middleware
enables applications to communicate by sending messages to one another. Message-orient-
ed middleware is a popular technology for building loosely coupled applications. This
chapter introduces the two basic messaging system models—point-to-point and publish/
subscribe. We demonstrate Java’s interfaces for both of these models. We also provide an
introduction to message-driven EJBs—a new feature of J2EE version 1.3.

Chapter 1 Introduction 13

Chapter 17—E-Business Case Study: Architectural Overview
The technologies that comprise the Java 2 Enterprise Edition (J2EE) enable developers to
build robust, scalable enterprise applications. In this case study, we build an e-business ap-
plication using several features of J2EE, including servlets, Enterprise JavaBeans, XML
and XSLT. We also integrate wireless technology, including WAP/WML and i-mode/
cHTML. In this chapter, we present an overview of the Deitel Bookstore case study archi-
tecture, which uses the MVC design pattern in an enterprise application context. In the fol-
lowing chapters, we present the controller logic implementation with servlets (Chapter 18)
and the business logic and data abstraction implementation with EJBs (Chapters 19 and 20).

Chapter 18—E-Business Case Study: Presentation and Controller Logic
This chapter presents the implementation of the controller and presentation logic for the
Deitel Bookstore case study. Controller logic in an application is responsible for handling
user requests. The Java servlets in the Deitel Bookstore implement the controller logic for
the application. Every user request is handled by a servlet that takes the appropriate action,
based on the request type (e.g., a request to view the store catalog) and presents content to
the client. We use XSLT transformations to implement the presentation logic for the appli-
cation—the view in MVC. After invoking business-logic methods to process a client re-
quest, the servlets generate XML documents that contain content to be presented to the
client. These XML documents are not specific to any particular type of client (e.g., Web
browser, cell phone, etc.); they simply describe the data supplied by the business logic. An
XSL transformation is applied to the XML documents to present the information to the user
in the appropriate format. For example, an XSL transformation might generate an XHTML
document to present to a Web browser, or a WML document to present to a WAP browser.
XSL transformations are needed for each type of client the application supports. We could
enable the application to support other types of clients simply by implementing additional
sets of style sheets and editing a configuration file.

Chapter 19—E-Business Case Study: Business Logic Part I
In this chapter, we present the EJB business logic for the shopping-cart e-business model
and entity EJBs for maintaining product inventory of the Deitel Bookstore case study. The
primary goal of an on-line store application is to enable customers to purchase products.
EJB business logic implements the business rules that govern this process. We implement
the business logic for managing the set of products a customer wishes to purchase as a
ShoppingCart EJB. The ShoppingCart EJB enforces business rules that define how
products are added to the shopping cart, how shopping carts are created and how customers
complete their purchases. We also present entity EJBs that represent on-line store products
and orders. After reading this chapter, you will understand the use of EJBs in an e-business
application context, as well as more advanced EJB topics, such as custom primary-key
classes and many-to-many relationships.

Chapter 20—Enterprise Java Case Study: Business Logic Part 2
In this chapter we present the business logic for managing customers in our Deitel Book-
store case study. Maintaining information about the customers of an online store can make
purchases more convenient by storing billing and shipping information on the server. The
online store’s marketing department may also use gathered data for distribution of market-
ing materials and analyzing demographic information. We also present an entity EJB that

14 Introduction Chapter 1

generates unique IDs for the Customer, Order and Address EJBs. Instances of these EJBs
are created when new customer’s register and when customer’s place new orders. Relation-
al databases require unique primary keys to maintain referential integrity and perform que-
ries. We provide the SequenceFactory EJB to generate these unique IDs because not
all databases can generate these primary-key values automatically.

Chapter 21—Application Servers
This chapter introduces several commercial application servers—an application server is
software that integrates server-side logic components to allow communication between
components and tiers of a software architecture. Application servers also manage the per-
sistence, life cycles, security and various other services for logic components. We discuss
the concepts behind application servers and introduce three popular commercial applica-
tion servers, including BEA’s WebLogic, IBM’s WebSphere and the iPlanet Application
Server. We present a detailed walkthrough of deploying the Deitel Bookstore application
on BEA’s WebLogic and IBM’s WebSphere, both of which we include on the CD-ROM
that accompanies this book. As we went to publication, iPlanet was about to release a new
version of their application server. Please visit www.iplanet.com/ias_deitel to
download the latest version. We also will provide complete deployment instructions for the
Deitel Bookstore case study on iPlanet at our Web site, www.deitel.com.

Chapter 22—Jini
Jini Technology is an advanced set of network protocols, programming models and services
that enable true plug-and-play interactions between networked Jini-enabled devices and soft-
ware components. Jini technology allows distributed-systems developers to discover and use
Jini-enabled resources on the network. The heart and soul of Jini comes from its robust and
standardized network protocols, including multicast request protocol, multicast announce-
ment protocol and unicast discovery protocol. Jini-enabled resources—or services—use these
three protocols to locate and interact with other services. Beyond the network protocols, Jini
technology provides the infrastructure required to use the protocols. This infrastructure exists
as a set of classes that hide the low-level details of the protocols, allowing developers to focus
on functionality instead of implementation. This chapter overviews Jini technology, introduc-
es the network protocols that support Jini services and demonstrates Jini technology with a
substantial Jini application. Later in the book (Chapter 29, Peer-to-Peer Applications and JX-
TA) we use Jini to build and instant-messaging application.

Chapter 23—JavaSpaces
Objects that take part in distributed systems must be able to communicate with one another
and share information. The JavaSpaces service is a Jini service that implements a simple,
high-level architecture for building distributed systems using a distributed repository for
objects and three simple operations—read, write and take. JavaSpaces services support
transactions through the Jini transaction manager, and a notification mechanism that noti-
fies an object when an entry that matches a given template is written to the JavaSpaces ser-
vice. In the first half of this chapter, we present fundamental JavaSpaces technology
concepts and use simple examples to demonstrate operations, transactions and notifica-
tions. The case study at the end of this chapter uses JavaSpaces services to build an image-
processing application that distributes the work of applying filters to images across many
programs on separate computers.

Chapter 1 Introduction 15

Chapter 24—Java Management Extensions (JMX) (on CD)
This chapter introduces the Java Management Extensions (JMX), which were developed by
Sun and other network-management industry leaders to define a component framework for
building intelligent network-management applications. JMX defines a three-level manage-
ment architecture—instrumentation level, agent level and manager level. The instrumenta-
tion level allows clients to interact with objects (called managed resources) by exposing
public interfaces to those objects. The agent level contains JMX agents, which enable com-
munication between remote clients and managed resources. The manager level contains ap-
plications (clients) that access and interact with managed resources via the JMX agents.
JMX also provides support for existing management protocols—such as SNMP—so devel-
opers can integrate JMX solutions with existing management applications. This chapter
discusses JMX architecture and presents a case study that uses JMX capabilities to manage
a network printer simulator.

Chapter 25—Jiro (on CD)
This chapter serves as an introduction to Sun’s Jiro technology, a Java-based technology
that provides infrastructure for developing management solutions for distributed resources
on heterogeneous networks. Jiro is an implementation of the Federated Management Ar-
chitecture (FMA) specification, which defines a standard protocol for communication be-
tween heterogeneous managed resources (such as devices, systems, applications). Jiro
technology supports a three-tier architecture of management solutions. The top tier is the
client tier. The client locates and communicates with the management services. The middle
tier provides both static and dynamic management services. The bottom tier consists of the
heterogeneous managed resources. Jiro is a complementary technology to JMX and can be
used to build management solutions. The chapter concludes with a similar case study to the
JMX case study presented in Chapter 24.

Chapter 26—Common Object Request Broker Architecture (CORBA): Part 1 (on CD)
In this chapter, we introduce the Common Object Request Broker Architecture (CORBA).
CORBA is an industry-standard, high-level distributed object framework for building pow-
erful and flexible service-oriented applications. We investigate the essential details of
CORBA as defined in the Object Management Group (OMG) specifications. We discuss
the Object Request Broker (ORB)—the core of the CORBA infrastructure—and describe
how it makes CORBA a powerful distributed object framework. We discuss the Java In-
terface Definition Language (JavaIDL)—the official mapping of Java to CORBA. Live-
code examples demonstrate how to write CORBA-compliant distributed code using Java.
Both client-side and server-side JavaIDL are demonstrated. A feature of the chapter is a
case study that implements the Deitel Messenger application using CORBA.

Chapter 27—Common Object Request Broker Architecture (CORBA): Part 2 (on CD)
This chapter continues the discussion of CORBA. We introduce the Dynamic Invocation
Interface as well as CORBA services, including the Naming, Security, Object Transaction
and Persistent State services. The discussion continues with a comparison of RMI and
CORBA; we also introduce RMI-IIOP, used to integrate RMI with CORBA. Finally, we
present an alternate implementation of the Deitel Messenger application using RMI-IIOP.

16 Introduction Chapter 1

Chapter 28—Peer-to-Peer Applications and JXTA
Instant-messaging applications and document-sharing systems such as AOL Instant Mes-
senger™ and Gnutella have exploded in popularity, transforming the way users interact
with one another over networks. In a peer-to-peer (P2P) application, each node performs
both client and server functions. Such applications distribute processing responsibilities
and information to many computers, thus reclaiming otherwise wasted computing power
and storage space, and eliminating central points of failure. In this chapter, we introduce
the fundamental concepts of peer-to-peer applications. Using Jini (Chapter 22), RMI
(Chapter 13) and multicast sockets, we present two peer-to-peer application case studies of
instant-messaging systems. The first implementation uses Jini and RMI, and the second
uses multicast sockets and RMI. Finally, we introduce JXTA (short for “juxtapose”)—a
new open-source technology from Sun MicrosystemsTM that defines common protocols for
implementing peer-to-peer applications.

Chapter 29—Introduction to Web Services with SOAP
Interoperability, or seamless communication and interaction between different software
systems, is a primary goal of many businesses and organizations that rely heavily on com-
puters and electronic networks. This chapter introduces Web services with Simple Object
Access Protocol (SOAP), a protocol designed to address this issue. Web services can be
Web accessible applications, such as Web pages with dynamic content. More specifically,
Web services expose public interfaces for Web-based applications to use. SOAP is a pro-
tocol that uses XML to make remote-procedure calls over HTTP to provide interoperability
between disparate Web-based applications.

Appendix A—Creating Markup with XML (on CD)
XML is enormously important in Advanced Java 2 Platform How to Program and is inte-
grated into examples throughout the book. We have included a substantial introduction to
XML in Appendices A–D. Appendix A introduces the fundamentals of XML. We discuss
the properties of the XML character set, called Unicode—the standard aimed at providing
a flexible character set for all the world’s languages. (Appendix I introduces Unicode.) We
provide a brief overview of parsers—programs that process XML documents and their da-
ta. We also overview the requirements for a well-formed document (i.e., a document that is
syntactically correct). We discuss elements, which hold data in XML documents. Several
elements can have the same name (resulting in naming collisions); we introduce namespac-
es, which differentiate these elements to avoid these collisions.

Appendix B—XML Document Type Definitions (on CD)
A Document Type Definition (DTD) is a structural definition for an XML document, spec-
ifying the type, order, number and attributes of the elements in an XML document as well
as other information. By defining the structure of an XML document, a DTD reduces the
validation and error-checking work of the application using the document. We discuss
well-formed and valid documents (i.e., documents that conform to a DTD). This appendix
shows how to specify different element and attribute types, values and defaults that de-
scribe the structure of the XML document.

Chapter 1 Introduction 17

Appendix C—XML Document Object Model (DOM) (on CD)
The W3C Document Object Model (DOM) is an API for XML that is platform and lan-
guage independent. The DOM API provides a standard API (i.e., methods, objects, etc.) for
manipulating XML-document contents. The Java API for XML Processing (JAXP) pro-
vides DOM support for Java programs. XML documents are hierarchically structured, so
the DOM represents XML documents as tree structures. Using DOM, programs can modify
the content, structure and formatting of documents dynamically. This appendix examines
several important DOM capabilities, including the ability to retrieve data, insert data and
replace data. We also demonstrate how to create and traverse documents using the DOM.

Appendix D—XSLT: Extensible Stylesheet Language Transformations (on CD)
XSL was designed to manipulate the rich and sophisticated data contained in an XML doc-
ument. XSL has two major functions: formatting XML documents and transforming them
into other data formats such as XHTML, Rich Text Format (RTF), etc. In this appendix, we
discuss the subset of XSL called XSLT. XSLT uses XPath—a language of expressions for
accessing portions of XML documents—to match nodes for transforming an XML docu-
ment into another text document. We use JAXP—which includes XSLT support—in our
examples. An XSL stylesheet contains templates with which elements and attributes can be
matched. New elements and attributes can be created to facilitate a transformation.

Appendix E—Downloading and Installing J2EE (on CD)
We use the Java 2 Enterprise Edition extensively in this book to create substantial enter-
prise applications. This appendix provides instructions for downloading and installing
Sun’s reference implementation of the J2EE.

Appendix F—Java Community Process (JCP) (on CD)
This appendix provides an overview of the Java Community Processes (JCP), which Sun
Microsystems started in 1998. The JCP (www.jcp.org) allows Java individuals, organi-
zations and corporations to participate in the development of new technologies and APIs
for the Java Platform. Sun has integrated a number of technologies developed through the
Java Community Process into the Java 2 Platform Software Development Kits, including
the XML parsing specification.

Appendix G—Java Native Interface (JNI) (on CD)
The Java Native Interface (JNI) allows programmers to access pre-built applications and
libraries written in other languages. JNI allows programmers to work in Java without re-
quiring developers to rebuild existing libraries. JNI can be useful in time-critical applica-
tions—programmers may write a piece of the application in assembly code and link this
program with Java to provide better performance. In this appendix, we explain how to in-
tegrate Java with C++ libraries. Included are the most common uses and functions of JNI.
We show how Java programs can call native functions stored in compiled libraries, and
how native code can access Java objects, methods and member variables from C++. Under-
standing these examples requires familiarity with C++.

Appendix H—Career Opportunities (on CD)
The Internet presents valuable resources and services for job seekers and employers. Auto-
matic search features allow employees to scan the Web for open positions. Employers also

18 Introduction Chapter 1

can find job candidates using the Internet. This greatly reduces the amount of time spent pre-
paring and reviewing resumes, as well as travel expenses for distance recruiting and inter-
viewing. In this chapter, we explore career services on the Web from the perspectives of job
seekers and employers. We introduce comprehensive job sites, industry-specific sites (includ-
ing site geared specifically for Java and wireless programmers) and contracting opportunities.

Appendix I—Unicode (on CD)
This appendix introduces the Unicode Standard—a character-set-encoding standard that
facilitates the production and distribution of software. As computer systems evolved world-
wide, computer vendors developed numeric representations of character sets and special
symbols for the local languages in different countries. In some cases, different representa-
tions were developed for the same languages. Such disparate character sets made commu-
nication between computer systems difficult. XML and XML-derived languages, such as
WML, support the Unicode Standard, which defines a single character set with unique nu-
meric values for characters and special symbols for most of the world’s languages. In this
appendix, we discuss the Unicode Standard and the Unicode Consortium (www.uni-
code.org)—a non-profit organization that maintains the Unicode Standard.

1.4 Running Example Code
Many example programs in Advanced Java 2 Platform How to Program are quite complex
and require special software to execute. For example, Chapters 17–20 present a J2EE case
study that requires an application server, which provides a runtime environment and ser-
vices for an enterprise application. This case study also requires a database. For this and
many other programs we provide installation, deployment and execution instructions in the
text and at our Web site, www.deitel.com.

At the time of this writing, Java 2 Enterprise Edition reference implementation version
1.2.1 was the current, released version of J2EE, and version 1.3 was in beta release. We will
update installation instructions on our Web site when Sun releases version 1.3, which will
include several enhancements and updates. For example, version 1.3 implements the Java
messaging Service (JMS 1.0.2), J2EE Connector Technology and the Java API for XML
Processing (JAXP 1.1). Java Servlets (version 2.3) implement filters, a lightweight transfer
framework for requests and responses, monitoring application lifecyles and better interna-
tionalization support. The Java Server Pages implementation (version 1.2) features
improved runtime support for tag libraries and translation time JSP page validation. The 1.3
Enterprise JavaBeans implementation (EJB 2.0) supports message-driven enterprise beans,
interoperability between EJB containers and Container-Managed Persistence 2.0.

The examples in Advanced Java 2 Platform How to Program use Sun’s standard
naming convention for packages. We place each example in an appropriately named sub-
package of package com.deitel. For example, the WebBrowser example in Chapter
2, Advanced Swing Graphical User Interfaces, contains the package declaration

package com.deitel.advjhtp1.gui.webbrowser;

The acronym advjhtp1 in the package name indicates that this package is from Ad-
vanced Java 2 Platform How to Program, First Edition. This package structure requires
that you compile the examples into the corresponding directory structure.

Chapter 1 Introduction 19

Managing packages with Java’s command-line compiler and tools can be cumber-
some, so we recommend that readers use an integrated development environment to sim-
plify the development and execution of the examples and exercises in this book. We used
Sun’s Forte for Java Community Edition—which derives from the open-source NetBeans
IDE (www.netbeans.org)—to develop the code examples for this book. We have
included Forte for Java, Community Edition version 2.0 and the Java 2 Standard Edition
SDK version 1.3.1 on the CD that accompanies this book. For tutorials on how to install
Forte and how to develop applications with it, please refer to Forte’s help system or the doc-
umentation at:

www.sun.com/forte/ffj/documentation/index.html

Most Java development environments enable developers to load directory structures con-
taining Java packages directly into those environments. To facilitate working with the code
in this way, we have provided the complete directory structure, with source files in the ap-
propriate locations, on the CD-ROM that accompanies this book. We recommend that you
copy this directory structure from the CD-ROM that accompanies this book to your hard
drive. Once you have copied the directory structure, you can load the examples according
to the instructions for your development environment.

For readers who wish to use command-line tools for compiling and executing the pro-
grams in this book, we also provide separate folders with the examples for each chapter. To
compile and execute the examples from the command line, copy the folder for the particular
chapter or example onto your hard drive. For example, if you copy the ch02 directory to
the C:\examples directory on your hard drive, you can compile the WebBrowser
example using the commands

cd C:\examples\ch02\fig02_01
javac -d . WebBrowser.java WebBrowserPane.java WebToolBar.java

The command-line argument -d . specifies that the Java compiler should create the resulting
.class files in the appropriate directory structure. To execute the example, you must pro-
vide the fully qualified package name for the class that defines method main. For example,

java com.deitel.advjhtp1.gui.webbrowser.WebBrowser

1.5 Design Patterns
Most code examples presented in introductory Java books—such as our Java How to Pro-
gram, Fourth edition—contain fewer than 150 lines of code. These examples do not require
an extensive design process, because they use only a few classes and illustrate rudimentary
programming concepts. However, most of the programs in Advanced Java How to Pro-
gram, such as the Java 2D case study (Chapter 5), the three-tier Wireless application (Chap-
ter 12) and the Deitel Bookstore (Chapters 17–20), are much more complex. Such large
applications can require thousands of lines of code, contain many interactions among ob-
jects and involve many user interactions. For such software, it is important to employ prov-
en, effective design strategies. Systems such as automated-teller machines and air-traffic
control systems can contain millions, or even hundreds of millions, of lines of code. Effec-
tive design is absolutely crucial to the proper construction of such complex systems.

20 Introduction Chapter 1

Over the past decade, the software engineering industry has made significant progress
in the field of design patterns—proven architectures for constructing flexible and maintain-
able object-oriented software.1 Using design patterns can reduce the complexity of the
design process substantially. Well-designed object-oriented software allows designers to
reuse and integrate pre-existing components into future systems. Design patterns benefit
system developers by

• helping to construct reliable software using proven architectures and accumulated
industry expertise

• promoting design and code reuse in future systems

• helping to identify common mistakes and pitfalls that occur when building sys-
tems

• helping to design systems independently of the languages in which they will ulti-
mately be implemented

• establishing a common design vocabulary among developers

• shortening the design phase in a software-development process

The notion of using design patterns to construct software systems originated in the
field of architecture. Architects use established architectural design elements, such as
arches and columns, when designing buildings. Designing with arches and columns is a
proven strategy for constructing sound buildings—these elements may be viewed as archi-
tectural design patterns.

1.5.1 History of Object-Oriented Design Patterns

During 1991–1994, Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides—col-
lectively known as the “gang of four”—combined their expertise in writing the book De-
sign Patterns, Elements of Reusable Object-Oriented Software (Addison-Wesley: 1995).
This book showed that design patterns evolved naturally through years of industry experi-
ence. John Vlissides states that “the single most important activity in pattern writing is re-
flection.”2 This statement implies that to create patterns, developers must reflect on, and
document, their successes (and failures) when designing and implementing software sys-
tems. Developers use design patterns to capture and use this collective experience, which
ultimately helps them share similar successes with other developers.

The gang-of-four book described 23 design patterns, each providing a solution to a
common software design problem. The book groups design patterns into three categories—
creational, structural and behavioral design patterns. Figure 1.1 lists these design patterns.

Creational design patterns describe techniques for instantiating objects (or groups of
objects). These design patterns address issues related to the creation of objects, such as pre-
venting a system from creating more than one object of a class (e.g., Singleton) or deferring
until execution time the decision as to what types of objects are created (e.g., Factory
Method). For example, suppose we are designing a 3-D drawing program, in which the user
can create several 3-D geometric objects, such as cylinders, spheres, cubes, tetrahedrons,
etc. At compile time, the program does not know what types of shapes the user will choose
to add to the drawing. Based on user input at runtime, this program should determine the
class from which to instantiate an object. If the user chooses to create a cylinder, the pro-
gram should “know” to instantiate an object of class Cylinder and add it to the drawing.

Chapter 1 Introduction 21

When the user decides what geometric object to draw, the program should determine the
specific subclass from which to instantiate that object.

Structural design patterns describe common ways to organize classes and objects in a
system. Developers often find two problems with poor organization. The first is that classes
are assigned too many responsibilities. Such classes may damage information hiding and
violate encapsulation, because each class may have access to information that belongs in a
separate class. The second problem is that classes can overlap responsibilities. Burdening
a design with unnecessary classes wastes time for designers because they will spend hours
trying to extend or modify classes that should not even exist in the system. As we will see,
structural design patterns help developers avoid these problems.

Behavioral design patterns assign responsibilities to objects. These patterns also pro-
vide proven strategies to model how objects collaborate with one another and offer special
behaviors appropriate for a wide variety of applications. The Observer pattern is a classic
example of collaborations between objects and of assigning responsibilities to objects. For
example, GUI components use this patterns to communicate with their listeners, which
respond to user interactions. A listener observes state changes in a particular component by
registering to handle that component’s events. When the user interacts with the component,
that component notifies its listeners (also known as its observers) that the component’s
state has changed (e.g., a button has been pressed).

1.5.2 Design Patterns Discussion
Design patterns are implemented in code as sets of classes and objects. To use design pat-
terns effectively, designers must familiarize themselves with the most popular and effective
patterns used in the software-engineering industry. Throughout this book, we discuss fun-
damental object-oriented design patterns and architectures, as well as their importance in
constructing well-engineered software. We discuss each design pattern as it is used in a par-
ticular code example or case study. Figure 1.2 lists those design patterns that we used and
in which chapter we used them.

Creational Structural Behavioral

Abstract Factory
Builder
Factory Method
Prototype
Singleton

Adapter
Bridge
Composite
Decorator
Facade
Flyweight
Proxy

Chain-of-Responsibility
Command
Iterator
Interpreter
Observer
Mediator
Memento
State
Strategy
Template Method
Visitor

Fig. 1.1Fig. 1.1Fig. 1.1Fig. 1.1 Gang-of-four 23 design patterns.

22 Introduction Chapter 1

Note that Fig. 1.2 does not include every design pattern specified in Fig. 1.1. We used
only those patterns that were appropriate for solving specific design problems that we
encountered when writing the examples and case studies in this book. We now list other
popular “gang-of-four” design patterns that are useful in building software, even though we
did not use them when building the examples for this book.

Prototype
Sometimes, a system must make a copy of an object but will not know that object’s class
until run time. For example, consider a drawing program that contains several “shape”
classes (e.g., classes Line, Oval and Rectangle, etc.) that extend an abstract super-
class Shape. The user of this program should, at any time, be able to create, copy and paste
new instances of Shape classes to add those shapes to drawings. The Prototype design pat-
tern enables the user to accomplish this. This design pattern allows an object—called a pro-
totype—to clone itself. The prototype is similar to a rubber stamp that can be used to create
several identical “imprints.” In software, every prototype must belong to a class that imple-
ments a common interface that allows the prototype to clone itself. For example, the Java
API provides method clone from interface java.lang.Cloneable—any object
from a class that implements interface Cloneable uses method clone to make a copy
of itself. Specifically, method clone creates a copy of an object, then returns a reference
to that object. In the drawing program, if we designate class Line as the prototype, then it
should implement interface Cloneable. To create a new line in our drawing, we clone
the Line prototype—this prototype will return a reference to a different Line object. To
copy a preexisting line, we clone that Line object. Developers often use method clone
to prevent altering an object through its reference, because method clone returns a refer-
ence to an object’s copy, rather than return the object’s actual reference.

Bridge
Suppose we are designing a Button class for both the Windows and Macintosh operating
systems. Class Button contains specific button information such as an ActionListener
and a String label. We design classes Win32Button and MacButton to extend class
Button. Class Win32Button contains “look-and-feel” information on how to display a

Chapter
Creational design
patterns

Structural design
patterns

Behavioral design
patterns

2 Command

3 Observer

5 Factory Method
Singleton

Adapter State
Template Method

7 Decorator

12 Factory Method Command

24 Facade Chain-of-Responsibility

Fig. 1.2Fig. 1.2Fig. 1.2Fig. 1.2 Gang-of-four design patterns used in Advanced Java 2 Platform How to
Program.

Chapter 1 Introduction 23

Button on the Windows operating system, and class MacButton contains “look-and-feel”
information on how to display a Button on the Macintosh operating system.

Two problems arise from this approach. First, if we create new Button subclasses,
we must create corresponding Win32Button and MacButton subclasses. For example,
if we create class ImageButton (a Button with an overlapping Image) that extends
class Button, we must create additional subclasses Win32ImageButton and Mac-
ImageButton. In fact, we must create Button subclasses for every operating system
we wish to support, which increases development time. The second problem is that when a
new operating system enters the market, we must create additional Button subclasses
specific to that operating system.

The Bridge design pattern avoids these problems by separating an abstraction (e.g., a
Button) and its implementations (e.g., Win32Button, MacButton, etc.) into separate
class hierarchies. For example, the Java AWT classes use the Bridge design pattern to
enable designers to create AWT Button subclasses without needing to create corre-
sponding subclasses specific to each operating system. Each AWT Button maintains a
reference to a ButtonPeer, which is the superclass for platform-specific implementa-
tions, such as Win32ButtonPeer, MacButtonPeer, etc. When a programmer creates
a Button object, class Button determines which platform-specific ButtonPeer
object to create and stores a reference to that ButtonPeer object—this reference is the
“bridge” in the Bridge design pattern. When the programmer invokes methods on the
Button object, the Button object invokes the appropriate method on its ButtonPeer
object to fulfill the request. If a designer creates Button subclass ImageButton, the
designer does not need to create a corresponding Win32ImageButton or MacImage-
Button class. Class ImageButton “is a” Button, so when a programmer invokes an
ImageButton method—such as setImage—on an ImageButton object, the
Button superclass translates that method invocation into an appropriate ButtonPeer
method invocation—such as drawImage.

Portability Tip 1.1
Designers often use the Bridge design pattern to enhance the platform independence of their
systems. We can design Button subclasses without worrying about how an operating sys-
tem implements each subclass. 1.1

Iterator
Designers use data structures such as arrays, linked lists and hash tables to organize data in
a program. The Iterator design pattern allows objects to access individual objects from data
structures without knowing that data structure’s implementation or how it stores object ref-
erences. Instructions for traversing the data structure and accessing its elements are stored
in a separate object called an iterator. Each data structure has an associated iterator imple-
mentation capable of traversing that data structure. Other objects can use this iterator,
which implements a standard interface, regardless of the underlying data structure or im-
plementation. Interface Iterator from package java.util uses the Iterator design
pattern. Consider a system that contains Sets, Vectors and Lists. The algorithm for re-
trieving data from each structure differs among the classes. With the Iterator design pattern,
each class contains a reference to an Iterator that stores traversal information specific
to each data structure. For objects of these classes, we invoke an object’s iterator meth-
od to obtain a reference to an Iterator for that object. We invoke method next of the

24 Introduction Chapter 1

Iterator to receive the next element in the structure without having to concern ourselves
with the details of traversal implementation.

Memento
Consider a drawing program that allows a user to draw graphics. Occasionally the user may
position a graphic improperly in the drawing area. The program can offer an “undo” feature
that allows the user to unwind such errors. Specifically, the program would restore the
drawing area’s original state (before the user placed the graphic). More sophisticated draw-
ing programs offer a history, which stores several states in a list, so the user can restore the
program to any state in the history.The Memento design pattern allows an object to save its
state, so that—if necessary—the user can restore the object to its former state.

The Memento design pattern requires three types of objects. The originator object
occupies some state—the set of attribute values at a specific time in program execution. In
our drawing-program example, the drawing area is the originator, because it occupies sev-
eral states. The drawing area’s initial state is that the area contains no elements. The
memento object stores a copy of all attributes associated with the originator’s state. The
memento is stored as the first item in the history list, which acts as the caretaker object—
the object that contains references to all memento objects associated with the originator.

 Now, suppose the user draws a circle in the drawing area. The area now occupies a
different state—the area contains a circle object centered at specified x-y coordinates. The
drawing area then uses another memento to store this information. This memento is stored
as the second item in the history list. The history list displays all mementos on screen, so
the user can select which state to restore. Suppose the user wishes to remove the circle—if
the user selects the first memento from the list, the drawing area uses the first memento to
restore itself to a blank area.

Strategy
Package java.awt offers several LayoutManagers, such classes FlowLayout,
BorderLayout and GridLayout, with which developers build graphical user interfac-
es. Each LayoutManager arranges GUI components in a Container object—howev-
er, each LayoutManager implementation uses a different algorithm to arrange these
components. A FlowLayout arranges components in a left-to-right sequence, a Bor-
derLayout places components into five distinct regions and a GridLayout arranges
components in row-column format. Interface LayoutManager plays the role of the strat-
egy in the Strategy design pattern.

The Strategy design pattern allows developers to encapsulate a set of algorithms—called
a strategy—that each have the same function (e.g., arrange GUI components) but different
implementations. For example, interface LayoutManager (the strategy) is the set of algo-
rithms that arranges GUI components. Each concrete LayoutManager subclass (e.g., the
FlowLayout, BorderLayout and GridLayout objects) implements method
addLayoutComponent to provide a specific component-arrangement algorithm.

1.5.3 Concurrency Patterns

Many additional design patterns have been created since the publication of the gang-of-four
book, which introduced patterns involving object-oriented systems. Some of these new pat-
terns involve specific types of object-oriented systems, such as concurrent, distributed or
parallel systems. Multithreaded programming languages such as Java allow designers to

Chapter 1 Introduction 25

specify concurrent activities—that is, activities that operate in parallel with one another.
Improper design of concurrent systems can introduce concurrency problems. For example,
two objects attempting to alter shared data at the same time could corrupt that data. In ad-
dition, if two objects wait for one another to finish tasks, and if neither can complete their
task, these objects could potentially wait forever—a situation called deadlock. Using Java,
Doug Lea and Mark Grand created a set of concurrency patterns for multithreaded design
architectures to prevent various problems associated with multithreading. We provide a
partial list of these design patterns:

• The Single-Threaded Execution design pattern prevents several threads from in-
voking the same method of another object concurrently.3 In Java, developers can
use the synchronized keyword to apply this pattern.

• The Balking design pattern ensures that a method will balk—that is, return with-
out performing any actions—if an object occupies a state that cannot execute that
method.4 A variation of this pattern is that the method throws an exception de-
scribing why that method is unable to execute—for example, a method throwing
an exception when accessing a data structure that does not exist.

• The Read/Write Lock design pattern allows multiple threads to obtain concurrent
read access on an object but prevents multiple threads from obtaining concurrent
write access on that object. Only one thread at a time may obtain write access on
an object—when that thread obtains write access, the object is locked to all other
threads.5

• The Two-Phase Termination design pattern ensures that a thread frees resourc-
es—such as other spawned threads—in memory (phase one) before terminating
(phase two).6 In Java, a Thread object can use this pattern in method run. For
instance, method run can contain an infinite loop that is terminated by some state
change—upon termination, method run can invoke a private method respon-
sible for stopping any other spawned threads (phase one). The thread then termi-
nates after method run terminates (phase two). In Chapter 13, the
ChatServerAdministrator and ChatServer classes of the RMI Deitel
Messenger application use this design pattern, which we describe in greater detail.

1.5.4 Architectural Patterns
Design patterns allow developers to design specific parts of systems, such as abstracting
object instantiations, aggregating classes into larger structures or assigning responsibilities
to objects. Architectural patterns, on the other hand, provide developers with proven strat-
egies for designing subsystems and specifying how they interact with each other.7

For example, the Model-View-Controller architectural pattern separates application
data (contained in the model) from graphical presentation components (the view) and input-
processing logic (the controller). In the design for a simple text editor, the user inputs text
from the keyboard and formats this text using the mouse. The program stores this text and
format information into a series of data structures, then displays this information on screen
for the user to read what has been inputted. The model, which contains the application data,
might contain only the characters that make up the document. When a user provides some
input, the controller modifies the model’s data with the given input. When the model

26 Introduction Chapter 1

changes, it notifies the view of the change so the view can update its presentation with the
changed data—e.g., the view might display characters using a particular font, with a par-
ticular size. Chapter 3 discusses Model-View-Controller architecture in detail, and our Java
2D drawing application in Chapter 5 and the Enterprise Java case study in Chapters 17–20
use this architecture extensively.

 The Layers architectural pattern divides functionality into separate sets of system
responsibilities called layers. For example, three-tier applications, in which each tier con-
tains a unique system component, is an example of the Layers architectural pattern. This
type of application contains three components that assume a unique responsibility. The
information tier (also called the “bottom tier”) maintains data for the application, typically
storing the data in a database. The client tier (also called the “top tier”) is the application’s
user interface, such as a standard Web browser. The middle tier acts as an intermediary
between the information tier and the client tier by processing client-tier requests, reading
data from and writing data to the database. In this book, the three-tier architectures in the
Deitel bookstore application (Chapter 11), the wireless application case study (Chapter 12)
and the Enterprise Java case study (Chapters 17–20) all use the Layers architectural pattern.
We discuss the nuances of each architecture in its respective chapter.

Using architectural patterns promotes extensibility when designing systems, because
designers can modify a component without having to modify another. For example, a text
editor that uses the Model-View-Controller architectural pattern is extensible; designers
can modify the view that displays the document outline but would not have to modify the
model, other views or controllers. A system designed with the Layers architectural pattern
is also extensible; designers can modify the information tier to accommodate a particular
database product, but they would not have to modify either the client tier or the middle tier
extensively.

1.5.5 Further Study on Design Patterns
We hope that you will pursue further study of design patterns. We recommend that you visit
the URLs and read the books we mention below as you study patterns throughout this book.
We especially encourage you to read the gang-of-four book.

Design Patterns

www.hillside.net/patterns
This page has links to information on design patterns and languages.

www.hillside.net/patterns/books/
This site lists books on design patterns.

www.netobjectives.com/design.htm
This site overviews design patterns and motivates their importance.

umbc7.umbc.edu/~tarr/dp/dp.html
This site links to design patterns Web sites, tutorials and papers.

www.links2go.com/topic/Design_Patterns
This site links to sites and information on design patterns.

www.c2.com/ppr/
This site discusses recent advances in design patterns and ideas for future projects.

Chapter 1 Introduction 27

Design Patterns in Java

www.research.umbc.edu/~tarr/cs491/fall00/cs491.html
This site is for a Java design patterns course at the University of Maryland. It contains numerous ex-
amples of how to apply design patterns in Java.

www.enteract.com/~bradapp/javapats.html
This site discusses Java design patterns and presents design patterns in distributed computing.

www.meurrens.org/ip-Links/java/designPatterns/
This site displays numerous links to resources and information on Java design patterns.

Architectural Patterns

compsci.about.com/science/compsci/library/weekly/aa030600a.htm
This site provides an overview the Model-View-Controller architecture.

www.javaworld.com/javaworld/jw-04-1998/jw-04-howto.html
This site contains an article discussing how Swing components use Model-View-Controller architec-
ture.

www.ootips.org/mvc-pattern.html
This site provides information and tips on using MVC.

www.ftech.co.uk/~honeyg/articles/pda.htm
This site includes an article on the importance of architectural patterns in software.

www.tml.hut.fi/Opinnot/Tik-109.450/1998/niska/sld001.htm
This site provides information about architectural patterns, design patterns and idioms (patterns tar-
geting a specific language).

WORKS CITED
1. E. Gamma, et al, Design Patterns; Elements of Reusable Object-Oriented Software (Boston,
MA: Addison-Wesley, 1995) 1–31.

2. J. Vlissides, Pattern Hatching; Design Patterns Applied (Boston, MA: Addison-Wesley, 1998)
146.

3. M. Grand, Patterns in Java; A Catalog of Reusable Design Patterns Illustrated with UML (New
Yor, NY: John Wiley and Sons, 1998) 399–407.

4. M. Grand, 417–420.

5. M. Grand, 431–439.

6. M. Grand, 449–453.

7. R. Hartman. “Building on Patterns.” Application Development Trends May 2001: 19–26.

BIBLIOGRAPHY
Carey, J., B. Carlson and T. Graser. San FranciscoTM Design Patterns: Blueprint for Building Soft-

ware. Boston, MA: Addison-Wesley, 2000.

Coad, P., M. Mayfield and Jon Kern. Java Design; Building Better Apps and Applets, Second Edi-
tion. Englewood Cliffs, NJ: Yourdon Press, 1999.

Cooper, J. Java Design Patterns; A Tutorial. Boston, MA: Addition-Wesley, 2000.

Lea, D., Concurrent Programing in Java, Second Edition: Design Principles and Patterns. Boston,
MA: Addison-Wesley, 1999.

28 Introduction Chapter 1

Gamma, R., R. Helm, R. Johnson and J. Vlissides. Design Patterns; Elements of Reusable Object-
Oriented Software. Boston, MA: Addison-Wesley, 1995.

Vlissides, J. “Composite a la Java, Part 1.” Java Report, 6: no. 6 (2001): 69–70, 72.

Vlissides, J. “Pattern Hatching; GoF a la Java.” Java Report Online (March 2001) <www.javare-
port.com/html/from_pages/article.asp?id=355>.

2
Advanced Swing

Graphical User Interface
Components

Objectives
• To be able to use Swing components to enhance

application GUIs.
• To be able to use Swing text components to view

styled documents.
• To understand the Command design pattern and its

implementation in Swing.
• To be able to develop applications with multiple-

document interfaces.
• To understand how to implement drag-and-drop

support.
• To learn how to prepare internationalized

applications.
• To understand how to use Swing to create accessible

applications for people with disabilities.
The best investment is in the tools of one’s own trade.
Benjamin Franklin

Every action must be due to one or other of seven causes:
chance, nature, compulsion, habit, reasoning, anger or
appetite.
Aristotle

Happiness, like an old friend, is inclined to drop in
unexpectedly—when you are working hard on something else.
Ray Inman

30 Advanced Swing Graphical User Interface Components Chapter 2

2.1 Introduction
In this chapter, we introduce Swing components that enable developers to build function-
ally rich user interfaces. The Swing graphical user interface components were introduced
with the Java Foundation Classes (JFC) as a downloadable extension to the Java 1.1 Plat-
form, then became a standard extension in the Java 2 Platform. Swing provides a more
complete set of GUI components than the Abstract Windowing Toolkit (AWT), including
advanced features such as a pluggable look and feel, lightweight component rendering and
drag-and-drop capabilities.

We introduce the JEditorPane class for rendering styled content, such as HTML
pages, and build a simple Web browser. We continue our discussion of design patterns by
introducing Swing Actions, which implement the Command design pattern. Swing
Actions enable developers to build reusable, user-interface logic components. We also
introduce JSplitPane, JTabbedPane and multiple-document-interface components
for organizing GUI elements.

Java provides mechanisms for building applications for multiple languages and coun-
tries, and for disabled users. Building internationalized applications ensures that applica-
tions will be ready for use around the world in many languages and countries. Accessibility
ensures that disabled users will be able to use applications through commonly available
utilities, such as screen readers. We show how Swing components enable Java developers
to build applications that are accessible to users with disabilities.

2.2 WebBrowser Using JEditorPane and JToolBar
In this section, we use Swing components to build a simple Web browser. We introduce
Swing’s advanced text-rendering capabilities and containers for grouping commonly used
interface elements for convenient user access.

Outline

2.1 Introduction
2.2 WebBrowser Using JEditorPane and JToolBar

2.2.1 Swing Text Components and HTML Rendering
2.2.2 Swing Toolbars

2.3 Swing Actions
2.4 JSplitPane and JTabbedPane
2.5 Multiple-Document Interfaces
2.6 Drag and Drop
2.7 Internationalization
2.8 Accessibility
2.9 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Chapter 2 Advanced Swing Graphical User Interface Components 31

2.2.1 Swing Text Components and HTML Rendering
Many applications present text to the user for viewing and editing. This text may consist of
plain, unformatted characters, or it may consist of richly styled characters that use multiple
fonts and extensive formatting. Swing provides three basic types of text components for
presenting and editing text. Class JTextComponent is the base class for all Swing text
components, including JTextField, JTextArea and JEditorPane.

JTextField is a single-line text component suitable for obtaining simple user input
or displaying information such as form field values, calculation results and so on. JPass-
wordField is a subclass of JTextField suitable for obtaining user passwords. These
components do not perform any special text styling. Rather, they present all text in a single
font and color. JTextArea, like JTextField and JPasswordField, also does not
style its text. However, JTextArea does provide a larger visible area and supports larger
plain-text documents.

JEditorPane provides enhanced text-rendering capabilities. JEditorPane sup-
ports styled documents that include formatting, font and color information. JEditor-
Pane is capable of rendering HTML documents as well as Rich Text Format (RTF)
documents. We use class JEditorPane to render HTML pages for a simple Web-
browser application. JTextPane is a JEditorPane subclass that renders only styled
documents, and not plain text. JTextPane provides developers with fine-grained control
over the style of each character and paragraph in the rendered document.

WebBrowserPane (Fig. 2.1) extends class JEditorPane to create a Web-
browsing component that maintains a history of visited URLs. Line 16 creates a List for
keeping track of visited URLs. Line 23 invokes method setEditable of class JEdi-
torPane to disable text editing in the WebBrowserPane. JEditorPane enables
hyperlinks in HTML documents only if the JEditorPane is not editable.

1 // WebBrowserPane.java
2 // WebBrowserPane is a simple Web-browsing component that
3 // extends JEditorPane and maintains a history of visited URLs.
4 package com.deitel.advjhtp1.gui.webbrowser;
5
6 // Java core packages
7 import java.util.*;
8 import java.net.*;
9 import java.io.*;

10
11 // Java extension packages
12 import javax.swing.*;
13
14 public class WebBrowserPane extends JEditorPane {
15
16 private List history = new ArrayList();
17 private int historyIndex;

Fig. 2.1Fig. 2.1Fig. 2.1Fig. 2.1 WebBrowserPane subclass of JEditorPane for viewing Web sites
and maintaining URL history (part 1 of 3).

32 Advanced Swing Graphical User Interface Components Chapter 2

18
19 // WebBrowserPane constructor
20 public WebBrowserPane()
21 {
22 // disable editing to enable hyperlinks
23 setEditable(false);
24 }
25
26 // display given URL and add it to history
27 public void goToURL(URL url)
28 {
29 displayPage(url);
30 history.add(url);
31 historyIndex = history.size() - 1;
32 }
33
34 // display next history URL in editorPane
35 public URL forward()
36 {
37 historyIndex++;
38
39 // do not go past end of history
40 if (historyIndex >= history.size())
41 historyIndex = history.size() - 1;
42
43 URL url = (URL) history.get(historyIndex);
44 displayPage(url);
45
46 return url;
47 }
48
49 // display previous history URL in editorPane
50 public URL back()
51 {
52 historyIndex--;
53
54 // do not go past beginning of history
55 if (historyIndex < 0)
56 historyIndex = 0;
57
58 // display previous URL
59 URL url = (URL) history.get(historyIndex);
60 displayPage(url);
61
62 return url;
63 }
64
65 // display given URL in JEditorPane
66 private void displayPage(URL pageURL)
67 {

Fig. 2.1Fig. 2.1Fig. 2.1Fig. 2.1 WebBrowserPane subclass of JEditorPane for viewing Web sites
and maintaining URL history (part 2 of 3).

Chapter 2 Advanced Swing Graphical User Interface Components 33

Method goToURL (lines 27–32) navigates the WebBrowserPane to the given URL.
Line 29 invokes method displayPage of class WebBrowserPane to display the given
URL. Line 30 invokes method add of interface List to add the URL to the browser his-
tory. Line 31 updates the historyIndex to ensure that methods back and forward
navigate to the appropriate URL.

Method forward (lines 35–47) navigates the WebBrowserPane to the next page
in the URL history. Line 37 increments historyIndex, and lines 43–44 retrieve the
URL from the history List and display the URL in WebBrowserPane. If the his-
toryIndex is past the last page in the history, line 41 sets historyIndex to the
last URL in history.

Method back (lines 50–63) navigates WebBrowserPane to the previous page in the
URL history. Line 52 decrements historyIndex, and lines 55–56 ensure that histo-
ryIndex does not fall below 0. Lines 59–60 retrieve the URL and display it in the Web-
BrowserPane.

Method displayPage takes as an argument a URL to display in the WebBrowser-
Pane. Line 70 invokes method setPage of class JEditorPane to display the page that
the URL references. Lines 74–76 catch an IOException if there is an error loading the
page from the given URL.

2.2.2 Swing Toolbars

Toolbars are GUI containers typically located below an application’s menus. Toolbars con-
tain buttons and other GUI components for commonly used features, such as cut, copy and
paste, or navigation buttons for a Web browser. Figure 2.2 shows toolbars in Internet Ex-
plorer and Mozilla.

Class javax.swing.JToolBar enables developers to add toolbars to Swing user
interfaces. JToolBar also enables users to modify the appearance of the JToolBar in a
running application. For example, the user can drag the JToolBar from the top of a
window and "dock" the JToolBar on the side or bottom of the window. Users also can
drag the JToolBar away from the application window (Fig. 2.4) to create a floating
JToolBar (i.e., a JToolBar displayed in its own window). Developers can set
JToolBar properties that enable or disable dragging and floating.

68 // display URL
69 try {
70 setPage(pageURL);
71 }
72
73 // handle exception reading from URL
74 catch (IOException ioException) {
75 ioException.printStackTrace();
76 }
77 }
78 }

Fig. 2.1Fig. 2.1Fig. 2.1Fig. 2.1 WebBrowserPane subclass of JEditorPane for viewing Web sites
and maintaining URL history (part 3 of 3).

34 Advanced Swing Graphical User Interface Components Chapter 2

WebToolBar (Fig. 2.3) extends class JToolBar to provide commonly used navi-
gation components for a WebBrowserPane. WebToolBar provides backButton
(line 20) for navigating to the previous page, forwardButton (line 21) for navigating to
the next page and urlTextField to allow the user to enter a URL (line 22).

The WebToolBar constructor (lines 25–96) takes as an argument a WebBrowser-
Pane for displaying Web pages. Lines 34–53 create urlTextField and its associated
ActionListener. When a user types a URL and hits the Enter key, line 44 invokes
method goToURL of class WebBrowserPane to display the user-entered URL.

Lines 56–57 create backButton, which allows the user to navigate to the previously
viewed Web site. Recall that class WebBrowserPane maintains a history of visited
URLs. When the user selects backButton, line 65 invokes method back of class Web-

Fig. 2.2Fig. 2.2Fig. 2.2Fig. 2.2 Toolbars for navigating the Web in Internet Explorer and Mozilla.

Toolbar
buttons

Toolbar

Chapter 2 Advanced Swing Graphical User Interface Components 35

BrowserPane to navigate to the previous URL. Method back returns the destination
URL, which line 68 displays in urlTextField. This ensures that urlTextField
shows the proper URL for the Web site displayed in the WebBrowserPane.

Lines 74–75 create forwardButton, which allows the user to navigate forward
through the WebBrowserPane’s history of visited URLs. When the user activates
forwardButton, line 83 invokes method forward of class WebBrowserPane to
navigate to the next URL in the WebBrowserPane’s URL history. Line 86 displays the
URL in urlTextField.

1 // WebToolBar.java
2 // WebToolBar is a JToolBar subclass that contains components
3 // for navigating a WebBrowserPane. WebToolBar includes back
4 // and forward buttons and a text field for entering URLs.
5 package com.deitel.advjhtp1.gui.webbrowser;
6
7 // Java core packages
8 import java.awt.*;
9 import java.awt.event.*;

10 import java.net.*;
11
12 // Java extension packages
13 import javax.swing.*;
14 import javax.swing.event.*;
15
16 public class WebToolBar extends JToolBar
17 implements HyperlinkListener {
18
19 private WebBrowserPane webBrowserPane;
20 private JButton backButton;
21 private JButton forwardButton;
22 private JTextField urlTextField;
23
24 // WebToolBar constructor
25 public WebToolBar(WebBrowserPane browser)
26 {
27 super("Web Navigation");
28
29 // register for HyperlinkEvents
30 webBrowserPane = browser;
31 webBrowserPane.addHyperlinkListener(this);
32
33 // create JTextField for entering URLs
34 urlTextField = new JTextField(25);
35 urlTextField.addActionListener(
36 new ActionListener() {
37

Fig. 2.3Fig. 2.3Fig. 2.3Fig. 2.3 WebToolBar JToolBar subclass for navigating URLs in a
WebBrowserPane (part 1 of 3).

36 Advanced Swing Graphical User Interface Components Chapter 2

38 // navigate webBrowser to user-entered URL
39 public void actionPerformed(ActionEvent event)
40 {
41 // attempt to load URL in webBrowserPane
42 try {
43 URL url = new URL(urlTextField.getText());
44 webBrowserPane.goToURL(url);
45 }
46
47 // handle invalid URL
48 catch (MalformedURLException urlException) {
49 urlException.printStackTrace();
50 }
51 }
52 }
53);
54
55 // create JButton for navigating to previous history URL
56 backButton = new JButton(new ImageIcon(
57 getClass().getResource("images/back.gif")));
58
59 backButton.addActionListener(
60 new ActionListener() {
61
62 public void actionPerformed(ActionEvent event)
63 {
64 // navigate to previous URL
65 URL url = webBrowserPane.back();
66
67 // display URL in urlTextField
68 urlTextField.setText(url.toString());
69 }
70 }
71);
72
73 // create JButton for navigating to next history URL
74 forwardButton = new JButton(new ImageIcon(
75 getClass().getResource("images/forward.gif")));
76
77 forwardButton.addActionListener(
78 new ActionListener() {
79
80 public void actionPerformed(ActionEvent event)
81 {
82 // navigate to next URL
83 URL url = webBrowserPane.forward();
84
85 // display new URL in urlTextField
86 urlTextField.setText(url.toString());
87 }
88 }
89);

Fig. 2.3Fig. 2.3Fig. 2.3Fig. 2.3 WebToolBar JToolBar subclass for navigating URLs in a
WebBrowserPane (part 2 of 3).

Chapter 2 Advanced Swing Graphical User Interface Components 37

Based on class JToolBar’s inheritance hierarchy, each JToolBar also is a
java.awt.Container and therefore can contain other GUI components. Lines 92–94
add backButton, forwardButton and urlTextField to the WebToolBar by
invoking method add of class JToolBar. A JToolBar has property orientation
that specifies how the JToolBar will arrange its child components. The default is hori-
zontal orientation, so the JToolBar lays out these components next to one another, left to
right.

Class WebBrowserPane renders HTML pages, which may contain hyperlinks to
other Web pages. When a user activates a hyperlink in a WebBrowserPane (e.g., by
clicking on the hyperlink), the WebBrowserPane issues a HyperlinkEvent of type
HyperlinkEvent.EventType.ACTIVATED. Class WebToolBar implements
interface HyperlinkListener to listen for HyperlinkEvents. There are several
HyperlinkEvent types. Method hyperlinkUpdate (lines 99–112) invokes method
getEventType of class HyperlinkEvent to check the event type (lines 102–103)
and retrieves the HyperlinkEvent’s URL (line 106). This is the URL of the user-
selected hyperlink. Line 109 invokes method goToURL of class WebBrowserPane to
navigate to the selected URL, and line 110 updates urlTextField to display the
selected URL.

90
91 // add JButtons and JTextField to WebToolBar
92 add(backButton);
93 add(forwardButton);
94 add(urlTextField);
95
96 } // end WebToolBar constructor
97
98 // listen for HyperlinkEvents in WebBrowserPane
99 public void hyperlinkUpdate(HyperlinkEvent event)
100 {
101 // if hyperlink was activated, go to hyperlink's URL
102 if (event.getEventType() ==
103 HyperlinkEvent.EventType.ACTIVATED) {
104
105 // get URL from HyperlinkEvent
106 URL url = event.getURL();
107
108 // navigate to URL and display URL in urlTextField
109 webBrowserPane.goToURL(url);
110 urlTextField.setText(url.toString());
111 }
112 }
113 }

Fig. 2.3Fig. 2.3Fig. 2.3Fig. 2.3 WebToolBar JToolBar subclass for navigating URLs in a
WebBrowserPane (part 3 of 3).

38 Advanced Swing Graphical User Interface Components Chapter 2

Class WebBrowser (Fig. 2.4) uses a WebBrowserPane and WebToolBar to
create a simple Web-browser application. Line 26 creates a WebBrowserPane, and line
27 creates a WebToolBar for this WebBrowserPane. Lines 31–33 add the Web-
BrowserPane and WebToolBar to the WebBrowser’s content pane.

1 // WebBrowser.java
2 // WebBrowser is an application for browsing Web sites using
3 // a WebToolBar and WebBrowserPane.
4 package com.deitel.advjhtp1.gui.webbrowser;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9 import java.net.*;

10
11 // Java extension packages
12 import javax.swing.*;
13 import javax.swing.event.*;
14
15 public class WebBrowser extends JFrame {
16
17 private WebToolBar toolBar;
18 private WebBrowserPane browserPane;
19
20 // WebBrowser constructor
21 public WebBrowser()
22 {
23 super("Deitel Web Browser");
24
25 // create WebBrowserPane and WebToolBar for navigation
26 browserPane = new WebBrowserPane();
27 toolBar = new WebToolBar(browserPane);
28
29 // lay out WebBrowser components
30 Container contentPane = getContentPane();
31 contentPane.add(toolBar, BorderLayout.NORTH);
32 contentPane.add(new JScrollPane(browserPane),
33 BorderLayout.CENTER);
34 }
35
36 // execute application
37 public static void main(String args[])
38 {
39 WebBrowser browser = new WebBrowser();
40 browser.setDefaultCloseOperation(EXIT_ON_CLOSE);
41 browser.setSize(640, 480);
42 browser.setVisible(true);
43 }
44 }

Fig. 2.4Fig. 2.4Fig. 2.4Fig. 2.4 WebBrowser application for browsing Web sites using
WebBrowserPane and WebToolBar (part 1 of 2).

Chapter 2 Advanced Swing Graphical User Interface Components 39

2.3 Swing Actions
Applications often provide users with several different ways to perform a given task. For
example, in a word processor there might be an Edit menu with menu items for cutting,
copying and pasting text. There also might be a toolbar that has buttons for cutting, copying
and pasting text. There also might be a pop-up menu to allow users to right click on a doc-
ument to cut, copy or paste text. The functionality the application provides is the same in
each case—the developer provides the various interface components for the user’s conve-
nience. However, the same GUI component instance (e.g., a JButton for cutting text)

Fig. 2.4Fig. 2.4Fig. 2.4Fig. 2.4 WebBrowser application for browsing Web sites using
WebBrowserPane and WebToolBar (part 2 of 2).

40 Advanced Swing Graphical User Interface Components Chapter 2

cannot be used for menus and toolbars and pop-up menus, so the developer must code the
same functionality three times. If there were many such interface items, repeating this func-
tionality would become tedious and error-prone.

The Command design pattern solves this problem by enabling developers to define the
functionality (e.g., copying text) once in a reusable object that the developer then can add
to a menu, toolbar or pop-up menu. This design pattern is called Command because it
defines a user command or instruction. The Action interface defines required methods for
the Java Swing implementation of the Command design pattern.

An Action represents user-interface logic and properties for GUI components that
represent that logic, such as the label for a button, the text for a tool tip and the mnemonic
key for keyboard access. The logic takes the form of an actionPerformed method that
the event mechanism invokes in response to the user activating an interface component
(e.g., the user clicking a JButton). Interface Action extends interface ActionLis-
tener, which enables Actions to process ActionEvents generated by GUI compo-
nents. Once a developer defines an Action, the developer can add that Action to a
JMenu or JToolBar, just as if the Action were a JMenuItem or JButton. For
example, when a developer adds an Action to a JMenu, the JMenu creates a JMenu-
Item for the Action and uses the Action properties to configure the JMenuItem.

Actions provide an additional benefit in that the developer can enable or disable all
GUI components associated with an Action by enabling or disabling the Action itself.
For example, copying text from a document first requires that the user select the text to be
copied. If there is no selected text, the program should not allow the user to perform a copy
operation. If the application used a separate JMenuItem in a JMenu and JButton in a
JToolBar for copying text, the developer would need to disable each of these GUI com-
ponents individually. Using Actions, the developer could disable the Action for
copying text, which also would disable all associated GUI components.

ActionSample (Fig. 2.5) demonstrates two Actions. Lines 15–16 declare
Action references sampleAction and exitAction.

1 // ActionSample.java
2 // Demonstrating the Command design pattern with Swing Actions.
3 package com.deitel.advjhtp1.gui.actions;
4
5 // Java core packages
6 import java.awt.*;
7 import java.awt.event.*;
8
9 // Java extension packages

10 import javax.swing.*;
11
12 public class ActionSample extends JFrame {
13
14 // Swing Actions
15 private Action sampleAction;
16 private Action exitAction;
17

Fig. 2.5Fig. 2.5Fig. 2.5Fig. 2.5 ActionSample application demonstrating the Command design
pattern with Swing Actions (part 1 of 4).

Chapter 2 Advanced Swing Graphical User Interface Components 41

18 // ActionSample constructor
19 public ActionSample()
20 {
21 super("Using Actions");
22
23 // create AbstractAction subclass for sampleAction
24 sampleAction = new AbstractAction() {
25
26 public void actionPerformed(ActionEvent event)
27 {
28 // display message indicating sampleAction invoked
29 JOptionPane.showMessageDialog(ActionSample.this,
30 "The sampleAction was invoked");
31
32 // enable exitAction and associated GUI components
33 exitAction.setEnabled(true);
34 }
35 };
36
37 // set Action name
38 sampleAction.putValue(Action.NAME, "Sample Action");
39
40 // set Action Icon
41 sampleAction.putValue(Action.SMALL_ICON, new ImageIcon(
42 getClass().getResource("images/Help24.gif")));
43
44 // set Action short description (tooltip text)
45 sampleAction.putValue(Action.SHORT_DESCRIPTION,
46 "A Sample Action");
47
48 // set Action mnemonic key
49 sampleAction.putValue(Action.MNEMONIC_KEY,
50 new Integer('S'));
51
52 // create AbstractAction subclass for exitAction
53 exitAction = new AbstractAction() {
54
55 public void actionPerformed(ActionEvent event)
56 {
57 // display message indicating exitAction invoked
58 JOptionPane.showMessageDialog(ActionSample.this,
59 "The exitAction was invoked");
60 System.exit(0);
61 }
62 };
63
64 // set Action name
65 exitAction.putValue(Action.NAME, "Exit");
66
67 // set Action icon
68 exitAction.putValue(Action.SMALL_ICON, new ImageIcon(
69 getClass().getResource("images/EXIT.gif")));

Fig. 2.5Fig. 2.5Fig. 2.5Fig. 2.5 ActionSample application demonstrating the Command design
pattern with Swing Actions (part 2 of 4).

42 Advanced Swing Graphical User Interface Components Chapter 2

70
71 // set Action short description (tooltip text)
72 exitAction.putValue(Action.SHORT_DESCRIPTION,
73 "Exit Application");
74
75 // set Action mnemonic key
76 exitAction.putValue(Action.MNEMONIC_KEY,
77 new Integer('x'));
78
79 // disable exitAction and associated GUI components
80 exitAction.setEnabled(false);
81
82 // create File menu
83 JMenu fileMenu = new JMenu("File");
84
85 // add sampleAction and exitAction to File menu to
86 // create a JMenuItem for each Action
87 fileMenu.add(sampleAction);
88 fileMenu.add(exitAction);
89
90 fileMenu.setMnemonic('F');
91
92 // create JMenuBar and add File menu
93 JMenuBar menuBar = new JMenuBar();
94 menuBar.add(fileMenu);
95 setJMenuBar(menuBar);
96
97 // create JToolBar
98 JToolBar toolBar = new JToolBar();
99
100 // add sampleAction and exitAction to JToolBar to create
101 // JButtons for each Action
102 toolBar.add(sampleAction);
103 toolBar.add(exitAction);
104
105 // create JButton and set its Action to sampleAction
106 JButton sampleButton = new JButton();
107 sampleButton.setAction(sampleAction);
108
109 // create JButton and set its Action to exitAction
110 JButton exitButton = new JButton(exitAction);
111
112 // lay out JButtons in JPanel
113 JPanel buttonPanel = new JPanel();
114 buttonPanel.add(sampleButton);
115 buttonPanel.add(exitButton);
116
117 // add toolBar and buttonPanel to JFrame's content pane
118 Container container = getContentPane();
119 container.add(toolBar, BorderLayout.NORTH);
120 container.add(buttonPanel, BorderLayout.CENTER);
121 }

Fig. 2.5Fig. 2.5Fig. 2.5Fig. 2.5 ActionSample application demonstrating the Command design
pattern with Swing Actions (part 3 of 4).

Chapter 2 Advanced Swing Graphical User Interface Components 43

Lines 24–35 create an anonymous inner class that extends class AbstractAction
and assigns the instance to reference sampleAction. Class AbstractAction facili-
tates creating Action objects. Class AbstractAction implements interface Action,
but is marked abstract because class AbstractAction does not provide an imple-
mentation for method actionPerformed. Lines 26–34 implement method action-
Performed. The Swing event mechanism invokes method actionPerformed when
the user activates a GUI component associated with sampleAction. We show how to
create these GUI components shortly. Lines 29–30 in method actionPerformed dis-
play a JOptionPane message dialog to inform the user that sampleAction was
invoked. Line 33 then invokes method setEnabled of interface Action on the exi-
tAction reference. This enables the exitAction and its associated GUI components.
Note that Actions are enabled by default. We disabled the exitAction (line 80) to
demonstrate that this disables the GUI components associated with that Action.

After instantiating an AbstractAction subclass to create sampleAction, lines
38–50 repeatedly invoke method putValue of interface Action to configure sam-
pleAction properties. Each property has a key and a value. Interface Action defines
the keys as public constants, which we list in Fig. 2.6. GUI components associated with
sampleAction use the property values we assign for GUI component labels, icons, tool-
tips and so on. Line 38 invokes method putValue of interface Action with arguments
Action.NAME and "Sample Action". This assigns sampleAction’s name, which
GUI components use as their label. Lines 41–42 invoke method putValue of interface
Action with key Action.SMALL_ICON and an ImageIcon value, which GUI com-
ponents use as their Icon. Lines 45–46 set the Action’s tool tip using key

122
123 // execute application
124 public static void main(String args[])
125 {
126 ActionSample sample = new ActionSample();
127 sample.setDefaultCloseOperation(EXIT_ON_CLOSE);
128 sample.pack();
129 sample.setVisible(true);
130 }
131 }

Fig. 2.5Fig. 2.5Fig. 2.5Fig. 2.5 ActionSample application demonstrating the Command design
pattern with Swing Actions (part 4 of 4).

44 Advanced Swing Graphical User Interface Components Chapter 2

Action.SHORT_DESCRIPTION. Lines 49–50 set the Action’s mnemonic key using
key Action.MNEMONIC_KEY. When the Action is placed in a JMenu, the mnemonic
key provides keyboard access to the Action. Lines 53–80 create the exitAction in a
similar way to sampleAction, with an appropriate name, icon, description and mne-
monic key. Line 80 invokes method setEnabled of interface Action with argument
false to disable the exitAction. We use this to demonstrate that disabling an
Action also disables the Action’s associated GUI components.

Line 83 creates the fileMenu JMenu, which contains JMenuItems corresponding
to sampleAction and exitAction. Class JMenu overloads method add with a ver-
sion that takes an Action argument. This overloaded add method returns a reference to
the JMenuItem that it creates. Lines 87–88 invoke method add of class JMenu to add
sampleAction and exitAction to the menu. We have no need for the JMenuItem
references that method add returns, so we ignore them. Line 90 sets the fileMenu mne-
monic key, and lines 93–95 add the fileMenu to a JMenuBar and invoke method set-
JMenuBar of class JFrame to add the JMenuBar to the application.

Line 98 creates a new JToolBar. Like JMenu, JToolBar also provides overloaded
method add for adding Actions to JToolBars. Method add of class JToolBar
returns a reference to the JButton created for the given Action. Lines 102–103 invoke
method add of class JToolBar to add the sampleAction and exitAction to the
JToolBar. We have no need for the JButton references that method add returns, so
we ignore them.

Class JButton provides method setAction for configuring a JButton with
properties of an Action. Line 106 creates JButton sampleButton. Line 107 invokes
method setAction of class JButton with a sampleAction argument to configure
sampleButton. Line 110 demonstrates an alternative way to configure a JButton with
properties from an Action. The JButton constructor is overloaded to accept an
Action argument. The constructor configures the JButton using properties from the
given Action.

Software Engineering Observation 2.1
According to the Java 2 SDK documentation, it is preferable to create JButtons and
JMenuItems, invoke method setAction then add the JButton or JMenuItem to its
container, rather than adding the Action to the container directly. This is because most
GUI-building tools do not support adding Actions to containers directly. 2.1

Lines 113–120 add the newly created JButtons to a JPanel and lay out the
JToolBar and JPanel in the JFrame’s content pane. Note that in the first screen capture
of Fig. 2.5, the JButtons for exitAction appear grayed-out. This is because the exi-
tAction is disabled. After invoking the sampleAction, the exitAction is enabled
and appears in full color. Note also the tool tips, icons and labels on each GUI component.
Each of these items was configured using properties of the respective Action object.

Figure 2.6 summarizes Action properties. Each property name is a static constant
in interface Action and acts as a key for setting or retrieving the property value.

In the following sections we demonstrate two alternative ways to create Swing
Action instances. The first uses named inner classes. The second defines a generic
AbstractAction subclass that provides a constructor for commonly used properties
and set methods for each individual Action property.

Chapter 2 Advanced Swing Graphical User Interface Components 45

2.4 JSplitPane and JTabbedPane
JSplitPane and JTabbedPane are container components that enable developers to
present large amounts of information in a small screen area. JSplitPane accomplishes this
by dividing two components with a divider users can reposition to expand and contract the
visible areas of the JSplitPane’s child components (Fig. 2.7). JTabbedPane uses a file-
folder-style tab interface to arrange many components through which the user can browse.

Look-and-Feel Observation 2.1
JSplitPanes can contain only two child components. However, each child component
may contain nested components. 2.1

FavoritesWebBrowser (Fig. 2.7) is an application that uses a JSplitPane to
show two WebBrowserPane components side-by-side in a single application window.
On the left side, the JSplitPane contains a WebBrowserPane that displays a static
HTML page containing links to the user’s favorite Web sites. Activating the links in this
favorites page displays the URL contents in the WebBrowserPane on the right side of
the JSplitPane. This is a common user interface arrangement in Web browsers, such as
Internet Explorer and Netscape Navigator.

Name Description

NAME Name to be used for GUI-component labels.

SHORT_DESCRIPTION Descriptive text for use in tooltips.

SMALL_ICON Icon for displaying in GUI-component labels.

MNEMONIC_KEY Mnemonic key for keyboard access (e.g., for accessing menus and
menu items using the keyboard).

ACCELERATOR_KEY Accelerator key for keyboard access (e.g., using the Ctrl key).

ACTION_COMMAND_KEY Key for retrieving command string to be used in ActionEvents.

LONG_DESCRIPTION Descriptive text, e.g., for application help.

Fig. 2.6Fig. 2.6Fig. 2.6Fig. 2.6 Action class static keys for Action properties.

1 // FavoritesWebBrowser.java
2 // FavoritesWebBrowser is an application for browsing Web sites
3 // using a WebToolBar and WebBrowserPane and displaying an HTML
4 // page containing links to favorite Web sites.
5 package com.deitel.advjhtp1.gui.splitpane;
6
7 // Java core packages
8 import java.awt.*;
9 import java.awt.event.*;

10 import java.net.*;
11

Fig. 2.7Fig. 2.7Fig. 2.7Fig. 2.7 FavoritesWebBrowser application for displaying two Web pages
side-by-side using JSplitPane (part 1 of 3).

46 Advanced Swing Graphical User Interface Components Chapter 2

12 // Java extension packages
13 import javax.swing.*;
14 import javax.swing.event.*;
15
16 // Deitel packages
17 import com.deitel.advjhtp1.gui.webbrowser.*;
18
19 public class FavoritesWebBrowser extends JFrame {
20
21 private WebToolBar toolBar;
22 private WebBrowserPane browserPane;
23 private WebBrowserPane favoritesBrowserPane;
24
25 // WebBrowser constructor
26 public FavoritesWebBrowser()
27 {
28 super("Deitel Web Browser");
29
30 // create WebBrowserPane and WebToolBar for navigation
31 browserPane = new WebBrowserPane();
32 toolBar = new WebToolBar(browserPane);
33
34 // create WebBrowserPane for displaying favorite sites
35 favoritesBrowserPane = new WebBrowserPane();
36
37 // add WebToolBar as listener for HyperlinkEvents
38 // in favoritesBrowserPane
39 favoritesBrowserPane.addHyperlinkListener(toolBar);
40
41 // display favorites.html in favoritesBrowserPane
42 favoritesBrowserPane.goToURL(
43 getClass().getResource("favorites.html"));
44
45 // create JSplitPane with horizontal split (side-by-side)
46 // and add WebBrowserPanes with JScrollPanes
47 JSplitPane splitPane = new JSplitPane(
48 JSplitPane.HORIZONTAL_SPLIT,
49 new JScrollPane(favoritesBrowserPane),
50 new JScrollPane(browserPane));
51
52 // position divider between WebBrowserPanes
53 splitPane.setDividerLocation(210);
54
55 // add buttons for expanding/contracting divider
56 splitPane.setOneTouchExpandable(true);
57
58 // lay out WebBrowser components
59 Container contentPane = getContentPane();
60 contentPane.add(toolBar, BorderLayout.NORTH);
61 contentPane.add(splitPane, BorderLayout.CENTER);
62 }
63

Fig. 2.7Fig. 2.7Fig. 2.7Fig. 2.7 FavoritesWebBrowser application for displaying two Web pages
side-by-side using JSplitPane (part 2 of 3).

Chapter 2 Advanced Swing Graphical User Interface Components 47

Lines 31–32 create a WebBrowserPane for displaying Web pages and a Web-
ToolBar for navigating this WebBrowserPane. Line 35 creates an additional Web-
Browser pane called favoritesBrowserPane, which the application will use to dis-
play favorites.html. This HTML document contains hyperlinks to some favorite
Web sites. Line 39 invokes method addHyperlinkListener of class WebBrowser-

64 // execute application
65 public static void main(String args[])
66 {
67 FavoritesWebBrowser browser = new FavoritesWebBrowser();
68 browser.setDefaultCloseOperation(EXIT_ON_CLOSE);
69 browser.setSize(640, 480);
70 browser.setVisible(true);
71 }
72 }

Fig. 2.7Fig. 2.7Fig. 2.7Fig. 2.7 FavoritesWebBrowser application for displaying two Web pages
side-by-side using JSplitPane (part 3 of 3).

48 Advanced Swing Graphical User Interface Components Chapter 2

Pane to register the toolBar as a HyperlinkListener for favorites-
BrowserPane. When a user activates a link in favoritesBrowserPane, toolBar
will receive the HyperlinkEvent and display the activated URL in browserPane.
This way the user can activate links in favoritesBrowserPane and display those
links in browserPane. Lines 42–43 invoke method goToURL of class WebBrowser-
Pane to load favorites.html in favoritesBrowserPane.

Lines 47–50 create a JSplitPane. This JSplitPane constructor takes as its first
argument an integer that indicates the JSplitPane orientation. The constant JSplit-
Pane.HORIZONTAL_SPLIT specifies the JSplitPane should display its child com-
ponents side-by-side. The constant JSplitPane.VERTICAL_SPLIT would specify
that the JSplitPane should display its child components one on top of the other. The
second and third arguments to this JSplitPane constructor are the components to be
divided in the JSplitPane. In this case, we add favoritesBrowserPane to the left
side of the JSplitPane and browserPane to the right side of the JSplitPane. We
place each WebBrowserPane in a JScrollPane to allow the user to scroll if the con-
tent exceeds the visible area.

Line 53 invokes method setDividerLocation of class JSplitPane to set the
exact divider position between favoritesBrowserPane and browserPane. Line
56 invokes method setOneTouchExpandable of class JSplitPane to add two but-
tons to the divider that enable the user to expand or collapse the divider to one side or the
other with a single click. Note the arrows on the divider in Fig. 2.7.

Good Programming Practice 2.1
Place child components in JScrollPanes before adding the components to a JSplit-
Pane. This ensures that the user will be able to view all the content in each child component
by scrolling if necessary. 2.1

JTabbedPane presents multiple components in separate tabs, which the user can
navigate using a mouse or keyboard. Dialog boxes often use components similar to
JTabbedPanes. For example, Fig. 2.8 shows the Display Properties tabbed dialog in
Windows 2000.

Fig. 2.8Fig. 2.8Fig. 2.8Fig. 2.8 Tabbed interface of Display Properties dialog box in Windows 2000.

Active Tab Other Tabs

Chapter 2 Advanced Swing Graphical User Interface Components 49

TabbedPaneWebBrowser (Fig. 2.9) uses a JTabbedPane to enable users to
browse multiple Web pages at once in a single application window. The user invokes an
Action to add a new WebBrowserPane to the JTabbedPane. Each time the user
adds a new WebBrowserPane, the JTabbedPane creates a new tab and places the
WebBrowserPane in this new tab.

1 // TabbedPaneWebBrowser.java
2 // TabbedPaneWebBrowser is an application that uses a
3 // JTabbedPane to display multiple Web browsers.
4 package com.deitel.advjhtp1.gui.tabbedpane;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9

10 // Java extension packages
11 import javax.swing.*;
12
13 // Deitel packages
14 import com.deitel.advjhtp1.gui.webbrowser.*;
15
16 public class TabbedPaneWebBrowser extends JFrame {
17
18 // JTabbedPane for displaying multiple browser tabs
19 private JTabbedPane tabbedPane = new JTabbedPane();
20
21 // TabbedPaneWebBrowser constructor
22 public TabbedPaneWebBrowser()
23 {
24 super("JTabbedPane Web Browser");
25
26 // create first browser tab
27 createNewTab();
28
29 // add JTabbedPane to contentPane
30 getContentPane().add(tabbedPane);
31
32 // create File JMenu for creating new browser tabs and
33 // exiting application
34 JMenu fileMenu = new JMenu("File");
35 fileMenu.add(new NewTabAction());
36 fileMenu.addSeparator();
37 fileMenu.add(new ExitAction());
38 fileMenu.setMnemonic('F');
39
40 JMenuBar menuBar = new JMenuBar();
41 menuBar.add(fileMenu);
42 setJMenuBar(menuBar);
43
44 } // end TabbedPaneWebBrowser constructor
45

Fig. 2.9Fig. 2.9Fig. 2.9Fig. 2.9 TabbedPaneWebBrowser application using JTabbedPane to
browse multiple Web sites concurrently (part 1 of 3).

50 Advanced Swing Graphical User Interface Components Chapter 2

46 // create new browser tab
47 private void createNewTab()
48 {
49 // create JPanel to contain WebBrowserPane and WebToolBar
50 JPanel panel = new JPanel(new BorderLayout());
51
52 // create WebBrowserPane and WebToolBar
53 WebBrowserPane browserPane = new WebBrowserPane();
54 WebToolBar toolBar = new WebToolBar(browserPane);
55
56 // add WebBrowserPane and WebToolBar to JPanel
57 panel.add(toolBar, BorderLayout.NORTH);
58 panel.add(new JScrollPane(browserPane),
59 BorderLayout.CENTER);
60
61 // add JPanel to JTabbedPane
62 tabbedPane.addTab("Browser " + tabbedPane.getTabCount(),
63 panel);
64 }
65
66 // Action for creating new browser tabs
67 private class NewTabAction extends AbstractAction {
68
69 // NewTabAction constructor
70 public NewTabAction()
71 {
72 // set name, description and mnemonic key
73 putValue(Action.NAME, "New Browser Tab");
74 putValue(Action.SHORT_DESCRIPTION,
75 "Create New Web Browser Tab");
76 putValue(Action.MNEMONIC_KEY, new Integer('N'));
77 }
78
79 // when Action invoked, create new browser tab
80 public void actionPerformed(ActionEvent event)
81 {
82 createNewTab();
83 }
84 }
85
86 // Action for exiting application
87 private class ExitAction extends AbstractAction {
88
89 // ExitAction constructor
90 public ExitAction()
91 {
92 // set name, description and mnemonic key
93 putValue(Action.NAME, "Exit");
94 putValue(Action.SHORT_DESCRIPTION, "Exit Application");
95 putValue(Action.MNEMONIC_KEY, new Integer('x'));
96 }
97

Fig. 2.9Fig. 2.9Fig. 2.9Fig. 2.9 TabbedPaneWebBrowser application using JTabbedPane to
browse multiple Web sites concurrently (part 2 of 3).

Chapter 2 Advanced Swing Graphical User Interface Components 51

Line 19 creates a new JTabbedPane, to which the user will add WebBrowser-
Panes. Line 27 invokes method createNewTab of class TabbedPaneWebBrowser
to create the first WebBrowserPane and place it in the JTabbedPane. Line 30 adds the
JTabbedPane to the TabbedPaneWebBrowser’s content pane. Lines 34–42 create
the File menu, which contains an Action for creating new WebBrowserPanes (line 35)
and an Action for exiting the application (line 37). We discuss these actions in detail
momentarily.

Method createNewTab (lines 46–64) creates a new WebBrowserPane and adds
it to the JTabbedPane. Line 50 creates a JPanel for laying out the WebBrowser-
Pane and its WebToolBar. Lines 53–59 create a WebBrowserPane and a Web-
ToolBar and add them to the JPanel. Lines 62–63 invoke method addTab of class
JTabbedPane to add the JPanel containing the WebBrowserPane and WebT-
oolBar to the application’s JTabbedPane. Method addTab of class JTabbedPane
takes as a String argument the title for the new tab and as a Component argument the
Component to display in the new tab. Although a developer may add any Component
instance to a JTabbedPane to create a new tab, developers most commonly lay out com-
ponents in a JPanel and add the JPanel to the JTabbedPane.

Figure 2.9 also demonstrates a second way to create Action instances. Lines 67–84
define inner class NewTabAction, which extends AbstractAction. The New-
TabAction constructor (lines 70–77) configures the Action by invoking method
putValue for the Action name, tool tip and mnemonic key. Lines 80–83 define method
actionPerformed and invoke method createNewTab (line 82) to create a new tab
in the JTabbedPane containing a WebBrowserPane and WebToolBar.

Lines 87–103 define inner class ExitAction, which also extends AbstractAc-
tion. The ExitAction constructor (lines 90–96) configures the Action name, tool tip
and mnemonic key by invoking method putValue. Method actionPerformed (lines
99–102) invokes static method exit of class System to exit the application.

98 // when Action invoked, exit application
99 public void actionPerformed(ActionEvent event)
100 {
101 System.exit(0);
102 }
103 }
104
105 // execute application
106 public static void main(String args[])
107 {
108 TabbedPaneWebBrowser browser = new TabbedPaneWebBrowser();
109 browser.setDefaultCloseOperation(EXIT_ON_CLOSE);
110 browser.setSize(640, 480);
111 browser.setVisible(true);
112 }
113 }

Fig. 2.9Fig. 2.9Fig. 2.9Fig. 2.9 TabbedPaneWebBrowser application using JTabbedPane to
browse multiple Web sites concurrently (part 3 of 3).

52 Advanced Swing Graphical User Interface Components Chapter 2

2.5 Multiple-Document Interfaces
Most applications provide a single-document interface—users can view and edit only one
document at a time. For example, most Web browsers allow users to view only one Web
page. To view multiple Web pages, users must launch additional Web browsers. Multiple
document interfaces allow users to view multiple documents in a single application. Each
document appears in a separate window in the application. The user can arrange, resize,
iconify (i.e., minimize) and maximize these separate document windows like application
windows on the desktop. For example, a digital photograph-editing application could use a
multiple document interface to enable users to view and edit multiple photographs at once.
The user could place the photograph windows side-by-side to compare the photographs or
copy part of one photograph and paste it into the other.

Java Swing provides classes JDesktopPane and JInternalFrame for building
multiple-document interfaces. These class names reinforce the idea that each document is
a separate window (JInternalFrame) inside the application’s desktop (JDesktop-
Pane), just as other applications are separate windows (e.g., JFrames) on the operating
system’s desktop. JInternalFrames behave much like JFrames. Users can maximize,
iconify, resize, open and close JInternalFrames. JInternalFrames have title bars
with buttons for iconifying, maximizing and closing. Users also can move JInternal-
Frames within the JDesktopPane.

MDIWebBrowser (Fig. 2.10) uses JInternalFrames and a JDesktopPane to
enable users to browse multiple Web sites within a single application window. Line 20 cre-
ates a JDesktopPane, which is a container for JInternalFrames. Line 32 adds the
JDesktopPane to the JFrame’s content pane. Lines 36–44 construct the application
menu. The File menu includes an Action for creating new browser windows (line 37) and
an Action for exiting the application (line 39).

1 // MDIWebBrowser.java
2 // MDIWebBrowser is an application that uses JDesktopPane
3 // and JInternalFrames to create a multiple-document-interface
4 // application for Web browsing.
5 package com.deitel.advjhtp1.gui.mdi;
6
7 // Java core packages
8 import java.awt.*;
9 import java.awt.event.*;

10
11 // Java extension packages
12 import javax.swing.*;
13
14 // Deitel packages
15 import com.deitel.advjhtp1.gui.webbrowser.*;
16
17 public class MDIWebBrowser extends JFrame {
18
19 // JDesktopPane for multiple document interface
20 JDesktopPane desktopPane = new JDesktopPane();

Fig. 2.10Fig. 2.10Fig. 2.10Fig. 2.10 MDIWebBrowser application using JDesktopPane and JInter-
nalFrames to browse multiple Web sites concurrently (part 1 of 4).

Chapter 2 Advanced Swing Graphical User Interface Components 53

21
22 // MDIWebBrowser constructor
23 public MDIWebBrowser()
24 {
25 super("MDI Web Browser");
26
27 // create first browser window
28 createNewWindow();
29
30 // add JDesktopPane to contentPane
31 Container contentPane = getContentPane();
32 contentPane.add(desktopPane);
33
34 // create File JMenu for creating new windows and
35 // exiting application
36 JMenu fileMenu = new JMenu("File");
37 fileMenu.add(new NewWindowAction());
38 fileMenu.addSeparator();
39 fileMenu.add(new ExitAction());
40 fileMenu.setMnemonic('F');
41
42 JMenuBar menuBar = new JMenuBar();
43 menuBar.add(fileMenu);
44 setJMenuBar(menuBar);
45 }
46
47 // create new browser window
48 private void createNewWindow()
49 {
50 // create new JInternalFrame that is resizable, closable,
51 // maximizable and iconifiable
52 JInternalFrame frame = new JInternalFrame(
53 "Browser", // title
54 true, // resizable
55 true, // closable
56 true, // maximizable
57 true); // iconifiable
58
59 // create WebBrowserPane and WebToolBar
60 WebBrowserPane browserPane = new WebBrowserPane();
61 WebToolBar toolBar = new WebToolBar(browserPane);
62
63 // add WebBrowserPane and WebToolBar to JInternalFrame
64 Container contentPane = frame.getContentPane();
65 contentPane.add(toolBar, BorderLayout.NORTH);
66 contentPane.add(new JScrollPane(browserPane),
67 BorderLayout.CENTER);
68
69 // make JInternalFrame opaque and set its size
70 frame.setSize(320, 240);
71

Fig. 2.10Fig. 2.10Fig. 2.10Fig. 2.10 MDIWebBrowser application using JDesktopPane and JInter-
nalFrames to browse multiple Web sites concurrently (part 2 of 4).

54 Advanced Swing Graphical User Interface Components Chapter 2

72 // move JInternalFrame to prevent it from obscuring others
73 int offset = 30 * desktopPane.getAllFrames().length;
74 frame.setLocation(offset, offset);
75
76 // add JInternalFrame to JDesktopPane
77 desktopPane.add(frame);
78
79 // make JInternalFrame visible
80 frame.setVisible(true);
81 }
82
83 // Action for creating new browser windows
84 private class NewWindowAction extends AbstractAction {
85
86 // NewWindowAction constructor
87 public NewWindowAction()
88 {
89 // set name, description and mnemonic key
90 putValue(Action.NAME, "New Window");
91 putValue(Action.SHORT_DESCRIPTION,
92 "Create New Web Browser Window");
93 putValue(Action.MNEMONIC_KEY, new Integer('N'));
94 }
95
96 // when Action invoked, create new browser window
97 public void actionPerformed(ActionEvent event)
98 {
99 createNewWindow();
100 }
101 }
102
103 // Action for exiting application
104 private class ExitAction extends AbstractAction {
105
106 // ExitAction constructor
107 public ExitAction()
108 {
109 // set name, description and mnemonic key
110 putValue(Action.NAME, "Exit");
111 putValue(Action.SHORT_DESCRIPTION, "Exit Application");
112 putValue(Action.MNEMONIC_KEY, new Integer('x'));
113 }
114
115 // when Action invoked, exit application
116 public void actionPerformed(ActionEvent event)
117 {
118 System.exit(0);
119 }
120 }
121

Fig. 2.10Fig. 2.10Fig. 2.10Fig. 2.10 MDIWebBrowser application using JDesktopPane and JInter-
nalFrames to browse multiple Web sites concurrently (part 3 of 4).

Chapter 2 Advanced Swing Graphical User Interface Components 55

122 // execute application
123 public static void main(String args[])
124 {
125 MDIWebBrowser browser = new MDIWebBrowser();
126 browser.setDefaultCloseOperation(EXIT_ON_CLOSE);
127 browser.setSize(640, 480);
128 browser.setVisible(true);
129 }
130 }

Fig. 2.10Fig. 2.10Fig. 2.10Fig. 2.10 MDIWebBrowser application using JDesktopPane and JInter-
nalFrames to browse multiple Web sites concurrently (part 4 of 4).

JInternalFrames Iconify

Maximize

Close

Position
the
mouse
over any
corner of
a child
window
to resize
the
window (if
resizing is
allowed).

Iconified JInternalFrame

Maximized
JInternalFrame

56 Advanced Swing Graphical User Interface Components Chapter 2

Method createNewWindow (lines 48–81) creates a new JInternalFrame in
response to the user invoking NewWindowAction. Lines 52–57 create a new JInter-
nalFrame with the title "Browser". The four boolean arguments to the JInter-
nalFrame constructor specify that the JInternalFrame is resizable, closable,
maximizable and iconifiable. Lines 60–61 create a WebBrowserPane and WebToolBar
for displaying and navigating Web pages. Like a JFrame, a JInternalFrame has a con-
tent pane. Line 64 invokes method getContentPane to get the JInternalFrame’s
content pane, and lines 65–67 lay out the WebToolBar and WebBrowserPane in the
content pane. A JInternalFrame has zero size when first created, so line 70 invokes
method setSize of class JInternalFrame to size the JInternalFrame appropri-
ately. To prevent new JInternalFrames from obscuring other JInternalFrames in
the JDesktopPane, lines 73–74 invoke method setLocation of class JInternal-
Frame to position the new JInternalFrame at an offset from the previously created
JInternalFrame. Line 77 invokes method add of class JDesktopPane to add the
JInternalFrame to the display, and line 80 invokes method setVisible of class
JInternalFrame to make the JInternalFrame visible.

Look-and-Feel Observation 2.2
JInternalFrames have no size and are invisible by default. When creating a new JIn-
ternalFrame, be sure to invoke method setSize to size the JInternalFrame and
setVisible(true) to make the JInternalFrame visible. 2.2

Class MDIWebBrowser uses two Actions—NewWindowAction for creating
new Web browser windows and ExitAction for exiting the application. Lines 84–101
declare inner class NewWindowAction, which extends class AbstractAction. Lines
90–93 invoke method putValue of interface Action to configure NewWindowAc-
tion properties. Method actionPerformed (lines 97–100) invokes method creat-
eNewWindow to create a new Web browser window each time the user invokes
NewWindowAction. Class ExitAction (lines 104–120) also invokes method
putValue to configure the Action (lines 110–112) and implements method action-
Performed (lines 116–119) to exit the application (line 118) when invoked.

2.6 Drag and Drop
Drag and drop is a common way to manipulate data in a GUI. Most GUIs emulate real-
world desktops, with icons that represent the objects on a virtual desk. Drag and drop en-
ables users to move items around the desktop and to move and copy data among applica-
tions using mouse gestures. A gesture is a mouse movement that corresponds to a drag-
and-drop operation, such as dragging a file from one folder and dropping the file into an-
other folder.

Two Java APIs enable drag-and-drop data transfer between applications. The data
transfer API—package java.awt.datatransfer—enables copying and moving
data within a single application or among multiple applications. The drag-and-drop API
enables Java applications to recognize drag-and-drop gestures and to respond to drag-and-
drop operations. A drag-and-drop operation uses the data transfer API to transfer data from
the drag source to the drop target. For example, a user could begin a drag gesture in a file-
manager application (the drag source) to drag a file from a folder and drop the file on a Java
application (the drop target). The Java application would use the drag-and-drop API to rec-

Chapter 2 Advanced Swing Graphical User Interface Components 57

ognize that a drag-and-drop operation occurred and would use the data transfer API to
retrieve the data transferred through the drag-and-drop operation.

DnDWebBrowser (Fig. 2.11) is a Web-browsing application that also allows users to
drop a file onto the WebBrowserPane to view the file contents. For example, a user
could drag an HTML file from the host operating system’s file manager and drop the file
on the WebBrowserPane to render the HTML. DnDWebBrowser uses the drag-and-
drop API to recognize drag-and-drop operations and the data transfer API to retrieve the
transferred data. Lines 32–33 create a WebBrowserPane component for viewing Web
pages and a WebToolBar to provide navigation controls.

The WebBrowserPane in class DnDWebBrowser acts as a drop target (i.e., a user
can drop a dragged object on the WebBrowserPane). Lines 37–38 invoke method set-
DropTarget of class WebBrowserPane and create a new DropTarget object. The
first argument to the DropTarget constructor is the java.awt.Component that pro-
vides the GUI target onto which a user can drop objects. In this case, the Component is a
WebBrowserPane. The second argument specifies the types of drag-and-drop operations
that the DropTarget supports. Class DnDConstants specifies constant
ACTION_COPY for allowing a DropTarget to accept a drag-and-drop operation for
copying a dragged object. Other operations include ACTION_MOVE for moving an object
and ACTION_LINK for creating a link to an object (e.g., a symbolic link on a UNIX file-
system). The third argument to the DropTarget constructor is the DropTargetLis-
tener to be notified of drag-and-drop operation events.

Class DropTargetHandler (lines 48–126) implements interface DropTar-
getListener to listen for drag-and-drop operation events related to a DropTarget.
The drag-and-drop subsystem invokes method drop (lines 51–100) of interface
DropTargetListener when the user drops an object on a DropTarget. Line 54
invokes method getTransferable of class DropTargetDropEvent to retrieve the
Transferable object that the user dropped. Interface java.awt.data-
transfer.Transferable declares methods that represent an object that can be trans-
ferred among applications. As part of the datatransfer API, interface Transferable rep-
resents objects that may be transferred through the system clipboard (e.g., via cut-and-paste
operations) and objects that are transferred through drag and drop.

1 // DnDWebBrowser.java
2 // DnDWebBrowser is an application for viewing Web pages using
3 // drag and drop.
4 package com.deitel.advjhtp1.gui.dnd;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.dnd.*;
9 import java.awt.datatransfer.*;

10 import java.util.*;
11 import java.io.*;
12 import java.net.*;
13

Fig. 2.11Fig. 2.11Fig. 2.11Fig. 2.11 DnDWebBrowser application for browsing Web sites that also accepts
drag-and-drop operations for viewing HTML pages (part 1 of 5).

58 Advanced Swing Graphical User Interface Components Chapter 2

14 // Java extension packages
15 import javax.swing.*;
16 import javax.swing.event.*;
17
18 // Deitel packages
19 import com.deitel.advjhtp1.gui.webbrowser.*;
20
21 public class DnDWebBrowser extends JFrame {
22
23 private WebToolBar toolBar;
24 private WebBrowserPane browserPane;
25
26 // DnDWebBrowser constructor
27 public DnDWebBrowser()
28 {
29 super("Drag-and-Drop Web Browser");
30
31 // create WebBrowserPane and WebToolBar for navigation
32 browserPane = new WebBrowserPane();
33 toolBar = new WebToolBar(browserPane);
34
35 // enable WebBrowserPane to accept drop operations, using
36 // DropTargetHandler as the DropTargetListener
37 browserPane.setDropTarget(new DropTarget(browserPane,
38 DnDConstants.ACTION_COPY, new DropTargetHandler()));
39
40 // lay out WebBrowser components
41 Container contentPane = getContentPane();
42 contentPane.add(toolBar, BorderLayout.NORTH);
43 contentPane.add(new JScrollPane(browserPane),
44 BorderLayout.CENTER);
45 }
46
47 // inner class to handle DropTargetEvents
48 private class DropTargetHandler implements DropTargetListener {
49
50 // handle drop operation
51 public void drop(DropTargetDropEvent event)
52 {
53 // get dropped Transferable object
54 Transferable transferable = event.getTransferable();
55
56 // if Transferable is a List of Files, accept drop
57 if (transferable.isDataFlavorSupported(
58 DataFlavor.javaFileListFlavor)) {
59
60 // accept the drop operation to copy the object
61 event.acceptDrop(DnDConstants.ACTION_COPY);
62
63 // process list of files and display each in browser
64 try {
65

Fig. 2.11Fig. 2.11Fig. 2.11Fig. 2.11 DnDWebBrowser application for browsing Web sites that also accepts
drag-and-drop operations for viewing HTML pages (part 2 of 5).

Chapter 2 Advanced Swing Graphical User Interface Components 59

66 // get List of Files
67 java.util.List fileList =
68 (java.util.List) transferable.getTransferData(
69 DataFlavor.javaFileListFlavor);
70
71 Iterator iterator = fileList.iterator();
72
73 while (iterator.hasNext()) {
74 File file = (File) iterator.next();
75
76 // display File in browser and complete drop
77 browserPane.goToURL(file.toURL());
78 }
79
80 // indicate successful drop
81 event.dropComplete(true);
82 }
83
84 // handle exception if DataFlavor not supported
85 catch (UnsupportedFlavorException flavorException) {
86 flavorException.printStackTrace();
87 event.dropComplete(false);
88 }
89
90 // handle exception reading Transferable data
91 catch (IOException ioException) {
92 ioException.printStackTrace();
93 event.dropComplete(false);
94 }
95 }
96
97 // if dropped object is not file list, reject drop
98 else
99 event.rejectDrop();
100 }
101
102 // handle drag operation entering DropTarget
103 public void dragEnter(DropTargetDragEvent event)
104 {
105 // if data is javaFileListFlavor, accept drag for copy
106 if (event.isDataFlavorSupported(
107 DataFlavor.javaFileListFlavor))
108
109 event.acceptDrag(DnDConstants.ACTION_COPY);
110
111 // reject all other DataFlavors
112 else
113 event.rejectDrag();
114 }
115
116 // invoked when drag operation exits DropTarget
117 public void dragExit(DropTargetEvent event) {}

Fig. 2.11Fig. 2.11Fig. 2.11Fig. 2.11 DnDWebBrowser application for browsing Web sites that also accepts
drag-and-drop operations for viewing HTML pages (part 3 of 5).

60 Advanced Swing Graphical User Interface Components Chapter 2

118
119 // invoked when drag operation occurs over DropTarget
120 public void dragOver(DropTargetDragEvent event) {}
121
122 // invoked if dropAction changes (e.g., from COPY to LINK)
123 public void dropActionChanged(DropTargetDragEvent event)
124 {}
125
126 } // end class DropTargetHandler
127
128 // execute application
129 public static void main(String args[])
130 {
131 DnDWebBrowser browser = new DnDWebBrowser();
132 browser.setDefaultCloseOperation(EXIT_ON_CLOSE);
133 browser.setSize(640, 480);
134 browser.setVisible(true);
135 }
136 }

Fig. 2.11Fig. 2.11Fig. 2.11Fig. 2.11 DnDWebBrowser application for browsing Web sites that also accepts
drag-and-drop operations for viewing HTML pages (part 4 of 5).

Drag source

Drop target

Mouse cursor dragging
favorites.html.

Chapter 2 Advanced Swing Graphical User Interface Components 61

Lines 57–58 invoke method isDataFlavorSupported of interface Transfer-
able to determine the type of data the Transferable object contains. The datatransfer
API defines class DataFlavor to represent types of data contained in a Transfer-
able object. Class DataFlavor provides several static constants that developers can
use for comparison to common DataFlavors. Lines 57–58 determine if the Trans-
ferable object supports DataFlavor.javaFileListFlavor, which represents a
List of Files. If a user drags one or more Files from the host operating system’s file
manager, the dropped Transferable object will support DataFlavor.java-
FileListFlavor. If the Transferable object supports this DataFlavor, line 61
invokes method acceptDrop of class DropTargetDropEvent to indicate that the
drop operation is allowed for this DropTarget.

Lines 67–69 retrieve the List of Files from the Transferable object by
invoking method getTransferData of interface Transferable. Lines 73–78
iterate the List of Files, displaying each by invoking method goToURL of class Web-
BrowserPane. Line 80 invokes method dropComplete of class DropTarget-
DropEvent with a true argument to indicate that the drag-and-drop operation was
successful. If the DataFlavor was not DataFlavor.javaFileListFlavor, line
99 invokes method rejectDrop of class DropTargetDropEvent to reject the drag-
and-drop operation.

The drag-and-drop subsystem invokes method dragEnter of interface
DropTargetListener (lines 103–114) when a drag-and-drop operation enters a
DropTarget (e.g., the user drags the mouse into the DropTarget). Lines 106–107
check the DataFlavors that the Transferable object supports. If the Transfer-
able object supports DataFlavor.javaFileListFlavor, line 109 invokes
method acceptDrag of class DropTargetDragEvent to indicate that this

Fig. 2.11Fig. 2.11Fig. 2.11Fig. 2.11 DnDWebBrowser application for browsing Web sites that also accepts
drag-and-drop operations for viewing HTML pages (part 5 of 5).

WebBrowserPane
displaying
favorites.html.

62 Advanced Swing Graphical User Interface Components Chapter 2

DropTarget allows the drag-and-drop operation. If the Transferable object does
not support DataFlavor.javaFileListFlavor, line 113 invokes method
rejectDrag of class DropTargetDragEvent to indicate that the DropTarget
does not allow this drag-and-drop operation. The operating system may provide a visual
cue to the user to indicate that the DropTarget does not allow the drag-and-drop oper-
ation, for example, by changing the mouse cursor.

The drag-and-drop subsystem invokes method dragExit (line 117) of interface
DropTargetListener when the drag-and-drop operation leaves the DropTarget
and method dragOver (line 120) when the drag-and-drop operation passes over the
DropTarget. If the user changes the drop action (e.g., from DndCon-
stants.ACTION_COPY to DndConstants.ACTION_MOVE by pressing the Ctrl
key), the drag-and-drop subsystem invokes method dropActionChanged (line 123).
We provide empty implementations of these methods because we do not require any spe-
cial handling for these events.

2.7 Internationalization
Internationalization is the process of preparing an application for distribution in multiple
locales. A locale identifies the language, currency, character set, date formats and other
items most widely used for presenting information in a particular country or region. For ex-
ample, in the U. S. locale, the language is English, the currency is the U. S. dollar and the
date format is month/day/year. In the United Kingdom locale, the language also is English,
but the currency is the British pound and the date format is day/month/year. Applications
to be distributed in multiple locales must display information in the correct language and
with appropriate date, currency and other formats.

To internationalize an application, a developer must replace hard-coded strings that the
user might see, such as labels, tooltips and error messages, with strings contained in a
ResourceBundle. A ResourceBundle is a Java properties file that maps keys to
string values. For example, a ResourceBundle could contain the key exitButton-
Label with the string value Exit. Instead of hard coding the string Exit on a
JButton’s label, the developer could retrieve the label from the ResourceBundle.
The developer could then provide multiple versions of the ResourceBundle that use the
same keys, but provide string values in different languages. For example, the developer
could provide a ResourceBundle that contains French translations of each string value.

The developer also must use locale-sensitive classes to format data, such as dates,
times and currencies, using locale-specific formats. There are several locale-sensitive
classes that can perform this formatting, such as NumberFormat and DateFormat. A
locale-sensitive class uses information about the appropriate locale to produce its output.
For example, method format of class DateFormat takes as arguments a Date and a
Locale and returns an appropriately formatted String for the given Locale (e.g., the
string 3/8/2001 for the U. S. Locale).

Internationalized applications also must use Unicode characters. Unicode is a stan-
dard for encoding characters for most of the world’s languages. Java uses Unicode to rep-
resent all characters, but it is possible that data generated by other applications may not
use Unicode. Such data would need to be converted to Unicode before including it in an
internationalized application. For more information about Unicode, please see Appendix
I, Unicode.

Chapter 2 Advanced Swing Graphical User Interface Components 63

Figure 2.12 presents an internationalized WebToolBar class. The WebToolBar
constructor (lines 27–104) takes as an additional argument the Locale for which the
WebToolBar should be localized. Lines 30–31 load the ResourceBundle named
StringsAndLabels for the given Locale by invoking static method get-
Bundle of class ResourceBundle. Line 33 invokes method getString of class
ResourceBundle to retrieve the toolBarTitle string from the Resource-
Bundle. Line 33 also invokes method setName of class JToolBar to set the
JToolBar’s name to the retrieved value.

1 // WebToolBar.java
2 // Internationalized WebToolBar with components for navigating
3 // a WebBrowserPane.
4 package com.deitel.advjhtp1.gui.i18n;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9 import java.net.*;

10 import java.util.*;
11
12 // Java extension packages
13 import javax.swing.*;
14 import javax.swing.event.*;
15
16 // Deitel packages
17 import com.deitel.advjhtp1.gui.webbrowser.WebBrowserPane;
18 import com.deitel.advjhtp1.gui.actions.MyAbstractAction;
19
20 public class WebToolBar extends JToolBar
21 implements HyperlinkListener {
22
23 private WebBrowserPane webBrowserPane;
24 private JTextField urlTextField;
25
26 // WebToolBar constructor
27 public WebToolBar(WebBrowserPane browser, Locale locale)
28 {
29 // get resource bundle for internationalized strings
30 ResourceBundle resources = ResourceBundle.getBundle(
31 "StringsAndLabels", locale);
32
33 setName(resources.getString("toolBarTitle"));
34
35 // register for HyperlinkEvents
36 webBrowserPane = browser;
37 webBrowserPane.addHyperlinkListener(this);
38
39 // create JTextField for entering URLs
40 urlTextField = new JTextField(25);

Fig. 2.12Fig. 2.12Fig. 2.12Fig. 2.12 WebToolBar that uses ResourceBundles for internationalization
(part 1 of 3).

64 Advanced Swing Graphical User Interface Components Chapter 2

41 urlTextField.addActionListener(
42 new ActionListener() {
43
44 // navigate webBrowser to user-entered URL
45 public void actionPerformed(ActionEvent event)
46 {
47 // attempt to load URL in webBrowserPane
48 try {
49 URL url = new URL(urlTextField.getText());
50 webBrowserPane.goToURL(url);
51 }
52
53 // handle invalid URL
54 catch (MalformedURLException urlException) {
55 urlException.printStackTrace();
56 }
57 }
58 }
59);
60
61 // create backAction and configure its properties
62 MyAbstractAction backAction = new MyAbstractAction() {
63
64 public void actionPerformed(ActionEvent event)
65 {
66 // navigate to previous URL
67 URL url = webBrowserPane.back();
68
69 // display URL in urlTextField
70 urlTextField.setText(url.toString());
71 }
72 };
73
74 backAction.setSmallIcon(new ImageIcon(
75 getClass().getResource("images/back.gif")));
76
77 backAction.setShortDescription(
78 resources.getString("backToolTip"));
79
80 // create forwardAction and configure its properties
81 MyAbstractAction forwardAction = new MyAbstractAction() {
82
83 public void actionPerformed(ActionEvent event)
84 {
85 // navigate to next URL
86 URL url = webBrowserPane.forward();
87
88 // display new URL in urlTextField
89 urlTextField.setText(url.toString());
90 }
91 };
92

Fig. 2.12Fig. 2.12Fig. 2.12Fig. 2.12 WebToolBar that uses ResourceBundles for internationalization
(part 2 of 3).

Chapter 2 Advanced Swing Graphical User Interface Components 65

Lines 62–78 create an instance of class MyAbstractAction (Fig. 2.13) for the
WebToolBar’s backAction. Lines 64–71 implement method actionPerformed.
Lines 74–75 load the Icon for backAction, and lines 77–78 retrieve the international-
ized tooltip text for backAction from the ResourceBundle. Lines 81–97 create the
forwardAction in a similar manner.

The internationalized WebToolBar class also replaces the forward and back JBut-
tons with Actions. Abstract class MyAbstractAction (Fig. 2.13) extends class
AbstractAction to provide set methods for commonly used Action properties. The
MyAbstractAction constructor (lines 19–27) takes as arguments the name, Icon,
description and mnemonic key for the Action. Lines 23–26 invoke the appropriate set
methods to configure the Action to the given values. Each set method invokes method
putValue of interface Action with the appropriate key and the given value.

Figure 2.14 presents an internationalized WebBrowser class. Class WebBrowser
has a single user-visible string, which is the application window title. The WebBrowser
constructor (lines 26–42) takes as an argument the Locale for which the application
should be localized. Lines 28–29 invoke static method getBundle of class Resour-

93 forwardAction.setSmallIcon(new ImageIcon(
94 getClass().getResource("images/forward.gif")));
95
96 forwardAction.setShortDescription(
97 resources.getString("forwardToolTip"));
98
99 // add JButtons and JTextField to WebToolBar
100 add(backAction);
101 add(forwardAction);
102 add(urlTextField);
103
104 } // end WebToolBar constructor
105
106 // listen for HyperlinkEvents in WebBrowserPane
107 public void hyperlinkUpdate(HyperlinkEvent event)
108 {
109 // if hyperlink was activated, go to hyperlink's URL
110 if (event.getEventType() ==
111 HyperlinkEvent.EventType.ACTIVATED) {
112
113 // get URL from HyperlinkEvent
114 URL url = event.getURL();
115
116 // navigate to URL and display URL in urlTextField
117 webBrowserPane.goToURL(event.getURL());
118 urlTextField.setText(url.toString());
119 }
120 }
121 }

Fig. 2.12Fig. 2.12Fig. 2.12Fig. 2.12 WebToolBar that uses ResourceBundles for internationalization
(part 3 of 3).

66 Advanced Swing Graphical User Interface Components Chapter 2

ceBundle to load the ResourceBundle containing the appropriate internationalized
strings. Line 31 invokes method getString of class ResourceBundle to retrieve the
applicationTitle string.

1 // MyAbstractAction.java
2 // MyAbstractAction is an AbstractAction subclass that provides
3 // set methods for Action properties (e.g., name, icon, etc.).
4 package com.deitel.advjhtp1.gui.actions;
5
6 // Java core packages
7 import java.awt.event.*;
8
9 // Java extension packages

10 import javax.swing.*;
11
12 public abstract class MyAbstractAction extends AbstractAction {
13
14 // no-argument constructor
15 public MyAbstractAction() {}
16
17 // construct MyAbstractAction with given name, icon
18 // description and mnemonic key
19 public MyAbstractAction(String name, Icon icon,
20 String description, Integer mnemonic)
21 {
22 // initialize properties
23 setName(name);
24 setSmallIcon(icon);
25 setShortDescription(description);
26 setMnemonic(mnemonic);
27 }
28
29 // set Action name
30 public void setName(String name)
31 {
32 putValue(Action.NAME, name);
33 }
34
35 // set Action Icon
36 public void setSmallIcon(Icon icon)
37 {
38 putValue(Action.SMALL_ICON, icon);
39 }
40
41 // set Action short description
42 public void setShortDescription(String description)
43 {
44 putValue(Action.SHORT_DESCRIPTION, description);
45 }
46

Fig. 2.13Fig. 2.13Fig. 2.13Fig. 2.13 MyAbstractAction AbstractAction subclass that provides set
methods for Action properties (part 1 of 2).

Chapter 2 Advanced Swing Graphical User Interface Components 67

47 // set Action mnemonic key
48 public void setMnemonic(Integer mnemonic)
49 {
50 putValue(Action.MNEMONIC_KEY, mnemonic);
51 }
52
53 // abstract actionPerformed method to be implemented
54 // by concrete subclasses
55 public abstract void actionPerformed(ActionEvent event);
56 }

1 // WebBrowser.java
2 // WebBrowser is an application for browsing Web sites using
3 // a WebToolBar and WebBrowserPane.
4 package com.deitel.advjhtp1.gui.i18n;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9 import java.net.*;

10 import java.util.*;
11
12 // Java extension packages
13 import javax.swing.*;
14 import javax.swing.event.*;
15
16 // Deitel packages
17 import com.deitel.advjhtp1.gui.webbrowser.WebBrowserPane;
18
19 public class WebBrowser extends JFrame {
20
21 private ResourceBundle resources;
22 private WebToolBar toolBar;
23 private WebBrowserPane browserPane;
24
25 // WebBrowser constructor
26 public WebBrowser(Locale locale)
27 {
28 resources = ResourceBundle.getBundle(
29 "StringsAndLabels", locale);
30
31 setTitle(resources.getString("applicationTitle"));
32
33 // create WebBrowserPane and WebToolBar for navigation
34 browserPane = new WebBrowserPane();
35 toolBar = new WebToolBar(browserPane, locale);
36

Fig. 2.14Fig. 2.14Fig. 2.14Fig. 2.14 WebBrowser that uses ResourceBundles for internationalization
(part 1 of 2).

Fig. 2.13Fig. 2.13Fig. 2.13Fig. 2.13 MyAbstractAction AbstractAction subclass that provides set
methods for Action properties (part 2 of 2).

68 Advanced Swing Graphical User Interface Components Chapter 2

Class BrowserLauncher (Fig. 2.15) provides a JComboBox for selecting a
Locale and launching an internationalized WebBrowser. Line 25 creates the JCom-
boBox and lines 28–34 add sample Locales to the JComboBox. When the user selects
a Locale from the JComboBox, lines 43–44 invoke method launchBrowser of class
BrowserLauncher to launch a new WebBrowser. Method launchBrowser (lines
57–63) creates a new WebBrowser for the given Locale, sets its size and displays it.

The properties files of Fig. 2.16 and Fig. 2.17 contain internationalized strings for the
default Locale (Locale.US) and the French Locale (Locale.FRANCE). In a proper-
ties file, the # character begins a single-line comment. Each property has a key, followed
by an equals sign, followed by a value.

Note in Fig. 2.17 that the backToolTip value represents special characters (e.g.,
characters with accents) as Unicode escape sequences (line 3). Unicode can represent over
65,000 unique characters. A Unicode escape sequence begins with \u and contains four
hexadecimal digits that represent the special character. Java uses Unicode characters by
default and requires Unicode characters for proper internationalization.

37 // lay out WebBrowser components
38 Container contentPane = getContentPane();
39 contentPane.add(toolBar, BorderLayout.NORTH);
40 contentPane.add(new JScrollPane(browserPane),
41 BorderLayout.CENTER);
42 }
43 }

1 // BrowserLauncher.java
2 // BrowserLauncher provides a list of Locales and launches a new
3 // Internationalized WebBrowser for the selected Locale.
4 package com.deitel.advjhtp1.gui.i18n;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9 import java.util.*;

10
11 // Java extension packages
12 import javax.swing.*;
13
14 public class BrowserLauncher extends JFrame {
15
16 // JComboBox for selecting Locale
17 private JComboBox localeComboBox;
18
19 // BrowserLauncher constructor
20 public BrowserLauncher()
21 {

Fig. 2.15Fig. 2.15Fig. 2.15Fig. 2.15 BrowserLauncher application for selecting a Locale and launching
an internationalized WebBrowser (part 1 of 3).

Fig. 2.14Fig. 2.14Fig. 2.14Fig. 2.14 WebBrowser that uses ResourceBundles for internationalization
(part 2 of 2).

Chapter 2 Advanced Swing Graphical User Interface Components 69

22 super("Browser Launcher");
23
24 // create JComboBox and add Locales
25 localeComboBox = new JComboBox();
26
27 // United States, English
28 localeComboBox.addItem(Locale.US);
29
30 // France, French
31 localeComboBox.addItem(Locale.FRANCE);
32
33 // Russia, Russian
34 localeComboBox.addItem(new Locale("ru", "RU"));
35
36 // launch new WebBrowser when Locale selection changes
37 localeComboBox.addItemListener(
38 new ItemListener() {
39
40 public void itemStateChanged(ItemEvent event)
41 {
42 if (event.getStateChange() == ItemEvent.SELECTED)
43 launchBrowser((Locale)
44 localeComboBox.getSelectedItem());
45 }
46 }
47);
48
49 // lay out components
50 Container contentPane = getContentPane();
51 contentPane.setLayout(new FlowLayout());
52 contentPane.add(new JLabel("Select Locale"));
53 contentPane.add(localeComboBox);
54 }
55
56 // launch new WebBrowser for given Locale
57 private void launchBrowser(Locale locale)
58 {
59 WebBrowser browser = new WebBrowser(locale);
60 browser.setDefaultCloseOperation(DISPOSE_ON_CLOSE);
61 browser.setSize(640, 480);
62 browser.setVisible(true);
63 }
64
65 // execute application
66 public static void main(String args[])
67 {
68 BrowserLauncher launcher = new BrowserLauncher();
69 launcher.setDefaultCloseOperation(EXIT_ON_CLOSE);
70 launcher.setSize(200, 125);
71 launcher.setVisible(true);
72 }
73 }

Fig. 2.15Fig. 2.15Fig. 2.15Fig. 2.15 BrowserLauncher application for selecting a Locale and launching
an internationalized WebBrowser (part 2 of 3).

70 Advanced Swing Graphical User Interface Components Chapter 2

1 # English language strings for internationalized WebBrowser
2 # application title
3 applicationTitle = Deitel Web Browser
4
5 # title for WebToolBar
6 toolBarTitle = Web Navigation
7

Fig. 2.16Fig. 2.16Fig. 2.16Fig. 2.16 Properties file for default Locale (US English)—
StringsAndLabels.properties (part 1 of 2).

Fig. 2.15Fig. 2.15Fig. 2.15Fig. 2.15 BrowserLauncher application for selecting a Locale and launching
an internationalized WebBrowser (part 3 of 3).

Chapter 2 Advanced Swing Graphical User Interface Components 71

The filenames for properties files enable internationalized applications to load the
proper resources for the selected Locale. Note the names in the above figure captions for
the properties files. The properties file for the default Locale (i.e., the Locale used if
there is none specified) is named StringsAndLabels.properties. The properties
file for Locale.FRANCE is named StringsAndLabels_fr_FR.properties.
This name specifies that this is an internationalized version of the StringsAndLabels
properties file for the French language (fr) in the country of France (FR). The lowercase
language abbreviation is an ISO Language Code for the French language. The uppercase
country abbreviation is an ISO Country Code for the country of France. Together, the ISO
Language Code and ISO Country Code specify a locale. The list of ISO Language codes is
available at www.ics.uci.edu/pub/ietf/http/related/iso639.txt. The
list of ISO Country Codes is available at www.chemie.fu-berlin.de/diverse/
doc/ISO_3166.html.

2.8 Accessibility
Accessibility refers to the level of an application’s usability for people with disabilities. To
make an application accessible means to ensure that the application works for people with
disabilities. Many software applications are inaccessible to people with visual, learning or
mobility impairments. A high level of accessibility is difficult to achieve because there are
many different disabilities, language barriers, hardware and software inconsistencies and
so on. As greater numbers of people use computers, it is imperative that application design-
ers increase the accessibility of their applications. Recent legislation in the United States
has brought accessibility to the forefront of Web and application development.

8 # tooltip for forward toolbar button
9 forwardToolTip = Next Page

10
11 # tooltip for back button
12 backToolTip = Previous Page

1 # French language strings for internationalized WebBrowser
2 # tooltip for back button
3 backToolTip = Page pr\u00E9c\u00E9dente
4
5 # application title
6 applicationTitle = Logiciel de Navigation de Deitel
7
8 # title for WebToolBar
9 toolBarTitle = Navigation des Pages sur la Toile

10
11 # tooltip for forward toolbar button
12 forwardToolTip = Prochaine Page

Fig. 2.17Fig. 2.17Fig. 2.17Fig. 2.17 Properties file for French Locale—
StringsAndLabels_fr_FR.properties.

Fig. 2.16Fig. 2.16Fig. 2.16Fig. 2.16 Properties file for default Locale (US English)—
StringsAndLabels.properties (part 2 of 2).

72 Advanced Swing Graphical User Interface Components Chapter 2

The Swing API designers took advantage of the Java Accessibility API to build acces-
sibility features into every Swing component to facilitate creating accessible Java applica-
tions. As a result, Java developers who use the Swing APIs to build application GUIs need
only use the Swing APIs properly to enable most accessibility features. For example, when
creating GUI elements such as JButtons and JMenuItems, developers should provide
tooltip text that describes the component and mnemonic keys or accelerator keys for
enabling keyboard access. These simple properties enable accessibility tools, such as
screen readers, to convey important descriptive information to the user. Enabling keyboard
access makes applications easier to navigate for all users, and also allows accessibility tools
to navigate the application more easily.

When it is not appropriate for a GUI component to have a tooltip or label, developers
can use methods setAccessibleName and setAccessibleDescription of
class AccessibilityContext to provide descriptive text. Each Swing component
contains an AccessibilityContext for enabling the component’s accessibility fea-
tures. Assistive technologies (e.g., screen readers, input devices) then use the Java Access
Bridge to interact with the Java application to take advantage of the developer-provided
descriptive text.

Class ActionSample2 (Fig. 2.18) modifies class ActionSample (Fig. 2.5) to
demonstrate adding accessible component names and descriptions to Swing components.

Action actionSample (lines 26–50) now contains accessible text in the dialog box
that opens when actionSample is fired. Lines 36–37 declare an AccessibleContext
object for the JOptionPane action by calling method getAccessibleContext on
action. Line 38 calls method setAccessibleName to set action’s name in Acces-
sibleContext actionContext. Lines 39–41 call method setAccessible-
Description of class AccessibleContext to set actionSample’s description.
Line 53 specify a name for actionSample and lines 60–61 specify a short description.
Lines 64–65 assign a mnemonic key to actionSample.

Action exitAction (lines 68–92) now contains accessible text in the dialog box
that opens when exitSample is fired. Lines 78–79 obtain an AccessibleContext
for the JOptionPane by invoking method getAccessibleContext. Line 80 calls
method setAccessibleName to specify a name for the JOptionPane’s Accessible-
Context. Lines 81–83 call method setAccessibleContext. Line 96 specifies a
name for exitAction by invoking method putValue of interface Action. Lines
102–103 associate a short description with exitAction. Lines 106–107 assign a
mnenonic key to exitAction.

1 // ActionSample2.java
2 // ActionSample2 demonstrates the Accessibility features of
3 // Swing components.
4 package com.deitel.advjhtp1.gui.actions;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9

Fig. 2.18Fig. 2.18Fig. 2.18Fig. 2.18 ActionSample2 demonstrates Accessibility package (part 1
of 5).

Chapter 2 Advanced Swing Graphical User Interface Components 73

10 // Java extension packages
11 import javax.accessibility.*;
12 import javax.swing.*;
13
14 public class ActionSample2 extends JFrame {
15
16 // Swing Actions
17 private Action sampleAction;
18 private Action exitAction;
19
20 // ActionSample2 constructor
21 public ActionSample2()
22 {
23 super("Using Actions");
24
25 // create AbstractAction subclass for sampleAction
26 sampleAction = new AbstractAction() {
27
28 public void actionPerformed(ActionEvent event)
29 {
30 // display message indicating sampleAction invoked
31 JOptionPane action = new JOptionPane(
32 "The sampleAction was invoked.");
33
34 // get AccessibleContext for action and set name
35 // and description
36 AccessibleContext actionContext =
37 action.getAccessibleContext();
38 actionContext.setAccessibleName("sampleAction");
39 actionContext.setAccessibleDescription(
40 "SampleAction opens a dialog box to demonstrate"
41 + " the Action class.");
42
43 // create and display dialog box
44 action.createDialog(ActionSample2.this,
45 "sampleAction").setVisible(true);
46
47 // enable exitAction and associated GUI components
48 exitAction.setEnabled(true);
49 }
50 };
51
52 // set Action name
53 sampleAction.putValue(Action.NAME, "Sample Action");
54
55 // set Action Icon
56 sampleAction.putValue(Action.SMALL_ICON, new ImageIcon(
57 getClass().getResource("images/Help24.gif")));
58
59 // set Action short description (tooltip text)
60 sampleAction.putValue(Action.SHORT_DESCRIPTION,
61 "A Sample Action");

Fig. 2.18Fig. 2.18Fig. 2.18Fig. 2.18 ActionSample2 demonstrates Accessibility package (part 2
of 5).

74 Advanced Swing Graphical User Interface Components Chapter 2

62
63 // set Action mnemonic key
64 sampleAction.putValue(Action.MNEMONIC_KEY,
65 new Integer('S'));
66
67 // create AbstractAction subclass for exitAction
68 exitAction = new AbstractAction() {
69
70 public void actionPerformed(ActionEvent event)
71 {
72 // display message indicating sampleAction invoked
73 JOptionPane exit = new JOptionPane(
74 "The exitAction was invoked.");
75
76 // get AccessibleContext for exit and set name and
77 // description
78 AccessibleContext exitContext =
79 exit.getAccessibleContext();
80 exitContext.setAccessibleName("exitAction");
81 exitContext.setAccessibleDescription("ExitAction"
82 + " opens a dialog box to demonstrate the"
83 + " Action class and then exits the program.");
84
85 // create and display dialog box
86 exit.createDialog(ActionSample2.this,
87 "exitAction").setVisible(true);
88
89 // exit program
90 System.exit(0);
91 }
92 };
93
94 // set Action name
95 exitAction.putValue(Action.NAME, "Exit");
96
97 // set Action icon
98 exitAction.putValue(Action.SMALL_ICON, new ImageIcon(
99 getClass().getResource("images/EXIT.gif")));
100
101 // set Action short description (tooltip text)
102 exitAction.putValue(Action.SHORT_DESCRIPTION,
103 "Exit Application");
104
105 // set Action mnemonic key
106 exitAction.putValue(Action.MNEMONIC_KEY,
107 new Integer('x'));
108
109 // disable exitAction and associated GUI components
110 exitAction.setEnabled(false);
111
112 // create File menu
113 JMenu fileMenu = new JMenu("File");

Fig. 2.18Fig. 2.18Fig. 2.18Fig. 2.18 ActionSample2 demonstrates Accessibility package (part 3
of 5).

Chapter 2 Advanced Swing Graphical User Interface Components 75

114
115 // add sampleAction and exitAction to File menu to
116 // create a JMenuItem for each Action
117 fileMenu.add(sampleAction);
118 fileMenu.add(exitAction);
119
120 fileMenu.setMnemonic('F');
121
122 // create JMenuBar and add File menu
123 JMenuBar menuBar = new JMenuBar();
124 menuBar.add(fileMenu);
125 setJMenuBar(menuBar);
126
127 // create JToolBar
128 JToolBar toolBar = new JToolBar();
129
130 // add sampleAction and exitAction to JToolBar to create
131 // JButtons for each Action
132 toolBar.add(sampleAction);
133 toolBar.add(exitAction);
134
135 // get AccessibleContext for toolBar and set name and
136 // description
137 AccessibleContext toolContext =
138 toolBar.getAccessibleContext();
139 toolContext.setAccessibleName("ToolBar");
140 toolContext.setAccessibleDescription("ToolBar contains"
141 + " sampleAction button and exitAction button.");
142
143 // create JButton and set its Action to sampleAction
144 JButton sampleButton = new JButton();
145 sampleButton.setAction(sampleAction);
146
147 // get AccessibleContext for sampleButton and set name
148 // and description
149 AccessibleContext sampleContext =
150 sampleButton.getAccessibleContext();
151 sampleContext.setAccessibleName("SampleButton");
152 sampleContext.setAccessibleDescription("SampleButton"
153 + " produces a sampleAction event.");
154
155 // create JButton and set its Action to exitAction
156 JButton exitButton = new JButton(exitAction);
157
158 // get AccessibleContext for exitButton and set name and
159 // description
160 AccessibleContext exitContext =
161 exitButton.getAccessibleContext();
162 exitContext.setAccessibleName("ExitButton");
163 exitContext.setAccessibleDescription("ExitButton"
164 + " produces an exitAction event.");
165

Fig. 2.18Fig. 2.18Fig. 2.18Fig. 2.18 ActionSample2 demonstrates Accessibility package (part 4
of 5).

76 Advanced Swing Graphical User Interface Components Chapter 2

Line 120 adds a mnemonic key for the File menu to enable keyboard access to this
menu. Lines 137–138 obtain the AccessibleContext for toolBar. Line 139 sets a
name for toolBar by invoking method setAccessibleName. Lines 140–141 set a
description for toolBar by invoking method setAccessibleDescription. Lines
149–150 obtain an AccessibleContext for JButton sampleButton. Line 151
sets a name for sampleButton by invoking method setAccessibleName. Lines
152–153 set a description for sampleButton by invoking method setAccessible-
Description. Lines 160–161 obtain an AccessibleContext for JButton
exitButton. Line 162 sets a name for exitButton by invoking method setAcces-
sibleName. Lines 163–164 set a description for exitButton by invoking method
setAccessibleDescription.

We will download the Java Access Bridge and a demonstration of JAWS for Windows
3.7 to demonstrate the accessibility features of ActionSample2. The Java Access
Bridge allows assistive programs in Windows to use the accessibility information of a Java
program. The Java Access Bridge can be downloaded at

java.sun.com/products/accessbridge

JAWS for Windows is a screen reader from Henter-Joyce (www.hj.com). A demonstra-
tion version of JAWS can be downloaded at

www.hj.com/JAWS/JAWS37DemoOp.htm

Download and install both programs to try the rest of the example in this section.
With the Access Bridge installed and JAWS running in the background, execute

ActionSample2. JAWS reads the name of the new window that opens. The GUI of
ActionSample2 (Fig. 2.19) is identical to the original ActionSample (Fig. 2.5).

166 // lay out JButtons in JPanel
167 JPanel buttonPanel = new JPanel();
168 buttonPanel.add(sampleButton);
169 buttonPanel.add(exitButton);
170
171 // add toolBar and buttonPanel to JFrame's content pane
172 Container container = getContentPane();
173 container.add(toolBar, BorderLayout.NORTH);
174 container.add(buttonPanel, BorderLayout.CENTER);
175
176 }
177
178 // execute application
179 public static void main(String args[])
180 {
181 ActionSample2 sample = new ActionSample2();
182 sample.setDefaultCloseOperation(EXIT_ON_CLOSE);
183 sample.pack();
184 sample.setVisible(true);
185 }
186 }

Fig. 2.18Fig. 2.18Fig. 2.18Fig. 2.18 ActionSample2 demonstrates Accessibility package (part 5
of 5).

Chapter 2 Advanced Swing Graphical User Interface Components 77

Switch between the buttons by pressing Tab to move forward or Shift + Tab to move back-
ward. JAWS reads the name of the new button whenever the focus changes. To press the
button that holds the focus, press the space bar. The sampleAction dialog opens and
JAWS reads its name. Pressing the space bar or the Enter key closes the dialog. The Exit
button is now available in the GUI. Switch the focus to the larger button labeled Sample
Action (not the one in the tool bar) and press Insert + F1. This JAWS command reads the
description attached to the button’s AccessibleContext (Fig. 2.20). Do the same
command on the Exit button to hear its description (Fig. 2.21). ActionSample2’s
Actions are also available through the File menu. The File menu’s mnemonic key is the
underlined letter F. Pressing Alt + F opens the File menu and causes JAWS to read the
menu name (Fig. 2.22). The arrow keys move the cursor within the menu. JAWS reads the
name of each menu item as it is selected (Fig. 2.23). Pressing the space bar, Enter key, or
a mnemonic key activates one of the Actions.

Fig. 2.19Fig. 2.19Fig. 2.19Fig. 2.19 Actions sampleAction and exitAction of
ActionSample2.

Fig. 2.20Fig. 2.20Fig. 2.20Fig. 2.20 AccessibleDescription of sampleButton.

"SampleButton produces a sampleAction event."

78 Advanced Swing Graphical User Interface Components Chapter 2

2.9 Internet and World Wide Web Resources

Swing

java.sun.com/products/jfc/tsc
The Swing Connection contains technical articles and documentation for Swing components.

www.javaworld.com/javaworld/topicalindex/jw-ti-foundation.html
JavaWorld collection of Swing-related articles.

Fig. 2.21Fig. 2.21Fig. 2.21Fig. 2.21 AccessibleDescription of exitButton.

Fig. 2.22Fig. 2.22Fig. 2.22Fig. 2.22 Sample Action menu item description.

Fig. 2.23Fig. 2.23Fig. 2.23Fig. 2.23 Exit menu item description.

"ExitButton produces an exitAction event."

"Sample Action."

"ExitT."

Chapter 2 Advanced Swing Graphical User Interface Components 79

Internationalization

www.ibm.com/developerworks/theme/international-index.html
IBM offers links to internationalization resources including multilingual software and international
calendars.

developer.java.sun.com/developer/technicalArticles/Intl/index.html
This site provides numerous articles on learning how to localize and internationalize various Java pro-
grams.

www.onjava.com/pub/a/onjava/2001/04/12/internationalization.html
This article, Java Internationalization and Localization, by Jaric Sng describes the steps for access-
ing, installing, and determining fonts, focusing on Japanese, Chinese, and Korean.

java.sun.com/j2se/1.3/docs/guide/intl
This site supplies a guide to Java internationalization. It includes a detailed section on formatting cur-
rencies, time zones, dates, texts, messages and other international dissimilarities.

Accessibility

java.sun.com/products/jfc/jaccess-1.3/doc/guide.html
Sun Microsystems has improved Java accessibility through Java Accessibility API and Java Accessi-
bility Utilities. Check out a detailed description of these packages at this site.

developer.java.sun.com/developer/earlyAccess/jaccesshelper
The Java Accessibility Helper examines Java programs for accessibility issues and provides a report
that details changes needed to be made. This is an early-access download and requires a free registra-
tion with the Java Developer Connection Web site.

www.ibm.com/able/snsjavag.html
"IBM Guidelines for Writing Accessible Applications Using 100% Pure Java," by Richard S. Schwer-
dtfeger, states the necessary features that should be provided to create full accessibility. In addition,
this online guidebook discusses the various programs to achieve accessibility.

www.sun.com/access/developers/access.quick.ref.html
This site simply emphasizes the importance of accessibility and gives tips on making applications ac-
cessible.

www.w3.org/WAI
The World Wide Web Consortium’s Web Accessibility Initiative (WAI) site promotes design of uni-
versally accessible Web sites. This site will help you keep up-to-date with current guidelines and
forthcoming recommendations for Web accessibility.

www.sun.com/access/gnome
GNOME Developer’s Site provides information on various assistive technologies, such as screen
magnifiers and screen keyboards for Linux and Unix platforms that use the GNOME user interface.

www.voice-assistant.com
The Voice Mate V4 assists the blind with using a computer. It speaks the menu options and characters
as they are typed.

www.magnifiers.org
On this site, you can find information and downloads for screen magnifiers.

www.voicerecognition.com
This site contains information on various voice-recognition products.

trace.wisc.edu/world/web
This site explains how to make Web sites more accessible to disabled users. It also gives multiple ref-
erences to other sites on Web accessibility.

80 Advanced Swing Graphical User Interface Components Chapter 2

www.access-board.gov/508.htm
Electronic version of Section 508 of the Rehabilitation Act, which mandates that government agen-
cies provide accessible electronic access to information from federal agencies.

SUMMARY
• Swing provides three basic types of text components for presenting and editing text. Class JTex-
tComponent is the base class for all Swing text components, including JTextField, JTex-
tArea and JEditorPane.

• JTextField is a single-line text component suitable for obtaining simple user input or display-
ing information such as form field values, calculation results and so on. JPasswordField is a
subclass of JTextField suitable for obtaining user passwords.

• JEditorPane provides enhanced text-rendering capabilities. JEditorPane supports styled
documents that include formatting, font and color information. JEditorPane is capable of ren-
dering HTML documents as well as Rich Text Format (RTF) documents.

• Toolbars are GUI containers typically located below an application’s menus. Toolbars contain but-
tons and other GUI components for commonly used features, such as cut, copy and paste, or nav-
igation buttons for a Web browser.

• Class javax.swing.JToolBar enables developers to add toolbars to Swing user interfaces.
JToolBar also enables users to modify the appearance of the JToolBar in a running application.

• Users can drag a JToolBar from the top of a windows and "dock" the JToolBars on the side
or bottom. Users also can drag the JToolBar away from the application window to create a float-
ing JToolBar.

• Based on JToolBar’s inheritance hierarchy, each JToolBar also is a java.awt.Con-
tainer and therefore can contain other GUI components.

• A JToolBar has property orientation that specifies how the JToolBar will arrange its
child components. The default is horizontal orientation, which indicates that the JToolBar lays
out its child components next to one another.

• The Command design pattern enables developers to define requests (e.g., a user request to copy
text) once in a reusable object that the developer then can add to a menu, toolbar or pop-up menu.
This design pattern is called Command because it defines a user command or instruction.

• An Action, which implements the Command design pattern, represents user-interface logic and
properties for GUI components that represent that logic, such as the label for a button, the text for
a tool tip and the mnemonic key for keyboard access.

• The logic for an Action takes the form of an actionPerformed method that the event mech-
anism invokes in response to the user activating an interface component (e.g., the user clicking a
JButton).

• Interface Action extends interface ActionListener, which enables Actions to process
ActionEvents generated by GUI components. Actions provide an additional benefit in that
the developer can enable or disable all GUI components associated with an Action by enabling
or disabling the Action itself.

• that sampleAction was invoked. Line 33 then invokes method setEnabled of interface
Action on the exitAction reference. This enables the exitAction and its associated GUI
components. Note that Actions are enabled by default. We disabled the exitAction (line 80)
to demonstrate that this disables the GUI components associated with that Action.

• JSplitPane and JTabbedPane are container components that enable developers to present
large amounts of information in a small screen area.

Chapter 2 Advanced Swing Graphical User Interface Components 81

• JSplitPane divides two components with a divider that users can reposition to expand and con-
tract the visible areas of the JSplitPane’s child components. JSplitPanes can contain only
two child components, although each child component may contain nested components.

• The constant JSplitPane.HORIZONTAL_SPLIT specifies the JSplitPane should display
its child components side-by-side. The constant JSplitPane.VERTICAL_SPLIT specifies
that the JSplitPane should display its child components one on top of the other.

• Adding child components to JScrollPanes before adding those components to a JSplit-
Pane ensures that the user will be able to view all the content in each child component by scrolling
if necessary.

• JTabbedPane presents multiple components in separate tabs, which the user can navigate using
a mouse or keyboard. Dialog boxes often use components similar to JTabbedPanes.

• Multiple document interfaces allow users to view multiple documents in a single application. Each
document appears in a separate window in the application. The user can arrange, resize, iconify
(i.e., minimize) and maximize these separate document windows like application windows on the
desktop.

• JInternalFrames behave much like JFrames. Users can maximize, iconify, resize, open and
close JInternalFrames. JInternalFrames have title bars with buttons for iconifying,
maximizing and closing. Users also can move JInternalFrames within the JDesktopPane.

• JInternalFrames have no size and are invisible by default. When creating a new JInter-
nalFrame, be sure to invoke method setSize to size the JInternalFrame and setVis-
ible(true) to make the JInternalFrame visible.

• Drag and drop enables users to move items around the desktop and to move and copy data among
applications using mouse gestures. A gesture is a mouse movement that corresponds to a drag-and-
drop operation, such as dragging a file from one folder and dropping the file into another folder.

• The data transfer API—package java.awt.datatransfer—enables copying and moving
data within a single application or among multiple applications. The drag-and-drop API enables
Java applications to recognize drag-and-drop gestures and to respond to drag-and-drop operations.

• A drag-and-drop operation uses the data transfer API to transfer data from the drag source to the
drop target. Applications can use the drag-and-drop API to recognize drag-and-drop operations
and use the data transfer API to retrieve the data transferred through those drag-and-drop opera-
tions.

• The drag-and-drop subsystem invokes method drop of interface DropTargetListener
when the user drops an object on a DropTarget.

• Interface java.awt.datatransfer.Transferable declares methods that represent an
object that can be transferred among applications. As part of the datatransfer API, interface
Transferable represents objects that may be transferred through the system clipboard (e.g.,
via cut-and-paste operations) and objects that are transferred through drag and drop.

• Internationalization is the process of preparing an application for distribution in multiple locales.
A locale identifies the language, currency, character set, date formats and other items most widely
used for presenting information in a particular country or region.

• Applications to be distributed in multiple locales must display information in the correct language
and with appropriate date, currency and other formats.

• A ResourceBundle is a Java properties file that maps keys to string values. For example, a
ResourceBundle could contain the key exitButtonLabel with the string value Exit. In-
stead of hard coding the string Exit on a JButton’s label, the developer could retrieve the label
from the ResourceBundle. The developer could then provide multiple versions of the Re-
sourceBundle that use the same keys, but provide string values in different languages.

82 Advanced Swing Graphical User Interface Components Chapter 2

• The developer also must use locale-sensitive classes to format data, such as dates, times and cur-
rencies, using locale-specific formats. There are several locale-sensitive classes that can perform
this formatting, such as NumberFormat and DateFormat.

• Internationalized applications also must use Unicode characters. Unicode is a standard for encod-
ing characters for most of the world’s languages. Java uses Unicode to represent all characters.

• The filenames for properties files enable internationalized applications to load the proper resourc-
es for the selected Locale. These filenames must use a lowercase language abbreviation—called
an ISO Language Code—and an uppercase country abbreviation—called an ISO Country Code.

• Accessibility refers to the level of an application’s usability for people with disabilities. To make
an application accessible means to ensure that the application works for people with disabilities.

• Many software applications are inaccessible to people with visual, learning or mobility impair-
ments. A high level of accessibility is difficult to achieve because there are many different disabil-
ities, language barriers, hardware and software inconsistencies and so on.

• Recent legislation in the United States has brought accessibility to the forefront of Web and appli-
cation development.

• The Swing API designers took advantage of the Java Accessibility API to build accessibility fea-
tures into every Swing component to facilitate creating accessible Java applications. As a result,
Java developers who use the Swing APIs to build application GUIs need only use the Swing APIs
properly to enable most accessibility features.

• Developers should provide tooltip text that describes each component and mnemonic keys or ac-
celerator keys for enabling keyboard access. These simple properties enable accessibility tools,
such as screen readers, to convey important descriptive information to the user. Enabling keyboard
access makes applications easier to navigate for all users, and also allows accessibility tools to
navigate the application more easily.

• Methods setAccessibleName and setAccessibleDescription of class Accessi-
bilityContext enable developers to provide descriptive text for components. Each Swing
component contains an AccessibilityContext for enabling the component’s accessibility
features.

• Assistive technologies (e.g., screen readers, input devices) can use the Java Access Bridge to in-
teract with Java applications to take advantage of the developer-provided descriptive text.

TERMINOLOGY
AbstractAction class drag and drop
accessibility drag-and-drop gesture
AccessibleContext class drag-and-drop operation
Action interface DropTarget class
Action.ACCELERATOR_KEY constant DropTargetDragEvent class
Action.ACTION_COMMAND_KEY constant DropTargetDropEvent class
Action.MNEMONIC_KEY constant DropTargetListener interface
Action.NAME constant HyperlinkEvent class
Action.SHORT_DESCRIPTION constant HyperlinkEvent.EventType.

 ACTIVATED constantAction.SMALL_ICON constant
addHyperlinkListener method of class
 JEditorPane

HyperlinkListener interface
iconify

Command design pattern internationalization
DataFlavor.javaFileListFlavor
 constant

Java Access Bridge
JDesktopPane class

DnDConstants class JEditorPane class

Chapter 2 Advanced Swing Graphical User Interface Components 83

SELF-REVIEW EXERCISES
2.1 State which of the following are true and which are false. If false, explain why.

a) The Abstract Windowing Toolkit provides a richer set of components than the Swing
component set.

b) Swing provides a pluggable look and feel that enables components to change their ap-
pearance.

c) JEditorPane is capable of rendering only plain text, not richly styled text.
d) Toolbars—implemented by class JToolBar—enable developers to provide users with

quick access to commonly used user-interface elements, such as cut, copy and paste.
e) Interface Action provides set and get methods for each Action property.
f) JSplitPanes can contain any number of child components.

2.2 Fill in the blanks in each of the following:
a) The drag-and-drop API uses the API to transfer data through drag-and-drop

operations.
b) A multiple document interface uses instances of class for individual win-

dows, which are contained in a .
c) The JInternalFrame constructor takes four boolean arguments that indicate whether the

window is , , and ..
d) A identifies the language, currency, character set, date formats and other

items most widely used for presenting information in a particular country or region.
e) refers to the level of an application’s usability for people with disabilities.

ANSWERS TO SELF-REVIEW EXERCISES
2.1 a) False. Swing provides a richer set of components than the older AWT. b) True. c) False.
JEditorPane can render HTML and RTF documents, which can contain rich styling information.
d) True. e) False. Interface Action provides method putValue, which enables programmers to
specify the property name and value as a key/value pair. f) False. Each JSplitPane may contain
exactly two child components, but each child component may contain its own child components.

2.2 a) data transfer API. b) JInternalFrame, JDesktopPane. c) resizable, closable, max-
imizable, iconifiable. d) Locale. e) Accessibility.

EXERCISES
2.3 Modify class WebToolBar (Fig. 2.3) to include a JComboBox from which the user can se-
lect URLs from the history.

JInternalFrame class putValue method of interface Action
JPasswordField class ResourceBundle class
JSplitPane class screen reader
JSplitPane.HORIZONTAL_SPLIT constant setAccessibleDescription method of

 class AccessibleContextJSplitPane.VERTICAL_SPLIT constant
JTabbedPane class setAccessibleName method of class

 AccessibleContextJTextArea class
JTextComponent class setEditable method of class JEditorPane
JTextField class setEnabled method of interface Action
JToolBar class tab
Locale class toolbar
maximize tooltip
multiple-document interface Transferable interface
orientation property of class JToolBar

84 Advanced Swing Graphical User Interface Components Chapter 2

2.4 Create an image-viewing application that supports drag-and-drop loading of images. When
the user drags and drops a image file onto the application window, load that image in an ImageIcon
and display the ImageIcon in a JPanel.

2.5 Modify class ActionSample2 (Fig. 2.18) to use ResourceBundles for all user-visible
Strings in the application. If you know a language other than English, provide a ResourceBun-
dle that contains Strings in that language.

2.6 Making an application accessible requires that the application provides keyboard navigation
for all the application’s functionality. Unplug your mouse from your computer and try using various
programs, such as word processors, Web browsers and the Java programs in this chapter. What about
these applications makes it difficult to navigate without a mouse? Is there functionality that you can-
not access using a keyboard?

3
Model-View-Controller

Objectives
• To understand the model-view-controller (MVC)

architecture for separating data, presentation and user
input logic.

• To understand the Observer design pattern.
• To understand MVC’s use in Java’s Swing GUI

components.
• To understand the default model implementations for

Swing components.
• To understand the use of TableModels to represent

tabular data for JTables.
• To understand tree data structures and their use as
TreeModels for JTrees.

The universe is wider than our views of it.
Henry David Thoreau

Let all your views in life be directed to a solid, however
moderate, independence; …
Junius

I think that I shall never see

A poem as lovely as a tree.
Joyce Kilmer

86 Model-View-Controller Chapter 3

3.1 Introduction
In this chapter, we introduce the model-view-controller architecture (MVC) and its partic-
ular application in Java’s Swing classes. The MVC architecture uses object-oriented design
principles to modularize applications into data components, presentation components and
input-processing components. Data components maintain the raw application data, such as
the text of a document in a word processor or the locations of the pieces in a game of chess.
The presentation components most commonly provide a visual representation of applica-
tion data—for example a 3D graphic showing the chessboard and the arrangement of piec-
es. The input-processing components handle input from the user, such as dragging the
mouse to move a piece on the chess board.

MVC has many uses in desktop applications, enterprise applications, simulations and
other types of programs. In this chapter, we discuss MVC in general and its variant, the del-
egate-model architecture. We also introduce the Observer design pattern, which is a design
pattern built into the MVC architecture. After reading this chapter, you will be able to
design your own programs using MVC. You also will be able to take advantage of
advanced Swing components that use the delegate-model architecture, such as JList,
JTable and JTree.

3.2 Model-View-Controller Architecture
The model-view-controller architecture (MVC) separates application data (contained in the
model) from graphical presentation components (the view) and input-processing logic (the
controller). MVC originally appeared in Smalltalk-80 as a method for separating user in-
terfaces from underlying application data.1 Figure 3.1 shows the relationships between
components in MVC. In our Enterprise Java case study (Chapters 17–20), we will show that
MVC is applicable across a wide range of problems and can make applications easier to
maintain and extend.

The controller implements logic for processing user input. The model contains appli-
cation data, and the view generates a presentation of the data stored in the model. When a

Outline

3.1 Introduction
3.2 Model-View-Controller Architecture
3.3 Observable Class and Observer Interface
3.4 JList

3.5 JTable

3.6 JTree

3.6.1 Using DefaultTreeModel
3.6.2 Custom TreeModel Implementation

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1. E. Gamma et al., Design Patterns (New York: Addison-Wesley Publishing Company, 1995), 4.

Chapter 3 Model-View-Controller 87

user provides some input (e.g., by typing text in a word processor,) the controller modi-
fies the model with the given input. It is important to note that the model contains only
the raw application data. In a simple text editor, the model might contain only the char-
acters that make up the document. When the model changes, it notifies the view of the
change, so that the view can update its presentation with the changed data. The view in
a word processor might display the characters on the screen in a particular font, with a
particular size, etc.

MVC does not restrict an application to a single view and controller. In a word pro-
cessor, for example, there might be two views of a single document model. One view might
display the document as an outline, and the other might display the document in a print-
preview window. The word processor also may implement multiple controllers, such as a
controller for handling keyboard input and a controller for handling mouse selections. If
either controller makes a change in the model, both the outline view and the print-preview
window show the change immediately, because the model notifies all views of any
changes. A developer can provide additional views and controllers for the model without
changing the existing components.

Java’s Swing components implement a variation of MVC that combines the view and
controller into a single object, called a delegate (Fig. 3.2). The delegate provides both a
graphical presentation of the model and an interface for modifying the model. For example,
every JButton has an associated ButtonModel for which the JButton is a delegate.
The ButtonModel maintains state information, such as whether the JButton is pressed
and whether the JButton is enabled, as well as a list of ActionListeners. The
JButton provides a graphical presentation (e.g., a rectangle on the screen with a label and
a border) and modifies the ButtonModel’s state (e.g., when the user presses the
JButton). We discuss several Swing components that implement the delegate-model
architecture throughout this chapter.

Fig. 3.1Fig. 3.1Fig. 3.1Fig. 3.1 Model-view-controller architecture.

Fig. 3.2Fig. 3.2Fig. 3.2Fig. 3.2 Delegate-model architecture in Java Swing components.

notifiesmodifies
ModelController View

notifies

modifies

Delegate
Model

88 Model-View-Controller Chapter 3

3.3 Observable Class and Observer Interface
The Observer design pattern enables loose coupling between an object and its dependent ob-
jects.2 Loosely coupled objects interact by invoking methods declared in well-known inter-
faces, instead of invoking methods declared in particular classes. Using interface methods
prevents each object from relying on the other objects’ concrete class type. For example, Ja-
va’s event-handling mechanism uses loose coupling to notify objects of events. If an object
needs to handle certain events, it implements the appropriate listener interface (e.g.,
ActionListener). Objects that generate events invoke listener interface methods to no-
tify listening objects of events. This loose coupling enables a JButton, for example, to
send an ActionEvent to a JFrame subclass that implements ActionListener. The
JButton interacts with the JFrame subclass only through method actionPerformed
of interface ActionListener, and not through any method that is specific to the
JFrame subclass. The JButton can send ActionEvents to other objects that also im-
plement interface ActionListener (e.g., a programmer-defined class or an inner class).

Class java.util.Observable represents a model in MVC, or the subject in the
Observer design pattern. Class Observable provides method addObserver, which
takes a java.util.Observer argument. Interface Observer represents the view in
MVC and enables loose coupling between an Observable object and its Observers.
When the Observable object changes, it notifies each registered Observer of the
change. The Observer can be an instance of any class that implements interface
Observer; because the Observable object invokes methods defined in interface
Observer, the objects remain loosely coupled. We discuss the details of this interaction
in the example that follows.

The example in Fig. 3.4–Fig. 3.10. uses the MVC architecture, class Observable
and interface Observer to implement an AccountManager application for managing
bank account information. Figure 3.3 illustrates the application’s MVC architecture. The
AccountController accepts user input in the form of dollar amounts entered in a
JTextField. The user then selects a JButton, either to withdraw or deposit the given
amount, and the AccountController modifies the Account to execute the transac-
tion. Class Account is an Observable object that acts as the application’s model.
When the AccountController performs the withdrawal or deposit, the Account
notifies each view (AccountTextView, AccountBarGraphView and Account-
PieChartView) that the Account information has changed. Each view updates its dis-
play with the modified Account information.

Class Account (Fig. 3.4) represents a bank account in the AccountManager
application (Fig. 3.10). Class Account extends class Observable (line 9) and acts as a
model in the application. Class Account has balance and name properties that repre-
sent the amount of money in the Account and a short description of the Account. The
Account constructor (lines 18–22) initializes the name and balance properties.

Method setBalance (lines 25–35) changes the model by updating the account
balance. The MVC architecture requires the model to notify its views when the model
changes. Line 31 invokes method setChanged of class Observable to set the model’s
changed flag. Line 34 invokes method notifyObservers of class Observable to
notify all Account Observers (i.e., views) of the change. An Observable object

2. E. Gamma et al., Design Patterns (New York: Addison-Wesley Publishing Company, 1995), 293.

Chapter 3 Model-View-Controller 89

must invoke method setChanged before invoking method notifyObservers.
Method notifyObservers invokes method update of interface Observer for each
registered Observer. Method getBalance (lines 38–41) simply returns the current
Account balance. Method getBalance does not modify the model, so method get-
Balance does not invoke setChanged or notifyObservers.

Common Programming Error 3.1
Failing to invoke method setChanged before invoking method notifyObservers is a
logic error. If method setChanged has not been invoked, method notifyObservers
considers the Observable object unchanged and will not invoke each Observer’s up-
date method. 3.1

Fig. 3.3Fig. 3.3Fig. 3.3Fig. 3.3 AccountManager application MVC architecture.

1 // Account.java
2 // Account is an Observable class that represents a bank
3 // account in which funds may be deposited or withdrawn.
4 package com.deitel.advjhtp1.mvc.account;
5
6 // Java core packages
7 import java.util.Observable;
8
9 public class Account extends Observable {

10
11 // Account balance
12 private double balance;
13
14 // readonly Account name
15 private String name;
16
17 // Account constructor
18 public Account(String accountName, double openingDeposit)
19 {

Fig. 3.4Fig. 3.4Fig. 3.4Fig. 3.4 Account Observable class that represents a bank account (part 1 of 2).

AccountAccountController

AccountTextView

AccountBarGraphView

AccountPieChartView

AccountController
modifies Account by
withdrawing and depositing
funds.

Account notifies each
view that the Account
has changed.

Each view updates its display to
reflect the new Account
information.

90 Model-View-Controller Chapter 3

20 name = accountName;
21 setBalance(openingDeposit);
22 }
23
24 // set Account balance and notify observers of change
25 private void setBalance(double accountBalance)
26 {
27 balance = accountBalance;
28
29 // must call setChanged before notifyObservers to
30 // indicate model has changed
31 setChanged();
32
33 // notify Observers that model has changed
34 notifyObservers();
35 }
36
37 // get Account balance
38 public double getBalance()
39 {
40 return balance;
41 }
42
43 // withdraw funds from Account
44 public void withdraw(double amount)
45 throws IllegalArgumentException
46 {
47 if (amount < 0)
48 throw new IllegalArgumentException(
49 "Cannot withdraw negative amount");
50
51 // update Account balance
52 setBalance(getBalance() - amount);
53 }
54
55 // deposit funds in account
56 public void deposit(double amount)
57 throws IllegalArgumentException
58 {
59 if (amount < 0)
60 throw new IllegalArgumentException(
61 "Cannot deposit negative amount");
62
63 // update Account balance
64 setBalance(getBalance() + amount);
65 }
66
67 // get Account name (readonly)
68 public String getName()
69 {
70 return name;
71 }
72 }

Fig. 3.4Fig. 3.4Fig. 3.4Fig. 3.4 Account Observable class that represents a bank account (part 2 of 2).

Chapter 3 Model-View-Controller 91

Software Engineering Observation 3.1
Method notifyObservers does not guarantee the order in which it notifies Observ-
ers. Method notifyObservers as implemented in class Observable notifies Ob-
servers in the order the Observers were registered, but this behavior may be different
in Observable subclasses or in different Java implementations. 3.1

Software Engineering Observation 3.2
Method notifyObservers has no relation to methods notify and notifyAll of
class Object. Multithreaded programs use methods notify and notifyAll to wake up
Threads waiting to obtain an Object’s monitor. 3.2

Method withdraw (lines 44–53) subtracts the given amount from the Account
balance. If the given amount is negative, lines 48–49 throw an IllegalArgument-
Exception. Line 52 subtracts the withdrawn amount from the current balance and
invokes method setBalance to update the Account. Method setBalance will notify
Observers that the model was changed, so that the Observers can update their displays.

Method deposit (lines 56–65) adds the amount input to the Account balance. If
the amount is negative, lines 60–61 throw an IllegalArgumentException. Line
64 adds the deposit amount to the current balance and invokes method setBalance
to update the Account. Method getName (lines 68–71) returns the Account name.

Application AccountManager presents Account information to the user through
three views: AccountTextView, AccountBarGraphView and AccountPie-
ChartView. Each view presents a different visual representation of the Account informa-
tion. AbstractAccountView (Fig. 3.5) is an abstract base class for these Account
views that provides common functionality, such as registering as an Account observer.
Class AbstractAccountView implements interface Observer, which allows each
AbstractAccountView subclass to register as an Observer of an Account. .

1 // AbstractAccountView.java
2 // AbstractAccountView is an abstract class that represents
3 // a view of an Account.
4 package com.deitel.advjhtp1.mvc.account;
5
6 // Java core packages
7 import java.util.*;
8 import java.awt.*;
9

10 // Java extension packages
11 import javax.swing.JPanel;
12 import javax.swing.border.*;
13
14 public abstract class AbstractAccountView extends JPanel
15 implements Observer {
16
17 // Account to observe
18 private Account account;
19

Fig. 3.5Fig. 3.5Fig. 3.5Fig. 3.5 AbstractAccountView abstract base class for observing Accounts
(part 1 of 2).

92 Model-View-Controller Chapter 3

Class AbstractAccountView extends JPanel because AbstractAccount-
View implementations provide graphical presentations of Account data. Line 18
declares a private member variable for the Account that the AbstractAccount-
View will observe. The constructor (lines 21–37) sets the account member variable to
the new Account (line 29). Line 32 invokes method addObserver of class Observ-
able to register the newly created AbstractAccountView instance as an Observer
of the new Account. The Account will now notify this AbstractAccountView of
any modifications to the Account. Lines 35–36 set the AbstractAccountView’s
background color and border.

 Method getAccount (lines 40–43) returns the AbstractAccountView’s
account. Method updateDisplay (line 46) is marked abstract, requiring each
AbstractAccountView subclass to provide an appropriate implementation for dis-
playing the Account information. For example, AbstractAccountView subclass
AccountTextView provides an updateDisplay implementation that shows the

20 // AbstractAccountView constructor
21 public AbstractAccountView(Account observableAccount)
22 throws NullPointerException
23 {
24 // do not allow null Accounts
25 if (observableAccount == null)
26 throw new NullPointerException();
27
28 // update account data member to new Account
29 account = observableAccount;
30
31 // register as an Observer to receive account updates
32 account.addObserver(this);
33
34 // set display properties
35 setBackground(Color.white);
36 setBorder(new MatteBorder(1, 1, 1, 1, Color.black));
37 }
38
39 // get Account for which this view is an Observer
40 public Account getAccount()
41 {
42 return account;
43 }
44
45 // update display with Account balance
46 protected abstract void updateDisplay();
47
48 // receive updates from Observable Account
49 public void update(Observable observable, Object object)
50 {
51 updateDisplay();
52 }
53 }

Fig. 3.5Fig. 3.5Fig. 3.5Fig. 3.5 AbstractAccountView abstract base class for observing Accounts
(part 2 of 2).

Chapter 3 Model-View-Controller 93

Account balance in a JTextField. Method update (lines 49–52) invokes method
updateDisplay each time an Account notifies the AbstractAccountView of a
change. Interface Observer defines method update, which takes as an Observable
argument a reference to the Observable instance that issued the update. An Observ-
able object issues an update by invoking method notifyObservers of class
Observable. Method notifyObservers invokes method update for each regis-
tered Observer. An Observer that listens for updates from multiple Observable
objects can use the Observable argument to determine which Observable object
issued the update. The Object argument (line 50) contains optional data the Observ-
able object may pass to an overloaded version of method notifyObservers. This
Object could contain information about the specific data that changed in the model.

AccountTextView (Fig. 3.6) extends AbstractAccountView to provide a
text-based view of Account data. Line 16 creates a JTextField in which Account-
TextView displays the Account balance. Lines 19–20 create a NumberFormat field
to format the Account balance as U. S. dollars. The AccountTextView constructor
(lines 23–35) invokes the AbstractAccountView constructor with the given
Account to perform required initialization (line 25). Line 28 makes the balanceTex-
tField uneditable to prevent users from modifying the balance directly. Lines 31–32 add
a JLabel and the balanceTextField to the AccountTextView. Line 34 invokes
method updateDisplay to display the current Account balance.

1 // AccountTextView.java
2 // AccountTextView is an AbstractAccountView subclass
3 // that displays an Account balance in a JTextField.
4 package com.deitel.advjhtp1.mvc.account;
5
6 // Java core packages
7 import java.util.*;
8 import java.text.NumberFormat;
9

10 // Java extension packages
11 import javax.swing.*;
12
13 public class AccountTextView extends AbstractAccountView {
14
15 // JTextField for displaying Account balance
16 private JTextField balanceTextField = new JTextField(10);
17
18 // NumberFormat for US dollars
19 private NumberFormat moneyFormat =
20 NumberFormat.getCurrencyInstance(Locale.US);
21
22 // AccountTextView constructor
23 public AccountTextView(Account account)
24 {
25 super(account);
26

Fig. 3.6Fig. 3.6Fig. 3.6Fig. 3.6 AccountTextView for displaying observed Account information in a
JTextField (part 1 of 2).

94 Model-View-Controller Chapter 3

Method updateDisplay (lines 38–43) implements abstract method updateDis-
play of class AbstractAccountView. Lines 41–42 set the balanceTextField’s
text to the formatted Account balance. Recall that method update of class Abstrac-
tAccountView invokes method updateDisplay each time method update
receives a notification from the Account model.

AccountBarGraphView (Fig. 3.7) extends AbstractAccountView to pro-
vide a bar-graph view of Account data. Method paintComponent (lines 21–57) draws
a bar graph for the current Account balance. Line 24 invokes method paintCompo-
nent of the superclass to follow the proper painting sequence. Line 27 gets the current
Account balance. Line 32 calculates the length in pixels of the Account’s bar graph.
The entire graph is 200 pixels wide and represents -$5,000 to +$5,000, so we divide the
Account balance by $10,000 and multiply by 200 pixels to calculate the length of the the
bar. If the Account balance is positive, lines 36–37 draw the bar graph in black. If the
Account balance is negative, lines 42–43 draw the bar graph in red.

27 // make balanceTextField readonly
28 balanceTextField.setEditable(false);
29
30 // lay out components
31 add(new JLabel("Balance: "));
32 add(balanceTextField);
33
34 updateDisplay();
35 }
36
37 // update display with Account balance
38 public void updateDisplay()
39 {
40 // set text in balanceTextField to formatted balance
41 balanceTextField.setText(moneyFormat.format(
42 getAccount().getBalance()));
43 }
44 }

1 // AccountBarGraphView.java
2 // AccountBarGraphView is an AbstractAccountView subclass
3 // that displays an Account balance as a bar graph.
4 package com.deitel.advjhtp1.mvc.account;
5
6 // Java core packages
7 import java.awt.*;
8
9 // Java extension packages

10 import javax.swing.*;
11

Fig. 3.7Fig. 3.7Fig. 3.7Fig. 3.7 AccountBarGraphView for rendering observed Account informa-
tion as a bar graph (part 1 of 3).

Fig. 3.6Fig. 3.6Fig. 3.6Fig. 3.6 AccountTextView for displaying observed Account information in a
JTextField (part 2 of 2).

Chapter 3 Model-View-Controller 95

12 public class AccountBarGraphView extends AbstractAccountView {
13
14 // AccountBarGraphView constructor
15 public AccountBarGraphView(Account account)
16 {
17 super(account);
18 }
19
20 // draw Account balance as a bar graph
21 public void paintComponent(Graphics g)
22 {
23 // ensure proper painting sequence
24 super.paintComponent(g);
25
26 // get Account balance
27 double balance = getAccount().getBalance();
28
29 // calculate integer height for bar graph (graph
30 // is 200 pixels wide and represents Account balances
31 // from -$5,000.00to +$5,000.00)
32 int barLength = (int) ((balance / 10000.0) * 200);
33
34 // if balance is positive, draw graph in black
35 if (balance >= 0.0) {
36 g.setColor(Color.black);
37 g.fillRect(105, 15, barLength, 20);
38 }
39
40 // if balance is negative, draw graph in red
41 else {
42 g.setColor(Color.red);
43 g.fillRect(105 + barLength, 15, -barLength, 20);
44 }
45
46 // draw vertical and horizontal axes
47 g.setColor(Color.black);
48 g.drawLine(5, 25, 205, 25);
49 g.drawLine(105, 5, 105, 45);
50
51 // draw graph labels
52 g.setFont(new Font("SansSerif", Font.PLAIN, 10));
53 g.drawString("-$5,000", 5, 10);
54 g.drawString("$0", 110, 10);
55 g.drawString("+$5,000", 166, 10);
56
57 } // end method paintComponent
58
59 // repaint graph when display is updated
60 public void updateDisplay()
61 {
62 repaint();
63 }

Fig. 3.7Fig. 3.7Fig. 3.7Fig. 3.7 AccountBarGraphView for rendering observed Account informa-
tion as a bar graph (part 2 of 3).

96 Model-View-Controller Chapter 3

Method updateDisplay (lines 60–63) invokes method repaint (line 62) to
update the bar graph’s display. AbstractAccountView method update invokes
method updateDisplay each time the Account model notifies the view of a change
in the model. Method getPreferredSize (lines 66–69) overrides method get-
PreferredSize of class JPanel. Line 68 returns a new Dimension object that spec-
ifies the AccountBarGraphView’s preferred size as 210 pixels wide by 50 pixels tall.
Most LayoutManagers use method getPreferredSize to determine how much
space to allocate for each component. Lines 72–81 override methods getMinimumSize
and getMaximumSize to return the AccountBarGraphView’s preferred size.

AssetPieChartView (Fig. 3.8) provides a pie-chart view of multiple asset
Accounts. AssetPieChartView shows the percentage of total assets held in each
Account as wedges in the pie chart. AssetPieChartView defines method add-
Account (line 25–42), which adds an Account to the List of Accounts shown in
the pie chart. If the given Account reference is null, line 29 throws a NullPointer-
Exception. Otherwise, line 32 adds the Account to accounts. Line 35 invokes
method getRandomColor and adds the random Color to the colors Map. Asset-
PieChartView uses this color to draw the Account’s wedge in the pie chart. The
Account object itself is the Color’s key in the Map. Line 38 invokes method add-
Observer of class Account to register the AssetPieChartView for Account
updates. Line 41 invokes method repaint the display the pie chart with the new
Account’s information.

Method removeAccount (lines 45–58) removes an Account from the pie chart.
Line 48 invokes method deleteObserver of class Account to unregister the Asset-
PieChartView as an Observer of the Account. Line 51 removes the Account
from List accounts, and line 54 removes the Account’s color from HashMap
colors. Line 57 invokes method repaint to update the pie-chart display.

64
65 // get AccountBarGraphView's preferred size
66 public Dimension getPreferredSize()
67 {
68 return new Dimension(210, 50);
69 }
70
71 // get AccountBarGraphView's minimum size
72 public Dimension getMinimumSize()
73 {
74 return getPreferredSize();
75 }
76
77 // get AccountBarGraphView's maximum size
78 public Dimension getMaximumSize()
79 {
80 return getPreferredSize();
81 }
82 }

Fig. 3.7Fig. 3.7Fig. 3.7Fig. 3.7 AccountBarGraphView for rendering observed Account informa-
tion as a bar graph (part 3 of 3).

Chapter 3 Model-View-Controller 97

1 // AssetPieChartView.java
2 // AssetPieChartView is an AbstractAccountView subclass that
3 // displays multiple asset Account balances as a pie chart.
4 package com.deitel.advjhtp1.mvc.account;
5
6 // Java core packages
7 import java.awt.*;
8 import java.util.*;
9 import java.util.List;

10
11 // Java extension packages
12 import javax.swing.*;
13 import javax.swing.border.*;
14
15 public class AssetPieChartView extends JPanel
16 implements Observer {
17
18 // Set of observed Accounts
19 private List accounts = new ArrayList();
20
21 // Map of Colors for drawing pie chart wedges
22 private Map colors = new HashMap();
23
24 // add Account to pie chart view
25 public void addAccount(Account account)
26 {
27 // do not add null Accounts
28 if (account == null)
29 throw new NullPointerException();
30
31 // add Account to accounts Vector
32 accounts.add(account);
33
34 // add Color to Hashtable for drawing Account's wedge
35 colors.put(account, getRandomColor());
36
37 // register as Observer to receive Account updates
38 account.addObserver(this);
39
40 // update display with new Account information
41 repaint();
42 }
43
44 // remove Account from pie chart view
45 public void removeAccount(Account account)
46 {
47 // stop receiving updates from given Account
48 account.deleteObserver(this);
49
50 // remove Account from accounts Vector
51 accounts.remove(account);
52

Fig. 3.8Fig. 3.8Fig. 3.8Fig. 3.8 AssetPieChartView for rendering multiple observed asset Accounts
as a pie chart (part 1 of 5).

98 Model-View-Controller Chapter 3

53 // remove Account's Color from Hashtable
54 colors.remove(account);
55
56 // update display to remove Account information
57 repaint();
58 }
59
60 // draw Account balances in a pie chart
61 public void paintComponent(Graphics g)
62 {
63 // ensure proper painting sequence
64 super.paintComponent(g);
65
66 // draw pie chart
67 drawPieChart(g);
68
69 // draw legend to describe pie chart wedges
70 drawLegend(g);
71 }
72
73 // draw pie chart on given Graphics context
74 private void drawPieChart(Graphics g)
75 {
76 // get combined Account balance
77 double totalBalance = getTotalBalance();
78
79 // create temporary variables for pie chart calculations
80 double percentage = 0.0;
81 int startAngle = 0;
82 int arcAngle = 0;
83
84 Iterator accountIterator = accounts.iterator();
85 Account account = null;
86
87 // draw pie wedge for each Account
88 while (accountIterator.hasNext()) {
89
90 // get next Account from Iterator
91 account = (Account) accountIterator.next();
92
93 // draw wedges only for included Accounts
94 if (!includeAccountInChart(account))
95 continue;
96
97 // get percentage of total balance held in Account
98 percentage = account.getBalance() / totalBalance;
99
100 // calculate arc angle for percentage
101 arcAngle = (int) Math.round(percentage * 360);
102
103 // set drawing Color for Account pie wedge
104 g.setColor((Color) colors.get(account));

Fig. 3.8Fig. 3.8Fig. 3.8Fig. 3.8 AssetPieChartView for rendering multiple observed asset Accounts
as a pie chart (part 2 of 5).

Chapter 3 Model-View-Controller 99

105
106 // draw Account pie wedge
107 g.fillArc(5, 5, 100, 100, startAngle, arcAngle);
108
109 // calculate startAngle for next pie wedge
110 startAngle += arcAngle;
111 }
112 } // end method drawPieChart
113
114 // draw pie chart legend on given Graphics context
115 private void drawLegend(Graphics g)
116 {
117 Iterator accountIterator = accounts.iterator();
118 Account account = null;
119
120 // create Font for Account name
121 Font font = new Font("SansSerif", Font.BOLD, 12);
122 g.setFont(font);
123
124 // get FontMetrics for calculating offsets and
125 // positioning descriptions
126 FontMetrics metrics = getFontMetrics(font);
127 int ascent = metrics.getMaxAscent();
128 int offsetY = ascent + 2;
129
130 // draw description for each Account
131 for (int i = 1; accountIterator.hasNext(); i++) {
132
133 // get next Account from Iterator
134 account = (Account) accountIterator.next();
135
136 // draw Account color swatch at next offset
137 g.setColor((Color) colors.get(account));
138 g.fillRect(125, offsetY * i, ascent, ascent);
139
140 // draw Account name next to color swatch
141 g.setColor(Color.black);
142 g.drawString(account.getName(), 140,
143 offsetY * i + ascent);
144 }
145 } // end method drawLegend
146
147 // get combined balance of all observed Accounts
148 private double getTotalBalance()
149 {
150 double sum = 0.0;
151
152 Iterator accountIterator = accounts.iterator();
153 Account account = null;
154

Fig. 3.8Fig. 3.8Fig. 3.8Fig. 3.8 AssetPieChartView for rendering multiple observed asset Accounts
as a pie chart (part 3 of 5).

100 Model-View-Controller Chapter 3

155 // calculate total balance
156 while (accountIterator.hasNext()) {
157 account = (Account) accountIterator.next();
158
159 // add only included Accounts to sum
160 if (includeAccountInChart(account))
161 sum += account.getBalance();
162 }
163
164 return sum;
165 }
166
167 // return true if given Account should be included in
168 // pie chart
169 protected boolean includeAccountInChart(Account account)
170 {
171 // include only Asset accounts (Accounts with positive
172 // balances)
173 return account.getBalance() > 0.0;
174 }
175
176 // get a random Color for drawing pie wedges
177 private Color getRandomColor()
178 {
179 // calculate random red, green and blue values
180 int red = (int) (Math.random() * 256);
181 int green = (int) (Math.random() * 256);
182 int blue = (int) (Math.random() * 256);
183
184 // return newly created Color
185 return new Color(red, green, blue);
186 }
187
188 // receive updates from Observable Account
189 public void update(Observable observable, Object object)
190 {
191 repaint();
192 }
193
194 // get AccountBarGraphView's preferred size
195 public Dimension getPreferredSize()
196 {
197 return new Dimension(210, 110);
198 }
199
200 // get AccountBarGraphView's preferred size
201 public Dimension getMinimumSize()
202 {
203 return getPreferredSize();
204 }
205

Fig. 3.8Fig. 3.8Fig. 3.8Fig. 3.8 AssetPieChartView for rendering multiple observed asset Accounts
as a pie chart (part 4 of 5).

Chapter 3 Model-View-Controller 101

Method paintComponent (lines 61–71) invokes methods drawPieChart (line
67) and drawLegend (line 70) to draw the pie chart and chart legend, respectively.
Method drawPieChart (lines 74–112) draws a pie-chart wedge for each Account.
Line 77 invokes method getTotalBalance to get the total balance for all Accounts.
Lines 80–111 calculate the percentage of the total balance held in each Account and draw
the wedges. Line 91 gets the next Account from accountIterator. Line 94 invokes
method includeAccountInChart to determine if the pie chart should include the cur-
rent Account. If the chart should not include the Account, line 95 continues the
while loop to the next iteration. Line 98 calculates the percentage of the total assets held
in the current Account. Line 101 calculates the size of the Account’s pie wedge. Line
104 gets the Account’s color from Map colors and invokes method setColor of
class Graphics. Line 107 invokes method fillArc of class Graphics to draw the
Account’s pie wedge. The first four arguments to method fillArc specify the position
and diameter of the arc, respectively. The third argument—startAngle—specifies the
angle at which the arc should begin. The fourth argument—arcAngle—specifies the
degrees of arc sweep. Line 101 sets the startAngle for the next pie wedge.

Method drawLegend (lines 115–145) draws a legend (shown in Fig. 3.10) to show
which color represents each Account. The legend shows each color square and Account
name in a list along the right side of the pie chart. Lines 137–138 set the Font in which to
draw the Account. Lines 121–128 use a FontMetrics object to calculate the heights
of characters in the current Font. Line 127 invokes method getMaxAscent of class
FontMetrics to get the maximum ascent (i.e., maximum height above the baseline) of
characters in the current Font. Line 128 calculates offsetY by adding 2 to the Font’s
maximum ascent. We use offsetY to determine the position at which to draw each
Account’s color square and name. Lines 131–144 draw the legend item for each
Account. Line 134 gets the next Account from accountIterator. Lines 137–138
draw the color square, and lines 141–143 draw the Account name.

Method getTotalBalance (lines 148–165) calculates the total balance for all
included Accounts. Line 160 invokes method includeAccountInChart to deter-
mine whether the calculation should include the current Account. If the calculation
should include the Account, line 161 adds the Account’s balance to variable sum.

Method includeAccountInChart (lines 169–174) returns a boolean indi-
cating whether the Account should be included in the pie chart. AssetPieChartView
shows only asset Accounts (i.e., Accounts with positive balances). Line 173 returns
true only if the Account balance is greater than zero. Subclasses can override this
method to include and exclude Accounts based on other criteria.

206 // get AccountBarGraphView's preferred size
207 public Dimension getMaximumSize()
208 {
209 return getPreferredSize();
210 }
211 }

Fig. 3.8Fig. 3.8Fig. 3.8Fig. 3.8 AssetPieChartView for rendering multiple observed asset Accounts
as a pie chart (part 5 of 5).

102 Model-View-Controller Chapter 3

Method getRandomColor (lines 177–186) generates a random Color. Asset-
PieChartView uses this method to generate a different Color for each Account in
the pie chart. Lines 180–182 calculate random values for the red, green and blue
Color components. Line 185 creates a new Color object using the random red, green
and blue values and returns the new Color to the caller.

Method update (lines 189–192) invokes method repaint to update the pie-chart
display. Method getPreferredSize (lines 195–198) returns the AssetPieChart-
View’s preferred size, which provides enough space to draw the pie chart and legend.

AccountController (Fig. 3.9) implements the controller in the MVC architec-
ture. AccountController provides a user interface for modifying Account data.
AccountController extends JPanel (line 14), because it provides a set of GUI com-
ponents for depositing and withdrawing Account funds.

Line 28 sets the account member variable to the Account that AccountCon-
troller will control. Line 31 creates a JTextField into which users can enter an
amount to withdraw from, or deposit in, the controlled Account. Line 34 creates a
JButton for depositing the given amount into the Account. The depositButton’s
ActionListener (lines 37–55) invokes method deposit of class Account to deposit
the amount entered in amountTextField (lines 44–45). If method parseDouble (line
44) throws a NumberFormatException because the text entered was not a valid number,
lines 48–53 catch the exception and display an error message to the user.

1 // AccountController.java
2 // AccountController is a controller for Accounts. It provides
3 // a JTextField for inputting a deposit or withdrawal amount
4 // and JButtons for depositing or withdrawing funds.
5 package com.deitel.advjhtp1.mvc.account;
6
7 // Java core packages
8 import java.awt.*;
9 import java.awt.event.*;

10
11 // Java extension packages
12 import javax.swing.*;
13
14 public class AccountController extends JPanel {
15
16 // Account to control
17 private Account account;
18
19 // JTextField for deposit or withdrawal amount
20 private JTextField amountTextField;
21
22 // AccountController constructor
23 public AccountController(Account controlledAccount)
24 {
25 super();
26

Fig. 3.9Fig. 3.9Fig. 3.9Fig. 3.9 AccountController for obtaining user input to modify Account
information (part 1 of 3).

Chapter 3 Model-View-Controller 103

27 // account to control
28 account = controlledAccount;
29
30 // create JTextField for entering amount
31 amountTextField = new JTextField(10);
32
33 // create JButton for deposits
34 JButton depositButton = new JButton("Deposit");
35
36 depositButton.addActionListener(
37 new ActionListener() {
38
39 public void actionPerformed(ActionEvent event)
40 {
41 try {
42
43 // deposit amount entered in amountTextField
44 account.deposit(Double.parseDouble(
45 amountTextField.getText()));
46 }
47
48 catch (NumberFormatException exception) {
49 JOptionPane.showMessageDialog (
50 AccountController.this,
51 "Please enter a valid amount", "Error",
52 JOptionPane.ERROR_MESSAGE);
53 }
54 } // end method actionPerformed
55 }
56);
57
58 // create JButton for withdrawals
59 JButton withdrawButton = new JButton("Withdraw");
60
61 withdrawButton.addActionListener(
62 new ActionListener() {
63
64 public void actionPerformed(ActionEvent event)
65 {
66 try {
67
68 // withdraw amount entered in amountTextField
69 account.withdraw(Double.parseDouble(
70 amountTextField.getText()));
71 }
72
73 catch (NumberFormatException exception) {
74 JOptionPane.showMessageDialog (
75 AccountController.this,
76 "Please enter a valid amount", "Error",
77 JOptionPane.ERROR_MESSAGE);
78 }

Fig. 3.9Fig. 3.9Fig. 3.9Fig. 3.9 AccountController for obtaining user input to modify Account
information (part 2 of 3).

104 Model-View-Controller Chapter 3

Line 59 creates a JButton for withdrawing the given amount from the Account.
The withdrawButton’s ActionListener (lines 62–80) invokes method with-
draw of class Account to withdraw the amount entered in amountTextField (lines
69–70). If method parseDouble (line 69) throws a NumberFormatException,
because the text entered was not a valid number, lines 73–78 catch the exception and dis-
play an error message to the user. Lines 84–88 lay out amountTextField, a JLabel,
depositButton and withdrawButton.

AccountManager (Fig. 3.10) is an application that uses MVC to manage Account
information. Lines 22 creates a new Account with the name Account 1 and a $1,000.00
balance. Line 25 invokes method getAccountPanel of class AccountManager to
create a JPanel containing view and controller components for account1. Line 28 creates
a new Account with the name Account 2 and a $3,000.00 balance. Line 31 invokes
method createAccountPanel to create a JPanel containing view and controller com-
ponents for account2. Lines 34–35 create an AssetPieChartView for displaying
account1 and account2 information in a pie chart. Lines 38–39 invoke method add-
Account of class AssetPieChartView to add account1 and account2 to the pie
chart. Lines 42–47 create a JPanel with a TitledBorder for the AssetPieChart-
View. Lines 50–54 lay out the JPanels for each account and AssetPieChartView.

Method createAccountPanel creates a JPanel containing an AccountCon-
troller, AccountTextView and AccountBarGraphView for the given
Account. Lines 64–68 create a JPanel with a TitledBorder to contain the
Account’s GUI components. Lines 71–72 create an AccountTextView for the
Account. Lines 75–76 create an AccountBarGraphView for the Account. Lines
79–80 create an AccountController for the Account. Lines 83–85 lay out the
AccountTextView, AccountBarGraphView and AccountController com-
ponents on accountPanel.

Figure 3.10 shows sample AccountManager output. Notice as you run the program
that the views reflect each withdrawal or deposit immediately. For example, depositing
1500.00 in Account 1 causes the AccountTextView for Account 1 to display
$2,500.00, the AccountBarGraphView for Account 1 to display a larger bar
graph and AssetPieChartView to display a larger wedge for Account 1. With-
drawing 4623.12 from Account 2 causes a new balance of ($1,623.12) (parentheses

79 } // end method actionPerformed
80 }
81);
82
83 // lay out controller components
84 setLayout(new FlowLayout());
85 add(new JLabel("Amount: "));
86 add(amountTextField);
87 add(depositButton);
88 add(withdrawButton);
89 }
90 }

Fig. 3.9Fig. 3.9Fig. 3.9Fig. 3.9 AccountController for obtaining user input to modify Account
information (part 3 of 3).

Chapter 3 Model-View-Controller 105

indicate a negative balance) to be shown, a red bar graph to be displayed and the Account
2 wedge from AssetPieChartView to be removed. If both Accounts have negative
balances, AssetPieChartView removes both Accounts from the pie chart.

1 // AccountManager.java
2 // AccountManager is an application that uses the MVC design
3 // pattern to manage bank Account information.
4 package com.deitel.advjhtp1.mvc.account;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9

10 // Java extension packages
11 import javax.swing.*;
12 import javax.swing.border.*;
13
14 public class AccountManager extends JFrame {
15
16 // AccountManager no-argument constructor
17 public AccountManager()
18 {
19 super("Account Manager");
20
21 // create account1 with initial balance
22 Account account1 = new Account("Account 1", 1000.00);
23
24 // create GUI for account1
25 JPanel account1Panel = createAccountPanel(account1);
26
27 // create account2 with initial balance
28 Account account2 = new Account("Account 2", 3000.00);
29
30 // create GUI for account2
31 JPanel account2Panel = createAccountPanel(account2);
32
33 // create AccountPieChartView to show Account pie chart
34 AssetPieChartView pieChartView =
35 new AssetPieChartView();
36
37 // add both Accounts to AccountPieChartView
38 pieChartView.addAccount(account1);
39 pieChartView.addAccount(account2);
40
41 // create JPanel for AccountPieChartView
42 JPanel pieChartPanel = new JPanel();
43
44 pieChartPanel.setBorder(
45 new TitledBorder("Assets"));
46

Fig. 3.10Fig. 3.10Fig. 3.10Fig. 3.10 AccountManager application for displaying and modifying Account
information using the model-view-controller architecture (part 1 of 3).

106 Model-View-Controller Chapter 3

47 pieChartPanel.add(pieChartView);
48
49 // lay out account1, account2 and pie chart components
50 Container contentPane = getContentPane();
51 contentPane.setLayout(new GridLayout(3, 1));
52 contentPane.add(account1Panel);
53 contentPane.add(account2Panel);
54 contentPane.add(pieChartPanel);
55
56 setSize(425, 450);
57
58 } // end AccountManager constructor
59
60 // create GUI components for given Account
61 private JPanel createAccountPanel(Account account)
62 {
63 // create JPanel for Account GUI
64 JPanel accountPanel = new JPanel();
65
66 // set JPanel's border to show Account name
67 accountPanel.setBorder(
68 new TitledBorder(account.getName()));
69
70 // create AccountTextView for Account
71 AccountTextView accountTextView =
72 new AccountTextView(account);
73
74 // create AccountBarGraphView for Account
75 AccountBarGraphView accountBarGraphView =
76 new AccountBarGraphView(account);
77
78 // create AccountController for Account
79 AccountController accountController =
80 new AccountController(account);
81
82 // lay out Account's components
83 accountPanel.add(accountController);
84 accountPanel.add(accountTextView);
85 accountPanel.add(accountBarGraphView);
86
87 return accountPanel;
88
89 } // end method getAccountPanel
90
91 // execute application
92 public static void main(String args[])
93 {
94 AccountManager manager = new AccountManager();
95 manager.setDefaultCloseOperation(EXIT_ON_CLOSE);
96 manager.setVisible(true);
97 }
98 }

Fig. 3.10Fig. 3.10Fig. 3.10Fig. 3.10 AccountManager application for displaying and modifying Account
information using the model-view-controller architecture (part 2 of 3).

Chapter 3 Model-View-Controller 107

3.4 JList
JList is a Swing component that implements the delegate-model architecture. JList acts
as a delegate for an underlying ListModel (Fig. 3.11). Interface ListModel defines
methods for getting list elements, getting the size of the list and registering and unregistering
ListDataListeners. A ListModel notifies each registered ListDataListener
of each change in the ListModel.

Class PhilosophersJList (Fig. 3.12) uses a JList and DefaultListModel
to display a list of philosophers. Class DefaultListModel provides a basic List-
Model implementation. Line 23 creates a new DefaultListModel, and lines 24–31
add several philosophers to the DefaultListModel. Line 34 creates a new JList and

Fig. 3.10Fig. 3.10Fig. 3.10Fig. 3.10 AccountManager application for displaying and modifying Account
information using the model-view-controller architecture (part 3 of 3).

108 Model-View-Controller Chapter 3

passes the philosophers DefaultListModel to the JList constructor. The
JList constructor registers the JList as a ListDataListener of the Default-
ListModel, so that updates to the DefaultListModel will be reflected in the
JList. Lines 37–38 set the JList’s selection mode to allow the user to select only one
philosopher at a time. The selection modes are constant integer values defined in interface
ListSelectionModel. For example, MULTIPLE_INTERVAL_SELECTION allows
the user to select multiple, separate intervals in the JList.

Fig. 3.11Fig. 3.11Fig. 3.11Fig. 3.11 JList and ListModel delegate-model architecture.

1 // PhilosophersJList.java
2 // MVC architecture using JList with a DefaultListModel
3 package com.deitel.advjhtp1.mvc.list;
4
5 // Java core packages
6 import java.awt.*;
7 import java.awt.event.*;
8
9 // Java extension packages

10 import javax.swing.*;
11
12 public class PhilosophersJList extends JFrame {
13
14 private DefaultListModel philosophers;
15 private JList list;
16
17 // PhilosophersJList constructor
18 public PhilosophersJList()
19 {
20 super("Favorite Philosophers");
21
22 // create a DefaultListModel to store philosophers
23 philosophers = new DefaultListModel();
24 philosophers.addElement("Socrates");
25 philosophers.addElement("Plato");
26 philosophers.addElement("Aristotle");
27 philosophers.addElement("St. Thomas Aquinas");
28 philosophers.addElement("Soren Kierkegaard");
29 philosophers.addElement("Immanuel Kant");
30 philosophers.addElement("Friedrich Nietzsche");
31 philosophers.addElement("Hannah Arendt");
32

Fig. 3.12Fig. 3.12Fig. 3.12Fig. 3.12 PhilosophersJList application demonstrating JList and
DefaultListModel (part 1 of 3).

notifies

modifies

JList ListModel

Chapter 3 Model-View-Controller 109

33 // create a JList for philosophers DefaultListModel
34 list = new JList(philosophers);
35
36 // allow user to select only one philosopher at a time
37 list.setSelectionMode(
38 ListSelectionModel.SINGLE_SELECTION);
39
40 // create JButton for adding philosophers
41 JButton addButton = new JButton("Add Philosopher");
42 addButton.addActionListener(
43 new ActionListener() {
44
45 public void actionPerformed(ActionEvent event)
46 {
47 // prompt user for new philosopher's name
48 String name = JOptionPane.showInputDialog(
49 PhilosophersJList.this, "Enter Name");
50
51 // add new philosopher to model
52 philosophers.addElement(name);
53 }
54 }
55);
56
57 // create JButton for removing selected philosopher
58 JButton removeButton =
59 new JButton("Remove Selected Philosopher");
60
61 removeButton.addActionListener(
62 new ActionListener() {
63
64 public void actionPerformed(ActionEvent event)
65 {
66 // remove selected philosopher from model
67 philosophers.removeElement(
68 list.getSelectedValue());
69 }
70 }
71);
72
73 // lay out GUI components
74 JPanel inputPanel = new JPanel();
75 inputPanel.add(addButton);
76 inputPanel.add(removeButton);
77
78 Container container = getContentPane();
79 container.add(list, BorderLayout.CENTER);
80 container.add(inputPanel, BorderLayout.NORTH);
81
82 setDefaultCloseOperation(EXIT_ON_CLOSE);
83 setSize(400, 300);
84 setVisible(true);

Fig. 3.12Fig. 3.12Fig. 3.12Fig. 3.12 PhilosophersJList application demonstrating JList and
DefaultListModel (part 2 of 3).

110 Model-View-Controller Chapter 3

Lines 41–55 create a JButton for adding new philosophers to the DefaultList-
Model. Lines 48–49 in method actionPerformed invoke static method show-
InputDialog of class JOptionPane to prompt the user for the philosopher’s name.

85
86 } // end PhilosophersJList constructor
87
88 // execute application
89 public static void main(String args[])
90 {
91 new PhilosophersJList();
92 }
93 }

Fig. 3.12Fig. 3.12Fig. 3.12Fig. 3.12 PhilosophersJList application demonstrating JList and
DefaultListModel (part 3 of 3).

Chapter 3 Model-View-Controller 111

Line 52 invokes method addElement of class DefaultListModel to add the new
philosopher to the list. The DefaultListModel will notify the JList that the model
changed, and the JList will update the display to include the new list item.

Lines 58–71 create a JButton for deleting a philosopher from the DefaultList-
Model. Lines 67–68 in method actionPerformed invoke method getSelected-
Value of class JList to get the currently selected philosopher and invoke method
removeElement of class DefaultListModel to remove the philosopher. The
DefaultListModel will notify the JList that the model changed, and the JList
will update the display to remove the deleted philosopher. Lines 74–84 lay out the GUI
components and set JFrame properties for the application window.

3.5 JTable
JTable is another Swing component that implements the delegate-model architecture.
JTables are delegates for tabular data stored in TableModel implementations. Inter-
face TableModel declares methods for retrieving and modifying data (e.g., the value in
a certain table cell) and for retrieving and modifying metadata (e.g., the number of columns
and rows). The JTable delegate invokes TableModel methods to build its view of the
TableModel and to modify the TableModel based on user input.

Figure 3.13 describes the methods defined in interface TableModel. Custom imple-
mentations of interface TableModel can use arbitrary internal representations of the tabular
data. For example, the DefaultTableModel implementation uses Vectors to store the
rows and columns of data. In Chapter 8, JDBC, we implement interface TableModel to
create a TableModel that represents data stored in a JDBC ResultSet. Figure 3.14 illus-
trates the delegate-model relationship between JTable and TableModel.

Method Description

void addTableModelListener(TableModelListener listener)

Add a TableModelListener to the TableModel. The TableModel
will notify the TableModelListener of changes in the TableModel.

void removeTableModelListener(TableModelListener listener)

Remove a previously added TableModelListener from the TableModel.

Class getColumnClass(int columnIndex)

Get the Class object for values in the column with specified columnIndex.

int getColumnCount()

Get the number of columns in the TableModel.

String getColumnName(int columnIndex)

Get the name of the column with the given columnIndex.

int getRowCount()

Get the number of rows in the TableModel.

Fig. 3.13Fig. 3.13Fig. 3.13Fig. 3.13 TableModel interface methods and descriptions (part 1 of 2).

112 Model-View-Controller Chapter 3

PhilosophersJTable (Fig. 3.15) displays philosopher information in a JTable
using a DefaultTableModel. Class DefaultTableModel implements interface
TableModel and uses Vectors to represent the rows and columns of data. Line 24 cre-
ates the philosophers DefaultTableModel. Lines 27–29 add columns to the
DefaultTableModel for the philosophers’ first names, last names and years in which
they lived. Lines 32–53 create rows for seven philosophers. Each row is a String array
whose elements are the philosopher’s first name, last name and the year in which the phi-
losopher lived, respectively. Method addRow of class DefaultTableModel adds each
philosopher to the DefaultTableModel. Line 56 creates the JTable that will act as a
delegate for the philosophers DefaultTableModel.

Lines 59–72 create a JButton and ActionListener for adding a new philoso-
pher to the DefaultTableModel. Line 66 in method actionPerformed creates a
String array of three empty elements. Line 69 adds the empty String array to the
DefaultTableModel. This causes the JTable to display a blank row at the bottom of
the JTable. The user can then type the philosopher’s information directly into the
JTable cells. This demonstrates the JTable delegate acting as a controller, because it
modifies the DefaultTableModel based on user input.

Object getValueAt(int rowIndex, int columnIndex)

Get an Object reference to the value stored in the TableModel at the given
row and column indices.

void setValueAt(Object value, int rowIndex, int columnIndex)

Set the value stored in the TableModel at the given row and column indices.

boolean isCellEditable(int rowIndex, int columnIndex)

Return true if the cell at the given row and column indices is editable.

Fig. 3.14Fig. 3.14Fig. 3.14Fig. 3.14 JTable and TableModel delegate-model architecture.

1 // PhilosophersJTable.java
2 // MVC architecture using JTable with a DefaultTableModel
3 package com.deitel.advjhtp1.mvc.table;

Fig. 3.15Fig. 3.15Fig. 3.15Fig. 3.15 PhilosophersJTable application demonstrating JTable and
DefaultTableModel (part 1 of 4).

Method Description

Fig. 3.13Fig. 3.13Fig. 3.13Fig. 3.13 TableModel interface methods and descriptions (part 2 of 2).

notifies

modifies

JTable TableModel

Chapter 3 Model-View-Controller 113

4
5 // Java core packages
6 import java.awt.*;
7 import java.awt.event.*;
8
9 // Java extension packages

10 import javax.swing.*;
11 import javax.swing.table.*;
12
13 public class PhilosophersJTable extends JFrame {
14
15 private DefaultTableModel philosophers;
16 private JTable table;
17
18 // PhilosophersJTable constructor
19 public PhilosophersJTable()
20 {
21 super("Favorite Philosophers");
22
23 // create a DefaultTableModel to store philosophers
24 philosophers = new DefaultTableModel();
25
26 // add Columns to DefaultTableModel
27 philosophers.addColumn("First Name");
28 philosophers.addColumn("Last Name");
29 philosophers.addColumn("Years");
30
31 // add philosopher names and dates to DefaultTableModel
32 String[] socrates = { "Socrates", "", "469-399 B.C." };
33 philosophers.addRow(socrates);
34
35 String[] plato = { "Plato", "", "428-347 B.C." };
36 philosophers.addRow(plato);
37
38 String[] aquinas = { "Thomas", "Aquinas", "1225-1274" };
39 philosophers.addRow(aquinas);
40
41 String[] kierkegaard = { "Soren", "Kierkegaard",
42 "1813-1855" };
43 philosophers.addRow(kierkegaard);
44
45 String[] kant = { "Immanuel", "Kant", "1724-1804" };
46 philosophers.addRow(kant);
47
48 String[] nietzsche = { "Friedrich", "Nietzsche",
49 "1844-1900" };
50 philosophers.addRow(nietzsche);
51
52 String[] arendt = { "Hannah", "Arendt", "1906-1975" };
53 philosophers.addRow(arendt);
54

Fig. 3.15Fig. 3.15Fig. 3.15Fig. 3.15 PhilosophersJTable application demonstrating JTable and
DefaultTableModel (part 2 of 4).

114 Model-View-Controller Chapter 3

55 // create a JTable for philosophers DefaultTableModel
56 table = new JTable(philosophers);
57
58 // create JButton for adding philosophers
59 JButton addButton = new JButton("Add Philosopher");
60 addButton.addActionListener(
61 new ActionListener() {
62
63 public void actionPerformed(ActionEvent event)
64 {
65 // create empty array for new philosopher row
66 String[] philosopher = { "", "", "" };
67
68 // add empty philosopher row to model
69 philosophers.addRow(philosopher);
70 }
71 }
72);
73
74 // create JButton for removing selected philosopher
75 JButton removeButton =
76 new JButton("Remove Selected Philosopher");
77
78 removeButton.addActionListener(
79 new ActionListener() {
80
81 public void actionPerformed(ActionEvent event)
82 {
83 // remove selected philosopher from model
84 philosophers.removeRow(
85 table.getSelectedRow());
86 }
87 }
88);
89
90 // lay out GUI components
91 JPanel inputPanel = new JPanel();
92 inputPanel.add(addButton);
93 inputPanel.add(removeButton);
94
95 Container container = getContentPane();
96 container.add(new JScrollPane(table),
97 BorderLayout.CENTER);
98 container.add(inputPanel, BorderLayout.NORTH);
99
100 setDefaultCloseOperation(EXIT_ON_CLOSE);
101 setSize(400, 300);
102 setVisible(true);
103
104 } // end PhilosophersJTable constructor
105

Fig. 3.15Fig. 3.15Fig. 3.15Fig. 3.15 PhilosophersJTable application demonstrating JTable and
DefaultTableModel (part 3 of 4).

Chapter 3 Model-View-Controller 115

Lines 75–88 create a JButton and ActionListener for removing a philosopher
from the DefaultTableModel. Lines 84–85 in method actionPerformed retrieve
the currently selected row in the JTable delegate and invoke method removeRow of class
DefaultTableModel to remove the selected row. The DefaultTableModel notifies
the JTable that the DefaultTableModel has changed, and the JTable removes the
appropriate row from the display. Lines 96–97 add the JTable to a JScrollPane. JTa-
bles will not display their column headings unless placed within a JScrollPane.

3.6 JTree
JTree is one of the more complex Swing components that implements the delegate-model
architecture. TreeModels represent hierarchical data, such as family trees, certain types
of file systems, company management structures and document outlines. JTrees act as
delegates (i.e., combined view and controller) for TreeModels.

106 // execute application
107 public static void main(String args[])
108 {
109 new PhilosophersJTable();
110 }
111 }

Fig. 3.15Fig. 3.15Fig. 3.15Fig. 3.15 PhilosophersJTable application demonstrating JTable and
DefaultTableModel (part 4 of 4).

116 Model-View-Controller Chapter 3

To describe tree data structures, it is common to use terms that more commonly
describe family trees.3 A tree data structure consists of a set of nodes (i.e., members or ele-
ments of the tree) that are related as parents, children, siblings, ancestors and descendents.
A parent is a node that has other nodes as its children. A child is a node that has a parent.
Sibling nodes are two or more nodes that share the same parent. An ancestor is a node that
has children that also have children. A descendent is a node whose parent also has a parent.
A tree must have one node—called the root node—that is the parent or ancestor of all other
nodes in the tree. [Note: Unlike in a family tree, in a tree data structure a child node can
have only one parent.]

Figure 3.16 shows the relationships among nodes in a tree. The JTree contains a hier-
archy of philosophers whose root is node Philosophers. Node Philosophers has
seven child nodes, representing the major eras of philosophy—Ancient, Medieval,
Renaissance, Early Modern, Enlightenment, 19th Century and 20th
Century. Each philosopher (e.g., Socrates, St. Thomas Aquinas and Immanuel
Kant) is a child of the philosopher’s era and is a descendent of node Philosophers.
Nodes Socrates, Plato and Aristotle are sibling nodes, because they share the
same parent node (Ancient).

3. Note that nodes in the tree data structures we discuss in this section each have only a single parent,
unlike a family tree.

Fig. 3.16Fig. 3.16Fig. 3.16Fig. 3.16 JTree showing a hierarchy of philosophers.

Chapter 3 Model-View-Controller 117

3.6.1 Using DefaultTreeModel
Interface TreeModel declares methods for representing a tree data structure in a JTree.
Objects of any class can represent nodes in a TreeModel. For example, a Person class
could represent a node in a family tree TreeModel. Class DefaultTreeModel provides
a default TreeModel implementation. Interface TreeNode defines common operations
for nodes in a DefaultTreeModel, such as getParent and getAllowsChildren.
Interface MutableTreeNode extends interface TreeNode to represent a node that can
change, either by adding or removing child nodes or by changing the Object associated
with the node. Class DefaultMutableTreeNode provides a MutableTreeNode im-
plementation suitable for use in a DefaultTreeModel.

Software Engineering Observation 3.3
Although a TreeModel implementation can use objects of any class to represent the Tree-
Model’s nodes, the TreeModel implementation must be able to determine the hierarchical
relationships among those objects. For example, a Person class would have to provide
methods such as getParent and getChildren for use in a family tree TreeModel. 3.3

JTree employs two interfaces to implement the JTree’s delegate functionality.
Interface TreeCellRenderer represents an object that creates a view for each node in
the JTree. Class DefaultTreeCellRenderer implements interface TreeCell-
Renderer and extends class JLabel to provide a TreeCellRenderer default imple-
mentation. Interface TreeCellEditor represents an object for controlling (i.e., editing)
each node in the JTree. Class DefaultTreeCellEditor implements interface
TreeCellEditor and uses a JTextField for the TreeCellEditor default imple-
mentation.

PhilosophersJTree (Fig. 3.17) uses a DefaultTreeModel to represent a set
of philosophers. The DefaultTreeModel organizes the philosophers hierarchically
according to their associated eras in the history of philosophy. Lines 26–27 invoke method
createPhilosopherTree to get the root, DefaultMutableTreeNode, which
contains all the philosopher nodes. Line 30 creates a DefaultTreeModel and passes the
philosophersNode DefaultMutableTreeNode to the DefaultTreeModel
constructor. Line 33 creates a JTree and passes DefaultTreeModel philoso-
phers to the JTree constructor.

1 // PhilosophersJTree.java
2 // MVC architecture using JTree with a DefaultTreeModel
3 package com.deitel.advjhtp1.mvc.tree;
4
5 // Java core packages
6 import java.awt.*;
7 import java.awt.event.*;
8 import java.util.*;
9

10 // Java extension packages
11 import javax.swing.*;
12 import javax.swing.tree.*;

Fig. 3.17Fig. 3.17Fig. 3.17Fig. 3.17 PhilosophersJTree application demonstrating JTree and
DefaultTreeModel (part 1 of 6).

118 Model-View-Controller Chapter 3

13
14 public class PhilosophersJTree extends JFrame {
15
16 private JTree tree;
17 private DefaultTreeModel philosophers;
18 private DefaultMutableTreeNode rootNode;
19
20 // PhilosophersJTree constructor
21 public PhilosophersJTree()
22 {
23 super("Favorite Philosophers");
24
25 // get tree of philosopher DefaultMutableTreeNodes
26 DefaultMutableTreeNode philosophersNode =
27 createPhilosopherTree();
28
29 // create philosophers DefaultTreeModel
30 philosophers = new DefaultTreeModel(philosophersNode);
31
32 // create JTree for philosophers DefaultTreeModel
33 tree = new JTree(philosophers);
34
35 // create JButton for adding philosophers
36 JButton addButton = new JButton("Add");
37 addButton.addActionListener(
38 new ActionListener() {
39
40 public void actionPerformed(ActionEvent event)
41 {
42 addElement();
43 }
44 }
45);
46
47 // create JButton for removing selected philosopher
48 JButton removeButton =
49 new JButton("Remove");
50
51 removeButton.addActionListener(
52 new ActionListener() {
53
54 public void actionPerformed(ActionEvent event)
55 {
56 removeElement();
57 }
58 }
59);
60
61 // lay out GUI components
62 JPanel inputPanel = new JPanel();
63 inputPanel.add(addButton);
64 inputPanel.add(removeButton);

Fig. 3.17Fig. 3.17Fig. 3.17Fig. 3.17 PhilosophersJTree application demonstrating JTree and
DefaultTreeModel (part 2 of 6).

Chapter 3 Model-View-Controller 119

65
66 Container container = getContentPane();
67
68 container.add(new JScrollPane(tree),
69 BorderLayout.CENTER);
70
71 container.add(inputPanel, BorderLayout.NORTH);
72
73 setDefaultCloseOperation(EXIT_ON_CLOSE);
74 setSize(400, 300);
75 setVisible(true);
76
77 } // end PhilosophersJTree constructor
78
79 // add new philosopher to selected era
80 private void addElement()
81 {
82 // get selected era
83 DefaultMutableTreeNode parent = getSelectedNode();
84
85 // ensure user selected era first
86 if (parent == null) {
87 JOptionPane.showMessageDialog(
88 PhilosophersJTree.this, "Select an era.",
89 "Error", JOptionPane.ERROR_MESSAGE);
90
91 return;
92 }
93
94 // prompt user for philosopher's name
95 String name = JOptionPane.showInputDialog(
96 PhilosophersJTree.this, "Enter Name:");
97
98 // add new philosopher to selected era
99 philosophers.insertNodeInto(
100 new DefaultMutableTreeNode(name),
101 parent, parent.getChildCount());
102
103 } // end method addElement
104
105 // remove currently selected philosopher
106 private void removeElement()
107 {
108 // get selected node
109 DefaultMutableTreeNode selectedNode = getSelectedNode();
110
111 // remove selectedNode from model
112 if (selectedNode != null)
113 philosophers.removeNodeFromParent(selectedNode);
114 }
115

Fig. 3.17Fig. 3.17Fig. 3.17Fig. 3.17 PhilosophersJTree application demonstrating JTree and
DefaultTreeModel (part 3 of 6).

120 Model-View-Controller Chapter 3

116 // get currently selected node
117 private DefaultMutableTreeNode getSelectedNode()
118 {
119 // get selected DefaultMutableTreeNode
120 return (DefaultMutableTreeNode)
121 tree.getLastSelectedPathComponent();
122 }
123
124 // get tree of philosopher DefaultMutableTreeNodes
125 private DefaultMutableTreeNode createPhilosopherTree()
126 {
127 // create rootNode
128 DefaultMutableTreeNode rootNode =
129 new DefaultMutableTreeNode("Philosophers");
130
131 // Ancient philosophers
132 DefaultMutableTreeNode ancient =
133 new DefaultMutableTreeNode("Ancient");
134 rootNode.add(ancient);
135
136 ancient.add(new DefaultMutableTreeNode("Socrates"));
137 ancient.add(new DefaultMutableTreeNode("Plato"));
138 ancient.add(new DefaultMutableTreeNode("Aristotle"));
139
140 // Medieval philosophers
141 DefaultMutableTreeNode medieval =
142 new DefaultMutableTreeNode("Medieval");
143 rootNode.add(medieval);
144
145 medieval.add(new DefaultMutableTreeNode(
146 "St. Thomas Aquinas"));
147
148 // Renaissance philosophers
149 DefaultMutableTreeNode renaissance =
150 new DefaultMutableTreeNode("Renaissance");
151 rootNode.add(renaissance);
152
153 renaissance.add(new DefaultMutableTreeNode(
154 "Thomas More"));
155
156 // Early Modern philosophers
157 DefaultMutableTreeNode earlyModern =
158 new DefaultMutableTreeNode("Early Modern");
159 rootNode.add(earlyModern);
160
161 earlyModern.add(new DefaultMutableTreeNode(
162 "John Locke"));
163
164 // Enlightenment Philosophers
165 DefaultMutableTreeNode enlightenment =
166 new DefaultMutableTreeNode("Enlightenment");
167 rootNode.add(enlightenment);

Fig. 3.17Fig. 3.17Fig. 3.17Fig. 3.17 PhilosophersJTree application demonstrating JTree and
DefaultTreeModel (part 4 of 6).

Chapter 3 Model-View-Controller 121

168
169 enlightenment.add(new DefaultMutableTreeNode(
170 "Immanuel Kant"));
171
172 // 19th Century Philosophers
173 DefaultMutableTreeNode nineteenth =
174 new DefaultMutableTreeNode("19th Century");
175 rootNode.add(nineteenth);
176
177 nineteenth.add(new DefaultMutableTreeNode(
178 "Soren Kierkegaard"));
179
180 nineteenth.add(new DefaultMutableTreeNode(
181 "Friedrich Nietzsche"));
182
183 // 20th Century Philosophers
184 DefaultMutableTreeNode twentieth =
185 new DefaultMutableTreeNode("20th Century");
186 rootNode.add(twentieth);
187
188 twentieth.add(new DefaultMutableTreeNode(
189 "Hannah Arendt"));
190
191 return rootNode;
192
193 } // end method createPhilosopherTree
194
195 // execute application
196 public static void main(String args[])
197 {
198 new PhilosophersJTree();
199 }
200 }

Fig. 3.17Fig. 3.17Fig. 3.17Fig. 3.17 PhilosophersJTree application demonstrating JTree and
DefaultTreeModel (part 5 of 6).

122 Model-View-Controller Chapter 3

Lines 36–45 create a JButton and an ActionListener for adding a philosopher
to the philosophers DefaultTreeModel. Line 42 in method actionPer-
formed invokes method addElement to add a new philosopher. Lines 48–59 create a
JButton and an ActionListener for removing a philosopher from the philoso-
phers DefaultTreeModel. Line 56 invokes method removeElement to remove
the currently selected philosopher from the model.

Method addElement (lines 80–103) gets the currently selected node in the JTree
by invoking method getSelectedNode (line 83). Method addElement inserts the
new philosopher node as a child of the currently selected node. If there is no node currently
selected, line 91 returns from method addElement without adding a new node. Lines 95–
96 invoke static method showInputDialog of class JOptionPane to prompt the
user for the new philosopher’s name. Lines 99–101 invoke method insertNodeInto of
class DefaultTreeModel to insert the new philosopher in the model. Line 100 creates
a new DefaultMutableTreeNode for the given philosopher. Line 101 specifies the
parent node to which the new philosopher should be added. The final argument to method
insertNodeInto specifies the index at which the new node should be inserted. Line
101 invokes method getChildCount of class DefaultMutableTreeNode to get
the total number of children in node parent, which will cause the new node to be added
as the last child of parent.

Fig. 3.17Fig. 3.17Fig. 3.17Fig. 3.17 PhilosophersJTree application demonstrating JTree and
DefaultTreeModel (part 6 of 6).

Chapter 3 Model-View-Controller 123

Method removeElement (lines 106–114) invokes method getSelectedNode
(line 109) to get the currently selected node in the JTree. If selectedNode is not
null, line 113 invokes method removeNodeFromParent of class DefaultTree-
Model to remove selectedNode from the model. Method getSelectedNode (lines
117–122) invokes method getLastSelectedPathComponent of class JTree to
get a reference to the currently selected node (line 121). Line 120 casts the selected node to
DefaultMutableTreeNode and returns the reference to the caller.

Method createPhilosopherTree (lines 125–192) creates DefaultMu-
tableTreeNodes for several philosophers and for the eras in which the philosophers
lived. Lines 128–129 create a DefaultMutableTreeNode for the tree’s root. Class
DefaultMutableTreeNode has property userObject that stores an Object that
contains the node’s data. The String passed to the DefaultMutableTreeNode con-
structor (line 129) is the userObject for rootNode. The JTree’s TreeCellRen-
derer will invoke method toString of class DefaultMutableTreeNode to get a
String to display for this node in the JTree.

Software Engineering Observation 3.4
Method toString of class DefaultMutableTreeNode returns the value re-
turned by its userObject’s toString method. 3.4

Lines 132–134 create a DefaultMutableTreeNode for the ancient era of phi-
losophy and add node ancient as a child of rootNode (line 134). Lines 136–138 create
DefaultMutableTreeNodes for three ancient philosophers and add each Default-
MutableTreeNode as a child of DefaultMutableTreeNode ancient. Lines
141–189 create several additional DefaultMutableTreeNodes for other eras in the
history of philosophy and for philosophers in those eras. Line 191 returns rootNode,
which now contains the era and philosopher DefaultMutableTreeNodes as its chil-
dren and descendents, respectively.

3.6.2 Custom TreeModel Implementation

If the DefaultTreeModel implementation is not sufficient for an application, develop-
ers also can provide custom implementations of interface TreeModel. FileSystem-
Model (Fig. 3.18) implements interface TreeModel to provide a model of a computer’s
file system. A file system consists of directories and files arranged in a hierarchy. Line 17
declares a File reference root that serves as the root node in the hierarchy. This File
is a directory that contains files and other directories. The FileSystemModel construc-
tor (lines 23–26) takes a File argument for the FileSystemModel root. Method ge-
tRoot (lines 29–32) returns the FileSystemModel’s root node.

1 // FileSystemModel.java
2 // TreeModel implementation using File objects as tree nodes.
3 package com.deitel.advjhtp1.mvc.tree.filesystem;
4
5 // Java core packages
6 import java.io.*;

Fig. 3.18Fig. 3.18Fig. 3.18Fig. 3.18 FileSystemModel implementation of interface TreeModel to
represent a file system (part 1 of 5).

124 Model-View-Controller Chapter 3

7 import java.util.*;
8
9 // Java extension packages

10 import javax.swing.*;
11 import javax.swing.tree.*;
12 import javax.swing.event.*;
13
14 public class FileSystemModel implements TreeModel {
15
16 // hierarchy root
17 private File root;
18
19 // TreeModelListeners
20 private Vector listeners = new Vector();
21
22 // FileSystemModel constructor
23 public FileSystemModel(File rootDirectory)
24 {
25 root = rootDirectory;
26 }
27
28 // get hierarchy root (root directory)
29 public Object getRoot()
30 {
31 return root;
32 }
33
34 // get parent's child at given index
35 public Object getChild(Object parent, int index)
36 {
37 // get parent File object
38 File directory = (File) parent;
39
40 // get list of files in parent directory
41 String[] children = directory.list();
42
43 // return File at given index and override toString
44 // method to return only the File's name
45 return new TreeFile(directory, children[index]);
46 }
47
48 // get parent's number of children
49 public int getChildCount(Object parent)
50 {
51 // get parent File object
52 File file = (File) parent;
53
54 // get number of files in directory
55 if (file.isDirectory()) {
56
57 String[] fileList = file.list();
58

Fig. 3.18Fig. 3.18Fig. 3.18Fig. 3.18 FileSystemModel implementation of interface TreeModel to
represent a file system (part 2 of 5).

Chapter 3 Model-View-Controller 125

59 if (fileList != null)
60 return file.list().length;
61 }
62
63 return 0; // childCount is 0 for files
64 }
65
66 // return true if node is a file, false if it is a directory
67 public boolean isLeaf(Object node)
68 {
69 File file = (File) node;
70 return file.isFile();
71 }
72
73 // get numeric index of given child node
74 public int getIndexOfChild(Object parent, Object child)
75 {
76 // get parent File object
77 File directory = (File) parent;
78
79 // get child File object
80 File file = (File) child;
81
82 // get File list in directory
83 String[] children = directory.list();
84
85 // search File list for given child
86 for (int i = 0; i < children.length; i++) {
87
88 if (file.getName().equals(children[i])) {
89
90 // return matching File's index
91 return i;
92 }
93 }
94
95 return -1; // indicate child index not found
96
97 } // end method getIndexOfChild
98
99 // invoked by delegate if value of Object at given
100 // TreePath changes
101 public void valueForPathChanged(TreePath path,
102 Object value)
103 {
104 // get File object that was changed
105 File oldFile = (File) path.getLastPathComponent();
106
107 // get parent directory of changed File
108 String fileParentPath = oldFile.getParent();
109

Fig. 3.18Fig. 3.18Fig. 3.18Fig. 3.18 FileSystemModel implementation of interface TreeModel to
represent a file system (part 3 of 5).

126 Model-View-Controller Chapter 3

110 // get value of newFileName entered by user
111 String newFileName = (String) value;
112
113 // create File object with newFileName for
114 // renaming oldFile
115 File targetFile = new File(
116 fileParentPath, newFileName);
117
118 // rename oldFile to targetFile
119 oldFile.renameTo(targetFile);
120
121 // get File object for parent directory
122 File parent = new File(fileParentPath);
123
124 // create int array for renamed File's index
125 int[] changedChildrenIndices =
126 { getIndexOfChild(parent, targetFile) };
127
128 // create Object array containing only renamed File
129 Object[] changedChildren = { targetFile };
130
131 // notify TreeModelListeners of node change
132 fireTreeNodesChanged(path.getParentPath(),
133 changedChildrenIndices, changedChildren);
134
135 } // end method valueForPathChanged
136
137 // notify TreeModelListeners that children of parent at
138 // given TreePath with given indices were changed
139 private void fireTreeNodesChanged(TreePath parentPath,
140 int[] indices, Object[] children)
141 {
142 // create TreeModelEvent to indicate node change
143 TreeModelEvent event = new TreeModelEvent(this,
144 parentPath, indices, children);
145
146 Iterator iterator = listeners.iterator();
147 TreeModelListener listener = null;
148
149 // send TreeModelEvent to each listener
150 while (iterator.hasNext()) {
151 listener = (TreeModelListener) iterator.next();
152 listener.treeNodesChanged(event);
153 }
154 } // end method fireTreeNodesChanged
155
156 // add given TreeModelListener
157 public void addTreeModelListener(
158 TreeModelListener listener)
159 {
160 listeners.add(listener);
161 }

Fig. 3.18Fig. 3.18Fig. 3.18Fig. 3.18 FileSystemModel implementation of interface TreeModel to
represent a file system (part 4 of 5).

Chapter 3 Model-View-Controller 127

When building its view of a TreeModel, a JTree repeatedly invokes method get-
Child (lines 35–46) to traverse the TreeModel’s nodes. Method getChild returns
argument parent’s child node at the given index. The nodes in a TreeModel need not
implement interface TreeNode or interface MutableTreeNode; any Object can be
a node in a TreeModel. In class FileSystemModel, each node is a File. Line 38
casts Object reference parent to a File reference. Line 41 invokes method list of
class File to get a list of file names in directory. Line 45 returns a new TreeFile
object for the File at the given index. JTree invokes method toString of class
TreeFile to get a label for the node in the JTree.

Method getChildCount (lines 49–64) returns the number of children contained in
argument parent. Line 52 casts Object reference parent to a File reference named
file. If file is a directory (line 55), lines 57–60 get a list of file names in the directory
and return the length of the list. If file is not a directory, line 63 returns 0, to indicate
that file has no children.

A JTree invokes method isLeaf of class FileSystemModel (lines 67–71) to
determine if Object argument node is a leaf node—a node that does not contain chil-
dren.4 In a file system, only directories can contain children, so line 70 returns true only
if argument node is a file (not a directory).

162
163 // remove given TreeModelListener
164 public void removeTreeModelListener(
165 TreeModelListener listener)
166 {
167 listeners.remove(listener);
168 }
169
170 // TreeFile is a File subclass that overrides method
171 // toString to return only the File name.
172 private class TreeFile extends File {
173
174 // TreeFile constructor
175 public TreeFile(File parent, String child)
176 {
177 super(parent, child);
178 }
179
180 // override method toString to return only the File name
181 // and not the full path
182 public String toString()
183 {
184 return getName();
185 }
186 } // end inner class TreeFile
187 }

4. Leaf node controls the initial screen display of the expand handle.

Fig. 3.18Fig. 3.18Fig. 3.18Fig. 3.18 FileSystemModel implementation of interface TreeModel to
represent a file system (part 5 of 5).

128 Model-View-Controller Chapter 3

Method getIndexOfChild (lines 74–98) returns argument child’s index in the
given parent node. For example, if child were the third node in parent, method
getIndexOfChild would return zero-based index 2. Lines 77 and 80 get File refer-
ences for the parent and child nodes, respectively. Line 83 gets a list of files, and lines
86–93 search through the list for the given child. If the filname in the list matches the
given child (line 88), line 91 returns the index i. Otherwise, line 95 returns -1, to indicate
that parent did not contain child.

The JTree delegate invokes method valueForPathChanged (lines 101–135)
when the user edits a node in the tree. A user can click on a node in the JTree and edit the
node’s name, which corresponds to the associated File object’s file name. When a user
edits a node, JTree invokes method valueForPathChanged and passes a TreePath
argument that represents the changed node’s location in the tree, and an Object that con-
tains the node’s new value. In this example, the new value is a new file name String for
the associated File object. Line 105 invokes method getLastPathComponent of
class TreePath to obtain the File object to rename. Line 108 gets oldFile’s parent
directory. Line 111 casts argument value, which contains the new file name, to a String.
Lines 115–116 create File object targetFile using the new file name. Line 119
invokes method renameTo of class File to rename oldFile to targetFile.

After renaming the file, the FileSystemModel must notify its TreeModelLis-
teners of the change by issuing a TreeModelEvent. A TreeModelEvent that indi-
cates a node change includes a reference to the TreeModel that generated the event, the
TreePath of the changed nodes’ parent node, an integer array containing the changed
nodes’ indices and an Object array containing references to the changed nodes them-
selves. Line 122 creates a File object for the renamed file’s parent directory. Lines 125–
126 create an integer array for the indices of changed nodes. Line 128 creates an Object
array of changed nodes. The integer and Object arrays have only one element each
because only one node changed. If multiple nodes were changed, these arrays would need
to include elements for each changed node. Lines 132–133 invoke method fireTreeN-
odesChanged to issue the TreeModelEvent.

Performance Tip 3.1
JTree uses the index and Object arrays in a TreeModelEvent to determine which
nodes in the JTree need to be updated. This method improves performance by updating only
the nodes that have changed, and not the entire JTree. 3.1

Method fireTreeNodesChanged (lines 139–154) issues a TreeModelEvent to
all registered TreeModelListeners, indicating that nodes in the TreeModel have
changed. TreePath argument parentPath is the path to the parent whose child nodes
changed. The integer and Object array arguments contain the indices of the changed nodes
and references to the changed nodes, respectively. Lines 143–144 create the TreeModel
event with the given event data. Lines 150–153 iterate through the list of TreeModelLis-
teners, sending the TreeModelEvent to each. Methods addTreeModelListener
(lines 157–161) and removeTreeModelListener (lines 164–168) allow TreeMod-
elListeners to register and unregister for TreeModelEvents.

Inner-class TreeFile (lines 172–186) overrides method toString of superclass
File. Method toString of class File returns a String containing the File’s full
path name (e.g., D:\Temp\README.TXT). Method toString of class TreeFile
(lines 182–185) overrides this method to return only the File’s name (e.g.,

Chapter 3 Model-View-Controller 129

README.TXT). Class JTree uses a DefaultTreeCellRenderer to display each
node in its TreeModel. The DefaultTreeCellRenderer invokes the node’s
toString method to get the text for the DefaultTreeCellRenderer’s label. Class
TreeFile overrides method toString of class File so the DefaultTreeCell-
Renderer will show only the File’s name in the JTree, instead of the full path.

FileTreeFrame (Fig. 3.19) uses a JTree and a FileSystemModel to allow the
user to view and modify a file system. The user interface consists of a JTree that shows
the file system and a JTextArea that shows information about the currently selected file.
Lines 33–34 create the uneditable JTextArea for displaying file information. Lines 37–
38 create a FileSystemModel whose root is directory. Line 41 creates a JTree
for the FileSystemModel. Line 44 sets the JTree’s editable property to true, to
allow users to rename files displayed in the JTree.

1 // FileTreeFrame.java
2 // JFrame for displaying file system contents in a JTree
3 // using a custom TreeModel.
4 package com.deitel.advjhtp1.mvc.tree.filesystem;
5
6 // Java core packages
7 import java.io.*;
8 import java.awt.*;
9 import java.awt.event.*;

10
11 // Java extension packages
12 import javax.swing.*;
13 import javax.swing.tree.*;
14 import javax.swing.event.*;
15
16 public class FileTreeFrame extends JFrame {
17
18 // JTree for displaying file system
19 private JTree fileTree;
20
21 // FileSystemModel TreeModel implementation
22 private FileSystemModel fileSystemModel;
23
24 // JTextArea for displaying selected file's details
25 private JTextArea fileDetailsTextArea;
26
27 // FileTreeFrame constructor
28 public FileTreeFrame(String directory)
29 {
30 super("JTree FileSystem Viewer");
31
32 // create JTextArea for displaying File information
33 fileDetailsTextArea = new JTextArea();
34 fileDetailsTextArea.setEditable(false);
35

Fig. 3.19Fig. 3.19Fig. 3.19Fig. 3.19 FileTreeFrame application for browsing and editing a file system using
JTree and FileSystemModel (part 1 of 3).

130 Model-View-Controller Chapter 3

36 // create FileSystemModel for given directory
37 fileSystemModel = new FileSystemModel(
38 new File(directory));
39
40 // create JTree for FileSystemModel
41 fileTree = new JTree(fileSystemModel);
42
43 // make JTree editable for renaming Files
44 fileTree.setEditable(true);
45
46 // add a TreeSelectionListener
47 fileTree.addTreeSelectionListener(
48 new TreeSelectionListener() {
49
50 // display details of newly selected File when
51 // selection changes
52 public void valueChanged(
53 TreeSelectionEvent event)
54 {
55 File file = (File)
56 fileTree.getLastSelectedPathComponent();
57
58 fileDetailsTextArea.setText(
59 getFileDetails(file));
60 }
61 }
62); // end addTreeSelectionListener
63
64 // put fileTree and fileDetailsTextArea in a JSplitPane
65 JSplitPane splitPane = new JSplitPane(
66 JSplitPane.HORIZONTAL_SPLIT, true,
67 new JScrollPane(fileTree),
68 new JScrollPane(fileDetailsTextArea));
69
70 getContentPane().add(splitPane);
71
72 setDefaultCloseOperation(EXIT_ON_CLOSE);
73 setSize(640, 480);
74 setVisible(true);
75 }
76
77 // build a String to display file details
78 private String getFileDetails(File file)
79 {
80 // do not return details for null Files
81 if (file == null)
82 return "";
83
84 // put File information in a StringBuffer
85 StringBuffer buffer = new StringBuffer();
86 buffer.append("Name: " + file.getName() + "\n");
87 buffer.append("Path: " + file.getPath() + "\n");

Fig. 3.19Fig. 3.19Fig. 3.19Fig. 3.19 FileTreeFrame application for browsing and editing a file system using
JTree and FileSystemModel (part 2 of 3).

Chapter 3 Model-View-Controller 131

Lines 47–62 create a TreeSelectionListener to listen for TreeSelection-
Events in the JTree. Lines 55–56 of method valueChanged get the selected File
object from the JTree. Lines 58–59 invoke method getFileDetails to retrieve infor-
mation about the selected File and to display the details in fileDetailsTextArea.
Lines 65–69 create a JSplitPane to separate the JTree and JTextArea. Lines 67
and 68 place the JTree and JTextArea in JScrollPanes. Line 70 adds the
JSplitPane to the JFrame.

Method getFileDetails (lines 78–91) takes a File argument and returns a
String containing the File’s name, path and length. If the File argument is null, line
81 returns an empty String. Line 85 creates a StringBuffer, and lines 86–88 append

88 buffer.append("Size: " + file.length() + "\n");
89
90 return buffer.toString();
91 }
92
93 // execute application
94 public static void main(String args[])
95 {
96 // ensure that user provided directory name
97 if (args.length != 1)
98 System.err.println(
99 "Usage: java FileTreeFrame <path>");
100
101 // start application using provided directory name
102 else
103 new FileTreeFrame(args[0]);
104 }
105 }

Fig. 3.19Fig. 3.19Fig. 3.19Fig. 3.19 FileTreeFrame application for browsing and editing a file system using
JTree and FileSystemModel (part 3 of 3).

132 Model-View-Controller Chapter 3

the File’s name, path and length. Line 90 invokes method toString of class String-
Buffer and returns the result to the caller.

Method main (lines 94–104) executes the FileTreeFrame application. Lines 97–
99 check the command-line arguments to ensure that the user provided a path for the
FileTreeModel’s root. If the user did not provide a command-line argument, lines 98–
99 display the program’s usage instructions. Otherwise, line 103 creates a new File-
TreeFrame and passes the command-line argument to the constructor.

In this chapter, we introduced the model-view-controller architecture, the Observer
design pattern and the delegate-model architecture used by several Swing components. In
later chapters, we use MVC to build a Java2D paint program (Chapter 6), database-aware
programs (Chapter 8, JDBC) and an Enterprise Java case study (Chapters 16–19).

SUMMARY
• The model-view-controller (MVC) architecture separates application data (contained in the mod-

el) from graphical presentation components (the view) and input-processing logic (the controller).

• The Java Foundation Classes (more commonly referred to as Swing components) implement a
variation of MVC that combines the view and the controller into a single object, called a delegate.
The delegate provides both a graphical presentation of the model and an interface for modifying
the model.

• Every JButton has an associated ButtonModel for which the JButton is a delegate. The
ButtonModel maintains the state information, such as whether the JButton is clicked, wheth-
er the JButton is enabled as well as a list of ActionListeners. The JButton provides a
graphical presentation (e.g., a rectangle on the screen, with a label and a border) and modifies the
ButtonModel’s state (e.g., when the user clicks the JButton).

• The Observer design pattern is a more general application of MVC that provides loose coupling
between an object and its dependent objects.

• Class java.util.Observable represents a model in MVC, or the subject in the Observer de-
sign pattern. Class Observable provides method addObserver, which takes a ja-
va.util.Observer argument.

• Interface Observer represents the view in MVC, or the observer in the Observer design pattern.
When the Observable object changes, it notifies each registered Observer of the change.

• The model-view-controller architecture requires the model to notify its views when the model
changes. Method setChanged of class Observable sets the model’s changed flag. Method
notifyObservers of class Observable notifies all Observers (i.e., views) of the change.

• An Observable object must invoke method setChanged before invoking method notify-
Observers. Method notifyObservers invokes method update of interface Observer
for each registered Observer.

• JList is a Swing component that implements the delegate-model architecture. JList acts as a
delegate for an underlying ListModel.

• Interface ListModel defines methods for getting list elements, getting the size of the list and
registering and unregistering ListDataListeners. A ListModel notifies each registered
ListDataListener of each change in the ListModel.

• JTable is another Swing component that implements the delegate-model architecture. JTa-
bles are delegates for tabular data stored in TableModel implementations.

• JTree is one of the more complex Swing components that implements the delegate-model archi-
tecture. TreeModels represent hierarchical data, such as family trees, file systems, company

Chapter 3 Model-View-Controller 133

management structures and document outlines. JTrees act as delegates (i.e., combined view and
controller) for TreeModels.

• To describe tree data structures, it is common to use family-tree terminology. A tree data structure
consists of a set of nodes (i.e., members or elements of the tree) that are related as parents, children,
siblings, ancestors and descendents.

• Interface TreeModel defines methods that describe a tree data structure suitable for representa-
tion in a JTree. Objects of any class can represent nodes in a TreeModel. For example, a Per-
son class could represent a node in a family tree TreeModel.

• Class DefaultTreeModel provides a default TreeModel implementation. Interface
TreeNode defines common operations for nodes in a DefaultTreeModel, such as get-
Parent and getAllowsChildren.

• Interface MutableTreeNode extends interface TreeNode to represent a node that can change,
either by addition or removal of child nodes or by change of the Object associated with the node.
Class DefaultMutableTreeNode provides a MutableTreeNode implementation suitable
for use in a DefaultTreeModel.

• Interface TreeCellRenderer represents an object that creates a view for each node in the
JTree. Class DefaultTreeCellRenderer implements interface TreeCellRenderer
and extends class JLabel to provide a TreeCellRenderer default implementation.

• Interface TreeCellEditor represents an object for controlling (i.e., editing) each node in the
JTree. Class DefaultTreeCellEditor implements interface TreeCellEditor and
uses a JTextField to provide a TreeCellEditor default implementation.

• If the DefaultTreeModel implementation is not sufficient for an application, developers can
also provide custom implementations of interface TreeModel.

TERMINOLOGY
ancestor ListModel interface
child ListSelectionModel interface
controller model
DefaultListModel class model-view-controller architecture
DefaultMutableTreeNode class MutableTreeNode interface
DefaultTableModel class notifyObservers method of

 class ObservableDefaultTreeCellEditor class
DefaultTreeCellRenderer class Observable class
DefaultTreeModel class Observer design pattern
delegate Observer interface
delegate-model architecture parent
descendent setChanged method of class Observable
getChild method of interface TreeModel sibling
getChildAtIndex method of
 interface TreeModel

TableModel interface
TreeCellEditor interface

getChildCount method of interface
 TreeModel

TreeCellRenderer interface
TreeModel interface

getIndexOfChild method of
 interface TreeModel

TreeNode interface
update method of interface Observer

isLeaf method of interface TreeModel valueForPathChanged method of
 interface TreeModelJList class

JTable class view
JTree class

134 Model-View-Controller Chapter 3

SELF-REVIEW EXERCISES
3.1 What more general design pattern does the model-view-controller (MVC) architecture use?

3.2 How does the variation of MVC implemented in the Swing packages differ from regular MVC?

3.3 List the Swing classes that use MVC.

3.4 What type of data does a TableModel contain, and what Swing class is a TableModel
delegate?

3.5 What interfaces does a JTree employ to provide its delegate functionality for a TreeModel?

ANSWERS TO SELF-REVIEW EXERCISES
3.1 The model-view-controller architecture uses the more general Observer design pattern to
separate a model (i.e., a subject) from its views (i.e., its observers).

3.2 The Swing packages use a version of MVC known as the delegate-model architecture, in
which the view and controller are combined into a single object to form a delegate.

3.3 Most Swing classes use MVC, including JButton, JList, JTable and JTree.

3.4 A TableModel contains tabular data, such as data from a database table or spreadsheet.
JTable is a delegate for TableModels.

3.5 A JTree uses a TreeCellRenderer to provide a view of its nodes and a Tree-
CellEditor to provide a controller for its nodes.

EXERCISES
3.1 Create class LiabilityPieChartView as a subclass of class AssetPieChartView
(Fig. 3.8) that includes only liability Accounts (i.e., Accounts with negative balances). Modify
class AccountManager (Fig. 3.10) to include a LiabilityPieChartView, in addition to the
AssetPieChartView.

3.2 Create a new version of class AccountBarGraphView (Fig. 3.7) that shows multiple
Accounts in a single bar graph. [Hint: Try modeling your class after AssetPieChartView to
include multiple Accounts.]

3.3 Enhance your solution to Exercise 3.2 to allow transfers between accounts. Modify class
AccountController (Fig. 3.9) to include a JComboBox to select the destination account and a
JButton to perform the transfer.

3.4 Create a TreeModel implementation named XMLTreeModel that provides a read-only
model of an XML document. Create a program that uses a JTree to display the XML document. If
you are not familiar with XML, please see Appendices A–D.

4
Graphics Programming

with Java 2D and
Java 3D

Objectives
• To be able to use the Java 2D API to draw various

shapes and general paths.
• To be able to specify Paint and Stroke

characteristics of shapes displayed with
Graphics2D.

• To be able to manipulate images using Java 2D image
processing.

• To use the Java 3D API and Java 3D Utility classes to
create three-dimensional graphics scenes.

• To manipulate the texture and lighting of three-
dimensional objects with Java 3D.

Sit in reverie and watch the changing color of the waves that
break upon the idle seashore of the mind.
Henry Wadsworth Longfellow

Art is not a mirror to reflect the world, but a hammer with
which to shape it.
Vladimir Mayakovsky

… work transforms talent into genius.
Anna Povlova

A work that aspires, however humbly, to the condition of art
should carry its justification in every line.
Joseph Conrad

136 Graphics Programming with Java 2D and Java 3D Chapter 4

4.1 Introduction
Over the past few years, developers have strived to integrate cutting-edge graphics and an-
imation in their applets and applications. However, the original Java AWT graphics pack-
ages have provided a limited means to achieve such goals. Now, with the Java 2D™ API
and Java 3D™ API, developers can implement more sophisticated graphics applications—
such as games, screen savers, splash screens and 3D GUI’s.

This chapter overviews several of Java’s 2D and 3D graphics capabilities. We begin
with a brief introduction to fundamental graphics topics, such as coordinate systems and
graphics contexts. Next, we discuss several Java 2D capabilities, such as controlling how
to fill shapes with colors and patterns. We also introduce how to blur, invert, sharpen and
change the color of an image using Java 2D’s image processing capabilities. In the second
half of our graphics discussion, we present the Java 3D API. Using the Java 3D utility
classes, we build an application that allows the user to manipulate (rotate, scale and trans-
late) 3D objects with a mouse. The application has a control panel that allows the user both
to apply textures to 3D objects using texture mapping and to vary the lighting effects on 3D
objects by changing the color of a light source.

4.2 Coordinates, Graphics Contexts and Graphics Objects
Java’s 2D coordinate system (Fig. 4.1) is a scheme for identifying every point on the
screen. By default, the upper left corner of a GUI component has the coordinates (0, 0). The
y-coordinate is the vertical distance moving down from the upper left corner. The x-coor-
dinate is the horizontal distance moving right from the upper left corner.

A Java graphics context enables drawing on the screen. A Graphics object manages
a graphics context by controlling how information is drawn. Graphics objects contain
methods for drawing, font manipulation, color manipulation and the like. Every application
that performs drawing on the screen uses Graphics object to manage the application’s
graphics context.

Outline

4.1 Introduction
4.2 Coordinates, Graphics Contexts and Graphics Objects
4.3 Java 2D API

4.3.1 Java 2D Shapes
4.3.2 Java 2D Image Processing

4.4 Java 3D API
4.4.1 Obtaining and Installing the Java 3D API
4.4.2 Java 3D Scenes
4.4.3 A Java 3D Example

4.5 A Java 3D Case Study: A 3D Game with Custom Behaviors

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Chapter 4 Graphics Programming with Java 2D and Java 3D 137

Class Graphics is an abstract class (i.e., a Graphics object cannot be instan-
tiated). This contributes to Java’s portability. Drawing is performed differently on each
platform that supports Java so there cannot be one class that implements drawing capabil-
ities on all systems. For example, the graphics capabilities that enable a PC running
Microsoft Windows to draw a rectangle are different from the graphics capabilities that
enable a UNIX workstation to draw a rectangle—and those are both different from the
graphics capabilities that enable a Macintosh to draw a rectangle. For each platform, a
Graphics subclass implements all the drawing capabilities. This implementation is
hidden by the Graphics class, which supplies the interface that enables us to write pro-
grams that use graphics in a platform-independent manner.

Class Component is the superclass for many of the classes in the java.awt
package. Method paint of class Component is called when the contents of the Compo-
nent should be painted—either in response to the Component first being shown or
damage needing repair—such as resizing the Component window. Method paint takes
a Graphics reference as an argument. When a Component needs to be painted, the
system passes a Graphics reference to method paint. This Graphics reference is a
reference to the platform-specific Graphics subclass. The developer should not call
method paint directly, because drawing graphics is an event driven process. To request
the system to call paint, a developer can invoke method repaint of class Compo-
nent. Method repaint requests a call to method update of class Component as soon
as possible, to clear the Component’s background of any previous drawing. Method
update then calls paint directly.

Class JComponent—a Component subclass—is the superclass for many of the
classes in the javax.swing package. The Swing painting mechanism calls method
paintComponent of class JComponent when the contents of the JComponent
should be painted. Method paintComponent—which takes as an argument a
Graphics object—helps the Swing components paint properly. The Graphics object
is passed to the paintComponent method by the system when a paintComponent
operation is required for a JComponent. The developer should not call method paint-
Component directly. If the developer needs to call paintComponent, a call is made to
method repaint of class Component—exactly as discussed earlier for method
repaint of class Component.

Fig. 4.1Fig. 4.1Fig. 4.1Fig. 4.1 Java coordinate system. Units are measured in pixels.

(0, 0)

(x, y)

+y

+x x-Axis

y-Axis

138 Graphics Programming with Java 2D and Java 3D Chapter 4

4.3 Java 2D API
The Java 2D™ API provides advanced 2D graphics capabilities for developers who re-
quire detailed and complex graphical manipulations in their programs. The Java 2D API is
part of the Java 2 Platform, Standard Edition. The Java 2D API includes features for pro-
cessing line art, text and images in packages java.awt.image, java.awt.color,
java.awt.font, java.awt.geom, java.awt.print and java.awt.im-
age.renderable. Figure 4.2 describes several of the Java 2D classes and interfaces
covered in this chapter.

Class/Interface Description

Classes and interfaces from package java.awt

Graphics2D Graphics subclass for rendering 2D shapes, text and images.

BasicStroke Defines a basic set of rendering attributes for the outlines of graphics
primitives.

GradientPaint Provides a way to fill and outline 2D shapes with a linear color gradient.

TexturePaint Provides a way to fill and outline shapes with texture images.

Paint Defines how color patterns can be generated for rendering operations.

Shape Provides definitions for geometrical objects.

Stroke Provides methods for obtaining the outline of a geometrical shape.

Classes and interfaces from package java.awt.geom

GeneralPath Represents a path constructed from straight lines, quadratic curves and
cubic curves.

Line2D Represents a line in coordinate space.

RectangularShape Base class for geometrical shapes with rectangular frames. Subclasses
include Arc2D, Ellipse2D, Rectangle2D and
RoundRectangle2D.

BufferedImage Describes an Image with a buffer of colored pixel data composed of a
ColorModel and a Raster.

ColorModel Defines methods for translating a numerical pixel value to a color.

Classes and interfaces from package java.awt.image

Raster Is part of a BufferedImage that describes sample values in a rectan-
gular array of pixels.

Kernel Describes a 2D array used for filtering BufferedImages.

Fig. 4.2Fig. 4.2Fig. 4.2Fig. 4.2 Some Java 2D classes and interfaces (part 1 of 2).

Chapter 4 Graphics Programming with Java 2D and Java 3D 139

Class java.awt.Graphics2D enables drawing with the Java 2D API. Class
Graphics2D is a subclass of class Graphics, so it has all the capabilities for managing
the application’s graphics context discussed earlier in this chapter. To access the
Graphics2D capabilities, we cast the Graphics reference passed to paint to a
Graphics2D reference.

Java 2D can render three types of built-in graphics objects—termed graphics prim-
itives—images, text and geometrical shapes. There are seven Graphics2D state
attributes that determine how graphics primitives are rendered—clipping, compositing,
font, paint, rendering hints, stroke and transforms. Figure 4.3 describes each of these
seven attributes. The attributes form a pipeline that processes the graphics primitives to
produce the final image. The first stage in the pipeline determines which of the primitives
to render. A draw method then draws the primitive—method draw for shapes, method
drawString for text and method drawImage for images. The pipeline applies any
transformations, fills and strokes during the drawing process. The next stage is to ras-
terize the drawn shape—convert the shape to a two-dimensional array of numerical pixel
values called a raster. At this stage, the pipeline invokes any image-processing opera-
tions on the raster. The raster is then clipped, colored and combined with the current
drawing—known as compositing. Finally, the image is rendered—drawn—on an output
device, such as a screen or printer.

BufferedImageOp Defines methods that perform operations on BufferedImages (e.g.
blurring a BufferedImage)

RasterOp Describes single-input/single-output processes performed on
Rasters.

Attribute Description

Clipping Defines the area in which rendering operations take effect. Any geometrical
shape, including text, can be used as a clipping region.

Compositing Is a Set of blending rules that control how the pixels in a source image mix
with the pixels in a destination image.

Font Fonts are created from shapes that represent the characters to be drawn—
called glyphs. Text is rendered by drawing and filling the glyphs.

Paint Determines the colors, patterns and gradients for filling and outlining a shape.

Rendering Hints Specify techniques and methods that help to optimize drawing.

Fig. 4.3Fig. 4.3Fig. 4.3Fig. 4.3 The seven state attributes of a Java 2D graphics context (part 1 of 2).

Class/Interface Description

Fig. 4.2Fig. 4.2Fig. 4.2Fig. 4.2 Some Java 2D classes and interfaces (part 2 of 2).

140 Graphics Programming with Java 2D and Java 3D Chapter 4

The Java 2D API provides hints and rules that instruct the graphics engine how to per-
form these operations. The following sections present several features of image and geo-
metrical shape-rendering processes.

4.3.1 Java 2D Shapes
In this section, we present several Java 2D shape classes from package java.awt.geom,
including Ellipse2D.Double, Line2D.Double, Rectangle2D.Double,
RoundRectangle2D.Double and Arc2D.Double. Each class represents a shape
with dimensions specified as double-precision floating-point values. Each class can also be
represented with single-precision floating-point values (e.g., Ellipse2D.Float). In
each case, class Double is a static inner class contained in the class to the left of the
dot operator (e.g., Ellipse2D).

Class Shapes (Fig. 4.4) demonstrates several Java 2D shapes and rendering attributes
(such as thick lines), filling shapes with patterns and drawing dashed lines. These are just
a few of the many capabilities Java 2D provides.

Stroke Determines the outline of the shape to be drawn.

Transform Defines ways to perform linear transformations—an operation that changes
the shape of an image.

1 // Shapes.java
2 // Shapes demonstrates some Java 2D shapes.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7 import java.awt.geom.*;
8 import java.awt.image.*;
9

10 // Java extension packages
11 import javax.swing.*;
12
13 public class Shapes extends JFrame {
14
15 // constructor method
16 public Shapes()
17 {
18 super("Drawing 2D shapes");
19 }
20

Fig. 4.4Fig. 4.4Fig. 4.4Fig. 4.4 Demonstrating some Java 2D shapes (part 1 of 3).

Attribute Description

Fig. 4.3Fig. 4.3Fig. 4.3Fig. 4.3 The seven state attributes of a Java 2D graphics context (part 2 of 2).

Chapter 4 Graphics Programming with Java 2D and Java 3D 141

21 // draw shapes using Java 2D API
22 public void paint(Graphics g)
23 {
24 // call superclass' paint method
25 super.paint(g);
26
27 // get Graphics 2D by casting g to Graphics2D
28 Graphics2D graphics2D = (Graphics2D) g;
29
30 // draw 2D ellipse filled with blue-yellow gradient
31 graphics2D.setPaint(new GradientPaint
32 (5, 30, Color.blue, 35, 100, Color.yellow, true));
33 graphics2D.fill(new Ellipse2D.Double(5, 30, 65, 100));
34
35 // draw 2D rectangle in red
36 graphics2D.setPaint(Color.red);
37 graphics2D.setStroke(new BasicStroke(10.0f));
38 graphics2D.draw(
39 new Rectangle2D.Double(80, 30, 65, 100));
40
41 // draw 2D rounded rectangle with BufferedImage background
42 BufferedImage bufferedImage = new BufferedImage(
43 10, 10, BufferedImage.TYPE_INT_RGB);
44
45 Graphics2D graphics = bufferedImage.createGraphics();
46 graphics.setColor(Color.yellow); // draw in yellow
47 graphics.fillRect(0, 0, 10, 10); // draw filled rectangle
48 graphics.setColor(Color.black); // draw in black
49 graphics.drawRect(1, 1, 6, 6); // draw rectangle
50 graphics.setColor(Color.blue); // draw in blue
51 graphics.fillRect(1, 1, 3, 3); // draw filled rectangle
52 graphics.setColor(Color.red); // draw in red
53 graphics.fillRect(4, 4, 3, 3); // draw filled rectangle
54
55 // paint buffImage into graphics context of JFrame
56 graphics2D.setPaint(new TexturePaint(
57 bufferedImage, new Rectangle(10, 10)));
58 graphics2D.fill(new RoundRectangle2D.Double(
59 155, 30, 75, 100, 50, 50));
60
61 // draw 2D pie-shaped arc in white
62 graphics2D.setPaint(Color.white);
63 graphics2D.setStroke(new BasicStroke(6.0f));
64 graphics2D.draw(new Arc2D.Double(
65 240, 30, 75, 100, 0, 270, Arc2D.PIE));
66
67 // draw 2D lines in green and yellow
68 graphics2D.setPaint(Color.green);
69 graphics2D.draw(new Line2D.Double(395, 30, 320, 150));
70
71 float dashes[] = { 10, 2 };
72
73 graphics2D.setPaint(Color.yellow);

Fig. 4.4Fig. 4.4Fig. 4.4Fig. 4.4 Demonstrating some Java 2D shapes (part 2 of 3).

142 Graphics Programming with Java 2D and Java 3D Chapter 4

Line 28 casts the Graphics reference received by paint to a Graphics2D refer-
ence to allow access to Java 2D features. The first shape we draw is an oval filled with grad-
ually changing colors. Lines 31–32 invoke method setPaint of class Graphics2D to
set the Paint object that determines the color for the shape to display. A Paint object is
an object of any class that implements interface java.awt.Paint. The Paint object
can be something as simple as one of the predefined Color objects (class Color imple-
ments Paint), or the Paint object can be an instance of the Java 2D API’s Gradient-
Paint, SystemColor or TexturePaint classes. In this case, we use a
GradientPaint object.

Class GradientPaint paints a shape in gradually changing colors—a gradient.
The GradientPaint constructor used here requires seven arguments. The first two
arguments specify the starting coordinate for the gradient. The third argument specifies the
starting Color for the gradient. The fourth and fifth arguments specify the ending coordi-
nate for the gradient. The sixth argument specifies the ending Color for the gradient. The
last argument specifies whether the gradient is cyclic (true) or acyclic (false). The two
coordinates determine the direction of the gradient. The second coordinate (35, 100) is
down and to the right of the first coordinate (5, 30); therefore, the gradient goes down and
to the right at an angle. Since this gradient is cyclic (true), the color starts with blue, grad-
ually becomes yellow, then gradually returns to blue. If the gradient is acyclic, the color
transitions from the first color specified (e.g., blue) to the second color (e.g., yellow).

74 graphics2D.setStroke(new BasicStroke(
75 4, BasicStroke.CAP_ROUND, BasicStroke.JOIN_ROUND,
76 10, dashes, 0));
77 graphics2D.draw(new Line2D.Double(320, 30, 395, 150));
78
79 } // end method paint
80
81 // start application
82 public static void main(String args[])
83 {
84 Shapes application = new Shapes();
85 application.setDefaultCloseOperation(
86 JFrame.EXIT_ON_CLOSE);
87
88 application.setSize(425, 160);
89 application.setVisible(true);
90 }
91 }

Fig. 4.4Fig. 4.4Fig. 4.4Fig. 4.4 Demonstrating some Java 2D shapes (part 3 of 3).

Chapter 4 Graphics Programming with Java 2D and Java 3D 143

Line 33 uses method fill of class Graphics2D to draw a filled Shape object. The
Shape object is an instance of any class that implements interface Shape (package
java.awt)—in this case, an instance of class Ellipse2D.Double. The
Ellipse2D.Double constructor receives four arguments that specify the bounding
rectangle for the ellipse to display.

Next we draw a red rectangle with a thick border. Line 36 uses method setPaint to
set the Paint object to Color.red. Line 37 uses method setStroke of class
Graphics2D to set the characteristics of the rectangle’s border. Method setStroke
requires a Stroke object as its argument. The Stroke object is an instance of any class
that implements interface Stroke (package java.awt)—in this case, an instance of
class BasicStroke. Class BasicStroke provides a variety of constructors to specify
the line width, how the line ends (called the end caps), how lines join together (called line
joins) and the dash attributes of the line (if it is a dashed line). The constructor here specifies
that the line should be 10 pixels wide.

Lines 38–39 invoke method draw of Graphics2D to draw a Shape object—in this
case, an instance of class Rectangle2D.Double. The Rectangle2D.Double con-
structor receives four arguments specifying the upper left x-coordinate, upper left y-coor-
dinate, width and height of the rectangle measured in pixels.

Next we draw a rounded rectangle filled with a pattern created in a BufferedImage
(package java.awt.image) object. Lines 42–43 create the BufferedImage object.
Class BufferedImage can produce images in color and gray scale. This particular
BufferedImage is 10 pixels wide and 10 pixels tall. The third constructor argument
BufferedImage.TYPE_INT_RGB specifies that the image is stored in color using the
Red Green Blue (RGB) color scheme.

To create the fill pattern for the rounded rectangle, we must first draw into the Buf-
feredImage. Line 45 creates a Graphics2D object for drawing on the Buffered-
Image. Lines 46–53 use methods setColor, fillRect and drawRect (discussed
earlier in this chapter) to create the pattern.

Lines 56–57 set the Paint object to a new TexturePaint (package java.awt)
object. A TexturePaint object uses the image stored in its associated Buffered-
Image as the fill texture for a filled-in shape. The second argument specifies the Rect-
angle area from the BufferedImage that will be replicated through the texture. In this
case, the Rectangle is the same size as the BufferedImage. However, a smaller por-
tion of the BufferedImage can be used.

Lines 58–59 invoke method fill of Graphics2D to draw a filled Shape object—
RoundRectangle2D.Double. The RoundRectangle2D.Double constructor
receives six arguments specifying the rectangle dimensions and the arc width and arc
height—measured in pixels—used to determine the rounding of the corners.

Next we draw a oblong arc with a thick white line. Line 62 sets the Paint object to
Color.white. Line 63 sets the Stroke object to a new BasicStroke for a line 6
pixels wide. Lines 64–65 use method draw of class Graphics2D to draw a Shape
object—in this case, an Arc2D.Double. The Arc2D.Double constructor’s first four
arguments specifying the upper left x-coordinate, upper left y-coordinate, width and height
of the bounding rectangle for the arc. The fifth argument specifies the start angle measured
in degrees. The sixth argument specifies the arc angle. The start angle and arc angles are
measured relative to the shape’s bounding rectangle. The last argument specifies how the

144 Graphics Programming with Java 2D and Java 3D Chapter 4

arc is closed. Constant Arc2D.PIE indicates that the arc is closed by drawing two lines.
One line from the arc’s starting point to the center of the bounding rectangle and one line
from the center of the bounding rectangle to the ending point. Class Arc2D provides two
other static constants for specifying how the arc is closed. Constant Arc2D.CHORD
draws a line from the starting point to the ending point. Constant Arc2D.OPEN specifies
that the arc is not closed.

Finally, we draw two lines using Line2D objects—one solid and one dashed. Line 68
sets the Paint object to Color.green. Line 69 uses method draw of class
Graphics2D to draw a Shape object—in this case, an instance of class
Line2D.Double. The Line2D.Double constructor’s arguments specify starting
coordinates and ending coordinates of the line.

Line 71 defines a two-element float array. This array describes the length—in
pixels—of the dashes and spaces in the dashed line. In this case, each dash will be 10 pixels
long and each space will be two pixels long. To create dashes of different lengths in a pattern,
simply provide the lengths of each dash as an element in the array. Line 73 sets the Paint
object to Color.yellow. Lines 74–76 set the Stroke object to a new BasicStroke.
The line will be 4 pixels wide and will have rounded ends (BasicStroke.CAP_ROUND).
If lines join together (as in a rectangle at the corners), the joining of the lines will be rounded
(BasicStroke.JOIN_ROUND). The dashes argument specifies the dash lengths for
the line. The last argument indicates the starting subscript in the dashes array for the first
dash in the pattern. Line 77 then draws a line with the current Stroke.

Next we present a general path—a shape constructed from lines and complex curves.
A general path is represented with an object of class GeneralPath (package
java.awt.geom). Class Shapes2 (Fig. 4.5) demonstrates drawing a general path in
the shape of a five-pointed star.

1 // Shapes2.java
2 // Shapes2 demonstrates a general path.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7 import java.awt.geom.*;
8
9 // Java extension packages

10 import javax.swing.*;
11
12 public class Shapes2 extends JFrame {
13
14 // set window's title bar String and background color
15
16 public Shapes2()
17 {
18 super("Drawing 2D Shapes");
19
20 getContentPane().setBackground(Color.gray);
21 }
22

Fig. 4.5Fig. 4.5Fig. 4.5Fig. 4.5 Demonstrating Java 2D paths (part 1 of 3).

Chapter 4 Graphics Programming with Java 2D and Java 3D 145

23 // draw general paths
24 public void paint(Graphics g)
25 {
26 // call superclass' paint method
27 super.paint(g);
28
29 int xPoints[] =
30 { 55, 67, 109, 73, 83, 55, 27, 37, 1, 43 };
31 int yPoints[] =
32 { 0, 36, 36, 54, 96, 72, 96, 54, 36, 36 };
33
34 Graphics2D graphics2D = (Graphics2D) g;
35
36 // create a star from a series of points
37 GeneralPath star = new GeneralPath();
38
39 // set the initial coordinate of the General Path
40 star.moveTo(xPoints[0], yPoints[0]);
41
42 // create the star--this does not draw the star
43 for (int count = 1; count < xPoints.length; count++)
44 star.lineTo(xPoints[count], yPoints[count]);
45
46 // close the shape
47 star.closePath();
48
49 // translate the origin to (200, 200)
50 graphics2D.translate(200, 200);
51
52 // rotate around origin and draw stars in random colors
53 for (int count = 1; count <= 20; count++) {
54
55 // rotate coordinate system
56 graphics2D.rotate(Math.PI / 10.0);
57
58 // set random drawing color
59 graphics2D.setColor(new Color(
60 (int) (Math.random() * 256),
61 (int) (Math.random() * 256),
62 (int) (Math.random() * 256)));
63
64 // draw filled star
65 graphics2D.fill(star);
66 }
67
68 } // end method paint
69
70 // execute application
71 public static void main(String args[])
72 {
73 Shapes2 application = new Shapes2();
74 application.setDefaultCloseOperation(
75 JFrame.EXIT_ON_CLOSE);

Fig. 4.5Fig. 4.5Fig. 4.5Fig. 4.5 Demonstrating Java 2D paths (part 2 of 3).

146 Graphics Programming with Java 2D and Java 3D Chapter 4

Lines 29–32 define two int arrays representing the x- and y-coordinates of the points
in the star. Line 37 defines GeneralPath object star. Line 40 uses method moveTo
of class GeneralPath to specify the first point in the star. The for structure at lines
43–44 uses method lineTo of class GeneralPath to draw a line to the next point in the
star. Each new call to lineTo draws a line from the previous point to the current point.
Line 47 uses method closePath of class GeneralPath to draw a line from the last
point to the point specified in the last call to moveTo. This completes the general path.

Line 50 uses method translate of class Graphics2D to move the drawing origin
to location (200, 200). All drawing operations now use location (200, 200) as (0, 0). The
for structure at lines 53–65 draws the star 20 times by rotating it around the new origin
point. Line 56 uses method rotate of class Graphics2D to rotate the next displayed
shape. The argument specifies the rotation angle in radians (360° = 2π radians). Line 65
uses Graphics2D method fill to draw a filled version of the star.

4.3.2 Java 2D Image Processing

Image processing is the manipulation of digital images by applying filters—mathematical
operations that change images. Java 2D provides an image-processing API to shield devel-
opers from the mathematics behind filters. Compression filters, measurement filters and en-
hancement filters constitute the three major image-processing categories. Compression
filters reduce a digital image’s memory usage, resulting in reduced storage size and faster
transmission of complex digital images. Some common applications of compression filters
include high-definition television (HDTV), video phones and virtual reality. Measurement

76 application.setSize(400, 400);
77 application.setVisible(true);
78 }
79 }

Fig. 4.5Fig. 4.5Fig. 4.5Fig. 4.5 Demonstrating Java 2D paths (part 3 of 3).

Chapter 4 Graphics Programming with Java 2D and Java 3D 147

filters collect data from digital images. Measurement filters play a crucial role in the field of
image recognition and machine vision (e.g., for printed circuit board inspection and assem-
bly-line welding robots). Enhancement filters—filters that alter certain physical aspects of
an image—often restore corrupted images to their original form. Sometimes, the processes
of creating, storing or transmitting a digital image introduces data corruption such as noise,
motion blurring and color loss. Enhancement filters can remove noise, sharpen edges and
brighten colors to recover the original image. For example, satellite images use enhancement
filters to remove noise created from capturing images at such lengthy distances.

Java 2D image-processing filters operate on objects of class BufferedImage, which
separates image data into two components—a Raster and a ColorModel. A Raster—
composed of a DataBuffer and a SampleModel—organizes and stores the data that
determine a pixel’s color. Each pixel is composed of samples—number values that represent
the pixel’s color components. The DataBuffer stores the raw sample data for an image.
The SampleModel accesses the sample values in the DataBuffer for any given pixel.
The ColorModel is an interpreter for the Raster, taking the sample values for each pixel
in the Raster and converting them to the appropriate color. The ColorModel converts
the sample data to different colors depending on the color scale of the image. Two common
color scales are grayscale and RGB. In grayscale, every pixel is represented by one sample
interpreted as a color between black and white. In RGB, each pixel is represented by three
samples that correspond to the red, green and blue color components of the pixel.

This section presents an application that demonstrates how to create and filter
BufferedImages. We build filters that blur, sharpen, invert and change the color scale
of a BufferedImage. These are “fundamental” filters found in mass graphics programs,
such as Paint Shop Pro. Our application allows the user to apply a series of filters to a
BufferedImage to demonstrate the effects of multiple filters. Sample filter results
appear in the screen captures of Fig. 4.13. The application consists of three distinct parts:

1. ImagePanel—a JPanel extended to provide image-processing capabilities.

2. Java2DImageFilter—an interface for image-processing filters that will alter
the image in an ImagePanel. The classes that implement interface Java2D-
ImageFilter include BlurFilter, SharpenFilter, InvertFilter
and ColorChangeFilter.

3. Java2DExample—a GUI that displays the filtered image and presents the user
with a menu for selecting image filters.

 Class ImagePanel (Fig. 4.6) allows a user to experiment with applying various fil-
ters to an image. ImagePanel contains an image and methods for filtering that image.
Lines 18–19 declare two BufferedImage references—displayImage and origi-
nalImage. The image filters manipulate displayImage, and originalImage
stores a copy of the original image so the user can view the original image.

1 // ImagePanel.java
2 // ImagePanel contains an image for display. The image is
3 // converted to a BufferedImage for filtering purposes.
4 package com.deitel.advjhtp1.java2d;

Fig. 4.6Fig. 4.6Fig. 4.6Fig. 4.6 Class ImagePanel allows for displaying and filtering BufferedImages
(part 1 of 3).

148 Graphics Programming with Java 2D and Java 3D Chapter 4

5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9 import java.awt.image.*;

10 import java.net.*;
11
12 // Java extension packages
13 import javax.swing.*;
14 import javax.swing.event.*;
15
16 public class ImagePanel extends JPanel {
17
18 private BufferedImage displayImage; // filtered image
19 private BufferedImage originalImage; // original image
20 private Image image; // image to load
21
22 // ImagePanel constructor
23 public ImagePanel(URL imageURL)
24 {
25 image =
26 Toolkit.getDefaultToolkit().createImage(imageURL);
27
28 // create MediaTracker for image
29 MediaTracker mediaTracker = new MediaTracker(this);
30 mediaTracker.addImage(image, 0);
31
32 // wait for Image to load
33 try {
34 mediaTracker.waitForAll();
35 }
36
37 // exit program on error
38 catch (InterruptedException interruptedException) {
39 interruptedException.printStackTrace();
40 }
41
42 // create BufferedImages from Image
43 originalImage = new BufferedImage(image.getWidth(null),
44 image.getHeight(null), BufferedImage.TYPE_INT_RGB);
45
46 displayImage = originalImage;
47
48 // get BufferedImage’s graphics context
49 Graphics2D graphics = displayImage.createGraphics();
50 graphics.drawImage(image, null, null);
51
52 } // end ImagePanel constructor
53
54 // apply Java2DImageFilter to Image
55 public void applyFilter(Java2DImageFilter filter)
56 {

Fig. 4.6Fig. 4.6Fig. 4.6Fig. 4.6 Class ImagePanel allows for displaying and filtering BufferedImages
(part 2 of 3).

Chapter 4 Graphics Programming with Java 2D and Java 3D 149

The ImagePanel constructor (lines 23–52) accepts as an argument a URL that spec-
ifies the file containing the image to filter. Lines 25–26 create an Image object—
image—from this file. Lines 29–30 instantiate a MediaTracker for image loading.
Method waitForAll (line 34) of class MediaTracker ensures that image is loaded
into memory before we filter this image.

Lines 43–46 create BufferedImages displayImage and originalImage.
The BufferedImage constructor accepts three arguments—the image’s width, height
and type. We use predefined type TYPE_INT_RGB, which defines three 8-bit segments
each representing a red, green and blue color components. Line 49 creates a Graphics2D
object for rendering displayImage. Line 50 renders the loaded image on
ImagePanel using method drawImage of class Graphics2D.

57 // process Image using Java2DImageFilter
58 displayImage = filter.processImage(displayImage);
59 repaint();
60 }
61
62 // set Image to originalImage
63 public void displayOriginalImage()
64 {
65 displayImage = new BufferedImage(image.getWidth(null),
66 image.getHeight(null), BufferedImage.TYPE_INT_RGB);
67
68 Graphics2D graphics = displayImage.createGraphics();
69 graphics.drawImage(originalImage, null, null);
70 repaint();
71 }
72
73 // draw ImagePanel
74 public void paintComponent(Graphics g)
75 {
76 super.paintComponent(g);
77 Graphics2D graphics = (Graphics2D) g;
78 graphics.drawImage(displayImage, 0, 0, null);
79 }
80
81 // get preferred ImagePanel size
82 public Dimension getPreferredSize()
83 {
84 return new Dimension(displayImage.getWidth(),
85 displayImage.getHeight());
86 }
87
88 // get minimum ImagePanel size
89 public Dimension getMinimumSize()
90 {
91 return getPreferredSize();
92 }
93 }

Fig. 4.6Fig. 4.6Fig. 4.6Fig. 4.6 Class ImagePanel allows for displaying and filtering BufferedImages
(part 3 of 3).

150 Graphics Programming with Java 2D and Java 3D Chapter 4

Method applyFilter (lines 55–60) applies an Java2DImageFilter to dis-
playImage. Line 58 invokes method processImage of class Java2DImageFilter,
which passes displayImage as a parameter. Method processImage applies an image
filter to displayImage. Line 59 calls method repaint, which indicates that
ImagePanel needs to be redrawn. In turn, a system call is made to method paintCom-
ponent of class ImagePanel. Method paintComponent (lines 74–79) draws dis-
playImage onto ImagePanel. Line 77 casts the Graphics object to a Graphics2D
object to access Graphics2D methods. The Graphics2D’s method drawImage (line
78) renders displayImage in the ImagePanel.

We provide a means to reconstruct the original image after the program applies fil-
ters to displayImage. Method displayOriginal (lines 63–71) creates a new
BufferedImage that contains a copy of originalImage so the user can apply a
new set of filters to displayImage. Lines 65–66 recreate displayImage as a new
BufferedImage. Line 68 creates a Graphics2D for displayImage. Line 69 calls
method drawImage of class Graphics2D, which draws originalImage into
displayImage.

We now implement our image-processing filters—BlurFilter, Sharpen-
Filter, InvertFilter and ColorFilter. Our filters implement interface
Java2DImageFilter (Fig. 4.7). Classes that implement Java2DImageFilter
must implement method processImage (line 13). Method processImage accepts a
BufferedImage to filter and returns the filtered BufferedImage.

The Java2DImageFilters in this application use well-known Java 2D image-pro-
cessing operations. Java 2D has several image filters that operate on BufferedImages.
Interfaces BufferedImageOp and RasterOp serve as the base classes for Java 2D
image filters. Method filter of interfaces BufferedImageOp and RasterOp takes
as arguments two images—the source image and the destination image. All classes that
implement BufferedImageOp and RasterOp apply a filter to the source image to pro-
duce the destination image. A BufferedImageOp processes a BufferedImage,
while a RasterOp processes only the Raster associated with a BufferedImage.
Several Java 2D image filters implement BufferedImageOp and/or RasterOp
(Fig. 4.8).

1 // Java2DImageFilter.java
2 // Java2DImageFilter is an interface that defines method
3 // processImage for applying a filter to an Image.
4 package com.deitel.advjhtp1.java2d;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.image.*;
9

10 public interface ImageFilter {
11
12 // apply filter to Image
13 public BufferedImage processImage(BufferedImage image);
14 }

Fig. 4.7Fig. 4.7Fig. 4.7Fig. 4.7 Java2DImageFilter interface for creating Java 2D image filters.

Chapter 4 Graphics Programming with Java 2D and Java 3D 151

We now present each Java2DImageFilter in our application. Class Invert-
Filter (Fig. 4.9), which implements interface Java2DImageFilter, inverts the
color of the pixels in a BufferedImage. Each pixel consists of three samples—8-bit R,
G and B integers. An 8-bit color sample takes on an integer in the range 0–255. By inverting
the numerical value of the pixel sample, we can invert the color of the pixel. Line 15 creates
an array to hold the inverted integers. Lines 17–18 invert the array values.

InvertFilter uses a LookupOp—a subclass of BufferedImageOp—to
invert the colors. Class BufferedImageOp—the base class for most Java 2D filters—
operates on two images (the source image and the destination image). All classes that
implement BufferedImageOp filter the source image to produce the destination
image. A LookupOp is an array indexed by source pixel color values and contains desti-
nation pixel color values. Lines 21–22 create a new LookupOp—invertFilter. The
LookupOp constructor takes as arguments a ByteLookUpTable that contains the
lookup array table—invertArray—and a RenderingHints. The Rendering-
Hints object describes optimizations for the rendering engine. In this application, no
optimizations are needed, so RenderingHints is null. Line 25 invokes method
filter of class LookupOp, which processes image with invertFilter and
returns the filtered image.

Class Implements Interfaces Description

AffineTransformOp BufferedImageOp
RasterOp

Performs linear mapping from 2D coordi-
nates in the source image to 2D coordi-
nates in the destination image. (Example:
Rotate an image about a point in the
image.)

BandCombineOp RasterOp Performs a linear combination of the
bands in a Raster. (Example: Change
the color palette in an image.)

ColorConvertOp BufferedImageOp
RasterOp

Performs color conversion on each pixel
in the source image. (Example: Convert
from RGB color to gray scale.)

ConvolveOp BufferedImageOp
RasterOp

Combines source pixel values with sur-
rounding pixel values to derive destina-
tion pixel values. (Example: Sharpen
edges in an image.)

LookupOp BufferedImageOp
RasterOp

Performs a lookup operation on the
source image to create the destination
image. (Example: Invert the RGB colors
in an image.)

RescaleOp BufferedImageOp
RescaleOp

Rescale the data in the source image by a
scalar plus offset. (Example: Darken the
coloring of an image.)

Fig. 4.8Fig. 4.8Fig. 4.8Fig. 4.8 Classes that implement BufferedImageOp and RasterOp.

152 Graphics Programming with Java 2D and Java 3D Chapter 4

Class SharpenFilter (Fig. 4.10) is a filter that detects and enhances edges—dif-
ferences in the sample values of neighboring pixels—in an image. A sharpening filter first
detects edges by determining differences in neighboring pixel sample values, then
enhances the edge by increasing the difference between the sample values. Sharpen-
Filter uses a ConvolveOp—another subclass of BufferedImageOp—to create
the sharpening filter. A ConvolveOp combines the colors of a source pixel and its sur-
rounding neighbors to determine the color of the corresponding destination pixel. Lines
15–18 create sharpenMatrix—the values used in the ConvolveOp. Lines 21–23
create the ConvolveOp—sharpenFilter—passing three parameters (a Kernel,
an integer edge hint and a RenderingHints object). The Kernel—a 2D array—spec-
ifies how a ConvolveOp filter should combine neighboring pixel values. Every
ConvolveOp is built from a Kernel. The Kernel constructor takes as arguments a
width, height and an array of values. Using these arguments, a two-dimensional array is
constructed from the array values. Edge hints instruct the filter how to alter pixels at the
perimeter of the image. EDGE_NO_OP (line 23) instructs sharpenFilter to copy the
source pixels at the perimeter of image directly to the destination image without modifi-
cation. Line 26 invokes method filter of class ConvolveOp, which takes as an argu-
ment a BufferedImage. Method filter returns the filtered image.

1 // InvertFilter.java
2 // InvertFilter, which implements Java2DImageFilter, inverts a
3 // BufferedImage's RGB color values.
4 package com.deitel.advjhtp1.java2d;
5
6 // Java core packages
7 import java.awt.image.*;
8
9 public class InvertFilter implements Java2DImageFilter {

10
11 // apply color inversion filter to BufferedImage
12 public BufferedImage processImage(BufferedImage image)
13 {
14 // create 256 color array and invert colors
15 byte[] invertArray = new byte[256];
16
17 for (int counter = 0; counter < 256; counter++)
18 invertArray[counter] = (byte)(255 - counter);
19
20 // create filter to invert colors
21 BufferedImageOp invertFilter = new LookupOp(
22 new ByteLookupTable(0, invertArray), null);
23
24 // apply filter to displayImage
25 return invertFilter.filter(image, null);
26
27 } // end method processImage
28 }

Fig. 4.9Fig. 4.9Fig. 4.9Fig. 4.9 InvertFilter inverts colors in a BufferedImage.

Chapter 4 Graphics Programming with Java 2D and Java 3D 153

Class BlurFilter (Fig. 4.11) uses a ConvolveOp to blur a BufferedImage.
A blurring filter smooths distinct edges by averaging each pixel value with that of its eight
neighboring pixels. Lines 14–17 create blurMatrix—an array of values for con-
structing the Kernel. Lines 20–21 create ConvolveOp blurFilter using the
default constructor, which takes as an argument a Kernel constructed from blurMa-
trix. The default constructor uses EDGE_ZERO_FILL for the edge hint and a null
RenderingHints. EDGE_ZERO_FILL specifies that pixels at the outer edge of the
destination BufferedImage be set to 0—this is the default. Line 24 invokes blurF-
ilter’s method filter on image.

1 // SharpenFilter.java
2 // SharpenFilter, which implements Java2DImageFilter, sharpens
3 // the edges in a BufferedImage.
4 package com.deitel.advjhtp1.java2d;
5
6 // Java core packages
7 import java.awt.image.*;
8
9 public class SharpenFilter implements Java2DImageFilter {

10
11 // apply edge-sharpening filter to BufferedImage
12 public BufferedImage processImage(BufferedImage image)
13 {
14 // array used to detect edges in image
15 float[] sharpenMatrix = {
16 0.0f, -1.0f, 0.0f,
17 -1.0f, 5.0f, -1.0f,
18 0.0f, -1.0f, 0.0f };
19
20 // create filter to sharpen edges
21 BufferedImageOp sharpenFilter =
22 new ConvolveOp(new Kernel(3, 3, sharpenMatrix),
23 ConvolveOp.EDGE_NO_OP, null);
24
25 // apply sharpenFilter to displayImage
26 return sharpenFilter.filter(image, null);
27
28 } // end method processImage
29 }

Fig. 4.10Fig. 4.10Fig. 4.10Fig. 4.10 SharpenFilter sharpens edges in a BufferedImage.

1 // BlurFilter.java
2 // Blurfilter blurs a BufferedImage.
3 package com.deitel.advjhtp1.java2d;
4
5 // Java core packages
6 import java.awt.image.*;
7
8 public class BlurFilter implements Java2DImageFilter {

Fig. 4.11Fig. 4.11Fig. 4.11Fig. 4.11 BlurFilter blurs the colors in a BufferedImage (part 1 of 2).

154 Graphics Programming with Java 2D and Java 3D Chapter 4

Class ColorFilter (Fig. 4.12) alters the color bands in a BufferedImage.
There are three color bands in a TYPE_INT_RGB BufferedImage—red, green and
blue. Each color band is defined by three coefficients that represent the R, G and B compo-
nents in the band. The standard red color band consists of 1.0f R, 0.0f G and 0.0f B
color components—i.e. the standard red band consists entirely of red. Likewise, the stan-
dard green color band consists of 0.0f R, 1.0f G and 0.0f B, while the standard blue
color band consists of 0.0f R, 0.0f G and 1.0f B. We can change image colors by
altering the values of the R, G and B coefficients in a color band.

9
10 // apply blurring filter to BufferedImage
11 public BufferedImage processImage(BufferedImage image)
12 {
13 // array used to blur BufferedImage
14 float[] blurMatrix = {
15 1.0f / 9.0f, 1.0f / 9.0f, 1.0f / 9.0f,
16 1.0f / 9.0f, 1.0f / 9.0f, 1.0f / 9.0f,
17 1.0f / 9.0f, 1.0f / 9.0f, 1.0f / 9.0f };
18
19 // create ConvolveOp for blurring BufferedImage
20 BufferedImageOp blurFilter = new ConvolveOp(
21 new Kernel(3, 3, blurMatrix));
22
23 // apply blurFilter to BufferedImage
24 return blurFilter.filter(image, null);
25
26 } // end method processImage
27 }

1 // ColorFilter.java
2 // ColorFilter is an Java2DImageFilter that alters the RGB
3 // color bands in a BufferedImage.
4 package com.deitel.advjhtp1.java2d;
5
6 // Java core packages
7 import java.awt.image.*;
8
9 public class ColorFilter implements Java2DImageFilter {

10
11 // apply color-change filter to BufferedImage
12 public BufferedImage processImage(BufferedImage image)
13 {
14 // create array used to change RGB color bands
15 float[][] colorMatrix = {
16 { 1.0f, 0.0f, 0.0f },
17 { 0.5f, 1.0f, 0.5f },
18 { 0.2f, 0.4f, 0.6f } };
19

Fig. 4.12Fig. 4.12Fig. 4.12Fig. 4.12 ColorFilter changes the colors in a BufferedImage (part 1 of 2).

Fig. 4.11Fig. 4.11Fig. 4.11Fig. 4.11 BlurFilter blurs the colors in a BufferedImage (part 2 of 2).

Chapter 4 Graphics Programming with Java 2D and Java 3D 155

Lines 15–18 create colorMatrix—a 2D array that represents a nonstandard color
space—the aggregation of red, green and blue color bands. The red band (line 16) is the
same as in the standard space. The green and blue bands (lines 17–18) assume color values
from all three color components—green and blue will contain elements of R, G and B.
Lines 21–22 create a BandCombineOp—a subclass of RasterOp. Class RasterOp is
the base class for filters that operate on Rasters. A BandCombineOp operates on the
color bands of a Raster. Every BufferedImage contains a Raster. The Raster
organizes and stores the samples that determine the pixel colors in the BufferedImage.

Line 25 calls method getRaster of class BufferedImage, which returns the
Raster associated with image—sourceRaster. Lines 27–28 call method create-
CompatibleWriteableRaster of class Raster, which returns dis-
playRaster—a WriteableRaster compatible with sourceRaster. Compatible
Rasters contain the same number of bands. A WriteableRaster allows sample data
to be written while a Raster is read-only. Line 31 invokes method filter of class
BandCombineOp, which takes as arguments a source Raster and a destination
WriteableRaster. The source Raster is filtered and written into the destination
WriteableRaster.

Lines 34–35 construct a BufferedImage. This BufferedImage constructor
takes four arguments—a ColorModel, a Raster, a boolean and a Hashtable. We
use the ColorModel of the original image, accessed through method getColorModel
of class Image (line 34). Class ColorModel converts Raster data to colors depending
on the color scale of the image. The Raster argument to the BufferedImage con-
structor is our displayRaster. The boolean value indicates whether the Raster has
been premultiplied with alpha values. Each pixel is a small square. A curve in an image
may require that only a portion of a pixel be colored—the alpha values tell the Raster
how much of the pixel to cover. The Hashtable contains String/object properties and
is null in this case. BufferedImage’s constructor will throw a RasterFormatEx-

20 // create filter to change colors
21 BandCombineOp changeColors =
22 new BandCombineOp(colorMatrix, null);
23
24 // create source and display Rasters
25 Raster sourceRaster = image.getRaster();
26
27 WritableRaster displayRaster =
28 sourceRaster.createCompatibleWritableRaster();
29
30 // filter Rasters with changeColors filter
31 changeColors.filter(sourceRaster, displayRaster);
32
33 // create new BufferedImage from display Raster
34 return new BufferedImage(image.getColorModel(),
35 displayRaster, true, null);
36
37 } // end method processImage
38 }

Fig. 4.12Fig. 4.12Fig. 4.12Fig. 4.12 ColorFilter changes the colors in a BufferedImage (part 2 of 2).

156 Graphics Programming with Java 2D and Java 3D Chapter 4

ception if the number and types of bands in the Raster do not match the number and
types of bands required by the ColorModel.

Class Java2DExample (Fig. 4.13) provides a user interface for applying Java2D-
ImageFilters to ImagePanels. Lines 23–26 declare the Java2DImageFilters.
Lines 34–37 initialize the Java2DImageFilters. Lines 40–41 create imagePanel—
the ImagePanel to be filtered. Lines 44–45 create filterMenu—the menu of
Java2DImageFilters. Lines 52–54 create the first JMenuItem for filterMenu—
originalMenuItem. An ItemListener invokes imagePanel’s display-
Original method when originalMenuItem is selected (lines 56–66). Lines 69–76
call method createMenuItem (lines 93–116) for each of the four Java2DImage-
Filters. This method creates a JMenuItem for the filter with the appropriate title and
mnemonic. ImagePanel invokes method applyFilter when the JMenuItem is
selected (line 108). Java2DExample contains method main (lines 119–125), for starting
the application.

1 // Java2DExample.java
2 // Java2DExample is an application that applies filters to an
3 // image using Java 2D.
4 package com.deitel.advjhtp1.java2d;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9 import java.awt.image.*;

10 import java.lang.*;
11 import java.net.*;
12
13 // Java extension packages
14 import javax.swing.*;
15 import javax.swing.event.*;
16
17 public class Java2DExample extends JFrame {
18
19 private JMenu filterMenu;
20 private ImagePanel imagePanel;
21
22 // image filters
23 private Java2DImageFilter invertFilter;
24 private Java2DImageFilter sharpenFilter;
25 private Java2DImageFilter blurFilter;
26 private Java2DImageFilter colorFilter;
27
28 // initialize JMenuItems
29 public Java2DExample()
30 {
31 super("Java 2D Image Processing Demo");
32
33 // create Java2DImageFilters
34 blurFilter = new BlurFilter();

Fig. 4.13Fig. 4.13Fig. 4.13Fig. 4.13 Java 2D image-processing application GUI (part 1 of 4).

Chapter 4 Graphics Programming with Java 2D and Java 3D 157

35 sharpenFilter = new SharpenFilter();
36 invertFilter = new InvertFilter();
37 colorFilter = new ColorFilter();
38
39 // initialize ImagePanel
40 imagePanel = new ImagePanel(
41 Java2DExample.class.getResource("images/ajhtp.png"));
42
43 // create JMenuBar
44 JMenuBar menuBar = new JMenuBar();
45 setJMenuBar(menuBar);
46
47 // create JMenu
48 filterMenu = new JMenu("Image Filters");
49 filterMenu.setMnemonic('I');
50
51 // create JMenuItem for displaying original Image
52 JMenuItem originalMenuItem =
53 new JMenuItem("Display Original");
54 originalMenuItem.setMnemonic('O');
55
56 originalMenuItem.addActionListener(
57 new ActionListener() {
58
59 // show original Image
60 public void actionPerformed(ActionEvent action)
61 {
62 imagePanel.displayOriginalImage();
63 }
64
65 } // end anonymous inner class
66);
67
68 // create JMenuItems for Java2DImageFilters
69 JMenuItem invertMenuItem = createMenuItem(
70 "Invert", 'I', invertFilter);
71 JMenuItem sharpenMenuItem = createMenuItem(
72 "Sharpen", 'S', sharpenFilter);
73 JMenuItem blurMenuItem = createMenuItem(
74 "Blur", 'B', blurFilter);
75 JMenuItem changeColorsMenuItem = createMenuItem(
76 "Change Colors", 'C', colorFilter);
77
78 // add JMenuItems to JMenu
79 filterMenu.add(originalMenuItem);
80 filterMenu.add(invertMenuItem);
81 filterMenu.add(sharpenMenuItem);
82 filterMenu.add(blurMenuItem);
83 filterMenu.add(changeColorsMenuItem);
84
85 // add JMenu to JMenuBar
86 menuBar.add(filterMenu);
87

Fig. 4.13Fig. 4.13Fig. 4.13Fig. 4.13 Java 2D image-processing application GUI (part 2 of 4).

158 Graphics Programming with Java 2D and Java 3D Chapter 4

88 getContentPane().add(imagePanel, BorderLayout.CENTER);
89
90 } // end Java2DExample constructor
91
92 // create JMenuItem and ActionListener for given filter
93 public JMenuItem createMenuItem(String menuItemName,
94 char mnemonic, final Java2DImageFilter filter)
95 {
96 // create JMenuItem
97 JMenuItem menuItem = new JMenuItem(menuItemName);
98
99 // set Mnemonic
100 menuItem.setMnemonic(mnemonic);
101
102 menuItem.addActionListener(
103 new ActionListener() {
104
105 // apply Java2DImageFilter when MenuItem accessed
106 public void actionPerformed(ActionEvent action)
107 {
108 imagePanel.applyFilter(filter);
109 }
110
111 } // end anonymous inner class
112);
113
114 return menuItem;
115
116 } // end method createMenuItem
117
118 // start program
119 public static void main(String args[])
120 {
121 Java2DExample application = new Java2DExample();
122 application.setDefaultCloseOperation(EXIT_ON_CLOSE);
123 application.pack();
124 application.setVisible(true);
125 }
126 }

Fig. 4.13Fig. 4.13Fig. 4.13Fig. 4.13 Java 2D image-processing application GUI (part 3 of 4).

Chapter 4 Graphics Programming with Java 2D and Java 3D 159

This concludes our discussion of the Java 2D API. This section has presented several
of the features that make Java 2D a powerful 2D graphics API. We discussed geometrical
shape-rendering processes, including how to create and fill shapes with different colors and
patterns, how to draw a GeneralPath and how to apply transforms to Java 2D shapes.
We also introduced and discussed Java 2D image processing, including how to create and
apply filters to BufferedImages.

Fig. 4.13Fig. 4.13Fig. 4.13Fig. 4.13 Java 2D image-processing application GUI (part 4 of 4).

160 Graphics Programming with Java 2D and Java 3D Chapter 4

4.4 Java 3D API
We live in a 3D world. Our vision enables us to see in three dimensions—x, y, and z coor-
dinates. Many of the surfaces onto which graphics are displayed—for example, monitors
and printed pages—are flat. 3D-graphics programming enables us to render realistic mod-
els of our 3D world onto a 2D-viewing surface. 3D graphics have advanced to the point that
nearly anything you can see around you can be modeled—represented numerically by
shape and size—and rendered—drawn on your computer screen.

There now exists an increasing number of 3D-computer-graphics applications—from
flight simulators and medical-imaging equipment to 3D games and screen savers. Rapid
advances in computer hardware have resulted in tremendous growth in the 3D-graphics
industry. Developments in high-performance hardware led to developments in high-per-
formance 3D graphics APIs—beginning in the 1970s with Siggraph’s CORE API, con-
tinuing in the 1980s with SGI’s OpenGL and on through today with Microsoft’s Direct3D
and Java 3D™.1

Sophisticated 3D graphics require sophisticated graphics algorithms that often involve
complex math. However, the Java 3D API provides robust and advanced 3D-graphics capa-
bilities to Java developers while hiding the mathematics behind graphics algorithms. Java 3D
is a high-level graphics-programming API. Java 3D handles all the necessary low-level
graphics calls, so developers can create high-performance 3D-graphics scenes without having
to understand any underlying hardware. Like Java, Java 3D is write once run anywhere™.
Java 3D applications will run in the same way across different 3D graphics platforms.

Sun Microsystems designed the Java 3D API with four major goals in mind—appli-
cation portability, hardware independence, performance scalability and the ability to pro-
duce 3D graphics over a network.2 Simplifying of complex graphics operations played a
key role in developing the Java 3D API. Some of the markets and applications for the Java
3D API include3

• 3D-data visualization

• collaborative applications

• gaming (especially network-based multiplayer systems)

• business graphics

• interactive educational systems

• molecular modeling and viewing (MCAD)

• 3D-Web development

• 3D-GUI development

1. Sun Microsystems, Inc., “The Fourth Generation of 3D Graphics API’s has arrived!” 25 January
2000. <java.sun.com/products/java-media/3D/collateral/wp_mktg/
j3d_wp.pdf>.

2. Sun Microsystems, Inc., “The Java 3D API: For Developers and End Users,” 1 December 1998.
<http://java.sun.com/products/java-media/3D/collateral/presenta-
tion/sld004.html>.

3. Sun Microsystems, Inc., “The Java 3D API: For Developers and End Users,” 1 December 1998.
<http://java.sun.com/products/java-media/3D/collateral/presenta-
tion/sld015.html>.

Chapter 4 Graphics Programming with Java 2D and Java 3D 161

Java 3D offers several features that these markets use to develop their 3D-applications:

• Behavior—Java 3D supports multiple types of behavior including animation and
motion, collision detection (detecting when two objects collide) and morphing
(transforming an image into another image).

• Fog—Java 3D supports fog content that restricts viewers ability to see certain ob-
jects in the scene. For example, fog helps to create a realistic model of a rainstorm
in a 3D game.

• Geometry—Java 3D has built-in 3D-geometric primitives for creating geometric
shapes. Java 3D can render scenes generated by existing 3D authoring tools, such
as 3DStudioMax, VRML and Lightwave3D.

• Light—Lights allow you to illuminate objects in a 3D scene. Java 3D supports dif-
ferent forms of light and control over color, direction and intensity.

• Sound—A unique feature of Java 3D is support for 3D sound.

• Texture—Java 3D supports texture mapping for attaching images over 3D-geo-
metric models.

Next, we present an overview of the Java 3D API—we examine the structure of a Java
3D scene by presenting an application that incorporates 3D geometry, lights and interactive
animation. In the next section, we explain how to obtain and install the Java 3D API so you
can run the examples in this chapter and create your own 3D content.

4.4.1 Obtaining and Installing the Java 3D API

The Java 3D API requires that you have the Java 2 Platform, Standard Edition and either
OpenGL or Direct3D installed on your computer—Java 3D uses OpenGL or Direct3D graph-
ics libraries to render 3D scenes. You can obtain OpenGL from www.opengl.org. You
can obtain Direct3D—part of Microsoft’s DirectX API—from www.microsoft.com/
directx/.

The Java 3D API is not integrated in the core Java 2 Platform. To use the Java 3D API,
you must install the appropriate Java extension and utility packages. The Java 3D API
packages differ slightly depending on which low-level graphics libraries are installed on
your computer. The version of Java 3D used in this chapter requires the OpenGL graphics
library and Windows 2000 Operating System. The version of Java 3D packages you install
depends on your operating system and graphics API. You can obtain the Java 3D packages
and installation instructions from java.sun.com/products/java-media/3D/
download.html.

4.4.2 Java 3D Scenes

Pictures rendered with Java3D are called scenes. A scene—also called a virtual universe—
is 3D space that contains a set of shapes. The root of the Java 3D scene is a VirtualUni-
verse object. The VirtualUniverse has a coordinate system for describing the loca-
tion of scene graphs it contains. Each Java 3D scene is described by a number of scene
graphs—hierarchical structures that specify attributes of a 3D environment. Each scene

162 Graphics Programming with Java 2D and Java 3D Chapter 4

graph attaches to the VirtualUniverse at a specified point in the VirtualUni-
verse’s coordinate system. A scene graph is composed of an internal coordinate system
and a number of branch graphs. Each scene graph has an internal coordinate system, so de-
velopers can attach scene graphs with different coordinate systems in the same Virtu-
alUniverse. Class Locale is the root node in a scene graph, which contains the
attachment coordinate for the VirtualUniverse and a number of branch graphs. There
are two types of branch graphs in Java 3D—content-branch graphs and view-branch
graphs. Content-branch graphs specify content in 3D scenes, such as geometry, lighting,
textures, fog and behaviors. View-branch graphs contain viewing platforms—collections of
objects that specify the perspective, position, orientation and scale in 3D scenes. The view-
ing platform is also called the viewpoint.

The Java 3D class SceneGraphObject is the base class for all objects in a branch
graph. A SceneGraphObject may contain a Group, which represents a node that con-
tains multiple children. The children of a Group may be other Groups, Leafs or Node-
Components. Leafs specify geometry, lights and sound in content-branch graphs and
the viewing-platform components in the view-branch graph. NodeComponent objects
specify the various components of Groups and Leafs such as texture and coloring
attributes. Figure 4.14 lists some Java 3D Group, Leaf and NodeComponent sub-
classes.

Class Description

Partial list of Java3D Group classes

BranchGroup A scene-graph’s root Node that attaches to a Locale.

Switch Can render either a single child or a mask of children.

TransformGroup Contains a single transformation (e.g., translation, rotation or scaling).

Partial list of Java3D Leaf classes

Behavior Contains methods for gathering user input (e.g., key presses and mouse
clicks) and describing objects’ behavior upon certain events (e.g., colli-
sions).

Light Describes a set of parameters for Java 3D light sources.

Shape3D Describes 3D-geometric objects.

ViewPlatform Controls the viewpoint for a 3D scene.

Partial list of Java3D NodeComponent classes

Appearance Specifies Shape3D attributes, such as coloring and texture.

Material Describes an illuminated object’s properties (e.g., reflective color and shini-
ness).

Texture Specifies properties for texture mapping—a technique for drawing 2D
images over 3D geometric models.

Fig. 4.14Fig. 4.14Fig. 4.14Fig. 4.14 Java 3D Group, Leaf and NodeComponent subclasses.

Chapter 4 Graphics Programming with Java 2D and Java 3D 163

4.4.3 A Java 3D Example
This section creates an interactive Java 3D scene. The application demonstrates how to cre-
ate and use Java 3D Geometry and Lights. A Java Swing GUI enables the user to
change the properties of the shapes and lights in the 3D scene. The application demon-
strates mouse behaviors—i.e., using the mouse to rotate, scale and translate the 3D-shapes.
The application consists of three classes—Java3DWorld (Fig. 4.15), ControlPanel
(Fig. 4.21) and Java3DExample (Fig. 4.22). Figure 4.16–Fig. 4.20 show sample screen
captures demonstrating the features of this application.

Class Java3DWorld (Fig. 4.15) creates the Java 3D environment using geometry,
transforms and lighting. Lines 19–22 import the Java 3D utility packages which simplify
the scene-content creation. Class Java3DWorld extends class Canvas3D (line 24), a
java.awt.Canvas subclass for 3D rendering. We use a Canvas3D as the drawing sur-
face for our 3D graphics application. Lines 26–38 declare the Java 3D objects we use in the
application. We discuss each object’s function momentarily.

1 // Java3DWorld.java
2 // Java3DWorld is a Java 3D Graphics display environment
3 // that creates a SimpleUniverse and provides capabilities for
4 // allowing a user to control lighting, motion, and texture
5 // of the 3D scene.
6 package com.deitel.advjhtp1.java3d;
7
8 // Java core packages
9 import java.awt.event.*;

10 import java.awt.*;
11 import java.net.*;
12
13 // Java extension packages
14 import javax.swing.event.*;
15 import javax.media.j3d.*;
16 import javax.vecmath.*;
17
18 // Java 3D utility packages
19 import com.sun.j3d.utils.universe.*;
20 import com.sun.j3d.utils.image.*;
21 import com.sun.j3d.utils.geometry.*;
22 import com.sun.j3d.utils.behaviors.mouse.*;
23
24 public class Java3DWorld extends Canvas3D {
25
26 private Appearance appearance; // 3D object's appearance
27 private Box shape; // 3D object to manipulate
28 private Color3f lightColor; // Light color
29 private Light ambientLight; // ambient scene lighting
30 private Light directionalLight; //directional light
31 private Material material; // 3D objects color object
32 private SimpleUniverse simpleUniverse; // 3D scene environment
33 private TextureLoader textureLoader; // 3D object's texture
34

Fig. 4.15Fig. 4.15Fig. 4.15Fig. 4.15 Creating a Java 3D SimpleUniverse with content (part 1 of 5).

164 Graphics Programming with Java 2D and Java 3D Chapter 4

35 // holds 3D transformation information
36 private TransformGroup transformGroup;
37
38 private String imageName; // texture image file name
39
40 // Java3DWorld constructor
41 public Java3DWorld(String imageFileName)
42 {
43 super(SimpleUniverse.getPreferredConfiguration());
44
45 imageName = imageFileName;
46
47 // create SimpleUniverse (3D Graphics environment)
48 simpleUniverse = new SimpleUniverse(this);
49
50 // set default view point and direction
51 ViewingPlatform viewPlatform =
52 simpleUniverse.getViewingPlatform();
53
54 viewPlatform.setNominalViewingTransform();
55
56 // create 3D scene
57 BranchGroup branchGroup = createScene();
58
59 // attach BranchGroup to SimpleUniverse
60 simpleUniverse.addBranchGraph(branchGroup);
61
62 } // end Java3DWorld constructor
63
64 // create 3D scene
65 public BranchGroup createScene()
66 {
67 BranchGroup scene = new BranchGroup();
68
69 // initialize TransformGroup
70 transformGroup = new TransformGroup();
71
72 // set TransformGroup's READ and WRITE permission
73 transformGroup.setCapability(
74 TransformGroup.ALLOW_TRANSFORM_READ);
75
76 transformGroup.setCapability(
77 TransformGroup.ALLOW_TRANSFORM_WRITE);
78
79 // add TransformGroup to BranchGroup
80 scene.addChild(transformGroup);
81
82 // create BoundingSphere
83 BoundingSphere bounds = new BoundingSphere(
84 new Point3d(0.0f, 0.0f, 0.0f), 100.0);
85
86 appearance = new Appearance(); // create object appearance
87 material = new Material(); // create texture matieral

Fig. 4.15Fig. 4.15Fig. 4.15Fig. 4.15 Creating a Java 3D SimpleUniverse with content (part 2 of 5).

Chapter 4 Graphics Programming with Java 2D and Java 3D 165

88 appearance.setMaterial(material);
89
90 String rgb = new String("RGB");
91
92 // load texture for scene object
93 textureLoader = new TextureLoader(
94 Java3DWorld.class.getResource(imageName), rgb, this);
95
96 // set capability bits for enabling texture
97 textureLoader.getTexture().setCapability(
98 Texture.ALLOW_ENABLE_WRITE);
99
100 // initial texture will not show
101 textureLoader.getTexture().setEnable(false);
102
103 // set object's texture
104 appearance.setTexture(textureLoader.getTexture());
105
106 // create object geometry
107 Box shape = new Box(0.3f, 0.3f, 0.3f,
108 Box.GENERATE_NORMALS | Box.GENERATE_TEXTURE_COORDS,
109 appearance);
110
111 // add geometry to TransformGroup
112 transformGroup.addChild(shape);
113
114 // initialize Ambient lighting
115 ambientLight = new AmbientLight();
116 ambientLight.setInfluencingBounds(bounds);
117
118 // initialize directionalLight
119 directionalLight = new DirectionalLight();
120
121 lightColor = new Color3f(); // initialize light color
122
123 // set initial DirectionalLight color
124 directionalLight.setColor(lightColor);
125
126 // set capability bits to allow DirectionalLight's
127 // Color and Direction to be changed
128 directionalLight.setCapability(
129 DirectionalLight.ALLOW_DIRECTION_WRITE);
130
131 directionalLight.setCapability(
132 DirectionalLight.ALLOW_DIRECTION_READ);
133
134 directionalLight.setCapability(
135 DirectionalLight.ALLOW_COLOR_WRITE);
136
137 directionalLight.setCapability(
138 DirectionalLight.ALLOW_COLOR_READ);
139
140 directionalLight.setInfluencingBounds(bounds);

Fig. 4.15Fig. 4.15Fig. 4.15Fig. 4.15 Creating a Java 3D SimpleUniverse with content (part 3 of 5).

166 Graphics Programming with Java 2D and Java 3D Chapter 4

141
142 // add light nodes to BranchGroup
143 scene.addChild(ambientLight);
144 scene.addChild(directionalLight);
145
146 // initialize rotation behavior
147 MouseRotate rotateBehavior = new MouseRotate();
148 rotateBehavior.setTransformGroup(transformGroup);
149 rotateBehavior.setSchedulingBounds(bounds);
150
151 // initialize translation behavior
152 MouseTranslate translateBehavior = new MouseTranslate();
153 translateBehavior.setTransformGroup(transformGroup);
154 translateBehavior.setSchedulingBounds(
155 new BoundingBox(new Point3d(-1.0f, -1.0f, -1.0f),
156 new Point3d(1.0f, 1.0f, 1.0f)));
157
158 // initialize scaling behavior
159 MouseZoom scaleBehavior = new MouseZoom();
160 scaleBehavior.setTransformGroup(transformGroup);
161 scaleBehavior.setSchedulingBounds(bounds);
162
163 // add behaviors to BranchGroup
164 scene.addChild(scaleBehavior);
165 scene.addChild(rotateBehavior);
166 scene.addChild(translateBehavior);
167
168 scene.compile();
169
170 return scene;
171
172 } // end method createScene
173
174 // change DirectionLight color
175 public void changeColor(Color color)
176 {
177 lightColor.set(color);
178 directionalLight.setColor(lightColor);
179 }
180
181 // change geometry surface to textured image or material color
182 public void updateTexture(boolean textureValue)
183 {
184 textureLoader.getTexture().setEnable(textureValue);
185 }
186
187 // change image used for texture
188 public void setImageName(String imageFileName)
189 {
190 imageName = imageFileName;
191 }
192

Fig. 4.15Fig. 4.15Fig. 4.15Fig. 4.15 Creating a Java 3D SimpleUniverse with content (part 4 of 5).

Chapter 4 Graphics Programming with Java 2D and Java 3D 167

The Java3DWorld constructor (lines 41–62) accepts as a String argument the
image file for texture mapping. Class SimpleUniverse, which creates a Java 3D scene,
encapsulates all the objects in the virtual universe and viewing platform. By using a Sim-
pleUniverse, developers create and attach content-branch graphs—the SimpleUni-
verse uses this information to construct the 3D scene.

The first step in creating a Java 3D scene is to initialize the Canvas3D (line 43). The
Canvas3D constructor takes as an argument a java.awt.GraphicsConfigura-
tion (line 43). Method getPreferredConfiguration of class SimpleUni-
verse returns the system’s java.awt.GraphicsConfiguration, which specifies
a graphics device, such as a computer monitor. Line 48 invokes the SimpleUniverse
constructor, passing the Canvas3D as an argument. This constructor creates a Java 3D
SimpleUniverse with the Canvas3D as the drawing surface. Class SimpleUni-
verse creates and configures the objects in the view branch graph. Lines 51–54 configure
the viewing distance—the length between the viewer and the canvas—for our 3D scene. All
objects in the view branch graph are members of class ViewingPlatform. Method
getViewingPlatform of class SimpleUniverse returns a reference to the View-
ingPlatform created inside the SimpleUniverse (lines 51–52). Method setNom-
inalViewingTransform of class ViewPlatform sets the viewing distance for our
3D scene to the nominal (i.e., default) distance of PI/4.0. We now create content for our
Java 3D scene.

In this application, we add one content branch-graph to the SimpleUniverse. Line
57 calls method createScene (lines 65–172), which returns a content BranchGroup.
Class BranchGroup is the root node of a scene graph in a Java 3D scene. The Branch-
Group contains the children Groups, Leafs and NodeComponents that describe the
Java 3D scene. Line 60 attaches the content BranchGroup to the SimpleUniverse
using method addBranchGraph of class SimpleUniverse.

Method createScene creates, constructs and compiles the BranchGroup content.
Line 67 creates an instance of class BranchGroup. Line 70 creates a TransformGroup.

193 // get image file name
194 public String getImageName()
195 {
196 return imageName;
197 }
198
199 // return preferred dimensions of Container
200 public Dimension getPreferredSize()
201 {
202 return new Dimension(500, 500);
203 }
204
205 // return minimum size of Container
206 public Dimension getMinimumSize()
207 {
208 return getPreferredSize();
209 }
210 }

Fig. 4.15Fig. 4.15Fig. 4.15Fig. 4.15 Creating a Java 3D SimpleUniverse with content (part 5 of 5).

168 Graphics Programming with Java 2D and Java 3D Chapter 4

Class TransformGroup—a subclass of Group—specifies transformational behavior
such as rotation, scaling and translation. Lines 73–77 set the READ and WRITE capability
bits for the TransformGroup using method setCapabilityBits of the Trans-
formGroup. Capability bits are integer flags that specify whether a given object should
allow its properties to be read or written during execution. Line 80 calls method addChild
of class BranchGroup, which adds the TransformGroup to the BranchGroup.

Performance Tip 4.1
By default, Java 3D sets an object’s properties so they cannot be changed during run-time.
Java 3D does this to increase run-time performance. 4.1

Lines 83–84 create a BoundingSphere. Class BoundingSphere creates a spher-
ical bounding volume, which specifies the volume of space in which Lights and Beha-
viors affect geometry in the scene. Outside the bounding volume, the Lights and
Behaviors have no impact on the scene’s geometry. Lines 83–84 create a Bounding-
Sphere that is centered at the origin and has a 100 meter radius.

Line 86 creates the Appearance that describes the visual attributes of shapes. Lines
87 creates a default Material object. Class Material specifies the properties of an
illuminated object—any object defined within the bounds of a Light. The default Mate-
rial constructor specifies that objects in ambient white light will appear grey. The default
Material constructor also enables any objects with the associated Material to be illu-
minated in the 3D scene. Line 88 calls method setMaterial of class Appearance to
set the Material to the default material, although we could have created a Material
object that would make the shape’s surface reflect like a mirror or shine like metal.

Lines 93–104 create and load the image for texture mapping. Class
com.sun.j3d.utils.image.TextureLoader loads an Image for texturing. The
TextureLoader constructor takes as arguments the image file (imageName), the
image format (rgb) and an ImageObserver. Lines 97–98 invoke method setCapa-
bility of class TextureLoader with argument ALLOW_ENABLE_WRITE so the user
can apply textures to the Texture object during execution. Every TextureLoader has
an associated Texture object that contains the texturing attributes. Line 101 disables tex-
ture mapping using method setEnable of class Texture, although the user can enable
it in runtime. Method setTexture of class Appearance sets the Texture object in
Appearance to our Texture (line 104).

Lines 107–109 create a 3D Box—the shape that appears in our scene. The Box con-
structor takes as arguments three floats for the length, width and height, a set of integer
flags that indicate the position information to generate and an Appearance object. Posi-
tion information is generated when geometry is created—by default only spatial coordi-
nates are generated. To ensure proper lighting and texture mapping for geometry, line 108
instructs the compiler to generate additional position information. Line 112 uses method
addChild of class TransformGroup to add the Box to the TransformGroup so the
user can perform transformations on the Box.

Line 115 creates an AmbientLight for the scene. Class AmbientLight is a uni-
form light source that illuminates all objects within its boundary. AmbientLight will not
illuminate those objects outside its boundary. Line 116 calls method setInfluencing-
Bounds to set the AmbientLight boundary using the BoundingSphere we created
in line 86. Lines 119–140 create a DirectionalLight for the scene. Class Direc-

Chapter 4 Graphics Programming with Java 2D and Java 3D 169

tionalLight describes a light source that travels between two points—the source and
destination. Line 119 creates a DirectionalLight using the default constructor. Line
121 creates a Color3f object—a color defined by three floats that represent the RGB
color components. Line 124 calls method setColor of DirectionalLight to set the
light source color. Lines 128–138 set the capability bits to allow the user to alter the color
and direction of the DirectionalLight. Lines 143–144 add the two light sources to
the BranchGroup. All objects in the BranchGroup will be illuminated—as long as
these objects are enabled for illumination.

Lines 147–161 create different behaviors for the Box. We use MouseBehavior class
in utility package com.sun.j3d.utils.behavior.mouse. Lines 147–149 create an
instance of class MouseRotate, which stores a rotational transformation for an object con-
trolled with the left mouse button. By moving the mouse while pressing the left mouse button,
the user controls the rotation of the Box. Line 148 calls method setTransformGroup of
class MouseRotate to gather the rotation information from the TransformGroup. Line
149 calls method setSchedulingBounds of MouseRotate to set MouseRotate’s
bounding volume. Figure 4.16 shows the output when the user rotates the Box.

Class MouseTranslate—another subclass of MouseBehavior creates a
behavior that controls the translation (i.e., the displacement) of shapes when the user
presses the right mouse button, then drags the mouse. Line 152 creates an instance of
MouseTranslate. Line 153 calls method setTransformGroup of class Mouse-
Translate to gather the translational information from the TransformGroup. Lines
154–156 call method setSchedulingBounds, passing as an argument a Bound-
ingBox. Class BoundingBox creates a cubic boundary. BoundingBox’s constructors
takes as arguments two Point3d objects, which represent the upper-right and lower-left
vertices of the cube. Outside this BoundingBox, the MouseTranslate behavior does
not work. Figure 4.17 shows the output when the user translates the Box.

Class MouseZoom—another subclass of MouseBehavior—controls the shape’s size
when the user presses either the middle mouse button (on a three-button mouse) or the Alt key
and left button (on a two-button mouse), then drags the mouse. Line 159 creates an instance
of class mouseZoom. Line 160 calls method setTransformGroup of class Mouse-
Zoom to gather the scaling information from the TransformGroup. Line 161 calls method
setSchedulingBounds, passing the BoundingSphere we created earlier in method
createScene. Figure 4.18 demonstrates the output when the user scales the Box.

Lines 164–166 add the three MouseBehaviors to the BranchGroup. Line 168 calls
method compile of class BranchGroup. Compiling a BranchGroup informs the Java
3D engine to optimize rendering the scene using the capability bits set by the developer.

To toggle texture mapping and lighting during execution, we implement methods that
update the Appearance and DirectionalLight. Method changeColor (lines
175–179) uses a Color object to set the DirectionalLight color. Line 177 creates a
Color3D object from the Color argument and passes it to method setColor of the
DirectionalLight. Figure 4.19 shows the output as the user alters the color for
DirectionalLight.

Method updateTexture (lines 182–185) toggles texture mapping of the shapes in
the scene. This method takes a boolean argument that specifies whether to enable texture
mapping for the 3D shape. Figure 4.20 shows the output when the user enables texture
mapping.

170 Graphics Programming with Java 2D and Java 3D Chapter 4

Fig. 4.16Fig. 4.16Fig. 4.16Fig. 4.16 Demonstrating MouseRotate behavior.

Chapter 4 Graphics Programming with Java 2D and Java 3D 171

Fig. 4.17Fig. 4.17Fig. 4.17Fig. 4.17 Demonstrating MouseTranslate behavior.

172 Graphics Programming with Java 2D and Java 3D Chapter 4

Fig. 4.18Fig. 4.18Fig. 4.18Fig. 4.18 Demonstrating MouseZoom behavior.

Chapter 4 Graphics Programming with Java 2D and Java 3D 173

Fig. 4.19Fig. 4.19Fig. 4.19Fig. 4.19 Demonstrating changing color in Java 3D.

174 Graphics Programming with Java 2D and Java 3D Chapter 4

Fig. 4.20Fig. 4.20Fig. 4.20Fig. 4.20 Demonstrating texture mapping in Java 3D.

Chapter 4 Graphics Programming with Java 2D and Java 3D 175

The user controls the DirectionalLight properties and texture mapping in the
Java3DWorld using class ControlPanel (Fig. 4.21). Lines 18–21 declare three
JSliders and one JCheckbox for the user to interact with the 3D application. Line 24
declares a reference to a Java3DWorld object to access its updateTexture and
changeColor methods.

1 // ControlPanel.java
2 // ControlPanel is a JPanel that contains Swing controls
3 // for manipulating a Java3DWorld.
4 package com.deitel.advjhtp1.java3d;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9

10 // Java extension packages
11 import javax.swing.*;
12 import javax.swing.border.*;
13 import javax.swing.event.*;
14
15 public class ControlPanel extends JPanel {
16
17 // JSliders control lighting color
18 private JSlider redSlider, greenSlider, blueSlider;
19
20 // JCheckbox turns on texture mapping
21 private JCheckBox textureCheckBox;
22
23 // graphics display environment
24 private Java3DWorld java3DWorld;
25
26 // ControlPanel constructor
27 public ControlPanel(Java3DWorld tempJ3DWorld)
28 {
29 java3DWorld = tempJ3DWorld;
30
31 // assemble instruction panel
32 JPanel instructionPanel = new JPanel();
33
34 TitledBorder titledBorder =
35 new TitledBorder("Transformation Instructions");
36
37 titledBorder.setTitleJustification(TitledBorder.CENTER);
38 instructionPanel.setBorder(titledBorder);
39
40 JLabel rotationInstructions =
41 new JLabel("Rotation - Left Mouse Button",
42 SwingConstants.CENTER);
43
44 JLabel translationInstructions =
45 new JLabel("Translation - Right Mouse Button",
46 SwingConstants.CENTER);

Fig. 4.21Fig. 4.21Fig. 4.21Fig. 4.21 ControlPanel provides Swing controls for Java3DWorld (part 1 of 4).

176 Graphics Programming with Java 2D and Java 3D Chapter 4

47
48 JLabel scalingInstructions =
49 new JLabel("Scale - Alt + Left Mouse Button",
50 SwingConstants.CENTER);
51
52 // add instruction JLabels to JPanel
53 instructionPanel.add(rotationInstructions);
54 instructionPanel.add(translationInstructions);
55 instructionPanel.add(scalingInstructions);
56
57 // assemble texture mapping control panel
58 JPanel texturePanel = new JPanel();
59
60 TitledBorder textureBorder =
61 new TitledBorder("Texture Controls");
62
63 textureBorder.setTitleJustification(TitledBorder.CENTER);
64 texturePanel.setBorder(textureBorder);
65
66 textureCheckBox = new JCheckBox(
67 "Apply Texture Map to Image");
68
69 texturePanel.add(textureCheckBox);
70
71 // create ItemListener for JCheckBox
72 textureCheckBox.addItemListener(
73 new ItemListener() {
74
75 // invoked when checkbox selected/deselected
76 public void itemStateChanged(ItemEvent event)
77 {
78 if(event.getStateChange() == ItemEvent.SELECTED)
79 Java3DWorld.updateTexture(true);
80 else
81 Java3DWorld.updateTexture(false);
82 }
83
84 } // end anonymous inner class
85);
86
87 // create JPanel with instructionPanel and texturePanel
88 JPanel topPanel = new JPanel(
89 new GridLayout(2, 1, 0, 20));
90
91 topPanel.add(instructionPanel);
92 topPanel.add(texturePanel);
93
94 // assemble lighting color control panel
95 JPanel colorPanel = new JPanel(
96 new FlowLayout(FlowLayout.LEFT, 15, 15));
97
98 TitledBorder colorBorder =
99 new TitledBorder("Direct Lighting Color Controls");

Fig. 4.21Fig. 4.21Fig. 4.21Fig. 4.21 ControlPanel provides Swing controls for Java3DWorld (part 2 of 4).

Chapter 4 Graphics Programming with Java 2D and Java 3D 177

100
101 colorBorder.setTitleJustification(TitledBorder.CENTER);
102 colorPanel.setBorder(colorBorder);
103
104 JLabel redLabel = new JLabel("R");
105 JLabel greenLabel = new JLabel("G");
106 JLabel blueLabel = new JLabel("B");
107
108 // create JSlider for adjusting red light component
109 redSlider = new JSlider(
110 SwingConstants.HORIZONTAL, 0, 255, 25);
111
112 redSlider.setMajorTickSpacing(25);
113 redSlider.setPaintTicks(true);
114
115 // create JSlider for adjusting green light component
116 greenSlider = new JSlider(
117 SwingConstants.HORIZONTAL, 0, 255, 25);
118
119 greenSlider.setMajorTickSpacing(25);
120 greenSlider.setPaintTicks(true);
121
122 // create JSlider for adjusting blue light component
123 blueSlider = new JSlider(
124 SwingConstants.HORIZONTAL, 0, 255, 25);
125
126 blueSlider.setMajorTickSpacing(25);
127 blueSlider.setPaintTicks(true);
128
129 // create ChangeListener for JSliders
130 ChangeListener slideListener = new ChangeListener() {
131
132 // invoked when slider has been accessed
133 public void stateChanged(ChangeEvent event)
134 {
135 Color color = new Color(
136 redSlider.getValue(), greenSlider.getValue(),
137 blueSlider.getValue());
138
139 Java3DWorld.changeColor(color);
140 }
141
142 }; // end anonymous inner class
143
144 // add listener to sliders
145 redSlider.addChangeListener(slideListener);
146 greenSlider.addChangeListener(slideListener);
147 blueSlider.addChangeListener(slideListener);
148
149 // add lighting color control components to colorPanel
150 colorPanel.add(redLabel);
151 colorPanel.add(redSlider);
152 colorPanel.add(greenLabel);

Fig. 4.21Fig. 4.21Fig. 4.21Fig. 4.21 ControlPanel provides Swing controls for Java3DWorld (part 3 of 4).

178 Graphics Programming with Java 2D and Java 3D Chapter 4

 There are three sets of controls for the Java3DWorld—transformation, texture map-
ping and lighting controls. The translations are controlled using MouseTranslate,
MouseRotate and MouseZoom—no Swing components are needed to control the
Java3DWorld transforms. Lines 32–55 create a JPanel that contains JLabels with
instructions for applying transforms to the scene using the mouse.

Lines 58–69 create a JPanel with texture-mapping controls. The JCheckBox reg-
ulates the texture mapping in the application. Lines 72–85 attach an ItemListener to
textureCheckBox. When the user selects this JCheckBox, line 79 calls method
updateTexture of Java3DWorld to enable texture mapping. If the user deselects the
JCheckBox, line 81 disables texture mapping.

Lines 104–127 create three JSliders that can assume an integer 0–255, inclusive.
Lines 130–142 create a ChangeListener for the JSliders. When the user accesses a
JSlider, line 139 calls method changeColor of Java3DWorld to change the
shape’s color in the 3D scene.

Class Java3DExample (Fig. 4.22) contains the Java3DWorld and Control-
Panel. The Java3DExample constructor (lines 21–32) creates the Java3DWorld
object by passing a String argument that specifies the image used for texture mapping
(line 25). Line 26 creates controlPanel, passing the Java3DWorld as an argument.
Method main (lines 35–41) executes the application.

153 colorPanel.add(greenSlider);
154 colorPanel.add(blueLabel);
155 colorPanel.add(blueSlider);
156
157 // set Java3DWorld object default RGB slider values
158 Java3DWorld.changeColor(
159 new Color(redSlider.getValue(),
160 greenSlider.getValue(), blueSlider.getValue()));
161
162 // set GridLayout
163 setLayout(new GridLayout(2, 1, 0, 20));
164
165 // add JPanels to ControlPanel
166 add(topPanel);
167 add(colorPanel);
168
169 } // end ControlPanel constructor method
170
171 // return preferred dimensions of container
172 public Dimension getPreferredSize()
173 {
174 return new Dimension(250, 150);
175 }
176
177 // return minimum size of container
178 public Dimension getMinimumSize()
179 {
180 return getPreferredSize();
181 }
182 }

Fig. 4.21Fig. 4.21Fig. 4.21Fig. 4.21 ControlPanel provides Swing controls for Java3DWorld (part 4 of 4).

Chapter 4 Graphics Programming with Java 2D and Java 3D 179

4.5 A Java 3D Case Study: A 3D Game with Custom Behaviors
In Section 4.4.3, we demonstrated how the Java 3D MouseBehavior utility classes add
interactive behavior to a 3D scene. The utility behavior classes provide a simple and con-
venient way to add interaction to our 3D applications. However, some applications—such
as computer games—require custom behaviors (e.g., collision detection, navigation and
position checking). In this section, we demonstrate how to implement custom behaviors us-
ing the javax.media.j3d.Behavior class. We demonstrate collision detection

1 // Java3DExample.java
2 // Java3DExample is an application that demonstrates Java 3D
3 // and provides an interface for a user to control the
4 // transformation, lighting color, and texture of a 3D scene.
5 package com.deitel.advjhtp1.java3d;
6
7 // Java core packages
8 import java.awt.*;
9 import java.awt.event.*;

10
11 // Java extension packages
12 import javax.swing.*;
13 import javax.swing.event.*;
14
15 public class Java3DExample extends JFrame {
16
17 private Java3DWorld java3DWorld; // 3D scene panel
18 private JPanel controlPanel; // 3D scene control panel
19
20 // initialize Java3DWorld and ControlPanel
21 public Java3DExample()
22 {
23 super("Java 3D Graphics Demo");
24
25 java3DWorld = new Java3DWorld("images/ajhtp.png");
26 controlPanel = new ControlPanel(java3DWorld);
27
28 // add Components to JFrame
29 getContentPane().add(java3DWorld, BorderLayout.CENTER);
30 getContentPane().add(controlPanel, BorderLayout.EAST);
31
32 } // end Java3DExample constructor
33
34 // start program
35 public static void main(String args[])
36 {
37 Java3DExample application = new Java3DExample();
38 application.setDefaultCloseOperation(EXIT_ON_CLOSE);
39 application.pack();
40 application.setVisible(true);
41 }
42 }

Fig. 4.22Fig. 4.22Fig. 4.22Fig. 4.22 GUI for Java3DWorld and ControlPanel.

180 Graphics Programming with Java 2D and Java 3D Chapter 4

among scene obstacles, navigation through a 3D scene and position checking of a user-nav-
igated shape to determine when it has reached its target. We also introduce how to animate
shapes using Interpolators. We examine how to use additional Node and Group
subclasses, such as Switches and Text3Ds. The final product is a 3D game in which the
user navigates a shape through a 3D scene full of “flying” obstacles. The goal of the game
is to move this shape to a specific target point without having the shape collide with any of
the moving obstacles.

Class Java3DWorld1 (Fig. 4.23) creates the 3D game’s objects, behaviors and ani-
mation. Class Java3DWorld1 extends class Canvas3D (line 22). Lines 25–54 declare
constants for setting various parameters in our 3D scene. Line 56 declares the Switch that
contains the flying shapes. Class Switch extends Java 3D class Group. A Switch
object specifies which of its children to render. Line 57 declares the BoundingSphere
for scheduling bounds for the scene graph. Line 59 declares the SimpleUniverse that
contains the Locale and view branch graph for our application. Line 61 declares the
String that describes the image file for texturing shapes.

The Java3DWorld1 constructor (lines 64–85) accepts as an argument a String
that represents the image file for texturing the target shape. Line 66 initializes the
Canvas3D by invoking the superclass constructor with a GraphicsConfiguration
argument. Method getPreferredConfiguration of class SimpleUniverse
returns the system’s java.awt.GraphicsConfiguration, which specifies a
graphics-output device. Line 71 creates a SimpleUniverse with the Canvas3D as the
drawing surface. Class SimpleUniverse creates the Java 3D scene that encapsulates all
the shapes in the virtual universe and viewing platform. Lines 74–77 configure the scene’s
viewing distance to the default value (PI/4.0). Line 80 calls method createScene
(lines 65–248) to create a BranchGroup that line 60 attaches to the SimpleUniverse.

Method createScene constructs the BranchGroup content. Line 93 creates the
Switch object that contains the scenes in our 3D game by calling method initialize-
Switch (lines 285–297). This method takes an int argument (DEFAULT_SCENE) that
specifies the default scene to display upon creation. Lines 288–294 set the Switch group’s
capability bits to allow the Switch (and its children) to be read and written at run time. In
this application, we implement collision detection—lines 293–294 set the capability bit that
allows collision reporting. Upon collision—i.e., when two shapes intersect—the Java 3D
engine compiles the scene-graph path to the object that triggered the collision. When
method initializeSwitch returns the Switch to method createScene, line 96
calls method initializeSwitch again to create a Switch that contains various
shapes in the scene. Line 100 creates a BranchGroup that aggregates the shapes in
Switch (line 103). Line 106 attaches the BranchGroup to the Switch of scenes. Line
109 attaches the Switch of scenes to the root sceneBranchGraph. Lines 112–113
create the BoundingSphere for setting the bounds for the sceneBranchGraph.

The 3D game features a scene with several 3D obstacles that “fly” across the screen.
These obstacles rotate and translate at random. Rotation and translation are types of trans-
formations. We discussed in the previous section that a TransformGroup holds the
information about a spatial transformation and applies transformations to its children. The
rotation and translation transformations animate the 3D shapes in our scene. Each shape
needs two TransformGroups—one for rotation information and one for translation
information. Lines 116–121 call method createTransformGroupArray (lines 294–

Chapter 4 Graphics Programming with Java 2D and Java 3D 181

322) to create TransformGroup arrays spinTransform and pathTransform,
which store the rotational and translation information, respectively. Method createT-
ransformGroupArray takes an int argument (NUMBER_OF_SHAPES) that specifies
the array size. Line 305 initializes each TransformGroup in the array, and lines 308–
317 set the capability bits of each TransformGroup to enable collision reporting and
allow reading and writing during run time.

1 // Class Java3DWorld1 is a Java 3D game.
2 // The goal is to navigate the small red ball in the bottom right
3 // corner to the screen's top-left corner without colliding with
4 // any of the flying objects. The user can specify the number of
5 // flying objects to make the game more difficult.
6 package com.deitel.advjhtp1.java3dgame;
7
8 // Java core packages
9 import java.awt.*;

10 import java.net.*;
11 import java.util.BitSet;
12
13 // Java extension packages
14 import javax.media.j3d.*;
15 import javax.vecmath.*;
16
17 // Java3D utility packages
18 import com.sun.j3d.utils.geometry.*;
19 import com.sun.j3d.utils.image.*;
20 import com.sun.j3d.utils.universe.*;
21
22 public class Java3DWorld1 extends Canvas3D {
23
24 // container dimensions
25 private static final int CONTAINER_WIDTH = 600;
26 private static final int CONTAINER_HEIGHT = 600;
27
28 // constants that specify number of shapes
29 private static final int NUMBER_OF_SHAPES = 20;
30 private static final int NUMBER_OF_PRIMITIVES = 4;
31
32 // initial scene to display in Switch
33 private static final int DEFAULT_SCENE = 0;
34
35 // constants for animating rotation
36 private static final int MAX_ROTATION_SPEED = 25000;
37 private static final int MIN_ROTATION_SPEED = 20000;
38 private static final float MIN_ROTATION_ANGLE = 0.0f;
39 private static final float MAX_ROTATION_ANGLE =
40 (float) Math.PI * 8.0f;
41
42 // constants for animating translation
43 private static final int MAX_TRANSLATION_SPEED = 7500;
44 private static final int MIN_TRANSLATION_SPEED = 2500;
45

Fig. 4.23Fig. 4.23Fig. 4.23Fig. 4.23 Class Java3DWorld1 creates the 3D-game environment (part 1 of 13).

182 Graphics Programming with Java 2D and Java 3D Chapter 4

46 // maximum time until animations begins
47 public static final int MAX_PHASE_DELAY = 20000;
48
49 // 3D shape information
50 private static final float MAX_RADIUS = 0.15f;
51 private static final float MAX_LENGTH = 0.2f;
52 private static final float MAX_SHININESS = 128.0f;
53 private static final float SPHERE_RADIUS = 0.15f;
54 private static final float BOUNDING_RADIUS = 100.0f;
55
56 private Switch shapeSwitch; // contains flying shapes
57 private BoundingSphere bounds; // bounds for nodes and groups
58
59 private SimpleUniverse simpleUniverse; // 3D environment
60
61 private String imageName; // texture image file name
62
63 // Java3DWorld1 constructor
64 public Java3DWorld1(String imageFileName) {
65
66 super(SimpleUniverse.getPreferredConfiguration());
67
68 imageName = imageFileName;
69
70 // create SimpleUniverse (3D Graphics environment)
71 simpleUniverse = new SimpleUniverse(this);
72
73 // set viewing distance for 3D scene
74 ViewingPlatform viewPlatform =
75 simpleUniverse.getViewingPlatform();
76
77 viewPlatform.setNominalViewingTransform();
78
79 // create 3D scene
80 BranchGroup branchGroup = createScene();
81
82 // attach BranchGroup to SimpleUniverse
83 simpleUniverse.addBranchGraph(branchGroup);
84
85 } // end Java3DWorld1 constructor
86
87 // create 3D scene
88 public BranchGroup createScene()
89 {
90 BranchGroup sceneBranchGroup = new BranchGroup();
91
92 // create scene Switch group
93 Switch sceneSwitch = initializeSwitch(DEFAULT_SCENE);
94
95 // create Switch group containing shapes
96 shapeSwitch = initializeSwitch(DEFAULT_SCENE);
97

Fig. 4.23Fig. 4.23Fig. 4.23Fig. 4.23 Class Java3DWorld1 creates the 3D-game environment (part 2 of 13).

Chapter 4 Graphics Programming with Java 2D and Java 3D 183

98 // initialize BranchGroup that contains only elements
99 // in game scene
100 BranchGroup gameBranchGroup = new BranchGroup();
101
102 // add shapeSwitch to gameBranchGroup
103 gameBranchGroup.addChild(shapeSwitch);
104
105 // add gameBranchGroup to sceneSwitch
106 sceneSwitch.addChild(gameBranchGroup);
107
108 // add sceneSwitch to sceneBranchGroup
109 sceneBranchGroup.addChild(sceneSwitch);
110
111 // create BoundingSphere for 3D objects and behaviors
112 bounds = new BoundingSphere(
113 new Point3d(0.0f, 0.0f, 0.0f), BOUNDING_RADIUS);
114
115 // create rotation TransformGroup array
116 TransformGroup[] spinTransform =
117 createTransformGroupArray(NUMBER_OF_SHAPES);
118
119 // create translation TransformGroup array
120 TransformGroup[] pathTransform =
121 createTransformGroupArray(NUMBER_OF_SHAPES);
122
123 // create RotationInterpolators
124 createRotationInterpolators(spinTransform,
125 NUMBER_OF_SHAPES);
126
127 // create PositonInterpolators
128 createPositionInterpolators(pathTransform,
129 NUMBER_OF_SHAPES);
130
131 // create Appearance objects for Primitives
132 Appearance[] shapeAppearance =
133 createAppearance(NUMBER_OF_SHAPES);
134
135 // create shapes
136 Primitive[] shapes =
137 createShapes(shapeAppearance, NUMBER_OF_SHAPES);
138
139 // add shapes to scene structure
140 for (int x = 0; x < NUMBER_OF_SHAPES; x++) {
141
142 // add primitive to spinTransform group
143 spinTransform[x].addChild(shapes[x]);
144
145 // add spinTransform group to pathTransform group
146 pathTransform[x].addChild(spinTransform[x]);
147
148 // add pathTransform group to shapeSwitch group
149 shapeSwitch.addChild(pathTransform[x]);
150 }

Fig. 4.23Fig. 4.23Fig. 4.23Fig. 4.23 Class Java3DWorld1 creates the 3D-game environment (part 3 of 13).

184 Graphics Programming with Java 2D and Java 3D Chapter 4

151
152 // create and set scene lighting
153 setLighting(sceneBranchGroup, bounds);
154
155 // create scene to display if user loses
156 TransformGroup loserTransformGroup =
157 createEndScene("You Lose!");
158
159 // add loser scene to sceneSwitch
160 sceneSwitch.addChild(loserTransformGroup);
161
162 // create scene to display if user winss
163 TransformGroup winnerTransformGroup =
164 createEndScene("You Win!");
165
166 // add winner scene to sceneSwitch
167 sceneSwitch.addChild(winnerTransformGroup);
168
169 // create shiny red Appearance for navigating shape
170 Appearance flyingAppearance = createAppearance(
171 new Color3f(1.0f, 0.0f, 0.0f));
172
173 // initialize navigable sphere
174 Primitive flyingBall = new Sphere(
175 0.03f, Sphere.GENERATE_NORMALS, flyingAppearance);
176
177 // set capability bits to enable collision detection and
178 // allow for read/write of bounds
179 flyingBall.setCollidable(true);
180 flyingBall.setCapability(Node.ENABLE_COLLISION_REPORTING);
181 flyingBall.setCapability(Node.ALLOW_BOUNDS_READ);
182 flyingBall.setCapability(Node.ALLOW_BOUNDS_WRITE);
183
184 // create TransformGroup to translate shape position
185 TransformGroup startTransform = createTransform(
186 new Vector3f(0.9f, -0.9f, 0.0f));
187
188 startTransform.addChild(flyingBall);
189 gameBranchGroup.addChild(startTransform);
190
191 // create Material for Appearance for target sphere
192 Appearance targetAppearance = createAppearance(
193 new Color3f(0.0f, 1.0f, 0.0f));
194
195 // obtain textured image for target sphere
196 String rgb = new String("RGB");
197 TextureLoader textureLoader = new TextureLoader(
198 Java3DWorld1.class.getResource(imageName), rgb, this);
199 textureLoader.getTexture().setEnable(true);
200 targetAppearance.setTexture(textureLoader.getTexture());
201

Fig. 4.23Fig. 4.23Fig. 4.23Fig. 4.23 Class Java3DWorld1 creates the 3D-game environment (part 4 of 13).

Chapter 4 Graphics Programming with Java 2D and Java 3D 185

202 // initialize target sphere
203 Primitive targetSphere = new Sphere(SPHERE_RADIUS,
204 Sphere.GENERATE_TEXTURE_COORDS | Sphere.GENERATE_NORMALS,
205 targetAppearance);
206
207 // disable collision detection for sphere
208 targetSphere.setCollidable(false);
209
210 // create vector to target point
211 Vector3f target = new Vector3f(-1.0f, 1.0f, -1.0f);
212
213 // create TransformGroup that translates sphere position
214 TransformGroup targetTransform = createTransform(target);
215 targetTransform.addChild(targetSphere);
216 gameBranchGroup.addChild(targetTransform);
217
218 // create Navigator behavior
219 Navigator navigator = new Navigator(startTransform);
220 navigator.setSchedulingBounds(bounds);
221
222 // create Collide behavior
223 Collide collider = new Collide(
224 simpleUniverse, flyingBall, sceneSwitch);
225 collider.setSchedulingBounds(bounds);
226
227 // create GoalDetector behavior
228 GoalDetector goalDetector = new GoalDetector(
229 simpleUniverse, startTransform, sceneSwitch,
230 target, SPHERE_RADIUS);
231 goalDetector.setSchedulingBounds(bounds);
232
233 // add Behaviors to scene
234 sceneBranchGroup.addChild(goalDetector);
235 sceneBranchGroup.addChild(collider);
236 sceneBranchGroup.addChild(navigator);
237
238 // create Background for scene
239 Background background = new Background();
240 background.setColor(0.4f, 0.4f, 1.0f);
241 background.setApplicationBounds(bounds);
242 sceneBranchGroup.addChild(background);
243
244 sceneBranchGroup.compile();
245
246 return sceneBranchGroup;
247
248 } // end method createScene
249
250 // create Appearance object for Primitive in scene
251 private Appearance createAppearance(Color3f diffuseColor)
252 {
253 Appearance appearance = new Appearance();
254 Material material = new Material();

Fig. 4.23Fig. 4.23Fig. 4.23Fig. 4.23 Class Java3DWorld1 creates the 3D-game environment (part 5 of 13).

186 Graphics Programming with Java 2D and Java 3D Chapter 4

255 material.setShininess(MAX_SHININESS);
256 material.setDiffuseColor(diffuseColor);
257 material.setAmbientColor(0.0f, 0.0f, 0.0f);
258 appearance.setMaterial(material);
259 return appearance;
260
261 } // end method createAppearance
262
263
264 // create TransformGroup for placing an object in scene
265 private TransformGroup createTransform(
266 Vector3f positionVector)
267 {
268 // initialize a TransformGroup and set capability bits
269 TransformGroup transformGroup = new TransformGroup();
270 transformGroup.setCapability(
271 TransformGroup.ALLOW_TRANSFORM_READ);
272 transformGroup.setCapability(
273 TransformGroup.ALLOW_TRANSFORM_WRITE);
274
275 // translate starting position to bottom right of scene
276 Transform3D location = new Transform3D();
277 location.setTranslation(positionVector);
278 transformGroup.setTransform(location);
279
280 return transformGroup;
281
282 } // end method createTransform
283
284 // initialize Switch group and set capability bits
285 private Switch initializeSwitch(int sceneNumber)
286 {
287 Switch switchGroup = new Switch(sceneNumber);
288 switchGroup.setCollidable(true);
289 switchGroup.setCapability(Switch.ALLOW_SWITCH_WRITE);
290 switchGroup.setCapability(Switch.ALLOW_SWITCH_READ);
291 switchGroup.setCapability(Group.ALLOW_CHILDREN_WRITE);
292 switchGroup.setCapability(Group.ALLOW_CHILDREN_READ);
293 switchGroup.setCapability(
294 Group.ENABLE_COLLISION_REPORTING);
295 return switchGroup;
296
297 } // end method initializeSwitch
298
299 private TransformGroup[] createTransformGroupArray(
300 int size)
301 {
302 TransformGroup[] transformGroup =
303 new TransformGroup[size];
304
305 // set TransformGroup's WRITE and READ permissions
306 // and enable collision reporting

Fig. 4.23Fig. 4.23Fig. 4.23Fig. 4.23 Class Java3DWorld1 creates the 3D-game environment (part 6 of 13).

Chapter 4 Graphics Programming with Java 2D and Java 3D 187

307 for (int i = 0; i < size; i++) {
308
309 // create TransformGroups
310 transformGroup[i] = new TransformGroup();
311
312 // enable collision reporting
313 transformGroup[i].setCapability(
314 Group.ENABLE_COLLISION_REPORTING);
315
316 // enable WRITE permission
317 transformGroup[i].setCapability(
318 TransformGroup.ALLOW_TRANSFORM_WRITE);
319
320 // enable READ permission
321 transformGroup[i].setCapability(
322 TransformGroup.ALLOW_TRANSFORM_READ);
323 }
324
325 return transformGroup;
326
327 } // end method createTransformGroupArray
328
329 // create RotationInterpolators for scene
330 private void createRotationInterpolators(
331 TransformGroup[] transformGroup, int size)
332 {
333 // declare structures for creating RotationInterpolators
334 Alpha[] alphaSpin = new Alpha[size];
335
336 Transform3D[] spinAxis =
337 new Transform3D[size];
338
339 RotationInterpolator[] spinner =
340 new RotationInterpolator[size];
341
342 // create RotationInterpolator for each shape
343 for (int x = 0; x < size; x++) {
344
345 // initialize Alpha
346 alphaSpin[x] = new Alpha();
347
348 // set increasing time for Alpha to random number
349 alphaSpin[x].setIncreasingAlphaDuration(
350 MIN_ROTATION_SPEED + ((int) (Math.random() *
351 MAX_ROTATION_SPEED)));
352
353 // initialize RotationInterpolator using appropriate
354 // Alpha and TransformGroup
355 spinner[x] = new RotationInterpolator(
356 alphaSpin[x], transformGroup[x]);
357
358 spinAxis[x] = new Transform3D();
359

Fig. 4.23Fig. 4.23Fig. 4.23Fig. 4.23 Class Java3DWorld1 creates the 3D-game environment (part 7 of 13).

188 Graphics Programming with Java 2D and Java 3D Chapter 4

360 // set random X-axis rotation
361 spinAxis[x].rotX(
362 (float) (Math.PI * (Math.random() * 2)));
363 spinner[x].setAxisOfRotation(spinAxis[x]);
364
365 // set minimum and maximum rotation angles
366 spinner[x].setMinimumAngle(MIN_ROTATION_ANGLE);
367 spinner[x].setMaximumAngle(MAX_ROTATION_ANGLE);
368
369 spinner[x].setSchedulingBounds(bounds);
370
371 // add RotationInterpolator to appropriate TransformGroup
372 transformGroup[x].addChild(spinner[x]);
373 }
374
375 } // end method createRotationInterpolators
376
377 // create PositionInterpolators
378 private void createPositionInterpolators(
379 TransformGroup[] transformGroup, int size)
380 {
381 // create structures for PositionInterpolators
382 Alpha[] alphaPath = new Alpha[size];
383
384 PositionInterpolator[] mover =
385 new PositionInterpolator[size];
386
387 Transform3D[] pathAxis =
388 new Transform3D[size];
389
390 // create PositionInterpolator for each shape
391 for (int x = 0; x < size; x++) {
392
393 // initialize Alpha
394 alphaPath[x] = new Alpha();
395
396 // set mode to increase and decrease interpolation
397 alphaPath[x].setMode(
398 Alpha.INCREASING_ENABLE | Alpha.DECREASING_ENABLE);
399
400 // set random phase delay
401 alphaPath[x].setPhaseDelayDuration(
402 ((int) (Math.random() * MAX_PHASE_DELAY)));
403
404 // randomize translation speed
405 int speed = MIN_TRANSLATION_SPEED +
406 (int) (Math.random() * MAX_TRANSLATION_SPEED);
407
408 // set increasing and decreasing durations
409 alphaPath[x].setIncreasingAlphaDuration(speed);
410 alphaPath[x].setDecreasingAlphaDuration(speed);
411

Fig. 4.23Fig. 4.23Fig. 4.23Fig. 4.23 Class Java3DWorld1 creates the 3D-game environment (part 8 of 13).

Chapter 4 Graphics Programming with Java 2D and Java 3D 189

412 // randomize translation axis
413 pathAxis[x] = new Transform3D();
414 pathAxis[x].rotX(
415 (float) (Math.PI * (Math.random() * 2)));
416 pathAxis[x].rotY(
417 (float) (Math.PI * (Math.random() * 2)));
418 pathAxis[x].rotZ(
419 (float) (Math.PI * (Math.random() * 2)));
420
421 // initialize PositionInterpolator
422 mover[x] = new PositionInterpolator(alphaPath[x],
423 transformGroup[x], pathAxis[x], 1.0f, -1.0f);
424
425 mover[x].setSchedulingBounds(bounds);
426
427 // add PostionInterpolator to appropriate TransformGroup
428 transformGroup[x].addChild(mover[x]);
429 }
430
431 } // end method createPositionInterpolators
432
433 // create appearance and material arrays for Primitives
434 private Appearance[] createAppearance(int size)
435 {
436 // create Appearance objects for each shape
437 Appearance[] appearance =
438 new Appearance[size];
439
440 Material[] material = new Material[size];
441
442 // set material and appearance properties for each shape
443 for(int i = 0; i < size; i++) {
444 appearance[i] = new Appearance();
445 material[i] = new Material();
446
447 // set material ambient color
448 material[i].setAmbientColor(
449 new Color3f(0.0f, 0.0f, 0.0f));
450
451 // set material Diffuse color
452 material[i].setDiffuseColor(new Color3f(
453 (float) Math.random(), (float) Math.random(),
454 (float) Math.random()));
455
456 // set Material for appropriate Appearance object
457 appearance[i].setMaterial(material[i]);
458 }
459 return appearance;
460
461 } // end method createAppearance
462

Fig. 4.23Fig. 4.23Fig. 4.23Fig. 4.23 Class Java3DWorld1 creates the 3D-game environment (part 9 of 13).

190 Graphics Programming with Java 2D and Java 3D Chapter 4

463 // create Primitives shapes
464 private Primitive[] createShapes(Appearance[] appearance,
465 int size)
466 {
467 Primitive[] shapes = new Primitive[size];
468
469 // random loop to get index
470 for (int x = 0; x < size; x++) {
471
472 // generate random shape index
473 int index = (int) (Math.random() * NUMBER_OF_PRIMITIVES);
474
475 // create shape based on random index
476 switch(index) {
477
478 case 0: // create Box
479 shapes[x] = new Box(
480 ((float) Math.random() * MAX_LENGTH),
481 ((float) Math.random() * MAX_LENGTH),
482 ((float) Math.random() * MAX_LENGTH),
483 Box.GENERATE_NORMALS, appearance[x]);
484 break;
485
486 case 1: // create Cone
487 shapes[x] = new Cone(
488 ((float) Math.random() * MAX_RADIUS),
489 ((float) Math.random() * MAX_LENGTH),
490 Cone.GENERATE_NORMALS, appearance[x]);
491 break;
492
493 case 2: // create Cylinder
494 shapes[x] = new Cylinder(
495 ((float) Math.random() * MAX_RADIUS),
496 ((float) Math.random() * MAX_LENGTH),
497 Cylinder.GENERATE_NORMALS, appearance[x]);
498 break;
499
500 case 3: // create Sphere
501 shapes[x] = new Sphere(
502 ((float) Math.random() * MAX_RADIUS),
503 Sphere.GENERATE_NORMALS, appearance[x]);
504 break;
505
506 } // end switch statement
507
508 // set capability bits to enable collisions and to set
509 // read/write permissions of bounds
510 shapes[x].setCapability(
511 Node.ENABLE_COLLISION_REPORTING);
512 shapes[x].setCapability(
513 Node.ALLOW_BOUNDS_READ);
514 shapes[x].setCapability(
515 Node.ALLOW_BOUNDS_WRITE);

Fig. 4.23Fig. 4.23Fig. 4.23Fig. 4.23 Class Java3DWorld1 creates the 3D-game environment (part 10 of 13).

Chapter 4 Graphics Programming with Java 2D and Java 3D 191

516 shapes[x].setCollidable(true);
517
518 }
519
520 return shapes;
521
522 } // end method createShapes
523
524 // initialize ambient and directional lighting
525 private void setLighting(BranchGroup scene,
526 BoundingSphere bounds)
527 {
528 // initialize ambient lighting
529 AmbientLight ambientLight = new AmbientLight();
530 ambientLight.setInfluencingBounds(bounds);
531
532 // initialize directional lighting
533 DirectionalLight directionalLight = new DirectionalLight();
534 directionalLight.setColor(
535 new Color3f(1.0f, 1.0f, 1.0f));
536 directionalLight.setInfluencingBounds(bounds);
537
538 // add lights to scene
539 scene.addChild(ambientLight);
540 scene.addChild(directionalLight);
541
542 } // end method setLighting
543
544 // update scene by rendering different shapes in shapeSwitch
545 public void switchScene(int numberChildren, int size)
546 {
547 // create a new BitSet of size NUMBER_OF_SHAPES
548 BitSet bitSet = new BitSet(size);
549
550 // set BitSet values
551 for (int i = 0; i < numberChildren; i++)
552 bitSet.set(i);
553
554 // instruct switchShape to render Mask of objects
555 shapeSwitch.setWhichChild(Switch.CHILD_MASK);
556 shapeSwitch.setChildMask(bitSet);
557
558 } // end method switchScene
559
560 // create end scene when user wins or loses
561 private TransformGroup createEndScene(String text)
562 {
563 TransformGroup transformGroup = new TransformGroup();
564 transformGroup.setCapability(
565 TransformGroup.ALLOW_TRANSFORM_WRITE);
566
567 // disable scene collision detection
568 transformGroup.setCollidable(false);

Fig. 4.23Fig. 4.23Fig. 4.23Fig. 4.23 Class Java3DWorld1 creates the 3D-game environment (part 11 of 13).

192 Graphics Programming with Java 2D and Java 3D Chapter 4

569
570 // create Alpha object
571 Alpha alpha = new Alpha();
572 alpha.setIncreasingAlphaDuration(MAX_ROTATION_SPEED);
573
574 // create RotationInterpolator for scene
575 RotationInterpolator rotation =
576 new RotationInterpolator(alpha, transformGroup);
577
578 // set axis of rotation
579 Transform3D axis = new Transform3D();
580 axis.rotY((float) (Math.PI / 2.0));
581 rotation.setAxisOfRotation(axis);
582
583 // set minimum and maximum rotation angles
584 rotation.setMinimumAngle(0.0f);
585 rotation.setMaximumAngle((float) (Math.PI * 8.0));
586
587 rotation.setSchedulingBounds(bounds);
588 transformGroup.addChild(rotation);
589
590 // create scene geometry
591 Appearance appearance = new Appearance();
592 Material material = new Material();
593 appearance.setMaterial(material);
594
595 // set diffuse color of material
596 material.setDiffuseColor(
597 new Color3f(0.0f, 0.8f, 1.0f));
598
599 // create Font3D object
600 Font3D font3d = new Font3D(
601 new Font("Helvetica", Font.ITALIC, 1),
602 new FontExtrusion());
603
604 // create Text3D object from Font3D object
605 Text3D text3d = new Text3D(font3d, text,
606 new Point3f(-2.0f, 0.0f, 0.0f));
607
608 // create Shape3D object from Text3D object
609 Shape3D textShape = new Shape3D(text3d);
610
611 textShape.setAppearance(appearance);
612
613 // disable collision detection
614 textShape.setCollidable(false);
615
616 transformGroup.addChild(textShape);
617
618 return transformGroup;
619
620 } // end method createEndScene
621

Fig. 4.23Fig. 4.23Fig. 4.23Fig. 4.23 Class Java3DWorld1 creates the 3D-game environment (part 12 of 13).

Chapter 4 Graphics Programming with Java 2D and Java 3D 193

When method createTransformGroupArray returns the array, method cre-
ateScene creates the Interpolators, which help animate the transformations. Class
Interpolator is a subclass of Behavior—later, we discuss how to implement
custom behaviors. Now, we discuss how to use some well-known Behavior subclasses
provided by Java 3D. To animate shapes smoothly in a scene, Java 3D provides Inter-
polators and Alphas. Interpolators use Alphas to specify certain characteristics
of animation, such as the speed of transformations (e.g., rotation speed), or how fast a shape
changes color (e.g., lighting effects). Interpolator objects convert time values to
transformations of 3D shapes—Alpha objects generate these time values. For example,
when a shape “flies” across the screen in one second, the Interpolator converts
Alpha-generated time values (from 0 to 1) to translation operations that move the shape
in the one-second period. An Interpolator operates in conjunction with a Trans-

622
623 // return preferred dimensions of Container
624 public Dimension getPreferredSize()
625 {
626 return new Dimension(CONTAINER_WIDTH, CONTAINER_HEIGHT);
627 }
628
629 // return minimum size of Container
630 public Dimension getMinimumSize()
631 {
632 return getPreferredSize();
633 }
634 }

Fig. 4.23Fig. 4.23Fig. 4.23Fig. 4.23 Class Java3DWorld1 creates the 3D-game environment (part 13 of 13).

User-navigated shapeTarget Obstacles

194 Graphics Programming with Java 2D and Java 3D Chapter 4

formGroup—each TransformGroup has an associated Interpolator. The
Interpolator describes how to animate shapes in the TransformGroup. Java 3D
provides several Interpolator subclasses. In this game, we use RotationInter-
polator for rotating objects and PositionInterpolator for translating objects.

Lines 124–125 pass the spinTransform array of TransformGroups to method
createRotationInterpolators (lines 330–375), which initializes the Rota-
tionInterpolators for spinTransform. An Alpha object and a Transform3D
object compose a RotationInterpolator object. Alpha objects contain a series of
phases that either increase or decrease. Increasing Alpha objects generate values in a
sequence from 0 to 1, whereas decreasing Alpha objects generate values in a sequence
from 1 to 0. An Alpha object’s default constructor sets that Alpha to generate increasing
values, which result in a shape spinning in one specific direction (decreasing values enable
the shape to spin in the opposite direction). For each Alpha object, lines 349–351 call
method setIncreasingAlphaDuration, which specifies the time (in milliseconds)
for that Alpha object to increase from 0 to 1. A random-number generation sets the time
value between MIN_ROTATION_SPEED and MAX_ROTATION_SPEED. Lines 355–356
create the RotationInterpolator array that use the Alpha array and the spin-
Transform array. The Alpha object controls the Interpolator, which in turn trans-
forms the 3D shapes in the TransformGroup. The RotationInterpolator
constructor creates a default Transform3D for the rotation. Class Transform3D is a
two-dimensional array that represents a general transform—in this case, a rotation. Each
Transform3D has an associated integer type that determines the transformation to repre-
sent. Lines 358–369 create the Transform3D for the RotationInterpolator.
Lines 361–363 assign the Transform3D a random axis of rotation. Lines 366–367 assign
the minimum and maximum rotation angles (i.e., the starting and stopping angles for a
complete rotational period). Line 372 adds the RotationInterpolators to the
TransformGroup spinTransform.

When method createRotationInterpolators returns, lines 128–129 pass
pathTransform as an argument to method createPositionInterpolators
(lines 378–431). This method creates a set of PositionInterpolators that translate
the shapes in the scene—specifically, the method creates PositionInterpolators
for each TransformGroup in pathTransform. PositionInterpolators
operate similarly to RotationInterpolators, except PositionInterpolators
translate a 3D shape’s position on a given axis, whereas RotationInterpolators
rotate a 3D shape on a given axis. Line 382 creates the Alpha objects associated with the
PositionInterpolators—these values provide the time values that help to deter-
mine the shapes’ position. Lines 397–398 set the Alpha object as increasing and
decreasing to ensure that the 3D shapes move back and forth across the screen. If the
Alpha object was only decreasing or increasing, the shapes would move in only one direc-
tion. We chose to delay the initial movement of each shape to ensure that the 3D obstacle
will not collide with the user-navigated shape immediately after the player starts the game.
Lines 401–402 accomplish this by setting a randomized phase delay on each Alpha object.
To make the game more interesting, we chose to set the increasing and decreasing durations
to random speeds. Lines 413–419 assign random translation axes to the Transform3D
objects that hold translation information to give obstacles different directions. Lines 422–
423 pass five arguments to the PositionInterpolator constructor. The first three

Chapter 4 Graphics Programming with Java 2D and Java 3D 195

arguments are the array of Alpha values, the array of TransformGroup values (path-
Transform) and the array of Transform3D values. The last two arguments specify the
starting and ending positions in the 3D scene for the PositionInterpolator transla-
tion. Line 428 adds each PositionInterpolator to each TransformGroup in
pathTransform.

 At this point, Java3DWorld1 has created the TransformGroups and Inter-
polators for each 3D shape. Now Java3DWorld1 must create the actual shapes. Lines
132–133 invoke method createAppearance (lines 434–461), which creates an array
of randomly colored Appearance objects. Line 440 creates an array of Material
objects, because every Appearance object has an associated Material object. Lines
448–449 sets each Material’s ambient color—the Material’s color when illuminated
by reflected light. Lines 452–454 randomly set each Material’s diffuse color—the
Material’s color when illuminated by some light source. Line 457 sets each Material
in the Material array to an associated Appearance in the Appearance array. Line
459 then returns the Appearance array.

Lines 136–137 pass the Appearance array to method createShapes (lines 464–
522) to create an array of Primitives that represent the shapes of the obstacles. The Java
3D com.sun.j3d.utils.geometry package provides four types of 3D-geometric
Primitive types: Box, Cone, Cylinder and Sphere. Line 473 randomly generates
a number between 0 and 3—each number is associated with one of these Primitive
object. Lines 476–506 implement a switch statement—each case creates a unique type.
The constructor of each Primitive subclass specifies that Primitive’s dimensions,
lighting and appearance. Consider the Box constructor—lines 479–483 pass the Box’s
length, width and height, the GENERATE_NORMALS constant (for the direction of the
lighting), and an Appearance object. Lines 510–515 set the capability bits for each
Primitive to enable collision reporting and read/write access during execution. Line
516 invokes method setCollidable of each Primitive’s Node superclass, so each
Primitive can collide with other “collidable” Primitives. Line 520 returns the array
of 3D shapes.

Lines 140–150 set up the sceneBranchGraph. Line 143 adds each 3D shape to each
TransformGroup in spinTransform, line 146 adds each TransformGroup in
spinTransform to each TransformGroup in pathTransform. Line 149 adds each
TransformGroup in pathTransform to shapeSwitch. Line 153 calls method
setLighting (lines 525–542) to create the AmbientLight and Directional-
Light that illuminate the shapes in the scene. Lines 156–157 call method createEnd-
Scene (lines 561–620) to create a TransformGroup associated with the player losing
the game. Method createEndScene uses its String argument to create a rotating
object of class Text3D—a Geometry subclass for representing 3D text. Lines 563–568
create the TransformGroup to hold the Text3D. Lines 571–587 create the Rota-
tionInterpolator for rotating the Text3D. Lines 591–594 create an Appearance
object for the Text3D. Lines 600–602 create a Font3D object, which uses both a
java.awt.Font object and a Java 3D FontExtrusion object. A FontExtrusion
describes the adding of a third dimension to the Font’s 2D text. Using the Font3D object,
the String argument that holds the text and a Point3f object—x-y-z coordinates that
specify a location in a SimpleUniverse, lines 605–606 create the Text3D object. Line
609 creates a Shape3D—a Node that describes a 3D shape—from the Text3D. Line 611

196 Graphics Programming with Java 2D and Java 3D Chapter 4

sets the Shape3D’s Appearance. Line 614 specifies that the Shape3D objects in this
scene should not collide with other Shape3D objects. Line 616 adds each Shape3D to the
TransformGroup, and line 619 returns the TransformGroup. Line 160 adds this
TransformGroup (for the losing scene) to the Switch group. When the user-navigated
shape collides with an obstacle, the application displays a scene with the rotating 3D text
“You Lose.” Lines 163–164 call method createEndScene to create the scene that dis-
plays “You Win” when the player navigates the shape to the destination without collision.
Line 167 adds this scene (TransformGroup) to the Switch.

The two missing pieces in our game are the navigable shape and the target (destination)
shape. Lines 170–189 create a shiny red Sphere as the shape that the user navigates to the
target shape. Lines 192–193 call method createAppearance (lines 251–261) to set
this shape’s Appearance. This method takes as an argument a Color3f object and ini-
tializes an Appearance object based on a Material object that uses the Color3f
object. Lines 174–175 instantiate the navigable shape as a Sphere. Lines 179–182 enable
this Sphere to collide with the other Primitives in the scene. Lines 185–186 call
method createTransform to create a TransformGroup to translate the Sphere’s
starting position to the bottom-right corner of the scene. Lines 188–189 add the Sphere
to this TransformGroup, then add the TransformGroup to the gameBranch-
Group. Lines 192–216 create the game’s target shape: a Sphere that contains an image
texture. Lines 196–200 load an image in a Texture object, then create an Appearance
object with this Texture object. Lines 203–205 instantiate the target Sphere, and line
208 ensures that the Sphere cannot collide with the other Primitives in the game. We
discuss later how the user-navigated shape interacts with the target Sphere (i.e., how the
user-navigated shape determines that it has reached its goal). Line 214 calls method
createTransform to create a TransformGroup that places the target Sphere in
the upper-right corner of the scene. Line 215 adds the Sphere to this Transform-
Group, and line 216 adds the TransformGroup to the gameBranchGroup.

We designed the game so the user can control the game difficulty. Using a JSlider
in class ControlPanel, the user can specify the number of obstacles in the game.
Method switchScene (lines 545–558) accepts an int argument that represents the
number of shapes to display. Lines 548–552 create a BitMask from the int argument,
then lines 555–556 renders each shape associated with the BitMask.

The last step in creating Java3DWorld1 involves implementing a set of custom
behaviors—that is, collision detection, navigation and goal detection. Lines 219–231 create
these three behaviors. Class Collide enables shapes to detect collision, class Navi-
gator enables the user (using the keyboard) to navigate the shiny red Sphere through
the scene and class GoalDetector helps determine when this Sphere has reached the
target Sphere. We discuss each class in detail momentarily. We add these behaviors to
the sceneBranchGraph. Line 244 compiles sceneBranchGraph to create the dis-
playable 3D scene.

Custom Behaviors
The previous section demonstrated Interpolators—a set of Behavior subclasses
that specify certain animation characteristics. Developers often need more specialized be-
haviors for 3D applications (e.g., collision detection, navigation and position checking).
The Java 3D API provides the abstract Behavior class to create these custom behaviors.
A Behavior object has an associated behavior scheduler responsible for registering

Chapter 4 Graphics Programming with Java 2D and Java 3D 197

wake-up conditions—criteria that determines when the behavior scheduler should trigger a
behavior. The behavior scheduler is a Java 3D subsystem that shields developers from im-
plementation details. The behavior scheduler registers the wake-up conditions and handles
the logic for when these conditions are satisfied. All classes that extend Behavior must
implement methods initialize and processStimulus. Method initialize
registers a set of wake-up conditions with the behavior scheduler. Method process-
Stimulus handles the logic when the wake-up conditions are satisfied. The developer
must implement method processStimulus, although typically, processStimulus
determines the wake-up conditions that caused the event, handle the event (e.g., modify the
scene-graph, etc.) and then reregister the wake-up conditions with the behavior scheduler.

The application in this section demonstrates three types of custom behavior: collision
detection, navigation and position checking. We begin with the collision-detection behavior.

Collision detection determines when a shape’s bounding volume—the volume
enclosing either a shape or the bounds of a shape—intersects another. Class Collide
(Fig. 4.24), which extends superclass Behavior, implements collision-detection
behavior for our Java 3D application. In Java 3D, shapes are either armed nodes or trig-
gering nodes. A collision occurs when an armed node’s bounding volume intersects a trig-
gering node’s bounding volume. Line 21 declares the armed node for collision detection.
Line 24 declares the WakeupCondition object for our Behavior class. A Java 3D
Behavior object passes the WakeupCondition to the behavior scheduler. When the
WakeupCondition is satisfied (i.e., upon collision), the behavior scheduler returns an
enumeration of the WakeupCriterion that triggered the behavior. Line 26 declares the
Switch that contains scenes for the SimpleUniverse to display. Line 27 declares a
reference to the Java 3D SimpleUniverse for displaying scenes in the Switch.

The Collide constructor (lines 33–52) takes a SimpleUniverse, a Node and a
Switch as arguments. The reference to the SimpleUniverse adjusts the ViewPlat-
form when displaying different scenes in the Switch. The Node is the arming node for
the collision-detection behavior. Lines 41–43 initialize WakeupOnCollisionEntry—
the specific WakeupCriterion for our Behavior class. Class WakeupOnColli-
sionEntry takes as arguments an arming Node and integer USE_GEOMETRY, which
specifies the Node’s geometric volume as the bounding surface for collision detection.
Line 46 initializes the array of WakeupCriterion for our behavior class. This array
contains only one element—WakeupOnCollisionEntry. Line 50 initializes the
WakeupCondition as a WakeupOr that contains the WakeupCriterion. The
objects in WakeupOr generate events when a WakeupCriterion is satisfied (when a
collision occurs). Method initialize (lines 55–59) registers the WakeupCondition
with the behavior scheduler by calling method wakeupOn of superclass Behavior.
Method wakeupOn takes as an argument the WakeupCondition object, which regis-
ters with the behavior scheduler.

Upon collision, the behavior scheduler calls method processStimulus (lines 62–
81), passing as an argument an Enumeration of the WakeupCriterions that trig-
gered the event. Lines 65–79 handle each WakeupCriterion in the Enumeration.
Line 72 handles only those WakeupCriterions that are WakeupOnCollision-
Entry events. Line 73 invokes method processCollision (lines 85–106) for those
WakeupCriterions that satisfy this condition. Line 77 reregisters the WakeupCri-
terion with the behavior scheduler.

198 Graphics Programming with Java 2D and Java 3D Chapter 4

Method processCollision handles the logic in response to the collision. In this
application, a collision implies that the armed node (i.e., the user-navigated shape) has col-
lided with an obstacle—the user then loses the game. Lines 87–100 set the translation com-
ponent of the ViewPlatform’s Transform3D—the camera shifts back to expand the
view. Line 104 switches to the scene associated with a collision—rotating 3D text that
reads “You Lose.” Figure 4.24 demonstrates the 3D application display after the user-nav-
igated shape collides with an obstacle.

1 // Class Collide implements collision-detection behavior
2 // for a Java 3D application. Collide switches scenes
3 // when the armed object collides with another object.
4 package com.deitel.advjhtp1.java3dgame;
5
6 // Core Java packages
7 import java.lang.*;
8 import java.util.*;
9

10 // Java extension packages
11 import javax.media.j3d.*;
12 import javax.vecmath.*;
13
14 // Java 3D utility packages
15 import com.sun.j3d.utils.geometry.*;
16 import com.sun.j3d.utils.universe.*;
17
18 public class Collide extends Behavior {
19
20 // armed node generates WakeupOnCollisionEntry upon collision
21 private Node armingNode;
22
23 // specifies to what WakeupEvents to react
24 private WakeupCondition wakeupCondition;
25
26 private Switch switchScene; // Switch group contains 3D scenes
27 private SimpleUniverse simpleUniverse;
28
29 // index of scene to switch to upon collision
30 private static final int LOSER_SCENE = 1;
31
32 // constructor method initializes members
33 public Collide(SimpleUniverse universe, Node node,
34 Switch tempSwitch)
35 {
36 armingNode = node;
37 switchScene = tempSwitch;
38 simpleUniverse = universe;
39
40 // create WakeupOnCollisionEntry
41 WakeupOnCollisionEntry wakeupEvent =
42 new WakeupOnCollisionEntry(armingNode,
43 WakeupOnCollisionEntry.USE_GEOMETRY);

Fig. 4.24Fig. 4.24Fig. 4.24Fig. 4.24 Implementing collision detection in a Java 3D application (part 1 of 3).

Chapter 4 Graphics Programming with Java 2D and Java 3D 199

44
45 // set of WakeupEvents to which Behavior reponds
46 WakeupCriterion[] wakeupCriteria = { wakeupEvent };
47
48 // Behavior responds when any WakeupEvent in
49 // WakeupCriterion occurs
50 wakeupCondition = new WakeupOr(wakeupCriteria);
51
52 } // end constructor
53
54 // initialize Behavior's wakeup conditions
55 public void initialize()
56 {
57 // register WakeupCriterion to respond to collision events
58 wakeupOn(wakeupCondition);
59 }
60
61 // handle WakeupEvents
62 public void processStimulus(Enumeration detected)
63 {
64 // loop to handle events
65 while(detected.hasMoreElements()) {
66
67 // get next sequential element
68 WakeupCriterion criterion =
69 (WakeupCriterion) detected.nextElement();
70
71 // process event if WakeupOnCollisionEntry
72 if (criterion instanceof WakeupOnCollisionEntry) {
73 processCollision();
74
75 // re-register WakeupCriterion to respond to new
76 // WakeonOnCollisionEntry event
77 wakeupOn(wakeupCondition);
78 }
79 }
80
81 } // end method processStimulus
82
83 // process collision by moving camera view back and
84 // switching scenes in Switch group
85 private void processCollision()
86 {
87 Transform3D shiftViewBack = new Transform3D();
88
89 // set Transform3D's Translation
90 shiftViewBack.setTranslation(
91 new Vector3f(0.0f, 0.0f, 8.0f));
92
93 // set Transform3D that determines View
94 ViewingPlatform viewPlatform =
95 simpleUniverse.getViewingPlatform();
96

Fig. 4.24Fig. 4.24Fig. 4.24Fig. 4.24 Implementing collision detection in a Java 3D application (part 2 of 3).

200 Graphics Programming with Java 2D and Java 3D Chapter 4

We provide class Navigator (Fig. 4.25) so the user can navigate the shape in our 3D
scene. Class Navigator responds to certain key presses by translating a Node in a 3D
scene. Navigator moves the Node by updating that Node’s TransformGroup. Line
22 declares the TransformGroup. Lines 25–30 declare float constants that represent
the amount by which Navigator translates the shape upon each keypress. Line 33
declares the WakeupCondition for activating the navigational behavior.

97 TransformGroup platformTransform =
98 viewPlatform.getViewPlatformTransform();
99
100 platformTransform.setTransform(shiftViewBack);
101
102
103 // render scene in Switch group
104 switchScene.setWhichChild(LOSER_SCENE);
105
106 } // end method processCollision
107 }

1 // Class Navigator is a subclass of Behavior that implements a
2 // keyboard translation navigator. Navigator responds to certain
3 // key presses by translating an object in a 3D scene.
4 package com.deitel.advjhtp1.java3dgame;
5
6 // Core Java packages
7 import java.awt.*;
8 import java.awt.event.*;
9 import java.util.*;

Fig. 4.25Fig. 4.25Fig. 4.25Fig. 4.25 Behavior that enables the user to navigate a 3D shape (part 1 of 4).

Fig. 4.24Fig. 4.24Fig. 4.24Fig. 4.24 Implementing collision detection in a Java 3D application (part 3 of 3).

Chapter 4 Graphics Programming with Java 2D and Java 3D 201

10
11 // Java extension packages
12 import javax.media.j3d.*;
13 import javax.vecmath.*;
14
15 // Java 3D utility packages
16 import com.sun.j3d.utils.universe.*;
17
18 public class Navigator extends Behavior {
19
20 // TransformGroup associated with object controlled
21 // by keyboard navigator
22 private TransformGroup objectTransform;
23
24 // translation amounts
25 private static final float LEFT = -0.02f;
26 private static final float RIGHT = 0.02f;
27 private static final float UP = 0.02f;
28 private static final float DOWN = -0.02f;
29 private static final float FORWARD = 0.02f;
30 private static final float BACKWARD = -0.02f;
31
32 // waking conditions for Behavior
33 private WakeupCondition wakeupCondition;
34
35 // constructor method
36 public Navigator(TransformGroup transform)
37 {
38 objectTransform = transform;
39
40 // initialize WakeupOnAWTEvent to repond to
41 // AWT KeyEvent.KEY_PRESSED events
42 WakeupOnAWTEvent wakeupEvent =
43 new WakeupOnAWTEvent(KeyEvent.KEY_PRESSED);
44
45 // set of WakeupEvents to which Behavior responds
46 WakeupCriterion[] wakeupCriteria = { wakeupEvent };
47
48 // Behavior responds when WakeupEvent in the
49 // WakeupCriterion occurs
50 wakeupCondition = new WakeupOr(wakeupCriteria);
51
52 } // end constructor
53
54 // initialize Behavior's wakeup conditions
55 public void initialize()
56 {
57 // register WakeupCriterion to generate WakeupEvents
58 // when AWT events occur
59 wakeupOn(wakeupCondition);
60 }
61

Fig. 4.25Fig. 4.25Fig. 4.25Fig. 4.25 Behavior that enables the user to navigate a 3D shape (part 2 of 4).

202 Graphics Programming with Java 2D and Java 3D Chapter 4

62 // handle WakeupEvents
63 public void processStimulus(Enumeration detected)
64 {
65 // loop to handle events
66 while (detected.hasMoreElements()) {
67
68 // get next WakeupCriterion
69 WakeupCriterion wakeupCriterion =
70 (WakeupCriterion) detected.nextElement();
71
72 // handle WakeupCriterion if WakeupOnAWTEvent
73 if (wakeupCriterion instanceof WakeupOnAWTEvent) {
74 WakeupOnAWTEvent awtEvent =
75 (WakeupOnAWTEvent) wakeupCriterion;
76 AWTEvent[] events = awtEvent.getAWTEvent();
77
78 // invoke method moveObject with AWTEvent
79 moveShape(events);
80 }
81 }
82
83 // re-register wakeupCondition to respond to next key press
84 wakeupOn(wakeupCondition);
85
86 } // end method processStimulus
87
88 // handle AWT KeyEvents by translating an object in 3D scene
89 private void moveShape(AWTEvent[] awtEvents)
90 {
91 // handle all events in AWTEvent array
92 for (int x = 0; x < awtEvents.length; x++)
93 {
94 // handle if AWTEvent is KeyEvent
95 if (awtEvents[x] instanceof KeyEvent) {
96
97 // get cooresponding KeyEvent
98 KeyEvent keyEvent = (KeyEvent) awtEvents[x];
99
100 // respond only if KeyEvent is of type KEY_PRESSED
101 if (keyEvent.getID() == KeyEvent.KEY_PRESSED) {
102
103 // get KeyCode associated with KeyEvent
104 int keyCode = keyEvent.getKeyCode();
105
106 Transform3D transform3D = new Transform3D();
107
108 // get Transform3D from TransformGroup of
109 // navigable object
110 objectTransform.getTransform(transform3D);
111
112 Vector3f translateVector = new Vector3f();
113

Fig. 4.25Fig. 4.25Fig. 4.25Fig. 4.25 Behavior that enables the user to navigate a 3D shape (part 3 of 4).

Chapter 4 Graphics Programming with Java 2D and Java 3D 203

The Navigator constructor (lines 36–52) accepts as an argument a Transform-
Group that contains the navigable 3D shape. Lines 42–43 initialize a WakeupOnAWT-
Event that triggers a Behavior upon an AWTEvent (such as a keypress). The

114 // retrieve translation vector associated with
115 // Transform3D
116 transform3D.get(translateVector);
117
118 // update x, y, or z component of translation
119 // vector based on keypress
120 switch (keyCode) {
121
122 case KeyEvent.VK_A: // move left
123 translateVector.x += LEFT;
124 break;
125
126 case KeyEvent.VK_D: // move right
127 translateVector.x += RIGHT;
128 break;
129
130 case KeyEvent.VK_W: // move up
131 translateVector.y += UP;
132 break;
133
134 case KeyEvent.VK_S: // move down
135 translateVector.y += DOWN;
136 break;
137
138 case KeyEvent.VK_UP: // move backwards
139 translateVector.z += BACKWARD;
140 break;
141
142 case KeyEvent.VK_DOWN: // move forwards
143 translateVector.z += FORWARD;
144 break;
145
146 } // end switch
147
148 // set translational component of Transform3D
149 // with updated translation Vector3f
150 transform3D.setTranslation(translateVector);
151
152 // set TransformGroup's Transform3D
153 objectTransform.setTransform(transform3D);
154
155 } // end if KeyEvent.KEY_PRESSED
156 }
157
158 } // end for loop that handles key presses
159
160 } // end method moveShape
161 }

Fig. 4.25Fig. 4.25Fig. 4.25Fig. 4.25 Behavior that enables the user to navigate a 3D shape (part 4 of 4).

204 Graphics Programming with Java 2D and Java 3D Chapter 4

WakeupOnAWTEvent constructor takes as an argument the specific AWTEvent satisfies
the wake-up conditions. In this case, KeyEvent.KEY_PRESSED events activate
Behavior. Line 46 creates the WakeupCriterions from the WakeupOnAWTEvent.
Line 50 creates the WakeupOr that contains the WakeupCriterions.

Method initialize (lines 55–60) registers the WakeupOr with the behavior sched-
uler by passing the WakeupOr to method wakeupOn of superclass Behavior. Method
processStimulus (lines 63–86) handles the logic for the triggered Behavior (i.e., a
keypress). This method takes as an argument an Enumeration of the WakeupCrite-
rion objects associated with the Behavior. Lines 69–70 retrieve each WakeupCrite-
rion from the Enumeration. If the WakeupCriterion is a WakeupOnAWTEvent,
line 76 invokes method getAWTEvent of class WakeupOnAWTEvent, which returns the
array of AWTEvents that triggered the Behavior. Line 79 passes this array to method
moveShape (lines 89–160), which translates the user-navigated shape, depending on
which key the user pressed. Lines 95–101 test if each AWTEvent in the array is associated
with a key press—line 104 determines the specific key pressed. Lines 106–116 declare a
Transform3D and a Vector3f for updating the 3D shape’s position. The Vector3f
holds the coordinates that represent the translational component of the 3D shape’s
Transform3D. The translational component of a 3D shape specifies the shape’s position
on the x, y and z-axis. Lines 120–146 use a switch statement to update the 3D shape’s posi-
tion according to the key the user pressed. Figure 4.26 lists the keys and corresponding trans-
lations that are valid for Navigator. The Vector3f’s x-component corresponds to the
left and right position (X-axis) of a shape. The Vector3f’s y-component corresponds to
the up and down position (Y-axis) of a shape. The Vector3f’s z-component corresponds
to the back and forward position (Z-axis) of a shape. The switch statement modifies the
appropriate component of the Vector3f. Lines 150–153 call method setTranslation
of class Transform3D and method setTransform of class TransformGroup to
make the translation. The Java 3D engine then updates the 3D scene with the modified
TransformGroup information.

We have implemented Behavior for detecting Node collision (which causes the user
to lose the game) and the Behavior for enabling the user to navigate the scene. We now
implement class GoalDetector (Fig. 4.27)—the Behavior for checking the position of
a 3D shape (which allows the user to win the game). Line 25 declares the Transform-
Group for the 3D-shape’s position to check. Line 27 declares a Switch of scenes to display
in the SimpleUniverse. The SimpleUniverse reference (line 28) adjusts the View-
Platform when displaying different scenes in the Switch. We implement the target shape
as a sphere with coordinates goalX, goalY and goalZ (line 30) and radius sphere-
Radius (line 33). The user wins the game when the user-navigated shape reaches the target
sphere. Line 36 declares the WakeupCondition for the position-checking behavior.

Key Translation

A move left

D move right

Fig. 4.26Fig. 4.26Fig. 4.26Fig. 4.26 Keys for navigating the 3D scene in Navigator (part 1 of 2).

Chapter 4 Graphics Programming with Java 2D and Java 3D 205

W move up

S move down

Up Arrow move forward

Down Arrow move backward

1 // Class GoalDetector defines a position-checking behavior that
2 // checks to see if the position of a Node is equal to the target
3 // position. If the positions are equal, the game is over and
4 // a Java 3D Switch displays a different scene.
5 package com.deitel.advjhtp1.java3dgame;
6
7 // Core Java packages
8 import java.awt.*;
9 import java.awt.event.*;

10 import java.util.*;
11
12 // Java extension packages
13 import javax.media.j3d.*;
14 import javax.vecmath.*;
15
16 // Java 3D utility packages
17 import com.sun.j3d.utils.universe.*;
18
19 public class GoalDetector extends Behavior {
20
21 // index of scene to display if goal detected
22 private static final int WINNER_SCENE = 2;
23
24 // TransformGroup associated with object
25 private TransformGroup objectTransform;
26
27 private Switch switchScene; // Switch group that contains scenes
28 private SimpleUniverse simpleUniverse;
29
30 private float goalX, goalY, goalZ; // goal coordinates
31
32 // radius of sphere at goal coordinates
33 private float sphereRadius;
34
35 // Behavior's waking conditions
36 private WakeupCondition wakeupCondition;
37

Fig. 4.27Fig. 4.27Fig. 4.27Fig. 4.27 Implementing a position-checking Behavior (part 1 of 5).

Key Translation

Fig. 4.26Fig. 4.26Fig. 4.26Fig. 4.26 Keys for navigating the 3D scene in Navigator (part 2 of 2).

206 Graphics Programming with Java 2D and Java 3D Chapter 4

38 // constructor method initializes members
39 // and creates WakeupCriterion
40 public GoalDetector(SimpleUniverse universe,
41 TransformGroup transform, Switch switchGroup,
42 Vector3f goalVector, float radius)
43 {
44 objectTransform = transform;
45 switchScene = switchGroup;
46 simpleUniverse = universe;
47
48 // set goal coordinates to goalVector coordinates
49 goalX = goalVector.x;
50 goalY = goalVector.y;
51 goalZ = goalVector.z;
52
53 // set radius of sphere at goal coordinates
54 sphereRadius = radius;
55
56 // initialize WakeupOnAWTEvent to respond to
57 // AWT KeyEvent.KEY_PRESSED events
58 WakeupOnAWTEvent wakeupEvent =
59 new WakeupOnAWTEvent(KeyEvent.KEY_PRESSED);
60
61 // set of WakeupEvents to which Behavior responds
62 WakeupCriterion[] wakeupArray = { wakeupEvent };
63
64 // Behavior responds when WakeupEvent in
65 // WakeupCriterion occurs
66 wakeupCondition = new WakeupOr(wakeupArray);
67
68 } // end constructor method
69
70 // register Behavior's wakeup conditions
71 public void initialize()
72 {
73 // register WakeupCriterion to respond to AWTEvents
74 wakeupOn(wakeupCondition);
75 }
76
77 // handle WakeupEvents
78 public void processStimulus(Enumeration detected)
79 {
80 // loop to handle events
81 while (detected.hasMoreElements()) {
82
83 // get next sequential WakeupCriterion
84 WakeupCriterion wakeupCriterion =
85 (WakeupCriterion) detected.nextElement();
86
87 // handle if WakeupOnAWTEvent
88 if (wakeupCriterion instanceof WakeupOnAWTEvent) {
89

Fig. 4.27Fig. 4.27Fig. 4.27Fig. 4.27 Implementing a position-checking Behavior (part 2 of 5).

Chapter 4 Graphics Programming with Java 2D and Java 3D 207

90 // ensure WakeupOnAWTEvent is KeyEvent.KEY_PRESSED
91 WakeupOnAWTEvent awtEvent =
92 (WakeupOnAWTEvent) wakeupCriterion;
93 AWTEvent[] event = awtEvent.getAWTEvent();
94
95 // check object position
96 checkPosition(event);
97
98 // re-register WakeupCriterion to respond to next
99 // key press
100 wakeupOn(wakeupCondition);
101 }
102 }
103
104 } // end method processStimulus
105
106 // check position of object in objectTransform TransformGroup
107 private void checkPosition(AWTEvent[] awtEvents)
108 {
109 Vector3f translate = new Vector3f();
110 Transform3D transform3d = new Transform3D();
111
112 // get Transform3D associated with objectTransform
113 objectTransform.getTransform(transform3d);
114
115 // get Transform3D's translation vector
116 transform3d.get(translate);
117
118 // handle all key presses in awtEvents
119 for (int x = 0; x < awtEvents.length; x++) {
120
121 // handle if AWTEvent is KeyEvent
122 if (awtEvents[x] instanceof KeyEvent) {
123 KeyEvent keyEvent = (KeyEvent) awtEvents[x];
124
125 // handle if KeyEvent.KEY_PRESSED
126 if (keyEvent.getID() == KeyEvent.KEY_PRESSED) {
127
128 // if object position == goal coordinates
129 if (atGoal(translate)) {
130 Transform3D shiftBack = new Transform3D();
131
132 // set translation to 8.0 on +z-axis
133 shiftBack.setTranslation(
134 new Vector3f(0.0f, 0.0f, 8.0f));
135
136 // set Transform3D that determines view
137 // in SimpleUniverse
138 ViewingPlatform viewPlatform =
139 simpleUniverse.getViewingPlatform();
140
141 TransformGroup platformTransform =
142 viewPlatform.getViewPlatformTransform();

Fig. 4.27Fig. 4.27Fig. 4.27Fig. 4.27 Implementing a position-checking Behavior (part 3 of 5).

208 Graphics Programming with Java 2D and Java 3D Chapter 4

143
144 platformTransform.setTransform(shiftBack);
145
146 // render winner scene in SimpleUniverse
147 switchScene.setWhichChild(WINNER_SCENE);
148 }
149 }
150
151 } // end if KeyEvent
152
153 } // end for loop that handles key presses
154
155 } // end method checkPosition
156
157 // helper method returns true if current position is within
158 // goal boundry
159 private boolean atGoal(Vector3f currentPosition)
160 {
161 // calculate difference between current location and goal
162 float x = Math.abs(currentPosition.x - goalX);
163 float y = Math.abs(currentPosition.y - goalY);
164 float z = Math.abs(currentPosition.z - goalZ);
165
166 // return true if current position within sphereRadius of
167 // goal coordinates
168 return ((x < sphereRadius) && (y < sphereRadius) &&
169 (z < sphereRadius));
170 }
171 }

Fig. 4.27Fig. 4.27Fig. 4.27Fig. 4.27 Implementing a position-checking Behavior (part 4 of 5).

Chapter 4 Graphics Programming with Java 2D and Java 3D 209

The constructor method (lines 40–68) takes five arguments. The first three arguments
are the SimpleUniverse, TransformGroup and Switch. The fourth argument is a
Vector3f that contains the target shape’s location. Lines 49–51 set the target-point coor-
dinates by extracting the x, y and z coordinates from the Vector3f. The final argument is
the target-sphere radius. Lines 58–59 create a WakeupOnAWTEvent that responds when
the user presses a key. GoalDetector then checks the user-navigated shape’s position
to see if that shape has reached the target sphere. Line 62 creates a WakeupCriterion
from the WakeupOnAWTEvent, and line 66 creates a WakeupOr from the Wake-
upCriterion. Method initialize (lines 71–75) registers the WakeupOr with the
behavior scheduler by calling method wakeupOn of superclass Behavior.

Method processStimulus (lines 78–104) handles the logic for the triggered
Behavior. This method takes as an argument an Enumeration of the WakeupCri-
terions that generated the behavioral event. Lines 84–85 retrieve each
WakeupCriterion from the Enumeration. If the WakeupCriterion is a Wake-
upOnAWTEvent, line 93 invokes method getAWTEvent of class WakeupOn-
AWTEvent, which returns the array of the AWTEvents that triggered the Behavior.
Line 96 passes this array to method checkPostion (lines 107–155), which implements
the position-checking algorithm.

Method checkPosition (lines 107–155) checks the position of the 3D shape. This
method determines the 3D shape’s position by checking the Vector3f, which represents
that shape’s translational component. Line 113 calls method getTransform of class
TransformGroup to retrieve the Transform3D associated with the Transform-
Group. Line 116 calls method get of class Transform3D, which retrieves the
Vector3f that represents the translational component of the 3D shape. Lines 119–126
check if each AWTEvent in the array is a KeyEvent.KEY_PRESSED event—line 129
then calls method atGoal, which returns a boolean variable that represents whether the

Fig. 4.27Fig. 4.27Fig. 4.27Fig. 4.27 Implementing a position-checking Behavior (part 5 of 5).

210 Graphics Programming with Java 2D and Java 3D Chapter 4

user-navigated shape has reached the target shape. Method atGoal (lines 159–170) takes
as an argument the Vector3f that contains the coordinates of the user-navigated shape’s
current position. Lines 162–164 determine the absolute difference between the target
shape’s coordinates (goalX, goalY and goalZ) and the user-navigated shape’s current
coordinates. Lines 168–169 return true if the absolute difference for each coordinate is
within the sphereRadius, indicating that the shape has reached the target sphere. If
method atGoal returns true, the user has won the game. Lines 130–144 set the transla-
tion component of the ViewPlatform’s Transform3D; the camera shifts back to
expand the view. Line 147 switches to the winning scene: rotating 3D text that reads “You
Win.” Line 147 invokes method setWhichChild of class Switch passing as an argu-
ment the index of the winning scene. Figure 4.27 illustrates the game both immediately
before and after the navigable object has reached the target shape.

User Interface
Using the ControlPanel1 (Fig. 4.21), the user can specify the number of flying obstacles
to control the game difficulty. Line 23 declares the JSlider that the player uses to specify
the number of obstacles. Line 24 declares a Java3DWorld1 reference through which
ControlPanel1 can set the user-specified number. The ControlPanel1 constructor
(lines 27–75) accepts as an argument a Java3DWorld1—line 29 sets this argument as
ControlPanel1’s Java3DWorld1 reference. Lines 44–50 create a JSlider that as-
sumes any integer value from 1 to 20, inclusive. Lines 53–62 create a ChangeListener
for the JSlider. When the player uses this JSlider, method stateChanged (lines 56–
60) passes the number of obstacles to method switchScene of Java3DWorld1. The dis-
play then reveals a new scene with the specified number of obstacles.

1 // ControlPanel1.java
2 // ControlPanel1 is a JPanel that contains Swing controls
3 // for manipulating a Java3DWorld1.
4 package com.deitel.advjhtp1.java3dgame;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9

10 // Java extension packages
11 import javax.swing.*;
12 import javax.swing.border.*;
13 import javax.swing.event.*;
14
15 public class ControlPanel1 extends JPanel {
16
17 private static final int CONTAINER_WIDTH = 250;
18 private static final int CONTAINER_HEIGHT = 150;
19
20 private static final int NUMBER_OF_SHAPES = 20;
21
22 // JSliders control lighting color
23 private JSlider numberSlider;

Fig. 4.28Fig. 4.28Fig. 4.28Fig. 4.28 Implementing Swing controls for the Java3DWorld1 (part 1 of 3).

Chapter 4 Graphics Programming with Java 2D and Java 3D 211

24 private Java3DWorld1 java3DWorld1;
25
26 // ControlPanel constructor
27 public ControlPanel1(Java3DWorld1 tempJ3DWorld)
28 {
29 java3DWorld1 = tempJ3DWorld;
30
31 // assemble lighting color control panel
32 JPanel colorPanel = new JPanel(
33 new FlowLayout(FlowLayout.LEFT, 15, 15));
34
35 TitledBorder colorBorder =
36 new TitledBorder("How Many Shapes?");
37
38 colorBorder.setTitleJustification(TitledBorder.CENTER);
39 colorPanel.setBorder(colorBorder);
40
41 JLabel numberLabel = new JLabel("Number of Shapes");
42
43 // create JSlider for adjusting number of flying shapes
44 numberSlider = new JSlider(
45 SwingConstants.HORIZONTAL, 1, NUMBER_OF_SHAPES, 1);
46
47 numberSlider.setMajorTickSpacing(4);
48 numberSlider.setPaintTicks(true);
49 numberSlider.setPaintTrack(true);
50 numberSlider.setPaintLabels(true);
51
52 // create ChangeListener for JSliders
53 ChangeListener slideListener = new ChangeListener() {
54
55 // invoked when slider has been accessed
56 public void stateChanged(ChangeEvent event)
57 {
58 java3DWorld1.switchScene(numberSlider.getValue(),
59 NUMBER_OF_SHAPES);
60 }
61
62 }; // end anonymous inner class
63
64 // add listener to sliders
65 numberSlider.addChangeListener(slideListener);
66
67 // add lighting color control components to colorPanel
68 colorPanel.add(numberLabel);
69 colorPanel.add(numberSlider);
70 add(colorPanel);
71
72 // set GridLayout
73 setLayout(new GridLayout(2, 1, 0, 20));
74
75 } // end ControlPanel1 constructor method
76

Fig. 4.28Fig. 4.28Fig. 4.28Fig. 4.28 Implementing Swing controls for the Java3DWorld1 (part 2 of 3).

212 Graphics Programming with Java 2D and Java 3D Chapter 4

 This concludes our discussion of the Java 3D API. In this section, we presented a brief
overview of Java 3D graphics programming. We have explained how the performance,
scalability and simplicity of Java 3D make it an excellent choice for developers to incorpo-
rate 3D graphics into applications. We presented two applications that demonstrated Java
3D geometry, textures, lighting and behaviors.

We have discussed several of Java’s graphics capabilities. We began with a brief intro-
duction to fundamental graphics topics, including coordinate systems and graphics con-
texts. We then discussed several Java 2D capabilities, such as controlling how to fill shapes
with colors and patterns. We also introduced how to blur, invert, sharpen and change the
color of an image using Java 2D’s image-processing capabilities. The second half of our
graphics discussion presented the Java 3D API. Using the Java 3D utility classes, we built
an application that allows the user to change properties of a Java 3D scene, including
manipulating (rotate, scale and translate) 3D objects with a mouse and changing a scene’s
lighting. In Chapter 5, we use Java 2D in the Deitel drawing application. We also introduce
design patterns—proven strategies for creating reusable and extensible software—and use
them to build this program.

SUMMARY
• A coordinate system is a scheme for identifying every point on the screen.

• The upper-left corner of a GUI component has the coordinates (0, 0).

• A graphics context enables drawing on the screen. A Graphics object manages a graphics con-
text by controlling how information is drawn.

• Graphics objects contain methods for drawing, font manipulation, color manipulation, etc.

• Method paint is called in response to an event such as uncovering a window.

• Method repaint requests a call to method update of class Component as soon as possible
to clear the Component’s background of any previous drawing. Method update then calls
paint directly.

• The Swing painting mechanism calls method paintComponent of class JComponent when
the contents of the JComponent should be painted.

• The Java 2D provides advanced two-dimensional graphics capabilities for processing line art, text
and images.

• Class java.awt.Graphics2D enables drawing with the Java 2D API.

77 // return preferred dimensions of container
78 public Dimension getPreferredSize()
79 {
80 return new Dimension(CONTAINER_WIDTH, CONTAINER_HEIGHT);
81 }
82
83 // return minimum size of container
84 public Dimension getMinimumSize()
85 {
86 return getPreferredSize();
87 }
88 }

Fig. 4.28Fig. 4.28Fig. 4.28Fig. 4.28 Implementing Swing controls for the Java3DWorld1 (part 3 of 3).

Chapter 4 Graphics Programming with Java 2D and Java 3D 213

• To access the Graphics2D capabilities, we cast the Graphics reference passed to paint to
a Graphics2D reference.

• There are seven Graphics2D attributes that determine how graphics primitives are rendered—
clipping, compositing, font, paint, rendering hints, stroke and transforms.

• Method setPaint of class Graphics2D sets the Paint object that determines the color for
the shape to display. A Paint object is an object of any class that implements interface ja-
va.awt.Paint. The Paint object can be a Color or an instance of the Java 2D API’s Gra-
dientPaint, SystemColor or TexturePaint classes.

• Class GradientPaint paints a shape in gradually changing colors—known as a gradient.

• Method fill of class Graphics2D draws a filled Shape object. The Shape object is an in-
stance of any class that implements interface Shape.

• A general path is a shape constructed from lines and complex curves represented with an object of
class GeneralPath (package java.awt.geom).

• Method moveTo of class GeneralPath specifies the first point in a general path. Method
lineTo of class GeneralPath draws a line to the next point in the general path. Each new call
to lineTo draws a line from the previous point to the current point. Method closePath of class
GeneralPath draws a line from the last point to the point specified in the last call to moveTo.

• Method translate of class Graphics2D moves the drawing to a new location. All drawing
operations now use that location as (0, 0).

• Image processing is the manipulation of digital images by applying filters.

• There are three main types of image-processing filters. Compression filters reduce a digital im-
age’s memory usage. Measurement filters collect data from digital images. Enhancement filters
appropriate and interpolate missing parts of corrupted images from the existing information.

• A BufferedImage separates image data into a Raster and a ColorModel. A Raster or-
ganizes and stores the numerical data that determine a pixel’s color. The ColorModel is an in-
terpreter that takes the sample values in the Raster and converts them to different colors
depending on color scale the image.

• Java 2D image-processing filters operate on objects of class BufferedImage.

• Interfaces BufferedImageOp and RasterOp serve as the base classes for Java 2D image fil-
ters. A BufferedImageOp processes a BufferedImage, while a RasterOp only process-
es the Raster associated with a BufferedImage.

• Method filter takes as arguments a source image and a destination image. The source image is
filtered to produce the destination image.

• A LookupOp is an array indexed by source pixel color values that contains destination pixel color
values.

• A sharpening filter detects edges by looking for differences in neighboring pixel sample values
and enhances the edge by enlarging the difference between the sample values and is created with
a ConvolveOp.

• A ConvolveOp combines the colors of a source pixel and its surrounding neighbors to determine
the color of the corresponding destination pixel.

• A Kernel is a 2D array that specifies how a ConvolveOp filter should combine neighboring
pixel values.

• Edge hints instruct the filter on how to alter pixels at the perimeter of the image. EDGE_NO_OP
instructs the filter to copy the pixels at the source perimeter directly to the destination image with-
out modification. EDGE_ZERO_FILL instructs the filter to fill the pixels at the perimeter of the
destination with the value 0.

214 Graphics Programming with Java 2D and Java 3D Chapter 4

• A blurring filter averages each pixel value with that of its eight neighboring pixels, smoothing dis-
tinct edges and is created using a ConvolveOp.

• Each color band in a TYPE_INT_RGB BufferedImage is defined by three coefficients that
represent the R, G and B components in the band.

• We can change the colors in an image by altering the values of the R, G and B coefficients in a color
band using a BandCombineOp. A BandCombineOp operates on the color bands of a Raster.

• The Java 3D API requires that you have either OpenGL or Direct3D installed on your computer.
The Java 3D API also requires you to install the appropriate Java extension and utility packages
found at java.sun.com/products/java-media/3D/download.html.

• The root node of the Java 3D scene is a VirtualUniverse that has a coordinate-system, which
describes the location of scene graphs.

• A scene graph is a tree-like structure that contains nodes, which describe all attributes of the 3D
environment. Each scene graph attaches to the VirtualUniverse at a specified point in the
VirtualUniverse’s coordinate-system.

• Class Locale is the root node in a scene graph, which contains the attachment coordinate for the
VirtualUniverse and a number of branch graphs.

• There are two types of branch graphs—content-branch graphs and view-branch graphs. View-
branch graphs contain collections of objects that specify the perspective, position, orientation and
scale of 3D scenes. Content-branch graphs describe the geometry, lighting, textures, fog, sound
and behaviors in the 3D scenes.

• Class SceneGraphObject is the base class for all objects in a Java 3D branch graph.
SceneGraphObject has two subclasses—Node and NodeComponent.

• Class Group serves as the general-purpose grouping Node.

• Leaf subclasses include Behavior, Light and Shape3D.

• NodeComponent objects describe the attributes of Groups and Leafs.

• Canvas3D is a Canvas subclass that supports 3D rendering.

• Class SimpleUniverse encapsulates all objects in the virtual universe and viewing platform.

• Class BranchGroup is the root node of a scene graph.

• Class TransformGroup specifies transformations including rotation, scaling and translation.

• To modify an object in a scene in run time, the developer must set that object’s capability bits using
method setCapability.

• All content Leafs in Java 3D are bounded by a volume that defines the space in which the Leafs
are rendered.

• Class Appearance describes the attributes of the 3D geometry and has associated attribute ob-
jects, such as Material and Texture.

• Class Material defines the properties of any object that falls under illumination.

• Class com.sun.j3d.utils.image.TextureLoader loads an Image for texturing ge-
ometry.

• Class AmbientLight is a light source that illuminates all shapes evenly within its bounds.

• Class DirectionalLight is a light source that travels from a source point to a destination point.

• When a Light source is added to a Group, all objects in that Group are illuminated.

• The MouseBehavior classes in utility package com.sun.j3d.utils.behav-
ior.mouse help developers integrate mouse interaction into applications.

• Classes MouseRotate, MouseTranslate and MouseZoom allow the user to use a mouse to
rotate, translate and scale a 3D shape, respectively.

Chapter 4 Graphics Programming with Java 2D and Java 3D 215

• Method compile of class BranchGroup causes the BranchGroup and all its children to be
compiled.

• A Switch group specifies which of its children to render. A Switch can render either one child
at a time or several children at once.

• Interpolators use Alphas to specify certain characteristics of animation, such as the speed
of transformations (e.g., rotation speed), or how fast a shape changes color (e.g., lighting effects).

• Interpolators operates in conjunction with a TransformGroup: each Transform-
Group has an associated Interpolator. The Interpolator describes how to animate
shapes in the TransformGroup.

• An Alpha object generates the time values to the Interpolator. Alpha objects consist of a
series of phases that can be either increasing or decreasing.

• Class Transform3D is a two-dimensional array that represents a general transform. Each
Transform3D has an associated integer type that determines the transformation to represent.

• A Material’s ambient color is the Material’s color when illuminated by reflected light. A
Material’s diffuse color is the Material’s color when illuminated by some light source.

• The Java 3D com.sun.j3d.utils.geometry package provides four types of 3D geometric
Primitive objects: Box, Cone, Cylinder and Sphere.

• Class Text3D is a Geometry subclass for representing three-dimensional text.

• A Font3D object is constructed from a java.awt.Font object and a Java 3D FontExtru-
sion object. A FontExtrusion describes process of adding a third dimension to the Font’s
2D text.

• A Point3f specifies x-y-z coordinates in a 3D SimpleUniverse.

• The Java 3D API provides the abstract Behavior class to create a variety of custom behaviors.

• A Behavior object has an associated behavior scheduler responsible for registering wake-up
conditions.

• All classes that extend Behavior must implement methods initialize and process-
Stimulus.

• Collision detection determines when a shape’s bounding volume—the volume enclosing either a
shape or the bounds of a shape—intersects another.

• A collision occurs when an armed node’s bounding volume intersects a triggering node’s bound-
ing volume.

• When a WakeupCondition is satisfied, the behavior scheduler calls method process-
Stimulus, passing as an argument an Enumeration of the WakeupCriterions that trig-
gered the event.

TERMINOLOGY
addChild method bounding volume
alpha values BoundingBox class
AmbientLight class BoundingSphere class
Appearance class Box class
arc angle branch graph
Arc2D.Double class BranchGroup class
BandCombineOp class BufferedImage class
BasicStroke class BufferedImageOp interface
Behavior class ByteLookUpTable class
bounding rectangle Canvas3D class

216 Graphics Programming with Java 2D and Java 3D Chapter 4

capability bits Leaf class
clipping Light class
closePath method line joins
Color3f class Line2D.Double class
compile method lineTo method
collision detection Locale class
Color class LookupOp class
color bands machine vision
color scale Material class
ColorModel class measurement filters
compositing modeled
compression filters morphing
ConvolveOp class MouseBehavior class
coordinate system MouseRotate class
Component class MouseZoom class
DataBuffer class MouseTranslate class
Direct3D moveTo method
DirectionalLight class Node class
draw method NodeComponent class
drawImage method OpenGL
drawRect method optimization
drawString method Paint interface
edges paint method
Ellipse2D.Double class paintComponent method
enhancement filter pixel
event-driven process polygon
fill method Raster class
fillRect method RasterFormatException class
filter method rasterize
fog RasterOp interface
Font class Rectangle2D.Double class
GeneralPath class render
geometry rendering engine
getColorModel method rendering hints
getPreferredConfiguration method rendering pipeline
getRaster method RenderingHints class
getViewingPlatform method repaint method
gradient RGB value
GradientPaint class rotate
Graphics class RoundRectangle2D.Double class
graphics context sample
graphics primitives SampleModel class
Graphics2D class scene
grayscale scene graph
Group class SceneGraphObject class
image processing setColor method
Java 2D API setCapability method
Java 3D API setEnable method
JComponent class setInfluencingBounds method
Kernel class setMaterial method

Chapter 4 Graphics Programming with Java 2D and Java 3D 217

SELF-REVIEW EXERCISES
4.1 Fill in the blanks in each of the following statements:

a) In Java 2D, class defines the fill for a shape such that the fill gradually
changes from one color to another.

b) In Java 2D, an image-processing filter that operates on both a pixel and its neighboring
pixels is implemented using class .

c) Class stores pixel sample data in a BufferedImage, while class
 contains instructions for translating the pixel sample to a color.

d) Rotation, scaling and translation are all examples of .
e) Method of class DirectionalLight sets a flag that alerts the compiler

that the DirectionalLight’s attributes should be writable during execution.
f) In Java 3D, class contains NodeComponents that describe the attributes

of a shape, including Material and Texture.

4.2 State whether each of the following is true or false. If false, explain why.
a) The LookupOp constructor takes as arguments a Kernel and a RenderingHints

object.
b) Method closePath of class GeneralPath to draw a line from the last point to the

point specified in the first call to moveTo.
c) The source and destination Raster arguments to the BandCombineOp constructor

can be the same Rasters.
d) In Java 3D, Behaviors do not affect objects outside the Behavior's bounding volume.
e) Class SimpleUniverse creates a Java 3D scene that contains a VirtualUni-

verse, Locale and view branch graph.
f) All children in a BranchGroup will be affected behaviors defined in Transform-

Group objects that are part of that BranchGroup.

ANSWERS TO SELF-REVIEW EXERCISES
4.1 a) GradientPaint. b) ConvolveOp. c) DataBuffer, ColorModel.
d) transformations. e) setCapability. f) Appearance.

4.2 a) False. The arguments to the LookupOp constructor are a LookupTable that contains
the color sample lookup array and a RenderingHints object. b) False. Method closePath draws a
line from the last point to the point specified in the last call to moveTo. c) True. d) True. e) True.
f) False. Only those Nodes that are children of the TransformGroup will be affected by the
TransformGroup’s behavior. Any Nodes outside the TransformGroup are not affected by the
TransformGroup’s behavior.

setNominalViewingTransform method TextureLoader class
setPaint method TexturePaint class
setStroke method TransformGroup class
setTransformGroup method transforms
Shape interface translate
SimpleUniverse class update method
Stroke interface viewing distance
SystemColor class ViewingPlatform class
Texture class VirtualUniverse class
texture mapping WriteableRaster class

218 Graphics Programming with Java 2D and Java 3D Chapter 4

EXERCISES
4.3 Write a program that draws a pyramid. Use class GeneralPath and method draw of class
Graphics2D.

4.4 Write a program that draws a series of eight concentric circles that are separated by 10 pixels
using class Ellipse2D.Double. The outer seven circles should be filled with randomly generated
solid colors. The innermost circle should be filled with a gradient. Use method draw of class
Graphics2D.

4.5 Modify the image-processing program presented in this chapter to include an
Java2DImageFilter that removes the green color band from a BufferedImage. Add this op-
tion to the menu created in Fig. 4.13.

4.6 Modify the program of Fig. 4.15 and Fig. 4.21 so that the set of JSlider controls affect the
direction of the DirectionalLight source as opposed to the color. Use method setDirec-
tion of class DirectionalLight.

4.7 For the program of Fig. 4.23, create a Behavior that temporarily “shields” the user-navi-
gated sphere from a collision with an obstacle. When the user presses the space-bar, the user-navigat-
ed sphere turns blue to indicate that it is “shielded”—the sphere is “invincible” and should not collide
with any obstacles for three seconds (i.e., during this time, the sphere can pass through obstacles with-
out the “You Lose” screen appearing). The user can use the “shield” feature three times per game—
after that, pressing the space-bar has no effect. When the shield “wears off,” the user-navigated shape
should turn red to indicate that it can collide with obstacles.

5
Case Study: Java 2D

GUI Application with
Design Patterns

Objectives
• To understand the model-view-controller architecture

in a GUI application.
• To understand drag-and-drop techniques for

transferring data in and among applications
• To understand the Factory Method design pattern for

creating objects based on runtime criteria.
• To understand the integration of multiple Java

technologies to build applications.
• To understand the use of multiple design patterns in a

single application.
• To understand the implementation of multiple-

document-interface applications.
All my life I have struggled to make one authentic gesture.
Isadora Duncan

Whatever is in any way beautiful has its source of beauty in
itself, and is complete in itself; praise forms no part of it.
Marcus Aurelius Antoninus

The source of genius is imagination alone, …the refinement
of the senses that sees what others do not see, or sees them
differently.
Eugene Delacroix

That is a transformation in which imagination collaborates
with memory.
Edgar Degas

220 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

5.1 Introduction
In this chapter, we implement a Java application case study as a capstone for the many Java
features and techniques presented in previous chapters, including Swing GUI components
and Java 2D graphics. This case study is a substantial application with almost 4,000 lines
of code, so we use several design patterns to facilitate proper object-oriented design and
extensibility. These design patterns include some we introduced in previous chapters (e.g.,
the Command design pattern and the MVC architecture), and some that we introduce in this
case study.

5.2 Application Overview
The Deitel Drawing application is a painting program that enables users to create drawings
that contain lines, shapes, text and images. Deitel Drawing includes the following features:

1. Colors, filled shapes and gradients

2. Multiple-document interface

3. Drag-and-drop support for moving shapes between drawings

4. Drag-and-drop support for JPEG images

5. Saving drawings as XML documents

6. Scaling drawings to different sizes and aspect ratios

7. Multiple drawing tools (controllers)

8. Modifying shape properties such as line width, fill and gradient

Deitel Drawing uses the model-view-controller architecture to make the application
modular and extensible. The model consists of a collection of objects that extend abstract

Outline

5.1 Introduction
5.2 Application Overview
5.3 MyShape Class Hierarchy
5.4 Deitel DrawingModel
5.5 Deitel Drawing Views
5.6 Deitel Drawing Controller Logic

5.6.1 MyShapeControllers for Processing User Input
5.6.2 MyShapeControllers and Factory Method Design Pattern
5.6.3 Drag-and-Drop Controller

5.7 DrawingInternalFrame Component
5.8 ZoomDialog, Action and Icon Components
5.9 DeitelDrawing Application

Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 221

base class MyShape. Using polymorphism, views create graphical presentations of the
MyShape collections. Multiple controllers handle input for drawing MyShape subclasses
and for processing drag-and-drop operations.

Deitel Drawing uses the Java2D graphics APIs to create high-quality graphical presen-
tations of drawing models. Lines, shapes and fonts are drawn using anti-aliasing to smooth
jagged edges. Deitel Drawing takes advantage of Java 2D’s GradientPaint class to
draw shapes using multicolor gradients. Java 2D also provides transformation capabilities
that enable the application to display scaled views of drawings. Using Java’s event-han-
dling mechanism, Deitel Drawing allows users to scale drawings dynamically by resizing
a ZoomDialog window. The model-view-controller architecture ensures that each view
is consistent with the drawing stored in the model. As a user draws new shapes, those
shapes are immediately shown in each view.

Enabling drag-and-drop functionality in applications is nontrivial. The Deitel Drawing
application uses Java’s sophisticated drag-and-drop API to implement drag-and-drop func-
tionality that allows users to move objects between drawings easily. Users also can drag
and drop JPEG images from other applications (such as the host operating system’s file
manager) into drawings. Once the JPEG image is part of the drawing, the user can drag and
drop the image between drawings just as with other shapes.

Figure 5.1 shows the Deitel Drawing application with a sample drawing. The shapes
in this drawing were generated randomly by the solution to Exercise 5.8. Figure 5.2 shows
the same drawing scaled to approximately twice the original size in a ZoomDialog.

5.3 MyShape Class Hierarchy
Deitel Drawing represents each shape in a drawing as a separate object that extends class
MyShape. MyShape is an abstract base class that defines the basic interface for
shapes and default implementations for methods common to all shapes.

Class MyShape (Fig. 5.3) is the root of the shape-class hierarchy. Implementing inter-
face Serializable enables the Deitel Drawing application to serialize MyShape
objects to disk, so drawings can be saved.

Lines 17–24 define several properties common to all MyShapes, such as the x- and
y-coordinates and the MyShape’s colors. Some MyShapes can be filled (e.g., a
filled square) or drawn with a gradient (lines 20–21). Line 22 declares property
strokeSize, which specifies the thickness of the shape’s lines. Methods getLeftX
(lines 26–29) and getLeftY (lines 32–35) return the x- and y-coordinates of the
MyShape’s left-most point. Methods getRightX (lines 38–41) and getRightY
(lines 44–47) return the x- and y-coordinates of the MyShape’s right-most point.
Methods getWidth (lines 50–53) and getHeight (lines 56–59) return the
MyShape’s width and height as calculated from the shape’s coordinates. Methods
setPoint1 (lines 62–66) and setPoint2 (lines 69–73) modify the shape’s x- and y-
coordinates. Methods setStartPoint (lines 76–80) and setEndPoint (lines 83–
87) set the points at which drawing began and drawing ended. The MyShape uses the
start and end points to determine how to draw its gradient. Lines 90–136 provide get
methods for each individual x- and y-coordinate. Method moveByOffSet (lines 139–
145) moves the MyShape by the given x and y offset values.

222 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

Lines 148–181 provide set and get methods for each of the MyShape’s colors.
MyShapes can be drawn either in their primary color (startColor) or with a gradient
that starts with startColor and ends with endColor. Lines 184–193 provide set and
get methods for the useGradient property, which, if true, draws the shape using a
color gradient.

Lines 196–206 provide set and get methods for property strokeSize. The Java2D
API uses strokes to draw objects on a graphics context. The strokeSize property deter-
mines the thickness of the line that strokes the shape. Lines 209–218 provide set and get
methods for property filled, which specifies whether the shape should be filled or drawn
as an outline.

Line 222 declares abstract method draw, which takes as a Graphics2D argument
the graphics context on which to draw the shape. Method draw is abstract because a
generic MyShape object cannot be drawn; only specific subclasses of class MyShape (e.g.,
MyOval) can be drawn. Method contains (line 225) returns true if the given Point2D
falls within the MyShape’s area. Method contains also is declared abstract to require
each subclass to define an appropriate implementation. The drag-and-drop implementation in
this example uses method contains when beginning a drag operation.

Method configureGraphicsContext (lines 228–247) configures the given
Graphics2D object for drawing this MyShape. If there does not exist a Stroke for
drawing the shape, line 233 creates a BasicStroke object using MyShape’s stroke-
Size property. Line 234 sets the Graphics2D object’s stroke property. If the gra-
dient property is true, lines 239–242 create a GradientPaint object that begins with
startColor and ends with endColor. The gradient extends from the point (startX,
startY) to the point (endX, endY). If the gradient property is false, line 246 invokes
method setPaint of class Graphics2D to use the MyShape’s default Color.

Method getXML (lines 250–337) produces an XML representation of a MyShape
object. Method getXML uses the Document argument only to create Elements—
method getXML does not modify this Document. Line 252 creates a shape Element.
Lines 255–293 create Elements for the x- and y-coordinates and add them as children of
Element shape. Lines 296–299 create a useGradient Element, and lines 302–321
create Elements for each MyShape color. Lines 324–327 create Element stroke-
Size and lines 330–333 create Element fill. Line 336 returns the newly created
shape Element to the caller.

Class MyLine (Fig. 5.4) is a MyShape subclass that represents a line in the drawing.
Lines 15–26 implement method draw, which was declared abstract in class
MyShape. Line 18 invokes method configureGraphicsContext to configure the
given Graphics2D object with the MyLine object’s color, strokeSize and other
properties. Lines 21–22 create a Java2D Line2D.Float object for the MyLine object’s
x- and y-coordinates. Class Line2D.Float represents a line using floats for its x- and
y-coordinates. Line 25 invokes method draw of class Graphics2D to draw the line on
the Graphics2D context.

Method contains (lines 29–32) calculates the line’s slope to determine if the given
Point2D is on the line. Method getXML (lines 49–55) invokes method getXML of class
MyShape (line 37) to get the default shape Element. Line 38 sets Attribute type
of Element shape to the value MyLine to indicate that this MyShape object is an
instance of class MyLine.

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 223

Fig. 5.1Fig. 5.1Fig. 5.1Fig. 5.1 Deitel Drawing application showing randomly drawn shapes
(Exercise 5.8) and a ZoomDrawingView (Fig. 5.13).

Fig. 5.2Fig. 5.2Fig. 5.2Fig. 5.2 Large-scale view of drawing from Fig. 5.1.

DrawingInternalFrames
in multiple-document interface.

ZoomDialog showing
scaled drawing.

MyRectangle
filled with gradient.

MyOval drawn
with gradient.

JToolBar with
Actions for modifying
MyShape properties.

MyLine drawn
with gradient.

Title showing file name to
which drawing was saved.

224 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

1 // MyShape.java
2 // MyShape is an abstract base class that represents a shape
3 // to be drawn in the DeitelDrawing application.
4 package com.deitel.advjhtp1.drawing.model.shapes;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.geom.Point2D;
9

10 // third-party packages
11 import org.w3c.dom.*;
12
13 public abstract class MyShape {
14
15 // MyShape properties (coordinates, colors, etc.)
16 private int x1, y1, x2, y2;
17 private int startX, startY, endX, endY;
18 private Color startColor = Color.black;
19 private Color endColor = Color.white;
20 private boolean filled = false;
21 private boolean gradient = false;
22 private float strokeSize = 1.0f;
23 private Stroke currentStroke;
24
25 // get x coordinate of left corner
26 public int getLeftX()
27 {
28 return x1;
29 }
30
31 // get y coordinate of left corner
32 public int getLeftY()
33 {
34 return y1;
35 }
36
37 // get x coordinate of right corner
38 public int getRightX()
39 {
40 return x2;
41 }
42
43 // get y coordinate of right corner
44 public int getRightY()
45 {
46 return y2;
47 }
48
49 // get MyShape width
50 public int getWidth()
51 {
52 return Math.abs(getX1() - getX2());
53 }

Fig. 5.3Fig. 5.3Fig. 5.3Fig. 5.3 MyShape abstract base class for drawing objects (part 1 of 7).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 225

54
55 // get MyShape height
56 public int getHeight()
57 {
58 return Math.abs(getY1() - getY2());
59 }
60
61 // set Point1's x and y coordinates
62 public void setPoint1(int x, int y)
63 {
64 x1 = x;
65 y1 = y;
66 }
67
68 // set Point2's x and y coordinates
69 public final void setPoint2(int x, int y)
70 {
71 x2 = x;
72 y2 = y;
73 }
74
75 // set start Point's x and y coordinates
76 public final void setStartPoint(int x, int y)
77 {
78 startX = x;
79 startY = y;
80 }
81
82 // set end Point's x and y coordinates
83 public final void setEndPoint(int x, int y)
84 {
85 endX = x;
86 endY = y;
87 }
88
89 // get x1 coordinate
90 public final int getX1()
91 {
92 return x1;
93 }
94
95 // get x2 coordinate
96 public final int getX2()
97 {
98 return x2;
99 }
100
101 // get y1 coordinate
102 public final int getY1()
103 {
104 return y1;
105 }
106

Fig. 5.3Fig. 5.3Fig. 5.3Fig. 5.3 MyShape abstract base class for drawing objects (part 2 of 7).

226 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

107 // get y2 coordinate
108 public final int getY2()
109 {
110 return y2;
111 }
112
113
114 // get startX coordinate
115 public final int getStartX()
116 {
117 return startX;
118 }
119
120 // get startY coordinate
121 public final int getStartY()
122 {
123 return startY;
124 }
125
126 // get endX coordinate
127 public final int getEndX()
128 {
129 return endX;
130 }
131
132 // get endY coordinate
133 public final int getEndY()
134 {
135 return endY;
136 }
137
138 // move MyShape by given offset
139 public void moveByOffSet(int x, int y)
140 {
141 setPoint1(getX1() + x, getY1() + y);
142 setPoint2(getX2() + x, getY2() + y);
143 setStartPoint(getStartX() + x, getStartY() + y);
144 setEndPoint(getEndX() + x, getEndY() + y);
145 }
146
147 // set default drawing color
148 public void setColor(Color color)
149 {
150 setStartColor(color);
151 }
152
153 // get default drawing color
154 public Color getColor()
155 {
156 return getStartColor();
157 }
158
159 // set primary drawing color

Fig. 5.3Fig. 5.3Fig. 5.3Fig. 5.3 MyShape abstract base class for drawing objects (part 3 of 7).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 227

160 public void setStartColor(Color color)
161 {
162 startColor = color;
163 }
164
165 // get primary drawing color
166 public Color getStartColor()
167 {
168 return startColor;
169 }
170
171 // set secondary drawing color (for gradients)
172 public void setEndColor(Color color)
173 {
174 endColor = color;
175 }
176
177 // get secondary drawing color
178 public Color getEndColor()
179 {
180 return endColor;
181 }
182
183 // enable/disable gradient drawing
184 public void setUseGradient(boolean useGradient)
185 {
186 gradient = useGradient;
187 }
188
189 // get gradient enabled/disabled property
190 public boolean useGradient()
191 {
192 return gradient;
193 }
194
195 // set stroke size
196 public void setStrokeSize(float size)
197 {
198 strokeSize = size;
199 currentStroke = new BasicStroke(strokeSize);
200 }
201
202 // get stroke size
203 public float getStrokeSize()
204 {
205 return strokeSize;
206 }
207
208 // set filled property
209 public void setFilled (boolean fill)
210 {
211 filled = fill;
212 }

Fig. 5.3Fig. 5.3Fig. 5.3Fig. 5.3 MyShape abstract base class for drawing objects (part 4 of 7).

228 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

213
214 // get filled property
215 public boolean isFilled()
216 {
217 return filled;
218 }
219
220 // abstract draw method to be implemented by subclasses
221 // to draw actual shapes
222 public abstract void draw(Graphics2D g2D);
223
224 // return true if the Point2D falls within this shape
225 public abstract boolean contains(Point2D point);
226
227 // configure Graphics2D context for known drawing properties
228 protected void configureGraphicsContext(Graphics2D g2D)
229 {
230 // set Stroke for drawing shape
231 if (currentStroke == null)
232 currentStroke = new BasicStroke(getStrokeSize());
233
234 g2D.setStroke(currentStroke);
235
236 // if gradient selected, create new GradientPaint starting
237 // at x1, y1 with color1 and ending at x2, y2 with color2
238 if (useGradient())
239 g2D.setPaint (new GradientPaint(
240 (int) getStartX(), (int) getStartY(),
241 getStartColor(), (int) getEndX(), (int) getEndY(),
242 getEndColor()));
243
244 // if no gradient selected, use primary color
245 else
246 g2D.setPaint(getColor());
247 }
248
249 // get MyShape XML representation
250 public Element getXML(Document document)
251 {
252 Element shapeElement = document.createElement("shape");
253
254 // create Elements for x and y coordinates
255 Element temp = document.createElement("x1");
256 temp.appendChild(document.createTextNode(
257 String.valueOf(getX1())));
258 shapeElement.appendChild(temp);
259
260 temp = document.createElement("y1");
261 temp.appendChild(document.createTextNode(
262 String.valueOf(getY1())));
263 shapeElement.appendChild(temp);
264
265 temp = document.createElement("x2");

Fig. 5.3Fig. 5.3Fig. 5.3Fig. 5.3 MyShape abstract base class for drawing objects (part 5 of 7).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 229

266 temp.appendChild(document.createTextNode(
267 String.valueOf(getX2())));
268 shapeElement.appendChild(temp);
269
270 temp = document.createElement("y2");
271 temp.appendChild(document.createTextNode(
272 String.valueOf(getY2())));
273 shapeElement.appendChild(temp);
274
275 temp = document.createElement("startX");
276 temp.appendChild(document.createTextNode(
277 String.valueOf(getStartX())));
278 shapeElement.appendChild(temp);
279
280 temp = document.createElement("startY");
281 temp.appendChild(document.createTextNode(
282 String.valueOf(getStartY())));
283 shapeElement.appendChild(temp);
284
285 temp = document.createElement("endX");
286 temp.appendChild(document.createTextNode(
287 String.valueOf(getEndX())));
288 shapeElement.appendChild(temp);
289
290 temp = document.createElement("endY");
291 temp.appendChild(document.createTextNode(
292 String.valueOf(getEndY())));
293 shapeElement.appendChild(temp);
294
295 // create Element for gradient property
296 temp = document.createElement("useGradient");
297 temp.appendChild(document.createTextNode(
298 String.valueOf(useGradient())));
299 shapeElement.appendChild(temp);
300
301 // create XML element for startColor
302 Color color = getStartColor();
303 temp = document.createElement("startColor");
304 temp.setAttribute("red",
305 String.valueOf(color.getRed()));
306 temp.setAttribute("green",
307 String.valueOf(color.getGreen()));
308 temp.setAttribute("blue",
309 String.valueOf(color.getBlue()));
310 shapeElement.appendChild(temp);
311
312 // create XML element for endColor
313 color = getEndColor();
314 temp = document.createElement("endColor");
315 temp.setAttribute("red",
316 String.valueOf(color.getRed()));
317 temp.setAttribute("green",
318 String.valueOf(color.getGreen()));

Fig. 5.3Fig. 5.3Fig. 5.3Fig. 5.3 MyShape abstract base class for drawing objects (part 6 of 7).

230 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

319 temp.setAttribute("blue",
320 String.valueOf(color.getBlue()));
321 shapeElement.appendChild(temp);
322
323 // add strokeSize element
324 temp = document.createElement("strokeSize");
325 temp.appendChild(document.createTextNode(
326 String.valueOf(getStrokeSize())));
327 shapeElement.appendChild(temp);
328
329 // add fill element
330 temp = document.createElement("fill");
331 temp.appendChild(document.createTextNode(
332 String.valueOf(isFilled())));
333 shapeElement.appendChild(temp);
334
335 return shapeElement;
336
337 } // end method getXML
338 }

1 // MyLine.java
2 // MyLine is a MyShape subclass that represents a line.
3 package com.deitel.advjhtp1.drawing.model.shapes;
4
5 // Java core packages
6 import java.awt.*;
7 import java.awt.geom.*;
8
9 // third-party packages

10 import org.w3c.dom.*;
11
12 public class MyLine extends MyShape {
13
14 // draw MyLine object on given Graphics2D context
15 public void draw(Graphics2D g2D)
16 {
17 // configure Graphics2D (gradient, color, etc.)
18 configureGraphicsContext(g2D);
19
20 // create new Line2D.Float
21 Shape line = new Line2D.Float(getX1(), getY1(), getX2(),
22 getY2());
23
24 // draw shape
25 g2D.draw(line);
26 }
27

Fig. 5.4Fig. 5.4Fig. 5.4Fig. 5.4 MyLine subclass of class MyShape that represents a line (part 1 of 2).

Fig. 5.3Fig. 5.3Fig. 5.3Fig. 5.3 MyShape abstract base class for drawing objects (part 7 of 7).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 231

Class MyRectangle (Fig. 5.5) is a MyShape subclass that represents a rectangle.
Lines 17–31 implement method draw, which takes as a Graphics2D argument the

28 // determine if MyLine contains given Point2D
29 public boolean contains(Point2D point)
30 {
31 // get Point1 and Point2 coordinates
32 float x1 = getX1();
33 float x2 = getX2();
34 float y1 = getY1();
35 float y2 = getY2();
36
37 // determines slope of line
38 float slope = (y2 - y1) / (x2 - x1);
39
40 // determines slope from point argument and Point1
41 float realSlope = (float)
42 ((point.getY() - y1) / (point.getX() - x1));
43
44 // return true if slope and realSlope are close in value
45 return Math.abs(realSlope - slope) < 0.1;
46 }
47
48 // get MyLine XML representation
49 public Element getXML(Document document)
50 {
51 Element shapeElement = super.getXML(document);
52 shapeElement.setAttribute("type", "MyLine");
53
54 return shapeElement;
55 }
56 }

Fig. 5.4Fig. 5.4Fig. 5.4Fig. 5.4 MyLine subclass of class MyShape that represents a line (part 2 of 2).

232 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

graphics context on which to draw the MyRectangle. Line 20 invokes method config-
ureGraphicsContext to set the appropriate strokeSize, color and other drawing
properties. Lines 23–24 create a new Rectangle2D.Float instance. The
Rectangle2D.Float constructor takes as arguments the x- and y-coordinates of the
rectangle’s upper left hand corner and the rectangle’s width and height. If MyRect-
angle’s filled property is set, line 28 draws a filled rectangle by invoking method
fill of class Graphics2D. If MyRectangle’s filled property is false, line 30
invokes method draw of class Graphics2D to draw the rectangle’s outline.

1 // MyRectangle.java
2 // MyRectangle is a MyShape subclass that represents a
3 // rectangle, including an implementation of the draw method
4 // for drawing the rectangle on a Graphics2D context.
5 package com.deitel.advjhtp1.drawing.model.shapes;
6
7 // Java core packages
8 import java.awt.*;
9 import java.awt.geom.*;

10
11 // third-party packages
12 import org.w3c.dom.*;
13
14 public class MyRectangle extends MyShape {
15
16 // draw MyRectangle on given Graphics2D context
17 public void draw(Graphics2D g2D)
18 {
19 // configure Graphics2D (gradient, color, etc.)
20 configureGraphicsContext(g2D);
21
22 // create Rectangle2D for drawing MyRectangle
23 Shape shape = new Rectangle2D.Float(getLeftX(),
24 getLeftY(), getWidth(), getHeight());
25
26 // if shape is filled, draw filled shape
27 if (isFilled())
28 g2D.fill(shape);
29 else
30 g2D.draw(shape);
31 }
32
33 // return true if point falls within MyRectangle
34 public boolean contains(Point2D point)
35 {
36 Rectangle2D.Float rectangle = new Rectangle2D.Float(
37 getLeftX(), getLeftY(), getWidth(), getHeight());
38
39 return rectangle.contains(point);
40 }
41

Fig. 5.5Fig. 5.5Fig. 5.5Fig. 5.5 MyRectangle subclass of class MyShape that represents a rectangle
(part 1 of 2).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 233

Method contains (lines 34–40) creates a Rectangle2D.Float object (line 36–
37) and invokes method contains of class Rectangle2D.Float to determine
whether the given Point2D falls within the MyRectangle. Method getXML (lines 43–
49) creates an XML Element to represent the MyRectangle object. Line 45 invokes
method getXML of class MyShape to get the default shape Element. Line 46 invokes
method setAttribute of interface Element to add Attribute type with the value
MyRectangle to Element shape.

Class MyOval (Fig. 5.6) is a MyShape subclass that represents an oval. Lines 15–29
implement method draw for drawing the MyOval object on the given Graphics2D con-
text. Line 18 invokes method configureGraphicsContext to set the color,
strokeSize and other properties for drawing the MyOval. Lines 21–22 create an
Ellipse2D.Float instance for drawing the MyOval. The Ellipse2D.Float con-
structor takes as arguments the x- and y-coordinates and the width and height of the oval’s
bounding rectangle. If the MyOval is filled, line 26 invokes method fill of class
Graphics2D to draw a filled oval. If the MyOval is not filled, line 28 invokes method
draw of class Graphics2D to draw the oval’s outline.

42 // get XML representation of MyRectangle
43 public Element getXML(Document document)
44 {
45 Element shapeElement = super.getXML(document);
46 shapeElement.setAttribute("type", "MyRectangle");
47
48 return shapeElement;
49 }
50 }

Fig. 5.5Fig. 5.5Fig. 5.5Fig. 5.5 MyRectangle subclass of class MyShape that represents a rectangle
(part 2 of 2).

234 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

Method contains (lines 32–38) creates an Ellipse2D.Float object and
invokes method contains of class Ellipse2D.Float to determine whether the given
Point2D falls within the oval. Method getXML (lines 41–47) creates an XML Element
to represent the MyOval object. Line 43 invokes method getXML of class MyShape to
get the default shape Element. Line 44 invokes method setAttribute of interface
Element to add Attribute type with value MyOval to Element shape.

Class MyText (Fig. 5.7) is a MyShape subclass that represents styled text in a
drawing. A MyText object contains a String of text (line 18), in a particular font (line
20), of a particular size (line 21) that optionally may be bold, underlined and/or italic (lines
22–24). Method draw (lines 27–66) draws the MyText object using a
java.text.AttributedString. An AttributedString contains text and
attributes of that text, such as its font. Line 30 invokes method configureGraphics-
Context to initialize the Graphics2D object for drawing the MyText object. Line 33
creates an AttributedString, and lines 36–58 set that AttributedString’s
attributes, including the font, size, bold, italic, etc. Line 65 invokes method drawString
of class Graphics2D to draw the AttributedString on the graphics context.
Method contains (lines 69–72) always returns false, which disallows dragging of
MyText objects.

1 // MyOval.java
2 // MyOval is a MyShape subclass that represents an oval.
3 package com.deitel.advjhtp1.drawing.model.shapes;
4
5 // Java core packages
6 import java.awt.*;
7 import java.awt.geom.*;
8
9 // third-party packages

10 import org.w3c.dom.*;
11
12 public class MyOval extends MyShape {
13
14 // draw MyOval on given Graphics2D context
15 public void draw(Graphics2D g2D)
16 {
17 // configure Graphics2D (gradient, color, etc.)
18 configureGraphicsContext(g2D);
19
20 // create Ellipse2D for drawing oval
21 Shape shape = new Ellipse2D.Float(getLeftX(),
22 getLeftY(), getWidth(), getHeight());
23
24 // if shape is filled, draw filled shape
25 if (isFilled())
26 g2D.fill(shape);
27 else
28 g2D.draw(shape);
29 }
30

Fig. 5.6Fig. 5.6Fig. 5.6Fig. 5.6 MyOval subclass of class MyShape that represents an oval (part 1 of 2).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 235

31 // return true if point falls inside MyOval
32 public boolean contains(Point2D point)
33 {
34 Ellipse2D.Float ellipse = new Ellipse2D.Float(
35 getLeftX(), getLeftY(), getWidth(), getHeight());
36
37 return ellipse.contains(point);
38 }
39
40 // get MyOval XML representation
41 public Element getXML(Document document)
42 {
43 Element shapeElement = super.getXML(document);
44 shapeElement.setAttribute("type", "MyOval");
45
46 return shapeElement;
47 }
48 }

1 // MyText.java
2 // MyText is a MyShape subclass that represents styled text
3 // in a drawing.
4 package com.deitel.advjhtp1.drawing.model.shapes;
5
6 // Java core packages
7 import java.awt.*;
8 import java.text.*;

Fig. 5.7Fig. 5.7Fig. 5.7Fig. 5.7 MyText subclass of class MyShape that represents a string of text
 (part 1 of 5).

Fig. 5.6Fig. 5.6Fig. 5.6Fig. 5.6 MyOval subclass of class MyShape that represents an oval (part 2 of 2).

236 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

9 import java.awt.font.*;
10 import java.awt.geom.*;
11
12 // third-party packages
13 import org.w3c.dom.*;
14
15 public class MyText extends MyShape {
16
17 // MyText properties (font, font size, text, etc.)
18 private String text;
19 private AttributedString attributedString;
20 private String fontName = "Serif";
21 private int fontSize = 12;
22 private boolean underlined = false;
23 private boolean boldSelected = false;
24 private boolean italicSelected = false;
25
26 // draw MyText on given Graphics2D context
27 public void draw(Graphics2D g2D)
28 {
29 // configure Graphics2D (gradient, color, etc.)
30 configureGraphicsContext(g2D);
31
32 // create AttributedString for drawing text
33 attributedString = new AttributedString(text);
34
35 // set AttributedString Font
36 attributedString.addAttribute(TextAttribute.FAMILY,
37 fontName);
38
39 // set AttributedString Font size
40 attributedString.addAttribute(TextAttribute.SIZE,
41 new Float(fontSize));
42
43 // if selected, set bold, italic and underlined
44 if (boldSelected)
45 attributedString.addAttribute(TextAttribute.WEIGHT,
46 TextAttribute.WEIGHT_BOLD);
47
48 if (italicSelected)
49 attributedString.addAttribute(TextAttribute.POSTURE,
50 TextAttribute.POSTURE_OBLIQUE);
51
52 if (underlined)
53 attributedString.addAttribute(TextAttribute.UNDERLINE,
54 TextAttribute.UNDERLINE_ON);
55
56 // set AttributedString Color
57 attributedString.addAttribute(TextAttribute.FOREGROUND,
58 getColor());
59
60 // create AttributedCharacterIterator for AttributedString

Fig. 5.7Fig. 5.7Fig. 5.7Fig. 5.7 MyText subclass of class MyShape that represents a string of text
 (part 2 of 5).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 237

61 AttributedCharacterIterator characterIterator =
62 attributedString.getIterator();
63
64 // draw string using AttributedCharacterIterator
65 g2D.drawString(characterIterator, getX1(), getY1());
66 }
67
68 // return false because MyText objects contain no area
69 public boolean contains(Point2D point)
70 {
71 return false;
72 }
73
74 // set MyText text
75 public void setText(String myText)
76 {
77 text = myText;
78 }
79
80 // get text contained in MyText
81 public String getText()
82 {
83 return text;
84 }
85
86 // set MyText Font size
87 public void setFontSize(int size)
88 {
89 fontSize = size;
90 }
91
92 // get MyText Font size
93 public int getFontSize()
94 {
95 return fontSize;
96 }
97
98 // set MyText Font name
99 public void setFontName(String name)
100 {
101 fontName = name;
102 }
103
104 // get MyText Font name
105 public String getFontName()
106 {
107 return fontName;
108 }
109
110 // set MyText underlined property
111 public void setUnderlineSelected(boolean textUnderlined)
112 {

Fig. 5.7Fig. 5.7Fig. 5.7Fig. 5.7 MyText subclass of class MyShape that represents a string of text
 (part 3 of 5).

238 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

113 underlined = textUnderlined;
114 }
115
116 // get MyText underlined property
117 public boolean isUnderlineSelected()
118 {
119 return underlined;
120 }
121
122 // set MyText bold property
123 public void setBoldSelected(boolean textBold)
124 {
125 boldSelected = textBold;
126 }
127
128 // get MyText bold property
129 public boolean isBoldSelected()
130 {
131 return boldSelected;
132 }
133
134 // set MyText italic property
135 public void setItalicSelected(boolean textItalic)
136 {
137 italicSelected = textItalic;
138 }
139
140 // get MyText italic property
141 public boolean isItalicSelected()
142 {
143 return italicSelected;
144 }
145
146 // get MyText XML representation
147 public Element getXML(Document document)
148 {
149 Element shapeElement = super.getXML(document);
150 shapeElement.setAttribute("type", "MyText");
151
152 // create text Element
153 Element temp = document.createElement("text");
154 temp.appendChild(document.createTextNode(getText()));
155 shapeElement.appendChild(temp);
156
157 // create fontSize Element
158 temp = document.createElement("fontSize");
159 temp.appendChild(document.createTextNode(
160 String.valueOf(fontSize)));
161 shapeElement.appendChild(temp);
162
163 // create fontName Element
164 temp = document.createElement("fontName");

Fig. 5.7Fig. 5.7Fig. 5.7Fig. 5.7 MyText subclass of class MyShape that represents a string of text
 (part 4 of 5).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 239

165 temp.appendChild(document.createTextNode(
166 String.valueOf(fontName)));
167 shapeElement.appendChild(temp);
168
169 // create underlined Element
170 temp = document.createElement("underlined");
171 temp.appendChild(document.createTextNode(
172 String.valueOf(underlined)));
173 shapeElement.appendChild(temp);
174
175 // create bold Element
176 temp = document.createElement("bold");
177 temp.appendChild(document.createTextNode(
178 String.valueOf(boldSelected)));
179 shapeElement.appendChild(temp);
180
181 // create italic Element
182 temp = document.createElement("italic");
183 temp.appendChild(document.createTextNode(
184 String.valueOf(italicSelected)));
185 shapeElement.appendChild(temp);
186
187 return shapeElement;
188
189 } // end method getXML
190 }

Fig. 5.7Fig. 5.7Fig. 5.7Fig. 5.7 MyText subclass of class MyShape that represents a string of text
 (part 5 of 5).

240 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

Lines 75–144 provide set and get methods for MyText properties, including its text,
font, size, bold, italic and underline properties. Method getXML (lines 147–189) creates
an XML representation of a MyText object. Lines 149–150 obtain the default shape
Element and set its type attribute to the value "MyText". Lines 153–185 create Ele-
ments that represent each MyText-specific property.

Class MyImage (Fig. 5.8) is a MyShape subclass that represents a JPEG image in a
drawing. As we will see in Section 5.6.3, Deitel Drawing enables users to add JPEG images
to a drawing using drag and drop. Line 17 declares BufferedImage member variable
image for storing the MyImage object’s image.

1 // MyImage.java
2 // MyImage is a MyShape subclass that contains a JPEG image.
3 package com.deitel.advjhtp1.drawing.model.shapes;
4
5 // Java core packages
6 import java.io.*;
7 import java.awt.*;
8 import java.awt.image.*;
9 import java.awt.geom.*;

10
11 // third-party packages
12 import org.w3c.dom.*;
13 import com.sun.image.codec.jpeg.*;
14
15 public class MyImage extends MyShape {
16
17 private BufferedImage image;
18 private String fileName;
19
20 // draw image on given Graphics2D context
21 public void draw(Graphics2D g2D)
22 {
23 // draw image on Graphics2D context
24 g2D.drawImage(getImage(), getX1(), getY1(), null);
25 }
26
27 // return true if Point falls within MyImage
28 public boolean contains(Point2D point)
29 {
30 Rectangle2D.Float rectangle = new Rectangle2D.Float(
31 getX1(), getY1(), getWidth(), getHeight());
32
33 return rectangle.contains(point);
34 }
35
36 // get MyImage image
37 public BufferedImage getImage()
38 {
39 return image;
40 }

Fig. 5.8Fig. 5.8Fig. 5.8Fig. 5.8 MyImage subclass of class MyShape that represents a JPEG image in a
drawing (part 1 of 3).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 241

41
42 // set filename for loading image
43 public void setFileName(String name)
44 {
45 // load image from file
46 try {
47 File file = new File(name);
48
49 FileInputStream inputStream =
50 new FileInputStream(file);
51
52 // decode JPEG image
53 JPEGImageDecoder decoder =
54 JPEGCodec.createJPEGDecoder(inputStream);
55
56 image = decoder.decodeAsBufferedImage();
57
58 setPoint2(getX1() + image.getWidth(),
59 getY1() + image.getHeight());
60 }
61
62 // handle exception reading image from file
63 catch (IOException ioException) {
64 ioException.printStackTrace();
65 }
66
67 // set fileName if try is successful
68 fileName = name;
69 }
70
71 // get image filename
72 public String getFileName()
73 {
74 return fileName;
75 }
76
77 // get MyImage XML Element
78 public Element getXML(Document document)
79 {
80 Element shapeElement = super.getXML(document);
81 shapeElement.setAttribute("type", "MyImage");
82
83 // create filename Element
84 Element temp = document.createElement("fileName");
85 temp.appendChild(document.createTextNode(
86 getFileName()));
87 shapeElement.appendChild(temp);
88
89 return shapeElement;
90
91 } // end method getXML
92 }

Fig. 5.8Fig. 5.8Fig. 5.8Fig. 5.8 MyImage subclass of class MyShape that represents a JPEG image in a
drawing (part 2 of 3).

242 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

Lines 21–25 implement method draw to draw the MyImage object. Line 24 invokes
method drawImage of class Graphics2D to draw the MyImage object’s Buffered-
Image. Method contains (lines 28–34) creates a Rectangle2D.Float object of the
same dimensions as the MyImage object. Line 33 invokes method contains of class
Rectangle2D.Float to determine whether the given Point2D object falls within the
MyImage object’s area.

Method getImage (lines 46–49) gets the BufferedImage for the MyImage
object. Method setFileName (lines 43–69) takes as a String argument the name of
the File that contains the MyImage object’s image. Lines 49–56 open a FileInput-
Stream for the File and decode the File as a JPEG image using method decodeAs-
BufferedImage of class JPEGImageDecoder. Line 56 invokes method setImage
of class MyImage to set the image property to the newly loaded BufferedImage.
Method getFileName (lines 72–75) returns a String that contains the name of the
File from which the JPEG image was loaded.

Method getXML (lines 78–91) creates an XML representation of a MyImage object.
Line 80 invokes method getXML of class MyShape to retrieve the default shape Ele-
ment. Line 81 adds Attribute type with the value MyImage to Element shape.
Lines 84–87 create a fileName Element that contains the name of the File from
which the JPEG image was loaded, and appends this Element as a child of Element
shape.

5.4 Deitel DrawingModel
The Deitel Drawing application employs the model-view-controller architecture to enhance
the application’s modularity and extensibility. Deitel Drawing represents each drawing as
a Collection of MyShape objects stored in a DrawingModel (Fig. 5.9). Class

Fig. 5.8Fig. 5.8Fig. 5.8Fig. 5.8 MyImage subclass of class MyShape that represents a JPEG image in a
drawing (part 3 of 3).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 243

DrawingModel extends Observable (line 13) to allow Observers to register as lis-
teners for changes in the DrawingModel.

1 // DrawingModel.java
2 // DrawingModel is the model for a DeitelDrawing painting. It
3 // provides methods for adding and removing shapes from a
4 // drawing.
5 package com.deitel.advjhtp1.drawing.model;
6
7 // Java core packages
8 import java.util.*;
9

10 // Deitel packages
11 import com.deitel.advjhtp1.drawing.model.shapes.*;
12
13 public class DrawingModel extends Observable {
14
15 // shapes contained in model
16 private Collection shapes;
17
18 // no-argument constructor
19 public DrawingModel()
20 {
21 shapes = new ArrayList();
22 }
23
24 // add shape to model
25 public void addShape(MyShape shape)
26 {
27 // add new shape to list of shapes
28 shapes.add(shape);
29
30 // send model changed notification
31 fireModelChanged();
32 }
33
34 // remove shape from model
35 public void removeShape(MyShape shape)
36 {
37 // remove shape from list
38 shapes.remove(shape);
39
40 // send model changed notification
41 fireModelChanged();
42 }
43
44 // get Collection of shapes in model
45 public Collection getShapes()
46 {
47 return Collections.unmodifiableCollection(shapes);
48 }

Fig. 5.9Fig. 5.9Fig. 5.9Fig. 5.9 DrawingModel Observable class that represents a drawing
containing multiple MyShapes (part 1 of 2).

244 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

The DrawingModel consists of a Collection of MyShape objects and methods
for adding and removing shapes. Lines 31 and 41 invoke private method fireMod-
elChanged to notify Observers of additions to, and deletions from, the Drawing-
Model. Method fireModelChanged (lines 72–79) invokes method setChanged of
class Observable to mark the DrawingModel as changed (line 75). Line 78 invokes
method notifyObservers to send a notification to each registered Observer that the
DrawingModel has changed.

Method getShapes (lines 51–54) invokes static method unmodifiableCol-
lection of class Collections to obtain an unmodifiable reference to the shapes
Collection. Returning an unmodifiable Collection prevents the caller from
changing the model through that Collection reference.

Class DrawingFileReaderWriter (Fig. 5.10) provides methods writeFile
and readFile for saving and loading drawings. Class DrawingFileReaderWriter
enables the application to save and load drawings as XML documents. Static method
writeFile (lines 28–89) takes as arguments a DrawingModel and the file name to
which the DrawingModel should be saved. Lines 34–40 create a new XML DOM object
in memory. Lines 43–44 create the shapes Element, which is the root of the XML doc-

49
50 // set Collection of shapes in model
51 public void setShapes(Collection newShapes)
52 {
53 // copy Collection into new ArrayList
54 shapes = new ArrayList(newShapes);
55
56 // send model changed notification
57 fireModelChanged();
58 }
59
60 // empty the current ArrayList of shapes
61 public void clear()
62 {
63 shapes = new ArrayList();
64
65 // send model changed notification
66 fireModelChanged();
67 }
68
69 // send model changed notification
70 private void fireModelChanged()
71 {
72 // set model changed flag
73 setChanged();
74
75 // notify Observers that model changed
76 notifyObservers();
77 }
78 }

Fig. 5.9Fig. 5.9Fig. 5.9Fig. 5.9 DrawingModel Observable class that represents a drawing
containing multiple MyShapes (part 2 of 2).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 245

ument. Lines 47–55 iterate through the DrawingModel’s shapes, and invoke method
getXML on each MyShape to obtain its XML Element representation. Line 54 adds
each shape Element to the XML document. Lines 58–70 use a Transformer to
output the XML document to the given fileName. [Note: If you are not familiar with
XML and the Java API for XML Processing, please see Appendices A–D.]

1 // DrawingFileReaderWriter.java
2 // DrawingFileReaderWriter defines static methods for reading
3 // and writing DeitelDrawing files on disk.
4 package com.deitel.advjhtp1.drawing;
5
6 // Java core packages
7 import java.io.*;
8 import java.util.*;
9 import java.awt.Color;

10
11 // Java extension packages
12 import javax.xml.parsers.*;
13 import javax.xml.transform.*;
14 import javax.xml.transform.dom.*;
15 import javax.xml.transform.stream.*;
16
17 // third-party packages
18 import org.w3c.dom.*;
19 import org.xml.sax.*;
20
21 // Deitel packages
22 import com.deitel.advjhtp1.drawing.model.*;
23 import com.deitel.advjhtp1.drawing.model.shapes.*;
24
25 public class DrawingFileReaderWriter {
26
27 // write drawing to file with given fileName
28 public static void writeFile(DrawingModel drawingModel,
29 String fileName)
30 {
31 // open file for writing and save drawing data
32 try {
33
34 DocumentBuilderFactory builderFactory =
35 DocumentBuilderFactory.newInstance();
36
37 DocumentBuilder builder =
38 builderFactory.newDocumentBuilder();
39
40 Document document = builder.newDocument();
41
42 // create shapes element to contain all MyShapes
43 Element shapesElement =
44 document.createElement("shapes");
45 document.appendChild(shapesElement);

Fig. 5.10Fig. 5.10Fig. 5.10Fig. 5.10 DrawingFileReaderWriter utility class for saving drawings to files
and loading drawings from files (part 1 of 8).

246 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

46
47 Iterator iterator = drawingModel.getShapes().iterator();
48
49 // populate shapes element with shape element for each
50 // MyShape in DrawingModel
51 while (iterator.hasNext()) {
52 MyShape shape = (MyShape) iterator.next();
53
54 shapesElement.appendChild(shape.getXML(document));
55 }
56
57 // use Transformer to write shapes XML document to a file
58 TransformerFactory transformerFactory =
59 TransformerFactory.newInstance();
60
61 Transformer transformer =
62 transformerFactory.newTransformer();
63
64 // specify the shapes.dtd Document Type Definition
65 transformer.setOutputProperty(
66 OutputKeys.DOCTYPE_SYSTEM, "shapes.dtd");
67
68 transformer.transform(new DOMSource(document),
69 new StreamResult(new FileOutputStream(
70 fileName)));
71
72 } // end try
73
74 // handle exception building XML Document
75 catch (ParserConfigurationException parserException) {
76 parserException.printStackTrace();
77 }
78
79 // handle exception transforming XML Document
80 catch (TransformerException transformerException) {
81 transformerException.printStackTrace();
82 }
83
84 // handle exception opening FileOutputStream
85 catch (FileNotFoundException fileException) {
86 fileException.printStackTrace();
87 }
88
89 } // end method writeFile
90
91 // open existing drawing from file
92 public static Collection readFile(String fileName)
93 {
94 // load shapes from file
95 try {
96
97 // Collection of MyShapes read from XML Document

Fig. 5.10Fig. 5.10Fig. 5.10Fig. 5.10 DrawingFileReaderWriter utility class for saving drawings to files
and loading drawings from files (part 2 of 8).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 247

98 Collection shapes = new ArrayList();
99
100 DocumentBuilderFactory builderFactory =
101 DocumentBuilderFactory.newInstance();
102
103 builderFactory.setValidating(true);
104
105 DocumentBuilder builder =
106 builderFactory.newDocumentBuilder();
107
108 Document document = builder.parse(
109 new File(fileName));
110
111 // get all shape elements in XML Document
112 NodeList list = document.getElementsByTagName("shape");
113
114 // get MyShape from each shape element in XML Document
115 for (int i = 0; i < list.getLength(); i++) {
116 Element element = (Element) list.item(i);
117 MyShape shape = getShapeFromElement(element);
118 shapes.add(shape);
119 }
120
121 return shapes;
122
123 } // end try
124
125 // handle exception creating DocumentBuilder
126 catch (ParserConfigurationException parserException) {
127 parserException.printStackTrace();
128 }
129
130 // handle exception parsing Document
131 catch (SAXException saxException) {
132 saxException.printStackTrace();
133 }
134
135 // handle exception reading Document from file
136 catch (IOException ioException) {
137 ioException.printStackTrace();
138 }
139
140 return null;
141
142 } // end method readFile
143
144 // create MyShape using properties specified in given Element
145 private static MyShape getShapeFromElement(Element element)
146 {
147 MyShape shape = null;
148
149 // get MyShape type (e.g., MyLine, MyRectangle, etc.)

Fig. 5.10Fig. 5.10Fig. 5.10Fig. 5.10 DrawingFileReaderWriter utility class for saving drawings to files
and loading drawings from files (part 3 of 8).

248 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

150 String type = element.getAttribute("type");
151
152 // create appropriate MyShape subclass instance
153 if (type.equals("MyLine")) {
154 shape = new MyLine();
155 }
156
157 else if (type.equals("MyRectangle")) {
158 shape = new MyRectangle();
159 }
160
161 else if (type.equals("MyOval")) {
162 shape = new MyOval();
163 }
164
165 else if (type.equals("MyText")) {
166 shape = new MyText();
167
168 // create MyText reference for setting MyText-specific
169 // properties, including fontSize, text, etc.
170 MyText textShape = (MyText) shape;
171
172 // set text property
173 String text =
174 getStringValueFromChildElement(element, "text");
175
176 textShape.setText(text);
177
178 // set fontSize property
179 int fontSize =
180 getIntValueFromChildElement(element, "fontSize");
181
182 textShape.setFontSize(fontSize);
183
184 // set fontName property
185 String fontName =
186 getStringValueFromChildElement(element, "fontName");
187
188 textShape.setFontName(fontName);
189
190 // set underlined property
191 boolean underlined = getBooleanValueFromChildElement(
192 element, "underlined");
193
194 textShape.setUnderlineSelected(underlined);
195
196 // set bold property
197 boolean bold =
198 getBooleanValueFromChildElement(element, "bold");
199
200 textShape.setBoldSelected(bold);
201

Fig. 5.10Fig. 5.10Fig. 5.10Fig. 5.10 DrawingFileReaderWriter utility class for saving drawings to files
and loading drawings from files (part 4 of 8).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 249

202 // set italic property
203 boolean italic =
204 getBooleanValueFromChildElement(element, "italic");
205
206 textShape.setItalicSelected(italic);
207 }
208
209 else if (type.equals("MyImage")) {
210 shape = new MyImage();
211
212 // create MyImage reference for setting MyImage-specific
213 // fileName property
214 MyImage imageShape = (MyImage) shape;
215
216 String fileName = getStringValueFromChildElement(
217 element, "fileName");
218
219 imageShape.setFileName(fileName);
220 }
221
222 // set properties common to all MyShapes, including x1, y1,
223 // x2, y2, startColor, endColor, etc.
224
225 // set x1 and y1 properties
226 int x1 = getIntValueFromChildElement(element, "x1");
227 int y1 = getIntValueFromChildElement(element, "y1");
228
229 shape.setPoint1(x1, y1);
230
231 // set x2 and y2 properties
232 int x2 = getIntValueFromChildElement(element, "x2");
233 int y2 = getIntValueFromChildElement(element, "y2");
234
235 shape.setPoint2(x2, y2);
236
237 // set startX and startY properties
238 int startX =
239 getIntValueFromChildElement(element, "startX");
240 int startY =
241 getIntValueFromChildElement(element, "startY");
242
243 shape.setStartPoint(startX, startY);
244
245 // set endX and endY properties
246 int endX = getIntValueFromChildElement(element, "endX");
247 int endY = getIntValueFromChildElement(element, "endY");
248
249 shape.setEndPoint(endX, endY);
250
251 // set startColor and endColor properties
252 Color startColor =
253 getColorValueFromChildElement(element, "startColor");

Fig. 5.10Fig. 5.10Fig. 5.10Fig. 5.10 DrawingFileReaderWriter utility class for saving drawings to files
and loading drawings from files (part 5 of 8).

250 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

254
255 shape.setStartColor(startColor);
256
257 Color endColor =
258 getColorValueFromChildElement(element, "endColor");
259
260 shape.setEndColor(endColor);
261
262 // set useGradient property
263 boolean useGradient = getBooleanValueFromChildElement(
264 element, "useGradient");
265
266 shape.setUseGradient(useGradient);
267
268 // set strokeSize property
269 float strokeSize = getFloatValueFromChildElement(
270 element, "strokeSize");
271
272 shape.setStrokeSize(strokeSize);
273
274 // set filled property
275 boolean fill =
276 getBooleanValueFromChildElement(element, "fill");
277
278 shape.setFilled(fill);
279
280 return shape;
281
282 } // end method getShapeFromElement
283
284 // get int value from child element with given name
285 private static int getIntValueFromChildElement(Element parent,
286 String childElementName)
287 {
288 // get NodeList for Elements of given childElementName
289 NodeList childNodes = parent.getElementsByTagName(
290 childElementName);
291
292 // get Text Node from zeroth child Element
293 Node childTextNode = childNodes.item(0).getFirstChild();
294
295 // parse int value from Text Node
296 return Integer.parseInt(childTextNode.getNodeValue());
297
298 } // end method getIntValueFromChildElement
299
300 // get float value from child element with given name
301 private static float getFloatValueFromChildElement(
302 Element parent, String childElementName)
303 {
304 // get NodeList for Elements of given childElementName
305 NodeList childNodes = parent.getElementsByTagName(

Fig. 5.10Fig. 5.10Fig. 5.10Fig. 5.10 DrawingFileReaderWriter utility class for saving drawings to files
and loading drawings from files (part 6 of 8).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 251

306 childElementName);
307
308 // get Text Node from zeroth child Element
309 Node childTextNode = childNodes.item(0).getFirstChild();
310
311 // parse float value from Text Node
312 return Float.parseFloat(childTextNode.getNodeValue());
313
314 } // end method getFloatValueFromChildElement
315
316 // get boolean value from child element with given name
317 private static boolean getBooleanValueFromChildElement(
318 Element parent, String childElementName)
319 {
320 // get NodeList for Elements of given childElementName
321 NodeList childNodes = parent.getElementsByTagName(
322 childElementName);
323
324 Node childTextNode = childNodes.item(0).getFirstChild();
325
326 // parse boolean value from Text Node
327 return Boolean.valueOf(
328 childTextNode.getNodeValue()).booleanValue();
329
330 } // end method getBooleanValueFromChildElement
331
332 // get String value from child element with given name
333 private static String getStringValueFromChildElement(
334 Element parent, String childElementName)
335 {
336 // get NodeList for Elements of given childElementName
337 NodeList childNodes = parent.getElementsByTagName(
338 childElementName);
339
340 // get Text Node from zeroth child Element
341 Node childTextNode = childNodes.item(0).getFirstChild();
342
343 // return String value of Text Node
344 return childTextNode.getNodeValue();
345
346 } // end method getStringValueFromChildElement
347
348 // get Color value from child element with given name
349 private static Color getColorValueFromChildElement(
350 Element parent, String childElementName)
351 {
352 // get NodeList for Elements of given childElementName
353 NodeList childNodes = parent.getElementsByTagName(
354 childElementName);
355
356 // get zeroth child Element
357 Element childElement = (Element) childNodes.item(0);

Fig. 5.10Fig. 5.10Fig. 5.10Fig. 5.10 DrawingFileReaderWriter utility class for saving drawings to files
and loading drawings from files (part 7 of 8).

252 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

Method readFile (lines 92–142) loads a drawing from an XML document. Lines
100–109 create a DocumentBuilder and parse the XML document with the given
fileName. Line 112 invokes method getElementsByTagName of interface Docu-
ment to retrieve all shape Elements in the document. Lines 115–119 process each
shape Element by invoking method getShapeFromElement (line 117), which
returns a MyShape object for each Element. Line 120 adds each MyShape to the
shapes Collection.

Method getShapeFromElement (lines 145–282) builds an appropriate MyShape
subclass instance for the given shape Element. Line 150 retrieves the value of the type
Attribute to determine the appropriate MyShape subclass to instantiate. Lines 170–
206 obtain values specific to MyText objects. Lines 216–219 obtain values specific to
MyImage objects. Lines 226–278 obtain values that apply to all MyShapes.

Method getIntValueFromChildElement (lines 285–298) is a utility method
for obtaining an int value from a particular child Element. Lines 289–290 obtain a
NodeList of Elements with the given childElementName. Line 293 obtains the
Text Node child of the Element and line 298 parses the Text Node to produce an int
value. Methods getFloatValueFromChildElement (lines 301–314), getBool-
eanValueFromChildElement (lines 317–330), getStringValueFrom-
ChildElement (lines 333–346) and getColorValueFromChildElement
perform similar processing to retrieve values of other data types.

Figure 5.11 shows a sample XML document produced by DrawingFileReader-
Writer. Note that the MyText shape element (lines 49–69) has child elements text,
fontSize, fontName, underline, bold and italic, whereas the other shape ele-
ments have only the basic MyShape-related elements.

358
359 // get red, green and blue attribute values
360 int red = Integer.parseInt(
361 childElement.getAttribute("red"));
362
363 int green = Integer.parseInt(
364 childElement.getAttribute("green"));
365
366 int blue = Integer.parseInt(
367 childElement.getAttribute("blue"));
368
369 // return Color for given red, green and blue values
370 return new Color(red, green, blue);
371
372 } // end method getColorValueFromChildElement
373 }

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE shapes SYSTEM "shapes.dtd">

Fig. 5.11Fig. 5.11Fig. 5.11Fig. 5.11 Sample XML document generated by DrawingFileReaderWriter
(part 1 of 3).

Fig. 5.10Fig. 5.10Fig. 5.10Fig. 5.10 DrawingFileReaderWriter utility class for saving drawings to files
and loading drawings from files (part 8 of 8).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 253

3 <shapes>
4 <shape type="MyLine">
5 <x1>122</x1>
6 <y1>36</y1>
7 <x2>43</x2>
8 <y2>120</y2>
9 <startX>43</startX>

10 <startY>120</startY>
11 <endX>122</endX>
12 <endY>36</endY>
13 <useGradient>false</useGradient>
14 <startColor red="0" green="0" blue="0"/>
15 <endColor red="255" green="255" blue="255"/>
16 <strokeSize>1.0</strokeSize>
17 <fill>false</fill>
18 </shape>
19 <shape type="MyRectangle">
20 <x1>62</x1>
21 <y1>71</y1>
22 <x2>124</x2>
23 <y2>132</y2>
24 <startX>62</startX>
25 <startY>71</startY>
26 <endX>124</endX>
27 <endY>132</endY>
28 <useGradient>false</useGradient>
29 <startColor red="0" green="0" blue="0"/>
30 <endColor red="255" green="255" blue="255"/>
31 <strokeSize>1.0</strokeSize>
32 <fill>false</fill>
33 </shape>
34 <shape type="MyOval">
35 <x1>18</x1>
36 <y1>11</y1>
37 <x2>107</x2>
38 <y2>123</y2>
39 <startX>18</startX>
40 <startY>11</startY>
41 <endX>107</endX>
42 <endY>123</endY>
43 <useGradient>false</useGradient>
44 <startColor red="0" green="0" blue="0"/>
45 <endColor red="255" green="255" blue="255"/>
46 <strokeSize>1.0</strokeSize>
47 <fill>false</fill>
48 </shape>
49 <shape type="MyText">
50 <x1>38</x1>
51 <y1>167</y1>
52 <x2>0</x2>
53 <y2>0</y2>
54 <startX>0</startX>

Fig. 5.11Fig. 5.11Fig. 5.11Fig. 5.11 Sample XML document generated by DrawingFileReaderWriter
(part 2 of 3).

254 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

5.5 Deitel Drawing Views
The Deitel Drawing application provides two views of user drawings. Class Drawing-
View (Fig. 5.12) is the primary view and extends JPanel to provide a surface onto which
the user can draw MyShapes. Class DrawingView also implements interface Observ-
er (line 20), so it can listen for DrawingModel changes.

55 <startY>0</startY>
56 <endX>0</endX>
57 <endY>0</endY>
58 <useGradient>false</useGradient>
59 <startColor red="0" green="0" blue="0"/>
60 <endColor red="255" green="255" blue="255"/>
61 <strokeSize>1.0</strokeSize>
62 <fill>false</fill>
63 <text>Welcome to Deitel Drawing!</text>
64 <fontSize>10</fontSize>
65 <fontName>SansSerif</fontName>
66 <underlined>false</underlined>
67 <bold>true</bold>
68 <italic>false</italic>
69 </shape>
70 <shape type="MyOval">
71 <x1>84</x1>
72 <y1>63</y1>
73 <x2>169</x2>
74 <y2>148</y2>
75 <startX>169</startX>
76 <startY>63</startY>
77 <endX>84</endX>
78 <endY>148</endY>
79 <useGradient>true</useGradient>
80 <startColor red="51" green="51" blue="255"/>
81 <endColor red="255" green="255" blue="255"/>
82 <strokeSize>1.0</strokeSize>
83 <fill>true</fill>
84 </shape>
85 </shapes>

1 // DrawingView.java
2 // DrawingView is a view of a DrawingModel that draws shapes using
3 // the Java2D API.
4 package com.deitel.advjhtp1.drawing.view;
5
6 // Java core packages
7 import java.awt.*;

Fig. 5.12Fig. 5.12Fig. 5.12Fig. 5.12 DrawingView class for displaying MyShapes in a DrawingModel
(part 1 of 4).

Fig. 5.11Fig. 5.11Fig. 5.11Fig. 5.11 Sample XML document generated by DrawingFileReaderWriter
(part 3 of 3).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 255

8 import java.awt.geom.*;
9 import java.awt.event.*;

10 import java.util.*;
11 import java.util.List;
12
13 // Java extension packages
14 import javax.swing.*;
15
16 // Deitel packages
17 import com.deitel.advjhtp1.drawing.model.*;
18 import com.deitel.advjhtp1.drawing.model.shapes.*;
19
20 public class DrawingView extends JPanel implements Observer {
21
22 // model for which this is a view
23 private DrawingModel drawingModel;
24
25 // construct DrawingView for given model
26 public DrawingView(DrawingModel model)
27 {
28 // set DrawingModel
29 drawingModel = model;
30
31 // set background color
32 setBackground(Color.white);
33
34 // enable double buffering to reduce screen flicker
35 setDoubleBuffered(true);
36 }
37
38 // set DrawingModel for view to given model
39 public void setModel(DrawingModel model)
40 {
41 if (drawingModel != null)
42 drawingModel.deleteObserver(this);
43
44 drawingModel = model;
45
46 // register view as observer of model
47 if (model != null) {
48 model.addObserver(this);
49 repaint();
50 }
51 }
52
53 // get DrawingModel associated with this view
54 public DrawingModel getModel()
55 {
56 return drawingModel;
57 }
58
59 // repaint view when update received from model

Fig. 5.12Fig. 5.12Fig. 5.12Fig. 5.12 DrawingView class for displaying MyShapes in a DrawingModel
(part 2 of 4).

256 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

60 public void update(Observable observable, Object object)
61 {
62 repaint();
63 }
64
65 // overridden paintComponent method for drawing shapes
66 public void paintComponent(Graphics g)
67 {
68 // call superclass paintComponent
69 super.paintComponent(g);
70
71 // create Graphics2D object for given Graphics object
72 Graphics2D g2D = (Graphics2D) g;
73
74 // enable anti-aliasing to smooth jagged lines
75 g2D.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
76 RenderingHints.VALUE_ANTIALIAS_ON);
77
78 // enable high-quality rendering in Graphics2D object
79 g2D.setRenderingHint(RenderingHints.KEY_RENDERING,
80 RenderingHints.VALUE_RENDER_QUALITY);
81
82 // draw all shapes in model
83 drawShapes(g2D);
84 }
85
86 // draw shapes in model
87 public void drawShapes(Graphics2D g2D)
88 {
89 // get Iterator for shapes in model
90 Iterator iterator = drawingModel.getShapes().iterator();
91
92 // draw each MyShape in DrawingModel
93 while (iterator.hasNext()) {
94 MyShape shape = (MyShape) iterator.next();
95 shape.draw(g2D);
96 }
97 }
98
99 // get preferred size for this component
100 public Dimension getPreferredSize()
101 {
102 return new Dimension(320, 240);
103 }
104
105 // insist on preferred size for this component
106 public Dimension getMinimumSize()
107 {
108 return getPreferredSize();
109 }
110
111 // insist on preferred size for this component

Fig. 5.12Fig. 5.12Fig. 5.12Fig. 5.12 DrawingView class for displaying MyShapes in a DrawingModel
(part 3 of 4).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 257

Method setModel (lines 39–51) first removes the DrawingView as an
Observer of the existing DrawingModel (line 42), then registers the DrawingView
as an Observer for the new DrawingModel (line 48). The Observable Drawing-
Model invokes method update of class DrawingView (lines 60–63) each time the
DrawingModel changes. Method update invokes method repaint of class JPanel
(line 62) each time the DrawingView receives an update from the DrawingModel.
Methods addNotify (lines 119–123) and removeNotify (lines 127–131) add and
delete the DrawingView as an Observer of the DrawingModel when the Draw-
ingView obtains and discards its screen resources, respectively.

Method paintComponent (lines 66–84) configures the Graphics2D context for
high-quality, anti-aliased drawing (lines 75–80) and invokes method drawShapes (line
83) to draw the DrawingModel’s shapes. Method drawShapes (lines 87–101) gets an
Iterator for the Collection of MyShapes obtained from the DrawingModel
(line 90). Lines 93–96 draw each MyShape on the given Graphics2D context.

Class ZoomDrawingView (Fig. 5.13) extends class DrawingView to provide a
scaled view of a DrawingModel. Line 21 declares an AffineTransform reference that
ZoomDrawingView uses to scale its rendering of the DrawingModel. The primary
ZoomDrawingView constructor (lines 38–67) takes as arguments a DrawingModel and
the factors by which the AffineTransform should scale points along the x- and y-axes.

Lines 48–65 add a ComponentListener anonymous inner class for the Zoom-
DrawingView. This ComponentListener adjusts the scale factors when the Zoom-
DrawingView component changes size. This allows the user to resize a window that
contains a ZoomDrawingView to change its scale. For example, if the user resizes the
window to 640x480—twice the size of a default DrawingView—the AffineTrans-
form magnifies the drawing view by a scale factor of 2. If the user resizes the window to

112 public Dimension getMaximumSize()
113 {
114 return getPreferredSize();
115 }
116
117 // add DrawingView as Observer of DrawingModel when
118 // DrawingView obtains screen resources
119 public void addNotify()
120 {
121 super.addNotify();
122 drawingModel.addObserver(this);
123 }
124
125 // remove DrawingView as Observer of DrawingModel when
126 // DrawingView loses screen resources
127 public void removeNotify()
128 {
129 super.removeNotify();
130 drawingModel.deleteObserver(this);
131 }
132 }

Fig. 5.12Fig. 5.12Fig. 5.12Fig. 5.12 DrawingView class for displaying MyShapes in a DrawingModel
(part 4 of 4).

258 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

160x120—half the size of a default DrawingView—the AffineTransform shrinks
the drawing view by a scale factor of 0.5. The x- and y-axes also scale independently. The
user can stretch the window horizontally to produce a short, wide drawing view or verti-
cally to produce a tall, narrow drawing view.

1 // ZoomDrawingView.java
2 // ZoomDrawingView is a subclass of DrawingView that scales
3 // the view of the drawing using the given scale factor.
4 package com.deitel.advjhtp1.drawing.view;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.geom.*;
9 import java.awt.event.*;

10
11 // Deitel packages
12 import com.deitel.advjhtp1.drawing.model.*;
13
14 public class ZoomDrawingView extends DrawingView {
15
16 // factor for scaling view
17 private double scaleFactorX;
18 private double scaleFactorY;
19
20 // transform for scaling view
21 private AffineTransform scaleTransform;
22
23 // construct ZoomDrawingView with given model and default
24 // scale factor
25 public ZoomDrawingView(DrawingModel model)
26 {
27 this(model, 1.0);
28 }
29
30 // construct ZoomDrawingView with given model and scale factor
31 public ZoomDrawingView(DrawingModel model, double scale)
32 {
33 this(model, scale, scale);
34 }
35
36 // construct ZoomDrawingView with given model and separate
37 // x and y scale factors
38 public ZoomDrawingView(DrawingModel model, double scaleX,
39 double scaleY)
40 {
41 // call DrawingView constructor
42 super(model);
43
44 // set scale factor for this view
45 setScaleFactors(scaleX, scaleY);
46

Fig. 5.13Fig. 5.13Fig. 5.13Fig. 5.13 ZoomDrawingView subclass of DrawingView for displaying scaled
MyShapes (part 1 of 3).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 259

47 // listen for component resize events to adjust scale
48 addComponentListener(
49 new ComponentAdapter() {
50
51 // when view is resized, update scale factors
52 public void componentResized(ComponentEvent event)
53 {
54 double width = (double) getSize().width;
55 double height = (double) getSize().height;
56
57 // calculate new scale factors
58 double factorX = width / 320.0;
59
60 double factorY = height / 240.0;
61
62 setScaleFactors(factorX, factorY);
63 }
64 }
65);
66
67 } // end ZoomDrawingView constructor
68
69 // draw shapes using scaled Graphics2D object
70 public void drawShapes(Graphics2D g2D)
71 {
72 // set Graphics2D object transform
73 g2D.setTransform(scaleTransform);
74
75 // draw shapes on scaled Graphics2D object
76 super.drawShapes(g2D);
77 }
78
79 // set scale factors for view
80 public void setScaleFactors(double scaleX, double scaleY)
81 {
82 // set scale factors
83 scaleFactorX = scaleX;
84 scaleFactorY = scaleY;
85
86 // create AffineTransform with given scale factors
87 scaleTransform = AffineTransform.getScaleInstance(
88 scaleFactorX, scaleFactorY);
89 }
90
91 // get preferred size for this component
92 public Dimension getPreferredSize()
93 {
94 // default size is 320 x 240; scale using scaleFactors
95 return new Dimension((int) (320 * scaleFactorX),
96 (int) (240 * scaleFactorY));
97 }
98 }

Fig. 5.13Fig. 5.13Fig. 5.13Fig. 5.13 ZoomDrawingView subclass of DrawingView for displaying scaled
MyShapes (part 2 of 3).

260 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

Method drawShapes (lines 70–77) overrides method drawShapes from class
DrawingView. Line 73 invokes method setTransform of class Graphics2D to
cause the Graphics2D object to use the provided AffineTransform to scale the
drawing. Method setScaleFactors (lines 80–89) takes as double arguments the
scale factors to use for the x- and y-axes. Lines 87–88 create the AffineTransform that
method drawShapes uses to scale the drawing. Static method getScaleInstance of
class AffineTransform returns an AffineTransform object that scales drawings
based on the provided x- and y-axis scale factors. For example, scale factors of 0.5 and
0.5 would produce a view that is one quarter the original size.

5.6 Deitel Drawing Controller Logic
The model-view-controller architecture separates logic for processing user input into ob-
jects that are separate from the views and the model. The Deitel Drawing application uses
two types of controllers to handle user input—MyShapeControllers and a DragAn-
dDropController.

5.6.1 MyShapeControllers for Processing User Input
The primary user-input device for creating drawings is the mouse. A user can create and
manipulate new shapes in a drawing by pressing the mouse button, dragging the mouse then
releasing the mouse button. For each type of MyShape, however, there are different re-
quirements for handling mouse events. For example, drawing a MyText shape requires the
application to obtain from the user the text to be drawn and that text’s properties, such as
its font size. Class MyShapeController (Fig. 5.14) is an abstract base class that de-
fines the basic functionality required by all MyShapeControllers. Subclasses of My-
ShapeController provide the implementation details for adding instances of each
particular MyShape subclass to a drawing.

Fig. 5.13Fig. 5.13Fig. 5.13Fig. 5.13 ZoomDrawingView subclass of DrawingView for displaying scaled
MyShapes (part 3 of 3).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 261

1 // MyShapeController.java
2 // MyShapeController is an abstract base class that represents
3 // a controller for painting shapes.
4 package com.deitel.advjhtp1.drawing.controller;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9

10 // Deitel packages
11 import com.deitel.advjhtp1.drawing.model.*;
12 import com.deitel.advjhtp1.drawing.model.shapes.*;
13
14 public abstract class MyShapeController {
15
16 private DrawingModel drawingModel;
17
18 // primary and secondary Colors for drawing and gradients
19 private Color primaryColor = Color.black;
20 private Color secondaryColor = Color.white;
21
22 // Class object for creating new MyShape-subclass instances
23 private Class shapeClass;
24
25 // common MyShape properties
26 private boolean fillShape = false;
27 private boolean useGradient = false;
28 private float strokeSize = 1.0f;
29
30 // indicates whether the user has specified drag mode; if
31 // true, MyShapeController should ignore mouse events
32 private boolean dragMode = false;
33
34 private MouseListener mouseListener;
35 private MouseMotionListener mouseMotionListener;
36
37 // MyShapeController constructor
38 public MyShapeController(DrawingModel model, Class
39 myShapeClass)
40 {
41 // set DrawingModel to control
42 drawingModel = model;
43
44 // set MyShape subclass
45 shapeClass = myShapeClass;
46
47 // listen for mouse events
48 mouseListener = new MouseAdapter() {
49
50 // when mouse button pressed, create new shape
51 public void mousePressed(MouseEvent event)
52 {

Fig. 5.14Fig. 5.14Fig. 5.14Fig. 5.14 MyShapeController abstract base class for controllers that handle
mouse input (part 1 of 5).

262 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

53 // if not in dragMode, start new shape at
54 // given coordinates
55 if (!dragMode)
56 startShape(event.getX(), event.getY());
57 }
58
59 // when mouse button released, set shape's final
60 // coordinates
61 public void mouseReleased(MouseEvent event)
62 {
63 // if not in dragMode, finish drawing current shape
64 if (!dragMode)
65 endShape(event.getX(), event.getY());
66 }
67 };
68
69 // listen for mouse motion events
70 mouseMotionListener = new MouseMotionAdapter() {
71
72 // when mouse is dragged, set coordinates for current
73 // shape's Point2
74 public void mouseDragged(MouseEvent event)
75 {
76 // if not in dragMode, modify current shape
77 if (!dragMode)
78 modifyShape(event.getX(), event.getY());
79 }
80 };
81
82 } // end MyShapeController constructor
83
84 // set primary color (start color for gradient)
85 public void setPrimaryColor(Color color)
86 {
87 primaryColor = color;
88 }
89
90 // get primary color
91 public Color getPrimaryColor()
92 {
93 return primaryColor;
94 }
95
96 // set secondary color (end color for gradients)
97 public void setSecondaryColor(Color color)
98 {
99 secondaryColor = color;
100 }
101
102 // get secondary color
103 public Color getSecondaryColor()
104 {

Fig. 5.14Fig. 5.14Fig. 5.14Fig. 5.14 MyShapeController abstract base class for controllers that handle
mouse input (part 2 of 5).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 263

105 return secondaryColor;
106 }
107
108 // fill shape
109 public void setShapeFilled(boolean fill)
110 {
111 fillShape = fill;
112 }
113
114 // get shape filled
115 public boolean getShapeFilled()
116 {
117 return fillShape;
118 }
119
120 // use gradient when painting shape
121 public void setUseGradient(boolean gradient)
122 {
123 useGradient = gradient;
124 }
125
126 // get use gradient
127 public boolean getUseGradient()
128 {
129 return useGradient;
130 }
131
132 // set dragMode
133 public void setDragMode(boolean drag)
134 {
135 dragMode = drag;
136 }
137
138 // set stroke size for lines
139 public void setStrokeSize(float stroke)
140 {
141 strokeSize = stroke;
142 }
143
144 // get stroke size
145 public float getStrokeSize()
146 {
147 return strokeSize;
148 }
149
150 // create new instance of current MyShape subclass
151 protected MyShape createNewShape()
152 {
153 // create new instance of current MyShape subclass
154 try {
155 MyShape shape = (MyShape) shapeClass.newInstance();
156

Fig. 5.14Fig. 5.14Fig. 5.14Fig. 5.14 MyShapeController abstract base class for controllers that handle
mouse input (part 3 of 5).

264 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

157 // set MyShape properties
158 shape.setFilled(fillShape);
159 shape.setUseGradient(useGradient);
160 shape.setStrokeSize(getStrokeSize());
161 shape.setStartColor(getPrimaryColor());
162 shape.setEndColor(getSecondaryColor());
163
164 // return reference to newly created shape
165 return shape;
166 }
167
168 // handle exception instantiating shape
169 catch (InstantiationException instanceException) {
170 instanceException.printStackTrace();
171 return null;
172 }
173
174 // handle access exception instantiating shape
175 catch (IllegalAccessException accessException) {
176 accessException.printStackTrace();
177 return null;
178 }
179
180 } // end method createNewShape
181
182 // get MyShapeController's MouseListener
183 public MouseListener getMouseListener()
184 {
185 return mouseListener;
186 }
187
188 // get MyShapeController's MouseMotionListener
189 public MouseMotionListener getMouseMotionListener()
190 {
191 return mouseMotionListener;
192 }
193
194 // add given shape to DrawingModel
195 protected void addShapeToModel(MyShape shape)
196 {
197 drawingModel.addShape(shape);
198 }
199
200 // remove given shape from DrawingModel
201 protected void removeShapeFromModel(MyShape shape)
202 {
203 drawingModel.removeShape(shape);
204 }
205
206 // start new shape
207 public abstract void startShape(int x, int y);
208

Fig. 5.14Fig. 5.14Fig. 5.14Fig. 5.14 MyShapeController abstract base class for controllers that handle
mouse input (part 4 of 5).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 265

Each MyShapeController is responsible for responding to mouse events to allow
users to add shapes to drawings. Lines 48–67 create a MouseListener that listens for
mousePressed and mouseReleased events. When the user presses the mouse button,
line 56 starts drawing a new shape at the location where the mouse press occurred by
invoking method startShape. When the user releases the mouse button, line 65 invokes
method endShape to complete the currently drawn shape. As the user drags the mouse,
the MouseMotionListener on lines 70–80 invokes method modifyShape to
modify the shape currently being drawn.

Note that class MyShapeController uses instances of MouseAdapter and
MouseMotionAdapter to respond to MouseEvents. Objects of the classes Mouse-
Adapter and MouseMotionAdapter act as adapters between objects that generate
MouseEvents and those objects that handle these events. In this case study, MyShape-
Controller’s MouseAdapter (lines 46–65) and MouseMotionAdapter (lines
68–79) adapts a MyShapeController to a MouseListener and MouseMotion-
Listener, respectively. These adapter classes are examples of the Adapter design pat-
tern, which provides an object with a new interface that adapts to another object’s interface,
allowing both objects to collaborate with one another. The adapter in this pattern is similar
to an adapter for a plug on an electrical device—electrical sockets in Europe are different
from those in the United States, so an adapter is needed to plug an American device into a
European electrical socket and vice versa.

Methods startShape, endShape and modifyShape are abstract methods that
each MyShapeController subclass must implement. This enables the developer to
provide custom controllers for different shape types. The developer simply overrides these
methods to perform the necessary input processing logic.

Method createNewShape (lines 151–180) uses Java’s reflection mechanism to
create new instances of MyShape subclasses as the user adds new shapes to a drawing.
Reflection enables Java programs to determine information about classes and objects at
runtime. In this example, we use reflection to enable our application to create instances of
arbitrary MyShape subclasses dynamically. Each MyShapeController maintains a
Class reference to the Class object for the MyShape subclass that the MyShapeCon-
troller controls. For example, when the application creates a MyShapeController
for drawing MyLines, the MyShapeController stores a reference to the Class
object for class MyLine. Line 155 invokes method newInstance of class Class to
create a new instance of the specified MyShape subclass. Lines 158–162 initialize this new
instance with the currently selected fill, gradient, stroke size and color properties.

Class BoundedShapeController (Fig. 5.15) provides a basic implementation of
abstract base class MyShapeController for drawing rectangle-bounded shapes (in this

209 // modify current shape
210 public abstract void modifyShape(int x, int y);
211
212 // finish shape
213 public abstract void endShape(int x, int y);
214 }

Fig. 5.14Fig. 5.14Fig. 5.14Fig. 5.14 MyShapeController abstract base class for controllers that handle
mouse input (part 5 of 5).

266 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

application, MyRectangles and MyOvals). Method startShape (lines 22–37) cre-
ates a new instance of the appropriate MyShape subclass (line 25), sets the MyShape’s
position on the drawing (lines 30–32) and adds the MyShape to the DrawingModel (line
35). The MouseListener in class MyShapeController invokes method start-
Shape when the user presses the mouse button to begin drawing a shape.

1 // BoundedShapeController.java
2 // BoundedShapeController is a MyShapeController subclass for
3 // rectangle-bounded shapes, such as MyOvals and MyRectangles.
4 package com.deitel.advjhtp1.drawing.controller;
5
6 // Deitel packages
7 import com.deitel.advjhtp1.drawing.model.*;
8 import com.deitel.advjhtp1.drawing.model.shapes.*;
9

10 public class BoundedShapeController extends MyShapeController {
11
12 private MyShape currentShape;
13
14 // BoundedShapeController constructor
15 public BoundedShapeController(
16 DrawingModel model, Class shapeClass)
17 {
18 super(model, shapeClass);
19 }
20
21 // start drawing shape
22 public void startShape(int x, int y)
23 {
24 // get new shape
25 currentShape = createNewShape();
26
27 if (currentShape != null) {
28
29 // set location of shape in drawing
30 currentShape.setPoint1(x, y);
31 currentShape.setPoint2(x, y);
32 currentShape.setStartPoint(x, y);
33
34 // add newly created shape to DrawingModel
35 addShapeToModel(currentShape);
36 }
37 }
38
39 // modify shape currently being drawn
40 public void modifyShape(int x, int y)
41 {
42 // remove shape from DrawingModel
43 removeShapeFromModel(currentShape);
44 currentShape.setEndPoint(x, y);
45

Fig. 5.15Fig. 5.15Fig. 5.15Fig. 5.15 BoundedShapeController MyShapeController subclass for
controlling MyLines, MyOvals and MyRectangles (part 1 of 2).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 267

When the user drags the mouse, the MouseMotionListener inherited from class
MyShapeController invokes method modifyShape (lines 40–59) and passes the x-
and y-coordinates of the MouseEvent. Method modifyShape removes current-
Shape from the DrawingModel (line 43), updates the currentShape’s various point
properties with new coordinates (lines 46–55) and adds currentShape to the Draw-
ingModel.

When the user releases the mouse button, the mouse handler invokes method end-
Shape to complete the addition of the MyShape to the drawing. Method endShape
invokes method modifyShape (line 52) to set the final values for currentShape’s
coordinates.

Class MyLineController (Fig. 5.16) is a MyShapeController subclass for
drawing MyLine objects. Method startShape (lines 20–36) is similar to method
startShape in class BoundedShapeController. Method modifyShape (lines
39–56) removes the MyLine from the DrawingModel (line 42) and sets the MyLine’s
endPoint to the current x, y coordinate. Lines 49–52 update the MyLine’s Point1 and
Point2 coordinates.

46 int startX = currentShape.getStartX();
47 int startY = currentShape.getStartY();
48
49 // set Point1 to upper-left coordinates of shape
50 currentShape.setPoint1(
51 Math.min(x, startX), Math.min(y, startY));
52
53 // set Point2 to lower right coordinates of shape
54 currentShape.setPoint2(
55 Math.max(x, startX), Math.max(y, startY));
56
57 // add shape back into model
58 addShapeToModel(currentShape);
59 }
60
61 // finish drawing shape
62 public void endShape(int x, int y)
63 {
64 modifyShape(x, y);
65 }
66 }

1 // MyLineController.java
2 // MyLineController is a MyShapeController subclass for MyLines.
3 package com.deitel.advjhtp1.drawing.controller;
4
5 // Deitel packages
6 import com.deitel.advjhtp1.drawing.model.*;

Fig. 5.16Fig. 5.16Fig. 5.16Fig. 5.16 MyLineController MyShapeController subclass for drawing
MyLines (part 1 of 3).

Fig. 5.15Fig. 5.15Fig. 5.15Fig. 5.15 BoundedShapeController MyShapeController subclass for
controlling MyLines, MyOvals and MyRectangles (part 2 of 2).

268 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

7 import com.deitel.advjhtp1.drawing.model.shapes.*;
8
9 public class MyLineController extends MyShapeController {

10
11 private MyShape currentShape;
12
13 // MyLineController constructor
14 public MyLineController(DrawingModel model, Class shapeClass)
15 {
16 super(model, shapeClass);
17 }
18
19 // start drawing new shape
20 public void startShape(int x, int y)
21 {
22 // create new shape
23 currentShape = createNewShape();
24
25 if (currentShape != null) {
26
27 // set location of shape in drawing
28 currentShape.setPoint1(x, y);
29 currentShape.setPoint2(x, y);
30 currentShape.setStartPoint(x, y);
31
32 // add newly created shape to DrawingModel
33 addShapeToModel(currentShape);
34 }
35
36 } // end method startShape
37
38 // modify shape currently being drawn
39 public void modifyShape(int x, int y)
40 {
41 // remove shape from DrawingModel
42 removeShapeFromModel(currentShape);
43 currentShape.setEndPoint(x, y);
44
45 int startX = currentShape.getStartX();
46 int startY = currentShape.getStartY();
47
48 // set current (x, y) to Point1
49 currentShape.setPoint1(x, y);
50
51 // set Point2 to StartPoint
52 currentShape.setPoint2(startX, startY);
53
54 // add shape back into model
55 addShapeToModel(currentShape);
56 }
57
58 // finish drawing shape

Fig. 5.16Fig. 5.16Fig. 5.16Fig. 5.16 MyLineController MyShapeController subclass for drawing
MyLines (part 2 of 3).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 269

Instances of class MyText are drawn quite differently from instances of classes
MyLine, MyOval and MyRectangle and therefore require a custom implementation of
class MyShapeController. Class MyTextController (Fig. 5.17) presents a dialog
box that prompts the user for the text to be drawn as well as MyText properties (e.g., bold,
italic, font, etc.).

59 public void endShape(int x, int y)
60 {
61 modifyShape(x, y);
62 }
63 }

1 // MyTextController.java
2 // MyTextController is a MyShapeController subclass for drawing
3 // MyText objects.
4 package com.deitel.advjhtp1.drawing.controller;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9

10 // Java extension packages
11 import javax.swing.*;
12
13 // Deitel packages
14 import com.deitel.advjhtp1.drawing.model.*;
15 import com.deitel.advjhtp1.drawing.model.shapes.*;
16
17 public class MyTextController extends MyShapeController {
18
19 // MyTextController constructor
20 public MyTextController(DrawingModel model, Class shapeClass)
21 {
22 // invoke superclass constructor; always use MyText class
23 super(model, MyText.class);
24 }
25
26 // start drawing MyText object
27 public void startShape(int x, int y) {
28
29 // create MyText shape
30 MyText currentText = new MyText();
31
32 // set MyText's Point1
33 currentText.setPoint1(x, y);
34

Fig. 5.17Fig. 5.17Fig. 5.17Fig. 5.17 MyTextController MyShapeController subclass for adding
MyText instances to a drawing (part 1 of 4).

Fig. 5.16Fig. 5.16Fig. 5.16Fig. 5.16 MyLineController MyShapeController subclass for drawing
MyLines (part 3 of 3).

270 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

35 // create TextInputPanel to get text and properties
36 TextInputPanel inputPanel = new TextInputPanel();
37
38 // display TextInputPanel in JOptionPane
39 String text = JOptionPane.showInputDialog(null,
40 inputPanel);
41
42 // ensure provided text is not null or empty
43 if (text == null || text.equals(""))
44 return;
45
46 // set MyText properties (bold, italic, etc.)
47 currentText.setBoldSelected(
48 inputPanel.boldSelected());
49
50 currentText.setItalicSelected(
51 inputPanel.italicSelected());
52
53 currentText.setUnderlineSelected(
54 inputPanel.underlineSelected());
55
56 currentText.setFontName(
57 inputPanel.getSelectedFontName());
58
59 currentText.setFontSize(
60 inputPanel.getSelectedFontSize());
61
62 currentText.setColor(getPrimaryColor());
63
64 // set MyText's text
65 currentText.setText(text);
66
67 // add MyText object to model
68 addShapeToModel(currentText);
69 }
70
71 // modify shape currently being drawn
72 public void modifyShape(int x, int y) {}
73
74 // finish drawing shape
75 public void endShape(int x, int y) {}
76
77 // JPanel with components for inputting MyText properties
78 private static class TextInputPanel extends JPanel {
79
80 private JCheckBox boldCheckBox;
81 private JCheckBox italicCheckBox;
82 private JCheckBox underlineCheckBox;
83 private JComboBox fontComboBox;
84 private JComboBox fontSizeComboBox;
85
86 // TextInputPanel constructor

Fig. 5.17Fig. 5.17Fig. 5.17Fig. 5.17 MyTextController MyShapeController subclass for adding
MyText instances to a drawing (part 2 of 4).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 271

87 public TextInputPanel()
88 {
89 boldCheckBox = new JCheckBox("Bold");
90 italicCheckBox = new JCheckBox("Italic");
91 underlineCheckBox = new JCheckBox("Underline");
92
93 // create JComboBox for selecting Font
94 fontComboBox = new JComboBox();
95 fontComboBox.addItem("SansSerif");
96 fontComboBox.addItem("Serif");
97
98 // create JComboBox for selecting Font size
99 fontSizeComboBox = new JComboBox();
100 fontSizeComboBox.addItem("10");
101 fontSizeComboBox.addItem("12");
102 fontSizeComboBox.addItem("14");
103 fontSizeComboBox.addItem("18");
104 fontSizeComboBox.addItem("22");
105 fontSizeComboBox.addItem("36");
106 fontSizeComboBox.addItem("48");
107 fontSizeComboBox.addItem("72");
108
109 setLayout(new FlowLayout());
110
111 add(boldCheckBox);
112 add(italicCheckBox);
113 add(underlineCheckBox);
114 add(fontComboBox);
115 add(fontSizeComboBox);
116 }
117
118 // get bold property
119 public boolean boldSelected()
120 {
121 return boldCheckBox.isSelected();
122 }
123
124 // get italic property
125 public boolean italicSelected()
126 {
127 return italicCheckBox.isSelected();
128 }
129
130 // get underline property
131 public boolean underlineSelected()
132 {
133 return underlineCheckBox.isSelected();
134 }
135
136 // get font name property
137 public String getSelectedFontName()
138 {

Fig. 5.17Fig. 5.17Fig. 5.17Fig. 5.17 MyTextController MyShapeController subclass for adding
MyText instances to a drawing (part 3 of 4).

272 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

Method startShape (lines 27–69) creates a new MyText object (line 30) and sets
its coordinates to the given x, y coordinate. Line 36 creates a new TextInputPanel and
lines 39–40 display the TextInputPanel in a JOptionPane. After the user enters the
text and its properties, lines 47–68 set the MyText object’s properties and add the MyText
object to the DrawingModel. MyTextController uses static class TextInput-
Panel (lines 78–148) to present a GUI for setting MyText object properties. Class Tex-
tInputPanel includes JCheckBoxes for selecting bold, italic and underline, and
JComboBoxes for selecting the font and font size.

Class MyShapeController uses the Template Method design pattern to ensure
that all MyShapeControllers follow the same three-step algorithm for creating
shapes—the user clicks on the drawing area to specify a shape’s position, drags the mouse
cursor across the area to specify its size, then releases the mouse button to create the shape.
These steps correspond to the abstract methods startShape, modifyShape and end-
Shape, respectively. Each MyShapeController subclass uses this algorithm but
implements each step differently from the other implementations. For example, method
startShape of class MyTextController presents a dialog box that obtains font
information and text from the user. However, neither class MyLineController nor
class BoundedShapeController needs to set fonts, so their implementations of
method startShape differ from that of class MyTextController. Because the Tem-
plate Method design pattern encapsulates a step-by-step algorithm that several objects can
use, this pattern becomes beneficial when we add new MyShapeController subclasses
(e.g., RandomShapeController in Exercise 5.8) to our system—we need implement
only those methods that comprise the algorithm.

5.6.2 MyShapeControllers and Factory Method Design Pattern
The model-view-controller architecture makes the Deitel Drawing application easily exten-
sible through the addition of new MyShape subclasses and new views. Creating a new
MyShape subclass also could require a new MyShapeController subclass (as class
MyText does). To eliminate the need to change existing code when adding a new My-
ShapeController to the application, Deitel Drawing uses a combination of two popu-
lar design patterns—the Factory Method design pattern and the Singleton design pattern.

139 return fontComboBox.getSelectedItem().toString();
140 }
141
142 // get font size property
143 public int getSelectedFontSize()
144 {
145 return Integer.parseInt(
146 fontSizeComboBox.getSelectedItem().toString());
147 }
148 }
149 }

Fig. 5.17Fig. 5.17Fig. 5.17Fig. 5.17 MyTextController MyShapeController subclass for adding
MyText instances to a drawing (part 4 of 4).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 273

 The Deitel Drawing application uses the Factory Method design pattern to enable the
user to select an appropriate MyShapeController at runtime. As its name implies, a
Factory method creates objects. Factory methods can create objects based on criteria that
are known only at runtime. These criteria could be in the form of user input, system prop-
erties, etc. In the Deitel Drawing application, the criterion is the user-selected MyShape
type. The particular MyShape subclass the user selects is known only at run time, so at
compile time we cannot determine what type of MyShapeController to use for con-
trolling user input. We use a Factory Method in class MyShapeControllerFactory
(Fig. 5.18) to construct the appropriate MyShapeController for the user-selected
MyShape.

Method newMyShapeController (lines 75–106) is a Factory Method that takes
as a DrawingModel argument the model to be controlled and as a String argument the
name of the MyShape subclass for which to create a MyShapeController instance.
Lines 83–85 invoke static method forName of class Class to get the Class object
for the given MyShape subclass. If the given MyShape subclass is MyLine, line 89
returns a MyLineController. If the given MyShape subclass is MyText, line 92
returns a new instance of class MyTextController. Otherwise, lines 95–96 return a
new instance of class BoundedShapeController.

1 // MyShapeControllerFactory.java
2 // MyShapeControllerFactory uses the Factory Method design
3 // pattern to create an appropriate instance of MyShapeController
4 // for the given MyShape subclass.
5 package com.deitel.advjhtp1.drawing.controller;
6
7 // Deitel packages
8 import com.deitel.advjhtp1.drawing.model.*;
9 import com.deitel.advjhtp1.drawing.model.shapes.*;

10
11 public class MyShapeControllerFactory {
12
13 private static final String FACTORY_PROPERTY_KEY =
14 "MyShapeControllerFactory";
15
16 private static final String[] supportedShapes =
17 { "MyLine", "MyRectangle", "MyOval", "MyText" };
18
19 // reference to Singleton MyShapeControllerFactory
20 private static MyShapeControllerFactory factory;
21
22 // MyShapeControllerFactory constructor
23 protected MyShapeControllerFactory() {}
24
25 // return Singleton instance of MyShapeControllerFactory
26 public static final MyShapeControllerFactory getInstance()
27 {
28 // if factory is null, create new MyShapeControllerFactory
29 if (factory == null) {

Fig. 5.18Fig. 5.18Fig. 5.18Fig. 5.18 MyShapeControllerFactory class for creating appropriate
MyShapeController for given MyShape type (part 1 of 3).

274 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

30
31 // get System property that contains the factory
32 // class name
33 String factoryClassName =
34 System.getProperty(FACTORY_PROPERTY_KEY);
35
36 // if the System property is not set, create a new
37 // instance of the default MyShapeControllerFactory
38 if (factoryClassName == null)
39 factory = new MyShapeControllerFactory();
40
41 // create a new MyShapeControllerFactory using the
42 // class name provided in the System property
43 else {
44
45 // create MyShapeControllerFactory subclass instance
46 try {
47 factory = (MyShapeControllerFactory)
48 Class.forName(factoryClassName).newInstance();
49 }
50
51 // handle exception loading instantiating
52 catch (ClassNotFoundException classException) {
53 classException.printStackTrace();
54 }
55
56 // handle exception instantiating factory
57 catch (InstantiationException exception) {
58 exception.printStackTrace();
59 }
60
61 // handle exception if no access to specified Class
62 catch (IllegalAccessException accessException) {
63 accessException.printStackTrace();
64 }
65 }
66
67 } // end if
68
69 return factory;
70
71 } // end method getInstance
72
73 // create new MyShapeController subclass instance for given
74 // suitable for controlling given MyShape subclass type
75 public MyShapeController newMyShapeController(
76 DrawingModel model, String shapeClassName)
77 {
78 // create Class instance for given class name and
79 // construct appropriate MyShapeController
80 try {
81

Fig. 5.18Fig. 5.18Fig. 5.18Fig. 5.18 MyShapeControllerFactory class for creating appropriate
MyShapeController for given MyShape type (part 2 of 3).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 275

Class MyShapeControllerFactory also uses the Singleton design pattern to
control how other objects obtain instances of MyShapeControllerFactory. Specif-
ically, the Singleton design pattern ensures that only one instance of a particular object can
exist in a particular application. Class MyShapeControllerFactory declares a pro-
tected, no-argument constructor to prevent other objects from instantiating MyShape-
ControllerFactory objects directly. Other objects that require an instance of class
MyShapeControllerFactory can invoke method getInstance (lines 26–71) to
obtain the Singleton instance. If a MyShapeControllerFactory has not been created
yet, lines 29–65 create a MyShapeControllerFactory. Line 69 returns the Singleton
MyShapeControllerFactory instance to the caller.

In this example, our implementation provides the benefit of allowing the MyShape-
ControllerFactory to determine at runtime the particular subclass of MyShape-
ControllerFactory to instantiate. Lines 33–34 read a system property whose value
specifies from which particular MyShapeControllerFactory subclass method
getInstance should instantiate a new MyShapeControllerFactory. By speci-

82 // get Class object for selected MyShape subclass
83 Class shapeClass = Class.forName(
84 MyShape.class.getPackage().getName() + "." +
85 shapeClassName);
86
87 // return appropriate controller for MyShape subclass
88 if (shapeClassName.equals("MyLine"))
89 return new MyLineController(model, shapeClass);
90
91 else if (shapeClassName.equals("MyText"))
92 return new MyTextController(model, shapeClass);
93
94 else
95 return new BoundedShapeController(model,
96 shapeClass);
97 }
98
99 // handle exception if MyShape derived class not found
100 catch (ClassNotFoundException classException) {
101 classException.printStackTrace();
102 }
103
104 return null;
105
106 } // end method newMyShapeController
107
108 // get String array of MyShape subclass names for which this
109 // factory can create MyShapeControllers
110 public String[] getSupportedShapes()
111 {
112 return supportedShapes;
113 }
114 }

Fig. 5.18Fig. 5.18Fig. 5.18Fig. 5.18 MyShapeControllerFactory class for creating appropriate
MyShapeController for given MyShape type (part 3 of 3).

276 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

fying a value for this system property at the command line, a user can “install” a new
MyShapeControllerFactory subclass without requiring changes to existing appli-
cation code. For example, Exercise 5.8 asks you to create a RandomMyShapeCon-
troller that draws random shapes in the drawing. To add this new
MyShapeController to the application, you also must create a MyShapeControl-
lerFactory subclass (e.g., RandomMyShapeControllerFactory) that creates
RandomMyShapeControllers. From the command line, the user can specify that the
program should use this new factory by specifying the system property as follows

java -DMyShapeControllerFactory=RandomMyShapeControllerFac-
tory com.deitel.advjhtp1.drawing.DeitelDrawing

If the user does not specify a class name in the MyShapeControllerFactory system
property, the application uses the default MyShapeControllerFactory (line 39).

5.6.3 Drag-and-Drop Controller

The Deitel Drawing application supports two types of drag-and-drop operations. First, us-
ers can drag and drop certain MyShapes within drawings and between drawings in the
multiple-document interface. Second, users can drag JPEG images from the host operating
system’s file manager and drop them on drawings to add those images to drawings.

There are several objects required to enable drag and drop in a Java application. A
drag-and-drop operation begins in a DragSource. Static method getDefaultDrag-
Source of class DragSource returns the DragSource for the host platform. A
DragGestureRecognizer recognizes user gestures that begin drag-and-drop opera-
tions, such as pressing the mouse button over an object and dragging that object. When a
user makes a drag gesture, the DragGestureRecognizer notifies its registered
DragGestureListeners. The DragGestureListener then begins the drag-and-
drop operation. The user continues the drag gesture until reaching the DropTarget,
which is the destination for the drag-and-drop operation. When the user makes a gesture to
complete the drag-and-drop operation (e.g., by releasing the mouse button), both the
DropTarget and DragSource are notified that the drag-and-drop operation has com-
pleted. The event associated with the drag-and-drop operation’s completion includes infor-
mation about the success or failure of the drag-and-drop operation and a Transferable
object containing the data that was transferred.

In the Deitel Drawing application, an instance of class DragAndDropController
(Fig. 5.19) controls each drag-and-drop operation. Class DragAndDropController
implements three interfaces to handle drag-and-drop operations—DragGestureLis-
tener, DragSourceListener and DropTargetListener. These interfaces
enable DragAndDropController to recognize drag gestures, DragSource events
and DropTarget events.

1 // DragAndDropController.java
2 // DragAndDropController is a controller for handling drag and
3 // drop in DeitelDrawing. DragAndDropController implements

Fig. 5.19Fig. 5.19Fig. 5.19Fig. 5.19 DragAndDropController for moving MyShapes between drawings
and adding JPEG images to drawings using drag and drop (part 1 of 8).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 277

4 // DragGestureListener and DragSourceListener to handle drag
5 // events and DropTargetListener to handle drop events.
6 package com.deitel.advjhtp1.drawing.controller;
7
8 // Java core packages
9 import java.util.*;

10 import java.io.*;
11 import java.awt.Point;
12 import java.awt.dnd.*;
13 import java.awt.datatransfer.*;
14
15 // Deitel packages
16 import com.deitel.advjhtp1.drawing.model.*;
17 import com.deitel.advjhtp1.drawing.model.shapes.*;
18
19 public class DragAndDropController implements DragGestureListener,
20 DragSourceListener, DropTargetListener {
21
22 // model to control
23 private DrawingModel drawingModel;
24
25 private boolean dragMode = false;
26
27 // DragAndDropController constructor
28 public DragAndDropController(DrawingModel model)
29 {
30 drawingModel = model;
31 }
32
33 // set drag mode
34 public void setDragMode(boolean drag)
35 {
36 dragMode = drag;
37 }
38
39 // recognize drag operation beginning (method of interface
40 // DragGestureListener)
41 public void dragGestureRecognized(DragGestureEvent event)
42 {
43 // if not in dragMode, ignore drag gesture
44 if (!dragMode)
45 return;
46
47 // get Point at which drag began
48 Point origin = event.getDragOrigin();
49
50 // get MyShapes from DrawingModel
51 List shapes = new ArrayList(drawingModel.getShapes());
52
53 // find top-most shape that contains drag origin (i.e.,
54 // start at end of ListIterator and work backwards)

Fig. 5.19Fig. 5.19Fig. 5.19Fig. 5.19 DragAndDropController for moving MyShapes between drawings
and adding JPEG images to drawings using drag and drop (part 2 of 8).

278 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

55 ListIterator shapeIterator =
56 shapes.listIterator(shapes.size());
57
58 while (shapeIterator.hasPrevious()) {
59
60 MyShape shape = (MyShape) shapeIterator.previous();
61
62 if (shape.contains(origin)) {
63
64 // create TransferableShape for dragging shape
65 // from Point origin
66 TransferableShape transfer =
67 new TransferableShape(shape, origin);
68
69 // start drag operation
70 event.startDrag(null, transfer, this);
71
72 break;
73 }
74
75 } // end while
76
77 } // end method dragGestureRecognized
78
79 // handle drop events (method of interface DropTargetListener)
80 public void drop(DropTargetDropEvent event)
81 {
82 // get dropped object
83 Transferable transferable = event.getTransferable();
84
85 // get dropped object's DataFlavors
86 DataFlavor[] dataFlavors =
87 transferable.getTransferDataFlavors();
88
89 // get DropTargetDropEvent location
90 Point location = event.getLocation();
91
92 // process drops for supported types
93 for (int i = 0; i < dataFlavors.length; i++) {
94 DataFlavor dataFlavor = dataFlavors[i];
95
96 // handle drop of JPEG images
97 if (dataFlavor.equals(
98 DataFlavor.javaFileListFlavor)) {
99
100 // accept the drop operation
101 event.acceptDrop(DnDConstants.ACTION_COPY);
102
103 // attempt to drop the images and indicate whether
104 // drop is complete
105 event.dropComplete(
106 dropImages(transferable, location));

Fig. 5.19Fig. 5.19Fig. 5.19Fig. 5.19 DragAndDropController for moving MyShapes between drawings
and adding JPEG images to drawings using drag and drop (part 3 of 8).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 279

107 }
108
109 // handle drop of TransferableShape objects
110 else if (dataFlavor.isMimeTypeEqual(
111 TransferableShape.MIME_TYPE)) {
112
113 // accept drop of TransferableShape
114 event.acceptDrop(DnDConstants.ACTION_MOVE);
115
116 // drop TransferableShape into drawing
117 dropShape(transferable, location);
118
119 // complete drop operation
120 event.dropComplete(true);
121 }
122
123 // reject all other DataFlavors
124 else
125 event.rejectDrop();
126
127 } // end for
128
129 } // end method drop
130
131 // drop JPEG images onto drawing
132 private boolean dropImages(Transferable transferable,
133 Point location)
134 {
135 // boolean indicating successful drop
136 boolean success = true;
137
138 // attempt to drop images onto drawing
139 try {
140
141 // get list of dropped files
142 List fileList =
143 (List) transferable.getTransferData(
144 DataFlavor.javaFileListFlavor);
145
146 Iterator iterator = fileList.iterator();
147
148 // search for JPEG images
149 for (int i = 1; iterator.hasNext(); i++) {
150 File file = (File) iterator.next();
151
152 // if dropped file is a JPEG image, decode and
153 // add MyImage to drawingModel
154 if (fileIsJPEG(file)) {
155
156 // create MyImage for given JPEG file
157 MyImage image = new MyImage();
158 image.setFileName(file.getPath());

Fig. 5.19Fig. 5.19Fig. 5.19Fig. 5.19 DragAndDropController for moving MyShapes between drawings
and adding JPEG images to drawings using drag and drop (part 4 of 8).

280 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

159 image.setPoint1(location.x, location.y);
160
161 // add to DrawingModel
162 drawingModel.addShape(image);
163 }
164
165 else
166 success = false;
167
168 } // end for
169
170 } // end try
171
172 // handle exception if DataFlavor not supported
173 catch (UnsupportedFlavorException flavorException) {
174 success = false;
175 flavorException.printStackTrace();
176 }
177
178 // handle exception reading File
179 catch (IOException ioException) {
180 success = false;
181 ioException.printStackTrace();
182 }
183
184 return success;
185
186 } // end method dropImages
187
188 // return true if File has .jpg or .jpeg extension
189 private boolean fileIsJPEG(File file)
190 {
191 String fileName = file.getName().toLowerCase();
192
193 return fileName.endsWith(".jpg") ||
194 fileName.endsWith(".jpeg");
195 }
196
197 // drop MyShape object onto drawing
198 private void dropShape(Transferable transferable,
199 Point location)
200 {
201 try {
202
203 DataFlavor flavor = new DataFlavor(
204 TransferableShape.MIME_TYPE, "Shape");
205
206 // get TransferableShape object
207 TransferableShape transferableShape =
208 (TransferableShape) transferable.getTransferData(
209 flavor);
210

Fig. 5.19Fig. 5.19Fig. 5.19Fig. 5.19 DragAndDropController for moving MyShapes between drawings
and adding JPEG images to drawings using drag and drop (part 5 of 8).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 281

211 // get MyShape and origin Point from TransferableShape
212 MyShape shape = transferableShape.getShape();
213 Point origin = transferableShape.getOrigin();
214
215 // calculate offset for dropping MyShape
216 int xOffSet = location.x - origin.x;
217 int yOffSet = location.y - origin.y;
218
219 shape.moveByOffSet(xOffSet, yOffSet);
220
221 // add MyShape to target DrawingModel
222 drawingModel.addShape(shape);
223
224 } // end try
225
226 // handle exception if DataFlavor not supported
227 catch (UnsupportedFlavorException flavorException) {
228 flavorException.printStackTrace();
229 }
230
231 // handle exception getting Transferable data
232 catch (IOException ioException) {
233 ioException.printStackTrace();
234 }
235
236 } // end method dropShape
237
238 // check for success when drag-and-drop operation ends
239 // (method of interface DragSourceListener)
240 public void dragDropEnd(DragSourceDropEvent event)
241 {
242 // if drop successful, remove MyShape from source
243 // DrawingModel
244 if (event.getDropSuccess()) {
245
246 // get Transferable object from DragSourceContext
247 Transferable transferable =
248 event.getDragSourceContext().getTransferable();
249
250 // get TransferableShape object from Transferable
251 try {
252
253 // get TransferableShape object
254 TransferableShape transferableShape =
255 (TransferableShape) transferable.getTransferData(
256 new DataFlavor(TransferableShape.MIME_TYPE,
257 "Shape"));
258
259 // get MyShape from TransferableShape object
260 // and remove from source DrawingModel
261 drawingModel.removeShape(
262 transferableShape.getShape());

Fig. 5.19Fig. 5.19Fig. 5.19Fig. 5.19 DragAndDropController for moving MyShapes between drawings
and adding JPEG images to drawings using drag and drop (part 6 of 8).

282 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

263 }
264
265 // handle exception if DataFlavor not supported
266 catch (UnsupportedFlavorException flavorException) {
267 flavorException.printStackTrace();
268 }
269
270 // handle exception getting transfer data
271 catch (IOException ioException) {
272 ioException.printStackTrace();
273 }
274
275 } // end if
276
277 } // end method dragDropEnd
278
279 // required methods of interface DropTargetListener
280 public void dragEnter(DropTargetDragEvent event) {}
281 public void dragExit(DropTargetEvent event) {}
282 public void dragOver(DropTargetDragEvent event) {}
283 public void dropActionChanged(DropTargetDragEvent event) {}
284
285 // required methods of interface DragSourceListener
286 public void dragEnter(DragSourceDragEvent event) {}
287 public void dragExit(DragSourceEvent event) {}
288 public void dragOver(DragSourceDragEvent event) {}
289 public void dropActionChanged(DragSourceDragEvent event) {}
290 }

Fig. 5.19Fig. 5.19Fig. 5.19Fig. 5.19 DragAndDropController for moving MyShapes between drawings
and adding JPEG images to drawings using drag and drop (part 7 of 8).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 283

The drag-and-drop subsystem invokes method dragGestureRecognized (lines
41–77) when the user makes a drag gesture, such as pressing the mouse button and dragging
the mouse on a draggable object. If the user has not selected drag mode in the Deitel
Drawing application, line 45 returns to ignore the drag gesture. Lines 58–75 search through
the Collection of MyShapes in the DrawingModel for the topmost shape that inter-
sects Point origin, which is where the drag gesture occurred. Note that lines 58–75 go
through the Collection in reverse order, since the topmost shape is at the end of the
Collection. Lines 66–67 create a TransferableShape (Fig. 5.22) that contains the
MyShape to be dragged and the Point at which the drag began. Line 70 invokes method
startDrag of class DragGestureEvent to begin the drag-and-drop operation.

When the user drops a dragged object, the DropTarget notifies its DropTar-
getListeners by invoking method drop (lines 80–129). Line 83 gets the Transfer-
able object from the DropTargetEvent. Each Transferable object contains an
array of DataFlavors that describe the type of data contained in the Transferable
object. Lines 93–127 process the array of DataFlavors to determine the type of object
that the user dropped. If the DataFlavor is DataFlavor.javaFileListFlavor
(lines 97–98), the user dropped a List of Files from the host operating system’s file
manager. Line 101 accepts the drop, and line 106 invokes method dropImages to pro-
cess the File List. The Deitel Drawing application allows the user to drop only JPEG
images, not other file types. If method dropImages returns true, the files were all JPEG
images and the drag-and-drop operation completes successfully. If the DataFlavor’s
MIME type matches class TransferableShape’s MIME type (lines 110–111), line
114 invokes method acceptDrop of class DropTargetDropEvent to accept the

Fig. 5.19Fig. 5.19Fig. 5.19Fig. 5.19 DragAndDropController for moving MyShapes between drawings
and adding JPEG images to drawings using drag and drop (part 8 of 8).

284 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

drop and line 117 invokes method dropShape to process the MyShape that the user
dropped. Line 120 invokes method dropComplete of class DropTargetDropEvent
to indicate that the drop completed successfully. If the DataFlavor was neither a file list
from the file manager nor a TransferableShape, line 125 rejects the drop by invoking
method rejectDrop of class DropTargetDropEvent.

Method dropImages (lines 132–186) takes as arguments a Transferable object
containing a File List and the Point at which the drop occurred. Lines 142–144 get
the File List, and line 146 obtains an Iterator to process the List. Lines 149–168
check each File to determine whether it contains a JPEG image. If the File does contain
a JPEG image (line 154), lines 157–162 create a new MyImage object for the JPEG image
and add it to the DrawingModel. Method fileIsJPEG (lines 189–195) returns true
if the given File’s name ends with the .jpg or .jpeg extension.

Method dropShape (lines 198–253) takes as a Transferable argument the
object that the user dropped and a Point argument for the drop location. Lines 207–209
get the TransferableShape object by invoking method getTransferData of
interface Transferable. If the Transferable object does not support the
DataFlavor passed on line 209, method getTransferData throws an Unsup-
portedFlavorException. If there is an error reading the data, method getTrans-
ferData could throw an IOException. Line 212 gets the MyShape object from the
TransferableShape, and line 213 gets the Point from which the MyShape was
dragged. Lines 216–219 calculate the offset from the dragged point to the drop point and
invoke MyShape method moveByOffSet to position the MyShape. Line 222 adds the
MyShape to the DropTarget’s DrawingModel.

The drag-and-drop subsystem invokes method dragDropEnd (lines 240–277) when
the drag-and-drop operation completes. If the drag-and-drop operation succeeded (line
244), lines 261–262 remove the dragged MyShape object from the source Drawing-
Model. The remaining empty methods (lines 280–289) satisfy interfaces DropTar-
getListener and DragSourceListener. Figure 5.20 and Fig. 5.21 describe the
methods of interfaces DragSourceListener and DropTargetListener.

Method Description

public void dragEnter(DragSourceDragEvent event)

Invoked when drag-and-drop operation enters the DragSource.

public void dragExit(DragSourceDragEvent event)

Invoked when drag-and-drop operation exits the DragSource.

public void dragOver(DragSourceDragEvent event)

Invoked when drag-and-drop operation moves over DragSource.

public void dragDropEnd(DragSourceDragEvent event)

Invoked when drag-and-drop operation ends.

public void dragDropActionChanged(DragSourceDragEvent event)

Invoked if user changes drag-and-drop operation (e.g., from copy to move).

Fig. 5.20Fig. 5.20Fig. 5.20Fig. 5.20 DragSourceListener interface methods and their descriptions.

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 285

Class TransferableShape (Fig. 5.22) implements interface Transferable to
provide a means by which to transfer MyShapes using drag and drop. Interface Trans-
ferable is part of Java’s data transfer API, which enables clipboard and drag-and-drop
functionality in Java applications. Deitel Drawing enables users to drag and drop Trans-
ferableShape objects between drawings in the multiple-document interface. Lines 24–
25 define static String variable MIME_TYPE, which the data transfer API uses to
determine the type of data being transferred. MIME types (Multipurpose Internet Mail
Extension types) are text strings that were originally created to describe data contained in
e-mail attachments sent over the Internet. Many applications and operating systems now
use MIME types for the more general purpose of describing objects that contain data, such
as files, items on the system clipboard and drag-and-drop objects. Lines 28–29 declare an
array of DataFlavor objects that class TransferableShape supports.

Method Description

public void dragEnter(DropTargetDragEvent event)

Invoked when drag-and-drop operation enters the DropTarget.

public void dragExit(DropTargetEvent event)

Invoked when drag-and-drop operation exits the DropTarget.

public void dragOver(DropTargetDragEvent event)

Invoked when drag-and-drop operation moves over DropTarget.

public void drop(DragTargetDropEvent event)

Invoked when user drops dragged object on DropTarget.

public void dragDropActionChanged(DragSourceDragEvent event)

Invoked if user changes drag-and-drop operation (e.g., from copy to move).

Fig. 5.21Fig. 5.21Fig. 5.21Fig. 5.21 DropTargetListener interface methods and their descriptions.

1 // TransferableShape.java
2 // TransferableShape is a Transferable object that contains a
3 // MyShape and the point from which the user dragged that MyShape.
4 package com.deitel.advjhtp1.drawing.controller;
5
6 // Java core packages
7 import java.util.*;
8 import java.io.*;
9 import java.awt.Point;

10 import java.awt.dnd.*;
11 import java.awt.datatransfer.*;
12
13 // Deitel packages
14 import com.deitel.advjhtp1.drawing.model.*;
15 import com.deitel.advjhtp1.drawing.model.shapes.*;
16

Fig. 5.22Fig. 5.22Fig. 5.22Fig. 5.22 TransferableShape enables DragAndDropController to
transfer MyShape objects through drag-and-drop operations (part 1 of 3).

286 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

17 public class TransferableShape implements Transferable {
18
19 // the MyShape to transfer from Point origin
20 private MyShape shape;
21 private Point origin;
22
23 // MIME type that identifies dragged MyShapes
24 public static final String MIME_TYPE =
25 "application/x-deitel-shape";
26
27 // DataFlavors that MyShape supports for drag and drop
28 private static final DataFlavor[] flavors = new DataFlavor[] {
29 new DataFlavor(MIME_TYPE, "Shape") };
30
31 // TransferableShape constructor
32 public TransferableShape(MyShape myShape, Point originPoint)
33 {
34 shape = myShape;
35 origin = originPoint;
36
37 } // end TransferableShape constructor
38
39 // get Point from which user dragged MyShape
40 public Point getOrigin()
41 {
42 return origin;
43 }
44
45 // get MyShape
46 public MyShape getShape()
47 {
48 return shape;
49 }
50
51 // get data flavors MyShape supports
52 public DataFlavor[] getTransferDataFlavors()
53 {
54 return flavors;
55 }
56
57 // determine if MyShape supports given data flavor
58 public boolean isDataFlavorSupported(DataFlavor flavor)
59 {
60 // search for given DataFlavor in flavors array
61 for (int i = 0; i < flavors.length; i++)
62
63 if (flavor.equals(flavors[i]))
64 return true;
65
66 return false;
67 }
68

Fig. 5.22Fig. 5.22Fig. 5.22Fig. 5.22 TransferableShape enables DragAndDropController to
transfer MyShape objects through drag-and-drop operations (part 2 of 3).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 287

Method getTransferDataFlavors (lines 52–55) returns the Transfer-
ableShape’s array of DataFlavors. Method getTransferDataFlavors returns
a DataFlavor array because it is possible that some objects support many DataFla-
vors. Method isDataFlavorSupported (lines 58–67) takes a DataFlavor argu-
ment that lines 61–64 compare to each DataFlavor that class TransferableShape
supports. If the given DataFlavor matches a supported DataFlavor, line 64 returns
true.

Method getTransferData (lines 70–78) returns an Object containing the data
to be transferred by the drag-and-drop operation. The DataFlavor argument specifies
the particular type of data to be transferred. If the DataFlavor argument specifies an
invalid DataFlavor for class TransferableShape, line 74 throws an Unsup-
portedFlavorException. If the DataFlavor matches a supported DataFlavor
for class MyShape, line 77 returns a reference to the current TransferableShape
instance to be transferred.

5.7 DrawingInternalFrame Component
DrawingInternalFrame (Fig. 5.23) is a JInternalFrame subclass that provides
a user interface for viewing and modifying drawings. The Deitel Drawing application uses
a multiple-document interface to allow the user to view and modify several drawings in a
single application window. When the user creates a new drawing or opens a saved drawing,
the drawing is displayed in a DrawingInternalFrame.

69 // get data to be transferred for given DataFlavor
70 public Object getTransferData(DataFlavor flavor)
71 throws UnsupportedFlavorException, IOException
72 {
73 if (!isDataFlavorSupported(flavor))
74 throw new UnsupportedFlavorException(flavor);
75
76 // return TransferableShape object for transfer
77 return this;
78 }
79 }

1 // DrawingInternalFrame.java
2 // DrawingInternalFrame is a JInternalFrame subclass for
3 // DeitelDrawing drawings.
4 package com.deitel.advjhtp1.drawing;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;

Fig. 5.23Fig. 5.23Fig. 5.23Fig. 5.23 DrawingInternalFrame class that provides a user interface for
creating drawings (part 1 of 15).

Fig. 5.22Fig. 5.22Fig. 5.22Fig. 5.22 TransferableShape enables DragAndDropController to
transfer MyShape objects through drag-and-drop operations (part 3 of 3).

288 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

9 import java.awt.dnd.*;
10 import java.io.*;
11 import java.util.*;
12 import java.util.List;
13
14 // Java extension packages
15 import javax.swing.*;
16 import javax.swing.event.*;
17 import javax.swing.border.*;
18
19 // Deitel packages
20 import com.deitel.advjhtp1.drawing.model.*;
21 import com.deitel.advjhtp1.drawing.model.shapes.*;
22 import com.deitel.advjhtp1.drawing.view.*;
23 import com.deitel.advjhtp1.drawing.controller.*;
24
25 public class DrawingInternalFrame extends JInternalFrame
26 implements Observer {
27
28 // offsets to stagger new windows
29 private static final int xOffset = 30;
30 private static final int yOffset = 30;
31 private static int openFrameCount = 0;
32
33 // MVC components
34 private DrawingModel drawingModel;
35 private DrawingView drawingView;
36 private MyShapeController myShapeController;
37 private DragAndDropController dragAndDropController;
38 private MyShapeControllerFactory shapeControllerFactory;
39
40 // file management properties
41 private JFileChooser fileChooser;
42 private String fileName;
43 private String absoluteFilePath;
44 private boolean saved = true;
45
46 private DrawingToolBar toolBar;
47 private ZoomDialog zoomDialog;
48
49 // Actions for save, zoom, move, etc.
50 private Action saveAction, saveAsAction, zoomAction,
51 moveAction, fillAction, gradientAction;
52
53 // DrawingInternalFrame constructor
54 public DrawingInternalFrame(String title)
55 {
56 super(title + " - " + (++openFrameCount), true, true,
57 false, true);
58
59 setDefaultCloseOperation(
60 WindowConstants.DO_NOTHING_ON_CLOSE);

Fig. 5.23Fig. 5.23Fig. 5.23Fig. 5.23 DrawingInternalFrame class that provides a user interface for
creating drawings (part 2 of 15).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 289

61
62 // create new DrawingModel
63 drawingModel = new DrawingModel();
64
65 // create new DrawingView for DrawingModel
66 drawingView = new DrawingView(drawingModel);
67
68 // register DrawingInternalFrame as a DrawingModel Observer
69 drawingModel.addObserver(this);
70
71 // MyShapeControllerFactory for creating MyShapeControllers
72 shapeControllerFactory =
73 MyShapeControllerFactory.getInstance();
74
75 // create DragAndDropController for drag and drop operations
76 dragAndDropController =
77 new DragAndDropController(drawingModel);
78
79 // get default DragSource for current platform
80 DragSource dragSource = DragSource.getDefaultDragSource();
81
82 // create DragGestureRecognizer to register
83 // DragAndDropController as DragGestureListener
84 dragSource.createDefaultDragGestureRecognizer(drawingView,
85 DnDConstants.ACTION_COPY_OR_MOVE,
86 dragAndDropController);
87
88 // enable drawingView to accept drop operations, using
89 // dragAndDropController as DropTargetListener
90 drawingView.setDropTarget(new DropTarget(drawingView,
91 DnDConstants.ACTION_COPY_OR_MOVE,
92 dragAndDropController));
93
94 // add drawingView to viewPanel, put viewPanel in
95 // JScrollPane and add JScrollPane to DrawingInternalFrame
96 JPanel viewPanel = new JPanel();
97 viewPanel.add(drawingView);
98 getContentPane().add(new JScrollPane(viewPanel),
99 BorderLayout.CENTER);
100
101 // create fileChooser and set its FileFilter
102 fileChooser = new JFileChooser();
103 fileChooser.setFileFilter(new DrawingFileFilter());
104
105 // show/hide ZoomDialog when frame activated/deactivated
106 addInternalFrameListener(
107 new InternalFrameAdapter() {
108
109 // when DrawingInternalFrame activated, make
110 // associated zoomDialog visible
111 public void internalFrameActivated(
112 InternalFrameEvent event)

Fig. 5.23Fig. 5.23Fig. 5.23Fig. 5.23 DrawingInternalFrame class that provides a user interface for
creating drawings (part 3 of 15).

290 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

113 {
114 if (zoomDialog != null)
115 zoomDialog.setVisible(true);
116 }
117
118 // when DrawingInternalFrame is deactivated, make
119 // associated zoomDialog invisible
120 public void internalFrameDeactivated(
121 InternalFrameEvent event)
122 {
123 if (zoomDialog != null)
124 zoomDialog.setVisible(false);
125 }
126 }
127
128); // end call to addInternalFrameListener
129
130 // stagger each DrawingInternalFrame to prevent it from
131 // obscuring other InternalFrames
132 setLocation(xOffset * openFrameCount,
133 yOffset * openFrameCount);
134
135 // add new DrawingToolBar to NORTH area
136 toolBar = new DrawingToolBar();
137 getContentPane().add(toolBar, BorderLayout.NORTH);
138
139 // get name of first MyShape that shapeControllerFactory
140 // supports and create MyShapeController
141 String shapeName =
142 shapeControllerFactory.getSupportedShapes()[0];
143
144 setMyShapeController(
145 shapeControllerFactory.newMyShapeController(
146 drawingModel, shapeName));
147
148 // set DrawingInternalFrame size
149 setSize(500, 320);
150
151 } // end DrawingInternalFrame constructor
152
153 // get DrawingInternalFrame Save Action
154 public Action getSaveAction()
155 {
156 return saveAction;
157 }
158
159 // get DrawingInternalFrame Save As Action
160 public Action getSaveAsAction()
161 {
162 return saveAsAction;
163 }
164

Fig. 5.23Fig. 5.23Fig. 5.23Fig. 5.23 DrawingInternalFrame class that provides a user interface for
creating drawings (part 4 of 15).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 291

165 // set Saved flag for current drawing and update frame
166 // title to indicate saved state to user
167 public void setSaved(boolean drawingSaved)
168 {
169 // set Saved property
170 saved = drawingSaved;
171
172 // get current DrawingInternalFrame title
173 String title = getTitle();
174
175 // if drawing is not saved and title does not end with
176 // an asterisk, add asterisk to title
177 if (!title.endsWith(" *") && !isSaved())
178 setTitle(title + " *");
179
180 // if title ends with * and drawing has been saved,
181 // remove * from title
182 else
183
184 if (title.endsWith(" *") && isSaved())
185 setTitle(title.substring(0,
186 title.length() - 2));
187
188 // enable save actions if drawing not saved
189 getSaveAction().setEnabled(!isSaved());
190 }
191
192 // return value of saved property
193 public boolean isSaved()
194 {
195 return saved;
196 }
197
198 // handle updates from DrawingModel
199 public void update(Observable observable, Object object)
200 {
201 // set saved property to false to indicate that
202 // DrawingModel has changed
203 setSaved(false);
204 }
205
206 // set fileName for current drawing
207 public void setFileName(String file)
208 {
209 fileName = file;
210
211 // update DrawingInternalFrame title
212 setTitle(fileName);
213 }
214
215 // get fileName for current drawing

Fig. 5.23Fig. 5.23Fig. 5.23Fig. 5.23 DrawingInternalFrame class that provides a user interface for
creating drawings (part 5 of 15).

292 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

216 public String getFileName()
217 {
218 return fileName;
219 }
220
221 // get full path (absoluteFilePath) for current drawing
222 public String getAbsoluteFilePath()
223 {
224 return absoluteFilePath;
225 }
226
227 // set full path (absoluteFilePath) for current drawing
228 public void setAbsoluteFilePath(String path)
229 {
230 absoluteFilePath = path;
231 }
232
233 // get DrawingModel for current drawing
234 public DrawingModel getModel()
235 {
236 return drawingModel;
237 }
238
239 // set JInternalFrame and ZoomDialog titles
240 public void setTitle(String title)
241 {
242 super.setTitle(title);
243
244 if (zoomDialog != null)
245 zoomDialog.setTitle(title);
246 }
247
248 // set MyShapeController for handling user input
249 public void setMyShapeController(
250 MyShapeController controller)
251 {
252 // remove old MyShapeController
253 if (myShapeController != null) {
254
255 // remove mouse listeners
256 drawingView.removeMouseListener(
257 myShapeController.getMouseListener());
258
259 drawingView.removeMouseMotionListener(
260 myShapeController.getMouseMotionListener());
261 }
262
263 // set MyShapeController property
264 myShapeController = controller;
265
266 // register MyShapeController to handle mouse events
267 drawingView.addMouseListener(

Fig. 5.23Fig. 5.23Fig. 5.23Fig. 5.23 DrawingInternalFrame class that provides a user interface for
creating drawings (part 6 of 15).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 293

268 myShapeController.getMouseListener());
269
270 drawingView.addMouseMotionListener(
271 myShapeController.getMouseMotionListener());
272
273 // update new MyShapeController with currently selected
274 // drawing properties (stroke size, color, fill, etc.)
275 myShapeController.setStrokeSize(toolBar.getStrokeSize());
276
277 myShapeController.setPrimaryColor(
278 toolBar.getPrimaryColor());
279
280 myShapeController.setSecondaryColor(
281 toolBar.getSecondaryColor());
282
283 myShapeController.setDragMode(toolBar.getDragMode());
284
285 myShapeController.setShapeFilled(
286 toolBar.getShapeFilled());
287
288 myShapeController.setUseGradient(
289 toolBar.getUseGradient());
290
291 } // end method setMyShapeController
292
293 // close DrawingInternalFrame; return false if drawing
294 // was not saved and user canceled the close operation
295 public boolean close()
296 {
297 // if drawing not saved, prompt user to save
298 if (!isSaved()) {
299
300 // display JOptionPane confirmation dialog to allow
301 // user to save drawing
302 int response = JOptionPane.showInternalConfirmDialog(
303 this, "The drawing in this window has been " +
304 "modified. Would you like to save changes?",
305 "Save Changes", JOptionPane.YES_NO_CANCEL_OPTION,
306 JOptionPane.QUESTION_MESSAGE);
307
308 // if user selects Yes, save drawing and close
309 if (response == JOptionPane.YES_OPTION) {
310 saveDrawing();
311 dispose();
312
313 // return true to indicate frame closed
314 return true;
315 }
316
317 // if user selects No, close frame without saving
318 else if (response == JOptionPane.NO_OPTION) {
319 dispose();

Fig. 5.23Fig. 5.23Fig. 5.23Fig. 5.23 DrawingInternalFrame class that provides a user interface for
creating drawings (part 7 of 15).

294 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

320 return true;
321 }
322
323 // if user selects Cancel, do not save or close
324 else
325 return false; // indicate frame was not closed
326 }
327
328 // if drawing has been saved, close frame
329 else {
330 dispose();
331 return true;
332 }
333
334 } // end method close
335
336 // open existing drawing from file
337 public boolean openDrawing()
338 {
339 // open JFileChooser Open dialog
340 int response = fileChooser.showOpenDialog(this);
341
342 // if user selected valid file, open an InputStream
343 // and retrieve the saved shapes
344 if (response == fileChooser.APPROVE_OPTION) {
345
346 // get selecte file name
347 String fileName =
348 fileChooser.getSelectedFile().getAbsolutePath();
349
350 // get shapes List from file
351 Collection shapes =
352 DrawingFileReaderWriter.readFile(fileName);
353
354 // set shapes in DrawingModel
355 drawingModel.setShapes(shapes);
356
357 // set fileName property
358 setFileName(fileChooser.getSelectedFile().getName());
359
360 // set absoluteFilePath property
361 setAbsoluteFilePath(fileName);
362
363 // set saved property
364 setSaved(true);
365
366 // return true to indicate successful file open
367 return true;
368 }
369
370 // return false to indicate file open failed
371 else

Fig. 5.23Fig. 5.23Fig. 5.23Fig. 5.23 DrawingInternalFrame class that provides a user interface for
creating drawings (part 8 of 15).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 295

372 return false;
373
374 } // end method openDrawing
375
376 // save current drawing to file
377 public void saveDrawing()
378 {
379 // get absolute path to which file should be saved
380 String fileName = getAbsoluteFilePath();
381
382 // if fileName is null or empty, call saveDrawingAs
383 if (fileName == null || fileName.equals(""))
384 saveDrawingAs();
385
386 // write drawing to given fileName
387 else {
388 DrawingFileReaderWriter.writeFile(drawingModel,
389 fileName);
390
391 // update saved property
392 setSaved(true);
393 }
394
395 } // end method saveDrawing
396
397 // prompt user for file name and save drawing
398 public void saveDrawingAs()
399 {
400 // display JFileChooser Save dialog
401 int response = fileChooser.showSaveDialog(this);
402
403 // if user selected a file, save drawing
404 if (response == fileChooser.APPROVE_OPTION)
405 {
406 // set absoluteFilePath property
407 setAbsoluteFilePath(
408 fileChooser.getSelectedFile().getAbsolutePath());
409
410 // set fileName property
411 setFileName(fileChooser.getSelectedFile().getName());
412
413 // write drawing to file
414 DrawingFileReaderWriter.writeFile(drawingModel,
415 getAbsoluteFilePath());
416
417 // update saved property
418 setSaved(true);
419 }
420
421 } // end method saveDrawingAs
422
423 // display zoomDialog

Fig. 5.23Fig. 5.23Fig. 5.23Fig. 5.23 DrawingInternalFrame class that provides a user interface for
creating drawings (part 9 of 15).

296 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

424 public void showZoomDialog()
425 {
426 // if zoomDialog is null, create one
427 if (zoomDialog == null)
428 zoomDialog = new ZoomDialog(getModel(), getTitle());
429
430 // make extant zoomDialog visible
431 else
432 zoomDialog.setVisible(true);
433 }
434
435 // dispose DrawingInternalFrame
436 public void dispose()
437 {
438 // dispose associated zoomDialog
439 if (zoomDialog != null)
440 zoomDialog.dispose();
441
442 super.dispose();
443 }
444
445 // JToolBar subclass for DrawingInternalFrame
446 private class DrawingToolBar extends JToolBar {
447
448 // user interface components
449 private GradientIcon gradientIcon;
450 private JPanel primaryColorPanel, secondaryColorPanel;
451 private JButton primaryColorButton;
452 private JButton secondaryColorButton;
453 private JComboBox shapeChoice, strokeSizeChoice;
454 private JToggleButton gradientButton, fillButton;
455 private JToggleButton moveButton;
456
457 // DrawingToolBar constructor
458 public DrawingToolBar()
459 {
460 // create JComboBox for choosing current shape type
461 shapeChoice = new JComboBox(
462 shapeControllerFactory.getSupportedShapes());
463 shapeChoice.setToolTipText("Choose Shape");
464
465 // when shapeChoice changes, get new MyShapeController
466 // from MyShapeControllerFactory
467 shapeChoice.addActionListener(
468 new ActionListener() {
469
470 public void actionPerformed(ActionEvent event)
471 {
472 // get selected shape type
473 String className =
474 shapeChoice.getSelectedItem().toString();
475

Fig. 5.23Fig. 5.23Fig. 5.23Fig. 5.23 DrawingInternalFrame class that provides a user interface for
creating drawings (part 10 of 15).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 297

476 setMyShapeController(
477 shapeControllerFactory.newMyShapeController(
478 drawingModel, className));
479 }
480 }
481
482); // end call to addActionListener
483
484 // create JComboBox for selecting stroke size
485 strokeSizeChoice = new JComboBox(
486 new String[] { "1.0", "2.0", "3.0", "4.0", "5.0",
487 "6.0", "7.0", "8.0", "9.0", "10.0" });
488
489 strokeSizeChoice.setToolTipText("Choose Line Width");
490
491 // set stroke size property to selected value
492 strokeSizeChoice.addActionListener(
493 new ActionListener() {
494
495 public void actionPerformed(ActionEvent event)
496 {
497 myShapeController.setStrokeSize(
498 getStrokeSize());
499 }
500 }
501);
502
503 // create JToggleButton for filling shapes
504 fillButton = new JToggleButton("Fill");
505
506 fillAction = new AbstractDrawingAction("Fill", null,
507 "Fill Shape", new Integer('L')) {
508
509 public void actionPerformed(ActionEvent event)
510 {
511 myShapeController.setShapeFilled(
512 getShapeFilled());
513 }
514 };
515
516 fillButton.setAction(fillAction);
517
518 // create GradientIcon to display gradient settings
519 gradientIcon = new GradientIcon(Color.black,
520 Color.white);
521
522 // create JToggleButton to enable/disable gradients
523 gradientButton = new JToggleButton(gradientIcon);
524
525 gradientAction = new AbstractDrawingAction("",
526 gradientIcon, "Use Gradient", new Integer('G')) {
527

Fig. 5.23Fig. 5.23Fig. 5.23Fig. 5.23 DrawingInternalFrame class that provides a user interface for
creating drawings (part 11 of 15).

298 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

528 public void actionPerformed(ActionEvent event)
529 {
530 myShapeController.setUseGradient(
531 getUseGradient());
532 }
533 };
534
535 gradientButton.setAction(gradientAction);
536
537 // create JPanel to display primary drawing color
538 primaryColorPanel = new JPanel();
539 primaryColorPanel.setPreferredSize(
540 new Dimension(16, 16));
541 primaryColorPanel.setOpaque(true);
542 primaryColorPanel.setBackground(Color.black);
543
544 // create JButton for changing color1
545 primaryColorButton = new JButton();
546 primaryColorButton.add(primaryColorPanel);
547
548 // display JColorChooser for selecting startColor value
549 primaryColorButton.addActionListener(
550 new ActionListener() {
551
552 public void actionPerformed(ActionEvent event)
553 {
554 Color color = JColorChooser.showDialog(
555 DrawingInternalFrame.this, "Select Color",
556 primaryColorPanel.getBackground());
557
558 if (color != null) {
559 primaryColorPanel.setBackground(color);
560 gradientIcon.setStartColor(color);
561 myShapeController.setPrimaryColor(color);
562 }
563 }
564
565 } // end ActionListener inner class
566
567); // end call to addActionListener
568
569 // create JPanel to display secondary drawing color
570 secondaryColorPanel = new JPanel();
571 secondaryColorPanel.setPreferredSize(
572 new Dimension(16, 16));
573 secondaryColorPanel.setOpaque(true);
574 secondaryColorPanel.setBackground(Color.white);
575
576 // create JButton for changing secondary color
577 secondaryColorButton = new JButton();
578 secondaryColorButton.add(secondaryColorPanel);
579

Fig. 5.23Fig. 5.23Fig. 5.23Fig. 5.23 DrawingInternalFrame class that provides a user interface for
creating drawings (part 12 of 15).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 299

580 // display JColorChooser for selecting endColor value
581 secondaryColorButton.addActionListener(
582 new ActionListener() {
583
584 public void actionPerformed(ActionEvent event)
585 {
586 Color color = JColorChooser.showDialog(
587 DrawingInternalFrame.this, "Select Color",
588 secondaryColorPanel.getBackground());
589
590 if (color != null) {
591 secondaryColorPanel.setBackground(color);
592 gradientIcon.setEndColor(color);
593 myShapeController.setSecondaryColor(
594 color);
595 }
596 }
597
598 } // end ActionListener inner class
599
600); // end call to addActionListener
601
602 // create Action for saving drawings
603 Icon saveIcon = new ImageIcon(
604 DrawingInternalFrame.class.getResource(
605 "images/save.gif"));
606
607 saveAction = new AbstractDrawingAction("Save", saveIcon,
608 "Save Drawing", new Integer('S')) {
609
610 public void actionPerformed(ActionEvent event)
611 {
612 saveDrawing();
613 }
614 };
615
616 // create action for saving drawings as given file name
617 Icon saveAsIcon = new ImageIcon(
618 DrawingInternalFrame.class.getResource(
619 "images/saveAs.gif"));
620
621 saveAsAction = new AbstractDrawingAction("Save As",
622 saveAsIcon, "Save Drawing As", new Integer('A')) {
623
624 public void actionPerformed(ActionEvent event)
625 {
626 saveDrawingAs();
627 }
628 };
629
630 // create action for displaying zoomDialog
631 Icon zoomIcon = new ImageIcon(

Fig. 5.23Fig. 5.23Fig. 5.23Fig. 5.23 DrawingInternalFrame class that provides a user interface for
creating drawings (part 13 of 15).

300 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

632 DrawingInternalFrame.class.getResource(
633 "images/zoom.gif"));
634
635 zoomAction = new AbstractDrawingAction("Zoom", zoomIcon,
636 "Show Zoom Window", new Integer('Z')) {
637
638 public void actionPerformed(ActionEvent event)
639 {
640 showZoomDialog();
641 }
642 };
643
644 // create JToggleButton for setting drag and drop mode
645 moveButton = new JToggleButton();
646
647 Icon moveIcon = new ImageIcon(
648 DrawingInternalFrame.class.getResource(
649 "images/move.gif"));
650
651 moveAction = new AbstractDrawingAction("Move", null,
652 "Move Shape", new Integer('M')) {
653
654 public void actionPerformed(ActionEvent event)
655 {
656 myShapeController.setDragMode(
657 getDragMode());
658
659 dragAndDropController.setDragMode(
660 getDragMode());
661 }
662 };
663
664 moveButton.setAction(moveAction);
665
666 // add Actions, buttons, etc. to JToolBar
667 add(saveAction);
668 add(saveAsAction);
669 addSeparator();
670 add(zoomAction);
671 addSeparator();
672 add(shapeChoice);
673 add(strokeSizeChoice);
674 addSeparator();
675 add(primaryColorButton);
676 add(secondaryColorButton);
677 addSeparator();
678 add(gradientButton);
679 add(fillButton);
680 addSeparator();
681 add(moveButton);
682
683 // disable floating

Fig. 5.23Fig. 5.23Fig. 5.23Fig. 5.23 DrawingInternalFrame class that provides a user interface for
creating drawings (part 14 of 15).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 301

Each DrawingInternalFrame has a DrawingModel, DrawingView,
MyShapeController and DragAndDropController (lines 36–39). These objects
implement the model-view-controller architecture in the Deitel Drawing application. The
DrawingInternalFrame’s DrawingView displays the drawing contained in the
associated DrawingModel.

684 setFloatable(false);
685
686 } // end DrawingToolBar constructor
687
688 // get currently selected stroke size
689 public float getStrokeSize()
690 {
691 Object selectedItem = strokeSizeChoice.getSelectedItem();
692
693 return Float.parseFloat(selectedItem.toString());
694 }
695
696 // get current shape filled value
697 public boolean getShapeFilled()
698 {
699 return fillButton.isSelected();
700 }
701
702 // get current use gradient property
703 public boolean getUseGradient()
704 {
705 return gradientButton.isSelected();
706 }
707
708 // get primary drawing Color
709 public Color getPrimaryColor()
710 {
711 return primaryColorPanel.getBackground();
712 }
713
714 // get secondary drawing Color
715 public Color getSecondaryColor()
716 {
717 return secondaryColorPanel.getBackground();
718 }
719
720 // get current drag mode
721 public boolean getDragMode()
722 {
723 return moveButton.isSelected();
724 }
725
726 } // end DrawingToolBar inner class
727 }

Fig. 5.23Fig. 5.23Fig. 5.23Fig. 5.23 DrawingInternalFrame class that provides a user interface for
creating drawings (part 15 of 15).

302 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

Lines 76–92 enable drag and drop in the DrawingInternalFrame. Lines 76–77
create a DragAndDropController, which controls drag-and-drop operations. Line 80
invokes static method getDefaultDragSource of class DragSource to get the host
platform’s default DragSource object. Lines 84–86 invoke method createDefault-
DragGestureRecognizer of class DragSource to register the DragAndDrop-
Controller as the listener for drag gestures that occur inside the DrawingView. This
enables the DragAndDropController to recognize user gestures to drag MyShapes
in a drawing. Lines 90–92 invoke method setDropTarget of class DrawingView to
enable the DrawingView to accept dropped objects, such as TransferableShapes
from other drawings or JPEG images from the host operating system’s file manager.

Each DrawingInternalFrame has an associated ZoomDialog that displays a
scaled view of the DrawingModel. Lines 106–128 create an InternalFrameLis-
tener that makes the ZoomDialog visible when the DrawingInternalFrame is
activated (lines 111–116) and hides the ZoomDialog when the DrawingInternal-
Frame is deactivated (lines 120–125). This ensures that the proper ZoomDialog will be
displayed when the user switches between DrawingInternalFrames in the multiple-
document interface.

Recall that the Deitel Drawing application uses a MyShapeControllerFactory
to create MyShapeControllers that handle user input. Lines 141–146 set a
MyShapeController for the DrawingInternalFrame. Line 142 invokes method
getSupportedShapes of class MyShapeControllerFactory to determine for
which types of shapes the MyShapeControllerFactory can provide MyShape-
Controllers. Lines 141–142 assign the zeroth supported shape to reference shape-
Name. Lines 144–146 invoke MyShapeControllerFactory method
newMyShapeController to obtain an appropriate MyShapeController for
shapeName, and set the DrawingInternalFrame’s MyShapeController.

Class DrawingInternalFrame implements interface Observer, so the Draw-
ingModel can notify the DrawingInternalFrame of changes. When DrawingIn-
ternalFrame receives an update indicating the DrawingModel has changed, method
update (lines 199–204) invokes method setSaved (lines 167–190) with argument
false. If property saved is false, method setSaved adds an asterisk to the Draw-
ingInternalFrame’s title to give the user a visual cue that indicates that the drawing
has been modified. If property saved is true—which indicates that the drawing has not
been modified since it was last saved—lines 185–186 remove the asterisk from the Draw-
ingInternalFrame’s title. If the drawing has been saved, line 189 disables the save-
Action. When the drawing is modified, line 189 enables the saveAction, which
allows the user to save the drawing.

Method setMyShapeController (lines 249–291) sets the MyShapeCon-
troller object for controlling mouse input. Lines 253–261 remove the previous
MouseListener and MouseMotionListener from the DrawingView. Lines
264–289 register the new MyShapeController’s MouseListener and MouseMo-
tionListener and configure the MyShapeController with the currently selected
stroke size, colors, drag mode, fill and gradient.

Method close (lines 295–334) closes the DrawingInternalFrame and prompts
the user to save the drawing if the DrawingModel has been modified since the last save.
Lines 302–306 prompt the user to save an unsaved drawing. If the user selects Yes, lines

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 303

310–314 save the drawing, invoke method dispose to close the DrawingInternal-
Frame and return true to indicate that the frame closed successfully. If the user selects
No, line 319 invokes method dispose without saving the drawing, and returns true to
indicate that the frame closed successfully. If the user selects Cancel, the drawing is not
saved and line 325 returns false to indicate that the DrawingInternalFrame was
not closed. If the drawing has not been modified since the last save, lines 330–331 invoke
method dispose and return true.

Method openDrawing (lines 337–374) opens an existing drawing from the file
system. Line 340 displays a JFileChooser open dialog. Lines 347–352 get the selected
file name and invoke static method readFile of class DrawingFileReaderWriter
to read the Collection of shapes from the file.

Method saveDrawing (lines 377–395) saves the current drawing. If the drawing
does not have an associated file name, line 384 invokes method saveDrawingAs. If the
drawing does have an associated file name, lines 388–389 invoke static method write-
File of class DrawingFileReaderWriter to save the drawing. Method save-
DrawingAs (lines 398–421) displays a JFileChooser save dialog to prompt the user
for a file in which to save the drawing. Lines 414–415 invoke static method writeFile
of class DrawingFileReaderWriter to save the drawing.

Inner class DrawingToolBar (lines 446–726) provides GUI components for saving
drawings, selecting the MyShape type to draw, and modifying the current MyShapeCon-
troller’s properties, including the stroke size, colors, drag mode, fill mode and gradient.
Lines 461–462 populate the shapeChoice JComboBox with the array of shape types
that the MyShapeControllerFactory supports. When the user selects a shape type
from shapeChoice, lines 477–478 invoke MyShapeControllerFactory method
newMyShapeController to obtain an appropriate MyShapeController for the
specified shape type. Lines 476–478 invoke method setMyShapeController to
specify the MyShapeController with which the DrawingInternalFrame should
process user input.

When the user changes the DrawingInternalFrame’s state by selecting a new
type of shape to draw, that change in state also causes a change in the DrawingInter-
nalFrame’s behavior. For example, if the user changes the MyShapeController ref-
erence from an instance of class MyTextController to and instance of class
MyLineController, the DrawingInternalFrame no longer behaves in the same
way. Now when the user presses the mouse button and drags the mouse, the DrawingIn-
ternalFrame draws lines instead of text. This is an example of the State design pattern,
which enables an object to change its behavior when that object’s state changes. Using the
State design pattern becomes beneficial when we add new states (i.e., MyShapeCon-
troller subclasses) to our system—we create an additional MyShapeController
subclass (e.g., RandomMyShapeController in Exercise 5.8) that encapsulates
DrawingInternalFrame’s behavior when occupying that state.

Lines 485–501 create a JComboBox for selecting the stroke size for shapes. Lines
504–516 create a JToggleButton and Action for creating filled shapes. Lines 519–
535 create a JToggleButton and Action for creating shapes that use gradients. Lines
538–600 create JButtons for selecting the startColor and endColor for shapes.
Each JButton contains a JPanel that displays the currently selected color. When
clicked, the ActionListener for each JButton displays a JColorChooser dialog

304 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

that enables the user to select a new color. Lines 603–642 create Actions for saving draw-
ings and displaying a DrawingInternalFrame’s associated ZoomDialog
(Fig. 5.25). Lines 645–662 create a JToggleButton and Action for enabling drag
mode, which allows users to drag shapes from this DrawingInternalFrame’s Draw-
ingView.

Class DrawingFileFilter (Fig. 5.24) is a FileFilter implementation that
enables a JFileChooser dialog to show only those files appropriate for our application.
Line 15 specifies a description for Deitel Drawing files. Line 8 specifies the filename exten-
sion for Deitel Drawing files. Method accept (lines 27–31) returns true only if the given
File matches the filename extension for Deitel Drawing files.

5.8 ZoomDialog, Action and Icon Components
Class ZoomDialog (Fig. 5.25) is a JDialog subclass that uses class ZoomDrawing-
View (Fig. 5.13) to present a scalable DrawingModel view. As the user resizes the
ZoomDialog, the ZoomDrawingView adjusts its scale factors to scale to the appropri-
ate size. Note that ZoomDialog is a non-modal dialog (i.e., the user does not need to close
the dialog to continue working with the main portion of the application).

1 // DrawingFileFilter.java
2 // DrawingFileFilter is a FileFilter subclass for selecting
3 // DeitelDrawing files in a JFileChooser dialog.
4 package com.deitel.advjhtp1.drawing;
5
6 // Java core packages
7 import java.io.File;
8
9 // Java extension packages

10 import javax.swing.filechooser.*;
11
12 public class DrawingFileFilter extends FileFilter {
13
14 // String to use in JFileChooser description
15 private String DESCRIPTION = "DeitelDrawing Files (*.dd)";
16
17 // file extensions for DeitelDrawing files
18 private String EXTENSION = ".dd";
19
20 // get description for DeitelDrawing files
21 public String getDescription()
22 {
23 return DESCRIPTION;
24 }
25
26 // return true if given File has proper extension
27 public boolean accept(File file)
28 {
29 return (file.getName().toLowerCase().endsWith(
30 EXTENSION));

Fig. 5.24Fig. 5.24Fig. 5.24Fig. 5.24 DrawingFileFilter is a FileFilter subclass that enables users to
select Deitel Drawing files from JFileChooser dialogs (part 1 of 2).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 305

31 }
32 }

1 // ZoomDialog.java
2 // ZoomDialog is a JDialog subclass that shows a zoomed view
3 // of a DrawingModel.
4 package com.deitel.advjhtp1.drawing;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9

10 // Java extension packages
11 import javax.swing.*;
12
13 // Deitel packages
14 import com.deitel.advjhtp1.drawing.model.*;
15 import com.deitel.advjhtp1.drawing.view.*;
16
17 public class ZoomDialog extends JDialog {
18
19 private ZoomDrawingView drawingView;
20 private double zoomFactor = 0.5;
21
22 // ZoomDialog constructor
23 public ZoomDialog(DrawingModel model, String title)
24 {
25 // set ZoomDialog title
26 setTitle(title);
27
28 // create ZoomDrawingView for using default zoomFactor
29 drawingView = new ZoomDrawingView(model, zoomFactor);
30
31 // add ZoomDrawingView to ContentPane
32 getContentPane().add(drawingView);
33
34 // size ZoomDialog to fit ZoomDrawingView's preferred size
35 pack();
36
37 // make ZoomDialog visible
38 setVisible(true);
39 }
40
41 // set JDialog title
42 public void setTitle(String title)
43 {
44 super.setTitle(title + " [Zoom]");
45 }
46 }

Fig. 5.25Fig. 5.25Fig. 5.25Fig. 5.25 ZoomDialog for displaying DrawingModels in a scalable view.

Fig. 5.24Fig. 5.24Fig. 5.24Fig. 5.24 DrawingFileFilter is a FileFilter subclass that enables users to
select Deitel Drawing files from JFileChooser dialogs (part 2 of 2).

306 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

Class AbstractDrawingAction is an abstract base class that extends class
AbstractAction to provide a more convenient way to create Swing Actions. The
AbstractDrawingAction constructor (lines 16–24) takes as arguments the name,
Icon, description and mnemonic for the Action. Lines 27–48 define set methods for
each Action property. Method actionPerformed (line 52) is marked abstract to
require an implementation in each subclass.

1 // AbstractDrawingAction.java
2 // AbstractDrawingAction is an Action implementation that
3 // provides set and get methods for common Action properties.
4 package com.deitel.advjhtp1.drawing;
5
6 // Java core packages
7 import java.awt.event.*;
8
9 // Java extension packages

10 import javax.swing.*;
11
12 public abstract class AbstractDrawingAction
13 extends AbstractAction {
14
15 // construct AbstractDrawingAction with given name, icon
16 // description and mnemonic key
17 public AbstractDrawingAction(String name, Icon icon,
18 String description, Integer mnemonic)
19 {
20 setName(name);
21 setSmallIcon(icon);
22 setShortDescription(description);
23 setMnemonic(mnemonic);
24 }
25
26 // set Action name
27 public void setName(String name)
28 {
29 putValue(Action.NAME, name);
30 }
31
32 // set Action Icon
33 public void setSmallIcon(Icon icon)
34 {
35 putValue(Action.SMALL_ICON, icon);
36 }
37
38 // set Action short description
39 public void setShortDescription(String description)
40 {
41 putValue(Action.SHORT_DESCRIPTION, description);
42 }
43

Fig. 5.26Fig. 5.26Fig. 5.26Fig. 5.26 AbstractDrawingAction abstract base class for Actions
 (part 1 of 2).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 307

Class GradientIcon implements interface Icon and draws a gradient from
startColor (line 15) to endColor (line 16). The Deitel Drawing application uses a
GradientIcon to show a preview of the currently selected colors drawn as a gradient.
Method paintIcon (lines 62–75) draws a filled rectangle, using a Java2D Gradient-
Paint and the GradientIcon’s startColor and endColor.

44 // set Action mnemonic key
45 public void setMnemonic(Integer mnemonic)
46 {
47 putValue(Action.MNEMONIC_KEY, mnemonic);
48 }
49
50 // abstract actionPerformed method to be implemented
51 // by concrete subclasses
52 public abstract void actionPerformed(ActionEvent event);
53 }

1 // GradientIcon.java
2 // GradientIcon is an Icon implementation that draws a 16 x 16
3 // gradientfrom startColor to endColor.
4 package com.deitel.advjhtp1.painting;
5
6 // Java core packages
7 import java.awt.*;
8
9 // Java extension packages

10 import javax.swing.*;
11
12 public class GradientIcon implements Icon {
13
14 // Colors to use for gradient
15 private Color startColor;
16 private Color endColor;
17
18 // GradientIcon constructor
19 public GradientIcon(Color start, Color end)
20 {
21 setStartColor(start);
22 setEndColor(end);
23 }
24
25 // set gradient start color
26 public void setStartColor(Color start)
27 {
28 startColor = start;
29 }
30

Fig. 5.27Fig. 5.27Fig. 5.27Fig. 5.27 GradientIcon implementation of interface Icon that draws a
gradient (part 1 of 2).

Fig. 5.26Fig. 5.26Fig. 5.26Fig. 5.26 AbstractDrawingAction abstract base class for Actions
 (part 2 of 2).

308 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

31 // get gradient start color
32 public Color getStartColor()
33 {
34 return startColor;
35 }
36
37 // set gradient end color
38 public void setEndColor(Color end)
39 {
40 endColor = end;
41 }
42
43 // get gradient end color
44 public Color getEndColor()
45 {
46 return endColor;
47 }
48
49 // get icon width
50 public int getIconWidth()
51 {
52 return 16;
53 }
54
55 // get icon height
56 public int getIconHeight()
57 {
58 return 16;
59 }
60
61 // draw icon at given location on given component
62 public void paintIcon(Component component, Graphics g,
63 int x, int y)
64 {
65 // get Graphics2D object
66 Graphics2D g2D = (Graphics2D) g;
67
68 // set GradientPaint
69 g2D.setPaint (new GradientPaint(x, y,
70 getStartColor(), 16, 16,
71 getEndColor()));
72
73 // fill rectangle with gradient
74 g2D.fillRect(x, y, 16, 16);
75 }
76 }

Fig. 5.27Fig. 5.27Fig. 5.27Fig. 5.27 GradientIcon implementation of interface Icon that draws a
gradient (part 2 of 2).

GradientIcon in a
JToggleButton.

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 309

5.9 DeitelDrawing Application
Class DeitelDrawing (Fig. 5.28) integrates the components we have discussed in this
chapter into a multiple-document-interface application. The Deitel Drawing application
displays the Deitel logo in a SplashScreen (Fig. 5.29) while the application loads (line
44). Lines 60–111 create AbstractDrawingActions for creating new drawings,
opening existing drawings, exiting the application and displaying information about the
Deitel Drawing application.

1 // DeitelDrawing.java
2 // DeitelDrawing is a drawing program that uses, MVC, a
3 // multiple-document interface and Java2D.
4 package com.deitel.advjhtp1.drawing;
5
6 // Java core packages
7 import java.io.*;
8 import java.util.*;
9 import java.awt.*;

10 import java.awt.event.*;
11 import java.beans.*;
12
13 // Java extension packages
14 import javax.swing.*;
15 import javax.swing.event.*;
16 import javax.swing.border.*;
17
18 public class DeitelDrawing extends JFrame {
19
20 private JMenuBar menuBar;
21 private JMenu fileMenu, helpMenu;
22
23 private Action newAction, openAction,
24 exitAction, aboutAction;
25
26 private JMenuItem saveMenuItem, saveAsMenuItem;
27
28 private JToolBar toolBar;
29 private JPanel toolBarPanel, frameToolBarPanel;
30 private JDesktopPane desktopPane;
31
32 private SplashScreen splashScreen;
33
34 // DeitelDrawing constructor
35 public DeitelDrawing()
36 {
37 super("DeitelDrawing");
38
39 // set icon for JFrame's upper-left-hand corner
40 ImageIcon icon = new ImageIcon(
41 DeitelDrawing.class.getResource("images/icon.png"));
42 setIconImage(icon.getImage());

Fig. 5.28Fig. 5.28Fig. 5.28Fig. 5.28 DeitelDrawing application that uses a multiple-document interface
for displaying and modifying DeitelDrawing drawings (part 1 of 8).

310 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

43
44 showSplashScreen();
45
46 // do not hide window when close button clicked
47 setDefaultCloseOperation(
48 WindowConstants.DO_NOTHING_ON_CLOSE);
49
50 // create JDesktopPane for MDI
51 desktopPane = new JDesktopPane();
52
53 // show contents when dragging JInternalFrames
54 desktopPane.setDragMode(JDesktopPane.LIVE_DRAG_MODE);
55
56 // create Action for creating new drawings
57 Icon newIcon = new ImageIcon(
58 DeitelDrawing.class.getResource("images/new.gif"));
59
60 newAction = new AbstractDrawingAction("New", newIcon,
61 "Create New Drawing", new Integer('N')) {
62
63 public void actionPerformed(ActionEvent event)
64 {
65 createNewWindow();
66 }
67 };
68
69 // create Action for opening existing drawings
70 Icon openIcon = new ImageIcon(
71 DeitelDrawing.class.getResource("images/open.gif"));
72
73 openAction = new AbstractDrawingAction("Open", openIcon,
74 "Open Existing Drawing", new Integer('O')) {
75
76 public void actionPerformed(ActionEvent event)
77 {
78 DrawingInternalFrame frame = createNewWindow();
79
80 if (!frame.openDrawing())
81 frame.close();
82 }
83 };
84
85 // create Action for exiting application
86 Icon exitIcon = new ImageIcon(
87 DeitelDrawing.class.getResource("images/exit.gif"));
88
89 exitAction = new AbstractDrawingAction("Exit", exitIcon,
90 "Exit Application", new Integer('X')) {
91
92 public void actionPerformed(ActionEvent event)
93 {
94 exitApplication();

Fig. 5.28Fig. 5.28Fig. 5.28Fig. 5.28 DeitelDrawing application that uses a multiple-document interface
for displaying and modifying DeitelDrawing drawings (part 2 of 8).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 311

95 }
96 };
97
98 // create Action for opening About dialog
99 Icon aboutIcon = new ImageIcon(
100 DeitelDrawing.class.getResource("images/about.gif"));
101
102 aboutAction = new AbstractDrawingAction("About",
103 aboutIcon, "About Application", new Integer('b')) {
104
105 public void actionPerformed(ActionEvent event)
106 {
107 JOptionPane.showMessageDialog(DeitelDrawing.this,
108 "DeitelDrawing v1.0.\n Copyright " +
109 "2002. Deitel & Associates, Inc.");
110 }
111 };
112
113 // create File menu and set its mnemonic
114 fileMenu = new JMenu("File");
115 fileMenu.setMnemonic('F');
116
117 // create Help menu and set its mnemonic
118 helpMenu = new JMenu("Help");
119 helpMenu.setMnemonic('H');
120
121 menuBar = new JMenuBar();
122
123 // add New Drawing and Open Drawing actions to
124 // File menu and remove their icons
125 fileMenu.add(newAction).setIcon(null);
126 fileMenu.add(openAction).setIcon(null);
127
128 // create JMenuItems for saving drawings; these
129 // JMenuItems will invoke the save Actions for the
130 // current DrawingInternalFrame
131 saveMenuItem = new JMenuItem("Save");
132 saveAsMenuItem = new JMenuItem("Save As");
133
134 // add Save, Save As and Close JMenuItems to File menu
135 fileMenu.add(saveMenuItem);
136 fileMenu.add(saveAsMenuItem);
137
138 fileMenu.addSeparator();
139
140 // add Exit action to File menu and remove its icon
141 fileMenu.add(exitAction).setIcon(null);
142
143 // add About action to Help menu and remove its icon
144 helpMenu.add (aboutAction).setIcon(null);
145
146 // add File and Help menus to JMenuBar

Fig. 5.28Fig. 5.28Fig. 5.28Fig. 5.28 DeitelDrawing application that uses a multiple-document interface
for displaying and modifying DeitelDrawing drawings (part 3 of 8).

312 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

147 menuBar.add(fileMenu);
148 menuBar.add(helpMenu);
149
150 // set Frame's JMenuBar
151 setJMenuBar(menuBar);
152
153 // create application JToolBar
154 toolBar = new JToolBar();
155
156 // disable JToolBar floating
157 toolBar.setFloatable(false);
158
159 // add New Drawing and Open Drawing actions to JToolBar
160 toolBar.add(newAction);
161 toolBar.add(openAction);
162
163 toolBar.addSeparator();
164
165 // add Exit action to JToolBar
166 toolBar.add(exitAction);
167
168 toolBar.addSeparator();
169
170 // add About action to JToolBar
171 toolBar.add(aboutAction);
172
173 // add toolBar and desktopPane to ContentPane
174 getContentPane().add(toolBar, BorderLayout.NORTH);
175 getContentPane().add(desktopPane, BorderLayout.CENTER);
176
177 // add WindowListener for windowClosing event
178 addWindowListener(
179 new WindowAdapter() {
180
181 public void windowClosing(WindowEvent event)
182 {
183 exitApplication();
184 }
185 }
186);
187
188 // wait for SplashScreen to go away
189 while (splashScreen.isVisible()) {
190
191 try {
192 Thread.sleep(10);
193 }
194
195 // handle exception
196 catch (InterruptedException interruptedException) {
197 interruptedException.printStackTrace();
198 }

Fig. 5.28Fig. 5.28Fig. 5.28Fig. 5.28 DeitelDrawing application that uses a multiple-document interface
for displaying and modifying DeitelDrawing drawings (part 4 of 8).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 313

199 }
200
201 // set initial JFrame size
202 setSize(640, 480);
203
204 // position application window
205 centerWindowOnScreen();
206
207 // make application visible
208 setVisible(true);
209
210 // create new, empty drawing window
211 createNewWindow();
212
213 } // end DeitelDrawing constructor
214
215 // create new DrawingInternalFrame
216 private DrawingInternalFrame createNewWindow()
217 {
218 // create new DrawingInternalFrame
219 DrawingInternalFrame frame =
220 new DrawingInternalFrame("Untitled Drawing");
221
222 // add listener for InternalFrame events
223 frame.addInternalFrameListener(
224 new DrawingInternalFrameListener());
225
226 // make DrawingInternalFrame opaque
227 frame.setOpaque(true);
228
229 // add DrawingInternalFrame to desktopPane
230 desktopPane.add(frame);
231
232 // make DrawingInternalFrame visible
233 frame.setVisible(true);
234
235 // select new DrawingInternalFrame
236 try {
237 frame.setSelected(true);
238 }
239
240 // handle exception selecting DrawingInternalFrame
241 catch (PropertyVetoException vetoException) {
242 vetoException.printStackTrace();
243 }
244
245 // return reference to newly created DrawingInternalFrame
246 return frame;
247 }
248
249 // InternalFrameAdapter to listen for InternalFrame events

Fig. 5.28Fig. 5.28Fig. 5.28Fig. 5.28 DeitelDrawing application that uses a multiple-document interface
for displaying and modifying DeitelDrawing drawings (part 5 of 8).

314 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

250 private class DrawingInternalFrameListener
251 extends InternalFrameAdapter {
252
253 // when DrawingInternalFrame is closing disable
254 // appropriate Actions
255 public void internalFrameClosing(
256 InternalFrameEvent event)
257 {
258 DrawingInternalFrame frame =
259 (DrawingInternalFrame) event.getSource();
260
261 // frame closes successfully, disable Save menu items
262 if (frame.close()) {
263 saveMenuItem.setAction(null);
264 saveAsMenuItem.setAction(null);
265 }
266 }
267
268 // when DrawingInternalFrame is activated, make its JToolBar
269 // visible and set JMenuItems to DrawingInternalFrame Actions
270 public void internalFrameActivated(
271 InternalFrameEvent event)
272 {
273 DrawingInternalFrame frame =
274 (DrawingInternalFrame) event.getSource();
275
276 // set saveMenuItem to DrawingInternalFrame's saveAction
277 saveMenuItem.setAction(frame.getSaveAction());
278 saveMenuItem.setIcon(null);
279
280 // set saveAsMenuItem to DrawingInternalFrame's
281 // saveAsAction
282 saveAsMenuItem.setAction(frame.getSaveAsAction());
283 saveAsMenuItem.setIcon(null);
284 }
285 }
286
287 // close each DrawingInternalFrame to let user save drawings
288 // then exit application
289 private void exitApplication()
290 {
291 // get array of JInternalFrames from desktopPane
292 JInternalFrame frames[] = desktopPane.getAllFrames();
293
294 // keep track of DrawingInternalFrames that do not close
295 boolean allFramesClosed = true;
296
297 // select and close each DrawingInternalFrame
298 for (int i = 0; i < frames.length; i++) {
299 DrawingInternalFrame nextFrame =
300 (DrawingInternalFrame) frames[i];
301

Fig. 5.28Fig. 5.28Fig. 5.28Fig. 5.28 DeitelDrawing application that uses a multiple-document interface
for displaying and modifying DeitelDrawing drawings (part 6 of 8).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 315

302 // select current DrawingInternalFrame
303 try {
304 nextFrame.setSelected(true);
305 }
306
307 // handle exception when selecting DrawingInternalFrame
308 catch (PropertyVetoException vetoException) {
309 vetoException.printStackTrace();
310 }
311
312 // close DrawingInternalFrame and update allFramesClosed
313 allFramesClosed = allFramesClosed && nextFrame.close();
314 }
315
316 // exit application only if all frames were closed
317 if (allFramesClosed)
318 System.exit(0);
319
320 } // end method exitApplication
321
322 // display application's splash screen
323 public void showSplashScreen()
324 {
325 // create ImageIcon for logo
326 Icon logoIcon = new ImageIcon(
327 getClass().getResource("images/deitellogo.png"));
328
329 // create new JLabel for logo
330 JLabel logoLabel = new JLabel(logoIcon);
331
332 // set JLabel background color
333 logoLabel.setBackground(Color.white);
334
335 // set splash screen border
336 logoLabel.setBorder(
337 new MatteBorder(5, 5, 5, 5, Color.black));
338
339 // make logoLabel opaque
340 logoLabel.setOpaque(true);
341
342 // create SplashScreen for logo
343 splashScreen = new SplashScreen(logoLabel);
344
345 // show SplashScreen for 3 seconds
346 splashScreen.showSplash(3000);
347
348 } // end method showSplashScreen
349
350 // center application window on user's screen
351 private void centerWindowOnScreen()
352 {
353 // get Dimension of user's screen

Fig. 5.28Fig. 5.28Fig. 5.28Fig. 5.28 DeitelDrawing application that uses a multiple-document interface
for displaying and modifying DeitelDrawing drawings (part 7 of 8).

316 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

Method createNewWindow (lines 216–247) creates a new DrawingInternal-
Frame. Inner class DrawingInternalFrameListener (lines 250–285) listens for
internalFrameClosing and internalFrameActivated messages. The Deitel
Drawing application’s File menu contains JMenuItems for saving the currently active
drawing. When a DrawingInternalFrame closes, lines 263–264 remove that Draw-
ingInternalFrame’s saveAction and saveAsAction from saveMenuItem
and saveAsMenuItem. When a DrawingInternalFrame is activated, lines 277–
283 invoke method setAction of class JMenuItem to set the Actions for save-
MenuItem and saveAsMenuItem.

Method exitApplication (lines 289–320) prompts the user to save any unsaved
drawings before the application exits. Line 292 invokes method getAllFrames of class
JDesktopPane to retrieve an array of JInternalFrames in the application. Line 313
invokes method close of class DrawingInternalFrame to attempt to close each
DrawingInternalFrame in the array. Method close returns true if the Draw-
ingInternalFrame closed successfully, false otherwise. Line 313 accumulates the
results of closing each DrawingInternalFrame in boolean allFramesClosed.
If all DrawingInternalFrames close successfully, line 318 exits the application. If
any DrawingInternalFrame did not close, the application assumes that the user can-
celled the request to close the application.

The Deitel Drawing application displays the Deitel logo in a SplashScreen
(Fig. 5.29) while the application loads. The SplashScreen constructor (lines 19–58)
takes as an argument the Component to display. Line 22 creates JWindow (a borderless
window) in which to display the given component. Lines 46–56 center the Splash-
Screen’s JWindow on the user’s screen.

354 Dimension screenDimension =
355 Toolkit.getDefaultToolkit().getScreenSize();
356
357 // use screen width and height and application width
358 // and height to center application on user's screen
359 int width = getSize().width;
360 int height = getSize().height;
361 int x = (screenDimension.width - width) / 2 ;
362 int y = (screenDimension.height - height) / 2 ;
363
364 // place application window at screen's center
365 setBounds(x, y, width, height);
366 }
367
368 // execute application
369 public static void main(String args[])
370 {
371 new DeitelDrawing();
372 }
373 }

Fig. 5.28Fig. 5.28Fig. 5.28Fig. 5.28 DeitelDrawing application that uses a multiple-document interface
for displaying and modifying DeitelDrawing drawings (part 8 of 8).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 317

1 // SplashScreen.java
2 // SplashScreen implements static method showSplash for
3 // displaying a splash screen.
4 package com.deitel.advjhtp1.drawing;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9

10 // Java extension packages
11 import javax.swing.*;
12
13 public class SplashScreen {
14
15 private JWindow window;
16 private Timer timer;
17
18 // SplashScreen constructor
19 public SplashScreen(Component component)
20 {
21 // create new JWindow for splash screen
22 window = new JWindow();
23
24 // add provided component to JWindow
25 window.getContentPane().add(component);
26
27 // allow user to dismiss SplashScreen by clicking mouse
28 window.addMouseListener(
29
30 new MouseAdapter() {
31
32 // when user presses mouse in SplashScreen,
33 // hide and dispose JWindow
34 public void mousePressed(MouseEvent event) {
35 window.setVisible(false);
36 window.dispose();
37 }
38 }
39
40); // end call to addMouseListener
41
42 // size JWindow for given Component
43 window.pack();
44
45 // get user's screen size
46 Dimension screenDimension =
47 Toolkit.getDefaultToolkit().getScreenSize();
48
49 // calculate x and y coordinates to center splash screen
50 int width = window.getSize().width;
51 int height = window.getSize().height;
52 int x = (screenDimension.width - width) / 2 ;

Fig. 5.29Fig. 5.29Fig. 5.29Fig. 5.29 SplashScreen class for displaying a logo while the application loads
(part 1 of 2).

318 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

53 int y = (screenDimension.height - height) / 2 ;
54
55 // set the bounds of the window to center it on screen
56 window.setBounds(x, y, width, height);
57
58 } // end SplashScreen constructor
59
60 // show splash screen for given delay
61 public void showSplash(int delay) {
62
63 // display the window
64 window.setVisible(true);
65
66 // crate and start a new Timer to remove SplashScreen
67 // after specified delay
68 timer = new Timer(delay,
69 new ActionListener() {
70
71 public void actionPerformed(ActionEvent event)
72 {
73 // hide and dispose of window
74 window.setVisible(false);
75 window.dispose();
76 timer.stop();
77 }
78 }
79);
80
81 timer.start();
82
83 } // end method showSplash
84
85 // return true if SplashScreen window is visible
86 public boolean isVisible()
87 {
88 return window.isVisible();
89 }
90 }

Fig. 5.29Fig. 5.29Fig. 5.29Fig. 5.29 SplashScreen class for displaying a logo while the application loads
(part 2 of 2).

Chapter 5 Case Study: Java 2D GUI Application with Design Patterns 319

Method showSplash (lines 61–83) takes as an integer argument the number of mil-
liseconds for which to display the SplashScreen. Line 64 makes the JWindow visible,
and line 51 causes the current Thread to sleep for the given delay. After the delay
expires, lines 60–61 hide and dispose of the JWindow.

In this chapter, we presented a substantial application that used the MVC architecture
and many popular design patterns, including Observer, Factory Method, Template Method,
State and Command. We also demonstrated how applications can store and retrieve infor-
mation in XML documents. Our drawing application takes advantage of the rich set of GUI
components offered by Swing and the powerful drawing capabilities offered by Java 2D.
Drag-and-drop functionality enables users to transfer shapes between drawings and add
their own images.

Throughout the rest of the book, we use design patterns and the MVC architecture to
build substantial examples and case studies. For example, the Enterprise Java case study of
Chapters 17–20 presents an online bookstore that uses the MVC architecture.

SELF-REVIEW EXERCISES
5.1 Which part of the model-view-controller architecture processes user input? Which Deitel
Drawing classes implement this part of MVC?

5.2 What interface must a class implement to enable data transfer using drag and drop for in-
stances of that class?

5.3 In general, how does a user begin a drag-and-drop operation? Give an example.

5.4 What type of object notifies a DragGestureListener that the user made a drag gesture?

5.5 How can a DropTargetListener or DragSourceListener determine what type of
data a Transferable object contains?

ANSWERS TO SELF-REVIEW EXERCISES
5.1 The controller in MVC processes user input. In the Deitel Drawing application, MyShape-
Controller subclasses process user input via the mouse. Class DragAndDropController
processes user input via drag-and-drop operations.

5.2 A class that supports drag and drop must implement interface Transferable.

5.3 A user begins a drag-and-drop operation by making a drag gesture. For example, on the Win-
dows platform, a user makes a drag gesture by pressing the mouse button on a draggable object and
dragging the mouse.

5.4 A DragGestureRecognizer issues a DragGestureEvent to notify a DragGes-
tureListener that the user made a drag gesture.

5.5 Method getTransferDataFlavors of interface Transferable returns an array of
DataFlavor objects. Each DataFlavor has a MIME type that describes the type of data the
Transferable object supports.

EXERCISES
5.6 Create class RotatingDrawingView that extends class DrawingView and uses Java
2D transformations (Chapter 4) to display the drawing rotated by ninety degrees.

5.7 Modify your solution to Exercise 5.6 to use a and a java.awt.Timer to continually rotate
the drawing in five-degree increments.

320 Case Study: Java 2D GUI Application with Design Patterns Chapter 5

5.8 Create class RandomMyShapeController that extends class MyShapeController
and adds random MyShape subclasses with random sizes, colors and other properties to the Draw-
ingModel. In method startShape, class RandomMyShapeController should prompt the
user for the number of random shapes to add to the drawing. Create a new MyShapeController-
Factory subclass (Fig. 5.18) named RandomMyShapeControllerFactory that constructs a
RandomMyShapeController when the String "Random" is passed to method newMy-
ShapeController. [Hint: Be sure to override method getSupportedShapes of class My-
ShapeControllerFactory to return a String array that includes the String "Random".]

6
JavaBeans Component

Model

Objectives
• To understand JavaBeans and how they facilitate

component-oriented software construction.
• To be able to use Forte for Java Community Edition to

build JavaBeans-based applications.
• To be able to wrap class definitions as JAR files for

use as JavaBeans and stand-alone applications.
• To be able to define JavaBean properties and events.
Mirrors should reflect a little before throwing back images.
Jean Cocteau

Television is like the invention of indoor plumbing. It didn’t
change people’s habits. It just kept them inside the house.
Alfred Hitchcock

The power of the visible is the invisible.
Marianne Moore

The sun has a right to "set" where it wants to, and so, I may
add, has a hen.
Charles Farrar Browne

The causes of events are ever more interesting than the
events themselves.
Marcus Tullius Cicero

…the mechanic that would perfect his work must first
sharpen his tools.
Confucius

322 JavaBeans Component Model Chapter 6

6.1 Introduction
This chapter presents Java’s reusable software component model: JavaBeans. JavaBeans (of-
ten called beans) allow developers to reap the benefits of rapid application development in
Java by assembling predefined software components to create powerful applications and ap-
plets. Graphical programming and design environments (often called builder tools, IDEs or
integrated development environments) that support beans provide programmers with tremen-
dous flexibility by allowing programmers to reuse and integrate existing disparate compo-
nents that, in many cases, were never intended to be used together. These components can be
linked together to create applets, applications or even new beans for reuse by others.

JavaBeans and other component-based technologies have led to a new type of pro-
grammer, the component assembler, who uses well-defined components to create more
robust functionality. Component assemblers do not need to know the implementation
details of components. Rather, they need to know what services the components provide,
so they can have other components interact with them.

As an example of the concept of beans, assume that a component assembler has an ani-
mation bean that has methods to startAnimation and stopAnimation. The com-
ponent assembler may want to provide two buttons, one that will start the animation and
one that will stop the animation (an example you will see later in this chapter). With beans,
we can simply “connect” one button to the animation’s startAnimation method and
connect another button to the animation’s stopAnimation method, such that when the
user clicks a button, the appropriate method of the animation bean is called. The builder
tool does all the work of associating the button-click event with the appropriate method to
call on the animation bean. All the programmer needs to do is tell the builder tool which
two components to “connect.”

The benefit of beans in this example is that the animation bean and the button beans do
not need to know about each other before they are assembled in a builder tool. Someone
else can be responsible for defining the concept of a button in a reusable manner (e.g.,

Outline

6.1 Introduction
6.2 Using Beans in Forte for Java Community Edition
6.3 Preparing a Class to be a JavaBean
6.4 Creating a JavaBean: Java Archive Files
6.5 JavaBean Properties
6.6 Bound Properties
6.7 Indexed Properties and Custom Events
6.8 Customizing JavaBeans for Builder Tools

6.8.1 PropertyEditors
6.8.2 Customizers

6.9 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Chapter 6 JavaBeans Component Model 323

javax.swing.JButton). A button is not specific to our example. Rather, it is a com-
ponent used in many applications and applets. When the user of a program clicks a button,
the user expects an action specific to that program to occur. (Some buttons, such as OK but-
tons, typically have the same meaning in all programs.) However, the basic concept of a
button—how it is displayed, how it works and how it notifies other components that it was
clicked—is the same in every application (although we typically customize the button’s
label). The component assembler’s job is not to create the concept of a button, but rather to
use the preexisting button component to provide functionality to the user of the program.

Component assemblers can make beans communicate through the beans’ well-defined
services (i.e., methods), typically without writing any code (the builder tool often generates
the code, which is sometimes hidden from the component assembler—depending on the
tool). Indeed, a component assembler often can create complex applications literally by
"connecting the dots."

In this chapter, we show you how to use existing beans and how to create your own
basic beans. After studying this chapter, you will have a foundation in JavaBeans program-
ming that will enable you to develop applications and applets rapidly using the more
advanced features of integrated development environments that support beans. You will
also have a solid foundation for further study of JavaBeans.

For more JavaBeans information, visit the Sun Microsystems Web site for JavaBeans:

java.sun.com/beans/

This site provides a complete set of resources for learning about and using JavaBeans.

6.2 Using Beans in Forte for Java Community Edition
Sun Microsystem’s Forte for Java Community Edition (Fig. 6.1) is an integrated develop-
ment environment that provides a builder tool for assembling JavaBeans. Forte provides vi-
sual access to a variety of JavaBeans and allows you to install and manipulate additional
beans. In this section, we demonstrate how to use existing beans in Forte. Later in the chap-
ter, we rely on your knowledge of this section to use the beans created in this chapter. We
assume you are already familiar with the basic operation of Forte. For details on getting
started with Forte, visit the resources for this book on our Web site, www.deitel.com.
There, we have a “Getting Started with Forte for Java Community Edition 2.0” tutorial.

Software Engineering Observation 6.1
A benefit of working in a bean-ready development environment is that the environment visu-
ally presents the properties of the bean to the programmer for easy modification and custom-
ization of the bean at design time. 6.1

A bean must be installed before it is manipulated in Forte. Click the Tools menu and
select Install New JavaBean... (Fig. 6.2). A file dialog box labelled Install JavaBean
appears (Fig. 6.3). Copy LogoAnimator.jar from the CD-ROM that accompanies this
book. The next dialog box lists the JavaBeans within the selected JAR file (Fig. 6.4). Select
LogoAnimator and click the OK button (Fig. 6.4). Select Beans in the Palette Cat-
egory dialog box that appears next and click OK (Fig. 6.4). Clicking the Beans tab in the
Component Palette shows a question mark icon (Fig. 6.5). Moving the mouse over the
icon in the Component Palette displays a tool tips showing that the icon represents the
LogoAnimator JavaBean (Fig. 6.5).

324 JavaBeans Component Model Chapter 6

Fig. 6.1Fig. 6.1Fig. 6.1Fig. 6.1 Forte for Java Community Edition 2.0.

Fig. 6.2Fig. 6.2Fig. 6.2Fig. 6.2 Install New JavaBean... menu item.

Fig. 6.3Fig. 6.3Fig. 6.3Fig. 6.3 Install JavaBean dialog.

Chapter 6 JavaBeans Component Model 325

GUI JavaBeans must be added to a Java Container to be able to use the builder tool
to edit the bean properties or to link the beans to other components. To demonstrate adding
and manipulating JavaBeans, we open a JFrame. Select the Filesystems tab in the
Explorer window (Fig. 6.6). Select the Development directory (Fig. 6.7). Select New...
from the File menu (Fig. 6.8). In the Template Chooser (Fig. 6.9), expand the Swing
Forms option and select JFrame. Enter “AnimationWindow” in the Name: field
(Fig. 6.9). Click Finish to create the new JFrame.

Fig. 6.4Fig. 6.4Fig. 6.4Fig. 6.4 Select JavaBean and Palette Category dialogs.

Fig. 6.5Fig. 6.5Fig. 6.5Fig. 6.5 Beans tab in the Component Palette and tooltip for LogoAnimator
JavaBean.

Fig. 6.6Fig. 6.6Fig. 6.6Fig. 6.6 Filesystems tab in the Explorer window.

Component Palette

326 JavaBeans Component Model Chapter 6

The new AnimationWindow class appears inside the Filesystems field of the
Explorer. The Component Inspector, Form and Source Editor windows should all
appear (Fig. 6.10). The Component Inspector (Fig. 6.11) lists all the visual and nonvi-
sual components within AnimationWindow and also shows the property sheet for
selected components (we will discuss the property sheet later). The Form window
(Fig. 6.11) shows the JFrame with its current layout and components. The Source

Fig. 6.7Fig. 6.7Fig. 6.7Fig. 6.7 Development directory selected in Explorer window.

Fig. 6.8Fig. 6.8Fig. 6.8Fig. 6.8 New... menu item.

Fig. 6.9Fig. 6.9Fig. 6.9Fig. 6.9 New...- Template Chooser dialog.

Chapter 6 JavaBeans Component Model 327

Editor (Fig. 6.12) shows the Java source code Forte generates. Forte updates this code as
components and events are added, deleted and changed.

Fig. 6.10Fig. 6.10Fig. 6.10Fig. 6.10 GUI Editing tab of Forte.

Fig. 6.11Fig. 6.11Fig. 6.11Fig. 6.11 Component Inspector and Form windows.

328 JavaBeans Component Model Chapter 6

We now begin building the application by placing the LogoAnimator JavaBean we
just imported into the AnimationWindow. Click the Beans tab of the Component
Palette (Fig. 6.13). Next, click the LogoAnimator icon (Fig. 6.14). Then, click in the
Form window in the center of the JFrame. A spinning animation of the Deitel and Asso-
ciates, Inc., logo will appear in the window (Fig. 6.15).

Fig. 6.12Fig. 6.12Fig. 6.12Fig. 6.12 Source Editor window.

Fig. 6.13Fig. 6.13Fig. 6.13Fig. 6.13 Beans tab of the Component Palette.

Fig. 6.14Fig. 6.14Fig. 6.14Fig. 6.14 LogoAnimator icon.

Chapter 6 JavaBeans Component Model 329

The property sheet in the Component Inspector displays a component’s properties
and allows them to be edited. Click the LogoAnimator in the Form window. Blue
squares appear at the corners of the animation to show it is selected (Fig. 6.15). The Com-
ponent Inspector shows all the LogoAnimator properties (Fig. 6.16). Many of the
properties are inherited from JPanel, the superclass of LogoAnimator. The back-
ground property shows a swatch of color and a name indicating the LogoAnimator
background color. Click the color, and a drop-down menu appears (Fig. 6.17). It lists some
of the predefined colors in Java. Select the first color listed in the drop-down menu to
change the LogoAnimator’s background to white (Fig. 6.18). Try selecting other colors
to get used to changing JavaBean properties.

Fig. 6.15Fig. 6.15Fig. 6.15Fig. 6.15 LogoAnimator animation in the Form window.

Fig. 6.16Fig. 6.16Fig. 6.16Fig. 6.16 Component Inspector with LogoAnimator Properties sheet.

330 JavaBeans Component Model Chapter 6

In addition to changing JavaBean properties with the builder tool, component assem-
blers can connect JavaBeans with events. For instance, a button can control the function of
another component. We demonstrate this with buttons that start and stop the LogoAni-
mator’s animation.

Fig. 6.17Fig. 6.17Fig. 6.17Fig. 6.17 Component Inspector drop down-menu for the background property.

Fig. 6.18Fig. 6.18Fig. 6.18Fig. 6.18 Changing background color of LogoAnimator.

Chapter 6 JavaBeans Component Model 331

Before adding other components to our example, we change the window’s layout to a
FlowLayout. In the Explorer window, expand the AnimationWindow node
(Fig. 6.19). Right click the JFrame node, select Set Layout and click FlowLayout
(Fig. 6.20).

Select the Swing tab in the Component Palette (Fig. 6.21). This tab contains the
most common Swing components. The second component in the list is the JButton
(Fig. 6.22). Click the JButton icon, then click an empty spot in the Form that contains
the LogoAnimator. A new JButton appears in the window next to the LogoAni-
mator (Fig. 6.23). Select the JButton and locate the text property in the Compo-
nent Inspector. Click the text field, type Start Animation (Fig. 6.24), then press
Enter. The button text in the Form will change to the new value (Fig. 6.24). Repeat this
procedure to add another JButton with the text Stop Animation.

Fig. 6.19Fig. 6.19Fig. 6.19Fig. 6.19 AnimationWindow selected in Explorer.

Fig. 6.20Fig. 6.20Fig. 6.20Fig. 6.20 Selecting FlowLayout in the Explorer menu.

332 JavaBeans Component Model Chapter 6

Fig. 6.21Fig. 6.21Fig. 6.21Fig. 6.21 Swing tab of the Component Palette.

Fig. 6.22Fig. 6.22Fig. 6.22Fig. 6.22 JButton icon in the Component Palette.

Fig. 6.23Fig. 6.23Fig. 6.23Fig. 6.23 Adding a JButton to AnimationWindow.

Fig. 6.24Fig. 6.24Fig. 6.24Fig. 6.24 Editing text property of JButton.

Chapter 6 JavaBeans Component Model 333

Next, we connect the Start Animation and Stop Animation buttons to the Logo-
Animator so the user can start and stop the animation. The button with the mouse pointer
icon to the left of the Component Palette enables Selection Mode (Fig. 6.25). This
mode enables Forte users to select components in a Form window. The button with the
double-arrows icon below the Selection Mode icon enables Connection Mode
(Fig. 6.26), which allows Forte users to connect components with a wizard that generates
code in the Source Editor. Click the Connection Mode icon to enter Connection
Mode (Fig. 6.27). Click the Start Animation JButton (Fig. 6.28), which will be the
source of the event (i.e., the source component) that starts the animation. Red squares appear
at the corners of the JButton. Next, click the LogoAnimator. Red squares also appear at
the corners of LogoAnimator and the Connection Wizard dialog appears (Fig. 6.29).
Step 1 of the Connection Wizard lists all the events that the source component supports.
In this application, we want the button click event to call the animator’s startAnimation
method, so we need to connect the button’s action event to LogoAnimator’s start-
Animation method. Expand the action node, highlight actionPerformed and click
the Next button at the bottom of the Connection Wizard (Fig. 6.30). Step 2 (Fig. 6.31) lists
the methods or properties that can be set on the target component (LogoAnimator). Click
the Method Call radio button to show a list of LogoAnimator’s methods. Many of the
methods that appear in the list are inherited from LogoAnimator’s superclass—JPanel.
Select method startAnimation from the list and click the Finish button at the bottom
of the Connection Wizard (Fig. 6.31). Repeat the above procedure for the Stop Anima-
tion button, but select method stopAnimation in Step 2 of the Connection Wizard

Fig. 6.25Fig. 6.25Fig. 6.25Fig. 6.25 Component Palette Selection mode.

Fig. 6.26Fig. 6.26Fig. 6.26Fig. 6.26 Component Palette Connection mode.

Fig. 6.27Fig. 6.27Fig. 6.27Fig. 6.27 Select Connection mode.

334 JavaBeans Component Model Chapter 6

Fig. 6.28Fig. 6.28Fig. 6.28Fig. 6.28 Connecting JButton and LogoAnimator.

Fig. 6.29Fig. 6.29Fig. 6.29Fig. 6.29 Connection Wizard dialog.

Chapter 6 JavaBeans Component Model 335

Fig. 6.30Fig. 6.30Fig. 6.30Fig. 6.30 Select actionPerformed event.

Fig. 6.31Fig. 6.31Fig. 6.31Fig. 6.31 Selecting method startAnimation for the target component.

336 JavaBeans Component Model Chapter 6

To test that the connections between the buttons and the LogoAnimator work correctly,
execute the AnimationWindow application by right clicking AnimationWindow in
the Explorer window and selecting Execute from the menu (Fig. 6.32). Forte switches
to the Running tab and displays AnimationWindow (Fig. 6.33). AnimationWindow
contains the LogoAnimator and the two JButtons. Click the Stop Animation
button. The Deitel logo in LogoAnimator stops. Clicking the Start Animation button
starts the animation from the point it stopped.

Testing and Debugging Tip 6.1
A benefit of working in a bean-ready development environment is that the beans typically exe-
cute live in the development environment. This allows you to view your program immediately
in the design environment, rather than using the standard edit, compile and execute cycle. 6.1

Fig. 6.32Fig. 6.32Fig. 6.32Fig. 6.32 Select Execute from Explorer menu.

Fig. 6.33Fig. 6.33Fig. 6.33Fig. 6.33 AnimationWindow running in Forte.

Chapter 6 JavaBeans Component Model 337

6.3 Preparing a Class to be a JavaBean
In the previous section, we introduced the LogoAnimator JavaBean to demonstrate the
basics of using JavaBeans within the Forte integrated development environment. This sec-
tion presents the Java code for LogoAnimator (Fig. 6.34).

1 // Fig. 6.34: LogoAnimator.java
2 // LogoAnimator is a JavaBean containing an animated logo.
3 package com.deitel.advjhtp1.beans;
4
5 // Java core packages
6 import java.awt.*;
7 import java.awt.event.*;
8 import java.io.*;
9 import java.net.*;

10
11 // Java extension packages
12 import javax.swing.*;
13
14 public class LogoAnimator extends JPanel
15 implements ActionListener, Serializable {
16
17 protected ImageIcon images[];
18 protected int totalImages = 30, currentImage;
19 protected Timer animationTimer;
20
21 // load images and start animation
22 public LogoAnimator()
23 {
24 images = new ImageIcon[totalImages];
25
26 URL url;
27
28 // load animation frames
29 for (int i = 0; i < images.length; ++i) {
30 url = LogAnimator.class.getResource(
31 "images/deitel" + i + ".png");
32 images[i] = new ImageIcon(url);
33 }
34
35 startAnimation();
36 }
37
38 // render one frame of the animation
39 public void paintComponent(Graphics g)
40 {
41 super.paintComponent(g);
42
43 // draw current animation frame
44 images[currentImage].paintIcon(this, g, 0, 0);
45 currentImage = (currentImage + 1) % totalImages;
46 }

Fig. 6.34Fig. 6.34Fig. 6.34Fig. 6.34 Definition of class LogoAnimator (part 1 of 3).

338 JavaBeans Component Model Chapter 6

47
48 // start Timer that drives animation
49 public void startAnimation()
50 {
51 // if animationTimer is null, restart animation
52 if (animationTimer == null) {
53 currentImage = 0;
54 animationTimer = new Timer(50, this);
55 animationTimer.start();
56 }
57
58 else // continue from last image displayed
59
60 if (!animationTimer.isRunning())
61 animationTimer.restart();
62 }
63
64 // repaint when Timer event occurs
65 public void actionPerformed(ActionEvent actionEvent)
66 {
67 repaint();
68 }
69
70 // stop Timer that drives animation
71 public void stopAnimation()
72 {
73 animationTimer.stop();
74 }
75
76 // get animation preferred width and height
77 public Dimension getPreferredSize()
78 {
79 return new Dimension(160, 80);
80 }
81
82 // get animation minimum width and height
83 public Dimension getMinimumSize()
84 {
85 return getPreferredSize();
86 }
87
88 // execute bean as standalone application
89 public static void main(String args[])
90 {
91 // create new LogoAnimator
92 LogoAnimator animation = new LogoAnimator();
93
94 // create new JFrame with title "Animation test"
95 JFrame application = new JFrame("Animator test");
96 application.setDefaultCloseOperation(
97 JFrame.EXIT_ON_CLOSE);
98

Fig. 6.34Fig. 6.34Fig. 6.34Fig. 6.34 Definition of class LogoAnimator (part 2 of 3).

Chapter 6 JavaBeans Component Model 339

Class LogoAnimator (Fig. 6.34) implements the LogoAnimator JavaBean.
LogoAnimator extends JPanel (line 14), making it a GUI component. Many Java-
Beans are GUI components intended to be manipulated visually in a builder tool, such as
Forte. In fact, most Java Swing components are JavaBeans, such as the JButtons we
manipulated visually in Forte in the previous section. GUIs using Swing components can
be developed quickly in Forte and other JavaBean-enabled builder tools.

Class LogoAnimator implements interface Serializable (line 15). The Seri-
alizable interface allows an instance of LogoAnimator to be saved as a file. By
implementing Serializable, a customized JavaBean can be saved and reloaded in a
builder tool or in a Java application. Forte can save an instance of LogoAnimator with
the Serialize As... option in the Customize Bean dialog. Serializable objects can
be serialized in Java programs with the ObjectOutputStream and ObjectInput-
Stream classes.

Software Engineering Observation 6.2
JavaBeans must all implement interface Serializable to support persistence using stan-
dard Java serialization. 6.2

Line 17 declares ImageIcon array images, which contains the 30 PNG images that
comprise the animated logo in LogoAnimator. Line 18 declares two integer variables,
totalImages and currentImage. Line 19 declares animationTimer, a Timer
object that controls the animation speed.

Lines 22–36 define LogoAnimator’s no-argument constructor. Line 24 initializes
array images with length totalImages. Lines 29–33 load the PNG images into the array.
Line 35 invokes method startAnimation to start the LogoAnimator animation.

LogoAnimator overrides method paintComponent (lines 39–46), inherited
from class JPanel. Method paintComponent draws LogoAnimator whenever it is
called. Line 44 calls method paintIcon on an ImageIcon in array images. The
ImageIcon is at index currentImage. This paints one of the animation frames. Line
45 advances the variable currentImage to the next animation frame.

Method startAnimation (lines 49–62) initializes animationTimer, the
Timer object that controls the delay between animation frames. If animationTimer is
null, lines 52–56 create a new Timer object with a delay of 50 milliseconds. Otherwise,
startAnimation restarts animationTimer on lines 58–61.

LogoAnimator implements method actionPerformed of interface Action-
Listener on lines 65–68. The animationTimer generates an ActionEvent at a

99 // add LogoAnimator to JFrame
100 application.getContentPane().add(animation,
101 BorderLayout.CENTER);
102
103 // set the window size and validate layout
104 application.pack();
105 application.setVisible(true);
106 }
107
108 } // end class LogoAnimator

Fig. 6.34Fig. 6.34Fig. 6.34Fig. 6.34 Definition of class LogoAnimator (part 3 of 3).

340 JavaBeans Component Model Chapter 6

rate specified in its constructor argument. When animationTimer generates an
ActionEvent, line 67 calls method repaint. Method repaint, in turn, calls
paintComponent, which draws the next animation frame.

Method stopAnimation (lines 71–74) calls method stop on animationTimer
(line 73). This stops animationTimer from generating ActionEvents, which stops
the animation.

Method getPreferredSize (lines 77–80) returns a Dimension object with the
preferred size of LogoAnimator. Method getMinimumSize (line 83–86) simply calls
getPreferredSize. The LayoutManager calls these two methods to determine
how to size LogoAnimator within the runtime environment.

Method main (lines 89–106) allows LogoAnimator to be executed as an applica-
tion. Method main creates a new JFrame and adds an instance of LogoAnimator to
the JFrame. JavaBeans do not need a main method, but the main method is needed to
execute a JavaBean independently.

LogoAnimator can be compiled either from the command line or in Forte. Logo-
Animator declares a package, so use the -d option of the Java compiler to create the
proper directory structure. The command line

javac -d . LogoAnimator.java

compiles LogoAnimator and places the package directory in the current directory. The
full directory structure for the package is com\deitel\advjhtp1\beans\ (substi-
tute forward slashes, /, in UNIX/Linux). For LogoAnimator to execute properly, the di-
rectory images with the PNG files used by LogoAnimator must be placed in the same
directory as class LogoAnimator (e.g. com\deitel\advjhtp1\beans\). The
images directory and the PNG files for LogoAnimator are on the CD-ROM that ac-
companies this book.

To compile in Forte, open the LogoAnimator.java file in Forte, right click in the
Source Editor window and select Compile (Fig. 6.35). Forte compiles the source code
and reports any errors in a separate window. Be sure to place the images directory in the
same directory as LogoAnimator.class. LogoAnimator will not execute properly
without the images.

6.4 Creating a JavaBean: Java Archive Files
JavaBeans normally are stored and distributed in a Java Archive files (JAR files). A JAR
file for a JavaBean must contain a manifest file, which describes the JAR file contents.
Manifest files contain attributes (called headers) that describe the individual components
in the JAR. This is important for integrated development environments that support Java-
Beans. When a JAR file containing a JavaBean (or a set of JavaBeans) is loaded into an
IDE, the IDE reads at the manifest file to determine which of the classes in the JAR repre-
sent JavaBeans. IDEs typically make these classes available to the programmer in a visual
manner, as shown in the Forte overview earlier in this chapter. We create file
manifest.tmp, which the jar utility uses to create the file as MANIFEST.MF and
places in the META-INF directory of the JAR file. [Note: The file manifest.tmp can
have any name—jar simply uses the file’s contents to create MANIFEST.MF in the JAR
file.] All JavaBean-aware development environments know to read the MANIFEST.MF

Chapter 6 JavaBeans Component Model 341

file in the META-INF directory of the JAR file. The Java interpreter can execute an appli-
cation directly from a JAR file if the manifest file specifies which class in the JAR contains
method main. Figure 6.36 shows the manifest file (manifest.tmp) for the LogoAni-
mator JavaBean.

Software Engineering Observation 6.3
You must define a manifest file that describes the contents of a JAR file if you intend either
to use the bean in a bean-aware integrated development environment or execute an applica-
tion directly from a JAR file. 6.3

Fig. 6.35Fig. 6.35Fig. 6.35Fig. 6.35 Compile option in the Source Editor menu.

1 Main-Class: com.deitel.advjhtp1.beans.LogoAnimator
2
3 Name: com/deitel/advjhtp1/beans/LogoAnimator.class
4 Java-Bean: True

Fig. 6.36Fig. 6.36Fig. 6.36Fig. 6.36 Method file manifest.tmp for the LogoAnimator bean.

342 JavaBeans Component Model Chapter 6

Class com.deitel.advjhtp1.beans.LogoAnimator contains method
main. This is specified by the Main-Class header (line 1). This header enables the vir-
tual machine to execute the application in the JAR file directly. To execute LogoAni-
mator from its JAR file, launch the Java virtual machine with the -jar command-line
option as follows:

java -jar LogoAnimator.jar

The interpreter looks at the manifest file to determine which class to execute. On many plat-
forms, you can execute an application in a JAR file by double clicking the JAR file in your
system’s file manager. This executes the jar command with the -jar option for the JAR
file the user clicks. The application can also be executed from a JAR file that does not con-
tain a manifest with the command

java -classpath LogoAnimator.jar
com.deitel.advjhtp1.beans.LogoAnimator

where -classpath indicates the class path (i.e., the directories and JAR files in which
the interpreter should search for classes). The -classpath option is followed by the JAR
file containing the application class. The last command-line argument is the full class name
(including the package name) for the application class.

Line 3 of the manifest file specifies the Name header of the file containing the bean
class (including the .class file name extension), using its package and class name.
Notice that the dots (.) typically used in package names are replaced with forward slashes
(/) for the Name header in the manifest file. Line 4 use the Java-Bean header to specify
that the class named on line 3 is a JavaBean. It is possible to have classes that are not Java-
Beans in a JAR file. Such classes typically support the JavaBeans in the archive. For
example, a linked-list bean might have a supporting linked-list-node class, objects of which
represent each node in the list. Each class listed in the manifest file should be separated
from other classes by a blank line. If the class is a bean, its Name header should be followed
immediately by its Java-Bean header.

In the manifest file, a bean’s name is specified with the Name header followed by the
fully qualified name of the bean (i.e., the complete package name and class name). The dots
(.) normally used to separate package names and class names are replaced with forward
slash (/) in this line of the manifest file.

Common Programming Error 6.1
If a class represents a bean, the Java-Bean header must follow the Name header immedi-
ately with a value of True. Otherwise, IDEs will not recognize the class as a bean. 6.1

Software Engineering Observation 6.4
If a class containing main is included in a JAR file, that class can be used by the interpreter
to execute the application directly from the JAR file by specifying the Main-Class header
at the beginning of the manifest file. The full package name and class name of the class
should be specified with periods (.) separating the package components and class name. 6.4

Common Programming Error 6.2
Not specifying a manifest file or specifying a manifest file with incorrect syntax when creat-
ing a JAR file is an error—builder tools will not recognize the beans in the JAR file. 6.2

Chapter 6 JavaBeans Component Model 343

Common Programming Error 6.3
If a JAR file manifest does not specify the Main-Class header, there must be a blank line
at the top of the manifest file before listing any Name headers. Some JAR utilities will report
an error and not create a JAR without a blank line at the top of the manifest. 6.3

Next, we create the JAR file for the LogoAnimator bean. This is accomplished with
the jar utility at the command line (such as the MS-DOS prompt or UNIX shell). The
command

jar cfm LogoAnimator.jar manifest.tmp
 com\deitel\advjhtp1\beans*.*

creates the JAR file. [Note: This command uses the backslash (\) as the directory separator
from the Windows Command Prompt. UNIX would use the forward slash (/) as the direc-
tory separator.] In the preceding command, jar is the Java archive utility used to create
JAR files. The options for the jar utility—cfm are provided next. The letter c indicates
that we are creating a JAR file. The letter f indicates that the next argument in the com-
mand line (LogoAnimator.jar) is the name of the JAR file to create. The letter m in-
dicates that the next argument in the command line (manifest.tmp) is the manifest file
that jar uses to create the file META-INF/MANIFEST.MF in the JAR. Following the op-
tions, the JAR file name and the manifest file name are the actual files to include in the JAR
file. We specified com\deitel\advjhtp1\beans*.*, indicating that all the files
in the beans directory should be included in the JAR file. The com.dei-
tel.advjhtp1.beans package directory contains the .class files for the Logo-
Animator and its supporting classes, as well as the images used in the animation. [Note:
You can include particular files by specifying the path and file name for each individual
file.] It is important that the directory structure in the JAR file match the class’ package
structure. Therefore, we executed the jar command from the directory on our system in
which the com directory that begins the package name reside.

To confirm that the files were archived correctly, issue the command

jar tvf LogoAnimator.jar

In this command, the letter t indicates that jar should list the table of contents for the JAR
file. The letter v indicates that the output should be verbose (the verbose output includes
the file size in bytes and the date and time each file was created, in addition to the directory
structure and file name). The letter f specifies that the next argument on the command line
is the JAR file for which jar should display information.

Try executing the LogoAnimator application with the command

java -jar LogoAnimator.jar

You will see that the animation appears in its own window on your screen.
JAR files also can be created inside Forte’s integrated development environment.

Right click LogoAnimator in the Explorer window and select Add to JAR from the
Tools menu, as described in Section 6.2. This displays the JAR Packager dialog. Our
class LogoAnimator already is selected to be included in the JAR file. At the top of the
dialog, type LogoAnimator.jar in the JAR Archive textfield and specify the directory
in which the JAR will appear. Add the images directory to the JAR (Fig. 6.37). Next,
click the Manifest tab and select the Generate File List check box. This creates a list of

344 JavaBeans Component Model Chapter 6

all files in the JAR, including LogoAnimator.class and the PNG files. The Java-
Bean and Main-Class headers are not generated by Forte and must be typed into the
manifest (Fig. 6.38). Click Create JAR to create LogoAnimator.jar. Now the Logo-
Animator can be loaded into the Component Palette as described in Section 6.2.

Fig. 6.37Fig. 6.37Fig. 6.37Fig. 6.37 Add images directory to LogoAnimator.jar.

Fig. 6.38Fig. 6.38Fig. 6.38Fig. 6.38 Manifest tab of JAR Packager dialog.

Chapter 6 JavaBeans Component Model 345

6.5 JavaBean Properties
In this section, we demonstrate adding an animationDelay property to LogoAnima-
tor, to control the animation’s speed. For this purpose, we extend class LogoAnimator
to create class LogoAnimator2. The new code for our property is defined by methods
setAnimationDelay (lines 16–19) and getAnimationDelay (lines 22–25) in
Fig. 6.39.

1 // Fig. 6.39: LogoAnimator2.java
2 // LogoAnimator2 extends LogoAnimator to include
3 // animationDelay property and implements ColorListener
4 package com.deitel.advjhtp1.beans;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9

10 // Java extension packages
11 import javax.swing.*;
12
13 public class LogoAnimator2 extends LogoAnimator {
14
15 // set animationDelay property
16 public void setAnimationDelay(int delay)
17 {
18 animationTimer.setDelay(delay);
19 }
20
21 // get animationDelay property
22 public int getAnimationDelay()
23 {
24 return animationTimer.getDelay();
25 }
26
27 // launch LogoAnimator in JFrame for testing
28 public static void main(String args[])
29 {
30 // create new LogoAnimator2
31 LogoAnimator2 animation = new LogoAnimator2();
32
33 // create new JFrame and add LogoAnimator2 to it
34 JFrame application = new JFrame("Animator test");
35 application.getContentPane().add(animation,
36 BorderLayout.CENTER);
37
38 application.setDefaultCloseOperation(
39 JFrame.EXIT_ON_CLOSE);
40 application.pack();
41 application.setVisible(true);
42 }
43
44 } // end class LogoAnimator2

Fig. 6.39Fig. 6.39Fig. 6.39Fig. 6.39 LogoAnimator2 with property animationDelay.

346 JavaBeans Component Model Chapter 6

To create the animationDelay property, we defined methods setAnimation-
Delay and getAnimationDelay. A read/write property of a bean is defined as a set/
get method pair of the form

public void setPropertyName(DataType value)
public DataType getPropertyName()

where PropertyName is replaced in each case by the actual property name. These meth-
ods often are referred to as a “property set method” and “property get method,” respectively.

Software Engineering Observation 6.5
A JavaBean read/write property is defined by a set/get method pair in which the set method
returns void and takes one argument and the get method returns the same type as the cor-
responding set method’s argument and takes no arguments. It is also possible to have read-
only properties (defined with only a get method) and write-only properties (defined with only
a set method). 6.5

Software Engineering Observation 6.6
For a property with the name propertyName, the corresponding set/get method pair would
be setPropertyName/getPropertyName by default. Note that the first letter of property-
Name is capitalized in the set/get method names. 6.6

If the property is a boolean data type, the set/get method pair is sometimes defined as

public void setPropertyName(boolean value)
public boolean isPropertyName()

where the get method name begins with the word is rather than get.
When a builder tool examines a bean, it inspects the bean methods for pairs of set/get

methods that represent properties (some builder tools also expose read-only and write-only
properties). This process is known as introspection. If the builder tool finds an appropriate
set/get method pair during the introspection process, the builder tool exposes that pair of
methods as a property in the builder tool’s user interface. In the first LogoAnimator, the
pair of methods

public void setBackground(Color c)
public Color getBackground()

that were inherited from class JPanel allowed Forte to expose the background prop-
erty in the Component Inspector for customization. Notice that the naming convention
for the set/get method pair used a capital letter for the first letter of the property name, but
the exposed property in the Component Inspector is shown with a lowercase first letter.

Software Engineering Observation 6.7
When a builder tool examines a bean, if it locates a set/get method pair that matches the
JavaBean’s property pattern, it exposes that pair of methods as a property in the bean. 6.7

Remember that class LogoAnimator2 must be wrapped as a JavaBean to load it into
Forte and other builder tools. Compile LogoAnimator2, and then place it in a JAR file
as described in the previous section. Now import LogoAnimator2 into the Component
Palette, and drop an instance of LogoAnimator2 into a JFrame as in Section 6.2.
Select LogoAnimator2 in the Form window or Component Inspector. The ani-
mationDelay property is now exposed in the Component Inspector (Fig. 6.40). Try

Chapter 6 JavaBeans Component Model 347

changing the value of the property to see its effect on the speed of the animation (you must
press Enter after changing the value to effect the change). Smaller values cause the anima-
tion to spin faster, larger values cause it to spin slower. Try typing 1000 to see one frame
of the animation per second.

6.6 Bound Properties
A bound property causes the JavaBean that owns the property to notify other objects when
the bound property’s value changes. This notification is accomplished with standard Java
event-handling features—the bean notifies its registered PropertyChangeListeners
when the bound property’s value changes. To support this feature, the java.beans pack-
age provides interface PropertyChangeListener so listeners can be configured to
receive property-change notifications, class PropertyChangeEvent to provide infor-
mation to a PropertyChangeListener about the change in a property’s value and
class PropertyChangeSupport to provide the listener registration and notification
services (i.e., to maintain the list of listeners and notify them when an event occurs).

Software Engineering Observation 6.8
A bound property causes the object that owns the property to notify other objects that there
has been a change in the value of that property. 6.8

The next example creates a new GUI component (SliderFieldPanel) that
extends JPanel and includes one JSlider object and one JTextField object. When
the JSlider value changes, our new GUI component automatically updates the JTex-
tField with the new value. Also, when a new value is entered in the JTextField and
the user presses the Enter key, the JSlider is automatically repositioned to the appro-

Fig. 6.40Fig. 6.40Fig. 6.40Fig. 6.40 LogoAnimator2 bean with property animationDelay exposed
in Forte’s Component Inspector.

348 JavaBeans Component Model Chapter 6

priate location. Our purpose in defining this new component is to link one of these to the
LogoAnimator2 animation to control the speed of the animation. When the Slider-
FieldPanel value changes, we want the animation speed to change. Figure 6.41 pre-
sents the code for class SliderFieldPanel.

1 // Fig. 6.41: SliderFieldPanel.java
2 // SliderFieldPanel provides a slider to adjust the animation
3 // speed of LogoAnimator2.
4 package com.deitel.advjhtp1.beans;
5
6 // Java core packages
7 import java.io.*;
8 import java.awt.*;
9 import java.awt.event.*;

10 import java.beans.*;
11
12 // Java extension packages
13 import javax.swing.*;
14 import javax.swing.event.*;
15
16 public class SliderFieldPanel extends JPanel
17 implements Serializable {
18
19 private JSlider slider;
20 private JTextField field;
21 private Box boxContainer;
22 private int currentValue;
23
24 // object to support bound property changes
25 private PropertyChangeSupport changeSupport;
26
27 // SliderFieldPanel constructor
28 public SliderFieldPanel()
29 {
30 // create PropertyChangeSupport for bound properties
31 changeSupport = new PropertyChangeSupport(this);
32
33 // initialize slider and text field
34 slider = new JSlider(
35 SwingConstants.HORIZONTAL, 1, 100, 1);
36 field = new JTextField(
37 String.valueOf(slider.getValue()), 5);
38
39 // set box layout and add slider and text field
40 boxContainer = new Box(BoxLayout.X_AXIS);
41 boxContainer.add(slider);
42 boxContainer.add(Box.createHorizontalStrut(5));
43 boxContainer.add(field);
44
45 setLayout(new BorderLayout());
46 add(boxContainer);
47

Fig. 6.41Fig. 6.41Fig. 6.41Fig. 6.41 Definition for class SliderFieldPanel (part 1 of 4).

Chapter 6 JavaBeans Component Model 349

48 // add ChangeListener for JSlider
49 slider.addChangeListener(
50
51 new ChangeListener() {
52
53 // handle state change for JSlider
54 public void stateChanged(ChangeEvent changeEvent)
55 {
56 setCurrentValue(slider.getValue());
57 }
58
59 } // end anonymous inner class
60
61); // end call to addChangeListener
62
63 // add ActionListener for JTextField
64 field.addActionListener(
65
66 new ActionListener() {
67
68 // handle action for JTextField
69 public void actionPerformed(ActionEvent
70 actionEvent)
71 {
72 setCurrentValue(
73 Integer.parseInt(field.getText()));
74 }
75
76 } // end anonymous inner class
77
78); // end call to addActionListener
79
80 } // end SliderFieldPanel constructor
81
82 // add PropertyChangeListener
83 public void addPropertyChangeListener(
84 PropertyChangeListener listener)
85 {
86 changeSupport.addPropertyChangeListener(listener);
87 }
88
89 // remove PropertyChangeListener
90 public void removePropertyChangeListener(
91 PropertyChangeListener listener)
92 {
93 changeSupport.removePropertyChangeListener(listener);
94 }
95
96 // set minimumValue property
97 public void setMinimumValue(int minimum)
98 {
99 slider.setMinimum(minimum);

Fig. 6.41Fig. 6.41Fig. 6.41Fig. 6.41 Definition for class SliderFieldPanel (part 2 of 4).

350 JavaBeans Component Model Chapter 6

100
101 if (slider.getValue() < slider.getMinimum()) {
102 slider.setValue(slider.getMinimum());
103 field.setText(String.valueOf(slider.getValue()));
104 }
105 }
106
107 // get minimumValue property
108 public int getMinimumValue()
109 {
110 return slider.getMinimum();
111 }
112
113 // set maximumValue property
114 public void setMaximumValue(int maximum)
115 {
116 slider.setMaximum(maximum);
117
118 if (slider.getValue() > slider.getMaximum()) {
119 slider.setValue(slider.getMaximum());
120 field.setText(String.valueOf(slider.getValue()));
121 }
122 }
123
124 // get maximumValue property
125 public int getMaximumValue()
126 {
127 return slider.getMaximum();
128 }
129
130 // set currentValue property
131 public void setCurrentValue(int current)
132 throws IllegalArgumentException
133 {
134 if (current < 0)
135 throw new IllegalArgumentException();
136
137 int oldValue = currentValue;
138
139 // set currentValue property
140 currentValue = current;
141
142 // change slider and textfield values
143 slider.setValue(currentValue);
144 field.setText(String.valueOf(currentValue));
145
146 // fire PropertyChange
147 changeSupport.firePropertyChange(
148 "currentValue", new Integer(oldValue),
149 new Integer(currentValue));
150 }
151

Fig. 6.41Fig. 6.41Fig. 6.41Fig. 6.41 Definition for class SliderFieldPanel (part 3 of 4).

Chapter 6 JavaBeans Component Model 351

Class SliderFieldPanel (Fig. 6.41) begins by specifying that it will be part of the
com.deitel.advjhtp1.beans package (line 4). The class is a subclass of JPanel,
so we can add a JSlider and a JTextField to it. Objects of class SliderField-
Panel can then be added to other containers.

Lines 19–25 declare instance variables of type JSlider (slider) and JText-
Field (field) that represent the subcomponents the user will use to set the Slider-
FieldPanel value, a Box (boxContainer) that will manage the layout, an int
(currentValue) that stores the current value of the SliderFieldPanel and a
PropertyChangeSupport (changeSupport) that will provide the listener registra-
tion and notification services.

Line 31 creates the PropertyChangeSupport object. The argument this spec-
ifies that an object of this class (SliderFieldPanel) is the source of the
PropertyChangeEvent. Lines 49–61 of the constructor register the ChangeLis-
tener for slider. When slider’s value changes, line 56 calls setCurrentValue
to update field and notify registered PropertyChangeListeners of the change in

152 // get currentValue property
153 public int getCurrentValue()
154 {
155 return slider.getValue();
156 }
157
158 // set fieldWidth property
159 public void setFieldWidth(int columns)
160 {
161 field.setColumns(columns);
162 boxContainer.validate();
163 }
164
165 // get fieldWidth property
166 public int getFieldWidth()
167 {
168 return field.getColumns();
169 }
170
171 // get minimum panel size
172 public Dimension getMinimumSize()
173 {
174 return boxContainer.getMinimumSize();
175 }
176
177 // get preferred panel size
178 public Dimension getPreferredSize()
179 {
180 return boxContainer.getPreferredSize();
181 }
182
183 } // end class SliderFieldPanel

Fig. 6.41Fig. 6.41Fig. 6.41Fig. 6.41 Definition for class SliderFieldPanel (part 4 of 4).

352 JavaBeans Component Model Chapter 6

value. Similarly, lines 64–78 register the ActionListener for field. When field’s
value changes, lines 72–73 call setCurrentValue to update slider and notify reg-
istered PropertyChangeListeners of the change in value.

To support registration of listeners for changes to our SliderFieldPanel’s bound
property, we define methods addPropertyChangeListener (lines 83–87) and
removePropertyChangeListener (lines 90–94). Each of these methods calls the
corresponding method in the PropertyChangeSupport object changeSupport.
This object provides the event notification services when the property value changes.

Software Engineering Observation 6.9
To define an event for a bean, you must supply a listener interface and an event class, and
the bean must define methods that allow adding and removing of listeners. For bound prop-
erty events, the listener interface and the event class are already defined (Property-
ChangeListener and PropertyChangeEvent, respectively). A bean that supports
bound-property events must define method addPropertyChangeListener and meth-
od removePropertyChangeListener to provide listener registration services. 6.9

Class SliderFieldPanel provides several properties. Methods setMinimum-
Value (lines 97–105) and getMinimumValue (lines 108–111) define property mini-
mumValue. Property maximumValue is defined by methods setMaximumValue
(lines 114–122) and getMaximumValue (lines 125–128). Methods setFieldWidth
(lines 159–163) and getFieldWidth (lines 166–169) define property fieldWidth.
Methods getMinimumSize (lines 172–175) and getPreferredSize (line 178–181)
return the minimum size and preferred size of the Box object boxContainer, which
manages the layout of the JSlider and JTextField.

Look-and-Feel Observation 6.1
If a bean will appear as part of a user interface, the bean should define method getPre-
ferredSize, which takes no arguments and returns a Dimension object containing the
preferred width and height of the bean. This helps the layout manager size the bean. 6.1

Methods setCurrentValue (lines 131–150) and getCurrentValue (lines
153–156) define the bound property currentValue. When the bound property
changes, the registered PropertyChangeListeners must be notified of the change.
The JavaBeans specification (java.sun.com/products/javabeans/docs/
spec.html) requires that each bound-property listener be presented with the old and
new property values when notified of the change (the values can be null if they are not
needed). For this reason, line 137 saves the previous property value. Line 140 sets the
new property value. Lines 143–144 ensure that the JSlider and JTextField show
the appropriate new values. Lines 147–149 invoke the PropertyChangeSupport
object’s firePropertyChange method to notify each registered Property-
ChangeListener. The first argument is a String containing the property name that
changed—currentValue. The second argument is the old property value. The third
argument is the new property value.

Software Engineering Observation 6.10
PropertyChangeListeners are notified of a property-change event with both the old
and the new value of the property. If these values are not needed, they can be null. 6.10

Chapter 6 JavaBeans Component Model 353

Software Engineering Observation 6.11
Class PropertyChangeSupport is provided as a convenience to implement the listener
registration and notification support for property-change events. 6.11

Remember that you should package the SliderFieldPanel class as a JavaBean
to load it into a builder tool. Archive the class in a JAR file. The manifest file for this
example is shown in Fig. 6.42. Line 2 specifies the name of the class file
(com\deitel\advjhtp1\beans\SliderFieldPanel.class) that represents
the bean. Line 3 specifies that the class named in line 1 is a JavaBean. There is no Main-
Class header in this file, because the SliderFieldPanel is not an application.
Finally, install SliderFieldPanel.jar into the builder tool.

To demonstrate the functionality of the bound property, place a SliderField-
Panel bean and a LogoAnimator2 bean into a JFrame. Select the SliderField-
Panel bean (Fig. 6.43), set its maximumValue property to 1000 and set its
currentValue to 50 (the default animation speed for the LogoAnimator2). In Forte,
select Connection Mode from the Component Palette. Click the SliderField-
Panel; then click LogoAnimator2. Red squares appear at the corners of each compo-
nent and the Connection Wizard opens.

In Step 1 of the Connection Wizard, select propertyChange as the event for the
source component and click the Next button (Fig. 6.44). Select LogoAnimator2’s
animationDelay property in Step 2 of the Connection Wizard (Fig. 6.45) and click
Next. Finally, select SliderFieldPanel’s currentValue property in Step 3
(Fig. 6.46) and click Finish. The animationDelay property is now bound to the
SliderFieldPanel’s currentValue property. Execute the JFrame to see the con-
nected LogoAnimator2 and SliderFieldPanel (Fig. 6.47).

Try adjusting the slider to see the animation speed change. Move the slider left to see
the speed of the animation increase; move the slider right to see the animation speed
decrease.

1
2 Name: com/deitel/advjhtp1/beans/SliderFieldPanel.class
3 Java-Bean: True

Fig. 6.42Fig. 6.42Fig. 6.42Fig. 6.42 Manifest file for the SliderFieldPanel JavaBean.

Fig. 6.43Fig. 6.43Fig. 6.43Fig. 6.43 Change properties currentValue and maximumValue.

354 JavaBeans Component Model Chapter 6

Fig. 6.44Fig. 6.44Fig. 6.44Fig. 6.44 Select propertyChange event.

Fig. 6.45Fig. 6.45Fig. 6.45Fig. 6.45 Select animationDelay property of LogoAnimator2.

Fig. 6.46Fig. 6.46Fig. 6.46Fig. 6.46 Select currentValue Bound Property.

Chapter 6 JavaBeans Component Model 355

6.7 Indexed Properties and Custom Events
Although standard properties, bound properties and standard Java events provide a great
deal of functionality, JavaBeans can be further customized with other types of properties
and programmer-defined events. An indexed property is like a standard property, except
that the indexed property is an array of primitives or objects. Two get and two set methods
define an indexed property. The get methods are of the form

public Datatype[] getPropertyName()
public Datatype getPropertyName(int index)

The first get method returns the entire array of an indexed property. The second get method
returns the item at the array index indicated by the get method’s parameter. The set methods
are of the form

public void setPropertyName(Datatype[] data)
public void setPropertyName(int index, Datatype data)

The first set method sets the indexed property to the value of the argument. The second set
method sets the item at the indicated array index to the value of the second parameter.

Software Engineering Observation 6.12
An indexed property functions like a regular property and is exposed in the property sheet
like normal properties. 6.12

A JavaBean can generate programmer-defined events. A programmer-defined event,
or custom event, provides functionality that standard Java events do not provide. An event
class extends java.util.EventObject and the listener interface extends
java.util.EventListener.

Our next example demonstrates an indexed property and a custom event. In the
example we create a ColorSliderPanel that enables a user to choose values for the
red, green and blue parts of a color. The ColorSliderPanel maintains these three
integer values in an indexed property and uses them to create Color objects. This custom
GUI component also generates custom ColorEvents, so that it can notify its registered
listeners when the user changes the color.

We begin by defining an EventObject class and an EventListener interface for
the custom event ColorEvent. Figure 6.48 shows the ColorEvent class and Fig. 6.49
shows the ColorListener interface. Class ColorEvent is a custom event that extends
class EventObject. Parameter color in the constructor (lines 15–19) represents the
value of the ColorEvent’s color property. Method setColor (lines 22–25) sets the
color instance variable. Method getColor (lines 28–31) returns the color property.

Fig. 6.47Fig. 6.47Fig. 6.47Fig. 6.47 JFrame with LogoAnimator2 and SliderFieldPanel.

356 JavaBeans Component Model Chapter 6

Interface ColorListener (Fig. 6.49) is a custom listener interface that extends
class EventListener. Classes that implement ColorListener listen for Color-
Events. The ColorEvent event source calls its registered listeners’ colorChanged
method (declared at line 11) with a ColorEvent object describing the change. All lis-
teners for ColorEvents must implement the ColorListener interface.

1 // Fig. 6.48 ColorEvent.java
2 // ColorEvent is an EventObject subclass that indicates a
3 // change in color.
4 package com.deitel.advjhtp1.beans;
5
6 // Java core packages
7 import java.util.*;
8 import java.awt.Color;
9

10 public class ColorEvent extends EventObject {
11
12 private Color color;
13
14 // constructor sets color property
15 public ColorEvent(Object source, Color color)
16 {
17 super(source);
18 setColor(color);
19 }
20
21 // set method for color property
22 public void setColor(Color newColor)
23 {
24 color = newColor;
25 }
26
27 // get method for color property
28 public Color getColor()
29 {
30 return color;
31 }
32
33 } // end class ColorEvent

Fig. 6.48Fig. 6.48Fig. 6.48Fig. 6.48 ColorEvent custom-event class indicating a color change.

1 // Fig. 6.49 ColorListener.java
2 // Color listener is the interface for custom event ColorEvent.
3 package com.deitel.advjhtp1.beans;
4
5 // Java core packages
6 import java.util.*;
7
8 public interface ColorListener extends EventListener {

Fig. 6.49Fig. 6.49Fig. 6.49Fig. 6.49 ColorListener interface for receiving colorChanged notifications
(part 1 of 2).

Chapter 6 JavaBeans Component Model 357

Class ColorSliderPanel (Fig. 6.50) is a JavaBean that issues colorChanged
ColorEvents when the sliders change the color value. ColorSliderPanel consists
of three SliderFieldPanels marked with JLabels as Red, Green and Blue. Three
JTextFields, one in each SliderFieldPanel, display integers from zero through
255. The three values are stored in an indexed property called redGreenBlue. Moving
a JSlider changes the number displayed in its JTextField and changes the value of
redGreenBlue. Changing redGreenBlue’s value causes ColorSliderPanel to
fire a ColorEvent. The ColorEvent contains a Color object initialized to the three
values of redGreenBlue. Our purpose in defining ColorSliderPanel is to link one
of these to the LogoAnimator2 animation, to change the background color of
LogoAnimator2.

9
10 // send colorChanged ColorEvent to listener
11 public void colorChanged(ColorEvent colorEvent);
12
13 } // end interface ColorListener

1 // Fig. 6.50 ColorSliderPanel.java
2 // ColorSliderPanel contains 3 SliderFieldPanels connected to
3 // indexed property redGreenBlue that adjusts the red, green
4 // and blue colors of an object.
5 package com.deitel.advjhtp1.beans;
6
7 // Java core packages
8 import java.io.*;
9 import java.awt.*;

10 import java.awt.event.*;
11 import java.beans.*;
12 import java.util.*;
13
14 // Java extension packages
15 import javax.swing.*;
16 import javax.swing.event.*;
17
18 public class ColorSliderPanel extends JPanel
19 implements Serializable {
20
21 private JLabel redLabel, greenLabel, blueLabel;
22 private SliderFieldPanel redSlider, greenSlider, blueSlider;
23 private JPanel labelPanel, sliderPanel;
24 private int[] redGreenBlue;
25 public int RED_INDEX = 0;
26 public int GREEN_INDEX = 1;
27 public int BLUE_INDEX = 2;
28 private Set listeners = new HashSet();
29

Fig. 6.50Fig. 6.50Fig. 6.50Fig. 6.50 Definition of class ColorSliderPanel (part 1 of 5).

Fig. 6.49Fig. 6.49Fig. 6.49Fig. 6.49 ColorListener interface for receiving colorChanged notifications
(part 2 of 2).

358 JavaBeans Component Model Chapter 6

30 // constructor for ColorSliderPanel
31 public ColorSliderPanel()
32 {
33 // initialize redGreenBlue property
34 redGreenBlue = new int[] { 0, 0, 0 };
35
36 // initialize gui components for red slider
37 redLabel = new JLabel("Red:");
38 redSlider = new SliderFieldPanel();
39 redSlider.setMinimumValue(0);
40 redSlider.setMaximumValue(255);
41
42 // initialize gui components for green slider
43 greenLabel = new JLabel("Green: ");
44 greenSlider = new SliderFieldPanel();
45 greenSlider.setMinimumValue(0);
46 greenSlider.setMaximumValue(255);
47
48 // initialize gui components for blue slider
49 blueLabel = new JLabel("Blue:");
50 blueSlider = new SliderFieldPanel();
51 blueSlider.setMinimumValue(0);
52 blueSlider.setMaximumValue(255);
53
54 // set layout and add components
55 setLayout(new BorderLayout());
56
57 labelPanel = new JPanel(new GridLayout(3, 1));
58 labelPanel.add(redLabel);
59 labelPanel.add(greenLabel);
60 labelPanel.add(blueLabel);
61
62 sliderPanel = new JPanel(new GridLayout(3, 1));
63 sliderPanel.add(redSlider);
64 sliderPanel.add(greenSlider);
65 sliderPanel.add(blueSlider);
66
67 add(labelPanel, BorderLayout.WEST);
68 add(sliderPanel, BorderLayout.CENTER);
69
70 // add PropertyChangeListener for redSlider
71 redSlider.addPropertyChangeListener(
72
73 new PropertyChangeListener() {
74
75 // handle propertyChange for redSlider
76 public void propertyChange(PropertyChangeEvent
77 propertyChangeEvent)
78 {
79 setRedGreenBlue(RED_INDEX,
80 redSlider.getCurrentValue());
81 }
82

Fig. 6.50Fig. 6.50Fig. 6.50Fig. 6.50 Definition of class ColorSliderPanel (part 2 of 5).

Chapter 6 JavaBeans Component Model 359

83 } // end anonymous inner class
84
85); // end call to addPropertyChangeListener
86
87 // add PropertyChangeListener for greenSlider
88 greenSlider.addPropertyChangeListener(
89
90 new PropertyChangeListener() {
91
92 // handle propertyChange for greenSlider
93 public void propertyChange(PropertyChangeEvent
94 propertyChangeEvent)
95 {
96 setRedGreenBlue(GREEN_INDEX,
97 greenSlider.getCurrentValue());
98 }
99
100 } // end anonymous inner class
101
102); // end call to addPropertyChangeListener
103
104 // add PropertyChangeListener for blueSlider
105 blueSlider.addPropertyChangeListener(
106
107 new PropertyChangeListener() {
108
109 // handle propertyChange for blueSlider
110 public void propertyChange(PropertyChangeEvent
111 propertyChangeEvent)
112 {
113 setRedGreenBlue(BLUE_INDEX,
114 blueSlider.getCurrentValue());
115 }
116
117 } // end anonymous inner class
118
119); // end call to addPropertyChangeListener
120
121 } // end ColorSliderPanel constructor
122
123 // add ColorListener
124 public void addColorListener(
125 ColorListener colorListener)
126 {
127 // listeners must be accessed atomically
128 synchronized (listeners) {
129 listeners.add(colorListener);
130 }
131 }
132

Fig. 6.50Fig. 6.50Fig. 6.50Fig. 6.50 Definition of class ColorSliderPanel (part 3 of 5).

360 JavaBeans Component Model Chapter 6

133 // remove ColorListener
134 public void removeColorListener(
135 ColorListener colorListener)
136 {
137 // listeners must be accessed by one thread only
138 synchronized (listeners) {
139 listeners.remove(colorListener);
140 }
141 }
142
143 // fire ColorEvent
144 public void fireColorChanged()
145 {
146 Iterator iterator;
147
148 // listeners must be accessed atomically
149 synchronized (listeners) {
150 iterator = new HashSet(listeners).iterator();
151 }
152
153 // create new Color with values of redGreenBlue
154 // create new ColorEvent with color variable
155 Color color = new Color(redGreenBlue[RED_INDEX],
156 redGreenBlue[GREEN_INDEX],
157 redGreenBlue[BLUE_INDEX]);
158 ColorEvent colorEvent = new ColorEvent(this, color);
159
160 // notify all registered ColorListeners of ColorChange
161 while (iterator.hasNext()) {
162 ColorListener colorListener = (ColorListener)
163 iterator.next();
164 colorListener.colorChanged(colorEvent);
165 }
166 }
167
168 // get redGreenBlue property
169 public int[] getRedGreenBlue()
170 {
171 return redGreenBlue;
172 }
173
174 // get redGreenBlue indexed property
175 public int getRedGreenBlue(int index)
176 {
177 return redGreenBlue[index];
178 }
179
180 // set redGreenBlue property
181 public void setRedGreenBlue(int[] array)
182 {
183 redGreenBlue = array;
184 }
185

Fig. 6.50Fig. 6.50Fig. 6.50Fig. 6.50 Definition of class ColorSliderPanel (part 4 of 5).

Chapter 6 JavaBeans Component Model 361

Lines 31–121 contain the constructor for ColorSliderPanel. Line 34 initializes
the redGreenBlue indexed property. Lines 37–52 initialize the JLabels’ components
and SliderFieldPanels. Each part of property redGreenBlue has a JLabel and
a SliderFieldPanel associated with it. The SliderFieldPanels’ JSliders are
set to a range of 0 through 255, and the JTextFields are set with the initial value of the
JSliders. Line 55 sets the layout to BorderLayout. Lines 57–60 add the JLabels to
a new JPanel with a three-by-one GridLayout. Lines 62–65 add the SliderField-
Panels to a new JPanel with a three-by-one GridLayout. Lines 67–68 add the
JPanels to ColorSliderPanel. Lines 71–119 add PropertyChangeListeners
to the SliderFieldPanels. Each call to addPropertyChangeListener creates
an instance of a PropertyChangeListener anonymous inner class. When a
SliderFieldPanel fires a PropertyChangeEvent, the propertyChanged
method of the appropriate PropertyChangeListener updates the value of indexed
property redGreenBlue.

Methods addColorListener (lines 124–131) and removeColorListener
(lines 134–141) contain synchronized blocks in which the Set listeners (line 28)
is modified. Set listeners contains all the registered listeners of type ColorLis-
tener. Method fireColorChanged (lines 144–166) uses method iterator to
create an Iterator from listeners. Lines 155–158 create a ColorEvent object
with a Color attribute matching the values of the redGreenBlue property. Method
fireColorChanged then sends the event to all registered listeners by calling method
colorChanged on every listener.

Lines 169–191 contain methods to manipulate the redGreenBlue property.
Method getRedGreenBlue (lines 169–172) with no parameters returns the integer
array redGreenBlue. Method getRedGreenBlue (lines 175–178) with an
integer parameter returns the value of redGreenBlue at the index of the parameter.
Property redGreenBlue can be set with two versions of method setRedGreen-
Blue. Method setRedGreenBlue (lines 181–184) with an integer array param-
eter sets redGreenBlue to the parameter. Method setRedGreenBlue (lines 187–
191) with integer parameters index and value sets the value of redGreen-
Blue at index. This version of the method also calls fireColorChanged to gen-
erate a ColorEvent.

Classes ColorEvent, ColorListener and ColorSliderPanel should be
packaged in a JAR file so ColorSliderPanel can be used as a JavaBean. Figure 6.51
shows the manifest file for this example. Line 2 specifies the name of the class file

186 // set redGreenBlue indexed property
187 public void setRedGreenBlue(int index, int value)
188 {
189 redGreenBlue[index] = value;
190 fireColorChanged();
191 }
192
193 } // end class ColorSliderPanel

Fig. 6.50Fig. 6.50Fig. 6.50Fig. 6.50 Definition of class ColorSliderPanel (part 5 of 5).

362 JavaBeans Component Model Chapter 6

(com\deitel\advjhtp1\beans\ColorSliderPanel.class) that represents
the bean. Line 3 specifies that the class named in line 2 is a JavaBean. There is no Main-
Class header line in this file, because ColorSliderPanel is not an application. No
entries are listed for ColorEvent and ColorListener, because they are only sup-
porting classes.

Install ColorSliderPanel into the Component Palette and drop instances of
LogoAnimator2 and ColorSliderPanel into a JFrame. Switch to Connection
Mode and click ColorSliderPanel then LogoAnimator2. The Connection
Wizard opens with a list of events from which to choose. Select colorChanged from
the menu and click the Next button (Fig. 6.52). In Step 2, click the Method radio button
and select method setBackground (Fig. 6.53). This method of LogoAnimator2 will
be called with the ColorEvent’s Color property as the argument. In Step 3, click the
User Code: radio button and type evt.getColor() into the text area then click
Finish (Fig. 6.54). This line calls ColorEvent’s getColor method, which returns a
Color object. LogoAnimator2 now listens for ColorEvents generated by Color-
SliderPanel.

Execute the JFrame to see LogoAnimator2 and ColorSliderPanel. Try
adjusting the three different sliders. Each slider changes one of the elements of the Color
object of the background of LogoAnimator2. Try moving the sliders to change the
background color and try entering a new value as text. Figure 6.55 shows several of the
possible colors.

1
2 Name: com/deitel/advjhtp1/beans/ColorSliderPanel.class
3 Java-Bean: True

Fig. 6.51Fig. 6.51Fig. 6.51Fig. 6.51 Manifest file for the ColorSliderPanel JavaBean.

Fig. 6.52Fig. 6.52Fig. 6.52Fig. 6.52 Selecting colorChanged method in Connection Wizard.

Chapter 6 JavaBeans Component Model 363

Fig. 6.53Fig. 6.53Fig. 6.53Fig. 6.53 Selecting setBackground method for target LogoAnimator2.

Fig. 6.54Fig. 6.54Fig. 6.54Fig. 6.54 Entering user code in Connection Wizard.

Fig. 6.55Fig. 6.55Fig. 6.55Fig. 6.55 Using the ColorSliderPanel to change the background color
of LogoAnimator2.

364 JavaBeans Component Model Chapter 6

6.8 Customizing JavaBeans for Builder Tools
As mentioned previously, builder tools use Java’s introspection mechanism to expose a
JavaBean’s properties, methods and events if the programmer follows the proper JavaBean
design patterns (such as the special naming conventions discussed for set/get method pairs
that define bean properties). Builder tools use the classes and interfaces of package
java.lang.reflect to perform introspection. For JavaBeans that do not follow the
JavaBean design patterns, or for JavaBeans in which the programmer wants to customize
the exposed set of properties, methods and events, the programmer can supply a class that
implements interface BeanInfo (package java.beans). The BeanInfo class de-
scribes to the builder tool how to present the features of the bean to the programmer.

Software Engineering Observation 6.13
A JavaBean’s properties, methods and events can be exposed by a builder tool if the pro-
grammer follows the proper JavaBean design patterns. 6.13

Software Engineering Observation 6.14
Every BeanInfo class must implement interface BeanInfo. This interface describes the
methods used by a builder tool to determine the features of a bean. 6.14

 Class SliderFieldPanel (Fig. 6.41) exposes many properties and events when
it is selected in the Component Inspector or connected with the Connection Wizard.
For this bean, we want the programmer to see only properties fieldWidth, current-
Value, minimumValue and maximumValue (the other properties were inherited from
class JPanel and are not truly relevant to our bean). Also, the only event we want the pro-
grammer to use for our component is the bound-property event.

Software Engineering Observation 6.15
By convention, the BeanInfo class has the same name as the bean and ends with Bean-
Info and is placed in the same package as the bean it describes or else it will not be found
automatically. 6.15

Software Engineering Observation 6.16
By convention, the BeanInfo class is included in the same JAR as the SliderField-
Panel JavaBean. When the bean is loaded, the builder tool determines whether the JAR file
contains a BeanInfo class for a bean. If a BeanInfo class is found, it is used to determine
the exposed features of the bean. Otherwise, standard introspection is used to determine the
exposed features of the bean. 6.16

Figure 6.56 presents class SliderFieldPanelBeanInfo to customize the prop-
erties and events exposed in builder tools for our SliderFieldPanel bean. The screen
captures in Fig. 6.57 show the exposed features of the SliderFieldPanel JavaBean.

1 // Fig. 6.56 SliderFieldPanelBeanInfo.java
2 // SliderFieldPanelBeanInfo is the BeanInfo class for
3 // SliderFieldPanel
4 package com.deitel.advjhtp1.beans;

Fig. 6.56Fig. 6.56Fig. 6.56Fig. 6.56 SliderFieldPanelBeanInfo exposes properties and events for
SliderFieldPanel (part 1 of 5).

Chapter 6 JavaBeans Component Model 365

5
6 // Java core packages
7 import java.beans.*;
8 import java.awt.Image;
9

10 // Java extension packages
11 import javax.swing.*;
12
13 public class SliderFieldPanelBeanInfo extends SimpleBeanInfo {
14
15 public static final Class beanClass =
16 SliderFieldPanel.class;
17
18 // return general description of bean
19 public BeanDescriptor getBeanDescriptor()
20 {
21 BeanDescriptor descriptor = new BeanDescriptor(
22 beanClass, SliderFieldPanelCustomizer.class);
23 descriptor.setDisplayName("Slider Field");
24 descriptor.setShortDescription(
25 "A slider bar to change a numerical property.");
26
27 return descriptor;
28 }
29
30 // return bean icon
31 public Image getIcon(int iconKind)
32 {
33 Image image = null;
34
35 switch(iconKind) {
36
37 case ICON_COLOR_16x16:
38 image = loadImage("icon1.gif");
39 break;
40
41 case ICON_COLOR_32x32:
42 image = loadImage("icon2.gif");
43 break;
44
45 case ICON_MONO_16x16:
46 image = loadImage("icon3.gif");
47 break;
48
49 case ICON_MONO_32x32:
50 image = loadImage("icon4.gif");
51 break;
52
53 default:
54 break;
55 }

Fig. 6.56Fig. 6.56Fig. 6.56Fig. 6.56 SliderFieldPanelBeanInfo exposes properties and events for
SliderFieldPanel (part 2 of 5).

366 JavaBeans Component Model Chapter 6

56
57 return image;
58 }
59
60 // return array of MethodDescriptors for public get methods
61 // of class SliderFieldPanel
62 public MethodDescriptor[] getMethodDescriptors()
63 {
64 // create array of MethodDescriptors
65 try {
66 MethodDescriptor getMinimumValue = new
67 MethodDescriptor(beanClass.getMethod(
68 "getMinimumValue", null));
69
70 MethodDescriptor getMaximumValue = new
71 MethodDescriptor(beanClass.getMethod(
72 "getMaximumValue", null));
73
74 MethodDescriptor getCurrentValue = new
75 MethodDescriptor(beanClass.getMethod(
76 "getCurrentValue", null));
77
78 MethodDescriptor getFieldWidth = new
79 MethodDescriptor(beanClass.getMethod(
80 "getFieldWidth", null));
81 MethodDescriptor[] descriptors = { getMinimumValue,
82 getMaximumValue, getCurrentValue, getFieldWidth };
83
84 return descriptors;
85 }
86
87 // printStackTrace if NoSuchMethodException thrown
88 catch (NoSuchMethodException methodException) {
89 methodException.printStackTrace();
90 }
91
92 // printStackTrace if SecurityException thrown
93 catch (SecurityException securityException) {
94 securityException.printStackTrace();
95 }
96
97 return null;
98 }
99
100 // return PropertyDescriptor array
101 public PropertyDescriptor[] getPropertyDescriptors()
102 throws RuntimeException
103 {
104 // create array of PropertyDescriptors
105 try {
106

Fig. 6.56Fig. 6.56Fig. 6.56Fig. 6.56 SliderFieldPanelBeanInfo exposes properties and events for
SliderFieldPanel (part 3 of 5).

Chapter 6 JavaBeans Component Model 367

107 // fieldWidth property
108 PropertyDescriptor fieldWidth = new
109 PropertyDescriptor("fieldWidth", beanClass);
110 fieldWidth.setShortDescription(
111 "Width of the text field.");
112
113 // currentValue property
114 PropertyDescriptor currentValue = new
115 PropertyDescriptor("currentValue", beanClass);
116 currentValue.setShortDescription(
117 "Current value of slider.");
118
119 // maximumValue property
120 PropertyDescriptor maximumValue = new
121 PropertyDescriptor("maximumValue", beanClass);
122 maximumValue.setPropertyEditorClass(
123 MaximumValueEditor.class);
124 maximumValue.setShortDescription(
125 "Maximum value of slider.");
126
127 // minimumValue property
128 PropertyDescriptor minimumValue = new
129 PropertyDescriptor("minimumValue", beanClass);
130 minimumValue.setShortDescription(
131 "Minimum value of slider.");
132 minimumValue.setPropertyEditorClass(
133 MinimumValueEditor.class);
134
135 // ensure PropertyChangeEvent occurs for this property
136 currentValue.setBound(true);
137
138 PropertyDescriptor descriptors[] = { fieldWidth,
139 currentValue, maximumValue, minimumValue };
140
141 return descriptors;
142 }
143
144 // throw RuntimeException if IntrospectionException
145 // thrown
146 catch (IntrospectionException exception) {
147 throw new RuntimeException(exception.getMessage());
148 }
149 }
150
151 // get currentValue property index
152 public int getDefaultPropertyIndex()
153 {
154 return 1;
155 }
156

Fig. 6.56Fig. 6.56Fig. 6.56Fig. 6.56 SliderFieldPanelBeanInfo exposes properties and events for
SliderFieldPanel (part 4 of 5).

368 JavaBeans Component Model Chapter 6

157 // return EventSetDescriptors array
158 public EventSetDescriptor[] getEventSetDescriptors()
159 throws RuntimeException
160 {
161 // create array of EventSetDescriptors
162 try {
163 EventSetDescriptor changed = new
164 EventSetDescriptor(beanClass, "propertyChange",
165 java.beans.PropertyChangeListener.class,
166 "propertyChange");
167
168 // set event description and name
169 changed.setShortDescription(
170 "Property change event for currentValue.");
171 changed.setDisplayName(
172 "SliderFieldPanel value changed");
173
174 EventSetDescriptor[] descriptors = { changed };
175
176 return descriptors;
177 }
178
179 // throw RuntimeException if IntrospectionException
180 // thrown
181 catch (IntrospectionException exception) {
182 throw new RuntimeException(exception.getMessage());
183 }
184 }
185
186 // get PropertyChange event index
187 public int getDefaultEventIndex()
188 {
189 return 0;
190 }
191
192 } // end class SliderFieldPanelBeanInfo

Fig. 6.57Fig. 6.57Fig. 6.57Fig. 6.57 Properties and events exposed by SliderFieldPanelBeanInfo.

Fig. 6.56Fig. 6.56Fig. 6.56Fig. 6.56 SliderFieldPanelBeanInfo exposes properties and events for
SliderFieldPanel (part 5 of 5).

Chapter 6 JavaBeans Component Model 369

Every BeanInfo class must implement interface BeanInfo. This interface
describes the methods used by builder tools to determine the exposed features of the bean
described by its corresponding BeanInfo class. As a convenience, the java.beans
package includes class SimpleBeanInfo, which provides a default implementation of
every method in interface BeanInfo. The programmer can extend this class and selec-
tively override its methods to implement a proper BeanInfo class. Class Slider-
FieldPanelBeanInfo extends class SimpleBeanInfo (line 13). In Fig. 6.56, we
override BeanInfo methods getBeanDescriptor, getIcon, getMethodDe-
scriptors, getPropertyDescriptors, getDefaultPropertyIndex,
getEventSetDescriptors and getDefaultEventIndex.

Software Engineering Observation 6.17
Class SimpleBeanInfo provides a default implementation of every method in interface
BeanInfo. The programmer can selectively override methods of this class to implement a
proper BeanInfo class. 6.17

Lines 19–28 override method getBeanDescriptor, to return a BeanDe-
scriptor object. The constructor for BeanDescriptor takes as arguments the Java-
Bean customizer Class object. A customizer provides a specialized user interface for
customizing a bean. We discuss customizers and specifically the SliderFieldPanel-
Customizer in Section 6.8.2. Methods setDisplayName (line 23) and setShort-
Description (line 24) set the JavaBean’s name and a short description, respectively.
The builder tool extracts this information and displays it when selecting the bean.

Lines 31–58 override method getIcon. Interface BeanInfo defines the constants
used by the switch statement. The switch (lines 35–55) loads the appropriate Image.
The builder tool uses this Image as an icon in the Component Palette.

Software Engineering Observation 6.18
Method getIcon allows a programmer to customize the look of a JavaBean within a build-
er tool. Common icons are company logos and descriptive graphics. 6.18

Lines 62–98 override method getMethodDescriptors to return an array of
MethodDescriptor objects for the SliderFieldPanel bean. Each MethodDe-
scriptor represents a specific method exposed to the builder tool. Method get-
MethodDescriptors describes the get methods for properties maximumValue,
minimumValue, currentValue and fieldWidth. The method calls in lines 66–80
may throw NoSuchMethodException and SecurityException exceptions.

Lines 101–149 override method getPropertyDescriptors, to return an array of
PropertyDescriptor objects for SliderFieldPanel properties. Each Proper-
tyDescriptor indicates a specific property that should be exposed by a builder tool.
There are several ways to construct a PropertyDescriptor. In this example, each
PropertyDescriptor constructor call has the form

new PropertyDescriptor("propertyName", beanClass);

where propertyName is a String that specifies the name of a property defined by the pair
of methods setPropertyName and getPropertyName. Note that the propertyName be-
gins with a lowercase letter and the get/set property methods begin the property name with
an uppercase letter. We defined PropertyDescriptors for fieldWidth, cur-
rentValue, minimumValue and maximumValue in class SliderFieldPanel.

370 JavaBeans Component Model Chapter 6

Method setShortDescription sets a short text description of the property. For the
maximumValue and minimumValue properties, we also specify PropertyEditors
with method setPropertyEditorClass. A PropertyEditor defines a custom
user interface for editing a bean property. We discuss PropertyEditors—and specifi-
cally MinimumValueEditor and MaximumValueEditor—in Section 6.8.1. Line
136 specifies that property currentValue is a bound property. Some builder tools visu-
ally treat bound-property events separately from other events.

Software Engineering Observation 6.19
If the set/get methods for a property do not use the JavaBean’s naming convention for prop-
erties, there are two other PropertyDescriptor constructors in which the actual meth-
od names are passed. This allows the builder tools to use nonstandard property methods to
expose a property for manipulation by the programmer at design time. This is particularly
useful in retrofitting a class as a JavaBean when that class was not originally designed and
implemented using JavaBeans design patterns. 6.19

Lines 138–139 create the PropertyDescriptor array that method getProper-
tyDescriptors returns (line 141). Note the exception handler for Introspection-
Exceptions. If a PropertyDescriptor constructor is unable to confirm the
property in the corresponding Class object that represents the class definition, the con-
structor throws an IntrospectionException. Because the BeanInfo class and its
methods are actually used by the builder tool at design time (i.e., during the development
of the program in the IDE), the RuntimeException thrown in the catch handler
would normally be caught by the builder tool.

Lines 152–155 define method getDefaultPropertyIndex to return the value 1,
indicating that the property at position 1 in the PropertyDescriptor array returned
from getPropertyDescriptors is the default property for developers to customize
in a builder tool. Typically, the default property is selected when you click a bean. In this
example, property currentValue is the default property.

Lines 158–184 override method getEventSetDescriptors to return an array of
EventSetDescriptor objects that describes to a builder tool the events supported by
this bean. Lines 163–166 define an EventSetDescriptor object for the Property-
ChangeEvent associated with the bound property currentValue. The four argu-
ments to the constructor describe the event that should be exposed by the builder tool. The
first argument is the Class object (beanClass) representing the event source (i.e., the
bean that generates the event). The second argument is a String representing the event
set name (e.g., the mouse event set includes mousePressed, mouseClicked,
mouseReleased, mouseEntered and mouseExited). In this example, the event set
name is propertyChange. The third argument is the Class object representing the
event listener interface implemented by listeners for this event. Finally, the last argument
is a String representing the name of the listener method to call (propertyChange)
when this event occurs.

When using the standard JavaBeans design patterns, the event set name is part of all
the data type names and method names used to process the event. For example, the types
and methods for the propertyChange event set are: PropertyChangeListener
(the interface an object must implement to be notified of an event in this event set), Prop-
ertyChangeEvent (the type passed to a listener method for an event in this event set),
addPropertyChangeListener (the method called to add a listener for an event in

Chapter 6 JavaBeans Component Model 371

this event set), removePropertyChangeListener (the method called to remove a
listener for an event in this event set) and firePropertyChange (the method called to
notify listeners when an event in this event set occurs—this method is named as such by
convention).

Software Engineering Observation 6.20
EventSetDescriptors can be constructed with other arguments to expose events that
do not follow the standard JavaBeans design patterns. 6.20

A benefit of an EventSetDescriptor is customizing the name for the event set
for display in the builder tool. Lines 171–172 call method setDisplayName on the
EventSetDescriptor to indicate that its display name should be “SliderField-
Panel value changed.”

Good Programming Practice 6.1
Customizing the event set name displayed by a builder tool can make the purpose of that
event set more understandable to the component assembler using the bean. 6.1

Lines 174–176 create the EventSetDescriptor array and return it. Note the
exception handler for IntrospectionExceptions at line 182. If an EventSetDe-
scriptor constructor is unable to confirm the event in the corresponding Class object
that represents the class definition, the constructor throws an Introspection-
Exception.

Lines 187–190 define method getDefaultEventIndex to return the value 0,
indicating that the property at position 0 in the EventSetDescriptor array returned
from getEventSetDescriptors is the default event for developers to customize in a
builder tool. Typically, the default event is automatically selected when you click a bean.
In this example, event propertyChange is the default event.

6.8.1 PropertyEditors

JavaBeans can be customized further by implementing other support classes in addition to
BeanInfo. A PropertyEditor determines how a particular property is edited inside
a builder tool. The PropertyEditor constrains the property to a particular range of val-
ues determined by the programmer. This prevents illegal values that would cause undesired
operation in the JavaBean. A PropertyEditor appears often in the property sheet as a
pull-down menu with a list of values. A class implementing interface PropertyEditor
is written for every property of a JavaBean that will have a PropertyEditor.

Software Engineering Observation 6.21
By convention, a PropertyEditor class has the same name as the property or type and
ends with Editor. 6.21

The PropertyEditors MaximumValueEditor (Fig. 6.58) and Minimum-
ValueEditor (Fig. 6.59) edit the maximumValue and minimumValue properties of
class SliderFieldPanel. Both PropertyEditors extend class PropertyEdi-
torSupport. PropertyEditorSupport is a simple implementation of interface
PropertyEditor. The PropertyEditors each use a combo box with values from
50 through 500, in increments of 50. These values provide a wide range of animation
speeds and prevent an illegal value from being entered for the properties.

372 JavaBeans Component Model Chapter 6

1 // Fig. 6.58 MaximumValueEditor.java
2 // MaximumValueEditor is the PropertyEditor for the
3 // maximumValue property of the SliderFieldPanel bean.
4 package com.deitel.advjhtp1.beans;
5
6 // Java core packages
7 import java.beans.*;
8
9 public class MaximumValueEditor extends PropertyEditorSupport {

10
11 private Integer maximumValue;
12
13 // set maximumValue property
14 public void setValue(Object value)
15 {
16 maximumValue = (Integer) value;
17 firePropertyChange();
18 }
19
20 // get maximumValue property
21 public Object getValue()
22 {
23 return maximumValue;
24 }
25
26 // set maximumValue property from text string
27 public void setAsText(String string)
28 {
29 // decode may throw NumberFormatException
30 try {
31 maximumValue = Integer.decode(string);
32 firePropertyChange();
33 }
34
35 // throw IllegalArgumentException if decode throws
36 // NumberFormatException
37 catch (NumberFormatException numberFormatException) {
38 throw new IllegalArgumentException();
39 }
40
41 } // end method setAsText
42
43 // get String array for pull-down menu
44 public String[] getTags()
45 {
46 return new String[] { "50", "100", "150", "200", "250",
47 "300", "350", "400", "450", "500" };
48 }
49
50 // get maximumValue property as string
51 public String getAsText()
52 {

Fig. 6.58Fig. 6.58Fig. 6.58Fig. 6.58 MaximumValueEditor is a PropertyEditor for
SliderFieldPanel’s maximumValue property (part 1 of 2).

Chapter 6 JavaBeans Component Model 373

Integer maximumValue (line 11) stores the value selected in the combo box.
Method setValue (lines 14–18) takes an Object value as a parameter, sets maxi-
mumValue to value and calls method firePropertyChange. Method getValue
(lines 21–24) returns maximumValue. Method setAsText (lines 27–41) takes a
parameter string and decodes string into a new Integer value for maximum-
Value. Method getTags (lines 44–48) returns a String array of all of the tags that
appear in the combo box. Method getAsText (lines 51–54) returns maximumValue as
a String. Method getJavaInitializationString (lines 57–60) returns maxi-
mumValue as a String for use as a method parameter in generated source code.

MinimumValueEditor’s source code (Fig. 6.59) follows the exact same structure
as MaximumValueEditor, but edits the minimumValue property of bean Slider-
FieldPanel.

53 return getValue().toString();
54 }
55
56 // get initialization string for Java code
57 public String getJavaInitializationString()
58 {
59 return getValue().toString();
60 }
61
62 } // end class MaximumValueEditor

1 // Fig. 6.59 MinimumValueEditor.java
2 // MinimumValueEditor is the PropertyEditor for the
3 // minimumValue property of the SliderFieldPanel bean.
4 package com.deitel.advjhtp1.beans;
5
6 // Java core packages
7 import java.beans.*;
8
9 public class MinimumValueEditor extends PropertyEditorSupport {

10
11 protected Integer minimumValue;
12
13 // set minimumValue property
14 public void setValue(Object value)
15 {
16 minimumValue = (Integer) value;
17 firePropertyChange();
18 }
19
20 // get value of property minimum
21 public Object getValue()
22 {

Fig. 6.59Fig. 6.59Fig. 6.59Fig. 6.59 MinimumValueEditor is a PropertyEditor for
SliderFieldPanel’s minimumValue property (part 1 of 2).

Fig. 6.58Fig. 6.58Fig. 6.58Fig. 6.58 MaximumValueEditor is a PropertyEditor for
SliderFieldPanel’s maximumValue property (part 2 of 2).

374 JavaBeans Component Model Chapter 6

MaximumValueEditor and MinimumValueEditor must be compiled and
packaged in the same JAR file as SliderFieldPanel and SliderFieldPanel-
BeanInfo. When SliderFieldPanel is installed, the builder tool instantiates the
PropertyEditors. MaximumValueEditor and MinimumValueEditor are pre-
sented as pull-down menus with values from 50–500 (Fig. 6.60). Try changing the values
of maximumValue and minimumValue with the pull-down menus. When the
SliderFieldPanel is linked to LogoAnimator2 and executed, the selected values
of minimumValue and maximumValue constrain the animation speed within the range
50–500 (Fig. 6.61).

23 return minimumValue;
24 }
25
26 // set maximumValue property from text string
27 public void setAsText(String string)
28 {
29 // decode may throw NumberFormatException
30 try {
31 minimumValue = Integer.decode(string);
32 firePropertyChange();
33 }
34
35 // throw IllegalArgumentException if decode throws
36 // NumberFormatException
37 catch (NumberFormatException numberFormatException) {
38 throw new IllegalArgumentException();
39 }
40 }
41
42 // string array for pull-down menu
43 public String[] getTags()
44 {
45 return new String[] { "50", "100", "150", "200", "250",
46 "300", "350", "400", "450", "500" };
47 }
48
49 // get minimumValue property as string
50 public String getAsText()
51 {
52 return getValue().toString();
53 }
54
55 // get initialization string for Java code
56 public String getJavaInitializationString()
57 {
58 return getValue().toString();
59 }
60
61 } // end class MinimumValueEditor

Fig. 6.59Fig. 6.59Fig. 6.59Fig. 6.59 MinimumValueEditor is a PropertyEditor for
SliderFieldPanel’s minimumValue property (part 2 of 2).

Chapter 6 JavaBeans Component Model 375

6.8.2 Customizers1

The final option for customizing a JavaBean is a Customizer class. A class that imple-
ments interface Customizer creates a customized interface for setting the properties of
a JavaBean. This interface is separate from the builder-tool style sheet. A Customizer is
useful for manipulating JavaBean properties that cannot be edited in the standard property
sheet, such as instance fields in objects that are themselves properties.

SliderFieldPanelCustomizer (Fig. 6.62) implements the Customizer
interface. A Customizer must extend a Component and provide a no-argument con-
structor so the builder tool can instantiate it. The constructor (lines 26–75) initializes the
components of the customizer. Object changeSupport (line 29) registers Property-
ChangeListeners with class PropertyChangeSupport. SliderFieldPan-
elCustomizer consists of two JLabels and two JComboBoxes. The JLabels label

Fig. 6.60Fig. 6.60Fig. 6.60Fig. 6.60 MaximumValueEditor and MinimumValueEditor pull-down
menus in Forte.

Fig. 6.61Fig. 6.61Fig. 6.61Fig. 6.61 SliderFieldPanel values constrained by PropertyEditors.

1. Due to a problem in Forte that prevents bean Customizers from working properly, we use Net-
Beans 3.2 to demonstrate the example in this section. NetBeans is the open-source development
environment project on which Forte is based. NetBeans can be downloaded free of charge from
www.netbeans.org.

376 JavaBeans Component Model Chapter 6

the JComboBoxes for the minimumValue and maximumValue properties (lines 32–
33). Properties minimumValue and maximumValue can be set from 50 through 500, in
increments of 50 (lines 36–39). Lines 42–69 add ActionListeners to the JCombo-
Boxes. Selecting a value causes the actionPerformed method of the listener to call
the right method to change either maximumValue or minimumValue.

1 // Fig. 6.62 SliderFieldPanelCustomizer.java
2 // SliderFieldPanelCustomizer is the Customizer class for
3 // SliderFieldPanel.
4 package com.deitel.advjhtp1.beans;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9 import java.beans.*;

10 import java.util.*;
11
12 // Java extension packages
13 import javax.swing.*;
14
15 public class SliderFieldPanelCustomizer extends JPanel
16 implements Customizer {
17
18 private JComboBox maximumCombo, minimumCombo;
19 private JLabel minimumLabel, maximumLabel;
20 protected SliderFieldPanel slider;
21 private PropertyChangeSupport changeSupport;
22 private static final String[] VALUES = { "50", "100",
23 "150", "200", "250", "300", "350", "400", "450", "500" };
24
25 // initialize GUI components
26 public SliderFieldPanelCustomizer()
27 {
28 // create PropertyChangeSupport to handle PropertyChange
29 changeSupport = new PropertyChangeSupport(this);
30
31 // labels for maximum and minimum properties
32 minimumLabel = new JLabel("Minimum Slider Value:");
33 maximumLabel = new JLabel("Maximum Slider Value:");
34
35 // combo boxes adjust maximum and minimum properties
36 minimumCombo = new JComboBox(VALUES);
37 minimumCombo.setSelectedIndex(0);
38 maximumCombo = new JComboBox(VALUES);
39 maximumCombo.setSelectedIndex(9);
40
41 // add ActionListener to minimumValue combo box
42 minimumCombo.addActionListener(
43

Fig. 6.62Fig. 6.62Fig. 6.62Fig. 6.62 SliderFieldPanelCustomizer custom GUI for modifying
SliderFieldPanel beans (part 1 of 3).

Chapter 6 JavaBeans Component Model 377

44 new ActionListener() {
45
46 // handle action of minimum combo box
47 public void actionPerformed(ActionEvent event)
48 {
49 setMinimum(minimumCombo.getSelectedIndex());
50 }
51
52 } // end anonymous inner class
53
54); // end addActionListener
55
56 // add ActionListener to maximumValue combo box
57 maximumCombo.addActionListener(
58
59 new ActionListener() {
60
61 // handle action of maximum combo box
62 public void actionPerformed(ActionEvent event)
63 {
64 setMaximum(maximumCombo.getSelectedIndex());
65 }
66
67 } // end anonymous inner class
68
69); // end addActionListener
70
71 add(minimumLabel);
72 add(minimumCombo);
73 add(maximumLabel);
74 add(maximumCombo);
75 }
76
77 // set the customized object
78 public void setObject(Object bean)
79 {
80 slider = (SliderFieldPanel) bean;
81 }
82
83 // add PropertyChangeListener with PropertyChangeSupport
84 public void addPropertyChangeListener(
85 PropertyChangeListener listener)
86 {
87 changeSupport.addPropertyChangeListener(listener);
88 }
89
90 // remove PropertyChangeListener with PropertyChangeSupport
91 public void removePropertyChangeListener(
92 PropertyChangeListener listener)
93 {
94 changeSupport.removePropertyChangeListener(listener);
95 }

Fig. 6.62Fig. 6.62Fig. 6.62Fig. 6.62 SliderFieldPanelCustomizer custom GUI for modifying
SliderFieldPanel beans (part 2 of 3).

378 JavaBeans Component Model Chapter 6

Method setObject (lines 78–81) takes as an object argument an instance of the
JavaBean being customized. Line 80 casts the object reference to SliderField-
Panel and assigns it to instance variable slider.

Class SliderFieldPanelCustomizer provides methods for adding (lines
84–88) and removing (lines 91–95) PropertyChangeListeners. The builder tool
registers with SliderFieldPanelCustomizer when the customizer is instanti-
ated. A PropertyChangeSupport object (line 21) maintains the list of active lis-
teners. Methods setMinimum (lines 98–106) and setMaximum (lines 109–117) call
firePropertyChangeEvent to change the minimumValue and maximum-
Value properties of the JavaBean. Method firePropertyChangeEvent creates a
new PropertyChangeEvent object with the new and old values of the changing
property and sends the event to all registered listeners through changeSupport.

SliderFieldPanelCustomizer must be packaged in the same JAR file as
SliderFieldPanel and SliderFieldPanelBeanInfo. Once it is installed,
right click an instance of SliderFieldPanel and select Customize (Fig. 6.63). The
Customizer Dialog opens and contains the SliderFieldPanelCustomizer
(Fig. 6.64). Select the desired values for minimumValue and maximumValue and
click the Close button. The new values take effect when you execute the application.

96
97 // set minimumValue property
98 public void setMinimum(int index)
99 {
100 int oldValue = slider.getMinimumValue();
101 int newValue = Integer.parseInt(VALUES[index]);
102
103 slider.setMinimumValue(newValue);
104 changeSupport.firePropertyChange("minimumValue",
105 new Integer(oldValue), new Integer(newValue));
106 }
107
108 // set maximumValue property
109 public void setMaximum(int index)
110 {
111 int oldValue = slider.getMaximumValue();
112 int newValue = Integer.parseInt(VALUES[index]);
113
114 slider.setMaximumValue(newValue);
115 changeSupport.firePropertyChange("maximumValue",
116 new Integer(oldValue), new Integer(newValue));
117 }
118
119 } // end class SliderFieldPanelCustomizer

Fig. 6.62Fig. 6.62Fig. 6.62Fig. 6.62 SliderFieldPanelCustomizer custom GUI for modifying
SliderFieldPanel beans (part 3 of 3).

Chapter 6 JavaBeans Component Model 379

6.9 Internet and World Wide Web Resources
java.sun.com/beans
The JavaBeans Home Page at the Sun Microsystems, Inc., Web site. Here, you can download the Beans
Development Kit (BDK) and other bean-related software. Other features of the site include JavaBeans
documentation and specifications, a frequently asked questions list, an overview of integrated develop-
ment environments that support JavaBeans development, training and support, upcoming JavaBeans
events, a searchable directory of JavaBeans components, a support area for marketing your JavaBeans
and a variety of on-line resources for communicating with other programmers regarding JavaBeans.

java.sun.com/beans/spec.html
Visit this site to download the JavaBeans specification.

java.sun.com/beans/tools.html
Visit this site for information about JavaBeans-enabled development tools.

java.sun.com/beans/directory
Visit this site for a searchable directory of available beans.

Fig. 6.63Fig. 6.63Fig. 6.63Fig. 6.63 Select Customize from Component Inspector menu.

Fig. 6.64Fig. 6.64Fig. 6.64Fig. 6.64 SliderFieldPanel’s Customizer Dialog.

380 JavaBeans Component Model Chapter 6

SUMMARY
• A JavaBean is a reusable software component that can be manipulated visually in a builder tool.

• JavaBeans (often called beans) allow developers to reap the benefits of rapid application develop-
ment in Java by assembling predefined software components to create powerful applications and
applets.

• Graphical programming and design environments (often called builder tools) that support beans
provide programmers with tremendous flexibility by allowing programmers to reuse and integrate
existing disparate components that in many cases, were never intended to be used together.

• The component assembler uses well-defined components to create more robust functionality.

• Sun Microsystem’s Forte for Java Community Edition is an integrated development environment
that provides a builder tool for assembling JavaBeans.

• A bean must be installed before it can be manipulated in Forte.

• GUI JavaBeans must be added to a Java Container.

• The property sheet in a builder tool displays a component’s properties and allows them to be edited.

• JavaBeans can be connected with events.

• JavaBeans can be saved to disk as serialized objects or as Java Archive files (JAR). Saving a Jav-
aBean in either of these methods allows other builder tools and code to use the JavaBean.

• Most JavaBeans are GUI components intended to be visually manipulated within a builder tool,
such as Forte.

• Most Java Swing components, such as JButtons, are JavaBeans.

• By implementing Serializable, a customized JavaBean can be saved and reloaded in a build-
er tool or a Java application.

• To use a class as a JavaBean, one must first place it in a Java Archive file (JAR file). A JAR file
for a JavaBean must contain a manifest file, which describes the JAR file contents. Manifest files
contain attributes (called headers) that describe the individual contents of the JAR.

• When a JAR file containing a JavaBean (or a set of JavaBeans) is loaded into an IDE, the IDE
looks at the manifest file to determine which of the classes in the JAR represent JavaBeans. These
classes are made available to the programmer in a visual manner

• All JavaBean-aware development environments know to look for the MANIFEST.MF file in the
META-INF directory of the JAR file.

• The Java interpreter can execute an application directly from a JAR file if the manifest file speci-
fies which class in the JAR contains method main.

• To execute a JavaBean from its JAR file, launch the Java interpreter with the -jar command-line
option as follows:

java -jar JARFileName.jar

• The command

jar cfm JARFileName.jar manifest.tmp files

creates a JAR file.

• A read/write property of a bean is defined as a set/get method pair of the form

public void setPropertyName(DataType value)
public DataType getPropertyName()

where PropertyName is replaced in each case by the actual property name. These methods are of-
ten referred to as a "property set method" and "property get method," respectively.

Chapter 6 JavaBeans Component Model 381

• If the property is a boolean data type, the set/get method pair is normally defined as

public void setPropertyName(boolean value)
public boolean isPropertyName()

where the get method name begins with the word is rather than get.

• When a builder tool examines a bean, it inspects the bean methods for pairs of set/get methods that
represent properties (some builder tools also expose read-only and write-only properties). This is
a process known as introspection. If an appropriate set/get method pair is found during the intro-
spection process, the builder tool exposes that pair of methods as a property in the builder tool’s
user interface.

• A bound property causes the JavaBean that owns the property to notify other objects when there
is a change in the bound property’s value. This is accomplished using standard Java event-han-
dling features—registered PropertyChangeListeners are notified when the property’s val-
ue changes. To support this feature, the java.beans package provides interface
PropertyChangeListener so listeners can be configured to receive property-change notifi-
cations, class PropertyChangeEvent to provide information to a PropertyChangeLis-
tener about the change in a property’s value and class PropertyChangeSupport to
provide the listener registration and notification services (i.e., to maintain the list of listeners and
notify them when an event occurs).

• To support registration of listeners for changes to a bound property, a bean defines methods ad-
dPropertyChangeListener and removePropertyChangeListener. Each of these
methods calls the corresponding method in the PropertyChangeSupport object change-
Support. This object provides the event notification services when the property value changes.

• When the bound property changes, the registered PropertyChangeListeners must be noti-
fied of the change. Each bound-property listener is presented with the old and new property values
when notified of the change (the values can be null if they are not needed). The Property-
ChangeSupport object’s firePropertyChange method notifies each registered Prop-
ertyChangeListener.

• An indexed property is like a standard property except that the indexed property is an array of
primitives or objects. Two get and two set methods define an indexed property. The get methods
are of the form

public Datatype[] getPropertyName()
public Datatype getPropertyName(int index)

The first get method returns the entire array of an indexed property. The second get method returns
the item at the array index indicated by the get method’s parameter.

• The set methods are of the form

public void setPropertyName(Datatype[] data)
public void setPropertyName(int index, Datatype data)

The first set method sets the indexed property to the value of the argument. The second set method
sets the item at the indicated array index to the value of the second parameter.

• A JavaBean can generate programmer-defined events. A programmer-defined event, or custom
event, provides functionality that standard Java events do not provide. An event class extends ja-
va.util.EventObject and the listener class extends java.util.EventListener.

• Builder tools use Java’s introspection mechanism to expose a JavaBean’s properties, methods and
events if the programmer follows the proper JavaBean design patterns (such as the special naming
conventions discussed for set/get method pairs that define bean properties). Builder tools use the
classes and interfaces of package java.lang.reflect to perform introspection. For Java-

382 JavaBeans Component Model Chapter 6

Beans that do not follow the JavaBean design patterns or for JavaBeans in which the programmer
wants to customize the exposed set of properties, methods and events, the programmer can supply
a class that implements interface BeanInfo (package java.beans). The BeanInfo class de-
scribes to the builder tool how to present the features of the bean to the programmer.

• Every BeanInfo class must implement interface BeanInfo. This interface describes the meth-
ods used by builder tools to determine the exposed features of the bean described by its corre-
sponding BeanInfo class. As a convenience, the java.beans package includes class
SimpleBeanInfo, which provides a default implementation of every method in interface
BeanInfo. The programmer can extend this class and selectively override its methods to imple-
ment a proper BeanInfo class.

• Override method getBeanDescriptor to return a BeanDescriptor object. A BeanDe-
scriptor specifies a Customizer class and information about the JavaBean.

• Override method getIcon to specify an icon to represent the bean in a builder tool.

• Override method getMethodDescriptors to return an array of MethodDescriptor ob-
jects. Each MethodDescriptor represents a specific method exposed to the builder tool.

• Override method getPropertyDescriptors to return an array of PropertyDescrip-
tor objects. Each PropertyDescriptor indicates a specific property that should be exposed
by a builder tool.

• Override method getEventSetDescriptors to return an array of EventSetDescrip-
tor objects that describes to a builder tool the events supported by a bean.

• A PropertyEditor determines how a particular property is edited inside a builder tool. The
PropertyEditor constrains the property to a particular range of values determined by the pro-
grammer. This prevents illegal values that would cause undesired operation in the JavaBean. A
PropertyEditor may appear in the property sheet as a pull-down menu with a list of values.
A class implementing interface PropertyEditor is written for every property of a JavaBean
that will have a special PropertyEditor.

• A class that implements interface Customizer creates a customized interface for setting the
properties of a JavaBean. This interface is separate from the builder-tool style sheet. A Custom-
izer is useful for manipulating JavaBean properties that cannot be edited in the standard property
sheet, such as instance fields in objects that are themselves properties.

TERMINOLOGY
actionPerformed method of interface
 ActionListener

connecting beans
Connection mode button

adapter class Connection Wizard dialog
Add to Jar menu item of Tools menu “connect-the-dots” programming
addPropertyChangeListener method of
 class PropertyChangeSupport

creating a JAR file
custom event

bean customize a JavaBean
BeanDescriptor class Customize menu item
BeanInfo interface Customizer interface
Beans tab of the Component Palette toolbar default property
bound property of a bean deserialize an object
builder tool design pattern
Compile menu item event
component assembler event adapter class
Component Inspector window event hookup
Component Palette toolbar event listener

Chapter 6 JavaBeans Component Model 383

event set Main-Class header
event source manifest file
event target manifest.tmp file
EventListener interface META-INF directory of a JAR file
EventObject class Method Call radio button of Connection

 Wizard dialogEventSetDescriptor class
EventSetDescriptor class MethodDescriptor class
EventSetDescriptor class Name header
Explorer window object serialization
Filesystems tab of Explorer window paintComponet method of class JPanel
firePropertyChange method of class
 PropertyChangeSupport

Palette Category dialog
PNG file

Form window property
Forte for Java Community Edition property get method
getBeanDescriptor method of
 interface BeanInfo

property set method
property sheet

getDefaultEventIndex method of
 interface BeanInfo

PropertyChangeEvent class
PropertyChangeListener interface

getDefaultPropertyIndex method of
 interface BeanInfo

PropertyChangeSupport class
PropertyDescriptor class

getEventSetDescriptors method of
 interface BeanInfo

PropertyEditor interface
PropertyEditorSupport class

getIcon method of interface BeanInfo read/write property
getJavaInitializationString method
 of interface PropertyEditor

removePropertyChangeListener method
 of class PropertyChangeSupport

getMethodDescriptors method of repaint method of class JPanel
 interface BeaInfo
getPropertyDescriptors method of
 interface BeanInfo

Running tab of Forte
Selection mode button
Serializable interface

getTags method of interface
 PropertyEditor

serializing a bean
Set Layout menu item

Graphical programming and design environment set/get method pair
header setAsText method of interface

 PropertyEditorhook up an event
indexed property setDisplayName method of class

 BeanDescriptorInstall New JavaBean... menu item
Integrated Development Environment (IDE) setDisplayName method of class

 EventSetDescriptorintrospection
IntrospectionException class setObject method of interface Customizer
Iterator class setPropertyEditorClass method of

 class PropertyDescriptorsjar (Java Archive File) utility
.jar (Java archive) file extension setShortDescription method of class

 BeanDescriptorJAR Packager dialog
Java Archive file (JAR file) setShortDescription method of

 class PropertyDescriptorjava -jar (execute an application from a JAR)
java.beans package setValue method of interface

 PropertyEditorjava.lang.reflect package
JavaBean SimpleBeanInfo class
Java-Bean header Source Editor window
JButton icon stop method of class Timer

384 JavaBeans Component Model Chapter 6

SELF-REVIEW EXERCISES
6.1 State whether each of the following is true or false. If false, explain why.

a) A JavaBean is a reusable software component.
b) Forte for Java is a builder tool.
c) JavaBeans cannot generate events.
d) A Customizer modifies an individual property of a JavaBean.
e) An indexed property represents an array variable.

6.2 Fill in the blanks in each of the following statements:
a) The four windows of the Forte GUI Editing tab are , ,

 and .
b) A allows the programmer to customize a property’s value.
c) In Forte, the provides access to the events supported by a bean that is an

event source.
d) JavaBeans should all implement the interface so they can be saved from a

builder tool after being customized by the programmer.
e) All registered are notified when a bound property’s value changes.
f) A builder tool uses to expose a JavaBean’s properties, methods and events.
g) An consists of an event class and a listener class.
h) For JavaBeans that do not follow the JavaBean design pattern, or for JavaBeans in which

the programmer wants to customize the exposed set of properties, methods and events,
the programmer can supply a class that describes to the builder tool how to
present the features of the bean.

i) A object describes a property that a builder tool should expose.
j) A object describes an event set that a builder tool should expose.
k) A is a custom editor for a bean property that appears in a property sheet.

ANSWERS TO SELF-REVIEW EXERCISES
6.1 a) True. b) True. c) False. A JavaBean can generate Java events. d) False. A Customizer can
modify any number of JavaBean properties. e) True.

6.2 a) Explorer, Component Inspector, Form, Source Editor. b) property sheet. c)
Component Inspector. d) Serializable. e) PropertyChangeListeners. f) introspec-
tion. g) event set. h) BeanInfo. i) PropertyDescriptor. j) EventSetDescriptor. k)
PropertyEditor.

EXERCISES
6.3 Try some of the Swing components provided with Forte. Every Swing component is a
JavaBean. While using each bean, try the following:

a) Inspect the properties of each bean and try modifying them.
b) Inspect the events supported by each bean and try using those events to hook various

beans together.

6.4 Modify ColorSliderPanel to provide a mechanism for viewing the selected color. For
this purpose, add a JPanel object to the bean. Test your bean in Forte by changing the background
color of a JFrame or other Swing component.

Swing Forms option of Template
 Chooser dialog

Template Chooser dialog
Timer class

Swing tab of the Component Palette toolbar Tools menu
target of an event

Chapter 6 JavaBeans Component Model 385

6.5 Create a BeanInfo class for the LogoAnimator2 bean that exposes only the back-
ground and animationDelay properties. Test your bean in Forte.

6.6 Modify ColorSliderPanel to use a bound property color instead of indexed property
redGreenBlue and custom event ColorEvent. Bound property color is an instance of class
Color. Test the bean in Forte by changing the background color of LogoAnimator2.

6.7 Create a Customizer class for ColorSliderPanel that can set a narrower range of
values than 0–255 for the red, green and blue sliders. A BeanInfo class must also be created to use
this Customizer.

6.8 Modify MaximumValueEditor and MinimumValueEditor to accept the values 1–
1000 as a String instead of using a pull-down menu.

7
Security

Objectives
• To understand the basic concepts of security.
• To understand public-key/private-key cryptography.
• To learn about popular security protocols, such as

SSL.
• To understand digital signatures, digital certificates

and certification authorities.
• To learn how Java provides solutions to security

problems.
• To learn how to produce secure code with Java

technology.
Three may keep a secret, if two of them are dead.
Benjamin Franklin

Attack—Repeat—Attack.
William Frederick Halsey, Jr.

Private information is practically the source of every large
modern fortune.
Oscar Wilde

There must be security for all—or not one is safe.
The Day the Earth Stood Still, screenplay by Edmund H.
North

No government can be long secure without formidable
opposition.
Benjamin Disraeli

Chapter 7 Security 387

7.1 Introduction
The explosion of e-business and e-commerce is forcing businesses and consumers to focus
on Internet and network security. Consumers are buying products, trading stocks and bank-
ing online. They are submitting their credit-card numbers, social-security numbers and oth-
er highly confidential information to vendors through Web sites. Businesses are sending
confidential information to clients and vendors over the Internet. At the same time, e-busi-
nesses are experiencing an increasing number of security attacks. Individuals and organi-
zations are vulnerable to data theft and hacker attacks that can corrupt files and shut down
systems, effectively halting business. Hence, security is fundamental.

Modern computer security addresses the various problems and concerns of protecting
electronic communications and maintaining network security. There are five fundamental

Outline

7.1 Introduction
7.2 Ancient Ciphers to Modern Cryptosystems
7.3 Secret-key Cryptography
7.4 Public-key Cryptography
7.5 Cryptanalysis
7.6 Key Agreement Protocols
7.7 Key Management
7.8 Java Cryptography Extension (JCE)

7.8.1 Password-Based Encoding with JCE
7.8.2 Decorator Design Pattern

7.9 Digital Signatures
7.10 Public-key Infrastructure, Certificates and Certification Authorities

7.10.1 Java Keystores and keytool
7.11 Java Policy Files
7.12 Digital Signatures for Java Code
7.13 Authentication

7.13.1 Kerberos
7.13.2 Single Sign-On
7.13.3 Java Authentication and Authorization Service (JAAS)

7.14 Secure Sockets Layer (SSL)
7.14.1 Java Secure Socket Extension (JSSE)

7.15 Java Language Security and Secure Coding
7.16 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises •
Works Cited • Bibliography.

388 Security Chapter 7

requirements of a successful, secure transaction: privacy, integrity, authentication, autho-
rization and nonrepudiation. The privacy issue is: How do you ensure that the information
you transmit over the Internet has not been captured or passed on to a third party without
your knowledge? The integrity issue is: How do you ensure that the information you send
or receive has not been compromised or altered? The authentication issue is: How do the
sender and receiver of a message prove their identities to each other? The authorization
issue is: How do we ensure that users can access certain necessary resources, while valu-
able information is protected? The nonrepudiation issue is: How do you legally prove that
a message was sent or received?

In this chapter, we will explore computer and Java security, from secure electronic
transactions to secure coding. The Java programming language provides prevention of and
solutions for many of today’s security problems. The Java Sandbox architecture and policy
files protect users and systems from malicious programs that would otherwise crash com-
puters or steal valuable information. Several APIs, such as the Java Cryptography Exten-
sion (JCE), Java Secure Sockets Extension (JSSE) and the Java Authentication and
Authorization Service (JAAS), provide additional security to Java applications.

We encourage you to visit the Web resources provided in Section 7.16 to learn more
about the latest developments in e-commerce and Java security. These resources include
many informative and entertaining demonstrations.

7.2 Ancient Ciphers to Modern Cryptosystems
The channels through which data pass are inherently unsecure; therefore, any private infor-
mation passed through these channels must somehow be protected. To secure information,
data can be encrypted. Cryptography transforms data by using a cipher, or cryptosystem—
a mathematical algorithm for encrypting messages. A key—a string of alpha-numeric char-
acters that acts as a password—is input to the cipher. The cipher uses the key to make data
incomprehensible to all but the sender and intended receivers. Unencrypted data is called
plaintext; encrypted data is called ciphertext. The algorithm is responsible for encrypting
data, while the key acts as a variable—using different keys results in different ciphertext.
Only the intended receivers should have the corresponding key to decrypt the ciphertext
into plaintext.

Cryptographic ciphers have been used throughout history, first recorded by the ancient
Egyptians, to conceal and protect valuable information. In ancient cryptography, messages
were encrypted by hand, usually with a method based on the alphabetic characters of the
message. The two main types of ciphers were substitution ciphers and transposition
ciphers. In a substitution cipher, every occurrence of a given letter is replaced by a different
letter; for example, if every “a” is replaced by “b,” every “b” by “c,” etc., the word “secu-
rity” would encrypt to “tfdvsjuz.” The first prominent substitution cipher was credited to
Julius Caesar and is referred to today as the Caesar Cipher. Using the Caesar Cipher, we
replace every instance of a letter with the alphabetical letter three positions to the right. For
example, according to the Caesar Cipher, the word “security” would encrypt to “vhfx-
ulwb.” In a transposition cipher, the ordering of the letters is shifted; for example, if every
other letter, starting with “s,” in the word “security” creates the first word in the ciphertext
and the remaining letters create the second word in the ciphertext, the word “security”
would encrypt to “scrt euiy.” Complicated ciphers are created by combining substitution
and transposition ciphers. For example, with the substitution cipher first, then the transpo-

Chapter 7 Security 389

sition cipher, the word “security” would encrypt to “tdsu fvjz.” The problem with many his-
torical ciphers is that their security relied on the sender and receiver to remember the
encryption algorithm and keep it secret. Such algorithms are called restricted algorithms.
Restricted algorithms are not feasible to implement among a large group of people. Imagine
if the security of U.S. government communications relied on every U.S. government
employee to keep a secret; the encryption algorithm could be compromised easily.

Modern cryptosystems are digital. Their algorithms are based on the individual bits or
blocks (a group of bits) of a message, rather than letters of the alphabet. Encryption and
decryption keys are binary strings with a given key length. For example, 128-bit encryption
systems have a key length of 128 bits. Longer keys have stronger encryption; it takes more
time and computing power to crack messages encrypted with longer keys.

Until January 2000, the U.S. government placed restrictions on the strength of crypto-
systems that could be exported from the United States. Federal regulations limited the key
length of encryption algorithms. Today, the regulations on exporting products that employ
cryptography are less stringent. Any cryptography product may be exported, as long as the
end user is not a foreign government or from a country with embargo restrictions on it.1

7.3 Secret-key Cryptography
In the past, organizations wishing to maintain a secure computing environment used sym-
metric cryptography, also known as secret-key cryptography. Secret-key cryptography uti-
lizes the same secret key to encrypt and decrypt messages (Fig. 7.1). The sender encrypts
a message using the secret key, then sends the encrypted message to the intended recipient.
A fundamental problem with secret-key cryptography is that before two people can com-
municate securely, they must find a secure way to exchange the secret key. One approach
is to have the key delivered by a courier, such as a mail service or FedEx. While this ap-
proach may be feasible when two individuals communicate, it is not efficient for securing
communication in a large network, nor can it be considered completely secure. The privacy
and the integrity of the message could be compromised if the key is intercepted as it is
passed between the sender and the receiver over unsecure channels. Also, since both parties
in the transaction use the same key to encipher and decipher a message, one cannot authen-
ticate which party created the message. Finally, to keep communications with each receiver
private, a sender needs a different secret key for each receiver. As a result, organizations
may have huge numbers of secret keys to maintain.

An alternative approach to the key-exchange problem is to have a central authority,
called a key distribution center (KDC). The key distribution center shares a (different)
secret key with every user in the network. In this system, the key distribution center gener-
ates a session key to be used for a transaction (Fig. 7.2). Next, the key distribution center
distributes the session key to the sender and receiver, encrypting the session key itself with
the secret key they each share with the key distribution center. For example, suppose a mer-
chant and a customer want to conduct a secure transaction. The merchant and the customer
each have unique secret keys they share with the key distribution center. The key distribu-
tion center generates a session key for the merchant and customer to use in the transaction.
The key distribution center then sends the session key for the transaction to the merchant,
encrypted using the secret key the merchant already shares with the center. The key distri-
bution center sends the same session key for the transaction to the customer, encrypted
using the secret key the customer already shares with the key distribution center. Once the

390 Security Chapter 7

merchant and the customer have the session key for the transaction, they can communicate
with each other, encrypting their messages using the shared session key.

Using a key distribution center reduces the number of courier deliveries (again, by
means such as mail) of secret keys to each user in the network. In addition, users can have
a new secret key for each communication with other users in the network, which greatly
increases the overall security of the network. However, if the security of the key distribu-
tion center is compromised, then so is the security of the entire network.

One of the most commonly used symmetric encryption algorithms is the Data Encryp-
tion Standard (DES). Horst Feistel of IBM created the Lucifer algorithm, which the United
States government and the National Security Agency (NSA) chose as the DES in the
1970s.2 DES has a key length of 56 bits and encrypts data in 64-bit blocks, a type of encryp-
tion known as a block cipher. A block cipher is an encryption method that creates groups
of bits from an original message, then applies an encryption algorithm to the block as a
whole, rather than as individual bits. This method reduces the amount of computer pro-
cessing power and time required, while maintaining a fair level of security. For many years,
DES was the encryption standard set by the U.S. government and the American National
Standards Institute (ANSI). However, due to advances in technology and computing speed,
DES is no longer considered secure. In the late 1990s, specialized DES cracker machines
were built that recovered DES keys after just several hours.3 As a result, the old standard
of symmetric encryption has been replaced by Triple DES, or 3DES, a variant of DES that
is essentially three DES systems in series, each having its own secret key. 3DES is more
secure, however the three passes through the DES algorithm result in slower performance.
The United States government recently selected a new, more secure standard for symmetric
encryption to replace DES. The new standard is called the Advanced Encryption Standard
(AES). The National Institute of Standards and Technology (NIST), which sets the crypto-
graphic standards for the U.S. government, is evaluating Rijndael as the encryption method
for AES. Rijndael is a block cipher developed by Dr. Joan Daemen and Dr. Vincent Rijmen
of Belgium.4 Rijndael can be used with key sizes and block sizes of 128, 192 or 256 bits.
Rijndael was chosen over four other finalists as the AES candidate because of its high secu-
rity, performance, efficiency, flexibility and low-memory requirement for computing sys-
tems. For more information about AES, visit csrc.nist.gov/encryption/aes.

7.4 Public-key Cryptography
In 1976, Whitfield Diffie and Martin Hellman, researchers at Stanford University, devel-
oped public-key cryptography to solve the problem of exchanging keys securely. Public-
key cryptography is asymmetric. It uses two inversely related keys: A public key and a pri-
vate key. The private key is kept secret by its owner, while the public key is freely distrib-
uted. If the public key is used to encrypt a message, only the corresponding private key can
decrypt it, and vice versa (Fig. 7.3). Each party in a transaction has both a public key and a
private key. To transmit a message securely, the sender uses the receiver’s public key to
encrypt the message. The receiver then decrypts the message using his or her unique private
key. Assuming that the private key has been kept secret, the message cannot be read by any-
one other than the intended receiver; the system ensures the privacy of the message. The
defining property of a secure public-key algorithm is that it is computationally infeasible to
deduce the private key from the public key. Although the two keys are mathematically re-
lated, deriving one from the other would take enormous amounts of computing power and

Chapter 7 Security 391

time, enough to discourage attempts to deduce the private key. An outside party cannot par-
ticipate in communication without the correct keys. The security of the entire process is
based on the secrecy of the private keys. Therefore, if a third party does obtain the decryp-
tion key, the security of the whole system is compromised. If a system’s integrity is com-
promised, the user can simply change the key, instead of changing the entire encryption or
decryption algorithm.

Fig. 7.1Fig. 7.1Fig. 7.1Fig. 7.1 Encrypting and decrypting a message using a symmetric secret key.

Fig. 7.2Fig. 7.2Fig. 7.2Fig. 7.2 Distributing a session key with a key distribution center.

Buy 100 shares
of company X

Plaintext

XY%#?
42%Y

Ciphertext Symmetric
secret key

Sender

Receiver

 Same
symmetric
secret key

communications
medium (such as

Internet)encrypt

decryptBuy 100 shares
of company X

Plaintext

Session key
(symmetric
secret key)

Key distribution
center (KDC)

encrypt encrypt
Session key

encrypted with
the sender's

KDC Key

11

22

Session key
encrypted with
the receiver's

KDC key

33 33

"I want to communicate
with the receiver"

Sender Receiver

392 Security Chapter 7

Either the public key or the private key can be used to encrypt or decrypt messages.
For example, if a customer uses a merchant’s public key to encrypt a message, only the
merchant can decrypt the message, using the merchant’s private key. Thus, the merchant’s
identity can be authenticated, since only the merchant knows the private key. However, the
merchant has no way of validating the customer’s identity, since the encryption key the cus-
tomer used is publicly available. If the encryption key is the sender’s private key and the
decryption key is the sender’s public key, the sender of the message can be authenticated.
For example, suppose a customer sends a merchant a message encrypted using the cus-
tomer’s private key. The merchant decrypts the message using the customer’s public key.
Since the customer encrypted the message using his or her private key, the merchant can be
confident of the customer’s identity. This process provides for authentication of the sender,
not confidentiality, as anyone could decrypt the message with the sender’s public key. This
systems works as long as the merchant can be sure that the public key with which the mer-
chant decrypted the message belongs to the customer, and not a third party posing as the
customer. The problem of proving ownership of a public key is discussed in Section 7.10.

These two methods of public-key encryption can be used together to authenticate both
participants in a communication (Fig. 7.4). Suppose a merchant wants to send a message
securely to a customer so that only the customer can read it, and suppose also that the mer-
chant wants to provide proof to the customer that the merchant (not an unknown third party)
actually sent the message. First, the merchant encrypts the message using the customer's
public key. This step guarantees that only the customer can read the message. Then the mer-
chant encrypts the result using the merchant’s private key, which proves the identity of the
merchant. The customer decrypts the message in reverse order. First, the customer uses the
merchant’s public key. Since only the merchant could have encrypted the message with the
inversely related private key, this step authenticates the merchant. Then the customer uses the
customer’s private key to decrypt the next level of encryption. This step ensures that the mes-
sage content was kept private in the transmission, since only the customer has the key to
decrypt the message. This system provides for extremely secure transactions; however, the
cost and time necessary for setting up such a system prevent this system from present use.

The most commonly used public-key algorithm is RSA, an encryption system devel-
oped in 1977 by MIT professors Ron Rivest, Adi Shamir and Leonard Adleman.5 Today,
their encryption and authentication technologies are used by most Fortune 1000 companies
and leading e-commerce businesses. With the emergence of the Internet and the World
Wide Web, their security work has become even more significant and plays a crucial role
in e-commerce transactions. Their encryption products are built into hundreds of millions
of copies of the most popular Internet applications, including Web browsers, commerce
servers and e-mail systems. Most secure e-commerce transactions and communications on
the Internet use RSA products. (For more information about RSA, cryptography and secu-
rity, visit www.rsasecurity.com).

Pretty Good Privacy (PGP) is a public-key encryption system used for encrypting e-mail
messages and files. PGP was designed in 1991 by Phillip Zimmermann.6 PGP also provides
digital signatures (see Section 7.9, Digital Signatures) that confirm the author of an e-mail or
public posting. PGP is based on a “web of trust”; each client in a network can vouch for
another client’s identity to prove ownership of a public key. Clients use the “web of trust” to
authenticate one another. To learn more about PGP and to download a free copy of the soft-
ware, go to the MIT distribution center for PGP at web.mit.edu/network/pgp.html.

Chapter 7 Security 393

7.5 Cryptanalysis
Even if keys are kept secret, it may be possible to compromise the security of a system. Try-
ing to decrypt ciphertext without knowledge of the decryption key is known as cryptanal-
ysis. Commercial encryption systems are constantly being researched by cryptologists to
ensure that the systems are not vulnerable to a cryptanalytic attack. The most common form
of cryptanalytic attacks are those in which the encryption algorithm is analyzed to find re-
lations between bits of the encryption key and bits of the ciphertext. Often, these relations
are only statistical in nature and incorporate an analyzer’s outside knowledge about the
plaintext. The goal of such an attack is to determine the key from the ciphertext.

Weak statistical trends between ciphertext and keys can be exploited to gain knowl-
edge about the key if enough ciphertext is known. Proper key management and expiration
dates on keys help prevent cryptanalytic attacks. When a key is used for long periods of
time, more ciphertext is generated that can be beneficial to an attacker trying to derive a
key. If a key is unknowingly recovered by an attacker, it can be used to decrypt every mes-
sage for the life of that key. Using public-key cryptography to exchange secret keys
securely allows a new secret key to encrypt every message.

7.6 Key Agreement Protocols
A drawback of public-key algorithms is that they are not efficient for sending large amounts
of data. They require significant computer power, which slows down communication. Public-
key algorithms should not be thought of as a replacement for secret-key algorithms. Instead,
public-key algorithms can be used to allow two parties to agree upon a key to be used for se-
cret-key encryption over an unsecure medium. The process by which two parties can ex-
change keys over an unsecure medium is called a key agreement protocol. A protocol sets the
rules for communication: Exactly what encryption algorithm(s) is (are) going to be used?

Fig. 7.3Fig. 7.3Fig. 7.3Fig. 7.3 Encrypting and decrypting a message using public-key cryptography.

Buy 100 shares
of company X

Plaintext

XY%#?
42%Y

Ciphertext Receiver's
public key

Sender

Receiver

 Receiver's
private key

communications
medium (such as

Internet)encrypt

decryptBuy 100 shares
of company X

Plaintext

394 Security Chapter 7

The most common key agreement protocol is a digital envelope (Fig. 7.5). With a dig-
ital envelope, the message is encrypted using a secret key (Step 1), and the secret key is
encrypted using public-key encryption (Step 2). The sender attaches the encrypted secret
key to the encrypted message and sends the receiver the entire package. The sender could
also digitally sign the package before sending it to prove the sender’s identity to the
receiver (Section 7.9). To decrypt the package, the receiver first decrypts the secret key,
using the receiver’s private key. Then the receiver uses the secret key to decrypt the actual
message. Since only the receiver can decrypt the encrypted secret key, the sender can be
sure that only the intended receiver is reading the message.

7.7 Key Management
Maintaining the secrecy of private keys is crucial to keeping cryptographic systems secure.
Most compromises in security result from poor key management (e.g., the mishandling of
private keys, resulting in key theft) rather than attacks that attempt to guess the keys.7

A main component of key management is key generation—the process by which keys
are created. A malicious third party could try to decrypt a message by using every possible
decryption key, a process known as brute-force cracking. Key-generation algorithms are
sometimes unintentionally constructed to choose from only a small subset of possible keys.
If the subset is too small, then the encrypted data is more susceptible to brute-force attacks.
Therefore, it is important to have a key-generation program that can generate a large
number of keys as randomly as possible. Keys are made more secure by choosing a key
length so large that it is computationally infeasible to try all combinations.

Fig. 7.4Fig. 7.4Fig. 7.4Fig. 7.4 Authentication with a public-key algorithm

WVF%B#
X2?%Y

Signed ciphertext

decrypt decrypt

encrypt

Plaintext

Buy 100 shares
of company X

XY%#?
42%Y

Ciphertext Receiver's
public key

 Sender's
private key

encrypt

Buy 100 shares
of company X

Plaintext Receiver's
private key

Sender's public key
(authenticates

sender)

XY%#?
42%Y

Ciphertext

Sender

Receiver

Chapter 7 Security 395

7.8 Java Cryptography Extension (JCE)
The Java Cryptography Extension (JCE) provides Java applications with several security
facilities. JCE supports secret-key encryption, such as 3DES, and public-key algorithms,
such as Diffie-Hellman and RSA. Customizable levels of security are available through
multiple encryption algorithms and various key sizes. The JCE architecture is provider-
based—developers can add new algorithms to their programs by adding new algorithm pro-
viders. Each provider may support many different algorithms. This feature allows develop-
ers to use their own algorithms from trusted sources with the JCE API (the API is located at
<java.sun.com/products/jce/doc/guide/API_users_guide.html>).

7.8.1 Password-Based Encoding with JCE
Class EncipherDecipher (Fig. 7.6) uses JCE to demonstrate Password-Based Encryp-
tion (PBE). Class EncipherDecipher provides users with a graphical user interface
that allows them to specify the file name of a file that the application will use to write to
and read from, the contents of the file to encrypt/decrypt, and the password used to encrypt/
decrypt the file. The password-based encryption algorithm implementation uses an array of
bytes (lines 28–31)—called a salt— and an integer (line 34) to randomize the sets of gen-
erated keys.

Fig. 7.5Fig. 7.5Fig. 7.5Fig. 7.5 Creating a digital envelope.

2

encrypt

Buy 100 shares
of company X

Plaintext

XY%#?
42%Y

Ciphertext

Digital
envelope

3

encrypt

Encrypted
symmetric
secret key

Receiver's
public key

Symmetric
secret key

Symmetric
secret key

Receiver

11

Sender

396 Security Chapter 7

Line 45 adds a security provider implementation to the JVM. Each system must set a
security provider implementation. The security provider implementation provides the var-
ious algorithm implementations that clients can use when selecting encrypting and
decrypting techniques.

Constructor EncipherDecipher (lines 42–130) creates a JFrame that contains
three panels. The top panel (lines 52–73) contains two labels and two textfields that allow
the user to input the file name and the encryption password to use. Lines 76–88 create the
middle panel which allows the user to write the contents that the application will encrypt
and write to the file. Lines 91–121 create the bottom panel, which contains two buttons,
button Encrypt and Write to File and button Read from File and Decrypt. When a
user presses button Encrypt and Write to File, lines 100–103 handle the event by
invoking method encryptAndWriteToFile (lines 131–277). When a user presses
button Read from File and Decrypt, lines 115–118 handle the event by invoking
method readFromFileAndDecrypt (lines 280–384).

1 // EncipherDecipher.java
2 // Displays a frame that allows users to specify
3 // a password and a file name. Contents written
4 // to an Editor Pane can be encrypted and written
5 // to a file, or encrypted contents can be read from
6 // a file and decrypted
7 package com.deitel.advjhtp1.security.jce;
8
9 // Java core package

10 import java.awt.*;
11 import java.awt.event.*;
12 import java.io.*;
13 import java.util.*;
14 import java.security.*;
15 import java.security.spec.*;
16
17 // third-party packages
18 import com.sun.crypto.provider.SunJCE;
19
20 // Java extension package
21 import javax.swing.*;
22 import javax.crypto.*;
23 import javax.crypto.spec.*;
24
25 public class EncipherDecipher extends JFrame {
26
27 // salt for password-based encryption-decryption algorithm
28 private static final byte[] salt = {
29 (byte)0xf5, (byte)0x33, (byte)0x01, (byte)0x2a,
30 (byte)0xb2, (byte)0xcc, (byte)0xe4, (byte)0x7f
31 };
32
33 // iteration count
34 private int iterationCount = 100;

Fig. 7.6Fig. 7.6Fig. 7.6Fig. 7.6 EncipherDecipher application for demonstrating Password-Based
Encryption (part 1 of 8).

Chapter 7 Security 397

35
36 // user input components.
37 private JTextField passwordTextField;
38 private JTextField fileNameTextField;
39 private JEditorPane fileContentsEditorPane;
40
41 // frame constructor
42 public EncipherDecipher() {
43
44 // set security provider
45 Security.addProvider(new SunJCE());
46
47 // initialize main frame
48 setSize(new Dimension(400, 400));
49 setTitle("Encryption and Decryption Example");
50
51 // construct top panel
52 JPanel topPanel = new JPanel();
53 topPanel.setBorder(BorderFactory.createLineBorder(
54 Color.black));
55 topPanel.setLayout(new BorderLayout());
56
57 // panel where password and file name labels will be placed
58 JPanel labelsPanel = new JPanel();
59 labelsPanel.setLayout(new GridLayout(2, 1));
60 JLabel passwordLabel = new JLabel(" Password: ");
61 JLabel fileNameLabel = new JLabel(" File Name: ");
62 labelsPanel.add(fileNameLabel);
63 labelsPanel.add(passwordLabel);
64 topPanel.add(labelsPanel, BorderLayout.WEST);
65
66 // panel where password and file name textfields will be placed
67 JPanel textFieldsPanel = new JPanel();
68 textFieldsPanel.setLayout(new GridLayout(2, 1));
69 passwordTextField = new JPasswordField();
70 fileNameTextField = new JTextField();
71 textFieldsPanel.add(fileNameTextField);
72 textFieldsPanel.add(passwordTextField);
73 topPanel.add(textFieldsPanel, BorderLayout.CENTER);
74
75 // construct middle panel
76 JPanel middlePanel = new JPanel();
77 middlePanel.setLayout(new BorderLayout());
78
79 // construct and place title label for contents pane
80 JLabel fileContentsLabel = new JLabel();
81 fileContentsLabel.setText(" File Contents");
82 middlePanel.add(fileContentsLabel, BorderLayout.NORTH);
83
84 // initialize and place editor pane within scroll panel
85 fileContentsEditorPane = new JEditorPane();

Fig. 7.6Fig. 7.6Fig. 7.6Fig. 7.6 EncipherDecipher application for demonstrating Password-Based
Encryption (part 2 of 8).

398 Security Chapter 7

86 middlePanel.add(
87 new JScrollPane(fileContentsEditorPane),
88 BorderLayout.CENTER);
89
90 // construct bottom panel
91 JPanel bottomPanel = new JPanel();
92
93 // create encrypt button
94 JButton encryptButton =
95 new JButton("Encrypt and Write to File");
96 encryptButton.addActionListener(
97
98 new ActionListener() {
99
100 public void actionPerformed(ActionEvent event)
101 {
102 encryptAndWriteToFile();
103 }
104 }
105);
106 bottomPanel.add(encryptButton);
107
108 // create decrypt button
109 JButton decryptButton =
110 new JButton("Read from File and Decrypt");
111 decryptButton.addActionListener(
112
113 new ActionListener() {
114
115 public void actionPerformed(ActionEvent event)
116 {
117 readFromFileAndDecrypt();
118 }
119 }
120);
121 bottomPanel.add(decryptButton);
122
123 // initialize main frame window
124 JPanel contentPane = (JPanel) this.getContentPane();
125 contentPane.setLayout(new BorderLayout());
126 contentPane.add(topPanel, BorderLayout.NORTH);
127 contentPane.add(middlePanel, BorderLayout.CENTER);
128 contentPane.add(bottomPanel, BorderLayout.SOUTH);
129
130 } // end constructor
131
132 // obtain contents from editor pane and encrypt
133 private void encryptAndWriteToFile()
134 {
135
136 // obtain user input
137 String originalText = fileContentsEditorPane.getText();

Fig. 7.6Fig. 7.6Fig. 7.6Fig. 7.6 EncipherDecipher application for demonstrating Password-Based
Encryption (part 3 of 8).

Chapter 7 Security 399

138 String password = passwordTextField.getText();
139 String fileName = fileNameTextField.getText();
140
141 // create secret key and get cipher instance
142 Cipher cipher = null;
143
144 try {
145
146 // create password based encryption key object
147 PBEKeySpec keySpec =
148 new PBEKeySpec(password.toCharArray());
149
150 // obtain instance for secret key factory
151 SecretKeyFactory keyFactory =
152 SecretKeyFactory.getInstance("PBEWithMD5AndDES");
153
154 // generate secret key for encryption
155 SecretKey secretKey = keyFactory.generateSecret(keySpec);
156
157 // specifies parameters used with password based encryption
158 PBEParameterSpec parameterSpec =
159 new PBEParameterSpec(salt, iterationCount);
160
161 // obtain cipher instance reference
162 cipher = Cipher.getInstance("PBEWithMD5AndDES");
163
164 // initialize cipher in encrypt mode
165 cipher.init(Cipher.ENCRYPT_MODE, secretKey,
166 parameterSpec);
167 }
168
169 // handle NoSuchAlgorithmException
170 catch (NoSuchAlgorithmException exception) {
171 exception.printStackTrace();
172 System.exit(1);
173 }
174
175 // handle InvalidKeySpecException
176 catch (InvalidKeySpecException exception) {
177 exception.printStackTrace();
178 System.exit(1);
179 }
180
181 // handle InvalidKeyException
182 catch (InvalidKeyException exception) {
183 exception.printStackTrace();
184 System.exit(1);
185 }
186
187 // handle NoSuchPaddingException
188 catch (NoSuchPaddingException exception) {
189 exception.printStackTrace();

Fig. 7.6Fig. 7.6Fig. 7.6Fig. 7.6 EncipherDecipher application for demonstrating Password-Based
Encryption (part 4 of 8).

400 Security Chapter 7

190 System.exit(1);
191 }
192
193 // handle InvalidAlgorithmParameterException
194 catch (InvalidAlgorithmParameterException exception) {
195 exception.printStackTrace();
196 System.exit(1);
197 }
198
199 // create array of bytes
200 byte[] outputArray = null;
201
202 try {
203 outputArray = originalText.getBytes("ISO-8859-1");
204 }
205
206 // handle UnsupportedEncodingException
207 catch (UnsupportedEncodingException exception) {
208 exception.printStackTrace();
209 System.exit(1);
210 }
211
212 // create FileOutputStream
213 File file = new File(fileName);
214 FileOutputStream fileOutputStream = null;
215
216 try {
217 fileOutputStream = new FileOutputStream(file);
218 }
219
220 // handle IOException
221 catch (IOException exception) {
222 exception.printStackTrace();
223 System.exit(1);
224 }
225
226 // create CipherOutputStream
227 CipherOutputStream out =
228 new CipherOutputStream(fileOutputStream, cipher);
229
230 // write contents to file and close
231 try {
232 out.write(outputArray);
233 out.flush();
234 out.close();
235 }
236
237 // handle IOException
238 catch (IOException exception) {
239 exception.printStackTrace();
240 System.exit(1);
241 }

Fig. 7.6Fig. 7.6Fig. 7.6Fig. 7.6 EncipherDecipher application for demonstrating Password-Based
Encryption (part 5 of 8).

Chapter 7 Security 401

242
243 // contain bytes read from file
244 Vector fileBytes = new Vector();
245
246 // read contents from file to show user encrypted text
247 try {
248 FileInputStream in = new FileInputStream(file);
249
250 // read bytes from stream.
251 byte contents;
252
253 while (in.available() > 0) {
254 contents = (byte)in.read();
255 fileBytes.add(new Byte(contents));
256 }
257
258 in.close();
259 }
260
261 // handle IOException
262 catch (IOException exception) {
263 exception.printStackTrace();
264 System.exit(1);
265 }
266
267 // create byte array from contents in Vector fileBytes
268 byte[] encryptedText = new byte[fileBytes.size()];
269
270 for (int i = 0; i < fileBytes.size(); i++) {
271 encryptedText[i] =
272 ((Byte) fileBytes.elementAt(i)).byteValue();
273 }
274
275 // update Editor Pane contents
276 fileContentsEditorPane.setText(new String(encryptedText));
277 }
278
279 // obtain contents from file and decrypt
280 private void readFromFileAndDecrypt()
281 {
282
283 // used to rebuild byte list
284 Vector fileBytes = new Vector();
285
286 // obtain user input
287 String password = passwordTextField.getText();
288 String fileName = fileNameTextField.getText();
289
290 // create secret key
291 Cipher cipher = null;
292

Fig. 7.6Fig. 7.6Fig. 7.6Fig. 7.6 EncipherDecipher application for demonstrating Password-Based
Encryption (part 6 of 8).

402 Security Chapter 7

293 try {
294 // create password based encryption key object
295 PBEKeySpec keySpec =
296 new PBEKeySpec(password.toCharArray());
297
298 // obtain instance for secret key factory
299 SecretKeyFactory keyFactory =
300 SecretKeyFactory.getInstance("PBEWithMD5AndDES");
301
302 // generate secret key for encryption
303 SecretKey secretKey = keyFactory.generateSecret(keySpec);
304
305 // specifies parameters used with password based encryption
306 PBEParameterSpec parameterSpec =
307 new PBEParameterSpec(salt, iterationCount);
308
309 // obtain cipher instance reference.
310 cipher = Cipher.getInstance("PBEWithMD5AndDES");
311
312 // initialize cipher in decrypt mode
313 cipher.init(Cipher.DECRYPT_MODE, secretKey,
314 parameterSpec);
315 }
316
317 // handle NoSuchAlgorithmException
318 catch (NoSuchAlgorithmException exception) {
319 exception.printStackTrace();
320 System.exit(1);
321 }
322
323 // handle InvalidKeySpecException
324 catch (InvalidKeySpecException exception) {
325 exception.printStackTrace();
326 System.exit(1);
327 }
328
329 // handle InvalidKeyException
330 catch (InvalidKeyException exception) {
331 exception.printStackTrace();
332 System.exit(1);
333 }
334
335 // handle NoSuchPaddingException
336 catch (NoSuchPaddingException exception) {
337 exception.printStackTrace();
338 System.exit(1);
339 }
340
341 // handle InvalidAlgorithmParameterException
342 catch (InvalidAlgorithmParameterException exception) {
343 exception.printStackTrace();

Fig. 7.6Fig. 7.6Fig. 7.6Fig. 7.6 EncipherDecipher application for demonstrating Password-Based
Encryption (part 7 of 8).

Chapter 7 Security 403

344 System.exit(1);
345 }
346
347
348 // read and decrypt contents from file
349 try {
350 File file = new File(fileName);
351 FileInputStream fileInputStream =
352 new FileInputStream(file);
353
354 CipherInputStream in =
355 new CipherInputStream(fileInputStream, cipher);
356
357 // read bytes from stream.
358 byte contents = (byte) in.read();
359
360 while (contents != -1) {
361 fileBytes.add(new Byte(contents));
362 contents = (byte) in.read();
363 }
364 in.close();
365
366 }
367
368 // handle IOException
369 catch (IOException exception) {
370 exception.printStackTrace();
371 System.exit(1);
372 }
373
374 // create byte array from contents in Vector fileBytes
375 byte[] decryptedText = new byte[fileBytes.size()];
376
377 for (int i = 0; i < fileBytes.size(); i++) {
378 decryptedText[i] =
379 ((Byte)fileBytes.elementAt(i)).byteValue();
380 }
381
382 // update Editor Pane contents.
383 fileContentsEditorPane.setText(new String(decryptedText));
384 }
385
386 // create frame and display
387 public static void main(String[] args)
388 {
389 EncipherDecipher crypto =
390 new EncipherDecipher();
391 crypto.validate();
392 crypto.setVisible(true);
393 }
394 }

Fig. 7.6Fig. 7.6Fig. 7.6Fig. 7.6 EncipherDecipher application for demonstrating Password-Based
Encryption (part 8 of 8).

404 Security Chapter 7

Method encryptAndWriteToFile (lines 131–277) obtains the user’s input from
the both JTextFields and the JEditorPane. Lines 147–148 create a PBEKeySpec
instance. The PBEKeySpec instance acts as a wrapper for the array of characters that
represents the password for encrypting and decrypting an array of bytes. Class Cipher
is the fundamental building block for applications that use JCE. A Cipher performs
encryption and decryption using a specified algorithm (e.g., DES, 3DES, Blowfish, etc.).
Lines 151–152 obtain a reference to a SecretKeyFactory, which generates secret
keys. Line 155 generates a SecretKey using the PBEKeySpec instance from lines
147–148. Lines 158–159 create a PBEParameterSpec instance, which contains ran-
domization information such as the salt and the iterationCount. Line 162 obtains
an instance of a PBEWithMD5AndDES algorithm Cipher. Line 165–166 initializes
Cipher to encryption mode using the SecretKey and the PBEParameterSpec
instances.

Lines 170–173 handle NoSuchAlgorithmExceptions, which occur when the
program specifies a non-existent algorithm. Lines 176–179 handle InvalidKey-
SpecExceptions, which occur when an invalid key specification is handed to method
generateSecret from SecretKeyFactory. Lines 182–185 handle all Invalid-
KeyExceptions which occur when an invalid key is handed to method init from
Cipher. Lines 188–191 handle NoSuchPaddingExceptions, which occur when an
application specifies an invalid padding scheme. Lines 194–197 handle InvalidAlgo-
rithmParameterExceptions, which method init of class Cipher throws if an
application specifies invalid algorithm parameters.

Line 203 converts the String obtained from JEditorPanel into an array of bytes.
Method getBytes ensures that the conversion of a String to an array of bytes conforms
to the ISO-8859-1 standard. Lines 207–210 catch an UnsupportedEncodingExcep-
tion if the application specifies an invalid character encoding standard.

Lines 213–218 instantiate a FileOutputStream. CipherOutputStream
(lines 227–228) acts as the decorator in the Decorator design pattern (Section 7.8.2) to add
encryption capability to the FileOutputStream instance. The CipherOutput-
Stream encodes bytes using the specified Cipher object before writing those bytes to
the FileOutputStream. Lines 232–234 write the contents to the file, and finalize the
operation by closing the file. Lines 244–276 read the newly encoded file contents and dis-
play them in the JEditorPane so the user can see the encrypted text.

Method readFromFileAndDecrypt decrypts the message from the file using the
specified password. Lines 291–314 create an instance of class Cipher and initialize the
Cipher to decrypt data (lines 313–314). Lines 350–352 create a FileInputStream
for the encrypted file. Lines 354–355 create a CipherInputStream to decrypt data
from the FileInputStream. Lines 358–364 read the file contents from the Cipher-
InputStream. Lines 375–383 create an array of bytes that contains the decrypted text
and display the text in the JEditorPane.

Figure 7.7 displays the contents that application EncipherDecipher will encrypt
and write to file TestFile.txt using password “I am a BIG secret!”. The image on
the right displays the contents of the file after pressing button Encrypt and Write to
File.

For more information on JCE, please visit the JCE Web site at java.sun.com/
jce. Refer to the included documentation for download and installation instructions.

Chapter 7 Security 405

7.8.2 Decorator Design Pattern

The preceding program uses an important design pattern—the Decorator design pattern.
Method encryptAndWriteToFile writes encrypted data to a file. However, neither the
CipherOutputStream nor the FileOutputStream, by itself, can encrypt data and
write those data to a file. By “chaining” these two objects together—i.e., by passing a File-
OutputStream reference to the CipherOutputStream constructor—the method can
encrypt data and write those data to a file. This “chaining” is an example of the Decorator de-
sign pattern, which allows an object to gain additional capabilities dynamically. In this exam-
ple, the CipherOutputStream decorates the FileOutputStream—the
CipherOutputStream provides the FileOutputStream with the capability to en-
crypt data before writing those data to a file. One benefit to this pattern is that designers need
not create additional classes (e.g., using inheritance) to extend the functionality of a particular
class. For example, because a FileOutputStream object can gain the behavior of a Ci-
pherOutputStream dynamically, we need not create a separate class called Cipher-
FileOutputStream, which would implement the behaviors of both classes. Lines 227–
228 accomplish the same result simply by chaining the streams together.

If necessary, we could extend this principle further and decorate a CipherOutput-
Stream (which decorates a FileOutputStream) with an ObjectOutputStream.
The resulting ObjectOutputStream instance would enable us to write encrypted
objects to a file. Using the Decorator design pattern, we would write

ObjectOutputStream objectStream = new ObjectOutputStream(
new CipherOutputStream(

 new FileOutputStream(filename), cipher));

We can chain objects in this manner because CipherOutputStream,ObjectOut-
putStream and FileOutputStream extend abstract superclass OutputStream, and
each subclass constructor takes an OutputStream reference as a parameter. If Java’s
stream objects did not use the Decorator pattern (i.e., did not satisfy these two requirements),
we would have to design classes CipherFileOutputStream, CipherObjectOut-

Fig. 7.7Fig. 7.7Fig. 7.7Fig. 7.7 EncipherDecipher before and after encrypting contents.

406 Security Chapter 7

putStream, CipherObjectFileOutputStream and ObjectFileOutput-
Stream to achieve the same functionality. If we were to chain more objects without using
the Decorator pattern, the number of classes would grow exponentially.

7.9 Digital Signatures
Digital signatures—the electronic equivalent of written signatures—were developed for
use in public-key cryptography to solve the problems of authentication and integrity (see
Microsoft Authenticode feature). A digital signature authenticates the sender’s identity
and, like a written signature, is difficult to forge. To create a digital signature, a sender first
takes the original plaintext message and runs it through a hash function, which is a mathe-
matical calculation that gives the message a hash value. The Secure Hash Algorithm (SHA-
1) is the standard for hash functions. Running a message through the SHA-1 algorithm pro-
duces a 160-bit hash value. For example, using SHA-1, the phrase “Buy 100 shares of com-
pany X” produces the hash value D8 A9 B6 9F 72 65 0B D5 6D 0C 47 00 95 0D FD 31 96
0A FD B5. MD5 is another popular hash function, which was developed by Ronald Rivest
to verify data integrity through a 128-bit hash value of the input file.8 Examples of SHA-1
and MD5 are available at home.istar.ca/~neutron/messagedigest. At this
site, users can input text or files into a program to generate the hash value. The hash value
is also known as a message digest. The chance that two different messages will have the
same message digest is statistically insignificant. Collision occurs when multiple messages
have the same hash value. It is computationally infeasible to compute a message from its
hash value or to find two different messages with the same hash value.

Next, the sender uses the its private key to encrypt the message digest. This step creates
a digital signature and authenticates the sender, since only the owner of that private key could
encrypt the message. The sender encrypts the original message with the receiver’s public key
and sends the encrypted message and the digital signature to the receiver. The receiver uses
the sender’s public key to decipher the original digital signature and reveal the message
digest. The receiver then uses his or her own private key to decipher the original message.
Finally, the receiver applies the agreed upon hash function (e.g. SHA-1 or MD5) to the orig-
inal message. If the hash value of the original message matches the message digest included
in the signature, there is message integrity—the message has not been altered in transmission.

There is a fundamental difference between digital signatures and handwritten signa-
tures. A handwritten signature is independent of the document being signed. Thus, if
someone can forge a handwritten signature, he or she can use that signature to forge mul-
tiple documents. A digital signature is created using the contents of the document. There-
fore, your digital signature is different for each document you sign.

Digital signatures do not provide proof that a message has been sent. Consider the fol-
lowing situation: A contractor sends a company a digitally signed contract, which the con-
tractor later would like to revoke. The contractor could do so by releasing the private key
and claiming that the digitally signed contract came from an intruder who stole the con-
tractor’s private key. Timestamping, which binds a time and date to a digital document, can
help solve the problem of non-repudiation. For example, suppose the company and the con-
tractor are negotiating a contract. The company requires the contractor to digitally sign the
contract, and have the document digitally time-stamped by a third party called a times-
tamping agency. The contractor sends the digitally signed contract to the time-stamping
agency. The privacy of the message is maintained, since the timestamping agency sees only

Chapter 7 Security 407

the encrypted, digitally signed message (as opposed to the original plaintext message). The
timestamping agency affixes the time and date of receipt to the encrypted, signed message
and digitally signs the whole package with the timestamping agency’s private key. The
timestamp cannot be altered by anyone except the timestamping agency, since no one else
possesses the timestamping agency's private key. Unless the contractor reports the private
key to have been compromised before the document was timestamped, the contractor
cannot legally prove that the document was signed by an unauthorized third party. The
sender could also require the receiver to sign and timestamp the message digitally as proof
of receipt. To learn more about timestamping, visit AuthentiDate.com.

The U.S. government’s digital-authentication standard is called the Digital Signature
Algorithm (DSA). The U.S. government recently passed legislation that makes digital sig-
natures as legally binding as handwritten signatures. This legislation will result in an
increase in e-business. For the latest news about U.S. government legislation in information
security, visit www.itaa.org/infosec. For more information about the bills, visit the
following government sites:

thomas.loc.gov/cgi-bin/bdquery/z?d106:hr.01714:
thomas.loc.gov/cgi-bin/bdquery/z?d106:s.00761:

7.10 Public-key Infrastructure, Certificates and Certification
Authorities
One problem with public-key cryptography is that anyone with a set of keys could assume
another party’s identity. For example, say a customer wants to place an order with an online
merchant. How does the customer know that the Web site indeed belongs to that merchant
and not to a third party that posted a site and is masquerading as a merchant to steal credit-
card information? Public-Key Infrastructure (PKI) integrates public-key cryptography
with digital certificates and certificate authorities to authenticate parties in a transaction.

A digital certificate is a digital document that identifies a user and is issued by a cer-
tificate authority (CA). A digital certificate includes the name of the subject (the company
or individual being certified), the subject’s public key, a serial number, an expiration date,
the signature of the trusted certificate authority and any other relevant information
(Fig. 7.8). A CA is a financial institution or other trusted third party, such as VeriSign. Once
issued, digital certificates are publicly available and are held by the certificate authority in
certificate repositories.

The CA signs the certificate by encrypting either the subject’s public key or a hash value
of the public key using the CA’s own private key. The CA has to verify every subject’s public
key. Thus, users must trust the public key of a CA. Usually, each CA is part of a certificate-
authority hierarchy. A certificate authority hierarchy is a chain of certificate authorities,
starting with the root-certificate authority, which is the Internet Policy Registration Authority
(IPRA). The IPRA signs certificates using the root key. The root key signs certificates only
for policy-creation authorities, which are organizations that set policies for obtaining digital
certificates. In turn, policy-creation authorities sign digital certificates for CAs. CAs then sign
digital certificates for individuals and organizations. The CA takes responsibility for authen-
tication, so it must check information carefully before issuing a digital certificate. In one case,
human error caused VeriSign to issue two digital certificates to an imposter posing as a
Microsoft employee.9 Such an error is significant: The inappropriately issued certificates can
cause users to unknowingly download malicious code onto their machines.

408 Security Chapter 7

VeriSign, Inc., is a leading certificate authority. For more information about VeriSign,
visit www.verisign.com. For a listing of other digital-certificate vendors, see
Section 7.16.

Periodically, changing key pairs is necessary to maintain a secure system, as a private
key may be compromised without a user’s knowledge. The longer a key pair is used, the more
vulnerable the keys are to attack and cryptanalysis. As a result, digital certificates contain an
expiration date to force users to switch key pairs. If a private key is compromised before its
expiration date, the digital certificate can be canceled, and the user can get a new key pair and
digital certificate. Canceled and revoked certificates are placed on a certificate revocation list
(CRL). CRLs are stored with the certificate authority that issued the certificates. It is essential
for users to report immediately if they suspect that their private keys have been compromised,
as the issue of non-repudiation makes certificate owners responsible for anything appearing
with their digital signatures. In states with laws dealing with digital signatures, certificates
legally bind certificate owners to any transactions involving their certificates.

One problem with CRLs is that they are similar to old paper lists of revoked credit card
numbers that were used at the points of sale in stores.10 This makes for a great inconve-
nience when checking the validity of a certificate. An alternative to CRLs is the Online Cer-

Fig. 7.8Fig. 7.8Fig. 7.8Fig. 7.8 A portion of the VeriSign digital certificate. (Courtesy of VeriSign, Inc.)

Chapter 7 Security 409

tificate Status Protocol (OCSP), which validates certificates in real-time. OCSP technology
is currently under development. For an overview of OCSP, read “X.509 Internet Public Key
Infrastructure Online Certificate Status Protocol—OCSP” located at ftp.isi.edu/
in-notes/rfc2560.txt.

Many people still consider e-commerce unsecure. However, transactions using PKI
and digital certificates can be more secure than exchanging private information over phone
lines or through the mail. They are even more secure than paying by credit card in person!
After all, when you go to a restaurant and the waiter takes your credit card in back to pro-
cess your bill, how do you know the waiter did not write down your credit-card informa-
tion? In contrast, the key algorithms used in most secure online transactions are nearly
impossible to compromise. By some estimates, the key algorithms used in public-key cryp-
tography are so secure that even millions of today’s computers working in parallel could
not break the codes in a century. However, as computing increases, key algorithms that are
considered strong today could be broken in the future.

Digital-certificate capabilities are built into many e-mail packages. For example, in
Microsoft Outlook, you can go to the Tools menu and select Options. Then click on the
Security tab. At the bottom of the dialog box, you will see the option to obtain a digital
ID. Selecting the option will take you to a Microsoft Web site with links to several world-
wide certificate authorities. Once you have a digital certificate, you can digitally sign your
e-mail messages.

To obtain a digital certificate for your personal e-mail messages, visit www.veri-
sign.com or www.thawte.com. VeriSign offers a free 60-day trial, or you can pur-
chase the service for a yearly fee. Thawte offers free digital certificates for personal e-mail.
Web server certificates may also be purchased through VeriSign and Thawte; however,
they are more expensive than e-mail certificates.

7.10.1 Java Keystores and keytool

Java provides the keytool utility for managing and generating keys, certificates and dig-
ital signatures. The keytool utility enables users to generate and import keys in a key-
store; you can use the stored keys for functions such as identification verification,
encryption and decryption. A keystore is a repository for storing public and private keys.
Modifying the set of keys that a keystore contains requires entering that keystore’s pass-
word. Note that if no keystore exists, the keytool will create one; the password is set
when creating the keystore. The default keystore is in the user’s home directory (e.g., /
home/user/.keystore). The -genkey command-line argument produces a public
and private key pair and stores that key pair in the keystore. The user can export a certificate
based on that key pair using the -export command-line option. To import a trusted cer-
tificate from a CA, the -import command is used. To list all of the contents of the key-
store, use the -list command.11 For example, to create a public and private key pair,
enter the following at a command prompt:

keytool -genkey -alias MyCertificate

MyCertificate is an alias for the public and private key pair. The alias simply identi-
fies a particular public and private key pair for later use. Keystores contain aliases for each
public and private key pair. Certificates generated with keytool allow for identification
through commonName (CN), organizationUnit (OU), organizationName (O), locality-

410 Security Chapter 7

Name (L), stateName (S) and country (C). When executing the above command line, key-
tool prompts the user for this information. You then can generate a certificate request to
obtain a verified digital certificate from a certificate authority, such as Verisign or Thawte,
using the command:

keytool -certreq -alias MyCertificate -file myRequest.cer

This creates a file called myRequest.cer that contains your digital certificate. Follow
the instructions on the certificate authority’s Web site to submit your certificate request and
obtain your verified certificate.

To create a certificate that others may use to validate your signature, use the command

keytool -export -alias MyCertificate -file myCertificate.cer

This generates an X.509 certificate that other users can import into their trusted keystores—
keystores that contain certificates that the user knows to be correct, such as those from cer-
tificate authorities—to validate information with the signature. For more information on
the keytool utility, please refer to the documentation at java.sun.com/j2se/1.3/
docs/tooldocs/win32/keytool.html or java.sun.com/j2se/1.3/
docs/tooldocs/solaris/keytool.html.

7.11 Java Policy Files
The basis of Java security is the Java Sandbox—the protected environment in which Java
applications and applets run. This model is similar to placing a child in a sandbox to play;
it is a safe environment where certain objects are placed out of reach and can be used only
with permission. On a computer, the user must grant an application or applet specific per-
missions to access certain system resources outside the sandbox. The Java Sandbox secu-
rity model is comprised of three individual security checks: the bytecode verifier, the class
loader and security manager.12

If a developer would like to allow certain operations that the security manager would
deem potentially dangerous, permissions may be granted on the basis of security policy
files. Permissions are comprised of varying levels of access to specific resources. Reading
and writing to a file or directory or connecting to an identified port on a host’s machine are
two common permissions granted by a policy file.

Permissions may be granted on the basis of the code signer (using signedBy) and the
source of the code (using codeBase). Any permission that is not declared explicitly in the
policy file is not granted; therefore, it is necessary to have a policy file with at least some
content for the JVM to run any applet. All of the parameters for permission granting are
defined in the security policy files, which enable the Java Virtual Machine to offer a great
level of access control. The security policy files are external text files with certain syntax
and class names; note that, as an alternative to learning this syntax, tools such as policy-
tool are available for use with JDK 1.3. Figure 7.9 describes a few of the permissions
available for the Java 2 security model.13

A system-wide security policy file is responsible for granting code the permission to
access files and ports on the entire system. The virtual machine loads this policy file as part
of the virtual machine’s initialization. The system-wide policy file (java.policy) is in
the lib/security directory of the Java Runtime Environment (e.g., C:\Program
Files\JavaSoft\JRE\1.3.1\lib\security). Particular applications can

Chapter 7 Security 411

specify custom security policy files on the command line. Loading other security policy
files does not compromise the original system-wide configuration, any modifications are
made in addition to the current policy files in use.14

Figure 7.10 presents class AuthorizedFileWriter, which accepts a file path and
file body from the command line. Using a SecurityManager to protect against unau-
thorized access (line 16), lines 26–39 write the specified fileBody to file.

Permission Description

java.security.AllPermission

Grants all possible permissions. Developers should use this permission only
for testing purposes as this permission disables all security checks.

java.io.FilePermission

Grants access to particular sets of files for reading, writing and deleting those
files.

java.lang.RuntimePermission

Grants permissions for modifying runtime behavior, such as the allowing a
program to exit the virtual machine, change the source of System.in and
queue print jobs.

java.net.SocketPermission

Grants permission to create socket connections for connecting to other com-
puters over the network. This permission allows fine-grained control over
particular ports, host names and connection types.

java.net.NetPermission

Grants permission to modify to network properties, such as the host with
which to validate usernames and passwords.

Fig. 7.9Fig. 7.9Fig. 7.9Fig. 7.9 Some permissions available in the Java 2 security model.

1 // AuthorizedFileWriter.java
2 // AuthorizedFileWriter writes to file using a security manager.
3 // Permissions must be given via policy files.
4 package com.deitel.advjhtp1.security.policyfile;
5
6 // Java core package
7 import java.io.*;
8
9 public class AuthorizedFileWriter {

10
11 // launch application
12 public static void main(String[] args)
13 {
14 // create and set security manager
15 System.setSecurityManager(new SecurityManager());

Fig. 7.10Fig. 7.10Fig. 7.10Fig. 7.10 AuthorizedFileWriter writes to file using a security manager (part
1 of 2).

412 Security Chapter 7

Policy file authorized.policy (Fig. 7.11) grants write FilePermission for
file authorized.txt. Should the command line specify a different file, the Securi-
tyManager will deny permission to write to it. The following command executes the
AuthorizedFileWriter application with the authorized.policy policy file:

java -Djava.security.policy=authorized.policy com.dei-
tel.advjhtp1.security.policyfile.AuthorizedFileWriter "autho-
rized.txt" "Policy file authorized.policy granted file write
permission for file authorized.txt."

Policy file codebase_authorized.policy (Fig. 7.12) grants the C:/mycla-
sses codebase write FilePermission for file codebase_authorized.txt. If
the code is executing from a different codebase, or the command line specifies a different
file, the SecurityManager will deny permission to write to that file. The following exe-
cutes the AuthorizedFileWriter application with the codebase_author-
ized.policy policy file:

16
17 // check command-line arguments for proper usage
18 if (args.length != 2)
19 System.err.println("Usage: java com.deitel.advjhtp1." +
20 "security.policyfile.AuthorizedFileWriter file " +
21 "filebody");
22
23 // write fileBody to file
24 else {
25
26 String file = args[0];
27 String fileBody = args[1];
28
29 // write fileBody to file
30 try {
31
32 // create FileWriter
33 FileWriter fileWriter = new FileWriter(file);
34
35 fileWriter.write(fileBody);
36
37 fileWriter.close();
38
39 System.exit(0);
40 }
41
42 // handle IO exception
43 catch (IOException ioException) {
44 ioException.printStackTrace();
45 System.exit(1);
46 }
47 }
48 }
49 }

Fig. 7.10Fig. 7.10Fig. 7.10Fig. 7.10 AuthorizedFileWriter writes to file using a security manager (part
2 of 2).

Chapter 7 Security 413

java -Djava.security.policy=codebase_authorized.policy
com.deitel.advjhtp1.security.policyfile.AuthorizedFileWriter
"codebase_authorized.txt" "Policy file
codebase_authorized.policy granted file write permission for
file codebase_authorized.txt to codebase C:/myclasses."

For more information on current and upcoming uses of policy files and permissions in
Java, visit the Web sites java.sun.com/j2se/1.3/docs/guide/security/
PolicyFiles.html and java.sun.com/j2se/1.3/docs/guide/security/
permissions.html.

7.12 Digital Signatures for Java Code
Java applets run under strict security restrictions due to the unreliability of code download-
ed over public networks. Unlike Java applications, Java applets run in the sandbox by de-
fault—an applet developer need not specify a security manager for an applet. Developers
who wish to distribute applets with special permissions (e.g., the ability to read or write
files on the user’s computer) must sign those applets with digital signatures. This enables
users to verify that a signed applet came from a particular company. If the user trusts that
company, the user can grant that applet special permissions.

The applet of Fig. 7.13 uses class FileTreePanel (similar to class FileTree-
Frame in Chapter 3) to display a tree of files on the user’s hard drive. The Java sandbox
does not allow applets to read or write files on the user’s hard drive, so we must sign the
FileTreeApplet with a digital signature. When the user’s Web browser downloads the
applet and runs it in the Java Plug-in, the plug-in prompts the user with the digital signature
of the applet and allows the user to grant permission to the applet.

Signing an applet with a digital signature requires that the signing party stores the
applet and its supporting classes in a JAR file. Figure 7.14 lists the contents of the JAR file

1 // authorized.policy
2 // Policy file that grants file write permission
3 // only to file "authorized.txt"
4
5 grant {
6 permission java.io.FilePermission
7 "authorized.txt", "write";
8 };

Fig. 7.11Fig. 7.11Fig. 7.11Fig. 7.11 Policy file grants permission to write to file authorized.txt.

1 // codebase_authorized.policy
2 // Policy file that grants write permission to
3 // file "codebase_authorized.txt" for codebase "C:/myclasses"
4
5 grant codebase "file:/C:/myclasses" {
6 permission java.io.FilePermission
7 "codebase_authorized.txt", "write";
8 };

Fig. 7.12Fig. 7.12Fig. 7.12Fig. 7.12 Policy file grants permission to the specified codebase.

414 Security Chapter 7

FileTreeApplet.jar. For instructions on creating JAR files, please refer to Chapter
6, JavaBeans.

The keytool utility enables developers to generate public and private key pairs suit-
able for signing applets. The Java Plug-in supports applets signed with RSA digital signa-
tures. To generate an RSA key pair, type the following at a command prompt:

keytool -genkey -keyalg RSA -alias MyCertificate

1 // FileTreeApplet.java
2 // A JApplet that browses files on the local file system
3 // using a FileTreePanel.
4 package com.deitel.advjhtp1.security.signatures;
5
6 // Java extension packages
7 import javax.swing.*;
8
9 // Deitel packages

10 import com.deitel.advjhtp1.security.signatures.FileTreePanel;
11
12 public class FileTreeApplet extends JApplet {
13
14 // initialize JApplet
15 public void init()
16 {
17 // get rootDirectory from user
18 String rootDirectory = JOptionPane.showInputDialog(this,
19 "Please enter a directory name:");
20
21 // create FileTreePanel for browsing user's hard drive
22 FileTreePanel panel = new FileTreePanel(rootDirectory);
23
24 getContentPane().add(panel);
25 }
26 }

Fig. 7.13Fig. 7.13Fig. 7.13Fig. 7.13 Applet that browses a user’s local filesystem.

Directory Name File Name

com\deitel\advjhtp1\security\signatures\

FileTreeApplet.class

FileTreePanel.class

FileTreePanel$1.class

com\deitel\advjhtp1\mvc\tree\filesystem\

FileSystemModel.class

FileSystemModel$TreeFile.class

Fig. 7.14Fig. 7.14Fig. 7.14Fig. 7.14 File listing for FileTreeApplet.jar .

Chapter 7 Security 415

The keytool utility prompts you for your name, organization name and location. To ex-
port your digital signature into a certificate file, use the command:

keytool -export -alias MyCertificate -file myCertificate.cer

The Java Plug-in maintains a keystore for trusted certificates in its lib/security
folder (e.g., C:\Program Files\JavaSoft\JRE\1.3.1\lib\security) named
cacerts. This keystore contains certificates from certificate authorities such as Verisign
and Thawte. The plug-in uses these certificates to verify digital signatures through a certifi-
cate chain. Adding a new certificate to this keystore allows the Java Plug-in to verify applets
signed with that new certificate. (If your certificate has been signed by a Certificate Authority
such as Verisign or Thawte, you need not add this certificate to the cacerts trusted key-
store.) Add myCertificate.cer to the cacerts keystore using the command

keytool -import -alias MyTrustedCertificate -keystore
 cacerts -file myCertificate.cer

where cacerts is the complete path to the cacerts keystore in the Java Plug-in’s lib/
security folder. When prompted for a password, enter changeit, which is the cac-
ert keystore’s default password.

Next, sign the applet’s JAR file with your digital signature using the jarsigner
utility. The jarsigner utility updates the manifest file in the JAR with the appropriate
security information and signs each class in the JAR file. To sign the JAR, enter the fol-
lowing at a command prompt:

jarsigner FileTreeApplet.jar MyCertificate

Next, create an HTML file that contains an applet element for the FileTreeAp-
plet. Figure 7.15 contains a basic HTML file for this purpose.

1 <html>
2
3 <head>
4 <title>FileTreeApplet Signed Applet</title>
5 </head>
6
7 <body>
8
9 <h1>File Browser</h1>

10
11 <applet
12 code = "com.deitel.advjhtp1.security.signatures.FileTreeApplet"
13 archive = "FileTreeApplet.jar" width = "400" height = "200">
14 </applet>
15
16 </body>
17
18 </html>

Fig. 7.15Fig. 7.15Fig. 7.15Fig. 7.15 HTML file for FileTreeApplet.

416 Security Chapter 7

To enable the Web browser to load the Java Plug-in instead of the Web browser’s own
Java Virtual Machine, use the htmlconverter utility to convert the applet element
into appropriate object and embed elements using the command

htmlconverter signedApplet.html

and load the resulting Web page in a Web browser. When the Java Plug-in loads the applet,
the plug-in displays the Java Plug-in Security Warning dialog (Fig. 7.16). This dialog
displays information about the signing certificate and enables the user to grant special per-
mission to the applet. The user can click Grant this Session to allow the applet AllP-
ermission for the current browsing session, Deny to deny special permission to the
applet, Grant Always to allow the applet AllPermission for this and future browsing
sessions, or More Info to display detailed information about the applet’s signature.

Figure 7.17 shows the applet running with AllPermission. The applet prompts the
user to enter a directory to use as the root of the JTree. The user then can browse through
the filesystem and click on individual files or folders to view information about those files
and folders in the right-hand pane. The user also can rename files in the JTree.

Fig. 7.16Fig. 7.16Fig. 7.16Fig. 7.16 Java Plug-in security warning when loading a signed applet.

Fig. 7.17Fig. 7.17Fig. 7.17Fig. 7.17 FileTreeApplet browsing the D:\jdk1.3.1\ directory.

Chapter 7 Security 417

7.13 Authentication
Ensuring that users actually are who they claim to be is a large part of computer security,
known as authentication. Current authentication models restrict access to certain aspects of
a program, allow users to connect to a network and regulate the resources available to users
on the network. Java uses the Java Authentication and Authorization Service (JAAS) for au-
thenticating and authorizing users. JAAS is based on a plug-in framework, which allows
Kerberos and single sign-on to be implemented for authentication and authorization.

7.13.1 Kerberos

Kerberos is a freely available open-source protocol developed at MIT. It employs secret-
key cryptography to authenticate users in a network and to maintain the integrity and pri-
vacy of network communications.

Authentication in a Kerberos system is handled by the main Kerberos system and a sec-
ondary Ticket Granting Service (TGS). The latter system is similar to key distribution centers,
which were described in Section 7.3. The main Kerberos system authenticates a client’s iden-
tity to the TGS, which in turn authenticates client’s rights to access specific network services.

Each client in the network shares a secret key with the Kerberos system. This secret
key may be used by multiple TGSs in the Kerberos system. The client starts by entering a
login name and password into the Kerberos authentication server, which maintains a data-
base of all clients in the network. The authentication server returns a Ticket-Granting Ticket
(TGT) encrypted with the client’s secret key that it shared with the authentication server.
Since the secret key is known only by the authentication server and the client, only the
client can decrypt the TGT, thus authenticating the client’s identity. Next, the client sends
the decrypted TGT to the Ticket Granting Service to request a service ticket, which autho-
rizes the client’s access to specific network services. Service tickets have a set expiration
time. Tickets may be renewed by the TGS.

7.13.2 Single Sign-On

To access multiple applications on different servers, users must provide a separate pass-
word for authentication on each. Remembering multiple passwords is cumbersome. People
tend to write their passwords down, creating security threats.

Single sign-on systems allow users to log in once with a single password. Users can
access multiple applications. It is important to secure single sign-on passwords, because if
the password becomes available to hackers, all applications can be accessed and attacked.

There are three types of single sign-on services: workstation logon scripts, authentica-
tion server scripts and tokens. Workstation logon scripts are the simplest form of single
sign-on. Users log in at their workstations, then choose applications from a menu. The
workstation logon script sends the user’s password to the application servers, and the user
is authenticated for future access to those applications. Workstation logon scripts do not
provide a sufficient amount of security since user passwords are stored on the workstation
in plaintext. Anyone who can access the workstation can obtain the user’s password.
Authentication server scripts authenticate users with a central server. The central server
controls connections between the user and the applications the user wishes to access.
Authentication server scripts are more secure than workstation logon scripts because pass-
words are kept on the server, which is more secure than the individual PC.

418 Security Chapter 7

The most advanced single sign-on systems use token-based authentication. Once a user
is authenticated, a non-reusable token is issued to the user to access specific applications.
The logon for creating the token is secured with encryption or with a single password,
which is the only password the user needs to remember or change. The only problem with
token authentication is that all applications must be built to accept tokens instead of tradi-
tional logon passwords.15

7.13.3 Java Authentication and Authorization Service (JAAS)
Java addresses the problems often associated with authenticating users and controlling ac-
cess with the Java Authentication and Authorization Service (JAAS) API. Whereas policy
files and permissions protect a user from running malicious programs, JAAS protects ap-
plications from unauthorized users.16

The Pluggable Authentication Module (PAM) architecture is the standard method for
authentication on which JAAS is based.17 The PAM framework supports multiple authen-
tication systems, including Kerberos tickets and smart cards. Additionally, PAM allows
different systems to be combined to create even greater levels of security. Developers deter-
mine what forms of authentication will be used in the associated security policy. PAM also
supports single sign-on systems. Java’s implementation of PAM in JAAS enables Java pro-
grams to identify users, allowing developers to establish access controls to protect those
programs from unauthorized access.

After a user has been authenticated, JAAS can grant or restrict access to certain
resources of an application. JAAS can control access by group, user or role-based security
policies.18 User-based access control governs access to resources on an individual user
basis. After providing a password, Kerberos ticket or other means of identification to the
Java application, the privileges of the individual user are determined and applied. Group-
based authorization identifies a user as a part of a group and grants access to certain
resources based on the identifying group. For example, a member of the group “doctors”
would be able to access patient databases, connect to remote hospitals and write prescrip-
tions that are sent electronically to a pharmacy. Role-based access control (RBAC) is used
in addition to group-access control, allowing for more control over resources. Users request
specific roles, each of which have corresponding privileges, based on what tasks the user
would need to access. Roles and the corresponding permissions are based on the makeup
of an organization. What separates roles from groups is the fact that by default, roles are
not enabled. This feature increases security by allowing users to access only necessary
applications. Using the “doctors” example, it would be risky for an application to allow the
doctor to delete a patient’s profile by default. Deleting patient files should be an available
option only when it is necessary. Therefore, in order to gain access to a deletion resource,
the doctor would have to present additional identification.19

Class AuthenticateNT (Fig. 7.18) uses a sample login module available for JAAS
that authenticates the current user with the Windows NT authentication system. Lines 20–
21 create a new LoginContext with the name AuthenticateNT. This LoginCon-
text is associated with a specific login module in the configuration file of Fig. 7.20. Line
24 invokes method login of class LoginContext. This begins the authentication pro-
cess. The Windows NT sample login module does not prompt the user for login informa-
tion, it simply obtains the credentials for the currently logged-in user. Other login modules
may use a CallbackHandler to prompt the user to enter a username, password and

Chapter 7 Security 419

other authentication information. If the login is successful (i.e., invoking method login
does not generate any exceptions), line 28 prints a message indicating so.

1 // AuthenticateNT.java
2 // Authenticates a user using the NTLoginModule and performs
3 // a WriteFileAction PrivilegedAction.
4 package com.deitel.advjhtp1.security.jaas;
5
6 // Java extension packages
7 import javax.swing.*;
8 import javax.security.auth.*;
9 import javax.security.auth.login.*;

10
11 public class AuthenticateNT {
12
13 // launch application
14 public static void main(String[] args)
15 {
16 // authenticate user and perform PrivilegedAction
17 try {
18
19 // create LoginContext for AuthenticateNT context
20 LoginContext loginContext =
21 new LoginContext("AuthenticateNT");
22
23 // perform login
24 loginContext.login();
25
26 // if login executes without exceptions, login
27 // was successful
28 System.out.println("Login Successful");
29
30 // get Subject now associated with LoginContext
31 Subject subject = loginContext.getSubject();
32
33 // display Subject details
34 System.out.println(subject);
35
36 // perform the WriteFileAction as current Subject
37 Subject.doAs(subject, new WriteFileAction());
38
39 // log out current Subject
40 loginContext.logout();
41
42 System.exit(0);
43
44 } // end try
45
46 // handle exception loggin in
47 catch (LoginException loginException) {
48 loginException.printStackTrace();

Fig. 7.18Fig. 7.18Fig. 7.18Fig. 7.18 AuthenticateNT uses the NTLoginModule to authenticate a user
and invoke a PrivilegedAction (part 1 of 2).

420 Security Chapter 7

Line 31 obtains a Subject from the current LoginContext. A Subject repre-
sents a particular user or other entity (e.g., an automated service) that requests an action.
Each Subject has associated Principals. These Principals represent the different
roles or identities that a user can assume during a particular login session. The security

49 System.exit(-1);
50 }
51
52 } // end method main
53 }

Login Successful
Subject:
 Principal: NTUserPrincipal:
 userName: santry

 Principal: NTDomainPrincipal:
 domainName DEITEL

 Principal: NTSidUserPrincipal:
 NTSid: S-1-5-21-1275210071-1682526488-1343024091-1000

 Principal: NTSidPrimaryGroupPrincipal:
 NTSid: S-1-5-21-1275210071-1682526488-1343024091-513

 Principal: NTSidGroupPrincipal:
 NTSid: S-1-5-21-1275210071-1682526488-1343024091-513

 Principal: NTSidGroupPrincipal:
 NTSid: S-1-1-0

 Principal: NTSidGroupPrincipal:
 NTSid: S-1-5-32-544

 Principal: NTSidGroupPrincipal:
 NTSid: S-1-5-32-545

 Principal: NTSidGroupPrincipal:
 NTSid: S-1-5-5-0-39645

 Principal: NTSidGroupPrincipal:
 NTSid: S-1-2-0

 Principal: NTSidGroupPrincipal:
 NTSid: S-1-5-4

 Principal: NTSidGroupPrincipal:
 NTSid: S-1-5-11

 Public Credential: NTNumericCredential:
 value: 896

Fig. 7.18Fig. 7.18Fig. 7.18Fig. 7.18 AuthenticateNT uses the NTLoginModule to authenticate a user
and invoke a PrivilegedAction (part 2 of 2).

Chapter 7 Security 421

restrictions in place for a particular application can grant permissions for Principals to
make certain requests (e.g., read from a particular file). Line 34 prints the Subject’s
information, including a list of the Subject’s Principals.

Line 37 invokes method doAs of class Subject to make a request using the given
Subject. Method doAs takes as arguments the Subject for the request and a
PrivilegedAction that contains the request. For this example, line 37 passes a new
WriteFileAction (Fig. 7.19), which writes a simple message to a text file. Line 40
logs out from the current LoginContext.

Class WriteFileAction (Fig. 7.19) implements interface Privileged-
Action. PrivilegedActions execute in the context of an AccessController,
which verifies that the Subject invoking the PrivilegedAction has the appropriate
permissions. Interface PrivilegedAction requires that implementations define
method run (lines 13–32). Method run of class WriteFileAction creates a text file
and writes a message to that text file.

1 // WriteFileAction.java
2 // WriteFileAction is a PrivilegedAction implementation that
3 // simply writes a file to the local file system.
4 package com.deitel.advjhtp1.security.jaas;
5
6 // Java core packages
7 import java.io.*;
8 import java.security.PrivilegedAction;
9

10 public class WriteFileAction implements PrivilegedAction {
11
12 // perform the PrivilegedAction
13 public Object run()
14 {
15 // attempt to write a message to the specified file
16 try {
17 File file = new File("D:/", "privilegedFile.txt");
18 FileWriter fileWriter = new FileWriter(file);
19
20 // write message to File and close FileWriter
21 fileWriter.write("Welcome to JAAS!");
22 fileWriter.close();
23 }
24
25 // handle exception writing file
26 catch (IOException ioException) {
27 ioException.printStackTrace();
28 }
29
30 return null;
31
32 } // end method run
33 }

Fig. 7.19Fig. 7.19Fig. 7.19Fig. 7.19 WriteFileAction is a PrivilegedAction for writing a simple text
file.

422 Security Chapter 7

The configuration file of Fig. 7.20 specifies the LoginModules to use for the
AuthenticateNT LoginContext. Line 5 specifies that the Subject must authen-
ticate with the NTLoginModule for a successful login. LoginContexts can require a
sequence of several LoginModules for proper authentication. For more information on
JAAS configuration files, please refer to the JAAS documentation at java.sun.com/
security/jaas/doc/api.html.

The policy file of Fig. 7.21 grants permissions to the specified Principal when exe-
cuting code in the specified codeBase. JAAS offers fine-grained permissions control.
This example grants read and write FilePermission to the Principal "santry"
when executing code in the file:d:/JavaProjects/advjhtp1/src/- codebase.

The policy file of Fig. 7.22 specifies permissions for JAAS itself and for the Authen-
ticateNT class codebase. Lines 5–7 grant AllPermission to the JAAS standard
extension. This permission enables JAAS to perform authentication on behalf of this appli-
cation. Line 13 grants permission to execute PrivilegedActions using method doAs.
Lines 15–19 grant permission to read and write the text file D:\privileged-
File.txt.

1 // jaas.config
2 // Configures JAAS to use NTLoginModule
3 // for authentication.
4 AuthenticateNT {
5 com.sun.security.auth.module.NTLoginModule required debug=false;
6 };

Fig. 7.20Fig. 7.20Fig. 7.20Fig. 7.20 Configuration file for authentication using NTLoginModule.

1 // jaas.policy
2 // Policy file defining the permissions for the named Principal
3 grant codeBase "file:D:/JavaProjects/advjhtp1/src/-",
4 Principal com.sun.security.auth.NTUserPrincipal "santry" {
5
6 permission java.io.FilePermission "D:/privilegedFile.txt",
7 "write";
8
9 permission java.io.FilePermission "D:/privilegedFile.txt",

10 "read";
11 };

Fig. 7.21Fig. 7.21Fig. 7.21Fig. 7.21 JAAS policy file for granting permissions to a Principal and codebase.

1 // java.policy
2 // Policy file that grants AllPermission
3 // to JAAS modules and specific permissions
4 // to the D:\Projects\Java codebase.
5 grant codebase "file:/D:/jdk1.3.1/jre/lib/ext/jaas.jar" {
6 permission java.security.AllPermission;
7 };
8

Fig. 7.22Fig. 7.22Fig. 7.22Fig. 7.22 Policy file for JAAS application (part 1 of 2).

Chapter 7 Security 423

Executing the AuthenticateNT example requires several command-line options to
the Java virtual machine. Enter the following at a command prompt:

java -Djava.security.policy==java.policy
 -Djava.security.auth.policy==jaas.policy
 -Djava.security.auth.login.config==jaas.config
 com.deitel.advjhtp1.security.jaas.AuthenticateNT

where java.policy is the policy file of Fig. 7.22, jaas.policy is the policy file of
Fig. 7.21 and jaas.config is the configuration file of Fig. 7.20.

7.14 Secure Sockets Layer (SSL)
Currently, most e-businesses use SSL for secure online transactions, although SSL is not
designed specifically for securing transactions. Rather, SSL secures World Wide Web con-
nections. The Secure Sockets Layer (SSL) protocol, developed by Netscape Communica-
tions, is a nonproprietary protocol commonly used to secure communication between two
computers on the Internet and the Web.20 SSL is built into many Web browsers, including
Netscape Communicator and Microsoft Internet Explorer, as well as numerous other soft-
ware products. It operates between the Internet’s TCP/IP communications protocol and the
application software.21

SSL implements public-key technology using the RSA algorithm and digital certifi-
cates to authenticate the server in a transaction and to protect private information as it
passes from one party to another over the Internet. SSL transactions do not require client
authentication; many servers consider a valid credit-card number to be sufficient for
authentication in secure purchases. To begin, a client sends a message to a server. The
server responds and sends its digital certificate to the client for authentication. Using
public-key cryptography to communicate securely, the client and server negotiate session
keys to continue the transaction. Session keys are secret keys used for the duration of that
transaction. Once the keys are established, the communication proceeds between the client
and the server using the session keys and digital certificates. Encrypted data are passed
through TCP/IP, just as regular packets travel over the Internet. However, before sending
a message with TCP/IP, the SSL protocol breaks the information into blocks and com-
presses and encrypts those blocks. Conversely, after the data reach the receiver through

9 grant codebase "file:/D:/JavaProjects/advjhtp1/src/-" {
10 permission javax.security.auth.AuthPermission
11 "createLoginContext";
12
13 permission javax.security.auth.AuthPermission "doAs";
14
15 permission java.io.FilePermission "D:/privilegedFile.txt",
16 "write";
17
18 permission java.io.FilePermission "D:/privilegedFile.txt",
19 "read";
20 };

Fig. 7.22Fig. 7.22Fig. 7.22Fig. 7.22 Policy file for JAAS application (part 2 of 2).

424 Security Chapter 7

TCP/IP, the SSL protocol decrypts the packets, then decompresses and assembles the data.
These extra processes provide an extra layer of security between TCP/IP and applications.
SSL is used primarily to secure point-to-point connections—transmissions of data from one
computer to another.22 SSL allows for the authentication of the server, the client, both or
neither; in most Internet SSL sessions, only the server is authenticated. The Transport
Layer Security (TLS) protocol, designed by the Internet Engineering Task Force, is similar
to SSL. For more information on TLS, visit: www.ietf.org/rfc/rfc2246.txt.

Although SSL protects information as it is passed over the Internet, it does not protect
private information, such as credit-card numbers, once the information is stored on the mer-
chant’s server. When a merchant receives credit-card information with an order, the informa-
tion is often decrypted and stored on the merchant’s server until the order is placed. If the
server is not secure and the data are not encrypted, an unauthorized party can access the infor-
mation. For more information about the SSL protocol, check out the Netscape SSL tutorial at
developer.netscape.com/tech/security/ssl/protocol.html and the
Netscape Security Center site at www.netscape.com/security/index.html.

7.14.1 Java Secure Socket Extension (JSSE)

The strength of SSL encryption has been integrated into Java technology through Sun’s
Java Secure Socket Extension (JSSE). Java applications that use JSSE can secure a passage
between a client and a server over TCP/IP. JSSE provides encryption, message integrity
checks and authentication of the server and client.23 JSSE uses keystores to secure storage
of key pairs and certificates used in PKI. A truststore is a keystore containing keys and cer-
tificates used to validate the identities of servers and clients.24 25

The algorithms used in JSSE for encryption, key agreement and authentication include
DES, 3DES, Diffie-Hellman and DSA. Like JCE, JSSE uses a provider-based model that
enables third parties to provide additional cryptographic algorithms. JSSE is free for com-
mercial use and is available for free download at java.sun.com/products/jsse.

Class LoginServer (Fig. 7.23) uses an SSLServerSocket to listen for SSL con-
nections on port 7070. JSSE uses the Factory design pattern for constructing
SSLServerSockets and SSLSockets. Line 25 invokes static method get-
Default of class SSLServerSocketFactory to obtain the default SSLServer-
SocketFactory. Line 29 invokes method createServerSocket of class
SSLServerSocketFactory to create the SSLServerSocket. This method takes as
an argument the port number on which the SSLServerSocket will listen.

Method runServer (lines 34–84) starts LoginServer. Line 46 invokes method
accept of class SSLServerSocket to accept a new client connection. Method
accept is a blocking call that returns an SSLSocket when a client connects. Lines 49–
55 obtain the InputStream and OutputStream for the SSLSocket and lines 57–58
read two lines of text. Lines 60–61 validate the client’s user name and password against
constants CORRECT_USER_NAME and CORRECT_PASSWORD. If the user name and
password are correct, line 63 sends a welcome message to the client. If the user name and
password are incorrect, line 67 notifies the client that the login failed. Lines 71–73 close
the InputStream, OutputStream and SSLSocket.

Note that using SSLServerSockets and SSLSockets is identical to using stan-
dard ServerSockets and Sockets. JSSE hides the details of the SSL protocol and
encryption from the programmer entirely.

Chapter 7 Security 425

1 // LoginServer.java
2 // LoginServer uses an SSLServerSocket to demonstrate JSSE's
3 // SSL implementation.
4 package com.deitel.advjhtp1.security.jsse;
5
6 // Java core packages
7 import java.io.*;
8
9 // Java extension packages

10 import javax.net.ssl.*;
11
12 public class LoginServer {
13
14 private static final String CORRECT_USER_NAME = "Java";
15 private static final String CORRECT_PASSWORD = "HowToProgram";
16
17 private SSLServerSocket serverSocket;
18
19 // LoginServer constructor
20 public LoginServer() throws Exception
21 {
22 // SSLServerSocketFactory for building SSLServerSockets
23 SSLServerSocketFactory socketFactory =
24 (SSLServerSocketFactory)
25 SSLServerSocketFactory.getDefault();
26
27 // create SSLServerSocket on specified port
28 serverSocket = (SSLServerSocket)
29 socketFactory.createServerSocket(7070);
30
31 } // end LoginServer constructor
32
33 // start server and listen for clients
34 private void runServer()
35 {
36 // perpetually listen for clients
37 while (true) {
38
39 // wait for client connection and check login information
40 try {
41
42 System.err.println("Waiting for connection...");
43
44 // create new SSLSocket for client
45 SSLSocket socket =
46 (SSLSocket) serverSocket.accept();
47
48 // open BufferedReader for reading data from client
49 BufferedReader input = new BufferedReader(
50 new InputStreamReader(socket.getInputStream()));
51

Fig. 7.23Fig. 7.23Fig. 7.23Fig. 7.23 LoginServer uses an SSLServerSocket for secure communication
(part 1 of 2).

426 Security Chapter 7

Class LoginClient (Fig. 7.24) uses an SSLSocket to communicate with the
LoginServer. Lines 22–23 invoke method getDefault of class SSLSocketFac-
tory to obtain the default SSLSocketFactory. Lines 26–28 invoke method cre-
ateSocket of class SSLSocketFactory to create a new SSLSocket that connects
to localhost on port 7070. Lines 31–32 create a new PrintWriter for the
SSLSocket’s OutputStream to facilitate sending data to the server. Lines 35–48
prompt the user for a username and password and send them to the server. Lines 51–58 then
read the response from the server and display this response in a JOptionPane message

52 // open PrintWriter for writing data to client
53 PrintWriter output = new PrintWriter(
54 new OutputStreamWriter(
55 socket.getOutputStream()));
56
57 String userName = input.readLine();
58 String password = input.readLine();
59
60 if (userName.equals(CORRECT_USER_NAME) &&
61 password.equals(CORRECT_PASSWORD)) {
62
63 output.println("Welcome, " + userName);
64 }
65
66 else {
67 output.println("Login Failed.");
68 }
69
70 // clean up streams and SSLSocket
71 output.close();
72 input.close();
73 socket.close();
74
75 } // end try
76
77 // handle exception communicating with client
78 catch (IOException ioException) {
79 ioException.printStackTrace();
80 }
81
82 } // end while
83
84 } // end method runServer
85
86 // execute application
87 public static void main(String args[]) throws Exception
88 {
89 LoginServer server = new LoginServer();
90 server.runServer();
91 }
92 }

Fig. 7.23Fig. 7.23Fig. 7.23Fig. 7.23 LoginServer uses an SSLServerSocket for secure communication
(part 2 of 2).

Chapter 7 Security 427

dialog. Note that once the client establishes the connection with the SSLSocket, the fact
that SSL encrypts the communication between the client and server is transparent to the
programmer.

1 // LoginClient.java
2 // LoginClient uses an SSLSocket to transmit fake login
3 // information to LoginServer.
4 package com.deitel.advjhtp1.security.jsse;
5
6 // Java core packages
7 import java.io.*;
8
9 // Java extension packages

10 import javax.swing.*;
11 import javax.net.ssl.*;
12
13 public class LoginClient {
14
15 // LoginClient constructor
16 public LoginClient()
17 {
18 // open SSLSocket connection to server and send login
19 try {
20
21 // obtain SSLSocketFactory for creating SSLSockets
22 SSLSocketFactory socketFactory =
23 (SSLSocketFactory) SSLSocketFactory.getDefault();
24
25 // create SSLSocket from factory
26 SSLSocket socket =
27 (SSLSocket) socketFactory.createSocket(
28 "localhost", 7070);
29
30 // create PrintWriter for sending login to server
31 PrintWriter output = new PrintWriter(
32 new OutputStreamWriter(socket.getOutputStream()));
33
34 // prompt user for user name
35 String userName = JOptionPane.showInputDialog(null,
36 "Enter User Name:");
37
38 // send user name to server
39 output.println(userName);
40
41 // prompt user for password
42 String password = JOptionPane.showInputDialog(null,
43 "Enter Password:");
44
45 // send password to server
46 output.println(password);
47
48 output.flush();

Fig. 7.24Fig. 7.24Fig. 7.24Fig. 7.24 LoginClient communicates with LoginServer via SSL (part 1 of 2).

428 Security Chapter 7

Enabling SSL requires that LoginServer uses a certificate that LoginClient
trusts. Use the keytool to generate a new certificate and keystore for this purpose:

keytool -genkey -keystore SSLStore -alias SSLCertificate

Next, launch LoginServer and specify the keystore that contains the Login-
Server’s certificate:

java -Djavax.net.ssl.keyStore=SSLStore
 -Djavax.net.ssl.keyStorePassword=password
 com.deitel.advjhtp1.security.jsse.LoginServer

where password is the password you specified for the SSLStore keystore. Finally, launch
the LoginClient and specify the truststore for that client. The truststore contains certifi-
cates that the client trusts for the purposes of digital-signature validation. For simplicity in this
example, we use the same keystore as both the LoginServer’s keystore and the Login-

49
50 // create BufferedReader for reading server response
51 BufferedReader input = new BufferedReader(
52 new InputStreamReader(socket.getInputStream ()));
53
54 // read response from server
55 String response = input.readLine();
56
57 // display response to user
58 JOptionPane.showMessageDialog(null, response);
59
60 // clean up streams and SSLSocket
61 output.close();
62 input.close();
63 socket.close();
64
65 } // end try
66
67 // handle exception communicating with server
68 catch (IOException ioException) {
69 ioException.printStackTrace();
70 }
71
72 // exit application
73 finally {
74 System.exit(0);
75 }
76
77 } // end LoginClient constructor
78
79 // execute application
80 public static void main(String args[])
81 {
82 new LoginClient();
83 }
84 }

Fig. 7.24Fig. 7.24Fig. 7.24Fig. 7.24 LoginClient communicates with LoginServer via SSL (part 2 of 2).

Chapter 7 Security 429

Client’s truststore. In real-world applications, the client’s truststore should contain trusted
certificates, such as those from certificate authorities. Execute the client using the command

java -Djavax.net.ssl.trustStore=SSLStore
 -Djavax.net.ssl.trustStorePassword=password
 com.deitel.advjhtp1.security.jsse.LoginClient

Figure 7.25 shows two executions of class LoginClient. The first execution (the
left column) shows a successful login. The second execution shows a failed login. For each
execution, the LoginServer and LoginClient used SSL to encrypt all data transfer.

7.15 Java Language Security and Secure Coding
The Java language provides programmers with a security advantage that other languages
do not. Java code goes through several stages before and during execution that help to en-
sure that the Java code is not malicious. Each stage prevents many exploitations that other
programming languages allow. For example, the Java Virtual Machine ensures that pro-
grams cannot read memory beyond the end of an array. This prevents programs from read-
ing data from arbitrary locations in memory.

The Java compiler performs several security checks in the normal process of compiling
Java source code into bytecode. The compiler ensures that the program does not read from
uninitialized variables—a common technique for reading data from arbitrary memory loca-
tions. Also, the compiler checks the access modifiers for each method invocation and vari-
able to ensure that the program accesses private data only from the proper classes. The
compiler also can detect certain illegal casts between data types. These simple steps help
prevent many types of security attacks.

Fig. 7.25Fig. 7.25Fig. 7.25Fig. 7.25 Two sample executions of class LoginClient.

430 Security Chapter 7

Before the Java Virtual Machine executes a Java program, the bytecodes for that pro-
gram must pass through the bytecode verifier. The bytecode verifier ensures that the byte-
codes are valid Java bytecodes that do not perform certain illegal operations (according to
the rules of the Java language). For example, the bytecode verifier checks that no class has
more than one superclass and that final classes do not have subclasses. The bytecode veri-
fier also checks that classes have the proper format. This second stage helps eliminate secu-
rity risks that the compiler could not detect.

The Java Virtual Machine performs the remaining integrity checks on Java programs.
The virtual machine checks any remaining cast operations to ensure their validity and per-
forms array-bounds checking to prevent programs from reading arbitrary memory loca-
tions. The Java Virtual Machine uses class loaders to read class definitions from .class
files and produce class representations in memory. The class loader uses separate
namespaces to prevent malicious code from interacting with safe code.26 Every class that
the JVM loads is assigned a corresponding set of unique names, known as a namespace.
Namespaces in Java act as barriers between classes. The JVM allows classes within the
same namespace to interact, but requires explicit permission for classes from separate
namespaces to operate together. To protect trusted classes, developers can use different
class loaders for trusted and untrusted packages. This allows for trusted code to belong to
the same runtime package. A runtime package is code that was loaded by the same class
loader and belong to the same package. The bootstrap class loader loads all of the trusted
core Java classes, so that additional, potentially unsecure classes will belong to a separate
runtime package and can not interfere with the core classes.

The Java security manager is the module that performs security checks while code is
running. If, during run-time, code attempts to execute a dangerous operation, a security
exception is generated. Class operations that the security manager considers dangerous
include: deleting a file, reading from a file, appending or editing a file, adding or loading a
class to a package, and opening a socket connection.27 When untrusted code attempts one
of these operations, the security manager throws an AccessControlException.

Although the Java language and the associated compiler, bytecode verifier and virtual
machine enforce a number of security constraints, Java developers still may need to take
certain steps to secure their code. For example, when developing classes, programmers can
declare those classes as final. Final classes cannot be subclassed, and can help make an
application more secure by preventing attackers from creating malicious subclasses that
can cause damage to an application or gain access to protected information. A hacker would
generally exploit an ordinary class by creating a subclass to replace the original. This new
class could expose the same public interface as the original class, and would deceive the
compiler into using the hostile class.28

Fortunately, the compiler will not compile a class that attempts to extent a final class.
The bytecode verifier also checks to ensure that classes are not subclasses of a final class.
If declaring an entire class as final is excessive for a program’s needs, final methods prevent
subclasses from overriding particular methods.

7.16 Internet and World Wide Web Resources
The notation <www.domain-name.com> indicates that the citation is for information
found at that Web site.

Chapter 7 Security 431

Security Resource Sites

www.securitysearch.com
This is a comprehensive resource for computer security. The site has thousands of links to products,
security companies, tools and more. The site also offers a free weekly newsletter with information
about vulnerabilities.

www.securityfocus.com
A site covering all aspects of computer security, with special sections in the basics, numerous oper-
ating systems, intrusion detection and viruses. This site is also responsible for maintaining the
BugTraq list.

www.esecurityonline.com
This site is a great resource for information on online security. The site has links to news, tools, events,
training and other valuable security information and resources.

www.epic.org
The Electronic Privacy Information Center deals with protecting privacy and civil liberties. Visit this
site to learn more about the organization and its latest initiatives.

theory.lcs.mit.edu/~rivest/crypto-security.html
The Ronald L. Rivest: Cryptography and Security site has an extensive list of links to security resourc-
es, including newsgroups, government agencies, FAQs, tutorials and more.

www.w3.org/Security/Overview.html
The W3C Security Resources site has FAQs, information about W3C security and e-commerce initi-
atives and links to other security related Web sites.

web.mit.edu/network/ietf/sa
The Internet Engineering Task Force (IETF), which is an organization concerned with the architecture
of the Internet, has working groups dedicated to Internet Security. Visit the IETF Security Area to
learn about the working groups, join the mailing list or check out the latest drafts of the IETF’s work.

dir.yahoo.com/Computers_and_Internet/Security_and_Encryption
The Yahoo Security and Encryption page is a great resource for links to Web sites security and en-
cryption.

www.counterpane.com/hotlist.html
The Counterpane Internet Security, Inc., site includes links to downloads, source code, FAQs, tutori-
als, alert groups, news and more.

www.rsasecurity.com/rsalabs/faq
This site is an excellent set of FAQs about cryptography from RSA Laboratories, one of the leading
makers of public key cryptosystems.

www.nsi.org/compsec.html
Visit the National Security Institute’s Security Resource Net for the latest security alerts, government
standards, and legislation, as well as security FAQs links and other helpful resources.

www.itaa.org/infosec
The Information Technology Association of America (ITAA) InfoSec site has information about the
latest U.S. government legislation related to information security.

staff.washington.edu/dittrich/misc/ddos
The Distributed Denial of Service Attacks site has links to news articles, tools, advisory organizations
and even a section on security humor.

www.infoworld.com/cgi-bin/displayNew.pl?/security/links/
security_corner.htm
The Security Watch site on Infoword.com has loads of links to security resources.

432 Security Chapter 7

www.antionline.com
AntiOnline has security-related news and information, a tutorial titled “Fight-back! Against Hack-
ers,” information about hackers and an archive of hacked sites.

www.microsoft.com/security/default.asp
The Microsoft security site has links to downloads, security bulletins and tutorials.

www.grc.com
This site offers a service to test the security of your computer’s Internet connection.

General Security Sites

www.sans.org/giac.html
Sans Institute presents information on system and security updates, along with new research and dis-
coveries. The site offers current publications, projects, and weekly digests.

www.packetstorm.securify.com
The Packet Storm page describes the twenty latest advisories, tools, and exploits. This site also pro-
vides links to the top security news stories.

www.xforce.iss.net
This site allows one to search a virus by name, reported date, expected risk, or affected platforms. Up-
dated news reports can be found on this page.

www.ntbugtraq.com
This site provides a list and description of various Windows NT Security Exploits/Bugs encountered
by Windows NT users. One can download updated service applications.

nsi.org/compsec.html
The Security Resource Net page states various warnings, threats, legislation and documents of viruses
and security in an organized outline.

www.tno.nl/instit/fel/intern/wkinfsec.html
This site includes numerous links to other security sites.

www.microsoft.com/security
The Microsoft security site offers news, product information and tools.

www.securitystats.com
This computer security site provides statistics on viruses, web defacements and security spending.

Magazines, Newsletters and News sites

www.networkcomputing.com/consensus
The Security Alert Consensus is a free weekly newsletter with information about security threats,
holes, solutions and more.

www.infosecuritymag.com
Information Security Magazine has the latest Web security news and vendor information.

www.issl.org/cipher.html
Cipher is an electronic newsletter on security and privacy from the Institute of Electrical and Elec-
tronics Engineers (IEEE). You can view current and past issues online.

securityportal.com
The Security Portal has news and information about security, cryptography and the latest viruses.

www.scmagazine.com
SC Magazine has news, product reviews and a conference schedule for security events.

www.cnn.com/TECH/specials/hackers
Insurgency on the Internet from CNN Interactive has news on hacking, plus a gallery of hacked sites.

Chapter 7 Security 433

rootshell.com/beta/news.html
Visit Rootshell for security-related news and white papers.

Government Sites for Computer Security

www.cit.nih.gov/security.html
This site has links to security organizations, security resources and tutorials on PKI, SSL and other
protocols.

cs-www.ncsl.nist.gov
The Computer Security Resource Clearing House is a resource for network administrators and others
concerned with security. This site has links to incident-reporting centers, information about security
standards, events, publications and other resources.

www.cdt.org/crypto
Visit the Center for Democracy and Technology for U. S. legislation and policy news regarding cryp-
tography.

www.epm.ornl.gov/~dunigan/security.html
This site has links to loads of security-related sites. The links are organized by subject and include
resources on digital signatures, PKI, smart cards, viruses, commercial providers, intrusion detection
and several other topics.

www.alw.nih.gov/Security
The Computer Security Information page is an excellent resource, providing links to news, news-
groups, organizations, software, FAQs and an extensive number of Web links.

www.fedcirc.gov
The Federal Computer Incident Response Capability deals with the security of government and civil-
ian agencies. This site has information about incident statistics, advisories, tools, patches and more.

axion.physics.ubc.ca/pgp.html
This site has a list of freely available cryptosystems, along with a discussion of each system and links
to FAQs and tutorials.

www.ifccfbi.gov
The Internet Fraud Complaint Center, founded by the Justice Department and the FBI, fields reports
of Internet fraud.

www.disa.mil/infosec/iaweb/default.html
The Defense Information Systems Agency’s Information Assurance page includes links to sites on vul-
nerability warnings, virus information and incident-reporting instructions, as well as other helpful links.

www.nswc.navy.mil/ISSEC/
The objective of this site is to provide information on protecting your computer systems from security
hazards. Contains a page on hoax versus real viruses.

www.cit.nih.gov/security.html
You can report security issues at this site. The site also lists official federal security policies, regula-
tions, and guidelines.

cs-www.ncsl.nist.gov/
The Computer Security Resource Center provides services for vendors and end users. The site in-
cludes information on security testing, management, technology, education and applications.

Advanced Encryption Standard (AES)

csrc.nist.gov/encryption/aes
This is the official site for the AES; this site includes press releases and a discussion forum.

434 Security Chapter 7

www.esat.kuleuven.ac.be/~rijmen/rijndael/
Visit this site for information about the Rijndael algorithm, including links to various implementa-
tions of the algorithm and a small FAQ.

home.ecn.ab.ca/~jsavard/crypto/co040801.htm
This site is dedicated to AES. It includes an explanation of the algorithm with diagrams and examples.

Internet Security Vendors

www.rsasecurity.com
RSA is one of the leaders in electronic security. Visit its site for more information about its current
products and tools, which are used by companies worldwide.

www.ca.com/protection
Computer Associates is a vendor of Internet security software. It has various software packages to
help companies set up a firewall, scan files for viruses and protect against viruses.

www.checkpoint.com
Check Point™ Software Technologies Ltd. is a leading provider of Internet security products and ser-
vices.

www.opsec.com
The Open Platform for Security (OPSEC) has over 200 partners that develop security products and
solutions using the OPSEC to allow for interoperability and increased security over a network.

www.baltimore.com
Baltimore Security is an e-commerce security solutions provider. Their UniCERT digital certificate
product is used in PKI applications.

www.ncipher.com
nCipher is a vendor of hardware and software products, including an SSL accelerator that increases
the speed of secure Web server transactions and a secure key management system.

www.entrust.com
Entrust Technologies provides e-security products and services.

www.tenfour.co.uk
TenFour provides software for secure e-mail.

www.antivirus.com
ScanMail® is an e-mail virus detection program for Microsoft Exchange.

www.contenttechnologies.com/ads
Content Technologies is a security software provider. Its products include firewall and secure e-mail
programs.

www.zixmail.com
Zixmail™ is a secure e-mail product that allows you to encrypt and digitally sign your messages using
different e-mail programs.

web.mit.edu/network/pgp.html
Visit this site to download Pretty Good Privacy® freeware. PGP allows you to send messages and
files securely.

www.certicom.com
Certicom provides security solutions for the wireless Internet.

www.raytheon.com
Raytheon Corporation’s SilentRunner monitors activity on a network to find internal threats, such as
data theft or fraud.

Chapter 7 Security 435

SSL

developer.netscape.com/tech/security/ssl/protocol.html
This Netscape page has a brief description of SSL, plus links to an SSL tutorial and FAQs.

www.netscape.com/security/index.html
The Netscape Security Center is an extensive resource for Internet and Web security. You will find
news, tutorials, products and services on this site.

psych.psy.uq.oz.au/~ftp/Crypto
This FAQs page has an extensive list of questions and answers about SSL technology.

www.visa.com/nt/ecomm/security/main.html
Visa International’s security page includes information on SSL and SET. The page includes a dem-
onstration of an online shopping transaction, which explains how SET works.

www.openssl.org
The Open SSL Project provides a free, open source toolkit for SSL.

Public-key Cryptography

www.entrust.com
Entrust produces effective security software products using Public Key Infrastructure (PKI).

www.cse.dnd.ca
The Communication Security Establishment has a short tutorial on Public Key Infrastructure (PKI)
that defines PKI, public-key cryptography and digital signatures.

www.magnet.state.ma.us/itd/legal/pki.htm
The Commonwealth of Massachusetts Information Technology page has loads of links to sites related
to PKI that contain information about standards, vendors, trade groups and government organizations.

www.ftech.net/~monark/crypto/index.htm
The Beginner’s Guide to Cryptography is an online tutorial and includes links to other sites on privacy
and cryptography.

www.faqs.org/faqs/cryptography-faq
The Cryptography FAQ has an extensive list of questions and answers.

www.pkiforum.org
The PKI Forum promotes the use of PKI.

www.counterpane.com/pki-risks.html
Visit the Counterpane Internet Security, Inc.’s site to read the article “Ten Risks of PKI: What You're
Not Being Told About Public Key Infrastructure.”

Digital Signatures

www.ietf.org/html.charters/xmldsig-charter.html
The XML Digital Signatures site was created by a group working to develop digital signatures using
XML. You can view the group’s goals and drafts of their work.

www.elock.com
E-Lock Technologies is a vendor of digital-signature products used in Public Key Infrastructure. This
site has an FAQs list covering cryptography, keys, certificates and signatures.

www.digsigtrust.com
The Digital Signature Trust Co. is a vendor of Digital Signature and Public Key Infrastructure prod-
ucts. It has a tutorial titled “Digital Signatures and Public Key Infrastructure (PKI) 101.”

436 Security Chapter 7

Digital Certificates

www.verisign.com
VeriSign creates digital IDs for individuals, small businesses and large corporations. Check out its
Web site for product information, news and downloads.

www.thawte.com
Thawte Digital Certificate Services offers SSL, developer and personal certificates.

www.silanis.com/index.htm
Silanis Technology is a vendor of digital-certificate software.

www.belsign.be
Belsign issues digital certificates in Europe. It is the European authority for digital certificates.

www.certco.com
Certco issues digital certificates to financial institutions.

www.openca.org
Set up your own CA using open-source software from The OpenCA Project.

Kerberos

www.nrl.navy.mil/CCS/people/kenh/kerberos-faq.html
This site is an extensive list of FAQs on Kerberos from the Naval Research Laboratory.

web.mit.edu/kerberos/www
Kerberos: The Network Authentication Protocol is a list of FAQs provided by MIT.

www.contrib.andrew.cmu.edu/~shadow/kerberos.html
The Kerberos Reference Page has links to several informational sites, technical sites and other helpful
resources.

www.pdc.kth.se/kth-krb
Visit this site to download various Kerberos white papers and documentation.

Newsgroups

news://comp.security.firewalls

news://comp.security.unix

news://comp.security.misc

news://comp.protocols.kerberos

SUMMARY
• There are five fundamental requirements of a successful, secure transaction: privacy, integrity, au-

thentication, authorization and nonrepudiation.

• Network security addresses the issue of availability: How do we ensure that the network and the
computer systems it connects will stay in operation continuously?

• The Java Sandbox architecture and policy files protect users and systems from malicious programs
that would otherwise crash computers or steal valuable information.

• To secure information, data can be encrypted. Cryptography transforms data by using a cipher, or
cryptosystem—a mathematical algorithm for encrypting messages. Unencrypted data is called
plaintext; encrypted data is called ciphertext.

• A key—a string of alpha-numeric characters that acts as a password—is input to the cipher. The
cipher uses the key to make data incomprehensible to all but the sender and intended receivers.

Chapter 7 Security 437

• Encryption and decryption keys are binary strings with a given key length. Symmetric cryptogra-
phy, also known as secret-key cryptography, utilizes the same secret key to encrypt and decrypt
messages.

• A key distribution center shares a (different) secret key with every user in the network; the key
distribution center generates a session key to be used for a transaction.

• One of the most commonly used symmetric encryption algorithms is the Data Encryption Standard
(DES).

• A block cipher is an encryption method that creates groups of bits from an original message, then
applies an encryption algorithm to the block as a whole, rather than as individual bits.

• Triple DES, or 3DES, is a variant of DES that is essentially three DES systems in a row, each hav-
ing its own secret key.

• The new standard for encryption is called the Advanced Encryption Standard (AES). Rijndael—a
candidate for AES—is an encryption method that can be used with key sizes and block sizes of
128, 192 or 256 bits.

• Public-key cryptography is asymmetric—it uses two inversely related keys: A public key and a
private key. The most commonly used public-key algorithm is RSA, an encryption system devel-
oped in 1977 by MIT professors Ron Rivest, Adi Shamir and Leonard Adleman.

• Pretty Good Privacy (PGP) is a public-key encryption system used for encrypting e-mail messages
and files. PGP was designed in 1991 by Phillip Zimmermann.

• Public-key algorithms should not be thought of as a replacement for secret-key algorithms. In-
stead, public-key algorithms can be used to allow two parties to agree upon a key to be used for
secret-key encryption over an unsecure medium.

• The process by which two parties can exchange keys over an unsecure medium is called a key
agreement protocol. A protocol sets the rules for communication: Exactly what encryption algo-
rithm(s) is (are) going to be used? The most common key agreement protocol is a digital envelope.

• Maintaining the secrecy of private keys is crucial to keeping cryptographic systems secure. Most
compromises in security result from poor key management (e.g., the mishandling of private keys,
resulting in key theft) rather than attacks that attempt to guess the keys.

• A main component of key management is key generation—the process by which keys are created.
A malicious third party could try to decrypt a message by using every possible decryption key, a
process known as brute-force cracking.

• The Java Cryptography Extension (JCE) provides Java applications with secret-key encryption,
such as 3DES, and public-key algorithms, such as Diffie-Hellman and RSA.

• The JCE architecture is provider-based—developers can add new algorithms to their programs by
adding a new algorithm provider.

• Class Cipher is the fundamental building block for applications that use JCE. A Cipher per-
forms encryption and decryption using a specified algorithm (e.g., DES, 3DES, Blowfish, etc.).

• The JCE includes the SunJCE provider, which has support for several common algorithms.

• A digital signature—the electronic equivalent of written signature—authenticates the sender’s
identity and, like a written signature, is difficult to forge. To create a digital signature, a sender
first takes the original plaintext message and runs it through a hash function, which is a mathemat-
ical calculation that gives the message a hash value.

• The Secure Hash Algorithm (SHA-1) is the standard for hash functions. Running a message
through the SHA-1 algorithm produces a 160-bit hash value.

• MD5 is another popular hash function, which was developed by Ronald Rivest to verify data in-
tegrity through a 128-bit hash value of the input file.

438 Security Chapter 7

• The hash value is also known as a message digest. The chance that two different messages will
have the same message digest is statistically insignificant.

• A digital certificate is a digital document that identifies a user and is issued by a certificate author-
ity (CA). Digital certificates contain an expiration date to force users to switch key pairs. Canceled
and revoked certificates are placed on a certificate revocation list (CRL). An alternative to CRLs
is the Online Certificate Status Protocol (OCSP), which validates certificates in real-time. OCSP
technology is currently under development.

• Java provides the keytool utility for managing and generating keys, certificates and digital sig-
natures. A keystore is a repository for storing public and private keys. An alias identifies a partic-
ular public and private key pair.

• A trusted keystore is a keystore that contains certificates that the user knows to be correct, such as
those from certificate authorities—to validate information with the signature.

• The basis of Java security is the Java Sandbox—the protected environment in which Java applica-
tions and applets run. The Java Sandbox security model is comprised of three individual security
checks: the bytecode verifier, the class loader and security manager.

• Permissions may be granted on the basis of security policy files. Permissions are comprised of
varying levels of access to specific resources. Any permission that is not declared explicitly in the
policy file is not granted. The security policy files are external text files with certain syntax and
class names.

• A system-wide security policy file is responsible for granting code the permission to access files
and ports on the entire system. The virtual machine loads this policy file as part of the virtual ma-
chine’s initialization. Particular applications can specify custom security policy files on the com-
mand line.

• Java applets run under strict security restrictions due to the unreliability of code downloading over
public networks. Developers who wish to distribute applets with special permissions must sign
those applets with digital signatures.

• Signing an applet with a digital signature requires that the signing party stores the applet and its
supporting classes in a JAR file.

• Ensuring that users actually are who they claim to be is a large part of computer security, known
as authentication. Java uses the Java Authentication and Authorization Service (JAAS) for authen-
ticating and authorizing users.

• JAAS is based on a plug-in framework, which allows Kerberos and single sign-on to be imple-
mented for authentication and authorization.

• Kerberos is a freely available open-source protocol developed at MIT. It employs secret-key cryp-
tography to authenticate users in a network and to maintain the integrity and privacy of network
communications.

• Java addresses the problems often associated with authenticating users and controlling access with
the Java Authentication and Authorization Service (JAAS) API.

• The Pluggable Authentication Module (PAM) architecture is the standard method for authentica-
tion on which JAAS is based.

• After a user has been authenticated, JAAS can grant or restrict access to certain resources of an
application. JAAS can control access by group, user or role-based security policies.

• User-based access control governs access to resources on an individual user basis. Group-based
authorization identifies a user as a part of a group and grants access to certain resources based on
the identifying group. Role-based access control (RBAC) is used in addition to group-access con-
trol, allowing for more control over resources.

Chapter 7 Security 439

• The Secure Sockets Layer (SSL) protocol, developed by Netscape Communications, is a nonpro-
prietary protocol commonly used to secure communication between two computers on the Internet
and the Web. SSL operates between the Internet’s TCP/IP communications protocol and the ap-
plication software.

• SSL implements public-key technology using the RSA algorithm and digital certificates to authen-
ticate the server in a transaction and to protect private information.

• SSL is used primarily to secure point-to-point connections—transmissions of data from one com-
puter to another. The Transport Layer Security (TLS) protocol, designed by the Internet Engineer-
ing Task Force, is similar to SSL.

• Sun’s Java Secure Socket Extension (JSSE) provides encryption, message integrity checks and au-
thentication of the server and client.

• Before the Java Virtual Machine executes a Java program, the bytecodes for that program must
pass through the bytecode verifier. The bytecode verifier ensures that the bytecodes are valid Java
bytecodes that do not perform certain illegal operations.

• The Java Virtual Machine checks any remaining cast operations to ensure their validity and per-
forms array-bounds checking to prevent programs from reading arbitrary memory locations.

• The Java Virtual Machine uses class loaders to read class definitions from .class files and pro-
duce class representations in memory.

• The class loader uses separate namespaces to prevent malicious code from interacting with safe
code. Every class that the JVM loads is assigned a corresponding set of unique names, known as
a namespace. Namespaces in Java act as barriers between classes.

• The bootstrap class loader loads all of the trusted core Java classes.

• The Java security manager is the module that performs security checks while code is running. If,
during run-time, code attempts to execute a dangerous operation, a security exception is generated.

• Final classes cannot be subclassed, and can help make an application more secure by preventing
attackers from creating malicious subclasses that can cause damage to an application or gain ac-
cess to protected information.

TERMINOLOGY
Advanced Encryption Standard (AES) collision
asymmetric algorithms cryptanalysis
authentication cryptography
block cryptosystem
block-cipher Data Encryption Standard (DES)
bootstrap class loader Decorator design pattern
brute-force decryption
byte-code verifier DES cracker machine
Caesar cipher Diffie-Hellman Key Agreement Protocol
certificate authority hierarchy digital certificate
certificate repository digital envelope
certificate revocation list (CRL) digital IDs
certification authority (CA) digital signature
cipher Digital Signature Algorithm (DSA)
Cipher class encryption
ciphertext hacker
class loader hash function
codebase hash value

440 Security Chapter 7

SELF-REVIEW EXERCISES
7.1 State whether the following are true or false. If the answer is false, explain why.

a) In a public-key algorithm, one key is used for both encryption and decryption.
b) Digital certificates are intended to be used indefinitely.
c) Secure Sockets Layer protects data stored on a merchant’s server.
d) Transport Layer Security is similar to the Secure Sockets Layer protocol.
e) Digital signatures can be used to provide undeniable proof of the author of a document.
f) In a network of 10 users communicating using public-key cryptography, only 10 keys are

needed in total.
g) The security of modern cryptosystems lies in the secrecy of the algorithm.
h) Users should avoid changing keys as much as possible, unless they have reason to believe

that the security of the key has been compromised.
i) Increasing the security of a network often decreases its functionality and efficiency.
j) Kerberos is an authentication protocol that is used over TCP/IP networks.
k) SSL can be used to connect a network of computers over the Internet.

integrity private key
Internet Engineering Task Force (IETF) protocol
Internet Policy Registration Authority (IPRA) provider-based architecture
Internet Protocol (IP) public key
Internet Security Architecture Public Key Infrastructure (PKI)
Java Authentication and Authorization
 Service (JAAS)

public-key algorithms
public-key cryptography

Java Cryptography Extension (JCE) restricted algorithms
Java Sandbox Rijndael
Java Secure Socket Extension (JSSE) Role-Based Access Control (RBAC)
Kerberos root certification authority
key root key
key agreement protocol RSA Security, Inc.
key distribution center runtime package
key generation secret key
key length SecretKey class
key management Secure Sockets Layer (SSL)
keystore security manager
keytool utility service ticket
message digest session keys
message integrity single sign-on
namespace socket
National Institute of Standards and Technology strong encryption
network security substitution cipher
nonrepudiation symmetric encryption algorithms
Password-Based Encryption (PBE) Ticket Granting Service (TGS)
permissions Ticket Granting Ticket (TGT)
plaintext timestamping
Pluggable Authentication Module (PAM) timestamping agency
point-to-point connection token
policy creation authorities transposition cipher
policy file Triple DES
policytool VeriSign
privacy

Chapter 7 Security 441

7.2 Fill in the blanks in each of the following statements:
a) Cryptographic algorithms in which the message’s sender and receiver both hold an iden-

tical key are called .
b) A is used to authenticate the sender of a document.
c) In a , a document is encrypted using a symmetric secret key and sent with that

symmetric secret key, encrypted using a public-key algorithm.
d) A certificate that needs to be revoked before its expiration date is placed on a

.
e) A digital fingerprint of a document can be created using a .
f) The four main issues addressed by cryptography are , ,

 and .
g) Trying to decrypt ciphertext without knowing the decryption key is known as

.
h) A hacker that tries every possible solution to crack a code is using a method known as

.

ANSWERS TO SELF-REVIEW EXERCISES
7.1 a) False. The encryption key is different from the decryption key. One is made public, and
the other is kept private. b) False. Digital certificates are created with an expiration date to encourage
users to periodically change their public/private-key pair. c) False. Secure Sockets Layer is an Inter-
net security protocol, which secures the transfer of information in electronic communication. It does
not protect data stored on a merchant’s server. d) True. e) False. A user who digitally signed a docu-
ment could later intentionally give up his or her private key and then claim that the document was
written by an imposter. Thus, timestamping a document is necessary, so that users cannot repudiate
documents written before the public/private-key pair is reported as invalidated. f) False. Each user
needs a public key and a private key. Thus, in a network of 10 users, 20 keys are needed in total. g)
False. The security of modern cryptosystems lies in the secrecy of the encryption and decryption keys.
h) False. Changing keys often is a good way to maintain the security of a communication system. i)
True. j) True. k) False, IPSec can connect a whole network of computers, while SSL can only connect
two secure systems.

7.2 a) symmetric key algorithms. b) digital signature. c) digital envelope. d) certificate revoca-
tion list. e) hash function. f) privacy, authentication, integrity, nonrepudiation. g) cryptanalysis. h)
brute-force hacking.

EXERCISES
7.3 Define each of the following security terms, and give an example of how it is used:

a) secret-key cryptography
b) public-key cryptography
c) digital signature
d) digital certificate
e) hash function
f) SSL
g) Kerberos

7.4 Write the full name and describe each of the following acronyms:
a) PKI
b) CRL
c) AES
d) SSL

442 Security Chapter 7

7.5 List the four problems addressed by cryptography, and give a real-world example of each.

7.6 Compare symmetric-key algorithms with public-key algorithms. What are the benefits and
drawbacks of each type of algorithm? How are these differences manifested in the real-world uses of
the two types of algorithms?

7.7 Create a simple application that reads a file; the application should accept the file path from the
command line. Install a SecurityManager to control access and create two policy files—one that
grants read permission to a particular directory (e.g., a C:\readOnly directory), and another that
grants read permission to that directory for a specific codebase (e.g., the C:/myclasses codebase).
[Note: Code always has read permission to the directory in which it is running and any subdirectories.]

7.8 Using your solution to Exercise 7.7, store your application in a JAR file. Sign the JAR file
with a digital signature (use the keytool to create a public/private key pair); grant read permission
to the directory for code signed by this signature in a policy file. [Note: To grant permission for a par-
ticular digital signature, use the signedBy field in a grant statement. The signedBy field re-
quires that you specify the keystore in which this public/private key pair is stored using a keystore
"keystore_URL"; statement outside of the grant statements in the policy file.]

WORKS CITED
1. “RSA Laboratories’ Frequently Asked Questions About Today’s Cryptography, Version 4.1,”
<www.rsasecurity.com/rsalabs/faq>.

2. “Math 5410 Data Encryption Standard (DES),” <www-math.cudenver.edu/
~wcherowi/courses/m5410/m5410des.html>.

3. M. Dworkin, “Advanced Encryption Standard (AES) Fact Sheet,” 5 March 2001.

4. “The Block Cipher Rijndael,” <www.esat.kuleuven.ac.be/~rijmen/rijndael>.

5. “RSA-Based Cryptographic Schemes,” <www.rsasecurity.com/rsalabs/
rsa_algorithm>.

6. “Overview of PGP,” <www.pgpi.org/doc/overview>.

7. “RSA Laboratories’ Frequency Asked Questions About JAAS,” <www.rsasecu-
rity.com/rsalabs/faq>.

8. “MD5 Homepage (Unofficial),” <userpages.umbc.edu/~mabzug1/cs/md5/
md5.html>.

9. G. Hulme, “VeriSign Gave Microsoft Certificates to Imposter,” Information Week 3 March 2001.

10. C. Ellison and B. Schneier, “Ten Risks of PKI: What You’re not Being Told about Public Key
Infrastructure,” Computer Security Journal 2000.

11. “keytool—Key and Certificate Management Tool,” <java.sun.com/products/jdk/
1.2/docs/tooldocs/solaris/keytool.html>.

12. B. Venners, <www.javaworld.com/javaworld/jw-08-1997/jw-08-
hood_p.html>.

13. “Introducing Java 2 Security,” <www.ryerson.ca/~dgrimsha/courses/cps530/
securityFrame.html>.

14. R. Baldwin, “Security, Policy Files in JDK 1.2,” <home.att.net/~baldwin.rick/
Advanced/Java715.htm>.

15. F. Trickey, “Secure Single Sign-On: Fantasy or Reality,” Computer Security Institute,
<www.gocsi.com/sso_ft.htm>.

Chapter 7 Security 443

16. C. Lai, et al., “User Authentication and Authorization in the Java™ Platform,”
<java.sun.com/security/jaas/doc/acsac.html>.

17. B. Rich, “JAAS Java Authentication and Authorization Services,” O’Reilly Conference on
Enterprise Java, 26-29 March 2001 <ftp.oreilly.com/pub/conference/java2001/
Rich_Jaas.pdf>.

18. “Java Authentication and Authorization Service (JAAS),” <www.onjava.com/pub/st/7>.

19. “Role Based Access Control,” NIST Web site <csrc.nist.gov/rbac>.

20. S. Abbot, “The Debate for Secure E-Commerce,” Performance Computing February 1999: 37-42.

21. T. Wilson, “E-Biz Bucks Lost Under the SSL Train,” Internet Week 24 May 1999: 1, 3.

22. “Security Protocols Overview,” <www.rsasecurity.com/standards/protocols>.

23. “Java Secure Socket Extension (JSSE),” <java.sun.com/products/jsse>.

24. J. Jaworski, “Secure Your Sockets With JSSE,” November 1997 <www.onjava.com/pub/
a/onjava/2001/05/03/java_security.html>.

25. K. Angell, “The Java Secure Socket Extensions,” February 2001 <www.ddj.com/arti-
cles/2001/0102/0102a/0102a.htm?topic=security>.

26. B. Venners, “Security,” Inside the Java 2 Virtual Machine <www.artima.com/inside-
jvm/ed2/ch03Security2.html>.

27. B. Venners, “Java Security: How to Install the Security Manager and Customize Your Secu-
rity Policy,” November 1997 <www.javaworld.com/javaworld/jw-11-1997/jw-11-
hood_p.html>.

28. “Writing Final Classes and Methods,” <java.sun.com/docs/books/tutorial/
java/javaOO/final.html>.

BIBLIOGRAPHY
Bank, J. “Java Security,” (August 1994) <www.swiss.ai.mit.edu/~jbank/javapaper/

javapaper.html>.

Bringer, P. “Creating Signed, Persistent Java Applets,” Dr. Dobb’s Journal, February 1999, 82-88.

Garms, J. and D. Somerfield. “Java 2 Cryptography,” Java Pro, October 1999, 30-37.

Heiser, J. “Java and Cryptography,” Java Developer’s Journal, 2: no. 5 (1997): 36-38.

Heiser, J. “Java Security Mechanisms,” Java Developer’s Journal, 2: no. 5 (1997): 36-38.

Mahmoud, Q. “Implementing a Security Policy,” Java Developer’s Journal, 2: no. 8 (1997): 52-54.

McGraw, G and E. Felten, “New Issues in Java Security,” Enterprise Java Development, August
1998, 52-56.

Moreh, J. “Protection Domains,” Java Developer’s Journal, 3: no. 5 (1998):16-22.

Neville, P. “Mastering Java Security Policies and Permissions,” Java Developer’s Journal, no. 7
(2000): 22-28.

Sagar, A. “Securing Java Commerce,” Java Developer’s Journal, 4: no. 6 (1999): 40-44.

8
Java Database

Connectivity (JDBC)

Objectives
• To understand the relational-database model.
• To understand basic database queries using Structured

Query Language (SQL).
• To use the classes and interfaces of package
java.sql to manipulate databases.

• To use transaction processing to prevent database
updates from modifying the database if an error
occurs during a transaction.

• To introduce the JDBC 2.0 optional package
javax.sql’s capabilities for obtaining database
connections, creating connection pools and treating
result sets as JavaBeans.

It is a capital mistake to theorize before one has data.
Arthur Conan Doyle

Now go, write it before them in a table, and note it in a book,
that it may be for the time to come for ever and ever.
The Holy Bible: The Old Testament

Let's look at the record.
Alfred Emanuel Smith

Get your facts first, and then you can distort them as much
as you please.
Mark Twain

I like two kinds of men: domestic and foreign.
Mae West

Chapter 8 Java Database Connectivity (JDBC) 445

8.1 Introduction
A database is an integrated collection of data. There are many different strategies for orga-
nizing data to facilitate easy access and manipulation of the data. A database management
system (DBMS) provides mechanisms for storing and organizing data in a manner consis-
tent with the database’s format. Database management systems allow for the access and
storage of data without worrying about the internal representation of databases.

Outline

8.1 Introduction
8.2 Relational-Database Model
8.3 Relational Database Overview: The books Database
8.4 Structured Query Language (SQL)

8.4.1 Basic SELECT Query
8.4.2 WHERE Clause
8.4.3 ORDER BY Clause
8.4.4 Merging Data from Multiple Tables: Joining
8.4.5 INSERT INTO Statement
8.4.6 UPDATE Statement
8.4.7 DELETE FROM Statement

8.5 Creating Database books in Cloudscape
8.6 Manipulating Databases with JDBC

8.6.1 Connecting to and Querying a JDBC Data Source
8.6.2 Querying the books Database

8.7 Case Study: Address-Book Application
8.7.1 PreparedStatements
8.7.2 Transaction Processing
8.7.3 Address-Book Application

8.8 Stored Procedures
8.9 Batch Processing
8.10 Processing Multiple ResultSets or Update Counts
8.11 Updatable ResultSets
8.12 JDBC 2.0 Optional Package javax.sql

8.12.1 DataSource

8.12.2 Connection Pooling
8.12.3 RowSets

8.13 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

446 Java Database Connectivity (JDBC) Chapter 8

Today’s most popular database systems are relational databases. A language called
Structured Query Language (SQL—pronounced as its individual letters, or as “sequel”) is
used almost universally with relational-database systems to perform queries (i.e., to request
information that satisfies given criteria) and to manipulate data. [Note: In this chapter, we
assume that SQL is pronounced as its individual letters. For this reason, we often precede
SQL with the article “an,” as in “an SQL database” or “an SQL statement.”]

Some popular enterprise-level relational-database systems are Microsoft SQL Server,
Oracle, Sybase, DB2, Informix and MySQL. In this chapter, we present examples using
Cloudscape 3.6.4—a pure-Java database management system from Informix Software.
Cloudscape 3.6.4 is on the CD that accompanies this book and can be downloaded from
www.cloudscape.com. Later chapters reuse the material presented in this chapter.
Chapter 11 introduces the Java 2 Enterprise Edition reference implementation, which
includes an earlier version of Cloudscape. That chapter discusses how to integrate the latest
version of Cloudscape with the Java 2 Enterprise Edition. [Note: We discuss basic Cloud-
scape features required to execute the examples in this chapter. Please refer to the detailed
Cloudscape documentation for complete information on using Cloudscape.]

Java programs communicate with databases and manipulate their data using the Java
Database Connectivity (JDBC) API. A JDBC driver implements the interface to a partic-
ular database. This separation of the API from particular drivers enables developers to
change the underlying database without modifying Java code that accesses the database.
Most popular database management systems now include JDBC drivers. There are also
many third-party JDBC drivers available. In this chapter, we introduce JDBC and use it to
manipulate a Cloudscape database. The techniques demonstrated here also can be used to
manipulate other databases that have JDBC drivers. Check your database management
system’s documentation to determine whether your DBMS comes with a JDBC driver.
Even if your DBMS does not come with a JDBC driver, many third-party vendors provide
JDBC drivers for a wide variety of databases. For more information on JDBC, visit

java.sun.com/products/jdbc/

This site contains information concerning JDBC, including the JDBC specifications, FAQs
on JDBC, a learning resource center, software downloads and other important information.
For a list of available JDBC drivers, visit

industry.java.sun.com/products/jdbc/drivers/

This site provides a search engine to help you locate drivers appropriate to your DBMS.

8.2 Relational-Database Model
The relational-database model is a logical representation of data that allows the relationships
between the data to be examined without consideration of the physical structure of the data.
A relational database is composed of tables. Figure 8.1 illustrates a sample table that might
be used in a personnel system. The table name is Employee, and its primary purpose is to
illustrate the attributes of an employee and how they are related to a specific employee. Each
row of the table is called a record. This table consists of six records. The Number field (or
column) of each record in this table is the primary key for referencing data in the table. A pri-
mary key is a field (or fields) in a table that contain(s) unique data that cannot be duplicated
in other records. This guarantees that each record can be identified by a unique value. Good

Chapter 8 Java Database Connectivity (JDBC) 447

examples of primary key fields are a Social Security number, an employee ID number and a
part number in an inventory system. The records of Fig. 8.1 are ordered by primary key. In
this case, the records are listed in increasing order; we could also use decreasing order.

Each column of the table represents a different field (or column, or attribute). Records
are normally unique (by primary key) within a table, but particular field values may be
duplicated between records. For example, three different records in the Employee table’s
Department field contain number 413.

Different users of a database often are interested in different data and different rela-
tionships among those data. Some users require only subsets of the table columns. To
obtain table subsets, we use SQL statements to specify the data to select from a table. SQL
provides a complete set of commands (including SELECT) that enable programmers to
define complex queries that select data from a table. The results of a query are commonly
called result sets (or record sets). For example, we might select data from the table in
Fig. 8.1 to create a new result set that shows where departments are located. This result set
is shown in Fig. 8.2. SQL queries are discussed in Section 8.4.

8.3 Relational Database Overview: The books Database
This section gives an overview of SQL in the context of a sample books database we cre-
ated for this chapter. Before we discuss SQL, we overview the tables of the books data-
base. We use this to introduce various database concepts, including the use of SQL to
obtain useful information from the database and to manipulate the database. We provide a
script to create the database. You can find the script in the examples directory for this chap-
ter on the CD that accompanies this book. Section 8.5 explains how to use this script.

Fig. 8.1Fig. 8.1Fig. 8.1Fig. 8.1 Relational-database structure of an Employee table.

Fig. 8.2Fig. 8.2Fig. 8.2Fig. 8.2 Result set formed by selecting Department and Location data
from the Employee table.

Number Name Department Salary Location

23603 Jones 413 1100 New Jersey

24568 Kerwin 413 2000 New Jersey

34589 Larson 642 1800 Los Angeles

35761 Myers 611 1400 Orlando

47132 Neumann 413 9000 New Jersey

78321 Stephens 611 8500 Orlando

Row/Record

Column/FieldPrimary key

Department Location

413 New Jersey

642 Los Angeles

611 Orlando

448 Java Database Connectivity (JDBC) Chapter 8

The database consists of four tables: authors, publishers, authorISBN and
titles. The authors table (described in Fig. 8.3) consists of three fields (or columns)
that maintain each author’s unique ID number, first name and last name. Figure 8.4 con-
tains the data from the authors table of the books database.

The publishers table (described in Fig. 8.5) consists of two fields representing
each publisher’s unique ID and name. Figure 8.6 contains the data from the publishers
table of the books database.

Field Description

authorID Author’s ID number in the database. In the books database, this integer field is
defined as an autoincremented field. For each new record inserted in this table,
the database automatically increments the authorID value to ensure that each
record has a unique authorID. This field represents the table’s primary key.

firstName Author’s first name (a string).

lastName Author’s last name (a string).

Fig. 8.3Fig. 8.3Fig. 8.3Fig. 8.3 authors table from books.

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

3 Tem Nieto

4 Sean Santry

Fig. 8.4Fig. 8.4Fig. 8.4Fig. 8.4 Data from the authors table of books.

Field Description

publisherID The publisher’s ID number in the database. This autoincremented integer
is the table’s primary-key field.

publisherName The name of the publisher (a string).

Fig. 8.5Fig. 8.5Fig. 8.5Fig. 8.5 publishers table from books.

publisherID publisherName

1 Prentice Hall

2 Prentice Hall PTG

Fig. 8.6Fig. 8.6Fig. 8.6Fig. 8.6 Data from the publishers table of books.

Chapter 8 Java Database Connectivity (JDBC) 449

The authorISBN table (described in Fig. 8.7) consists of two fields that maintain
each ISBN number and its corresponding author’s ID number. This table helps associate
the names of the authors with the titles of their books. Figure 8.8 contains the data from the
authorISBN table of the books database. ISBN is an abbreviation for “International
Standard Book Number”—a numbering scheme that publishers worldwide use to give
every book a unique identification number. [Note: To save space, we have split the contents
of this table into two columns, each containing the authorID and isbn fields.]

Field Description

authorID The author’s ID number, which allows the database to associate each
book with a specific author. The integer ID number in this field must
also appear in the authors table.

isbn The ISBN number for a book (a string).

Fig. 8.7Fig. 8.7Fig. 8.7Fig. 8.7 authorISBN table from books.

authorID isbn authorID isbn

1 0130895725 2 0139163050

1 0132261197 2 013028419x

1 0130895717 2 0130161438

1 0135289106 2 0130856118

1 0139163050 2 0130125075

1 013028419x 2 0138993947

1 0130161438 2 0130852473

1 0130856118 2 0130829277

1 0130125075 2 0134569555

1 0138993947 2 0130829293

1 0130852473 2 0130284173

1 0130829277 2 0130284181

1 0134569555 2 0130895601

1 0130829293 3 013028419x

1 0130284173 3 0130161438

1 0130284181 3 0130856118

1 0130895601 3 0134569555

2 0130895725 3 0130829293

2 0132261197 3 0130284173

2 0130895717 3 0130284181

2 0135289106 4 0130895601

Fig. 8.8Fig. 8.8Fig. 8.8Fig. 8.8 Data from the authorISBN table of books.

450 Java Database Connectivity (JDBC) Chapter 8

The titles table (described in Fig. 8.9) consists of six fields that maintain general
information about each book in the database, including the ISBN number, title, edition
number, copyright year, publisher’s ID number, name of a file containing an image of the
book cover, and finally, the price. Figure 8.10 contains the data from the titles table.

Field Description

isbn ISBN number of the book (a string).

title Title of the book (a string).

editionNumber Edition number of the book (an integer).

copyright Copyright year of the book (a string).

publisherID Publisher’s ID number (an integer). This value must correspond to an ID
number in the publishers table.

imageFile Name of the file containing the book’s cover image (a string).

price Suggested retail price of the book (a real number). [Note: The prices
shown in this book are for example purposes only.]

Fig. 8.9Fig. 8.9Fig. 8.9Fig. 8.9 titles table from books.

isbn title
edition-
Number

copy-
right

publish-
erID image-File price

0130895725 C How to Program 3 2001 1 chtp3.jpg 69.95

0132261197 C How to Program 2 1994 1 chtp2.jpg 49.95

0130895717 C++ How to Program 3 2001 1 cpphtp3.jpg 69.95

0135289106 C++ How to Program 2 1998 1 cpphtp2.jpg 49.95

0139163050 The Complete C++
Training Course

3 2001 2 cppctc3.jpg 109.95

013028419x e-Business and e-
Commerce How to
Program

1 2001 1 ebechtp1.jpg 69.95

0130161438 Internet and World
Wide Web How to Pro-
gram

1 2000 1 iw3htp1.jpg 69.95

0130856118 The Complete Internet
and World Wide Web
Programming Train-
ing Course

1 2000 2 iw3ctc1.jpg 109.95

0130125075 Java How to Program
(Java 2)

3 2000 1 jhtp3.jpg 69.95

0138993947 Java How to Program
(Java 1.1)

2 1998 1 jhtp2.jpg 49.95

Fig. 8.10Fig. 8.10Fig. 8.10Fig. 8.10 Data from the titles table of books (part 1 of 2).

Chapter 8 Java Database Connectivity (JDBC) 451

Figure 8.11 illustrates the relationships among the tables in the books database. The
first line in each table is the table’s name. The field name in green contains that table’s pri-
mary key. A table’s primary key uniquely identifies each record in the table. Every record
must have a value in the primary-key field, and the value must be unique. This is known as
the Rule of Entity Integrity.

Common Programming Error 8.1
Not providing a value for a primary-key field in every record breaks the Rule of Entity Integ-
rity and causes the DBMS to report an error. 8.1

Common Programming Error 8.2
Providing duplicate values for the primary-key field in multiple records causes the DBMS to
report an error. 8.2

0130852473 The Complete Java 2
Training Course

3 2000 2 javactc3.jpg 109.95

0130829277 The Complete Java
Training Course (Java
1.1)

2 1998 2 javactc2.jpg 99.95

0134569555 Visual Basic 6 How to
Program

1 1999 1 vbhtp1.jpg 69.95

0130829293 The Complete Visual
Basic 6 Training
Course

1 1999 2 vbctc1.jpg 109.95

0130284173 XML How to Program 1 2001 1 xmlhtp1.jpg 69.95

0130284181 Perl How to Program 1 2001 1 perlhtp1.jpg 69.95

0130895601 Advanced Java 2 Plat-
form How to Program

1 2002 1 advjhtp1.jpg 69.95

isbn title
edition-
Number

copy-
right

publish-
erID image-File price

Fig. 8.10Fig. 8.10Fig. 8.10Fig. 8.10 Data from the titles table of books (part 2 of 2).

Fig. 8.11Fig. 8.11Fig. 8.11Fig. 8.11 Table relationships in books.

authorISBN

authorID

isbn

authors

authorID

firstName

lastName

publishers

publisherID

publisherName

titles

isbn

title

editionNumber

copyright

publisherID

imageFile

price

1 ∞ 1

∞

1

∞

452 Java Database Connectivity (JDBC) Chapter 8

The lines connecting the tables in Fig. 8.11 represent the relationships between the
tables. Consider the line between the publishers and titles tables. On the pub-
lishers end of the line, there is a 1, and on the titles end, there is an infinity (∞)
symbol, indicating a one-to-many relationship in which every publisher in the pub-
lishers table can have an arbitrarily large number of books in the titles table. Note
that the relationship line links the publisherID field in the table publishers to the
publisherID field in table titles. The publisherID field in the titles table is
a foreign key—a field for which every entry has a unique value in another table and where
the field in the other table is the primary key for that table (e.g., publisherID in the
publishers table). Foreign keys are specified when creating a table. The foreign key
helps maintain the Rule of Referential Integrity: Every foreign key-field value must appear
in another table’s primary-key field. Foreign keys enable information from multiple tables
to be joined together for analysis purposes. There is a one-to-many relationship between a
primary key and its corresponding foreign key. This means that a foreign key-field value
can appear many times in its own table, but can only appear once as the primary key of
another table. The line between the tables represents the link between the foreign key in one
table and the primary key in another table.

Common Programming Error 8.3
Providing a foreign-key value that does not appear as a primary-key value in another table
breaks the Rule of Referential Integrity and causes the DBMS to report an error. 8.3

The line between the authorISBN and authors tables indicates that for each
author in the authors table, there can be an arbitrary number of ISBNs for books written
by that author in the authorISBN table. The authorID field in the authorISBN table
is a foreign key of the authorID field (the primary key) of the authors table. Note
again that the line between the tables links the foreign key of table authorISBN to the
corresponding primary key in table authors. The authorISBN table links information
in the titles and authors tables.

Finally, the line between the titles and authorISBN tables illustrates a one-to-
many relationship; a title can be written by any number of authors. In fact, the sole purpose
of the authorISBN table is to represent a many-to-many relationship between the
authors and titles tables; an author can write any number of books and a book can
have any number of authors.

8.4 Structured Query Language (SQL)
In this section, we provide an overview of SQL in the context of our books sample da-
tabase. You will be able to use the SQL queries discussed here in the examples later in
the chapter.

The SQL keywords listed in Fig. 8.12 are discussed in the context of complete SQL
queries in the next several subsections; other SQL keywords are beyond the scope of this
text. [Note: For more information on SQL, please refer to the World Wide Web resources
in Section 8.13 and the bibliography at the end of this chapter.]

Chapter 8 Java Database Connectivity (JDBC) 453

8.4.1 Basic SELECT Query
Let us consider several SQL queries that extract information from database books. A typ-
ical SQL query “selects” information from one or more tables in a database. Such selections
are performed by SELECT queries. The simplest format of a SELECT query is

SELECT * FROM tableName

In this query, the asterisk (*) indicates that all rows and columns from the tableName table
of the database should be selected. For example, to select the entire contents of the au-
thors table (i.e., all the data in Fig. 8.4), use the query

SELECT * FROM authors

To select specific fields from a table, replace the asterisk (*) with a comma-separated
list of the field names to select. For example, to select only the fields authorID and
lastName for all rows in the authors table, use the query

SELECT authorID, lastName FROM authors

This query returns the data listed in Fig. 8.13. [Note: If a field name contains spaces, it must
be enclosed in square brackets ([]) in the query. For example, if the field name is first
name, the field name would appear in the query as [first name].]

SQL keyword Description

SELECT Select (retrieve) fields from one or more tables.

FROM Tables from which to get fields. Required in every SELECT.

WHERE Criteria for selection that determine the rows to be retrieved.

GROUP BY Criteria for grouping records.

ORDER BY Criteria for ordering records.

INSERT INTO Insert data into a specified table.

UPDATE Update data in a specified table.

DELETE FROM Delete data from a specified table.

Fig. 8.12Fig. 8.12Fig. 8.12Fig. 8.12 SQL query keywords.

authorID lastName

1 Deitel

2 Deitel

3 Nieto

4 Santry

Fig. 8.13Fig. 8.13Fig. 8.13Fig. 8.13 authorID and lastName from the authors table.

454 Java Database Connectivity (JDBC) Chapter 8

Software Engineering Observation 8.1
For most SQL statements, the asterisk (*) should not be used to specify field names to select
from a table (or several tables). In general, programmers process result sets by knowing in
advance the order of the fields in the result set. For example, selecting authorID and
lastName from table authors guarantees that the fields will appear in the result set with
authorID as the first field and lastName as the second field. As you will see, programs
typically process result set fields by specifying the column number in the result set (column
numbers start at 1 for the first field in the result set). 8.1

Software Engineering Observation 8.2
Specifying the field names to select from a table (or several tables) guarantees that the fields
are always returned in the specified order and also avoid returning unused fields, even if the
actual order of the fields in the database table(s) changes. 8.2

Common Programming Error 8.4
If a programmer assumes that the fields in a result set are always returned in the same order
from an SQL statement that uses the asterisk (*) to select fields, the program may process
the result set incorrectly. If the field order in the database table(s) changes, the order of the
fields in the result set would change accordingly. 8.4

Performance Tip 8.1
If the order of fields in a result set is unknown to a program, the program must process the
fields by name. This can require a linear search of the field names in the result set. Specifying
the field names to select from a table (or several tables) enables the application receiving the
result set to know the order of the fields in advance. In this case, the program can process
the data more efficiently, because fields can be accessed directly by column number. 8.1

8.4.2 WHERE Clause
In most cases, it is necessary to locate records in a database that satisfy certain selection
criteria. Only records that match the selection criteria are selected. SQL uses the optional
WHERE clause in a SELECT query to specify the selection criteria for the query. The sim-
plest format of a SELECT query with selection criteria is

SELECT fieldName1, fieldName2, … FROM tableName WHERE criteria

For example, to select the title, editionNumber and copyright fields from table
titles for which the copyright date is greater than 1999, use the query

SELECT title, editionNumber, copyright
FROM titles
WHERE copyright > 1999

Figure 8.14 shows the results of the preceding query. [Note: When we construct a query for
use in Java, we simply create a String containing the entire query. When we display que-
ries in the text, we often use multiple lines and indentation for readability.]

Performance Tip 8.2
Using selection criteria improves performance by selecting a portion of the database that is
normally smaller than the entire database. Working with a smaller portion of the data is
more efficient than working with the entire set of data stored in the database. 8.2

Chapter 8 Java Database Connectivity (JDBC) 455

The WHERE clause condition can contain operators <, >, <=, >=, =, <> and LIKE.
Operator LIKE is used for pattern matching with wildcard characters percent (%) and
underscore (_). Pattern matching allows SQL to search for similar strings that match a
given pattern.

A pattern that contains a percent character (%) searches for strings that have zero or
more characters at the percent character’s position in the pattern. For example, the fol-
lowing query locates the records of all the authors whose last name starts with the letter D:

SELECT authorID, firstName, lastName
FROM authors
WHERE lastName LIKE 'D%'

The preceding query selects the two records shown in Fig. 8.15, because two of the four
authors in our database have a last name starting with the letter D (followed by zero or more
characters). The % in the WHERE clause’s LIKE pattern indicates that any number of char-
acters can appear after the letter D in the lastName field. Notice that the pattern string is
surrounded by single-quote characters.

title editionNumber copyright

C How to Program 3 2001

C++ How to Program 3 2001

The Complete C++ Training Course 3 2001

e-Business and e-Commerce How to Program 1 2001

Internet and World Wide Web How to Program 1 2000

The Complete Internet and World Wide Web
Programming Training Course

1 2000

Java How to Program (Java 2) 3 2000

The Complete Java 2 Training Course 3 2000

XML How to Program 1 2001

Perl How to Program 1 2001

Advanced Java 2 Platform How to Program 1 2002

Fig. 8.14Fig. 8.14Fig. 8.14Fig. 8.14 Titles with copyrights after 1999 from table titles.

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

Fig. 8.15Fig. 8.15Fig. 8.15Fig. 8.15 Authors whose last name starts with D from the authors table.

456 Java Database Connectivity (JDBC) Chapter 8

Portability Tip 8.1
See the documentation for your database system to determine whether SQL is case sensitive
on your system and to determine the syntax for SQL keywords (i.e., should they be all upper-
case letters, all lowercase letters or some combination of the two?). 8.1

Portability Tip 8.2
Not all database systems support the LIKE operator, so be sure to read your database sys-
tem’s documentation carefully. 8.2

Portability Tip 8.3
Some databases use the * character in place of the % character in a LIKE expression. 8.3

Portability Tip 8.4
In some databases (including Cloudscape), string data is case sensitive. 8.4

Good Programming Practice 8.1
By convention, SQL keywords should use all uppercase letters on systems that are not case
sensitive, to emphasize the SQL keywords in an SQL statement. 8.1

An underscore (_) in the pattern string indicates a single character at that position in
the pattern. For example, the following query locates the records of all the authors whose
last name starts with any character (specified by _), followed by the letter i, followed by
any number of additional characters (specified by %):

SELECT authorID, firstName, lastName
FROM authors
WHERE lastName LIKE '_i%'

The preceding query produces the record shown in Fig. 8.16, because only one author in
our database has a last name that contains the letter i as its second letter.

Portability Tip 8.5
Some databases use the ? character in place of the _ character in a LIKE expression. 8.5

8.4.3 ORDER BY Clause

The results of a query can be arranged in ascending or descending order by using the op-
tional ORDER BY clause. The simplest form of an ORDER BY clause is

SELECT fieldName1, fieldName2, … FROM tableName ORDER BY field ASC
SELECT fieldName1, fieldName2, … FROM tableName ORDER BY field DESC

authorID firstName lastName

3 Tem Nieto

Fig. 8.16Fig. 8.16Fig. 8.16Fig. 8.16 The only author from the authors table whose last name contains i as
the second letter.

Chapter 8 Java Database Connectivity (JDBC) 457

where ASC specifies ascending order (lowest to highest), DESC specifies descending order
(highest to lowest) and field specifies the field on which the sort is based.

For example, to obtain the list of authors in ascending order by last name (Fig. 8.17),
use the query

SELECT authorID, firstName, lastName
FROM authors
ORDER BY lastName ASC

Note that the default sorting order is ascending, so ASC is optional. To obtain the same list
of authors in descending order by last name (Fig. 8.18), use the query

SELECT authorID, firstName, lastName
FROM authors
ORDER BY lastName DESC

Multiple fields can be used for ordering purposes with an ORDER BY clause of the form

ORDER BY field1 sortingOrder, field2 sortingOrder, …

where sortingOrder is either ASC or DESC. Note that the sortingOrder does not have to be
identical for each field. The query

SELECT authorID, firstName, lastName
FROM authors
ORDER BY lastName, firstName

sorts in ascending order all the authors by last name, then by first name. If any authors have
the same last name, their records are returned in sorted order by their first name (Fig. 8.19).

authorID firstName lastName

2 Paul Deitel

1 Harvey Deitel

3 Tem Nieto

4 Sean Santry

Fig. 8.17Fig. 8.17Fig. 8.17Fig. 8.17 Authors from table authors in ascending order by lastName.

authorID firstName lastName

4 Sean Santry

3 Tem Nieto

2 Paul Deitel

1 Harvey Deitel

Fig. 8.18Fig. 8.18Fig. 8.18Fig. 8.18 Authors from table authors in descending order by lastName.

458 Java Database Connectivity (JDBC) Chapter 8

The WHERE and ORDER BY clauses can be combined in one query. For example, the
query

SELECT isbn, title, editionNumber, copyright, price
FROM titles
WHERE title
LIKE '%How to Program' ORDER BY title ASC

returns the isbn, title, editionNumber, copyright and price of each book
in the titles table that has a title ending with “How to Program” and orders them
in ascending order by title. The results of the query are shown in Fig. 8.20. Note that
the title “e-Business and e-Commerce How to Program” appears at the end of the list, be-
cause Cloudscape uses the Unicode numeric values of the characters for comparison pur-
poses. Remember that lowercase letters have larger numeric values than uppercase
letters.

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

3 Tem Nieto

4 Sean Santry

Fig. 8.19Fig. 8.19Fig. 8.19Fig. 8.19 Authors from table authors in ascending order by lastName and by
firstName.

isbn title
edition-
Number

copy-
right price

0130895601 Advanced Java 2 Platform How to Program 1 2002 69.95

0132261197 C How to Program 2 1994 49.95

0130895725 C How to Program 3 2001 69.95

0135289106 C++ How to Program 2 1998 49.95

0130895717 C++ How to Program 3 2001 69.95

0130161438 Internet and World Wide Web How to Program 1 2000 69.95

0130284181 Perl How to Program 1 2001 69.95

0134569555 Visual Basic 6 How to Program 1 1999 69.95

0130284173 XML How to Program 1 2001 69.95

013028419x e-Business and e-Commerce How to Program 1 2001 69.95

Fig. 8.20Fig. 8.20Fig. 8.20Fig. 8.20 Books from table titles whose title ends with How to Program in
ascending order by title.

Chapter 8 Java Database Connectivity (JDBC) 459

8.4.4 Merging Data from Multiple Tables: Joining
Often, it is necessary to merge data from multiple tables into a single view for analysis pur-
poses. This is referred to as joining the tables and is accomplished by using a comma-sep-
arated list of tables in the FROM clause of a SELECT query. A join merges records from
two or more tables by testing for matching values in a field that is common to both tables.
The simplest format of a join is

SELECT fieldName1, fieldName2, …
 FROM table1, table2
 WHERE table1.fieldName = table2.fieldName

The query’s WHERE clause specifies the fields from each table that should be compared to
determine which records will be selected. These fields normally represent the primary key
in one table and the corresponding foreign key in the other table. For example, the follow-
ing query produces a list of authors and the ISBN numbers for the books that each author
wrote:

SELECT firstName, lastName, isbn
FROM authors, authorISBN

 WHERE authors.authorID = authorISBN.authorID
ORDER BY lastName, firstName

The query merges the firstName and lastName fields from table authors and the
isbn field from table authorISBN and sorts the results in ascending order by last-
Name and firstName. Notice the use of the syntax tableName.fieldName in the WHERE
clause of the query. This syntax (called a fully qualified name) specifies the fields from each
table that should be compared to join the tables. The “tableName.” syntax is required if the
fields have the same name in both tables.

Software Engineering Observation 8.3
If an SQL statement uses fields with the same name from multiple tables, the field name must
be fully qualified with its table name and a dot operator (.), as in authors.authorID. 8.3

Common Programming Error 8.5
In a query, not providing fully qualified names for fields with the same name from two or
more tables is an error. 8.3

As always, the FROM clause can be followed by an ORDER BY clause. Figure 8.21
shows the results of the preceding query. [Note: To save space, we split the results of the
query into two columns, each containing the firstName, lastName and isbn fields.]

firstName lastName isbn firstName lastName isbn

Harvey Deitel 0130895601 Harvey Deitel 0130284173

Harvey Deitel 0130284181 Harvey Deitel 0130829293

Fig. 8.21Fig. 8.21Fig. 8.21Fig. 8.21 Authors and the ISBN numbers for the books they have written in
ascending order by lastName and firstName (part 1 of 2).

460 Java Database Connectivity (JDBC) Chapter 8

8.4.5 INSERT INTO Statement

The INSERT INTO statement inserts a new record into a table. The simplest form of this
statement is

INSERT INTO tableName (fieldName1, fieldName2, …, fieldNameN)
VALUES (value1, value2, …, valueN)

where tableName is the table in which to insert the record. The tableName is followed by
a comma-separated list of field names in parentheses (this list is not required if the INSERT
INTO operation specifies a value for every column of the table in the correct order). The
list of field names is followed by the SQL keyword VALUES and a comma-separated list
of values in parentheses. The values specified here should match the field names specified
after the table name in order and type (i.e., if fieldName1 is supposed to be the firstName
field, then value1 should be a string in single quotes representing the first name). Always
use the list of field names when inserting new records. If the order of the fields changes in
the table, entering only VALUES may cause an error. The INSERT INTO statement

INSERT INTO authors (firstName, lastName)
VALUES ('Sue', 'Smith')

Harvey Deitel 0134569555 Paul Deitel 0130852473

Harvey Deitel 0130829277 Paul Deitel 0138993947

Harvey Deitel 0130852473 Paul Deitel 0130125075

Harvey Deitel 0138993947 Paul Deitel 0130856118

Harvey Deitel 0130125075 Paul Deitel 0130161438

Harvey Deitel 0130856118 Paul Deitel 013028419x

Harvey Deitel 0130161438 Paul Deitel 0139163050

Harvey Deitel 013028419x Paul Deitel 0135289106

Harvey Deitel 0139163050 Paul Deitel 0130895717

Harvey Deitel 0135289106 Paul Deitel 0132261197

Harvey Deitel 0130895717 Paul Deitel 0130895725

Harvey Deitel 0132261197 Tem Nieto 0130284181

Harvey Deitel 0130895725 Tem Nieto 0130284173

Paul Deitel 0130895601 Tem Nieto 0130829293

Paul Deitel 0130284181 Tem Nieto 0134569555

Paul Deitel 0130284173 Tem Nieto 0130856118

Paul Deitel 0130829293 Tem Nieto 0130161438

Paul Deitel 0134569555 Tem Nieto 013028419x

Paul Deitel 0130829277 Sean Santry 0130895601

firstName lastName isbn firstName lastName isbn

Fig. 8.21Fig. 8.21Fig. 8.21Fig. 8.21 Authors and the ISBN numbers for the books they have written in
ascending order by lastName and firstName (part 2 of 2).

Chapter 8 Java Database Connectivity (JDBC) 461

inserts a record into the authors table. The statement indicates that values will be insert-
ed for the firstName and lastName fields. The corresponding values to insert are
'Sue' and 'Smith'. We do not specify an authorID in this example, because au-
thorID is an autoincremented field in the Cloudscape database. For every new record
added to this table, Cloudscape assigns a unique authorID value that is the next value in
the autoincremented sequence (i.e., 1, 2, 3 and so on). In this case, Sue Smith would be as-
signed authorID number 5. Figure 8.22 shows the authors table after the INSERT
INTO operation.

Common Programming Error 8.6
It is an error to specify a value for an autoincrement field. 8.3

Common Programming Error 8.7
SQL statements use the single-quote (') character as a delimiter for strings. To specify a
string containing a single quote (such as O’Malley) in an SQL statement, the string must
have two single quotes in the position where the single-quote character appears in the string
(e.g., 'O''Malley'). The first of the two single-quote characters acts as an escape char-
acter for the second. Not escaping single-quote characters in a string that is part of an SQL
statement is an SQL syntax error. 8.7

8.4.6 UPDATE Statement

An UPDATE statement modifies data in a table. The simplest form for an UPDATE state-
ment is

UPDATE tableName
SET fieldName1 = value1, fieldName2 = value2, …, fieldNameN = valueN
WHERE criteria

where tableName is the table in which to update a record (or records). The tableName is
followed by keyword SET and a comma-separated list of field name/value pairs in the for-
mat fieldName = value. The WHERE clause provides the criteria that specify which
record(s) to update. The UPDATE statement

UPDATE authors
SET lastName = 'Jones'
WHERE lastName = 'Smith' AND firstName = 'Sue'

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

3 Tem Nieto

4 Sean Santry

5 Sue Smith

Fig. 8.22Fig. 8.22Fig. 8.22Fig. 8.22 Table Authors after an INSERT INTO operation to add a record.

462 Java Database Connectivity (JDBC) Chapter 8

updates a record in the authors table. The statement indicates that the lastName will be
assigned the value Jones for the record in which lastName is equal to Smith and
firstName is equal to Sue. [Note: If there are multiple records with the first name “Sue”
and the last name “Smith,” this statement will modify all such records to have the last name
“Jones.”] If we know the authorID in advance of the UPDATE operation (possibly because
we searched for the record previously), the WHERE clause could be simplified as follows:

WHERE AuthorID = 5

Figure 8.23 shows the authors table after the UPDATE operation has taken place.

8.4.7 DELETE FROM Statement
An SQL DELETE statement removes data from a table. The simplest form for a DELETE
statement is

DELETE FROM tableName WHERE criteria

where tableName is the table from which to delete a record (or records). The WHERE clause
specifies the criteria used to determine which record(s) to delete. The DELETE statement

DELETE FROM authors
WHERE lastName = 'Jones' AND firstName = 'Sue'

deletes the record for Sue Jones in the authors table. If we know the authorID in ad-
vance of the DELETE operation, the WHERE clause could be simplified as follows:

WHERE authorID = 5

Figure 8.24 shows the authors table after the DELETE operation has taken place.

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

3 Tem Nieto

4 Sean Santry

5 Sue Jones

Fig. 8.23Fig. 8.23Fig. 8.23Fig. 8.23 Table authors after an UPDATE operation to change a record.

authorID firstName lastName

1 Harvey Deitel

2 Paul Deitel

3 Tem Nieto

4 Sean Santry

Fig. 8.24Fig. 8.24Fig. 8.24Fig. 8.24 Table authors after a DELETE operation to remove a record.

Chapter 8 Java Database Connectivity (JDBC) 463

8.5 Creating Database books in Cloudscape
The CD that accompanies this book includes Cloudscape 3.6.4, a pure-Java database man-
agement system from Informix Software. A complete set of information on Cloudscape is
available from www.cloudscape.com. Follow the provided instructions to install
Cloudscape. Cloudscape executes on many platforms, including Windows, Solaris, Linux,
Macintosh and others. For a complete list of platforms on which Cloudscape 3.6 has been
tested, visit

cloudweb1.cloudscape.com/support/servepage.jsp?
 page=fyi_cert36vms.html

The Cloudscape server must be executing to create and manipulate databases in Cloud-
scape. To execute the server, begin by opening a command window. Change directories to
the Cloudscape installation directory (Cloudscape_3.6 by default). In that directory is
a frameworks directory. Cloudscape comes with two frameworks in which it can exe-
cute: embedded and RmiJdbc. The embedded framework enables Cloudscape to exe-
cute as part of a Java application. The RmiJdbc framework enables Cloudscape to execute
as a stand-alone database server, which is how we use Cloudscape in this book. Each frame-
work directory has a bin subdirectory containing batch files (Windows) and shell scripts
(Linux/UNIX) to set environment variables and execute Cloudscape. Change directories to
the bin directory in the RmiJdbc framework. Execute the batch file or shell script starting
with the name setServerCloudscapeCP to set the environment variables required by
the server. Then execute the batch file or shell script starting with the name startCS to
launch the Cloudscape database server. Figure 8.25 shows the command-line output when
Cloudscape is executed from a Windows 2000 command window. Note that you can shut
down the server by executing the script stopCS from another command window.

For each Cloudscape database we discuss in this book, we provide an SQL script that
will set up the database and its tables. These scripts can be executed with an interactive
command line tool, called ij, that is part of Cloudscape. We provide a batch file (cre-
ateDatabase.bat) and a shell script (createDatabase.ksh) that you can use to
start ij and execute the SQL scripts. In the examples directory for this chapter on the CD
that accompanies this book, you will find the createDatabase scripts and the SQL
script books.sql. To create database books, first ensure that the Cloudscape server is
executing. Open a new command prompt, then change to Cloudscape’s frame-
works\RmiJdbc\bin directory. In that directory, execute the batch file or shell script
starting with the name setClientCloudscapeCP. This sets the environment variables
required by our createDatabase script. Next, change to the directory where you placed
our JDBC examples on your computer and type

createDatabase books.sql

to execute the SQL script. After completing this task, you are ready to proceed to the first
JDBC example. [Note: We wrote this script such that you can execute the script again at
any time to restore the database’s original contents. When you run this script the first time,
it will generate four error messages as it tries to delete the four tables in the books database.
This occurs because the database does not exist, so there are no tables to delete. You can
simply ignore these messages.]

464 Java Database Connectivity (JDBC) Chapter 8

8.6 Manipulating Databases with JDBC
In this section, we present two examples that introduce how to connect to a database, query
the database and display the results of the query.

8.6.1 Connecting to and Querying a JDBC Data Source
The first example (Fig. 8.26) performs a simple query on the books database that retrieves
the entire authors table and displays the data in a JTextArea. The program illustrates
connecting to the database, querying the database and processing the results. The following
discussion presents the key JDBC aspects of the program. [Note: Section 8.5 demonstrates
how to execute the Cloudscape database server and how to create the books database. The
steps in Section 8.5 must be performed before executing the program of Fig. 8.26.]

Fig. 8.25Fig. 8.25Fig. 8.25Fig. 8.25 Executing Cloudscape from a command prompt in Windows 2000.

1 // Fig. 8.26: DisplayAuthors.java
2 // Displaying the contents of table authors in database books.
3 package com.deitel.advjhtp1.jdbc;
4
5 // Java core packages
6 import java.awt.*;
7 import java.sql.*;
8 import java.util.*;
9

10 // Java extension packages
11 import javax.swing.*;
12
13 public class DisplayAuthors extends JFrame {
14
15 // constructor connects to database, queries database,
16 // processes results and displays results in window
17 public DisplayAuthors()
18 {
19 super("Authors Table of Books Database");
20
21

Fig. 8.26Fig. 8.26Fig. 8.26Fig. 8.26 Displaying the authors table from the books database (part 1 of 3).

Chapter 8 Java Database Connectivity (JDBC) 465

22 // connect to database books and query database
23 try {
24
25 // load database driver class
26 Class.forName("COM.cloudscape.core.RmiJdbcDriver");
27
28 // connect to database
29 Connection connection = DriverManager.getConnection(
30 "jdbc:cloudscape:rmi:books");
31
32 // create Statement to query database
33 Statement statement = connection.createStatement();
34
35 // query database
36 ResultSet resultSet =
37 statement.executeQuery("SELECT * FROM authors");
38
39 // process query results
40 StringBuffer results = new StringBuffer();
41 ResultSetMetaData metaData = resultSet.getMetaData();
42 int numberOfColumns = metaData.getColumnCount();
43
44 for (int i = 1; i <= numberOfColumns; i++) {
45 results.append(metaData.getColumnName(i)
46 + "\t");
47 }
48
49 results.append("\n");
50
51 while (resultSet.next()) {
52
53 for (int i = 1; i <= numberOfColumns; i++) {
54 results.append(resultSet.getObject(i)
55 + "\t");
56 }
57
58 results += "\n";
59 }
60
61 // close statement and connection
62 statement.close();
63 connection.close();
64
65 // set up GUI and display window
66 JTextArea textArea = new JTextArea(
67 results.toString());
68 Container container = getContentPane();
69
70 container.add(new JScrollPane(textArea));
71
72 setSize(300, 100); // set window size
73 setVisible(true); // display window
74 } // end try

Fig. 8.26Fig. 8.26Fig. 8.26Fig. 8.26 Displaying the authors table from the books database (part 2 of 3).

466 Java Database Connectivity (JDBC) Chapter 8

Line 7 imports package java.sql, which contains classes and interfaces for the
JDBC API. The DisplayAuthors constructor (lines 17–93) connects to the books
database, queries the database, displays the results of the query and closes the database
connection.

The program must load the database driver class before the program can connect to the
database. Line 26 loads the class definition for the database driver. This line throws a checked
exception of type java.lang.ClassNotFoundException if the class loader cannot
locate the driver class. Notice that the statement specifies the complete package name and
class name for the Cloudscape driver—COM.cloudscape.core.RmiJdbcDriver.

JDBC supports four categories of drivers: JDBC-to-ODBC bridge driver (Type 1),
Native-API, partly Java driver (Type 2); JDBC-Net pure Java driver (Type 3) and
Native-Protocol pure Java driver (Type 4). A description of each driver type is shown in
Fig. 8.27.

75
76 // detect problems interacting with the database
77 catch (SQLException sqlException) {
78 JOptionPane.showMessageDialog(null,
79 sqlException.getMessage(), "Database Error",
80 JOptionPane.ERROR_MESSAGE);
81
82 System.exit(1);
83 }
84
85 // detect problems loading database driver
86 catch (ClassNotFoundException classNotFound) {
87 JOptionPane.showMessageDialog(null,
88 classNotFound.getMessage(), "Driver Not Found",
89 JOptionPane.ERROR_MESSAGE);
90
91 System.exit(1);
92 }
93 } // end DisplayAuthors constructor definition
94
95 // launch the application
96 public static void main(String args[])
97 {
98 DisplayAuthors window = new DisplayAuthors();
99
100 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
101 }
102 } // end class DisplayAuthors

Fig. 8.26Fig. 8.26Fig. 8.26Fig. 8.26 Displaying the authors table from the books database (part 3 of 3).

Chapter 8 Java Database Connectivity (JDBC) 467

Type 3 and 4 drivers are preferred, because they are pure Java solutions. As mentioned
in Fig. 8.27, Type 1 and Type 2 drivers were provided primarily to allow Java programmers
to create data-driven solutions before the database vendors created pure Java drivers. The
Cloudscape driver COM.cloudscape.core.RmiJdbcDriver is a Type 4 driver.

Software Engineering Observation 8.4
Most major database vendors provide their own JDBC database drivers, and many third-
party vendors provide JDBC drivers as well. For more information on JDBC drivers, visit
the Sun Microsystems JDBC Web site, java.sun.com/products/jdbc. 8.4

Software Engineering Observation 8.5
On the Microsoft Windows platform, most databases support access via Open Database
Connectivity (ODBC). ODBC is a technology developed by Microsoft to allow generic access
to disparate database systems on the Windows platform (and some UNIX platforms). The
Java 2 Software Development Kit (J2SDK) comes with the JDBC-to-ODBC-bridge database
driver to allow any Java program to access any ODBC data source. The driver is defined by
class JdbcOdbcDriver in package sun.jdbc.odbc. 8.5

Lines 29–30 of Fig. 8.26 declare and initialize a Connection reference (package
java.sql) called connection. An object that implements interface Connection
manages the connection between the Java program and the database. Connection
objects enable programs to create SQL statements that manipulate databases and to perform
transaction processing (discussed later in this chapter). The program initializes connec-
tion with the result of a call to static method getConnection of class Driver-
Manager (package java.sql), which attempts to connect to the database specified by
its URL argument. The URL helps the program locate the database (possibly on a network
or in the local file system of the computer). The URL jdbc:cloudscape:rmi:books

Type Description

1 The JDBC-to-ODBC bridge driver connects Java to a Microsoft ODBC (Open Database
Connectivity) data source. The Java 2 Software Development Kit from Sun Microsys-
tems, Inc. includes the JDBC-to-ODBC bridge driver (sun.jdbc.odbc.Jdbc-
OdbcDriver). This driver typically requires the ODBC driver to be installed on the
client computer and normally requires configuration of the ODBC data source. The
bridge driver was introduced primarily to allow Java programmers to build data-driven
Java applications before the database vendors had Type 3 and Type 4 drivers.

2 Native-API, partly Java drivers enable JDBC programs to use database-specific APIs
(normally written in C or C++) that allow client programs to access databases via the
Java Native Interface. This driver type translates JDBC into database-specific code.
Type 2 drivers were introduced for reasons similar to the Type 1 ODBC bridge driver.

3 JDBC-Net pure Java drivers take JDBC requests and translate them into a network pro-
tocol that is not database specific. These requests are sent to a server, which translates
the database requests into a database-specific protocol.

4 Native-protocol pure Java drivers convert JDBC requests to database-specific network
protocols, so that Java programs can connect directly to a database.

Fig. 8.27Fig. 8.27Fig. 8.27Fig. 8.27 JDBC driver types.

468 Java Database Connectivity (JDBC) Chapter 8

specifies the protocol for communication (jdbc), the subprotocol for communication
(cloudscape:rmi) and the name of the database (books). The subprotocol cloud-
scape:rmi indicates that the program uses jdbc to connect to a Cloudscape database
via remote method invocation (RMI). [Note: Knowledge of the RMI networking technology
is not required for this chapter. We discuss RMI in Chapter 13.] If the DriverManager
cannot connect to the database, method getConnection throws an SQLException
(package java.sql).

Software Engineering Observation 8.6
Most database management systems require the user to log in before accessing the database
contents. DriverManager method getConnection is overloaded with versions that
enable the program to supply the user name and password to gain access. 8.6

Line 33 invokes Connection method createStatement to obtain an object that
implements interface Statement (package java.sql). The program uses the State-
ment object to submit SQL statements to the database.

Lines 36–37 use the Statement object’s executeQuery method to execute a
query that selects all the author information from table authors. This method returns an
object that implements interface ResultSet and contains the results of the query. The
ResultSet methods enable the program to manipulate the query results.

Lines 30–59 process the ResultSet. Line 41 obtains the metadata for the
ResultSet and assigns it to a ResultSetMetaData (package java.sql) refer-
ence. The metadata describes the ResultSet’s contents. Programs can use metadata pro-
grammatically to obtain information about the ResultSet's column names and types.
Line 42 uses ResultSetMetaData method getColumnCount to retrieve the number
of columns in the ResultSet. Lines 44–47 append the column names to the String-
Buffer results.

Software Engineering Observation 8.7
Metadata enables programs to process ResultSet contents dynamically when detailed in-
formation about the ResultSet is not known in advance of a query. 8.7

Lines 51–59 appends the data in each ResultSet row to the StringBuffer
results. Before processing the ResultSet, the program positions the ResultSet
cursor to the first record in the ResultSet with method next (line 51). The cursor keeps
track of the current record (or row). Method next returns boolean value true if it is
able to position to the next record; otherwise the method returns false.

Common Programming Error 8.8
Initially, a ResultSet cursor is positioned before the first record. Attempting to access a
ResultSet’s contents before positioning the ResultSet cursor to the first record with
method next causes an SQLException. 8.8

If there are records in the ResultSet, lines 53–56 extract the contents of the current
row. When processing a ResultSet, it is possible to extract each column of the
ResultSet as a specific Java data type. In fact, ResultSetMetaData method get-
ColumnType returns a constant integer from class Types (package java.sql) that
indicates the type of the data for a specific column. Programs can use such information in
a switch structure to invoke a ResultSet method that returns the column value as the
appropriate Java data type. For example, if the type of a column is Types.INT,

Chapter 8 Java Database Connectivity (JDBC) 469

ResultSet method getInt returns the column value as an int. ResultSet get
methods typically receive as an argument either a column number (as an int) or a column
name (as a String) indicating which column’s value to obtain. Visit

java.sun.com/j2se/1.3/docs/guide/jdbc/getstart/
 GettingStartedTOC.fm.html

for detailed mappings of SQL types to Java types and to determine the appropriate Re-
sultSet method to call for each SQL type.

Performance Tip 8.3
If a query specifies the exact fields to select from the database, the ResultSet contains the
fields in the specified order. In this case, using the column number to obtain the column’s value
is more efficient than using the column’s name. The column number is similar to an array sub-
script in that the column number provides direct access to the specified column. Using the col-
umn’s name requires a linear search of the column names to locate the appropriate column. 8.3

For simplicity, this example treats each column’s value as an Object. The program
retrieves each column value with ResultSet method getObject (line 54) and appends
the String representation of the Object to results. When ResultSet processing
completes, the program closes the Statement (line 63) and the database Connection
(line 64). Notice that, unlike array subscripts, which start at 0, ResultSet column num-
bers start at 1.

Common Programming Error 8.9
Specifying column number 0 when obtaining values from a ResultSet causes an SQLEx-
ception. 8.9

Common Programming Error 8.10
Attempting to manipulate a ResultSet after closing the Statement that created the
ResultSet causes an SQLException. The program discards the ResultSet when
the corresponding Statement is closed. 8.10

Software Engineering Observation 8.8
Each Statement object can open only one ResultSet object at a time. When a
Statement returns a new ResultSet, the Statement closes the prior ResultSet.
To use multiple ResultSets in parallel, separate Statement objects must return the
ResultSets. 8.8

Lines 66–73 create the GUI that displays the StringBuffer results, set the size
of the application window and show the application window.

To run this example as well as the others in the Chapter, the classpath in the fol-
lowing command line must be used1

java -classpath f:\Cloudscape_3.6\lib\cloudscape.jar;
 f:\Cloudscape_3.6\frameworks\RmiJdbc\classes\RmiJdbc.jar;.
 com.deitel.advjhtp1.jdbc.DisplayAuthors

1. You will need to modify this command line to indicate the proper location of your Cloudscape in-
stallation and to use directory separators that are appropriate to your operating system (e.g., colons
on UNIX/Linux).

470 Java Database Connectivity (JDBC) Chapter 8

These JARs (cloudscape.jar and RmiJdbc.jar) must be present in the class-
path or none of the examples in this Chapter will execute. Note that the classpath in-
cludes . for the current directory. When setting the classpath at the command line, this
ensures that the interpreter can locate classes in the current directory. You can also set the
classpath using Cloudscape’s setServerCloudscapeCP batch file or shell script
discussed earlier in this section.

8.6.2 Querying the books Database
The next example (Fig. 8.28 and Fig. 8.31) enhances the example of Fig. 8.26 by allowing
the user to enter any query into the program. The example displays the results of a query in
a JTable, using a TableModel object to provide the ResultSet data to the JTable.
Class ResultSetTableModel (Fig. 8.28) performs the connection to the database and
maintains the model. Class DisplayQueryResults (Fig. 8.31) creates the GUI and
specifies an instance of class ResultSetTableModel as the model for the JTable.

Class ResultSetTableModel (Fig. 8.28) extends class AbstractTable-
Model (package javax.swing.table), which implements interface TableModel.
Class ResultSetTableModel overrides TableModel methods getColumn-
Class, getColumnCount, getColumnName, getRowCount and getValueAt.
The default implementations of TableModel methods isCellEditable and set-
ValueAt (provided by AbstractTableModel) are not overridden, because this
example does not support editing the JTable cells. Also, the default implementations of
TableModel methods addTableModelListener and removeTableModel-
Listener (provided by AbstractTableModel) are not overridden, because the
implementations of these methods from AbstractTableModel properly add and
remove event listeners.

1 // Fig. 8.28: ResultSetTableModel.java
2 // A TableModel that supplies ResultSet data to a JTable.
3 package com.deitel.advjhtp1.jdbc;
4
5 // Java core packages
6 import java.sql.*;
7 import java.util.*;
8
9 // Java extension packages

10 import javax.swing.table.*;
11
12 // ResultSet rows and columns are counted from 1 and JTable
13 // rows and columns are counted from 0. When processing
14 // ResultSet rows or columns for use in a JTable, it is
15 // necessary to add 1 to the row or column number to manipulate
16 // the appropriate ResultSet column (i.e., JTable column 0 is
17 // ResultSet column 1 and JTable row 0 is ResultSet row 1).
18 public class ResultSetTableModel extends AbstractTableModel {
19 private Connection connection;
20 private Statement statement;

Fig. 8.28Fig. 8.28Fig. 8.28Fig. 8.28 ResultSetTableModel enables a JTable to display the contents of
a ResultSet (part 1 of 4).

Chapter 8 Java Database Connectivity (JDBC) 471

21 private ResultSet resultSet;
22 private ResultSetMetaData metaData;
23 private int numberOfRows;
24
25 // initialize resultSet and obtain its meta data object;
26 // determine number of rows
27 public ResultSetTableModel(String driver, String url,
28 String query) throws SQLException, ClassNotFoundException
29 {
30 // load database driver class
31 Class.forName(driver);
32
33 // connect to database
34 connection = DriverManager.getConnection(url);
35
36 // create Statement to query database
37 statement = connection.createStatement(
38 ResultSet.TYPE_SCROLL_INSENSITIVE,
39 ResultSet.CONCUR_READ_ONLY);
40
41 // set query and execute it
42 setQuery(query);
43 }
44
45 // get class that represents column type
46 public Class getColumnClass(int column)
47 {
48 // determine Java class of column
49 try {
50 String className =
51 metaData.getColumnClassName(column + 1);
52
53 // return Class object that represents className
54 return Class.forName(className);
55 }
56
57 // catch SQLExceptions and ClassNotFoundExceptions
58 catch (Exception exception) {
59 exception.printStackTrace();
60 }
61
62 // if problems occur above, assume type Object
63 return Object.class;
64 }
65
66 // get number of columns in ResultSet
67 public int getColumnCount()
68 {
69 // determine number of columns
70 try {
71 return metaData.getColumnCount();
72 }

Fig. 8.28Fig. 8.28Fig. 8.28Fig. 8.28 ResultSetTableModel enables a JTable to display the contents of
a ResultSet (part 2 of 4).

472 Java Database Connectivity (JDBC) Chapter 8

73
74 // catch SQLExceptions and print error message
75 catch (SQLException sqlException) {
76 sqlException.printStackTrace();
77 }
78
79 // if problems occur above, return 0 for number of columns
80 return 0;
81 }
82
83 // get name of a particular column in ResultSet
84 public String getColumnName(int column)
85 {
86 // determine column name
87 try {
88 return metaData.getColumnName(column + 1);
89 }
90
91 // catch SQLExceptions and print error message
92 catch (SQLException sqlException) {
93 sqlException.printStackTrace();
94 }
95
96 // if problems, return empty string for column name
97 return "";
98 }
99
100 // return number of rows in ResultSet
101 public int getRowCount()
102 {
103 return numberOfRows;
104 }
105
106 // obtain value in particular row and column
107 public Object getValueAt(int row, int column)
108 {
109 // obtain a value at specified ResultSet row and column
110 try {
111 resultSet.absolute(row + 1);
112
113 return resultSet.getObject(column + 1);
114 }
115
116 // catch SQLExceptions and print error message
117 catch (SQLException sqlException) {
118 sqlException.printStackTrace();
119 }
120
121 // if problems, return empty string object
122 return "";
123 }
124

Fig. 8.28Fig. 8.28Fig. 8.28Fig. 8.28 ResultSetTableModel enables a JTable to display the contents of
a ResultSet (part 3 of 4).

Chapter 8 Java Database Connectivity (JDBC) 473

The ResultSetTableModel constructor (lines 27–43) receives three String
arguments—the driver class name, the URL of the database and the default query to per-
form. The constructor throws any exceptions that occur in its body back to the application
that created the ResultSetTableModel object, so that the application can determine
how to handle the exception (e.g., report an error and terminate the application). Line 31
loads the database driver. Line 34 establishes a connection to the database. Line 37 invokes
Connection method createStatement to create a Statement object. This
example uses a version of method createStatement that takes two arguments—the
result-set type and the result-set concurrency. The result-set type (Fig. 8.29) specifies
whether the ResultSet’s cursor is able to scroll in both directions or forward only and
whether the ResultSet is sensitive to changes. ResultSets that are sensitive to
changes reflect those changes immediately after they are made with methods of interface
ResultSet. If a ResultSet is insensitive to changes, the query that produced the
ResultSet must be executed again to reflect any changes made. The result-set concur-
rency (Fig. 8.30) specifies whether the ResultSet can be updated with ResultSet’s
update methods. This example uses a ResultSet that is scrollable, insensitive to changes

125 // close Statement and Connection
126 protected void finalize()
127 {
128 // close Statement and Connection
129 try {
130 statement.close();
131 connection.close();
132 }
133
134 // catch SQLExceptions and print error message
135 catch (SQLException sqlException) {
136 sqlException.printStackTrace();
137 }
138 }
139
140 // set new database query string
141 public void setQuery(String query) throws SQLException
142 {
143 // specify query and execute it
144 resultSet = statement.executeQuery(query);
145
146 // obtain meta data for ResultSet
147 metaData = resultSet.getMetaData();
148
149 // determine number of rows in ResultSet
150 resultSet.last(); // move to last row
151 numberOfRows = resultSet.getRow(); // get row number
152
153 // notify JTable that model has changed
154 fireTableStructureChanged();
155 }
156 } // end class ResultSetTableModel

Fig. 8.28Fig. 8.28Fig. 8.28Fig. 8.28 ResultSetTableModel enables a JTable to display the contents of
a ResultSet (part 4 of 4).

474 Java Database Connectivity (JDBC) Chapter 8

and read only. Line 42 invokes ResultSetTableModel method setQuery (lines
141–155) to perform the default query.

Portability Tip 8.6
Some ResultSet implementations do not support scrollable ResultSets. In such cases,
typically the driver returns a ResultSet in which the cursor can move only forward. For
more information, see your database-driver documentation. 8.6

Portability Tip 8.7
Some ResultSet implementations do not support updatable ResultSets. In such cases,
typically the driver returns a read-only ResultSet. For more information, see your data-
base-driver documentation. 8.7

Common Programming Error 8.11
Attempting to update a ResultSet when the database driver does not support updatable
ResultSets causes SQLExceptions. 8.11

Common Programming Error 8.12
Attempting to move the cursor backwards through a ResultSet when the database driver
does not support backwards scrolling causes an SQLException. 8.12

Method getColumnClass (lines 46–64) returns a Class object that represents the
superclass of all objects in a particular column. The JTable uses this information to con-
figure the default cell renderer and cell editor for that column in the JTable. Lines 50–51
use ResultSetMetaData method getColumnClassName to obtain the fully quali-
fied class name for the specified column. Line 54 loads the class definition for that class
and returns the corresponding Class object. If an exception occurs, the catch at lines
58–60 prints a stack trace and line 63 returns Object.class—the Class instance that
represents class Object—as the default type. [Note: Line 51 uses the argument
column + 1. Like arrays, JTable row and column numbers are counted from 0. How-
ever, ResultSet row and column numbers are counted from 1. Thus, when processing
ResultSet rows or columns for use in a JTable, it is necessary to add 1 to the row or
column number to manipulate the appropriate ResultSet row or column.]

ResultSet static
type constant Description

TYPE_FORWARD_ONLY

Specifies that a ResultSet’s cursor can move only in the forward
direction (i.e., from the first record to the last record in the
ResultSet).

TYPE_SCROLL_INSENSITIVE

Specifies that a ResultSet’s cursor can scroll in either direction
and that the changes made to the ResultSet during ResultSet
processing are not reflected in the ResultSet unless the program
queries the database again.

Fig. 8.29Fig. 8.29Fig. 8.29Fig. 8.29 ResultSet constants for specifying ResultSet type (part 1 of 2).

Chapter 8 Java Database Connectivity (JDBC) 475

Method getColumnCount (lines 67–81) returns the number of columns in the
model’s underlying ResultSet. Line 71 uses ResultSetMetaData method get-
ColumnCount to obtain the number of columns in the ResultSet. If an exception
occurs, the catch at lines 75–77 prints a stack trace and line 80 returns 0 as the default
number of columns.

Method getColumnName (lines 84–98) returns the name of the column in the
model’s underlying ResultSet. Line 88 uses ResultSetMetaData method get-
ColumnName to obtain the column name from the ResultSet. If an exception occurs,
the catch at lines 92–94 prints a stack trace and line 97 returns the empty string as the
default column name.

Method getRowCount (lines 101–104) returns the number of rows in the model’s
underlying ResultSet. When method setQuery (lines 141–155) performs a query, it
stores the number of rows in variable numberOfRows.

Method getValueAt (lines 107–123) returns the Object in a particular row and
column of the model’s underlying ResultSet. Line 111 uses ResultSet method
absolute to position the ResultSet cursor at a specific row. Line 113 uses
ResultSet method getObject to obtain the Object in a specific column of the cur-
rent row. If an exception occurs, the catch at lines 117–119 prints a stack trace and line
122 returns the empty string object as the default value.

Method finalize (lines 126–138) closes the Statement and Connection
objects if a ResultSetTableModel object is garbage collected.

TYPE_SCROLL_SENSITIVE

Specifies that a ResultSet’s cursor can scroll in either direction
and that the changes made to the ResultSet during ResultSet
processing are reflected immediately in the ResultSet.

ResultSet static
concurrency constant Description

CONCUR_READ_ONLY Specifies that a ResultSet cannot be updated (i.e., changes to the
ResultSet contents cannot be reflected in the database with
ResultSet’s update methods).

CONCUR_UPDATABLE Specifies that a ResultSet can be updated (i.e., changes to the
ResultSet contents can be reflected in the database with
ResultSet’s update methods).

Fig. 8.30Fig. 8.30Fig. 8.30Fig. 8.30 ResultSet constants for specifying result set properties.

ResultSet static
type constant Description

Fig. 8.29Fig. 8.29Fig. 8.29Fig. 8.29 ResultSet constants for specifying ResultSet type (part 2 of 2).

476 Java Database Connectivity (JDBC) Chapter 8

Method setQuery (lines 141–155) executes the query it receives as an argument to
obtain a new ResultSet (line 144). Line 147 gets the ResultSetMetaData for the
new ResultSet. Line 150 uses ResultSet method last to position the ResultSet
cursor at the last row in the ResultSet. Line 151 uses ResultSet method getRow to
obtain the row number for the current row in the ResultSet. Line 154 invokes method
fireTableStructureChanged (inherited from class AbstractTableModel) to
notify any JTable using this ResultSetTableModel object as its model that the
structure of the model has changed (i.e., the underlying ResultSet contains new data or
new columns). This causes the JTable to repopulate its rows and columns with the new
ResultSet data. Method setQuery throws any exceptions that occur in its body back
to the application that invoked setQuery.

The DisplayQueryResults (Fig. 8.31) constructor (lines 21–121) creates a
ResultSetTableModel object and defines the GUI for the application. Lines 26, 29
and 32 define the database driver class name, database URL and default query that are
passed to the ResultSetTableModel constructor to make the initial connection to the
database and perform the default query. Line 61 creates the JTable object and passes a
ResultSetTableModel object to the JTable constructor, which then registers the
JTable as a listener for TableModelEvents generated by the ResultSetTable-
Model. Lines 70–94 register an event handler for the submitButton that the user clicks
to submit a query to the database. When the user clicks the button, method actionPer-
formed (lines 75–90) invokes ResultSetTableModel method setQuery to exe-
cute the new query. The screen captures in Fig. 8.31 show the results of two queries. The
first screen capture shows the default query that selects all the authors from table authors
of database books. The second screen capture shows a query that selects each author’s
first name and last name from the authors table and combines that information with the
title and edition number from the titles table. Try entering your own queries in the text
area and clicking the Submit Query button to execute the query.

1 // Fig. 8.31: DisplayQueryResults.java
2 // Display the contents of the Authors table in the
3 // Books database.
4 package com.deitel.advjhtp1.jdbc;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9 import java.sql.*;

10 import java.util.*;
11
12 // Java extension packages
13 import javax.swing.*;
14 import javax.swing.table.*;
15
16 public class DisplayQueryResults extends JFrame {
17 private ResultSetTableModel tableModel;
18 private JTextArea queryArea;
19

Fig. 8.31Fig. 8.31Fig. 8.31Fig. 8.31 DisplayQueryResults enables a user to query database books.

Chapter 8 Java Database Connectivity (JDBC) 477

20 // create ResultSetTableModel and GUI
21 public DisplayQueryResults()
22 {
23 super("Displaying Query Results");
24
25 // Cloudscape database driver class name
26 String driver = "COM.cloudscape.core.RmiJdbcDriver";
27
28 // URL to connect to books database
29 String url = "jdbc:cloudscape:rmi:books";
30
31 // query to select entire authors table
32 String query = "SELECT * FROM authors";
33
34 // create ResultSetTableModel and display database table
35 try {
36
37 // create TableModel for results of query
38 // SELECT * FROM authors
39 tableModel =
40 new ResultSetTableModel(driver, url, query);
41
42 // set up JTextArea in which user types queries
43 queryArea = new JTextArea(query, 3, 100);
44 queryArea.setWrapStyleWord(true);
45 queryArea.setLineWrap(true);
46
47 JScrollPane scrollPane = new JScrollPane(queryArea,
48 ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED,
49 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);
50
51 // set up JButton for submitting queries
52 JButton submitButton = new JButton("Submit Query");
53
54 // create Box to manage placement of queryArea and
55 // submitButton in GUI
56 Box box = Box.createHorizontalBox();
57 box.add(scrollPane);
58 box.add(submitButton);
59
60 // create JTable delegate for tableModel
61 JTable resultTable = new JTable(tableModel);
62
63 // place GUI components on content pane
64 Container c = getContentPane();
65 c.add(box, BorderLayout.NORTH);
66 c.add(new JScrollPane(resultTable),
67 BorderLayout.CENTER);
68
69 // create event listener for submitButton
70 submitButton.addActionListener(
71
72 new ActionListener() {

Fig. 8.31Fig. 8.31Fig. 8.31Fig. 8.31 DisplayQueryResults enables a user to query database books.

478 Java Database Connectivity (JDBC) Chapter 8

73
74 // pass query to table model
75 public void actionPerformed(ActionEvent e)
76 {
77 // perform a new query
78 try {
79 tableModel.setQuery(queryArea.getText());
80 }
81
82 // catch SQLExceptions that occur when
83 // performing a new query
84 catch (SQLException sqlException) {
85 JOptionPane.showMessageDialog(null,
86 sqlException.toString(),
87 "Database error",
88 JOptionPane.ERROR_MESSAGE);
89 }
90 } // end actionPerformed
91
92 } // end ActionListener inner class
93
94); // end call to addActionListener
95
96 // set window size and display window
97 setSize(500, 250);
98 setVisible(true);
99 } // end try
100
101 // catch ClassNotFoundException thrown by
102 // ResultSetTableModel if database driver not found
103 catch (ClassNotFoundException classNotFound) {
104 JOptionPane.showMessageDialog(null,
105 "Cloudscape driver not found", "Driver not found",
106 JOptionPane.ERROR_MESSAGE);
107
108 System.exit(1); // terminate application
109 }
110
111 // catch SQLException thrown by ResultSetTableModel
112 // if problems occur while setting up database
113 // connection and querying database
114 catch (SQLException sqlException) {
115 JOptionPane.showMessageDialog(null,
116 sqlException.toString(),
117 "Database error", JOptionPane.ERROR_MESSAGE);
118
119 System.exit(1); // terminate application
120 }
121 } // end DisplayQueryResults constructor
122
123 // execute application
124 public static void main(String args[])
125 {

Fig. 8.31Fig. 8.31Fig. 8.31Fig. 8.31 DisplayQueryResults enables a user to query database books.

Chapter 8 Java Database Connectivity (JDBC) 479

8.7 Case Study: Address-Book Application
Our next example uses the SQL and JDBC concepts presented so far to implement a sub-
stantial address-book application that enables the user to insert, locate, update and delete
address-book entries in the Cloudscape database addressbook. [Note: An SQL script to
create this database is provided with the example code for this chapter. Section 8.5 demon-
strates executing an SQL script with Cloudscape.]

Database addressbook contains four tables: names, addresses, phoneNum-
bers and emailAddresses. Figure 8.32 shows the relationships between the tables.
The first line in each table is the table’s name. Each table’s primary-key field is highlighted
in green. Tables addresses, phoneNumbers and emailAddresses each have
personID as a foreign key. Thus, a program cannot place records in those tables unless the
personID is a valid value in table names. Although the address-book application cur-
rently allows only one address, one phone number and one e-mail address per person, the
database was designed to support multiple addresses, phone numbers and e-mail addresses
for each person. So there is a one-to-many relationship between a record in the names table
and records in the other tables. Note that the relationship lines between the tables link the
foreign key (personID) of tables phoneNumbers, emailAddresses and
addresses to the primary key of table names. In each of the tables, fields personID,
addressID, emailID and phoneID are integers. All other fields are strings.

126 DisplayQueryResults app = new DisplayQueryResults();
127
128 app.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
129 }
130 } // end class DisplayQueryResults

Fig. 8.31Fig. 8.31Fig. 8.31Fig. 8.31 DisplayQueryResults enables a user to query database books.

480 Java Database Connectivity (JDBC) Chapter 8

This example introduces two new concepts: PreparedStatements and transac-
tion processing. Section 8.7.1 and Section 8.7.2 discuss these new concepts. Then,
Section 8.7.3 presents the AddressBook application and its supporting classes.

8.7.1 PreparedStatements

Interface PreparedStatement enables an application programmer to create SQL state-
ments that are maintained in a compiled form that enables the statements to execute more
efficiently than Statement objects. PreparedStatement objects also are more flex-
ible than Statement objects, because they can specify parameters. This allows programs
to execute the same query repeatedly with different parameter values. For example, in the
books database, you might want to locate all book titles for an author with a specific last
name and first name, and you might want to execute that query for several authors. With a
PreparedStatement, that query is defined as follows:

PreparedStatement authorBooks = connection.prepareStatement(
"SELECT lastName, firstName, title " +

 "FROM authors, titles, authorISBN " +
 "WHERE authors.authorID = authorISBN.authorID AND " +
 " titles.ISBN = authorISBN.isbn AND " +
 " lastName = ? AND firstName = ?");

Note the two question marks (?) in the last line of the preceding statement. These characters
represent placeholders for values that will be passed as part of the query to the database.
Before the program executes a PreparedStatement, the program must specify the val-
ues of those parameters by using the set methods of interface PreparedStatement.

Fig. 8.32Fig. 8.32Fig. 8.32Fig. 8.32 Table relationships in database addressbook.

names

personID

firstName

lastName addresses

addressID

personID

address1

address2

city

state

zipcode

1
∞

phoneNumbers

phoneID

personID

phoneNumber

emailAddresses

emailID

personID

emailAddress
1

1

∞

∞

Chapter 8 Java Database Connectivity (JDBC) 481

For the preceding query, both parameters are strings that can be set with Prepared-
Statement method setString as follows:

authorBooks.setString(1, "Deitel");
authorBooks.setString(2, "Paul");

Method setString’s first argument represents the number of the parameter being set
and the second argument is the value to set for that parameter. Parameter numbers are
counted from 1, starting with the first question mark (?) in the SQL statement. When the
program executes the preceding PreparedStatement with the parameter values
shown here, the SQL statement passed to the database is

SELECT lastName, firstName, title
FROM authors, titles, authorISBN
WHERE authors.authorID = authorISBN.authorID AND
 titles.ISBN = authorISBN.isbn AND
 lastName = 'Deitel' AND firstName = 'Paul'

It is important to note that method setString escapes String parameter values prop-
erly. For example, if the last name is O’Brien, the statement

authorBooks.setString(1, "O'Brien");

escapes the ' character in O’Brien by replacing it with two single-quote characters.

Performance Tip 8.4
In programs that execute SQL statements multiple times with different parameter values,
PreparedStatements are more efficient than Statements, because Prepared-
Statements maintain the SQL statement in a compiled format. This is a very important
performance enhancement. 8.4

Software Engineering Observation 8.9
PreparedStatements are more flexible than Statements, because Prepared-
Statements support customization of a query with parameter values. With a State-
ment, the program must create a new String containing an SQL statement for each new
query. 8.9

Good Programming Practice 8.2
Use PreparedStatements with parameters for queries that receive String values as
arguments to ensure that the Strings are quoted properly in the SQL statement. 8.0

Interface PreparedStatement provides set methods for each SQL type supported.
It is important to use the set method that is appropriate for the SQL type of the parameter
in the database; otherwise, SQLExceptions can occur when the program attempts to
convert the parameter value to an incorrect type. For a complete list of these set methods,
see the Java API documentation for interface PreparedStatement.
6 Common Programming Error 8.13

Using the incorrect PreparedStatement set method can cause SQLExceptions if an
attempt is made to convert a parameter value to an incorrect data type. 8.13

482 Java Database Connectivity (JDBC) Chapter 8

8.7.2 Transaction Processing
Many database applications require guarantees that a series of database insertions, updates
and deletions executes properly before the applications continue processing the next data-
base operation. For example, when you transfer money electronically between bank ac-
counts, several factors determine if the transaction is successful. You begin by specifying
the source account and the amount you wish to transfer from that account to a destination
account. Next, you specify the destination account. The bank checks the source account to
determine if there are sufficient funds in the account to complete the transfer. If so, the bank
withdraws the specified amount from the source account and, if all goes well, deposits the
money into the destination account to complete the transfer. What happens if the transfer
fails after the bank withdraws the money from the source account? In a proper banking sys-
tem, the bank redeposits the money in the source account. How would you feel if the money
was subtracted from your source account and the bank did not deposit the money in the des-
tination account?

Transaction processing enables a program that interacts with a database to treat a data-
base operation (or set of operations) as a single operation. Such an operation also is known
as an atomic operation or a transaction. At the end of a transaction, a decision can be made
either to commit the transaction or back the transaction. Committing the transaction final-
izes the database operation(s); all insertions, updates and deletions performed as part of the
transaction cannot be reversed without performing a new database operation. Rolling back
the transaction leaves the database in its state prior to the database operation. This is useful
when a portion of a transaction fails to complete properly. In our bank-account-transfer dis-
cussion, the transaction would be rolled back if the deposit could not be made into the des-
tination account.

Java provides transaction processing via methods of interface Connection. Method
setAutoCommit specifies whether each SQL statement commits after it completes (a
true argument) or if several SQL statements should be grouped as a transaction (a false
argument). If the argument to setAutoCommit is false, the program must follow the
last SQL statement in the transaction with a call to Connection method commit (to
commit the changes to the database) or Connection method rollback (to return the
database to its state prior to the transaction). Interface Connection also provides method
getAutoCommit to determine the autocommit state for the Connection.

Software Engineering Observation 8.10
By default, a Connection is in autocommit mode. 8.10

Software Engineering Observation 8.11
Most JDBC drivers support transaction processing. Those that do not are not JDBC compli-
ant drivers. 8.11

8.7.3 Address-Book Application

The address-book application consists of five classes and interfaces: class Address-
BookEntry (Fig. 8.33), interface AddressBookDataAccess (Fig. 8.34), class
DataAccessException (Fig. 8.35), class CloudscapeDataAccess (Fig. 8.36),
class AddressBookEntryFrame (Fig. 8.37) and class AddressBook (Fig. 8.38).

Chapter 8 Java Database Connectivity (JDBC) 483

Class AddressBookEntry (Fig. 8.33) represents the data for an entry in the address
book. The class contains properties for all the fields in the four tables of database
addressbook.

1 // Fig. 8.33: AddressBookEntry.java
2 // JavaBean to represent one address book entry.
3 package com.deitel.advjhtp1.jdbc.addressbook;
4
5 public class AddressBookEntry {
6 private String firstName = "";
7 private String lastName = "";
8 private String address1 = "";
9 private String address2 = "";

10 private String city = "";
11 private String state = "";
12 private String zipcode = "";
13 private String phoneNumber = "";
14 private String emailAddress = "";
15 private int personID;
16 private int addressID;
17 private int phoneID;
18 private int emailID;
19
20 // empty constructor
21 public AddressBookEntry()
22 {
23 }
24
25 // set person's id
26 public AddressBookEntry(int id)
27 {
28 personID = id;
29 }
30
31 // set person's first name
32 public void setFirstName(String first)
33 {
34 firstName = first;
35 }
36
37 // get person's first name
38 public String getFirstName()
39 {
40 return firstName;
41 }
42
43 // set person's last name
44 public void setLastName(String last)
45 {
46 lastName = last;
47 }
48

Fig. 8.33Fig. 8.33Fig. 8.33Fig. 8.33 AddressBookEntry bean represents an address book entry (part 1 of 4).

484 Java Database Connectivity (JDBC) Chapter 8

49 // get person's last name
50 public String getLastName()
51 {
52 return lastName;
53 }
54
55 // set first line of person's address
56 public void setAddress1(String firstLine)
57 {
58 address1 = firstLine;
59 }
60
61 // get first line of person's address
62 public String getAddress1()
63 {
64 return address1;
65 }
66
67 // set second line of person's address
68 public void setAddress2(String secondLine)
69 {
70 address2 = secondLine;
71 }
72
73 // get second line of person's address
74 public String getAddress2()
75 {
76 return address2;
77 }
78
79 // set city in which person lives
80 public void setCity(String personCity)
81 {
82 city = personCity;
83 }
84
85 // get city in which person lives
86 public String getCity()
87 {
88 return city;
89 }
90
91 // set state in which person lives
92 public void setState(String personState)
93 {
94 state = personState;
95 }
96
97 // get state in which person lives
98 public String getState()
99 {
100 return state;
101 }

Fig. 8.33Fig. 8.33Fig. 8.33Fig. 8.33 AddressBookEntry bean represents an address book entry (part 2 of 4).

Chapter 8 Java Database Connectivity (JDBC) 485

102
103 // set person's zip code
104 public void setZipcode(String zip)
105 {
106 zipcode = zip;
107 }
108
109 // get person's zip code
110 public String getZipcode()
111 {
112 return zipcode;
113 }
114
115 // set person's phone number
116 public void setPhoneNumber(String number)
117 {
118 phoneNumber = number;
119 }
120
121 // get person's phone number
122 public String getPhoneNumber()
123 {
124 return phoneNumber;
125 }
126
127 // set person's email address
128 public void setEmailAddress(String email)
129 {
130 emailAddress = email;
131 }
132
133 // get person's email address
134 public String getEmailAddress()
135 {
136 return emailAddress;
137 }
138
139 // get person's ID
140 public int getPersonID()
141 {
142 return personID;
143 }
144
145 // set person's addressID
146 public void setAddressID(int id)
147 {
148 addressID = id;
149 }
150
151 // get person's addressID
152 public int getAddressID()
153 {
154 return addressID;

Fig. 8.33Fig. 8.33Fig. 8.33Fig. 8.33 AddressBookEntry bean represents an address book entry (part 3 of 4).

486 Java Database Connectivity (JDBC) Chapter 8

Interface AddressBookDataAccess (Fig. 8.34) describes methods required by
the address-book application to perform insertions, updates, deletions and searches with the
addressbook database. Any class that implements this interface can be used by the
AddressBook application class to interact with the database. Thus, if you want to modify
the application to use a database other than Cloudscape, you can do so by providing your
own implementation of class AddressBookDataAccess.

155 }
156
157 // set person's phoneID
158 public void setPhoneID(int id)
159 {
160 phoneID = id;
161 }
162
163 // get person's phoneID
164 public int getPhoneID()
165 {
166 return phoneID;
167 }
168
169 // set person's emailID
170 public void setEmailID(int id)
171 {
172 emailID = id;
173 }
174
175 // get person's emailID
176 public int getEmailID()
177 {
178 return emailID;
179 }
180 } // end class AddressBookEntry

1 // Fig. 8.34: AddressBookDataAccess.java
2 // Interface that specifies the methods for inserting,
3 // updating, deleting and finding records.
4 package com.deitel.advjhtp1.jdbc.addressbook;
5
6 // Java core packages
7 import java.sql.*;
8
9 public interface AddressBookDataAccess {

10
11 // Locate specified person by last name. Return
12 // AddressBookEntry containing information.
13 public AddressBookEntry findPerson(String lastName);
14

Fig. 8.34Fig. 8.34Fig. 8.34Fig. 8.34 AddressBookDataAccess interface describes the methods for
accessing the addressbook database (part 1 of 2).

Fig. 8.33Fig. 8.33Fig. 8.33Fig. 8.33 AddressBookEntry bean represents an address book entry (part 4 of 4).

Chapter 8 Java Database Connectivity (JDBC) 487

Interface AddressBookDataAccess contains five methods. Method find-
Person (line 13) receives an String argument containing the last name of the person
for which to search. The method returns the AddressBookEntry containing the
person’s complete information if the person was found in the database; otherwise, the
method returns false. Method savePerson (lines 17–18) receives an Address-
BookEntry argument containing the data to save and updates the corresponding record
in the database. Method newPerson (lines 22–23) receives an AddressBookEntry
argument containing the information for a new person and inserts the person’s information
in the database. Method deletePerson (lines 27–28) receives an Address-
BookEntry argument containing the person to delete from the database and uses the
personID to remove the records that represent the person from all four tables in the data-
base. Method close (line 31) closes the statements and the connection to the database.

Class DataAccessException (Fig. 8.35) extends class Exception. Some of
the methods of interface AddressBookDataAccess throw DataAccessExcep-
tions when there is a problem with the data source connection.

15 // Update information for specified person.
16 // Return boolean indicating success or failure.
17 public boolean savePerson(
18 AddressBookEntry person) throws DataAccessException;
19
20 // Insert a new person. Return boolean indicating
21 // success or failure.
22 public boolean newPerson(AddressBookEntry person)
23 throws DataAccessException;
24
25 // Delete specified person. Return boolean indicating if
26 // success or failure.
27 public boolean deletePerson(
28 AddressBookEntry person) throws DataAccessException;
29
30 // close database connection
31 public void close();
32 } // end interface AddressBookDataAccess

1 // Fig. 8.35 DataAccessException.java
2 // Class AddressBookDataAccess throws DataAccessExceptions
3 // when there is a problem accessing the data source.
4 package com.deitel.advjhtp1.jdbc.addressbook;
5
6 public class DataAccessException extends Exception {
7
8 private Exception exception;
9

Fig. 8.35Fig. 8.35Fig. 8.35Fig. 8.35 DataAccessException is thrown when there is a problem accessing
the data source (part 1 of 2).

Fig. 8.34Fig. 8.34Fig. 8.34Fig. 8.34 AddressBookDataAccess interface describes the methods for
accessing the addressbook database (part 2 of 2).

488 Java Database Connectivity (JDBC) Chapter 8

Class CloudscapeDataAccess (Fig. 8.36) implements interface Address-
BookDataAccess to interact with our addressbook database in Cloudscape. An
object of this class contains a reference to a Connection object (line 13) that maintains
the connection to the database and several references to PreparedStatement objects
(lines 16–37) that represent the interactions with the database for inserting, updating,
deleting and finding records.

10 // constructor with String argument
11 public DataAccessException(String message)
12 {
13 super(message);
14 }
15
16 // constructor with Exception argument
17 public DataAccessException(Exception exception)
18 {
19 exception = this.exception;
20 }
21
22 // printStackTrace of exception from constructor
23 public void printStackTrace()
24 {
25 exception.printStackTrace();
26 }
27 }

1 // Fig. 8.36: CloudscapeDataAccess.java
2 // An implementation of interface AddressBookDataAccess that
3 // performs database operations with PreparedStatements.
4 package com.deitel.advjhtp1.jdbc.addressbook;
5
6 // Java core packages
7 import java.sql.*;
8
9 public class CloudscapeDataAccess

10 implements AddressBookDataAccess {
11
12 // reference to database connection
13 private Connection connection;
14
15 // reference to prepared statement for locating entry
16 private PreparedStatement sqlFind;
17
18 // reference to prepared statement for determining personID
19 private PreparedStatement sqlPersonID;
20

Fig. 8.36Fig. 8.36Fig. 8.36Fig. 8.36 CloudscapeDataAccess implements interface
AddressBookDataAccess to perform the connection to the
database and the database interactions (part 1 of 10).

Fig. 8.35Fig. 8.35Fig. 8.35Fig. 8.35 DataAccessException is thrown when there is a problem accessing
the data source (part 2 of 2).

Chapter 8 Java Database Connectivity (JDBC) 489

21 // references to prepared statements for inserting entry
22 private PreparedStatement sqlInsertName;
23 private PreparedStatement sqlInsertAddress;
24 private PreparedStatement sqlInsertPhone;
25 private PreparedStatement sqlInsertEmail;
26
27 // references to prepared statements for updating entry
28 private PreparedStatement sqlUpdateName;
29 private PreparedStatement sqlUpdateAddress;
30 private PreparedStatement sqlUpdatePhone;
31 private PreparedStatement sqlUpdateEmail;
32
33 // references to prepared statements for updating entry
34 private PreparedStatement sqlDeleteName;
35 private PreparedStatement sqlDeleteAddress;
36 private PreparedStatement sqlDeletePhone;
37 private PreparedStatement sqlDeleteEmail;
38
39 // set up PreparedStatements to access database
40 public CloudscapeDataAccess() throws Exception
41 {
42 // connect to addressbook database
43 connect();
44
45 // locate person
46 sqlFind = connection.prepareStatement(
47 "SELECT names.personID, firstName, lastName, " +
48 "addressID, address1, address2, city, state, " +
49 "zipcode, phoneID, phoneNumber, emailID, " +
50 "emailAddress " +
51 "FROM names, addresses, phoneNumbers, emailAddresses " +
52 "WHERE lastName = ? AND " +
53 "names.personID = addresses.personID AND " +
54 "names.personID = phoneNumbers.personID AND " +
55 "names.personID = emailAddresses.personID");
56
57 // Obtain personID for last person inserted in database.
58 // [This is a Cloudscape-specific database operation.]
59 sqlPersonID = connection.prepareStatement(
60 "VALUES ConnectionInfo.lastAutoincrementValue(" +
61 "'APP', 'NAMES', 'PERSONID')");
62
63 // Insert first and last names in table names.
64 // For referential integrity, this must be performed
65 // before sqlInsertAddress, sqlInsertPhone and
66 // sqlInsertEmail.
67 sqlInsertName = connection.prepareStatement(
68 "INSERT INTO names (firstName, lastName) " +
69 "VALUES (? , ?)");
70

Fig. 8.36Fig. 8.36Fig. 8.36Fig. 8.36 CloudscapeDataAccess implements interface
AddressBookDataAccess to perform the connection to the
database and the database interactions (part 2 of 10).

490 Java Database Connectivity (JDBC) Chapter 8

71 // insert address in table addresses
72 sqlInsertAddress = connection.prepareStatement(
73 "INSERT INTO addresses (personID, address1, " +
74 "address2, city, state, zipcode) " +
75 "VALUES (? , ? , ? , ? , ? , ?)");
76
77 // insert phone number in table phoneNumbers
78 sqlInsertPhone = connection.prepareStatement(
79 "INSERT INTO phoneNumbers " +
80 "(personID, phoneNumber) " +
81 "VALUES (? , ?)");
82
83 // insert email in table emailAddresses
84 sqlInsertEmail = connection.prepareStatement(
85 "INSERT INTO emailAddresses " +
86 "(personID, emailAddress) " +
87 "VALUES (? , ?)");
88
89 // update first and last names in table names
90 sqlUpdateName = connection.prepareStatement(
91 "UPDATE names SET firstName = ?, lastName = ? " +
92 "WHERE personID = ?");
93
94 // update address in table addresses
95 sqlUpdateAddress = connection.prepareStatement(
96 "UPDATE addresses SET address1 = ?, address2 = ?, " +
97 "city = ?, state = ?, zipcode = ? " +
98 "WHERE addressID = ?");
99
100 // update phone number in table phoneNumbers
101 sqlUpdatePhone = connection.prepareStatement(
102 "UPDATE phoneNumbers SET phoneNumber = ? " +
103 "WHERE phoneID = ?");
104
105 // update email in table emailAddresses
106 sqlUpdateEmail = connection.prepareStatement(
107 "UPDATE emailAddresses SET emailAddress = ? " +
108 "WHERE emailID = ?");
109
110 // Delete row from table names. This must be executed
111 // after sqlDeleteAddress, sqlDeletePhone and
112 // sqlDeleteEmail, because of referential integrity.
113 sqlDeleteName = connection.prepareStatement(
114 "DELETE FROM names WHERE personID = ?");
115
116 // delete address from table addresses
117 sqlDeleteAddress = connection.prepareStatement(
118 "DELETE FROM addresses WHERE personID = ?");
119

Fig. 8.36Fig. 8.36Fig. 8.36Fig. 8.36 CloudscapeDataAccess implements interface
AddressBookDataAccess to perform the connection to the
database and the database interactions (part 3 of 10).

Chapter 8 Java Database Connectivity (JDBC) 491

120 // delete phone number from table phoneNumbers
121 sqlDeletePhone = connection.prepareStatement(
122 "DELETE FROM phoneNumbers WHERE personID = ?");
123
124 // delete email address from table emailAddresses
125 sqlDeleteEmail = connection.prepareStatement(
126 "DELETE FROM emailAddresses WHERE personID = ?");
127 } // end CloudscapeDataAccess constructor
128
129 // Obtain a connection to addressbook database. Method may
130 // may throw ClassNotFoundException or SQLException. If so,
131 // exception is passed via this class's constructor back to
132 // the AddressBook application so the application can display
133 // an error message and terminate.
134 private void connect() throws Exception
135 {
136 // Cloudscape database driver class name
137 String driver = "COM.cloudscape.core.RmiJdbcDriver";
138
139 // URL to connect to addressbook database
140 String url = "jdbc:cloudscape:rmi:addressbook";
141
142 // load database driver class
143 Class.forName(driver);
144
145 // connect to database
146 connection = DriverManager.getConnection(url);
147
148 // Require manual commit for transactions. This enables
149 // the program to rollback transactions that do not
150 // complete and commit transactions that complete properly.
151 connection.setAutoCommit(false);
152 }
153
154 // Locate specified person. Method returns AddressBookEntry
155 // containing information.
156 public AddressBookEntry findPerson(String lastName)
157 {
158 try {
159 // set query parameter and execute query
160 sqlFind.setString(1, lastName);
161 ResultSet resultSet = sqlFind.executeQuery();
162
163 // if no records found, return immediately
164 if (!resultSet.next())
165 return null;
166
167 // create new AddressBookEntry
168 AddressBookEntry person = new AddressBookEntry(
169 resultSet.getInt(1));
170

Fig. 8.36Fig. 8.36Fig. 8.36Fig. 8.36 CloudscapeDataAccess implements interface
AddressBookDataAccess to perform the connection to the
database and the database interactions (part 4 of 10).

492 Java Database Connectivity (JDBC) Chapter 8

171 // set AddressBookEntry properties
172 person.setFirstName(resultSet.getString(2));
173 person.setLastName(resultSet.getString(3));
174
175 person.setAddressID(resultSet.getInt(4));
176 person.setAddress1(resultSet.getString(5));
177 person.setAddress2(resultSet.getString(6));
178 person.setCity(resultSet.getString(7));
179 person.setState(resultSet.getString(8));
180 person.setZipcode(resultSet.getString(9));
181
182 person.setPhoneID(resultSet.getInt(10));
183 person.setPhoneNumber(resultSet.getString(11));
184
185 person.setEmailID(resultSet.getInt(12));
186 person.setEmailAddress(resultSet.getString(13));
187
188 // return AddressBookEntry
189 return person;
190 }
191
192 // catch SQLException
193 catch (SQLException sqlException) {
194 return null;
195 }
196 } // end method findPerson
197
198 // Update an entry. Method returns boolean indicating
199 // success or failure.
200 public boolean savePerson(AddressBookEntry person)
201 throws DataAccessException
202 {
203 // update person in database
204 try {
205 int result;
206
207 // update names table
208 sqlUpdateName.setString(1, person.getFirstName());
209 sqlUpdateName.setString(2, person.getLastName());
210 sqlUpdateName.setInt(3, person.getPersonID());
211 result = sqlUpdateName.executeUpdate();
212
213 // if update fails, rollback and discontinue
214 if (result == 0) {
215 connection.rollback(); // rollback update
216 return false; // update unsuccessful
217 }
218
219 // update addresses table
220 sqlUpdateAddress.setString(1, person.getAddress1());
221 sqlUpdateAddress.setString(2, person.getAddress2());

Fig. 8.36Fig. 8.36Fig. 8.36Fig. 8.36 CloudscapeDataAccess implements interface
AddressBookDataAccess to perform the connection to the
database and the database interactions (part 5 of 10).

Chapter 8 Java Database Connectivity (JDBC) 493

222 sqlUpdateAddress.setString(3, person.getCity());
223 sqlUpdateAddress.setString(4, person.getState());
224 sqlUpdateAddress.setString(5, person.getZipcode());
225 sqlUpdateAddress.setInt(6, person.getAddressID());
226 result = sqlUpdateAddress.executeUpdate();
227
228 // if update fails, rollback and discontinue
229 if (result == 0) {
230 connection.rollback(); // rollback update
231 return false; // update unsuccessful
232 }
233
234 // update phoneNumbers table
235 sqlUpdatePhone.setString(1, person.getPhoneNumber());
236 sqlUpdatePhone.setInt(2, person.getPhoneID());
237 result = sqlUpdatePhone.executeUpdate();
238
239 // if update fails, rollback and discontinue
240 if (result == 0) {
241 connection.rollback(); // rollback update
242 return false; // update unsuccessful
243 }
244
245 // update emailAddresses table
246 sqlUpdateEmail.setString(1, person.getEmailAddress());
247 sqlUpdateEmail.setInt(2, person.getEmailID());
248 result = sqlUpdateEmail.executeUpdate();
249
250 // if update fails, rollback and discontinue
251 if (result == 0) {
252 connection.rollback(); // rollback update
253 return false; // update unsuccessful
254 }
255
256 connection.commit(); // commit update
257 return true; // update successful
258 } // end try
259
260 // detect problems updating database
261 catch (SQLException sqlException) {
262
263 // rollback transaction
264 try {
265 connection.rollback(); // rollback update
266 return false; // update unsuccessful
267 }
268
269 // handle exception rolling back transaction
270 catch (SQLException exception) {
271 throw new DataAccessException(exception);
272 }

Fig. 8.36Fig. 8.36Fig. 8.36Fig. 8.36 CloudscapeDataAccess implements interface
AddressBookDataAccess to perform the connection to the
database and the database interactions (part 6 of 10).

494 Java Database Connectivity (JDBC) Chapter 8

273 }
274 } // end method savePerson
275
276 // Insert new entry. Method returns boolean indicating
277 // success or failure.
278 public boolean newPerson(AddressBookEntry person)
279 throws DataAccessException
280 {
281 // insert person in database
282 try {
283 int result;
284
285 // insert first and last name in names table
286 sqlInsertName.setString(1, person.getFirstName());
287 sqlInsertName.setString(2, person.getLastName());
288 result = sqlInsertName.executeUpdate();
289
290 // if insert fails, rollback and discontinue
291 if (result == 0) {
292 connection.rollback(); // rollback insert
293 return false; // insert unsuccessful
294 }
295
296 // determine new personID
297 ResultSet resultPersonID = sqlPersonID.executeQuery();
298
299 if (resultPersonID.next()) {
300 int personID = resultPersonID.getInt(1);
301
302 // insert address in addresses table
303 sqlInsertAddress.setInt(1, personID);
304 sqlInsertAddress.setString(2,
305 person.getAddress1());
306 sqlInsertAddress.setString(3,
307 person.getAddress2());
308 sqlInsertAddress.setString(4,
309 person.getCity());
310 sqlInsertAddress.setString(5,
311 person.getState());
312 sqlInsertAddress.setString(6,
313 person.getZipcode());
314 result = sqlInsertAddress.executeUpdate();
315
316 // if insert fails, rollback and discontinue
317 if (result == 0) {
318 connection.rollback(); // rollback insert
319 return false; // insert unsuccessful
320 }
321
322 // insert phone number in phoneNumbers table
323 sqlInsertPhone.setInt(1, personID);

Fig. 8.36Fig. 8.36Fig. 8.36Fig. 8.36 CloudscapeDataAccess implements interface
AddressBookDataAccess to perform the connection to the
database and the database interactions (part 7 of 10).

Chapter 8 Java Database Connectivity (JDBC) 495

324 sqlInsertPhone.setString(2,
325 person.getPhoneNumber());
326 result = sqlInsertPhone.executeUpdate();
327
328 // if insert fails, rollback and discontinue
329 if (result == 0) {
330 connection.rollback(); // rollback insert
331 return false; // insert unsuccessful
332 }
333
334 // insert email address in emailAddresses table
335 sqlInsertEmail.setInt(1, personID);
336 sqlInsertEmail.setString(2,
337 person.getEmailAddress());
338 result = sqlInsertEmail.executeUpdate();
339
340 // if insert fails, rollback and discontinue
341 if (result == 0) {
342 connection.rollback(); // rollback insert
343 return false; // insert unsuccessful
344 }
345
346 connection.commit(); // commit insert
347 return true; // insert successful
348 }
349
350 else
351 return false;
352 } // end try
353
354 // detect problems updating database
355 catch (SQLException sqlException) {
356 // rollback transaction
357 try {
358 connection.rollback(); // rollback update
359 return false; // update unsuccessful
360 }
361
362 // handle exception rolling back transaction
363 catch (SQLException exception) {
364 throw new DataAccessException(exception);
365 }
366 }
367 } // end method newPerson
368
369 // Delete an entry. Method returns boolean indicating
370 // success or failure.
371 public boolean deletePerson(AddressBookEntry person)
372 throws DataAccessException
373 {

Fig. 8.36Fig. 8.36Fig. 8.36Fig. 8.36 CloudscapeDataAccess implements interface
AddressBookDataAccess to perform the connection to the
database and the database interactions (part 8 of 10).

496 Java Database Connectivity (JDBC) Chapter 8

374 // delete a person from database
375 try {
376 int result;
377
378 // delete address from addresses table
379 sqlDeleteAddress.setInt(1, person.getPersonID());
380 result = sqlDeleteAddress.executeUpdate();
381
382 // if delete fails, rollback and discontinue
383 if (result == 0) {
384 connection.rollback(); // rollback delete
385 return false; // delete unsuccessful
386 }
387
388 // delete phone number from phoneNumbers table
389 sqlDeletePhone.setInt(1, person.getPersonID());
390 result = sqlDeletePhone.executeUpdate();
391
392 // if delete fails, rollback and discontinue
393 if (result == 0) {
394 connection.rollback(); // rollback delete
395 return false; // delete unsuccessful
396 }
397
398 // delete email address from emailAddresses table
399 sqlDeleteEmail.setInt(1, person.getPersonID());
400 result = sqlDeleteEmail.executeUpdate();
401
402 // if delete fails, rollback and discontinue
403 if (result == 0) {
404 connection.rollback(); // rollback delete
405 return false; // delete unsuccessful
406 }
407
408 // delete name from names table
409 sqlDeleteName.setInt(1, person.getPersonID());
410 result = sqlDeleteName.executeUpdate();
411
412 // if delete fails, rollback and discontinue
413 if (result == 0) {
414 connection.rollback(); // rollback delete
415 return false; // delete unsuccessful
416 }
417
418 connection.commit(); // commit delete
419 return true; // delete successful
420 } // end try
421
422 // detect problems updating database
423 catch (SQLException sqlException) {
424 // rollback transaction

Fig. 8.36Fig. 8.36Fig. 8.36Fig. 8.36 CloudscapeDataAccess implements interface
AddressBookDataAccess to perform the connection to the
database and the database interactions (part 9 of 10).

Chapter 8 Java Database Connectivity (JDBC) 497

Line 43 of the CloudscapeDataAccess constructor (lines 40–127) invokes utility
method connect (defined at lines 134–152) to perform the connection to the database.

425 try {
426 connection.rollback(); // rollback update
427 return false; // update unsuccessful
428 }
429
430 // handle exception rolling back transaction
431 catch (SQLException exception) {
432 throw new DataAccessException(exception);
433 }
434 }
435 } // end method deletePerson
436
437 // method to close statements and database connection
438 public void close()
439 {
440 // close database connection
441 try {
442 sqlFind.close();
443 sqlPersonID.close();
444 sqlInsertName.close();
445 sqlInsertAddress.close();
446 sqlInsertPhone.close();
447 sqlInsertEmail.close();
448 sqlUpdateName.close();
449 sqlUpdateAddress.close();
450 sqlUpdatePhone.close();
451 sqlUpdateEmail.close();
452 sqlDeleteName.close();
453 sqlDeleteAddress.close();
454 sqlDeletePhone.close();
455 sqlDeleteEmail.close();
456 connection.close();
457 } // end try
458
459 // detect problems closing statements and connection
460 catch (SQLException sqlException) {
461 sqlException.printStackTrace();
462 }
463 } // end method close
464
465 // Method to clean up database connection. Provided in case
466 // CloudscapeDataAccess object is garbage collected.
467 protected void finalize()
468 {
469 close();
470 }
471 } // end class CloudscapeDataAccess

Fig. 8.36Fig. 8.36Fig. 8.36Fig. 8.36 CloudscapeDataAccess implements interface
AddressBookDataAccess to perform the connection to the
database and the database interactions (part 10 of 10).

498 Java Database Connectivity (JDBC) Chapter 8

Any exceptions that occur in method connect are thrown back to class AddressBook,
so the application can determine an appropriate course of action to take for a failed connec-
tion. If the connection is successful, lines 46–126 invoke Connection method
prepareStatement to create each of the SQL statements that manipulate database
addressbook. These PreparedStatements perform standard SELECT, INSERT,
UPDATE and DELETE operations, as discussed in Section 8.4. The question marks (?) in
each PreparedStatement represent the parameters that must be set before the pro-
gram executes each statement.

PreparedStatement sqlFind (lines 46–55) selects all the data for a person with
a specific lastName from the four tables in database addressbook. Note that the
WHERE clause uses ANDed conditions to ensure that the query retrieves the appropriate data
from each table. These conditions compare the personID fields in each table. The only
records this query returns are those with the specified last name where the personID field
in table names matches the personID field in tables addresses, phoneNumbers
and emailAddresses. [Note: As implemented, this application assumes that all last
names are unique.]

PreparedStatement sqlPersonID (lines 59–61) is a Cloudscape-specific
operation to determine the last autoincrement value for the names table’s personID
field. ConnectionInfo.lastAutoincrementValue is a static Java method
built into Cloudscape. The method receives three SQL string arguments that represent the
name of the database schema ('APP') containing the table, the name of the table con-
taining the autoincrement field ('NAMES') and the name of the autoincrement field
('PERSONID'). Cloudscape requires each of these names to be in all uppercase letters. In
a database, it is possible to group tables into sets of tables with a specific schema name.
SQL statements can qualify table names with schema names to interact with tables from
different schemas in the same SQL statement. Cloudscape places database tables in schema
APP by default.

The remaining PreparedStatements are straightforward. For more detail on the
SQL used in those statements, refer back to Section 8.4.

CloudscapeDataAccess method connect (lines 134–152) establishes the con-
nection to database addressbook with the techniques shown earlier in this chapter. Any
exceptions that occur while attempting to load the database driver and connect to the data-
base are thrown from this method back to the called method (the constructor). The database
connection in this example differs from those in prior examples in that line 151 disables
automatic commitment of transactions. Thus, the program must indicate when a transaction
should be committed to the database or rolled back to maintain the database’s state before
the transaction. This enables CloudscapeDataAccess to execute a series of SQL
statements and commit the results only if all the statements in the series are successful.

CloudscapeDataAccess method findPerson (lines 156–196) receives a
String containing the last name of the person to locate in the database and uses that last
name to set the parameter in PreparedStatement sqlFind (line 160). Line 161 exe-
cutes sqlFind. If a record is found, lines 168–186 set the properties of the Address-
BookEntry, and line 189 returns the AddressBookEntry. If no records are found for
the specified last name, the method returns null.

CloudscapeDataAccess method savePerson (lines 200–274) receives an
AddressBookEntry containing the complete information for a person to update in the

Chapter 8 Java Database Connectivity (JDBC) 499

database and uses that information to set the parameters of PreparedStatements
sqlUpdateName (lines 208–210), sqlUpdateAddress (lines 220–225), sqlUp-
datePhone (lines 235–236) and sqlUpdateEmail (lines 246–247). Note that param-
eter values are set by invoking PreparedStatement set methods for the appropriate
data type. In this example, the ID parameters are all integers and the remaining data are all
strings, so the program uses methods setInt and setString to specify parameters.
After setting the parameters for a particular PreparedStatement, the method calls that
statement’s executeUpdate method (lines 211, 226, 237 and 248), which returns an
integer indicating the number of rows modified by the update. The execution of each Pre-
paredStatement is followed by an if structure that tests the return value of exe-
cuteUpdate. If executeUpdate returns 0, the PreparedStatement did not
update any records. Therefore, savePerson invokes Connection method rollback
to restore the database to its state before the PreparedStatement executed and returns
false to indicate to the AddressBook application that the update failed. If save-
Person reaches line 256, it commits the transaction in the database and returns true to
indicate that the update was successful.

CloudscapeDataAccess method newPerson (lines 278–367) is similar to
method savePerson. Method newPerson receives an AddressBookEntry con-
taining the complete information for a person to insert in the database and uses that infor-
mation to set the parameters of PreparedStatements sqlInsertName (lines 286–
287), sqlInsertAddress (lines 303–313), sqlInsertPhone (lines 323–325) and
sqlInsertEmail (lines 335–337). The primary difference between newPerson and
savePerson is that the entry does not exist in the database yet. To insert rows in tables
addresses, phoneNumbers and emailAddresses, the personID foreign-key
field for each new record must correspond to the personID primary-key field in the
names table. The new personID in table names is not known until the program inserts
the new record in the table. So, after inserting a new record into table names, line 297 exe-
cutes PreparedStatement sqlPersonID to obtain the personID number for the
last new person added to table names. Line 300 places this value in the local variable
personID. Then, the program inserts records in tables addresses, phoneNumbers
and emailAddresses, using the new personID as the value of the foreign-key field
in each table. As in method savePerson, if no records are inserted after a given Pre-
paredStatement executes, method newPerson rolls back the transaction and returns
false to indicate that the insertion failed. Otherwise, method newPerson commits the
transaction and returns true to indicate that the insertion succeeded.

CloudscapeDataAccess method deletePerson (lines 371–435) receives an
AddressBookEntry containing the personID of the person to remove from the data-
base and uses that ID as the parameter value for the PreparedStatements
sqlDeleteName, sqlDeleteAddress, sqlDeletePhone and sqlDelete-
Email. When each PreparedStatement executes, it deletes all records with the spec-
ified personID in the appropriate table. If any part of the delete fails, method
deletePerson rolls back the transaction and returns false to indicate that the deletion
failed. Otherwise, method deletePerson commits the transaction and returns true to
indicate that the deletion succeeded. In the future, if this program supports multiple
addresses, phone numbers and e-mail addresses for each person, this deletePerson
method will delete all the information for a particular entry properly.

500 Java Database Connectivity (JDBC) Chapter 8

CloudscapeDataAccess methods close (lines 438–463) and finalize
(lines 467–470) close the PreparedStatements and database connection. Method
finalize is provided in case an object of class CloudscapeDataAccess gets gar-
bage collected and the client forgot to call close explicitly.

Class AddressBookEntryFrame (Fig. 8.37) is a subclass of JInternalFrame
that enables address-book application users to view or edit the details of an Address-
BookEntry. The AddressBook application class (Fig. 8.38) creates a new Address-
BookEntryFrame to display the results of a search for an entry and to enable the user to
input information for a new entry. AddressBookEntryFrame maintains a reference to
the currently displayed AddressBookEntry and provides set and get methods to
specify an AddressBookEntry to display and to return the currently displayed
AddressBookEntry, respectively. The class also has several private utility methods
for setting up the GUI and accessing the individual JTextFields in the GUI. Objects of
class AddressBookEntryFrame are managed by class AddressBook, which con-
tains a JDesktopPane.

1 // Fig. 8.37: AddressBookEntryFrame.java
2 // A subclass of JInternalFrame customized to display and
3 // an AddressBookEntry or set an AddressBookEntry's properties
4 // based on the current data in the UI.
5 package com.deitel.advjhtp1.jdbc.addressbook;
6
7 // Java core packages
8 import java.util.*;
9 import java.awt.*;

10
11 // Java extension packages
12 import javax.swing.*;
13
14 public class AddressBookEntryFrame extends JInternalFrame {
15
16 // HashMap to store JTextField references for quick access
17 private HashMap fields;
18
19 // current AddressBookEntry set by AddressBook application
20 private AddressBookEntry person;
21
22 // panels to organize GUI
23 private JPanel leftPanel, rightPanel;
24
25 // static integers used to determine new window positions
26 // for cascading windows
27 private static int xOffset = 0, yOffset = 0;
28
29 // static Strings that represent name of each text field.
30 // These are placed on JLabels and used as keys in
31 // HashMap fields.
32 private static final String FIRST_NAME = "First Name",

Fig. 8.37Fig. 8.37Fig. 8.37Fig. 8.37 AddressBookEntryFrame for viewing and editing an
AddressBookEntry (part 1 of 3).

Chapter 8 Java Database Connectivity (JDBC) 501

33 LAST_NAME = "Last Name", ADDRESS1 = "Address 1",
34 ADDRESS2 = "Address 2", CITY = "City", STATE = "State",
35 ZIPCODE = "Zipcode", PHONE = "Phone", EMAIL = "Email";
36
37 // construct GUI
38 public AddressBookEntryFrame()
39 {
40 super("Address Book Entry", true, true);
41
42 fields = new HashMap();
43
44 leftPanel = new JPanel();
45 leftPanel.setLayout(new GridLayout(9, 1, 0, 5));
46 rightPanel = new JPanel();
47 rightPanel.setLayout(new GridLayout(9, 1, 0, 5));
48
49 createRow(FIRST_NAME);
50 createRow(LAST_NAME);
51 createRow(ADDRESS1);
52 createRow(ADDRESS2);
53 createRow(CITY);
54 createRow(STATE);
55 createRow(ZIPCODE);
56 createRow(PHONE);
57 createRow(EMAIL);
58
59 Container container = getContentPane();
60 container.add(leftPanel, BorderLayout.WEST);
61 container.add(rightPanel, BorderLayout.CENTER);
62
63 setBounds(xOffset, yOffset, 300, 300);
64 xOffset = (xOffset + 30) % 300;
65 yOffset = (yOffset + 30) % 300;
66 }
67
68 // set AddressBookEntry then use its properties to
69 // place data in each JTextField
70 public void setAddressBookEntry(AddressBookEntry entry)
71 {
72 person = entry;
73
74 setField(FIRST_NAME, person.getFirstName());
75 setField(LAST_NAME, person.getLastName());
76 setField(ADDRESS1, person.getAddress1());
77 setField(ADDRESS2, person.getAddress2());
78 setField(CITY, person.getCity());
79 setField(STATE, person.getState());
80 setField(ZIPCODE, person.getZipcode());
81 setField(PHONE, person.getPhoneNumber());
82 setField(EMAIL, person.getEmailAddress());
83 }
84

Fig. 8.37Fig. 8.37Fig. 8.37Fig. 8.37 AddressBookEntryFrame for viewing and editing an
AddressBookEntry (part 2 of 3).

502 Java Database Connectivity (JDBC) Chapter 8

85 // store AddressBookEntry data from GUI and return
86 // AddressBookEntry
87 public AddressBookEntry getAddressBookEntry()
88 {
89 person.setFirstName(getField(FIRST_NAME));
90 person.setLastName(getField(LAST_NAME));
91 person.setAddress1(getField(ADDRESS1));
92 person.setAddress2(getField(ADDRESS2));
93 person.setCity(getField(CITY));
94 person.setState(getField(STATE));
95 person.setZipcode(getField(ZIPCODE));
96 person.setPhoneNumber(getField(PHONE));
97 person.setEmailAddress(getField(EMAIL));
98
99 return person;
100 }
101
102 // set text in JTextField by specifying field's
103 // name and value
104 private void setField(String fieldName, String value)
105 {
106 JTextField field =
107 (JTextField) fields.get(fieldName);
108
109 field.setText(value);
110 }
111
112 // get text in JTextField by specifying field's name
113 private String getField(String fieldName)
114 {
115 JTextField field =
116 (JTextField) fields.get(fieldName);
117
118 return field.getText();
119 }
120
121 // utility method used by constructor to create one row in
122 // GUI containing JLabel and JTextField
123 private void createRow(String name)
124 {
125 JLabel label = new JLabel(name, SwingConstants.RIGHT);
126 label.setBorder(
127 BorderFactory.createEmptyBorder(5, 5, 5, 5));
128 leftPanel.add(label);
129
130 JTextField field = new JTextField(30);
131 rightPanel.add(field);
132
133 fields.put(name, field);
134 }
135 } // end class AddressBookEntryFrame

Fig. 8.37Fig. 8.37Fig. 8.37Fig. 8.37 AddressBookEntryFrame for viewing and editing an
AddressBookEntry (part 3 of 3).

Chapter 8 Java Database Connectivity (JDBC) 503

Class AddressBook (Fig. 8.38) is the main application class for the address-book
application. AddressBook uses several of the GUI techniques presented in Chapter 2,
including tool bars, menus, actions and multiple-document interfaces. The discussion of
class AddressBook concentrates on the functionality, rather than on the GUI details.
Screen captures demonstrating the program’s execution appear in Fig. 8.39.

1 // Fig. 8.38: AddressBook.java
2 // An address book database example that allows information to
3 // be inserted, updated and deleted. The example uses
4 // transactions to ensure that the operations complete
5 // successfully.
6 package com.deitel.advjhtp1.jdbc.addressbook;
7
8 // Java core packages
9 import java.awt.*;

10 import java.awt.event.*;
11 import java.sql.*;
12
13 // Java extension packages
14 import javax.swing.*;
15 import javax.swing.event.*;
16
17 public class AddressBook extends JFrame {
18
19 // reference for manipulating multiple document interface
20 private JDesktopPane desktop;
21
22 // reference to database access object
23 private AddressBookDataAccess database;
24
25 // references to Actions
26 Action newAction, saveAction, deleteAction,
27 searchAction, exitAction;
28
29 // set up database connection and GUI
30 public AddressBook()
31 {
32 super("Address Book");
33
34 // create database connection
35 try {
36 database = new CloudscapeDataAccess();
37 }
38
39 // detect problems with database connection
40 catch (Exception exception) {
41 exception.printStackTrace();
42 System.exit(1);
43 }
44

Fig. 8.38Fig. 8.38Fig. 8.38Fig. 8.38 AddressBook application class that enables the user to interact with the
addressbook database (part 1 of 8).

504 Java Database Connectivity (JDBC) Chapter 8

45 // database connection successful, create GUI
46 JToolBar toolBar = new JToolBar();
47 JMenu fileMenu = new JMenu("File");
48 fileMenu.setMnemonic('F');
49
50 // Set up actions for common operations. Private inner
51 // classes encapsulate the processing of each action.
52 newAction = new NewAction();
53 saveAction = new SaveAction();
54 saveAction.setEnabled(false); // disabled by default
55 deleteAction = new DeleteAction();
56 deleteAction.setEnabled(false); // disabled by default
57 searchAction = new SearchAction();
58 exitAction = new ExitAction();
59
60 // add actions to tool bar
61 toolBar.add(newAction);
62 toolBar.add(saveAction);
63 toolBar.add(deleteAction);
64 toolBar.add(new JToolBar.Separator());
65 toolBar.add(searchAction);
66
67 // add actions to File menu
68 fileMenu.add(newAction);
69 fileMenu.add(saveAction);
70 fileMenu.add(deleteAction);
71 fileMenu.addSeparator();
72 fileMenu.add(searchAction);
73 fileMenu.addSeparator();
74 fileMenu.add(exitAction);
75
76 // set up menu bar
77 JMenuBar menuBar = new JMenuBar();
78 menuBar.add(fileMenu);
79 setJMenuBar(menuBar);
80
81 // set up desktop
82 desktop = new JDesktopPane();
83
84 // get the content pane to set up GUI
85 Container c = getContentPane();
86 c.add(toolBar, BorderLayout.NORTH);
87 c.add(desktop, BorderLayout.CENTER);
88
89 // register for windowClosing event in case user
90 // does not select Exit from File menu to terminate
91 // application
92 addWindowListener(
93 new WindowAdapter() {
94 public void windowClosing(WindowEvent event)
95 {
96 shutDown();

Fig. 8.38Fig. 8.38Fig. 8.38Fig. 8.38 AddressBook application class that enables the user to interact with the
addressbook database (part 2 of 8).

Chapter 8 Java Database Connectivity (JDBC) 505

97 }
98 }
99);
100
101 // set window size and display window
102 Toolkit toolkit = getToolkit();
103 Dimension dimension = toolkit.getScreenSize();
104
105 // center window on screen
106 setBounds(100, 100, dimension.width - 200,
107 dimension.height - 200);
108
109 setVisible(true);
110 } // end AddressBook constructor
111
112 // close database connection and terminate program
113 private void shutDown()
114 {
115 database.close(); // close database connection
116 System.exit(0); // terminate program
117 }
118
119 // create a new AddressBookEntryFrame and register listener
120 private AddressBookEntryFrame createAddressBookEntryFrame()
121 {
122 AddressBookEntryFrame frame = new AddressBookEntryFrame();
123 setDefaultCloseOperation(DISPOSE_ON_CLOSE);
124 frame.addInternalFrameListener(
125 new InternalFrameAdapter() {
126
127 // internal frame becomes active frame on desktop
128 public void internalFrameActivated(
129 InternalFrameEvent event)
130 {
131 saveAction.setEnabled(true);
132 deleteAction.setEnabled(true);
133 }
134
135 // internal frame becomes inactive frame on desktop
136 public void internalFrameDeactivated(
137 InternalFrameEvent event)
138 {
139 saveAction.setEnabled(false);
140 deleteAction.setEnabled(false);
141 }
142 } // end InternalFrameAdapter anonymous inner class
143); // end call to addInternalFrameListener
144
145 return frame;
146 } // end method createAddressBookEntryFrame
147

Fig. 8.38Fig. 8.38Fig. 8.38Fig. 8.38 AddressBook application class that enables the user to interact with the
addressbook database (part 3 of 8).

506 Java Database Connectivity (JDBC) Chapter 8

148 // method to launch program execution
149 public static void main(String args[])
150 {
151 new AddressBook();
152 }
153
154 // Private inner class defines action that enables
155 // user to input new entry. User must "Save" entry
156 // after inputting data.
157 private class NewAction extends AbstractAction {
158
159 // set up action's name, icon, descriptions and mnemonic
160 public NewAction()
161 {
162 putValue(NAME, "New");
163 putValue(SMALL_ICON, new ImageIcon(
164 getClass().getResource("images/New24.png")));
165 putValue(SHORT_DESCRIPTION, "New");
166 putValue(LONG_DESCRIPTION,
167 "Add a new address book entry");
168 putValue(MNEMONIC_KEY, new Integer('N'));
169 }
170
171 // display window in which user can input entry
172 public void actionPerformed(ActionEvent e)
173 {
174 // create new internal window
175 AddressBookEntryFrame entryFrame =
176 createAddressBookEntryFrame();
177
178 // set new AddressBookEntry in window
179 entryFrame.setAddressBookEntry(
180 new AddressBookEntry());
181
182 // display window
183 desktop.add(entryFrame);
184 entryFrame.setVisible(true);
185 }
186
187 } // end inner class NewAction
188
189 // inner class defines an action that can save new or
190 // updated entry
191 private class SaveAction extends AbstractAction {
192
193 // set up action's name, icon, descriptions and mnemonic
194 public SaveAction()
195 {
196 putValue(NAME, "Save");
197 putValue(SMALL_ICON, new ImageIcon(
198 getClass().getResource("images/Save24.png")));
199 putValue(SHORT_DESCRIPTION, "Save");

Fig. 8.38Fig. 8.38Fig. 8.38Fig. 8.38 AddressBook application class that enables the user to interact with the
addressbook database (part 4 of 8).

Chapter 8 Java Database Connectivity (JDBC) 507

200 putValue(LONG_DESCRIPTION,
201 "Save an address book entry");
202 putValue(MNEMONIC_KEY, new Integer('S'));
203 }
204
205 // save new entry or update existing entry
206 public void actionPerformed(ActionEvent e)
207 {
208 // get currently active window
209 AddressBookEntryFrame currentFrame =
210 (AddressBookEntryFrame) desktop.getSelectedFrame();
211
212 // obtain AddressBookEntry from window
213 AddressBookEntry person =
214 currentFrame.getAddressBookEntry();
215
216 // insert person in address book
217 try {
218
219 // Get personID. If 0, this is a new entry;
220 // otherwise an update must be performed.
221 int personID = person.getPersonID();
222
223 // determine string for message dialogs
224 String operation =
225 (personID == 0) ? "Insertion" : "Update";
226
227 // insert or update entry
228 if (personID == 0)
229 database.newPerson(person);
230 else
231 database.savePerson(person);
232
233 // display success or failure message
234 JOptionPane.showMessageDialog(desktop,
235 operation + " successful");
236 } // end try
237
238 // detect database errors
239 catch (DataAccessException exception) {
240 JOptionPane.showMessageDialog(desktop, exception,
241 "DataAccessException",
242 JOptionPane.ERROR_MESSAGE);
243 exception.printStackTrace();
244 }
245
246 // close current window and dispose of resources
247 currentFrame.dispose();
248
249 } // end method actionPerformed
250
251 } // end inner class SaveAction

Fig. 8.38Fig. 8.38Fig. 8.38Fig. 8.38 AddressBook application class that enables the user to interact with the
addressbook database (part 5 of 8).

508 Java Database Connectivity (JDBC) Chapter 8

252
253 // inner class defines action that deletes entry
254 private class DeleteAction extends AbstractAction {
255
256 // set up action's name, icon, descriptions and mnemonic
257 public DeleteAction()
258 {
259 putValue(NAME, "Delete");
260 putValue(SMALL_ICON, new ImageIcon(
261 getClass().getResource("images/Delete24.png")));
262 putValue(SHORT_DESCRIPTION, "Delete");
263 putValue(LONG_DESCRIPTION,
264 "Delete an address book entry");
265 putValue(MNEMONIC_KEY, new Integer('D'));
266 }
267
268 // delete entry
269 public void actionPerformed(ActionEvent e)
270 {
271 // get currently active window
272 AddressBookEntryFrame currentFrame =
273 (AddressBookEntryFrame) desktop.getSelectedFrame();
274
275 // get AddressBookEntry from window
276 AddressBookEntry person =
277 currentFrame.getAddressBookEntry();
278
279 // If personID is 0, this is new entry that has not
280 // been inserted. Therefore, delete is not necessary.
281 // Display message and return.
282 if (person.getPersonID() == 0) {
283 JOptionPane.showMessageDialog(desktop,
284 "New entries must be saved before they can be " +
285 "deleted. \nTo cancel a new entry, simply " +
286 "close the window containing the entry");
287 return;
288 }
289
290 // delete person
291 try {
292 database.deletePerson(person);
293
294 // display message indicating success
295 JOptionPane.showMessageDialog(desktop,
296 "Deletion successful");
297 }
298
299 // detect problems deleting person
300 catch (DataAccessException exception) {
301 JOptionPane.showMessageDialog(desktop, exception,
302 "Deletion failed", JOptionPane.ERROR_MESSAGE);

Fig. 8.38Fig. 8.38Fig. 8.38Fig. 8.38 AddressBook application class that enables the user to interact with the
addressbook database (part 6 of 8).

Chapter 8 Java Database Connectivity (JDBC) 509

303 exception.printStackTrace();
304 }
305
306 // close current window and dispose of resources
307 currentFrame.dispose();
308
309 } // end method actionPerformed
310
311 } // end inner class DeleteAction
312
313 // inner class defines action that locates entry
314 private class SearchAction extends AbstractAction {
315
316 // set up action's name, icon, descriptions and mnemonic
317 public SearchAction()
318 {
319 putValue(NAME, "Search");
320 putValue(SMALL_ICON, new ImageIcon(
321 getClass().getResource("images/Find24.png")));
322 putValue(SHORT_DESCRIPTION, "Search");
323 putValue(LONG_DESCRIPTION,
324 "Search for an address book entry");
325 putValue(MNEMONIC_KEY, new Integer('r'));
326 }
327
328 // locate existing entry
329 public void actionPerformed(ActionEvent e)
330 {
331 String lastName =
332 JOptionPane.showInputDialog(desktop,
333 "Enter last name");
334
335 // if last name was input, search for it; otherwise,
336 // do nothing
337 if (lastName != null) {
338
339 // Execute search. If found, AddressBookEntry
340 // is returned containing data.
341 AddressBookEntry person = database.findPerson(
342 lastName);
343
344 if (person != null) {
345
346 // create window to display AddressBookEntry
347 AddressBookEntryFrame entryFrame =
348 createAddressBookEntryFrame();
349
350 // set AddressBookEntry to display
351 entryFrame.setAddressBookEntry(person);
352
353 // display window
354 desktop.add(entryFrame);

Fig. 8.38Fig. 8.38Fig. 8.38Fig. 8.38 AddressBook application class that enables the user to interact with the
addressbook database (part 7 of 8).

510 Java Database Connectivity (JDBC) Chapter 8

Class AddressBook’s constructor (lines 30–110) creates a Cloudscape-
DataAccess object to interact with the database (line 36), builds the GUI (lines 46–87),
registers an event handler for the window-closing event (lines 92–99) and displays the
application window (lines 102–109). As part of building the tool bar and menu for the
application, lines 52–58 of the constructor create instances of five private inner classes
that implement the actions for the GUI—NewAction (lines 157–187), SaveAction
(lines 191–251), DeleteAction (lines 254–311), SearchAction (lines 314–366) and
ExitAction (lines 370–387). Note that the program disables the SaveAction and
DeleteAction by default. These are enabled only if there is an active internal frame on
the desktop.

Each action (except ExitAction) uses a standard icon from the Sun Microsystems
Java Look and Feel Graphics Repository, located at developer.java.sun.com/
developer/techDocs/hi/repository. The first screen capture of Fig. 8.39
describes each of the icons in the GUI.

355 entryFrame.setVisible(true);
356 }
357 else
358 JOptionPane.showMessageDialog(desktop,
359 "Entry with last name \"" + lastName +
360 "\" not found in address book");
361
362 } // end "if (lastName == null)"
363
364 } // end method actionPerformed
365
366 } // end inner class SearchAction
367
368 // inner class defines action that closes connection to
369 // database and terminates program
370 private class ExitAction extends AbstractAction {
371
372 // set up action's name, descriptions and mnemonic
373 public ExitAction()
374 {
375 putValue(NAME, "Exit");
376 putValue(SHORT_DESCRIPTION, "Exit");
377 putValue(LONG_DESCRIPTION, "Terminate the program");
378 putValue(MNEMONIC_KEY, new Integer('x'));
379 }
380
381 // terminate program
382 public void actionPerformed(ActionEvent e)
383 {
384 shutDown(); // close database connection and terminate
385 }
386
387 } // end inner class ExitAction
388 }

Fig. 8.38Fig. 8.38Fig. 8.38Fig. 8.38 AddressBook application class that enables the user to interact with the
addressbook database (part 8 of 8).

Chapter 8 Java Database Connectivity (JDBC) 511

Fig. 8.39Fig. 8.39Fig. 8.39Fig. 8.39 Screen captures of the AddressBook application (part 1 of 3).

New Save Delete Search

512 Java Database Connectivity (JDBC) Chapter 8

Fig. 8.39Fig. 8.39Fig. 8.39Fig. 8.39 Screen captures of the AddressBook application (part 2 of 3).

Chapter 8 Java Database Connectivity (JDBC) 513

Fig. 8.39Fig. 8.39Fig. 8.39Fig. 8.39 Screen captures of the AddressBook application (part 3 of 3).

514 Java Database Connectivity (JDBC) Chapter 8

NewAction (lines 157–187) does not perform any database manipulations. It simply
displays an AddressBookEntryFrame in which the user inputs the information for a
new address book entry. To perform the actual insert into the database, the user must click
the Save button or select Save from the File menu, which invokes the SaveAction.
Class NewAction’s actionPerformed method (lines 172–185) creates a new
AddressBookEntryFrame (lines 175–176), sets a new AddressBookEntry for the
frame (lines 179–180), attaches the frame to the JDesktopPane (line 183) and displays
the frame (line 184).

SaveAction (lines 191–251) determines whether to save a new entry or update an
existing entry based on the personID for the AddressBookEntry in the currently
active internal frame. Method actionPerformed (lines 206–249) obtains a reference to
the active internal frame (lines 209–210) and gets the AddressBookEntry currently
displayed (lines 213–214). Line 221 gets the personID from the AddressBookEntry.
If the personID is 0, the AddressBookEntry represents a new address book entry,
and line 229 invokes the CloudscapeDataAccess object’s newPerson method to
insert a new record in the database. If the personID is not 0, the AddressBookEntry
represents an existing address book entry to update, and line 231 invokes the Cloud-
scapeDataAccess object’s savePerson method to update the record in the database.
Methods newPerson and savePerson each receive an AddressBookEntry as an
argument. Line 247 disposes of the active internal frame after the save operation completes.

DeleteAction (lines 254–311) uses the AddressBookEntry in the currently
active internal frame to remove an entry from the database. Method actionPerformed
(lines 269–309) obtains a reference to the active internal frame (lines 272–273) and gets the
currently displayed AddressBookEntry (lines 276–277). If the personID in the
AddressBookEntry is 0, the entry has not been stored in the database, so action-
Performed displays a message to the user and terminates (lines 282–288). Line 292
invokes the CloudscapeDataAccess object’s deletePerson method, passing the
AddressBookEntry to delete as an argument. Line 307 disposes of the active internal
frame after the delete operation completes.

SearchAction (lines 314–366) searches for an address book entry based on the last
name of the person input by the user. Method actionPerformed (lines 329–364)
obtains the last name for which to search (lines 331–333). If the last name is not null (i.e.,
the user did not click the Cancel button in the input dialog), lines 341–342 create a new
AddressBookEntry reference and invokes database’s findPerson method to
locate the person in the database. If the person exists, findPerson returns the
AddressBookEntry containing the information for that person. Then, actionPer-
formed creates a new AddressBookEntryFrame (lines 347–348), sets the
AddressBookEntry for the frame (line 351), attaches the frame to the JDesktop-
Pane (line 354) and displays the frame (line 355). Otherwise, actionPerformed dis-
plays a message dialog indicating that the record was not found.

In Fig. 8.39, the first screen capture shows the address-book application after the user
clicks the New button to create a new entry. The second screen capture shows the results
after the user inputs the information for the new entry and clicks the Save button to insert
the data in the database. The third and fourth screen captures demonstrate searching for an
entry in the database. The fifth screen capture demonstrates updating the person’s city
information. The sixth screen capture demonstrates deleting the record for the currently dis-

Chapter 8 Java Database Connectivity (JDBC) 515

played entry. [Note: The screen captures do not show that after completing a Save or
Delete operation, the internal frame that displays the entry is removed from the screen.]

8.8 Stored Procedures
Many database management systems can store individual SQL statements or sets of SQL
statements in a database, so that programs accessing that database can invoke them. Such
SQL statements are called stored procedures. JDBC enables programs to invoke stored
procedures using objects that implement interface CallableStatement. Like Pre-
paredStatements, CallableStatements can receive arguments specified with the
methods inherited from interface PreparedStatement. In addition, Call-
ableStatements can specify output parameters in which a stored procedure can place
return values. Interface CallableStatement includes methods to specify which pa-
rameters in a stored procedure are output parameters. The interface also includes methods
to obtain the values of output parameters returned from a stored procedure.

Portability Tip 8.8
Although the syntax for creating stored procedures differs across database management sys-
tems, interface CallableStatement provides a uniform interface for specifying input
and output parameters for stored procedures and for invoking stored procedures. 8.8

Portability Tip 8.9
According to the Java API documentation for interface CallableStatement, for maxi-
mum portability between database systems, programs should process the update counts or
ResultSets returned from a CallableStatement before obtaining the values of any
output parameters. 8.9

8.9 Batch Processing
A series of database updates (e.g., inserts, updates, deletes) can be performed in a batch up-
date to the database. JDBC Statements, PreparedStatements and Call-
ableStatements provide an addBatch method that enables the program to add SQL
statements to a batch for future execution. Each Statement, PreparedStatement or
CallableStatement object maintains its own list of SQL statements to perform in a
batch update. Figure 8.40 describes the batch-processing methods of interfaces State-
ment and PreparedStatement. (CallableStatements inherit the methods of in-
terface PreparedStatement.)

Method Description

public void addBatch(String sql)

Method of interface Statement that receives a String argument
specifying an SQL statement to add to the Statement’s batch for
future execution. This method should not be used with Prepared-
Statements and CallableStatements.

Fig. 8.40Fig. 8.40Fig. 8.40Fig. 8.40 Statement and PreparedStatement methods for batch
updates (part 1 of 2).

516 Java Database Connectivity (JDBC) Chapter 8

Each method in Fig. 8.40 throws a BatchUpdateException (a subclass of
SQLException) if database errors occur while executing any of the SQL statements or
if the particular database management system does not support batch update processing.
Method executeBatch also throws BatchUpdateExceptions if the batch update
contains any SQL statements that return ResultSets.

Common Programming Error 8.14
Batch updates are for use only with SQL statements that do not return ResultSets. Exe-
cuting an SQL statement that returns a ResultSet as part of a batch update causes a
BatchUpdateException. 8.14

After adding statements to a batch update, a program invokes Statement method
executeBatch to execute the SQL statements in the batch. This method performs each
SQL statement and returns an array of int values containing the status of each SQL state-
ment. If the database connection is in autocommit mode, the database commits each state-
ment as it completes execution. Otherwise, the program can determine whether or not to
commit the transaction by inspecting the array of return values and then invoke the Con-
nection’s commit or rollback method as appropriate. Figure 8.41 summarizes the
return values of method executeBatch.

public void addBatch()

Method of interface PreparedStatement that adds the statement
to a batch for future execution. This method should be called after set-
ting the parameters for the PreparedStatement. This version of
addBatch also can be used with CallableStatements.

public void clearBatch()

Method of interface Statement that clears the statement’s batch.

public int[] executeBatch()

Method of interface Statement that executes the statement’s batch.
The method returns an array of int values indicating the status of each
SQL statement in the batch. The order of the values in the array corre-
sponds to the order in which the SQL statements are added to the batch.

Method Description

Fig. 8.40Fig. 8.40Fig. 8.40Fig. 8.40 Statement and PreparedStatement methods for batch
updates (part 2 of 2).

Return value Description

a value greater than
or equal to 0

Indicates successful execution of the SQL statements in the batch update.
The value specifies the actual number of rows updated in the database.

-2 Indicates successful execution of the SQL statements in the batch update and
that the affected number of rows is unknown.

Fig. 8.41Fig. 8.41Fig. 8.41Fig. 8.41 Return values of method executeBatch (part 1 of 2).

Chapter 8 Java Database Connectivity (JDBC) 517

Software Engineering Observation 8.12
Normally, programs disable autocommit mode for a Connection before executing a batch
update. Otherwise, each SQL statement in the batch update is committed individually, which
prevents programs from deciding whether groups of SQL statements should be committed or
rolled back, based on logic in the program. 8.12

8.10 Processing Multiple ResultSets or Update Counts
Some Statements, PreparedStatements and CallableStatements return
multiple ResultSets or update counts. In such cases, programs should use Statement
method execute to execute the SQL statements. After executing SQL statements, meth-
od execute returns a boolean indicating whether the first result is a ResultSet
(true) or an update count (false). Based on execute’s return value, the program in-
vokes method getResultSet or method getUpdateCount to obtain the first result.
The program can obtain subsequent results by calling method getMoreResults.
Figure 8.42 summarizes the methods for processing multiple results. [Note: Each of the
methods in Fig. 8.42 is defined in interface Statement and inherited into interfaces
PreparedStatement and CallableStatement.]

-3 Indicates an SQL statement that failed to execute properly during a batch
update. When the batch update is allowed to complete its processing, the
array returned by getUpdateCounts contains the value -3 for any SQL
statement that failed. When the batch update is not allowed to continue after
an exception, the array returned by getUpdateCounts contains elements
for only the SQL statements that executed successfully before the exception
occurred. When a failure occurs, executeUpdate throws a Batch-
UpdateException. In such cases, the program can catch the exception
and invoke BatchUpdateException method getUpdateCounts to
obtain the array of update counts. Some databases allow a batch update to
continue executing when an exception occurs, while others do not.

Return value Description

Fig. 8.41Fig. 8.41Fig. 8.41Fig. 8.41 Return values of method executeBatch (part 2 of 2).

Method Description

public boolean execute()

Programs use this method to execute SQL statements that can return multiple
ResultSets or update counts. This method returns a boolean indicating
whether the first result is a ResultSet (true) or an update count
(false). Based on the value returned, the program can call getResult-
Set or getUpdateCount to obtain the first result.

Fig. 8.42Fig. 8.42Fig. 8.42Fig. 8.42 Statement methods that enable processing of multiple results
returned by method execute (part 1 of 2).

518 Java Database Connectivity (JDBC) Chapter 8

Software Engineering Observation 8.13
A program has completed processing the results returned by method execute when method
getMoreResults returns false and method getUpdateCount returns -1. 8.13

8.11 Updatable ResultSets
Some JDBC drivers support updatable ResultSets. Such ResultSets enable a pro-
gram to insert, update and delete records using methods of interface ResultSet. If the
JDBC driver supports updatable ResultSets, the program can invoke Connection
method createStatement, prepareStatement or prepareCall and specify
the constant ResultSet.CONCUR_UPDATABLE as the second argument (the first argu-
ment specifies the type of scrolling supported by the ResultSet).

Software Engineering Observation 8.14
Normally, a query that produces an updatable ResultSet must select a table’s primary
key, so that updates can determine the proper records to manipulate in the database. Other-
wise, the query returns a read-only ResultSet. 8.14

Interface ResultSet provides update methods that enable the program to specify
new values for particular columns in the current ResultSet row. In addition, interface
ResultSet provides methods deleteRow, insertRow and updateRow to manipu-
late the ResultSet and the underlying database. Method deleteRow deletes the cur-
rent ResultSet row from the ResultSet and the database. Method updateRow
updates the current row in the ResultSet and the database. Method insertRow inserts
a new row in the ResultSet and the database. Every updatable ResultSet maintains

public boolean getMoreResults()

After obtaining the first result returned from method execute, a program
invokes this method to move to the next result. This method returns a bool-
ean indicating whether the next result is a ResultSet (true) or an
update count (false). Based on the value returned, the program can call
getResultSet or getUpdateCount to obtain the next result.

public ResultSet getResultSet()

Obtains a ResultSet from the results returned by method execute. This
method returns null if the result is not a ResultSet or if there are no
more results.

public int getUpdateCount()

Obtains an update count from the results returned by method execute.
This method returns -1 if the result is not an update count or if there are no
more results.

Method Description

Fig. 8.42Fig. 8.42Fig. 8.42Fig. 8.42 Statement methods that enable processing of multiple results
returned by method execute (part 2 of 2).

Chapter 8 Java Database Connectivity (JDBC) 519

an insert row where the program can build a new record before inserting it in the
ResultSet and the database. Before invoking ResultSet’s update methods to build
the new record, the program must invoke ResultSet method moveToInsertRow.
The ResultSet keeps track of the cursor’s location before that operation. The program
can return to the cursor location to continue processing the ResultSet by invoking
ResultSet method moveToCurrentRow.

8.12 JDBC 2.0 Optional Package javax.sql
In addition to the classes and interfaces of package java.sql, many database vendors
now support the JDBC 2.0 optional package javax.sql. Typically, this package is in-
cluded with the implementation of the Java 2 Enterprise Edition. Some of the key interfaces
in package javax.sql include DataSource, ConnectionPoolDataSource,
PooledConnection and RowSet. Each of these interfaces is explained briefly in the
next several subsections.

8.12.1 DataSource
A DataSource is new way for programs to obtain database connections. Enterprise Java
applications often access information and resources (such as databases) that are external to
those applications. In some cases, resources are distributed across a network. Enterprise ap-
plication components must be able to locate the resources they use. An Enterprise Java ap-
plication container must provide a naming service that implements the Java Naming and
Directory Interface (JNDI) and enables the components executing in that container to per-
form name lookups to locate resources. Typically, DataSources are registered with a
JNDI service that enables a program to locate the DataSource. Chapter 11 demonstrates
our first Enterprise Java application that uses a JNDI service to look up a DataSource
and connect to a database.

8.12.2 Connection Pooling
The process of connecting to a database requires substantial overhead in both time and re-
sources. In a program that performs many separate database connections (such as a server
in a Web-based shopping-cart application), such overhead can become a burden on the pro-
gram. Applications can establish connection pools that maintain many database connec-
tions to eliminate the overhead of connecting to the database while many clients are waiting
for responses in distributed applications. These connection objects can be shared between
the application clients.

Databases that provide full support for the JDBC optional package include implemen-
tations of interfaces ConnectionPoolDataSource and PooledConnection.
Like DataSources ConnectionPoolDataSources typically are registered with a
JNDI service, so that a program can locate them dynamically. After obtaining a reference
to a ConnectionPoolDataSource, a program can invoke its getPooledConnec-
tion method to obtain a PooledConnection object that represents the connection to
the database. PooledConnection method getConnection returns the underlying
Connection object that the program uses to create Statements, PreparedState-
ments and CallableStatements for executing SQL statements.

520 Java Database Connectivity (JDBC) Chapter 8

8.12.3 RowSets
The JDBC optional package introduces a new interface, RowSet, for manipulating tabular
data sources such as ResultSets. RowSets are not implemented as part of the database
driver. Instead, they are implemented as JavaBeans that encapsulate a tabular data source.

Interface RowSet extends interface ResultSet. Thus, a RowSet object has all the
functionality of a ResultSet, including the ability to scroll through the records, insert
new records, update existing records and delete existing records. What makes a RowSet
interesting is that all of these features are supported regardless of whether the ResultSet
implementation provided by a particular database driver supports these features. For
example, a program can create a RowSet based on a ResultSet, disconnect from the
database and allow the program to update the data in the RowSet. Then the RowSet can
connect to the database and update it, based on the changes made to the data in the
RowSet. All of this can be accomplished even if the database driver does not support
updatable ResultSets. RowSets that disconnect from the database and then reconnect
to perform updates are called disconnected RowSets.

Unlike ResultSets, RowSets implementations can be serializable, so they can be
saved locally or transmitted across a network. RowSets also support JavaBean events
(with interface RowSetListener and class RowSetEvent) that enable an application
using a RowSet to be notified when the RowSet cursor moves, a record is inserted, a
record is updated, a record is deleted or the entire set of data in the RowSet changes.
RowSets also allow a program to set parameters to the RowSet’s command string—nor-
mally, the SQL statement that obtains the data.

If you are interested in experimenting with RowSets, Sun Microsystems has three
early access RowSet implementations available at

developer.java.sun.com/developer/earlyAccess/crs

These implementations are CachedRowSet, WebRowSet and JDBCRowSet.
Class CachedRowSet defines a disconnected RowSet that can be serialized.

CachedRowSet provides full support for scrolling through data and updating data—both
particularly useful in applications that require these capabilities even if the database
driver’s ResultSet implementation does not support scrolling through and updating
data. The fact that CachedRowSets are serializable enables them to be sent across a net-
work in a distributed network application.

 Class WebRowSet is a subclass of CachedRowSet that enables RowSet data to be
output as an XML document. Class JDBCRowSet defines a connected RowSet that encap-
sulates a ResultSet to make the ResultSet appear like a JavaBean to the program.

For a tutorial on using the Sun Microsystems, Inc., RowSet implementations, visit

developer.java.sun.com/developer/Books/JDBCTutorial/
 chapter5.html

Also, check your database management system’s documentation to determine whether your
database provides any RowSet implementations.

8.13 Internet and World Wide Web Resources
java.sun.com/products/jdbc
Sun Microsystems, Inc.’s JDBC home page.

Chapter 8 Java Database Connectivity (JDBC) 521

java.sun.com/docs/books/tutorial/jdbc/index.html
The Sun Microsystems, Inc., Java Tutorial’s JDBC track.

www.sql.org
This SQL portal provides links to many resources, including SQL syntax, tips, tutorials, books, mag-
azines, discussion groups, companies with SQL services, SQL consultants and free software.

industry.java.sun.com/products/jdbc/drivers
Sun Microsystems, Inc., search engine for locating JDBC drivers.

java.sun.com/j2se/1.3/docs/guide/jdbc/index.html
Sun Microsystems, Inc.’s JDBC API documentation.

java.sun.com/products/jdbc/faq.html
Sun Microsystems, Inc.’s frequently asked questions on JDBC.

www.jguru.com/jguru/faq/faqpage.jsp?name=JDBC
The JGuru JDBC FAQs.

www.cloudscape.com
This site is Informix’s Cloudscape database home page. Here, you can download the latest version of
Cloudscape and access all of its documentation on line.

java.sun.com/products/jdbc/articles/package2.html
An overview of the JDBC 2.0 optional package API.

developer.java.sun.com/developer/earlyAccess/crs
Early access to the Sun RowSet implementations. [Note: You may need to register at the Java Devel-
oper Connection (developer.java.sun.com/developer/index.html) before down-
loading from this site.]

developer.java.sun.com/developer/Books/JDBCTutorial/chapter5.html
Chapter 5 (RowSet Tutorial) of the book The JDBC 2.0 API Tutorial and Reference, Second Edition.

SUMMARY
• A database is an integrated collection of data. A database management system (DBMS) provides

mechanisms for storing and organizing data.

• Today’s most popular database systems are relational databases.

• A language called Structured Query Language (SQL) is used almost universally with relational da-
tabase systems to perform queries and manipulate data.

• A programming language connects to, and interacts with, relational databases via an interface—
software that facilitates communications between a database management system and a program.

• Java programmers communicate with databases and manipulate their data using the Java Database
Connectivity (JDBC) API. A JDBC driver implements the interface to a particular database.

• A relational database is composed of tables. A row of a table is called a record (or row).

• A primary key is a field that contains unique data that cannot be duplicated in other records.

• Each column of the table represents a different field (or column or attribute).

• The primary key can be composed of more than one column (or field) in the database.

• SQL provides a complete set of commands that enable programmers to define complex queries
that select data from a table. The results of a query are commonly called result sets (or record sets).

• Every record must have a value in the primary-key field, and that value must be unique. This is
known as the Rule of Entity Integrity.

522 Java Database Connectivity (JDBC) Chapter 8

• A one-to-many relationship between tables indicates that a record in one table can have many
records in a separate table.

• A foreign key is a field for which every entry in one table has a unique value in another table and
where the field in the other table is the primary key for that table.

• The foreign key helps maintain the Rule of Referential Integrity: Every foreign key field value
must appear in another table’s primary key field. Foreign keys enable information from multiple
tables to be joined together for analysis purposes. There is a one-to-many relationship between a
primary key and its corresponding foreign key.

• The simplest format of a SELECT query is

SELECT * FROM tableName

where the asterisk (*) indicates that all rows and columns from tableName should be selected and
tableName specifies the table in the database from which the data will be selected.

• To select specific fields from a table, replace the asterisk (*) with a comma-separated list of the
field names to select.

• Programmers process result sets by knowing in advance the order of the fields in the result set.
Specifying the field names to select guarantees that the fields are always returned in the specified
order, even if the actual order of the fields in the database table(s) changes.

• The optional WHERE clause in a SELECT query specifies the selection criteria for the query. The
simplest format of a SELECT query with selection criteria is

SELECT fieldName1, fieldName2, … FROM tableName WHERE criteria

• The WHERE clause condition can contain operators <, >, <=, >=, =, <> and LIKE. Operator LIKE
is used for pattern matching with wildcard characters percent (%) and underscore (_).

• A percent character (%) in a pattern indicates that a string matching the pattern can have zero or
more characters at the percent character’s location in the pattern.

• An underscore (_) in the pattern string indicates a single character at that position in the pattern.

• The results of a query can be arranged in ascending or descending order using the optional ORDER
BY clause. The simplest form of an ORDER BY clause is

SELECT fieldName1, fieldName2, … FROM tableName ORDER BY field ASC
SELECT fieldName1, fieldName2, … FROM tableName ORDER BY field DESC

where ASC specifies ascending order, DESC specifies descending order and field specifies the field
on which the sort is based. The default sorting order is ascending, so ASC is optional.

• Multiple fields can be used for ordering purposes with an ORDER BY clause of the form

ORDER BY field1 sortingOrder, field2 sortingOrder, …

• The WHERE and ORDER BY clauses can be combined in one query.

• A join merges records from two or more tables by testing for matching values in a field that is com-
mon to both tables. The simplest format of a join is

SELECT fieldName1, fieldName2, …
 FROM table1, table2
 WHERE table1.fieldName = table2.fieldName

The query’s WHERE clause specifies the fields from each table that should be compared to deter-
mine which records will be selected. These fields normally represent the primary key in one table
and the corresponding foreign key in the other table.

Chapter 8 Java Database Connectivity (JDBC) 523

• If an SQL statement uses fields with the same name from multiple tables, the field names must be
fully qualified with its table name and a dot operator (.).

• An INSERT INTO statement inserts a new record in a table. The simplest form of this statement is

INSERT INTO tableName (fieldName1, fieldName2, …, fieldNameN)
VALUES (value1, value2, …, valueN)

where tableName is the table in which to insert the record. The tableName is followed by a com-
ma-separated list of field names in parentheses. The list of field names is followed by the SQL key-
word VALUES and a comma-separated list of values in parentheses.

• SQL statements use single quote (') as a delimiter for strings. To specify a string containing a sin-
gle quote in an SQL statement, the single quote must be escaped with another single quote.

• An UPDATE statement modifies data in a table. The simplest form for an UPDATE statement is

UPDATE tableName
SET fieldName1 = value1, fieldName2 = value2, …, fieldNameN = valueN
WHERE criteria

where tableName is the table in which to update a record (or records). The tableName is followed
by keyword SET and a comma-separated list of field name/value pairs in the format
fieldName = value. The WHERE clause criteria determines the record(s) to update.

• A DELETE statement removes data from a table. The simplest form for a DELETE statement is

DELETE FROM tableName WHERE criteria

where tableName is the table from which to delete a record (or records). The WHERE criteria de-
termines which record(s) to delete.

• Package java.sql contains classes and interfaces for manipulating relational databases in Java.

• A program must load the database driver class before the program can connect to the database.

• JDBC supports four categories of drivers: JDBC-to-ODBC bridge driver (Type 1); Native-API,
partly Java driver (Type 2); JDBC-Net pure Java driver (Type 3) and Native-Protocol pure Java
driver (Type 4). Type 3 and 4 drivers are preferred, because they are pure Java solutions.

• An object that implements interface Connection manages the connection between the Java pro-
gram and the database. Connection objects enable programs to create SQL statements that ma-
nipulate databases and to perform transaction processing.

• Method getConnection of class DriverManager attempts to connect to a database speci-
fied by its URL argument. The URL helps the program locate the database. The URL includes the
protocol for communication, the subprotocol for communication and the name of the database.

• Connection method createStatement creates an object of type Statement. The pro-
gram uses the Statement object to submit SQL statements to the database.

• Statement method executeQuery executes a query that selects information from a table or
set of tables and returns an object that implements interface ResultSet containing the query re-
sults. ResultSet methods enable a program to manipulate query results.

• A ResultSetMetaData object describes a ResultSet’s contents. Programs can use meta-
data programmatically to obtain information about the ResultSet column names and types.

• ResultSetMetaData method getColumnCount retrieves the number of columns in the
ResultSet.

• ResultSet method next positions the ResultSet cursor to the next record in the Result-
Set. The cursor keeps track of the current record. Method next returns boolean value true

524 Java Database Connectivity (JDBC) Chapter 8

if it is able to position to the next record; otherwise, the method returns false. This method must
be called to begin processing a ResultSet.

• When processing ResultSets, it is possible to extract each column of the ResultSet as a spe-
cific Java data type. ResultSetMetaData method getColumnType returns a constant inte-
ger from class Types (package java.sql) indicating the type of the data for a specific column.

• ResultSet get methods typically receive as an argument either a column number (as an int)
or a column name (as a String) indicating which column’s value to obtain.

• ResultSet column numbers start at 1.

• Each Statement object can open only one ResultSet object at a time. When a Statement
returns a new ResultSet, the Statement closes the prior ResultSet.

• Connection method createStatement has an overloaded version that takes two argu-
ments: the result set type and the result set concurrency. The result set type specifies whether the
ResultSet’s cursor is able to scroll in both directions or forward only and whether the Re-
sultSet is sensitive to changes. The result set concurrency specifies whether the ResultSet
can be updated with ResultSet’s update methods.

• Some ResultSet implementations do not support scrollable and/or updatable ResultSets.

• TableModel method getColumnClass returns a Class object that represents the superclass
of all objects in a particular column. JTable uses this information to set up the default cell ren-
derer and cell editor for that column in a JTable.

• ResultSetMetaData method getColumnClassName obtains the fully qualified class
name of the specified column.

• TableModel method getColumnCount returns the number of columns in the model’s under-
lying ResultSet.

• ResultSetMetaData method getColumnCount obtains the number of columns in the Re-
sultSet.

• TableModel method getColumnName returns the name of the column in the model’s under-
lying ResultSet.

• ResultSetMetaData method getColumnName obtains the column name from the Re-
sultSet.

• TableModel method getRowCount returns the number of rows in the model’s underlying
ResultSet.

• TableModel method getValueAt returns the Object in a particular row and column of the
model’s underlying ResultSet.

• ResultSet method absolute positions the ResultSet cursor at a specific row.

• AbstractTableModel method fireTableStructureChanged notifies any JTable
using a particular TableModel object as its model that the data in the model has changed.

• Interface PreparedStatement enables an application programmer to create SQL statements
that are maintained in a compiled form that enables the statements to execute more efficiently than
Statement objects. PreparedStatement objects are more flexible than Statement ob-
jects, because they can specify parameters.

• Question marks (?) in the SQL of a PreparedStatement represent placeholders for values
that will be passed as part of the SQL statement to the database. Before the program executes a
PreparedStatement, the program must specify the values of those parameters by using inter-
face PreparedStatement’s set methods.

• Transaction processing enables a program that interacts with a database to treat a database opera-
tion (or set of operations) as a transaction. When the transaction completes, a decision can be made

Chapter 8 Java Database Connectivity (JDBC) 525

to either commit the transaction or roll back the transaction. Java provides transaction processing
via methods of interface Connection.

• Method setAutoCommit specifies whether each SQL statement commits after it completes (a
true argument) or if SQL statements should be grouped as a transaction (a false argument).

• If autocommit is disabled the program must follow the last SQL statement in the transaction with
a call to Connection method commit or rollback.

• JDBC enables programs to invoke stored procedures using objects that implement interface
CallableStatement.

• CallableStatements can receive arguments specified with the methods inherited from inter-
face PreparedStatement. In addition, CallableStatements can specify output param-
eters in which a stored procedure can place return values.

• A series of database updates can be performed in a batch update to the database. JDBC State-
ments, PreparedStatements and CallableStatements provide an addBatch method
that enables the program to add SQL statements to a batch for future execution. Each State-
ment, PreparedStatement or CallableStatement object maintains its own list of SQL
statements to perform in a batch update.

• Statement method executeBatch executes the SQL statements in a batch and returns an ar-
ray of int values containing the status of each SQL statement. If the database connection is in
autocommit mode, the database commits each statement as it completes execution. Otherwise,
Connection methods commit or rollback must be called as appropriate.

• Programs use Statement method execute to execute Statements, PreparedState-
ments and CallableStatements that return multiple ResultSets or update counts.
Method execute returns a boolean indicating whether the first result is a ResultSet
(true) or an update count (false). The program invokes method getResultSet or method
getUpdateCount to obtain the first result and obtains subsequent results with getMore-
Results.

• Some JDBC drivers support updatable ResultSets. Such ResultSets enable a program to
insert, update and delete records using methods of interface ResultSet.

• Interface ResultSet provides update methods that enable the program to specify new values for
particular columns in the current ResultSet row.

• Interface ResultSet provides methods deleteRow, insertRow and updateRow to ma-
nipulate the ResultSet and the underlying database.

• Every updatable ResultSet maintains an insert row where the program can build a new record
before inserting it into the ResultSet and the database. Before invoking ResultSet’s update
methods to build the new record, the program must invoke ResultSet method moveToIn-
sertRow. The ResultSet keeps track of the cursor’s location before that operation and can
return to the cursor location to continue processing the ResultSet by invoking ResultSet
method moveToCurrentRow.

• A DataSource is new way for programs to obtain database connections that access databases
which are external to those applications.

• Applications can establish connection pools that maintain many database connections. Databases
that provide full support for the JDBC optional package include implementations of interfaces
ConnectionPoolDataSource and PooledConnection for this purpose.

• The JDBC optional package introduces a new interface, RowSet, for manipulating tabular data
sources such as ResultSets. RowSets are not implemented as part of the database driver. In-
stead, they are implemented as JavaBeans that encapsulate a tabular data source.

526 Java Database Connectivity (JDBC) Chapter 8

• Interface RowSet extends interface ResultSet. Thus, a RowSet object has all the functional-
ity of a ResultSet, including the ability to scroll through the records, insert new records, update
existing records and delete existing records.

• Unlike ResultSets, RowSets implementations can be serializable so they can be saved locally
or transmitted across a network.

• RowSets support JavaBean events that enable an application using a RowSet to be notified when
the RowSet cursor is moved, a record is inserted, a record is updated, a record is deleted or the
entire set of data in the RowSet changes.

• Class CachedRowSet defines a disconnected RowSet that can be serialized. CachedRowSet
provides full support for scrolling through data and updating data.

• Class WebRowSet is a subclass of CachedRowSet that enables RowSet data to be output as
an XML document.

• Class JDBCRowSet defines a connected RowSet that encapsulates a ResultSet to make the
ResultSet appear like a JavaBean to the program.

TERMINOLOGY
% SQL wildcard character executeBatch method of Statement
_ SQL wildcard character executeQuery method of Statement
absolute method of ResultSet executeUpdate method of Statement
AbstractTableModel class field
addBatch method of PreparedStatement fireTableStructureChanged method of

 AbstractTableModeladdBatch method of Statement
addTableModelListener method of
 TableModel

foreign key
getAutoCommit method of Connection

autocommit state getColumnClass method of TableModel
batch processing getColumnClassName method of

 ResultSetMetaDataBatchUpdateException class
CachedRowSet class getColumnCount method of

 ResultSetMetaData CallableStatement interface
clearBatch method of Statement getColumnCount method of TableModel
close method of Connection getColumnName method of

 ResultSetMetaDataclose method of Statement
Cloudscape database getColumnName method of TableModel
COM.cloudscape.core.RmiJdbcDriver getColumnType method of

 ResultSetMetaDatacommit a transaction
commit method of Connection getConnection method of DriverManager
connect to a database getConnection method of

 PooledConnectionConnection interface
connection pool getMetaData method of ResultSet
ConnectionPoolDataSource interface getMoreResults method of Statement
createStatement method of Connection getObject method of ResultSet
database getPooledConnection method of

 ConnectionPoolDataSourcedatabase driver
DataSource interface getResultSet method of Statement
DELETE FROM SQL statement getRow method of ResultSet
deleteRow method of ResultSet getRowCount method of TableModel
disconnected RowSet getUpdateCount method of Statement
DriverManager class getUpdateCounts method of

 BatchUpdateExceptionexecute method of Statement

Chapter 8 Java Database Connectivity (JDBC) 527

SELF-REVIEW EXERCISES
8.1 Fill in the blanks in each of the following statements:

a) The most popular database query language is .
b) A table in a database consists of and .
c) Tables are manipulated in Java as objects.
d) The uniquely identifies each record in a table.
e) SQL keyword is followed by the selection criteria that specify the records to

select in a query.
f) SQL keywords specify the order in which records are sorted in a query.
g) Selecting data from multiple database tables is called the data.
h) A is an integrated collection of data that is centrally controlled.
i) A is a field in a table for which every entry has a unique value in another

table and where the field in the other table is the primary key for that table.
j) Package contains classes and interfaces for manipulating relational databas-

es in Java.

getValueAt method of TableModel ResultSet types
INSERT INTO SQL statement ResultSetMetaData interface
insertRow method of ResultSet roll back a transaction
Java Database Connectivity (JDBC) rollBack method of Connection
Java Look and Feel Graphics Repository RowSet command string
Java Naming and Directory Interface (JNDI) RowSet interface
java.sql package RowSetEvent class
javax.sql package RowSetListener interface
javax.swing.table package Rule of Entity Integrity
JDBC driver Rule of Referential Integrity
jdbc:cloudscape:rmi:books SELECT SQL statement
JdbcOdbcDriver selection criteria
JDBCRowSet class setAutoCommit method of Connection
last method of ResultSet setString method of PreparedStatement
metadata SQL (Structured Query Language)
moveToCurrentRow method of ResultSet SQL script
moveToInsertRow method of ResultSet SQLException class
next method of ResultSet Statement interface
one-to-many relationship stored procedure
ORDER BY clause of an SQL statement table column
ordering records table row
pattern matching TableModel interface
PooledConnection interface TableModelEvent class
PreparedStatement interface transaction processing
prepareStatement method of Connection Type 1 (JDBC-to-ODBC bridge) driver
primary key Type 2 (Native-API, partly Java) driver
query a database Type 3 (JDBC-Net pure Java) driver
record Type 4 (Native-Protocol pure Java) driver
record set Types class
relational database updatable ResultSet
removeTableModelListener method of
 TableModel

UPDATE operation
updateRow method of ResultSet

result set WebRowSet class
ResultSet interface WHERE clause of an SQL statement

528 Java Database Connectivity (JDBC) Chapter 8

k) Interface helps manage the connection between the Java program and the da-
tabase.

l) A object is used to submit a query to a database.

ANSWERS TO SELF-REVIEW EXERCISES
8.1 a) SQL. b) rows, columns. c) ResultSet. d) primary key. e) WHERE. f) ORDER BY.
g) joining. h) database. i) foreign key. j) java.sql. k) Connection. l) Statement.

EXERCISES
8.2 Using the techniques shown in this chapter, define a complete query application for the
books database. Provide a series of predefined queries, with an appropriate name for each query,
displayed in a JComboBox. Also allow users to supply their own queries and add them to the
JComboBox. Provide the following predefined queries:

a) Select all authors from the Authors table.
b) Select all publishers from the Publishers table.
c) Select a specific author and list all books for that author. Include the title, year and ISBN

number. Order the information alphabetically by the author’s last name and first name.
d) Select a specific publisher and list all books published by that publisher. Include the title,

year and ISBN number. Order the information alphabetically by title.
e) Provide any other queries you feel are appropriate.

8.3 Modify Exercise 8.2 to define a complete database manipulation application for the books
database. In addition to the querying, the user should be able to edit existing data and add new data
to the database (obeying referential and entity integrity constraints). Allow the user to edit the data-
base in the following ways:

a) Add a new author.
b) Edit the existing information for an author.
c) Add a new title for an author. (Remember that the book must have an entry in the

AuthorISBN table.) Be sure to specify the publisher of the title.
d) Add a new publisher.
e) Edit the existing information for a publisher.
f) For each of the preceding database manipulations, design an appropriate GUI to allow

the user to perform the data manipulation.

8.4 Modify the Search capability in the address book example of Fig. 8.33–Fig. 8.38 to allow
the user to scroll through the ResultSet in case there is more than one person with the specified
last name in the addressbook database. Provide an appropriate GUI.

8.5 Modify the address book example of Fig. 8.33–Fig. 8.38 to enable each address book entry to
have multiple addresses, phone numbers and e-mail addresses. The user of the program should be able
to view multiple addresses, phone numbers and e-mail addresses. The user also should be able to add,
update or delete individual addresses, phone numbers and e-mail addresses. [Note: This exercise is large
and requires substantial modifications to the original classes in the address book example.]

BIBLIOGRAPHY
Ashmore, D. C. “Best Practices for JDBC Programming.” Java Developers Journal, 5: no. 4 (2000):

42–54.

Blaha, M. R., W. J. Premerlani and J. E. Rumbaugh. “Relational Database Design Using an Object-
Oriented Methodology.” Communications of the ACM, 31: no. 4 (1988): 414–427.

Brunner, R. J. “The Evolution of Connecting.” Java Developers Journal, 5: no. 10 (2000): 24–26.

Chapter 8 Java Database Connectivity (JDBC) 529

Brunner, R. J. “After the Connection.” Java Developers Journal, 5: no. 11 (2000): 42–46.

Callahan, T. “So You Want a Stand-Alone Database for Java.” Java Developers Journal, 3: no. 12
(1998): 28–36.

Codd, E. F. “A Relational Model of Data for Large Shared Data Banks.” Communications of the
ACM, June 1970.

Codd, E. F. “Further Normalization of the Data Base Relational Model.” Courant Computer Science
Symposia, Vol. 6, Data Base Systems. Upper Saddle River, NJ: Prentice Hall, 1972.

Codd, E. F. “Fatal Flaws in SQL.” Datamation, 34: no. 16 (1988): 45–48.

Cooper, J. W. “Making Databases Easier for Your Users.” Java Pro, 4: no. 10 (2000): 47–54.

Date, C. J. An Introduction to Database Systems, Seventh Edition. Reading, MA: Addison Wesley,
2000.

Deitel, H. M. Operating Systems, Second Edition. Reading, MA: Addison Wesley, 1990.

Duguay, C. “Electronic Mail Merge.” Java Pro, Winter 1999/2000, 22–32.

Ergul, S. “Transaction Processing with Java.” Java Report, January 2001, 30–36.

Fisher, M. “JDBC Database Access,” (a trail in The Java Tutorial), <java.sun.com/docs/
books/tutorial/jdbc/index.html>.

Harrison, G., “Browsing the JDBC API,” Java Developers Journal, 3: no. 2 (1998): 44–52.

Jasnowski, M. “Persistence Frameworks,” Java Developers Journal, 5: no. 11 (2000): 82–86.

“JDBC API Documentation,” <java.sun.com/j2se/1.3/docs/guide/jdbc/
index.html>.

Jordan, D. “An Overview of Sun’s Java Data Objects Specification,” Java Pro, 4: no. 6 (2000): 102–
108.

Khanna, P. “Managing Object Persistence with JDBC,” Java Pro, 4: no. 5 (2000): 28–33.

Reese, G. Database Programming with JDBC and Java, Second Edition. Cambridge, MA: O’Reilly,
2001.

Spell, B. “Create Enterprise Applications with JDBC 2.0,” Java Pro, 4: no. 4 (2000): 40–44.

Stonebraker, M. “Operating System Support for Database Management,” Communications of the
ACM, 24: no. 7 (1981): 412–418.

Taylor, A. JDBC Developer’s Resource: Database Programming on the Internet. Upper Saddle
River, NJ: Prentice Hall, 1999.

Thilmany, C. “Applying Patterns to JDBC Development,” Java Developers Journal, 5: no. 6 (2000):
80–90.

Venugopal, S. 2000. “Cross-Database Portability with JDBC, Java Developers Journal, 5: no. 1
(2000): 58–62.

White, S., M. Fisher, R. Cattell, G. Hamilton and M. Hapner. JDBC API Tutorial and Reference,
Second Edition. Boston, MA: Addison Wesley, 1999.

Winston, A. “A Distributed Database Primer,” UNIX World, April 1988, 54–63.

9
Servlets

Objectives
• To execute servlets with the Apache Tomcat server.
• To be able to respond to HTTP requests from an
HttpServlet.

• To be able to redirect requests to static and dynamic
Web resources.

• To be able to maintain session information with
cookies and HttpSession objects.

• To be able to access a database from a servlet.
A fair request should be followed by the deed in silence.
Dante Alighieri

The longest part of the journey is said to be the passing of the
gate.
Marcus Terentius Varro

If nominated, I will not accept; if elected, I will not serve.
General William T. Sherman

Me want cookie!
The Cookie Monster, Sesame Street

When to the sessions of sweet silent thought
I summon up remembrance of things past, …
William Shakespeare

Friends share all things.
Pythagorus

If at first you don’t succeed, destroy all evidence that you tried.
Newt Heilscher

Chapter 9 Servlets 531

9.1 Introduction
There is much excitement over the Internet and the World Wide Web. The Internet ties the
“information world” together. The World Wide Web makes the Internet easy to use and
gives it the flair and sizzle of multimedia. Organizations see the Internet and the Web as
crucial to their information systems strategies. Java provides a number of built-in network-
ing capabilities that make it easy to develop Internet-based and Web-based applications.
Not only can Java specify parallelism through multithreading, but it can enable programs
to search the world for information and to collaborate with programs running on other com-
puters internationally, nationally or just within an organization. Java can even enable ap-
plets and applications running on the same computer to communicate with one another,
subject to security constraints.

Networking is a massive and complex topic. Computer science and computer engi-
neering students typically take a full-semester, upper-level course in computer networking
and continue with further study at the graduate level. Java provides a rich complement of
networking capabilities and will likely be used as an implementation vehicle in computer
networking courses. In Advanced Java 2 Platform How to Program we introduce several
Java networking concepts and capabilities.

Java’s networking capabilities are grouped into several packages. The fundamental
networking capabilities are defined by classes and interfaces of package java.net,

Outline

9.1 Introduction
9.2 Servlet Overview and Architecture

9.2.1 Interface Servlet and the Servlet Life Cycle
9.2.2 HttpServlet Class
9.2.3 HttpServletRequest Interface
9.2.4 HttpServletResponse Interface

9.3 Handling HTTP get Requests
9.3.1 Setting Up the Apache Tomcat Server
9.3.2 Deploying a Web Application

9.4 Handling HTTP get Requests Containing Data
9.5 Handling HTTP post Requests
9.6 Redirecting Requests to Other Resources
9.7 Session Tracking

9.7.1 Cookies
9.7.2 Session Tracking with HttpSession

9.8 Multi-tier Applications: Using JDBC from a Servlet
9.9 HttpUtils Class
9.10 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

532 Servlets Chapter 9

through which Java offers socket-based communications that enable applications to view
networking as streams of data—a program can read from a socket or write to a socket as
simply as reading from a file or writing to a file. The classes and interfaces of package
java.net also offer packet-based communications that enable individual packets of
information to be transmitted—commonly used to transmit audio and video over the
Internet. Our book Java How to Program, Fourth Edition shows how to create and manip-
ulate sockets and how to communicate with packets of data.

Higher-level views of networking are provided by classes and interfaces in the
java.rmi packages (five packages) for Remote Method Invocation (RMI) and org.omg
packages (seven packages) for Common Object Request Broker Architecture (CORBA) that
are part of the Java 2 API. The RMI packages allow Java objects running on separate Java
Virtual Machines (normally on separate computers) to communicate via remote method calls.
Such method calls appear to be to an object in the same program, but actually have built-in
networking (based on the capabilities of package java.net) that communicates the method
calls to another object on a separate computer. The CORBA packages provide similar func-
tionality to the RMI packages. A key difference between RMI and CORBA is that RMI can
only be used between Java objects, whereas CORBA can be used between any two applica-
tions that understand CORBA—including applications written in other programming lan-
guages. In Chapter 13 of Advanced Java 2 Platform How to Program, we present Java’s RMI
capabilities. Chapters 26–27 of Advanced Java 2 Platform How to Program discuss the basic
CORBA concepts and present a case study that implements a distributed system in CORBA.

Our discussion of networking over the next two chapters focuses on both sides of a
client-server relationship. The client requests that some action be performed and the server
performs the action and responds to the client. This request-response model of communica-
tion is the foundation for the highest-level views of networking in Java—servlets and Java-
Server Pages (JSP). A servlet extends the functionality of a server. Packages
javax.servlet and javax.servlet.http provide the classes and interfaces to
define servlets. Packages javax.servlet.jsp and javax.servlet.jsp.tagext
provide the classes and interfaces that extend the servlet capabilities for JavaServer Pages.
Using special syntax, JSP allows Web-page implementors to create pages that use encapsu-
lated Java functionality and even to write scriptlets of actual Java code directly in the page.

A common implementation of the request-response model is between World Wide
Web browsers and World Wide Web servers. When a user selects a Web site to browse
through their browser (the client application), a request is sent to the appropriate Web
server (the server application). The server normally responds to the client by sending the
appropriate XHTML Web page. Servlets are effective for developing Web-based solutions
that help provide secure access to a Web site, interact with databases on behalf of a client,
dynamically generate custom XHTML documents to be displayed by browsers and main-
tain unique session information for each client.

Software Engineering Observation 9.1
Although servlets typically are used in distributed Web applications, not all servlets are re-
quired to enhance the functionality of a Web server. 9.1

This chapter begins our networking discussions with servlets that enhance the func-
tionality of World Wide Web servers—the most common form of servlet today. Chapter 10
discusses JSPs, which are translated into servlets. JSPs are a convenient and powerful way

Chapter 9 Servlets 533

to implement the request/response mechanism of the Web without getting into the lower-
level details of servlets. Together, servlets and JSPs form the Web tier of the Java 2 Enter-
prise Edition (J2EE).

Many developers feel that servlets are the right solution for database-intensive appli-
cations that communicate with so-called thin clients—applications that require minimal
client-side support. The server is responsible for database access. Clients connect to the
server using standard protocols available on most client platforms. Thus, the presentation-
logic code for generating dynamic content can be written once and reside on the server for
access by clients, to allow programmers to create efficient thin clients.

In this chapter, our servlet examples demonstrate the Web’s request/response mecha-
nism (primarily with get and post requests), session-tracking capabilities, redirecting
requests to other resources and interacting with databases through JDBC. We placed this
chapter after our discussion of JDBC and databases intentionally, so that we can build
multi-tier, client–server applications that access databases. In Chapter 11, we build a book-
store Web application, using XML technologies (Appendices A-D), JDBC technology
from Chapter 8, the servlet technology from this chapter and the JSP technology from
Chapter 10. We present additional servlet capabilities in the case study.

Sun Microsystems, through the Java Community Process, is responsible for the
development of the servlet and JavaServer Pages specifications. The reference implemen-
tation of both these standards is under development by the Apache Software Foundation
(www.apache.org) as part of the Jakarta Project (jakarta.apache.org). As
stated on the Jakarta Project’s home page, “The goal of the Jakarta Project is to provide
commercial-quality server solutions based on the Java Platform that are developed in an
open and cooperative fashion.” There are many subprojects under the Jakarta project to
help commercial server-side developers. The servlet and JSP part of the Jakarta Project is
called Tomcat. This is the official reference implementation of the JSP and servlet stan-
dards. We use Tomcat to demonstrate the servlets in this chapter. The most recent imple-
mentation of Tomcat at the time of this writing was version 3.2.3. For your convenience,
Tomcat 3.2.3 is included on the CD that accompanies Advanced Java 2 Platform How to
Program. However, the most recent version always can be downloaded from the Apache
Group’s Web site. To execute the servlets in this chapter, you must install Tomcat or an
equivalent servlet and JavaServer Pages implementation. We discuss the set up and con-
figuration of Tomcat in Section 9.3.1 and Section 9.3.2 after we introduce our first
example.

In our directions for testing each of the examples in this chapter, we indicate that you
should copy files into specific Tomcat directories. All the example files for this chapter are
located on the CD that accompanies this book and on our Web site www.deitel.com.

[Note: At the end of Section 9.10, we provide a list of Internet specifications (as dis-
cussed in the Servlet 2.2 Specification) for technologies related to servlet development.
Each is listed with its RFC (Request for Comments) number. We provide the URL of a Web
site that allows you to locate each specification for your review.]

9.2 Servlet Overview and Architecture
In this section, we overview Java servlet technology. We discuss at a high level the servlet-
related classes, methods and exceptions. The next several sections present live-code exam-
ples in which we build multi-tier client–server systems using servlet and JDBC technology.

534 Servlets Chapter 9

The Internet offers many protocols. The HTTP (Hypertext Transfer Protocol) that
forms the basis of the World Wide Web uses URIs (Uniform Resource Identifiers— some-
times called Universal Resource Locators or URLs) to locate resources on the Internet.
Common URIs represent files or directories and can represent complex tasks such as data-
base lookups and Internet searches. For more information on URL formats, visit

www.w3.org/Addressing

For more information on the HTTP protocol, visit

www.w3.org/Protocols/HTTP

For information on a variety of World Wide Web topics, visit

www.w3.org

JavaServer Pages technology is an extension of servlet technology. Normally, JSPs are
used primarily when most of the content sent to the client is static text and markup, and only
a small portion of the content is generated dynamically with Java code. Normally, servlets
are used when a small portion of the content sent to the client is static text or markup. In
fact, some servlets do not produce content. Rather, they perform a task on behalf of the
client, then invoke other servlets or JSPs to provide a response. Note that in most cases
servlet and JSP technologies are interchangeable. The server that executes a servlet often
is referred to as the servlet container or servlet engine.

Servlets and JavaServer Pages have become so popular that they are now supported
directly or with third-party plug-ins by most major Web servers and application servers,
including the Netscape iPlanet Application Server, Microsoft’s Internet Information
Server (IIS), the Apache HTTP Server, BEA’s WebLogic application server, IBM’s Web-
Sphere application server, the World Wide Web Consortium’s Jigsaw Web server, and
many more.

The servlets in this chapter demonstrate communication between clients and servers
via the HTTP protocol. A client sends an HTTP request to the server or servlet container.
The server or servlet container receives the request and directs it to be processed by the
appropriate servlet. The servlet does its processing, which may include interacting with a
database or other server-side components such as other servlets, JSPs or Enterprise Java-
Beans (Chapter 16). The servlet returns its results to the client—normally in the form of an
HTML, XHTML or XML document to display in a browser, but other data formats, such
as images and binary data, can be returned.

9.2.1 Interface Servlet and the Servlet Life Cycle

Architecturally, all servlets must implement the Servlet interface. As with many key ap-
plet methods, the methods of interface Servlet are invoked automatically (by the server
on which the servlet is installed, also known as the servlet container). This interface defines
five methods described in Fig. 9.1.

Software Engineering Observation 9.2
All servlets must implement the Servlet interface of package javax.servlet. 9.2

Chapter 9 Servlets 535

A servlet’s life cycle begins when the servlet container loads the servlet into
memory—normally, in response to the first request that the servlet receives. Before the
servlet can handle that request, the servlet container invokes the servlet’s init method.
After init completes execution, the servlet can respond to its first request. All requests
are handled by a servlet’s service method, which receives the request, processes the
request and sends a response to the client. During a servlet’s life cycle, method service
is called once per request. Each new request typically results in a new thread of execution
(created by the servlet container) in which method service executes. When the servlet
container terminates the servlet, the servlet’s destroy method is called to release servlet
resources.

Performance Tip 9.1
Starting a new thread for each request is more efficient than starting an entirely new process,
as is the case in some other server-side technologies such as CGI. [Note: Like servlets, Fast
CGI eliminates the overhead of starting a new process for each request.] 9.1

The servlet packages define two abstract classes that implement the interface
Servlet—class GenericServlet (from the package javax.servlet) and class
HttpServlet (from the package javax.servlet.http). These classes provide
default implementations of all the Servlet methods. Most servlets extend either
GenericServlet or HttpServlet and override some or all of their methods.

Method Description

void init(ServletConfig config)

This method is automatically called once during a servlet’s execution cycle
to initialize the servlet. The ServletConfig argument is supplied by the
servlet container that executes the servlet.

ServletConfig getServletConfig()

This method returns a reference to an object that implements interface
ServletConfig. This object provides access to the servlet’s configura-
tion information such as servlet initialization parameters and the servlet’s
ServletContext, which provides the servlet with access to its environ-
ment (i.e., the servlet container in which the servlet executes).

String getServletInfo()

This method is defined by a servlet programmer to return a String contain-
ing servlet information such as the servlet’s author and version.

void service(ServletRequest request, ServletResponse response)

The servlet container calls this method to respond to a client request to the
servlet.

void destroy()

This “cleanup” method is called when a servlet is terminated by its servlet
container. Resources used by the servlet, such as an open file or an open
database connection, should be deallocated here.

Fig. 9.1Fig. 9.1Fig. 9.1Fig. 9.1 Methods of interface Servlet (package javax.servlet).

536 Servlets Chapter 9

The examples in this chapter all extend class HttpServlet, which defines enhanced
processing capabilities for servlets that extend the functionality of a Web server. The key
method in every servlet is service, which receives both a ServletRequest object
and a ServletResponse object. These objects provide access to input and output
streams that allow the servlet to read data from the client and send data to the client. These
streams can be either byte based or character based. If problems occur during the execution
of a servlet, either ServletExceptions or IOExceptions are thrown to indicate the
problem.

Software Engineering Observation 9.3
Servlets can implement tagging interface javax.servlet.SingleThreadModel to
indicate that only one thread of execution may enter method service on a particular serv-
let instance at a time. When a servlet implements SingleThreadModel, the servlet con-
tainer can create multiple instances of the servlet to handle multiple requests to the servlet
in parallel. In this case, you may need to provide synchronized access to shared resources
used by method service. 9.3

9.2.2 HttpServlet Class

Web-based servlets typically extend class HttpServlet. Class HttpServlet over-
rides method service to distinguish between the typical requests received from a client
Web browser. The two most common HTTP request types (also known as request meth-
ods) are get and post. A get request gets (or retrieves) information from a server.
Common uses of get requests are to retrieve an HTML document or an image. A post
request posts (or sends) data to a server. Common uses of post requests typically send
information, such as authentication information or data from a form that obtains user in-
put, to a server.

Class HttpServlet defines methods doGet and doPost to respond to get and
post requests from a client, respectively. These methods are called by the service
method, which is called when a request arrives at the server. Method service first deter-
mines the request type, then calls the appropriate method for handling such a request. Other
less common request types are beyond the scope of this book. Methods of class HttpS-
ervlet that respond to the other request types are shown in Fig. 9.2. They all receive
parameters of type HttpServletRequest and HttpServletResponse and return
void. The methods of Fig. 9.2 are not frequently used. For more information on the HTTP
protocol, visit

www.w3.org/Protocols.

Software Engineering Observation 9.4
Do not override method service in an HttpServlet subclass. Doing so prevents the serv-
let from distinguishing between request types. 9.4

Methods doGet and doPost receive as arguments an HttpServletRequest
object and an HttpServletResponse object that enable interaction between the client
and the server. The methods of HttpServletRequest make it easy to access the data
supplied as part of the request. The HttpServletResponse methods make it easy to
return the servlet’s results to the Web client. Interfaces HttpServletRequest and
HttpServletResponse are discussed in the next two sections.

Chapter 9 Servlets 537

9.2.3 HttpServletRequest Interface

Every call to doGet or doPost for an HttpServlet receives an object that imple-
ments interface HttpServletRequest. The Web server that executes the servlet cre-
ates an HttpServletRequest object and passes this to the servlet’s service method
(which, in turn, passes it to doGet or doPost). This object contains the request from the
client. A variety of methods are provided to enable the servlet to process the client’s re-
quest. Some of these methods are from interface ServletRequest—the interface that
HttpServletRequest extends. A few key methods used in this chapter are presented
in Fig. 9.3. You can view a complete list of HttpServletRequest methods online at

java.sun.com/j2ee/j2sdkee/techdocs/api/javax/servlet/http/
HttpServletRequest.html

or you can download and install Tomcat (discussed in Section 9.3.1) and view the docu-
mentation on your local computer.

Method Description

doDelete Called in response to an HTTP delete request. Such a request is normally
used to delete a file from a server. This may not be available on some servers,
because of its inherent security risks (i.e., the client could delete a file that is
critical to the execution of the server or an application).

doOptions Called in response to an HTTP options request. This returns information
to the client indicating the HTTP options supported by the server, such as the
version of HTTP (1.0 or 1.1) and the request methods the server supports.

doPut Called in response to an HTTP put request. Such a request is normally used
to store a file on the server. This may not be available on some servers,
because of its inherent security risks (i.e., the client could place an execut-
able application on the server, which, if executed, could damage the server—
perhaps by deleting critical files or occupying resources).

doTrace Called in response to an HTTP trace request. Such a request is normally
used for debugging. The implementation of this method automatically
returns a\n HTML document to the client containing the request header
information (data sent by the browser as part of the request).

Fig. 9.2Fig. 9.2Fig. 9.2Fig. 9.2 Other methods of class HttpServlet.

Method Description

String getParameter(String name)

Obtains the value of a parameter sent to the servlet as part of a get or post
request. The name argument represents the parameter name.

Fig. 9.3Fig. 9.3Fig. 9.3Fig. 9.3 Some methods of interface HttpServletRequest (part 1 of 2).

538 Servlets Chapter 9

9.2.4 HttpServletResponse Interface

Every call to doGet or doPost for an HttpServlet receives an object that imple-
ments interface HttpServletResponse. The Web server that executes the servlet cre-
ates an HttpServletResponse object and passes it to the servlet’s service method
(which, in turn, passes it to doGet or doPost). This object provides a variety of methods
that enable the servlet to formulate the response to the client. Some of these methods are
from interface ServletResponse—the interface that HttpServletResponse ex-
tends. A few key methods used in this chapter are presented in Fig. 9.4. You can view a
complete list of HttpServletResponse methods online at

java.sun.com/j2ee/j2sdkee/techdocs/api/javax/servlet/http/
HttpServletResponse.html

or you can download and install Tomcat (discussed in Section 9.3.1) and view the docu-
mentation on your local computer..

Enumeration getParameterNames()

Returns the names of all the parameters sent to the servlet as part of a post
request.

String[] getParameterValues(String name)

For a parameter with multiple values, this method returns an array of
Strings containing the values for a specified servlet parameter.

Cookie[] getCookies()

Returns an array of Cookie objects stored on the client by the server.
Cookies can be used to uniquely identify clients to the servlet.

HttpSession getSession(boolean create)

Returns an HttpSession object associated with the client’s current brows-
ing session. An HttpSession object can be created by this method (true
argument) if an HttpSession object does not already exist for the client.
HttpSession objects can be used in similar ways to Cookies for
uniquely identifying clients.

Method Description

Fig. 9.3Fig. 9.3Fig. 9.3Fig. 9.3 Some methods of interface HttpServletRequest (part 2 of 2).

Method Description

void addCookie(Cookie cookie)

Used to add a Cookie to the header of the response to the client. The
Cookie’s maximum age and whether Cookies are enabled on the client
determine if Cookies are stored on the client.

Fig. 9.4Fig. 9.4Fig. 9.4Fig. 9.4 Some methods of interface HttpServletResponse (part 1 of 2).

Chapter 9 Servlets 539

9.3 Handling HTTP get Requests
The primary purpose of an HTTP get request is to retrieve the content of a specified URL—
normally the content is an HTML or XHTML document (i.e., a Web page). The servlet of
Fig. 9.5 and the XHTML document of Fig. 9.6 demonstrate a servlet that handles HTTP get
requests. When the user clicks the Get HTML Document button (Fig. 9.6), a get request
is sent to the servlet WelcomeServlet (Fig. 9.5). The servlet responds to the request by
generating dynamically an XHTML document for the client that displays “Welcome to
Servlets!”. Figure 9.5 shows the WelcomeServlet source code. Figure 9.6 shows the
XHTML document the client loads to access the servlet and shows screen captures of the cli-
ent’s browser window before and after the interaction with the servlet. [Note: Section 9.3.1
discusses how to set up and configure Tomcat to execute this example.]

Lines 5 and 6 import the javax.servlet and javax.servlet.http packages.
We use several data types from these packages in the example.

Package javax.servlet.http provides superclass HttpServlet for servlets
that handle HTTP get requests and HTTP post requests. This class implements interface
javax.servlet.Servlet and adds methods that support HTTP protocol requests.
Class WelcomeServlet extends HttpServlet (line 9) for this reason.

Superclass HttpServlet provides method doGet to respond to get requests. Its
default functionality is to indicate a “Method not allowed” error. Typically, this error is
indicated in Internet Explorer with a Web page that states “This page cannot be displayed”
and in Netscape Navigator with a Web page that states “Error: 405.” Lines 12–44 override
method doGet to provide custom get request processing. Method doGet receives two
arguments—an HttpServletRequest object and an HttpServletResponse
object (both from package javax.servlet.http). The HttpServletRequest
object represents the client’s request, and the HttpServletResponse object repre-
sents the server’s response to the client. If method doGet is unable to handle a client’s
request, it throws an exception of type javax.servlet.ServletException. If
doGet encounters an error during stream processing (reading from the client or writing to
the client), it throws a java.io.IOException.

ServletOutputStream getOutputStream()

Obtains a byte-based output stream for sending binary data to the client.

PrintWriter getWriter()

Obtains a character-based output stream for sending text data to the client.

void setContentType(String type)

Specifies the MIME type of the response to the browser. The MIME type
helps the browser determine how to display the data (or possibly what other
application to execute to process the data). For example, MIME type
"text/html" indicates that the response is an HTML document, so the
browser displays the HTML page. For more information on

Method Description

Fig. 9.4Fig. 9.4Fig. 9.4Fig. 9.4 Some methods of interface HttpServletResponse (part 2 of 2).

540 Servlets Chapter 9

To demonstrate a response to a get request, our servlet creates an XHTML document
containing the text “Welcome to Servlets!”. The text of the XHTML document is the
response to the client. The response is sent to the client through the PrintWriter object
obtained from the HttpServletResponse object.

1 // Fig. 9.5: WelcomeServlet.java
2 // A simple servlet to process get requests.
3 package com.deitel.advjhtp1.servlets;
4
5 import javax.servlet.*;
6 import javax.servlet.http.*;
7 import java.io.*;
8
9 public class WelcomeServlet extends HttpServlet {

10
11 // process "get" requests from clients
12 protected void doGet(HttpServletRequest request,
13 HttpServletResponse response)
14 throws ServletException, IOException
15 {
16 response.setContentType("text/html");
17 PrintWriter out = response.getWriter();
18
19 // send XHTML page to client
20
21 // start XHTML document
22 out.println("<?xml version = \"1.0\"?>");
23
24 out.println("<!DOCTYPE html PUBLIC \"-//W3C//DTD " +
25 "XHTML 1.0 Strict//EN\" \"http://www.w3.org" +
26 "/TR/xhtml1/DTD/xhtml1-strict.dtd\">");
27
28 out.println(
29 "<html xmlns = \"http://www.w3.org/1999/xhtml\">");
30
31 // head section of document
32 out.println("<head>");
33 out.println("<title>A Simple Servlet Example</title>");
34 out.println("</head>");
35
36 // body section of document
37 out.println("<body>");
38 out.println("<h1>Welcome to Servlets!</h1>");
39 out.println("</body>");
40
41 // end XHTML document
42 out.println("</html>");
43 out.close(); // close stream to complete the page
44 }
45 }

Fig. 9.5Fig. 9.5Fig. 9.5Fig. 9.5 WelcomeServlet that responds to a simple HTTP get request.

Chapter 9 Servlets 541

Line 16 uses the response object’s setContentType method to specify the con-
tent type of the data to be sent as the response to the client. This enables the client browser
to understand and handle the content. The content type also is known as the MIME type
(Multipurpose Internet Mail Extension) of the data. In this example, the content type is
text/html to indicate to the browser that the response is an XHTML document. The
browser knows that it must read the XHTML tags in the document, format the document
according to the tags and display the document in the browser window. For more informa-
tion on MIME types visit www.irvine.com/~mime.

Line 17 uses the response object’s getWriter method to obtain a reference to the
PrintWriter object that enables the servlet to send content to the client. [Note: If the
response is binary data, such as an image, method getOutputStream is used to obtain
a reference to a ServletOutputStream object.]

Lines 22–42 create the XHTML document by writing strings with the out object’s
println method. This method outputs a newline character after its String argument.
When rendering the Web page, the browser does not use the newline character. Rather, the
newline character appears in the XHTML source that you can see by selecting Source
from the View menu in Internet Explorer or Page Source from the View menu in
Netscape Navigator. Line 43 closes the output stream, flushes the output buffer and sends
the information to the client. This commits the response to the client.

The XHTML document in Fig. 9.6 provides a form that invokes the servlet defined in
Fig. 9.5. The form’s action (/advjhtp1/welcome) specifies the URL path that
invokes the servlet, and the form’s method indicates that the browser sends a get
request to the server, which results in a call to the servlet’s doGet method. The URL spec-
ified as the action in this example is discussed in detail in Section 9.3.2 after we show
how to set up and configure the Apache Tomcat server to execute the servlet in Fig. 9.5.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 9.6: WelcomeServlet.html -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>Handling an HTTP Get Request</title>

10 </head>
11
12 <body>
13 <form action = "/advjhtp1/welcome1" method = "get">
14
15 <p><label>Click the button to invoke the servlet
16 <input type = "submit" value = "Get HTML Document" />
17 </label></p>
18
19 </form>
20 </body>
21 </html>

Fig. 9.6Fig. 9.6Fig. 9.6Fig. 9.6 HTML document in which the form’s action invokes WelcomeServlet
through the alias welcome1 specified in web.xml (part 1 of 2).

542 Servlets Chapter 9

Note that the sample screen captures show a URL containing the server name local-
host—a well-known server host name on most computers that support TCP/IP-based net-
working protocols such as HTTP. We often use localhost to demonstrate networking
programs on the local computer, so that readers without a network connection can still learn
network programming concepts. In this example, localhost indicates that the server on
which the servlet is installed is running on the local machine. The server host name is fol-
lowed by :8080, specifying the TCP port number at which the Tomcat server awaits
requests from clients. Web browsers assume TCP port 80 by default as the server port at
which clients make requests, but the Tomcat server awaits client requests at TCP port 8080.
This allows Tomcat to execute on the same computer as a standard Web server application
without affecting the Web server application’s ability to handle requests. If we do not
explicitly specify the port number in the URL, the servlet never will receive our request and
an error message will be displayed in the browser.

Software Engineering Observation 9.5
The Tomcat documentation specifies how to integrate Tomcat with popular Web server ap-
plications such as the Apache HTTP Server and Microsoft’s IIS. 9.5

Ports in this case are not physical hardware ports to which you attach cables; rather,
they are logical locations named with integer values that allow clients to request different
services on the same server. The port number specifies the logical location where a server
waits for and receives connections from clients—this is also called the handshake point.
When a client connects to a server to request a service, the client must specify the port
number for that service; otherwise, the client request cannot be processed. Port numbers are
positive integers with values up to 65,535, and there are separate sets of these port numbers
for both the TCP and UDP protocols. Many operating systems reserve port numbers below

Fig. 9.6Fig. 9.6Fig. 9.6Fig. 9.6 HTML document in which the form’saction invokes WelcomeServlet
through the alias welcome1 specified in web.xml (part 2 of 2).

Chapter 9 Servlets 543

1024 for system services (such as email and World Wide Web servers). Generally, these
ports should not be specified as connection ports in your own server programs. In fact,
some operating systems require special access privileges to use port numbers below 1024.

With so many ports from which to choose, how does a client know which port to use
when requesting a service? The term well-known port number often is used when
describing popular services on the Internet such as Web servers and email servers. For
example, a Web server waits for clients to make requests at port 80 by default. All Web
browsers know this number as the well-known port on a Web server where requests for
HTML documents are made. So when you type a URL into a Web browser, the browser
normally connects to port 80 on the server. Similarly, the Tomcat server uses port 8080 as
its port number. Thus, requests to Tomcat for Web pages or to invoke servlets and Java-
Server Pages must specify that the Tomcat server waiting for requests on port 8080.

The client can access the servlet only if the servlet is installed on a server that can
respond to servlet requests. In some cases, servlet support is built directly into the Web
server, and no special configuration is required to handle servlet requests. In other cases, it
is necessary to integrate a servlet container with a Web server (as can be done with Tomcat
and the Apache or IIS Web servers). Web servers that support servlets normally have an
installation procedure for servlets. If you intend to execute your servlet as part of a Web
server, please refer to your Web server’s documentation on how to install a servlet. For our
examples, we demonstrate servlets with the Apache Tomcat server. Section 9.3.1 discusses
the setup and configuration of Tomcat for use with this chapter. Section 9.3.2 discusses the
deployment of the servlet in Fig. 9.5.

9.3.1 Setting Up the Apache Tomcat Server

Tomcat is a fully functional implementation of the JSP and servlet standards. It includes a
Web server, so it can be used as a standalone test container for JSPs and servlets. Tomcat
also can be specified as the handler for JSP and servlet requests received by popular Web
servers such as the Apache Software Foundation’s Apache Web server or Microsoft’s In-
ternet Information Server (IIS). Tomcat is integrated into the Java 2 Enterprise Edition ref-
erence implementation from Sun Microsystems.

The most recent release of Tomcat (version 3.2.3) can be downloaded from

jakarta.apache.org/builds/jakarta-tomcat/release/v3.2.3/bin/

where there are a number of archive files. The complete Tomcat implementation is con-
tained in the files that begin with the name jakarta-tomcat-3.2.3. Zip, tar and com-
pressed tar files are provided for Windows, Linux and Solaris.

Extract the contents of the archive file to a directory on your hard disk. By default, the
name of the directory containing Tomcat is jakarta-tomcat-3.2.3. For Tomcat to
work correctly, you must define environment variables JAVA_HOME and TOMCAT_HOME.
JAVA_HOME should point to the directory containing your Java installation (ours is
d:\jdk1.3.1), and TOMCAT_HOME should point to the directory that contains Tomcat
(ours is d:\jakarta-tomcat-3.2.3).

Testing and Debugging Tip 9.1
On some platforms you may need to restart your computer for the new environment variables
to take effect. 9.1

544 Servlets Chapter 9

After setting the environment variables, you can start the Tomcat server. Open a com-
mand prompt (or shell) and change directories to bin in jakarta-tomcat-3.2.3. In
this directory are the files tomcat.bat and tomcat.sh, for starting the Tomcat server
on Windows and UNIX (Linux or Solaris), respectively. To start the server, type

tomcat start

This launches the Tomcat server. The Tomcat server executes on TCP port 8080 to prevent
conflicts with standard Web servers that typically execute on TCP port 80. To prove that
Tomcat is executing and can respond to requests, open your Web browser and enter the URL

http://localhost:8080/

This should display the Tomcat documentation home page (Fig. 9.7). The host local-
host indicates to the Web browser that it should request the home page from the Tomcat
server on the local computer.

If the Tomcat documentation home page does not display, try the URL

http://127.0.0.1:8080/

The host localhost translates to the IP address 127.0.0.1.

Testing and Debugging Tip 9.2
If the host name localhost does not work on your computer, substitute the IP address
127.0.0.1 instead. 9.2

To shut down the Tomcat server, issue the command

tomcat stop

from a command prompt (or shell).

Fig. 9.7Fig. 9.7Fig. 9.7Fig. 9.7 Tomcat documentation home page. (Courtesy of The Apache Software
Foundation.)

Chapter 9 Servlets 545

9.3.2 Deploying a Web Application
JSPs, servlets and their supporting files are deployed as part of Web applications. Normal-
ly, Web applications are deployed in the webapps subdirectory of jakarta-tomcat-
3.2.3. A Web application has a well-known directory structure in which all the files that
are part of the application reside. This directory structure can be created by the server ad-
ministrator in the webapps directory, or the entire directory structure can be archived in
a Web application archive file. Such an archive is known as a WAR file and ends with the
.war file extension. If a WAR file is placed in the webapps directory, then, when the
Tomcat server begins execution, it extracts the contents of the WAR file into the appropri-
ate webapps subdirectory structure. For simplicity as we teach servlets and JavaServer
Pages, we create the already expanded directory structure for all the examples in this chap-
ter and Chapter 10.

The Web application directory structure contains a context root—the top-level directory
for an entire Web application—and several subdirectories. These are described in Fig. 9.8.

Common Programming Error 9.1
Using “servlet” or “servlets” as a context root may prevent a servlet from working correctly
on some servers. 9.1

Configuring the context root for a Web application in Tomcat simply requires creating
a subdirectory in the webapps directory. When Tomcat begins execution, it creates a con-
text root for each subdirectory of webapps, using each subdirectory’s name as a context
root name. To test the examples in this chapter and Chapter 10, create the directory
advjhtp1 in Tomcat’s webapps directory.

Directory Description

context root This is the root directory for the Web application. The name of this
directory is chosen by the Web application developer. All the JSPs,
HTML documents, servlets and supporting files such as images and
class files reside in this directory or its subdirectories. The name of this
directory is specified by the Web application creator. To provide struc-
ture in a Web application, subdirectories can be placed in the context
root. For example, if your application uses many images, you might
place an images subdirectory in this directory. The examples of this
chapter and Chapter 10 use advjhtp1 as the context root.

WEB-INF This directory contains the Web application deployment descriptor
(web.xml).

WEB-INF/classes This directory contains the servlet class files and other supporting class
files used in a Web application. If the classes are part of a package, the
complete package directory structure would begin here.

WEB-INF/lib This directory contains Java archive (JAR) files. The JAR files can con-
tain servlet class files and other supporting class files used in a Web
application.

Fig. 9.8Fig. 9.8Fig. 9.8Fig. 9.8 Web application standard directories.

546 Servlets Chapter 9

After configuring the context root, we must configure our Web application to handle
the requests. This configuration occurs in a deployment descriptor, which is stored in a
file called web.xml. The deployment descriptor specifies various configuration param-
eters such as the name used to invoke the servlet (i.e., its alias), a description of the
servlet, the servlet’s fully qualified class name and a servlet mapping (i.e., the path or
paths that cause the servlet container to invoke the servlet). You must create the
web.xml file for this example. Many Java Web-application deployment tools create the
web.xml file for you. The web.xml file for the first example in this chapter is shown
in Fig. 9.9. We enhance this file as we add other servlets to the Web application
throughout this chapter.

1 <!DOCTYPE web-app PUBLIC
2 "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
3 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">
4
5 <web-app>
6
7 <!-- General description of your Web application -->
8 <display-name>
9 Advanced Java How to Program JSP

10 and Servlet Chapter Examples
11 </display-name>
12
13 <description>
14 This is the Web application in which we
15 demonstrate our JSP and Servlet examples.
16 </description>
17
18 <!-- Servlet definitions -->
19 <servlet>
20 <servlet-name>welcome1</servlet-name>
21
22 <description>
23 A simple servlet that handles an HTTP get request.
24 </description>
25
26 <servlet-class>
27 com.deitel.advjhtp1.servlets.WelcomeServlet
28 </servlet-class>
29 </servlet>
30
31 <!-- Servlet mappings -->
32 <servlet-mapping>
33 <servlet-name>welcome1</servlet-name>
34 <url-pattern>/welcome1</url-pattern>
35 </servlet-mapping>
36
37 </web-app>

Fig. 9.9Fig. 9.9Fig. 9.9Fig. 9.9 Deployment descriptor (web.xml) for the advjhtp1 Web application.

Chapter 9 Servlets 547

Lines 1–3 specify the document type for the Web application deployment descriptor
and the location of the DTD for this XML file. Element web-app (lines 5–37) defines the
configuration of each servlet in the Web application and the servlet mapping for each
servlet. Element display-name (lines 8–11) specifies a name that can be displayed to
the administrator of the server on which the Web application is installed. Element
description (lines 13–16) specifies a description of the Web application that might be
displayed to the administrator of the server.

Element servlet (lines 19–29) describes a servlet. Element servlet-name (line
20) is the name we chose for the servlet (welcome1). Element description (lines 22–
24) specifies a description for this particular servlet. Again, this can be displayed to the
administrator of the Web server. Element servlet-class (lines 26–28) specifies com-
piled servlet’s fully qualified class name. Thus, the servlet welcome1 is defined by class
com.deitel.advjhtp1.servlets.WelcomeServlet.

Element servlet-mapping (lines 32–35) specifies servlet-name and url-
pattern elements. The URL pattern helps the server determine which requests are sent
to the servlet (welcome1). Our Web application will be installed as part of the
advjhtp1 context root discussed in Section 9.3.2. Thus, the URL we supply to the
browser to invoke the servlet in this example is

/advjhtp1/welcome1

where /advjhtp1 specifies the context root that helps the server determine which Web
application handles the request and /welcome1 specifies the URL pattern that is mapped
to servlet welcome1 to handle the request. Note that the server on which the servlet re-
sides is not specified here, although it is possible to do so as follows:

http://localhost:8080/advjhtp1/welcome1

If the explicit server and port number are not specified as part of the URL, the browser as-
sumes that the form handler (i.e., the servlet specified in the action property of the form
element) resides at the same server and port number from which the browser downloaded
the Web page containing the form.

There are several URL pattern formats that can be used. The /welcome1 URL pat-
tern requires an exact match of the pattern. You can also specify path mappings, extension
mappings and a default servlet for a Web application. A path mapping begins with a / and
ends with a /*. For example, the URL pattern

/advjhtp1/example/*

indicates that any URL path beginning with /advjhtp1/example/ will be sent to the
servlet that has the preceding URL pattern. An extension mapping begins with *. and ends
with a file name extension. For example, the URL pattern

*.jsp

indicates that any request for a file with the extension .jsp will be sent to the servlet that
handles JSP requests. In fact, servers with JSP containers have an implicit mapping of the
.jsp extension to a servlet that handles JSP requests. The URL pattern / represents the
default servlet for the Web application. This is similar to the default document of a Web

548 Servlets Chapter 9

server. For example, if you type the URL www.deitel.com into your Web browser, the
document you receive from our Web server is the default document index.html. If the
URL pattern matches the default servlet for a Web application, that servlet is invoked to
return a default response to the client. This can be useful for personalizing Web content to
specific users. We discuss personalization in Section 9.7, Session Tracking.

Finally, we are ready to place our files into the appropriate directories to complete the
deployment of our first servlet, so we can test it. There are three files we must place in the
appropriate directories—WelcomeServlet.html, WelcomeServlet.class and
web.xml. In the webapps subdirectory of your jakarta-tomcat-3.2.3 directory,
create the advjhtp1 subdirectory that represents the context root for our Web applica-
tion. In this directory, create subdirectories named servlets and WEB-INF. We place
our HTML files for this servlets chapter in the servlets directory. Copy the Wel-
comeServlet.html file into the servlets directory. In the WEB-INF directory,
create the subdirectory classes, then copy the web.xml file into the WEB-INF direc-
tory, and copy the WelcomeServlet.class file, including all its package name direc-
tories, into the classes directory. Thus, the directory and file structure under the
webapps directory should be as shown in Fig. 9.10 (file names are in italics).

Testing and Debugging Tip 9.3
Restart the Tomcat server after modifying the web.xml deployment descriptor file. Other-
wise, Tomcat will not recognize your new Web application. 9.3

After the files are placed in the proper directories, start the Tomcat server, open your
browser and type the following URL—

http://localhost:8080/advjhtp1/servlets/WelcomeServlet.html

—to load WelcomeServlet.html into the Web browser. Then, click the Get HTML
Document button to invoke the servlet. You should see the results shown in Fig. 9.6. You
can try this servlet from several different Web browsers to demonstrate that the results are
the same across Web browsers.

WelcomeServlet Web application directory and file structure

advjhtp1

 servlets

 WelcomeServlet.html

 WEB-INF

 web.xml

 classes

 com

 deitel

 advjhtp1

 servlets

 WelcomeServlet.class

Fig. 9.10Fig. 9.10Fig. 9.10Fig. 9.10 Web application directory and file structure for WelcomeServlet.

Chapter 9 Servlets 549

Common Programming Error 9.2
Not placing servlet or other class files in the appropriate package directory structure pre-
vents the server from locating those classes properly. This, in turn, results in an error re-
sponse to the client Web browser. This error response normally is “Not Found (404)” in
Netscape Navigator and “The page cannot be found” plus an explanation in Microsoft In-
ternet Explorer. 9.2

Actually, the HTML file in Fig. 9.6 was not necessary to invoke this servlet. A get
request can be sent to a server simply by typing the URL in the Web browser. In fact, that
is exactly what you are doing when you request a Web page in the browser. In this example,
you can type

http://localhost:8080/advjhtp1/welcome1

in the Address or Location field of your browser to invoke the servlet directly.

Testing and Debugging Tip 9.4
You can test a servlet that handles HTTP get requests by typing the URL that invokes the
servlet directly into your browser’s Address or Location field. 9.4

9.4 Handling HTTP get Requests Containing Data
When requesting a document or resource from a Web server, it is possible to supply data
as part of the request. The servlet WelcomeServlet2 of Fig. 9.11 responds to an HTTP
get request that contains a name supplied by the user. The servlet uses the name as part of
the response to the client.

1 // Fig. 9.11: WelcomeServlet2.java
2 // Processing HTTP get requests containing data.
3 package com.deitel.advjhtp1.servlets;
4
5 import javax.servlet.*;
6 import javax.servlet.http.*;
7 import java.io.*;
8
9 public class WelcomeServlet2 extends HttpServlet {

10
11 // process "get" request from client
12 protected void doGet(HttpServletRequest request,
13 HttpServletResponse response)
14 throws ServletException, IOException
15 {
16 String firstName = request.getParameter("firstname");
17
18 response.setContentType("text/html");
19 PrintWriter out = response.getWriter();
20

Fig. 9.11Fig. 9.11Fig. 9.11Fig. 9.11 WelcomeServlet2 responds to a get request that contains data (part
1 of 2).

550 Servlets Chapter 9

Parameters are passed as name/value pairs in a get request. Line 16 demonstrates how
to obtain information that was passed to the servlet as part of the client request. The
request object’s getParameter method receives the parameter name as an argument
and returns the corresponding String value, or null if the parameter is not part of the
request. Line 41 uses the result of line 16 as part of the response to the client.

The WelcomeServlet2.html document (Fig. 9.12) provides a form in which the
user can input a name in the text input element firstname (line 17) and click the
Submit button to invoke WelcomeServlet2. When the user presses the Submit
button, the values of the input elements are placed in name/value pairs as part of the
request to the server. In the second screen capture of Fig. 9.12, notice that the browser
appended

?firstname=Paul

to the end of the action URL. The ? separates the query string (i.e., the data passed as
part of the get request) from the rest of the URL in a get request. The name/value pairs
are passed with the name and the value separated by =. If there is more than one name/value
pair, each name/value pair is separated by &.

21 // send XHTML document to client
22
23 // start XHTML document
24 out.println("<?xml version = \"1.0\"?>");
25
26 out.println("<!DOCTYPE html PUBLIC \"-//W3C//DTD " +
27 "XHTML 1.0 Strict//EN\" \"http://www.w3.org" +
28 "/TR/xhtml1/DTD/xhtml1-strict.dtd\">");
29
30 out.println(
31 "<html xmlns = \"http://www.w3.org/1999/xhtml\">");
32
33 // head section of document
34 out.println("<head>");
35 out.println(
36 "<title>Processing get requests with data</title>");
37 out.println("</head>");
38
39 // body section of document
40 out.println("<body>");
41 out.println("<h1>Hello " + firstName + ",
");
42 out.println("Welcome to Servlets!</h1>");
43 out.println("</body>");
44
45 // end XHTML document
46 out.println("</html>");
47 out.close(); // close stream to complete the page
48 }
49 }

Fig. 9.11Fig. 9.11Fig. 9.11Fig. 9.11 WelcomeServlet2 responds to a get request that contains data (part
2 of 2).

Chapter 9 Servlets 551

Once again, we use our advjhtp1 context root to demonstrate the servlet of Fig. 9.11.
Place WelcomeServlet2.html in the servlets directory created in Section 9.3.2.
Place WelcomeServlet2.class in the classes subdirectory of WEB-INF in the

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 9.12: WelcomeServlet2.html -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>Processing get requests with data</title>

10 </head>
11
12 <body>
13 <form action = "/advjhtp1/welcome2" method = "get">
14
15 <p><label>
16 Type your first name and press the Submit button
17
<input type = "text" name = "firstname" />
18 <input type = "submit" value = "Submit" />
19 </p></label>
20
21 </form>
22 </body>
23 </html>

Fig. 9.12Fig. 9.12Fig. 9.12Fig. 9.12 HTML document in which the form’s action invokes
WelcomeServlet2 through the alias welcome2 specified in
web.xml.

form data
specified in
URL’s query
string as part
of a get
request

552 Servlets Chapter 9

advjhtp1 context root. Remember that classes in a package must be placed in the appro-
priate package directory structure. Then, edit the web.xml deployment descriptor in the
WEB-INF directory to include the information specified in Fig. 9.13. This table contains the
information for the servlet and servlet-mapping elements that you will add to the
web.xml deployment descriptor. You should not type the italic text into the deployment
descriptor. Restart Tomcat and type the following URL in your Web browser:

http://localhost:8080/advjhtp1/servlets/WelcomeServlet2.html

Type your name in the text field of the Web page, then click Submit to invoke the servlet.
Once again, note that the get request could have been typed directly into the

browser’s Address or Location field as follows:

http://localhost:8080/advjhtp1/welcome2?firstname=Paul

Try it with your own name.

9.5 Handling HTTP post Requests
An HTTP post request is often used to post data from an HTML form to a server-side
form handler that processes the data. For example, when you respond to a Web-based sur-
vey, a post request normally supplies the information you specify in the HTML form to
the Web server.

Browsers often cache (save on disk) Web pages so they can quickly reload the pages.
If there are no changes between the last version stored in the cache and the current version
on the Web, this helps speed up your browsing experience. The browser first asks the server
if the document has changed or expired since the date the file was cached. If not, the
browser loads the document from the cache. Thus, the browser minimizes the amount of
data that must be downloaded for you to view a Web page. Browsers typically do not cache
the server’s response to a post request, because the next post might not return the same
result. For example, in a survey, many users could visit the same Web page and respond to
a question. The survey results could then be displayed for the user. Each new response
changes the overall results of the survey.

Descriptor element Value

servlet element

servlet-name welcome2

description Handling HTTP get requests with data.

servlet-class com.deitel.advjhtp1.servlets.WelcomeServlet2

servlet-mapping element

servlet-name welcome2

url-pattern /welcome2

Fig. 9.13Fig. 9.13Fig. 9.13Fig. 9.13 Deployment descriptor information for servlet WelcomeServlet2.

Chapter 9 Servlets 553

When you use a Web-based search engine, the browser normally supplies the informa-
tion you specify in an HTML form to the search engine with a get request. The search
engine performs the search, then returns the results to you as a Web page. Such pages are
often cached by the browser in case you perform the same search again. As with post
requests, get requests can supply parameters as part of the request to the Web server.

The WelcomeServlet3 servlet of Fig. 9.14 is identical to the servlet of Fig. 9.11,
except that it defines a doPost method (line 12) to respond to post requests rather than a
doGet method. The default functionality of doPost is to indicate a “Method not allowed”
error. We override this method to provide custom post request processing. Method
doPost receives the same two arguments as doGet—an object that implements interface
HttpServletRequest to represent the client’s request and an object that implements
interface HttpServletResponse to represent the servlet’s response. As with doGet,
method doPost throws a ServletException if it is unable to handle a client’s request
and throws an IOException if a problem occurs during stream processing.

1 // Fig. 9.14: WelcomeServlet3.java
2 // Processing post requests containing data.
3 package com.deitel.advjhtp1.servlets;
4
5 import javax.servlet.*;
6 import javax.servlet.http.*;
7 import java.io.*;
8
9 public class WelcomeServlet3 extends HttpServlet {

10
11 // process "post" request from client
12 protected void doPost(HttpServletRequest request,
13 HttpServletResponse response)
14 throws ServletException, IOException
15 {
16 String firstName = request.getParameter("firstname");
17
18 response.setContentType("text/html");
19 PrintWriter out = response.getWriter();
20
21 // send XHTML page to client
22
23 // start XHTML document
24 out.println("<?xml version = \"1.0\"?>");
25
26 out.println("<!DOCTYPE html PUBLIC \"-//W3C//DTD " +
27 "XHTML 1.0 Strict//EN\" \"http://www.w3.org" +
28 "/TR/xhtml1/DTD/xhtml1-strict.dtd\">");
29
30 out.println(
31 "<html xmlns = \"http://www.w3.org/1999/xhtml\">");
32
33 // head section of document
34 out.println("<head>");

Fig. 9.14Fig. 9.14Fig. 9.14Fig. 9.14 WelcomeServlet3 responds to a post request that contains data
(part 1 of 2).

554 Servlets Chapter 9

WelcomeServlet3.html (Fig. 9.15) provides a form (lines 13–21) in which the
user can input a name in the text input element firstname (line 17), then click the
Submit button to invoke WelcomeServlet3. When the user presses the Submit button,
the values of the input elements are sent to the server as part of the request. However, note
that the values are not appended to the request URL. Note that the form’s method in this
example is post. Also, note that a post request cannot be typed into the browser’s
Address or Location field and users cannot bookmark post requests in their browsers.

35 out.println(
36 "<title>Processing post requests with data</title>");
37 out.println("</head>");
38
39 // body section of document
40 out.println("<body>");
41 out.println("<h1>Hello " + firstName + ",
");
42 out.println("Welcome to Servlets!</h1>");
43 out.println("</body>");
44
45 // end XHTML document
46 out.println("</html>");
47 out.close(); // close stream to complete the page
48 }
49 }

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 9.15: WelcomeServlet3.html -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>Handling an HTTP Post Request with Data</title>

10 </head>
11
12 <body>
13 <form action = "/advjhtp1/welcome3" method = "post">
14
15 <p><label>
16 Type your first name and press the Submit button
17
<input type = "text" name = "firstname" />
18 <input type = "submit" value = "Submit" />
19 </label></p>
20
21 </form>
22 </body>
23 </html>

Fig. 9.15Fig. 9.15Fig. 9.15Fig. 9.15 HTML document in which the form’s action invokes WelcomeServ-
let3 through the alias welcome3 specified in web.xml (part 1 of 2).

Fig. 9.14Fig. 9.14Fig. 9.14Fig. 9.14 WelcomeServlet3 responds to a post request that contains data
(part 2 of 2).

Chapter 9 Servlets 555

We use our advjhtp1 context root to demonstrate the servlet of Fig. 9.14. Place
WelcomeServlet3.html in the servlets directory created in Section 9.3.2. Place
WelcomeServlet3.class in the classes subdirectory of WEB-INF in the
advjhtp1 context root. Then, edit the web.xml deployment descriptor in the WEB-INF
directory to include the information specified in Fig. 9.16. Restart Tomcat and type the fol-
lowing URL in your Web browser:

http://localhost:8080/advjhtp1/servlets/WelcomeServlet3.html

Type your name in the text field of the Web page, then click Submit to invoke the servlet.

Fig. 9.15Fig. 9.15Fig. 9.15Fig. 9.15 HTML document in which the form’s action invokes WelcomeServ-
let3 through the alias welcome3 specified in web.xml (part 2 of 2).

Descriptor element Value

servlet element

servlet-name welcome3

description Handling HTTP post requests with data.

servlet-class com.deitel.advjhtp1.servlets.WelcomeServlet3

servlet-mapping element

servlet-name welcome3

url-pattern /welcome3

Fig. 9.16Fig. 9.16Fig. 9.16Fig. 9.16 Deployment descriptor information for servlet WelcomeServlet3.

556 Servlets Chapter 9

9.6 Redirecting Requests to Other Resources
Sometimes it is useful to redirect a request to a different resource. For example, a servlet
could determine the type of the client browser and redirect the request to a Web page that
was designed specifically for that browser. The RedirectServlet of Fig. 9.17 receives
a page parameter as part of a get request, then uses that parameter to redirect the request
to a different resource.

1 // Fig. 9.17: RedirectServlet.java
2 // Redirecting a user to a different Web page.
3 package com.deitel.advjhtp1.servlets;
4
5 import javax.servlet.*;
6 import javax.servlet.http.*;
7 import java.io.*;
8
9 public class RedirectServlet extends HttpServlet {

10
11 // process "get" request from client
12 protected void doGet(HttpServletRequest request,
13 HttpServletResponse response)
14 throws ServletException, IOException
15 {
16 String location = request.getParameter("page");
17
18 if (location != null)
19
20 if (location.equals("deitel"))
21 response.sendRedirect("http://www.deitel.com");
22 else
23 if (location.equals("welcome1"))
24 response.sendRedirect("welcome1");
25
26 // code that executes only if this servlet
27 // does not redirect the user to another page
28
29 response.setContentType("text/html");
30 PrintWriter out = response.getWriter();
31
32 // start XHTML document
33 out.println("<?xml version = \"1.0\"?>");
34
35 out.println("<!DOCTYPE html PUBLIC \"-//W3C//DTD " +
36 "XHTML 1.0 Strict//EN\" \"http://www.w3.org" +
37 "/TR/xhtml1/DTD/xhtml1-strict.dtd\">");
38
39 out.println(
40 "<html xmlns = \"http://www.w3.org/1999/xhtml\">");
41
42 // head section of document
43 out.println("<head>");
44 out.println("<title>Invalid page</title>");

Fig. 9.17Fig. 9.17Fig. 9.17Fig. 9.17 Redirecting requests to other resources (part 1 of 2).

Chapter 9 Servlets 557

Line 16 obtains the page parameter from the request. If the value returned is not
null, the if/else structure at lines 20–24 determines if the value is either “deitel” or
“welcome1.” If the value is “deitel,” the response object’s sendRedirect
method (line 21) redirects the request to www.deitel.com. If the value is
“welcome1,” line 24 redirect the request to the servlet of Fig. 9.5. Note that line 24 does
not explicitly specify the advjhtp1 context root for our Web application. When a servlet
uses a relative path to reference another static or dynamic resource, the servlet assumes the
same base URL and context root as the one that invoked the servlet—unless a complete
URL is specified for the resource. So, line 24 actually is requesting the resource located at

http://localhost:8080/advjhtp1/welcome1

Similarly, line 51 actually is requesting the resource located at

http://localhost:8080/advjhtp1/servlets/RedirectServlet.html

Software Engineering Observation 9.6
Using relative paths to reference resources in the same context root makes your Web appli-
cation more flexible. For example, you can change the context root without making changes
to the static and dynamic resources in the application. 9.6

Once method sendRedirect executes, processing of the original request by the
RedirectServlet terminates. If method sendRedirect is not called, the remainder
of method doPost outputs a Web page indicating that an invalid request was made. The
page allows the user to try again by returning to the XHTML document of Fig. 9.18. Note
that one of the redirects is sent to a static XHTML Web page and the other is sent to a
servlet.

The RedirectServlet.html document (Fig. 9.18) provides two hyperlinks
(lines 15–16 and 17–18) that allow the user to invoke the servlet RedirectServlet.
Note that each hyperlink specifies a page parameter as part of the URL. To demonstrate
passing an invalid page, you can type the URL into your browser with no value for the
page parameter.

45 out.println("</head>");
46
47 // body section of document
48 out.println("<body>");
49 out.println("<h1>Invalid page requested</h1>");
50 out.println("<p><a href = " +
51 "\"servlets/RedirectServlet.html\">");
52 out.println("Click here to choose again</p>");
53 out.println("</body>");
54
55 // end XHTML document
56 out.println("</html>");
57 out.close(); // close stream to complete the page
58 }
59 }

Fig. 9.17Fig. 9.17Fig. 9.17Fig. 9.17 Redirecting requests to other resources (part 2 of 2).

558 Servlets Chapter 9

We use our advjhtp1 context root to demonstrate the servlet of Fig. 9.17. Place
RedirectServlet.html in the servlets directory created in Section 9.3.2. Place
RedirectServlet.class in the classes subdirectory of WEB-INF in the
advjhtp1 context root. Then, edit the web.xml deployment descriptor in the WEB-INF

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 9.18: RedirectServlet.html -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>Redirecting a Request to Another Site</title>

10 </head>
11
12 <body>
13 <p>Click a link to be redirected to the appropriate page</p>
14 <p>
15
16 www.deitel.com

17
18 Welcome servlet
19 </p>
20 </body>
21 </html>

Fig. 9.18Fig. 9.18Fig. 9.18Fig. 9.18 RedirectServlet.html document to demonstrate redirecting
requests to other resources.

Chapter 9 Servlets 559

directory to include the information specified in Fig. 9.19. Restart Tomcat, and type the fol-
lowing URL in your Web browser:

http://localhost:8080/advjhtp1/servlets/RedirectServlet.html

Click a hyperlink in the Web page to invoke the servlet.
When redirecting requests, the request parameters from the original request are passed

as parameters to the new request. Additional request parameters also can be passed. For
example, the URL passed to sendRedirect could contain name/value pairs. Any new
parameters are added to the existing parameters. If a new parameter has the same name as
an existing parameter, the new parameter value takes precedence over the original value.
However, all the values are still passed. In this case, the complete set of values for a given
parameter name can be obtained by calling method getParameterValues from inter-
face HttpServletRequest. This method receives the parameter name as an argument
and returns an array of Strings containing the parameter values in order from most recent
to least recent.

9.7 Session Tracking
Many e-businesses can personalize users’ browsing experiences, tailoring Web pages to
their users’ individual preferences and letting users bypass irrelevant content. This is done
by tracking the consumer’s movement through the Internet and combining that data with
information provided by the consumer, which could include billing information, interests
and hobbies, among other things. Personalization is making it easier and more pleasant for
many people to surf the Internet and find what they want. Consumers and companies can
benefit from the unique treatment resulting from personalization. Providing content of spe-
cial interest to your visitor can help establish a relationship that you can build upon each
time that person returns to your site. Targeting consumers with personal offers, advertise-
ments, promotions and services may lead to more customer loyalty—many customers en-
joy the individual attention that a customized site provides. Originally, the Internet lacked
personal assistance when compared with the individual service often experienced in bricks-
and-mortar stores. Sophisticated technology helps many Web sites offer a personal touch

Descriptor element Value

servlet element

servlet-name redirect

description Redirecting to static Web pages and other serv-
lets.

servlet-class com.deitel.advjhtp1.servlets.RedirectServlet

servlet-mapping element

servlet-name redirect

url-pattern /redirect

Fig. 9.19Fig. 9.19Fig. 9.19Fig. 9.19 Deployment descriptor information for servlet RedirectServlet.

560 Servlets Chapter 9

to their visitors. For example, Web sites such as MSN.com and CNN.com allow you to cus-
tomize their home page to suit your needs. Online shopping sites often customize their Web
pages to individuals, and such sites must distinguish between clients so the company can
determine the proper items and charge the proper amount for each client. Personalization
is important for Internet marketing and for managing customer relationships to increase
customer loyalty.

Hand in hand with the promise of personalization, however, comes the problem of pri-
vacy invasion. What if the e-business to which you give your personal data sells or gives
those data to another organization without your knowledge? What if you do not want your
movements on the Internet to be tracked by unknown parties? What if an unauthorized
party gains access to your private data, such as credit-card numbers or medical history?
These are some of the many questions that must be addressed by consumers, e-businesses
and lawmakers alike.

As we have discussed, the request/response mechanism of the Web is based on HTTP.
Unfortunately, HTTP is a stateless protocol—it does not support persistent information
that could help a Web server determine that a request is from a particular client. As far as
a Web server is concerned, every request could be from the same client or every request
could be from a different client. Thus, sites like MSN.com and CNN.com need a mecha-
nism to identify individual clients. To help the server distinguish between clients, each
client must identify itself to the server. There are a number of popular techniques for dis-
tinguishing between clients. We introduce two techniques to track clients individually—
cookies (Section 9.7.1) and session tracking (Section 9.7.2). Two other techniques not dis-
cussed in this chapter are using input form elements of type "hidden" and URL
rewriting. With "hidden" form elements, the servlet can write session-tracking data into a
form in the Web page it returns to the client to satisfy a prior request. When the user sub-
mits the form in the new Web page, all the form data, including the "hidden" fields, are sent
to the form handler on the server. With URL rewriting, the servlet embeds session-tracking
information as get parameters directly in the URLs of hyperlinks that the user might click
to make the next request to the Web server.

9.7.1 Cookies

A popular way to customize Web pages is via cookies. Browsers can store cookies on the
user’s computer for retrieval later in the same browsing session or in future browsing ses-
sions. For example, cookies could be used in a shopping application to store unique identi-
fiers for the users. When users add items to their online shopping carts or perform other
tasks resulting in a request to the Web server, the server receives cookies containing unique
identifiers for each user. The server then uses the unique identifier to locate the shopping
carts and perform the necessary processing. Cookies could also be used to indicate the cli-
ent’s shopping preferences. When the servlet receives the client’s next communication, the
servlet can examine the cookie(s) it sent to the client in a previous communication, identify
the client’s preferences and immediately display products of interest to the client.

Cookies are text-based data that are sent by servlets (or other similar server-side tech-
nologies) as part of responses to clients. Every HTTP-based interaction between a client
and a server includes a header containing information about the request (when the commu-
nication is from the client to the server) or information about the response (when the com-
munication is from the server to the client). When an HttpServlet receives a request,

Chapter 9 Servlets 561

the header includes information such as the request type (e.g., get or post) and the
cookies that are sent by the server to be stored on the client machine. When the server for-
mulates its response, the header information includes any cookies the server wants to store
on the client computer and other information such as the MIME type of the response.

Testing and Debugging Tip 9.5
Some clients do not accept cookies. When a client declines a cookie, the Web site or the
browser application can inform the client that the site may not function correctly without
cookies enabled. 9.5

Depending on the maximum age of a cookie, the Web browser either maintains the
cookie for the duration of the browsing session (i.e., until the user closes the Web browser)
or stores the cookie on the client computer for future use. When the browser requests a
resource from a server, cookies previously sent to the client by that server are returned to
the server as part of the request formulated by the browser. Cookies are deleted automati-
cally when they expire (i.e., reach their maximum age).

Figure 9.20 demonstrates cookies. The example allows the user to select a favorite pro-
gramming language and post the choice to the server. The response is a Web page in
which the user can select another favorite language or click a link to view a list of book
recommendations. When the user selects the list of book recommendations, a get request
is sent to the server. The cookies previously stored on the client are read by the servlet and
used to form a Web page containing the book recommendations.

CookieServlet (Fig. 9.20) handles both the get and the post requests. The
CookieSelectLanguage.html document of Fig. 9.21 contains four radio buttons
(C, C++, Java and VB 6) and a Submit button. When the user presses Submit, the
CookieServlet is invoked with a post request. The servlet adds a cookie containing
the selected language to the response header and sends an XHTML document to the client.
Each time the user clicks Submit, a cookie is sent to the client.

Line 11 defines Map books as a HashMap (package java.util) in which we store
key/value pairs that use the programming language as the key and the ISBN number of the
recommended book as the value. The CookieServlet init method (line 14–20) pop-
ulates books with four key/value pairs of books. Method doPost (lines 24–69) is invoked
in response to the post request from the XHTML document of Fig. 9.21. Line 28 uses
method getParameter to obtain the user’s language selection (the value of the
selected radio button on the Web page). Line 29 obtains the ISBN number for the selected
language from books.

1 // Fig. 9.20: CookieServlet.java
2 // Using cookies to store data on the client computer.
3 package com.deitel.advjhtp1.servlets;
4
5 import javax.servlet.*;
6 import javax.servlet.http.*;
7 import java.io.*;
8 import java.util.*;
9

Fig. 9.20Fig. 9.20Fig. 9.20Fig. 9.20 Storing user data on the client computer with cookies (part 1 of 4).

562 Servlets Chapter 9

10 public class CookieServlet extends HttpServlet {
11 private final Map books = new HashMap();
12
13 // initialize Map books
14 public void init()
15 {
16 books.put("C", "0130895725");
17 books.put("C++", "0130895717");
18 books.put("Java", "0130125075");
19 books.put("VB6", "0134569555");
20 }
21
22 // receive language selection and send cookie containing
23 // recommended book to the client
24 protected void doPost(HttpServletRequest request,
25 HttpServletResponse response)
26 throws ServletException, IOException
27 {
28 String language = request.getParameter("language");
29 String isbn = books.get(language).toString();
30 Cookie cookie = new Cookie(language, isbn);
31
32 response.addCookie(cookie); // must precede getWriter
33 response.setContentType("text/html");
34 PrintWriter out = response.getWriter();
35
36 // send XHTML page to client
37
38 // start XHTML document
39 out.println("<?xml version = \"1.0\"?>");
40
41 out.println("<!DOCTYPE html PUBLIC \"-//W3C//DTD " +
42 "XHTML 1.0 Strict//EN\" \"http://www.w3.org" +
43 "/TR/xhtml1/DTD/xhtml1-strict.dtd\">");
44
45 out.println(
46 "<html xmlns = \"http://www.w3.org/1999/xhtml\">");
47
48 // head section of document
49 out.println("<head>");
50 out.println("<title>Welcome to Cookies</title>");
51 out.println("</head>");
52
53 // body section of document
54 out.println("<body>");
55 out.println("<p>Welcome to Cookies! You selected " +
56 language + "</p>");
57
58 out.println("<p><a href = " +
59 "\"/advjhtp1/servlets/CookieSelectLanguage.html\">" +
60 "Click here to choose another language</p>");
61

Fig. 9.20Fig. 9.20Fig. 9.20Fig. 9.20 Storing user data on the client computer with cookies (part 2 of 4).

Chapter 9 Servlets 563

62 out.println("<p>" +
63 "Click here to get book recommendations</p>");
64 out.println("</body>");
65
66 // end XHTML document
67 out.println("</html>");
68 out.close(); // close stream
69 }
70
71 // read cookies from client and create XHTML document
72 // containing recommended books
73 protected void doGet(HttpServletRequest request,
74 HttpServletResponse response)
75 throws ServletException, IOException
76 {
77 Cookie cookies[] = request.getCookies(); // get cookies
78
79 response.setContentType("text/html");
80 PrintWriter out = response.getWriter();
81
82 // start XHTML document
83 out.println("<?xml version = \"1.0\"?>");
84
85 out.println("<!DOCTYPE html PUBLIC \"-//W3C//DTD " +
86 "XHTML 1.0 Strict//EN\" \"http://www.w3.org" +
87 "/TR/xhtml1/DTD/xhtml1-strict.dtd\">");
88
89 out.println(
90 "<html xmlns = \"http://www.w3.org/1999/xhtml\">");
91
92 // head section of document
93 out.println("<head>");
94 out.println("<title>Recommendations</title>");
95 out.println("</head>");
96
97 // body section of document
98 out.println("<body>");
99
100 // if there are any cookies, recommend a book for each ISBN
101 if (cookies != null && cookies.length != 0) {
102 out.println("<h1>Recommendations</h1>");
103 out.println("<p>");
104
105 // get the name of each cookie
106 for (int i = 0; i < cookies.length; i++)
107 out.println(cookies[i].getName() +
108 " How to Program. ISBN#: " +
109 cookies[i].getValue() + "
");
110
111 out.println("</p>");
112 }
113 else { // there were no cookies
114 out.println("<h1>No Recommendations</h1>");

Fig. 9.20Fig. 9.20Fig. 9.20Fig. 9.20 Storing user data on the client computer with cookies (part 3 of 4).

564 Servlets Chapter 9

Line 30 creates a new Cookie object (package javax.servlet.http), using the
language and isbn values as the cookie name and cookie value, respectively. The
cookie name identifies the cookie; the cookie value is the information associated with the
cookie. Browsers that support cookies must be able to store a minimum of 20 cookies per
Web site and 300 cookies per user. Browsers may limit the cookie size to 4K (4096 bytes).
Each cookie stored on the client includes a domain. The browser sends a cookie only to the
domain stored in the cookie.

Software Engineering Observation 9.7
Browser users can disable cookies, so Web applications that use cookies may not function
properly for clients with cookies disabled. 9.7

Software Engineering Observation 9.8
By default, cookies exist only for the current browsing session (until the user closes the
browser). To make cookies persist beyond the current session, call Cookie method set-
MaxAge to indicate the number of seconds until the cookie expires. 9.8

Line 32 adds the cookie to the response with method addCookie of interface
HttpServletResponse. Cookies are sent to the client as part of the HTTP header. The
header information is always provided to the client first, so the cookies should be added to
the response with addCookie before any data is written as part of the response. After
the cookie is added, the servlet sends an XHTML document to the client (see the second
screen capture of Fig. 9.21).

Common Programming Error 9.3
Writing response data to the client before calling method addCookie to add a cookie to the
response is a logic error. Cookies must be added to the header first. 9.3

The XHTML document sent to the client in response to a post request includes a
hyperlink that invokes method doGet (lines 73–123). The method reads any Cookies
that were written to the client in doPost. For each Cookie written, the servlet recom-
mends a Deitel book on the subject. Up to four books are displayed on the Web page created
by the servlet.

Line 77 retrieves the cookies from the client using HttpServletRequest method
getCookies, which returns an array of Cookie objects. When a get or post opera-
tion is performed to invoke a servlet, the cookies associated with that server’s domain are
automatically sent to the servlet.

115 out.println("<p>You did not select a language.</p>");
116 }
117
118 out.println("</body>");
119
120 // end XHTML document
121 out.println("</html>");
122 out.close(); // close stream
123 }
124 }

Fig. 9.20Fig. 9.20Fig. 9.20Fig. 9.20 Storing user data on the client computer with cookies (part 4 of 4).

Chapter 9 Servlets 565

If method getCookies does not return null (i.e., there were no cookies), lines
106–109 retrieve the name of each Cookie using Cookie method getName, retrieve the
value of each Cookie using Cookie method getValue and write a line to the client
indicating the name of a recommended book and its ISBN number.

Software Engineering Observation 9.9
Normally, each servlet class handles one request type (e.g., get or post, but not both). 9.9

Figure 9.21 shows the XHTML document the user loads to select a language. When
the user presses Submit, the value of the currently selected radio button is sent to the
server as part of the post request to the CookieServlet, which we refer to as
cookies in this example.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 9.21: CookieSelectLanguage.html -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>Using Cookies</title>

10 </head>
11
12 <body>
13 <form action = "/advjhtp1/cookies" method = "post">
14
15 <p>Select a programming language:</p>
16 <p>
17 <input type = "radio" name = "language"
18 value = "C" />C

19
20 <input type = "radio" name = "language"
21 value = "C++" />C++

22
23 <!-- this radio button checked by default -->
24 <input type = "radio" name = "language"
25 value = "Java" checked = "checked" />Java

26
27 <input type = "radio" name = "language"
28 value = "VB6" />VB 6
29 </p>
30
31 <p><input type = "submit" value = "Submit" /></p>
32
33 </form>
34 </body>
35 </html>

Fig. 9.21Fig. 9.21Fig. 9.21Fig. 9.21 CookieSelectLanguage.html document for selecting a
programming language and posting the data to the CookieServlet
(part 1 of 3).

566 Servlets Chapter 9

Fig. 9.21Fig. 9.21Fig. 9.21Fig. 9.21 CookieSelectLanguage.html document for selecting a
programming language and posting the data to the CookieServlet
(part 2 of 3).

Chapter 9 Servlets 567

We use our advjhtp1 context root to demonstrate the servlet of Fig. 9.20. Place
CookieSelectLanguage.html in the servlets directory created previously.
Place CookieServlet.class in the classes subdirectory of WEB-INF in the
advjhtp1 context root. Then, edit the web.xml deployment descriptor in the WEB-INF
directory to include the information specified in Fig. 9.22. Restart Tomcat and type the fol-
lowing URL in your Web browser:

http://localhost:8080/advjhtp1/servlets/
CookieSelectLanguage.html

Select a language, and press the Submit button in the Web page to invoke the servlet.
Various Cookie methods are provided to manipulate the members of a Cookie.

Some of these methods are listed in Fig. 9.23.

Fig. 9.21Fig. 9.21Fig. 9.21Fig. 9.21 CookieSelectLanguage.html document for selecting a
programming language and posting the data to the CookieServlet
(part 3 of 3).

568 Servlets Chapter 9

Descriptor element Value

servlet element

servlet-name cookies

description Using cookies to maintain state information.

servlet-class com.deitel.advjhtp1.servlets.CookieServlet

servlet-mapping element

servlet-name cookies

url-pattern /cookies

Fig. 9.22Fig. 9.22Fig. 9.22Fig. 9.22 Deployment descriptor information for servlet CookieServlet.

Method Description

getComment() Returns a String describing the purpose of the cookie (null if
no comment has been set with setComment).

getDomain() Returns a String containing the cookie’s domain. This deter-
mines which servers can receive the cookie. By default, cookies
are sent to the server that originally sent the cookie to the client.

getMaxAge() Returns an int representing the maximum age of the cookie in
seconds.

getName() Returns a String containing the name of the cookie as set by
the constructor.

getPath() Returns a String containing the URL prefix for the cookie.
Cookies can be “targeted” to specific URLs that include directo-
ries on the Web server. By default, a cookie is returned to services
operating in the same directory as the service that sent the cookie
or a subdirectory of that directory.

getSecure() Returns a boolean value indicating if the cookie should be
transmitted using a secure protocol (true).

getValue() Returns a String containing the value of the cookie as set with
setValue or the constructor.

getVersion() Returns an int containing the version of the cookie protocol
used to create the cookie. A value of 0 (the default) indicates the
original cookie protocol as defined by Netscape. A value of 1
indicates the current version, which is based on Request for Com-
ments (RFC) 2109.

setComment(String) The comment describing the purpose of the cookie that is pre-
sented by the browser to the user. (Some browsers allow the user
to accept cookies on a per-cookie basis.)

Fig. 9.23Fig. 9.23Fig. 9.23Fig. 9.23 Important methods of class Cookie (part 1 of 2).

Chapter 9 Servlets 569

9.7.2 Session Tracking with HttpSession
Java provides enhanced session tracking support with the servlet API’s HttpSession in-
terface. To demonstrate basic session-tracking techniques, we modified the servlet from
Fig. 9.20 to use HttpSession objects (Fig. 9.24). Once again, the servlet handles both
get and post requests. The document SessionSelectLanguage.html of
Fig. 9.25 contains four radio buttons (C, C++, Java and VB 6) and a Submit button.
When the user presses Submit, SessionServlet is invoked with a post request. The
servlet responds by creating an object of type HttpSession for the client (or using an
existing session for the client) and adds the selected language and an ISBN number for the
recommended book to the HttpSession object. Then, the servlet sends an XHTML page
to the client. Each time the user clicks Submit, a new language/ISBN pair is added to the
HttpSession object.

Software Engineering Observation 9.10
A servlet should not use instance variables to maintain client state information, because cli-
ents accessing that servlet in parallel might overwrite the shared instance variables. Servlets
should maintain client state information in HttpSession objects. 9.10

setDomain(String) This determines which servers can receive the cookie. By default,
cookies are sent to the server that originally sent the cookie to the
client. The domain is specified in the form ".deitel.com",
indicating that all servers ending with .deitel.com can
receive this cookie.

setMaxAge(int) Sets the maximum age of the cookie in seconds.

setPath(String) Sets the “target” URL prefix indicating the directories on the
server that lead to the services that can receive this cookie.

setSecure(boolean) A true value indicates that the cookie should only be sent using
a secure protocol.

setValue(String) Sets the value of a cookie.

setVersion(int) Sets the cookie protocol for this cookie.

Method Description

Fig. 9.23Fig. 9.23Fig. 9.23Fig. 9.23 Important methods of class Cookie (part 2 of 2).

1 // Fig. 9.24: SessionServlet.java
2 // Using HttpSession to maintain client state information.
3 package com.deitel.advjhtp1.servlets;
4
5 import javax.servlet.*;
6 import javax.servlet.http.*;
7 import java.io.*;
8 import java.util.*;

Fig. 9.24Fig. 9.24Fig. 9.24Fig. 9.24 Maintaining state information with HttpSession objects (part 1 of 4).

570 Servlets Chapter 9

9
10 public class SessionServlet extends HttpServlet {
11 private final Map books = new HashMap();
12
13 // initialize Map books
14 public void init()
15 {
16 books.put("C", "0130895725");
17 books.put("C++", "0130895717");
18 books.put("Java", "0130125075");
19 books.put("VB6", "0134569555");
20 }
21
22 // receive language selection and create HttpSession object
23 // containing recommended book for the client
24 protected void doPost(HttpServletRequest request,
25 HttpServletResponse response)
26 throws ServletException, IOException
27 {
28 String language = request.getParameter("language");
29
30 // Get the user's session object.
31 // Create a session (true) if one does not exist.
32 HttpSession session = request.getSession(true);
33
34 // add a value for user's choice to session
35 session.setAttribute(language, books.get(language));
36
37 response.setContentType("text/html");
38 PrintWriter out = response.getWriter();
39
40 // send XHTML page to client
41
42 // start XHTML document
43 out.println("<?xml version = \"1.0\"?>");
44
45 out.println("<!DOCTYPE html PUBLIC \"-//W3C//DTD " +
46 "XHTML 1.0 Strict//EN\" \"http://www.w3.org" +
47 "/TR/xhtml1/DTD/xhtml1-strict.dtd\">");
48
49 out.println(
50 "<html xmlns = \"http://www.w3.org/1999/xhtml\">");
51
52 // head section of document
53 out.println("<head>");
54 out.println("<title>Welcome to Sessions</title>");
55 out.println("</head>");
56
57 // body section of document
58 out.println("<body>");
59 out.println("<p>Welcome to Sessions! You selected " +
60 language + ".</p>");
61

Fig. 9.24Fig. 9.24Fig. 9.24Fig. 9.24 Maintaining state information with HttpSession objects (part 2 of 4).

Chapter 9 Servlets 571

62 // display information about the session
63 out.println("<p>Your unique session ID is: " +
64 session.getId() + "
");
65
66 out.println(
67 "This " + (session.isNew() ? "is" : "is not") +
68 " a new session
");
69
70 out.println("The session was created at: " +
71 new Date(session.getCreationTime()) + "
");
72
73 out.println("You last accessed the session at: " +
74 new Date(session.getLastAccessedTime()) + "
");
75
76 out.println("The maximum inactive interval is: " +
77 session.getMaxInactiveInterval() + " seconds</p>");
78
79 out.println("<p><a href = " +
80 "\"servlets/SessionSelectLanguage.html\">" +
81 "Click here to choose another language</p>");
82
83 out.println("<p>" +
84 "Click here to get book recommendations</p>");
85 out.println("</body>");
86
87 // end XHTML document
88 out.println("</html>");
89 out.close(); // close stream
90 }
91
92 // read session attributes and create XHTML document
93 // containing recommended books
94 protected void doGet(HttpServletRequest request,
95 HttpServletResponse response)
96 throws ServletException, IOException
97 {
98 // Get the user's session object.
99 // Do not create a session (false) if one does not exist.
100 HttpSession session = request.getSession(false);
101
102 // get names of session object's values
103 Enumeration valueNames;
104
105 if (session != null)
106 valueNames = session.getAttributeNames();
107 else
108 valueNames = null;
109
110 PrintWriter out = response.getWriter();
111 response.setContentType("text/html");
112
113 // start XHTML document
114 out.println("<?xml version = \"1.0\"?>");

Fig. 9.24Fig. 9.24Fig. 9.24Fig. 9.24 Maintaining state information with HttpSession objects (part 3 of 4).

572 Servlets Chapter 9

Most of class SessionServlet is identical to CookieServlet (Fig. 9.20), so
we concentrate on only the new features here. When the user selects a language from the
document SessionSelectLanguage.html (Fig. 9.25) and presses Submit, method
doPost (lines 24–90) is invoked. Line 28 gets the user’s language selection. Then, line
32 uses method getSession of interface HttpServletRequest to obtain the

115
116 out.println("<!DOCTYPE html PUBLIC \"-//W3C//DTD " +
117 "XHTML 1.0 Strict//EN\" \"http://www.w3.org" +
118 "/TR/xhtml1/DTD/xhtml1-strict.dtd\">");
119
120 out.println(
121 "<html xmlns = \"http://www.w3.org/1999/xhtml\">");
122
123 // head section of document
124 out.println("<head>");
125 out.println("<title>Recommendations</title>");
126 out.println("</head>");
127
128 // body section of document
129 out.println("<body>");
130
131 if (valueNames != null &&
132 valueNames.hasMoreElements()) {
133 out.println("<h1>Recommendations</h1>");
134 out.println("<p>");
135
136 String name, value;
137
138 // get value for each name in valueNames
139 while (valueNames.hasMoreElements()) {
140 name = valueNames.nextElement().toString();
141 value = session.getAttribute(name).toString();
142
143 out.println(name + " How to Program. " +
144 "ISBN#: " + value + "
");
145 }
146
147 out.println("</p>");
148 }
149 else {
150 out.println("<h1>No Recommendations</h1>");
151 out.println("<p>You did not select a language.</p>");
152 }
153
154 out.println("</body>");
155
156 // end XHTML document
157 out.println("</html>");
158 out.close(); // close stream
159 }
160 }

Fig. 9.24Fig. 9.24Fig. 9.24Fig. 9.24 Maintaining state information with HttpSession objects (part 4 of 4).

Chapter 9 Servlets 573

HttpSession object for the client. If the server has an existing HttpSession object
for the client from a previous request, method getSession returns that HttpSession
object. Otherwise, the true argument to method getSession indicates that the servlet
should create a unique new HttpSession object for the client. A false argument
would cause method getSession to return null if the HttpSession object for the
client did not already exist. Using a false argument could help determine whether a client
has logged into a Web application.

Like a cookie, an HttpSession object can store name/value pairs. In session termi-
nology, these are called attributes, and they are placed into an HttpSession object with
method setAttribute. Line 35 uses setAttribute to put the language and the corre-
sponding recommended book’s ISBN number into the HttpSession object. One of the
primary benefits of using HttpSession objects rather than cookies is that HttpSession
objects can store any object (not just Strings) as the value of an attribute. This allows Java
programmers flexibility in determining the type of state information they wish to maintain for
clients of their Web applications. If an attribute with a particular name already exists when
setAttribute is called, the object associated with that attribute name is replaced.

Software Engineering Observation 9.11
Name/value pairs added to an HttpSession object with setAttribute remain avail-
able until the client’s current browsing session ends or until the session is invalidated explic-
itly by a call to the HttpSession object’s invalidate method. Also, if the servlet
container is restarted, these attributes may be lost. 9.11

After the values are added to the HttpSession object, the servlet sends an XHTML
document to the client (see the second screen capture of Fig. 9.25). In this example, the doc-
ument contains various information about the HttpSession object for the current client.
Line 64 uses HttpSession method getID to obtain the session’s unique ID number.
Line 67 determines whether the session is new or already exists with method isNew,
which returns true or false. Line 71 obtains the time at which the session was created
with method getCreationTime. Line 74 obtains the time at which the session was last
accessed with method getLastAccessedTime. Line 77 uses method getMaxInac-
tiveInterval to obtain the maximum amount of time that an HttpSession object
can be inactive before the servlet container discards it.

The XHTML document sent to the client in response to a post request includes a
hyperlink that invokes method doGet (lines 94–159). The method obtains the HttpSes-
sion object for the client with method getSession (line 100). We do not want to make
any recommendations if the client does not have an existing HttpSession object. So,
this call to getSession uses a false argument. Thus, getSession returns an
HttpSession object only if one already exists for the client.

If method getSession does not return null, line 106 uses HttpSession method
getAttributeNames to retrieve an Enumeration of the attribute names (i.e., the
names used as the first argument to HttpSession method setAttribute). Each name
is passed as an argument to HttpSession method getAttribute (line 141) to retrieve
the ISBN of a book from the HttpSession object. Method getAttribute receives the
name and returns an Object reference to the corresponding value. Next, a line is written in
the response to the client containing the title and ISBN number of the recommended book.

Figure 9.25 shows the XHTML document the user loads to select a language. When
the user presses Submit, the value of the currently selected radio button is sent to the

574 Servlets Chapter 9

server as part of the post request to the SessionServlet, which we refer to as ses-
sions in this example.

We use our advjhtp1 context root to demonstrate the servlet of Fig. 9.24. Place
SessionSelectLanguage.html in the servlets directory created previously.
Place SessionServlet.class in the classes subdirectory of WEB-INF in the
advjhtp1 context root. Then, edit the web.xml deployment descriptor in the WEB-INF
directory to include the information specified in Fig. 9.26. Restart Tomcat and type the fol-
lowing URL in your Web browser:

http://localhost:8080/advjhtp1/servlets/
SessionSelectLanguage.html

Select a language, and press the Submit button in the Web page to invoke the servlet.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 9.25: SessionSelectLanguage.html -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>Using Sessions</title>

10 </head>
11
12 <body>
13 <form action = "/advjhtp1/sessions" method = "post">
14
15 <p>Select a programming language:</p>
16 <p>
17 <input type = "radio" name = "language"
18 value = "C" />C

19
20 <input type = "radio" name = "language"
21 value = "C++" />C++

22
23 <!-- this radio button checked by default -->
24 <input type = "radio" name = "language"
25 value = "Java" checked = "checked" />Java

26
27 <input type = "radio" name = "language"
28 value = "VB6" />VB 6
29 </p>
30
31 <p><input type = "submit" value = "Submit" /></p>
32
33 </form>
34 </body>
35 </html>

Fig. 9.25Fig. 9.25Fig. 9.25Fig. 9.25 SessionSelectLanguage.html document for selecting a pro-
gramming language and posting the data to the SessionServlet
(part 1 of 4).

Chapter 9 Servlets 575

Fig. 9.25Fig. 9.25Fig. 9.25Fig. 9.25 SessionSelectLanguage.html document for selecting a pro-
gramming language and posting the data to the SessionServlet
(part 2 of 4).

576 Servlets Chapter 9

Fig. 9.25Fig. 9.25Fig. 9.25Fig. 9.25 SessionSelectLanguage.html document for selecting a pro-
gramming language and posting the data to the SessionServlet
(part 3 of 4).

Chapter 9 Servlets 577

9.8 Multi-tier Applications: Using JDBC from a Servlet
Servlets can communicate with databases via JDBC (Java Database Connectivity). As we
discussed in Chapter 8, JDBC provides a uniform way for a Java program to connect with
a variety of databases in a general manner without having to deal with the specifics of those
database systems.

Many of today’s applications are three-tier distributed applications, consisting of a
user interface, business logic and database access. The user interface in such an application
is often created using HTML, XHTML (as shown in this chapter) or Dynamic HTML. In
some cases, Java applets are also used for this tier. HTML and XHTML are the preferred
mechanisms for representing the user interface in systems where portability is a concern.
Because HTML is supported by all browsers, designing the user interface to be accessed
through a Web browser guarantees portability across all platforms that have browsers.
Using the networking provided automatically by the browser, the user interface can com-
municate with the middle-tier business logic. The middle tier can then access the database

Descriptor element Value

servlet element

servlet-name sessions

description Using sessions to maintain state information.

servlet-class com.deitel.advjhtp1.servlets.SessionServlet

servlet-mapping element

servlet-name sessions

url-pattern /sessions

Fig. 9.26Fig. 9.26Fig. 9.26Fig. 9.26 Deployment descriptor information for servlet WelcomeServlet2.

Fig. 9.25Fig. 9.25Fig. 9.25Fig. 9.25 SessionSelectLanguage.html document for selecting a pro-
gramming language and posting the data to the SessionServlet
(part 4 of 4).

578 Servlets Chapter 9

to manipulate the data. The three tiers can reside on separate computers that are connected
to a network.

In multi-tier architectures, Web servers often represent the middle tier. They provide
the business logic that manipulates data from databases and that communicates with client
Web browsers. Servlets, through JDBC, can interact with popular database systems. Devel-
opers do not need to be familiar with the specifics of each database system. Rather, devel-
opers use SQL-based queries and the JDBC driver handles the specifics of interacting with
each database system.

The SurveyServlet of Fig. 9.27 and the Survey.html document of Fig. 9.28
demonstrate a three-tier distributed application that displays the user interface in a browser
using XHTML. The middle tier is a Java servlet that handles requests from the client
browser and provides access to the third tier—a Cloudscape database accessed via JDBC.
The servlet in this example is a survey servlet that allows users to vote for their favorite
animal. When the servlet receives a post request from the Survey.html document, the
servlet updates the total number of votes for that animal in the database and returns a
dynamically generated XHTML document containing the survey results to the client.

1 // Fig. 9.27: SurveyServlet.java
2 // A Web-based survey that uses JDBC from a servlet.
3 package com.deitel.advjhtp1.servlets;
4
5 import java.io.*;
6 import java.text.*;
7 import java.sql.*;
8 import javax.servlet.*;
9 import javax.servlet.http.*;

10
11 public class SurveyServlet extends HttpServlet {
12 private Connection connection;
13 private PreparedStatement updateVotes, totalVotes, results;
14
15 // set up database connection and prepare SQL statements
16 public void init(ServletConfig config)
17 throws ServletException
18 {
19 // attempt database connection and create PreparedStatements
20 try {
21 Class.forName("COM.cloudscape.core.RmiJdbcDriver");
22 connection = DriverManager.getConnection(
23 "jdbc:rmi:jdbc:cloudscape:animalsurvey");
24
25 // PreparedStatement to add one to vote total for a
26 // specific animal
27 updateVotes =
28 connection.prepareStatement(
29 "UPDATE surveyresults SET votes = votes + 1 " +
30 "WHERE id = ?"
31);
32

Fig. 9.27Fig. 9.27Fig. 9.27Fig. 9.27 Multi-tier Web-based survey using XHTML, servlets and JDBC (part 1 of 4).

Chapter 9 Servlets 579

33 // PreparedStatement to sum the votes
34 totalVotes =
35 connection.prepareStatement(
36 "SELECT sum(votes) FROM surveyresults"
37);
38
39 // PreparedStatement to obtain surveyoption table's data
40 results =
41 connection.prepareStatement(
42 "SELECT surveyoption, votes, id " +
43 "FROM surveyresults ORDER BY id"
44);
45 }
46
47 // for any exception throw an UnavailableException to
48 // indicate that the servlet is not currently available
49 catch (Exception exception) {
50 exception.printStackTrace();
51 throw new UnavailableException(exception.getMessage());
52 }
53
54 } // end of init method
55
56 // process survey response
57 protected void doPost(HttpServletRequest request,
58 HttpServletResponse response)
59 throws ServletException, IOException
60 {
61 // set up response to client
62 response.setContentType("text/html");
63 PrintWriter out = response.getWriter();
64 DecimalFormat twoDigits = new DecimalFormat("0.00");
65
66 // start XHTML document
67 out.println("<?xml version = \"1.0\"?>");
68
69 out.println("<!DOCTYPE html PUBLIC \"-//W3C//DTD " +
70 "XHTML 1.0 Strict//EN\" \"http://www.w3.org" +
71 "/TR/xhtml1/DTD/xhtml1-strict.dtd\">");
72
73 out.println(
74 "<html xmlns = \"http://www.w3.org/1999/xhtml\">");
75
76 // head section of document
77 out.println("<head>");
78
79 // read current survey response
80 int value =
81 Integer.parseInt(request.getParameter("animal"));
82
83 // attempt to process a vote and display current results
84 try {
85

Fig. 9.27Fig. 9.27Fig. 9.27Fig. 9.27 Multi-tier Web-based survey using XHTML, servlets and JDBC (part 2 of 4).

580 Servlets Chapter 9

86 // update total for current surevy response
87 updateVotes.setInt(1, value);
88 updateVotes.executeUpdate();
89
90 // get total of all survey responses
91 ResultSet totalRS = totalVotes.executeQuery();
92 totalRS.next();
93 int total = totalRS.getInt(1);
94
95 // get results
96 ResultSet resultsRS = results.executeQuery();
97 out.println("<title>Thank you!</title>");
98 out.println("</head>");
99
100 out.println("<body>");
101 out.println("<p>Thank you for participating.");
102 out.println("
Results:</p><pre>");
103
104 // process results
105 int votes;
106
107 while (resultsRS.next()) {
108 out.print(resultsRS.getString(1));
109 out.print(": ");
110 votes = resultsRS.getInt(2);
111 out.print(twoDigits.format(
112 (double) votes / total * 100));
113 out.print("% responses: ");
114 out.println(votes);
115 }
116
117 resultsRS.close();
118
119 out.print("Total responses: ");
120 out.print(total);
121
122 // end XHTML document
123 out.println("</pre></body></html>");
124 out.close();
125 }
126
127 // if database exception occurs, return error page
128 catch (SQLException sqlException) {
129 sqlException.printStackTrace();
130 out.println("<title>Error</title>");
131 out.println("</head>");
132 out.println("<body><p>Database error occurred. ");
133 out.println("Try again later.</p></body></html>");
134 out.close();
135 }
136
137 } // end of doPost method
138

Fig. 9.27Fig. 9.27Fig. 9.27Fig. 9.27 Multi-tier Web-based survey using XHTML, servlets and JDBC (part 3 of 4).

Chapter 9 Servlets 581

Lines 12 and 13 begin by declaring a Connection reference to manage the database
connection and three PreparedStatement references for updating the vote count for
an animal, totalling all the votes and obtaining the complete survey results.

Servlets are initialized by overriding method init (lines 16–54). Method init is
called exactly once in a servlet’s lifetime, before any client requests are accepted. Method
init takes a ServletConfig argument and throws a ServletException. The argu-
ment provides the servlet with information about its initialization parameters (i.e., parameters
not associated with a request, but passed to the servlet for initializing servlet variables). These
parameters are specified in the web.xml deployment descriptor file as part of a servlet
element. Each parameter appears in an init-param element of the following form:

<init-param>
 <param-name>parameter name goes here</param-name>
 <param-value>parameter value goes here</param-value>
</init-param>

Servlets can obtain initialization parameter values by invoking ServletConfig method
getInitParameter, which receives a string representing the name of the parameter.

In this example, the servlet’s init method (lines 16–54) performs the connection to
the Cloudscape database. Line 21 loads the driver (COM.cloudscape.core.Rmi-
JdbcDriver). Lines 22–23 attempt to open a connection to the animalsurvey data-
base. The database contains one table (surveyresults) that consists of three fields—a
unique integer to identify each record called id, a string representing the survey option
called surveyoption and an integer representing the number of votes for a survey
option called votes. [Note: The examples folder for this chapter contains an SQL script
(animalsurvey.sql) that you can use to create the animalsurvey database for this
example. For information on starting the Cloudscape server and executing the SQL script,
please refer back to Chapter 8.]

Lines 27–44 create PreparedStatement objects called updateVotes,
totalVotes and results. The updateVotes statement adds one to the votes

139 // close SQL statements and database when servlet terminates
140 public void destroy()
141 {
142 // attempt to close statements and database connection
143 try {
144 updateVotes.close();
145 totalVotes.close();
146 results.close();
147 connection.close();
148 }
149
150 // handle database exceptions by returning error to client
151 catch(SQLException sqlException) {
152 sqlException.printStackTrace();
153 }
154 } // end of destroy method
155 }

Fig. 9.27Fig. 9.27Fig. 9.27Fig. 9.27 Multi-tier Web-based survey using XHTML, servlets and JDBC (part 4 of 4).

582 Servlets Chapter 9

value for the record with the specified ID. The totalVotes statement uses SQL’s built-
in sum capability to total all the votes in the surveyresults table. The results state-
ment returns all the data in the surveyresults table.

When a user submits a survey response, method doPost (lines 57–137) handles the
request. Lines 80–81 obtain the survey response, then the try block (lines 84–125)
attempts to process the response. Lines 87–88 set the first parameter of Prepared-
Statement updateVotes to the survey response and update the database. Lines 91–
93 execute PreparedStatement totalVotes to retrieve the total number of votes
received. Then, lines 96–123 execute PreparedStatement results and process the
ResultSet to create the survey summary for the client. When the servlet container ter-
minates the servlet, method destroy (lines 140–154) closes each PreparedState-
ment, then closes the database connection. Figure 9.28 shoes survey.html, which invokes
SurveyServlet with the alias animalsurvey when the user submits the form.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 9.28: Survey.html -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8 <head>
9 <title>Survey</title>

10 </head>
11
12 <body>
13 <form method = "post" action = "/advjhtp1/animalsurvey">
14
15 <p>What is your favorite pet?</p>
16
17 <p>
18 <input type = "radio" name = "animal"
19 value = "1" />Dog

20 <input type = "radio" name = "animal"
21 value = "2" />Cat

22 <input type = "radio" name = "animal"
23 value = "3" />Bird

24 <input type = "radio" name = "animal"
25 value = "4" />Snake

26 <input type = "radio" name = "animal"
27 value = "5" checked = "checked" />None
28 </p>
29
30 <p><input type = "submit" value = "Submit" /></p>
31
32 </form>
33 </body>
34 </html>

Fig. 9.28Fig. 9.28Fig. 9.28Fig. 9.28 Survey.html document that allows users to submit survey responses to
SurveyServlet (part 1 of 2).

Chapter 9 Servlets 583

We use our advjhtp1 context root to demonstrate the servlet of Fig. 9.27. Place
Survey.html in the servlets directory created previously. Place SurveySer-
vlet.class in the classes subdirectory of WEB-INF in the advjhtp1 context root.
Then, edit the web.xml deployment descriptor in the WEB-INF directory to include the
information specified in Fig. 9.29. Also, this program cannot execute in Tomcat unless the
Web application is aware of the JAR files cloudscape.jar and RmiJdbc.jar that
contain the Cloudscape database driver and its supporting classes. The cloudscape.jar
file is located in your Cloudscape installation’s lib directory. The RmiJdbc.jar file is
located in your Cloudsape installation’s frameworks\RmiJdbc\classes directory.
Place copies of these files in the WEB-INF subdirectory lib to make them available to the
Web application. Please refer back to Chapter 8 for more information on the set up and con-
figuration of Cloudscape.

Fig. 9.28Fig. 9.28Fig. 9.28Fig. 9.28 Survey.html document that allows users to submit survey responses to
SurveyServlet (part 2 of 2).

584 Servlets Chapter 9

A copy of these files should be placed in the advjhtp1 context root’s WEB-INF sub-
directory called lib. After copying these files, restart Tomcat and type the following URL
in your Web browser:

http://localhost:8080/advjhtp1/servlets/Survey.html

Select a survey response, and press the Submit button in the Web page to invoke the servlet.

9.9 HttpUtils Class
Class HttpUtils provides three static utility methods to simplify servlet program-
ming. These methods are discussed in Fig. 9.30.

Descriptor element Value

servlet element

servlet-name animalsurvey

description Connecting to a database from a servlet.

servlet-class com.deitel.advjhtp1.servlets.SurveyServlet

servlet-mapping element

servlet-name animalsurvey

url-pattern /animalsurvey

Fig. 9.29Fig. 9.29Fig. 9.29Fig. 9.29 Deployment descriptor information for servlet SurveyServlet.

Method Description

getRequestURL This method takes the HttpServletRequest object as an argu-
ment and returns a StringBuffer containing the original URL that
initiated the request.

parsePostData This method receives an integer and ServletInputStream as
arguments. The integer represents the number of bytes in the Serv-
letInputStream. The ServletInputStream contains the key/
value pairs posted to the servlet from a form. The method returns a
Hashtable containing the key/value pairs.

parseQueryString This method receives a String representing the query string in a get
request as an argument and returns a Hashtable containing the key/
value pairs in the query string. The value of each key is an array of
Strings. The query string can be obtained with HttpServletRe-
quest method getQueryString.

Fig. 9.30Fig. 9.30Fig. 9.30Fig. 9.30 HttpUtils class methods.

Chapter 9 Servlets 585

9.10 Internet and World Wide Web Resources
This section lists a variety of servlet resources available on the Internet and provides a brief
description of each.

java.sun.com/products/servlet/index.html
The servlet page at the Sun Microsystems, Inc., Java Web site provides access to the latest servlet in-
formation and servlet resources.

jakarta.apache.org
This is the Apache Project’s home page for the Jakarta Project. Tomcat—the servlets and JavaServer
Pages reference implementation— is one of many subprojects of the Jakarta Project.

jakarta.apache.org/tomcat/index.html
Home page for the Tomcat servlets and JavaServer Pages reference implementation.

java.apache.org
This is the Apache Project’s home page for all Java-related technologies. This site provides access to
many Java packages useful to servlet and JSP developers.

www.servlets.com
This is the Web site for the book Java Servlet Programming published by O’Reilly. The book provides
a variety of resources. This book is an excellent resource for programmers who are learning servlets.

theserverside.com
TheServerSide.com is dedicated to information and resources for Enterprise Java.

www.servletsource.com
ServletSource.com is a general servlet resource site containing code, tips, tutorials and links to many
other Web sites with information on servlets.

www.cookiecentral.com
A good all-around resource site for cookies.

developer.netscape.com/docs/manuals/communicator/jsguide4/
cookies.htm
A description of Netscape cookies.

www.javacorporate.com
Home of the open-source Expresso Framework, which includes a library of extensible servlet com-
ponents to help speed Web application development.

www.servlet.com/srvdev.jhtml
ServletInc’s Servlet Developers Forum provides resources for server-side Java developers and infor-
mation about Web servers that support servlet technologies.

www.servletforum.com
ServletForum.com is a newsgroup where you can post questions and have them answered by your peers.

www.coolservlets.com
Provides free open-source Java servlets.

www.cetus-links.org/oo_java_servlets.html
Provides a list of links to resources on servlets and other technologies.

www.javaskyline.com
Java Skyline is an online magazine for servlet developers.

www.rfc-editor.org
The RFC Editor provides a search engine for RFCs (Request for Comments). Many of these RFCs
provide details of Web-related technologies. RFCs of interest to servlet developers include URIs

586 Servlets Chapter 9

(RFC 1630), URLs (RFC 1738)URL, Relative URLs (RFC 1808), HTTP/1.0 (RFC 1945), MIME
(RFCs 2045–2049), HTTP State Management Mechanism (RFC 2109), Use and Interpretation of
HTTP Version Numbers (RFC 2145), Hypertext Coffee Pot Control Protocol (RFC 2324), HTTP/1.1
(RFC 2616) and HTTP Authentication: Basic and Digest Authentication (RFC 2617).

www.irvine.com/~mime
The Multipurpose Internet Mail Extensions FAQ provides information on MIME and a list of many
registered MIME types, as well as links to other MIME resources.

SUMMARY
• The classes and interfaces used to define servlets are found in packages javax.servlet and
javax.servlet.http.

• The Internet offers many protocols. The HTTP protocol (Hypertext Transfer Protocol) that forms
the basis of the World Wide Web uses URIs (Uniform Resource Identifiers) to locate resources on
the Internet.

• Common URLs represent files or directories and can represent complex tasks such as database
lookups and Internet searches.

• JavaServer Pages technology is an extension of servlet technology.

• Servlets are normally executed as part of a Web server (also known as the servlet container).

• Servlets and JavaServer Pages have become so popular that they are now supported by most major
Web servers and application servers.

• All servlets must implement the Servlet interface. The methods of interface Servlet are in-
voked automatically by the servlet container.

• A servlet’s life cycle begins when the servlet container loads the servlet into memory—normally
in response to the first request to that servlet. Before the servlet can handle the first request, the
servlet container invokes the servlet’s init method. After init completes execution, the servlet
can respond to its first request. All requests are handled by a servlet’s service method, which
may be called many times during the life cycle of a servlet. When the servlet container terminates
the servlet, the servlet’s destroy method is called to release servlet resources.

• The servlet packages define two abstract classes that implement the interface Servlet—
class GenericServlet and class HttpServlet. Most servlets extend one of these classes
and override some or all of their methods with appropriate customized behaviors.

• The key method in every servlet is method service, which receives both a ServletRequest
object and a ServletResponse object. These objects provide access to input and output
streams that allow the servlet to read data from the client and send data to the client.

• Web-based servlets typically extend class HttpServlet. Class HttpServlet overrides
method service to distinguish between the typical requests received from a client Web browser.
The two most common HTTP request types (also known as request methods) are get and post.

• Class HttpServlet defines methods doGet and doPost to respond to get and post re-
quests from a client, respectively. These methods are called by the HttpServlet class’s ser-
vice method, which is called when a request arrives at the server.

• Methods doGet and doPost receive as arguments an HttpServletRequest object and an
HttpServletResponse object that enable interaction between the client and the server.

• A response is sent to the client through a PrintWriter object returned by the getWriter
method of the HttpServletResponse object.

• The HttpServletResponse object’s setContentType method specifies the MIME type
of the response to the client. This enables the client browser to understand and handle the content.

Chapter 9 Servlets 587

• The server localhost (IP address 127.0.0.1) is a well-known server host name on most
computers that support TCP/IP-based networking protocols such as HTTP. This host name can be
used to test TCP/IP applications on the local computer.

• The Tomcat server awaits requests from clients on port 8080. This port number must be specified
as part of the URL to request a servlet running in Tomcat.

• The client can access a servlet only if that servlet is installed on a server that can respond to servlet
requests. Web servers that support servlets normally have an installation procedure for servlets.

• Tomcat is a fully functional implementation of the JSP and servlet standards. It includes a Web
server, so it can be used as a stand-alone test container for JSPs and servlets.

• Tomcat can be specified as the handler for JSP and servlet requests received by popular Web serv-
ers such as Apache and IIS. Tomcat also is integrated into the Java 2 Enterprise Edition reference
implementation from Sun Microsystems.

• JSPs, servlets and their supporting files are deployed as part of Web applications. In Tomcat, Web
applications are deployed in the webapps subdirectory of the Tomcat installation.

• A Web application has a well-known directory structure in which all the files that are part of the
application reside. This directory structure can be set up by the Tomcat server administrator in the
webapps directory, or the entire directory structure can be archived in a Web application archive
file. Such an archive is known as a WAR file and ends with the .war file extension.

• If a WAR file is placed in the webapps directory, when the Tomcat server starts up it extracts the
contents of the WAR file into the appropriate webapps subdirectory structure.

• The Web application directory structure is separated into a context root—the top-level directory
for an entire Web application—and several subdirectories. The context root is the root directory
for the Web application. All the JSPs, HTML documents, servlets and supporting files such as im-
ages and class files reside in this directory or its subdirectories. The WEB-INF directory contains
the Web application deployment descriptor (web.xml). The WEB-INF/classes directory
contains the servlet class files and other supporting class files used in a Web application. The
WEB-INF/lib directory contains Java archive (JAR) files that may include servlet class files and
other supporting class files used in a Web application.

• Before deploying a Web application, the servlet container must be made aware of the context root
for the Web application. In Tomcat, this can be done simply by placing a directory in the webap-
ps subdirectory. Tomcat uses the directory name as the context name.

• Deploying a Web application requires the creation of a deployment descriptor (web.xml).

• HTTP get requests can be typed directly into your browser’s Address or Location field.

• Parameters are passed as name/value pairs in a get request. A ? separates the URL from the data
passed as part of a get request. Name/value pairs are passed with the name and the value separat-
ed by =. If there is more than one name/value pair, each name/value pair is separated by &.

• Method getParameter of interface HttpServletRequest receives the parameter name as
an argument and returns the corresponding String value, or null if the parameter is not part of
the request.

• An HTTP post request is often used to post data from an Web-page form to a server-side form
handler that processes the data.

• Browsers often cache (save on disk) Web pages so they can quickly reload the pages. Browsers do
not cache the server’s response to a post request.

• Method doPost receives the same two arguments as doGet—an object that implements inter-
face HttpServletRequest to represent the client’s request and an object that implements in-
terface HttpServletResponse to represent the servlet’s response.

588 Servlets Chapter 9

• Method sendRedirect of HttpServletResponse redirects a request to the specified URL.

• When a servlet uses a relative path to reference another static or dynamic resource, the servlet as-
sumes the same context root unless a complete URL is specified for the resource.

• Once method sendRedirect executes, processing of the request by the servlet that called
sendRedirect terminates.

• When redirecting requests, the request parameters from the original request are passed as param-
eters to the new request. Additional request parameters also can be passed.

• New parameters are added to the existing request parameters. If a new parameter has the same
name as an existing parameter, the new parameter value takes precedence over the original value.
However, all the values are still passed.

• The complete set of values for a given request-parameter name can be obtained by calling method
getParameterValues from interface HttpServletRequest, which receives the param-
eter name as an argument and returns an array of Strings containing the parameter values in or-
der from the most recently added value for that parameter to the least recently added.

• Many Web sites today provide custom Web pages and/or functionality on a client-by-client basis.

• HTTP is a stateless protocol—it does not support persistent information that could help a Web
server determine that a request is from a particular client.

• Cookies can store information on the user’s computer for retrieval later in the same or in future
browsing sessions.

• Cookies are text-based data that are sent by servlets (or other similar technologies) as part of re-
sponses to clients.

• Every HTTP-based interaction between a client and a server includes a header containing infor-
mation about the request (when the communication is from the client to the server) or information
about the response (when the communication is from the server to the client).

• When the server receives a request, the header includes information such as the request type (e.g.,
get or post) and the cookies stored on the client machine by the server.

• When the server formulates its response, the header information includes any cookies the server
wants to store on the client computer and other information such as the MIME type of the response.

• Depending on the maximum age of a cookie, the Web browser either maintains the cookie for the
duration of the browsing session or stores the cookie on the client computer for future use. When
the browser requests a resource from a server, cookies previously sent to the client by that server
are returned to the server as part of the request formulated by the browser. Cookies are deleted au-
tomatically when they expire.

• By default, cookies only exist for the current browsing session (until the user closes the browser).
To make cookies persist beyond the current session, call Cookie method setMaxAge to indi-
cate the number of seconds until the cookie expires.

• Method addCookie of interface HttpServletResponse adds a cookie to the response.
Cookies are sent to the client as part of the HTTP header. The header information is always pro-
vided to the client first, so the cookies should be added before the response is output.

• HttpServletRequest method getCookies returns an array of Cookie objects. Method
getCookies returns null if there are no cookies in the request.

• Cookie method getName retrieves the name of a cookie. Cookie method getValue re-
trieves the value of a cookie.

• Java provides enhanced session An alternative approach to cookies is to track a session with Ht-
tpSessions, which eliminate the problems associated with clients disabling cookies in their
browsers by making the session-tracking mechanism transparent to the programmer.

Chapter 9 Servlets 589

• Method getSession of interface HttpServletRequest obtains an HttpSession object
for the client.

• Like a cookie, an HttpSession object can store name/value pairs. In sessions, these are called
attributes, and they are stored with setAttribute and retrieved with getAttribute.

• Name/value pairs added to an HttpSession object with setAttribute remain available un-
til the client’s current browsing session ends or until the session is explicitly invalidated by a call
to the HttpSession object’s invalidate method.

• HttpSession method getID obtains the session’s unique ID number.

• HttpSession method isNew determines whether a session is new or already exists. Method
getCreationTime obtains the time at which the session was created.

• HttpSession method getLastAccessedTime obtains the time at which the session was
last accessed.

• HttpSession method getMaxInactiveInterval obtains the maximum amount of time
that an HttpSession object can be inactive before the servlet container discards it.

• Many of today’s applications are three-tier distributed applications, consisting of a user interface,
business logic and database access.

• In multi-tier architectures, Web servers often represent the middle tier. They provide the business
logic that manipulates data from databases and that communicates with client Web browsers.

• Servlet method init takes a ServletConfig argument and throws a Servlet-
Exception. The argument provides the servlet with information about its initialization param-
eters that are specified in a servlet element in the deployment descriptor. Each parameter
appears in an init-param element with child elements param-name and param-value.

TERMINOLOGY
addCookie method of
 HttpServletResponse

getLastAccessedTime method of
 HttpSession

Apache Tomcat server getMaxInactiveInterval method of
 HttpSessioncache a Web page

commit a response getName method of Cookie
context root getOutputStream method of

 HTTPServletResponseCookie class
delete request getParameter method of

 HttpServletRequestdeploy a Web application
deployment descriptor getParameterNames method of

 HttpServletRequestdestroy method of Servlet
doGet method of HttpServlet getParameterValues method of

 HttpServletRequest
getServletConfig method of Servlet

doPost method of HttpServlet
GenericServlet class from
 javax.servlet getServletInfo method of Servlet
get request getSession method of

 HttpServletRequestgetAttribute method of HttpSession
getAttributeNames method of
 HttpSession

getValue method of Cookie
getWriter method of
 HTTPServletResponsegetCookies method of

 HttpServletRequest host name
getCreationTime method of HttpSession HTTP (Hypertext Transfer Protocol)
getID method of HttpSession HTTP header

590 Servlets Chapter 9

SELF-REVIEW EXERCISES
9.1 Fill in the blanks in each of the following statements:

a) Classes HttpServlet and GenericServlet implement the interface.
b) Class HttpServlet defines the methods and to respond to

get and post requests from a client.
c) HttpServletResponse method obtains a character-based output

stream that enables text data to be sent to the client.
d) The form attribute specifies the server-side form handler, i.e., the program

that handles the request.
e) is the well-known host name that refers to your own computer.
f) Cookie method returns a String the name of the cookie as set with

 or the constructor.
g) HttpServletRequest method getSession returns an object for the

client.

9.2 State whether each of the following is true or false. If false, explain why.
a) Servlets usually are used on the client side of a networking application.
b) Servlet methods are executed automatically.
c) The two most common HTTP requests are get and put.
d) The well-known port number for Web requests is 55.

HTTP request servlet container
HttpServlet interface Servlet interface
HttpServletRequest interface servlet life cycle
HttpServletResponse interface servlet mapping
HttpSession interface ServletConfig interface
init method of Servlet ServletContext interface
initialization parameter ServletException class
invalidate method of HttpSession ServletOutputStream class
isNew method of HttpSession ServletRequest interface
Jakarta project ServletResponse interface
JAVA_HOME environment variable session tracking
javax.servlet package setAttribute method of HttpSession
javax.servlet.http package setContentType method of

 HttpServletResponseJigsaw Web server
localhost (127.0.0.1) shopping cart
maximum age of a cookie text/html MIME type
MIME type thin client
options request TOMCAT_HOME environment variable
path attribute trace request
port URL pattern
post request WAR (Web application archive) file
put request Web application
redirect a request Web application deployment

 descriptor (web.xml)request method
request parameter webapps directory
sendRedirect method of
 HttpServletResponse

WEB-INF directory
WEB-INF/classes directory

service method of Servlet WEB-INF/lib directory
servlet well-known port number

Chapter 9 Servlets 591

e) Cookies never expire.
f) HttpSessions expire only when the browsing session ends or when the invali-

date method is called.
g) The HttpSession method getAttribute returns the object associated with a par-

ticular name.

ANSWERS TO SELF-REVIEW EXERCISES
9.1 a) Servlet. b) doGet, doPost. c) getWriter. d) action. e) localhost. f) getName,
setName. g) HttpSession.

9.2 a) False. Servlets are usually used on the server side.
b) True.
c) False. The two most common HTTP request types are get and post.
d) False. The well-known port number for Web requests is 80.
e) False. Cookies expire when they reach their maximum age.
f) True.
g) True.

EXERCISES
9.3 Modify the Cookie example of Fig. 9.20 to list prices for each book in the book recommen-
dations. Also, allow the user to select some or all of the recommended books and “order” them. De-
ploy your Web application on the Tomcat server.

9.4 Modify the HttpSession example of Fig. 9.24 to list prices for each book in the book rec-
ommendations. Also, allow the user to select some or all of the recommended books and “order”
them. Deploy your Web application on the Tomcat server.

9.5 Create a Web application for dynamic FAQs. The application should obtain the information
to create the dynamic FAQ Web page from a database that consists of a Topics table and an FAQ
table. The Topics table should have two fields—a unique integer ID for each topic (topicID) and
a name for each topic (topicName). The FAQ table should have three fields—the topicID (a for-
eign key), a string representing the question (question) and the answer to the question (answer).
When the servlet is invoked, it should read the data from the database and return a dynamically cre-
ated Web page containing each question and answer, sorted by topic.

9.6 Modify the Web application of Exercise 9.5 so that the initial request to the servlet returns a
Web page of topics in the FAQ database. Then, the user can hyperlink to another servlet that returns
only the frequently asked questions for a particular topic.

9.7 Modify the Web application of Fig. 9.27 to allow the user to see the survey results without
responding to the survey.

9.8 Fig. 9.27 would allow users to vote as many times as they want by simply returning to the
survey Web page and submitting additional votes. Modify your solution to Exercise 9.7 such that it
uses cookies that last for one day to prevent users from voting more than once a day. When a user
returns to the site, the cookie previously stored on their system is sent to the server. The servlet should
check for the cookie and, if it exists, indicate that the client already voted in the last 24 hours. The
servlet should also return the current survey results.

9.9 Modify the Web application of Fig. 9.27 to make it generic for use with any survey of the
appropriate form. Use servlet parameters (as discussed in Section 9.8) to specify the survey options.
When the user requests the survey, dynamically generate a form containing the survey options. De-
ploy this Web application twice using different context roots. Note: You may need to modify the da-
tabase in this example so that it can store multiple surveys at once.

592 Servlets Chapter 9

9.10 Write a Web application that consists of a servlet (DirectoryServlet) and several Web
documents. Document index.html should be the first document the user sees. In that document,
you should have a series of hyperlinks for other Web pages in your site. When clicked, each hyperlink
should invoke the servlet with a get request that contains a page parameter. The servlet should ob-
tain parameter page and redirect the request to the appropriate document.

9.11 Modify the Web application of Exercise 9.10 so that the first document the user sees in the
browser is dynamically generated from servlet initialization parameters (as discussed in Section 9.8)
by servlet HomePageServlet. There should be a separate initialization parameter for each page in
the Web site. The HomePageServlet reads each parameter name and value and creates a Hash-
Map of the parameter name/value pairs. This information should be used to create the initial home
page dynamically. The HashMap also should be placed in the ServletContext with method
setAttribute, so that the HashMap can be used in the DirectoryServlet to determine
where to direct each request. The dynamic home page should have hyperlinks to each document in
the Web site. As in Exercise 9.10, when the user clicks a link, servlet DirectoryServlet should
be invoked and passed a page parameter. Then, the DirectoryServlet should obtain the Hash-
Map from the ServletContext, look up the corresponding document and redirect the user to that
document.

10
JavaServer Pages (JSP)

Objectives
• To be able to create and deploy JavaServer Pages.
• To use JSP’s implicit objects and Java to create

dynamic Web pages.
• To specify global JSP information with directives.
• To use actions to manipulate JavaBeans in a JSP, to

include resources dynamically and to forward
requests to other JSPs.

• To create custom tag libraries that encapsulate
complex functionality in new tags that can be reused
by JSP programmers and Web-page designers.

A tomato does not communicate with a tomato, we believe.
We could be wrong.
Gustav Eckstein

A donkey appears to me like a horse translated into Dutch.
Georg Christoph Licthtenberg

Talent is a question of quantity. Talent does not write one
page: it writes three hundred.
Jules Renard

Every action must be due to one or other of seven causes:
chance, nature, compulsion, habit, reasoning, anger, or
appetite.
Aristotle

594 JavaServer Pages (JSP) Chapter 10

10.1 Introduction
Our discussion of client–server networking continues in this chapter with JavaServer Pag-
es (JSP)—an extension of servlet technology. JavaServer Pages simplify the delivery of dy-
namic Web content. They enable Web application programmers to create dynamic content
by reusing predefined components and by interacting with components using server-side
scripting. JavaServer Page programmers can reuse JavaBeans and create custom tag librar-
ies that encapsulate complex, dynamic functionality. Custom-tag libraries even enable
Web-page designers who are not familiar with Java to enhance Web pages with powerful
dynamic content and processing capabilities.

In addition to the classes and interfaces for programming servlets (from packages
javax.servlet and javax.servlet.http), classes and interfaces specific to
JavaServer Pages programming are located in packages javax.servlet.jsp and
javax.servlet.jsp.tagext. We discuss many of these classes and interfaces
throughout this chapter as we present JavaServer Pages fundamentals. For a complete
description of JavaServer Pages, see the JavaServer Pages 1.1 specification, which can be
downloaded from java.sun.com/products/jsp/download.html. We also

Outline

10.1 Introduction
10.2 JavaServer Pages Overview
10.3 A First JavaServer Page Example
10.4 Implicit Objects
10.5 Scripting

10.5.1 Scripting Components
10.5.2 Scripting Example

10.6 Standard Actions
10.6.1 <jsp:include> Action
10.6.2 <jsp:forward> Action
10.6.3 <jsp:plugin> Action
10.6.4 <jsp:useBean> Action

10.7 Directives
10.7.1 page Directive
10.7.2 include Directive

10.8 Custom Tag Libraries
10.8.1 Simple Custom Tag
10.8.2 Custom Tag with Attributes
10.8.3 Evaluating the Body of a Custom Tag

10.9 World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Chapter 10 JavaServer Pages (JSP) 595

include other JSP resources in Section 10.9. [Note: The source code and images for all the
examples in this chapter can be found on the CD that accompanies this book and on our
Web site www.deitel.com.]

10.2 JavaServer Pages Overview
There are four key components to JSPs: directives, actions, scriptlets and tag libraries. Di-
rectives are messages to the JSP container that enable the programmer to specify page set-
tings, to include content from other resources and to specify custom tag libraries for use in
a JSP. Actions encapsulate functionality in predefined tags that programmers can embed in
a JSP. Actions often are performed based on the information sent to the server as part of a
particular client request. They also can create Java objects for use in JSP scriptlets. Script-
lets, or scripting elements, enable programmers to insert Java code that interacts with com-
ponents in a JSP (and possibly other Web application components) to perform request
processing. Tag libraries are part of the tag extension mechanism that enables programmers
to create custom tags. Such tags enable programmers to manipulate JSP content. These JSP
component types are discussed in detail in subsequent sections.

In many ways, Java Server Pages look like standard XHTML or XML documents. In
fact, JSPs normally include XHTML or XML markup. Such markup is known as fixed-tem-
plate data or fixed-template text. Fixed-template data often help a programmer decide
whether to use a servlet or a JSP. Programmers tend to use JSPs when most of the content
sent to the client is fixed template data and only a small portion of the content is generated
dynamically with Java code. Programmers use servlets when only a small portion of the
content sent to the client is fixed-template data. In fact, some servlets do not produce con-
tent. Rather, they perform a task on behalf of the client, then invoke other servlets or JSPs
to provide a response. Note that in most cases, servlet and JSP technologies are inter-
changeable. As with servlets, JSPs normally execute as part of a Web server. The server
often is referred to as the JSP container.

Software Engineering Observation 10.1
Literal text in a JSP becomes string literals in the servlet that represents the translated JSP. 10.1

When a JSP-enabled server receives the first request for a JSP, the JSP container trans-
lates that JSP into a Java servlet that handles the current request and future requests to the
JSP. If there are any errors compiling the new servlet, these errors result in translation-time
errors. The JSP container places the Java statements that implement the JSP’s response in
method _jspService at translation time. If the new servlet compiles properly, the JSP
container invokes method _jspService to process the request. The JSP may respond
directly to the request or may invoke other Web application components to assist in pro-
cessing the request. Any errors that occur during request processing are known as request-
time errors.

Performance Tip 10.1
Some JSP containers translate JSPs to servlets at installation time. This eliminates the trans-
lation overhead for the first client that requests each JSP. 10.1

Overall, the request/response mechanism and life cycle of a JSP is the same as that of
a servlet. JSPs can define methods jspInit and jspDestroy (similar to servlet

596 JavaServer Pages (JSP) Chapter 10

methods init and destroy), which the JSP container invokes when initializing a JSP
and terminating a JSP, respectively. JSP programmers can define these methods using JSP
declarations—part of the JSP scripting mechanism.

10.3 A First JavaServer Page Example
We begin our introduction to JavaServer Pages with a simple example (Fig. 10.1) in which
the current date and time are inserted into a Web page using a JSP expression.

As you can see, most of clock.jsp consists of XHTML markup. In cases like this,
JSPs are easier to implement than servlets. In a servlet that performs the same task as this
JSP, each line of XHTML markup typically is a separate Java statement that outputs the
string representing the markup as part of the response to the client. Writing code to output
markup can often lead to errors. Most JSP editors provide syntax coloring to help program-
mers check that their markup follows proper syntax.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 10.1: clock.jsp -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8
9 <head>

10 <meta http-equiv = "refresh" content = "60" />
11
12 <title>A Simple JSP Example</title>
13
14 <style type = "text/css">
15 .big { font-family: helvetica, arial, sans-serif;
16 font-weight: bold;
17 font-size: 2em; }
18 </style>
19 </head>
20
21 <body>
22 <p class = "big">Simple JSP Example</p>
23
24 <table style = "border: 6px outset;">
25 <tr>
26 <td style = "background-color: black;">
27 <p class = "big" style = "color: cyan;">
28
29 <!-- JSP expression to insert date/time -->
30 <%= new java.util.Date() %>
31
32 </p>
33 </td>
34 </tr>
35 </table>
36 </body>

Fig. 10.1Fig. 10.1Fig. 10.1Fig. 10.1 Using a JSP expression to insert the date and time in a Web page (part 1 of 2).

Chapter 10 JavaServer Pages (JSP) 597

Software Engineering Observation 10.2
JavaServer Pages are easier to implement than servlets when the response to a client request
consists primarily of markup that remains constant between requests. 10.2

The JSP of Fig. 10.1 generates an XHTML document that displays the current date and
time. The key line in this JSP (line 30) is the expression

<%= new java.util.Date() %>

JSP expressions are delimited by <%= and %>. This particular expression creates a new in-
stance of class Date from package java.util. When the client requests this JSP, the pre-
ceding expression inserts the String representation of the date and time in the response to
the client. [Note: Proper internationalization requires that the JSP return the date in the client
locale’s format. In this example, the server’s local determines the String representation of
the Date. In Fig. 10.9, clock2.jsp demonstrates how to determine the client’s locale and
uses a DateFormat (package java.text) object to format the date using that locale.]

Software Engineering Observation 10.3
The JSP container converts the result of every JSP expression into a String that is output
as part of the response to the client. 10.3

37
38 </html>

Fig. 10.1Fig. 10.1Fig. 10.1Fig. 10.1 Using a JSP expression to insert the date and time in a Web page (part 2 of 2).

598 JavaServer Pages (JSP) Chapter 10

Note that we use the XHTML meta element on line 10 to set a refresh interval of 60
seconds for the document. This causes the browser to request clock.jsp every 60 sec-
onds. For each request to clock.jsp, the JSP container reevaluates the expression on
line 30, creating a new Date object with the server’s current date and time.

As in Chapter 9, we use Apache Tomcat to test our JSPs in the advjhtp1 Web appli-
cation we created previously. For details on creating and configuring the advjhtp1 Web
application, review Section 9.3.1 and Section 9.3.2. To test clock.jsp, create a new
directory called jsp in the advjhtp1 subdirectory of Tomcat’s webapps directory.
Next, copy clock.jsp into the jsp directory. Open your Web browser and enter the fol-
lowing URL to test clock.jsp:

http://localhost:8080/advjhtp1/jsp/clock.jsp

When you first invoke the JSP, notice the delay as Tomcat translates the JSP into a servlet
and invokes the servlet to respond to your request. [Note: It is not necessary to create a di-
rectory named jsp in a Web application. We use this directory to separate the examples in
this chapter from the servlet examples in Chapter 9.]

10.4 Implicit Objects
Implicit objects provide programmers with access to many servlet capabilities in the con-
text of a JavaServer Page. Implicit objects have four scopes: application, page, request and
session. The JSP and servlet container application owns objects with application scope.
Any servlet or JSP can manipulate such objects. Objects with page scope exist only in the
page that defines them. Each page has its own instances of the page-scope implicit objects.
Objects with request scope exist for the duration of the request. For example, a JSP can par-
tially process a request, then forward the request to another servlet or JSP for further pro-
cessing. Request-scope objects go out of scope when request processing completes with a
response to the client. Objects with session scope exist for the client’s entire browsing ses-
sion. Figure 10.2 describes the JSP implicit objects and their scopes. This chapter demon-
strates several of these objects.

Implicit Object Description

Application Scope

application This javax.servlet.ServletContext object represents the con-
tainer in which the JSP executes.

Page Scope

config This javax.servlet.ServletConfig object represents the JSP con-
figuration options. As with servlets, configuration options can be specified in
a Web application descriptor.

exception This java.lang.Throwable object represents the exception that is
passed to the JSP error page. This object is available only in a JSP error page.

Fig. 10.2Fig. 10.2Fig. 10.2Fig. 10.2 JSP implicit objects (part 1 of 2).

Chapter 10 JavaServer Pages (JSP) 599

Note that many of the implicit objects extend classes or implement interfaces discussed
in Chapter 9. Thus, JSPs can use the same methods that servlets use to interact with such
objects, as described in Chapter 9. Most of the examples in this chapter use one or more of
the implicit objects in Fig. 10.2.

10.5 Scripting
JavaServer Pages often present dynamically generated content as part of an XHTML doc-
ument sent to the client in response to a request. In some cases, the content is static, but is
output only if certain conditions are met during a request (such as providing values in a
form that submits a request). JSP programmers can insert Java code and logic in a JSP us-
ing scripting.

Software Engineering Observation 10.4
JavaServer Pages currently support scripting only with Java. Future JSP versions may sup-
port other scripting languages. 10.4

out This javax.servlet.jsp.JspWriter object writes text as part of the
response to a request. This object is used implicitly with JSP expressions and
actions that insert string content in a response.

page This java.lang.Object object represents the this reference for the
current JSP instance.

pageContext This javax.servlet.jsp.PageContext object hides the implemen-
tation details of the underlying servlet and JSP container and provides JSP
programmers with access to the implicit objects discussed in this table.

response This object represents the response to the client. The object normally is an
instance of a class that implements HttpServletResponse (package
javax.servlet.http). If a protocol other than HTTP is used, this
object is an instance of a class that implements javax.servlet.Serv-
letResponse.

Request Scope

request This object represents the client request. The object normally is an instance
of a class that implements HttpServletRequest (package
javax.servlet.http). If a protocol other than HTTP is used, this
object is an instance of a subclass of javax.servlet.Servlet-
Request.

Session Scope

session This javax.servlet.http.HttpSession object represents the cli-
ent session information if such a session has been created. This object is
available only in pages that participate in a session.

Implicit Object Description

Fig. 10.2Fig. 10.2Fig. 10.2Fig. 10.2 JSP implicit objects (part 2 of 2).

600 JavaServer Pages (JSP) Chapter 10

10.5.1 Scripting Components
JSP scripting components include scriptlets, comments, expressions, declarations and es-
cape sequences. This section describes each of these scripting components. Many of these
scripting components are demonstrated in Fig. 10.4 at the end of Section 10.5.2.

Scriptlets are blocks of code delimited by <% and %>. They contain Java statements
that the container places in method _jspService at translation time.

JSPs support three comment styles: JSP comments, XHTML comments and comments
from the scripting language. JSP comments are delimited by <%-- and --%>. Such com-
ments can be placed throughout a JSP, but not inside scriptlets. XHTML comments are
delimited with <!-- and -->. These comments can be placed throughout a JSP, but not
inside scriptlets. Scripting language comments are currently Java comments, because Java
is the only JSP scripting language at the present time. Scriptlets can use Java’s single-line
comments (delimited by/ and /) and multiline comments (delimited by /* and */).

Common Programming Error 10.1
Placing a JSP comment or XHTML comment inside a scriptlet is a translation-time syntax
error that prevents the JSP from being translated properly. 10.1

JSP comments and scripting-language comments are ignored and do not appear in the
response to a client. When clients view the source code of a JSP response, they will see only
the XHTML comments in the source code. The different comment styles are useful for sep-
arating comments that the user should be able to see from comments that document logic
processed on the server.

A JSP expression, delimited by <%= and %>, contains a Java expression that is evalu-
ated when a client requests the JSP containing the expression. The container converts the
result of a JSP expression to a String object, then outputs the String as part of the
response to the client.

Declarations (delimited by <%! and %>) enable a JSP programmer to define variables
and methods. Variables become instance variables of the servlet class that represents the
translated JSP. Similarly, methods become members of the class that represents the trans-
lated JSP. Declarations of variables and methods in a JSP use Java syntax. Thus, a variable
declaration must end in a semicolon, as in

<%! int counter = 0; %>

Common Programming Error 10.2
Declaring a variable without using a terminating semicolon is a syntax error. 10.2

Software Engineering Observation 10.5
Variables and methods declared in JSP declarations are initialized when the JSP is initial-
ized and are available for use in all scriptlets and expressions in that JSP. Variables declared
in this manner become instance variables of the servlet class that represents the translated
JSP. 10.5

Software Engineering Observation 10.6
As with servlets, JSPs should not store client state information in instance variables. Rather,
JSPs should use the JSP implicit session object. 10.6

Chapter 10 JavaServer Pages (JSP) 601

Special characters or character sequences that the JSP container normally uses to
delimit JSP code can be included in a JSP as literal characters in scripting elements, fixed
template data and attribute values using escape sequences. Figure 10.3 shows the literal
character or characters and the corresponding escape sequences and discusses where to use
the escape sequences.

10.5.2 Scripting Example

The JSP of Fig. 10.4 demonstrates basic scripting capabilities by responding to get re-
quests. The JSP enables the user to input a first name, then outputs that name as part of the
response. Using scripting, the JSP determines whether a firstName parameter was
passed to the JSP as part of the request; if not, the JSP returns an XHTML document con-
taining a form through which the user can input a first name. Otherwise, the JSP obtains
the firstName value and uses it as part of an XHTML document that welcomes the user
to JavaServer Pages.

Literal Escape sequence Description

<% <\% The character sequence <% normally indicates the beginning of
a scriptlet. The <\% escape sequence places the literal charac-
ters <% in the response to the client.

%> %\> The character sequence %> normally indicates the end of a
scriptlet. The %\> escape sequence places the literal characters
%> in the response to the client.

'
"
\

\'
\"
\\

As with string literals in a Java program, the escape sequences
for characters ', " and \ allow these characters to appear in
attribute values. Remember that the literal text in a JSP
becomes string literals in the servlet that represents the trans-
lated JSP.

Fig. 10.3Fig. 10.3Fig. 10.3Fig. 10.3 JSP escape sequences.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 10.4: welcome.jsp -->
6 <!-- JSP that processes a "get" request containing data. -->
7
8 <html xmlns = "http://www.w3.org/1999/xhtml">
9

10 <!-- head section of document -->
11 <head>
12 <title>Processing "get" requests with data</title>
13 </head>
14

Fig. 10.4Fig. 10.4Fig. 10.4Fig. 10.4 Scripting a JavaServer Page—welcome.jsp (part 1 of 3).

602 JavaServer Pages (JSP) Chapter 10

15 <!-- body section of document -->
16 <body>
17 <% // begin scriptlet
18
19 String name = request.getParameter("firstName");
20
21 if (name != null) {
22
23 %> <%-- end scriptlet to insert fixed template data --%>
24
25 <h1>
26 Hello <%= name %>,

27 Welcome to JavaServer Pages!
28 </h1>
29
30 <% // continue scriptlet
31
32 } // end if
33 else {
34
35 %> <%-- end scriptlet to insert fixed template data --%>
36
37 <form action = "welcome.jsp" method = "get">
38 <p>Type your first name and press Submit</p>
39
40 <p><input type = "text" name = "firstName" />
41 <input type = "submit" value = "Submit" />
42 </p>
43 </form>
44
45 <% // continue scriptlet
46
47 } // end else
48
49 %> <%-- end scriptlet --%>
50 </body>
51
52 </html> <!-- end XHTML document -->

Fig. 10.4Fig. 10.4Fig. 10.4Fig. 10.4 Scripting a JavaServer Page—welcome.jsp (part 2 of 3).

Chapter 10 JavaServer Pages (JSP) 603

Notice that the majority of the code in Fig. 10.4 is XHTML markup (i.e., fixed tem-
plate data). Throughout the body element are several scriptlets (lines 17–23, 30–35 and
45–49) and a JSP expression (line 26). Note that three comment styles appear in this JSP.

The scriptlets define an if/else structure that determines whether the JSP received
a value for the first name as part of the request. Line 19 uses method getParameter of
JSP implicit object request (an HttpServletRequest object) to obtain the value for
parameter firstName and assigns the result to variable name. Line 21 determines if
name is not null, (i.e., a value for the first name was passed to the JSP as part of the
request). If this condition is true, the scriptlet terminates temporarily so the fixed template
data at lines 25–28 can be output. The JSP expression in line 26 outputs the value of vari-
able name (i.e., the first name passed to the JSP as a request parameter. The scriptlet con-
tinues at lines 30–35 with the closing curly brace of the if structure’s body and the
beginning of the else part of the if/else structure. If the condition at line 21 is false,
lines 25–28 are not output. Instead, lines 37–43 output a form element. The user can type
a first name in the form and press the Submit button to request the JSP again and execute
the if structure’s body (lines 25–28).

Software Engineering Observation 10.7
Scriptlets, expressions and fixed template data can be intermixed in a JSP to create different
responses based on information in a request to a JSP. 10.7

Testing and Debugging Tip 10.1
It is sometimes difficult to debug errors in a JSP, because the line numbers reported by a JSP
container normally refer to the servlet that represents the translated JSP, not the original
JSP line numbers. Program development environments such as Sun Microsystems, Inc.’s
Forte for Java Community Edition enable JSPs to be compiled in the environment, so you
can see syntax error messages. These messages include the statement in the servlet that rep-
resents the translated JSP, which can be helpful in determining the error. 10.1

Testing and Debugging Tip 10.2
Many JSP containers store the servlets representing the translated JSPs. For example, the
Tomcat installation directory contains a subdirectory called work in which you can find the
source code for the servlets translated by Tomcat. 10.2

Fig. 10.4Fig. 10.4Fig. 10.4Fig. 10.4 Scripting a JavaServer Page—welcome.jsp (part 3 of 3).

604 JavaServer Pages (JSP) Chapter 10

To test Fig. 10.4 in Tomcat, copy welcome.jsp into the jsp directory created in
Section 10.3. Open your Web browser and enter the following URL to test welcome.jsp:

http://localhost:8080/advjhtp1/jsp/welcome.jsp

When you first execute the JSP, it displays the form in which you can enter your first
name, because the preceding URL does not pass a firstName parameter to the JSP. After
you submit your first name, your browser should appear as shown in the second screen cap-
ture of Fig. 10.4. Note: As with servlets, it is possible to pass get request arguments as part
of the URL. The following URL supplies the firstName parameter to welcome.jsp:

http://localhost:8080/advjhtp1/jsp/welcome.jsp?firstName=Paul

10.6 Standard Actions
We continue our JSP discussion with the JSP standard actions (Fig. 10.5). These actions
provide JSP implementors with access to several of the most common tasks performed in
a JSP, such as including content from other resources, forwarding requests to other resourc-
es and interacting with JavaBeans. JSP containers process actions at request time. Actions
are delimited by <jsp:action> and </jsp:action>, where action is the standard action
name. In cases where nothing appears between the starting and ending tags, the XML emp-
ty element syntax <jsp:action /> can be used. Figure 10.5 summarizes the JSP standard
actions. We use the actions in the next several subsections.

Action Description

<jsp:include> Dynamically includes another resource in a JSP. As the JSP exe-
cutes, the referenced resource is included and processed.

<jsp:forward> Forwards request processing to another JSP, servlet or static page.
This action terminates the current JSP’s execution.

<jsp:plugin> Allows a plug-in component to be added to a page in the form of a
browser-specific object or embed HTML element. In the case
of a Java applet, this action enables the downloading and installa-
tion of the Java Plug-in, if it is not already installed on the client
computer.

<jsp:param> Used with the include, forward and plugin actions to
specify additional name/value pairs of information for use by
these actions.

JavaBean Manipulation

<jsp:useBean> Specifies that the JSP uses a JavaBean instance. This action spec-
ifies the scope of the bean and assigns it an ID that scripting com-
ponents can use to manipulate the bean.

Fig. 10.5Fig. 10.5Fig. 10.5Fig. 10.5 JSP standard actions (part 1 of 2).

Chapter 10 JavaServer Pages (JSP) 605

10.6.1 <jsp:include> Action
JavaServer Pages support two include mechanisms—the <jsp:include> action and the
include directive. Action <jsp:include> enables dynamic content to be included in
a JavaServer Page. If the included resource changes between requests, the next request to
the JSP containing the <jsp:include> action includes the new content of the resource.
On the other hand, the include directive copies the content into the JSP once, at JSP
translation time. If the included resource changes, the new content will not be reflected in
the JSP that used the include directive unless that JSP is recompiled. Figure 10.6 de-
scribes the attributes of action <jsp:include>.

Software Engineering Observation 10.8
According to the JavaServer Pages 1.1 specification, a JSP container is allowed to determine
whether a resource included with the include directive has changed. If so, the container
can recompile the JSP that included the resource. However, the specification does not pro-
vide a mechanism to indicate a change in an included resource to the container. 10.8

Performance Tip 10.2
The <jsp:include> action is more flexible than the include directive, but requires
more overhead when page contents change frequently. Use the <jsp:include> action
only when dynamic content is necessary. 10.2

Common Programming Error 10.3
Setting the <jsp:include> action’s flush attribute to false is a translation-time er-
ror. Currently, the flush attribute supports only true values. 10.3

<jsp:setProperty> Sets a property in the specified JavaBean instance. A special fea-
ture of this action is automatic matching of request parameters to
bean properties of the same name.

<jsp:getProperty> Gets a property in the specified JavaBean instance and converts
the result to a string for output in the response.

Action Description

Fig. 10.5Fig. 10.5Fig. 10.5Fig. 10.5 JSP standard actions (part 2 of 2).

Attribute Description

page Specifies the relative URI path of the resource to include. The resource
must be part of the same Web application.

flush Specifies whether the buffer should be flushed after the include is
performed. In JSP 1.1, this attribute is required to be true.

Fig. 10.6Fig. 10.6Fig. 10.6Fig. 10.6 Action <jsp:include> attributes.

606 JavaServer Pages (JSP) Chapter 10

Common Programming Error 10.4
Not specifying the <jsp:include> action’s flush attribute is a translation-time error.
Specifying this attribute is mandatory. 10.4

Common Programming Error 10.5
Specifying in a <jsp:include> action a page that is not part of the same Web application
is a request-time error. In such a case, the <jsp:include> action does not include any
content. 10.5

The next example demonstrates action <jsp:include> using four XHTML and
JSP resources that represent both static and dynamic content. JavaServer Page
include.jsp (Fig. 10.10) includes three other resources: banner.html (Fig. 10.7),
toc.html (Fig. 10.8) and clock2.jsp (Fig. 10.9). JavaServer Page include.jsp
creates an XHTML document containing a table in which banner.html spans two
columns across the top of the table, toc.html is the left column of the second row and
clock2.jsp (a simplified version of Fig. 10.1) is the right column of the second row.
Figure 10.10 uses three <jsp:include> actions (lines 38–39, 48 and 55–56) as the con-
tent in td elements of the table. Using two XHTML documents and a JSP in Fig. 10.10
demonstrates that JSPs can include both static and dynamic content. The output windows
in Fig. 10.10 demonstrate the results of two separate requests to include.jsp.

Figure 10.9 (clock2.jsp) demonstrates how to determine the client’s Locale
(package java.util) and uses that Locale to format a Date with a DateFormat
(package java.text) object. Line 14 invokes the request object’s getLocale
method, which returns the client’s Locale. Lines 17–20 invoke DateFormat static
method getDateTimeInstance to obtain a DateFormat object. The first two argu-
ments indicate that the date and time formats should each be LONG format (other options
are FULL, MEDIUM, SHORT and DEFAULT). The third argument specifies the Locale for
which the DateFormat object should format the date. Line 25 invokes the DateFormat
object’s format method to produce a String representation of the Date. The Date-
Format object formats this String for the Locale specified on lines 17–20. [Note:
This example works for Western languages that use the ISO-8859-1 character set. How-
ever, for languages that do not use this character set, the JSP must specify the proper char-
acter set using the JSP page directive (Section 10.7.1). At the site java.sun.com/
j2se/1.3/docs/guide/intl/encoding.doc.html, Sun provides a list of
character encodings. The response’s content type defines the character set to use in the
response. The content type has the form: "mimeType;charset=enconding" (e.g.,
"text/html;charset=ISO-8859-1".]

To test Fig. 10.10 in Tomcat, copy banner.html, toc.html, clock2.jsp,
include.jsp and the images directory into the jsp directory created in Section 10.3.
Open your Web browser and enter the following URL to test welcome.jsp:

http://localhost:8080/advjhtp1/jsp/include.jsp

1 <!-- Fig. 10.7: banner.html -->
2 <!-- banner to include in another document -->

Fig. 10.7Fig. 10.7Fig. 10.7Fig. 10.7 Banner (banner.html) to include across the top of the XHTML document
created by Fig. 10.10 (part 1 of 2).

Chapter 10 JavaServer Pages (JSP) 607

3 <div style = "width: 580px">
4 <p>
5 Java(TM), C, C++, Visual Basic(R),
6 Object Technology, and
 Internet and
7 World Wide Web Programming Training

8 On-Site Seminars Delivered Worldwide
9 </p>

10
11 <p>
12
13 deitel@deitel.com

14
15 978.579.9911

16 490B Boston Post Road, Suite 200,
17 Sudbury, MA 01776
18 </p>
19 </div>

1 <!-- Fig. 10.8: toc.html -->
2 <!-- contents to include in another document -->
3
4 <p>
5 Publications/BookStore
6 </p>
7
8 <p>
9 What's New

10 </p>
11
12 <p>
13 Downloads/Resources
14 </p>
15
16 <p>
17 FAQ (Frequently Asked Questions)
18 </p>
19
20 <p>
21 Who we are
22 </p>
23
24 <p>
25 Home Page
26 </p>
27
28 <p>Send questions or comments about this site to
29
30 deitel@deitel.com

Fig. 10.8Fig. 10.8Fig. 10.8Fig. 10.8 Table of contents (toc.html) to include down the left side of the XHTML
document created by Fig. 10.10 (part 1 of 2).

Fig. 10.7Fig. 10.7Fig. 10.7Fig. 10.7 Banner (banner.html) to include across the top of the XHTML document
created by Fig. 10.10 (part 2 of 2).

608 JavaServer Pages (JSP) Chapter 10

31

32 Copyright 1995-2002 by Deitel & Associates, Inc.
33 All Rights Reserved.
34 </p>

1 <!-- Fig. 10.9: clock2.jsp -->
2 <!-- date and time to include in another document -->
3
4 <table>
5 <tr>
6 <td style = "background-color: black;">
7 <p class = "big" style = "color: cyan; font-size: 3em;
8 font-weight: bold;">
9

10 <%-- script to determine client local and --%>
11 <%-- format date accordingly --%>
12 <%
13 // get client locale
14 java.util.Locale locale = request.getLocale();
15
16 // get DateFormat for client's Locale
17 java.text.DateFormat dateFormat =
18 java.text.DateFormat.getDateTimeInstance(
19 java.text.DateFormat.LONG,
20 java.text.DateFormat.LONG, locale);
21
22 %> <%-- end script --%>
23
24 <%-- output date --%>
25 <%= dateFormat.format(new java.util.Date()) %>
26 </p>
27 </td>
28 </tr>
29 </table>

Fig. 10.9Fig. 10.9Fig. 10.9Fig. 10.9 JSP clock2.jsp to include as the main content in the XHTML document
created by Fig. 10.10.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 10.7: include.jsp -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8
9 <head>

10 <title>Using jsp:include</title>

Fig. 10.10Fig. 10.10Fig. 10.10Fig. 10.10 JSP include.jsp Includes resources with <jsp:include> (part 1 of 3).

Fig. 10.8Fig. 10.8Fig. 10.8Fig. 10.8 Table of contents (toc.html) to include down the left side of the XHTML
document created by Fig. 10.10 (part 2 of 2).

Chapter 10 JavaServer Pages (JSP) 609

11
12 <style type = "text/css">
13 body {
14 font-family: tahoma, helvetica, arial, sans-serif;
15 }
16
17 table, tr, td {
18 font-size: .9em;
19 border: 3px groove;
20 padding: 5px;
21 background-color: #dddddd;
22 }
23 </style>
24 </head>
25
26 <body>
27 <table>
28 <tr>
29 <td style = "width: 160px; text-align: center">
30 <img src = "images/logotiny.png"
31 width = "140" height = "93"
32 alt = "Deitel & Associates, Inc. Logo" />
33 </td>
34
35 <td>
36
37 <%-- include banner.html in this JSP --%>
38 <jsp:include page = "banner.html"
39 flush = "true" />
40
41 </td>
42 </tr>
43
44 <tr>
45 <td style = "width: 160px">
46
47 <%-- include toc.html in this JSP --%>
48 <jsp:include page = "toc.html" flush = "true" />
49
50 </td>
51
52 <td style = "vertical-align: top">
53
54 <%-- include clock2.jsp in this JSP --%>
55 <jsp:include page = "clock2.jsp"
56 flush = "true" />
57
58 </td>
59 </tr>
60 </table>
61 </body>
62 </html>

Fig. 10.10Fig. 10.10Fig. 10.10Fig. 10.10 JSP include.jsp Includes resources with <jsp:include> (part 2 of 3).

610 JavaServer Pages (JSP) Chapter 10

10.6.2 <jsp:forward> Action

Action <jsp:forward> enables a JSP to forward request processing to a different re-
source. Request processing by the original JSP terminates as soon as the JSP forwards the re-
quest. Action <jsp:forward> has only a page attribute that specifies the relative URI of
the resource (in the same Web application) to which the request should be forwarded.

Software Engineering Observation 10.9
When using the <jsp:forward> action, the resource to which the request will be forwarded
must be in the same context (Web application) as the JSP that originally received the request. 10.9

JavaServer Page forward1.jsp (Fig. 10.11) is a modified version of wel-
come.jsp (Fig. 10.4). The primary difference is in lines 22–25 in which JavaServer Page
forward1.jsp forwards the request to JavaServer Page forward2.jsp (Fig. 10.12).
Notice the <jsp:param> action in lines 23–24. This action adds a request parameter rep-
resenting the date and time at which the initial request was received to the request object
that is forwarded to forward2.jsp.

The <jsp:param> action specifies name/value pairs of information that are passed
to the <jsp:include>, <jsp:forward> and <jsp:plugin> actions. Every
<jsp:param> action has two required attributes: name and value. If a
<jsp:param> action specifies a parameter that already exists in the request, the new
value for the parameter takes precedence over the original value. All values for that param-
eter can be obtained by using the JSP implicit object request’s getParameter-
Values method, which returns an array of Strings.

Fig. 10.10Fig. 10.10Fig. 10.10Fig. 10.10 JSP include.jsp Includes resources with <jsp:include> (part 3 of 3).

Chapter 10 JavaServer Pages (JSP) 611

JSP forward2.jsp uses the name specified in the <jsp:param> action
("date") to obtain the date and time. It also uses the firstName parameter originally
passed to forward1.jsp to obtain the user’s first name. JSP expressions in Fig. 10.12
(lines 23 and 31) insert the request parameter values in the response to the client. The screen
capture in Fig. 10.11 shows the initial interaction with the client. The screen capture in
Fig. 10.12 shows the results returned to the client after the request was forwarded to
forward2.jsp.

To test Fig. 10.11 and Fig. 10.12 in Tomcat, copy forward1.jsp and
forward2.jsp into the jsp directory created in Section 10.3. Open your Web browser
and enter the following URL to test welcome.jsp:

http://localhost:8080/advjhtp1/jsp/forward1.jsp

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 10.11: forward1.jsp -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8
9 <head>

10 <title>Forward request to another JSP</title>
11 </head>
12
13 <body>
14 <% // begin scriptlet
15
16 String name = request.getParameter("firstName");
17
18 if (name != null) {
19
20 %> <%-- end scriptlet to insert fixed template data --%>
21
22 <jsp:forward page = "forward2.jsp">
23 <jsp:param name = "date"
24 value = "<%= new java.util.Date() %>" />
25 </jsp:forward>
26
27 <% // continue scriptlet
28
29 } // end if
30 else {
31
32 %> <%-- end scriptlet to insert fixed template data --%>
33
34 <form action = "forward1.jsp" method = "get">
35 <p>Type your first name and press Submit</p>
36

Fig. 10.11Fig. 10.11Fig. 10.11Fig. 10.11 JSP forward1.jsp receives a firstName parameter, adds a date to
the request parameters and forwards the request to forward2.jsp for
further processing (part 1 of 2).

612 JavaServer Pages (JSP) Chapter 10

37 <p><input type = "text" name = "firstName" />
38 <input type = "submit" value = "Submit" />
39 </p>
40 </form>
41
42 <% // continue scriptlet
43
44 } // end else
45
46 %> <%-- end scriptlet --%>
47 </body>
48
49 </html> <!-- end XHTML document -->

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- forward2.jsp -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml"v
8
9 <head>

10 <title>Processing a forwarded request</title>
11
12 <style type = "text/css">
13 .big {
14 font-family: tahoma, helvetica, arial, sans-serif;
15 font-weight: bold;
16 font-size: 2em;
17 }
18 </style>
19 </head>
20

Fig. 10.12Fig. 10.12Fig. 10.12Fig. 10.12 JSP forward2.jsp receives a request (from forward1.jsp in this
example) and uses the request parameters as part of the response to the
client (part 1 of 2).

Fig. 10.11Fig. 10.11Fig. 10.11Fig. 10.11 JSP forward1.jsp receives a firstName parameter, adds a date to
the request parameters and forwards the request to forward2.jsp for
further processing (part 2 of 2).

Chapter 10 JavaServer Pages (JSP) 613

10.6.3 <jsp:plugin> Action

Action <jsp:plugin> adds an applet or JavaBean to a Web page in the form of a brows-
er-specific object or embed XHTML element. This action also enables the client to
download and install the Java Plug-in if it is not already installed. Figure 10.13 describes
the attributes of action <jsp:plugin>.

21 <body>
22 <p class = "big">
23 Hello <%= request.getParameter("firstName") %>,

24 Your request was received
 and forwarded at
25 </p>
26
27 <table style = "border: 6px outset;">
28 <tr>
29 <td style = "background-color: black;">
30 <p class = "big" style = "color: cyan;">
31 <%= request.getParameter("date") %>
32 </p>
33 </td>
34 </tr>
35 </table>
36 </body>
37
38 </html>

Attribute Description

type Component type—bean or applet.

code Class that represents the component.

Fig. 10.13Fig. 10.13Fig. 10.13Fig. 10.13 Attributes of the <jsp:plugin> action (part 1 of 2).

Fig. 10.12Fig. 10.12Fig. 10.12Fig. 10.12 JSP forward2.jsp receives a request (from forward1.jsp in this
example) and uses the request parameters as part of the response to the
client (part 2 of 2).

614 JavaServer Pages (JSP) Chapter 10

Figure 10.14 defines an applet that draws a picture using the Java2D API. The applet
has three parameters that enable the JSP implementor to specify the background color for
the drawing. The parameters represent the red, green and blue portions of an RGB
color with values in the range 0–255. The applet obtains the parameter values in lines 21–
23. If any exceptions occur while processing the parameters, the exceptions are caught at
line 32 and ignored, leaving the applet with its default white background color.

codebase Location of the class specified in the code attribute and the archives
specified in the archive attribute.

align Alignment of the component.

archive A space-separated list of archive files that contain resources used by the
component. Such an archive may include the class specified by the
code attribute.

height Component height in the page specified in pixels or percentage.

hspace Number of pixels of space that appear to the left and to the right of the
component.

jreversion Version of the Java Runtime Environment and plug-in required to exe-
cute the component. The default value is 1.1.

name Name of the component.

vspace Number of pixels of space that appear above and below the component.

title Text that describes the component.

width Component width in the page specified in pixels or percentage.

nspluginurl Location for download of the Java Plug-in for Netscape Navigator.

iepluginurl Location for download of the Java Plug-in for Internet Explorer.

1 // Fig. 10.14: ShapesApplet.java
2 // Applet that demonstrates a Java2D GeneralPath.
3 package com.deitel.advjhtp1.jsp.applet;
4
5 // Java core packages
6 import java.applet.*;
7 import java.awt.event.*;
8 import java.awt.*;
9 import java.awt.geom.*;

10
11 // Java extension packages
12 import javax.swing.*;
13
14 public class ShapesApplet extends JApplet {
15

Fig. 10.14Fig. 10.14Fig. 10.14Fig. 10.14 An applet to demonstrate <jsp:plugin> in Fig. 10.15 (part 1 of 3).

Attribute Description

Fig. 10.13Fig. 10.13Fig. 10.13Fig. 10.13 Attributes of the <jsp:plugin> action (part 2 of 2).

Chapter 10 JavaServer Pages (JSP) 615

16 // initialize the applet
17 public void init()
18 {
19 // obtain color parameters from XHTML file
20 try {
21 int red = Integer.parseInt(getParameter("red"));
22 int green = Integer.parseInt(getParameter("green"));
23 int blue = Integer.parseInt(getParameter("blue"));
24
25 Color backgroundColor = new Color(red, green, blue);
26
27 setBackground(backgroundColor);
28 }
29
30 // if there is an exception while processing the color
31 // parameters, catch it and ignore it
32 catch (Exception exception) {
33 // do nothing
34 }
35 }
36
37 public void paint(Graphics g)
38 {
39 // create arrays of x and y coordinates
40 int xPoints[] =
41 { 55, 67, 109, 73, 83, 55, 27, 37, 1, 43 };
42 int yPoints[] =
43 { 0, 36, 36, 54, 96, 72, 96, 54, 36, 36 };
44
45 // obtain reference to a Graphics2D object
46 Graphics2D g2d = (Graphics2D) g;
47
48 // create a star from a series of points
49 GeneralPath star = new GeneralPath();
50
51 // set the initial coordinate of the GeneralPath
52 star.moveTo(xPoints[0], yPoints[0]);
53
54 // create the star--this does not draw the star
55 for (int k = 1; k < xPoints.length; k++)
56 star.lineTo(xPoints[k], yPoints[k]);
57
58 // close the shape
59 star.closePath();
60
61 // translate the origin to (200, 200)
62 g2d.translate(200, 200);
63
64 // rotate around origin and draw stars in random colors
65 for (int j = 1; j <= 20; j++) {
66 g2d.rotate(Math.PI / 10.0);
67

Fig. 10.14Fig. 10.14Fig. 10.14Fig. 10.14 An applet to demonstrate <jsp:plugin> in Fig. 10.15 (part 2 of 3).

616 JavaServer Pages (JSP) Chapter 10

Most Web browsers in use today do not support applets written for the Java 2 platform.
Executing such applets in most of today’s browsers requires the Java Plug-in. Figure 10.15
uses the <jsp:plugin> action (lines 10–22) to embed the Java Plug-in. Line 11 indi-
cates the package name and class name of the applet class. Line 12 indicates the code-
base from which the applet should be downloaded. Line 13 indicates that the applet
should be 400 pixels wide and line 14 indicates that the applet should be 400 pixels tall.
Lines 16–20 specify the applet parameters. You can change the background color in the
applet by changing the red, green and blue values. Note that the <jsp:plugin> action
requires any <jsp:param> actions to appear in a <jsp:params> action.

To test the <jsp:plugin> action in Tomcat, copy plugin.jsp and ShapesAp-
plet.class into the jsp directory created in Section 10.3. [Note: ShapesApplet is
defined in package com.deitel.advjhtp1.jsp.applet. This example will work
only if the proper package directory structure is defined in the classes directory.] Open
your Web browser and enter the following URL to test plugin.jsp:

http://localhost:8080/advjhtp1/jsp/plugin.jsp

The screen captures in Fig. 10.15 show the applet executing in Microsoft Internet Explorer
5.5 and Netscape Navigator 6.0.

68 g2d.setColor(
69 new Color((int) (Math.random() * 256),
70 (int) (Math.random() * 256),
71 (int) (Math.random() * 256)));
72
73 g2d.fill(star); // draw a filled star
74 }
75 }
76 }

Fig. 10.14Fig. 10.14Fig. 10.14Fig. 10.14 An applet to demonstrate <jsp:plugin> in Fig. 10.15 (part 3 of 3).

1 <!-- Fig. 10.15: plugin.jsp -->
2
3 <html>
4
5 <head>
6 <title>Using jsp:plugin to load an applet</title>
7 </head>
8
9 <body>

10 <jsp:plugin type = "applet"
11 code = "com.deitel.advjhtp1.jsp.applet.ShapesApplet"
12 codebase = "/advjhtp1/jsp"
13 width = "400"
14 height = "400">
15
16 <jsp:params>
17 <jsp:param name = "red" value = "255" />

Fig. 10.15Fig. 10.15Fig. 10.15Fig. 10.15 Using <jsp:plugin> to embed a Java 2 applet in a JSP (part 1 of 2).

Chapter 10 JavaServer Pages (JSP) 617

10.6.4 <jsp:useBean> Action

Action <jsp:useBean> enables a JSP to manipulate a Java object. This action creates a
Java object or locates an existing object for use in the JSP. Figure 10.16 summarizes action
<jsp:useBean>’s attributes. If attributes class and beanName are not specified, the
JSP container attempts to locate an existing object of the type specified in attribute type.
Like JSP implicit objects, objects specified with action <jsp:useBean> have page,
request, session or application scope that indicates where they can be used in a
Web application. Objects with page scope are accessible only to the page in which they
are defined. Multiple JSP pages potentially can access objects with other scopes. For ex-
ample, all JSPs that process a single request can access an object with request scope.

18 <jsp:param name = "green" value = "255" />
19 <jsp:param name = "blue" value = "0" />
20 </jsp:params>
21
22 </jsp:plugin>
23 </body>
24 </html>

Fig. 10.15Fig. 10.15Fig. 10.15Fig. 10.15 Using <jsp:plugin> to embed a Java 2 applet in a JSP (part 2 of 2).

618 JavaServer Pages (JSP) Chapter 10

Common Programming Error 10.6
One or both of the <jsp:useBean> attributes class and type must be specified; oth-
erwise, a translation-time error occurs. 10.6

Many Web sites today place rotating advertisements on their Web pages. Each visit to
one of these pages typically results in a different advertisement being displayed in the user’s
Web browser. Typically, clicking an advertisement takes you to the Web site of the company
that placed the advertisement. Our first example of <jsp:useBean> demonstrates a
simple advertisement rotator bean that cycles through a list of five advertisements. In this
example, the advertisements are covers for some of our books. Clicking a cover takes you to
the Amazon.com Web site where you can read about and possibly order the book.

The Rotator bean (Fig. 10.17) has three methods: getImage, getLink and
nextAd. Method getImage returns the image file name for the book cover image. Method
getLink returns the hyperlink to the book at Amazon.com. Method nextAd updates the
Rotator so the next calls to getImage and getLink return information for a different
advertisement. Methods getImage and getLink each represent a read-only JavaBean
property—image and link, respectively. Rotator keeps track of the current advertise-
ment with its selectedIndex variable, which is updated by invoking method nextAd.

Attribute Description

id The name used to manipulate the Java object with actions <jsp:setProp-
erty> and <jsp:getProperty>. A variable of this name is also declared
for use in JSP scripting elements. The name specified here is case sensitive.

scope The scope in which the Java object is accessible—page, request, session
or application. The default scope is page.

class The fully qualified class name of the Java object.

beanName The name of a bean that can be used with method instantiate of class
java.beans.Beans to load a JavaBean into memory.

type The type of the JavaBean. This can be the same type as the class attribute, a
superclass of that type or an interface implemented by that type. The default
value is the same as for attribute class. A ClassCastException occurs
if the Java object is not of the type specified with attribute type.

Fig. 10.16Fig. 10.16Fig. 10.16Fig. 10.16 Attributes of the <jsp:useBean> action.

1 // Fig. 10.17: Rotator.java
2 // A JavaBean that rotates advertisements.
3 package com.deitel.advjhtp1.jsp.beans;
4
5 public class Rotator {
6 private String images[] = { "images/jhtp3.jpg",
7 "images/xmlhtp1.jpg", "images/ebechtp1.jpg",
8 "images/iw3htp1.jpg", "images/cpphtp3.jpg" };
9

Fig. 10.17Fig. 10.17Fig. 10.17Fig. 10.17 Rotator bean that maintains a set of advertisements (part 1 of 2).

Chapter 10 JavaServer Pages (JSP) 619

Lines 7–8 of JavaServer Page adrotator.jsp (Fig. 10.18) obtain a reference to an
instance of class Rotator. The id for the bean is rotator. The JSP uses this name to
manipulate the bean. The scope of the object is session, so that each individual client will
see the same sequence of ads during their browsing session. When adrotator.jsp
receives a request from a new client, the JSP container creates the bean and stores it in JSP
that client’s session (an HttpSession object). In each request to this JSP, line 22 uses
the rotator reference created in line 7 to invoke the Rotator bean’s nextAd method.
Thus, each request will receive the next advertisement maintained by the Rotator bean.
Lines 29–34 define a hyperlink to the Amazon.com site for a particular book. Lines 29–30
introduce action <jsp:getProperty> to obtain the value of the Rotator bean’s link
property. Action <jsp:getProperty> has two attributes—name and property—that
specify the bean object to manipulate and the property to get. If the JavaBean object uses stan-
dard JavaBean naming conventions, the method used to obtain the link property value from
the bean should be getLink. Action <jsp:getProperty> invokes getLink on the
bean referenced with rotator, converts the return value into a String and outputs the
String as part of the response to the client. The link property becomes the value of the

10 private String links[] = {
11 "http://www.amazon.com/exec/obidos/ASIN/0130125075/" +
12 "deitelassociatin",
13 "http://www.amazon.com/exec/obidos/ASIN/0130284173/" +
14 "deitelassociatin",
15 "http://www.amazon.com/exec/obidos/ASIN/013028419X/" +
16 "deitelassociatin",
17 "http://www.amazon.com/exec/obidos/ASIN/0130161438/" +
18 "deitelassociatin",
19 "http://www.amazon.com/exec/obidos/ASIN/0130895717/" +
20 "deitelassociatin" };
21
22 private int selectedIndex = 0;
23
24 // returns image file name for current ad
25 public String getImage()
26 {
27 return images[selectedIndex];
28 }
29
30 // returns the URL for ad's corresponding Web site
31 public String getLink()
32 {
33 return links[selectedIndex];
34 }
35
36 // update selectedIndex so next calls to getImage and
37 // getLink return a different advertisement
38 public void nextAd()
39 {
40 selectedIndex = (selectedIndex + 1) % images.length;
41 }
42 }

Fig. 10.17Fig. 10.17Fig. 10.17Fig. 10.17 Rotator bean that maintains a set of advertisements (part 2 of 2).

620 JavaServer Pages (JSP) Chapter 10

hyperlink’s href attribute. The hyperlink is represented in the resulting Web page as the
book cover image. Lines 32–33 create an img element and use another <jsp:getProp-
erty> action to obtain the Rotator bean’s image property value.

Note that the link and image properties also can be obtained with JSP expressions. For
example, the <jsp:getProperty> action in lines 29–30 can be replaced with the
expression

<%= rotator.getLink() %>

Similarly, the <jsp:getProperty> action in lines 32–33 can be replaced with the ex-
pression

<%= rotator.getImage() %>

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 10.18: adrotator.jsp -->
6
7 <jsp:useBean id = "rotator" scope = "application"
8 class = "com.deitel.advjhtp1.jsp.beans.Rotator" />
9

10 <html xmlns = "http://www.w3.org/1999/xhtml">
11
12 <head>
13 <title>AdRotator Example</title>
14
15 <style type = "text/css">
16 .big { font-family: helvetica, arial, sans-serif;
17 font-weight: bold;
18 font-size: 2em }
19 </style>
20
21 <%-- update advertisement --%>
22 <% rotator.nextAd(); %>
23 </head>
24
25 <body>
26 <p class = "big">AdRotator Example</p>
27
28 <p>
29 <a href = "<jsp:getProperty name = "rotator"
30 property = "link" />">
31
32 <img src = "<jsp:getProperty name = "rotator"
33 property = "image" />" alt = "advertisement" />
34
35 </p>
36 </body>
37 </html>

Fig. 10.18Fig. 10.18Fig. 10.18Fig. 10.18 JSP adrotator.jsp uses a Rotator bean to display a different
advertisement on each request to the page (part 1 of 2).

Chapter 10 JavaServer Pages (JSP) 621

To test adrotator.jsp in Tomcat, copy adrotator.jsp into the jsp directory
created in Section 10.3. You should have copied the images directory into the jsp direc-
tory when you tested Fig. 10.10. If not, you must copy the images directory there now.
Copy Rotator.class into the advjhtp1 Web application’s WEB-INF\classes
directory in Tomcat. [Note: This example will work only if the proper package directory
structure for Rotator is defined in the classes directory. Rotator is defined in
package com.deitel.advjhtp1.jsp.beans.] Open your Web browser and enter
the following URL to test adrotator.jsp:

http://localhost:8080/advjhtp1/jsp/adrotator.jsp

Try reloading this JSP several times in your browser to see the advertisement change with
each request.

Action <jsp:setProperty> can set JavaBean property values. This action is par-
ticularly useful for mapping request parameter values to JavaBean properties. Request
parameters can be used to set properties of primitive types boolean, byte, char, int,
long, float and double and java.lang types String, Boolean, Byte, Char-
acter, Integer, Long, Float and Double. Figure 10.19 summarizes the
<jsp:setProperty> attributes.

Fig. 10.18Fig. 10.18Fig. 10.18Fig. 10.18 JSP adrotator.jsp uses a Rotator bean to display a different
advertisement on each request to the page (part 2 of 2).

622 JavaServer Pages (JSP) Chapter 10

Common Programming Error 10.7
Use action <jsp:setProperty>’s value attribute to set JavaBean property types that
cannot be set with request parameters; otherwise, conversion errors occur. 10.7

Software Engineering Observation 10.10
Action <jsp:setProperty> can use request-parameter values to set JavaBean proper-
ties only for properties of the following types: Strings, primitive types (boolean, byte,
char, short, int, long, float and double) and type wrapper classes (Boolean,
Byte, Character, Short, Integer, Long, Float and Double). 10.10

Our next example is a guest book that enables users to place their first name, last name
and e-mail address into a guest book database. After submitting their information, users see
a Web page containing all the users in the guest book. Each person’s e-mail address is dis-
played as a hyperlink that allows the user to send an e-mail message to the person. The
example demonstrates action <jsp:setProperty>. In addition, the example intro-
duces the JSP page directive and JSP error pages.

The guest book example consists of JavaBeans GuestBean (Fig. 10.20) and
GuestDataBean (Fig. 10.21), and JSPs guestBookLogin.jsp (Fig. 10.22),
guestBookView.jsp (Fig. 10.23) and guestBookErrorPage.jsp (Fig. 10.24).
Sample outputs from this example are shown in Fig. 10.25.

JavaBean GuestBean (Fig. 10.20) defines three guest properties: firstName,
lastName and email. Each is a read/write property with set and get methods to manip-
ulate the property.

Attribute Description

name The ID of the JavaBean for which a property (or properties) will be set.

property The name of the property to set. Specifying "*" for this attribute
causes the JSP to match the request parameters to the properties of the
bean. For each request parameter that matches (i.e., the name of the
request parameter is identical to the bean’s property name), the corre-
sponding property in the bean is set to the value of the parameter. If the
value of the request parameter is "", the property value in the bean
remains unchanged.

param If request parameter names do not match bean property names, this
attribute can be used to specify which request parameter should be used
to obtain the value for a specific bean property. This attribute is
optional. If this attribute is omitted, the request parameter names must
match bean property names.

value The value to assign to a bean property. The value typically is the result
of a JSP expression. This attribute is particularly useful for setting bean
properties that cannot be set using request parameters. This attribute is
optional. If this attribute is omitted, the JavaBean property must be of a
data type that can be set using request parameters.

Fig. 10.19Fig. 10.19Fig. 10.19Fig. 10.19 Attributes of the <jsp:setProperty> action.

Chapter 10 JavaServer Pages (JSP) 623

JavaBean GuestDataBean (Fig. 10.21) connects to the guestbook database and
provides methods getGuestList and addGuest to manipulate the database. The
guestbook database has a single table (guests) containing three columns (firstName,
lastName and email). We provide an SQL script (guestbook.sql) with this
example that can be used with the Cloudscape DBMS to create the guestbook database.
For further details on creating a database with Cloudscape, refer back to Chapter 8.

1 // Fig. 10.20: GuestBean.java
2 // JavaBean to store data for a guest in the guest book.
3 package com.deitel.advjhtp1.jsp.beans;
4
5 public class GuestBean {
6 private String firstName, lastName, email;
7
8 // set the guest's first name
9 public void setFirstName(String name)

10 {
11 firstName = name;
12 }
13
14 // get the guest's first name
15 public String getFirstName()
16 {
17 return firstName;
18 }
19
20 // set the guest's last name
21 public void setLastName(String name)
22 {
23 lastName = name;
24 }
25
26 // get the guest's last name
27 public String getLastName()
28 {
29 return lastName;
30 }
31
32 // set the guest's email address
33 public void setEmail(String address)
34 {
35 email = address;
36 }
37
38 // get the guest's email address
39 public String getEmail()
40 {
41 return email;
42 }
43 }

Fig. 10.20Fig. 10.20Fig. 10.20Fig. 10.20 GuestBean stores information for one guest.

624 JavaServer Pages (JSP) Chapter 10

1 // Fig. 10.21: GuestDataBean.java
2 // Class GuestDataBean makes a database connection and supports
3 // inserting and retrieving data from the database.
4 package com.deitel.advjhtp1.jsp.beans;
5
6 // Java core packages
7 import java.io.*;
8 import java.sql.*;
9 import java.util.*;

10
11 public class GuestDataBean {
12 private Connection connection;
13 private PreparedStatement addRecord, getRecords;
14
15 // construct TitlesBean object
16 public GuestDataBean() throws Exception
17 {
18 // load the Cloudscape driver
19 Class.forName("COM.cloudscape.core.RmiJdbcDriver");
20
21 // connect to the database
22 connection = DriverManager.getConnection(
23 "jdbc:rmi:jdbc:cloudscape:guestbook");
24
25 getRecords =
26 connection.prepareStatement(
27 "SELECT firstName, lastName, email FROM guests"
28);
29
30 addRecord =
31 connection.prepareStatement(
32 "INSERT INTO guests (" +
33 "firstName, lastName, email) " +
34 "VALUES (?, ?, ?)"
35);
36 }
37
38 // return an ArrayList of GuestBeans
39 public ArrayList getGuestList() throws SQLException
40 {
41 ArrayList guestList = new ArrayList();
42
43 // obtain list of titles
44 ResultSet results = getRecords.executeQuery();
45
46 // get row data
47 while (results.next()) {
48 GuestBean guest = new GuestBean();
49
50 guest.setFirstName(results.getString(1));
51 guest.setLastName(results.getString(2));
52 guest.setEmail(results.getString(3));

Fig. 10.21Fig. 10.21Fig. 10.21Fig. 10.21 GuestDataBean performs database access on behalf of
guestBookLogin.jsp (part 1 of 2).

Chapter 10 JavaServer Pages (JSP) 625

GuestDataBean method getGuestList (lines 39–58) returns an ArrayList
of GuestBean objects representing the guests in the database. Method getGuestList
creates the GuestBean objects from the ResultSet returned by PreparedState-
ment getRecords (defined at lines 25–28 and executed at line 44).

GuestDataBean method addGuest (lines 61–68) receives a GuestBean as an
argument and uses the GuestBean’s properties as the arguments to PreparedState-
ment addRecord (defined at lines 30–35). This PreparedStatement (executed at
line 67) inserts a new guest in the database.

Note that the GuestDataBean’s constructor, getGuestList and addGuest
methods do not process potential exceptions. In the constructor, line 19 can throw a
ClassNotFoundException, and the other statements can throw SQLExceptions.
Similarly, SQLExceptions can be thrown from the bodies of methods getGuestList
and addGuest. In this example, we purposely let any exceptions that occur get passed

53
54 guestList.add(guest);
55 }
56
57 return guestList;
58 }
59
60 // insert a guest in guestbook database
61 public void addGuest(GuestBean guest) throws SQLException
62 {
63 addRecord.setString(1, guest.getFirstName());
64 addRecord.setString(2, guest.getLastName());
65 addRecord.setString(3, guest.getEmail());
66
67 addRecord.executeUpdate();
68 }
69
70 // close statements and terminate database connection
71 protected void finalize()
72 {
73 // attempt to close database connection
74 try {
75 getRecords.close();
76 addRecord.close();
77 connection.close();
78 }
79
80 // process SQLException on close operation
81 catch (SQLException sqlException) {
82 sqlException.printStackTrace();
83 }
84 }
85 }

Fig. 10.21Fig. 10.21Fig. 10.21Fig. 10.21 GuestDataBean performs database access on behalf of
guestBookLogin.jsp (part 2 of 2).

626 JavaServer Pages (JSP) Chapter 10

back to the JSP that invokes the GuestDataBean’s constructor or methods. This enables
us to demonstrate JSP error pages. When a JSP performs an operation that causes an excep-
tion, the JSP can include scriptlets that catch the exception and process it. Exceptions that
are not caught can be forwarded to a JSP error page for handling.

JavaServer Page guestBookLogin.jsp (Fig. 10.22) is a modified version of
forward1.jsp (Fig. 10.11) that displays a form in which users can enter their first
name, last name and e-mail address. When the user submits the form, guestBook-
Login.jsp is requested again, so it can ensure that all the data values were entered. If
not, the guestBookLogin.jsp responds with the form again, so the user can fill in
missing field(s). If the user supplies all three pieces of information, guestBook-
Login.jsp forwards the request to guestBookView.jsp, which displays the guest
book contents.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 10.22: guestBookLogin.jsp -->
6
7 <%-- page settings --%>
8 <%@ page errorPage = "guestBookErrorPage.jsp" %>
9

10 <%-- beans used in this JSP --%>
11 <jsp:useBean id = "guest" scope = "page"
12 class = "com.deitel.advjhtp1.jsp.beans.GuestBean" />
13 <jsp:useBean id = "guestData" scope = "request"
14 class = "com.deitel.advjhtp1.jsp.beans.GuestDataBean" />
15
16 <html xmlns = "http://www.w3.org/1999/xhtml">
17
18 <head>
19 <title>Guest Book Login</title>
20
21 <style type = "text/css">
22 body {
23 font-family: tahoma, helvetica, arial, sans-serif;
24 }
25
26 table, tr, td {
27 font-size: .9em;
28 border: 3px groove;
29 padding: 5px;
30 background-color: #dddddd;
31 }
32 </style>
33 </head>
34

Fig. 10.22Fig. 10.22Fig. 10.22Fig. 10.22 JavaServer page guestBookLogin.jsp enables the user to submit a
first name, a last name and an e-mail address to be placed in the guest
book (part 1 of 3).

Chapter 10 JavaServer Pages (JSP) 627

35 <body>
36 <jsp:setProperty name = "guest" property = "*" />
37
38 <% // start scriptlet
39
40 if (guest.getFirstName() == null ||
41 guest.getLastName() == null ||
42 guest.getEmail() == null) {
43
44 %> <%-- end scriptlet to insert fixed template data --%>
45
46 <form method = "post" action = "guestBookLogin.jsp">
47 <p>Enter your first name, last name and email
48 address to register in our guest book.</p>
49
50 <table>
51 <tr>
52 <td>First name</td>
53
54 <td>
55 <input type = "text" name = "firstName" />
56 </td>
57 </tr>
58
59 <tr>
60 <td>Last name</td>
61
62 <td>
63 <input type = "text" name = "lastName" />
64 </td>
65 </tr>
66
67 <tr>
68 <td>Email</td>
69
70 <td>
71 <input type = "text" name = "email" />
72 </td>
73 </tr>
74
75 <tr>
76 <td colspan = "2">
77 <input type = "submit"
78 value = "Submit" />
79 </td>
80 </tr>
81 </table>
82 </form>
83

Fig. 10.22Fig. 10.22Fig. 10.22Fig. 10.22 JavaServer page guestBookLogin.jsp enables the user to submit a
first name, a last name and an e-mail address to be placed in the guest
book (part 2 of 3).

628 JavaServer Pages (JSP) Chapter 10

Line 8 of guestBookLogin.jsp introduces the page directive, which defines
information that is globally available in a JSP. Directives are delimited by <%@ and %>. In
this case, the page directive’s errorPage attribute is set to guestBookEr-
rorPage.jsp (Fig. 10.24), indicating that all uncaught exceptions are forwarded to
guestBookErrorPage.jsp for processing. A complete description of the page
directive appears in Section 10.7.

Lines 11–14 define two <jsp:useBean> actions. Lines 11–12 create an instance of
GuestBean called guest. This bean has page scope—it exists for use only in this page.
Lines 14–14 create an instance of GuestDataBean called guestData. This bean has
request scope—it exists for use in this page and any other page that helps process a
single client request. Thus, when guestBookLogin.jsp forwards a request to
guestBookView.jsp, the GuestDataBean is still available for use in guest-
BookView.jsp.

Line 36 demonstrates setting properties of the GuestBean called guest with
request parameter values. The input elements on lines 55, 63 and 71 have the same names
as the GuestBean properties. So, we use action <jsp:setProperty>’s ability to
match request parameters to properties by specifying "*" for attribute property. Line
36 also can set the properties individually with the following lines:

<jsp:setProperty name = "guest" property = "firstName"
param = "firstName" />

<jsp:setProperty name = "guest" property = "lastName"
param = "lastName" />

<jsp:setProperty name = "guest" property = "email"
 param = "email" />

84 <% // continue scriptlet
85
86 } // end if
87 else {
88 guestData.addGuest(guest);
89
90 %> <%-- end scriptlet to insert jsp:forward action --%>
91
92 <%-- forward to display guest book contents --%>
93 <jsp:forward page = "guestBookView.jsp" />
94
95 <% // continue scriptlet
96
97 } // end else
98
99 %> <%-- end scriptlet --%>
100 </body>
101
102 </html>

Fig. 10.22Fig. 10.22Fig. 10.22Fig. 10.22 JavaServer page guestBookLogin.jsp enables the user to submit a
first name, a last name and an e-mail address to be placed in the guest
book (part 3 of 3).

Chapter 10 JavaServer Pages (JSP) 629

If the request parameters had names that differed from GuestBean’s properties, the
param attribute in each of the preceding <jsp:setProperty> actions could be
changed to the appropriate request parameter name.

JavaServer Page guestBookView.jsp (Fig. 10.23) outputs an XHTML document
containing the guest book entries in tabular format. Lines 8–10 define three page directives.
Line 8 specifies that the error page for this JSP is guestBookErrorPage.jsp. Lines 9–
10 introduce attribute import of the page directive. Attribute import enables program-
mers to specify Java classes and packages that are used in the context of the JSP. Line 9 indi-
cates that classes from package java.util are used in this JSP, and line 10 indicates that
classes from our package com.deitel.advjhtp1.jsp.beans also are used.

Lines 13–14 specify a <jsp:useBean> action that obtains a reference to a Guest-
DataBean object. If a GuestDataBean object already exists, the action returns a ref-
erence to the existing object. Otherwise, the action creates a GuestDataBean for use in
this JSP. Lines 50–59 define a scriptlet that gets the guest list from the GuestDataBean
and begin a loop to output the entries. Lines 61–70 combine fixed template text with JSP
expressions to create rows in the table of guest book data that will be displayed on the
client. The scriptlet at lines 72–76 terminates the loop.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 10.23: guestBookView.jsp -->
6
7 <%-- page settings --%>
8 <%@ page errorPage = "guestBookErrorPage.jsp" %>
9 <%@ page import = "java.util.*" %>

10 <%@ page import = "com.deitel.advjhtp1.jsp.beans.*" %>
11
12 <%-- GuestDataBean to obtain guest list --%>
13 <jsp:useBean id = "guestData" scope = "request"
14 class = "com.deitel.advjhtp1.jsp.beans.GuestDataBean" />
15
16 <html xmlns = "http://www.w3.org/1999/xhtml">
17
18 <head>
19 <title>Guest List</title>
20
21 <style type = "text/css">
22 body {
23 font-family: tahoma, helvetica, arial, sans-serif;
24 }
25
26 table, tr, td, th {
27 text-align: center;
28 font-size: .9em;
29 border: 3px groove;
30 padding: 5px;

Fig. 10.23Fig. 10.23Fig. 10.23Fig. 10.23 JavaServer page guestBookView.jsp displays the contents of the
guest book (part 1 of 2).

630 JavaServer Pages (JSP) Chapter 10

31 background-color: #dddddd;
32 }
33 </style>
34 </head>
35
36 <body>
37 <p style = "font-size: 2em;">Guest List</p>
38
39 <table>
40 <thead>
41 <tr>
42 <th style = "width: 100px;">Last name</th>
43 <th style = "width: 100px;">First name</th>
44 <th style = "width: 200px;">Email</th>
45 </tr>
46 </thead>
47
48 <tbody>
49
50 <% // start scriptlet
51
52 List guestList = guestData.getGuestList();
53 Iterator guestListIterator = guestList.iterator();
54 GuestBean guest;
55
56 while (guestListIterator.hasNext()) {
57 guest = (GuestBean) guestListIterator.next();
58
59 %> <%-- end scriptlet; insert fixed template data --%>
60
61 <tr>
62 <td><%= guest.getLastName() %></td>
63
64 <td><%= guest.getFirstName() %></td>
65
66 <td>
67 <a href = "mailto:<%= guest.getEmail() %>">
68 <%= guest.getEmail() %>
69 </td>
70 </tr>
71
72 <% // continue scriptlet
73
74 } // end while
75
76 %> <%-- end scriptlet --%>
77
78 </tbody>
79 </table>
80 </body>
81
82 </html>

Fig. 10.23Fig. 10.23Fig. 10.23Fig. 10.23 JavaServer page guestBookView.jsp displays the contents of the
guest book (part 2 of 2).

Chapter 10 JavaServer Pages (JSP) 631

JavaServer Page guestBookErrorPage.jsp (Fig. 10.24) outputs an XHTML
document containing an error message based on the type of exception that causes this error
page to be invoked. Lines 8–10 define several page directives. Line 8 introduces page
directive attribute isErrorPage. Setting this attribute to true makes the JSP an error
page and enables access to the JSP implicit object exception that refers to an exception
object indicating the problem that occurred.

Common Programming Error 10.8
JSP implicit object exception can be used only in error pages. Using this object in other
JSPs results in a translation-time error. 10.8

Lines 29–46 define scriptlets that determine the type of exception that occurred and
begin outputting an appropriate error message with fixed template data. The actual error
message from the exception is output at line 56.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 10.24: guestBookErrorPage.jsp -->
6
7 <%-- page settings --%>
8 <%@ page isErrorPage = "true" %>
9 <%@ page import = "java.util.*" %>

10 <%@ page import = "java.sql.*" %>
11
12 <html xmlns = "http://www.w3.org/1999/xhtml">
13
14 <head>
15 <title>Error!</title>
16
17 <style type = "text/css">
18 .bigRed {
19 font-size: 2em;
20 color: red;
21 font-weight: bold;
22 }
23 </style>
24 </head>
25
26 <body>
27 <p class = "bigRed">
28
29 <% // scriptlet to determine exception type
30 // and output beginning of error message
31 if (exception instanceof SQLException)
32 %>
33
34 An SQLException
35

Fig. 10.24Fig. 10.24Fig. 10.24Fig. 10.24 JavaServer page guestBookErrorPage.jsp responds to exceptions
in guestBookLogin.jsp and guestBookView.jsp (part 1 of 2).

632 JavaServer Pages (JSP) Chapter 10

Figure 10.25 shows sample interactions between the user and the JSPs in the guest
book example. In the first two rows of output, separate users entered their first name, last
name and e-mail. In each case, the current contents of the guest book are returned and dis-
played for the user. In the final interaction, a third user specified an e-mail address that
already existed in the database. The e-mail address is the primary key in the guests table
of the guestbook database, so its values must be unique. Thus, the database prevents the
new record from being inserted, and an exception occurs. The exception is forwarded to
guestBookErrorPage.jsp for processing, which results in the last screen capture.

To test the guest book in Tomcat, copy guestBookLogin.jsp, guestBook-
View.jsp and guestBookErrorPage.jsp into the jsp directory created in
Section 10.3. Copy GuestBean.class and GuestDataBean.class into the
advjhtp1 Web application’s WEB-INF\classes directory in Tomcat. [Note: This
example will work only if the proper package directory structure for GuestBean and
GuestDataBean is defined in the classes directory. These classes are defined in
package com.deitel.advjhtp1.jsp.beans.] Open your Web browser and enter
the following URL to test guestBookLogin.jsp:

http://localhost:8080/advjhtp1/jsp/guestBookLogin.jsp

36 <%
37 else if (exception instanceof ClassNotFoundException)
38 %>
39
40 A ClassNotFoundException
41
42 <%
43 else
44 %>
45
46 An exception
47
48 <%-- end scriptlet to insert fixed template data --%>
49
50 <%-- continue error message output --%>
51 occurred while interacting with the guestbook database.
52 </p>
53
54 <p class = "bigRed">
55 The error message was:

56 <%= exception.getMessage() %>
57 </p>
58
59 <p class = "bigRed">Please try again later</p>
60 </body>
61
62 </html>

Fig. 10.24Fig. 10.24Fig. 10.24Fig. 10.24 JavaServer page guestBookErrorPage.jsp responds to exceptions
in guestBookLogin.jsp and guestBookView.jsp (part 2 of 2).

Chapter 10 JavaServer Pages (JSP) 633

Fig. 10.25Fig. 10.25Fig. 10.25Fig. 10.25 JSP guest book sample output windows.

634 JavaServer Pages (JSP) Chapter 10

10.7 Directives
Directives are messages to the JSP container that enable the programmer to specify page
settings (such as the error page), to include content from other resources and to specify cus-
tom-tag libraries for use in a JSP. Directives (delimited by <%@ and %>) are processed at
translation time. Thus, directives do not produce any immediate output, because they are
processed before the JSP accepts any requests. Figure 10.26 summarizes the three directive
types. These directives are discussed in the next several subsections.

10.7.1 page Directive

The page directive specifies global settings for the JSP in the JSP container. There can be
many page directives, provided that there is only one occurrence of each attribute. The only
exception to this rule is the import attribute, which can be used repeatedly to import Java
packages used in the JSP. Figure 10.27 summarizes the attributes of the page directive.

Directive Description

page Defines page settings for the JSP container to process.

include Causes the JSP container to perform a translation-time insertion of another
resource’s content. As the JSP is translated into a servlet and compiled, the ref-
erenced file replaces the include directive and is translated as if it were orig-
inally part of the JSP.

taglib Allows programmers to include their own new tags in the form of tag libraries.
These libraries can be used to encapsulate functionality and simplify the coding
of a JSP.

Fig. 10.26Fig. 10.26Fig. 10.26Fig. 10.26 JSP directives.

Fig. 10.25Fig. 10.25Fig. 10.25Fig. 10.25 JSP guest book sample output windows.

Chapter 10 JavaServer Pages (JSP) 635

Common Programming Error 10.9
Providing multiple page directives with one or more attributes in common is a JSP transla-
tion-time error. 10.9

Common Programming Error 10.10
Providing a page directive with an attribute or value that is not recognized is a JSP trans-
lation-time error. 10.10

Attribute Description

language The scripting language used in the JSP. Currently, the only valid value for this
attribute is java.

extends Specifies the class from which the translated JSP will be inherited. This
attribute must be a fully qualified package and class name.

import Specifies a comma-separated list of fully qualified class names and/or packages
that will be used in the current JSP. When the scripting language is java, the
default import list is java.lang.*, javax.servlet.*, javax.serv-
let.jsp.* and javax.servlet.http.*. If multiple import proper-
ties are specified, the package names are placed in a list by the container.

session Specifies whether the page participates in a session. The values for this
attribute are true (participates in a session—the default) or false (does not
participate in a session). When the page is part of a session, the JSP implicit
object session is available for use in the page. Otherwise, session is not
available. In the latter case, using session in the scripting code results in a
translation-time error.

buffer Specifies the size of the output buffer used with the implicit object out. The
value of this attribute can be none for no buffering, or a value such as 8kb
(the default buffer size). The JSP specification indicates that the buffer used
must be at least the size specified.

autoFlush When set to true (the default value), this attribute indicates that the output
buffer used with implicit object out should be flushed automatically when the
buffer fills. If set to false, an exception occurs if the buffer overflows. This
attribute’s value must be true if the buffer attribute is set to none.

isThreadSafe Specifies if the page is thread safe. If true (the default), the page is consid-
ered to be thread safe, and it can process multiple requests at the same time. If
false, the servlet that represents the page implements interface
java.lang.SingleThreadModel and only one request can be pro-
cessed by that JSP at a time. The JSP standard allows multiple instances of a
JSP to exists for JSPs that are not thread safe. This enables the container to
handle requests more efficiently. However, this does not guarantee that
resources shared across JSP instances are accessed in a thread-safe manner.

info Specifies an information string that describes the page. This string is returned
by the getServletInfo method of the servlet that represents the translated
JSP. This method can be invoked through the JSP’s implicit page object.

Fig. 10.27Fig. 10.27Fig. 10.27Fig. 10.27 Attributes of the page directive (part 1 of 2).

636 JavaServer Pages (JSP) Chapter 10

Software Engineering Observation 10.11
According to the JSP specification section 2.7.1, the extends attribute “should not be used
without careful consideration as it restricts the ability of the JSP container to provide spe-
cialized superclasses that may improve on the quality of rendered service.” Rememeber that
a Java class can extend exactly one other class. If your JSP specifies an explicit superclass,
the JSP container cannot translate your JSP into a sublcass of one of the container applica-
tion’s own enhanced servlet classes. 10.11

Common Programming Error 10.11
Using JSP implicit object session in a JSP that does not have its page directive attribute
session set to true is a translation-time error. 10.11

10.7.2 include Directive

The include directive includes the content of another resource once, at JSP translation
time. The include directive has only one attribute—file—that specifies the URL of
the page to include. The difference between directive include and action <jsp:in-
clude> is noticeable only if the included content changes. For example, if the definition
of an XHTML document changes after it is included with directive include, future invo-
cations of the JSP will show the original content of the XHTML document, not the new
content. In contrast, action <jsp:include> is processed in each request to the JSP.
Therefore, changes to included content would be apparent in the next request to the JSP that
uses action <jsp:include>.

Software Engineering Observation 10.12
The JavaServer Pages 1.1 specification does not provide a mechanism for updating text includ-
ed in a JSP with the include directive. Version 1.2 of the JSP specification allows the con-
tainer to provide such a mechanism, but the specification does not provide for this directly. 10.12

JavaServer Page includeDirective.jsp (Fig. 10.28) reimplements JavaServer
Page include.jsp (Fig. 10.10) using include directives. To test includeDirec-
tive.jsp in Tomcat, copy includeDirective.jsp into the jsp directory created

errorPage Any exceptions in the current page that are not caught are sent to the error
page for processing. The error page implicit object exception references
the original exception.

isErrorPage Specifies if the current page is an error page that will be invoked in response to
an error on another page. If the attribute value is true, the implicit object
exception is created and references the original exception that occurred. If
false (the default), any use of the exception object in the page results in
a translation-time error.

contentType Specifies the MIME type of the data in the response to the client. The default
type is text/html.

Attribute Description

Fig. 10.27Fig. 10.27Fig. 10.27Fig. 10.27 Attributes of the page directive (part 2 of 2).

Chapter 10 JavaServer Pages (JSP) 637

in Section 10.3. Open your Web browser and enter the following URL to test include-
Directive.jsp:

http://localhost:8080/advjhtp1/jsp/includeDirective.jsp

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 10.28: includeDirective.jsp -->
6
7 <html xmlns = "http://www.w3.org/1999/xhtml">
8
9 <head>

10 <title>Using the include directive</title>
11
12 <style type = "text/css">
13 body {
14 font-family: tahoma, helvetica, arial, sans-serif;
15 }
16
17 table, tr, td {
18 font-size: .9em;
19 border: 3px groove;
20 padding: 5px;
21 background-color: #dddddd;
22 }
23 </style>
24 </head>
25
26 <body>
27 <table>
28 <tr>
29 <td style = "width: 160px; text-align: center">
30 <img src = "images/logotiny.png"
31 width = "140" height = "93"
32 alt = "Deitel & Associates, Inc. Logo" />
33 </td>
34
35 <td>
36
37 <%-- include banner.html in this JSP --%>
38 <%@ include file = "banner.html" %>
39
40 </td>
41 </tr>
42
43 <tr>
44 <td style = "width: 160px">
45
46 <%-- include toc.html in this JSP --%>
47 <%@ include file = "toc.html" %>

Fig. 10.28Fig. 10.28Fig. 10.28Fig. 10.28 JSP includeDirective.jsp demonstrates including content at
translation-time with directive include (part 1 of 2).

638 JavaServer Pages (JSP) Chapter 10

10.8 Custom Tag Libraries
Throughout this chapter, you have seen how JavaServer Pages can simplify the delivery of
dynamic Web content. Our discussion continues with JSP custom tag libraries, which pro-
vide another mechanism for encapsulating complex functionality for use in JSPs. Custom
tag libraries define one or more custom tags that JSP implementors can use to create dy-
namic content. The functionality of these custom tags is defined in Java classes that imple-
ment interface Tag (package javax.servlet.jsp.tagext), normally by extending
class TagSupport or BodyTagSupport. This mechanism enables Java programmers
to create complex functionality for Web page designers who have no Java programming
knowledge.

48
49 </td>
50
51 <td style = "vertical-align: top">
52
53 <%-- include clock2.jsp in this JSP --%>
54 <%@ include file = "clock2.jsp" %>
55
56 </td>
57 </tr>
58 </table>
59 </body>
60 </html>

Fig. 10.28Fig. 10.28Fig. 10.28Fig. 10.28 JSP includeDirective.jsp demonstrates including content at
translation-time with directive include (part 2 of 2).

Chapter 10 JavaServer Pages (JSP) 639

Previously, we introduced action <jsp:useBean> and JavaBeans to incorporate
complex, encapsulated functionality in a JSP. In many cases, action <jsp:useBean>
and JavaBeans can perform the same tasks as custom tags can. However, action
<jsp:useBean> and JavaBeans have disadvantages—JavaBeans cannot manipulate
JSP content and Web page designers must have some Java knowledge to use JavaBeans in
a page. With custom tags, it is possible for Web page designers to use complex function-
ality without knowing any Java.

In this section, we present three examples of custom tags. Each tag is part of a single
custom tag library that we refer to as advjhtp1. A JSP includes a custom tag library with
the taglib directive. Figure 10.29 summarizes the taglib directive’s attributes.

Each of the examples in this section uses directive taglib. There are several types
of custom tags that have different levels of complexity. We demonstrate simple tags, simple
tags with attributes and tags that can process their body elements. For complete details on
custom tag libraries, see the resources in Section 10.9.

10.8.1 Simple Custom Tag

Our first custom tag example implements a simple custom tag that inserts the string “Wel-
come to JSP Tag Libraries” in a JSP. When implementing custom tags, you must
define a tag-handler class for each tag that implements the tag’s functionality, a tag library
descriptor that provides information about the tag library and its custom tags to the JSP
container and a JSP that uses the custom tag. Figure 10.30 (customTagWelcome.jsp)
demonstrates our first custom tag. At the end of this section, we discuss how to configure
this example for testing on Tomcat.

Attribute Description

uri Specifies the relative or absolute URI of the tag library descriptor.

tagPrefix Specifies the required prefix that distinguishes custom tags from built-
in tags. The prefix names jsp, jspx, java, javax, servlet, sun
and sunw are reserved.

Fig. 10.29Fig. 10.29Fig. 10.29Fig. 10.29 Attributes of the taglib directive.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 10.30: customTagWelcome.jsp -->
6 <!-- JSP that uses a custom tag to output content. -->
7
8 <%-- taglib directive --%>
9 <%@ taglib uri = "advjhtp1-taglib.tld" prefix = "advjhtp1" %>

10
11 <html xmlns = "http://www.w3.org/1999/xhtml">

Fig. 10.30Fig. 10.30Fig. 10.30Fig. 10.30 JSP customTagWelcome.jsp uses a simple custom tag (part 1 of 2).

640 JavaServer Pages (JSP) Chapter 10

The taglib directive at line 9 enables the JSP to use the tags in our tag library. The
directive specifies the uri of the tag library descriptor file (advjhtp1-taglib.tld;
Fig. 10.32) that provides information about our tag library to the JSP container and the
prefix for each tag (advjhtp1). JSP programmers use the tag library prefix when
referring to tags in a specific tag library. Line 20 uses a custom tag called welcome to
insert text in the JSP. Note that the prefix advjhtp1: precedes the tag name. This enables
the JSP container to interpret the meaning of the tag and invoke the appropriate tag handler.
Also note that line 20 can be written with start and end tags as follows:

<advjhtp1:welcome> </advjhtp1:welcome>

Figure 10.31 defines class WelcomeTagHandler—the tag handler that implements
the functionality of our custom tag welcome. Every tag handler must implement interface
Tag, which defines the methods a JSP container invokes to incorporate a tag’s function-
ality in a JSP. Most tag handler classes implement interface Tag by extending either class
TagSupport or class BodyTagSupport.

Software Engineering Observation 10.13
Classes that define custom tag handlers must implement interface Tag from package jav-
ax.servlet.jsp.tagext. 10.13

Software Engineering Observation 10.14
A custom tag handler class should extend class TagSupport if the body of the tag is ig-
nored or simply output during custom tag processing. 10.14

12
13 <head>
14 <title>Simple Custom Tag Example</title>
15 </head>
16
17 <body>
18 <p>The following text demonstrates a custom tag:</p>
19 <h1>
20 <advjhtp1:welcome />
21 </h1>
22 </body>
23
24 </html>

Fig. 10.30Fig. 10.30Fig. 10.30Fig. 10.30 JSP customTagWelcome.jsp uses a simple custom tag (part 2 of 2).

Chapter 10 JavaServer Pages (JSP) 641

Software Engineering Observation 10.15
A custom tag handler class should extend class BodyTagSupport if the handler interacts
with the tag’s body content. 10.15

Software Engineering Observation 10.16
Custom tag handlers must be defined in Java packages. 10.16

Class WelcomeTagHandler implements interface Tag by extending class Tag-
Support (both from package java.servlet.jsp.tagext). The most important
methods of interface Tag are doStartTag and doEndTag. The JSP container invokes
these methods when it encounters the starting custom tag and the ending custom tag,
respectively. These methods throw JspExceptions if problems are encountered during
custom-tag processing.

1 // Fig. 10.31: WelcomeTagHandler.java
2 // Custom tag handler that handles a simple tag.
3 package com.deitel.advjhtp1.jsp.taglibrary;
4
5 // Java core packages
6 import java.io.*;
7
8 // Java extension packages
9 import javax.servlet.jsp.*;

10 import javax.servlet.jsp.tagext.*;
11
12 public class WelcomeTagHandler extends TagSupport {
13
14 // Method called to begin tag processing
15 public int doStartTag() throws JspException
16 {
17 // attempt tag processing
18 try {
19 // obtain JspWriter to output content
20 JspWriter out = pageContext.getOut();
21
22 // output content
23 out.print("Welcome to JSP Tag Libraries!");
24 }
25
26 // rethrow IOException to JSP container as JspException
27 catch(IOException ioException) {
28 throw new JspException(ioException.getMessage());
29 }
30
31 return SKIP_BODY; // ignore the tag's body
32 }
33 }

Fig. 10.31Fig. 10.31Fig. 10.31Fig. 10.31 WelcomeTagHandler custom tag handler.

642 JavaServer Pages (JSP) Chapter 10

Software Engineering Observation 10.17
If exceptions other than JspExceptions occur in a custom tag handler class, the excep-
tions should be caught and processed. If such exceptions would prevent proper tag process-
ing, the exceptions should be rethrown as JspExceptions. 10.17

In this example, class WelcomeTagHandler overrides method doStartTag to
output text that becomes part of the JSP’s response. Line 20 uses the custom tag handler’s
pageContext object (inherited from class TagSupport) to obtain the JSP’s Jsp-
Writer object that method doStartTag uses to output text. Line 23 uses the Jsp-
Writer to output a string. Line 31 returns the static integer constant SKIP_BODY
(defined in interface Tag) to indicate that the JSP container should ignore any text or other
elements that appear in the tag’s body. To include the body content as part of the response,
specify static integer constant EVAL_BODY_INCLUDE as the return value. This
example does not require any processing when the ending tag is encountered by the JSP
container, so we did not override doEndTag.

Figure 10.32 defines the custom tag library descriptor file. This XML document spec-
ifies information required by the JSP container such as the version number of the tag library
(element tlibversion), the JSP version number (element jspversion), information
about the library (element info) and information about the tags in the library (one tag
element for each tag). In this tag library descriptor, the tag element at lines 18–30
describes our welcome tag. Line 19 specifies the tag’s name—used by JSP programmers
to access the custom functionality in a JSP. Lines 21–23 specify the tagclass—the
custom tag handler class.This element associates the tag name with a specific tag handler
class. Element bodycontent (line 25) specifies that our custom tag has an empty body.
This value can also be tagdependent or JSP. Lines 27–29 specify information about
the tag with an info element. [Note: We introduce other elements of the tag library
descriptor as necessary. For a complete description of the tag library descriptor, see the
JavaServer Pages 1.1 specification, which can be downloaded from java.sun.com/
products/jsp/download.html.]

Software Engineering Observation 10.18
The custom tag handler class must be specified with its full package name in the tagclass
element of the tag library descriptor. 10.18

1 <?xml version = "1.0" encoding = "ISO-8859-1" ?>
2 <!DOCTYPE taglib PUBLIC
3 "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
4 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">
5
6 <!-- a tag library descriptor -->
7
8 <taglib>
9 <tlibversion>1.0</tlibversion>

10 <jspversion>1.1</jspversion>
11 <shortname>advjhtp1</shortname>
12

Fig. 10.32Fig. 10.32Fig. 10.32Fig. 10.32 Custom tag library descriptor file advjhtp1-taglib.tld (part 1 of 2).

Chapter 10 JavaServer Pages (JSP) 643

To test customTagWelcome.jsp in Tomcat, copy customTagWelcome.jsp
and advjhtp1-taglib.tld into the jsp directory created in Section 10.3. Copy
WelcomeTagHandler.class into the advjhtp1 Web application’s WEB-
INF\classes directory in Tomcat. [Note: Class WelcomeTagHandler must appear
in its proper package director structure in classes directory. WelcomeTagHandler is
defined in package com.deitel.advjhtp1.jsp.taglibrary.] Open your Web
browser and enter the following URL to test customTagWelcome.jsp:

http://localhost:8080/advjhtp1/jsp/customTagWelcome.jsp

10.8.2 Custom Tag with Attributes

Many XHTML and JSP elements use attributes to customize functionality. For example, an
XHTML element can specify a style attribute that indicates how the element should be
formatted in a client’s Web browser. Similarly, the JSP action elements have attributes that
help customize their behavior in a JSP. Our next example demonstrates how to specify at-
tributes for your custom tags.

Figure 10.33 (customTagAttribute.jsp) is similar to Fig. 10.30. This example
uses a new tag called, welcome2, to insert text in the JSP that is customized based on the
value of attribute firstName. The screen capture shows the results of the welcome2
tags on lines 20 and 30. The tag at line 20 specifies the value "Paul" for attribute first-
Name. Lines 26–28 define a scriptlet that obtains the value of request parameter name and
assign it to String reference name. Line 30 uses the name in a JSP expression as the
value for the firstName attribute. In the sample screen capture, this JSP was invoked
with the following URL:

http://localhost:8080/advjhtp1/jsp/
customTagAttribute.jsp?firstName=Sean

13 <info>
14 A simple tab library for the examples
15 </info>
16
17 <!-- A simple tag that outputs content -->
18 <tag>
19 <name>welcome</name>
20
21 <tagclass>
22 com.deitel.advjhtp1.jsp.taglibrary.WelcomeTagHandler
23 </tagclass>
24
25 <bodycontent>empty</bodycontent>
26
27 <info>
28 Inserts content welcoming user to tag libraries
29 </info>
30 </tag>
31 </taglib>

Fig. 10.32Fig. 10.32Fig. 10.32Fig. 10.32 Custom tag library descriptor file advjhtp1-taglib.tld (part 2 of 2).

644 JavaServer Pages (JSP) Chapter 10

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- Fig. 10.x: customTagAttribute.jsp -->
6 <!-- JSP that uses a custom tag to output content. -->
7
8 <%-- taglib directive --%>
9 <%@ taglib uri = "advjhtp1-taglib.tld" prefix = "advjhtp1" %>

10
11 <html xmlns = "http://www.w3.org/1999/xhtml">
12
13 <head>
14 <title>Specifying Custom Tag Attributes</title>
15 </head>
16
17 <body>
18 <p>Demonstrating an attribute with a string value</p>
19 <h1>
20 <advjhtp1:welcome2 firstName = "Paul" />
21 </h1>
22
23 <p>Demonstrating an attribute with an expression value</p>
24 <h1>
25 <%-- scriptlet to obtain "name" request parameter --%>
26 <%
27 String name = request.getParameter("name");
28 %>
29
30 <advjhtp1:welcome2 firstName = "<%= name %>" />
31 </h1>
32 </body>
33
34 </html>

Fig. 10.33Fig. 10.33Fig. 10.33Fig. 10.33 Specifying attributes for a custom tag.

Chapter 10 JavaServer Pages (JSP) 645

When defining the custom tag handler for a tag with attributes, you must provide
methods that enable the JSP container to set the attribute values in the tag handler. Methods
that manipulate attributes follow the same set- and get-method naming conventions as do
JavaBean properties. Thus, the custom tag’s firstName attribute is set with method
setFirstName. Similarly, the method to obtain the firstName attribute’s value
would be getFirstName (we did not define this method for this example). Class
Welcome2TagHandler (Fig. 10.34) defines its firstName variable at line 13 and a
corresponding set method setFirstName (lines 37–40). When the JSP container
encounters a welcome2 tag in a JSP, it creates a new Welcome2TagHandler object to
process the tag and sets the tag’s attributes. Next, the container invokes method
doStartTag (lines 16–34) to perform the custom tag processing. Lines 24–25 use the
firstName attribute value as part of the text output by the custom tag.

1 // Fig. 10.34: Welcome2TagHandler.java
2 // Custom tag handler that handles a simple tag.
3 package com.deitel.advjhtp1.jsp.taglibrary;
4
5 // Java core packages
6 import java.io.*;
7
8 // Java extension packages
9 import javax.servlet.jsp.*;

10 import javax.servlet.jsp.tagext.*;
11
12 public class Welcome2TagHandler extends TagSupport {
13 private String firstName = "";
14
15 // Method called to begin tag processing
16 public int doStartTag() throws JspException
17 {
18 // attempt tag processing
19 try {
20 // obtain JspWriter to output content
21 JspWriter out = pageContext.getOut();
22
23 // output content
24 out.print("Hello " + firstName +
25 ",
Welcome to JSP Tag Libraries!");
26 }
27
28 // rethrow IOException to JSP container as JspException
29 catch(IOException ioException) {
30 throw new JspException(ioException.getMessage());
31 }
32
33 return SKIP_BODY; // ignore the tag's body
34 }
35

Fig. 10.34Fig. 10.34Fig. 10.34Fig. 10.34 Welcome2TagHandler custom tag handler for a tag with an attribute
(part 1 of 2).

646 JavaServer Pages (JSP) Chapter 10

Before the welcome2 tag can be used in a JSP, we must make the JSP container aware
of the tag by adding it to a tag library. To do this, add the tag element of Fig. 10.35 as a
child of element taglib in the tag library descriptor advjhtp1-taglib.tld. As in
the previous example, element tag contains elements name, tagclass, bodycon-
tent and info. Lines 16–20 introduce element attribute for specifying the charac-
teristics of a tag’s attributes. Each attribute must have a separate attribute element that
contains the name, required and rtexprvalue elements. Element name (line 17)
specifies the attribute’s name. Element required specifies whether the attribute is
required (true) or optional (false). Element rtexprvalue specifies whether the
value of the attribute can be the result of a JSP expression evaluated at runtime (true) or
whether it must be a string literal (false).

To test customTagAttribute.jsp in Tomcat, copy customTagAt-
tribute.jsp and the updated advjhtp1-taglib.tld into the jsp directory cre-
ated in Section 10.3. Copy Welcome2TagHandler.class into the advjhtp1 Web
application’s WEB-INF\classes directory in Tomcat. [Note: This example will work
only if the proper package-directory structure for Welcome2TagHandler is defined in
the classes directory.] Open your Web browser and enter the following URL to test
customTagAttribute.jsp:

http://localhost:8080/advjhtp1/jsp/
customTagAttribute.jsp?firstName=Sean

The text ?firstName=Sean in the preceding URL specifies the value for request pa-
rameter name that is used by the custom tag welcome2 at line 30 in Fig. 10.33.

36 // set firstName attribute to the users first name
37 public void setFirstName(String username)
38 {
39 firstName = username;
40 }
41 }

Fig. 10.34Fig. 10.34Fig. 10.34Fig. 10.34 Welcome2TagHandler custom tag handler for a tag with an attribute
(part 2 of 2).

1 <!-- A tag with an attribute -->
2 <tag>
3 <name>welcome2</name>
4
5 <tagclass>
6 com.deitel.advjhtp1.jsp.taglibrary.Welcome2TagHandler
7 </tagclass>
8
9 <bodycontent>empty</bodycontent>

10
11 <info>
12 Inserts content welcoming user to tag libraries. Uses
13 attribute "name" to insert the user's name.
14 </info>

Fig. 10.35Fig. 10.35Fig. 10.35Fig. 10.35 Element tag for the welcome2 custom tag (part 1 of 2).

Chapter 10 JavaServer Pages (JSP) 647

10.8.3 Evaluating the Body of a Custom Tag

Custom tags are particularly powerful for processing the element body. When a custom tag
interacts with the element body, additional methods are required to perform those interac-
tions. The methods are defined in class BodyTagSupport. In our next example, we re-
implement guestBookView.jsp (Fig. 10.23) and replace the JavaBean processing
performed in the JSP with a custom guestlist tag.

Figure 10.36 (customTagBody.jsp) uses the custom guestlist tag at lines
41–52. Note that the JSP expressions in the body of element guestlist use variable
names that are not defined in the JSP. These variables are defined by the custom tag handler
when the custom tag is encountered. The custom tag handler places the variables in the
JSP’s PageContext, so the variables can be used throughout the page. Although no rep-
etition is defined in the JSP, the custom tag handler is defined to iterate over all the guests
in the guestbook database. This action results in the creation of a table row in the
resulting Web page for each guest in the database.

15
16 <attribute>
17 <name>firstName</name>
18 <required>true</required>
19 <rtexprvalue>true</rtexprvalue>
20 </attribute>
21 </tag>

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4
5 <!-- customTagBody.jsp -->
6
7 <%-- taglib directive --%>
8 <%@ taglib uri = "advjhtp1-taglib.tld" prefix = "advjhtp1" %>
9

10 <html xmlns = "http://www.w3.org/1999/xhtml">
11
12 <head>
13 <title>Guest List</title>
14
15 <style type = "text/css">
16 body {
17 font-family: tahoma, helvetica, arial, sans-serif
18 }
19
20 table, tr, td, th {
21 text-align: center;
22 font-size: .9em;
23 border: 3px groove;

Fig. 10.36Fig. 10.36Fig. 10.36Fig. 10.36 Using a custom tag that interacts with its body (part 1 of 2).

Fig. 10.35Fig. 10.35Fig. 10.35Fig. 10.35 Element tag for the welcome2 custom tag (part 2 of 2).

648 JavaServer Pages (JSP) Chapter 10

As in guestBookView.jsp, the custom tag handler GuestBookTag (Fig. 10.37)
creates a GuestDataBean to access the guestbook database. Class GuestBookTag
extends BodyTagSupport, which contains several new methods including doInit-

24 padding: 5px;
25 background-color: #dddddd
26 }
27 </style>
28 </head>
29
30 <body>
31 <p style = "font-size: 2em">Guest List</p>
32
33 <table>
34 <thead>
35 <th style = "width: 100px">Last name</th>
36 <th style = "width: 100px">First name</th>
37 <th style = "width: 200px">Email</th>
38 </thead>
39
40 <%-- guestlist custom tag --%>
41 <advjhtp1:guestlist>
42 <tr>
43 <td><%= lastName %></td>
44
45 <td><%= firstName %></td>
46
47 <td>
48 <a href = "mailto:<%= email %>">
49 <%= email %>
50 </td>
51 </tr>
52 </advjhtp1:guestlist>
53 </table>
54 </body>
55
56 </html>

Fig. 10.36Fig. 10.36Fig. 10.36Fig. 10.36 Using a custom tag that interacts with its body (part 2 of 2).

Chapter 10 JavaServer Pages (JSP) 649

Body and doAfterBody (from interface BodyTag). Method doInitBody is called
once, after doStartTag and before doAfterBody. Method doAfterBody can be
called many times to process the body of a custom tag.

Software Engineering Observation 10.19
Method doInitBody typically performs one-time processing before method doAfter-
Body processes the body of a custom tag. If method doStartTag returns
Tag.SKIP_BODY, method doInitBody will not be called. 10.19

1 // Fig. 10.37: GuestBookTag.java
2 // Custom tag handler that reads information from the guestbook
3 // database and makes that data available in a JSP.
4 package com.deitel.advjhtp1.jsp.taglibrary;
5
6 // Java core packages
7 import java.io.*;
8 import java.util.*;
9

10 // Java extension packages
11 import javax.servlet.jsp.*;
12 import javax.servlet.jsp.tagext.*;
13
14 // Deitel packages
15 import com.deitel.advjhtp1.jsp.beans.*;
16
17 public class GuestBookTag extends BodyTagSupport {
18 private String firstName;
19 private String lastName;
20 private String email;
21
22 private GuestDataBean guestData;
23 private GuestBean guest;
24 private Iterator iterator;
25
26 // Method called to begin tag processing
27 public int doStartTag() throws JspException
28 {
29 // attempt tag processing
30 try {
31 guestData = new GuestDataBean();
32
33 List list = guestData.getGuestList();
34 iterator = list.iterator();
35
36 if (iterator.hasNext()) {
37 processNextGuest();
38
39 return EVAL_BODY_TAG; // continue body processing
40 }
41 else
42 return SKIP_BODY; // terminate body processing
43 }

Fig. 10.37Fig. 10.37Fig. 10.37Fig. 10.37 GuestBookTag custom tag handler (part 1 of 2).

650 JavaServer Pages (JSP) Chapter 10

44
45 // if any exceptions occur, do not continue processing
46 // tag's body
47 catch(Exception exception) {
48 exception.printStackTrace();
49 return SKIP_BODY; // ignore the tag's body
50 }
51 }
52
53 // process body and determine if body processing
54 // should continue
55 public int doAfterBody()
56 {
57 // attempt to output body data
58 try {
59 bodyContent.writeOut(getPreviousOut());
60 }
61
62 // if exception occurs, terminate body processing
63 catch (IOException ioException) {
64 ioException.printStackTrace();
65 return SKIP_BODY; // terminate body processing
66 }
67
68 bodyContent.clearBody();
69
70 if (iterator.hasNext()) {
71 processNextGuest();
72
73 return EVAL_BODY_TAG; // continue body processing
74 }
75 else
76 return SKIP_BODY; // terminate body processing
77 }
78
79 // obtains the next GuestBean and extracts its data
80 private void processNextGuest()
81 {
82 // get next guest
83 guest = (GuestBean) iterator.next();
84
85 pageContext.setAttribute(
86 "firstName", guest.getFirstName());
87
88 pageContext.setAttribute(
89 "lastName", guest.getLastName());
90
91 pageContext.setAttribute(
92 "email", guest.getEmail());
93 }
94 }

Fig. 10.37Fig. 10.37Fig. 10.37Fig. 10.37 GuestBookTag custom tag handler (part 2 of 2).

Chapter 10 JavaServer Pages (JSP) 651

The JSP container invokes method doStartTag (lines 27–51) when it encounters the
custom guestlist tag in a JSP. Lines 31–34 create a new GuestDataBean, obtain a
List of GuestBeans from the GuestDataBean and create an Iterator for manipu-
lating the ArrayList contents. If there are no elements in the list (tested at line 36), line 42
returns SKIP_BODY to indicate that the container should perform no further processing of
the guestlist tag’s body. Otherwise, line 37 invokes private method processNex-
tGuest (lines 80–93) to extract the information for the first guest and create variables con-
taining that information in the JSP’s PageContext (represented with variable
pageContext that was inherited from BodyTagSupport). Method process-
NextGuest uses PageContext method setAttribute to specify each variable’s
name and value. The container is responsible for creating the actual variables used in the JSP.
This is accomplished with the help of class GuestBookTagExtraInfo (Fig. 10.38).

Method doAfterBody (lines 55–77)performs the repetitive processing of the
guestlist tag’s body. The JSP container determines whether method doAfterBody
should be called again, based on the method’s return value. If doAfterBody returns
EVAL_BODY_TAG, the container calls method doAfterBody again. If doAfter-
Body returns SKIP_BODY, the container stops processing the body and invokes the
custom tag handler’s doEndTag method to complete the custom processing. Line 59
invokes writeOut on variable bodyContent (inherited from BodyTagSupport)
to process the first client’s data (stored when doStartTag was called). Variable
bodyContent refers to an object of class BodyContent from package
javax.servlet.jsp.tagext. The argument to method writeOut is the result of
method getPreviousOut (inherited from class BodyTagSupport), which returns
the JspWriter object for the JSP that invokes the custom tag. This enables the custom
tag to continue building the response to the client using the same output stream as the
JSP. Next, line 68 invokes bodyContent’s method clearBody to ensure that the
body content that was just output does not get processed as part of the next call to doAf-
terBody. Lines 70–76 determine whether there are more guests to process. If so,
doAfterBody invokes private method processNextGuest to obtain the data
for the next guest and returns EVAL_BODY_TAG to indicate that the container should call
doAfterBody again. Otherwise, doAfterBody returns SKIP_BODY to terminate
processing of the body.

The JSP container cannot create variables in the PageContext unless the container
knows the names and types of those variables. This information is specified by a class with
the same name as the custom tag handler and that ends with ExtraInfo (GuestBook-
TagExtraInfo in Fig. 10.38). ExtraInfo classes extend class TagExtraInfo
(package javax.servlet.jsp.tagext). The container uses the information speci-
fied by a subclass of TagExtraInfo to determine what variables it should create (or use)
in the PageContext. To specify variable information, override method getVari-
ableInfo. This method returns an array of VariableInfo objects that the container
uses either to create new variables in the PageContext or to enable a custom tag to use
existing variables in the PageContext. The VariableInfo constructor receives four
arguments—a String representing the name of the variable, a String representing the
variable’s class name, a boolean indicating whether or not the variable should be created
by the container (true if so) and a static integer constant representing the variable’s
scope in the JSP. The constants in class VariableInfo are NESTED, AT_BEGIN and

652 JavaServer Pages (JSP) Chapter 10

AT_END. NESTED indicates that the variable can be used only in the custom tag’s body.
AT_BEGIN indicates that the variable can be used anywhere in the JSP after the starting
tag of the custom tag is encountered. AT_END indicates that the variable can be used any-
where in the JSP after the ending tag of the custom tag.

Before the guestlist tag can be used in a JSP, we must make the JSP container
aware of the tag by adding it to a tag library. To do this, add the tag element of Fig. 10.39
as a child of element taglib in the tag library descriptor advjhtp1-taglib.tld. As
in the previous example, element tag contains elements name, tagclass, bodycon-
tent and info. Lines 10–12 introduce element teiclass for specifying the custom
tag’s ExtraInfo class.

To test customTagBody.jsp in Tomcat, copy customTagBody.jsp and the
updated advjhtp1-taglib.tld into the jsp directory created in Section 10.3. Copy
GuestBookTag.class and GuestBookTagExtraInfo.class into the
advjhtp1 Web application’s WEB-INF\classes directory in Tomcat. [Note: This
example will work only if the proper package directory structure for GuestBookTag and
GuestBookTagExtraInfo is defined in the classes directory.] Open your Web
browser and enter the following URL to test customTagBody.jsp:

http://localhost:8080/advjhtp1/jsp/customTagBody.jsp

1 // Fig. 10.38: GuestBookTagExtraInfo.java
2 // Class that defines the variable names and types created by
3 // custom tag handler GuestBookTag.
4 package com.deitel.advjhtp1.jsp.taglibrary;
5
6 // Java core packages
7 import javax.servlet.jsp.tagext.*;
8
9 public class GuestBookTagExtraInfo extends TagExtraInfo {

10
11 // method that returns information about the variables
12 // GuestBookTag creates for use in a JSP
13 public VariableInfo [] getVariableInfo(TagData tagData)
14 {
15 VariableInfo firstName = new VariableInfo("firstName",
16 "String", true, VariableInfo.NESTED);
17
18 VariableInfo lastName = new VariableInfo("lastName",
19 "String", true, VariableInfo.NESTED);
20
21 VariableInfo email = new VariableInfo("email",
22 "String", true, VariableInfo.NESTED);
23
24 VariableInfo varableInfo [] =
25 { firstName, lastName, email };
26
27 return varableInfo;
28 }
29 }

Fig. 10.38Fig. 10.38Fig. 10.38Fig. 10.38 GuestBookTagExtraInfo used by the container to define scripting
variables in a JSP that uses the guestlist custom tag.

Chapter 10 JavaServer Pages (JSP) 653

This chapter has presented many JSP capabilities. However, there are additional fea-
tures that are beyond the scope of this book. For a complete description of JavaServer
Pages, see the JavaServer Pages 1.1 specification, which can be downloaded from
java.sun.com/products/jsp/download.html. Other JSP resources are listed
in Section 10.9. The next chapter continues our JSP and servlet discussion by presenting a
substantial e-business case study in which we build an online bookstore. The case study
integrates many topics discussed up to this point in the text, including JDBC, servlets, JSP
and XML. Also, we discuss several additional servlet features as part of the case study. The
techniques shown in the case study provide a foundation for the capstone e-business case
study presented in Chapters 16 through 19.

10.9 World Wide Web Resources
java.sun.com/products/jsp
The home page for information about JavaServer Pages at the Sun Microsystems Java site.

java.sun.com/products/servlet
The home page for information about servlets at the Sun Microsystems Java site.

java.sun.com/j2ee
The home page for the Java 2 Enterprise Edition at the Sun Microsystems Java site.

www.w3.org
The World Wide Web Consortium home page. This site provides information about current and de-
veloping Internet and Web standards, such as XHTML, XML and CSS.

jsptags.com
This site includes tutorials, tag libraries, software and other resources for JSP programmers.

jspinsider.com
This Web programming site concentrates on resources for JSP programmers. It includes software, tu-
torials, articles, sample code, references and links to other JSP and Web programming resources.

1 <!-- A tag that iterates over an ArrayList of GuestBean -->
2 <!-- objects, so they can be output in a JSP -->
3 <tag>
4 <name>guestlist</name>
5
6 <tagclass>
7 com.deitel.advjhtp1.jsp.taglibrary.GuestBookTag
8 </tagclass>
9

10 <teiclass>
11 com.deitel.advjhtp1.jsp.taglibrary.GuestBookTagExtraInfo
12 </teiclass>
13
14 <bodycontent>JSP</bodycontent>
15
16 <info>
17 Iterates over a list of GuestBean objects
18 </info>
19 </tag>

Fig. 10.39Fig. 10.39Fig. 10.39Fig. 10.39 Element tag for the guestlist custom tag.

654 JavaServer Pages (JSP) Chapter 10

SUMMARY
• JavaServer Pages (JSPs) are an extension of servlet technology.

• JavaServer Pages enable Web application programmers to create dynamic content by reusing pre-
defined components and by interacting with components using server-side scripting.

• JSP programmers can create custom tag libraries that enable Web-page designers who are not fa-
miliar with Java programming to enhance their Web pages with powerful dynamic content and
processing capabilities.

• Classes and interfaces specific to JavaServer Pages programming are located in packages jav-
ax.servlet.jsp and javax.servlet.jsp.tagext.

• The JavaServer Pages 1.1 specification can be downloaded from java.sun.com/products/
jsp/download.html.

• There are four key components to JSPs—directives, actions, scriptlets and tag libraries.

• Directives specify global information that is not associated with a particular JSP request.

• Actions encapsulate functionality in predefined tags that programmers can embed in a JSP.

• Scriptlets, or scripting elements, enable programmers to insert Java code that interacts with com-
ponents in a JSP (and possibly other Web application components) to perform request processing.

• Tag libraries are part of the tag extension mechanism that enables programmers to create new tags
that encapsulate complex Java functionality.

• JSPs normally include XHTML or XML markup. Such markup is known as fixed template data
or fixed template text.

• Programmers tend to use JSPs when most of the content sent to the client is fixed template data
and only a small portion of the content is generated dynamically with Java code.

• Programmers use servlets when a small portion of the content is fixed template data.

• JSPs normally execute as part of a Web server. The server often is referred to as the JSP container.

• When a JSP-enabled server receives the first request for a JSP, the JSP container translates that
JSP into a Java servlet that handles the current request and future requests to the JSP.

• The JSP container places the Java statements that implement a JSP’s response in method
_jspService at translation time.

• The request/response mechanism and life cycle of a JSP are the same as those of a servlet.

• JSPs can define methods jspInit and jspDestroy that are invoked when the container ini-
tializes a JSP and when the container terminates a JSP, respectively.

• JSP expressions are delimited by <%= and %>. Such expressions are converted to Strings by the
JSP container and are output as part of the response.

• The XHTML meta element can set a refresh interval for a document that is loaded into a browser.
This causes the browser to request the document repeatedly at the specified interval in seconds.

• When you first invoke a JSP in Tomcat, there is a delay as Tomcat translates the JSP into a servlet
and invokes the servlet to respond to your request.

• Implicit objects provide programmers with servlet capabilities in the context of a JavaServer Page.

• Implicit objects have four scopes—application, page, request and session.

• Objects with application scope are part of the JSP and servlet container application.

• Objects with page scope exist only as part of the page in which they are used. Each page has its
own instances of the page-scope implicit objects.

• Objects with request scope exist for the duration of the request. Request-scope objects go out of
scope when request processing completes with a response to the client.

Chapter 10 JavaServer Pages (JSP) 655

• Objects with session scope exist for the client’s entire browsing session.

• JSP scripting components include scriptlets, comments, expressions, declarations and escape se-
quences.

• Scriptlets are blocks of code delimited by <% and %>. They contain Java statements that are placed
in method _jspService when the container translates a JSP into a servlet.

• JSP comments are delimited by <%-- and --%>. XHTML comments are delimited by <!-- and
-->. Java’s single-line comments (//) and multiline comments (delimited by /* and */) can be
used inside scriptlets.

• JSP comments and scripting language comments are ignored and do not appear in the response.

• A JSP expression, delimited by <%= and %>, contains a Java expression that is evaluated when a
client requests the JSP containing the expression. The container converts the result of a JSP ex-
pression to a String object, then outputs the String as part of the response to the client.

• Declarations, delimited by <%! and %>, enable a JSP programmer to define variables and meth-
ods. Variables become instance variables of the class that represents the translated JSP. Similarly,
methods become members of the class that represents the translated JSP.

• Special characters or character sequences that the JSP container normally uses to delimit JSP code
can be included in a JSP as literal characters in scripting elements, fixed template data and attribute
values by using escape sequences.

• JSP standard actions provide JSP implementors with access to several of the most common tasks
performed in a JSP. JSP containers process actions at request time.

• JavaServer Pages support two include mechanisms—the <jsp:include> action and the in-
clude directive.

• Action <jsp:include> enables dynamic content to be included in a JavaServer Page. If the in-
cluded resource changes between requests, the next request to the JSP containing the <jsp:in-
clude> action includes the new content of the resource.

• The include directive is processed once, at JSP translation time, and causes the content to be
copied into the JSP. If the included resource changes, the new content will not be reflected in the
JSP that used the include directive unless that JSP is recompiled.

• Action <jsp:forward> enables a JSP to forward the processing of a request to a different re-
source. Processing of the request by the original JSP terminates as soon as the request is forwarded.

• Action <jsp:param> specifies name/value pairs of information that are passed to the in-
clude, forward and plugin actions. Every <jsp:param> action has two required at-
tributes—name and value. If a param action specifies a parameter that already exists in the
request, the new value for the parameter takes precedence over the original value. All values for
that parameter can be obtained with the JSP implicit object request’s getParameterVal-
ues method, which returns an array of Strings.

• JSP action <jsp:plugin> enables an applet or JavaBean to be added to a Web page in the form
of a browser-specific object or embed XHTML element. This action also enables the down-
loading and installation of the Java Plug-in if it is not already installed on the client computer.

• Action <jsp:useBean> enables a JSP to manipulate a Java object. This action can be used to
create a Java object for use in the JSP or to locate an existing object.

• Like JSP implicit objects, objects specified with action <jsp:useBean> have page, request,
session or application scope that indicates where they can be used in a Web application.

• Action <jsp:getProperty> obtains the value of JavaBean’s property. Action <jsp:get-
Property> has two attributes—name and property—that specify the bean object to manip-
ulate and the property to get.

656 JavaServer Pages (JSP) Chapter 10

• JavaBean property values can be set with action <jsp:setProperty>. This action is particu-
larly useful for mapping request parameter values to JavaBean properties. Request parameters can
be used to set properties of primitive types boolean, byte, char, int, long, float and
double and java.lang types String, Boolean, Byte, Character, Integer, Long,
Float and Double.

• The page directive defines information that is globally available in a JSP. Directives are delimited
by <%@ and %>. The page directive’s errorPage attribute indicates where all uncaught excep-
tions are forwarded for processing.

• Action <jsp:setProperty> has the ability to match request parameters to properties of the
same name in a bean by specifying "*" for attribute property.

• Attribute import of the page directive enables programmers to specify Java classes and pack-
ages that are used in the context of a JSP.

• If the attribute isErrorPage of the page directive is set to true, the JSP is an error page. This
condition enables access to the JSP implicit object exception that refers to an exception object
indicating the problem that occurred.

• Directives are messages to the JSP container that enable the programmer to specify page settings
(such as the error page), to include content from other resources and to specify custom tag libraries
that can be used in a JSP. Directives are processed at the time a JSP is translated into a servlet and
compiled. Thus, directives do not produce any immediate output.

• The page directive specifies global settings for a JSP in the JSP container. There can be many
page directives, provided that there is only one occurrence of each attribute. The exception to this
rule is the import attribute, which can be used repeatedly to import Java packages.

• Custom tag libraries define one or more custom tags that JSP implementors can use to create dy-
namic content. The functionality of these custom tags is defined in Java classes that implement
interface Tag (package javax.servlet.jsp.tagext), normally by extending class Tag-
Support or BodyTagSupport.

• A JSP can include a custom tag library with the taglib directive.

• When implementing custom tags, you must define a tag handler class for each tag that provides
the tag’s functionality, a tag library descriptor that provides information about the tag library and
its custom tags to the JSP container and a JSP that uses the custom tag.

• The most important methods of interface Tag are doStartTag and doEndTag. The JSP con-
tainer invokes these methods when it encounters the starting custom tag and the ending custom
tag, respectively.

• A custom tag library descriptor file is an XML document that specifies information about the tag
library that is required by the JSP container.

• Class BodyTagSupport contains several methods for interacting with the body of a custom tag,
including doInitBody and doAfterBody (from interface BodyTag). Method doInit-
Body is called once after doStartTag and once before doAfterBody. Method doAfter-
Body can be called many times to process the body of a custom tag.

TERMINOLOGY
%\> escape sequence for %> <%@ and %> directive delimiters
<!-- and --> XHTML comment delimiters <\% escape sequence for <%
<%-- and --%> JSP comment delimiters action
<% and %> scriptlet delimiters align attribute of <jsp:plugin> action
<%! and %> declaration delimiters application implicit object
<%= and %> JSP expression delimiters application scope

Chapter 10 JavaServer Pages (JSP) 657

archive attribute of <jsp:plugin> action id attribute of <jsp:useBean> action
AT_BEGIN constant iepluginurl attribute of <jsp:plugin>
AT_END constant implicit object
attribute of tag library descriptor implicit object scopes
autoFlush attribute of page directive import attribute of page directive
beanName attribute of <jsp:useBean> action include a resource
bodycontent element of tag library descriptor include directive
BodyContent interface info attribute of page directive
BodyTag interface isErrorPage attribute of page directive
BodyTagSupport class isThreadSafe attribute of page directive
buffer attribute of page directive Java Plug-in
class attribute of <jsp:useBean> action JavaServer Pages (JSPs)
client-server networking JavaServer Pages 1.1 specification
code attribute of <jsp:plugin> action javax.servlet.jsp package
codebase attribute of <jsp:plugin> action javax.servlet.jsp.tagext package
comment jreversion attribute of <jsp:plugin>
config implicit object <jsp:forward> action
container <jsp:getProperty> action
contentType attribute of page directive <jsp:include> action
custom tag <jsp:param> action
custom tag attribute <jsp:plugin> action
custom tag handler <jsp:setProperty> action
custom tag library <jsp:useBean> action
custom tag with attributes jspDestroy method
declaration jspInit method
directive _jspService method
doAfterBody method of interface BodyTag jspversion element of tag library descriptor
doEndTag method of interface Tag JspWriter (package javax.servlet.jsp)
doInitBody method of interface BodyTag language attribute of page directive
doStartTag method of interface Tag match request parameters
dynamic content meta element
error page name attribute of <jsp:param>
errorPage attribute of page directive name attribute of <jsp:plugin>
escape sequence name attribute of <jsp:setProperty>
EVAL_BODY_INCLUDE constant name element of tag library descriptor
exception implicit object name/value pair
expression NESTED constant
extends attribute of page directive nspluginurl attribute of <jsp:plugin>
file attribute of include directive out implicit object
fixed template data page attribute of <jsp:forward>
fixed template text page attribute of <jsp:include>
flush attribute of <jsp:include> action page directive
forward a request page implicit object
getParameterValues method of
 request object

page scope
PageContext interface

getVariableInfo method of
 TagExtraInfo

pageContext implicit object
param attribute of <jsp:setProperty>

height attribute of <jsp:plugin> prefix attribute of taglib directive
hspace attribute of <jsp:plugin> property attribute of <jsp:setProperty>
HttpSession (javax.servlet.http) refresh interval

658 JavaServer Pages (JSP) Chapter 10

SELF-REVIEW EXERCISES
10.1 Fill in the blanks in each of the following statements:

a) JSP action enables an applet or JavaBean to be added to a Web page in the
form of a browser-specific object or embed XHTML element.

b) Action has the ability to match request parameters to properties of the same
name in a bean by specifying "*" for attribute property.

c) There are four key components to JSPs: , , and
.

d) A JSP can include a custom tag library with the directive.
e) The implicit objects have four scopes: , , and

.
f) The directive is processed once, at JSP translation time and causes content

to be copied into the JSP.
g) Classes and interfaces specific to JavaServer Pages programming are located in packages

 and .
h) JSPs normally execute as part of a Web server that is referred to as the .
i) Method can be called repeatedly to process the body of a custom tag.
j) JSP scripting components include , , , and

.

10.2 State whether each of the following is true or false. If false, explain why.
a) An object with page scope exists in every JSP of a particular Web application.
b) Directives specify global information that is not associated with a particular JSP request.
c) The JSP container invokes methods doInitBody and doAfterBody when it encoun-

ters the starting custom tag and the ending custom tag, respectively.
d) Tag libraries are part of the tag extension mechanism that enables programmers to create

new tags that encapsulate complex Java functionality.
e) Action <jsp:include> is evaluated once at page translation time.

request implicit object Tag interface
request scope tag library
request-time error tag library descriptor
required element of tag library descriptor tagclass element of tag library descriptor
response implicit object TagExtraInfo class
rtexprvalue element of tag library descriptor taglib directive
scope attribute of <jsp:useBean> tagPrefix attribute of taglib directive
scope of a bean TagSupport class
scripting element teiclass element of tag library descriptor
scriptlet title attribute of <jsp:plugin>
session attribute of page directive tlibversion element of tag library descriptor
session implicit object translation-time error
session scope translation-time include
setAttribute method of PageContext type attribute of <jsp:plugin>
simple custom tag type attribute of <jsp:useBean>
SKIP_BODY constant uri attribute of taglib directive
specify attributes of a custom tag value attribute of <jsp:param>
standard actions value attribute of <jsp:setProperty>
tag element of tag library descriptor vspace attribute of <jsp:plugin>
tag extension mechanism width attribute of <jsp:plugin>
tag handler

Chapter 10 JavaServer Pages (JSP) 659

f) Like XHTML comments, JSP comments and script language comments appear in the re-
sponse to the client.

g) Objects with application scope are part of a particular Web application.
h) Each page has its own instances of the page-scope implicit objects.
i) Action <jsp:setProperty> has the ability to match request parameters to proper-

ties of the same name in a bean by specifying "*" for attribute property.
j) Objects with session scope exist for the client’s entire browsing session.

ANSWERS TO SELF-REVIEW EXERCISES
10.1 a) <jsp:plugin>. b) <jsp:setProperty>. c) directives, actions, scriptlets, tag libraries.
d) taglib. e) application, page, request and session. f) include. g) javax.servlet.jsp,
javax.servlet.jsp.tagext. h) JSP container. i) doAfterBody. j) scriptlets, comments, ex-
pressions, declarations, escape sequences.

10.2 a) False. Objects with page scope exist only as part of the page in which they are used.
b) True. c) False. The JSP container invokes methods doStartTag and doEndTag when it en-
counters the starting custom tag and the ending custom tag, respectively. d) True. e) False. Action
<jsp:include> enables dynamic content to be included in a JavaServer Page. f) False. JSP com-
ments and script language comments are ignored and do not appear in the response. g) False. Objects
with application scope are part of the JSP and servlet container application. h) True. i) True. j) True.

EXERCISES
10.3 Create class ResultSetTag (a custom tag handler) that can display information from any
ResultSet. Use class GuestBookTag of Fig. 10.37 as a guide. The pageContext attribute
names should be the column names in the ResultSet. The column names can be obtained through
the ResultSetMetaData associated with the ResultSet. Create the tag library descriptor for
the custom tag in this exercise and test the custom tag in a JSP.

10.4 Create a JSP and JDBC-based address book. Use the guest book example of Fig. 10.20
through Fig. 10.24 as a guide. Your address book should allow one to insert entries, delete entries and
search for entries.

10.5 Incorporate the ResultSetTag of Exercise 10.3 into the address book example in
Exercise 10.4.

10.6 Reimplement your solution to Exercise 9.5 (Dynamic Web FAQs) using JSPs rather than
servlets. Create a custom tag handler similar to the one you created in Exercise 10.3 to help display
the FAQs information.

10.7 Modify your solution to Exercise 10.6 so that the first JSP invoked by the user returns a list
of FAQs topics from which to choose. Each topic should be a hyperlink that invokes another JSP with
an argument indicating which topic the user would like to view. The JSP should query the FAQs da-
tabase and return an XHTML document containing only FAQs for that topic.

10.8 Reimplement the Web application of Fig. 9.27 (favorite animal survey) using JSPs.

10.9 Modify your solution to Exercise 10.8 to allow the user to see the survey results without re-
sponding to the survey.

10.10 Reimplement Fig. 9.24 (book recommendations) using JSPs. Use the JSP implicit object
session to track the user’s selections and determine appropriate book recommendations. Remem-
ber to use the page directive to indicate that each JSP participates in a session.

11
Case Study: Servlet and

JSP Bookstore

Objectives
• To build a three-tier, client/server, distributed Web

application using Java servlet and JavaServer Pages
technology.

• To be able to perform servlet/JSP interactions.
• To be able to use a RequestDispatcher to

forward requests to another resource for further
processing.

• To be able to create XML from a servlet and XSL
transformations to convert the XML into a format the
client can display.

• To introduce the Java 2 Enterprise Edition reference
implementation server.

• To be able to deploy a Web application using the Java
2 Enterprise Edition.

The world is a book, and those who do not travel,
read only a page.
Saint Augustine

If we do not lay out ourselves in the service of mankind,
whom should we serve?
John Adams

We must take the current when it serves, or lose our ventures.
William Shakespeare

Chapter 11 Case Study: Servlet and JSP Bookstore 661

11.1 Introduction
This chapter serves as a capstone for our presentation of JSP and servlets. Here, we imple-
ment a bookstore Web application that integrates JDBC, XML, JSP and servlet technolo-
gies. The case study introduces additional servlet features that are discussed as they are
encountered in the case study.

This chapter also serves as an introduction to the Java 2 Enterprise Edition 1.2.1 ref-
erence implementation used in Chapters 14–18. Unlike the JSP and servlet chapters, which
demonstrated examples using Apache’s Tomcat JSP and servlet container, this chapter
deploys the bookstore application on the J2EE 1.2.1 reference implementation application
server software, which is downloadable from java.sun.com/j2ee/down-
load.html (see Appendix E for installation and configuration instructions). The J2EE
1.2.1 reference implementation includes the Apache Tomcat JSP and servlet container.
After reading this chapter, you will be able to implement a substantial distributed Web
application with many components, and you will be able to deploy that application on the
J2EE 1.2.1 application server.

Outline

11.1 Introduction
11.2 Bookstore Architecture
11.3 Entering the Bookstore
11.4 Obtaining the Book List from the Database
11.5 Viewing a Book’s Details
11.6 Adding an Item to the Shopping Cart
11.7 Viewing the Shopping Cart
11.8 Checking Out
11.9 Processing the Order
11.10 Deploying the Bookstore Application in J2EE 1.2.1

11.10.1 Configuring the books Data Source
11.10.2 Launching the Cloudscape Database and J2EE Servers
11.10.3 Launching the J2EE Application Deployment Tool
11.10.4 Creating the Bookstore Application
11.10.5 Creating BookServlet and AddToCartServlet Web

Components
11.10.6 Adding Non-Servlet Components to the Application
11.10.7 Specifying the Web Context, Resource References, JNDI

Names and Welcome Files
11.10.8 Deploying and Executing the Application

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

662 Case Study: Servlet and JSP Bookstore Chapter 11

11.2 Bookstore Architecture
This section overviews the architecture of the Bug2Bug.com bookstore application. We
present a diagram of the basic interactions between XHTML documents, JSPs and servlets.
Also, we present a table of all the documents and classes used in the case study. Our sample
outputs demonstrate how the XHTML documents sent to the client are rendered.

Our Bug2Bug.com shopping-cart case study consists of a series of XHTML docu-
ments, JSPs and servlets that interact to simulate a bookstore selling Deitel publications.
This case study is implemented as a distributed, three-tier, Web-based application. The
client tier is represented by the user’s Web browser. The browser displays static XHTML
documents and dynamically created XHTML documents that allow the user to interact with
the server tier. The server tier consists of several JSPs and servlets that act on behalf of the
client. These JSPs and servlets perform tasks such as creating a list of publications, creating
documents containing the details about a publication, adding items to the shopping cart,
viewing the shopping cart and processing the final order. Some of the JSPs and servlets per-
form database interactions on behalf of the client.

 The database tier uses the books database introduced in Chapter 8, Java Database
Connectivity. In this case study, we use only the titles table from the database (see
Chapter 8).

Figure 11.1 illustrates the interactions between the bookstore’s application compo-
nents. In the diagram, names without file extensions (displayBook and addToCart)
represent servlet aliases (i.e., the names used to invoke the servlets). As you will see when
we deploy the case study in Section 11.10, the Java 2 Enterprise Edition 1.2.1 reference
implementation includes an Application Deployment Tool. Among its many features, this
tool enables us to specify the alias used to invoke a servlet. For example, addToCart is
the alias for servlet AddToCartServlet. The Application Deployment Tool creates the
deployment descriptor for a servlet as part of deploying an application.

 After the application is deployed, users can visit the bookstore by entering the fol-
lowing URL in a browser:

http://localhost:8000/advjhtp1/store/

Fig. 11.1Fig. 11.1Fig. 11.1Fig. 11.1 Bug2Bug.com bookstore component interactions.

index.html

books.jsp

order.html

XHTML document

displayBook addToCart

viewCart.jsp

process.jspJSP or servlet

Chapter 11 Case Study: Servlet and JSP Bookstore 663

This URL requests the default home page for the store (index.html). The user can view
the list of products by clicking a button on the home page. This invokes books.jsp,
which interacts with a database to create the list of books dynamically. The result is an
XHTML document containing links to the servlet with alias displayBook. This servlet
receives as a parameter the ISBN number for the selected book and returns an XHTML
document containing the information for that book. From this document, the user can click
buttons to place the current book in the shopping cart or view the shopping cart. Adding a
book to a shopping cart invokes the servlet with alias addToCart. Viewing the contents
of the cart invokes viewCart.jsp to return an XHTML document containing the con-
tents of the cart, subtotals the dollar cost of each item and a total dollar cost of all the items
in the cart. When the user adds an item to the shopping cart, the addToCart servlet pro-
cesses the user’s request, then forwards it to viewCart.jsp to create the document that
displays the current cart. At this point, the user can either continue shopping (books.jsp)
or proceed to checkout (order.html). In the latter case, the user is presented with a form
to input name, address and credit-card information. Then, the user submits the form to in-
voke process.jsp, which completes the transaction by sending a confirmation docu-
ment to the user.

Figure 11.2 overviews the XHTML documents, JSPs, servlets, JavaBeans and other
files used in this case study.

File Description

index.html This is the default home page for the bookstore, which is dis-
played by entering the following URL in the client’s Web
browser:

 http://localhost:8000/advjhtp1/store

styles.css This Cascading Style Sheet (CSS) file is linked to all XHTML
documents rendered on the client. The CSS file allows us to
apply uniform formatting across all the XHTML static and
dynamic documents rendered.

books.jsp This JSP uses BookBean objects and a TitlesBean object
to create an XHTML document containing the product list.
The TitlesBean object queries the books database to
obtain the list of titles in the database. The results are pro-
cessed and placed in an ArrayList of BookBean objects.
The list is stored as a session attribute for the client.

BookBean.java An instance of this JavaBean represents the data for one book.
The bean’s getXML method returns an XML Element repre-
senting the book.

TitlesBean.java JSP books.jsp uses an instance of this JavaBean to obtain
an ArrayList containing a BookBean for every product in
the database.

Fig. 11.2Fig. 11.2Fig. 11.2Fig. 11.2 Servlet and JSP components for bookstore case study (part 1 of 2).

664 Case Study: Servlet and JSP Bookstore Chapter 11

11.3 Entering the Bookstore
Figure 11.3 (index.html) is the default home page for the Bug2Bug.com bookstore.
This file is also known as the welcome file—an option specified at application deployment
time (see Section 11.10). When the bookstore application is running on your computer in
the Java 2 Enterprise Edition 1.2.1 reference implementation, you can enter the following
URL in your Web browser to display the home page:

http://localhost:8000/advjhtp1/store

BookServlet.java This servlet (aliased as displayBook in Fig. 11.1) obtains
the XML representation of a book selected by the user, then
applies an XSL transformation to the XML to produce an
XHTML document that can be rendered by the client. In this
example, the client is assumed to be a browser that supports
Cascading Style Sheets (CSS). Later examples in this book
apply different XSL transformations for different client types.

book.xsl This XSL style sheet specifies how to transform the XML rep-
resentation of a book into an XHTML document that the client
browser can render.

CartItemBean.java An instance of this JavaBean maintains a BookBean and the
current quantity for that book in the shopping cart. These beans
are stored in a HashMap that represents the contents of the
shopping cart.

AddToCartServlet.java This servlet (aliased as addToCart in Fig. 11.1) updates the
shopping cart. If the cart does not exist, the servlet creates a
cart (a HashMap in this example). If a CartItemBean for
the item is already in the cart, the servlet updates the quantity
of that item in the bean. Otherwise, the servlet creates a new
CartItemBean with a quantity of 1. After updating the cart,
the user is forwarded to viewCart.jsp to view the current
cart contents.

viewCart.jsp This JSP extracts the CartItemBeans from the shopping
cart, subtotals each item in the cart, totals all the items in the
cart and creates an XHTML document that allows the client to
view the cart in tabular form.

order.html When viewing the cart, the user can click a Check Out button
to view this order form. In this example, the form has no func-
tionality. However, it is provided to help complete the applica-
tion.

process.jsp This final JSP pretends to process the user’s credit-card infor-
mation and creates an XHTML document indicating that the
order was processed and the total order value.

File Description

Fig. 11.2Fig. 11.2Fig. 11.2Fig. 11.2 Servlet and JSP components for bookstore case study (part 2 of 2).

Chapter 11 Case Study: Servlet and JSP Bookstore 665

Lines 11–12 specify a linked style sheet styles.css (Fig. 11.4). All XHTML doc-
uments sent to the client use this style sheet, so that uniform formatting can be applied to

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4 <!-- index.html -->
5
6 <html xmlns = "http://www.w3.org/1999/xhtml">
7
8 <head>
9 <title>Shopping Cart Case Study</title>

10
11 <link rel = "stylesheet" href = "styles.css"
12 type = "text/css" />
13 </head>
14
15 <body>
16 <p class = "bigFont">Bug2Bug.com</p>
17
18 <p class = "bigFont italic">
19 Deitel & Associates, Inc.

20 Shopping Cart Case Study
21 </p>
22
23 <!-- form to request books.jsp -->
24 <form method = "get" action = "books.jsp">
25 <p><input type = "submit" name = "enterButton"
26 value = "Click here to enter store" /></p>
27 </form>
28 </body>
29
30 </html>

Fig. 11.3Fig. 11.3Fig. 11.3Fig. 11.3 Bookstore home page (index.html).

666 Case Study: Servlet and JSP Bookstore Chapter 11

the documents. The form at lines 24–27 provides a submit button that enables you to
enter the store. Clicking this button invokes books.jsp (Fig. 11.7), which creates and
returns an XHTML document containing the product list.

Figure 11.4 (styles.css) defines the common styles for rendering XHTML docu-
ments in this case study. Lines 1–2 indicate that all text in the body element should be cen-
tered and that the background color of the body should be steel blue. The background color
is represented by the hexadecimal number #b0c4de. Line 3 defines class .bold to apply
bold font weight to text. Lines 4–7 define class .bigFont with four CSS attributes. Ele-
ments to which this class is applied appear in bold, Helvetica font, which is double the size
of the base-text font. The color of the font is dark blue (represented by the hexadecimal
number #00008b). If the Helvetica font is not available, the browser will attempt to use
Arial, and then the generic font sans-serif as a last resort. Line 8 defines class
.italic to apply italic font style to text. Line 9 defines class .right to right justify text.
Lines 10–11 indicate that all table, th (table head data) and td (table data) elements
should have a three-pixel, grooved border with five pixels of internal padding between the
text in a table cell and the border of that cell. Lines 12–14 indicate that all table elements
should have a bright-blue background color (represented by the hexadecimal number
#6495ed) and that all table elements should use automatically determined margins on
both their left and right sides. This causes the table to be centered on the page. Not all of
these styles are used in every XHTML document. However, using a single linked style
sheet allows us to change the look and feel of our store quickly and easily by modifying the
CSS file. For more information on CSS visit

www.w3.org/Style/CSS

At this Web site, you will find the CSS specifications. Each specification includes an index
of all the current CSS attributes and their permitted values.

Portability Tip 11.1
Different browsers have different levels of support for Cascading Style Sheets. 11.1

1 body { text-align: center;
2 background-color: #B0C4DE; }
3 .bold { font-weight: bold; }
4 .bigFont { font-family: helvetica, arial, sans-serif;
5 font-weight: bold;
6 font-size: 2em;
7 color: #00008B; }
8 .italic { font-style: italic; }
9 .right { text-align: right; }

10 table, th, td { border: 3px groove;
11 padding: 5px; }
12 table { background-color: #6495ed;
13 margin-left: auto;
14 margin-right: auto }

Fig. 11.4Fig. 11.4Fig. 11.4Fig. 11.4 Shared cascading style sheet (styles.css) used to apply common
formatting across XHTML documents rendered on the client.

Chapter 11 Case Study: Servlet and JSP Bookstore 667

11.4 Obtaining the Book List from the Database
JavaServer Pages often generate XHTML that is sent to the client for rendering. JSP
books.jsp (Fig. 11.7) generates an XHTML document containing a list of hyperlinks to
information about each book in the titles table of the books database. From this list,
the user can view information about a particular book by clicking the hyperlink for that
book. This JSP uses a TitlesBean (Fig. 11.5) object and BookBean (Fig. 11.6) objects
to create the product list. Each of the JavaBeans and books.jsp are discussed in this sec-
tion. Figure 11.7 shows the rendering of the XHTML document sent to the browser by
books.jsp.

The TitlesBean (Fig. 11.5) JavaBean performs a database query to obtain the list
of titles in the database. Then, the results are processed and placed in an ArrayList of
BookBean objects. As we will see in Fig. 11.7, the ArrayList is stored by
books.jsp as a session attribute for the client.

1 // TitlesBean.java
2 // Class TitlesBean makes a database connection and retrieves
3 // the books from the database.
4 package com.deitel.advjhtp1.store;
5
6 // Java core packages
7 import java.io.*;
8 import java.sql.*;
9 import java.util.*;

10
11 // Java extension packages
12 import javax.naming.*;
13 import javax.sql.*;
14
15 public class TitlesBean implements Serializable {
16 private Connection connection;
17 private PreparedStatement titlesQuery;
18
19 // construct TitlesBean object
20 public TitlesBean()
21 {
22 // attempt database connection and setup SQL statements
23 try {
24 InitialContext ic = new InitialContext();
25
26 DataSource source =
27 (DataSource) ic.lookup(
28 "java:comp/env/jdbc/books");
29
30 connection = source.getConnection();
31

Fig. 11.5Fig. 11.5Fig. 11.5Fig. 11.5 TitlesBean for obtaining book information from the books database
and creating an ArrayList of BookBean objects (part 1 of 3).

668 Case Study: Servlet and JSP Bookstore Chapter 11

32 titlesQuery =
33 connection.prepareStatement(
34 "SELECT isbn, title, editionNumber, " +
35 "copyright, publisherID, imageFile, price " +
36 "FROM titles ORDER BY title"
37);
38 }
39
40 // process exceptions during database setup
41 catch (SQLException sqlException) {
42 sqlException.printStackTrace();
43 }
44
45 // process problems locating data source
46 catch (NamingException namingException) {
47 namingException.printStackTrace();
48 }
49 }
50
51 // return a List of BookBeans
52 public List getTitles()
53 {
54 List titlesList = new ArrayList();
55
56 // obtain list of titles
57 try {
58 ResultSet results = titlesQuery.executeQuery();
59
60 // get row data
61 while (results.next()) {
62 BookBean book = new BookBean();
63
64 book.setISBN(results.getString("isbn"));
65 book.setTitle(results.getString("title"));
66 book.setEditionNumber(
67 results.getInt("editionNumber"));
68 book.setCopyright(results.getString("copyright"));
69 book.setPublisherID(
70 results.getInt("publisherID"));
71 book.setImageFile(results.getString("imageFile"));
72 book.setPrice(results.getDouble("price"));
73
74 titlesList.add(book);
75 }
76 }
77
78 // process exceptions during database query
79 catch (SQLException exception) {
80 exception.printStackTrace();
81 }
82

Fig. 11.5Fig. 11.5Fig. 11.5Fig. 11.5 TitlesBean for obtaining book information from the books database
and creating an ArrayList of BookBean objects (part 2 of 3).

Chapter 11 Case Study: Servlet and JSP Bookstore 669

The JavaBean TitlesBean requires us to introduce the Java Naming and Directory
Interface (JNDI). Enterprise Java applications often access information and resources (such
as databases) that are external to those applications. In some cases, those resources are dis-
tributed across a network. Just as an RMI client uses the RMI registry to locate a server
object so the client can request a server, Enterprise application components must be able to
locate the resources they use. An Enterprise Java application container must provide a
naming service that implements JNDI and enables the components executing in that con-
tainer to perform name lookups to locate resources. The J2EE 1.2.1 reference implementa-
tion server includes such a naming service that we use to locate our books database at
execution time.

The TitlesBean uses JNDI to interact with the naming service and locate the data
source (i.e., the books database). The TitlesBean constructor (lines 20–49) attempts
the connection to the database using class InitialContext from package
javax.naming and interface DataSource from package javax.sql. [These pack-
ages must be available to your compiler to compile this example.] When you deploy an
Enterprise Java application (see Section 11.10), you specify the resources (such as data-
bases) used by the application and the JNDI names for those resources. Using an Ini-
tialContext, an Enterprise application component can look up a resource. The
InitialContext provides access to the application’s naming environment.

Line 24 creates a new InitialContext. The InitialContext constructor
throws a NamingException if it cannot locate a naming service. Lines 26–28 invoke
InitialContext method lookup to locate our books data source. In the argument,
the text java:comp/env indicates that method lookup should search for the resource
in the application’s component environment entries (i.e., the resource names specified at
deployment time). The text jdbc/books indicates that the resource is a JDBC data
source called books. Method lookup returns a DataSource object and throws a

83 // return the list of titles
84 finally {
85 return titlesList;
86 }
87 }
88
89 // close statements and terminate database connection
90 protected void finalize()
91 {
92 // attempt to close database connection
93 try {
94 connection.close();
95 }
96
97 // process SQLException on close operation
98 catch (SQLException sqlException) {
99 sqlException.printStackTrace();
100 }
101 }
102 }

Fig. 11.5Fig. 11.5Fig. 11.5Fig. 11.5 TitlesBean for obtaining book information from the books database
and creating an ArrayList of BookBean objects (part 3 of 3).

670 Case Study: Servlet and JSP Bookstore Chapter 11

NamingException if it cannot resolve the name it receives as an argument. Line 25 uses
the DataSource to connect to the database. Lines 32–37 create a PreparedState-
ment that, when executed, returns the information about each title from the titles table
of the books database.

Method getTitles (lines 52–87) returns a List (titlesList) containing a
BookBean JavaBean for each title in the database. Line 58 executes titlesQuery.
Lines 57–76 process the ResultSet (results). For each row in results, line 62 cre-
ates a new BookBean, and lines 64–72 set the attributes of the BookBean to columns in
that ResultSet row. ResultSet methods getString, getInt and getDouble
return the column data in the appropriate formats. Line 74 adds the new BookBean to
titlesList. In the finally block, titlesList is returned. If there is an exception
while performing the database interactions or if there are no records in the database, the
List will be empty.

An instance of the BookBean (Fig. 11.6) JavaBean represents the properties for one
book, including the book’s ISBN number, title, copyright, cover image file name, edition
number, publisher ID number and price. Each of these properties is a read/write property.
Some of this information is not used in this example. BookBean method getXML returns
an XML Element representing the book.

1 // BookBean.java
2 // A BookBean object contains the data for one book.
3 package com.deitel.advjhtp1.store;
4
5 // Java core packages
6 import java.io.*;
7 import java.text.*;
8 import java.util.*;
9

10 // third-party packages
11 import org.w3c.dom.*;
12
13 public class BookBean implements Serializable {
14 private String ISBN, title, copyright, imageFile;
15 private int editionNumber, publisherID;
16 private double price;
17
18 // set ISBN number
19 public void setISBN(String isbn)
20 {
21 ISBN = isbn;
22 }
23
24 // return ISBN number
25 public String getISBN()
26 {
27 return ISBN;
28 }

Fig. 11.6Fig. 11.6Fig. 11.6Fig. 11.6 BookBean that represents a single book’s information and defines the
XML format of that information (part 1 of 4).

Chapter 11 Case Study: Servlet and JSP Bookstore 671

29
30 // set book title
31 public void setTitle(String bookTitle)
32 {
33 title = bookTitle;
34 }
35
36 // return book title
37 public String getTitle()
38 {
39 return title;
40 }
41
42 // set copyright year
43 public void setCopyright(String year)
44 {
45 copyright = year;
46 }
47
48 // return copyright year
49 public String getCopyright()
50 {
51 return copyright;
52 }
53
54 // set file name of image representing product cover
55 public void setImageFile(String fileName)
56 {
57 imageFile = fileName;
58 }
59
60 // return file name of image representing product cover
61 public String getImageFile()
62 {
63 return imageFile;
64 }
65
66 // set edition number
67 public void setEditionNumber(int edition)
68 {
69 editionNumber = edition;
70 }
71
72 // return edition number
73 public int getEditionNumber()
74 {
75 return editionNumber;
76 }
77
78 // set publisher ID number
79 public void setPublisherID(int id)
80 {

Fig. 11.6Fig. 11.6Fig. 11.6Fig. 11.6 BookBean that represents a single book’s information and defines the
XML format of that information (part 2 of 4).

672 Case Study: Servlet and JSP Bookstore Chapter 11

81 publisherID = id;
82 }
83
84 // return publisher ID number
85 public int getPublisherID()
86 {
87 return publisherID;
88 }
89
90 // set price
91 public void setPrice(double amount)
92 {
93 price = amount;
94 }
95
96 // return price
97 public double getPrice()
98 {
99 return price;
100 }
101
102 // get an XML representation of the Product
103 public Element getXML(Document document)
104 {
105 // create product root element
106 Element product = document.createElement("product");
107
108 // create isbn element, append as child of product
109 Element temp = document.createElement("isbn");
110 temp.appendChild(document.createTextNode(getISBN()));
111 product.appendChild(temp);
112
113 // create title element, append as child of product
114 temp = document.createElement("title");
115 temp.appendChild(document.createTextNode(getTitle()));
116 product.appendChild(temp);
117
118 // create a currency formatting object for US dollars
119 NumberFormat priceFormatter =
120 NumberFormat.getCurrencyInstance(Locale.US);
121
122 // create price element, append as child of product
123 temp = document.createElement("price");
124 temp.appendChild(document.createTextNode(
125 priceFormatter.format(getPrice())));
126 product.appendChild(temp);
127
128 // create imageFile element, append as child of product
129 temp = document.createElement("imageFile");
130 temp.appendChild(
131 document.createTextNode(getImageFile()));
132 product.appendChild(temp);

Fig. 11.6Fig. 11.6Fig. 11.6Fig. 11.6 BookBean that represents a single book’s information and defines the
XML format of that information (part 3 of 4).

Chapter 11 Case Study: Servlet and JSP Bookstore 673

Method getXML (lines 103–154) uses the org.w3c.dom package’s Document
and Element interfaces to create an XML representation of the book data as part of the
Document that is passed to the method as an argument. The complete information for one
book is placed in a product element (created at line 106). The elements for the individual
properties of a book are appended to the product element as children. For example, line
109 uses Document method createElement to create element isbn. Line 110 uses
Document method createTextNode to specify the text in the isbn element, and
Element method appendChild to append the text to element isbn. Then, line 111
appends element isbn as a child of element product with Element method append-
Child. Similar operations are performed for the other book properties. Lines 119–120
obtain a NumberFormat object that formats currency for the U. S. locale to format the
book price in US dollars (line 125). Line 150 returns element product to the caller. We
revisit method getXML in our BookServlet discussion (Fig. 11.8). For more informa-
tion about XML and Java, refer to Appendices A–F.

JavaServer Page books.jsp dynamically generates the list of titles as an XHTML
document to be rendered on the client. Lines 7–11 specify the JSP page settings. This JSP
uses classes from our store package (com.deitel.advjhtp1.store) and package
java.util. Also, this JSP uses session-tracking features. The dynamic parts of this JSP
are defined in lines 31–64 with JSP scriptlets and expressions.

133
134 // create copyright element, append as child of product
135 temp = document.createElement("copyright");
136 temp.appendChild(
137 document.createTextNode(getCopyright()));
138 product.appendChild(temp);
139
140 // create publisherID element, append as child of product
141 temp = document.createElement("publisherID");
142 temp.appendChild(document.createTextNode(
143 String.valueOf(getPublisherID())));
144 product.appendChild(temp);
145
146 // create editionNumber element, append as child of product
147 temp = document.createElement("editionNumber");
148 temp.appendChild(document.createTextNode(
149 String.valueOf(getEditionNumber())));
150 product.appendChild(temp);
151
152 // return product element
153 return product;
154 }
155 }

Fig. 11.6Fig. 11.6Fig. 11.6Fig. 11.6 BookBean that represents a single book’s information and defines the
XML format of that information (part 4 of 4).

674 Case Study: Servlet and JSP Bookstore Chapter 11

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4 <!-- books.jsp -->
5
6 <%-- JSP page settings --%>
7 <%@
8 page language = "java"
9 import = "com.deitel.advjhtp1.store.*, java.util.*"

10 session = "true"
11 %>
12
13 <!-- begin document -->
14 <html xmlns = "http://www.w3.org/1999/xhtml">
15
16 <head>
17 <title>Book List</title>
18
19 <link rel = "stylesheet" href = "styles.css"
20 type = "text/css" />
21 </head>
22
23 <body>
24 <p class = "bigFont">Available Books</p>
25
26 <p class = "bold">Click a link to view book information</p>
27
28 <p>
29
30 <%-- begin JSP scriptlet to create list of books --%>
31 <%
32 TitlesBean titlesBean = new TitlesBean();
33 List titles = titlesBean.getTitles();
34 BookBean currentBook;
35
36 // store titles in session for further use
37 session.setAttribute("titles", titles);
38
39 // obtain an Iterator to the set of keys in the List
40 Iterator iterator = titles.iterator();
41
42 // use the Iterator to get each BookBean and create
43 // a link to each book
44 while (iterator.hasNext()) {
45 currentBook = (BookBean) iterator.next();
46
47 %> <%-- end scriptlet to insert literal XHTML and --%>
48 <%-- JSP expressions output from this loop --%>
49
50 <%-- link to a book's information --%>
51

Fig. 11.7Fig. 11.7Fig. 11.7Fig. 11.7 JSP books.jsp returns to the client an XHTML document containing the
book list (part 1 of 2).

Chapter 11 Case Study: Servlet and JSP Bookstore 675

The scriptlet begins at line 31. Line 32 creates a TitlesBean, and line 33 invokes
its getTitles method to obtain the List of BookBean objects. Line 37 sets a titles
session attribute to store the List for use later in the client’s session. Line 40 obtains an

52 <a href =
53 "displayBook?isbn=<%= currentBook.getISBN() %>">
54
55 <%= currentBook.getTitle() + ", " +
56 currentBook.getEditionNumber() + "e" %>
57
58

59
60 <% // continue scriptlet
61
62 } // end while loop
63
64 %> <%-- end scriptlet --%>
65
66 </p>
67 </body>
68
69 </html>

Fig. 11.7Fig. 11.7Fig. 11.7Fig. 11.7 JSP books.jsp returns to the client an XHTML document containing the
book list (part 2 of 2).

676 Case Study: Servlet and JSP Bookstore Chapter 11

Iterator for the List. Lines 44–45 begin a loop that uses the Iterator to output
each hyperlink. The scriptlet temporarily terminates here so that lines 51–58 can insert
XHTML markup. In this markup, line 53 uses a JSP expression to insert the book’s ISBN
number as the value in a name/value pair that is passed to the displayBook servlet
(BookServlet) as an argument. Lines 55–56 use another JSP expression to insert the
book’s title and edition number as the text displayed for the hyperlink. Lines 60–64 con-
tinue the scriptlet with the closing curly brace of the while loop that started at line 44.

11.5 Viewing a Book’s Details
Like many companies, Bug2Bug.com is beginning to use XML on its Web site. When
the user selects a book in books.jsp, Bug2Bug.com converts the book’s information
to XML. BookServlet (Fig. 11.8) transforms the XML representation of the book into
an XHTML document using XSL style sheet book.xsl (Fig. 11.9).

There are two major parts in BookServlet’s doGet method (lines 24–103). Lines
28–62 locate the BookBean for the book selected by the user in books.jsp. Lines 65–102
process the XML representation of a book and apply an XSL transformation to that XML.

1 // BookServlet.java
2 // Servlet to return one book's information to the client.
3 // The servlet produces XML which is transformed with XSL to
4 // produce the client XHTML page.
5 package com.deitel.advjhtp1.store;
6
7 // Java core packages
8 import java.io.*;
9 import java.util.*;

10
11 // Java extension packages
12 import javax.servlet.*;
13 import javax.servlet.http.*;
14 import javax.xml.parsers.*;
15 import javax.xml.transform.*;
16 import javax.xml.transform.dom.*;
17 import javax.xml.transform.stream.*;
18
19 // third-party packages
20 import org.w3c.dom.*;
21 import org.xml.sax.*;
22
23 public class BookServlet extends HttpServlet {
24 protected void doGet(HttpServletRequest request,
25 HttpServletResponse response)
26 throws ServletException, IOException
27 {
28 HttpSession session = request.getSession(false);
29

Fig. 11.8Fig. 11.8Fig. 11.8Fig. 11.8 BookServlet obtains the XML representation of a book and applies
an XSL transformation to output an XHTML document as the response to
the client (part 1 of 4).

Chapter 11 Case Study: Servlet and JSP Bookstore 677

30 // RequestDispatcher to forward client to bookstore home
31 // page if no session exists or no books are selected
32 RequestDispatcher dispatcher =
33 request.getRequestDispatcher("/index.html");
34
35 // if session does not exist, forward to index.html
36 if (session == null)
37 dispatcher.forward(request, response);
38
39 // get books from session object
40 List titles =
41 (List) session.getAttribute("titles");
42
43 // locate BookBean object for selected book
44 Iterator iterator = titles.iterator();
45 BookBean book = null;
46
47 String isbn = request.getParameter("isbn");
48
49 while (iterator.hasNext()) {
50 book = (BookBean) iterator.next();
51
52 if (isbn.equals(book.getISBN())) {
53
54 // save the book in a session attribute
55 session.setAttribute("bookToAdd", book);
56 break; // isbn matches current book
57 }
58 }
59
60 // if book is not in list, forward to index.html
61 if (book == null)
62 dispatcher.forward(request, response);
63
64 // get XML document and transform for browser client
65 try {
66 // get a DocumentBuilderFactory for creating
67 // a DocumentBuilder (i.e., an XML parser)
68 DocumentBuilderFactory factory =
69 DocumentBuilderFactory.newInstance();
70
71 // get a DocumentBuilder for building the DOM tree
72 DocumentBuilder builder =
73 factory.newDocumentBuilder();
74
75 // create a new Document (empty DOM tree)
76 Document messageDocument = builder.newDocument();
77
78 // get XML from BookBean and append to Document
79 Element bookElement = book.getXML(messageDocument);
80 messageDocument.appendChild(bookElement);

Fig. 11.8Fig. 11.8Fig. 11.8Fig. 11.8 BookServlet obtains the XML representation of a book and applies
an XSL transformation to output an XHTML document as the response to
the client (part 2 of 4).

678 Case Study: Servlet and JSP Bookstore Chapter 11

81
82 // get PrintWriter for writing data to client
83 response.setContentType("text/html");
84 PrintWriter out = response.getWriter();
85
86 // open InputStream for XSL document
87 InputStream xslStream =
88 getServletContext().getResourceAsStream(
89 "/book.xsl");
90
91 // transform XML document using XSLT
92 transform(messageDocument, xslStream, out);
93
94 // flush and close PrintWriter
95 out.flush();
96 out.close();
97 }
98
99 // catch XML parser exceptions
100 catch (ParserConfigurationException pcException) {
101 pcException.printStackTrace();
102 }
103 }
104
105 // transform XML document using provided XSLT InputStream
106 // and write resulting document to provided PrintWriter
107 private void transform(Document document,
108 InputStream xslStream, PrintWriter output)
109 {
110 try {
111 // create DOMSource for source XML document
112 Source xmlSource = new DOMSource(document);
113
114 // create StreamSource for XSLT document
115 Source xslSource =
116 new StreamSource(xslStream);
117
118 // create StreamResult for transformation result
119 Result result = new StreamResult(output);
120
121 // create TransformerFactory to obtain a Transformer
122 TransformerFactory transformerFactory =
123 TransformerFactory.newInstance();
124
125 // create Transformer for performing XSL transformation
126 Transformer transformer =
127 transformerFactory.newTransformer(xslSource);
128
129 // perform transformation and deliver content to client
130 transformer.transform(xmlSource, result);
131 }

Fig. 11.8Fig. 11.8Fig. 11.8Fig. 11.8 BookServlet obtains the XML representation of a book and applies
an XSL transformation to output an XHTML document as the response to
the client (part 3 of 4).

Chapter 11 Case Study: Servlet and JSP Bookstore 679

Line 28 obtains the HttpSession object for the current client. This object con-
tains a session attribute indicating the book selected by the user in books.jsp. Lines
32–33 obtain a RequestDispatcher for the "/index.html" document by calling
ServletRequest method getRequestDispatcher. A RequestDispatcher
(package javax.servlet) provides two methods—forward and include—that
enable a servlet to forward a client request to another resource or include content from
another resource in a servlet’s response. In this example, if there is no session object for
the current client (lines 36–37) or if there is no book selected (lines 61–62), the request
is forwarded back to the index.html home page of our bookstore. Methods forward
and include each take two arguments—the HttpServletRequest and
HttpServletResponse objects for the current request.

Note that RequestDispatcher objects can be obtained with method getRe-
questDispatcher from an object that implements interface ServletRequest or
from the ServletContext with methods getRequestDispatcher or getNam-
edDispatcher. ServletContext method getNamedDispatcher receives the
name of a servlet as an argument, then searches the ServletContext for a servlet by
that name. If no such servlet is found, the method returns null. Both the ServletRe-
quest and the ServletContext getRequestDispatcher methods simply
return to the client browser the content of the specified path if the path does not represent
a servlet.

Lines 40–41 get the List of BookBeans from the session object. Lines 44–58 per-
form a linear search to locate the BookBean for the selected book. (Note: For larger
databases, it would be more appropriate to use a Map rather than a List.) The ISBN
number for that book is stored in an isbn parameter passed to the servlet (retrieved at
line 47). If the BookBean is found, line 55 sets session attribute bookToAdd with that
BookBean as the attribute’s value. AddToCartServlet (Fig. 11.10) uses this
attribute to update the shopping cart.

The try block (lines 65–97) performs the XML and XSL processing that result in
an XHTML document containing a single book’s information. Before the XML and XSL
capabilities can be used, you must download and install Sun’s Java API for XML Parsing
(JAXP) version 1.1 from java.sun.com/xml/download.htm. The root directory
of JAXP (jaxp-1.1) contains three JAR files—crimson.jar, jaxp.jar and
xalan.jar—that are required for compiling and running programs that use JAXP.
These files must be added to the Java extension mechanism for your Java 2 Standard Edi-

132
133 // handle exception when transforming XML document
134 catch (TransformerException transformerException) {
135 transformerException.printStackTrace(System.err);
136 }
137 }
138 }

Fig. 11.8Fig. 11.8Fig. 11.8Fig. 11.8 BookServlet obtains the XML representation of a book and applies
an XSL transformation to output an XHTML document as the response to
the client (part 4 of 4).

680 Case Study: Servlet and JSP Bookstore Chapter 11

tion installation. Place a copy of these files in your Java installation’s extensions direc-
tory (jre/lib/ext on Linux/UNIX, and jre\lib\ext on Windows).

Software Engineering Observation 11.1
JAXP 1.1 is part of the J2EE 1.3 reference implementation. 11.1

Creating a Document Object Model (DOM) tree from an XML document requires a
DocumentBuilder parser object. DocumentBuilder objects are obtained from a
DocumentBuilderFactory. Lines 68–69 obtain a DocumentBuilderFac-
tory. Lines 72–73 obtain a DocumentBuilder parser object that enables the pro-
gram to create a Document object tree in which the XML document elements are
represented as Element objects. Line 76 uses the DocumentBuilder object to create
a new Document. Line 79 invokes the BookBean’s getXML method to obtain an
Element representation of the book. Line 80 appends this Element to message-
Document (the Document object). Classes DocumentBuilderFactory and
DocumentBuilder are located in package javax.xml.parsers. Classes Docu-
ment and Element are located in package org.w3c.dom. [Note: For detailed infor-
mation on XML, see Appendices A–D.]

Next, line 83 specifies the response content type, and line 84 obtains a Print-
Writer to output the response to the client. Lines 87–89 create an InputStream that
will be used by the XSL transformation processor to read the XSL file. The response is
created by the XSL transformation performed in method transform (lines 107–137).
We pass three arguments to this method—the XML Document to which the XSL trans-
formation will be applied (messageDocument), the InputStream that reads the
XSL file (xslStream) and the target stream to which the results should be written
(out). The output target can be one of several types, including a character stream (i.e.,
the response object’s PrintWriter in this example).

Line 112 creates a DOMSource that represents the XML document. This serves as
the source of the XML to transform. Lines 115–116 create a StreamSource for the
XSL file. This serves as the source of the XSL that transforms the DOMSource. Line
119 creates a StreamResult for the PrintWriter to which the results of the XSL
transformation are written. Lines 122–123 create a TransformerFactory with
static method newInstance. This object enables the program to obtain a Trans-
former object that applies the XSL transformation. Lines 126–127 create a Trans-
former using TransformerFactory method newTransformer, which receives
a StreamSource argument representing the XSL (xslSource in this example). Line
130 invokes Transformer method transform to perform the XSL transformation
on the given DOMSource object (xmlSource) and writes the result to the given
StreamResult object (result). Lines 134–136 catch a TransformerExcep-
tion if a problem occurs when creating the TransformerFactory, creating the
Transformer or performing the transformation.

Figure 11.9 contains the book.xsl style sheet file used in the XSL transformation.
The values of six elements in the XML document are placed in the resulting XHTML
document. Lines 23 and 30 place the book’s title in the document’s title element
and in a paragraph at the beginning of the document’s body element, respectively. Line
36 specifies an img element in which the value of the imageFile element of an XML

Chapter 11 Case Study: Servlet and JSP Bookstore 681

document specifies the name of the file representing the book’s cover image. Line 37
specifies the alt attribute of the img element using the book’s title. Lines 43, 51, 59
and 67 place the book’s price, isbn, editionNumber and copyright in table
cells. The resulting XHTML document is shown in the screen capture at the end of
Fig. 11.9. For more details on XSL, refer to Appendix D.

1 <?xml version = "1.0"?>
2
3 <xsl:stylesheet xmlns:xsl = "http://www.w3.org/1999/XSL/Transform"
4 version = "1.0">
5
6 <xsl:output method = "xml" omit-xml-declaration = "no"
7 indent = "yes" doctype-system =
8 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
9 doctype-public = "-//W3C//DTD XHTML 1.0 Strict//EN"/>

10
11 <!-- book.xsl -->
12 <!-- XSL document that transforms XML into XHTML -->
13
14 <!-- specify the root of the XML document -->
15 <!-- that references this stylesheet -->
16 <xsl:template match = "product">
17
18 <html xmlns = "http://www.w3.org/1999/xhtml">
19
20 <head>
21
22 <!-- obtain book title from JSP to place in title -->
23 <title><xsl:value-of select = "title"/></title>
24
25 <link rel = "stylesheet" href = "styles.css"
26 type = "text/css" />
27 </head>
28
29 <body>
30 <p class = "bigFont"><xsl:value-of select = "title"/></p>
31
32 <table>
33 <tr>
34 <!-- create table cell for product image -->
35 <td rowspan = "5"> <!-- cell spans 5 rows -->
36 <img border = "thin solid black" src =
37 "images/{ imageFile }" alt = "{ title }" />
38 </td>
39
40 <!-- create table cells for price in row 1 -->
41 <td class = "bold">Price:</td>
42
43 <td><xsl:value-of select = "price"/></td>
44 </tr>

Fig. 11.9Fig. 11.9Fig. 11.9Fig. 11.9 XSL style sheet (books.xsl) that transforms a book’s XML representation
into an XHTML document (part 1 of 3).

682 Case Study: Servlet and JSP Bookstore Chapter 11

45
46 <tr>
47
48 <!-- create table cells for ISBN in row 2 -->
49 <td class = "bold">ISBN #:</td>
50
51 <td><xsl:value-of select = "isbn"/></td>
52 </tr>
53
54 <tr>
55
56 <!-- create table cells for edition in row 3 -->
57 <td class = "bold">Edition:</td>
58
59 <td><xsl:value-of select = "editionNumber"/></td>
60 </tr>
61
62 <tr>
63
64 <!-- create table cells for copyright in row 4 -->
65 <td class = "bold">Copyright:</td>
66
67 <td><xsl:value-of select = "copyright"/></td>
68 </tr>
69
70 <tr>
71
72 <!-- create Add to Cart button in row 5 -->
73 <td>
74 <form method = "post" action = "addToCart">
75 <input type = "submit" value = "Add to Cart" />
76 </form>
77 </td>
78
79 <!-- create View Cart button in row 5 -->
80 <td>
81 <form method = "get" action = "viewCart.jsp">
82 <input type = "submit" value = "View Cart" />
83 </form>
84 </td>
85 </tr>
86 </table>
87
88 </body>
89
90 </html>
91
92 </xsl:template>
93
94 </xsl:stylesheet>

Fig. 11.9Fig. 11.9Fig. 11.9Fig. 11.9 XSL style sheet (books.xsl) that transforms a book’s XML representation
into an XHTML document (part 2 of 3).

Chapter 11 Case Study: Servlet and JSP Bookstore 683

11.6 Adding an Item to the Shopping Cart
When the user clicks the Add to Cart button in the XHTML document produced in the
last section, the AddToCartServlet (aliased as addToCart) updates the shopping
cart. If the cart does not exist, the servlet creates a shopping cart (a HashMap in this exam-
ple). Items in the shopping cart are represented with CartItemBean objects. An instance
of this JavaBean maintains a BookBean and the current quantity for that book in the shop-
ping cart. When the user adds an item to the cart, if that item already is represented in the
cart with a CartItemBean, the quantity of that item is updated in the bean. Otherwise,
the servlet creates a new CartItemBean with a quantity of 1. After updating the cart, the
user is forwarded to viewCart.jsp to view the current cart contents.

Class CartItemBean (Fig. 11.10) stores a BookBean and a quantity for that book.
It maintains the BookBean as a read-only property of the bean and the quantity as a
read–write property of the bean.

1 // CartItemBean.java
2 // Class that maintains a book and its quantity.
3 package com.deitel.advjhtp1.store;

Fig. 11.10Fig. 11.10Fig. 11.10Fig. 11.10 CartItemBeans contain a BookBean and the quantity of a book
in the shopping cart (part 1 of 2).

Fig. 11.9Fig. 11.9Fig. 11.9Fig. 11.9 XSL style sheet (books.xsl) that transforms a book’s XML representation
into an XHTML document (part 3 of 3).

684 Case Study: Servlet and JSP Bookstore Chapter 11

Class AddToCartServlet is shown in Fig. 11.11. The AddToCartServlet’s
doPost method obtains the HttpSession object for the current client (line 18). If a ses-
sion does not exist for this client, a RequestDispatcher forwards the request to the
bookstore home page index.html (lines 22–26). Otherwise, line 29 obtains the value of
session attribute cart—the Map that represents the shopping cart. Lines 30–31 obtain the
value of session attribute bookToAdd—the BookBean representing the book to add to
the shopping cart. If the shopping cart does not exist, lines 34–39 create a new HashMap
to store the cart contents, then place the HashMap in the "cart" attribute of the ses-
sion object. Lines 42–43 attempt to locate the CartItemBean for the book being added
to the cart. If one exists, line 48 increments the quantity for that CartItemBean. Other-
wise, line 50 creates a new CartItemBean with a quantity of 1 and puts it into the shop-
ping cart (Map cart). Then lines 53–55 create a RequestDispatcher for JSP
viewCart.jsp and forward the processing of the request to that JSP, so it can display
the cart contents.

4
5 import java.io.*;
6
7 public class CartItemBean implements Serializable {
8 private BookBean book;
9 private int quantity;

10
11 // initialize a CartItemBean
12 public CartItemBean(BookBean bookToAdd, int number)
13 {
14 book = bookToAdd;
15 quantity = number;
16 }
17
18 // get the book (this is a read-only property)
19 public BookBean getBook()
20 {
21 return book;
22 }
23
24 // set the quantity
25 public void setQuantity(int number)
26 {
27 quantity = number;
28 }
29
30 // get the quantity
31 public int getQuantity()
32 {
33 return quantity;
34 }
35 }

Fig. 11.10Fig. 11.10Fig. 11.10Fig. 11.10 CartItemBeans contain a BookBean and the quantity of a book
in the shopping cart (part 2 of 2).

Chapter 11 Case Study: Servlet and JSP Bookstore 685

1 // AddToCartServlet.java
2 // Servlet to add a book to the shopping cart.
3 package com.deitel.advjhtp1.store;
4
5 // Java core packages
6 import java.io.*;
7 import java.util.*;
8
9 // Java extension packages

10 import javax.servlet.*;
11 import javax.servlet.http.*;
12
13 public class AddToCartServlet extends HttpServlet {
14 protected void doPost(HttpServletRequest request,
15 HttpServletResponse response)
16 throws ServletException, IOException
17 {
18 HttpSession session = request.getSession(false);
19 RequestDispatcher dispatcher;
20
21 // if session does not exist, forward to index.html
22 if (session == null) {
23 dispatcher =
24 request.getRequestDispatcher("/index.html");
25 dispatcher.forward(request, response);
26 }
27
28 // session exists, get cart Map and book to add
29 Map cart = (Map) session.getAttribute("cart");
30 BookBean book =
31 (BookBean) session.getAttribute("bookToAdd");
32
33 // if cart does not exist, create it
34 if (cart == null) {
35 cart = new HashMap();
36
37 // update the cart attribute
38 session.setAttribute("cart", cart);
39 }
40
41 // determine if book is in cart
42 CartItemBean cartItem =
43 (CartItemBean) cart.get(book.getISBN());
44
45 // If book is already in cart, update its quantity.
46 // Otherwise, create an entry in the cart.
47 if (cartItem != null)
48 cartItem.setQuantity(cartItem.getQuantity() + 1);
49 else
50 cart.put(book.getISBN(), new CartItemBean(book, 1));
51

Fig. 11.11Fig. 11.11Fig. 11.11Fig. 11.11 AddToCartServlet places an item in the shopping cart and invokes
viewCart.jsp to display the cart contents (part 1 of 2).

686 Case Study: Servlet and JSP Bookstore Chapter 11

11.7 Viewing the Shopping Cart
JSP viewCart.jsp (Fi. 11.12) extracts the CartItemBeans from the shopping cart,
subtotals each item in the cart, totals all the items in the cart and creates an XHTML docu-
ment that allows the client to view the cart in tabular format. This JSP uses classes from our
bookstore package (com.deitel.advjhtp1.store) and from packages ja-
va.util and java.text.

The scriptlet at lines 25–43 begins by retrieving the session attribute for the shopping
cart Map (line 26). If there is no shopping cart, the JSP simply outputs a message indicating
that the cart is empty. Otherwise, lines 34–41 create the variables used to obtain the infor-
mation that is displayed in the resulting XHTML document. In particular, line 34 obtains
the Set of keys in Map cart. These keys are used to retrieve the CartItemBean’s that
represent each book in the cart.

Lines 45–51 output the literal XHTML markup that begins the table that appears in the
document. Lines 55–63 continue the scriptlet with a loop that uses each key in the Map to
obtain the corresponding CartItemBean, extracts the data from that bean, calculates the
dollar subtotal for that product and calculates the dollar total of all products so far. The last
part of the loop body appears outside the scriptlet at lines 70–86, in which the preceding
data is formatted into a row in the XHTML table. JSP expressions are used to place each
data value into the appropriate table cell. After the loop completes (line 90), lines 95–100
output the dollar total of all items in the cart and line 105 sets a session attribute containing
the total. This value is used by process.jsp (Fig. 11.14) to display the dollar total as
part of the order-processing confirmation. Line 101 outputs the dollar total of all items in
the cart as the last row in the XHTML table.

52 // send the user to viewCart.jsp
53 dispatcher =
54 request.getRequestDispatcher("/viewCart.jsp");
55 dispatcher.forward(request, response);
56 }
57 }

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4 <!-- viewCart.jsp -->
5
6 <%-- JSP page settings --%>
7 <%@ page language = "java" session = "true" %>
8 <%@ page import = "com.deitel.advjhtp1.store.*" %>
9 <%@ page import = "java.util.*" %>

10 <%@ page import = "java.text.*" %>
11

Fig. 11.12Fig. 11.12Fig. 11.12Fig. 11.12 JSP viewCart.jsp obtains the shopping cart and outputs an XHTML
document with the cart contents in tabular format (part 1 of 4).

Fig. 11.11Fig. 11.11Fig. 11.11Fig. 11.11 AddToCartServlet places an item in the shopping cart and invokes
viewCart.jsp to display the cart contents (part 2 of 2).

Chapter 11 Case Study: Servlet and JSP Bookstore 687

12 <html xmlns = "http://www.w3.org/1999/xhtml">
13
14 <head>
15 <title>Shopping Cart</title>
16
17 <link rel = "stylesheet" href = "styles.css"
18 type = "text/css" />
19 </head>
20
21 <body>
22 <p class = "bigFont">Shopping Cart</p>
23
24 <%-- start scriptlet to display shopping cart contents --%>
25 <%
26 Map cart = (Map) session.getAttribute("cart");
27 double total = 0;
28
29 if (cart == null || cart.size() == 0)
30 out.println("<p>Shopping cart is currently empty.</p>");
31 else {
32
33 // create variables used in display of cart
34 Set cartItems = cart.keySet();
35 Iterator iterator = cartItems.iterator();
36
37 BookBean book;
38 CartItemBean cartItem;
39
40 int quantity;
41 double price, subtotal;
42
43 %> <%-- end scriptlet for literal XHTML output --%>
44
45 <table>
46 <thead><tr>
47 <th>Product</th>
48 <th>Quantity</th>
49 <th>Price</th>
50 <th>Total</th>
51 </tr></thead>
52
53 <% // continue scriptlet
54
55 while (iterator.hasNext()) {
56
57 // get book data; calculate subtotal and total
58 cartItem = (CartItemBean) cart.get(iterator.next());
59 book = cartItem.getBook();
60 quantity = cartItem.getQuantity();
61 price = book.getPrice();
62 subtotal = quantity * price;
63 total += subtotal;

Fig. 11.12Fig. 11.12Fig. 11.12Fig. 11.12 JSP viewCart.jsp obtains the shopping cart and outputs an XHTML
document with the cart contents in tabular format (part 2 of 4).

688 Case Study: Servlet and JSP Bookstore Chapter 11

64
65 %> <%-- end scriptlet for literal XHTML and --%>
66 <%-- JSP expressions output from this loop --%>
67
68 <%-- display table row of book title, quantity, --%>
69 <%-- price and subtotal --%>
70 <tr>
71 <td><%= book.getTitle() %></td>
72
73 <td><%= quantity %></td>
74
75 <td class = "right">
76 <%=
77 new DecimalFormat("0.00").format(price)
78 %>
79 </td>
80
81 <td class = "bold right">
82 <%=
83 new DecimalFormat("0.00").format(subtotal)
84 %>
85 </td>
86 </tr>
87
88 <% // continue scriptlet
89
90 } // end of while loop
91
92 %> <%-- end scriptlet for literal XHTML and --%>
93
94 <%-- display table row containing shopping cart total --%>
95 <tr>
96 <td colspan = "4" class = "bold right">Total:
97 <%= new DecimalFormat("0.00").format(total) %>
98 </td>
99 </tr>
100 </table>
101
102 <% // continue scriptlet
103
104 // make current total a session attribute
105 session.setAttribute("total", new Double(total));
106 } // end of else
107
108 %> <%-- end scriptlet --%>
109
110 <!-- link back to books.jsp to continue shopping -->
111 <p class = "bold green">
112 Continue Shopping
113 </p>
114

Fig. 11.12Fig. 11.12Fig. 11.12Fig. 11.12 JSP viewCart.jsp obtains the shopping cart and outputs an XHTML
document with the cart contents in tabular format (part 3 of 4).

Chapter 11 Case Study: Servlet and JSP Bookstore 689

From the XHTML document produced in this JSP, the user can either continue shop-
ping or click the Check Out button to proceed to the order.html ordering page
(Fig. 11.13).

11.8 Checking Out
When viewing the cart, the user can click a Check Out button to view order.html
(Fig. 11.13). In this example, the form has no functionality. However, it is provided to help
complete the application. Normally, there would be some client-side validation of the form
elements, some server-side validation of form elements or a combination of both. When the
user clicks the Submit button, the browser requests process.jsp to finalize the order.

115 <!-- form to proceed to checkout -->
116 <form method = "get" action = "order.html">
117 <p><input type = "submit" value = "Check Out" /></p>
118 </form>
119 </body>
120
121 </html>

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4 <!-- order.html -->

Fig. 11.13Fig. 11.13Fig. 11.13Fig. 11.13 Order form (order.html) in which the user inputs name, address and
credit-card information to complete an order (part 1 of 4).

Fig. 11.12Fig. 11.12Fig. 11.12Fig. 11.12 JSP viewCart.jsp obtains the shopping cart and outputs an XHTML
document with the cart contents in tabular format (part 4 of 4).

690 Case Study: Servlet and JSP Bookstore Chapter 11

5
6 <html xmlns = "http://www.w3.org/1999/xhtml">
7
8 <head>
9 <title>Order</title>

10
11 <link rel = "stylesheet" href = "styles.css"
12 type = "text/css" />
13 </head>
14
15 <body>
16 <p class = "bigFont">Shopping Cart Check Out</p>
17
18 <!-- Form to input user information and credit card. -->
19 <!-- Note: No need to input real data in this example. -->
20 <form method = "post" action = "process.jsp">
21
22 <p style = "font-weight: bold">
23 Please input the following information.</p>
24
25 <!-- table of form elements -->
26 <table>
27 <tr>
28 <td class = "right bold">First name:</td>
29
30 <td>
31 <input type = "text" name = "firstname"
32 size = "25" />
33 </td>
34 </tr>
35
36 <tr>
37 <td class = "right bold">Last name:</td>
38
39 <td>
40 <input type = "text" name = "lastname"
41 size = "25" />
42 </td>
43 </tr>
44
45 <tr>
46 <td class = "right bold">Street:</td>
47
48 <td>
49 <input type = "text" name = "street" size = "25" />
50 </td>
51 </tr>
52
53 <tr>
54 <td class = "right bold">City:</td>
55

Fig. 11.13Fig. 11.13Fig. 11.13Fig. 11.13 Order form (order.html) in which the user inputs name, address and
credit-card information to complete an order (part 2 of 4).

Chapter 11 Case Study: Servlet and JSP Bookstore 691

56 <td>
57 <input type = "text" name = "city" size = "25" />
58 </td>
59 </tr>
60
61 <tr>
62 <td class = "right bold">State:</td>
63
64 <td>
65 <input type = "text" name = "state" size = "2" />
66 </td>
67 </tr>
68
69 <tr>
70 <td class = "right bold">Zip code:</td>
71
72 <td>
73 <input type = "text" name = "zipcode"
74 size = "10" />
75 </td>
76 </tr>
77
78 <tr>
79 <td class = "right bold">Phone #:</td>
80
81 <td>
82 (
83 <input type = "text" name = "phone" size = "3" />
84)
85
86 <input type = "text" name = "phone2"
87 size = "3" /> -
88
89 <input type = "text" name = "phone3" size = "4" />
90 </td>
91 </tr>
92
93 <tr>
94 <td class = "right bold">Credit Card #:</td>
95
96 <td>
97 <input type = "text" name = "creditcard"
98 size = "25" />
99 </td>
100 </tr>
101
102 <tr>
103 <td class = "right bold">Expiration (mm/yy):</td>
104
105 <td>
106 <input type = "text" name = "expires"
107 size = "2" /> /

Fig. 11.13Fig. 11.13Fig. 11.13Fig. 11.13 Order form (order.html) in which the user inputs name, address and
credit-card information to complete an order (part 3 of 4).

692 Case Study: Servlet and JSP Bookstore Chapter 11

108
109 <input type = "text" name = "expires2"
110 size = "2" />
111 </td>
112 </tr>
113 </table>
114
115 <!-- enable user to submit the form -->
116 <p><input type = "submit" value = "Submit" /></p>
117 </form>
118 </body>
119
120 </html>

Fig. 11.13Fig. 11.13Fig. 11.13Fig. 11.13 Order form (order.html) in which the user inputs name, address and
credit-card information to complete an order (part 4 of 4).

Chapter 11 Case Study: Servlet and JSP Bookstore 693

11.9 Processing the Order
JSP process.jsp (Fig. 11.14) pretends to process the user’s credit-card information and
creates an XHTML document containing a message that the order was processed and the
final order dollar total. The scriptlet at lines 19–28 obtains the session attribute total. The
Double object returned is converted to a double and stored in Java variable total. Our
simulation of a bookstore does not perform real credit-card processing, so the transaction
is now complete. Therefore, line 26 invokes HttpSession method invalidate to
discard the session object for the current client. In a real store, the session would not be in-
validated until the purchase is confirmed by the credit-card company. Lines 30–40 define
the body of the XHTML document sent to the client. Line 37 uses a JSP expression to insert
the dollar total of all items purchased.

1 <?xml version = "1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4 <!-- process.jsp -->
5
6 <%-- JSP page settings --%>
7 <%@ page language = "java" session = "true" %>
8 <%@ page import = "java.text.*" %>
9

10 <html xmlns = "http://www.w3.org/1999/xhtml">
11
12 <head>
13 <title>Thank You!</title>
14
15 <link rel = "stylesheet" href = "styles.css"
16 type = "text/css" />
17 </head>
18
19 <% // start scriptlet
20
21 // get total order amount
22 Double d = (Double) session.getAttribute("total");
23 double total = d.doubleValue();
24
25 // invalidate session because processing is complete
26 session.invalidate();
27
28 %> <%-- end scriptlet --%>
29
30 <body>
31 <p class = "bigFont">Thank You</p>
32
33 <p>Your order has been processed.</p>
34
35 <p>Your credit card has been billed:
36
37 $<%= new DecimalFormat("0.00").format(total) %>
38

Fig. 11.14Fig. 11.14Fig. 11.14Fig. 11.14 JSP process.jsp performs the final order processing (part 1 of 2).

694 Case Study: Servlet and JSP Bookstore Chapter 11

11.10 Deploying the Bookstore Application in J2EE 1.2.1
Next, we deploy the bookstore application in the Java 2 Enterprise Edition 1.2.1 reference
implementation. This section assumes that you have downloaded and installed J2EE 1.2.1.
If not, please refer to Appendix E for installation and configuration instructions. Note that
the files for this entire bookstore application can be found on the CD that accompanies this
book and at www.deitel.com.

In Section 11.10.1 through Section 11.10.8, we demonstrate the steps needed to deploy
this application:

1. Configure the books data source for use with the J2EE 1.2.1 reference imple-
mentation server.

2. Launch the Cloudscape database server and the J2EE 1.2.1 reference implemen-
tation server for deployment and execution of the application.

3. Launch the Application Deployment Tool. This tool provides a graphical user
interface for deploying applications on the J2EE 1.2.1 server.

4. Create a new application in the Application Deployment Tool.

5. Add library JAR files to the application. These files are available to all application
components.

6. Create a new Web component in the application for the BookServlet.

7. Create a new Web component in the application for the AddToCartServlet.

8. Add the nonservlet components to the application. These include XHTML docu-
ments, JSPs, images, CSS files, XSL files and JavaBeans used in the application.

9. Specify the Web context that causes this J2EE application to execute. This deter-
mines the URL that will be used to invoke the application.

39 </p>
40 </body>
41
42 </html>

Fig. 11.14Fig. 11.14Fig. 11.14Fig. 11.14 JSP process.jsp performs the final order processing (part 2 of 2).

Chapter 11 Case Study: Servlet and JSP Bookstore 695

10. Specify the database resource (i.e., books) used by our application.

11. Set up the JNDI name for the database in the application. This is used to register
the name with the Java Naming and Directory Service so the database can be lo-
cated at execution time.

12. Set up the welcome file for the application. This is the initial file that is returned
when the user invokes the bookstore application.

13. Deploy the application.

14. Run the application.

At the end of Section 11.10.8, you will be able to deploy and test the bookstore appli-
cation.

11.10.1 Configuring the books Data Source
Before deploying the bookstore application, you must configure the books data source so
the J2EE server registers the data source with the naming server. This enables the applica-
tion to use JNDI to locate the data source at execution time. J2EE comes with Cloud-
scape—a pure-Java database application from Informix Software. We use Cloudscape to
perform our database manipulations in this case study.

To configure the Cloudscape data source, you must modify the J2EE default configu-
ration file default.properties in the J2EE installation’s config directory. Below
the comment JDBC URL Examples is a line that begins with jdbc.datasources.
Append the following text to this line

|jdbc/books|jdbc:cloudscape:rmi:books;create=true

The vertical bar, |, at the beginning of the text separates the new data source we are regis-
tering from a data source that is registered by default when you install J2EE. The text
jdbc/books is the JNDI name for the database. After the second | character in the pre-
ceding text is the JDBC URL jdbc:cloudscape:rmi:books. The URL indicates
that the J2EE will use the JDBC protocol to interact with the Cloudscape subprotocol,
which, in turn, uses RMI to communicate with the database (books in this case). Finally,
create=true specifies that J2EE should create a database if the database does not al-
ready exist. [Remember, that the books database was created in Chapter 8.] After config-
uring the database, save the default.properties file. This completes Step 1 of
Section 11.10.

Portability Tip 11.2
Each database driver typically has its own URL format that enables an application to inter-
act with databases hosted on that database server. See your database server’s documenta-
tion for more information. 11.2

11.10.2 Launching the Cloudscape Database and J2EE Servers

Step 2 of Section 11.10 specifies that you must launch the Cloudscape database server and
the J2EE server, so you can deploy and execute the application. First, open a command
prompt (or shell) and launch the Cloudscape server as discussed in Section 8.5. Next, open

696 Case Study: Servlet and JSP Bookstore Chapter 11

a command prompt (or shell) and change directories to the bin subdirectory of your J2EE
installation. Then, issue the following command:

j2ee -verbose

to start the J2EE server. Note that the J2EE server includes the Tomcat JSP and servlet con-
tainer discussed in Chapter 9.

Portability Tip 11.3
On some UNIX/Linux systems, you may need to precede the commands that launch the
Cloudscape server and the J2EE server with ./, to indicate that the command is located in
the current directory. 11.3

Testing and Debugging Tip 11.1
Use separate command prompts (or shells) to execute the commands that launch the Cloud-
scape database server and the J2EE 1.2.1 server, so you can see any error messages gener-
ated by these programs. 11.1

Testing and Debugging Tip 11.2
To ensure that the J2EE server communicates properly with the Cloudscape server (or any
other database server), always launch the database server before the J2EE server. Other-
wise, exceptions will occur when the J2EE server attempts to configure its data sources. 11.2

To shut down the J2EE server, use a command prompt (or shell) to execute the fol-
lowing command from the bin subdirectory of your J2EE installation:

j2ee -stop

Testing and Debugging Tip 11.3
Always shut down the J2EE server before the Cloudscape database server to ensure that the
J2EE server does not attempt to communicate with the Cloudscape database server after the
database server has been shut down. If Cloudscape is terminated first, it is possible that the
J2EE server will receive another request and attempt to access the database again. This will
result in exceptions. 11.3

11.10.3 Launching the J2EE Application Deployment Tool

Step 3 of Section 11.10 begins the process of deploying our bookstore application. The
J2EE reference implementation comes with a graphical application, called the Applica-
tion Deployment Tool, that helps you deploy Enterprise Java applications. In Chapter 9,
we created an XML deployment descriptor by hand to deploy our servlets. The Applica-
tion Deployment Tool is nice in that it writes the deployment descriptor files for you and
automatically archives the Web application’s components. The tool places all Web appli-
cation components and auxiliary files for a particular application into a single Enterprise
Application Archive (EAR) file. This file contains deployment descriptor information,
WAR files with Web application components and additional information that is discussed
later in the book.

Execute the deployment tool by opening a command prompt (or shell) and changing
directories to the bin subdirectory of your J2EE installation. Then, type the following
command:

Chapter 11 Case Study: Servlet and JSP Bookstore 697

deploytool

The Application Deployment Tool window (Fig. 11.15) appears. [Note: In our deploy-
ment discussion, we cover only those aspects of the deployment tool required to deploy this
bookstore application. Later in the book, we discuss other aspects of this tool in detail.]

11.10.4 Creating the Bookstore Application

The Application Deployment Tool simplifies the task of deploying Enterprise applica-
tions. Next (Step 4 of Section 11.10), we create the new application. Click the New Appli-
cation button to display the New Application window (Fig. 11.16).

In the Application File Name field, you can type the name of the EAR file in which
the Application Deployment Tool stores the application components, or you can click
Browse to specify both the name and location of the file. In the Application Display
Name field, you can specify the name for your application. This name will appear in the
Local Applications area of the deployment tool’s main window (Fig. 11.15). Click OK
to create the application. The main Application Deployment Tool window now appears
as shown in Fig. 11.17.

Fig. 11.15Fig. 11.15Fig. 11.15Fig. 11.15 Application Deployment Tool main window.

Fig. 11.16Fig. 11.16Fig. 11.16Fig. 11.16 New Application window.

New Application New Web Component Save

Application names
and application
component names
appear here.

698 Case Study: Servlet and JSP Bookstore Chapter 11

11.10.5 Creating BookServlet and AddToCartServlet Web
Components

Step 6 of Section 11.10 is to create Web components for the BookServlet and the
AddToCartServlet. This will enable us to specify the alias that is used to invoke each
servlet. We will show the details of creating the BookServlet Web component. Then,
you can repeat the steps to create the AddToCartServlet Web component.

To begin, click the New Web Component button (see Fig. 11.15) to display the
Introduction window of the New Web Component Wizard (Fig. 11.18).

Click the Next > button to display the WAR File General Properties (Fig. 11.19)
window of the New Web Component Wizard.

Ensure that JSP and Servlet Bookstore is selected in the Web Component will
Go In: drop-down list. In the WAR Display Name field, type a name (Store Compo-
nents) for the WAR that will appear in the Local Applications area of the deployment
tool’s main window (see Fig. 11.15). Then, click the Add… button to display the Add
Files to .WAR - Add Content Files window (Fig. 11.20). Content files are nonservlet
files such as images, XHTML documents, style sheets and JSPs. We will be adding these
in another step later, so click Next > to proceed to the Add Files to .WAR - Add Class
Files window (Fig. 11.21)

Fig. 11.17Fig. 11.17Fig. 11.17Fig. 11.17 Application Deployment Tool main window after creating a new
application.

Chapter 11 Case Study: Servlet and JSP Bookstore 699

Fig. 11.18Fig. 11.18Fig. 11.18Fig. 11.18 New Web Component Wizard - Introduction window.

Fig. 11.19Fig. 11.19Fig. 11.19Fig. 11.19 New Web Component Wizard - WAR File General Properties window.

700 Case Study: Servlet and JSP Bookstore Chapter 11

To add the BookServlet.class file, click the Browse… button to display the
Choose Root Directory window (Fig. 11.22).

Fig. 11.20Fig. 11.20Fig. 11.20Fig. 11.20 Add Files to .WAR - Add Content Files window.

Fig. 11.21Fig. 11.21Fig. 11.21Fig. 11.21 Add Files to .WAR - Add Class Files window.

Chapter 11 Case Study: Servlet and JSP Bookstore 701

When adding a class file for a class in a package (as all classes are in this example), it
is imperative that the files be added and maintained in their full package directory structure
or as part of a JAR file that contains the full package directory structure. In this example,
we did not create a JAR file containing the entire com.deitel.advjhtp1.store
package. Therefore, we need to locate the directory in which the first package directory
name is found.

On our system, the com directory that starts the package name is located in a directory
called Development. When you click the Choose Root Directory button, you are
returned to the Add Files to .WAR - Add Class Files window. In that window, you
should be able to locate the com directory (Fig. 11.23).

Fig. 11.22Fig. 11.22Fig. 11.22Fig. 11.22 Choose Root Directory window.

Fig. 11.23Fig. 11.23Fig. 11.23Fig. 11.23 Add Files to .WAR - Add Class Files window after selecting the root
directory in which the files are located.

702 Case Study: Servlet and JSP Bookstore Chapter 11

Double click the com directory name to expand its contents in the window. Do the
same for the subdirectory deitel, then the subdirectory advjhtp1 and finally, for the
directory store. In the store directory, select the .class file for BookServlet,
then click the Add button. At the bottom of the Add Files to .WAR - Add Class Files
window, the .class file should be displayed with its full package directory structure.
After doing this, click the Finish button to return to the New Web Component Wizard
- WAR File General Properties window. Note that the files selected with the Add
Files to .WAR window now appear in the Contents text area of the window (Fig. 11.24).

Common Programming Error 11.1
Not including the full package directory structure for a class in a package will prevent the
application from loading the class and from executing properly. 11.1

Click Next > to proceed to the New Web Component Wizard - Choose Com-
ponent Type window and select Servlet (Fig. 11.25).

Click Next > to proceed to the New Web Component Wizard - Component
General Properties window (Fig. 11.26). Select the BookServlet class in the
Servlet Class drop-down list and type Book Servlet in the Web Component Dis-
play Name field.

Fig. 11.24Fig. 11.24Fig. 11.24Fig. 11.24 New Web Component Wizard - WAR File General Properties window after
selecting the file BookServlet.class.

Chapter 11 Case Study: Servlet and JSP Bookstore 703

Click Next > twice to display the New Web Component Wizard - Component
Aliases window (Fig. 11.27). Click Add to specify an alias for the BookServlet. Click
the white box that appears in the window, type displayBook as the alias for the servlet
and press Enter. Next, click Finish to complete the setup of the BookServlet.

Fig. 11.25Fig. 11.25Fig. 11.25Fig. 11.25 New Web Component Wizard - Choose Component Type window.

Fig. 11.26Fig. 11.26Fig. 11.26Fig. 11.26 New Web Component Wizard - Component General Properties window.

Fig. 11.27Fig. 11.27Fig. 11.27Fig. 11.27 New Web Component Wizard - Component Aliases window.

704 Case Study: Servlet and JSP Bookstore Chapter 11

Now, create a Web component for AddToCartServlet (Step 7 of Section 11.10),
by repeating the steps shown in this section. For this Web component, specify Add to
Cart Servlet as the Web Component Display Name and addToCart as the alias
for the servlet. After adding the two servlet Web components, the Application Deploy-
ment Tool window should appear as shown in Fig. 11.28.

11.10.6 Adding Non-Servlet Components to the Application

Next, we will add our non-servlet components to the application (Step 8 of Section 11.10).
These files include JSPs, XHTML documents, style sheets, images and JavaBeans used in
the application.

Begin by expanding the application component tree and clicking Store Compo-
nents in the Local Applications area of the Application Deployment Tool window
(see Fig. 11.28). In the contents area of the Application Deployment Tool window,
click the Add… button to display the Add Files to .WAR - Add Content Files window
(Fig. 11.29).

Fig. 11.28Fig. 11.28Fig. 11.28Fig. 11.28 Application Deployment Tool window after deploying BookServlet
and AddToCartServlet.

Chapter 11 Case Study: Servlet and JSP Bookstore 705

Navigate to the directory on your system that contains the files for the bookstore appli-
cation. In the list box that appears in the window, locate each of the following files and
directories: book.xsl, books.jsp, images, index.html, order.html, pro-
cess.jsp, styles.css and viewCart.jsp. For each file or directory, click the
Add button. You can select multiple items at one time by holding down the <Ctrl> key
and clicking each item. All the items you add should appear in the text area at the bottom
of the window. When you are done, click Next > to display the Add Files to .WAR -
Add Class Files window (Fig. 11.30).

We will use this window to add the .class files for the non-servlet classes (i.e., our
JavaBeans) to our application. Remember that the JavaBeans used in the bookstore are in
a package, so their .class files must be added and maintained in their full package direc-
tory structure. Once again, click the Browse… button to display the Choose Root
Directory window and locate the directory in which the first package directory name is
found. Select that directory as the root directory. Double click the com directory name to
expand its contents in the window. Do the same for the subdirectory deitel, then the sub-
directory advjhtp1 and finally, for the directory store. In the store directory, select
the .class files for each of the JavaBeans in this bookstore example (Book-
Bean.class, CartItemBean.class and TitlesBean.class), then click the
Add button. At the bottom of the Add Files to .WAR - Add Class Files window, each
.class file should be displayed with its full package directory structure. After doing this,
click the Finish button to return to the Application Deployment Tool window. Note
that the files selected with the Add Files to .WAR windows now appear in the Contents
text area of the window. Click the Save button to save your work.

Fig. 11.29Fig. 11.29Fig. 11.29Fig. 11.29 Add Files to .WAR - Add Content Files window.

706 Case Study: Servlet and JSP Bookstore Chapter 11

11.10.7 Specifying the Web Context, Resource References, JNDI
Names and Welcome Files

Steps 9 through 13 of Section 11.10 perform the final configuration and deployment of the
bookstore application. After performing the steps in this section, you will be able to execute
the bookstore application.

We begin by specifying the Web context for our application (Step 9 of Section 11.10).
At the beginning of this chapter, we indicated that the user would enter the URL

http://localhost:8000/advjhtp1/store

in a browser to access the bookstore application. The Web context is the part of the preced-
ing URL that enables the server to determine which application to execute when the server
receives a request from a client. In this case, the Web context is advjhtp1/store. Once
again, note that the J2EE server uses port 8000, rather than port 8080, used by Tomcat.

Common Programming Error 11.2
Specifying the wrong port number in a URL that is supposed to access the J2EE server caus-
es your Web browser to indicate that the server was not found. 11.2

Testing and Debugging Tip 11.4
When deploying an Enterprise Java application on a production application server (the
J2EE server is for testing only), it is typically not necessary to specify a port number in the
URL when accessing the application. See your application server’s documentation for fur-
ther details. 11.4

To specify the Web context, click the JSP and Servlet Bookstore node in the
Local Applications area of the Application Deployment Tool window. Then, click

Fig. 11.30Fig. 11.30Fig. 11.30Fig. 11.30 Add Files to .WAR - Add Class Files window.

Chapter 11 Case Study: Servlet and JSP Bookstore 707

the Web Context tab (Fig. 11.31). Click the white box in the Context Root column and
type advjhtp1/store; then click Enter.

Next, we must specify the database resource referenced by the bookstore application
(Step 10 of Section 11.10). Click the Store Components node in the Local Applica-
tions area of the Application Deployment Tool window. Then, click the Resource
Ref’s tab (Fig. 11.32). Click the Add button. Under the Coded Name column click the
white box and type jdbc/books (the JNDI name of our data source). Figure 11.32 shows
the Application Deployment Tool window after creating the resource reference.

Next, we specify the JNDI name for the database in the application (Step 11 of
Section 11.10). This is used to register the name with the Java Naming and Directory Ser-
vice, so the database can be located by the application at execution time.

Fig. 11.31Fig. 11.31Fig. 11.31Fig. 11.31 Specifying the Web Context in the Application Deployment Tool.

Fig. 11.32Fig. 11.32Fig. 11.32Fig. 11.32 Specifying the Resource Ref’s in the Application Deployment Tool.

708 Case Study: Servlet and JSP Bookstore Chapter 11

To specify the JNDI name for the database, click the JSP and Servlet Bookstore
node in the Local Applications area of the Application Deployment Tool window.
Then, click the JNDI names tab (Fig. 11.33). In the JNDI Name column, click the white
box and type jdbc/books; then click Enter.

The last task to perform before deploying the application is specifying the welcome file
that is displayed when the user first visits the bookstore. Click the Store Components
node in the Local Applications area of the Application Deployment Tool window.
Then, click the File Ref’s tab (Fig. 11.34). Click the Add button. In the Welcome Files
area click the white box and type index.html. Figure 11.34 shows the Application
Deployment Tool window after specifying the welcome file. Click the Save button to
save the application settings.

Fig. 11.33Fig. 11.33Fig. 11.33Fig. 11.33 Specifying the Resource Ref’s in the Application Deployment Tool.

Fig. 11.34Fig. 11.34Fig. 11.34Fig. 11.34 Specifying the welcome file in the File Ref’s tab of the Application
Deployment Tool.

Chapter 11 Case Study: Servlet and JSP Bookstore 709

11.10.8 Deploying and Executing the Application
Now, you are ready to deploy the bookstore application so you can test it. Figure 11.35
shows Application Deployment Tool toolbar buttons for updating application files and
deploying applications. The Update Application Files button updates the application’s
EAR file after changes are made to any of the files, such as recompiling classes or modify-
ing files. The Deploy Application button causes the Application Deployment Tool
to communicate with the J2EE server and deploy the application. The functionality of both
these buttons is combined in the Update and Redeploy Application button.

Click the Deploy Application button to display the Deploy JSP and Servlet
Bookstore - Introduction window (Fig. 11.36). Click the Next > button three times,
then click the Finish button. A Deployment Progress window appears. This window
will indicate when the deployment is complete. When that occurs, open a Web browser and
enter the following URL to test the bookstore application:

http://localhost:8000/advjhtp1/store

Fig. 11.35Fig. 11.35Fig. 11.35Fig. 11.35 Application Deployment Tool toolbar buttons for updating application
files and deploying applications.

Fig. 11.36Fig. 11.36Fig. 11.36Fig. 11.36 Deploy JSP and Servlet Bookstore - Introduction window.

Update Application Files Update and Redeploy Application

Deploy Application…

710 Case Study: Servlet and JSP Bookstore Chapter 11

In this chapter, we have presented our first substantial Enterprise Java application. The
steps presented in this section for deploying the bookstore application are just some of the
steps required in a typical Enterprise application. For example, there were no security
requirements in the bookstore application. In real Enterprise Java applications, some or all
of the application components have security restrictions, such as “the user must enter a
valid username and password before access is granted to a component.” Such restrictions
are specified at deployment time with the Application Deployment Tool or some sim-
ilar tool in an Enterprise Java development environment. These security restrictions are
enforced by the application server. In our bookstore example, if the JSPs had security
restrictions, it would be necessary to deploy each one individually, as we did with the
BookServlet and the AddToCartServlet. In later chapters, we discuss more of the
deployment options for application components. The Java 2 Enterprise Edition Specifica-
tion (available at java.sun.com/j2ee/download.html) discusses the complete
set of deployment options that are required in J2EE-compliant application servers.

The next chapter continues our client/server discussions. In that chapter, we use serv-
lets and XML to create content for wireless devices, such as pagers, cell phones and per-
sonal digital assistants.

SUMMARY
• The Java 2 Enterprise Edition 1.2.1 reference implementation includes the Apache Tomcat JSP

and servlet container.

• A three-tier, distributed Web application consists of client, server and database tiers.

• The client tier in a Web application often is represented by the user’s Web browser.

• The server tier in a Web application often consists of JSPs and servlets that act on behalf of the
client to perform tasks.

• The database tier maintains the database accessed from the server tier.

• The Java 2 Enterprise Edition 1.2.1 reference implementation comes with an Application De-
ployment Tool. Among its many features, this tool enables us to specify the alias used to invoke
a servlet.

• The Application Deployment Tool creates the deployment descriptor for a servlet as part of
deploying an application.

• The welcome file is the default document sent as the response to a client when the client initially
interacts with a J2EE application.

• Different browsers have different levels of support for Cascading Style Sheets.

• JavaServer Pages often generate XHTML that is sent to the client for rendering.

• The Java Naming and Directory Interface (JNDI) enables Enterprise Java application components
to access information and resources (such as databases) that are external to an application. In some
cases, those resources are distributed across a network.

• An Enterprise Java application container must provide a naming service that implements JNDI and
enables the components executing in that container to perform name lookups to locate resources.
The J2EE 1.2.1 reference implementation server includes such a naming service.

• When you deploy an Enterprise Java application, you specify the resources used by the application
(such as databases) and the JNDI names for those resources.

• Using an InitialContext, an Enterprise application component can look up a resource. The
InitialContext provides access to the application’s naming environment.

Chapter 11 Case Study: Servlet and JSP Bookstore 711

• InitialContext method lookup locates a resource with a JNDI name. Method lookup re-
turns an Object object and throws a NamingException if it cannot resolve the name it re-
ceives as an argument.

• A DataSource is used to connect to a database.

• The org.w3c.dom package’s Document and Element interfaces are used to create an XML
document tree.

• Document method createElement creates an element for an XML document.

• Document method createTextNode specifies the text for an Element.

• Element method appendChild appends a node to an Element as a child of that Element.

• An XML document can be transformed into an XHTML document using an XSL style sheet.

• ServletRequest method getRequestDispatcher returns a RequestDispatcher
object that can forward requests to other resources or include other resources as part of the
current servlet’s response.

• When RequestDispatcher method forward is called, processing of the request by the cur-
rent servlet terminates.

• RequestDispatcher objects can be obtained with method getRequestDispatcher
from an object that implements interface ServletRequest, or from the ServletContext
with methods getRequestDispatcher or getNamedDispatcher.

• ServletContext method getNamedDispatcher receives the name of a servlet as an ar-
gument, then searches the ServletContext for a servlet by that name. If no such servlet is
found, the method returns null.

• Both the ServletRequest and the ServletContext getRequestDispatcher meth-
ods simply return the content of the specified path if the path does not represent a servlet.

• Before the XML and XSL capabilities can be used, you must download and install Sun’s Java API
for XML Parsing (JAXP) version 1.1 from java.sun.com/xml/download.htm.

• The root directory of JAXP (normally called jaxp-1.1) contains three JAR files that are re-
quired for compiling and running programs that use JAXP—crimson.jar, jaxp.jar and
xalan.jar. These files must be added to the Java extension mechanism for your Java 2 Stan-
dard Edition installation.

• JAXP 1.1 is part of the forthcoming J2EE 1.3 reference implementation.

• Creating a Document Object Model (DOM) tree from an XML document requires a Document-
Builder parser object. DocumentBuilder objects are obtained from a DocumentBuild-
erFactory.

• Classes Document and Element are located in package org.w3c.dom.

• A DOMSource represents an XML document in an XSL transformation. A StreamSource can
be used to read a stream of bytes that represent an XSL file.

• A StreamResult specifies the PrintWriter to which the results of the XSL transformation
are written.

• TransformerFactory static method newInstance creates a TransformerFacto-
ry object. This object enables the program to obtain a Transformer object that applies the XSL
transformation.

• TransformerFactory method newTransformer receives a StreamSource argument
representing the XSL that will be applied to an XML document.

• Transformer method transform performs an XSL transformation on the given DOM-
Source object and writes the result to the given StreamResult object.

712 Case Study: Servlet and JSP Bookstore Chapter 11

• A TransformerException is thrown if a problem occurs when creating the Transform-
erFactory, creating the Transformer or performing the transformation.

• HttpSession method invalidate discards the session object for the current client.

• Before deploying an Enterprise Java application, you must configure your data sources and other
resources, so the J2EE server can register those resources with the naming server. This enables the
application to use JNDI to locate the resources at execution time.

• J2EE comes with Cloudscape—a pure-Java database application from Informix Software.

• To configure a Cloudscape data source, you must modify the J2EE default configuration file de-
fault.properties in the J2EE installation’s config directory. Below the comment JDBC
URL Examples is a line that begins with jdbc.datasources. Append the following text (in
which dataSource represents your data source name) to this line:

|jdbc/dataSource|jdbc:cloudscape:rmi:dataSource;create=true

• Each database server typically has its own URL format that enables an application to interact with
databases hosted on that database server.

• You must launch the Cloudscape database server and the J2EE server before you can deploy and
execute an application.

• To ensure that the J2EE server communicates properly with the Cloudscape server (or any other
database server), always launch the database server before the J2EE server.

• Always shut down the J2EE server before the Cloudscape database server, to ensure that the J2EE
server does not attempt to communicate with the Cloudscape database server after the database
server has been shut down.

• The J2EE reference implementation comes with a graphical application, called the Application
Deployment Tool, that helps you deploy Enterprise Java applications.

• The Application Deployment Tool is nice in that it writes the deployment descriptor files for
you and automatically archives the Web application’s components. The tool places all Web appli-
cation components and auxiliary files for a particular application into a single Enterprise Applica-
tion Archive (EAR) file. This file contains deployment descriptor information, WAR files with
Web application components and additional information that is discussed later in the book.

• When adding a class file for a class in a package to an application with the Application Deploy-
ment Tool, it is imperative that the files be added and maintained in their full package directory
structure or as part of a JAR file that contains the full package directory structure.

• Not including the full package directory structure for a class in a package will prevent the appli-
cation from loading the class and from executing properly.

• The Web context for an application is the part of the URL that enables the server to determine
which application to execute when the server receives a request from a client.

• The J2EE server uses port 8000, rather than port 8080, used by Tomcat.

• When deploying an Enterprise Java application on a production application server, it is typically
not necessary to specify a port number in the URL when accessing the application.

• Part of deploying an application is to specify the resource references for the components in the ap-
plication.

• Each resource reference has a corresponding JNDI name that is used by the deployment tool to
register the resource with the Java Naming and Directory Service. This enables the resource to be
located by the application at execution time.

Chapter 11 Case Study: Servlet and JSP Bookstore 713

TERMINOLOGY

SELF-REVIEW EXERCISES
11.1 Fill in the blanks in each of the following statements:

a) A three-tier, distributed Web application consists of , and
 tiers.

b) The is the default document sent as the response to a client when the client
initially interacts with a J2EE application.

c) The enables Enterprise Java application components to access information
and resources (such as databases) that are external to an application.

d) An object provides access to the application’s naming environment.
e) A RequestDispatcher object can requests to other resources or

 other resources as part of the current servlet’s response.
f) Sun’s provides XML and XSL capabilities in a Java program.
g) Method of interface discards the session object for the current

client.
h) The for an application is the part of the URL that enables the server to deter-

mine which application to execute when the server receives a request from a client.
i) An Enterprise Java application container must provide a that implements

JNDI and enables the components executing in that container to perform name lookups
to locate resources.

j) The J2EE reference implementation comes with a graphical application, called the
, that helps you deploy Enterprise Java applications.

11.2 State whether each of the following is true or false. If false, explain why.
a) The J2EE server uses port 8080 to await client requests.

Application Deployment Tool Java Naming and Directory Interface (JNDI)
Cascading Style Sheets (CSS) javax.naming package
component environment entries jdbc.datasources J2EE

 configuration propertyconfigure a data source
create a Web component jdbc:cloudscape:rmi:books JDBC URL
database resource JNDI name
DataSource interface locate a naming service
default.properties lookup method of InitialContext
deploy an application name lookup
dynamic XHTML document name resolution
Enterprise Application Archive (EAR) file naming service
external resource register a data source with a naming server
forward method of RequestDispatcher RequestDispatcher interface
getRequestDispatcher method of
 ServletRequest

server tier
ServletContext interface

include content from a resource shopping cart
include method of RequestDispatcher style sheet
InitialContext class Web component
invalidate method of HttpSession Web context
J2EE config directory welcome file
Java 2 Enterprise Edition 1.2.1
 reference implementation

XML
XSL transformation

Java API for XML Parsing (JAXP)

714 Case Study: Servlet and JSP Bookstore Chapter 11

b) When deploying applications with the J2EE server, you can launch the Cloudscape and
J2EE servers in any order.

c) InitialContext method lookup locates a resource with a JNDI name.
d) Method lookup returns a Connection object representing the connection to the da-

tabase.
e) The Java 2 Enterprise Edition 1.2.1 reference implementation includes the Apache Tom-

cat JSP and servlet container.
f) When RequestDispatcher method forward is called, processing of the request

by the current servlet is temporarily suspended to wait for a response from the resource
to which the request is forwarded.

g) Both the ServletRequest and the ServletContext getRequestDispatch-
er methods throw exceptions if the argument to getRequestDispatcher is not a
servlet.

h) Each resource reference has a corresponding JNDI name that is used by the deployment
tool to register the resource with the Java Naming and Directory Service.

i) If you do not configure your data sources and other resources before deploying an Enter-
prise Java application, the J2EE server will search the application to determine the re-
sources used and register those resources with the naming server.

j) Not including the full package directory structure for a class in a package will prevent the
application from loading the class and from executing properly.

ANSWERS TO SELF-REVIEW EXERCISES
11.1 a) client, server, database. b) welcome file. c) Java Naming and Directory Interface (JNDI).
d) InitialContext. e) forward, include. f) Java API for XML Parsing (JAXP).
g) invalidate, HttpSession. h) Web context. i) naming service. j) Application Deploy-
ment Tool.

11.2 a) False. Port 8080 is the default port for the Tomcat server. The J2EE server uses port 8000.
b) False. To ensure that the J2EE server communicates properly with the Cloudscape server

(or any other database server), the database server must be launched before the J2EE
server.

c) True.
d) False. Method lookup returns a DataSource object that can be used to obtain a Con-

nection.
e) True.
f) False. When RequestDispatcher method forward is called, processing of the re-

quest by the current servlet terminates.
g) False. Both the ServletRequest and the ServletContext getRequestDis-

patcher methods simply return the contents of the specified path if the path does not
represent a servlet.

h) True.
i) False. Before deploying an Enterprise Java application, you must configure your data

sources and other resources, so the J2EE server can register those resources with the nam-
ing server. Otherwise, exceptions will occur when the application attempts to access the
resources.

j) True.

EXERCISES
11.3 Modify the bookstore case study to enable the client to change the quantity of an item cur-
rently in the shopping cart. In viewCart.jsp, display the quantity in an input element of type

Chapter 11 Case Study: Servlet and JSP Bookstore 715

text in a form. Provide the user with a submit button with the value Update Cart that enables
the user to submit the form to a servlet that updates the quantity of the items in the cart. The servlet
should forward the request to viewCart.jsp, so the user can see the updated cart contents. Rede-
ploy the bookstore application, and test the update capability.

11.4 Enhance the bookstore case study’s TitlesBean to obtain author information from the
books database. Incorporate that author data into the BookBean class, and display the author in-
formation as part of the Web page users see when they select a book and view that book’s informa-
tion.

11.5 Add server-side form validation to the order form in the bookstore case study. Check that the
credit-card expiration date is after today’s date. Make all the fields in the form required fields. When
the user does not supply data for all fields, return an XHTML document containing the order form.
Any fields in which the user previously entered data should contain that data. For this exercise, re-
place the order.html document with a JSP that generates the form dynamically.

11.6 Create an order table and an orderItems table in the books database to store orders
placed by customers. The order table should store an orderID, an orderDate and the email
address of the customer who placed the order. [Note: You will need to modify the form in
Exercise 11.6 to include the customer’s e-mail address]. The orderItems table should store the
orderID, ISBN, price and quantity of each book in the order. Modify process.jsp so that
it stores the order information in the order and orderItems tables.

11.7 Create a JSP that enables client to view their order history. Integrate this JSP into the book-
store case study.

11.8 Create and deploy a single application that allows a user to test all the JSP examples in
Chapter 10. The application should have a welcome file that is an XHTML document containing links
to each of the examples in Chapter 10.

11.9 Create and deploy a single application that allows a user to test all the servlets in Chapter 9.
The application should have a welcome file that is an XHTML document containing links to each of
the examples in Chapter 9.

12
Java-Based Wireless

Applications
Development and J2ME

Objectives
• To construct a three-tier, client/server application.
• To use XML and XSLT to present content for several

client types.
• The understand the Java 2 Micro Edition (J2ME)

Platform.
• To understand the MIDlet lifecycle.
• To be able to use J2ME CLDC and MIDP.
• To understand how our case study incorporates J2ME

technology.
One thing I know: the only ones among you who will be
really happy are those who will have sought and found how
to serve.
Albert Schweitzer

It was a miracle of rare device, …
Samuel Taylor Coleridge

Knowledge is of two kinds. We know a subject ourselves, or
we know where we can find information upon it.
Samuel Johnson

… all the light I can command must be concentrated on this
particular web …
George Elliot

When you can do the common things of life in an uncommon
way, you will command the attention of the world.
George Washington Carver

Chapter 12 Java-Based Wireless Applications Development and J2ME 717

12.1 Introduction
In this chapter, present a case study of a multiple-choice test (Tip Test) for users to test their
knowledge of Deitel programming tips. Each question consists of a tip image and a list of four
possible answers. A client downloads the test from a server. The user then selects an answer
and submits it to the server, which responds with content that describes if the answer is correct
or incorrect. The client then can download another question and continue playing indefinitely.

The Tip-Test application is a three-tier architecture, as shown in Fig. 12.1. The infor-
mation tier consists of a database that contains a table (defined in the SQL script
tips.sql) with seven rows and five columns. Each row contains information about a
Deitel programming tip—Good Programming Practice, Software-Engineering Observa-
tion, Performance Tip, Portability Tip, Look-And-Feel Observation, Testing and Debug-
ging Tip and Common Programming Error. The first database column stores integers that
represent unique identifiers for each tip. The second column stores the names of the tips.
The third column stores the tips’ descriptions—i.e., definitions of each tip and explanations
of why each tip is important. The fourth column stores the image names for each tip. The
fifth column stores the tips’ abbreviated names—e.g., the abbreviation for Good Program-
ming Practice is GPP. Figure 12.2 shows the contents of tips.sql.

The middle tier consists of two servlets—WelcomeServlet and TipTest-
Servlet. WelcomeServlet delivers a “welcome screen” that introduces the game to
the user. WelcomeServlet then redirects the client to TipTestServlet. Using the
database, TipTestServlet randomly selects a tip image and four possible answers (in
the form of abbreviated tip names) and marks up this information as an XML document.
TipTestServlet then applies an XSL transformation to the XML document and sends
the resulting content to the client.

Outline

12.1 Introduction
12.2 WelcomeServlet Overview
12.3 TipTestServlet Overview

12.3.1 Internet Explorer request
12.3.2 WAP request
12.3.3 Pixo i-mode request
12.3.4 J2ME client request

12.4 Java 2 Micro Edition
12.4.1 Connected Limited Device Configuration (CLDC)
12.4.2 Mobile Information Device Profile (MIDP)
12.4.3 TipTestMIDlet Overview

12.5 Installation Instructions
12.6 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises •
Bibliography

718 Java-Based Wireless Applications Development and J2ME Chapter 12

Fig. 12.1Fig. 12.1Fig. 12.1Fig. 12.1 Three-tier architecture for Tip Test.

tipID tipName tipDescription tipImage shortName

1 Good
Programming
Practice

Good Programming Practice
call the student’s attention to
techniques that...

goodProgramming GPP

2 Common
Programming
Error

Students learning a lan-
guage tend to make certain
kinds of errors...

programmingError CPE

3 Look-and-Feel
Observation

We provide Look-And-Feel
Observations to highlight
graphical user...

lookAndFeel LAF

4 Performance Tip Performance Tips highlight
opportunities for improving
program performance.

perf PERF

5 Portability Tip Organizations that develop
software must often produce
versions customized...

portability PORT

Fig. 12.2Fig. 12.2Fig. 12.2Fig. 12.2 Database contents of tips.sql (part 1 of 2).

WelcomeServlet

Middle tier

Information tier
(bottom tier)

Client tier
(top tier)

Database

IE J2MEWAP i-mode

TipTestServlet

Plain textXHTML cHTMLWML

Chapter 12 Java-Based Wireless Applications Development and J2ME 719

The client tier consists of four client types—Internet Explorer, WAP (Wireless Appli-
cation Protocol), i-mode and J2ME. Each client can render a different content type.
TipTestServlet handles all game logic—i.e., selecting the Tip-Test question at
random and determining if the user’s answer is correct—and sends the content to each
client. Microsoft Internet Explorer receives XHTML (Extensible HyperText Markup Lan-
guage) content. The Openwave UP simulator is the WAP client that receives WML (Wire-
less Markup Language) content. WAP is a protocol that enables wireless devices to transfer
information over the Internet. WML marks up content rendered on the wireless device. The
Pixo Internet Microbrowser is the i-mode client that receives cHTML content—i-mode
provides a popular Japanese-based wireless Internet service, and cHTML (compact
HTML) is an HTML subset for resource-limited devices. The Sun MIDP-device emulator
acts as the J2ME client that receives content in plain-text format. J2ME™ (Java™ 2 Micro
Edition) is Sun’s newest Java platform for developing applications for various consumer
devices, such as set-top boxes, Web terminals, embedded systems, mobile phones and cell
pagers. MIDP (Mobile Information Device Profile) is a set of APIs that allows developers
to handle mobile-device-specific issues, such as creating user interfaces, storing informa-
tion locally and networking. Devices that run applications for MIDP are called MIDP
devices (e.g., cell phones or pagers). We discuss J2ME and MIDP in much greater detail in
Section 12.4.

We present this case study by discussing how each servlet sends content to each client
type, then how each client type renders that content. Section 12.2 and Section 12.3 discuss
how WelcomeServlet and TipTestServlet handle client requests. Sections
27.3.1–27.3.4 discuss how TipTestServlet responds to each client request and how
each client renders the servlet-generated content. Lastly, Section 12.4 discusses Java 2
Micro Edition. Our treatment of J2ME focuses on only the client (i.e., our serlvets do not
use J2ME technology), so we discuss J2ME after we discuss the application’s servlets.
Until we discuss Section 12.4, we recommend that you regard the J2ME client as “just
another client” that receives servlet-generated content (i.e., you need not know J2ME-
related topics to understand servlet behavior). In Section 12.4, we discuss how the J2ME
client receives and interprets this content—e.g., how the J2ME client presents this data in
a user interface. We also recommend that you follow the instructions in Section 12.5 for
installing and configuring the software in this case study.

6 Software
Engineering
Observation

The Software Engineering
Observations highlight tech-
niques, architectural...

softwareEngineering SEO

7 Testing and
Debugging Tip

Most of these tips tend to be
observations about capabili-
ties and features...

testingDebugging TAD

tipID tipName tipDescription tipImage shortName

Fig. 12.2Fig. 12.2Fig. 12.2Fig. 12.2 Database contents of tips.sql (part 2 of 2).

720 Java-Based Wireless Applications Development and J2ME Chapter 12

12.2 WelcomeServlet Overview
We begin by discussing class WelcomeServlet (Fig. 12.1), which redirects a client re-
quest to a static page that displays Tip-Test game instructions—this static page contains a
link to the TipTestServlet, which enables the user to play the game.

Clients interact with servlets by making get or post requests to the servlets. Clients
send get requests to WelcomeServlet to get the “welcome screen.” When a client sends
a get request to WelcomeServlet, method doGet (lines 15–39) handles the request.

Each client type receives a different welcome screen from the servlet, because each
client type supports a different content type. For example, Internet Explorer receives
index.html as a welcome screen, because Internet Explorer can render XHTML docu-
ments. On the other hand, the Openwave UP simulator receives index.wml, because a
WAP browser can render only WML documents. The Sun MIDP-device emulator can
render only plain text, so WelcomeServlet sends index.txt to this device.1 The
Pixo browser for i-mode can render cHTML (compact-HTML), so the servlet sends a dif-
ferent index.html than the one for Internet Explorer.

1. At the time of this writing, J2ME clients can interpret XML documents only by using proprietary
software—i.e., there does not exist a standard for J2ME clients to integrate XML.

1 // WelcomeServlet.java
2 // Delivers appropriate "Welcome" screen to client
3 package com.deitel.advjhtp1.wireless;
4
5 // Java core package
6 import java.io.*;
7
8 // Java extension packages
9 import javax.servlet.*;

10 import javax.servlet.http.*;
11
12 public class WelcomeServlet extends HttpServlet {
13
14 // respond to get request
15 protected void doGet(HttpServletRequest request,
16 HttpServletResponse response)
17 throws ServletException, IOException
18 {
19 // determine User-Agent header
20 String userAgent = request.getHeader("User-Agent");
21
22 // send welcome screen to appropriate client
23 if (userAgent.indexOf (
24 ClientUserAgentHeaders.IE) != -1)
25 sendIEClientResponse(request, response);
26
27 else if (userAgent.indexOf(// WAP
28 ClientUserAgentHeaders.WAP) != -1)
29 sendWAPClientResponse(request, response);

Fig. 12.3Fig. 12.3Fig. 12.3Fig. 12.3 Class WelcomeServlet sends an introductory screen that provides
game directions to a client (part 1 of 3).

Chapter 12 Java-Based Wireless Applications Development and J2ME 721

30
31 else if (userAgent.indexOf(// i-mode
32 ClientUserAgentHeaders.IMODE) != -1)
33 sendIModeClientResponse(request, response);
34
35 else if (userAgent.indexOf(// J2ME
36 ClientUserAgentHeaders.J2ME) != -1)
37 sendJ2MEClientResponse(request, response);
38
39 } // end method doGet
40
41 // send welcome screen to IE client
42 private void sendIEClientResponse(
43 HttpServletRequest request, HttpServletResponse response)
44 throws IOException, ServletException
45 {
46 redirect("text/html", "/XHTML/index.html", request,
47 response);
48 }
49
50 // send welcome screen to Nokia WAP client
51 private void sendWAPClientResponse(
52 HttpServletRequest request, HttpServletResponse response)
53 throws IOException, ServletException
54 {
55 redirect("text/vnd.wap.wml", "/WAP/index.wml", request,
56 response);
57 }
58
59 // send welcome screen to i-mode client
60 private void sendIModeClientResponse(
61 HttpServletRequest request, HttpServletResponse response)
62 throws IOException, ServletException
63 {
64 redirect("text/html", "/iMode/index.html", request,
65 response);
66 }
67
68 // send welcome screen to J2ME client
69 private void sendJ2MEClientResponse(
70 HttpServletRequest request, HttpServletResponse response)
71 throws IOException
72 {
73 // send J2ME client text data
74 response.setContentType("text/plain");
75 PrintWriter out = response.getWriter();
76
77 // open file to send J2ME client
78 BufferedReader bufferedReader =
79 new BufferedReader(new FileReader(
80 getServletContext().getRealPath(
81 "j2me/index.txt")));

Fig. 12.3Fig. 12.3Fig. 12.3Fig. 12.3 Class WelcomeServlet sends an introductory screen that provides
game directions to a client (part 2 of 3).

722 Java-Based Wireless Applications Development and J2ME Chapter 12

Before responding to a client, method doGet must determine what type of client made
the request. Each client includes a User-Agent header with each request. This header
contains information on the type of client requesting data from the server. Interface
ClientUserAgentHeaders (Fig. 12.4) lists a unique User-Agent header substring
for each client in our application. For example, a User-Agent header for Microsoft
Internet Explorer running on Windows 2000 might be

Mozilla/4.0 (compatible; MSIE 5.0; Windows NT 5.0)

We search for the substring "MSIE 5" in the User-Agent header to recognize Internet
Explorer requests from different platforms. Also, WelcomeServlet will recognize vari-
ance among other versions of Internet Explorer 5 (e.g., v.5.0, v.5.5, etc.). For example, the
User-Agent header for a Windows 98 client might not be identical to the one shown, but
the header will contain the "MSIE 5" substring.

Line 20 of class WelcomeServlet extracts the User-Agent header from the
HttpServletRequest. Lines 23–37 determine which client made the request by
matching the User-Agent header with the ones in interface ClientUserAgent-
Headers. If an Internet Explorer browser made the request, line 25 invokes method
sendIEClientResponse (lines 42–48). Lines 46–47 calls method redirect (lines
96–108), which redirects the request to a static page. For Internet Explorer, line 101 calls

82
83 String inputString = bufferedReader.readLine();
84
85 // send each line in file to J2ME client
86 while (inputString != null) {
87 out.println(inputString);
88 inputString = bufferedReader.readLine();
89 }
90
91 out.close(); // done sending data
92
93 } // end method sendJ2MEClientResponse
94
95 // redirects client request to another page
96 private void redirect(String contentType, String redirectPage,
97 HttpServletRequest request, HttpServletResponse response)
98 throws IOException, ServletException
99 {
100 // set new content type
101 response.setContentType(contentType);
102 RequestDispatcher dispatcher =
103 getServletContext().getRequestDispatcher(
104 redirectPage);
105
106 // forward user to redirectPage
107 dispatcher.forward(request, response);
108 }
109 }

Fig. 12.3Fig. 12.3Fig. 12.3Fig. 12.3 Class WelcomeServlet sends an introductory screen that provides
game directions to a client (part 3 of 3).

Chapter 12 Java-Based Wireless Applications Development and J2ME 723

method setContentType of the HttpServletResponse object to set the MIME
type to text/html—the MIME type for XHTML clients. The MIME type (Multipurpose
Internet Mail Extensions) helps browsers determine how to interpret data. Lines 102–107
redirect the request to index.html by creating a RequestDispatcher object with
the name of the static page and invoking method forward of the RequestDis-
patcher. The IE browser then displays index.html (Fig. 12.5).

1 // ClientUserAgentHeaders.java
2 // Contains all User-Agent header for clients
3 package com.deitel.advjhtp1.wirless;
4
5 public interface ClientUserAgentHeaders {
6
7 // User-Agent header for Internet Explorer browser
8 public static final String IE = "MSIE 5";
9

10 // User-Agent header for WAP browser
11 public static final String WAP = "UP";
12
13 // User-Agent header for i-mode browser
14 public static final String IMODE = "Pixo";
15
16 // User-Agent header for J2ME device
17 public static final String J2ME = "MIDP-1.0";
18 }

Fig. 12.4Fig. 12.4Fig. 12.4Fig. 12.4 Interface ClientUserAgentHeaders contains unique User-Agent
header substrings for all clients.

Fig. 12.5Fig. 12.5Fig. 12.5Fig. 12.5 WelcomeServlet output (index.html) for XHTML client.

724 Java-Based Wireless Applications Development and J2ME Chapter 12

If the Openwave UP simulator made the request, line 29 invokes method sendWAP-
ClientResponse (lines 51–57), which invokes method redirect with the MIME type
to text/vnd.wap.wml—the MIME type for WML clients—and redirects the request to
index.wml. At this point, the simulator displays index.wml, as shown in Fig. 12.6.

If the Pixo i-mode browser made the request, line 33 invokes method sendIMode-
ClientResponse (lines 60–66). This method also invokes method redirect, but sets
the MIME type to text/html—the MIME type for cHTML clients—and redirects the
request to a cHTML version of index.html. At this point, the Pixo browser displays
index.html, as shown in Fig. 12.7.

If the Sun MIDP-device emulator made the request, line 37 invokes method
sendJ2MEClientResponse (lines 69–93). To transfer index.txt to the J2ME client,
the servlet must send index.txt through a stream between the servlet and the J2ME client.
Line 74 sets the MIME type to text/plain. Line 75 invokes method getWriter of class
HttpServletResponse to obtain a PrintWriter for sending data to the client. Lines
78–81 create a BufferedReader that reads index.txt from the j2me directory
located in the servlet context. Lines 86–89 send each line from BufferedReader to the
client. At this point, Sun’s emulator displays index.txt, as shown in Fig. 12.8.

Fig. 12.6Fig. 12.6Fig. 12.6Fig. 12.6 WelcomeServlet output (index.wml) for WAP client. (Image of
UP.SDK courtesy Openwave Systems Inc. Openwave, the Openwave
logo, and UP.SDK are trademarks of Openwave Systems Inc. All rights
reserved.)

Chapter 12 Java-Based Wireless Applications Development and J2ME 725

Fig. 12.7Fig. 12.7Fig. 12.7Fig. 12.7 WelcomeServlet output (index.html) for i-mode client.
(Courtesy of Pixo, Inc.)

Fig. 12.8Fig. 12.8Fig. 12.8Fig. 12.8 WelcomeServlet output (index.txt) for J2ME client. (Courtesy of
Sun Microsystems, Inc.)

726 Java-Based Wireless Applications Development and J2ME Chapter 12

12.3 TipTestServlet Overview
In this section, we discuss how the TipTestServlet (Fig. 12.9) generates and sends Tip-
Test questions and answers to each client. Each welcome screen contains a link to an “instruc-
tions” screen—info.html, info.wml or info.txt, depending on the client—that pro-
vides game information. The instructions screen contains a link to TipTestServlet.2

If the user accesses TipTestServlet and the servlet has not received a previous
request from a client, the servlet container calls method init (lines 30–67) to initialize
TipTestServlet. This method performs operations that TipTestServlet need
only perform once, such as loading the JDBC driver, connecting to the database and instan-
tiating objects for creating XML documents. Lines 36–38 retrieve the class name for the
JDBC-database driver from the servlet-initialization parameter in web.xml (which we
discussed when we installed Tomcat), and line 40 loads this driver.

2. The client is not required to access TipTestServlet through WelcomeServlet. The user
can type the TipTestServlet URL in the browser to access TipTestServlet and bypass
the “welcome screen” that WelcomeServlet generates.

1 // TipTestServlet.java
2 // TipTestServlet sends Tip Test to clients.
3 package com.deitel.advjhtp1.wireless;
4
5 // Java core packages
6 import java.io.*;
7 import java.sql.*;
8 import java.util.*;
9

10 // Java extension packages
11 import javax.servlet.*;
12 import javax.servlet.http.*;
13 import javax.xml.parsers.*;
14 import javax.xml.transform.*;
15 import javax.xml.transform.dom.*;
16 import javax.xml.transform.stream.*;
17
18 // import third-party packages
19 import org.w3c.dom.*;
20 import org.xml.sax.SAXException;
21
22 public class TipTestServlet extends HttpServlet {
23
24 private Connection connection; // database connection
25
26 private DocumentBuilderFactory factory;
27 private TransformerFactory transformerFactory;
28
29 // initialize servlet
30 public void init() throws ServletException
31 {

Fig. 12.9Fig. 12.9Fig. 12.9Fig. 12.9 TipTestServlet handles game logic and sends Tip Test to clients (part
1 of 13).

Chapter 12 Java-Based Wireless Applications Development and J2ME 727

32 // load database driver and instantiate XML factories
33 try {
34
35 // get JDBC driver from servlet container
36 String jdbcDriver =
37 getServletConfig().getInitParameter(
38 "JDBC_DRIVER");
39
40 Class.forName(jdbcDriver); // load JDBC driver
41
42 // get database URL from servlet container
43 String databaseUrl =
44 getServletConfig().getInitParameter(
45 "DATABASE_URL");
46
47 connection = DriverManager.getConnection(databaseUrl);
48
49 // create a Factory to build XML Documents
50 factory = DocumentBuilderFactory.newInstance();
51
52 // create new TransformerFactory
53 transformerFactory = TransformerFactory.newInstance();
54
55 } // end try
56
57 // handle exception database driver class does not exist
58 catch (ClassNotFoundException classNotFoundException) {
59 classNotFoundException.printStackTrace();
60 }
61
62 // handle exception in making Connection
63 catch (SQLException sqlException) {
64 sqlException.printStackTrace();
65 }
66
67 } // end method init
68
69 // respond to get requests
70 protected void doGet(HttpServletRequest request,
71 HttpServletResponse response)
72 throws ServletException, IOException
73 {
74 // get Statement from database, then send Tip-Test Question
75 try {
76
77 // SQL query to database
78 Statement statement = connection.createStatement();
79
80 // get database information using SQL query
81 ResultSet resultSet =
82 statement.executeQuery("SELECT * FROM tipInfo");
83

Fig. 12.9Fig. 12.9Fig. 12.9Fig. 12.9 TipTestServlet handles game logic and sends Tip Test to clients (part
2 of 13).

728 Java-Based Wireless Applications Development and J2ME Chapter 12

84 // parse and send ResultSet to client
85 if (resultSet != null) {
86
87 // ensure that client does not cache questions
88 response.setHeader("Cache-Control",
89 "no-cache, must-revalidate");
90 response.setHeader("Pragma", "no-cache");
91
92 sendTipTestQuestion(request, response, resultSet);
93 }
94
95 statement.close(); // close Statement
96 }
97
98 // handle exception in exectuting Statement
99 catch (SQLException sqlException) {
100 sqlException.printStackTrace();
101 }
102
103 } // end method doGet
104
105 // respond to post requests
106 protected void doPost(HttpServletRequest request,
107 HttpServletResponse response)
108 throws ServletException, IOException
109 {
110 // send ResultSet to appropriate client
111 try {
112
113 // determine User-Agent header
114 String userAgent = request.getHeader("User-Agent");
115
116 // if Internet Explorer is requesting client
117 if (userAgent.indexOf(
118 ClientUserAgentHeaders.IE) != -1) {
119
120 Document document =
121 createXMLTipTestAnswer(request);
122
123 // set appropriate Content-Type for client
124 response.setContentType("text/html");
125
126 // send XML content to client after XSLT
127 applyXSLT("XHTML/XHTMLTipAnswer.xsl", document,
128 response);
129 }
130
131 // if WAP client is requesting client
132 else if (userAgent.indexOf(
133 ClientUserAgentHeaders.WAP) != -1) {
134

Fig. 12.9Fig. 12.9Fig. 12.9Fig. 12.9 TipTestServlet handles game logic and sends Tip Test to clients (part
3 of 13).

Chapter 12 Java-Based Wireless Applications Development and J2ME 729

135 Document document =
136 createXMLTipTestAnswer(request);
137
138 // set appropriate Content-Type for client
139 response.setContentType("text/vnd.wap.wml");
140
141 // send XML content to client after XSLT
142 applyXSLT("WAP/WAPTipAnswer.xsl", document,
143 response);
144 }
145
146 // if i-mode client is requesting client
147 else if (userAgent.indexOf(
148 ClientUserAgentHeaders.IMODE) != -1) {
149
150 Document document =
151 createXMLTipTestAnswer(request);
152
153 // set appropriate Content-Type for client
154 response.setContentType("text/html");
155
156 // send XML content to client after XSLT
157 applyXSLT("iMode/IMODETipAnswer.xsl", document,
158 response);
159 }
160
161 // if J2ME client is requesting client
162 else if (userAgent.indexOf(
163 ClientUserAgentHeaders.J2ME) != -1)
164 sendJ2MEAnswer(request, response);
165
166 } // end try
167
168 // handle exception if Document is null
169 catch (NullPointerException nullPointerException) {
170 nullPointerException.printStackTrace();
171 }
172
173 } // end method doPost
174
175 // send Tip-Test data to client
176 private void sendTipTestQuestion(
177 HttpServletRequest request, HttpServletResponse response,
178 ResultSet resultSet) throws IOException
179 {
180 // send ResultSet to appropriate client
181 try {
182
183 // determine User-Agent header
184 String userAgent = request.getHeader("User-Agent");
185

Fig. 12.9Fig. 12.9Fig. 12.9Fig. 12.9 TipTestServlet handles game logic and sends Tip Test to clients (part
4 of 13).

730 Java-Based Wireless Applications Development and J2ME Chapter 12

186 // if Internet Explorer is requesting client
187 if (userAgent.indexOf(
188 ClientUserAgentHeaders.IE) != -1) {
189
190 Document document =
191 createXMLTipTestQuestion(resultSet, request,
192 request.getContextPath() + "/XHTML/images/",
193 ".gif");
194
195 // set appropriate Content-Type for client
196 response.setContentType("text/html");
197 applyXSLT("XHTML/XHTMLTipQuestion.xsl", document,
198 response);
199 }
200
201 // if WAP client is requesting client
202 else if (userAgent.indexOf(
203 ClientUserAgentHeaders.WAP) != -1) {
204
205 Document document =
206 createXMLTipTestQuestion(resultSet, request,
207 request.getContextPath() + "/WAP/images/",
208 ".wbmp");
209
210 // set appropriate Content-Type for client
211 response.setContentType("text/vnd.wap.wml");
212 applyXSLT("WAP/WAPTipQuestion.xsl", document,
213 response);
214 }
215
216 // if i-mode client is requesting client
217 else if (userAgent.indexOf(
218 ClientUserAgentHeaders.IMODE) != -1) {
219
220 Document document =
221 createXMLTipTestQuestion(resultSet, request,
222 request.getContextPath() + "/iMode/images/",
223 ".gif");
224
225 // set appropriate Content-Type for client
226 response.setContentType("text/html");
227 applyXSLT("iMode/IMODETipQuestion.xsl", document,
228 response);
229 }
230
231 // if J2ME client is requesting client
232 else if (userAgent.indexOf(
233 ClientUserAgentHeaders.J2ME) != -1)
234 sendJ2MEClientResponse(resultSet, request,
235 response);
236
237 } // end try

Fig. 12.9Fig. 12.9Fig. 12.9Fig. 12.9 TipTestServlet handles game logic and sends Tip Test to clients (part
5 of 13).

Chapter 12 Java-Based Wireless Applications Development and J2ME 731

238
239 // handle exception if Document is null
240 catch (NullPointerException nullPointerException) {
241 nullPointerException.printStackTrace();
242 }
243
244 } // end method sendTipTestQuestion
245
246 // send Tip Test to Internet Explorer client
247 private Document createXMLTipTestQuestion(
248 ResultSet resultSet, HttpServletRequest request,
249 String imagePrefix, String imageSuffix)
250 throws IOException
251 {
252 // convert ResultSet to two-dimensional String array
253 String resultTable[][] = getResultTable(resultSet);
254
255 // create random-number generator
256 Random random = new Random(System.currentTimeMillis());
257
258 // create 4 random tips
259 int randomRow[] = getRandomIndices(random);
260
261 // randomly determine correct index from 4 random indices
262 int correctAnswer = Math.abs(random.nextInt()) %
263 randomRow.length;
264
265 int correctRow = randomRow[correctAnswer];
266
267 // open new session
268 HttpSession session = request.getSession();
269
270 // store correct answer in session
271 session.setAttribute("correctAnswer",
272 new Integer(correctAnswer));
273
274 // store correct tip name
275 session.setAttribute("correctTipName", new String(
276 resultTable[correctRow][1]));
277
278 // store correct tip description
279 session.setAttribute("correctTipDescription", new String(
280 resultTable[correctRow][2]));
281
282 // determine image to send client
283 String imageName = imagePrefix +
284 resultTable[correctRow][3] + imageSuffix;
285
286 // create XML document based on randomly determined info
287 try {
288

Fig. 12.9Fig. 12.9Fig. 12.9Fig. 12.9 TipTestServlet handles game logic and sends Tip Test to clients (part
6 of 13).

732 Java-Based Wireless Applications Development and J2ME Chapter 12

289 // create document
290 DocumentBuilder builder = factory.newDocumentBuilder();
291 Document document = builder.newDocument();
292
293 // create question root Element
294 Element root = document.createElement("question");
295 document.appendChild(root);
296
297 // append Element image, which references image name
298 Element image = document.createElement("image");
299 image.appendChild(
300 document.createTextNode(imageName));
301 root.appendChild(image);
302
303 // create choices Element to hold 4 choice Elements
304 Element choices = document.createElement("choices");
305
306 // append 4 choice Elements that represent user choices
307 for (int i = 0; i < randomRow.length; i++)
308 {
309 // determine choice Elements from resultTable
310 Element choice = document.createElement("choice");
311 choice.appendChild(document.createTextNode(
312 resultTable[randomRow[i]][4]));
313
314 // set choice Element as correct or incorrect
315 Attr attribute =
316 document.createAttribute("correct");
317
318 if (i == correctAnswer)
319 attribute.setValue("true");
320 else
321 attribute.setValue("false");
322
323 // append choice Element to choices Element
324 choice.setAttributeNode(attribute);
325 choices.appendChild(choice);
326 }
327
328 root.appendChild(choices);
329
330 return document;
331
332 } // end try
333
334 // handle exception building Document
335 catch (ParserConfigurationException parserException) {
336 parserException.printStackTrace();
337 }
338
339 return null;
340

Fig. 12.9Fig. 12.9Fig. 12.9Fig. 12.9 TipTestServlet handles game logic and sends Tip Test to clients (part
7 of 13).

Chapter 12 Java-Based Wireless Applications Development and J2ME 733

341 } // end method createXMLTipTestQuestion
342
343 // send tip test to J2ME client
344 private void sendJ2MEClientResponse(ResultSet resultSet,
345 HttpServletRequest request,
346 HttpServletResponse response) throws IOException
347 {
348 // convert ResultSet to two-dimensional String array
349 String resultTable[][] = getResultTable(resultSet);
350
351 // create random-number generator
352 Random random = new Random(System.currentTimeMillis());
353
354 // create 4 random tips
355 int randomRow[] = getRandomIndices(random);
356
357 // randomly determine correct index from 4 random indices
358 int correctAnswer = Math.abs(random.nextInt()) %
359 randomRow.length;
360
361 int correctRow = randomRow[correctAnswer];
362
363 // open old session
364 HttpSession session = request.getSession();
365
366 // store correct answer in session
367 session.setAttribute("correctAnswer",
368 new Integer(correctAnswer));
369
370 // store correct tip name in session
371 session.setAttribute("correctTipName", new String(
372 resultTable[correctRow][1]));
373
374 // store correct tip description in session
375 session.setAttribute("correctTipDescription", new String(
376 resultTable[correctRow][2]));
377
378 // send J2ME client image name
379 String imageName = "/j2me/images/" +
380 resultTable[correctRow][3] + ".png";
381
382 response.setContentType("text/plain");
383 PrintWriter out = response.getWriter();
384 out.println(imageName);
385
386 // send J2ME client test
387 for (int i = 0; i < randomRow.length; i++)
388 out.println(resultTable[randomRow[i]][4]);
389
390 } // end method sendJ2MEClientResponse
391

Fig. 12.9Fig. 12.9Fig. 12.9Fig. 12.9 TipTestServlet handles game logic and sends Tip Test to clients (part
8 of 13).

734 Java-Based Wireless Applications Development and J2ME Chapter 12

392 // convert ResultSet to two-dimensional String array
393 private String[][] getResultTable(ResultSet resultSet)
394 {
395 // create table of Strings to store ResultSet
396 String resultTable[][] = new String[7][5];
397
398 for (int i = 0; i < 7; i++) {
399
400 for (int j = 0; j < 5; j++)
401 resultTable[i][j] = "";
402 }
403
404 // store all columns in table
405 try {
406
407 // for each row in resultSet
408 for (int row = 0; resultSet.next(); row++) {
409
410 // for each column in resultSet
411 for (int column = 0; column < 5; column++) {
412
413 // store resultSet element in resultTable
414 resultTable[row][column] +=
415 resultSet.getObject(column + 1);
416 }
417 }
418 }
419
420 // handle exception if servlet cannot get ResultSet Object
421 catch (SQLException sqlException) {
422 sqlException.printStackTrace();
423 return null;
424 }
425
426 return resultTable;
427
428 } // end method getResultTable
429
430 // get 4 randomly generated indices from resultTable
431 private int[] getRandomIndices(Random random)
432 {
433 // create list containing row indices for resultTable
434 int list[] = new int[7];
435
436 for (int i = 0; i < list.length; i++)
437 list[i] = i;
438
439 int randomRow[] = new int[4];
440
441 // select 4 randomly generated indices from list
442 for (int i = 0; i < randomRow.length; i++)
443 randomRow[i] = getRandomRow(list, random);

Fig. 12.9Fig. 12.9Fig. 12.9Fig. 12.9 TipTestServlet handles game logic and sends Tip Test to clients (part
9 of 13).

Chapter 12 Java-Based Wireless Applications Development and J2ME 735

444
445 return randomRow; // return these indices
446
447 } // end method getRandomIndices
448
449 // get random element from list, then nullify element
450 private int getRandomRow(int list[], Random random)
451 {
452 // get random element from list
453 int randomRow = Math.abs(random.nextInt()) % list.length;
454
455 while (list[randomRow] < 0)
456 randomRow = Math.abs(random.nextInt()) % list.length;
457
458 list[randomRow] = -1; // nullify element
459
460 return randomRow;
461
462 } // end method getRandomRow
463
464 // apply XSLT style sheet to XML document
465 private void applyXSLT(String xslFile,
466 Document xmlDocument, HttpServletResponse response)
467 throws IOException
468 {
469 // apply XSLT
470 try {
471
472 // open InputStream for XSL document
473 InputStream xslStream =
474 getServletContext().getResourceAsStream(xslFile);
475
476 // create StreamSource for XSLT document
477 Source xslSource = new StreamSource(xslStream);
478
479 // create DOMSource for source XML document
480 Source xmlSource = new DOMSource(xmlDocument);
481
482 // get PrintWriter for writing data to client
483 PrintWriter output = response.getWriter();
484
485 // create StreamResult for transformation result
486 Result result = new StreamResult(output);
487
488 // create Transformer for XSL transformation
489 Transformer transformer =
490 transformerFactory.newTransformer(xslSource);
491
492 // transform and deliver content to client
493 transformer.transform(xmlSource, result);
494
495 } // end try

Fig. 12.9Fig. 12.9Fig. 12.9Fig. 12.9 TipTestServlet handles game logic and sends Tip Test to clients (part
10 of 13).

736 Java-Based Wireless Applications Development and J2ME Chapter 12

496
497 // handle exception transforming content
498 catch (TransformerException exception) {
499 exception.printStackTrace();
500 }
501
502 } // end method applyXSLT
503
504 // create XML Document that stores Tip Test answer
505 private Document createXMLTipTestAnswer(
506 HttpServletRequest request) throws IOException
507 {
508 // get session
509 HttpSession session = request.getSession();
510
511 // match correct answer with session answer
512 Integer integer =
513 (Integer) session.getAttribute("correctAnswer");
514 int correctAnswer = integer.intValue();
515
516 // give client correct tip name and description
517 String correctTipName =
518 (String) session.getAttribute("correctTipName");
519
520 String correctTipDescription =
521 (String) session.getAttribute(
522 "correctTipDescription");
523
524 // get user selection
525 int selection = Integer.parseInt(
526 request.getParameter("userAnswer"));
527
528 String answer;
529
530 // determine if user answer is correct
531 if (correctAnswer == selection)
532 answer = "Correct";
533 else
534 answer = "Incorrect";
535
536 // get link to TipTestServlet
537 String servletName = request.getContextPath() + "/" +
538 getServletConfig().getServletName();
539
540 // create XML document based on randomly determined info
541 try {
542
543 // create document
544 DocumentBuilder builder = factory.newDocumentBuilder();
545 Document document = builder.newDocument();
546

Fig. 12.9Fig. 12.9Fig. 12.9Fig. 12.9 TipTestServlet handles game logic and sends Tip Test to clients (part
11 of 13).

Chapter 12 Java-Based Wireless Applications Development and J2ME 737

547 // create question root Element
548 Element root = document.createElement("answer");
549 document.appendChild(root);
550
551 // append Element that informs client of correct answer
552 Element correct = document.createElement("correct");
553 correct.appendChild(
554 document.createTextNode(answer));
555 root.appendChild(correct);
556
557 // append Element that describes tip name
558 Element name =
559 document.createElement("correctTipName");
560 name.appendChild(
561 document.createTextNode(correctTipName));
562 root.appendChild(name);
563
564 // append Element that describes tip description
565 Element description =
566 document.createElement("correctTipDescription");
567 description.appendChild(
568 document.createTextNode(correctTipDescription));
569 root.appendChild(description);
570
571 // append Element that links to TipTestServlet
572 Element servletLink =
573 document.createElement("servletName");
574 servletLink.appendChild(
575 document.createTextNode(servletName));
576 root.appendChild(servletLink);
577
578 return document;
579
580 } // end try
581
582 // handle exception building Document
583 catch (ParserConfigurationException parserException) {
584 parserException.printStackTrace();
585 }
586
587 return null;
588
589 } // end method createXMLTipTestAnswer
590
591 // send answer to J2ME client
592 private void sendJ2MEAnswer(HttpServletRequest request,
593 HttpServletResponse response) throws IOException
594 {
595 // get client test response
596 BufferedReader in = request.getReader();
597 int selection = Integer.parseInt(in.readLine().trim());
598

Fig. 12.9Fig. 12.9Fig. 12.9Fig. 12.9 TipTestServlet handles game logic and sends Tip Test to clients (part
12 of 13).

738 Java-Based Wireless Applications Development and J2ME Chapter 12

Using method getInitParameter in line 37 allows us to specify the database out-
side the servlet—we can change the database (e.g., change from Cloudscape to mySQL) by

599 // send J2ME client text data
600 response.setContentType("text/plain");
601 PrintWriter out = response.getWriter();
602
603 // inform client whether client is correct or incorrect
604 HttpSession session = request.getSession();
605
606 // match correct answer with session answer
607 Integer integer =
608 (Integer) session.getAttribute("correctAnswer");
609 int correctAnswer = integer.intValue();
610
611 // send correct tip name and description
612 String correctTipName =
613 (String) session.getAttribute("correctTipName");
614
615 String correctTipDescription =
616 (String) session.getAttribute(
617 "correctTipDescription");
618
619 // determine whether answer is correct
620 if (selection == correctAnswer)
621 out.println("Correct");
622 else
623 out.println("Incorrect");
624
625 // give client correct tip name and description
626 out.println(correctTipName);
627 out.println(correctTipDescription);
628
629 } // end method sendJ2MEAnswer
630
631 // invoked when servlet is destroyed
632 public void destroy()
633 {
634 // close database connection
635 try {
636 connection.close();
637 }
638
639 // handle if connection cannot be closed
640 catch (SQLException sqlException) {
641 sqlException.printStackTrace();
642 }
643
644 } // end method destroy
645 }

Fig. 12.9Fig. 12.9Fig. 12.9Fig. 12.9 TipTestServlet handles game logic and sends Tip Test to clients (part
13 of 13).

Chapter 12 Java-Based Wireless Applications Development and J2ME 739

modifying the <param-value> element in the <init-param> element in web.xml,
without having to recompile the servlet. For this case study, this element contains

<init-param>
<param-name>JDBC_DRIVER</param-name>
<param-value>

 COM.cloudscape.core.RmiJdbcDriver
 </param-value>
</init-param>

Lines 43–45 retrieve the database URL from web.xml, and line 47 makes the connection
to this URL—note that method destroy (lines 632–644) closes this connection. If we de-
cide to change the location of the database, we need only to modify the <param-value>
element in a separate <init-param> element in web.xml. For this case study, this el-
ement contains

<init-param>
<param-name>DATABASE_URL</param-name>
<param-value>jdbc:cloudscape:rmi:tips</param-value>

</init-param>

Lines 50–53 create objects that we use later to build XML Documents and use Trans-
formers to apply XSLTs. We discuss XML-related Java packages later in this section.

TipTestServlet calls method doGet (lines 70–103) to handle the get request.
Line 78 creates a Statement from the Connection instantiated in method init. Lines 81–
82 obtain a ResultSet of all database elements from this Statement. As discussed in
the introduction, our database (the ResultSet) contains seven rows and five columns—
resulting in 35 String objects. Lines 88–90 set the HttpServletResponse’s header
so the client will not cache the information that TipTestServlet sends. Line 92 calls
method sendTipTestQuestion (lines 176–244) to perform the game logic and send the
client the Tip-Test question. Line 184 extracts the User-Agent header from the
HttpServletRequest. Lines 187–235 determine which client made the request by
matching the User-Agent header with those in interface ClientUserAgentHeaders.
This client-determination process is identical to the one in WelcomeServlet.

Until this point in execution, the servlet has behaved identically for all client requests.
Now, TipTestServlet performs different operations based on the type of client
making the request. These operations are almost identical among the Internet Explorer,
Openwave UP simulator and the Pixo i-mode browser. The servlet’s operations for the
J2ME client differ from that of the other three clients, because the J2ME client cannot inter-
pret XML documents without using non-standard software (although this is likely to
change in the future). We now trace the servlet’s behavior for each client type’s request.
We begin discussing TipTestServlet’s behavior for an Internet Explorer request.
Next, we discuss the servlet’s behavior for a Openwave UP simulator request. We then dis-
cuss the servlet’s behavior for a Pixo i-mode browser request. Finally, we discuss the
servlet’s behavior for a Sun MIDP-device client request.

12.3.1 Internet Explorer request

If Internet Explorer sent the request, lines 190–193 invoke method createXML-
TipTestQuestion (lines 247–341), which creates and returns an XML Document that

740 Java-Based Wireless Applications Development and J2ME Chapter 12

contains the Tip-Test question. Interface Document of package org.w3c.dom repre-
sents an XML document’s top-level node, which provides access to all the document’s
nodes. Line 253 calls method getResultTable (lines 393–428), which converts the Re-
sultSet into a two-dimensional array of Strings. We use this method so we have an
easier time accessing individual elements of the ResultSet through an array. Lines 396–
402 instantiate this array, and lines 408–417 transfer the ResultSet content to the array.

When method getResultTable returns the String array, line 256 creates a
Random object that enables TipTestServlet to select the tip image and possible
answers randomly. Line 259 passes a reference to the Random object to method get-
RandomIndices (lines 431–447), which returns an array of four integers. Each integer
is a distinct, random index that corresponds to a tip in the two-dimensional String array
that method getResultTable generated. Lines 434–437 create an array of seven inte-
gers called list—each integer represents that integer’s index in the array (i.e.,
list[0] = 0, list[1] = 1, etc.). Line 439 creates an empty array of four integers that
correspond to the four possible tip answers. Lines 442–443 invoke method getRan-
domRow (lines 450–462) for each element in the four-integer array. Line 453 select an
integer at random from the seven-integer array. If the integer has been selected previ-
ously—indicated by a -1 value—lines 455–456 select an integer that has not been
selected. If the integer has not been selected previously, line 458 nullifies this array ele-
ment by setting that element to -1. Nullifying this element ensures that method getRan-
domRow will not return duplicate integers. Line 460 returns the integer.

Array randomRow contains four distinct integers that correspond to tips in result-
Table. Lines 262–263 randomly select an integer from randomRow. This integer indi-
cates the “correct” answer in the game—specifically, this integer represents the
resultTable row that holds the information for the correct tip (line 265). TipTest-
Servlet stores this information in an HttpSession object (line 268), so when the
client sends the user’s selection back to TipTestServlet, TipTestServlet can
check this selection against the correct answer stored in the HttpSession object. An
HttpSession object acts like a cookie—both can store name/value pairs. In session ter-
minology, these pairs are called attributes. We may store attributes in an HttpSession
object with method setAttribute. Lines 271–280 store the correct answer, tip name
and tip description in the HttpSession object. Using the correct answer and parameters
imagePrefix and imageSuffix of method createXMLTipTestQuestion,
lines 283–284 determine the proper image to send to the client.

At this point, TipTestServlet has determined the Tip-Test question (the image
and four possible answers) to send the client. We now explain how TipTestServlet
marks up this data as an XML Document, applies an XSL transformation to this Docu-
ment, then sends the resulting document to the client.

Lines 290–328 mark up the Tip-Test question as an XML Document, which represents
an XML document and provides a means for creating and retrieving its nodes. Line 290 cre-
ates a DocumentBuilder using the DocumentBuilderFactory instantiated in
method init. Line 291 creates an XML Document using the DocumentBuilder.

Class Element represents an element node in an XML document. A Document cre-
ates an Element with method createElement. Lines 294–295 create Element
question and assign it as the root Element in the Document. Lines 298–301 create
Element image from the correct tip’s image and assign Element image as a child of

Chapter 12 Java-Based Wireless Applications Development and J2ME 741

Element question. Line 304 creates Element choices, which hold the four
choice Elements created on lines 307–326. Each choice Element represents a pos-
sible answer for the question. Lines 315–324 include an attribute that specifies whether the
choice is correct or incorrect—obviously, only one attribute specifies a value of
correct. Line 325 appends the choice Elements to Element choices, and line
328 appends choices to root Element question.

When method createXMLTipTestQuestion returns the XML Document,
TipTestServlet must apply an XSLT to this Document and send the result of the
transformation to the client. Line 124 sets the HttpServletResponse’s MIME type to
text/html, because the XSL transformation generates an XHTML document. Lines
127–128 call method applyXSLT (465–502) to apply XHTMLTipQuestion.xsl
(Fig. 12.10) to the XML Document. Lines 473–474 open an InputStream for
XHTMLTipQuestion.xsl. Line 477 creates a StreamSource from this Input-
Stream for the XSL document. Line 480 creates a DOMSource for the XML Docu-
ment. Line 486 creates a Result for the resulting transformation—in this case, an
XHTML document. TipTestServlet uses a PrintWriter to create the Result, so
TipTestServlet will send the resulting transformation directly to the client. Lines
489–490 create a Transformer using the XSL StreamSource and the Tranform-
erFactory (instantiated in method init). The Transformer is the object that applies
the XSLT to the XML document. Line 493 invokes method transform of class Trans-
former to apply the transformation to produce the XHTML document.

In Fig. 12.10, lines 9–11 specify the DTD and other output options using the
xsl:output element. Line 15 specifies that Element question is the root Element
in the XML Document that XHTMLTipQuestion.xsl will transform. Line 16 begins
the XHTML document with the element html. Lines 22–86 contain the body element,
which contains the tip image and the four possible answers. Lines 27–29 display the image
associated with the image Element in the XML Document. Lines 40–83 create a form
with four possible answers. Lines 47–77 create four radio buttons associated with these
answers. Line 82 creates a Submit button so the user can submit the selection.
Figure 12.11 shows Tip Test in action after the servlet applies the XSLT to the XML Doc-
ument. The image on the left shows the user selecting the answer, and the image on the
right shows the user about to submit the answer.

1 <?xml version="1.0"?>
2
3 <!-- XHTMLTipQuestion.xsl -->
4 <!-- XHTML stylesheet -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:output method = "xml" omit-xml-declaration = "no"

10 doctype-system = "DTD/xhtml1-strict.dtd"
11 doctype-public = "-//W3C//DTD XHTML 1.0 Strict//EN"/>

Fig. 12.10Fig. 12.10Fig. 12.10Fig. 12.10 XHTMLTipQuestion.xsl transforms XML Tip-Test question to XHTML
document (part 1 of 3).

742 Java-Based Wireless Applications Development and J2ME Chapter 12

12
13 <!-- specify the root of the XML document -->
14 <!-- that references this stylesheet -->
15 <xsl:template match = "question">
16 <html xmlns="http://www.w3.org/1999/xhtml">
17
18 <head>
19 <title>Tip Test</title>
20 </head>
21
22 <body>
23
24 <p>
25
26 <!-- display image -->
27 <img name = "image" alt = "Tip Image"
28 src = "{image}">
29
30
31 </p>
32
33 <p>
34 What is the name of the icon shown?
35 </p>
36
37 <p>
38
39 <!-- create a form with four checkboxes -->
40 <form method = "post"
41 action = "/advjhtp1/tiptest">
42
43 <!-- build a table for the options -->
44 <table>
45 <tr>
46 <td>
47 <input type = "radio"
48 name = "userAnswer" value = "0">
49 </input>
50 <xsl:value-of select =
51 "choices/choice[1]"/>
52 </td>
53
54 <td>
55 <input type = "radio"
56 name = "userAnswer" value = "1">
57 </input>
58 <xsl:value-of select =
59 "choices/choice[2]"/>
60 </td>
61 </tr>
62

Fig. 12.10Fig. 12.10Fig. 12.10Fig. 12.10 XHTMLTipQuestion.xsl transforms XML Tip-Test question to XHTML
document (part 2 of 3).

Chapter 12 Java-Based Wireless Applications Development and J2ME 743

 Each radio button in the XHTML document contains a unique value, so when the user
presses the Submit button, Internet Explorer sends the selected value to TipTest-
Servlet (as post data). TipTestServlet (Fig. 12.9) invokes method doPost

63 <tr>
64 <td>
65 <input type = "radio"
66 name = "userAnswer" value = "2">
67 </input>
68 <xsl:value-of select =
69 "choices/choice[3]"/>
70 </td>
71
72 <td>
73 <input type = "radio"
74 name = "userAnswer" value = "3">
75 </input>
76 <xsl:value-of select =
77 "choices/choice[4]"/>
78 </td>
79 </tr>
80 </table>
81
82 <input type = "submit" value = "Submit"/>
83 </form>
84 </p>
85
86 </body>
87 </html>
88 </xsl:template>
89 </xsl:stylesheet>

Fig. 12.11Fig. 12.11Fig. 12.11Fig. 12.11 Internet Explorer Tip-Test question output screen.

Fig. 12.10Fig. 12.10Fig. 12.10Fig. 12.10 XHTMLTipQuestion.xsl transforms XML Tip-Test question to XHTML
document (part 3 of 3).

744 Java-Based Wireless Applications Development and J2ME Chapter 12

(lines 106–173) upon receiving post data. Lines 117–129 recognize that the request is
from the Internet Explorer and call method createXMLTipTestAnswer (lines 505–
589) to determine if the user’s answer is correct.

Line 509 retrieves the HttpSession, and lines 512–522 extract the correct tip
answer, name and description from the HttpSession. Lines 525–526 retrieve the user’s
selection from the HttpServletRequest. Lines 531–534 match the user’s selection
with the tip answer to determine if the user is correct. Lines 537–538 determine the
TipTestServlet’s URL so clients can reconnect to TipTestServlet to receive
another Tip-Test question.

Lines 544–576 mark up the HttpSession contents and TipTestServlet’s URL
as an XML Document from the DocumentBuilder. Line 544 creates a Document-
Builder, and line 545 creates an XML Document. Lines 548–549 create Element
answer and assign it as the root Element in the Document. Lines 552–554 create
Element correct, which stores whether the user is correct or incorrect. Line 555
assigns Element correct as a child of Element answer. Lines 558–561 and lines
565–568 create Elements correctTipName and correctTipDescription,
which hold the name and description of the correct tip, respectively. Lines 562 and 569
assign these Elements as children of Element answer. Lines 572–575 create Ele-
ment servletName, which holds TipTestServlet’s URL. Line 576 assigns this
Element as a child of Element answer.

When method createXMLTipTestAnswer returns the XML Document (line
578), TipTestServlet must apply an XSLT to this Document and send the resulting
transformation to the client. Line 124 sets the MIME type to text/html, and lines 127–
128 call method applyXSLT to apply XHTMLTipAnswer.xsl (Fig. 12.12) to the XML
Document.

1 <?xml version="1.0"?>
2
3 <!-- XHTMLTipAnswer.xsl -->
4 <!-- XHTML stylesheet -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:output method = "xml" omit-xml-declaration = "no"

10 doctype-system = "DTD/xhtml1-strict.dtd"
11 doctype-public = "-//W3C//DTD XHTML 1.0 Strict//EN"/>
12
13 <!-- specify the root of the XML document -->
14 <!-- that references this stylesheet -->
15 <xsl:template match = "answer">
16 <html xmlns="http://www.w3.org/1999/xhtml">
17
18 <head>
19 <title>Tip Test Answer</title>
20 </head>
21

Fig. 12.12Fig. 12.12Fig. 12.12Fig. 12.12 XHTMLTipAnswer.xsl transforms XML Tip-Test answer to XHTML
document (part 1 of 2).

Chapter 12 Java-Based Wireless Applications Development and J2ME 745

In Fig. 12.12, lines 9–11 specify the DTD using the xsl:output element. Line 15
specifies that Element answer is the root Element in the XML Document that
XHTMLTipAnswer.xsl will transform. Line 16 begins the XHTML document. Line 26
uses Element correct from the XML Document to display whether the user’s selec-
tion is the correct answer. Lines 36 and 47 use Elements correctTipName and cor-
rectTipDescription to display the name and description of the correct tip,
respectively. Line 53 uses Element servletName to provide a link to TipTest-
Servlet so the user can receive another Tip-Test question. Figure 12.21 shows the Tip-
Test answer in Internet Explorer.

22 <body>
23
24 <p>
25 <h1>
26 <xsl:value-of select = "correct"/>
27 </h1>
28 </p>
29
30 <p>
31 <h2>Tip Name</h2>
32 </p>
33
34 <p>
35 <h3>
36 <xsl:value-of select = "correctTipName"/>
37 </h3>
38 </p>
39
40 <p>
41 <h2>Tip Description</h2>
42 </p>
43
44 <p>
45 <h3>
46 <xsl:value-of
47 select = "correctTipDescription"/>
48 </h3>
49 </p>
50
51 <p>
52 <h2>
53 Next Tip
54 </h2>
55 </p>
56
57 </body>
58 </html>
59 </xsl:template>
60 </xsl:stylesheet>

Fig. 12.12Fig. 12.12Fig. 12.12Fig. 12.12 XHTMLTipAnswer.xsl transforms XML Tip-Test answer to XHTML
document (part 2 of 2).

746 Java-Based Wireless Applications Development and J2ME Chapter 12

12.3.2 WAP request

If the Openwave UP simulator made the original get request to TipTestServlet
(Fig. 12.9), lines 202–214 determine that the requesting client is a WAP client. Lines 205–
208 invoke method createXMLTipTestQuestion to create an XML Document that
contains the Tip-Test question. Using the arguments for this method, we specify that the tip
images are in wbmp format and are located in the WAP/images directory of the servlet-
context path. Line 211 sets the MIME type to text/vnd.wap.wml to produce WML
content. Lines 212–213 call method applyXSLT to apply WAPTipQuestion.xsl
(Fig. 12.14) to the XML Document.

Fig. 12.13Fig. 12.13Fig. 12.13Fig. 12.13 Internet Explorer Tip-Test answer output screen.

1 <?xml version="1.0"?>
2
3 <!-- WAPTipQuestion.xsl -->
4 <!-- WAP stylesheet -->
5
6 <xsl:stylesheet
7 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
8 version="1.0">
9

10 <xsl:output method = "xml" omit-xml-declaration = "no"
11 doctype-system = "http://www.wapforum.org/DTD/wml_1.1.xml"
12 doctype-public = "-//WAPFORUM//DTD WML 1.1//EN"/>

Fig. 12.14Fig. 12.14Fig. 12.14Fig. 12.14 WAPTipQuestion.xsl transforms XML Tip-Test question to WML
document (part 1 of 2).

Chapter 12 Java-Based Wireless Applications Development and J2ME 747

13
14 <!-- specify the root of the XML document -->
15 <!-- that references this stylesheet -->
16 <xsl:template match = "question">
17
18 <wml>
19 <card id = "card1" title = "Tip Test">
20
21 <do type = "accept" label = "OK">
22 <go href = "#card2"/>
23 </do>
24
25 <p>
26 <img src = "{image}" height = "55" width = "55"
27 alt = "Tip Image"/>
28 </p>
29
30 </card>
31
32 <card id = "card2" title = "Tip Test">
33 <do type = "accept" label = "Submit">
34 <go method = "post" href = "/advjhtp1/tiptest">
35 <postfield name = "userAnswer"
36 value = "$(question)"/>
37 </go>
38 </do>
39
40 <p>
41 The tip shown on the previous screen is called:
42 </p>
43
44 <p>
45 <select name = "question"
46 iname = "iquestion" ivalue = "1">
47
48 <option value = "0"><xsl:value-of
49 select = "choices/choice[1]"/></option>
50
51 <option value = "1"><xsl:value-of
52 select = "choices/choice[2]"/></option>
53
54 <option value = "2"><xsl:value-of
55 select = "choices/choice[3]"/></option>
56
57 <option value = "3"><xsl:value-of
58 select = "choices/choice[4]"/></option>
59 </select>
60 </p>
61 </card>
62 </wml>
63 </xsl:template>
64 </xsl:stylesheet>

Fig. 12.14Fig. 12.14Fig. 12.14Fig. 12.14 WAPTipQuestion.xsl transforms XML Tip-Test question to WML
document (part 2 of 2).

748 Java-Based Wireless Applications Development and J2ME Chapter 12

In Fig. 12.14, lines 10–12 specify the DTD using the xsl:output element. Line 16
specifies that Element question is the root Element in the XML Document that
WAPTipQuestion.xsl will transform. Line 18 begins the WML document with the
wml element. Lines 19–30 declare the first card—or the page that displays WML con-
tent—that the browser will display. Lines 26–27 display the image associated with the
image Element in the XML Document. The do element (lines 21–23) informs the sim-
ulator to show the second card when the user presses the OK button on the simulator. Lines
32–61 declare the second card onto which the UP simulator places the four possible
answers. Using the choice Elements in the choices Element, lines 45–59 create a
selection list that contains the possible answers. The do element (lines 33–38) informs the
simulator to send the user’s selection to TipTestServlet when the user presses the
Submit button.

Figure 12.15 shows Tip Test after TipTestServlet applies the XSLT to the XML
Document. The image on the left shows the tip image, and the image on the right shows
the user selecting the answer.

Fig. 12.15Fig. 12.15Fig. 12.15Fig. 12.15 Openwave UP simulator Tip-Test question screen. (Image of UP.SDK
courtesy Openwave Systems Inc. Openwave, the Openwave logo, and
UP.SDK are trademarks of Openwave Systems Inc. All rights reserved.)

Chapter 12 Java-Based Wireless Applications Development and J2ME 749

Each selection list item contains a unique value. When the user presses Submit, the UP
simulator posts the selected value to TipTestServlet.TipTestServlet (Fig. 12.9)
invokes method doPost when receiving post data. Lines 132–144 determine that the
request is from the Openwave UP simulator. Lines 135–136 call method createXML-
TipTestAnswer to create an XML Document that stores whether the user is correct, the
name and description of the correct tip and TipTestServlet’s URL. Line 139 sets the
MIME type to text/vnd.wap.wml to produce WML content and lines 157–158 call
applyXSLT to apply WAPTipAnswer.xsl (Fig. 12.16) to the XML Document.

In Fig. 12.16, lines 10–12 specify the DTD using the xsl:output element. Line 16
specifies that Element answer is the root Element in the XML Document that WAP-
TipAnswer.xsl will transform. Line 18 begins the WML document with the wml ele-
ment. Lines 20–48 declare the card (the answer screen) in this WML document. Line 29
uses Element correct from the XML Document to display whether the user’s selec-
tion is the correct answer. Lines 37 and 45 use Elements correctTipName and cor-
rectTipDescription to display the name and description of the correct tip,
respectively. Using Element servletName in the XML Document, the do element
(lines 22–26) provides a link to TipTestServlet, so the user can receive another Tip-
Test question. Figure 12.17 shows the Tip-Test answer in the Openwave UP simulator.

1 <?xml version="1.0"?>
2
3 <!-- WAPTipAnswer.xsl -->
4 <!-- WAP stylesheet -->
5
6 <xsl:stylesheet
7 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
8 version="1.0">
9

10 <xsl:output method = "xml" omit-xml-declaration = "no"
11 doctype-system = "http://www.wapforum.org/DTD/wml_1.1.xml"
12 doctype-public = "-//WAPFORUM//DTD WML 1.1//EN"/>
13
14 <!-- specify the root of the XML document -->
15 <!-- that references this stylesheet -->
16 <xsl:template match = "answer">
17
18 <wml>
19
20 <card id = "card1" title = "Tip Test Answer">
21
22 <do type = "accept" label = "OK">
23 <go method = "get"
24 href = "/advjhtp1/tiptest">
25 </go>
26 </do>
27
28 <p>
29 <xsl:value-of select = "correct"/>
30 </p>

Fig. 12.16Fig. 12.16Fig. 12.16Fig. 12.16 WAPTipAnswer.xsl transforms answer to WML document (part 1 of 2).

750 Java-Based Wireless Applications Development and J2ME Chapter 12

31
32 <p>
33 Tip Name
34 </p>
35
36 <p>
37 <xsl:value-of select = "correctTipName"/>
38 </p>
39
40 <p>
41 Tip Description
42 </p>
43
44 <p>
45 <xsl:value-of select = "correctTipDescription"/>
46 </p>
47
48 </card>
49
50 </wml>
51 </xsl:template>
52 </xsl:stylesheet>

Fig. 12.17Fig. 12.17Fig. 12.17Fig. 12.17 Openwave UP simulator Tip-Test answer screen. (Image of UP.SDK
courtesy Openwave Systems Inc. Openwave, the Openwave logo, and
UP.SDK are trademarks of Openwave Systems Inc. All rights reserved.)

Fig. 12.16Fig. 12.16Fig. 12.16Fig. 12.16 WAPTipAnswer.xsl transforms answer to WML document (part 2 of 2).

Chapter 12 Java-Based Wireless Applications Development and J2ME 751

12.3.3 Pixo i-mode request
If the Pixo browser made the original get request to TipTestServlet (Fig. 12.9), lines
217–229 determine that the requesting client is an i-mode client. Lines 220–223 invoke
method createXMLTipTestQuestion to create the XML Document that contains
the Tip Test question. Using the arguments for this method, we specify that the tip images
are in gif format and are located in the iMode/images directory of the servlet-context
path. Line 226 sets the MIME type to text/html to produce cHTML content. Lines 227–
228 call method applyXSLT to apply IMODETipQuestion.xsl (Fig. 12.18) to the
XML Document.

1 <?xml version="1.0"?>
2
3 <!-- IMODETipQuestion.xsl -->
4 <!-- i-mode stylesheet -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:output method = "html" omit-xml-declaration = "yes"

10 doctype-public = "-//W3C//DTD Compact HTML 1.0 Draft//EN"/>
11
12 <!-- specify the root of the XML document -->
13 <!-- that references this stylesheet -->
14 <xsl:template match = "question">
15 <html>
16
17 <head>
18 <title>Tip Test</title>
19 </head>
20
21 <body>
22
23 <p>
24
25 <!-- display image -->
26 <img name = "image" height = "40"
27 width = "40" alt = "Tip Image"
28 src = "{image}">
29
30 </p>
31
32 <p>
33 What is the name of the icon shown?
34 </p>
35
36 <p>
37
38 <!-- create a form with four checkboxes -->
39 <form method = "post"
40 action = "/advjhtp1/tiptest">

Fig. 12.18Fig. 12.18Fig. 12.18Fig. 12.18 IMODETipQuestion.xsl transforms XML Tip-Test question to cHTML
document (part 1 of 2).

752 Java-Based Wireless Applications Development and J2ME Chapter 12

In Fig. 12.18, lines 9–10 specify the DTD using the xsl:output element. Line 14
specifies that Element question is the root Element in the XML Document that

41
42 <!-- build a table for the options -->
43 <table>
44 <tr>
45 <td>
46 <input type = "radio"
47 name = "userAnswer" value = "0">
48 </input>
49 <xsl:value-of select =
50 "choices/choice[1]"/>
51 </td>
52
53 <td>
54 <input type = "radio"
55 name = "userAnswer" value = "1">
56 </input>
57 <xsl:value-of select =
58 "choices/choice[2]"/>
59 </td>
60 </tr>
61
62 <tr>
63 <td>
64 <input type = "radio"
65 name = "userAnswer" value = "2">
66 </input>
67 <xsl:value-of select =
68 "choices/choice[3]"/>
69 </td>
70
71 <td>
72 <input type = "radio"
73 name = "userAnswer" value = "3">
74 </input>
75 <xsl:value-of select =
76 "choices/choice[4]"/>
77 </td>
78 </tr>
79 </table>
80
81 <input type = "submit" value = "Submit"/>
82 </form>
83 </p>
84
85 </body>
86 </html>
87 </xsl:template>
88 </xsl:stylesheet>

Fig. 12.18Fig. 12.18Fig. 12.18Fig. 12.18 IMODETipQuestion.xsl transforms XML Tip-Test question to cHTML
document (part 2 of 2).

Chapter 12 Java-Based Wireless Applications Development and J2ME 753

IMODETipQuestion.xsl will transform. Line 15 begins the cHTML document with
the html element. Lines 21–85 contain the body element that stores the tip image and the
four possible answers. Lines 26–29 display the image associated with the image Element
in the XML Document. Lines 39–82 create a form for the four possible answers. Lines
46–76 create four radio buttons associated with these answers. Line 81 creates a Submit
button so the user can submit the choice.

Figure 12.19 shows Tip Test in action after TipTestServlet applies the XSLT to
the XML Document. The image on the left shows the user selecting the answer, and the
image on the right shows the user about to submit the answer.

Each radio button in the cHTML document contains a unique value, so when the user
presses Submit, the Pixo browser posts the selected value to TipTestServlet.
TipTestServlet invokes method doPost upon receiving post data. Lines 147–159
determine that the request is from the Pixo browser. Lines 150–151 call method createXM-
LTipTestAnswer to create an XML Document that stores whether the user is correct,
the name and description of the correct tip, and TipTestServlet’s URL. Line 154 sets
the MIME type to text/html to produce cHTML content, and lines 157–158 call method
applyXSLT to apply IMODETipAnswer.xsl (Fig. 12.20) to the XML Document.

In Fig. 12.20, lines 9–10 specify the DTD using the xsl:output element. Line 14
specifies that Element answer is the root Element in the XML Document that
IMODETipAnswer.xsl will transform. Line 15 begins the cHTML document with the
html element. Line 25 uses Element correct from the XML Document to display
whether the user’s selection is correct. Lines 35 and 45–46 use Elements correctTip-
Name and correctTipDescription to display the name and description of the cor-
rect tip, respectively. Using Element servletName, line 52 provides a link to
TipTestServlet, so the user can receive another Tip-Test question. Figure 12.21
shows the Tip-Test answer on the Pixo i-mode browser.

Fig. 12.19Fig. 12.19Fig. 12.19Fig. 12.19 Pixo i-mode browser Tip-Test question screen. (Courtesy of Pixo, Inc.)

754 Java-Based Wireless Applications Development and J2ME Chapter 12

1 <?xml version="1.0"?>
2
3 <!-- IMODETipAnswer.xsl -->
4 <!-- i-mode stylesheet -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:output method = "html" omit-xml-declaration = "yes"

10 doctype-public = "-//W3C//DTD Compact HTML 1.0 Draft//EN"/>
11
12 <!-- specify the root of the XML document -->
13 <!-- that references this stylesheet -->
14 <xsl:template match = "answer">
15 <html>
16
17 <head>
18 <title>Tip Test Answer</title>
19 </head>
20
21 <body>
22
23 <p>
24 <h1>
25 <xsl:value-of select = "correct"/>
26 </h1>
27 </p>
28
29 <p>
30 <h2>Tip Name</h2>
31 </p>
32
33 <p>
34 <h3>
35 <xsl:value-of select = "correctTipName"/>
36 </h3>
37 </p>
38
39 <p>
40 <h2>Tip Description</h2>
41 </p>
42
43 <p>
44 <h3>
45 <xsl:value-of
46 select = "correctTipDescription"/>
47 </h3>
48 </p>
49
50 <p>
51 <h2>
52 Next Tip

Fig. 12.20Fig. 12.20Fig. 12.20Fig. 12.20 IMODETipAnswer.xsl transforms XML Tip-Test answer to cHTML
document.

Chapter 12 Java-Based Wireless Applications Development and J2ME 755

12.3.4 J2ME client request

TipTestServlet behaves differently if a J2ME client made the get request.
TipTestServlet does not use XML for the J2ME client, because currently, a J2ME cli-
ent cannot interpret XML data without using proprietary software. Sun Microsystems
claims that “it is not yet clear how far in the future this Java-XML nirvana is, but we can
say that WAP 2.0 will use XHTML as its markup… We will see thousands, then millions,
of devices using XHTML in consumers’ hands in the not too distant future.”3

53 </h2>
54 </p>
55
56 </body>
57 </html>
58 </xsl:template>
59 </xsl:stylesheet>

Fig. 12.21Fig. 12.21Fig. 12.21Fig. 12.21 Pixo i-mode browser Tip-Test answer screen. (Courtesy of Pixo, Inc.)

3. Day, B., “Developing Wireless Applications using Java™ 2 Platform, Micro Edition (J2ME™),”
developer.java.sun.com/developer/products/wireless/getstart/articles/wirelessdev/wireless-
dev.pdf, June 2001.

Fig. 12.20Fig. 12.20Fig. 12.20Fig. 12.20 IMODETipAnswer.xsl transforms XML Tip-Test answer to cHTML
document.

756 Java-Based Wireless Applications Development and J2ME Chapter 12

We do not use XML for the J2ME client, so TipTestServlet does not send
marked up data to our J2ME client. We could have used an XSLT to generate the plain
text, but we chose not to for two reasons. Firstly, plain text is not well-formed and defeats
the purpose of using XSLT, which should create well-formed documents. Secondly, the
ResultSet in TipTestServlet already contains plain text, so converting the text
to an XML Document, then converting the Document back to text, is convoluted.

In TipTestServlet (Fig. 12.9), lines 232–235 determine that a J2ME client
made the request and invoke method sendJ2MEClientResponse (lines 344–390).
Line 349 calls method getResultTable to convert the ResultSet into a two-
dimensional array of Strings—resultTable, so we have instant access to database
contents. Line 352 creates a Random object, which allows TipTestServlet to gen-
erate randomly the tip image and tip questions to display. Line 355 passes the Random
object to method getRandomIndices, which returns an array of four integers—each
integer is a distinct, randomly generated index that corresponds to a tip in result-
Table.

Lines 358–359 randomly select an integer from randomRow—this integer is the
“correct” answer in the game—specifically, this integer represents the row in result-
Table that holds the information for the correct tip. Using the correct answer, line 361
determines the row in resultTable that contains the name and description of the cor-
rect tip. TipTestServlet stores this information in an HttpSession object (line
364), so when the J2ME client sends the user’s selection back to the server, TipTest-
Servlet can check the user’s selection against the correct answer stored in the
HttpSession object. Lines 367–376 store the correct answer and the tip name and
description in the HttpSession object. Using the correct answer, lines 379–380 deter-
mine the proper image to send to the J2ME client. Line 382 sets the MIME type to
text/plain, because J2ME clients interprets plain text. Line 383 creates a Print-
Writer object through which TipTestServlet sends the data to the J2ME client.
Line 384 sends the name of the tip image, and lines 387–388 send the four tip abbrevia-
tions to the client. Section 12.4.3 discusses in detail how the J2ME client displays the Tip
Test and exchanges data between itself and TipTestServlet. Figure 12.22 shows a
sample output after TipTestServlet sends the Tip-Test question to the J2ME client.
The image on the left shows the tip image, and the image on the right shows the user
selecting an answer.

When the client sends the user’s selection, TipTestServlet invokes method
doPost. Lines 162–164 determine that the request is from the J2ME client and call
method sendJ2MEAnswer (lines 592–629). Lines 596–597 use a BufferedReader
object to read the user’s selection from the client. Line 600 sets the MIME type to text/
plain, and line 601 gets a PrintWriter object through which TipTestServlet
sends content. Line 604 retrieves the HttpSession that stores the correct tip answer,
name and description—lines 607–617 extract this information from this HttpSes-
sion. Lines 620–623 match the user’s selection with the correct tip answer and deter-
mine if the user is correct. Using the PrintWriter object, lines 626–627 send the
correct tip name and description to the client. Figure 12.23 shows the answer screen on
the Sun MIDP-device emulator. The picture on the left shows the screen that contains the
correct tip name and description. When the user scrolls down on this screen, the user will
see the picture on the right, which shows the remainder of the tip description.

Chapter 12 Java-Based Wireless Applications Development and J2ME 757

12.4 Java 2 Micro Edition
This section introduces Java 2 Micro Edition (J2ME™)—a platform that enables develop-
ers to write applications for various consumer devices, such as set-top boxes, Web termi-

Fig. 12.22Fig. 12.22Fig. 12.22Fig. 12.22 J2ME client Tip-Test question screen. (Courtesy of Sun Microsystems, Inc.)

Fig. 12.23Fig. 12.23Fig. 12.23Fig. 12.23 J2ME client Tip-Test answer screen. (Courtesy of Sun Microsystems, Inc.)

758 Java-Based Wireless Applications Development and J2ME Chapter 12

nals, embedded systems, mobile phones and cell pagers. We discuss the Connected Limited
Device Configuration (CLDC) and the Mobile Information Device Profile (MIDP), which
offer developers a set of APIs to write J2ME applications—called MIDlets—and deploy
them across several mobile devices. We then discuss the lifecycle of a MIDlet and explain
how we use J2ME in our case study.

12.4.1 Connected Limited Device Configuration (CLDC)

The Connected Limited Device Configuration (CLDC) is a set of APIs that allow develop-
ers to create applications for devices that have limited resources—i.e., limited screen size,
memory, power and bandwidth. The J2ME CLDC contains both a virtual machine—an in-
terpreter that runs applications—and a set of classes that developers can use to develop and
run programs on resource-limited devices. The KVM—the virtual machine offered by the
CLDC—runs J2ME applications (as the JVM runs J2SE applications). The “K” in KVM
represents the word “kilo,” because J2ME applications are small enough to be measured in
kilobytes.

The J2ME CLDC contains packages java.io, java.lang, java.util that
developers use to perform such common operations as creating primitive data types, using
simple data structures and sending and receiving data from networks. These packages are
subsets of the J2SE packages java.io, java.lang and java.util—that is, the
J2ME CLDC packages do not contain every class from the J2SE packages. Figure 12.24
lists the J2ME java.io, java.lang and java.util packages. To conserve space,
we did not include exception or error classes. For the complete J2ME CLDC class list, visit
java.sun.com/j2me/docs/pdf/cldcapi.pdf.

Classes java.io java.lang java.util

Interfaces DataInput
DataOutput

Runnable Enumeration

Classes ByteArrayInputStream
ByteArrayOutputStream
DataInputStream
DataOutputStream
InputStream
InputStreamReader
OutputStream
OutputStreamReader
PrintStream
Reader
Writer

Boolean
Byte
Character
Class
Integer
Long
Math
Object
Runtime
Short
String
StringBuffer
System
Thread
Throwable

Calendar
Data
Hashtable
Random
Stack
Timer
TimerTask
TimeZone
Vector

Fig. 12.24Fig. 12.24Fig. 12.24Fig. 12.24 J2ME java.io, java.lang and java.util packages.

Chapter 12 Java-Based Wireless Applications Development and J2ME 759

Common Programming Error 12.1
Attempting to use J2SE packages in the KVM will result in a compilation error—the KVM
cannot handle the volume of classes due to KVM’s limited resources. 12.1

One challenge of J2ME programming is that the API does not contain certain data
types and classes that developers often “take for granted” in other Java platforms. For
example, J2ME does not include floating-point operations, serializable objects, thread
groups or JNI (Java Native Interface). As wireless-device technology advances, it is pos-
sible that future versions of J2ME will support those features.

12.4.2 Mobile Information Device Profile (MIDP)
The Mobile Information Device Profile (MIDP) is a set of APIs that allow developers to
handle mobile-device-specific issues, such as creating user interfaces, permitting local
storage and defining the lifecycles of MIDP client applications (MIDlets). Devices that
run applications using the MIDP are called MIDP devices. Such devices include cell
phones or pagers.

 MIDP contains packages javax.microedition.lcdui, javax.microedi-
tion.io, javax.microedition.rms and javax.microedition.midlet.
Package javax.microedition.lcdui contains classes that allow developers to con-
struct user-interfaces for MIDlets, package javax.microedition.io enables net-
working between MIDlets and other systems, package javax.microedition.rms
contains classes that permit local storage, and package javax.microedi-
tion.midlet defines the MIDlet lifecycle. Figure 12.26 lists the MIDP
javax.microedition.lcdui and javax.microedition.io packages.
Figure 12.26 lists the MIDP javax.microedition.rms and javax.microedi-
tion.midlet packages. To conserve space, we did not include exception or error
classes. For the complete J2ME MIDP class list, visit

java.sun.com/products/midp/midp-wirelessapps-wp.pdf

Classes javax.microedition.lcdui javax.microedition.io

Interfaces Choice
CommandListener
ItemListener

Connection
ContentConnection
Datagram
DatagramConnection
HttpConnection
InputConnection
OutputConnection
StreamConnection
StreamConnectionNotifier

Fig. 12.25Fig. 12.25Fig. 12.25Fig. 12.25 MIDP javax.microedition.lcdui and
javax.microedition.io packages (part 1 of 2).

760 Java-Based Wireless Applications Development and J2ME Chapter 12

To run a MIDP application, a MIDP device requires a monochrome display of at least
96 pixels x 54 pixels, a two-way wireless network, some input device (such as a one-handed
keypad or touch screen), at least 128 kilobytes for CLDC/MIDP classes and at least 32 kilo-
bytes for the KVM. A MIDlet will run on any device that meets these requirements.

Classes Alert
AlertType
Canvas
ChoiceGroup
Command
DateField
Display
Displayable
Font
Form
Gauge
Graphics
Image
ImageItem
Item
List
Screen
ScreenItem
TextBox
TextField
Ticker

Connector

Classes javax.microedition.rms javax.microedition.midlet

Interfaces RecordComparator
RecordEnumeration
RecordFilter
RecordListener

Classes RecordStore MIDlet

Fig. 12.26Fig. 12.26Fig. 12.26Fig. 12.26 MIDP javax.microedition.rms and
javax.microedition.midlet packages.

Classes javax.microedition.lcdui javax.microedition.io

Fig. 12.25Fig. 12.25Fig. 12.25Fig. 12.25 MIDP javax.microedition.lcdui and
javax.microedition.io packages (part 2 of 2).

Chapter 12 Java-Based Wireless Applications Development and J2ME 761

12.4.3 TipTestMIDlet Overview
In Section 12.3.4, we discussed how a servlet sends data to a J2ME client called a MIDlet.
We discussed that MIDlets cannot interpret XML documents without proprietary software
packages and must receive all information through streams or PrintReader objects.
This section defines a MIDlet more specifically, discusses the MIDlet lifecycle and intro-
duces TipTestMIDlet—the MIDlet in our case study.

A MIDlet is a Mobile Information Device application that runs on a MIDP device. The
name is similar to the terms “applet” and “servlet,” because these applications share similar
characteristics—for example, each has a lifecycle and occupies various states during pro-
gram execution. Also, the developer does not invoke a constructor for objects of these
classes (Applet, HttpServlet and MIDlet) explicitly to instantiate these objects. We
discussed in Section 9.2.1 that a servlet container loads the servlet into memory—normally
in response to the first request that servlet receives. MIDlets are loaded in a similar manner.
MIDP developers store several MIDlets in a jar file—called a MIDlet suite—on a server.
The MIDP device contains a program called the application management software (AMS),
which downloads the MIDlet suite from the server, opens the MIDlet suite, then launches
the user-specified MIDlet on the MIDP device.

The AMS uses an application descriptor file to load the MIDlet application. This file,
which has a .jad extension, contains information such as the MIDlets in the MIDlet suite,
the MIDlet suite’s size and URL, each MIDlet’s name, vendor and version, and the MIDP
device’s profile and configuration. The AMS uses this information to ensure that the
MIDlet application will run on the given MIDP device. Both the J2ME Wireless Toolkit
and Forte create this file when creating a new MIDlet suite (see Section 12.5). The code
below shows the structure of TipTestMIDlet’s application descriptor file.

MIDlet-1: TipTestMIDlet, TipTestMIDlet.png,
 com.deitel.advjhtp1.wireless.TipTestMIDlet
MIDlet-Jar-Size: 9577
MIDlet-Jar-URL: TipTestMIDlet.jar
MIDlet-Name: TipTestMIDlet
MIDlet-Vendor: Sun Microsystems
MIDlet-Version: 1.0
MicroEdition-Configuration:CLDC-1.0
MicroEdition-Profile:MIDP-1.0

Figure 12.27 shows the TipTestMIDlet. Before we discuss how TipTest-
MIDlet retrieves information from the server, we must discuss the lifecycle of a MIDlet.
Every MIDlet must extend class MIDlet (line 13) from package javax.microedi-
tion.midlet (line 9). The lifecycle begins when the AMS calls the MIDlet’s con-
structor (lines 43–75) to launch the MIDlet. The MIDlet then enters a paused state, so it
cannot accept user input or display screens created by the developer. When the constructor
finishes, the AMS calls method startApp (lines 78–82), which places the MIDlet in the
active state, allowing the MIDlet to display content and accept user input. The MIDlet then
waits for user input or another notification from the AMS. If the AMS calls method
pauseApp (line 85), the MIDlet returns to the “paused state.” When the MIDlet is paused,
the AMS must call method startApp to enable the MIDlet to reenter the active state. If
the AMS calls method destroyApp (line 88) to clear the device’s memory for another
application, the MIDlet’s execution terminates. Methods startApp, pauseApp and

762 Java-Based Wireless Applications Development and J2ME Chapter 12

destroyApp are abstract methods of class MIDlet, so every MIDlet subclass must
override these methods.

Line 6 imports the J2ME CLDC I/O package that enable TipTestMIDlet to send
and receive data from the servlets. Lines 9–11 import the MIDP packages for defining the
MIDlet lifecycle, creating user interfaces and networking. J2ME divides the user-interface
API between low-level and high-level APIs. The low-level API allows developers to incor-
porate graphics and shapes at precise pixel locations and to provide animation for applica-
tions such as games. The high-level user-interface API allows developers to incorporate
text-fields, lists, forms and images for programs such as e-commerce applications and basic
user interfaces.

1 // TipTestMIDlet.java
2 // Receives TipTest from Servlet
3 package com.deitel.advjhtp1.wireless;
4
5 // J2ME Java package subset
6 import java.io.*;
7
8 // J2ME packages
9 import javax.microedition.midlet.*;

10 import javax.microedition.lcdui.*;
11 import javax.microedition.io.*;
12
13 public class TipTestMIDlet extends MIDlet {
14
15 private Display display; // display manager
16
17 // Screens displayed to user
18 private List mainScreen;
19 private List welcomeScreen;
20 private Form infoScreen;
21 private Form tipScreen;
22 private Form answerScreen;
23
24 // actions for soft-buttons
25 private Command selectCommand;
26 private Command nextCommand;
27 private Command backCommand;
28
29 private static final String servletBaseURL =
30 "http://localhost:8080/advjhtp1/";
31
32 private static final String welcomeServletName = "welcome";
33
34 // welcome servlet determines tip test servlet name
35 private String tipTestServletName;
36
37 private static final String welcomeServletURL =
38 servletBaseURL + welcomeServletName;

Fig. 12.27Fig. 12.27Fig. 12.27Fig. 12.27 TipTestMIDlet downloads Tip Test from TipTestServlet (part 1
of 11).

Chapter 12 Java-Based Wireless Applications Development and J2ME 763

39
40 private String sessionID;
41
42 // constructor initializes display and main Screen
43 public TipTestMIDlet()
44 {
45 // create soft button commands
46 selectCommand = new Command("Select", Command.OK, 0);
47 nextCommand = new Command("Next Tip", Command.OK, 0);
48 backCommand = new Command("Back", Command.BACK, 1);
49
50 // create main screen allowing welcome servlet connection
51 mainScreen = new List("TipTestMIDlet", List.IMPLICIT);
52 mainScreen.addCommand(selectCommand);
53
54 // allow soft button access for mainScreen
55 mainScreen.setCommandListener(
56 new CommandListener() {
57
58 // invoked when user presses soft button
59 public void commandAction(
60 Command command, Displayable displayable)
61 {
62 // get data from welcome servlet
63 String data = getServerData(welcomeServletURL);
64
65 // create welcome Screen using servlet data
66 display.setCurrent(createWelcomeScreen(data));
67 }
68
69 } // end anonymous inner class
70);
71
72 // get appropriate Display for device
73 display = Display.getDisplay(this);
74
75 } // end TipTestMIDlet constructor
76
77 // start MIDlet
78 public void startApp()
79 {
80 // set display to main Screen
81 display.setCurrent(mainScreen);
82 }
83
84 // pause MIDlet
85 public void pauseApp() {}
86
87 // destroy MIDlet
88 public void destroyApp(boolean unconditional) {}

Fig. 12.27Fig. 12.27Fig. 12.27Fig. 12.27 TipTestMIDlet downloads Tip Test from TipTestServlet (part 2
of 11).

764 Java-Based Wireless Applications Development and J2ME Chapter 12

89
90 // create "welcome" Screen introducing tip test
91 private Screen createWelcomeScreen(String data)
92 {
93 String list[] = parseData(data, ';');
94
95 // create Screen welcoming user to tip test
96 welcomeScreen = new List(list[0], List.IMPLICIT);
97
98 welcomeScreen.append("Take TipTest", null);
99 welcomeScreen.addCommand(selectCommand);
100 welcomeScreen.addCommand(backCommand);
101
102 // get URL of information page
103 final String url = new String(list[1].toCharArray());
104
105 // allow soft button access for welcomeScreen
106 welcomeScreen.setCommandListener(
107 new CommandListener() {
108
109 // invoked when user presses soft button
110 public void commandAction(
111 Command command, Displayable displayable)
112 {
113 // soft button pressed is SELECT button
114 if (command.getCommandType() == Command.OK) {
115
116 // get data from static page
117 String data =
118 getServerData(servletBaseURL + url);
119
120 // display this data
121 display.setCurrent(
122 createInformationScreen(data));
123 }
124
125 // soft button pressed is BACK button
126 else if (command.getCommandType() ==
127 Command.BACK) {
128 display.setCurrent(mainScreen);
129 }
130
131 } // end method commandAction
132
133 } // end anonymous inner class
134);
135
136 return welcomeScreen;
137
138 } // end method createWelcomeScreen

Fig. 12.27Fig. 12.27Fig. 12.27Fig. 12.27 TipTestMIDlet downloads Tip Test from TipTestServlet (part 3
of 11).

Chapter 12 Java-Based Wireless Applications Development and J2ME 765

139
140 // create Screen showing servlets to which client can connect
141 private Screen createInformationScreen(String data)
142 {
143 String list[] = parseData(data, ';');
144
145 // create Form showing available servlets
146 infoScreen = new Form("Information");
147
148 // create StringItem that provides directions
149 StringItem infoTitle = new StringItem(list[0], null);
150 infoScreen.append(infoTitle);
151
152 // create ChoiceGroup allowing user to select servlet
153 final ChoiceGroup choices = new ChoiceGroup("",
154 ChoiceGroup.EXCLUSIVE);
155 choices.append(list[1], null);
156
157 // append ChoiceGroup to Form
158 infoScreen.append(choices);
159
160 infoScreen.addCommand(selectCommand);
161 infoScreen.addCommand(backCommand);
162
163 // allow soft button access for this Screen
164 infoScreen.setCommandListener(
165 new CommandListener() {
166
167 // invoked when user presses soft button
168 public void commandAction(
169 Command command, Displayable displayable)
170 {
171 // soft button pressed is SELECT button
172 if (command.getCommandType() == Command.OK) {
173
174 // user chooses which servlet to connect
175 int selectedIndex = choices.getSelectedIndex();
176
177 tipTestServletName =
178 choices.getString(selectedIndex);
179
180 // connect to servlet and receive data
181 String data = getServerData(servletBaseURL +
182 tipTestServletName);
183
184 // display next Screen according to data
185 display.setCurrent(createTipTestScreen(
186 servletBaseURL + data));
187 }
188

Fig. 12.27Fig. 12.27Fig. 12.27Fig. 12.27 TipTestMIDlet downloads Tip Test from TipTestServlet (part 4
of 11).

766 Java-Based Wireless Applications Development and J2ME Chapter 12

189 // soft button pressed is BACK button
190 else if (command.getCommandType() == Command.BACK)
191 display.setCurrent(welcomeScreen);
192
193 } // end method commandAction
194
195 } // end anonymous inner class
196);
197
198 return infoScreen;
199
200 } // end method createInformationScreen
201
202 // create Screen to display Tip Test
203 private Screen createTipTestScreen(String data)
204 {
205 // parse server data
206 String list[] = parseData(data, '\n');
207
208 // create new Form to display test
209 tipScreen = new Form("Tip Test");
210
211 // create image from server data
212 Image serverImage = getServerImage(list[0]);
213
214 // append image to Form
215 if (serverImage != null)
216 tipScreen.append(serverImage);
217
218 String choiceList[] = new String[4];
219
220 // construct list for ChoiceGroup from data
221 for (int i = 0; i < choiceList.length; i++)
222 choiceList[i] = list[i + 1];
223
224 // create ChoiceGroup allowing user to input choice
225 final ChoiceGroup choices = new ChoiceGroup("Tip Test",
226 ChoiceGroup.EXCLUSIVE, choiceList, null);
227
228 // append ChoiceGroup to Form
229 tipScreen.append(choices);
230
231 tipScreen.addCommand(selectCommand);
232
233 // allow soft button access for this Screen
234 tipScreen.setCommandListener(
235 new CommandListener() {
236
237 // invoked when user presses soft button
238 public void commandAction(
239 Command command, Displayable displayable)
240 {

Fig. 12.27Fig. 12.27Fig. 12.27Fig. 12.27 TipTestMIDlet downloads Tip Test from TipTestServlet (part 5
of 11).

Chapter 12 Java-Based Wireless Applications Development and J2ME 767

241 // send user selection to servlet
242 int selection = choices.getSelectedIndex();
243
244 String result = postData(selection);
245
246 // display results
247 display.setCurrent(
248 createAnswerScreen(result));
249 }
250
251 } // end anonymous inner class
252);
253
254 return tipScreen;
255
256 } // end method createTipTestScreen
257
258 // create Screen to display Tip Test answer and results
259 private Screen createAnswerScreen(String data)
260 {
261 // parse server data
262 String list[] = parseData(data, '\n');
263
264 // create new Form to display test answers
265 answerScreen = new Form(list[0]);
266
267 // create StringItem showing tip name
268 StringItem tipNameItem =
269 new StringItem("Tip Name:\n", list[1]);
270
271 // create StringItem showing tip description
272 StringItem tipDescriptionItem =
273 new StringItem("\nTip Description:\n", list[2]);
274
275 // append StringItems to Form
276 answerScreen.append(tipNameItem);
277 answerScreen.append(tipDescriptionItem);
278
279 answerScreen.addCommand(nextCommand);
280
281 // allow soft button access for this Screen
282 answerScreen.setCommandListener(
283 new CommandListener() {
284
285 // invoked when user presses soft button
286 public void commandAction(
287 Command command, Displayable displayable)
288 {
289 // get next question
290 String data = getServerData(servletBaseURL +
291 tipTestServletName);
292

Fig. 12.27Fig. 12.27Fig. 12.27Fig. 12.27 TipTestMIDlet downloads Tip Test from TipTestServlet (part 6
of 11).

768 Java-Based Wireless Applications Development and J2ME Chapter 12

293 // display next question
294 display.setCurrent(createTipTestScreen(
295 servletBaseURL + data));
296 }
297
298 } // end anonymous inner class
299);
300
301 return answerScreen;
302
303 } // end method createAnswerScreen
304
305 // sends user's test selection to servlet
306 private String postData(int selection)
307 {
308 // connect to server, then post data
309 try {
310
311 // connect to server sending User-Agent header
312 HttpConnection httpConnection =
313 (HttpConnection) Connector.open(
314 servletBaseURL + tipTestServletName,
315 Connector.READ_WRITE);
316
317 setUserAgentHeader(httpConnection);
318
319 // send sessionID, if one exists
320 if (sessionID != null)
321 httpConnection.setRequestProperty(
322 "cookie", sessionID);
323
324 // inform servlet of post request
325 httpConnection.setRequestMethod(HttpConnection.POST);
326
327 // open output stream to servlet
328 DataOutputStream out =
329 httpConnection.openDataOutputStream();
330
331 // send selection
332 out.writeUTF(Integer.toString(selection));
333 out.flush();
334
335 // get result from servlet
336 String data = getData(httpConnection);
337
338 httpConnection.close(); // close connection
339
340 return data;
341
342 } // end try
343

Fig. 12.27Fig. 12.27Fig. 12.27Fig. 12.27 TipTestMIDlet downloads Tip Test from TipTestServlet (part 7
of 11).

Chapter 12 Java-Based Wireless Applications Development and J2ME 769

344 // handle if MIDlet cannot open HTTP connection
345 catch (IOException ioException) {
346 ioException.printStackTrace();
347 }
348
349 return null;
350
351 } // end method postData
352
353 // string tokenizer parses String into sub-string array
354 private String[] parseData(String data, char delimiter)
355 {
356 int newLines = 0;
357
358 // determine number of delimiter characters in String
359 for (int i = 0; i < data.length(); i++)
360
361 // increase number of delimiters by one
362 if (data.charAt(i) == delimiter)
363 newLines++;
364
365 // create new String array
366 String list[] = new String[newLines];
367
368 int oldNewLineIndex = 0;
369 int currentNewLineIndex;
370
371 // store Strings into array based on demiliter
372 for (int i = 0; i < newLines; i++) {
373
374 // determine index where delimiter occurs
375 currentNewLineIndex =
376 data.indexOf(delimiter, oldNewLineIndex);
377
378 // extract String within delimiter characters
379 list[i] = data.substring(oldNewLineIndex,
380 currentNewLineIndex - 1);
381
382 oldNewLineIndex = currentNewLineIndex + 1;
383 }
384
385 return list;
386
387 } // end method parseData
388
389 // connect to server and receive data
390 private String getServerData(String serverUrl)
391 {
392 // connect to server, then get data
393 try {
394

Fig. 12.27Fig. 12.27Fig. 12.27Fig. 12.27 TipTestMIDlet downloads Tip Test from TipTestServlet (part 8
of 11).

770 Java-Based Wireless Applications Development and J2ME Chapter 12

395 // connect to server sending User-Agent header
396 HttpConnection httpConnection =
397 (HttpConnection) Connector.open(serverUrl);
398 setUserAgentHeader(httpConnection);
399
400 // send sessionID to server
401 if (sessionID != null)
402 httpConnection.setRequestProperty(
403 "cookie", sessionID);
404
405 // get sessionID from server
406 String sessionIDHeaderField =
407 httpConnection.getHeaderField("Set-cookie");
408
409 // store sessionID from cookie
410 if (sessionIDHeaderField != null) {
411 int index = sessionIDHeaderField.indexOf(';');
412 sessionID =
413 sessionIDHeaderField.substring(0, index);
414 }
415
416 // receive server data
417 String data = getData(httpConnection);
418
419 httpConnection.close(); // close connection
420
421 return data;
422
423 } // end try
424
425 // handle exception communicating with HTTP server
426 catch (IOException ioException) {
427 ioException.printStackTrace();
428 }
429
430 return null;
431
432 } // end method getServerData
433
434 // downloads an image from a server
435 private Image getServerImage(String imageUrl)
436 {
437 // download image
438 try {
439
440 // open connection to server
441 HttpConnection httpConnection =
442 (HttpConnection) Connector.open(imageUrl);
443
444 int connectionSize = (int) httpConnection.getLength();
445 byte imageBytes[] = new byte[connectionSize];
446

Fig. 12.27Fig. 12.27Fig. 12.27Fig. 12.27 TipTestMIDlet downloads Tip Test from TipTestServlet (part 9
of 11).

Chapter 12 Java-Based Wireless Applications Development and J2ME 771

447 // read image from server
448 InputStream input = httpConnection.openInputStream();
449 input.read(imageBytes);
450
451 // create image from imageBytes
452 return
453 Image.createImage(imageBytes, 0, connectionSize);
454 }
455
456 // handle exception if InputStream cannot input bytes
457 catch (IOException ioException) {
458 ioException.printStackTrace();
459 }
460
461 return null;
462
463 } // end method getServerImage
464
465 // set User-Agent header to identify client to servlet
466 private void setUserAgentHeader(
467 HttpConnection httpConnection)
468 {
469 // set User-Agent header
470 try {
471
472 // use profile/configuration properties for User-Agent
473 String userAgentHeader = "Profile=" +
474 System.getProperty("microedition.profiles") +
475 " Configuration=" +
476 System.getProperty("microedition.configuration");
477
478 // set header
479 httpConnection.setRequestProperty(
480 "User-Agent", userAgentHeader);
481 }
482
483 // handle exception getting request property
484 catch (IOException ioException) {
485 ioException.printStackTrace();
486 }
487
488 } // end method setUserAgentHeader
489
490 // open DataInputStream to receive data
491 private String getData(HttpConnection httpConnection)
492 throws IOException
493 {
494 String data = ""; // stores data
495

Fig. 12.27Fig. 12.27Fig. 12.27Fig. 12.27 TipTestMIDlet downloads Tip Test from TipTestServlet (part 10
of 11).

772 Java-Based Wireless Applications Development and J2ME Chapter 12

Figure 12.28 shows a portion of the J2ME user-interface API. Each rectangle represents
a class in the API. Each class with its name placed in italics is abstract, and the arrows repre-
sent inheritance relationships (an arrow points to the superclass). In the J2ME user-interface
API, abstract superclass Displayable represents content that a MIDP-device can display
on screen. The abstract superclasses Screen and Canvas both inherit from class Dis-
playable and represent the high-level and low-level displayable content, respectively.
Classes Alert, Form, TextBox and List are concrete subclasses of class Screen. An
Alert is a Screen that the MIDlet displays for a brief period before displaying another
Screen. A Form aggregates text-fields, images and group of selectable items for the user.
A TextBox enables the user to input and edit text. A List is a list of Strings from which
the user can select using the MIDP device’s keypad. Our case study uses classes Form and
List to display information on screen. Class Canvas does not contain any subclasses. To
use a Canvas, first create a concrete class that extends class Canvas, then override its
paint method to draw graphics to the Canvas. Our case study incorporates only high-level
user-interface classes, so we do not discuss how to use class Canvas.

Portability Tip 12.1
The J2ME low-level user-interface API helps developers create more visually appealing
screens than does the high-level API. However, the low-level API does not guarantee layout
congruity among several devices with different screen sizes. The high-level API provides a
more consistent layout among devices. 12.1

 Line 15 of class TipTestMIDlet declares an instance of class Display, which
acts as a display manager for a MIDlet. A MIDlet must contain exactly one Display to
display any Displayable object. Class Display is an example of the Singleton design
pattern, which guarantees that a system instantiates a maximum of one object of a class.
Occasionally, a system should contain exactly one object of a class—that is, once the
system instantiates that object, the program should not be allowed to create additional

496 // open input stream from connection
497 DataInputStream dataInputStream =
498 new DataInputStream(
499 httpConnection.openInputStream());
500
501 int inputCharacter = dataInputStream.read();
502
503 // read all data
504 while (inputCharacter != -1) {
505 data = data + (char) inputCharacter;
506 inputCharacter = dataInputStream.read();
507 }
508
509 dataInputStream.close(); // close stream
510
511 return data;
512
513 } // end method getData
514 }

Fig. 12.27Fig. 12.27Fig. 12.27Fig. 12.27 TipTestMIDlet downloads Tip Test from TipTestServlet (part 11
of 11).

Chapter 12 Java-Based Wireless Applications Development and J2ME 773

objects of that class. Because a MIDP device has only one screen, a MIDlet should contain
only one display manager to display the contents on that screen—therefore, only one Dis-
play object can exist in each MIDlet. The static method getDisplay of class Dis-
play returns a reference to the only Display object in the system—this Display
object is also referred to as the singleton object. If the Display object has been created,
subsequent calls to method getDisplay merely return the same reference to the sin-
gleton Display object.

The Display object ensures that only one of the Screens (Displayable sub-
classes) in TipTestMIDlet displays at a time. Lines 18–22 declare five Screens for
TipTestMIDlet. TipTestMIDlet contains a List (line 18) to represent the main
screen that contains a link to WelcomeServlet, a List (line 19) to show index.txt,
a Form (line 20) to show info.txt (which provides the link to TipTestServlet), a
Form (line 21) to show Tip-Test questions and a Form (line 22) to show Tip-Test answers.

Screens also have support for soft-buttons—buttons that are usually located below
the display (but above the keypad) on wireless devices. In Fig. 12.8, the mouse cursor is
hovering over the right soft button, which is highlighted. The word Select on the screen
above the right soft button indicates that the user will select the highlighted List item
when the user presses this soft button—the Display will then show a different Screen.
J2ME provides this functionality to MIDlets through Command objects, which encapsu-
lates an action to be executed by the object that receives the Command object. Lines 25–
27 of TipTestMIDlet declare three Command objects—selectCommand, next-
Command and backCommand. The selectCommand object—as we will see momen-
tarily—allows the user to select List items on the screen. The nextCommand object
allows the user to receive the next tip from TipTestServlet when playing Tip Test.
The backCommand object enables the user to view the previous Screen.

Fig. 12.28Fig. 12.28Fig. 12.28Fig. 12.28 J2ME user-interface API class hierarchy.

javax.microedition.lcdui.Displayable

Screen

TextBox List

FormAlert

Canvas

(High-level) (Low-level)

774 Java-Based Wireless Applications Development and J2ME Chapter 12

Lines 46–48 instantiate these objects. The first argument to the Command constructor
is the desired name—or label—to be displayed on the Screen above the soft button. The
second argument is a constant that specifies how the MIDlet should respond after the user
presses the soft button. For example, Command.OK indicates that the user has provided
some input (via a text-field or via selecting a list item). Command.BACK indicates that the
user should view the previous Screen. We program the logic that handles how the MIDlet
behaves for each command type. The third argument indicates above which soft button the
device will place the label. In a series of Command instantiations, the Command object
with the lowest number has its label situated above the right soft button in the Sun MIDP-
device emulator. For the object associated with the next lowest number, Sun’s device
places its label above the left soft button. According to lines 46–48, the device places
“Select” above the right soft button, “Next Tip” above the right soft button and
“Back” above the left soft button.

Portability Tip 12.2
The Command numbering scheme varies from device-to-device. For example, the Sun emu-
lator’s default location for Command text is above the right soft button. Other devices may
situate the text above the left soft button. 12.2

Line 51 instantiates List mainScreen, which provides a link to Wel-
comeServlet. The first argument to the List represents the List name—this text
appears at the top of the MIDP-device screen. The second argument is a constant that indi-
cates the type of List instantiated. The List type determines how the user navigates the
List with the keypad. This argument can assume one of three constant values—
List.IMPLICIT, List.EXCLUSIVE and List.MULTIPLE. List.IMPLICIT
indicates that the current focused item in the List is the user’s selection—i.e., the user
changes the selection when scrolling among List items. List.EXCLUSIVE requires the
user to press the center soft button to indicate a selection among List items, then press the
right soft button to finalize the selection—however, before finalizing the selection (but
after having marked the selection), the user can scroll among List items. List.MUL-
TIPLE enables the user to select several items in the List.

Line 52 adds selectCommand to mainScreen, so the user will see “Select”
above the right soft button. Lines 55–69 allow mainScreen to listen for events from
selectCommand by creating a new CommandListener object. When the user presses
a soft button, selectCommand invokes method commandAction (lines 59–67). This
method takes as arguments the Command object associated with the recently pressed soft
button and the Displayable object on which this action occurred. We explain method
commandAction’s logic momentarily.

Line 73 gets the display manager for the device. When the constructor returns, the
AMS invokes method startApp, which informs TipTestMIDlet to accept user input
and to display screens. Using the display manager, line 81 sets the current display to the
mainScreen. Figure 12.29 shows the output of this operation.

TipTestMIDlet now waits for user input. The only events registered to TipTest-
MIDlet originate from the right soft button—when the user presses this button, select-
Command calls method commandAction of any registered CommandListener. Line
63 passes WelcomeServlet’s URL to method getServerData (lines 390–432), which
connects to a server and receives data. Lines 396–397 open an HttpConnection using the
URL parameter. Line 398 calls method setUserAgentHeader (lines 466–488), so the

Chapter 12 Java-Based Wireless Applications Development and J2ME 775

server can identify which client is making the request. Unlike the Internet Explorer, Open-
wave UP browser and Pixo clients, a J2ME client does not have a well-known User-Agent
header, so we must define our own header and store it in interface ClientUserAgent-
Headers, so our servlets can distinguish TipTestMIDlet as a J2ME client. Lines 473–
476 create a User-Agent header using TipTestMIDlet’s profile and configuration
information. Lines 479–480 assign this header to the HttpConnection request.

We also require a means to track this session so the servlet can maintain state informa-
tion—such as the correct answer—between sessions. Lines 406–407 store the HttpCon-
nection’s Set-cookie header field, which provides information on this session, in
String sessionID (line 40). The Set-cookie header contains information delim-
ited by semicolons. A server stores a session identifier before the first semicolon—lines
410–413 extract the session identifier. The next time TipTestMIDlet connects to the
server, lines 401–403 send this information to identify the session.

Line 417 calls method getData (lines 491–513) to receive data from the server.
Lines 497–499 open a DataInputStream to read the server-generated data. Lines 501–
507 read this data into a String, then return the String.

At this point, TipTestMIDlet has connected to WelcomeServlet and received
data—which is index.txt—that represents the “welcome screen.” The data is

eLearning Deitel Programming Tips ;j2me/info.txt ;

 Line 66 passes this String as an argument to method createWelcomeScreen
(lines 91–138). Line 93 calls method parseData (lines 354–387), which parses the data
into an array of Strings, so we can access individual Strings. Method parseData acts

Fig. 12.29Fig. 12.29Fig. 12.29Fig. 12.29 TipTestMIDlet main screen. (Courtesy of Sun Microsystems, Inc.)

776 Java-Based Wireless Applications Development and J2ME Chapter 12

like the J2SE class java.util.StringTokenizer, which the J2ME java.util
package does not contain (due to limited resources specified by MIDP requirements). We
use a semicolon as the delimiter to parse the data, so method parseData returns a two-
element String array that contains “eLearning Deitel Programming Tips” (the
screen name) and “j2me/info.txt” (the link to Tip-Test directions). Line 96 creates
welcomeScreen using the first element in the String array as the List name. Line 98
appends the String “Take TipTest” to the List, informing the user to download the
Tip Test. Figure 12.30 shows TipTestMIDlet’s welcome screen.

Lines 99–134 register welcomeScreen as a CommandListener for events from
selectCommand and backCommand. When the user presses a soft button, either
selectCommand or backCommand calls method commandAction (lines 110–131),
depending on which button the user pressed. The Command is an example of the Command
Design Pattern, which we discussed in Section 2.3 when we presented Swing Actions. In
J2ME, a Command object can contain various commands, or instructions, such as “show
the next Screen,” “show the previous Screen,” or “exit the application.” Several Dis-
playable objects in the system can listen for these commands—MIDP-application
developers write the operations that each Displayable object performs when receiving
Commands. For example, we register welcomeScreen as a listener for the select-
Command and backCommand object. When each Screen receives a Command event,
method commandAction uses the Command event’s method getCommandType to
determine if the command type is Command.OK (“show the next Screen”) or Com-
mand.BACK (“show the previous Screen”). We design TipTestMIDlet to act
according to the command type received. If the user pressed the left soft button (Back),
line 128 sets the Display to display mainScreen. If the user pressed the right soft
button (Select), lines 117–122 draw the “information” Screen. Lines 117–118 call
method getServerData, which connects to the server and receives j2me/info.txt
as the String:

In this exercise, we will test your knowledge of the Deitel
programming tips ;tiptest ;

Lines 121–122 pass this String as an argument to method createInforma-
tionScreen (lines 141–200), which constructs a screen that provides more information
on Tip Test. Line 143 calls method parseData to parse the server-generated data into a
two-element String array. String array’s first element represents the title of the
Screen we will create, and the second element represents the link to TipTest-
Servlet. Line 146 creates infoScreen as a Form. A Form uses StringItems—
components that contain Strings—to display several lines of text. A List is able to dis-
play only one line of text and therefore would display only part of the String array’s first
element. We use a Form to display the String array’s first element in its entirety. Lines
149–150 append a StringItem to infoScreen using the String array’s first ele-
ment. Lines 153–158 create a ChoiceGroup—a group of items that the user can select in
a Form—using the String array’s second element, so TipTestMIDlet can link to
TipTestServlet. Note that line 154 declares the ChoiceGroup as EXCLUSIVE, so
the user must specify which item to select—in our example, there exists only one choice
(tiptest), so this item is selected by default. Figure 12.31 shows TipTestMIDlet’s
information screen.

Chapter 12 Java-Based Wireless Applications Development and J2ME 777

Fig. 12.30Fig. 12.30Fig. 12.30Fig. 12.30 TipTestMIDlet welcome screen. (Courtesy of Sun Microsystems, Inc.)

Fig. 12.31Fig. 12.31Fig. 12.31Fig. 12.31 TipTestMIDlet information screen. (Courtesy of Sun Microsystems,
Inc.)

778 Java-Based Wireless Applications Development and J2ME Chapter 12

Common Programming Error 12.2
ChoiceGroups can be declared only as either EXCLUSIVE or MULTIPLE. Declaring a
ChoiceGroup as INCLUSIVE results in an IllegalArgumentException. 12.2

Lines 160–196 register infoScreen as a CommandListener for events from
selectCommand and backCommand. When the user presses a soft button, either
selectCommand or backCommand calls method commandAction (lines 168–193),
depending on which button the user pressed. If the user pressed the left soft button (Back),
line 191 sets the Display to display welcomeScreen. If the user pressed the right soft
button (Select), lines 175–186 display the “question” Screen. Line 175 determines
which item in ChoiceGroup is selected—lines 177–178 assign this item to the
TipTestServlet link. Lines 181–182 call method getServerData, which connects
to TipTestServlet and receives Tip Test. TipTestServlet generates random
information each time TipTestMIDlet establishes a connection; the data that
TipTestServlet generates appears in the following format:

http://localhost:8080/advjhtp1/j2me/png/portability.png
PERF
CPE
TAD
PORT

Lines 185–186 call method createTipTestScreen (lines 203–256) to display the
Tip-Test question. Line 206 calls method parseData to parse the Tip Test into a five-
element String array. The first element contains the image file name located on the
server. The remaining four elements contain the four tip abbreviations from which the user
must choose the correct answer. We create a Form, so we can show an Image and a
ChoiceGroup—no other Displayable subclass offers this functionality. Line 209
creates a new Form—tipScreen—to show Tip Test.

Line 212 passes the String array’s first element to method getServerImage
(lines 435–463), which creates an Image object from the image file on the server. Lines
441–442 create an HttpConnection to the server, lines 448–449 read the data into an
InputStream and lines 452–453 return an Image from the InputStream data.

Lines 215–216 append the Image to tipScreen. We now represent the four pos-
sible answers associated with this Image as a ChoiceGroup. Lines 218–222 create a
String array to hold each of the four String answers. Lines 225–226 instantiate the
ChoiceGroup, and line 229 appends this ChoiceGroup to tipScreen. Note that the
ChoiceGroup’s constructor takes four arguments (unlike the ChoiceGroup con-
structor in method createInformationScreen, which took two arguments). The
first argument represents the ChoiceGroups name, which we title “Tip Test.” The
second argument declares this ChoiceGroup as EXCLUSIVE, so the user must indicate
the selection before proceeding. The third argument is the String array that contains each
possible String answer. The fourth argument represents an array of Images associated
with the String array—the device places each Image in the Image array next to the
respective String in the String array. We pass a null value for this argument,
because we do not need to display any Images next to the four possible answers.

Figure 12.32 shows tipScreen. The picture on the left shows the Image for which
the user must guess the correct name. When the user scrolls down on this screen (picture

Chapter 12 Java-Based Wireless Applications Development and J2ME 779

on the right), the user will see the four possible answers. The user must press the center soft
button to indicate the selection.

Lines 231–251 register tipScreen as a CommandListener for events from
selectCommand. When the user presses the Select button, selectCommand calls
method commandAction (lines 238–249). Line 242 determines which item in the
ChoiceGroup has been selected—this item represents the user’s selection. Line 244 passes
the selection to method postData (lines 306–351), which sends the selection to
TipTestServlet. Lines 312–315 connect to TipTestServlet and specify that the
connection is bidirectional, so TipTestMIDlet can send data to, and receive data from,
TipTestServlet. Line 317 sets the User-Agent header so TipTestServlet can
distinguish TipTestMIDlet as a J2ME client. Lines 320–322 send the session identifier
that method getServerData stored to identify the session. Line 325 specifies that
TipTestServlet will receive post data from TipTestMIDlet. Lines 328–329 open
a DataOutputStream, through which line 332 sends the user selection to TipTest-
Servlet. As we discussed in Section 12.3.4, TipTestServlet sends the correct answer
to the J2ME client upon receiving this data. Line 336 calls method getData to receive this
String data from the servlet. This data will have the following format:

Correct
Portability Tip
Organizations that develop software must often produce ver-
sions customized to a variety of computers and operating sys-
tems. These tips offer suggestions to make your applications
more portable.

Fig. 12.32Fig. 12.32Fig. 12.32Fig. 12.32 TipTestMIDlet Tip-Test question screen. (Courtesy of Sun
Microsystems, Inc.)

780 Java-Based Wireless Applications Development and J2ME Chapter 12

 Line 338 closes the connection between TipTestMIDlet and TipTest-
Servlet, and line 340 returns the data that contains the correct answer. Lines 247–248
pass this String data to method createAnswerScreen (lines 259–303), which cre-
ates the Screen that displays the answer. Line 262 calls method parseData to parse the
data into a three-element String array. The first element represents whether the user was
correct or incorrect. The second and third elements hold the correct tip name and descrip-
tion, respectively. Line 265 instantiates Form answerScreen by passing the String
array’s first element to the constructor—we use a Form to show the tip description in its
entirety. Lines 268–273 instantiate two StringItems to hold the tip name and descrip-
tion. Lines 276–277 append these StringItems to answerScreen. Figure 12.33
shows answerScreen. The picture on the left shows the screen that contains the correct
tip name and description. When the user scrolls down on this screen, the user will see the
right picture, which shows the remainder of the tip description.

Lines 279–299 register tipScreen as a CommandListener for events from
nextCommand. The nextCommand object’s behavior is identical to that of the
selectCommand object; however, because we cannot alter selectCommand’s label to
hold “Next Tip” as a value, we had to instantiate another Command object to ensure that
the “Next Tip” text appears above the right soft button. When the user presses the right
soft button, nextCommand calls method commandAction (lines 286–296), which calls
method createTipTestScreen to generate another Tip-Test question—users can
play Tip Test for as long as they desire.

Fig. 12.33Fig. 12.33Fig. 12.33Fig. 12.33 TipTestMIDlet Tip-Test answer screen. (Courtesy of Sun
Microsystems, Inc.)

Chapter 12 Java-Based Wireless Applications Development and J2ME 781

This concludes our case study of Java-based wireless application development and
Java 2 Micro Edition. In this section, we created a three-tier architecture in which
TipTestServlet (middle tier) marked up a randomly generated Tip-Test question as
XML, applied an XSLT to the XML document, then sent the resulting document to clients.
We then introduced J2ME by discussing the CLDC and MIDP—the fundamental J2ME
APIs for building applications to run on mobile devices. We studied a MIDlet’s lifecycle
and examined how to create a new MIDlet from class MIDlet. We created a MIDP appli-
cation—TipTestMIDlet—then discussed how it retrieves data from Wel-
comeServlet and TipTestServlet. We also discussed how TipTestMIDlet
uses this data to construct user interfaces and how, by using Command objects, a
TipTestMIDlet enables the user to navigate through various Screens.

In Chapter 13, we continue our discussion by presenting Remote Method Invocation
(RMI), which enables client objects to call methods of objects on other systems. In Chapter
14, we begin discussing Enterprise JavaBeans (EJBs), which provide a model for building
business logic in enterprise Java applications.

12.5 Installation Instructions
This section provides installation instructions for the software in this case study.

Web Server Configuration
This case study requires a web server that can run servlets. We recommend the Apache
Tomcat Server. We provided directions to install Tomcat in Section 9.3.1. When you have
installed Tomcat, copy the contents of the advjhtp1 directory on the CD to the
advjhtp1 directory in the Tomcat directory on your system. The advjhtp1 directory
on the CD contains four directories—iMode, j2me, XHTML, WAP—that contain content
that the servlets distribute to each client.

Next, you must copy the contents of Fig. 12.34, which we provide on the CD, in
web.xml’s web-app element. The web.xml file should exist in the WEB-INF Tomcat
directory. For example, on our system, web.xml is located in

C:\jakarta-tomcat-3.2.2\webapps\advjhtp1\WEB-INF\

1 <!-- Servlet definitions -->
2 <servlet>
3 <servlet-name>welcome</servlet-name>
4
5 <description>
6 A servlet that returns a "Welcome" screen through
7 an HTTP get request
8 </description>
9

10 <servlet-class>
11 com.deitel.advjhtp1.wireless.WelcomeServlet
12 </servlet-class>
13 </servlet>
14

Fig. 12.34Fig. 12.34Fig. 12.34Fig. 12.34 Deployment descriptor to run WelcomeServlet and
TipTestServlet (part 1 of 2).

782 Java-Based Wireless Applications Development and J2ME Chapter 12

In Fig. 12.34, lines 2–13 describe WelcomeServlet, and line 15–38 describe
TipTestServlet. Lines 23–33 declare two init-param elements that enable us to
change the database that TipTestServlet uses, without having to modify TipTest-
Servlet.java. Lines 41–49 map the two servlets to specified URLs. Lines 51–59 con-

15 <servlet>
16 <servlet-name>tiptest</servlet-name>
17
18 <description>
19 A servlet that accesses a database to generate tests for
20 Deitel programming tips
21 </description>
22
23 <init-param>
24 <param-name>DATABASE_URL</param-name>
25 <param-value>jdbc:cloudscape:rmi:tips</param-value>
26 </init-param>
27
28 <init-param>
29 <param-name>JDBC_DRIVER</param-name>
30 <param-value>
31 COM.cloudscape.core.RmiJdbcDriver
32 </param-value>
33 </init-param>
34
35 <servlet-class>
36 com.deitel.advjhtp1.wireless.TipTestServlet
37 </servlet-class>
38 </servlet>
39
40 <!-- Servlet mappings -->
41 <servlet-mapping>
42 <servlet-name>welcome</servlet-name>
43 <url-pattern>/welcome</url-pattern>
44 </servlet-mapping>
45
46 <servlet-mapping>
47 <servlet-name>tiptest</servlet-name>
48 <url-pattern>/tiptest</url-pattern>
49 </servlet-mapping>
50
51 <mime-mapping> <!-- WML Source -->
52 <extension>wml</extension>
53 <mime-type>text/vnd.wap.wml</mime-type>
54 </mime-mapping>
55
56 <mime-mapping> <!-- Wireless Bitmap -->
57 <extension>wbmp</extension>
58 <mime-type>image/vnd.wap.wbmp</mime-type>
59 </mime-mapping>

Fig. 12.34Fig. 12.34Fig. 12.34Fig. 12.34 Deployment descriptor to run WelcomeServlet and
TipTestServlet (part 2 of 2).

Chapter 12 Java-Based Wireless Applications Development and J2ME 783

figure Tomcat to serve WML content with correct MIME types—if we do not specify these
MIME types, the WAP clients will not receive content.

The last step for configuring Tomcat to run the case study involves specifying those
classes that Tomcat uses to run the servlets. Create the directory structure com/deitel/
advjhtp1/wireless in the WEB-INF/classes directory. For example, on our
system, the directory structure is

C:\jakarta-tomcat-3.2.2\webapps\advjhtp1\WEB-INF\classes\com\
deitel\advjhtp1\wireless\

Copy WelcomeServlet.class and TipTestServlet.class into this directory.

Database Configuration
This case study also requires a database from which the servlet can extract tip information.
We recommend the Cloudscape database, which we provide installation instructions in
Sections 8.1 and 8.5. Copy the tips.sql file and the tips directory from our CD to the
frameworks/RmiJdbc/bin directory where you have installed Cloudscape on your
system. For example, c:\cloudscape_3.6 is the directory that contains Cloudscape
on our system, so

C:\cloudscape_3.6\frameworks\RmiJdbc\bin\

should contain tips.sql and the tips directory. Next, copy cloudscape.jar
and RmiJdbc.jar (located on the CD) into the WEB-INF/lib Tomcat directory. For
example, on our system, this directory is

C:\jakarta-tomcat-3.2.2\webapps\advjhtp1\WEB-INF\lib\

Placing cloudscape.jar and RmiJdbc.jar in this directory enable TipTest-
Servlet to connect to, and extract from, a Cloudscape database.

J2ME Wireless Toolkit Installation and Configuration
To use the Sun MIDP-device emulator and develop MIDP applications, you must use the
J2ME Wireless Toolkit. We include this toolkit on the CD, or you may download the toolkit
from

java.sun.com/products/j2mewtoolkit/

At the time of this writing, Release 1.0.2 is available for download. In the installation
procedure, you can specify whether you want to integrate the J2ME Wireless Toolkit with
Forte—which facilitates developing MIDP applications in Forte—or to run the toolkit as a
“stand-alone” application. We recommend that you integrate the toolkit in Forte.

If you integrate the toolkit in Forte, create the directory structure com/deitel/
advjhtp1/wireless in your system’s Forte development directory. For example,
c:\forte4j\Development is the Forte development directory on our system, so we
create the directory structure

C:\forte4j\Development\com\deitel\advjhtp1\wireless\

784 Java-Based Wireless Applications Development and J2ME Chapter 12

 Next, copy TipTestMIDlet.java and TipTestMIDlet.jar from our CD to
this directory. When you expand this directory structure in Forte, you should see

TipTestMIDlet.java
TipTestMIDlet.jar

TipTestMIDlet.jar is the MIDlet suite that contains class TipTestMIDlet.
To run class TipTestMIDlet, right-click on the TipTestMIDlet.jar icon, then
select execute.

If you prefer to use the Wireless Toolkit (or if you had installed the toolkit as a stand-
alone application), first open the Wireless Toolkit by selecting KToolbar in the directory
where you installed the toolkit. Next, press the New Project button. In the Project Name
text field, type

TipTestMIDlet

In the MIDlet Class Name text field, type

com.deitel.advjhtp1.wireless.TipTestMIDlet

then press the Create Project button. When the Settings frame appears, press the
OK button. Next, copy TipTestMIDlet.java from our CD to the apps/TipTest-
MIDlet/src directory in the directory where you installed the toolkit. For example,
C:\J2mewtk is the directory where we installed the toolkit on our system, so we copy
TipTestMIDlet.java to

C:\J2mewtk\apps\TipTestMIDlet\src\

Return to the Wireless toolkit, and press the Build button. When TipTestMIDlet
has finished compiling and preverifying, press the Run button to execute TipTest-
MIDlet. The Device menu—located on the toolkit’s right side—enables you to select
from among several devices to run TipTestMIDlet. Although the default device is the
Sun grayscale MIDP-device emulator, you can specify to run TipTestMIDlet on other
devices, such as RIM’s Blackberry-957™ and the Motorola i85s™.

Other clients
Figure 12.35 lists the URLs to download the browsers used in this case study.

Browser URL

Microsoft Internet
Explorer

www.microsoft.com/downloads/search.asp?

Openwave UP
simulator

developer.openwave.com/download/license_41.html

Pixo Internet
Microbrowser

www.pixo.com/products/products001.htm

Fig. 12.35Fig. 12.35Fig. 12.35Fig. 12.35 Case-study browser URLs.

Chapter 12 Java-Based Wireless Applications Development and J2ME 785

12.6 Internet and World Wide Web Resources
www.java.sun.com/j2me
This site contains Sun’s Java 2 Micro Edition available for download.

www.onjava.com/pub/a/onjava/2001/03/08/J2ME.html
This site contains a J2ME article.

www.jguru.com/faq/home.jsp?topic=J2ME
This site presents the J2ME FAQ.

www.wirelessdevnet.com/channels/java/features/j2me_http.phtml
This site discusses network programming with J2ME devices.

www.ericgiguere.com/microjava/fallacies.html
This site lists some common misconceptions of J2ME.

www.motorola.com/java
This site discusses J2ME integration in new Motorola’s wireless devices.

www.internetnews.com/wd-news/article/0,,10_533091,00.html
This site discusses J2ME integration in the Palm devices.

www.mot.com/java/devices.html
This site lists several wireless devices that use J2ME technology in the market.

www.nttdocomo.com/i/index.html
This is the Web site of NTT DoCoMo—the creators of i-mode.

www.anywhereyougo.com/imode/Index.po
This site presents news about i-mode development.

www.i-modesales.com
This site offers information on i-mode phones and services.

www.wap.com
This site offers news about WAP development.

www.wapforum.org/
This site discusses advancements in the WAP field.

SUMMARY
• This case study is a three-tier architecture of a multiple choice test (Tip Test) that allows users to

test their knowledge of Deitel programming tips.

• Developers can use Java technology to develop wireless and server-side applications that devel-
opers can also develop with ASP.

• The information tier consists of a database. The middle tier consists of two servlets—Wel-
comeServlet and TipTestServlet—that generate content to clients of various types. The
client tier consists of four client types—Internet Explorer, WAP, i-mode and J2ME. Each client
type renders content differently.

• Microsoft Internet Explorer receives XHTML content.

• The Openwave UP simulator is the WAP client that receives WML content.

• The Pixo Internet Microbrowser is the i-mode client that receives cHTML content.

• The Sun MIDP-device emulator displays a J2ME client that receives content in plain-text format.

• J2ME™ (Java™ 2 Micro Edition) is Sun’s newest Java platform for developing applications for
various consumer devices, such as set-top boxes, Web terminals, embedded systems, mobile
phones and cell pagers.

786 Java-Based Wireless Applications Development and J2ME Chapter 12

• MIDP (Mobile Information Device Profile) is a set of APIs that allow developers to handle mobile-
device-specific issues, such as creating user interfaces, storing information locally and networking.)

• Devices that run applications for MIDP are called MIDP devices (e.g., cell phones or pagers).

• Clients interact with servlets by making a series of get and post request to the servlets. When a
client sends a get request to an HttpServlet, method doGet handles the request. When a cli-
ent sends a post request to an HttpServlet, method doPost handles the request.

• All clients contain a unique User-Agent header, which contains information on what type of
client is requesting data from the server.

• Method getInitParameter of HttpServlet allows us to specify information (such as da-
tabase locations or drivers) declared in web.xml. We need only to modify the <param-val-
ue> element in the <init-param> element in web.xml to change this information.

• org.w3c.dom.Element objects element nodes in XML documents.

• We can apply an XSLT to an XML Document to produce different content for each different cli-
ent type. Each client type renders this content accordingly.

• We did not use XML for our J2ME client, because at the time of this writing, J2ME cannot support
XML without using non-standard XML-based software.

• J2ME uses the Connected Limited Device Configuration (CLDC) and the Mobile Information De-
vice Profile (MIDP), which offer developers a set of APIs to write J2ME applications and deploy
them across several mobile devices.

• The CLDC is a set of APIs that allow developers to create applications for devices that have lim-
ited resources—i.e., limited screen size, memory, power and bandwidth.

• Currently, the CLDC does not contain certain features that developers often “take for granted” in
other Java platforms—e.g., floating-point operations, serializable objects and thread groups.

• The MIDP is a set of APIs that allow developers to handle mobile-device-specific issues, such as
creating user interfaces, permitting local storage and defining the lifecycles of MIDP-client appli-
cations.

• A MIDlet is a type of MIDP-client application. All MIDlets must extend class javax.micro-
edition.midlet.MIDlet.

• MIDP developers store several MIDlets in a jar file—called a MIDlet suite—on a server.

• The application management software (AMS) on the MIDP device downloads the MIDlet suite
from the server, opens the MIDlet suite, then launches the user-specified MIDlet on the MIDP
device.

• The AMS uses an application descriptor file to load the MIDlet application. This file contains var-
ious information on the MIDlet suite and the MIDP device.

• The MIDlet lifecycle consists of methods startApp, pauseApp and destroyApp.

• J2ME divides the user-interface API between low-level and high-level APIs. The low-level API
allows developers to incorporate graphics and provide animation, whereas the high-level user-in-
terface API allows developers to incorporate text fields, lists and forms.

• Class Displayable represents content that a MIDP-device can display on screen. Classes
Screen (high-level) and Canvas (low-level) extend class Displayable.

• Class Display acts as a display manager for a MIDlet. Exactly one Display object can exist
in a MIDlet.

• J2ME provides “soft-button support” in MIDlets through Command objects, which encapsulates
an action to be executed by the object that receives the Command object.

• Lists and Forms are two high-level user-interface classes that extend class Screen.

• A Form can include ChoiceGroups—groups of items the user can select in a Form.

Chapter 12 Java-Based Wireless Applications Development and J2ME 787

TERMINOLOGY

SELF-REVIEW EXERCISES
12.1 Fill in the blanks in each of the following statements:

a) Typically, a three-tier architecture contains a layer, a layer and
a layer.

b) The servlets in our case study generated content to Internet Explorer,
 content to the WAP client, content to the i-mode client and
 content to the J2ME client.

c) TipTestServlet used a object to store the correct tip name and de-
scription.

application management software (AMS) J2ME low-level user-interface API
cHTML (compact HTML) Java application descriptor file
class Alert KVM
class Canvas Openwave UP simulator
class ChoiceGroup method commandAction of class

 CommandListenerclass Command
class CommandListener method doGet of class HttpServlet
class Display method doPost of class HttpServlet
class Displayable method destroyApp of class MIDlet
class DocumentBuilder method pauseApp of class MIDlet
class DocumentBuilderFactory method startApp of class MIDlet
class DOMSource middle tier
class Element MIDlet
class Form MIDlet lifecycle
class HttpServletResponse MIDlet suite
class HttpServletRequest MIDP application
class HttpSession MIDP devices
class InputStream MIDP package javax.microedition.io
class List MIDP package

 javax.microedition.lcduiclass Screen
class StreamSource MIDP package

 javax.microedition.midletclass StringItem
class TextBox MIDP package javax.microedition.rms
class Transformer mobile device
class TransformerFactory Mobile Information Device Profile (MIDP)
client namespace
CLDC packages java.io, java.lang
 and java.util

Pixo Internet Microbrowser
server

Connected Limited Device
 Configuration (CLDC)

Sun MIDP-device emulator
three-tier architecture

database User-Agent header
Extensible HyperText Markup)
 Language (XHTML)

servlet
Wireless Application Protocol (WAP)

get and post data Wireless Markup Language (WML)
i-mode XML
information tier XML Document
Java 2 Micro Edition (J2ME) XSLT
J2ME high-level user-interface API

788 Java-Based Wireless Applications Development and J2ME Chapter 12

d) CLDC stands for .
e) MIDP stands for .
f) Developers can package several MIDlets in a jar file called a .
g) The application descriptor file contains the extension.
h) The MIDlet lifecycle consists of methods , and .
i) In package javax.microedition.lcdui, class represents content

that a MIDP device can display on screen.
j) Class javax.microedition.Display is an example of the design

pattern.

12.2 State whether each of the following statements is true or false. If false, explain why.
a) An HttpServlet’s calls method doGet upon receiving a get request and method

doPost upon receiving a post request. (true/false).
b) A User-Agent header contains information about the server. (true/false).
c) DocumentBuilder’s static method newDocumentBuilder creates a new

DocumentBuilder. (true/false).
d) In this case study, TipTestServlet uses XSLT to transform XML Tip Test Docu-

ments to well formed content for all clients. (true/false).
e) The J2ME CLDC package consist of java.io, java.lang and java.net. (true/

false).
f) The application management software loads a MIDlet on a MIDP device. (true/false).
g) The application description file specifies such information as the MIDP device’s config-

uration and the MIDlet’s name. (true/false).
h) Classes Alert, Form, Screen, and List are the concrete classes of the MIDP high-

level user-interface package. (true/false).
i) A javax.microedition.lcdui.Command object encapsulates an action to be

executed by the object that received the Command. (true/false).
j) An HttpSession’s Set-Cookie header field contains session information. (true/

false).

ANSWERS TO SELF-REVIEW EXERCISES
12.1 a) client (top), middle, information (bottom). b) XHTML, WAP, cHTML, plain text.
c) HttpSession. d) Connected Limited Device Configuration. e) Mobile Information Device Pro-
file. f) MIDlet suite. g) .jad. h) startApp, pauseApp, destroyApp. i) Displayable.
j) Singleton.

12.2 a) True. b) False. A User-Agent header contains information on what client type is request-
ing data from a server. c) False. DocumentBuilderFactory’s static method newDocu-
mentBuilder creates a new DocumentBuilder. Class DocumentBuilder creates new
Documents. d) False. TipTestServlet uses XSLT to transform XML Tip Test Documents to
well- formed content for only Internet-Explorer, WAP and i-mode clients. e) False. The J2ME CLDC
package consist of java.io, java.lang and java.util. f) True. g) True. h) Classes Alert,
Form, TextBox, and List are the concrete classes of the MIDP high-level user-interface package.
Class Screen is an abstract class these classes extend. i) True. j) True.

EXERCISES
12.3 To make TipTestServlet more manageable and extendable, we stored the database driv-
er name and URL in the <init-param> element in web.xml. List 3 other constants that we could
have stored from WelcomeServlet and TipTestServlet in the <init-param> element.

12.4 Extend the list of possible answers in the Tip-Test question from four to five.

Chapter 12 Java-Based Wireless Applications Development and J2ME 789

12.5 Method getResultTable of TipTestServlet creates a two-dimensional String-
array ResultSet representation. However, because these dimensions are pre-defined (seven rows
by five columns), the String array cannot store additional rows if we append another tip to the da-
tabase. Modify TipTestServlet so that it can handle any number of tips from the database. Use
techniques shown in Chapter 8, Java Database Connectivity (JDBC), to create a scrollable Result-
Set so that you can determine the number of rows in the ResultSet and size the String array
accordingly.

12.6 Lines 29–38 of class TipTestMIDlet specify the servlet URL and the WelcomeServ-
let URL. This approach can be problematic if a network administrator changes either URL. In prac-
tice, we would like the application descriptor file to contain the servlet URL and the MIDP-device
user to specify the WelcomeServlet URL with the MIDP-device keypad.

a) Encode the servlet URL—http://localhost:8080/advjhtp1/—in the
TipTestMIDlet application descriptor file by typing

Servlet-URL:http://localhost:8080/advjhtp1/

at the end of TipTestMIDlet’s .jad file. In TipTestMIDlet, use method
getAppProperty of class MIDlet to return the servlet URL. (Method getApp-
Property takes a property-tag String—e.g., "Servlet-URL"—as an argument
and returns the String associated with that property.)

b) Enable the user to specify the WelcomeServlet URL. Modify the class TipTest-
MIDlet constructor to create mainScreen (line 51) as a TextBox—a Screen sub-
class that enables the user to input text. A TextBox constructor takes four arguments:
1) a String that represents the TextBox’s title; 2) a String that represents the
TextBox’s initial contents; 3) an int that represents the maximum number of charac-
ters allowed in the TextBox; 4) an input constraint int that specifies the required input
format—e.g., if you want the user to enter a phone number, the constraint is Text-
Field.PHONENUMBER. We want the user to enter a URL, so the constraint is Text-
Field.URL. Use method getString of class TextBox to return the TextBox’s
contents (user input) to store the WelcomeServlet URL when the user presses the Se-
lect soft button.

12.7 Modify TipTestMIDlet to enable the user to exit the application in the Tip-Test answer
screen in addition to receiving the next Tip-Test question. Create a new Command object that uses
Command.EXIT and register answerScreen as a listener for this Command. (Hint: override
method destroyApp to call method notifyDestroy of class javax.microedi-
tion.midlet.MIDlet.

BIBLIOGRAPHY
Feng, Y. and Zhu, J., Wireless Java™ Programming with J2ME. SAMS. Indiana; 2001.

Giguere, E., Java 2 Micro Edition: Professional Developer’s Guide. John Wiley & Sons. 2000.

Kroll, M. and Haustein, S., Java 2 Micro Edition (J2ME) Application Development. SAMS. Indiana;
2001.

Knudsen, J. Wireless Java: Developing with Java 2, Micro Edition. Apress. California; 2001.

Morrison, M. Sams Teach Yourself Wireless Java with J2ME in 21 Days. SAMS. Indiana; 2001.

Riggs, R, Taivalsaari, A., and VandenBrink, M., Programming Wireless Devices with Java™ 2 Plat-
form, Micro Edition. Addison-Wesley. Boston; 2001.

13
Remote Method

Invocation

Objectives
• To understand the distributed computing concepts.
• To understand the architecture of RMI.
• To be able to use activatable RMI objects to build

resilient distributed systems.
• To understand how to use RMI callbacks.
• To be able to build RMI clients that download

necessary classes dynamically.
• To be able to build activatable RMI objects.
Dealing with more than one client at a time is the business
world’s equivalent of bigamy. It’s so awkward to tell one
client that you’re working on someone else’s business that
you inevitably start lying.
Andrew Frothingham

They also serve who only stand and wait.
John Milton

Rule 1: The client is always right.
Rule 2: If you think the client is wrong, see Rule 1.
Sign seen in shops

I love being a writer. What I can’t stand is the paperwork.
Peter De Vries

Chapter 13 Remote Method Invocation 791

13.1 Introduction
In this chapter, we introduce Java’s distributed computing capabilities with Remote Method
Invocation (RMI). RMI allows Java objects running on separate computers or in separate
processes to communicate with one another via remote method calls. Such method calls ap-
pear to the programmer the same as those operating on objects in the same program.

RMI is based on a similar, earlier technology for procedural programming called
remote procedure calls (RPCs) developed in the 1980s. RPC allows a procedural program
(i.e., a program written in C or another procedural programming language) to call a func-
tion residing on another computer as conveniently as if that function were part of the same
program running on the same computer. A goal of RPC was to allow programmers to con-
centrate on the required tasks of an application by calling functions, while making the
mechanism that allows the application’s parts to communicate over a network transparent
to the programmer. RPC performs all the networking and marshaling of data (i.e., pack-
aging of function arguments and return values for transmission over a network). A disad-
vantage of RPC is that it supports a limited set of simple data types. Therefore, RPC is not
suitable for passing and returning Java objects. Another disadvantage of RPC is that it
requires the programmer to learn a special interface definition language (IDL) to describe
the functions that can be invoked remotely.

RMI is Java’s implementation of RPC for Java-object-to-Java-object distributed com-
munication. Once a Java object registers as being remotely accessible (i.e., it is a remote
object), a client can obtain a remote reference to that object, which allows the client to use
that object remotely. The method call syntax is identical to the syntax for calling methods
of other objects in the same program. As with RPC, RMI handles the marshaling of data
across the network. However, RMI also enables Java programs to transfer complete Java
objects using Java’s object-serialization mechanism. The programmer need not be con-
cerned with the transmission of the data over the network. RMI does not require the pro-
grammer to learn an IDL, because the J2SE SDK includes tools for generating all the

Outline

13.1 Introduction
13.2 Case Study: Creating a Distributed System with RMI
13.3 Defining the Remote Interface
13.4 Implementing the Remote Interface
13.5 Compiling and Executing the Server and the Client
13.6 Case Study: Deitel Messenger with Activatable Server

13.6.1 Activatable Deitel Messenger ChatServer
13.6.2 Deitel Messenger Client Architecture and Implementation
13.6.3 Running the Deitel Messenger Server and Client

Applications
13.7 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

792 Remote Method Invocation Chapter 13

networking code from the program’s interface definitions. Also, because RMI supports
only Java, no language-neutral IDL is required; Java’s own interfaces are sufficient.

We present two substantial RMI examples and discuss the key concepts of RMI as we
encounter them throughout the examples. After studying these examples, you should have
an understanding of the RMI networking model and should be able to take advantage of
advanced RMI features for building Java-to-Java distributed applications.

[Note: For Java-to-non-Java communication, you can use Java IDL (introduced in Java
1.2) or RMI-IIOP. Java IDL and RMI-IIOP enable applications and applets written in Java
to communicate with objects written in any language that supports CORBA (Common
Object Request Broker Architecture). Please see Chapter 26, CORBA: Part 1 and Chapter
27, CORBA: Part 2 for our discussion of CORBA and RMI-IIOP.]

13.2 Case Study: Creating a Distributed System with RMI
In the next several sections, we present an RMI example that downloads the Traveler’s
Forecast weather information from the National Weather Service Web site:

http://iwin.nws.noaa.gov/iwin/us/traveler.html

[Note: As we developed this example, the format of the Traveler’s Forecast Web page
changed several times (a common occurrence with today’s dynamic Web pages). The in-
formation we use in this example depends directly on the format of the Traveler’s Forecast
Web page. If you have trouble running this example, please refer to the FAQ page on our
Web site, www.deitel.com.]

We store the Traveler’s Forecast information in an RMI remote object that accepts
requests for weather information through remote method calls.

The four major steps in this example include:

1. Defining a remote interface that declares methods that clients can invoke on the
remote object.

2. Defining the remote object implementation for the remote interface. [Note: By
convention, the remote object implementation class has the same name as the re-
mote interface and ends with Impl.]

3. Defining the client application that uses a remote reference to interact with the in-
terface implementation (i.e., an object of the class that implements the remote in-
terface).

4. Compiling and executing the remote object and the client.

13.3 Defining the Remote Interface
The first step in creating a distributed application with RMI is to define the remote interface
that describes the remote methods through which the client interacts with the remote object
using RMI. To create a remote interface, define an interface that extends interface ja-
va.rmi.Remote. Interface Remote is a tagging interface—it does not declare any
methods, and therefore places no burden on the implementing class. An object of a class
that implements interface Remote directly or indirectly is a remote object and can be ac-
cessed—with appropriate security permissions—from any Java virtual machine that has a
connection to the computer on which the remote object executes.

Chapter 13 Remote Method Invocation 793

Software Engineering Observation 13.1
Every remote method must be declared in an interface that extends java.rmi.Remote. 13.1

Software Engineering Observation 13.2
An RMI distributed application must export an object of a class that implements the Remote
interface to make that remote object available to receive remote method calls. 13.2

Interface WeatherService (Fig. 13.1)—which extends interface Remote (line
10)—is the remote interface for our remote object. Line 13 declares method getWeath-
erInformation, which clients can invoke to retrieve weather information from the
remote object. Note that although the WeatherService remote interface defines only
one method, remote interfaces can declare multiple methods. A remote object must imple-
ment all methods declared in its remote interface.

When computers communicate over networks, there exists the potential for communi-
cation problems. For example, a server computer could malfunction, or a network resource
could malfunction. If a communication problem occurs during a remote method call, the
remote method throws a RemoteException, which is a checked exception.

Software Engineering Observation 13.3
Each method in a Remote interfaces must have a throws clause that indicates that the
method can throw RemoteExceptions. 13.3

Software Engineering Observation 13.4
RMI uses Java’s default serialization mechanism to transfer method arguments and return
values across the network. Therefore, all method arguments and return values must be Se-
rializable or primitive types. 13.4

13.4 Implementing the Remote Interface
The next step is to define the remote object implementation. Class WeatherServiceImpl
(Fig. 13.2) is the remote object class that implements the WeatherService remote inter-
face. The client interacts with an object of class WeatherServiceImpl by invoking

1 // WeatherService.java
2 // WeatherService interface declares a method for obtaining
3 // wether information.
4 package com.deitel.advjhtp1.rmi.weather;
5
6 // Java core packages
7 import java.rmi.*;
8 import java.util.*;
9

10 public interface WeatherService extends Remote {
11
12 // obtain List of WeatherBean objects from server
13 public List getWeatherInformation() throws RemoteException;
14
15 }

Fig. 13.1Fig. 13.1Fig. 13.1Fig. 13.1 WeatherService interface.

794 Remote Method Invocation Chapter 13

method getWeatherInformation of interface WeatherService to obtain weath-
er information. Class WeatherServiceImpl stores weather data in a List of
WeatherBean (Fig. 13.3) objects. When a client invokes remote method getWeath-
erInformation, the WeatherServiceImpl returns a reference to the List of
WeatherBeans. The RMI system returns a serialized copy of the List to the client. The
RMI system then de-serializes the List on the receiving end and provides the caller with
a reference to the List.

The National Weather Service updates the Web page from which we retrieve informa-
tion twice a day. However, class WeatherServiceImpl downloads this information
only once, when the server starts. The exercises ask you to modify the server to update the
data twice a day. [Note: WeatherServiceImpl is the class affected if the National
Weather Service changes the format of the Traveler’s Forecast Web page. If you encounter
problems with this example, visit the FAQ page at our Web site www.deitel.com.]

1 // WeatherServiceImpl.java
2 // WeatherServiceImpl implements the WeatherService remote
3 // interface to provide a WeatherService remote object.
4 package com.deitel.advjhtp1.rmi.weather;
5
6 // Java core packages
7 import java.io.*;
8 import java.net.URL;
9 import java.rmi.*;

10 import java.rmi.server.*;
11 import java.util.*;
12
13 public class WeatherServiceImpl extends UnicastRemoteObject
14 implements WeatherService {
15
16 private List weatherInformation; // WeatherBean object List
17
18 // initialize server
19 public WeatherServiceImpl() throws RemoteException
20 {
21 super();
22 updateWeatherConditions();
23 }
24
25 // get weather information from NWS
26 private void updateWeatherConditions()
27 {
28 try {
29 System.out.println("Update weather information...");
30
31 // National Weather Service Traveler’s Forecast page
32 URL url = new URL(
33 "http://iwin.nws.noaa.gov/iwin/us/traveler.html");
34

Fig. 13.2Fig. 13.2Fig. 13.2Fig. 13.2 WeatherServiceImpl class implements remote interface
WeatherService (part 1 of 3).

Chapter 13 Remote Method Invocation 795

35 // create BufferedReader for reading Web page contents
36 BufferedReader in = new BufferedReader(
37 new InputStreamReader(url.openStream()));
38
39 // separator for starting point of data on Web page
40 String separator = "TAV12";
41
42 // locate separator string in Web page
43 while (!in.readLine().startsWith(separator))
44 ; // do nothing
45
46 // strings representing headers on Traveler’s Forecast
47 // Web page for daytime and nighttime weather
48 String dayHeader =
49 "CITY WEA HI/LO WEA HI/LO";
50 String nightHeader =
51 "CITY WEA LO/HI WEA LO/HI";
52
53 String inputLine = "";
54
55 // locate header that begins weather information
56 do {
57 inputLine = in.readLine();
58 } while (!inputLine.equals(dayHeader) &&
59 !inputLine.equals(nightHeader));
60
61 weatherInformation = new ArrayList(); // create List
62
63 // create WeatherBeans containing weather data and
64 // store in weatherInformation List
65 inputLine = in.readLine(); // get first city's info
66
67 // The portion of inputLine containing relevant data is
68 // 28 characters long. If the line length is not at
69 // least 28 characters long, done processing data.
70 while (inputLine.length() > 28) {
71
72 // Create WeatherBean object for city. First 16
73 // characters are city name. Next, six characters
74 // are weather description. Next six characters
75 // are HI/LO or LO/HI temperature.
76 WeatherBean weather = new WeatherBean(
77 inputLine.substring(0, 16),
78 inputLine.substring(16, 22),
79 inputLine.substring(23, 29));
80
81 // add WeatherBean to List
82 weatherInformation.add(weather);
83
84 inputLine = in.readLine(); // get next city's info
85 }
86

Fig. 13.2Fig. 13.2Fig. 13.2Fig. 13.2 WeatherServiceImpl class implements remote interface
WeatherService (part 2 of 3).

796 Remote Method Invocation Chapter 13

Class WeatherServiceImpl extends class UnicastRemoteObject (package
java.rmi.server) and implements Remote interface WeatherService (lines 13–
14). Class UnicastRemoteObject provides the basic functionality required for all
remote objects. In particular, its constructor exports the object to make it available to
receive remote calls. Exporting the object enables the remote object to wait for client con-
nections on an anonymous port number (i.e., one chosen by the computer on which the
remote object executes). This enables the object to perform unicast communication (point-

87 in.close(); // close connection to NWS Web server
88
89 System.out.println("Weather information updated.");
90
91 } // end method updateWeatherConditions
92
93 // handle exception connecting to National Weather Service
94 catch(java.net.ConnectException connectException) {
95 connectException.printStackTrace();
96 System.exit(1);
97 }
98
99 // process other exceptions
100 catch(Exception exception) {
101 exception.printStackTrace();
102 System.exit(1);
103 }
104 }
105
106 // implementation for WeatherService interface remote method
107 public List getWeatherInformation() throws RemoteException
108 {
109 return weatherInformation;
110 }
111
112 // launch WeatherService remote object
113 public static void main(String args[]) throws Exception
114 {
115 System.out.println("Initializing WeatherService...");
116
117 // create remote object
118 WeatherService service = new WeatherServiceImpl();
119
120 // specify remote object name
121 String serverObjectName = "rmi://localhost/WeatherService";
122
123 // bind WeatherService remote object in RMI registry
124 Naming.rebind(serverObjectName, service);
125
126 System.out.println("WeatherService running.");
127 }
128 }

Fig. 13.2Fig. 13.2Fig. 13.2Fig. 13.2 WeatherServiceImpl class implements remote interface
WeatherService (part 3 of 3).

Chapter 13 Remote Method Invocation 797

to-point communication between two objects via method calls) using standard streams-
based socket connections. RMI abstracts away these communication details so the pro-
grammer can work with simple method calls. The WeatherServiceImpl constructor
(lines 19–23) invokes the default constructor for class UnicastRemoteObject (line
21) and calls private method updateWeatherConditions (line 22). Overloaded
constructors for class UnicastRemoteObject allow the programmer to specify addi-
tional information, such as an explicit port number on which to export the remote object.
All UnicastRemoteObject constructors throw RemoteExceptions.

Software Engineering Observation 13.5
Class UnicastRemoteObject constructors and methods throw checked RemoteEx-
ceptions, so UnicastRemoteObject subclasses must define constructors that also
throw RemoteExceptions. 13.5

Software Engineering Observation 13.6
Class UnicastRemoteObject provides basic functionality that remote objects require
to handle remote requests. Remote object classes need not extend this class if those remote
object classes use static method exportObject of class UnicastRemoteObject
to export remote objects. 13.6

Method updateWeatherConditions (lines 26–91) reads weather information
from the Traveler’s Forecast Web page and stores this information in a List of Weath-
erBean objects. Lines 32–33 create a URL object for the Traveler’s Forecast Web page.
Lines 36–37 invoke method openStream of class URL to open a connection to the spec-
ified URL and wrap that connection with a BufferedReader.

Lines 40–87 perform HTML scraping (i.e., extracting data from a Web page) to
retrieve the weather forecast information. Line 40 defines a separator String—
"TAV12"—that determines the starting point from which to locate the appropriate weather
information. Lines 43–44 read through the Traveler’s Forecast Web page until reaching the
sentinel. This process skips over information not needed for this application.

Lines 48–51 define two Strings that represent the column heads for the weather
information. Depending on the time of day, the column headers are either

"CITY WEA HI/LO WEA HI/LO"

after the morning update (normally around 10:30 AM Eastern Standard Time) or

"CITY WEA LO/HI WEA LO/HI"

after the evening update (normally around 10:30 PM Eastern Standard Time).
Lines 65–85 read each city’s weather information and place this information in

WeatherBean objects. Each WeatherBean contains the city’s name, the temperature
and a description of the weather. Line 61 creates a List for storing the WeatherBean
objects. Lines 76–79 construct a WeatherBean object for the current city. The first 16
characters of inputLine are the city name, the next 6 characters of inputLine are the
description (i.e., weather forecast) and the next 6 characters of inputLine are the high
and low temperatures. The last two columns of data represent the next day’s weather fore-
cast, which we ignore in this example. Line 82 adds the WeatherBean object to the
List. Line 87 closes the BufferedReader and its associated InputStream.

Method getWeatherInformation (lines 107–110) is the method from interface
WeatherService that WeatherServiceImpl must implement to respond to remote

798 Remote Method Invocation Chapter 13

requests. The method returns a serialized copy of the weatherInformation List.
Clients invoke this remote method to obtain the weather information.

Method main (lines 113–127) creates the WeatherServiceImpl remote object.
When the constructor executes, it exports the remote object so the object can listen for
remote requests. Line 106 defines the URL that a client can use to obtain a remote reference
to the server object. The client uses this remote reference to invoke methods on the remote
object. The URL normally is of the form

rmi://host:port/remoteObjectName

where host represents the computer that is running the registry for remote objects (this also
is the computer on which the remote object executes), port represents the port number on
which the registry is running on the host and remoteObjectName is the name the client will
supply when it attempts to locate the remote object in the registry. The rmiregistry
utility program manages the registry for remote objects and is part of the J2SE SDK. The
default port number for the RMI registry is 1099.

Software Engineering Observation 13.7
RMI clients assume that they should connect to port 1099 when attempting to locate a re-
mote object through the RMI registry (unless specified otherwise with an explicit port num-
ber in the URL for the remote object). 13.7

Software Engineering Observation 13.8
A client must specify a port number only if the RMI registry is running on a port other than
the default port, 1099. 13.8

In this program, the remote object URL is

rmi://localhost/WeatherService

indicating that the RMI registry is running on the localhost (i.e., the local computer)
and that the name the client must use to locate the service is WeatherService. The
name localhost is synonymous with the IP address 127.0.0.1, so the preceding
URL is equivalent to

rmi://127.0.0.1/WeatherService

Line 124 invokes static method rebind of class Naming (package java.rmi)
to bind the remote WeatherServiceImpl object service to the RMI registry with
the URL rmi://localhost/WeatherService. There also is a bind method for
binding a remote object to the registry. Programmers use method rebind more com-
monly, because method rebind guarantees that if an object already has registered under
the given name, the new remote object will replace the previously registered object. This
could be important when registering a new version of an existing remote object.

Class WeatherBean (Fig. 13.3) stores data that class WeatherServiceImpl
retrieves from the National Weather Service Web site. This class stores the city, tempera-
ture and weather descriptions as Strings. Lines 64–85 provide get methods for each piece
of information. Lines 25–45 load a property file that contains image names for displaying
the weather information. This static block ensures that the image names are available
as soon as the virtual machine loads the WeatherBean class into memory.

Chapter 13 Remote Method Invocation 799

1 // WeatherBean.java
2 // WeatherBean maintains weather information for one city.
3 package com.deitel.advjhtp1.rmi.weather;
4
5 // Java core packages
6 import java.awt.*;
7 import java.io.*;
8 import java.net.*;
9 import java.util.*;

10
11 // Java extension packages
12 import javax.swing.*;
13
14 public class WeatherBean implements Serializable {
15
16 private String cityName; // name of city
17 private String temperature; // city's temperature
18 private String description; // weather description
19 private ImageIcon image; // weather image
20
21 private static Properties imageNames;
22
23 // initialize imageNames when class WeatherBean
24 // is loaded into memory
25 static {
26 imageNames = new Properties(); // create properties table
27
28 // load weather descriptions and image names from
29 // properties file
30 try {
31
32 // obtain URL for properties file
33 URL url = WeatherBean.class.getResource(
34 "imagenames.properties");
35
36 // load properties file contents
37 imageNames.load(new FileInputStream(url.getFile()));
38 }
39
40 // process exceptions from opening file
41 catch (IOException ioException) {
42 ioException.printStackTrace();
43 }
44
45 } // end static block
46
47 // WeatherBean constructor
48 public WeatherBean(String city, String weatherDescription,
49 String cityTemperature)
50 {
51 cityName = city;
52 temperature = cityTemperature;
53 description = weatherDescription.trim();

Fig. 13.3Fig. 13.3Fig. 13.3Fig. 13.3 WeatherBean stores weather forecast for one city (part 1 of 2).

800 Remote Method Invocation Chapter 13

Next, we define the client application that will obtain weather information from the
WeatherServiceImpl. Class WeatherServiceClient (Fig. 13.4) is the client
application that invokes remote method getWeatherInformation of interface
WeatherService to obtain weather information through RMI. Class WeatherSer-
viceClient uses a JList with a custom ListCellRenderer to display the weather
information for each city.

The WeatherServiceClient constructor (lines 16–58) takes as an argument the
name of computer on which the WeatherService remote object is running. Line 24 cre-
ates a String that contains the URL for this remote object. Lines 27–28 invoke
Naming’s static method lookup to obtain a remote reference to the WeatherSer-
vice remote object at the specified URL. Method lookup connects to the RMI registry
and returns a Remote reference to the remote object, so line 28 casts this reference to type
WeatherService. Note that the WeatherServiceClient refers to the remote
object only through interface WeatherService—the remote interface for the Weath-
erServiceImpl remote object implementation. The client can use this remote reference
as if it referred to a local object running in the same virtual machine. This remote reference

54
55 URL url = WeatherBean.class.getResource("images/" +
56 imageNames.getProperty(description, "noinfo.jpg"));
57
58 // get weather image name or noinfo.jpg if weather
59 // description not found
60 image = new ImageIcon(url);
61 }
62
63 // get city name
64 public String getCityName()
65 {
66 return cityName;
67 }
68
69 // get temperature
70 public String getTemperature()
71 {
72 return temperature;
73 }
74
75 // get weather description
76 public String getDescription()
77 {
78 return description;
79 }
80
81 // get weather image
82 public ImageIcon getImage()
83 {
84 return image;
85 }
86 }

Fig. 13.3Fig. 13.3Fig. 13.3Fig. 13.3 WeatherBean stores weather forecast for one city (part 2 of 2).

Chapter 13 Remote Method Invocation 801

refers to a stub object on the client. Stubs allow clients to invoke remote objects’ methods.
Stub objects receive each remote method call and pass those calls to the RMI system, which
performs the networking that allows clients to interact with the remote object. In this case,
the WeatherServiceImpl stub will handle the communication between Weath-
erServiceClient and WeatherServiceImpl. The RMI layer is responsible for
network connections to the remote object, so referencing remote objects is transparent to
the client. RMI handles the underlying communication with the remote object and the
transfer of arguments and return values between the objects.

Lines 31–32 invoke remote method getWeatherInformation on the
weatherService remote reference. This method call returns a copy of the List of
WeatherBeans, which contains information from the Traveler’s Forecast Web page. It
is important to note that RMI returns a copy of the List, because returning a reference
from a remote method call is different from returning a reference from a local method call.
RMI uses object serialization to send the List of WeatherBean objects to the client.
Therefore, the argument and return types for remote methods must be Serializable.

1 // WeatherServiceClient.java
2 // WeatherServiceClient uses the WeatherService remote object
3 // to retrieve weather information.
4 package com.deitel.advjhtp1.rmi.weather;
5
6 // Java core packages
7 import java.rmi.*;
8 import java.util.*;
9

10 // Java extension packages
11 import javax.swing.*;
12
13 public class WeatherServiceClient extends JFrame
14 {
15 // WeatherServiceClient constructor
16 public WeatherServiceClient(String server)
17 {
18 super("RMI WeatherService Client");
19
20 // connect to server and get weather information
21 try {
22
23 // name of remote server object bound to rmi registry
24 String remoteName = "rmi://" + server + "/WeatherService";
25
26 // lookup WeatherServiceImpl remote object
27 WeatherService weatherService =
28 (WeatherService) Naming.lookup(remoteName);
29
30 // get weather information from server
31 List weatherInformation =
32 weatherService.getWeatherInformation();
33

Fig. 13.4Fig. 13.4Fig. 13.4Fig. 13.4 WeatherServiceClient client for WeatherService remote
object (part 1 of 2).

802 Remote Method Invocation Chapter 13

Lines 35–36 create a WeatherListModel (Fig. 13.5) to facilitate displaying the
weather information in a JList (line 39). Line 40 sets a ListCellRenderer for the
JList. Class WeatherCellRenderer (Fig. 13.6) is a ListCellRenderer that
uses WeatherItem objects to display weather information stored in WeatherBeans.

34 // create WeatherListModel for weather information
35 ListModel weatherListModel =
36 new WeatherListModel(weatherInformation);
37
38 // create JList, set ListCellRenderer and add to layout
39 JList weatherJList = new JList(weatherListModel);
40 weatherJList.setCellRenderer(new WeatherCellRenderer());
41 getContentPane().add(new JScrollPane(weatherJList));
42
43 } // end try
44
45 // handle exception connecting to remote server
46 catch (ConnectException connectionException) {
47 System.err.println("Connection to server failed. " +
48 "Server may be temporarily unavailable.");
49
50 connectionException.printStackTrace();
51 }
52
53 // handle exceptions communicating with remote object
54 catch (Exception exception) {
55 exception.printStackTrace();
56 }
57
58 } // end WeatherServiceClient constructor
59
60 // execute WeatherServiceClient
61 public static void main(String args[])
62 {
63 WeatherServiceClient client = null;
64
65 // if no sever IP address or host name specified,
66 // use "localhost"; otherwise use specified host
67 if (args.length == 0)
68 client = new WeatherServiceClient("localhost");
69 else
70 client = new WeatherServiceClient(args[0]);
71
72 // configure and display application window
73 client.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
74 client.pack();
75 client.setResizable(false);
76 client.setVisible(true);
77 }
78 }

Fig. 13.4Fig. 13.4Fig. 13.4Fig. 13.4 WeatherServiceClient client for WeatherService remote
object (part 2 of 2).

Chapter 13 Remote Method Invocation 803

Method main (lines 61–77) checks the command-line arguments for a user-provided
hostname. If the user did not provide a hostname, line 68 creates a new WeatherService-
Client that connects to an RMI registry running on localhost. If the user did provide a
hostname, line 70 creates a WeatherServiceClient using the given hostname.

Class WeatherListModel (Fig. 13.5) is a ListModel that contains Weather-
Beans to be displayed in a JList. This example continues our design patterns discussion
by introducing the Adapter design pattern, which enables two objects with incompatible
interfaces to communicate with each other.1 The Adapter design pattern has many parallels
in the real world. For example, the electrical plugs on appliances in the United States are not
compatible with European electrical sockets. Using an American electrical appliance in
Europe requires the user to place an adapter between the electrical plug and the electrical
socket. On one side, this adapter provides an interface compatible with the American elec-
trical plug. On the other side, this adapter provides an interface compatible with the European
electrical socket. Class WeatherListModel plays the role of the Adapter in the Adapter
design pattern. In Java, interface List is not compatible with class JList’s interface—a
JList can retrieve elements only from a ListModel. Therefore, we provide class
WeatherListModel, which adapts interface List to make it compatible with JList’s
interface. When the JList invokes WeatherListModel method getSize, Weath-
erListModel invokes method size of interface List. When the JList invokes
WeatherListModel method getElementAt, WeatherListModel invokes
JList method get, etc. Class WeatherListModel also plays the role of the model in
Swing’s delegate-model architecture, as we discussed in Chapter 3, Model-View-Controller.

1. Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns; Elements of
Reusable Object-Oriented Software. (Reading, MA: Addison-Wesley, 1995): p. 139.

1 // WeatherListModel.java
2 // WeatherListModel extends AbstractListModel to provide a
3 // ListModel for storing a List of WeatherBeans.
4 package com.deitel.advjhtp1.rmi.weather;
5
6 // Java core packages
7 import java.util.*;
8
9 // Java extension packages

10 import javax.swing.AbstractListModel;
11
12 public class WeatherListModel extends AbstractListModel {
13
14 // List of elements in ListModel
15 private List list;
16
17 // no-argument WeatherListModel constructor
18 public WeatherListModel()
19 {
20 // create new List for WeatherBeans
21 list = new ArrayList();
22 }

Fig. 13.5Fig. 13.5Fig. 13.5Fig. 13.5 WeatherListModel is a ListModel implementation for storing
weather information (part 1 of 2).

804 Remote Method Invocation Chapter 13

23
24 // WeatherListModel constructor
25 public WeatherListModel(List elementList)
26 {
27 list = elementList;
28 }
29
30 // get size of List
31 public int getSize()
32 {
33 return list.size();
34 }
35
36 // get Object reference to element at given index
37 public Object getElementAt(int index)
38 {
39 return list.get(index);
40 }
41
42 // add element to WeatherListModel
43 public void add(Object element)
44 {
45 list.add(element);
46 fireIntervalAdded(this, list.size(), list.size());
47 }
48
49 // remove element from WeatherListModel
50 public void remove(Object element)
51 {
52 int index = list.indexOf(element);
53
54 if (index != -1) {
55 list.remove(element);
56 fireIntervalRemoved(this, index, index);
57 }
58
59 } // end method remove
60
61 // remove all elements from WeatherListModel
62 public void clear()
63 {
64 // get original size of List
65 int size = list.size();
66
67 // clear all elements from List
68 list.clear();
69
70 // notify listeners that content changed
71 fireContentsChanged(this, 0, size);
72 }
73 }

Fig. 13.5Fig. 13.5Fig. 13.5Fig. 13.5 WeatherListModel is a ListModel implementation for storing
weather information (part 2 of 2).

Chapter 13 Remote Method Invocation 805

Class JList uses a ListCellRenderer to render each element in that JList’s
ListModel. Class WeatherCellRenderer (Fig. 13.6) is a DefaultListCell-
Renderer subclass for rendering WeatherBeans in a JList. Method getList-
CellRendererComponent creates and returns a WeatherItem (Fig. 13.7) for the
given WeatherBean.

Class WeatherItem (Fig. 13.7) is a JPanel subclass for displaying weather informa-
tion stored in a WeatherBean. Class WeatherCellRenderer uses instances of class
WeatherItem to display weather information in a JList. The static block (lines 22–
29) loads the ImageIcon backgroundImage into memory when the virtual machine
loads the WeatherItem class itself. This ensures that backgroundImage is available to
all instances of class WeatherItem. Method paintComponent (lines 38–56) draws the
backgroundImage (line 43), the city name (line 50), the temperature (line 51) and the
WeatherBean’s ImageIcon, which describes the weather conditions (line 54).

1 // WeatherCellRenderer.java
2 // WeatherCellRenderer is a custom ListCellRenderer for
3 // WeatherBeans in a JList.
4 package com.deitel.advjhtp1.rmi.weather;
5
6 // Java core packages
7 import java.awt.*;
8
9 // Java extension packages

10 import javax.swing.*;
11
12 public class WeatherCellRenderer extends DefaultListCellRenderer {
13
14 // returns a WeatherItem object that displays city's weather
15 public Component getListCellRendererComponent(JList list,
16 Object value, int index, boolean isSelected, boolean focus)
17 {
18 return new WeatherItem((WeatherBean) value);
19 }
20 }

Fig. 13.6Fig. 13.6Fig. 13.6Fig. 13.6 WeatherCellRenderer is a custom ListCellRenderer for
displaying WeatherBeans in a JList.

1 // WeatherItem.java
2 // WeatherItem displays a city's weather information in a JPanel.
3 package com.deitel.advjhtp1.rmi.weather;
4
5 // Java core packages
6 import java.awt.*;
7 import java.net.*;
8 import java.util.*;
9

10 // Java extension packages
11 import javax.swing.*;
12

Fig. 13.7Fig. 13.7Fig. 13.7Fig. 13.7 WeatherItem displays weather information for one city (part 1 of 2).

806 Remote Method Invocation Chapter 13

13 public class WeatherItem extends JPanel {
14
15 private WeatherBean weatherBean; // weather information
16
17 // background ImageIcon
18 private static ImageIcon backgroundImage;
19
20 // static initializer block loads background image when class
21 // WeatherItem is loaded into memory
22 static {
23
24 // get URL for background image
25 URL url = WeatherItem.class.getResource("images/back.jpg");
26
27 // background image for each city's weather info
28 backgroundImage = new ImageIcon(url);
29 }
30
31 // initialize a WeatherItem
32 public WeatherItem(WeatherBean bean)
33 {
34 weatherBean = bean;
35 }
36
37 // display information for city's weather
38 public void paintComponent(Graphics g)
39 {
40 super.paintComponent(g);
41
42 // draw background
43 backgroundImage.paintIcon(this, g, 0, 0);
44
45 // set font and drawing color,
46 // then display city name and temperature
47 Font font = new Font("SansSerif", Font.BOLD, 12);
48 g.setFont(font);
49 g.setColor(Color.white);
50 g.drawString(weatherBean.getCityName(), 10, 19);
51 g.drawString(weatherBean.getTemperature(), 130, 19);
52
53 // display weather image
54 weatherBean.getImage().paintIcon(this, g, 253, 1);
55
56 } // end method paintComponent
57
58 // make WeatherItem's preferred size the width and height of
59 // the background image
60 public Dimension getPreferredSize()
61 {
62 return new Dimension(backgroundImage.getIconWidth(),
63 backgroundImage.getIconHeight());
64 }
65 }

Fig. 13.7Fig. 13.7Fig. 13.7Fig. 13.7 WeatherItem displays weather information for one city (part 2 of 2).

Chapter 13 Remote Method Invocation 807

The images in this example are available with the example code from this text on the CD
that accompanies the text and from our Web site (www.deitel.com). Click the Down-
loads link and download the examples for Advanced Java 2 Platform How to Program.

13.5 Compiling and Executing the Server and the Client
Now that the pieces are in place, we can build and execute our distributed application; this
requires several steps. First, we must compile the classes. Next, we must compile the re-
mote object class (WeatherServiceImpl), using the rmic compiler (a utility supplied
with the J2SE SDK) to produce a stub class. As we discussed in Section 13.4, a stub class
forwards method invocations to the RMI layer, which performs the network communica-
tion necessary to invoke the method call on the remote object. The command line

rmic -v1.2 com.deitel.advjhtp1.rmi.weather.WeatherServiceImpl

generates the file WeatherServiceImpl_Stub.class. This class must be available
to the client (either locally or via download) to enable remote communication with the serv-
er object. Depending on the command line options passed to rmic, this may generate sev-
eral files. In Java 1.1, rmic produced two classes—a stub class and a skeleton class. Java
2 no longer requires the skeleton class. The command-line option -v1.2 indicates that
rmic should create only the stub class.

The next step is to start the RMI registry with which the WeatherServiceImpl
object will register. The command line

rmiregistry

launches the RMI registry on the local machine. The command line window (Fig. 13.8) will
not show any text in response to this command.

Common Programming Error 13.1
Not starting the RMI registry before attempting to bind the remote object to the registry re-
sults in a java.rmi.ConnectException, which indicates that the program cannot
connect to the registry. 13.1

To make the remote object available to receive remote method calls, we bind the object
to a name in the RMI registry. Run the WeatherServiceImpl application from the
command line as follows:

java com.deitel.advjhtp1.rmi.weather.WeatherServiceImpl

Figure 13.9 shows the WeatherServiceImpl application output. Class Weather-
ServiceImpl retrieves the data from the Traveler’s Forecast Web page and displays a
message indicating that the service is running.

Fig. 13.8Fig. 13.8Fig. 13.8Fig. 13.8 Running the rmiregistry.

808 Remote Method Invocation Chapter 13

The WeatherServiceClient program now can connect with the Weather-
ServiceImpl running on localhost with the command

java com.deitel.advjhtp1.rmi.weather.WeatherServiceClient

Figure 13.10 shows the WeatherServiceClient application window. When the pro-
gram executes, the WeatherServiceClient connects to the remote server object and
displays the current weather information.

If the WeatherServiceImpl is running on a different machine from the client, you
can specify the IP address or host name of the server computer as a command-line argument
when executing the client. For example, to access a computer with IP address
192.168.0.150, enter the command

java com.deitel.advjhtp1.rmi.weather.WeatherServiceClient
192.168.0.150

In the first part of this chapter, we built a simple distributed system that demonstrated
the basics of RMI. In the following case study, we build a more sophisticated RMI distrib-
uted system that takes advantage of some advanced RMI features.

Fig. 13.9Fig. 13.9Fig. 13.9Fig. 13.9 Executing the WeatherServiceImpl remote object.

Fig. 13.10Fig. 13.10Fig. 13.10Fig. 13.10 WeatherServiceClient application window.

Chapter 13 Remote Method Invocation 809

13.6 Case Study: Deitel Messenger with Activatable Server
In this section, we present a case study that implements an online chat system using RMI
and an activatable chat server. This case study—the Deitel Messenger—uses several ad-
vanced RMI features and a modular architecture that promotes reusability. Figure 13.11
lists the classes and interfaces that make up the case study and brief descriptions of each.
Interfaces are shown in italic font.

Standard RMI objects exported as UnicastRemoteObjects must run continu-
ously on the server to handle client requests. RMI objects that extend class
java.rmi.activation.Activatable are able to activate, or start running, when
a client invokes one of the remote object’s methods. This can conserve resources on the
server because a remote object’s processes are put to sleep and release memory when there
are no clients using that particular remote object. The RMI activation daemon (rmid) is a
server process that enables activatable remote objects to become active when clients invoke
remote methods on these objects.

Name Role

ChatServer Remote interface through which clients register for a chat,
leave a chat, and post chat messages.

StoppableChatServer Administrative remote interface for terminating the chat
server.

ChatServerImpl Implementation of the ChatServer remote interface that pro-
vides an RMI-based chat server.

ChatServerAdministrator Utility program for launching and terminating the activat-
able ChatServer.

ChatClient Remote interface through which the ChatServer communi-
cates with clients.

ChatMessage Serializable object for sending messages between
ChatServer and ChatClients.

MessageManager Interface that defines methods for managing communication
between the client’s user interface and the ChatServer.

RMIMessageManager ChatClient and MessageManager implementation
for managing communication between the client and the
ChatServer.

MessageListener Interface for classes that wish to receive new chat messages.

DisconnectListener Interface for classes that wish to receive notifications when
the server disconnects.

ClientGUI GUI for sending and receiving chat messages using a Mes-
sageManager.

DeitelMessenger Application launcher for Deitel Messenger client.

Fig. 13.11Fig. 13.11Fig. 13.11Fig. 13.11 Participants of DeitelMessenger case study.

810 Remote Method Invocation Chapter 13

Activatable remote objects also are able to recover from server crashes, because
remote references to activatable objects are persistent—when the server restarts, the RMI
activation daemon maintains the remote reference, so clients can continue to use the remote
object. We discuss the details of implementing Activatable remote objects when we
present the chat server implementation.

13.6.1 Activatable Deitel Messenger ChatServer

Like every RMI remote object, an Activatable remote object must implement a remote
interface. Interface ChatServer (Fig. 13.12) is the remote interface for the Deitel Mes-
senger server. Clients interact with the Deitel Messenger server through the ChatServer
remote interface. Remote interfaces for an Activatable RMI have the same require-
ments as standard RMI remote interfaces.

Line 13 declares that interface ChatServer extends interface Remote, which RMI
requires for all remote interfaces. Method registerClient (lines 16–17) enables a
ChatClient (Fig. 13.17) to register with the ChatServer and take part in the chat ses-
sion. Method registerClient takes as an argument the ChatClient to register.
Interface ChatClient is itself a remote interface, so both the server and client are remote
objects in this application. This enables the server to communicate with clients by invoking
remote methods on those clients. We discuss this communication—called an RMI call-
back—in more detail when we present the ChatClient implementation.

1 // ChatServer.java
2 // ChatServer is a remote interface that defines how a client
3 // registers for a chat, leaves a chat and posts chat messages.
4 package com.deitel.messenger.rmi.server;
5
6 // Java core packages
7 import java.rmi.*;
8
9 // Deitel packages

10 import com.deitel.messenger.rmi.ChatMessage;
11 import com.deitel.messenger.rmi.client.ChatClient;
12
13 public interface ChatServer extends Remote {
14
15 // register new ChatClient with ChatServer
16 public void registerClient(ChatClient client)
17 throws RemoteException;
18
19 // unregister ChatClient with ChatServer
20 public void unregisterClient(ChatClient client)
21 throws RemoteException;
22
23 // post new message to ChatServer
24 public void postMessage(ChatMessage message)
25 throws RemoteException;
26 }

Fig. 13.12Fig. 13.12Fig. 13.12Fig. 13.12 ChatServer remote interface for Deitel Messenger chat server.

Chapter 13 Remote Method Invocation 811

Method unregisterClient (lines 20–21) enables clients to remove themselves
from the chat session. Method postMessage enables clients to post new messages to the
chat session. Method postMessage takes as an argument a reference to a ChatMes-
sage. A ChatMessage (Fig. 13.18) is a Serializable object that contains the name
of the sender and the message body. We discuss this class in more detail shortly.

The server side of the Deitel Messenger application includes a program for managing
the Activatable remote object. Interface StoppableChatServer (Fig. 13.13)
declares method stopServer. The program that manages the Deitel Messenger server
invokes method stopServer to terminate the server.

Class ChatServerImpl (Fig. 13.14) is an Activatable RMI object that imple-
ments the ChatServer and StoppableChatServer remote interfaces. Line 23 creates
a Set for maintaining remote references to registered ChatClients. The ChatServer-
Impl constructor (lines 29–34) takes as arguments an ActivationID and a Mar-
shalledObject. The RMI activation mechanism requires that Activatable objects
provide this constructor. When the activation daemon activates a remote object of this class,
it invokes this activation constructor. The ActivationID argument specifies a unique
identifier for the remote object. Class MarshalledObject is a wrapper class that contains
a serialized object for transmission over RMI. In this case, the MarshalledObject argu-
ment contains application-specific initialization information, such as the name under which
the activation daemon registered the remote object. Line 33 invokes the superclass con-
structor to complete activation. The second argument to the superclass constructor (0) speci-
fies that the activation daemon should export the object on an anonymous port.

1 // StoppableChatServer.java
2 // StoppableChatServer is a remote interface that provides a
3 // mechansim to terminate the chat server.
4 package com.deitel.messenger.rmi.server;
5
6 // Java core packages
7 import java.rmi.*;
8
9 public interface StoppableChatServer extends Remote {

10
11 // stop ChatServer
12 public void stopServer() throws RemoteException;
13 }

Fig. 13.13Fig. 13.13Fig. 13.13Fig. 13.13 StoppableChatServer remote interface for stopping a
ChatServer remote object.

1 // ChatServerImpl.java
2 // ChatServerImpl implements the ChatServer remote interface
3 // to provide an RMI-based chat server.
4 package com.deitel.messenger.rmi.server;
5

Fig. 13.14Fig. 13.14Fig. 13.14Fig. 13.14 ChatServerImpl implementation of remote interfaces ChatServer
and StoppableChatServer as Activatable remote objects (part
1 of 5).

812 Remote Method Invocation Chapter 13

6 // Java core packages
7 import java.io.*;
8 import java.net.*;
9 import java.rmi.*;

10 import java.rmi.activation.*;
11 import java.rmi.server.*;
12 import java.rmi.registry.*;
13 import java.util.*;
14
15 // Deitel packages
16 import com.deitel.messenger.rmi.ChatMessage;
17 import com.deitel.messenger.rmi.client.ChatClient;
18
19 public class ChatServerImpl extends Activatable
20 implements ChatServer, StoppableChatServer {
21
22 // Set of ChatClient references
23 private Set clients = new HashSet();
24
25 // server object's name
26 private String serverObjectName;
27
28 // ChatServerImpl constructor
29 public ChatServerImpl(ActivationID id, MarshalledObject data)
30 throws RemoteException {
31
32 // register activatable object and export on anonymous port
33 super(id, 0);
34 }
35
36 // register ChatServerImpl object with RMI registry.
37 public void register(String rmiName) throws RemoteException,
38 IllegalArgumentException, MalformedURLException
39 {
40 // ensure registration name was provided
41 if (rmiName == null)
42 throw new IllegalArgumentException(
43 "Registration name cannot be null");
44
45 serverObjectName = rmiName;
46
47 // bind ChatServerImpl object to RMI registry
48 try {
49
50 // create RMI registry
51 System.out.println("Creating registry ...");
52 Registry registry =
53 LocateRegistry.createRegistry(1099);
54
55 // bind RMI object to default RMI registry
56 System.out.println("Binding server to registry ...");

Fig. 13.14Fig. 13.14Fig. 13.14Fig. 13.14 ChatServerImpl implementation of remote interfaces ChatServer
and StoppableChatServer as Activatable remote objects (part
2 of 5).

Chapter 13 Remote Method Invocation 813

57 registry.rebind(serverObjectName, this);
58 }
59
60 // if registry already exists, bind to existing registry
61 catch (RemoteException remoteException) {
62 System.err.println("Registry already exists. " +
63 "Binding to existing registry ...");
64 Naming.rebind(serverObjectName, this);
65 }
66
67 System.out.println("Server bound to registry");
68
69 } // end method register
70
71 // register new ChatClient with ChatServer
72 public void registerClient(ChatClient client)
73 throws RemoteException
74 {
75 // add client to Set of registered clients
76 synchronized (clients) {
77 clients.add(client);
78 }
79
80 System.out.println("Registered Client: " + client);
81
82 } // end method registerClient
83
84 // unregister client with ChatServer
85 public void unregisterClient(ChatClient client)
86 throws RemoteException
87 {
88 // remove client from Set of registered clients
89 synchronized(clients) {
90 clients.remove(client);
91 }
92
93 System.out.println("Unregistered Client: " + client);
94
95 } // end method unregisterClient
96
97 // post new message to chat server
98 public void postMessage(ChatMessage message)
99 throws RemoteException
100 {
101 Iterator iterator = null;
102
103 // get Iterator for Set of registered clients
104 synchronized(clients) {
105 iterator = new HashSet(clients).iterator();
106 }
107

Fig. 13.14Fig. 13.14Fig. 13.14Fig. 13.14 ChatServerImpl implementation of remote interfaces ChatServer
and StoppableChatServer as Activatable remote objects (part
3 of 5).

814 Remote Method Invocation Chapter 13

108 // send message to every ChatClient
109 while (iterator.hasNext()) {
110
111 // attempt to send message to client
112 ChatClient client = (ChatClient) iterator.next();
113
114 try {
115 client.deliverMessage(message);
116 }
117
118 // unregister client if exception is thrown
119 catch(Exception exception) {
120 System.err.println("Unregistering absent client.");
121 unregisterClient(client);
122 }
123
124 } // end while loop
125
126 } // end method postMessage
127
128 // notify each client that server is shutting down and
129 // terminate server application
130 public void stopServer() throws RemoteException
131 {
132 System.out.println("Terminating server ...");
133
134 Iterator iterator = null;
135
136 // get Iterator for Set of registered clients
137 synchronized(clients) {
138 iterator = new HashSet(clients).iterator();
139 }
140
141 // send message to every ChatClient
142 while (iterator.hasNext()) {
143 ChatClient client = (ChatClient) iterator.next();
144 client.serverStopping();
145 }
146
147 // create Thread to terminate application after
148 // stopServer method returns to caller
149 Thread terminator = new Thread(
150 new Runnable() {
151
152 // sleep for 5 seconds, print message and terminate
153 public void run()
154 {
155 // sleep
156 try {
157 Thread.sleep(5000);
158 }

Fig. 13.14Fig. 13.14Fig. 13.14Fig. 13.14 ChatServerImpl implementation of remote interfaces ChatServer
and StoppableChatServer as Activatable remote objects (part
4 of 5).

Chapter 13 Remote Method Invocation 815

Method register (lines 37–69) registers a ChatServerImpl remote object with
the RMI registry. If the provided name for the remote object is null, lines 42–43 throw
an IllegalArgumentException, indicating that the caller must specify a name for
the remote object. Lines 52–53 use static method createRegistry of class Loca-
teRegistry to create a new Registry on the local machine at port 1099, which is the
default port. This is equivalent to executing the rmiregistry utility to start a new RMI
registry. Line 57 invokes method rebind of class Registry to bind the activatable
object to the Registry. If creating or binding to the Registry fails, we assume that an
RMI registry already is running on the local machine. Line 64 invokes static method
rebind of class Naming to bind the remote object to the existing RMI registry.

Method registerClient (lines 72–82) enables ChatClient remote objects to
register with the ChatServer to participate in the chat session. The ChatClient argu-
ment to method registerClient is a remote reference to the registering client, which
is itself a remote object. Line 77 adds the ChatClient remote reference to the Set of
ChatClients participating in the chat session. Method unregisterClient (lines
85–95) enables ChatClients to leave the chat session. Line 90 removes the given
ChatClient remote reference from the Set of ChatClient references.

ChatClients invoke method postMessage (lines 98–124) to post new Chat-
Messages to the chat session. Each ChatMessage (Fig. 13.18) instance is a Serial-
izable object that contains as properties the message sender and the message body.
Lines 109–123 iterate through the Set of ChatClient references and invoke remote
method deliverMessage of interface ChatClient to deliver the new ChatMes-
sage to each client. If delivering a message to a client throws an exception, we assume
that the client is no longer available. Line 121 therefore unregisters the absent client from
the server.

Interface StoppableChatServer requires that class ChatServerImpl imple-
ments method stopServer (lines 128–170). Lines 140–143 iterate through the Set of
ChatClient references and invoke method serverStopping of interface Chat-
Client to notify each ChatClient that the server is shutting down. Lines 147–168

159
160 // ignore InterruptedExceptions
161 catch (InterruptedException exception) {
162 }
163
164 System.err.println("Server terminated");
165 System.exit(0);
166 }
167 }
168);
169
170 terminator.start(); // start termination thread
171
172 } // end method stopServer
173 }

Fig. 13.14Fig. 13.14Fig. 13.14Fig. 13.14 ChatServerImpl implementation of remote interfaces ChatServer
and StoppableChatServer as Activatable remote objects (part
5 of 5).

816 Remote Method Invocation Chapter 13

create and start a new Thread to ensure that the ChatServerAdministrator
(Fig. 13.15) can unbind the remote object from the RMI Registry before the remote
object terminates.

Class ChatServerAdministrator (Fig. 13.15) is a utility program for regis-
tering and unregistering the activatable ChatServer remote object. Method start-
Server (lines 14–52) launches the activatable ChatServer. Activatable RMI objects
execute as part of an ActivationGroup (package java.rmi.activation). The
RMI activation daemon starts a new virtual machine for each ActivationGroup. Lines
21–22 create a Properties object and add a property that specifies the policy file under
which the ActivationGroup’s JVM should run. This policy file (Fig. 13.16) allows
Activatable objects in this ActivationGroup to terminate the virtual machine for
this activation group. Recall that ChatServerImpl invokes static method exit of
class System in method stopServer, which terminates the ActivationGroup’s
virtual machine along with all of its executing remote objects.

1 // ChatServerAdministrator.java
2 // ChatServerAdministrator is a utility program for launching
3 // and terminating the Activatable ChatServer.
4 package com.deitel.messenger.rmi.server;
5
6 // Java core packages
7 import java.rmi.*;
8 import java.rmi.activation.*;
9 import java.util.*;

10
11 public class ChatServerAdministrator {
12
13 // set up activatable server object
14 private static void startServer(String policy,
15 String codebase) throws Exception
16 {
17 // set up RMI security manager
18 System.setSecurityManager(new RMISecurityManager());
19
20 // set security policy for ActivatableGroup JVM
21 Properties properties = new Properties();
22 properties.put("java.security.policy", policy);
23
24 // create ActivationGroupDesc for activatable object
25 ActivationGroupDesc groupDesc =
26 new ActivationGroupDesc(properties, null);
27
28 // register activation group with RMI activation system
29 ActivationGroupID groupID =
30 ActivationGroup.getSystem().registerGroup(groupDesc);
31
32 // create activation group
33 ActivationGroup.createGroup(groupID, groupDesc , 0);
34

Fig. 13.15Fig. 13.15Fig. 13.15Fig. 13.15 ChatServerAdministrator application for starting and stopping
the ChatServer remote object (part 1 of 3).

Chapter 13 Remote Method Invocation 817

35 // activation description for ChatServerImpl
36 ActivationDesc description = new ActivationDesc(
37 "com.deitel.messenger.rmi.server.ChatServerImpl",
38 codebase, null);
39
40 // register description with rmid
41 ChatServer server =
42 (ChatServer) Activatable.register(description);
43 System.out.println("Obtained ChatServerImpl stub");
44
45 // bind ChatServer in registry
46 Naming.rebind("ChatServer", server);
47 System.out.println("Bound object to registry");
48
49 // terminate setup program
50 System.exit(0);
51
52 } // end method startServer
53
54 // terminate server
55 private static void terminateServer(String hostname)
56 throws Exception
57 {
58 // lookup ChatServer in RMI registry
59 System.out.println("Locating server ...");
60 StoppableChatServer server = (StoppableChatServer)
61 Naming.lookup("rmi://" + hostname + "/ChatServer");
62
63 // terminate server
64 System.out.println("Stopping server ...");
65 server.stopServer();
66
67 // remove ChatServer from RMI registry
68 System.out.println("Server stopped");
69 Naming.unbind("rmi://" + hostname + "/ChatServer");
70
71 } // end method terminateServer
72
73 // launch ChatServerAdministrator application
74 public static void main(String args[]) throws Exception
75 {
76 // check for stop server argument
77 if (args.length == 2) {
78
79 if (args[0].equals("stop"))
80 terminateServer(args[1]);
81
82 else printUsageInstructions();
83 }
84

Fig. 13.15Fig. 13.15Fig. 13.15Fig. 13.15 ChatServerAdministrator application for starting and stopping
the ChatServer remote object (part 2 of 3).

818 Remote Method Invocation Chapter 13

Lines 25–26 create an ActivationGroupDesc object, which is an activation
group descriptor. The activation group descriptor specifies configuration information for
the ActivationGroup. The first argument to the ActivationGroupDesc con-
structor is a Properties reference that contains replacement values for system proper-
ties in the ActivationGroup’s virtual machine. In this example, we override the
java.security.policy system property to provide an appropriate security policy for
the ActivationGroup’s virtual machine. The second argument is a reference to an
ActivationGroupDesc.CommandEnvironment object. This object enables the
ActivationGroup to customize the commands that the activation daemon executes
when starting the ActivationGroup’s virtual machine. This example requires no such
customization, so we pass a null reference for the second argument.

Lines 29–30 obtain an ActivationSystem by invoking static method get-
System of class ActivationGroup. Line 30 invokes method registerGroup of
interface ActivationSystem and passes as an argument the groupDesc activation

85 // check for start server argument
86 else if (args.length == 3) {
87
88 // start server with user-provided policy, codebase
89 // and Registry hostname
90 if (args[0].equals("start"))
91 startServer(args[1], args[2]);
92
93 else printUsageInstructions();
94 }
95
96 // wrong number of arguments provided, so print instructions
97 else printUsageInstructions();
98
99 } // end method main
100
101 // print instructions for running ChatServerAdministrator
102 private static void printUsageInstructions()
103 {
104 System.err.println("\nUsage:\n" +
105 "\tjava com.deitel.messenger.rmi.server." +
106 "ChatServerAdministrator start <policy> <codebase>\n" +
107 "\tjava com.deitel.messenger.rmi.server." +
108 "ChatServerAdministrator stop <registry hostname>");
109 }
110 }

1 // allow ActivationGroup to terminate the virtual machine
2 grant {
3 permission java.lang.RuntimePermission "exitVM";
4 };

Fig. 13.16Fig. 13.16Fig. 13.16Fig. 13.16 Policy file for ChatServer’s ActivationGroup.

Fig. 13.15Fig. 13.15Fig. 13.15Fig. 13.15 ChatServerAdministrator application for starting and stopping
the ChatServer remote object (part 3 of 3).

Chapter 13 Remote Method Invocation 819

group descriptor. Method registerGroup returns the ActivationGroupID for the
newly registered ActivationGroup. Line 33 invokes static method create-
Group of class ActivationGroup to create the ActivationGroup. This method
takes as arguments the ActivationGroupID, the ActivationGroupDesc and the
incarnation number for the ActivationGroup. The incarnation number identifies dif-
ferent instances of the same ActivationGroup. Each time the activation daemon acti-
vates the ActivationGroup, the daemon increments the incarnation number.

Lines 36–38 create an ActivationDesc object for the ChatServer remote
object. This activation descriptor specifies configuration information for a particular
Activatable remote object. The first argument to the ActivationDesc constructor
specifies the name of the class that implements the Activatable remote object. The
second argument specifies the codebase that contains the remote object’s class files. The
final argument is a MarshalledObject reference, whose object specifies initialization
information for the remote object. Recall that the ChatServerImpl activation con-
structor takes as its second argument a MarshalledObject reference. Our Chat-
Server remote object requires no special initialization information, so line 38 passes a
null reference for the MarshalledObject argument.

Line 42 invokes static method register of class Activatable to register the
Activatable remote object. Method register takes as an argument the Activa-
tionDesc for the Activatable object and returns a reference to the remote object’s
stub. Line 46 invokes static method rebind of class Naming to bind the Chat-
Server in the RMI Registry.

Method terminateServer (lines 55–71) provides a means to shut down the acti-
vatable ChatServer remote object. Line 61 invokes static method lookup of
class Naming to obtain a remote reference to the ChatServer. Line 60 casts the ref-
erence to type StoppableChatServer, which declares method stopServer. Line
65 invokes method stopServer to notify clients that the ChatServer is shutting
down. Recall that method stopServer of class ChatServerImpl starts a Thread
that waits five seconds before invoking static method exit of class System. This
Thread keeps the ChatServer remote object running after method stopServer
returns, allowing the ChatServerAdministrator to remove the remote object
from the RMI Registry. Line 69 invokes static method unbind of class Naming
to remove the ChatServer remote object from the RMI Registry. The Thread in
class ChatServerImpl then terminates the virtual machine in which the Chat-
Server remote object ran.

Method main (lines 74–99) checks the command-line arguments to determine
whether to start or stop the ChatServer remote object. When stopping the server, the
user must provide as the second argument the hostname of the computer on which the
server is running. When starting the server, the user must provide as arguments the location
of the policy file for the ActivationGroup and the codebase for the remote object. If
the user passes argument "stop", line 80 invokes method terminateServer to shut
down the ChatServer on the specified host. If the user passes argument "start", line
91 invokes method startServer with the given policy file location and codebase. If the
user provides an invalid number or type of arguments, lines 82, 93 and 97 invoke method
printUsageInstructions (lines 102–109) to display information about the required
command-line arguments.

820 Remote Method Invocation Chapter 13

13.6.2 Deitel Messenger Client Architecture and Implementation
Throughout this book, we present several versions of the Deitel Messenger case study.
Each version implements the underlying communications using a different technology. For
example, in Chapter 26, Common Object Request Broker Architecture (CORBA): Part 1,
we present an implementation that uses CORBA as the underlying communication mech-
anism. The client for the Deitel Messenger application uses a modularized architecture to
optimize code reuse in the several versions of this case study.

Communication Interfaces and Implementation
The client for the Deitel Messenger system separates the application GUI and the network
communication into separate objects that interact through a set of interfaces. This enables
us to use the same client-side GUI for different versions of the Deitel Messenger applica-
tion. In this section, we present these interfaces and implementations with RMI.

Interface ChatClient (Fig. 13.17) is an RMI remote interface that enables the
ChatServer to communicate with the ChatClient through RMI callbacks—remote
method calls from the ChatServer back to the client. Recall that when a client connects
to the ChatServer, the client invokes ChatServer method registerClient and
passes as an argument a ChatClient remote reference. The server then uses this Chat-
Client remote reference to invoke RMI callbacks on the ChatClient (e.g., to deliver
ChatMessages to that client). Method deliverMessage (lines 16–17) enables the
ChatServer to send new ChatMessages to the ChatClient. Method server-
Stopping (line 20) enables the ChatServer to notify the ChatClient when the
ChatServer is shutting down.

1 // ChatClient.java
2 // ChatClient is a remote interface that defines methods for a
3 // chat client to receive messages and status information from
4 // a ChatServer.
5 package com.deitel.messenger.rmi.client;
6
7 // Java core packages
8 import java.rmi.*;
9

10 // Deitel packages
11 import com.deitel.messenger.rmi.ChatMessage;
12
13 public interface ChatClient extends Remote {
14
15 // method called by server to deliver message to client
16 public void deliverMessage(ChatMessage message)
17 throws RemoteException;
18
19 // method called when server shuting down
20 public void serverStopping() throws RemoteException;
21 }

Fig. 13.17Fig. 13.17Fig. 13.17Fig. 13.17 ChatClient remote interface to enable RMI callbacks.

Chapter 13 Remote Method Invocation 821

Class ChatMessage (Fig. 13.18) is a Serializable class that represents a mes-
sage in the Deitel Messenger system. Instance variables sender and message contain
the name of the person who sent the message and the message body, respectively. Class
ChatMessage provides set and get methods for the sender and message and method
toString for producing a String representation of a ChatMessage.

Interface MessageManager (Fig. 13.19) declares methods for classes that imple-
ment communication logic for a ChatClient. The methods that this interface declares
are not specific to any underlying communication implementation. The chat client GUI
uses a MessageManager implementation to connect to and disconnect from the Chat-
Server, and to send messages. Method connect (lines 10–11) connects to the Chat-
Server and takes as an argument the MessageListener to which the
MessageManager should deliver new incoming messages. We discuss interface Mes-
sageListener in detail when we present the client user interface. Method discon-
nect (lines 15–16) disconnects the MessageManager from the ChatServer and
stops routing messages to the given MessageListener. Method sendMessage (lines
19–20) takes as String arguments a user name (from) and a message to send to the
ChatServer. Method setDisconnectListener registers a DisconnectLis-
tener to be notified when the ChatServer disconnects the client. We discuss interface
DisconnectListener in detail when we present the client user interface.

1 // ChatMessage.java
2 // ChatMessage is a Serializable object for messages in the RMI
3 // ChatClient and ChatServer.
4 package com.deitel.messenger.rmi;
5
6 // Java core packages
7 import java.io.*;
8
9 public class ChatMessage implements Serializable {

10
11 private String sender; // person sending message
12 private String message; // message being sent
13
14 // construct empty ChatMessage
15 public ChatMessage()
16 {
17 this("", "");
18 }
19
20 // construct ChatMessage with sender and message values
21 public ChatMessage(String sender, String message)
22 {
23 setSender(sender);
24 setMessage(message);
25 }
26

Fig. 13.18Fig. 13.18Fig. 13.18Fig. 13.18 ChatMessage is a serializable class for transmitting messages over RMI
(part 1 of 2).

822 Remote Method Invocation Chapter 13

27 // set name of person sending message
28 public void setSender(String name)
29 {
30 sender = name;
31 }
32
33 // get name of person sending message
34 public String getSender()
35 {
36 return sender;
37 }
38
39 // set message being sent
40 public void setMessage(String messageBody)
41 {
42 message = messageBody;
43 }
44
45 // get message being sent
46 public String getMessage()
47 {
48 return message;
49 }
50
51 // String representation of ChatMessage
52 public String toString()
53 {
54 return getSender() + "> " + getMessage();
55 }
56 }

1 // MessageManager.java
2 // MessageManger is an interface for objects capable of managing
3 // communications with a message server.
4 package com.deitel.messenger;
5
6 public interface MessageManager {
7
8 // connect to message server and route incoming messages
9 // to given MessageListener

10 public void connect(MessageListener listener)
11 throws Exception;
12
13 // disconnect from message server and stop routing
14 // incoming messages to given MessageListener
15 public void disconnect(MessageListener listener)
16 throws Exception;
17

Fig. 13.19Fig. 13.19Fig. 13.19Fig. 13.19 MessageManager interface for classes that implement communication
logic for a ChatClient (part 1 of 2).

Fig. 13.18Fig. 13.18Fig. 13.18Fig. 13.18 ChatMessage is a serializable class for transmitting messages over RMI
(part 2 of 2).

Chapter 13 Remote Method Invocation 823

Class RMIMessageManager (Fig. 13.20) handles all communication between the
client and the ChatServer. Class RMIMessageManager is an RMI remote object that
extends class UnicastRemoteObject and implements the ChatClient remote
interface (lines 18–19). Class RMIMessageManager also implements interface Mes-
sageManager, enabling the client user interface to use an RMIMessageManager
object to communicate with the ChatServer.

The RMIMessageManager constructor takes as a String argument the hostname
of the computer running the RMI registry with which the ChatServer has registered.
Note that because class RMIMessenger is itself an RMI remote object, the RMIMes-
sageManager constructor throws RemoteException, which RMI requires of all
UnicastRemoteObject subclasses. Line 31 assigns the given server name to instance
variable serverAddress.

18 // send message to message server
19 public void sendMessage(String from, String message)
20 throws Exception;
21
22 // set listener for disconnect notifications
23 public void setDisconnectListener(
24 DisconnectListener listener);
25 }

1 // RMIMessageManager.java
2 // RMIMessageManager implements the ChatClient remote interface
3 // and manages incoming and outgoing chat messages using RMI.
4 package com.deitel.messenger.rmi.client;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9 import java.rmi.*;

10 import java.rmi.server.*;
11 import java.util.*;
12
13 // Deitel packages
14 import com.deitel.messenger.*;
15 import com.deitel.messenger.rmi.*;
16 import com.deitel.messenger.rmi.server.ChatServer;
17
18 public class RMIMessageManager extends UnicastRemoteObject
19 implements ChatClient, MessageManager {
20
21 // listeners for incoming messages and disconnect notifications
22 private MessageListener messageListener;
23 private DisconnectListener disconnectListener;
24

Fig. 13.20Fig. 13.20Fig. 13.20Fig. 13.20 RMIMessageManager remote object and MessageManager
implementation for managing ChatClient communication (part 1 of 3).

Fig. 13.19Fig. 13.19Fig. 13.19Fig. 13.19 MessageManager interface for classes that implement communication
logic for a ChatClient (part 2 of 2).

824 Remote Method Invocation Chapter 13

25 private String serverAddress;
26 private ChatServer chatServer;
27
28 // RMIMessageManager constructor
29 public RMIMessageManager(String server) throws RemoteException
30 {
31 serverAddress = server;
32 }
33
34 // connect to ChatServer
35 public void connect(MessageListener listener)
36 throws Exception
37 {
38 // look up ChatServer remote object
39 chatServer = (ChatServer) Naming.lookup(
40 "//" + serverAddress + "/ChatServer");
41
42 // register with ChatServer to receive messages
43 chatServer.registerClient(this);
44
45 // set listener for incoming messages
46 messageListener = listener;
47
48 } // end method connect
49
50 // disconnect from ChatServer
51 public void disconnect(MessageListener listener)
52 throws Exception
53 {
54 if (chatServer == null)
55 return;
56
57 // unregister with ChatServer
58 chatServer.unregisterClient(this);
59
60 // remove references to ChatServer and MessageListener
61 chatServer = null;
62 messageListener = null;
63
64 } // end method disconnect
65
66 // send ChatMessage to ChatServer
67 public void sendMessage(String fromUser, String message)
68 throws Exception
69 {
70 if (chatServer == null)
71 return;
72
73 // create ChatMessage with message text and userName
74 ChatMessage chatMessage =
75 new ChatMessage(fromUser, message);
76

Fig. 13.20Fig. 13.20Fig. 13.20Fig. 13.20 RMIMessageManager remote object and MessageManager
implementation for managing ChatClient communication (part 2 of 3).

Chapter 13 Remote Method Invocation 825

Method connect (lines 35–48)—declared in interface MessageManager—con-
nects the RMIMessageManager to the ChatServer. Lines 39–40 invoke static
method lookup of class Naming to retrieve a remote reference to the ChatServer.
Line 43 invokes method registerClient of interface ChatServer to register the
RMIMessageManager for RMI callbacks from the ChatServer. Note that line 43
passes the this reference as the argument to method registerClient. Recall that
class RMIMessageManager is a remote object, therefore the this reference can serve
as a remote ChatClient reference to the RMIMessageManager remote object.

Method disconnect (lines 51–64) disconnects the RMIMessageManager from the
ChatServer. If remote ChatServer reference chatServer is null, line 55 returns
immediately, because the RMIMessageManager is disconnected already. Line 58 invokes
method unregisterClient of remote interface ChatServer to unregister the
RMIMessageManager from the ChatServer. Line 58 passes the this reference as an

77 // post message to ChatServer
78 chatServer.postMessage(chatMessage);
79
80 } // end method sendMessage
81
82 // process delivery of ChatMessage from ChatServer
83 public void deliverMessage(ChatMessage message)
84 throws RemoteException
85 {
86 if (messageListener != null)
87 messageListener.messageReceived(message.getSender(),
88 message.getMessage());
89 }
90
91 // method called when server shutting down
92 public void serverStopping() throws RemoteException
93 {
94 chatServer = null;
95 fireServerDisconnected("Server shut down.");
96 }
97
98 // register listener for disconnect notifications
99 public void setDisconnectListener(
100 DisconnectListener listener)
101 {
102 disconnectListener = listener;
103 }
104
105 // send disconnect notification
106 private void fireServerDisconnected(String message)
107 {
108 if (disconnectListener != null)
109 disconnectListener.serverDisconnected(message);
110 }
111 }

Fig. 13.20Fig. 13.20Fig. 13.20Fig. 13.20 RMIMessageManager remote object and MessageManager
implementation for managing ChatClient communication (part 3 of 3).

826 Remote Method Invocation Chapter 13

argument to method unregisterClient, specifying that the ChatServer should
unregister this RMIMessageManager remote object. Line 62 sets MessageLis-
tener reference messageListener to null.

Method sendMessage (lines 67–80) delivers a message from the client to the Chat-
Server. Line 71 returns immediately if the chatServer remote reference is null. Lines
74–75 create a new ChatMessage object to contain the user name from whom the message
came and the message body. Line 78 invokes method postMessage of remote interface
ChatServer to post the new ChatMessage to the ChatServer. The ChatServer
will use RMI callbacks to deliver this message to each registered ChatClient.

Method deliverMessage (lines 83–89)—defined in remote interface Chat-
Client—enables the ChatServer to use RMI callbacks to deliver incoming Chat-
Messages to the ChatClient. If there is a MessageListener registered with the
RMIMessageManager (line 86), lines 87–88 invoke method messageReceived of
interface MessageListener to notify the MessageListener of the incoming
ChatMessage. Lines 87–88 invoke methods getSender and getMessage of class
ChatMessage to retrieve the message sender and message body, respectively.

Method serverStopping (lines 92–96)—defined in remote interface Chat-
Client—enables the ChatServer to use RMI callbacks to notify the ChatClient
that the ChatServer is shutting down so the ChatClient can disconnect and notify
the DisconnectListener. Line 95 invokes method fireServerDisconnected
of class RMIMessageManager to notify the registered DisconnectListener that
the ChatServer has disconnected the ChatClient.

Method setDisconnectListener (lines 99–103)—defined in interface Mes-
sageManager—enables a DisconnectListener to register for notifications when
the ChatServer disconnects the client. For example, the client user interface could reg-
ister for these notifications to notify the user that the server has disconnected. Method
fireServerDisconnected (lines 106–110) is a utility method for sending server-
Disconnected messages to the DisconnectListener. If there is a registered Dis-
connectListener, line 109 invokes method serverDisconnected of interface
DisconnectListener to notify the listener that the server disconnected. We discuss
interface DisconnectListener in detail when we present the client user interface.

Client GUI Interfaces and Implementation
We uncouple the client user interface from the MessageManager implementation
through interfaces MessageListener and DisconnectListener (Fig. 13.19 and
13.20). Class ClientGUI uses implementations of interfaces MessageListener and
DisconnectListener to interact with the MessageManager and provides a graph-
ical user interface for the client.

Interface MessageListener (Fig. 13.21) enables objects of an implementing class
to receive incoming messages from a MessageManager. Line 9 defines method mes-
sageReceived, which takes as arguments the user name from whom the message came
and the message body.

Interface DisconnectListener (Fig. 13.22) enables implementing objects to
receive notifications when the server disconnects the MessageManager. Line 9 defines
method serverDisconnected, which takes as a String argument a message that
indicates why the server disconnected.

Chapter 13 Remote Method Invocation 827

Class ClientGUI (Fig. 13.23) provides a user interface for the Deitel Messenger
client. The GUI consists of a menu and a toolbar with Actions for connecting to and dis-
connecting from a ChatServer, a JTextArea for displaying incoming Chat-
Messages and a JTextArea and JButton for sending new messages to the
ChatServer. Lines 27–29 declare Action references for connecting to and discon-
necting from the ChatServer and for sending ChatMessages. Line 35 declares a
MessageManager reference for the MessageManager implementation that provides
the network communication. Line 38 declares a MessageListener reference for
receiving new ChatMessages from the ChatServer through the Message-
Manager.

1 // MessageListener.java
2 // MessageListener is an interface for classes that wish to
3 // receive new chat messages.
4 package com.deitel.messenger;
5
6 public interface MessageListener {
7
8 // receive new chat message
9 public void messageReceived(String from, String message);

10 }

Fig. 13.21Fig. 13.21Fig. 13.21Fig. 13.21 MessageListener interface for receiving new messages.

1 // DisconnectListener.java
2 // DisconnectListener defines method serverDisconnected, which
3 // indicates that the server has disconnected the client.
4 package com.deitel.messenger;
5
6 public interface DisconnectListener {
7
8 // receive notification that server disconnected
9 public void serverDisconnected(String message);

10 }

Fig. 13.22Fig. 13.22Fig. 13.22Fig. 13.22 DisconnectListener interface for receiving server disconnect
notifications.

1 // ClientGUI.java
2 // ClientGUI provides a GUI for sending and receiving
3 // chat messages using a MessageManager.
4 package com.deitel.messenger;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9 import java.util.*;

Fig. 13.23Fig. 13.23Fig. 13.23Fig. 13.23 ClientGUI provides a graphical user interface for the Deitel Messenger
client (part 1 of 9).

828 Remote Method Invocation Chapter 13

10
11 // Java extension packages
12 import javax.swing.*;
13 import javax.swing.border.*;
14 import javax.swing.text.*;
15
16 public class ClientGUI extends JFrame {
17
18 // JLabel for displaying connection status
19 private JLabel statusBar;
20
21 // JTextAreas for displaying and inputting messages
22 private JTextArea messageArea;
23 private JTextArea inputArea;
24
25 // Actions for connecting and disconnecting MessageManager
26 // and sending messages
27 private Action connectAction;
28 private Action disconnectAction;
29 private Action sendAction;
30
31 // userName to add to outgoing messages
32 private String userName = "";
33
34 // MessageManager for communicating with server
35 MessageManager messageManager;
36
37 // MessageListener for receiving new messages
38 MessageListener messageListener;
39
40 // ClientGUI constructor
41 public ClientGUI(MessageManager manager)
42 {
43 super("Deitel Messenger");
44
45 messageManager = manager;
46
47 messageListener = new MyMessageListener();
48
49 // create Actions
50 connectAction = new ConnectAction();
51 disconnectAction = new DisconnectAction();
52 disconnectAction.setEnabled(false);
53 sendAction = new SendAction();
54 sendAction.setEnabled(false);
55
56 // set up File menu
57 JMenu fileMenu = new JMenu ("File");
58 fileMenu.setMnemonic('F');
59 fileMenu.add(connectAction);
60 fileMenu.add(disconnectAction);
61

Fig. 13.23Fig. 13.23Fig. 13.23Fig. 13.23 ClientGUI provides a graphical user interface for the Deitel Messenger
client (part 2 of 9).

Chapter 13 Remote Method Invocation 829

62 // set up JMenuBar and attach File menu
63 JMenuBar menuBar = new JMenuBar();
64 menuBar.add (fileMenu);
65 setJMenuBar(menuBar);
66
67 // set up JToolBar
68 JToolBar toolBar = new JToolBar();
69 toolBar.add(connectAction);
70 toolBar.add(disconnectAction);
71
72 // create JTextArea for displaying messages
73 messageArea = new JTextArea(15, 15);
74
75 // disable editing and wrap words at end of line
76 messageArea.setEditable(false);
77 messageArea.setLineWrap(true);
78 messageArea.setWrapStyleWord(true);
79
80 JPanel panel = new JPanel();
81 panel.setLayout(new BorderLayout(5, 5));
82 panel.add(new JScrollPane(messageArea),
83 BorderLayout.CENTER);
84
85 // create JTextArea for entering new messages
86 inputArea = new JTextArea(3, 15);
87 inputArea.setLineWrap(true);
88 inputArea.setWrapStyleWord(true);
89 inputArea.setEditable(false);
90
91 // map Enter key in inputArea to sendAction
92 Keymap keyMap = inputArea.getKeymap();
93 KeyStroke enterKey = KeyStroke.getKeyStroke(
94 KeyEvent.VK_ENTER, 0);
95 keyMap.addActionForKeyStroke(enterKey, sendAction);
96
97 // lay out inputArea and sendAction JButton in BoxLayout
98 // and add Box to messagePanel
99 Box box = new Box(BoxLayout.X_AXIS);
100 box.add(new JScrollPane(inputArea));
101 box.add(new JButton(sendAction));
102
103 panel.add(box, BorderLayout.SOUTH);
104
105 // create statusBar JLabel with recessed border
106 statusBar = new JLabel("Not Connected");
107 statusBar.setBorder(
108 new BevelBorder(BevelBorder.LOWERED));
109
110 // lay out components
111 Container container = getContentPane();
112 container.add(toolBar, BorderLayout.NORTH);
113 container.add(panel, BorderLayout.CENTER);

Fig. 13.23Fig. 13.23Fig. 13.23Fig. 13.23 ClientGUI provides a graphical user interface for the Deitel Messenger
client (part 3 of 9).

830 Remote Method Invocation Chapter 13

114 container.add(statusBar, BorderLayout.SOUTH);
115
116 // disconnect and exit if user closes window
117 addWindowListener(
118
119 new WindowAdapter() {
120
121 // disconnect MessageManager when window closes
122 public void windowClosing(WindowEvent event)
123 {
124 // disconnect from chat server
125 try {
126 messageManager.disconnect(messageListener);
127 }
128
129 // handle exception disconnecting from server
130 catch (Exception exception) {
131 exception.printStackTrace();
132 }
133
134 System.exit(0);
135
136 } // end method windowClosing
137
138 } // end WindowAdapter inner class
139);
140
141 } // end ClientGUI constructor
142
143 // Action for connecting to server
144 private class ConnectAction extends AbstractAction {
145
146 // configure ConnectAction
147 public ConnectAction()
148 {
149 putValue(Action.NAME, "Connect");
150 putValue(Action.SMALL_ICON, new ImageIcon(
151 ClientGUI.class.getResource(
152 "images/Connect.gif")));
153 putValue(Action.SHORT_DESCRIPTION,
154 "Connect to Server");
155 putValue(Action.LONG_DESCRIPTION,
156 "Connect to server to send Instant Messages");
157 putValue(Action.MNEMONIC_KEY, new Integer('C'));
158 }
159
160 // connect to server
161 public void actionPerformed(ActionEvent event)
162 {
163 // connect MessageManager to server
164 try {
165

Fig. 13.23Fig. 13.23Fig. 13.23Fig. 13.23 ClientGUI provides a graphical user interface for the Deitel Messenger
client (part 4 of 9).

Chapter 13 Remote Method Invocation 831

166 // clear messageArea
167 messageArea.setText("");
168
169 // connect MessageManager and register MessageListener
170 messageManager.connect(messageListener);
171
172 // listen for disconnect notifications
173 messageManager.setDisconnectListener(
174 new DisconnectHandler());
175
176 // get desired userName
177 userName = JOptionPane.showInputDialog(
178 ClientGUI.this, "Please enter your name: ");
179
180 // update Actions, inputArea and statusBar
181 connectAction.setEnabled(false);
182 disconnectAction.setEnabled(true);
183 sendAction.setEnabled(true);
184 inputArea.setEditable(true);
185 inputArea.requestFocus();
186 statusBar.setText("Connected: " + userName);
187
188 // send message indicating user connected
189 messageManager.sendMessage(userName, userName +
190 " joined chat");
191
192 } // end try
193
194 // handle exception connecting to server
195 catch (Exception exception) {
196 JOptionPane.showMessageDialog(ClientGUI.this,
197 "Unable to connect to server.", "Error Connecting",
198 JOptionPane.ERROR_MESSAGE);
199
200 exception.printStackTrace();
201 }
202
203 } // end method actionPerformed
204
205 } // end ConnectAction inner class
206
207 // Action for disconnecting from server
208 private class DisconnectAction extends AbstractAction {
209
210 // configure DisconnectAction
211 public DisconnectAction()
212 {
213 putValue(Action.NAME, "Disconnect");
214 putValue(Action.SMALL_ICON, new ImageIcon(
215 ClientGUI.class.getResource(
216 "images/Disconnect.gif")));

Fig. 13.23Fig. 13.23Fig. 13.23Fig. 13.23 ClientGUI provides a graphical user interface for the Deitel Messenger
client (part 5 of 9).

832 Remote Method Invocation Chapter 13

217 putValue(Action.SHORT_DESCRIPTION,
218 "Disconnect from Server");
219 putValue(Action.LONG_DESCRIPTION,
220 "Disconnect to end Instant Messaging session");
221 putValue(Action.MNEMONIC_KEY, new Integer('D'));
222 }
223
224 // disconnect from server
225 public void actionPerformed(ActionEvent event)
226 {
227 // disconnect MessageManager from server
228 try {
229
230 // send message indicating user disconnected
231 messageManager.sendMessage(userName, userName +
232 " exited chat");
233
234 // disconnect from server and unregister
235 // MessageListener
236 messageManager.disconnect(messageListener);
237
238 // update Actions, inputArea and statusBar
239 sendAction.setEnabled(false);
240 disconnectAction.setEnabled(false);
241 inputArea.setEditable(false);
242 connectAction.setEnabled(true);
243 statusBar.setText("Not Connected");
244
245 } // end try
246
247 // handle exception disconnecting from server
248 catch (Exception exception) {
249 JOptionPane.showMessageDialog(ClientGUI.this,
250 "Unable to disconnect from server.",
251 "Error Disconnecting", JOptionPane.ERROR_MESSAGE);
252
253 exception.printStackTrace();
254 }
255
256 } // end method actionPerformed
257
258 } // end DisconnectAction inner class
259
260 // Action for sending messages
261 private class SendAction extends AbstractAction {
262
263 // configure SendAction
264 public SendAction()
265 {
266 putValue(Action.NAME, "Send") ;
267 putValue(Action.SMALL_ICON, new ImageIcon(
268 ClientGUI.class.getResource("images/Send.gif")));

Fig. 13.23Fig. 13.23Fig. 13.23Fig. 13.23 ClientGUI provides a graphical user interface for the Deitel Messenger
client (part 6 of 9).

Chapter 13 Remote Method Invocation 833

269 putValue(Action.SHORT_DESCRIPTION, "Send Message");
270 putValue(Action.LONG_DESCRIPTION,
271 "Send an Instant Message");
272 putValue(Action.MNEMONIC_KEY, new Integer('S'));
273 }
274
275 // send message and clear inputArea
276 public void actionPerformed(ActionEvent event)
277 {
278 // send message to server
279 try {
280
281 // send userName and text in inputArea
282 messageManager.sendMessage(userName,
283 inputArea.getText());
284
285 inputArea.setText("");
286 }
287
288 // handle exception sending message
289 catch (Exception exception) {
290 JOptionPane.showMessageDialog(ClientGUI.this,
291 "Unable to send message.", "Error Sending Message",
292 JOptionPane.ERROR_MESSAGE);
293
294 exception.printStackTrace();
295 }
296
297 } // end method actionPerformed
298
299 } // end SendAction inner class
300
301 // MyMessageListener listens for new messages from the
302 // MessageManager and displays the messages in messageArea
303 // using a MessageDisplayer.
304 private class MyMessageListener implements MessageListener {
305
306 // when new message received, display in messageArea
307 public void messageReceived(String from, String message)
308 {
309 // append message using MessageDisplayer and invokeLater
310 // to ensure thread-safe access to messageArea
311 SwingUtilities.invokeLater(
312 new MessageDisplayer(from, message));
313 }
314
315 } // end MyMessageListener inner class
316
317 // MessageDisplayer displays a new messaage by appending
318 // the message to the messageArea JTextArea. This Runnable
319 // object should be executed only on the event-dispatch
320 // thread, as it modifies a live Swing component.

Fig. 13.23Fig. 13.23Fig. 13.23Fig. 13.23 ClientGUI provides a graphical user interface for the Deitel Messenger
client (part 7 of 9).

834 Remote Method Invocation Chapter 13

321 private class MessageDisplayer implements Runnable {
322
323 private String fromUser;
324 private String messageBody;
325
326 // MessageDisplayer constructor
327 public MessageDisplayer(String from, String body)
328 {
329 fromUser = from;
330 messageBody = body;
331 }
332
333 // display new message in messageArea
334 public void run()
335 {
336 // append new message
337 messageArea.append("\n" + fromUser + "> " +
338 messageBody);
339
340 // move caret to end of messageArea to ensure new
341 // message is visible on screen
342 messageArea.setCaretPosition(
343 messageArea.getText().length());
344 }
345
346 } // end MessageDisplayer inner class
347
348 // DisconnectHandler listens for serverDisconnected messages
349 // from the MessageManager and updates the user interface.
350 private class DisconnectHandler implements DisconnectListener {
351
352 // receive disconnect notifcation
353 public void serverDisconnected(final String message)
354 {
355 // update GUI in thread-safe manner
356 SwingUtilities.invokeLater(
357
358 new Runnable() {
359
360 // update Actions, inputs and status bar
361 public void run()
362 {
363 sendAction.setEnabled(false);
364 disconnectAction.setEnabled(false);
365 inputArea.setEditable(false);
366 connectAction.setEnabled(true);
367 statusBar.setText(message);
368 }
369
370 } // end Runnable inner class
371);
372

Fig. 13.23Fig. 13.23Fig. 13.23Fig. 13.23 ClientGUI provides a graphical user interface for the Deitel Messenger
client (part 8 of 9).

Chapter 13 Remote Method Invocation 835

The ClientGUI constructor (lines 41–141) creates and lays out the various user-
interface components. The constructor takes as an argument the MessageManager that
implements the underlying network communications. A WindowAdapter inner class
(lines 119–138) ensures that the MessageManager disconnects from the ChatServer
(line 126) when the user closes the application window.

The ConnectAction inner class (lines 144–205) is an Action implementation for
connecting to the Deitel Messenger server. Lines 170–174 invoke method connect of
interface MessageManager and register a DisconnectListener for receiving
serverDisconnected notifications. Lines 177–186 prompt the user for a name to use
in the chat session and update the user-interface components to allow the user to send mes-
sages and disconnect from the Deitel Messenger server. Lines 188–189 invoke method
sendMessage of interface MessageManager to send a ChatMessage that
announces the user’s arrival in the chat session.

The DisconnectAction inner class (lines 211–258) is an Action implementa-
tion for disconnecting the MessageManager from the Deitel Messenger server. Lines
231–232 send a ChatMessage to announce the user’s departure from the chat session.
Line 236 invokes method disconnect of interface MessageManager to disconnect
from the server. Lines 239–243 update the user-interface components to disable the mes-
sage inputArea and display a message in the status bar.

The SendAction inner class (lines 261–299) is an Action implementation for
sending messages to the server. Lines 282–283 invoke method sendMessage of interface
MessageManager and pass the contents of inputArea and the user’s userName as
arguments.

An instance of inner class MyMessageListener (lines 304–315) listens for incoming
ChatMessages. When the MessageManager receives a new ChatMessage from the
server, the MessageManager invokes method messageReceived (lines 307–313).
Lines 311–312 invoke static method invokeLater of class SwingUtilities with
a MessageDisplayer argument to display the new message.

Inner class MessageDisplayer (lines 321–346) is a Runnable implementation
that appends a new message to the messageArea JTextArea to display that message
to the user. Lines 337–338 append the message text and sender’s user name to mes-
sageArea, and lines 342–343 move the cursor to the end of messageArea.

An instance of inner class DisconnectHandler (lines 350–375) receives
serverDisconnected notifications from the MessageManager when the server
disconnects. Lines 356–371 update the user-interface components to indicate that the
server disconnected.

Class DeitelMessenger (Fig. 13.24) launches the client application using a Cli-
entGUI and RMIMessageManager. Line 18 invokes method setSecurityMan-
ager of class System to install an RMISecurityManager for the client application.

373 } // end method serverDisconnected
374
375 } // end DisconnectHandler inner class
376 }

Fig. 13.23Fig. 13.23Fig. 13.23Fig. 13.23 ClientGUI provides a graphical user interface for the Deitel Messenger
client (part 9 of 9).

836 Remote Method Invocation Chapter 13

The client requires this SecurityManager for downloading the ChatServer’s stub
dynamically. We discuss dynamic class downloading in Section 13.6.3. If the user does not
specify a hostname for the ChatServer, line 24 creates an RMIMessageManager that
connects to the server running on localhost. Line 26 creates an RMIMessageMan-
ager that connects to the user-provided hostname. Lines 29–32 create a ClientGUI for
the RMIMessageManager and display that GUI to the user.

13.6.3 Running the Deitel Messenger Server and Client Applications
Running the Deitel Messenger case study server and clients requires several steps. In addi-
tion to the RMI registry, RMI applications that use Activatable objects require the
RMI activation daemon (rmid). The RMI activation daemon is a server process that man-
ages the registration, activation and deactivation of Activatable remote objects.\

1 // DeitelMessenger.java
2 // DeitelMessenger uses a ClientGUI and RMIMessageManager to
3 // implement an RMI-based chat client.
4 package com.deitel.messenger.rmi.client;
5
6 // Java core packages
7 import java.rmi.RMISecurityManager;
8
9 // Deitel packages

10 import com.deitel.messenger.*;
11
12 public class DeitelMessenger {
13
14 // launch DeitelMessenger application
15 public static void main (String args[]) throws Exception
16 {
17 // install RMISecurityManager
18 System.setSecurityManager(new RMISecurityManager());
19
20 MessageManager messageManager;
21
22 // create new DeitelMessenger
23 if (args.length == 0)
24 messageManager = new RMIMessageManager("localhost");
25 else
26 messageManager = new RMIMessageManager(args[0]);
27
28 // finish configuring window and display it
29 ClientGUI clientGUI = new ClientGUI(messageManager);
30 clientGUI.pack();
31 clientGUI.setResizable(false);
32 clientGUI.setVisible(true);
33 }
34 }

Fig. 13.24Fig. 13.24Fig. 13.24Fig. 13.24 DeitelMessenger launches a chat client using classes ClientGUI
and RMIMessageManager.

Chapter 13 Remote Method Invocation 837

To begin, start the RMI registry by executing the command

rmiregistry

at a command prompt. Be sure that the stub file for the ChatServer remote object
(ChatServerImpl_Stub.class) is not in the RMI registry’s CLASSPATH, as this
will disable dynamic class downloading. Next, start the RMI activation daemon by execut-
ing the command

rmid -J-Djava.security.policy=rmid.policy

where rmid.policy is the complete path to the policy file of Fig. 13.25. This policy file
allows the ActivationGroup in which the ChatServer runs to specify
C:\activationGroup.policy as the policy file for the ActivationGroup’s vir-
tual machine. If you place activationGroup.policy in a location other than the
C:\ directory, be sure to modify rmid.policy to specify the appropriate location.

Dynamic class downloading enables Java programs to download classes not available
in the local CLASSPATH. This is particularly useful in RMI applications for enabling cli-
ents to download stub files dynamically. When an RMI object specifies the
java.rmi.server.codebase system property, the RMI registry adds an annotation
to that object’s remote references. This annotation specifies the codebase from which cli-
ents can download any necessary classes. These classes might include the stub for the
remote object and other classes. These .class files must be available for download from
an HTTP server. Sun provides a basic HTTP server suitable for testing purposes, which is
downloadable from

java.sun.com/products/jdk/rmi/class-server.zip

Extract the files from class-server.zip and read the included instructions for run-
ning the HTTP server. Figure 13.26 lists the files to include in the HTTP server’s download
directory. For example, if the HTTP server’s download directory is C:\classes, copy
the directory structure and .class files listed in Fig. 13.26 to C:\classes. Be sure to
start the HTTP server before continuing.

Next, run the ChatServerAdministrator application to launch the Activat-
able remote object by using the command

java -Djava.security.policy=administrator.policy
 -Djava.rmi.server.codebase=http://hostname:port/
 com.deitel.messenger.rmi.server.ChatServerAdministrator
 start

1 // allow ActivationGroup to specify C:\activationGroup.policy
2 // as its VM’s security policy
3 grant {
4 permission com.sun.rmi.rmid.ExecOptionPermission
5 "-Djava.security.policy=file:///C:/activationGroup.policy";
6 };

Fig. 13.25Fig. 13.25Fig. 13.25Fig. 13.25 Policy file for the RMI activation daemon.

838 Remote Method Invocation Chapter 13

where administrator.policy is the complete path to the policy file of Fig. 13.27,
hostname is the name of the computer running the HTTP server and port is the port number
on which that HTTP server is running. The RMI registry will annotate each remote refer-
ence it returns with this codebase. The policy file must permit ChatServerAdminist-
rator to connect to port 1098 on the local machine, which is the port for the RMI activa-
tion daemon. The policy file also must allow the ChatServerAdministrator to ac-
cess the port on which the Web server is running. Lines 4–5 of Fig. 13.27 specify that the
ChatServerAdministrator can access all ports above and including 1024 on host-
name. Be sure to replace hostname with the appropriate name or IP address of the machine
running the Web server and RMI activation daemon. The ChatServerAdministra-
tor also requires the permission setFactory of type java.lang.RuntimePer-
mission, which permits the ActivationGroup to set a SecurityManager.

The ChatServerAdministrator application registers the Activation-
Group for the Activatable ChatServer, then exits. Clients then may access the
ChatServer by obtaining a remote reference to the ChatServer from the RMI reg-
istry and invoking methods on that remote reference. Note that the ChatServer does not
begin executing until the first client invokes a method on the ChatServer remote object.

Directory File Name

com\deitel\messenger\rmi\server\

ChatServer.class

ChatServerImpl.class

ChatServerImpl$1.class

ChatServerImpl_Stub.class

StoppableChatServer.class

com\deitel\messenger\rmi\client\

ChatClient.class

RMIMessageManager_Stub.class

com\deitel\messenger\rmi\

ChatMessage.class

Fig. 13.26Fig. 13.26Fig. 13.26Fig. 13.26 File listing for the HTTP server’s download directory.

1 // allow ChatServerAdministrator to connect to
2 // activation daemon
3 grant {
4 permission java.net.SocketPermission "hostname:1024-",
5 "connect, accept, resolve";
6
7 permission java.lang.RuntimePermission "setFactory";
8 };

Fig. 13.27Fig. 13.27Fig. 13.27Fig. 13.27 Policy file for ChatServerAdministrator.

Chapter 13 Remote Method Invocation 839

At that time, the activation system activates the ChatServer’s ActivationGroup.
To launch a client for the ChatServer, type the following at a command prompt:

java -Djava.security.policy=client.policy
 com.deitel.messenger.rmi.client.DeitelMessenger

where client.policy is the policy file of Fig. 13.28. This policy file enables the cli-
ent to connect, accept and resolve connnections to the specified hostname on ports above
and including 1024. Recall that the client is itself a remote object, so the client must be
able to accept incoming network connections from the ChatServer. Be sure to replace
hostname with the hostname or IP address of the computer on which the ChatServer
is running.

Figure 13.29 shows a sample conversation in Deitel Messenger. Notice that the GUI
elements properly reflect the current connection state—when the client is disconnected,
only the ConnectAction is enabled. After the client connects, the Disconnect-
Action, input JTextArea and SendAction become enabled. Note also that the
bottom of each window displays the message Java Applet Window. The virtual
machine places this message in the windows because the application is running under
security restrictions.

1 // allow client to connect to network resources on hostname
2 // at ports above 1024
3 grant {
4 permission java.net.SocketPermission "hostname:1024-",
5 "connect, accept, resolve";
6 };

Fig. 13.28Fig. 13.28Fig. 13.28Fig. 13.28 Policy file for the DeitelMessenger client.

Fig. 13.29Fig. 13.29Fig. 13.29Fig. 13.29 Sample conversation using Deitel Messenger.

840 Remote Method Invocation Chapter 13

13.7 Internet and World Wide Web Resources
java.sun.com/products/jdk/rmi/index.html
Sun’s Remote Method Invocation (RMI) home page, which provides links to technical articles, doc-
umentation and other resources.

java.sun.com/j2se/1.3/docs/guide/rmi/index.html
Sun’s RMI guide, which includes links to tutorials on building activatable remote objects and other
useful resources.

www.jguru.com/faq/home.jsp?topic=RMI
jGuru’s RMI Frequently Asked Questions with answers, which provides tips and answers to many
common questions that developer’s ask about RMI.

www.javaworld.com/javaworld/topicalindex/jw-ti-rmi.html
JavaWorld’s list of articles related to RMI. Articles include discussions of activatable RMI objects,
integrating RMI with CORBA and RMI-related technologies, such as Jini.

Fig. 13.29Fig. 13.29Fig. 13.29Fig. 13.29 Sample conversation using Deitel Messenger.

Chapter 13 Remote Method Invocation 841

SUMMARY
• RMI allows Java objects running on separate computers or in separate processes to communicate

with one another via remote method calls. Such method calls appear to the programmer the same
as those operating on objects in the same program.

• RMI is based on a similar, earlier technology for procedural programming called remote procedure
calls (RPCs) developed in the 1980s.

• RMI enables Java programs to transfer complete Java objects using Java’s object-serialization
mechanism. The programmer need not be concerned with the transmission of the data over the
network.

• For Java-to-non-Java communication, you can use Java IDL (introduced in Java 1.2) or RMI-IIOP.
Java IDL and RMI-IIOP enable applications and applets written in Java to communicate with objects
written in any language that supports CORBA (Common Object Request Broker Architecture).

• The four major steps for building an RMI distributed system are 1) defining the remote interface,
2) defining the remote object implementation, 3) defining the client application that uses the re-
mote object and 4) compiling and executing the remote object and the client.

• To create a remote interface, define an interface that extends interface java.rmi.Remote. In-
terface Remote is a tagging interface—it does not declare any methods, and therefore places no
burden on the implementing class.

• An object of a class that implements interface Remote directly or indirectly is a remote object and
can be accessed—with appropriate security permissions—from any Java virtual machine that has
a connection to the computer on which the remote object executes.

• Every remote method must be declared in an interface that extends java.rmi.Remote. A re-
mote object must implement all methods declared in its remote interface.

• An RMI distributed application must export an object of a class that implements the Remote in-
terface to make that remote object available to receive remote method calls.

• Each method in a Remote interface must have a throws clause that indicates that the method
can throw RemoteExceptions. A RemoteException indicates a problem communicating
with the remote object.

• RMI uses Java’s default serialization mechanism to transfer method arguments and return values
across the network. Therefore, all method arguments and return values must be Serializable
or primitive types.

• Class UnicastRemoteObject provides the basic functionality required for all remote objects.
In particular, its constructor exports the object to make it available to receive remote calls.

• Exporting a remote object enables that object to wait for client connections on an anonymous port
number (i.e., one chosen by the computer on which the remote object executes). RMI abstracts
away communication details so the programmer can work with simple method calls.

• Constructors for class UnicastRemoteObject allow the programmer to specify information
about the remote object, such as an explicit port number on which to export the remote object. All
UnicastRemoteObject constructors throw RemoteExceptions.

• The rmiregistry utility program manages the registry for remote objects and is part of the
J2SE SDK. The default port number for the RMI registry is 1099.

• Method lookup connects to the RMI registry and returns a Remote reference to the remote ob-
ject. Note that clients refer to remote objects only through those object’s remote interfaces.

• A remote reference refers to a stub object on the client. Stubs allow clients to invoke remote ob-
jects’ methods. Stub objects receive each remote method call and pass those calls to the RMI sys-
tem, which performs the networking that allows clients to interact with the remote object.

842 Remote Method Invocation Chapter 13

• The RMI layer is responsible for network connections to the remote object, so referencing remote
objects is transparent to the client. RMI handles the underlying communication with the remote
object and the transfer of arguments and return values between the objects. Argument and return
types for remote methods must be Serializable.

• The rmic utility compiles the remote object class to produce a stub class. A stub class forwards
method invocations to the RMI layer, which performs the network communication necessary to
invoke the method call on the remote object.

• Standard RMI objects exported as UnicastRemoteObjects must run continuously on the server
to handle client requests. RMI objects that extend class java.rmi.activation.Activat-
able are able to activate, or start running, when a client invokes one of the remote object’s methods.

• The RMI activation daemon (rmid) is a server process that enables activatable remote objects to
become active when clients invoke remote methods on these objects.

• Activatable remote objects also are able to recover from server crashes, because remote references
to activatable objects are persistent—when the server restarts, the RMI activation daemon main-
tains the remote reference, so clients can continue to use the remote object.

• The RMI activation mechanism requires that Activatable objects provide a constructor that
takes as arguments an ActivationID and a MarshalledObject. When the activation dae-
mon activates a remote object of this class, it invokes this activation constructor. The Activa-
tionID argument specifies a unique identifier for the remote object.

• Class MarshalledObject is a wrapper class that contains a serialized object for transmission
over RMI. The MarshalledObject passed to the activation constructor can contain applica-
tion-specific initialization information, such as the name under which the activation daemon reg-
istered the remote object.

• Activatable RMI objects execute as part of an ActivationGroup (package java.rmi.ac-
tivation). The RMI activation daemon—a server-side process that manages activatable ob-
jects—starts a new virtual machine for each ActivationGroup.

• Class ActivationGroupDesc specifies configuration information for an Activation-
Group. The first argument to the ActivationGroupDesc constructor is a Properties ref-
erence that contains replacement values for system properties in the ActivationGroup’s virtual
machine. The second argument is a reference to an ActivationGroupDesc.CommandEnvi-
ronment object, which enables the ActivationGroup to customize the commands that the ac-
tivation daemon executes when starting the ActivationGroup’s virtual machine.

• The incarnation number of an ActivationGroup identifies different instances of the same
ActivationGroup. Each time the activation daemon activates the ActivationGroup, the
daemon increments the incarnation number.

• Class ActivationDesc specifies configuration information for a particular Activatable
remote object. The first argument to the ActivationDesc constructor specifies the name of the
class that implements the Activatable remote object. The second argument specifies the code-
base that contains the remote object’s class files. The final argument is a MarshalledObject
reference, whose object specifies initialization information for the remote object.

• Method register of class Activatable takes as an argument the ActivationDesc for
the Activatable object and returns a reference to the remote object’s stub.

• Dynamic class downloading enables Java programs to download classes not available in the local
CLASSPATH. This is particularly useful in RMI applications for enabling clients to download stub
files dynamically.

• When an RMI object specifies the java.rmi.server.codebase system property, the RMI
registry adds an annotation to that object’s remote references, which specifies the codebase from

Chapter 13 Remote Method Invocation 843

which clients can download necessary classes. Downloadable .class files must be available
from an HTTP server.

TERMINOLOGY

SELF-REVIEW EXERCISES
13.1 Fill in the blanks in each of the following statements:

a) The remote object class must be compiled using the to produce a stub class.
b) RMI is based on a similar technology for procedural programming called .
c) Clients use method of class Naming to obtain a remote reference to a re-

mote object.
d) To create a remote interface, define an interface that extends interface of

package .
e) Method or of class Naming binds a remote object to the RMI

registry.
f) Remote objects normally extend class , which provides the basic functional-

ity required for all remote objects.
g) Remote objects use the and to locate the RMI registry so they

can register themselves as remote services. Clients use these to locate a service.
h) The default port number for the RMI registry is .
i) Interface Remote is a .
j) allows Java objects running on separate computers (or possibly the same

computer) to communicate with one another via remote method calls.

Activatable class (package
 java.rmi.activation)

marshaling of data
MarshalledObject class

activatable remote object rebind method of class Naming
activation daemon Registry class
activation descriptor remote interface
activation group descriptor Remote interface (package java.rmi)
ActivationGroup class remote method
ActivationGroupDesc class remote method call
ActivationGroupDescd.Command-
 Environment class

Remote Method Invocation (RMI)
remote object

ActivationID class remote object implementation
ActivationSystem interface Remote Procedure Call (RPC)
Adapter design pattern remote reference
anonymous port number RemoteException class (package

 java.rmi)bind method of class Naming
createRegistry method of class
 LocateRegistry

RMI registry
rmic compiler

distributed computing rmid utility
export rmiregistry utility
exportObject method of class
 UnicastRemoteObject

RMISecurityManager class
stub class

HTML scraping tagging interface
Interface Definition Language (IDL) UnicastRemoteObject class (package

 java.rmi.server)ListCellRenderer interface
LocateRegistry class

844 Remote Method Invocation Chapter 13

13.2 State whether each of the following is true or false. If false, explain why.
a) Not starting the RMI registry before attempting to bind the remote object to the registry

results in a RuntimeException refusing connection to the registry.
b) Every remote method must be part of an interface that extends java.rmi.Remote.
c) The stubcompiler creates a stub class that performs the networking which allows the

client to connect to the server and use the remote object’s methods.
d) Class UnicastRemoteObject provides basic functionality required by remote ob-

jects.
e) An object of a class that implements interface Serializable can be registered as a

remote object and receive a remote method call.
f) All methods in a Remote interface must have a throws clause indicating the potential

for a RemoteException.
g) RMI clients assume that they should connect to port 80 on a server computer when at-

tempting to locate a remote object through the RMI registry.
h) Once a remote object is bound to the RMI registry with method bind or rebind of

class Naming, the client can look up the remote object with Naming method lookup.
i) Method find of class Naming interacts with the RMI registry to help the client obtain

a reference to a remote object so the client can use the remote object’s services.

ANSWERS TO SELF-REVIEW EXERCISES
13.1 a) rmic compiler. b) RPC. c) lookup. d) Remote, java.rmi. e) bind, rebind.
f) UnicastRemoteObject. g) host, port. h) 1099. i) tagging interface. j) RMI.

13.2 a) False. This results in a java.rmi.ConnectException.
b) True.
c) False. The rmic compiler creates a stub class.
d) True.
e) False. An object of a class that implements a subinterface of java.rmi.Remote can

be registered as a remote object and receive remote method calls.
f) True.
g) False. RMI clients assume port 1099 by default. Web browser clients assume port 80.
h) True.
i) False. Method lookup interacts with the RMI registry to help the client obtain a refer-

ence to a remote object.

EXERCISES
13.3 The current implementation of class WeatherServiceImpl downloads the weather in-
formation only once. Modify class WeatherServiceImpl to obtain weather information from the
National Weather Service twice a day.

13.4 Modify interface WeatherService to include support for obtaining the current day’s
forecast and the next day’s forecast. Study the Traveler’s Forecast Web page

http://iwin.nws.noaa.gov/iwin/us/traveler.html

13.5 Visit the NWS Web site for the format of each line of information. Next, modify class
WeatherServiceImpl to implement the new features of the interface. Finally, modify class
WeatherServiceClient to allow the user to select the weather forecast for either day. Modify
the support classes WeatherBean and WeatherItem as necessary to support the changes to
classes WeatherServiceImpl and WeatherServiceClient.

Chapter 13 Remote Method Invocation 845

13.6 (Project: Weather for Your State) There is a wealth of weather information on the National
Weather Service Web site. Study the following Web pages:

http://iwin.nws.noaa.gov/
http://iwin.nws.noaa.gov/iwin/textversion/main.html

and create a complete weather forecast server for your state. Design your classes for reusability.

13.7 (Project: Weather for Your State) Modify the Exercise 13.6 project solution to allow the user
to select the weather forecast for any state. [Note: For some states, the format of the weather forecast
differs from the standard format. Your solution should allow the user to select only from those states
whose forecasts are in the standard format.]

13.8 (For International Readers) If there is a similar World Wide Web-based weather service in
your own country, provide a different WeatherServiceImpl implementation with the same re-
mote interface WeatherService (Fig. 13.1). The server should return weather information for
major cities in your country.

13.9 (Remote Phone Book Server) Create a remote phone book server that maintains a file of
names and phone numbers. Define interface PhoneBookServer with the following methods:

public PhoneBookEntry[] getPhoneBook()
public void addEntry(PhoneBookEntry entry)
public void modifyEntry(PhoneBookEntry entry)
public void deleteEntry(PhoneBookEntry entry)

Create Activatable remote object class PhoneBookServerImpl, which implements inter-
face PhoneBookServer. Class PhoneBookEntry should contain String instance variables
that represent the first name, last name and phone number for one person. The class should also pro-
vide appropriate set/get methods and perform validation on the phone number format. Remember
that class PhoneBookEntry also must implement Serializable, so that RMI can serialize
objects of this class.

13.10 Class PhoneBookClient should provide a user interface that allows the user to scroll
through entries, add a new entry, modify an existing entry and delete an existing entry. The client and
the server should provide proper error handling (e.g., the client cannot modify an entry that does not
exist).

14
Session EJBs and

Distributed Transactions

Objectives
• To understand EJBs as business-logic components.
• To understand the advantages and disadvantages of

stateful and stateless session EJBs.
• To understand JNDI’s role in enterprise Java

applications.
• To understand distributed transactions.
• To understand the advantages and disadvantages of

container-managed and bean-managed transaction
demarcation.

Only the traveling is good which reveals to me the value of
home and enables me to enjoy it better.
Henry David Thoreau

Youth would be an ideal state if it came a little later in life.
Herbert Henry Asquith

We cannot make events. Our business is wisely to improve
them.
Samuel Adams

Chapter 14 Session EJBs and Distributed Transactions 847

14.1 Introduction
In previous chapters, we presented Java servlets and JavaServer Pages for implementing
business and presentation logic in multi-tier applications. In this chapter, we introduce En-
terprise JavaBeans (EJBs), which provide a component model for building business logic
in enterprise Java applications.

In this chapter, we introduce session EJBs in their two forms: stateful and stateless. We
also introduce EJB support for distributed transactions, which help to ensure data integrity
across databases and across application servers. After reading this chapter, you will be able
to develop stateless and stateful session EJBs. You also will be able to build EJBs that take
advantage of J2EE’s distributed transaction support to update data across multiple data-
bases atomically.

14.2 EJB Overview
Every EJB consists of a remote interface, a home interface and an EJB implementation. The
remote interface declares business methods that clients of the EJB may invoke. The home
interface provides create methods for creating new EJB instances, finder methods for
finding EJB instances and remove methods for removing EJB instances. The EJB imple-
mentation defines the business methods declared in the remote interface and the create,
remove and finder methods of the home interface. An EJB container provides the EJB’s
runtime environment and life-cycle management.

Outline

14.1 Introduction
14.2 EJB Overview

14.2.1 Remote Interface
14.2.2 Home Interface
14.2.3 EJB Implementation
14.2.4 EJB Container

14.3 Session Beans
14.3.1 Stateful Session EJBs
14.3.3 Stateless Session EJBs
14.3.2 Deploying Session EJBs

14.4 EJB Transactions
14.4.1 MoneyTransfer EJB Home and Remote Interfaces
14.4.2 Bean-Managed Transaction Demarcation
14.4.3 Container-Managed Transaction Demarcation
14.4.4 MoneyTransfer EJB Client
14.4.5 Deploying the MoneyTransfer EJB

14.5 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

848 Session EJBs and Distributed Transactions Chapter 14

The J2EE specification defines six roles for people implementing enterprise systems.
Each role is responsible for producing some part of an enterprise application. The enter-
prise bean provider implements the Java classes for EJBs. The application assembler con-
structs application components from EJBs implemented by the enterprise bean provider.
The deployer takes application components provided by the application assembler and
deploys the application to an EJB container, ensuring that all dependencies are met. The
EJB server provider and EJB container provider implement an application server suitable
for the deployment of J2EE applications. An application server typically includes an EJB
container and a servlet container and provides services such as JNDI directories, database
connection pooling, integration with distributed systems and resource management. The
same developer or team of developers can play more than one role in the construction and
deployment of an enterprise application. For more information on the various roles in
building J2EE applications, please see the resources listed in Section 14.5.

14.2.1 Remote Interface

The EJB remote interface declares business methods that EJB clients can invoke. The re-
mote interface must extend interface javax.ejb.EJBObject. The EJB container gen-
erates a class that implements the remote interface. This generated class implements
interface EJBObject methods and delegates business method invocations to the EJB im-
plementation (Section 14.2.3). Figure 14.1 describes interface EJBObject methods.

Each remote-interface method is required to declare that it throws Remote-
Exception. Each method also may throw application-specific exceptions—for example,
an IllegalArgumentException if a provided argument does not meet certain criteria.

14.2.2 Home Interface
The EJB home interface declares methods for creating, removing and finding EJB instanc-
es. The home interface must extend interface javax.ejb.EJBHome. The EJB container
provides an implementation of the home interface. Depending on the type of EJB (i.e., ses-
sion or entity), the container will invoke EJB implementation methods that correspond to
methods create and remove and finder methods of the home interface. These finder
methods enable clients to locate a particular instance of an EJB. Figure 14.2 describes in-
terface EJBHome methods.

Method Description

getEJBHome Returns the EJBHome interface for the EJBObject.

getHandle Returns a Handle for the EJBObject. A Handle is a persistent,
Serializable reference to an EJBObject.

getPrimaryKey Returns the EJBObject’s primary key if EJBObject is an entity bean.

isIdentical Returns a boolean indicating if the EJBObject argument is identical
to the current EJBObject.

remove Removes the EJBObject.

Fig. 14.1Fig. 14.1Fig. 14.1Fig. 14.1 Methods of interface javax.ejb.EJBObject.

Chapter 14 Session EJBs and Distributed Transactions 849

14.2.3 EJB Implementation

The EJB implementation defines the business methods declared in the EJB remote interface
and the create, remove and finder methods declared in the EJB home interface. Session
EJBs also must implement interface javax.ejb.SessionBean. We discuss interface
SessionBean in detail in Section 14.3.

14.2.4 EJB Container
The EJB container manages an EJB’s client interactions, method invocations, transactions,
security, exceptions, etc. Clients of an EJB do not interact directly with the EJB. Clients
access the EJB container to obtain remote references to EJB instances. When a client in-
vokes an EJB business method, the invocation goes first to the EJB container, which then
delegates the business method invocation to the EJB implementation.

The EJB container also manages the life cycles of its EJBs. EJB containers typically
perform pooling of EJB instances to enhance performance. By maintaining a pool of inac-
tive EJB instances, the EJB container can increase performance by avoiding the overhead
associated with creating new EJB instances for each client request. The EJB container
simply activates a pooled instance and performs any necessary initialization. The EJB con-
tainer also can create new EJB instances and remove existing instances. In addition, the
EJB container provides more advanced services for entity EJBs (Chapter 15, Entity EJBs).

14.3 Session Beans
A session EJB instance performs business logic processing for a particular client. Session
EJBs can manipulate data in a database, but unlike entity EJBs (Chapter 15), session EJBs are
not persistent and do not represent database data directly. Session EJB instances are lost if the
EJB container crashes. There are two session EJB types: stateful and stateless. Section 14.3.1
presents stateful session EJBs and Section 14.3.3 presents stateless session EJBs.
Section 14.3.2 discusses deploying session EJBs to the J2EE 1.2.1 reference implementation.

14.3.1 Stateful Session EJBs
Stateful session EJBs maintain state information between business method invocations. For
example, a stateful session EJB could maintain information about a customer’s shopping
cart while the customer browses an on-line store. The stateful session EJB would provide
business methods for adding and removing items from the shopping cart. Each time the cus-
tomer added an item to the shopping cart, information about the item, such as its price and

Method Description

getEJBMetaData Returns an EJBMetaData object that provides information about the
EJB, such as its home interface class and whether it is a session EJB.

getHomeHandle Returns a Handle for the EJBHome interface.

remove Removes the EJBObject identified by the given Handle or primary
key Object.

Fig. 14.2Fig. 14.2Fig. 14.2Fig. 14.2 Methods of interface javax.ejb.EJBHome.

850 Session EJBs and Distributed Transactions Chapter 14

quantity, would be stored in the stateful session EJB. If the customer left the site or other-
wise terminated the session, the shopping-cart information would be lost.

InterestCalculator (Fig. 14.3) is the remote interface for a stateful session EJB
that calculates simple interest. Methods setPrincipal (lines 15–16), setIntere-
stRate (lines 19–20) and setTerm (lines 23–24) set the principal, rate and term values
needed to calculate simple interest. Method getBalance (line 27) calculates the total
balance after interest accrues for the given term. Method getInterestEarned (line
30) calculates the amount of interest earned.

Clients of the InterestCalculator EJB can invoke only those methods declared
in the InterestCalculator remote interface. The EJB container for the Interest-
Calculator EJB will create a class that implements the InterestCalculator
remote interface, including methods declared in interface javax.ejb.EJBObject.
When a client invokes an InterestCalculator remote-interface method, the EJB
container will invoke the corresponding method in EJB implementation InterestCal-
culatorEJB (Fig. 14.5). When a client invokes a method declared in interface
javax.ejb.EJBObject, the container will invoke the corresponding method in the
class generated by the EJB container.

1 // InterestCalculator.java
2 // InterestCalculator is the remote interface for the
3 // InterestCalculator EJB.
4 package com.deitel.advjhtp1.ejb.session.stateful.ejb;
5
6 // Java core libraries
7 import java.rmi.RemoteException;
8
9 // Java standard extensions

10 import javax.ejb.EJBObject;
11
12 public interface InterestCalculator extends EJBObject {
13
14 // set principal amount
15 public void setPrincipal(double amount)
16 throws RemoteException;
17
18 // set interest rate
19 public void setInterestRate(double rate)
20 throws RemoteException;
21
22 // set loan length in years
23 public void setTerm(int years)
24 throws RemoteException;
25
26 // get loan balance
27 public double getBalance() throws RemoteException;
28
29 // get amount of interest earned
30 public double getInterestEarned() throws RemoteException;
31 }

Fig. 14.3Fig. 14.3Fig. 14.3Fig. 14.3 InterestCalculator remote interface for calculating simple interest.

Chapter 14 Session EJBs and Distributed Transactions 851

InterestCalculatorHome (Fig. 14.4) is the home interface for the Inter-
estCalculator EJB. InterestCalculatorHome provides method create
(lines 15–16) for creating instances of the InterestCalculator EJB. When a client
invokes InterestCalculatorHome method create, the EJB container invokes
method ejbCreate of class InterestCalculatorEJB (Fig. 14.5). The home inter-
face may declare zero or more create methods. For example, we could declare an addi-
tional create method that takes a double argument that initializes the principal amount
to use in the simple interest calculation.

InterestCalculatorEJB (Fig. 14.5) implements the business methods declared
in the InterestCalculator remote interface. On line 12, InterestCalcula-
torEJB implements interface SessionBean. This indicates that the InterestCal-
culatorEJB is a session EJB. Lines 17–19 declare variables that maintain the state of the
EJB between business method invocations. The state information consists of the prin-
cipal amount, the interestRate and the term. Method setPrincipal (lines 22–
25) sets the principal amount and stores the value in the principal state variable.
Method setInterestRate (lines 28–31) sets the interestRate state variable for
the calculation. Method setTerm (lines 34–37) sets the term for which interest will
accrue. Method getBalance (lines 40–44) uses the formula

a = p (1 + r) n

where

p is the principal amount
r is the annual interest rate (e.g., .05 for 5%)
n is the number of years
a is the amount on deposit at the end of the nth year

to calculate the balance (i.e., amount on deposit). Method getInterestEarned (lines
47–50) calculates the amount of interest earned by subtracting the principal amount
from the balance—calculated by method getBalance.

1 // InterestCalculatorHome.java
2 // InterestCalculatorHome is the home interface for the
3 // InterestCalculator EJB.
4 package com.deitel.advjhtp1.ejb.session.stateful.ejb;
5
6 // Java core libraries
7 import java.rmi.RemoteException;
8
9 // Java standard extensions

10 import javax.ejb.*;
11
12 public interface InterestCalculatorHome extends EJBHome {
13
14 // create InterestCalculator EJB
15 public InterestCalculator create() throws RemoteException,
16 CreateException;
17 }

Fig. 14.4Fig. 14.4Fig. 14.4Fig. 14.4 InterestCalculatorHome interface for creating
InterestCalculator EJBs.

852 Session EJBs and Distributed Transactions Chapter 14

1 // InterestCalculatorEJB.java
2 // InterestCalculator is a stateful session EJB for calculating
3 // simple interest.
4 package com.deitel.advjhtp1.ejb.session.stateful.ejb;
5
6 // Java core libraries
7 import java.util.*;
8
9 // Java standard extensions

10 import javax.ejb.*;
11
12 public class InterestCalculatorEJB implements SessionBean {
13
14 private SessionContext sessionContext;
15
16 // state variables
17 private double principal;
18 private double interestRate;
19 private int term;
20
21 // set principal amount
22 public void setPrincipal(double amount)
23 {
24 principal = amount;
25 }
26
27 // set interest rate
28 public void setInterestRate(double rate)
29 {
30 interestRate = rate;
31 }
32
33 // set loan length in years
34 public void setTerm(int years)
35 {
36 term = years;
37 }
38
39 // get loan balance
40 public double getBalance()
41 {
42 // calculate simple interest
43 return principal * Math.pow(1.0 + interestRate, term);
44 }
45
46 // get amount of interest earned
47 public double getInterestEarned()
48 {
49 return getBalance() - principal;
50 }
51

Fig. 14.5Fig. 14.5Fig. 14.5Fig. 14.5 InterestCalculatorEJB implementation of
InterestCalculator remote interface (part 1 of 2).

Chapter 14 Session EJBs and Distributed Transactions 853

Method setSessionContext (lines 53–56) is a callback method defined in inter-
face SessionBean. The EJB container invokes method setSessionContext after
creating the EJB instance. Interface SessionContext extends interface EJBContext,
which provides methods for obtaining information about the EJB container.

Common Programming Error 14.1
Returning the this reference from a method or passing the this reference as an argument
is not allowed in an EJB. Instead, use SessionContext or EntityContext method
getEJBObject to obtain a reference to the current EJBObject. 14.1

When a client invokes a create method in the home interface, the EJB container
invokes method ejbCreate (line 59). The EJB implementation must provide an ejb-
Create method for each create method declared in the home interface. The ejb-
Create methods must have the same number and types of arguments as their
corresponding create methods. The ejbCreate methods also must return void. For
example, if the InterestCalculatorHome interface declares a create method that
takes a double argument for the principal amount, the EJB implementation must
define an ejbCreate method that takes a double argument. The InterestCalcu-
lator EJB has an empty implementation of method ejbCreate, because no initializa-
tion is necessary for this EJB.

The EJB container invokes method ejbRemove (line 62) in response to an invocation
of method remove in the home interface. The EJB container also may invoke method
ejbRemove if the session expires due to lengthy inactivity. Method ejbRemove should
free resources the EJB has used.

The EJB container invokes method ejbPassivate (line 65) when the container
determines that the EJB is no longer needed in memory. The algorithm that the EJB con-
tainer uses to determine when it should passivate an EJB is application-server dependent.
Many application servers enforce a least recently used policy, which passivates EJBs that

52 // set SessionContext
53 public void setSessionContext(SessionContext context)
54 {
55 sessionContext = context;
56 }
57
58 // create InterestCalculator instance
59 public void ejbCreate() {}
60
61 // remove InterestCalculator instance
62 public void ejbRemove() {}
63
64 // passivate InterestCalculator instance
65 public void ejbPassivate() {}
66
67 // activate InterestCalculator instance
68 public void ejbActivate() {}
69 }

Fig. 14.5Fig. 14.5Fig. 14.5Fig. 14.5 InterestCalculatorEJB implementation of
InterestCalculator remote interface (part 2 of 2).

854 Session EJBs and Distributed Transactions Chapter 14

clients have not accessed recently. When the EJB container passivates an EJB, the con-
tainer serializes the state of the EJB and removes the EJB from memory.

The EJB container invokes method ejbActivate (line 68) to restore an EJB
instance that the container passivated previously. The EJB container activates an EJB
instance if the client associated with the EJB instance invokes a business method of that
EJB instance. The EJB container reads the state information that it saved during passivation
and restores the EJB instance in memory.

Software Engineering Observation 14.1
Use the transient keyword to mark instance variables that the EJB container should not
save and restore during passivation and activation. 14.1

InterestCalculatorClient (Fig. 14.6) is an application that uses the
InterestCalculator EJB to calculate simple interest. Line 25 declares an Inter-
estCalculator reference, which InterestCalculatorClient uses to calculate
simple interest. Method createInterestCalculator (lines 71–108) creates an
InterestCalculator EJB instance to use throughout the application. A client appli-
cation must use a JNDI directory to look up the home interface for an EJB. Line 77 creates
an InitialContext, which is an interface into a JNDI directory. The InitialCon-
text represents a naming context, which maps names (e.g., "Interest-
Calculator") to objects, such as EJBs. Lines 80–81 use method lookup of class
InitialContext to retrieve an Object remote reference to the InterestCalcu-
latorHome interface. The String argument passed to method lookup is the name to
which the EJB is mapped in the JNDI directory.

1 // InterestCalculatorClient.java
2 // InterestCalculatorClient is a GUI for interacting with the
3 // InterestCalculator EJB.
4 package com.deitel.advjhtp1.ejb.session.stateful.client;
5
6 // Java core libraries
7 import java.awt.*;
8 import java.awt.event.*;
9 import java.rmi.*;

10 import java.text.*;
11 import java.util.*;
12
13 // Java standard extensions
14 import javax.swing.*;
15 import javax.rmi.*;
16 import javax.naming.*;
17 import javax.ejb.*;
18
19 // Deitel libraries
20 import com.deitel.advjhtp1.ejb.session.stateful.ejb.*;
21
22 public class InterestCalculatorClient extends JFrame {
23

Fig. 14.6Fig. 14.6Fig. 14.6Fig. 14.6 InterestCalculatorClient for interacting with
InterestCalculator EJB (part 1 of 7).

Chapter 14 Session EJBs and Distributed Transactions 855

24 // InterestCalculator remote reference
25 private InterestCalculator calculator;
26
27 private JTextField principalTextField;
28 private JTextField rateTextField;
29 private JTextField termTextField;
30 private JTextField balanceTextField;
31 private JTextField interestEarnedTextField;
32
33 // InterestCalculatorClient constructor
34 public InterestCalculatorClient()
35 {
36 super("Stateful Session EJB Example");
37
38 // create InterestCalculator for calculating interest
39 createInterestCalculator();
40
41 // create JTextField for entering principal amount
42 createPrincipalTextField();
43
44 // create JTextField for entering interest rate
45 createRateTextField();
46
47 // create JTextField for entering loan term
48 createTermTextField();
49
50 // create uneditable JTextFields for displaying balance
51 // and interest earned
52 balanceTextField = new JTextField(10);
53 balanceTextField.setEditable(false);
54
55 interestEarnedTextField = new JTextField(10);
56 interestEarnedTextField.setEditable(false);
57
58 // layout components for GUI
59 layoutGUI();
60
61 // add WindowListener to remove EJB instances when user
62 // closes window
63 addWindowListener(getWindowListener());
64
65 setSize(425, 200);
66 setVisible(true);
67
68 } // end InterestCalculatorClient constructor
69
70 // create InterestCalculator EJB instance
71 public void createInterestCalculator()
72 {
73 // lookup InterestCalculatorHome and create
74 // InterestCalculator EJB
75 try {

Fig. 14.6Fig. 14.6Fig. 14.6Fig. 14.6 InterestCalculatorClient for interacting with
InterestCalculator EJB (part 2 of 7).

856 Session EJBs and Distributed Transactions Chapter 14

76
77 InitialContext initialContext = new InitialContext();
78
79 // lookup InterestCalculator EJB
80 Object homeObject =
81 initialContext.lookup("InterestCalculator");
82
83 // get InterestCalculatorHome interface
84 InterestCalculatorHome calculatorHome =
85 (InterestCalculatorHome)
86 PortableRemoteObject.narrow(homeObject,
87 InterestCalculatorHome.class);
88
89 // create InterestCalculator EJB instance
90 calculator = calculatorHome.create();
91
92 } // end try
93
94 // handle exception if InterestCalculator EJB not found
95 catch (NamingException namingException) {
96 namingException.printStackTrace();
97 }
98
99 // handle exception when creating InterestCalculator EJB
100 catch (RemoteException remoteException) {
101 remoteException.printStackTrace();
102 }
103
104 // handle exception when creating InterestCalculator EJB
105 catch (CreateException createException) {
106 createException.printStackTrace();
107 }
108 } // end method createInterestCalculator
109
110 // create JTextField for entering principal amount
111 public void createPrincipalTextField()
112 {
113 principalTextField = new JTextField(10);
114
115 principalTextField.addActionListener(
116 new ActionListener() {
117
118 public void actionPerformed(ActionEvent event)
119 {
120 // set principal amount in InterestCalculator
121 try {
122 double principal = Double.parseDouble(
123 principalTextField.getText());
124
125 calculator.setPrincipal(principal);
126 }
127

Fig. 14.6Fig. 14.6Fig. 14.6Fig. 14.6 InterestCalculatorClient for interacting with
InterestCalculator EJB (part 3 of 7).

Chapter 14 Session EJBs and Distributed Transactions 857

128 // handle exception setting principal amount
129 catch (RemoteException remoteException) {
130 remoteException.printStackTrace();
131 }
132
133 // handle wrong number format
134 catch (NumberFormatException
135 numberFormatException) {
136 numberFormatException.printStackTrace();
137 }
138 }
139 }
140); // end addActionListener
141 } // end method createPrincipalTextField
142
143 // create JTextField for entering interest rate
144 public void createRateTextField()
145 {
146 rateTextField = new JTextField(10);
147
148 rateTextField.addActionListener(
149 new ActionListener() {
150
151 public void actionPerformed(ActionEvent event)
152 {
153 // set interest rate in InterestCalculator
154 try {
155 double rate = Double.parseDouble(
156 rateTextField.getText());
157
158 // convert from percentage
159 calculator.setInterestRate(rate / 100.0);
160 }
161
162 // handle exception when setting interest rate
163 catch (RemoteException remoteException) {
164 remoteException.printStackTrace();
165 }
166 }
167 }
168); // end addActionListener
169 } // end method createRateTextField
170
171 // create JTextField for entering loan term
172 public void createTermTextField()
173 {
174 termTextField = new JTextField(10);
175
176 termTextField.addActionListener(
177 new ActionListener() {
178

Fig. 14.6Fig. 14.6Fig. 14.6Fig. 14.6 InterestCalculatorClient for interacting with
InterestCalculator EJB (part 4 of 7).

858 Session EJBs and Distributed Transactions Chapter 14

179 public void actionPerformed(ActionEvent event)
180 {
181 // set loan term in InterestCalculator
182 try {
183 int term = Integer.parseInt(
184 termTextField.getText());
185
186 calculator.setTerm(term);
187 }
188
189 // handle exception when setting loan term
190 catch (RemoteException remoteException) {
191 remoteException.printStackTrace();
192 }
193 }
194 }
195); // end addActionListener
196 } // end method getTermTextField
197
198 // get JButton for starting calculation
199 public JButton getCalculateButton()
200 {
201 JButton calculateButton = new JButton("Calculate");
202
203 calculateButton.addActionListener(
204 new ActionListener() {
205
206 public void actionPerformed(ActionEvent event)
207 {
208 // use InterestCalculator to calculate interest
209 try {
210
211 // get balance and interest earned
212 double balance = calculator.getBalance();
213 double interest =
214 calculator.getInterestEarned();
215
216 NumberFormat dollarFormatter =
217 NumberFormat.getCurrencyInstance(
218 Locale.US);
219
220 balanceTextField.setText(
221 dollarFormatter.format(balance));
222
223 interestEarnedTextField.setText(
224 dollarFormatter.format(interest));
225 }
226
227 // handle exception when calculating interest
228 catch (RemoteException remoteException) {
229 remoteException.printStackTrace();
230 }

Fig. 14.6Fig. 14.6Fig. 14.6Fig. 14.6 InterestCalculatorClient for interacting with
InterestCalculator EJB (part 5 of 7).

Chapter 14 Session EJBs and Distributed Transactions 859

231 } // end method actionPerformed
232 }
233); // end addActionListener
234
235 return calculateButton;
236
237 } // end method getCalculateButton
238
239 // lay out GUI components in JFrame
240 public void layoutGUI()
241 {
242 Container contentPane = getContentPane();
243
244 // layout user interface components
245 JPanel inputPanel = new JPanel(new GridLayout(5, 2));
246
247 inputPanel.add(new JLabel("Principal"));
248 inputPanel.add(principalTextField);
249
250 inputPanel.add(new JLabel("Interest Rate (%)"));
251 inputPanel.add(rateTextField);
252
253 inputPanel.add(new JLabel("Term (years)"));
254 inputPanel.add(termTextField);
255
256 inputPanel.add(new JLabel("Balance"));
257 inputPanel.add(balanceTextField);
258
259 inputPanel.add(new JLabel("Interest Earned"));
260 inputPanel.add(interestEarnedTextField);
261
262 // add inputPanel to contentPane
263 contentPane.add(inputPanel, BorderLayout.CENTER);
264
265 // create JPanel for calculateButton
266 JPanel controlPanel = new JPanel(new FlowLayout());
267 controlPanel.add(getCalculateButton());
268 contentPane.add(controlPanel, BorderLayout.SOUTH);
269 }
270
271 // get WindowListener for exiting application
272 public WindowListener getWindowListener()
273 {
274 return new WindowAdapter() {
275
276 public void windowClosing(WindowEvent event)
277 {
278 // check to see if calculator is null
279 if (calculator.equals(null)) {
280 System.exit(-1);
281 }
282

Fig. 14.6Fig. 14.6Fig. 14.6Fig. 14.6 InterestCalculatorClient for interacting with
InterestCalculator EJB (part 6 of 7).

860 Session EJBs and Distributed Transactions Chapter 14

Lines 84–87 use class PortableRemoteObject method narrow to convert the
remote reference to an InterestCalculatorHome remote reference. This is the stan-
dard method for casting a remote reference to the proper interface type when using RMI-
IIOP. RMI-IIOP allows RMI objects to interact with CORBA components, which commu-
nicate using the Internet Inter-Orb Protocol (IIOP). CORBA is a language-independent
framework for building distributed systems. To enable interoperability among EJBs and
CORBA components, EJBs communicate using RMI-IIOP. We discuss CORBA and RMI-
IIOP in Chapters 26 and 27.

283 else {
284 // remove InterestCalculator instance
285 try {
286 calculator.remove();
287 }
288
289 // handle exception removing InterestCalculator
290 catch (RemoveException removeException) {
291 removeException.printStackTrace();
292 System.exit(-1);
293 }
294
295 // handle exception removing InterestCalculator
296 catch (RemoteException remoteException) {
297 remoteException.printStackTrace();
298 System.exit(-1);
299 }
300
301 System.exit(0);
302 }
303 }
304 };
305 } // end method getWindowListener
306
307 // execute the application
308 public static void main(String[] args)
309 {
310 new InterestCalculatorClient();
311 }
312 }

Fig. 14.6Fig. 14.6Fig. 14.6Fig. 14.6 InterestCalculatorClient for interacting with
InterestCalculator EJB (part 7 of 7).

Chapter 14 Session EJBs and Distributed Transactions 861

Line 90 invokes method create of interface InterestCalculatorHome to
create a new instance of the InterestCalculator EJB. This InterestCalcu-
lator EJB instance is exclusive to the client that creates it, because it is a session EJB.
The InterestCalculator EJB instance will maintain state information, because it is
a stateful session EJB. Method create returns a remote reference to the newly created
InterestCalculator EJB instance. Line 90 assigns this remote reference to the
calculator member variable. Instances of class InterestCalculatorClient
can use this remote reference to invoke the business methods defined in the Interest-
Calculator remote interface.

Lines 95–97 catch a NamingException, which indicates a problem accessing the
JNDI directory. If the InitialContext cannot be created, the InitialContext
constructor throws a NamingException. Method lookup also throws a NamingEx-
ception if the name passed as an argument cannot be found in the JNDI directory.

Lines 100–102 catch a RemoteException. If there is an error communicating
with the EJB container, method create throws a RemoteException. Lines 105–107
catch a CreateException. Method create throws a CreateException if there
is an error creating the EJB instance.

Method createPrincipalTextField (lines 111–141) creates a JTextField
for the user to input the principal amount. An ActionListener anonymous inner
class (lines 116–139) uses static method parseDouble of class Double to get the
principal entered by the user (lines 122–123). Line 125 sets the principal in the
InterestCalculator EJB by invoking method setPrincipal. Note that JTex-
tFields generate ActionEvents when the user presses the Enter key in the JText-
Field. Therefore, the user must press the Enter key after entering each piece of data to
cause the ActionListener’s actionPerformed method to invoke the appropriate
InterestCalculator business method.

Method createRateTextField (lines 144–169) creates a JTextField for
inputting an interest rate for the calculation. Lines 149–167 create an ActionListener
anonymous inner class to parse the input from the user (lines 155–156) and invoke
InterestCalculator method setInterestRate to set the interest rate (line 159).

Method createTermTextfield (lines 172–196) creates a JTextField for
inputting the number of years for which interest will accrue. An ActionListener anon-
ymous inner class (lines 177–194) parses the input from the user (lines 183–184) and sets
the term in the InterestCalculator by invoking method setTerm (line 186) of the
InterestCalculator remote interface.

Method getCalculateButton (lines 199–237) creates a JButton that, when
clicked, invokes InterestCalculator methods getBalance and getInter-
estEarned. Lines 220–224 set the text in balanceTextField and interest-
EarnedTextField to display the calculation results to the user.

The InterestCalculatorClient constructor (lines 34–68) invokes method
createInterestCalculator to create a new InterestCalculator EJB
instance (line 39). Lines 42–56 create the application’s user-interface components and
invoke method layoutGUI (line 59), which creates a JLabel for each JTextField
and lays out the components (lines 240–269).

Method getWindowListener (lines 272–305) creates a WindowAdapter anon-
ymous inner class that provides method windowClosing to perform cleanup tasks when

862 Session EJBs and Distributed Transactions Chapter 14

the user closes the application window. Line 279 checks to see if calculator is null.
If calculator is null, the program exits with an error code (line 280). Otherwise, line 286
invokes method remove of the InterestCalculator remote interface to remove the
EJB instance that the application used. If there is an error when removing the EJB instance,
lines 290–293 catch a RemoveException. If there is an error communicating with the
EJB container, lines 296–299 catch a RemoteException.

14.3.2 Deploying Session EJBs
Enterprise JavaBeans execute in the context of an EJB container, which is a fundamental
part of a J2EE-compliant application server. This section details the steps necessary to de-
ploy the InterestCalculator session EJB in the Java 2 Enterprise Edition version
1.2.1 reference implementation from Sun Microsystems. If you have not yet installed and
configured the J2EE SDK, please see Appendix E for instructions.

Create a new enterprise application by selecting New Application from the File
menu (Fig. 14.7). Specify the file name for the EAR file and the name of the application in
the New Application dialog box and click OK (Fig. 14.8).

Fig. 14.7Fig. 14.7Fig. 14.7Fig. 14.7 Creating New Application in Application Deployment Tool.

Chapter 14 Session EJBs and Distributed Transactions 863

Select New Enterprise Bean from the File menu to begin deploying the EJB
(Fig. 14.9). Click Next, provide a JAR Display Name and click Add to add the class
files for the InterestCalculator EJB (Fig. 14.10).

Specify the Root Directory for the classes that make up the InterestCalcu-
lator EJB (Fig. 14.11). The InterestCalculator classes are in package
com.deitel.advjhtp1.ejb.session.stateful.ejb, so select as the Root
Directory the directory that contains the com directory. Select the InterestCalcu-
lator class files—InterestCalculator.class, InterestCalculator-
Home.class and InterestCalculatorEJB.class—and click Add and OK.
After adding the class files, they will appear in the Contents of the EJB JAR
(Fig. 14.12). Click Next to begin adding class files to the EJB JAR.

Fig. 14.8Fig. 14.8Fig. 14.8Fig. 14.8 Specifying EAR file for New Application.

Fig. 14.9Fig. 14.9Fig. 14.9Fig. 14.9 Creating a New Enterprise Bean.

864 Session EJBs and Distributed Transactions Chapter 14

Fig. 14.10Fig. 14.10Fig. 14.10Fig. 14.10 Adding InterestCalculator EJB classes.

Fig. 14.11Fig. 14.11Fig. 14.11Fig. 14.11 Selecting InterestCalculator EJB classes to add.

Chapter 14 Session EJBs and Distributed Transactions 865

Specify the Enterprise Bean Class, Home Interface and Remote Interface by
selecting the appropriate classes from the drop-down lists (Fig. 14.13). Specify an Enter-
prise Bean Display Name to be displayed in the Application Deployment Tool and
select the Bean Type. The InterestCalculator EJB is a stateful session bean, so
select the Session and Stateful radio buttons and click Next (Fig. 14.14). When deploying
the MathToolEJB, specify Stateless instead of Stateful for the Bean Type.

Fig. 14.12Fig. 14.12Fig. 14.12Fig. 14.12 Result of adding InterestCalculator EJB classes.

Fig. 14.13Fig. 14.13Fig. 14.13Fig. 14.13 Specifying Enterprise Bean Class for InterestCalculator EJB.

866 Session EJBs and Distributed Transactions Chapter 14

Specify Container-Managed Transactions in the Transaction Management
dialog (Fig. 14.15). For each Method, specify the Supports Transaction Type, and click
Next. We discuss the details of transactions in Section 14.4.

Fig. 14.14Fig. 14.14Fig. 14.14Fig. 14.14 Specifying InterestCalculator EJB classes and Stateful Session
Bean Type.

Fig. 14.15Fig. 14.15Fig. 14.15Fig. 14.15 Specifying Container Managed Transactions for
InterestCalculator EJB.

Chapter 14 Session EJBs and Distributed Transactions 867

Figure 14.16 shows the XML deployment descriptor generated for the Interest-
Calculator EJB. The application server uses this XML descriptor to configure the
InterestCalculator EJB.

You must specify a JNDI Name for the InterestCalculator, so that clients
may obtain references to the EJB. For this example, specify the JNDI Name Interest-
Calculator (Fig. 14.17). The JNDI Name need not be the same as the EJB name.

Good Programming Practice 14.1
Use an EJB’s remote interface name as the EJB’s JNDI name. This makes your code more
readable and makes the JNDI name easier to remember. 14.1

Fig. 14.16Fig. 14.16Fig. 14.16Fig. 14.16 XML deployment descriptor for InterestCalculator EJB.

Fig. 14.17Fig. 14.17Fig. 14.17Fig. 14.17 Specifying JNDI Name for InterestCalculator EJB.

868 Session EJBs and Distributed Transactions Chapter 14

Deploy the application to the J2EE server by selecting Deploy Application from the
Tools menu, or by clicking the Deploy Application button on the toolbar (Fig. 14.18).

Specify localhost as the Target Server and select the checkbox Return Client
Jar (Fig. 14.19). The client JAR contains the stub classes the client will use to communi-
cate with the EJB.

Fig. 14.18Fig. 14.18Fig. 14.18Fig. 14.18 Deploying enterprise application to localhost.

Fig. 14.19Fig. 14.19Fig. 14.19Fig. 14.19 Specifying the Application Deployment Tool should Return Client Jar.

Chapter 14 Session EJBs and Distributed Transactions 869

After deploying the InterestCalculator EJB (Fig. 14.20), execute the
InterestCalculatorClient to test the InterestCalculator. The Inter-
estCalculatorClient.jar and the j2ee.jar must be in the CLASSPATH
when executing the InterestCalculatorClient. For example, from the com-
mand line, type

java -classpath D:\j2sdkee1.2.1\lib\j2ee.jar;D:\Interest-
CalculatorClient.jar;. com.deitel.advjhtp1.ejb.session.state-
ful.client.InterestCalculatorClient

14.3.3 Stateless Session EJBs
Stateless session EJBs maintain no state information between business method invocations.
As a result, the EJB container can use any stateless session EJB instance to respond to any
client’s request.

Performance Tip 14.1
Stateless session EJBs may perform better than stateful session EJBs, because a single state-
less session EJB instance can be shared among many clients, reducing memory, processor
and other resource requirements on the server. 14.1

Figure 14.21 shows the MathTool remote interface. MathTool is a stateless session
EJB with business methods for generating a Fibonacci series and calculating factorials.
Method getFibonacciSeries (lines 14–15) generates a Fibonacci series of the length
supplied in integer argument howMany. Method getFactorial (lines 18–19) calcu-
lates the factorial of the provided integer.

Fig. 14.20Fig. 14.20Fig. 14.20Fig. 14.20 Successful completion of deployment process.

870 Session EJBs and Distributed Transactions Chapter 14

MathToolEJB (Fig. 14.22) provides implementations of the business methods
declared in the MathTool remote interface. MathToolEJB implements the Session-
Bean interface (line 9), indicating MathTool is a session EJB. Method getFibonac-
ciSeries (lines 14–48) generates a Fibonacci series. The Fibonacci series

0, 1, 1, 2, 3, 5, 8, 13, 21, …

begins with 0 and 1 and has the property that each subsequent Fibonacci number is the sum
of the previous two Fibonacci numbers. The MathTool EJB calculates the Fibonacci se-
ries on lines 25–44. Each number in the series is placed in the integer array series (line
29). Lines 32–33 set the zeroth number in the series to 0 and the first number in the series
to 1. Line 39 sets the next number in the series to the sum of the previous two numbers.

1 // MathTool.java
2 // MathTool is the remote interface for the MathTool EJB.
3 package com.deitel.advjhtp1.ejb.session.stateless.ejb;
4
5 // Java core libraries
6 import java.rmi.RemoteException;
7
8 // Java standard extensions
9 import javax.ejb.EJBObject;

10
11 public interface MathTool extends EJBObject
12 {
13 // get Fibonacci series
14 public int[] getFibonacciSeries(int howMany)
15 throws RemoteException, IllegalArgumentException;
16
17 // get factorial of given integer
18 public int getFactorial(int number)
19 throws RemoteException, IllegalArgumentException;
20 }

Fig. 14.21Fig. 14.21Fig. 14.21Fig. 14.21 MathTool remote interface for calculating factorials and generating
Fibonacci series.

1 // MathToolEJB.java
2 // MathToolEJB is a stateless session EJB with methods for
3 // calculating Fibonacci series and factorials.
4 package com.deitel.advjhtp1.ejb.session.stateless.ejb;
5
6 // Java standard extensions
7 import javax.ejb.*;
8
9 public class MathToolEJB implements SessionBean {

10
11 private SessionContext sessionContext;
12

Fig. 14.22Fig. 14.22Fig. 14.22Fig. 14.22 MathToolEJB implementation of MathTool remote interface (part
1 of 3).

Chapter 14 Session EJBs and Distributed Transactions 871

13 // get Fibonacci series
14 public int[] getFibonacciSeries(int howMany)
15 throws IllegalArgumentException
16 {
17 // throw IllegalArgumentException if series length
18 // is less than zero
19 if (howMany < 2)
20 throw new IllegalArgumentException(
21 "Cannot generate Fibonacci series of " +
22 "length less than two.");
23
24 // starting points
25 int startPoint1 = 0;
26 int startPoint2 = 1;
27
28 // array to contain Fibonacci sequence
29 int[] series = new int[howMany];
30
31 // set base cases
32 series[0] = 0;
33 series[1] = 1;
34
35 // generate Fibonacci series
36 for (int i = 2; i < howMany; i++) {
37
38 // calculate next number in series
39 series[i] = startPoint1 + startPoint2;
40
41 // set start points for next iteration
42 startPoint1 = startPoint2;
43 startPoint2 = series[i];
44 }
45
46 return series;
47
48 } // end method getFibonacciSeries
49
50 // get factorial of given integer
51 public int getFactorial(int number)
52 throws IllegalArgumentException
53 {
54 // throw IllegalArgumentException if number less than zero
55 if (number < 0)
56 throw new IllegalArgumentException(
57 "Cannot calculate factorial of negative numbers.");
58
59 // base case for recursion, return 1
60 if (number == 0)
61 return 1;
62

Fig. 14.22Fig. 14.22Fig. 14.22Fig. 14.22 MathToolEJB implementation of MathTool remote interface (part
2 of 3).

872 Session EJBs and Distributed Transactions Chapter 14

Method getFactorial (lines 51–67) calculates the factorial of a nonnegative
integer, which is defined to be the product

n · (n – 1) · (n – 2) · … · 1

Lines 56–57 throw an IllegalArgumentException if the integer argument num-
ber is less than 0. Lines 60–61 implement the base case for the recursive calculation. Line
65 calculates the factorial with a recursive call to getFactorial.

The EJB container invokes method setSessionContext (lines 70–73) when the
EJB instance is activated and a remote reference is given to a client. The SessionCon-
text argument implements method getEJBObject, which the EJB can use to retrieve
a reference to the current EJB instance.

When a client invokes method create of interface MathToolHome (Fig. 14.23),
the EJB container invokes method ejbCreate (line 76). Method ejbCreate performs
initialization of the EJB. MathToolEJB method ejbCreate has an empty implementa-
tion, because this EJB requires no initialization. The EJB container invokes method
ejbRemove (line 79) to remove a MathTool EJB instance.

The EJB container invokes method ejbActivate (line 82) when the EJB instance
is taken out of the EJB container’s pool and associated with a particular client. The EJB
container invokes method ejbPassivate (line 85) when the EJB instance is no longer
needed and can be returned to the ready pool.

MathToolHome (Fig. 14.23) is the home interface for the MathTool EJB. Method
create (lines 15–16) creates a new MathTool EJB. The EJB container invokes Math-
ToolEJB method ejbCreate when a client invokes MathToolHome method create.

63 // call getFactorial recursively to calculate factorial
64 else
65 return number * getFactorial(number - 1);
66
67 } // end method getFactorial
68
69 // set SessionContext
70 public void setSessionContext(SessionContext context)
71 {
72 sessionContext = context;
73 }
74
75 // create new MathTool instance
76 public void ejbCreate() {}
77
78 // remove MathTool instance
79 public void ejbRemove() {}
80
81 // activate MathTool instance
82 public void ejbActivate() {}
83
84 // passivate MathTool instance
85 public void ejbPassivate() {}
86 }

Fig. 14.22Fig. 14.22Fig. 14.22Fig. 14.22 MathToolEJB implementation of MathTool remote interface (part
3 of 3).

Chapter 14 Session EJBs and Distributed Transactions 873

Please refer to Section 14.3.2 for deployment instructions. Recall that MathTool is a
stateless session EJB, so you must specify this in the deployment process. Also, be sure to
specify an appropriate JNDI name (e.g., MathTool) for the MathTool EJB.

MathToolClient (Fig. 14.24) is an application client for the MathTool EJB. The
user interface consists of a JTextField into which the user can enter an integer, a
JButton to invoke MathTool method getFactorial and a JButton to invoke
MathTool method getFibonacciSeries. The calculation results are displayed in a
JTextArea.

The MathToolClient constructor (lines 29–45) invokes method createMath-
Tool (line 35) to create a new instance of the MathTool EJB. Line 38 invokes method
createGUI to create and lay out GUI components for the application’s user interface.
Method createMathTool (lines 48–83) uses an InitialContext (line 53) to look
up the MathToolHome interface in the JNDI Directory (lines 56–57). Line 65 invokes
MathToolHome method create to create a MathTool EJB instance.

Method getFactorialButton (lines 86–122) creates a JButton that, when
pressed, invokes MathTool EJB method getFactorial. Lines 100–104 parse the
number entered in numberTextField and invoke method getFactorial of the
MathTool remote interface. Lines 107–108 display the factorial in resultsText-
Area. Lines 113–115 catch a RemoteException if there is an error invoking method
getFactorial.

Method getFibonacciButton (lines 125–182) creates a JButton that, when
clicked, invokes MathTool EJB method getFibonacciSeries. Lines 140–145
parse the number entered in numberTextField and invoke method getFibonac-
ciSeries of the MathTool remote interface. Method getFibonacciSeries
returns an array of integers containing a Fibonacci series of the length specified by the
integer argument howMany. Lines 148–168 build a StringBuffer containing the
Fibonacci series and display the series in resultsTextArea.

1 // MathToolHome.java
2 // MathToolHome is the home interface for the MathTool EJB.
3 package com.deitel.advjhtp1.ejb.session.stateless.ejb;
4
5 // Java core libraries
6 import java.rmi.RemoteException;
7
8 // Java standard extensions
9 import javax.ejb.EJBHome;

10 import javax.ejb.CreateException;
11
12 public interface MathToolHome extends EJBHome {
13
14 // create new MathTool EJB
15 public MathTool create() throws RemoteException,
16 CreateException;
17 }

Fig. 14.23Fig. 14.23Fig. 14.23Fig. 14.23 MathToolHome interface for creating MathTool EJBs.

874 Session EJBs and Distributed Transactions Chapter 14

1 // MathToolClient.java
2 // MathToolClient is a GUI for calculating factorials and
3 // Fibonacci series using the MathTool EJB.
4 package com.deitel.advjhtp1.ejb.session.stateless.client;
5
6 // Java core libraries
7 import java.awt.*;
8 import java.awt.event.*;
9 import java.rmi.*;

10
11 // Java standard extensions
12 import javax.swing.*;
13 import javax.rmi.*;
14 import javax.naming.*;
15 import javax.ejb.*;
16
17 // Deitel libraries
18 import com.deitel.advjhtp1.ejb.session.stateless.ejb.*;
19
20 public class MathToolClient extends JFrame {
21
22 private MathToolHome mathToolHome;
23 private MathTool mathTool;
24
25 private JTextArea resultsTextArea;
26 private JTextField numberTextField;
27
28 // MathToolClient constructor
29 public MathToolClient()
30 {
31 super("Stateless Session EJB Example");
32
33 // create MathTool for calculating factorials
34 // and Fibonacci series
35 createMathTool();
36
37 // create and lay out GUI components
38 createGUI();
39
40 addWindowListener(getWindowListener());
41
42 setSize(425, 200);
43 setVisible(true);
44
45 } // end MathToolClient constructor
46
47 // create MathTool EJB instance
48 private void createMathTool()
49 {
50 // lookup MathToolHome and create MathTool EJB
51 try {
52
53 InitialContext initialContext = new InitialContext();

Fig. 14.24Fig. 14.24Fig. 14.24Fig. 14.24 MathToolClient for interacting with MathTool EJB (part 1 of 6).

Chapter 14 Session EJBs and Distributed Transactions 875

54
55 // lookup MathTool EJB
56 Object homeObject =
57 initialContext.lookup("MathTool");
58
59 // get MathToolHome interface
60 mathToolHome = (MathToolHome)
61 PortableRemoteObject.narrow(homeObject,
62 MathToolHome.class);
63
64 // create MathTool EJB instance
65 mathTool = mathToolHome.create();
66
67 } // end try
68
69 // handle exception if MathTool EJB is not found
70 catch (NamingException namingException) {
71 namingException.printStackTrace();
72 }
73
74 // handle exception when creating MathTool EJB
75 catch (RemoteException remoteException) {
76 remoteException.printStackTrace();
77 }
78
79 // handle exception when creating MathTool EJB
80 catch (CreateException createException) {
81 createException.printStackTrace();
82 }
83 } // end method createMathTool
84
85 // create JButton for calculating factorial
86 private JButton getFactorialButton()
87 {
88 JButton factorialButton =
89 new JButton("Calculate Factorial");
90
91 // add ActionListener for factorial button
92 factorialButton.addActionListener(
93 new ActionListener() {
94
95 public void actionPerformed(ActionEvent event)
96 {
97 // use MathTool EJB to calculate factorial
98 try {
99
100 int number = Integer.parseInt(
101 numberTextField.getText());
102
103 // get Factorial of number input by user
104 int result = mathTool.getFactorial(number);
105

Fig. 14.24Fig. 14.24Fig. 14.24Fig. 14.24 MathToolClient for interacting with MathTool EJB (part 2 of 6).

876 Session EJBs and Distributed Transactions Chapter 14

106 // display results in resultsTextArea
107 resultsTextArea.setText(number + "! = " +
108 result);
109
110 } // end try
111
112 // handle exception calculating factorial
113 catch (RemoteException remoteException) {
114 remoteException.printStackTrace();
115 }
116 } // end method actionPerformed
117 }
118); // end addActionListener
119
120 return factorialButton;
121
122 } // end method getFactorialButton
123
124 // create JButton for generating Fibonacci series
125 private JButton getFibonacciButton()
126 {
127 JButton fibonacciButton =
128 new JButton("Fibonacci Series");
129
130 // add ActionListener for generating Fibonacci series
131 fibonacciButton.addActionListener(
132 new ActionListener() {
133
134 public void actionPerformed(ActionEvent event)
135 {
136 // generate Fibonacci series using MathTool EJB
137 try {
138
139 // get number entered by user
140 int number = Integer.parseInt(
141 numberTextField.getText());
142
143 // get Fibonacci series
144 int[] series = mathTool.getFibonacciSeries(
145 number);
146
147 // create StringBuffer to store series
148 StringBuffer buffer =
149 new StringBuffer("The first ");
150
151 buffer.append(number);
152
153 buffer.append(" Fibonacci number(s): \n");
154
155 // append each number in series to buffer
156 for (int i = 0; i < series.length; i++) {
157

Fig. 14.24Fig. 14.24Fig. 14.24Fig. 14.24 MathToolClient for interacting with MathTool EJB (part 3 of 6).

Chapter 14 Session EJBs and Distributed Transactions 877

158 // do not add comma before first number
159 if (i != 0)
160 buffer.append(", ");
161
162 // append next number in series to buffer
163 buffer.append(String.valueOf(
164 series[i]));
165 }
166
167 // display series in resultsTextArea
168 resultsTextArea.setText(buffer.toString());
169
170 } // end try
171
172 // handle exception calculating series
173 catch (RemoteException remoteException) {
174 remoteException.printStackTrace();
175 }
176 } // end method actionPerformed
177 }
178); // end addActionListener
179
180 return fibonacciButton;
181
182 } // end method getFibonacciButton
183
184 // create lay out GUI components
185 public void createGUI()
186 {
187 // create JTextArea to show results
188 resultsTextArea = new JTextArea();
189 resultsTextArea.setLineWrap(true);
190 resultsTextArea.setWrapStyleWord(true);
191 resultsTextArea.setEditable(false);
192
193 // create JTextField for user input
194 numberTextField = new JTextField(10);
195
196 // create JButton for calculating factorial
197 JButton factorialButton = getFactorialButton();
198
199 // create JButton for generating Fibonacci series
200 JButton fibonacciButton = getFibonacciButton();
201
202 Container contentPane = getContentPane();
203
204 // put resultsTextArea in a JScrollPane
205 JScrollPane resultsScrollPane =
206 new JScrollPane(resultsTextArea);
207
208 contentPane.add(resultsScrollPane,
209 BorderLayout.CENTER);
210

Fig. 14.24Fig. 14.24Fig. 14.24Fig. 14.24 MathToolClient for interacting with MathTool EJB (part 4 of 6).

878 Session EJBs and Distributed Transactions Chapter 14

211 // add input components to new JPanel
212 JPanel inputPanel = new JPanel(new FlowLayout());
213 inputPanel.add(new JLabel("Enter an integer: "));
214 inputPanel.add(numberTextField);
215
216 // add JButton components to new JPanel
217 JPanel buttonPanel = new JPanel(new FlowLayout());
218 buttonPanel.add(factorialButton);
219 buttonPanel.add(fibonacciButton);
220
221 // add inputPanel and buttonPanel to new JPanel
222 JPanel controlPanel =
223 new JPanel(new GridLayout(2, 2));
224
225 controlPanel.add(inputPanel);
226 controlPanel.add(buttonPanel);
227
228 contentPane.add(controlPanel, BorderLayout.NORTH);
229
230 } // end method createGUI
231
232 // get WindowListener for exiting application
233 private WindowListener getWindowListener()
234 {
235 return new WindowAdapter() {
236
237 public void windowClosing(WindowEvent event)
238 {
239 // remove MathTool instance
240 try {
241 mathTool.remove();
242 }
243
244 // handle exception when removing MathTool EJB
245 catch (RemoveException removeException) {
246 removeException.printStackTrace();
247 System.exit(-1);
248 }
249
250 // handle exception when removing MathTool EJB
251 catch (RemoteException remoteException) {
252 remoteException.printStackTrace();
253 System.exit(-1);
254 }
255
256 System.exit(0);
257 } // end method windowClosing
258 };
259 } // end method getWindowListener
260
261 // execute application
262 public static void main(String[] args)
263 {

Fig. 14.24Fig. 14.24Fig. 14.24Fig. 14.24 MathToolClient for interacting with MathTool EJB (part 5 of 6).

Chapter 14 Session EJBs and Distributed Transactions 879

14.4 EJB Transactions
The Java 2 Enterprise Edition supports distributed transactions. A distributed transaction
is a transaction that includes multiple databases or multiple application servers. For exam-
ple, a distributed transaction could transfer funds from an account at one bank into an ac-
count at another bank atomically.

J2EE supports two methods for defining transaction boundaries: bean-managed trans-
action demarcation and container-managed transaction demarcation. Bean-managed
transaction demarcation requires the EJB developer to code the transaction boundaries
manually in the EJBs using the Java Transaction API (JTA). Container-managed transac-
tion demarcation allows the EJB deployer to specify transaction boundaries declaratively
when deploying EJBs.

Software Engineering Observation 14.2
Entity EJBs may use only container-managed transaction demarcation. 14.2

14.4.1 MoneyTransfer EJB Home and Remote Interfaces
The MoneyTransfer EJB demonstrates the need for distributed transactions and their
implementation using bean-managed and container-managed transaction demarcation. In
this example, we transfer money from an account at BankABC to an account at BankXYZ.
We first withdraw money from an account at BankABC and then deposit the same amount
at BankXYZ. Transactions are needed to ensure that the money is “put back” in the Bank-

264 MathToolClient client = new MathToolClient();
265 }
266 }

Fig. 14.24Fig. 14.24Fig. 14.24Fig. 14.24 MathToolClient for interacting with MathTool EJB (part 6 of 6).

880 Session EJBs and Distributed Transactions Chapter 14

ABC account if the deposit at BankXYZ fails. We also need to ensure that if the withdrawal
from BankABC fails, the money is not deposited at BankXYZ.

The MoneyTransfer remote interface (Fig. 14.25) provides methods for transfer-
ring money between accounts and for getting the balances of accounts at two different
banks. Method transfer (line 15) transfers the given amount of money from an account
at BankABC to an account at BankXYZ. Method getBankABCBalance (line 18)
returns the account balance at BankABC. Method getBankXYZBalance (line 21)
returns the account balance at BankXYZ. Interface MoneyTransferHome (Fig. 14.26)
provides method create (lines 15–16) for creating MoneyTransfer EJB instances.

1 // MoneyTransfer.java
2 // MoneyTransfer is the remote interface for the MoneyTransfer
3 // EJB.
4 package com.deitel.advjhtp1.ejb.transactions;
5
6 // Java core libraries
7 import java.rmi.RemoteException;
8
9 // Java standard extensions

10 import javax.ejb.EJBObject;
11
12 public interface MoneyTransfer extends EJBObject {
13
14 // transfer amount from BankABC to BankXYZ
15 public void transfer(double amount) throws RemoteException;
16
17 // get BankABC account balance
18 public double getBankABCBalance() throws RemoteException;
19
20 // get BankXYZ account balance
21 public double getBankXYZBalance() throws RemoteException;
22 }

Fig. 14.25Fig. 14.25Fig. 14.25Fig. 14.25 MoneyTransfer remote interface for transferring money and getting
account balances.

1 // MoneyTransferHome.java
2 // MoneyTransferHome is the home interface for the
3 // MoneyTransferHome EJB.
4 package com.deitel.advjhtp1.ejb.transactions;
5
6 // Java core libraries
7 import java.rmi.RemoteException;
8
9 // Java standard extensions

10 import javax.ejb.*;
11
12 public interface MoneyTransferHome extends EJBHome {
13

Fig. 14.26Fig. 14.26Fig. 14.26Fig. 14.26 MoneyTransferHome interface for creating MoneyTransfer
EJBs (part 1 of 2).

Chapter 14 Session EJBs and Distributed Transactions 881

14.4.2 Bean-Managed Transaction Demarcation

Bean-managed transaction demarcation requires the EJB developer to code the transaction
boundaries manually in the EJBs. Bean-managed transaction demarcation may be used
only with session EJBs.

MoneyTransferEJB (Fig. 14.27) implements the MoneyTransfer remote inter-
face using bean-managed transaction demarcation to ensure atomicity of the database
updates in method transfer (lines 26–81). Lines 29–30 create a UserTransaction.
Line 34 begins the transaction by invoking UserTransaction method begin.
All statements after the transaction begins are part of the transaction until the
transaction is committed or rolled back.

14 // create MoneyTransfer EJB
15 public MoneyTransfer create() throws RemoteException,
16 CreateException;
17 }

1 // MoneyTransferEJB.java
2 // MoneyTransferEJB is a stateless session EJB for transferring
3 // funds from an Account at BankABC to an Account at BankXYZ
4 // using bean-managed transaction demarcation.
5 package com.deitel.advjhtp1.ejb.transactions.beanmanaged;
6
7 // Java core libraries
8 import java.util.*;
9 import java.sql.*;

10
11 // Java standard extensions
12 import javax.ejb.*;
13 import javax.naming.*;
14 import javax.transaction.*;
15 import javax.sql.*;
16
17 public class MoneyTransferEJB implements SessionBean {
18
19 private SessionContext sessionContext;
20 private Connection bankOneConnection;
21 private Connection bankTwoConnection;
22 private PreparedStatement withdrawalStatement;
23 private PreparedStatement depositStatement;
24
25 // transfer funds from BankABC to BankXYZ
26 public void transfer(double amount) throws EJBException
27 {
28 // create transaction for transferring funds
29 UserTransaction transaction =
30 sessionContext.getUserTransaction();

Fig. 14.27Fig. 14.27Fig. 14.27Fig. 14.27 MoneyTransferEJB implementation of MoneyTransfer remote
interface using bean-managed transaction demarcation (part 1 of 6).

Fig. 14.26Fig. 14.26Fig. 14.26Fig. 14.26 MoneyTransferHome interface for creating MoneyTransfer
EJBs (part 2 of 2).

882 Session EJBs and Distributed Transactions Chapter 14

31
32 // begin bean-managed transaction demarcation
33 try {
34 transaction.begin();
35 }
36
37 // catch exception if method begin fails
38 catch (Exception exception) {
39
40 // throw EJBException indicating transaction failed
41 throw new EJBException(exception);
42 }
43
44 // transfer funds from account in BankABC to account
45 // in BankXYZ using bean-managed transaction demarcation
46 try {
47
48 withdrawalStatement.setDouble(1, amount);
49
50 // withdraw funds from account at BankABC
51 withdrawalStatement.executeUpdate();
52
53 depositStatement.setDouble(1, amount);
54
55 // deposit funds in account at BankXYZ
56 depositStatement.executeUpdate();
57
58 // commit transaction
59 transaction.commit();
60
61 } // end try
62
63 // handle exceptions when withdrawing, depositing and
64 // committing transaction
65 catch (Exception exception) {
66
67 // attempt rollback of transaction
68 try {
69 transaction.rollback();
70 }
71
72 // handle exception when rolling back transaction
73 catch (SystemException systemException) {
74 throw new EJBException(systemException);
75 }
76
77 // throw EJBException indicating transaction failed
78 throw new EJBException(exception);
79 }
80
81 } // end method transfer
82

Fig. 14.27Fig. 14.27Fig. 14.27Fig. 14.27 MoneyTransferEJB implementation of MoneyTransfer remote
interface using bean-managed transaction demarcation (part 2 of 6).

Chapter 14 Session EJBs and Distributed Transactions 883

83 // get balance of Account at BankABC
84 public double getBankABCBalance() throws EJBException
85 {
86 // get balance of Account at BankABC
87 try {
88
89 // select balance for Account # 12345
90 String select = "SELECT balance FROM Account " +
91 "WHERE accountID = 12345";
92
93 PreparedStatement selectStatement =
94 bankOneConnection.prepareStatement(select);
95
96 ResultSet resultSet = selectStatement.executeQuery();
97
98 // get first record in ResultSet and return balance
99 if (resultSet.next())
100 return resultSet.getDouble("balance");
101 else
102 throw new EJBException("Account not found");
103
104 } // end try
105
106 // handle exception when getting Account balance
107 catch (SQLException sqlException) {
108 throw new EJBException(sqlException);
109 }
110
111 } // end method getBankABCBalance
112
113 // get balance of Account at BankXYZ
114 public double getBankXYZBalance() throws EJBException
115 {
116 // get balance of Account at BankXYZ
117 try {
118
119 // select balance for Account # 54321
120 String select = "SELECT balance FROM Account " +
121 "WHERE accountID = 54321";
122
123 PreparedStatement selectStatement =
124 bankTwoConnection.prepareStatement(select);
125
126 ResultSet resultSet = selectStatement.executeQuery();
127
128 // get first record in ResultSet and return balance
129 if (resultSet.next())
130 return resultSet.getDouble("balance");
131 else
132 throw new EJBException("Account not found");
133
134 } // end try

Fig. 14.27Fig. 14.27Fig. 14.27Fig. 14.27 MoneyTransferEJB implementation of MoneyTransfer remote
interface using bean-managed transaction demarcation (part 3 of 6).

884 Session EJBs and Distributed Transactions Chapter 14

135
136 // handle exception when getting Account balance
137 catch (SQLException sqlException) {
138 throw new EJBException(sqlException);
139 }
140
141 } // end method getBankXYZBalance
142
143 // set SessionContext
144 public void setSessionContext(SessionContext context)
145 throws EJBException
146 {
147 sessionContext = context;
148
149 openDatabaseResources();
150 }
151
152 // create MoneyTransfer instance
153 public void ejbCreate() {}
154
155 // remove MoneyTransfer instance
156 public void ejbRemove() throws EJBException
157 {
158 closeDatabaseResources();
159 }
160
161 // passivate MoneyTransfer instance
162 public void ejbPassivate() throws EJBException
163 {
164 closeDatabaseResources();
165 }
166
167 // activate MoneyTransfer instance
168 public void ejbActivate() throws EJBException
169 {
170 openDatabaseResources();
171 }
172
173 // close database Connections and PreparedStatements
174 private void closeDatabaseResources() throws EJBException
175 {
176 // close database resources
177 try {
178
179 // close PreparedStatements
180 depositStatement.close();
181 depositStatement = null;
182
183 withdrawalStatement.close();
184 withdrawalStatement = null;
185

Fig. 14.27Fig. 14.27Fig. 14.27Fig. 14.27 MoneyTransferEJB implementation of MoneyTransfer remote
interface using bean-managed transaction demarcation (part 4 of 6).

Chapter 14 Session EJBs and Distributed Transactions 885

186 // close database Connections
187 bankOneConnection.close();
188 bankOneConnection = null;
189
190 bankTwoConnection.close();
191 bankTwoConnection = null;
192 }
193
194 // handle exception closing database connections
195 catch (SQLException sqlException) {
196 throw new EJBException(sqlException);
197 }
198
199 } // end method closeDatabaseResources
200
201 // open database Connections and create PreparedStatements
202 private void openDatabaseResources() throws EJBException
203 {
204 // look up the BankABC and BankXYZ DataSources and create
205 // Connections for each
206 try {
207 Context initialContext = new InitialContext();
208
209 // get DataSource reference from JNDI directory
210 DataSource dataSource = (DataSource)
211 initialContext.lookup(
212 "java:comp/env/jdbc/BankABC");
213
214 // get Connection from DataSource
215 bankOneConnection = dataSource.getConnection();
216
217 dataSource = (DataSource) initialContext.lookup(
218 "java:comp/env/jdbc/BankXYZ");
219
220 bankTwoConnection = dataSource.getConnection();
221
222 // prepare withdraw statement for account #12345 at
223 // BankABC
224 String withdrawal = "UPDATE Account SET balance = " +
225 "balance - ? WHERE accountID = 12345";
226
227 withdrawalStatement =
228 bankOneConnection.prepareStatement(withdrawal);
229
230 // prepare deposit statment for account #54321 at
231 // BankXYZ
232 String deposit = "UPDATE Account SET balance = " +
233 "balance + ? WHERE accountID = 54321";
234
235 depositStatement =
236 bankTwoConnection.prepareStatement(deposit);
237

Fig. 14.27Fig. 14.27Fig. 14.27Fig. 14.27 MoneyTransferEJB implementation of MoneyTransfer remote
interface using bean-managed transaction demarcation (part 5 of 6).

886 Session EJBs and Distributed Transactions Chapter 14

Lines 48–51 withdraw the given transfer amount from an account in the BankABC
database. Lines 53–56 deposit the given transfer amount in an account in the BankXYZ
database. Both of these updates are part of the transaction begun on line 34 even
though they are in separate databases. Line 59 commits the transaction to save the
updates to each database.

Lines 65–79 catch any Exceptions thrown from lines 46–61. Line 69 invokes
UserTransaction method rollback to undo any updates that were made within the
transaction boundaries. This rollback ensures that if any critical part of method
transfer failed, all of the changes made in both databases are undone to ensure the
integrity of the data. Lines 73–75 catch a SystemException, which is thrown by
UserTransaction method rollback if the rollback fails. Lines 74 and 78 throw
EJBExceptions to aid in debugging the application.

Methods getBankABCBalance (lines 84–111) and getBankXYZBalance
(lines 114–141) execute simple SQL SELECT statements to retrieve the balances of the
accounts at each bank. Methods setSessionContext (lines 144–150) and ejbActi-
vate (lines 168–171) invoke method openDatabaseResources (lines 202–250) to
create Connections and PreparedStatements for each database for use throughout
the lifetime of the MoneyTransfer EJB instance. Methods ejbRemove (lines 156–
159) and ejbPassivate (lines 162–165) invoke method closeDatabaseRe-
sources (lines 174–199) to close the Connections and PreparedStatements.

14.4.3 Container-Managed Transaction Demarcation

Container-managed transaction demarcation allows the EJB developer to implement an
EJB without specifying transaction boundaries. The EJB deployer provides transaction de-
marcation semantics declaratively when deploying the application.

MoneyTransferEJB (Fig. 14.28) implements the MoneyTransfer remote inter-
face using container-managed transaction demarcation. Method transfer (lines 25–51)
is similar to method transfer in Fig. 14.27. Note, however, that this version of method
transfer does not declare any transaction boundaries, as this is now the responsibility

238 } // end try
239
240 // handle exception if DataSource not found in directory
241 catch (NamingException namingException) {
242 throw new EJBException(namingException);
243 }
244
245 // handle exception getting Connection to DataSource
246 catch (SQLException sqlException) {
247 throw new EJBException(sqlException);
248 }
249
250 } // end method openDatabaseResources
251 }

Fig. 14.27Fig. 14.27Fig. 14.27Fig. 14.27 MoneyTransferEJB implementation of MoneyTransfer remote
interface using bean-managed transaction demarcation (part 6 of 6).

Chapter 14 Session EJBs and Distributed Transactions 887

of the EJB deployer. The EJB deployer specifies the transaction semantics using one of the
six transaction types listed in Fig. 14.29.

1 // MoneyTransferEJB.java
2 // MoneyTransferEJB is a stateless session EJB for transferring
3 // funds from an Account at BankABC to an Account at BankXYZ
4 // using container-managed transaction demarcation.
5 package com.deitel.advjhtp1.ejb.transactions.containermanaged;
6
7 // Java core libraries
8 import java.util.*;
9 import java.sql.*;

10
11 // Java standard extensions
12 import javax.ejb.*;
13 import javax.naming.*;
14 import javax.sql.*;
15
16 public class MoneyTransferEJB implements SessionBean {
17
18 private SessionContext sessionContext;
19 private Connection bankOneConnection;
20 private Connection bankTwoConnection;
21 private PreparedStatement withdrawalStatement;
22 private PreparedStatement depositStatement;
23
24 // transfer funds from BankABC to BankXYZ
25 public void transfer(double amount) throws EJBException
26 {
27 // transfer funds from account in BankABC to account in
28 // BankXYZ using container-managed transaction demarcation
29 try {
30
31 withdrawalStatement.setDouble(1, amount);
32
33 // withdraw funds from account at BankABC
34 withdrawalStatement.executeUpdate();
35
36 depositStatement.setDouble(1, amount);
37
38 // deposit funds in account at BankXYZ
39 depositStatement.executeUpdate();
40
41 } // end try
42
43 // handle exception withdrawing and depositing
44 catch (SQLException sqlException) {
45

Fig. 14.28Fig. 14.28Fig. 14.28Fig. 14.28 MoneyTransferEJB implementation of MoneyTransfer remote
interface using container-managed transaction demarcation (part 1 of 5).

888 Session EJBs and Distributed Transactions Chapter 14

46 // throw EJBException to indicate transfer failed
47 // and roll back container-managed transaction
48 throw new EJBException(sqlException);
49 }
50
51 } // end method transfer
52
53 // get balance of Account at BankABC
54 public double getBankABCBalance() throws EJBException
55 {
56 // get balance of Account at BankABC
57 try {
58
59 // select balance for Account # 12345
60 String select = "SELECT balance FROM Account " +
61 "WHERE accountID = 12345";
62
63 PreparedStatement selectStatement =
64 bankOneConnection.prepareStatement(select);
65
66 ResultSet resultSet = selectStatement.executeQuery();
67
68 // get first record in ResultSet and return balance
69 if (resultSet.next())
70 return resultSet.getDouble("balance");
71 else
72 throw new EJBException("Account not found");
73
74 } // end try
75
76 // handle exception when getting Account balance
77 catch (SQLException sqlException) {
78 throw new EJBException(sqlException);
79 }
80
81 } // end method getBankABCBalance
82
83 // get balance of Account at BankXYZ
84 public double getBankXYZBalance() throws EJBException
85 {
86 // get balance of Account at BankXYZ
87 try {
88
89 // select balance for Account # 54321
90 String select = "SELECT balance FROM Account " +
91 "WHERE accountID = 54321";
92
93 PreparedStatement selectStatement =
94 bankTwoConnection.prepareStatement(select);
95
96 ResultSet resultSet = selectStatement.executeQuery();
97

Fig. 14.28Fig. 14.28Fig. 14.28Fig. 14.28 MoneyTransferEJB implementation of MoneyTransfer remote
interface using container-managed transaction demarcation (part 2 of 5).

Chapter 14 Session EJBs and Distributed Transactions 889

98 // get first record in ResultSet and return balance
99 if (resultSet.next())
100 return resultSet.getDouble("balance");
101 else
102 throw new EJBException("Account not found");
103
104 } // end try
105
106 // handle exception when getting Account balance
107 catch (SQLException sqlException) {
108 throw new EJBException(sqlException);
109 }
110
111 } // end method getBankXYZBalance
112
113 // set SessionContext
114 public void setSessionContext(SessionContext context)
115 throws EJBException
116 {
117 sessionContext = context;
118
119 openDatabaseResources();
120 }
121
122 // create MoneyTransfer instance
123 public void ejbCreate() {}
124
125 // remove MoneyTransfer instance
126 public void ejbRemove() throws EJBException
127 {
128 closeDatabaseResources();
129 }
130
131 // passivate MoneyTransfer instance
132 public void ejbPassivate() throws EJBException
133 {
134 closeDatabaseResources();
135 }
136
137 // activate MoneyTransfer instance
138 public void ejbActivate() throws EJBException
139 {
140 openDatabaseResources();
141 }
142
143 // close database Connections and PreparedStatements
144 private void closeDatabaseResources() throws EJBException
145 {
146 // close database resources
147 try {
148

Fig. 14.28Fig. 14.28Fig. 14.28Fig. 14.28 MoneyTransferEJB implementation of MoneyTransfer remote
interface using container-managed transaction demarcation (part 3 of 5).

890 Session EJBs and Distributed Transactions Chapter 14

149 // close PreparedStatements
150 depositStatement.close();
151 depositStatement = null;
152
153 withdrawalStatement.close();
154 withdrawalStatement = null;
155
156 // close database Connections
157 bankOneConnection.close();
158 bankOneConnection = null;
159
160 bankTwoConnection.close();
161 bankTwoConnection = null;
162 }
163
164 // handle exception closing database connections
165 catch (SQLException sqlException) {
166 throw new EJBException(sqlException);
167 }
168
169 } // end method closeDatabaseConnections
170
171 // open database Connections and create PreparedStatements
172 private void openDatabaseResources() throws EJBException
173 {
174 // look up the BankABC and BankXYZ DataSources and create
175 // Connections for each
176 try {
177 Context initialContext = new InitialContext();
178
179 // get DataSource reference from JNDI directory
180 DataSource dataSource = (DataSource)
181 initialContext.lookup(
182 "java:comp/env/jdbc/BankABC");
183
184 // get Connection from DataSource
185 bankOneConnection = dataSource.getConnection();
186
187 dataSource = (DataSource) initialContext.lookup(
188 "java:comp/env/jdbc/BankXYZ");
189
190 bankTwoConnection = dataSource.getConnection();
191
192 // prepare withdraw statement for account #12345 at
193 // BankABC
194 String withdrawal = "UPDATE Account SET balance = " +
195 "balance - ? WHERE accountID = 12345";
196
197 withdrawalStatement =
198 bankOneConnection.prepareStatement(withdrawal);
199

Fig. 14.28Fig. 14.28Fig. 14.28Fig. 14.28 MoneyTransferEJB implementation of MoneyTransfer remote
interface using container-managed transaction demarcation (part 4 of 5).

Chapter 14 Session EJBs and Distributed Transactions 891

Line 66 throws an EJBException in response to any SQLException thrown
from lines 29–41. The EJBContainer rolls back the current transaction when
method transfer throws an EJBException (line 48).

Figure 14.29 lists the available transaction types for container-managed persistence.
The deployer specifies the transaction type for each business method when deploying the
application.

200 // prepare deposit statment for account #54321 at
201 // BankXYZ
202 String deposit = "UPDATE Account SET balance = " +
203 "balance + ? WHERE accountID = 54321";
204
205 depositStatement =
206 bankTwoConnection.prepareStatement(deposit);
207
208 } // end try
209
210 // handle exception if DataSource not found in directory
211 catch (NamingException namingException) {
212 throw new EJBException(namingException);
213 }
214
215 // handle exception getting Connection to DataSource
216 catch (SQLException sqlException) {
217 throw new EJBException(sqlException);
218 }
219
220 } // end method openDatabaseConnections
221 }

Transaction Type Description

NotSupported Method does not support transactions. The EJB container suspends the exist-
ing transaction context if the method is invoked within a transaction context.

Required Method requires a transaction. The EJB container creates a new transaction if
the method is invoked without an existing transaction context and commits
the transaction at the end of the method.

Supports Method supports transactions. The EJB container will not create a new transac-
tion if the method is invoked without an existing transaction context, but will
execute the method as part of an existing transaction context if one is available.

RequiresNew Method requires a new transaction. The EJB container suspends the existing
transaction context and starts a new transaction if the method is invoked as
part of another transaction.

Fig. 14.29Fig. 14.29Fig. 14.29Fig. 14.29 Transaction types for container-managed transaction demarcation
(part 1 of 2).

Fig. 14.28Fig. 14.28Fig. 14.28Fig. 14.28 MoneyTransferEJB implementation of MoneyTransfer remote
interface using container-managed transaction demarcation (part 5 of 5).

892 Session EJBs and Distributed Transactions Chapter 14

14.4.4 MoneyTransfer EJB Client

MoneyTransferEJBClient (Fig. 14.30) provides a user interface for interacting with
the MoneyTransfer EJB. Lines 24–26 declare JTextFields to display the account
balances and accept a user-input transfer amount. Line 34 invokes method create-
MoneyTransfer to create a new MoneyTransfer EJB instance. Line 37 invokes
method createGUI to create and lay out GUI components for the application. The GUI
consists of JTextFields for displaying account balances and inputting the transfer
amount and a JButton for transferring funds. Line 40 invokes method displayBal-
ances to display the current account balances at BankABC and BankXYZ.

Method createMoneyTransfer (lines 47–80) uses the MoneyTransferHome
interface to create a MoneyTransfer EJB instance. Line 51 creates an InitialCon-
text for locating the MoneyTransfer EJB in the JNDI directory. Lines 54–59 invoke
InitialContext method lookup to get a remote reference to the MoneyTrans-
ferHome interface. Line 62 creates a new MoneyTransfer EJB instance by invoking
MoneyTransferHome method create.

Method getTransferButton (lines 108–142) creates a JButton to transfer
funds from BankABC to BankXYZ. Lines 120–124 read the transfer amount from
the user and invoke MoneyTransfer method transfer. Line 127 invokes method
displayBalances to update the display with the new account balances.

Mandatory The method must execute in an existing transaction context. The EJB con-
tainer throws a TransactionRequiredException if the method is
invoked without a valid transaction context.

Never The method must not execute in a transaction context. The EJB container
throws a RemoteException if the method is invoked inside a transaction
context.

1 // MoneyTransferEJBClient.java
2 // MoneyTransferEJBClient is a client for interacting with
3 // the MoneyTransfer EJB.
4 package com.deitel.advjhtp1.ejb.transactions.client;
5
6 // Java core libraries
7 import java.awt.*;
8 import java.awt.event.*;
9 import java.rmi.*;

10
11 // Java standard extensions
12 import javax.swing.*;

Fig. 14.30Fig. 14.30Fig. 14.30Fig. 14.30 MoneyTransferEJBClient for interacting with
MoneyTransfer EJB (part 1 of 6).

Transaction Type Description

Fig. 14.29Fig. 14.29Fig. 14.29Fig. 14.29 Transaction types for container-managed transaction demarcation
(part 2 of 2).

Chapter 14 Session EJBs and Distributed Transactions 893

13 import javax.ejb.*;
14 import javax.rmi.*;
15 import javax.naming.*;
16
17 // Deitel libraries
18 import com.deitel.advjhtp1.ejb.transactions.*;
19
20 public class MoneyTransferEJBClient extends JFrame {
21
22 private MoneyTransfer moneyTransfer;
23
24 private JTextField bankABCBalanceTextField;
25 private JTextField bankXYZBalanceTextField;
26 private JTextField transferAmountTextField;
27
28 // MoneyTransferEJBClient constructor
29 public MoneyTransferEJBClient(String JNDIName)
30 {
31 super("MoneyTransferEJBClient");
32
33 // create MoneyTransfer EJB for transferring money
34 createMoneyTransfer(JNDIName);
35
36 // create and lay out GUI components
37 createGUI();
38
39 // display current balances at BankABC and BankXYZ
40 displayBalances();
41
42 setSize(400, 300);
43 setVisible(true);
44 }
45
46 // create MoneyTransferEJB for transferring money
47 private void createMoneyTransfer(String JNDIName)
48 {
49 // look up MoneyTransfer EJB using given JNDIName
50 try {
51 InitialContext context = new InitialContext();
52
53 // lookup MoneyTransfer EJB
54 Object homeObject = context.lookup(JNDIName);
55
56 // get MoneyTransfer interface
57 MoneyTransferHome moneyTransferHome =
58 (MoneyTransferHome) PortableRemoteObject.narrow(
59 homeObject, MoneyTransferHome.class);
60
61 // create MathTool EJB instance
62 moneyTransfer = moneyTransferHome.create();
63
64 } // end try

Fig. 14.30Fig. 14.30Fig. 14.30Fig. 14.30 MoneyTransferEJBClient for interacting with
MoneyTransfer EJB (part 2 of 6).

894 Session EJBs and Distributed Transactions Chapter 14

65
66 // handle exception when looking up MoneyTransfer EJB
67 catch (NamingException namingException) {
68 namingException.printStackTrace();
69 }
70
71 // handle exception when looking up MoneyTransfer EJB
72 catch (CreateException createException) {
73 createException.printStackTrace();
74 }
75
76 // handle exception when looking up MoneyTransfer EJB
77 catch (RemoteException remoteException) {
78 remoteException.printStackTrace();
79 }
80 } // end method createMoneyTransfer
81
82 // display balance in account at BankABC
83 private void displayBalances()
84 {
85 try {
86
87 // get and display BankABC Account balance
88 double balance = moneyTransfer.getBankABCBalance();
89
90 bankABCBalanceTextField.setText(
91 String.valueOf(balance));
92
93 // get and display BankXYZ Account balance
94 balance = moneyTransfer.getBankXYZBalance();
95
96 bankXYZBalanceTextField.setText(
97 String.valueOf(balance));
98 }
99
100 // handle exception when invoke MoneyTransfer EJB methods
101 catch (RemoteException remoteException) {
102 JOptionPane.showMessageDialog(this,
103 remoteException.getMessage());
104 }
105 } // end method displayBalances
106
107 // create button to transfer funds between accounts
108 private JButton getTransferButton()
109 {
110 JButton transferButton = new JButton("Transfer");
111
112 transferButton.addActionListener(
113 new ActionListener() {
114
115 public void actionPerformed(ActionEvent event)
116 {

Fig. 14.30Fig. 14.30Fig. 14.30Fig. 14.30 MoneyTransferEJBClient for interacting with
MoneyTransfer EJB (part 3 of 6).

Chapter 14 Session EJBs and Distributed Transactions 895

117 try {
118
119 // get transfer amount from JTextField
120 double amount = Double.parseDouble(
121 transferAmountTextField.getText());
122
123 // transfer money
124 moneyTransfer.transfer(amount);
125
126 // display new balances
127 displayBalances();
128 }
129
130 // handle exception when transferring money
131 catch (RemoteException remoteException) {
132 JOptionPane.showMessageDialog(
133 MoneyTransferEJBClient.this,
134 remoteException.getMessage());
135 }
136 } // end method actionPerformed
137 }
138); // end addActionListener
139
140 return transferButton;
141
142 } // end method getTransferButton
143
144 // create and lay out GUI components
145 private void createGUI()
146 {
147 // create JTextFields for user input and display
148 bankABCBalanceTextField = new JTextField(10);
149 bankABCBalanceTextField.setEditable(false);
150
151 bankXYZBalanceTextField = new JTextField(10);
152 bankXYZBalanceTextField.setEditable(false);
153
154 transferAmountTextField = new JTextField(10);
155
156 // create button to transfer between accounts
157 JButton transferButton = getTransferButton();
158
159 // layout user interface
160 Container contentPane = getContentPane();
161 contentPane.setLayout(new GridLayout(3, 2));
162
163 contentPane.add(transferButton);
164 contentPane.add(transferAmountTextField);
165
166 contentPane.add(new JLabel("Bank ABC Balance: "));
167 contentPane.add(bankABCBalanceTextField);

Fig. 14.30Fig. 14.30Fig. 14.30Fig. 14.30 MoneyTransferEJBClient for interacting with
MoneyTransfer EJB (part 4 of 6).

896 Session EJBs and Distributed Transactions Chapter 14

168
169 contentPane.add(new JLabel("Bank XYZ Balance: "));
170 contentPane.add(bankXYZBalanceTextField);
171
172 } // end method createGUI
173
174 // get WindowListener for exiting application
175 private WindowListener getWindowListener()
176 {
177 // remove MoneyTransfer EJB when user exits application
178 return new WindowAdapter() {
179
180 public void windowClosing(WindowEvent event) {
181
182 // remove MoneyTransfer EJB
183 try {
184 moneyTransfer.remove();
185 }
186
187 // handle exception removing MoneyTransfer EJB
188 catch (RemoveException removeException) {
189 removeException.printStackTrace();
190 System.exit(1);
191 }
192
193 // handle exception removing MoneyTransfer EJB
194 catch (RemoteException remoteException) {
195 remoteException.printStackTrace();
196 System.exit(1);
197 }
198
199 System.exit(0);
200
201 } // end method windowClosing
202 };
203 } // end method getWindowListener
204
205 // execute application
206 public static void main(String[] args)
207 {
208 // ensure user provided JNDI name for MoneyTransfer EJB
209 if (args.length != 1)
210 System.err.println(
211 "Usage: java MoneyTransferEJBClient <JNDI Name>");
212
213 // start application using provided JNDI name
214 else
215 new MoneyTransferEJBClient(args[0]);
216 }
217 }

Fig. 14.30Fig. 14.30Fig. 14.30Fig. 14.30 MoneyTransferEJBClient for interacting with
MoneyTransfer EJB (part 5 of 6).

Chapter 14 Session EJBs and Distributed Transactions 897

Figure 14.30 shows three screen captures of MoneyTransferEJBClient. Enter
any legal value in the text field and press the Transfer button. This causes the EJB to
update the database entries. The client then updates its GUI to reflect the new account bal-
ances.

Fig. 14.30Fig. 14.30Fig. 14.30Fig. 14.30 MoneyTransferEJBClient for interacting with
MoneyTransfer EJB (part 6 of 6).

898 Session EJBs and Distributed Transactions Chapter 14

14.4.5 Deploying the MoneyTransfer EJB
The MoneyTransfer EJB accesses two databases that store account information. The
examples use the Cloudscape DBMS introduced in Chapter 8, JDBC. Follow the directions
in Section 8.5 to set up the databases for the MoneyTransfer EJB. The SQL script for
the databases, transactions.sql, is on the CD-ROM that accompanies this book. If
you have not already done so, please see Appendix E for instructions on integrating Cloud-
scape with the J2EE 1.2.1 reference implementation. Add the following

|jdbc/BankABC|jdbc:cloudscape:rmi:BankABC;create=true;|jdbc/
BankXYZ|jdbc:cloudscape:rmi:BankXYZ;create=true;

to the jdbc.datasources property in the file C:\j2sdkee1.2.1\config\de-
fault.properties.

Deploying each versions of the MoneyTransfer EJB is very similar to deploying
the other session EJBs. When deploying the MoneyTransfer EJB, we must create
resource references to the two databases in the New Enterprise Bean Wizard (Fig. 14.31).
Click the Add button to add a new resource reference. Fill in the Coded Name and JNDI
Name fields with jdbc/BankABC for the BankABC database (Fig. 14.32) and jdbc/
BankXYZ for the BankXYZ database (Fig. 14.33). In the Transaction Management
dialog of the New Enterprise Bean Wizard select Bean-Managed Transactions for
the bean-managed version of MoneyTransferEJB (Fig. 14.34) or Container-Man-
aged Transactions for the container-managed version of MoneyTransferEJB
(Fig. 14.35). For the container-managed EJB, select a transaction type for each method (see
Section 14.4.3 for information about transaction types). The rest of the deployment is the
same as the deployment of the other session EJBs. Be sure to run the Cloudscape server
before executing MoneyTransferEJBClient.

Fig. 14.31Fig. 14.31Fig. 14.31Fig. 14.31 Resource References dialog of New Enterprise Bean Wizard.

Chapter 14 Session EJBs and Distributed Transactions 899

Fig. 14.32Fig. 14.32Fig. 14.32Fig. 14.32 Add Resource Reference for BankABC.

Fig. 14.33Fig. 14.33Fig. 14.33Fig. 14.33 Add Resource Reference for BankXYZ.

900 Session EJBs and Distributed Transactions Chapter 14

14.5 Internet and World Wide Web Resources
java.sun.com/products/ejb
Sun’s Enterprise Java Bean home page. Contains articles, documentation and examples.

www.javaworld.com/javaworld/topicalindex/jw-ti-ejb.html
List of EJB-related articles from JavaWorld.

www.jguru.com/faq/home.jsp?topic=EJB
List of frequently asked questions on EJBs at jguru.com.

www.theserverside.com
TheServerSide.com is an online community for J2EE developers. There are forums, articles and
other resources for building applications with J2EE.

SUMMARY
• Every EJB consists of a remote interface, a home interface and an EJB implementation.

• The remote interface declares business methods that clients of the EJB may invoke. The home in-
terface provides create methods for creating new instances of the EJB, finder methods for find-
ing instances of the EJB and remove methods for removing instances of the EJB. The EJB
implementation defines the business methods declared in the remote interface and the create,
remove and finder methods of the home interface.

Fig. 14.34Fig. 14.34Fig. 14.34Fig. 14.34 Selecting Bean-Managed Transactions.

Fig. 14.35Fig. 14.35Fig. 14.35Fig. 14.35 Selecting Container-Managed Transactions.

Chapter 14 Session EJBs and Distributed Transactions 901

• EJBs have a complex life cycle that is managed by an EJB container. The EJB container creates
classes that implement the home and remote interfaces.

• The J2EE specification defines six roles for implementing enterprise systems. Each role is respon-
sible for producing some part of an enterprise application.

• The remote interface for an EJB declares the business methods that clients of the EJB may invoke.
The remote interface must extend interface javax.ejb.EJBObject.

• Each method of the remote interface is required to declare that it throws java.rmi.Remote-
Exception. Each method also may throw application-specific exceptions—for example, an
IllegalArgumentException if a provided argument does not meet certain criteria.

• The home interface for an EJB declares methods for creating, removing and finding EJB instances.
The home interface must extend interface javax.ejb.EJBHome.

• Depending on the EJB type (i.e., session or entity), the container invokes EJB implementation meth-
ods that correspond to methods create and remove and finder methods of the home interface.

• The EJB implementation defines the business methods declared in the EJB remote interface and
the create, remove and finder methods declared in the EJB home interface. The EJB imple-
mentation must also implement the methods of interface javax.ejb.SessionBean for ses-
sion EJBs, or interface javax.ejb.EntityBean for entity EJBs.

• The EJB container manages the life cycle, client interactions and method invocations, transactions,
security and exceptions of an EJB. Clients of an EJB do not interact directly with the EJB. When
a client invokes a business method of the EJB’s remote interface, the invocation goes first to the
EJB container, which then delegates the business method invocation to the EJB implementation.

• Session EJBs exist for the duration of a client’s session. Each session EJB instance is associated
with a single client. Session EJBs can manipulate data in a database, but unlike entity EJBs, ses-
sion EJBs are not persistent and do not represent database data directly.

• Stateful session EJBs maintain state information between business method invocations. For exam-
ple, a stateful session EJB could maintain information about a customer’s shopping cart while the
customer browses an on-line store.

• Interface SessionContext extends interface EJBContext, which provides methods for ob-
taining information about the EJB container.

• The EJB container invokes method ejbCreate when a client invokes a create method in the
home interface. The EJB implementation must provide an ejbCreate method for each create
method declared in the home interface. The ejbCreate methods must have the same number
and types of arguments as their corresponding create methods.

• The EJB container invokes method ejbRemove in response to an invocation of method remove
in the home interface.

• The EJB container invokes method ejbPassivate when it determines that the EJB is no longer
needed in memory.

• The EJB container invokes method ejbActivate to restore an EJB instance that the container
passivated previously. The EJB container activates an EJB instance if a client invokes a business
method of that EJB instance.

• RMI-IIOP allows RMI objects to interact with CORBA components, which communicate using
the Internet Inter-Orb Protocol (IIOP). CORBA is a language-independent framework for build-
ing distributed systems. To enable interoperability among EJBs and CORBA components, EJBs
communicate using RMI-IIOP. We discuss CORBA and RMI-IIOP in detail in Chapter 22.

• Stateless session EJBs maintain no state information between business method invocations. As a
result, any stateless session EJB instance can be used to respond to any client’s request. This im-
proves the performance of stateless session EJBs over stateful session EJBs.

902 Session EJBs and Distributed Transactions Chapter 14

• The Java 2 Enterprise Edition supports distributed transactions. A distributed transaction is a trans-
action that is applied across multiple databases or across multiple EJB servers.

• J2EE supports two methods for defining transaction boundaries: bean-managed transaction de-
marcation and container-managed transaction demarcation. Bean-managed transaction demarca-
tion requires the EJB developer to code the transaction boundaries manually in the EJBs, using the
Java Transaction Services. Container-managed transaction demarcation allows the EJB deployer
to specify transaction boundaries declaratively when deploying EJBs.

• Bean-managed transaction demarcation requires the EJB developer to code the transaction bound-
aries manually in the EJBs. Bean-managed transaction demarcation may be used only with session
EJBs.

• Container-managed transaction demarcation allows the EJB developer to implement an EJB with-
out specifying transaction boundaries. The EJB deployer provides transaction demarcation seman-
tics declaratively when deploying the application.

TERMINOLOGY

SELF-REVIEW EXERCISES
14.1 What are the two main types of session EJBs? What is the primary difference between them?

14.2 What three Java objects must the EJB developer provide for each EJB?

14.3 What are the responsibilities of the EJB container?

14.4 How does a client get a remote reference to an EJB instance?

14.5 What types of transaction demarcation can EJBs use? What are the benefits of each type?

ANSWERS TO SELF-REVIEW EXERCISES
14.1 There are stateful session EJBs and stateless session EJBs. Stateful session EJBs maintain
state information between business method invocations in a client’s session. Stateless session EJBs
maintain no state information between business method invocations.

application server Internet Inter-Orb Protocol (IIOP)
bean-managed transaction demarcation J2EE (Java 2 Enterprise Edition)
business methods Java Transaction Services (JTS)
container-managed transaction demarcation java.rmi.RemoteException
CORBA (Common Object Request
 Broker Architecture)

java:comp/env naming context
javax.ejb.EJBHome

create methods javax.ejb.EJBObject
distributed transaction javax.ejb.SessionBean
EJB container JNDI (Java Naming and Directory

 Interface) directoryEJB implementation
EJB server least recently used
ejbActivate method naming context
EJBContext interface remote interface of an EJB
ejbCreate methods remove methods
ejbPassivate method RMI-IIOP
ejbRemove method session EJB
Enterprise JavaBeans (EJBs) SessionContext interface
entity EJB stateful session EJB
home interface stateless session EJB
IllegalArgumentException

Chapter 14 Session EJBs and Distributed Transactions 903

14.2 The EJB developer must provide a remote interface, a home interface and the EJB implemen-
tation.

14.3 The EJB container is responsible for managing the life cycle of the EJB. The EJB container
creates classes to implement the home and remote interfaces, and delegates business method invoca-
tions to the developer-supplied EJB implementation. The EJB container also provides runtime re-
sources, such as database connections and transactions, as well as life-cycle management.

14.4 A client looks up the EJB’s home interface in a JNDI directory. For session EJBs, the client
then invokes one of the home interface’s create methods. For entity EJBs, the client can invoke
one of the home interface’s create methods or finder methods.

14.5 EJBs can use either bean-managed or container-managed transaction demarcation. Bean-
managed transaction demarcation allows the developer to have fine-grained control over transaction
boundaries. Container-managed transaction demarcation simplifies the EJB implementation by al-
lowing the EJB deployer to specify transaction boundaries declaratively at deployment time.

EXERCISES
14.1 Stateless session EJBs offer a performance advantage over stateful session beans. Convert
the example of Fig. 14.3, Fig. 14.4, Fig. 14.5 and Fig. 14.6 from a stateful session EJB to a stateless
session EJB.

14.2 Add a new recursive business method power(base, exponent) to the MathTool
EJB (Fig. 14.21, Fig. 14.22, Fig. 14.23) that, when invoked, returns

base exponent

For example, power(3, 4) = 3 * 3 * 3 * 3. If the exponent is not an integer greater than or
equal to 1, throw an IllegalArgumentException. [Hint: The recursion step would use the
relationship

base exponent = base · base exponent – 1

and the terminating condition occurs when exponent is equal to 1 because

base 1 = base

Modify the client in Fig. 14.24 to enable the user to enter the base and exponent.]

15
Entity EJBs

Objectives
• To understand how entity EJBs represent persistent

data.
• To understand synchronization issues between EJBs

and database data.
• To understand the life-cycle of an entity EJB.
• To understand the advantages and disadvantages of

container-managed and bean-managed persistence.
There is nothing more requisite in business than dispatch.
Joseph Addison

All meanings, we know, depend on the key of interpretation.
George Eliot

Event that are predestined require but little management.
They manage themselves. They slip into place while we sleep,
and suddenly we are aware that the thing we fear to attempt,
is already accomplished.
Amelia Barr

Chapter 15 Entity EJBs 905

15.1 Introduction
A fundamental part of an enterprise application is the information tier, which maintains
data for the application. In this chapter, we introduce entity EJBs, which enable developers
to build object-based representations of information-tier data, such as data stored in a rela-
tional database. EJB containers provide advanced features that simplify developing entity
EJBs. For example, based on information provided at deployment time (e.g., SQL queries),
an entity EJB’s container can generate code automatically for storing and retrieving data
represented by the EJB. For entity EJBs that represent more complex data (e.g., data stored
in multiple database tables), the programmer can implement code for storing and retrieving
the data manually.

In this chapter, we present two versions of an entity EJB that represents a company
employee. The first version demonstrates an entity EJB that uses JDBC to persist data to a
relational database. The second version takes advantage of the container’s ability to
manage data storage and retrieval to simplify the EJB implementation. After completing
this chapter, you will be able to build and deploy entity EJBs through which business-logic
components, such as session EJBs (Chapter 14), can access data in the information tier.

15.2 Entity EJB Overview
Each entity EJB instance represents a particular unit of data, such as a record in a database
table. There are two types of entity EJBs—those that use bean-managed persistence and
those that use container-managed persistence. Entity EJBs that use bean-managed persis-
tence must implement code for storing and retrieving data from the persistent data sources
they represent. For example, an entity EJB that uses bean-managed persistence might use
the JDBC API to store and retrieve data in a relational database. Entity EJBs that use con-
tainer-managed persistence rely on the EJB container to implement the data-access calls to
their persistent data sources. The deployer must supply information about the persistent
data source when deploying the EJB.

Outline

15.1 Introduction
15.2 Entity EJB Overview
15.3 Employee Entity EJB
15.4 Employee EJB Home and Remote Interfaces
15.5 Employee EJB with Bean-Managed Persistence

15.5.1 Employee EJB Implementation
15.5.2 Employee EJB Deployment

15.6 Employee EJB with Container-Managed Persistence
15.7 Employee EJB Client
15.8 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

906 Entity EJBs Chapter 15

Entity EJBs provide create methods for creating new EJB instances, remove
methods for removing EJB instances and finder methods for finding EJB instances. For
entity EJBs that represent information in a database, each create method performs
INSERT operations to create new records in the database, and each remove method per-
forms DELETE operations to remove records from the database. Each finder method
locates entity EJB instances that conform to certain search criteria (e.g using SELECT oper-
ations). We discuss each of these method types throughout the chapter.

15.3 Employee Entity EJB
In the following sections, we build an entity EJB that represents an Employee. We pro-
vide two implementations of the Employee EJB. The first implementation (Section 15.5)
uses bean-managed persistence to store and retrieve Employee information in an under-
lying database. The second implementation (Section 15.6) uses container-managed persis-
tence. Both of these implementations use the same Employee remote interface and
EmployeeHome interface, which we present in Section 15.4.

We use the Cloudscape database for storing Employee data. To create the
Employee database, run the SQL script employee.sql that is on the CD-ROM that
accompanies the book. Please see Chapter 8, JDBC, for instructions on running SQL scripts
in Cloudscape. To configure the J2EE reference implementation to use the Employee
database, append the text

|jdbc/Employee|jdbc:cloudscape:rmi:Employee;create=true

to the end of the jdbc.datasources property in the J2EE default.properties
configuration file.

15.4 Employee EJB Home and Remote Interfaces
The Employee remote interface (Fig. 15.1) provides methods for setting and getting Em-
ployee information. Note that interface Employee extends interface EJBObject (line
11). This is a requirement for all EJB remote interfaces. The Employee remote interface
provides set and get methods for each Employee property, including the socialSecu-
rityNumber, firstName, lastName, title and salary. There is no set method for
property employeeID because employeeID is the primary key. Each set and get method
throws a RemoteException. This is required of all methods in the remote interface.

1 // Employee.java
2 // Employee is the remote interface for the Address EJB.
3 package com.deitel.advjhtp1.ejb.entity;
4
5 // Java core libraries
6 import java.rmi.RemoteException;
7
8 // Java standard extensions
9 import javax.ejb.EJBObject;

10
11 public interface Employee extends EJBObject {

Fig. 15.1Fig. 15.1Fig. 15.1Fig. 15.1 Employee remote interface for setting and getting Employee
information (part 1 of 2).

Chapter 15 Entity EJBs 907

An EJB instance represents a particular row in the corresponding database table. The
home interface for an entity EJB represents the table as a whole. The home interface pro-
vides finder methods for locating particular rows in the table and create methods for
inserting new records. Interface EmployeeHome (Fig. 15.2) provides finder method
findByPrimaryKey (lines 15–16) to locate instances of the Employee EJB based on
a primary key. The primary key for the Employee EJB is the employeeID. Method
findByPrimaryKey throws a FinderException if the Employee with the given
primaryKey cannot be found. Method create (lines 19–20) creates new instances of
the Employee EJB. Method create throws a CreateException if there is a
problem with creating the EJB instance.

12
13 // get Employee ID
14 public Integer getEmployeeID() throws RemoteException;
15
16 // set social security number
17 public void setSocialSecurityNumber(String number)
18 throws RemoteException;
19
20 // get social security number
21 public String getSocialSecurityNumber()
22 throws RemoteException;
23
24 // set first name
25 public void setFirstName(String name)
26 throws RemoteException;
27
28 // get first name
29 public String getFirstName() throws RemoteException;
30
31 // set last name
32 public void setLastName(String name)
33 throws RemoteException;
34
35 // get last name
36 public String getLastName() throws RemoteException;
37
38 // set title
39 public void setTitle(String title)
40 throws RemoteException;
41
42 // get title
43 public String getTitle() throws RemoteException;
44
45 // set salary
46 public void setSalary(Double salary) throws RemoteException;
47
48 // get salary
49 public Double getSalary() throws RemoteException;
50 }

Fig. 15.1Fig. 15.1Fig. 15.1Fig. 15.1 Employee remote interface for setting and getting Employee
information (part 2 of 2).

908 Entity EJBs Chapter 15

Method findByPrimaryKey is one type of finder method for entity EJBs. Every
entity EJB must have a findByPrimaryKey method that takes the entity EJB’s primary-
key class as an argument. Entity EJBs also can define additional finder methods. A finder
method name must begin with findBy and should end with the name of property to be
used as the search criteria. For example, a finder method for finding Employees based on
the title property would be named findByTitle. A finder method for finding
Employees within a certain salary range would be named findBySalaryRange.

15.5 Employee EJB with Bean-Managed Persistence
This section describes the Employee EJB with bean-managed persistence and deploying
the EJB. This bean-managed implementation uses JDBC to store Employee data in an un-
derlying database.

15.5.1 Employee EJB Implementation

Figure 15.3 shows the Employee EJB implementation using bean-managed persistence.
Class EmployeeEJB implements interface EntityBean (line 15). All entity EJB im-
plementations must implement interface EntityBean. Line 17 declares an Entity-
Context reference for the EJB’s EntityContext. The EntityContext provides
the EJB with information about the container in which the EJB is deployed. The Connec-
tion object (line 18) is the EJB’s Connection to the Employee database. Lines 20–
25 declare private member variables that cache data retrieved from the database and up-
dates from the client.

1 // EmployeeHome.java
2 // EmployeeHome is the home interface for the Employee EJB.
3 package com.deitel.advjhtp1.ejb.entity;
4
5 // Java core libraries
6 import java.rmi.*;
7 import java.util.*;
8
9 // Java standard extensions

10 import javax.ejb.*;
11
12 public interface EmployeeHome extends EJBHome {
13
14 // find Employee with given primary key
15 public Employee findByPrimaryKey(Integer primaryKey)
16 throws RemoteException, FinderException;
17
18 // create new Employee EJB
19 public Employee create(Integer primaryKey)
20 throws RemoteException, CreateException;
21 }

Fig. 15.2Fig. 15.2Fig. 15.2Fig. 15.2 EmployeeHome interface for finding and creating Employee EJBs.

Chapter 15 Entity EJBs 909

1 // EmployeeEJB.java
2 // EmployeeEJB is an entity EJB that uses bean-managed
3 // persistence to persist Employee data in a database.
4 package com.deitel.advjhtp1.ejb.entity.bmp;
5
6 // Java core libraries
7 import java.sql.*;
8 import java.rmi.RemoteException;
9

10 // Java standard extensions
11 import javax.ejb.*;
12 import javax.sql.*;
13 import javax.naming.*;
14
15 public class EmployeeEJB implements EntityBean {
16
17 private EntityContext entityContext;
18 private Connection connection;
19
20 private Integer employeeID;
21 private String socialSecurityNumber;
22 private String firstName;
23 private String lastName;
24 private String title;
25 private Double salary;
26
27 // get Employee ID
28 public Integer getEmployeeID()
29 {
30 return employeeID;
31 }
32
33 // set social security number
34 public void setSocialSecurityNumber(String number)
35 {
36 socialSecurityNumber = number;
37 }
38
39 // get social security number
40 public String getSocialSecurityNumber()
41 {
42 return socialSecurityNumber;
43 }
44
45 // set first name
46 public void setFirstName(String name)
47 {
48 firstName = name;
49 }
50

Fig. 15.3Fig. 15.3Fig. 15.3Fig. 15.3 EmployeeEJB implementation of Employee remote interface using
bean-managed persistence (part 1 of 8).

910 Entity EJBs Chapter 15

51 // get first name
52 public String getFirstName()
53 {
54 return firstName;
55 }
56
57 // set last name
58 public void setLastName(String name)
59 {
60 lastName = name;
61 }
62
63 // get last name
64 public String getLastName()
65 {
66 return lastName;
67 }
68
69 // set title
70 public void setTitle(String jobTitle)
71 {ey
72 title = jobTitle;
73 }
74
75 // get title
76 public String getTitle()
77 {
78 return title;
79 }
80
81 // set salary
82 public void setSalary(Double amount)
83 {
84 salary = amount;
85 }
86
87 // get salary
88 public Double getSalary()
89 {
90 return salary;
91 }
92
93 // create new Employee
94 public Integer ejbCreate(Integer primaryKey)
95 throws CreateException
96 {
97 employeeID = primaryKey;
98
99 // INSERT new Employee in database
100 try {
101

Fig. 15.3Fig. 15.3Fig. 15.3Fig. 15.3 EmployeeEJB implementation of Employee remote interface using
bean-managed persistence (part 2 of 8).

Chapter 15 Entity EJBs 911

102 // create INSERT statement
103 String insert = "INSERT INTO Employee " +
104 "(employeeID) VALUES (?)";
105
106 // create PreparedStatement to perform INSERT
107 PreparedStatement insertStatement =
108 connection.prepareStatement(insert);
109
110 // set values for PreparedStatement
111 insertStatement.setInt(1, employeeID.intValue());
112
113 // execute INSERT and close PreparedStatement
114 insertStatement.executeUpdate();
115 insertStatement.close();
116
117 return employeeID;
118 }
119
120 // throw EJBException if INSERT fails
121 catch (SQLException sqlException) {
122 throw new CreateException(sqlException.getMessage());
123 }
124 } // end method ejbCreate
125
126 // do post-creation tasks when creating new Employee
127 public void ejbPostCreate(Integer primaryKey) {}
128
129 // remove Employee information from database
130 public void ejbRemove() throws RemoveException
131 {
132 // DELETE Employee record
133 try {
134
135 // get primary key of Employee to be removed
136 Integer primaryKey =
137 (Integer) entityContext.getPrimaryKey();
138
139 // create DELETE statement
140 String delete = "DELETE FROM Employee WHERE " +
141 "employeeID = ?";
142
143 // create PreparedStatement to perform DELETE
144 PreparedStatement deleteStatement =
145 connection.prepareStatement(delete);
146
147 // set values for PreparedStatement
148 deleteStatement.setInt(1, primaryKey.intValue());
149
150 // execute DELETE and close PreparedStatement
151 deleteStatement.executeUpdate();
152 deleteStatement.close();
153 }

Fig. 15.3Fig. 15.3Fig. 15.3Fig. 15.3 EmployeeEJB implementation of Employee remote interface using
bean-managed persistence (part 3 of 8).

912 Entity EJBs Chapter 15

154
155 // throw new EJBException if DELETE fails
156 catch (SQLException sqlException) {
157 throw new RemoveException(sqlException.getMessage());
158 }
159 } // end method ejbRemove
160
161 // store Employee information in database
162 public void ejbStore() throws EJBException
163 {
164 // UPDATE Employee record
165 try {
166
167 // get primary key for Employee to be updated
168 Integer primaryKey =
169 (Integer) entityContext.getPrimaryKey();
170
171 // create UPDATE statement
172 String update = "UPDATE Employee SET " +
173 "socialSecurityNumber = ?, firstName = ?, " +
174 "lastName = ?, title = ?, salary = ? " +
175 "WHERE employeeID = ?";
176
177 // create PreparedStatement to perform UPDATE
178 PreparedStatement updateStatement =
179 connection.prepareStatement(update);
180
181 // set values in PreparedStatement
182 updateStatement.setString(1,socialSecurityNumber);
183 updateStatement.setString(2,firstName);
184 updateStatement.setString(3,lastName);
185 updateStatement.setString(4,title);
186 updateStatement.setDouble(5,salary.doubleValue());
187 updateStatement.setInt(6, primaryKey.intValue());
188
189 // execute UPDATE and close PreparedStatement
190 updateStatement.executeUpdate();
191 updateStatement.close();
192 }
193
194 // throw EJBException if UPDATE fails
195 catch (SQLException sqlException) {
196 throw new EJBException(sqlException);
197 }
198 } // end method ejbStore
199
200 // load Employee information from database
201 public void ejbLoad() throws EJBException
202 {
203 // get Employee record from Employee database table
204 try {
205

Fig. 15.3Fig. 15.3Fig. 15.3Fig. 15.3 EmployeeEJB implementation of Employee remote interface using
bean-managed persistence (part 4 of 8).

Chapter 15 Entity EJBs 913

206 // get primary key for Employee to be loaded
207 Integer primaryKey =
208 (Integer) entityContext.getPrimaryKey();
209
210 // create SELECT statement
211 String select = "SELECT * FROM Employee WHERE " +
212 "employeeID = ?";
213
214 // create PreparedStatement for SELECT
215 PreparedStatement selectStatement =
216 connection.prepareStatement(select);
217
218 // set employeeID value in PreparedStatement
219 selectStatement.setInt(1, primaryKey.intValue());
220
221 // execute selectStatement
222 ResultSet resultSet = selectStatement.executeQuery();
223
224 // get Employee information from ResultSet and update
225 // local member variables to cache data
226 if (resultSet.next()) {
227
228 // get employeeID
229 employeeID = new Integer(resultSet.getInt(
230 "employeeID"));
231
232 // get social-security number
233 socialSecurityNumber = resultSet.getString(
234 "socialSecurityNumber");
235
236 // get first name
237 firstName = resultSet.getString("firstName");
238
239 // get last name
240 lastName = resultSet.getString("lastName");
241
242 // get job title
243 title = resultSet.getString("title");
244
245 // get salary
246 salary = new Double(resultSet.getDouble(
247 "salary"));
248
249 } // end if
250
251 else
252 throw new EJBException("No such employee.");
253
254 // close PreparedStatement
255 selectStatement.close();
256
257 } // end try

Fig. 15.3Fig. 15.3Fig. 15.3Fig. 15.3 EmployeeEJB implementation of Employee remote interface using
bean-managed persistence (part 5 of 8).

914 Entity EJBs Chapter 15

258
259 // throw EJBException if SELECT fails
260 catch (SQLException sqlException) {
261 throw new EJBException(sqlException);
262 }
263 } // end method ejbLoad
264
265 // find Employee using its primary key
266 public Integer ejbFindByPrimaryKey(Integer primaryKey)
267 throws FinderException, EJBException
268 {
269 // find Employee in database
270 try {
271
272 // create SELECT statement
273 String select = "SELECT employeeID FROM Employee " +
274 "WHERE employeeID = ?";
275
276 // create PreparedStatement for SELECT
277 PreparedStatement selectStatement =
278 connection.prepareStatement(select);
279
280 // set employeeID value in PreparedStatement
281 selectStatement.setInt(1, primaryKey.intValue());
282
283 // execute selectStatement
284 ResultSet resultSet = selectStatement.executeQuery();
285
286 // return primary key if SELECT returns a record
287 if (resultSet.next()) {
288
289 // close resultSet and selectStatement
290 resultSet.close();
291 selectStatement.close();
292
293 return primaryKey;
294 }
295
296 // throw ObjectNotFoundException if SELECT produces
297 // no records
298 else
299 throw new ObjectNotFoundException();
300 }
301
302 // throw EJBException if SELECT fails
303 catch (SQLException sqlException) {
304 throw new EJBException(sqlException);
305 }
306 } // end method ejbFindByPrimaryKey
307

Fig. 15.3Fig. 15.3Fig. 15.3Fig. 15.3 EmployeeEJB implementation of Employee remote interface using
bean-managed persistence (part 6 of 8).

Chapter 15 Entity EJBs 915

308 // set EntityContext and create DataSource Connection
309 public void setEntityContext(EntityContext context)
310 throws EJBException
311 {
312 // set entityContext
313 entityContext = context;
314
315 // look up the Employee DataSource and create Connection
316 try {
317 InitialContext initialContext = new InitialContext();
318
319 // get DataSource reference from JNDI directory
320 DataSource dataSource = (DataSource)
321 initialContext.lookup(
322 "java:comp/env/jdbc/Employee");
323
324 // get Connection from DataSource
325 connection = dataSource.getConnection();
326 }
327
328 // handle exception if DataSource not found in directory
329 catch (NamingException namingException) {
330 throw new EJBException(namingException);
331 }
332
333 // handle exception when getting Connection to DataSource
334 catch (SQLException sqlException) {
335 throw new EJBException(sqlException);
336 }
337 } // end method setEntityContext
338
339 // unset EntityContext
340 public void unsetEntityContext() throws EJBException
341 {
342 entityContext = null;
343
344 // close DataSource Connection
345 try {
346 connection.close();
347 }
348
349 // throw EJBException if closing Connection fails
350 catch (SQLException sqlException) {
351 throw new EJBException(sqlException);
352 }
353
354 // prepare connection for reuse
355 finally {
356 connection = null;
357 }
358 }
359

Fig. 15.3Fig. 15.3Fig. 15.3Fig. 15.3 EmployeeEJB implementation of Employee remote interface using
bean-managed persistence (part 7 of 8).

916 Entity EJBs Chapter 15

Lines 28–91 provide implementations of the set and get business methods declared in
the Employee remote interface. When a client invokes interface EmployeeHome
method create, the EJB container invokes method ejbCreate (lines 94–126). This
EJB uses bean-managed persistence, so method ejbCreate must implement the appro-
priate logic to create a new Employee in the underlying database. Line 97 sets the
employeeID member variable to the value of the primaryKey argument. Lines 103–
111 create a PreparedStatement to INSERT the new Employee in the database.
Line 111 sets the employeeID in the PreparedStatement, and line 114 inserts the
new record by invoking PreparedStatement method executeUpdate. Line 115
closes the PreparedStatement, and line 117 returns the employeeID primary key.
Lines 121–122 catch the SQLException that could be thrown when creating, exe-
cuting or closing the PreparedStatement. An SQLException would indicate a
problem inserting the record, so line 122 throws a CreateException to indicate that
method ejbCreate could not create the Employee EJB instance.

Method ejbCreate declares an Integer return type. All ejbCreate methods in
entity EJBs are required to return the EJB’s primary-key class. The primary key for the
Employee table is an integer, so the primary-key class for the Employee EJB is
java.lang.Integer. Most EJBs use a standard Java class (e.g., Integer or
String) as their primary-key class. If a database table has a complex primary key (i.e., a
primary key that consists of more than one field), the developer must define a custom pri-
mary-key class. For an example of a custom primary-key class, please see the Order-
Product EJB example in Chapter 19.

The EJB container invokes method ejbPostCreate (line 127) after invoking
method ejbCreate to perform any required tasks after creating the EJB instance. For
example, method ejbPostCreate could change the format of the socialSecuri-
tyNumber to include dashes. No additional work is needed in this EJB, so line 127 is an
empty implementation of method ejbPostCreate.

When a client invokes method remove in either the Employee remote interface or
interface EmployeeHome, the EJB container invokes method ejbRemove (lines 130–
159). To remove an entity EJB instance means to DELETE the associated database record.
Lines 136–137 get the primary key for the current EJB instance from the entityContext
object associated with the EJB. Lines 140–145 create a PreparedStatement to DELETE
the Employee record from the database. Line 148 sets the employeeID primary key in

360 // set employeeID to null when container passivates EJB
361 public void ejbPassivate()
362 {
363 employeeID = null;
364 }
365
366 // get primary key value when container activates EJB
367 public void ejbActivate()
368 {
369 employeeID = (Integer) entityContext.getPrimaryKey();
370 }
371 }

Fig. 15.3Fig. 15.3Fig. 15.3Fig. 15.3 EmployeeEJB implementation of Employee remote interface using
bean-managed persistence (part 8 of 8).

Chapter 15 Entity EJBs 917

the PreparedStatement. Lines 151–152 execute and close the PreparedState-
ment. Lines 156–158 catch the SQLException that could be thrown when creating, exe-
cuting or closing the PreparedStatement. If an SQLException is thrown, line 157
throws a RemoveException to indicate that removing the Employee EJB failed.

The EJB container invokes method ejbStore to save Employee data in the data-
base. The EJB container determines the best time to update the database, so method ejb-
Store is only called by the container. Lines 168–169 get the primary key for the current
EJB instance from the entityContext. Lines 172–187 create a PreparedState-
ment to UPDATE the Employee record in the database. Lines 190–191 execute and close
the PreparedStatement. Lines 195–196 catch the SQLException that could be
thrown when creating, executing or closing the PreparedStatement. Line 196 throws
an EJBException to indicate the ejbStore method failed to update the data properly.
Line 196 passes the SQLException to the EJBException constructor to aid in debug-
ging the application.

The EJB container invokes method ejbLoad to load Employee data from the data-
base and store the data in the EJB instance’s member variables. The EJB container deter-
mines the best time to load from the database, so method ejbLoad is only called by the
container. Lines 207–208 get the primary key for the current Employee EJB instance
from the EJB’s EntityContext. Lines 211–219 create a PreparedStatement to
SELECT the Employee data from the database. Line 226 ensures that the ResultSet
contains data, and lines 229–247 update the private member variables with the data
from the ResultSet. Line 252 throws a new EJBException if the ResultSet is
empty. Lines 260–262 catch an SQLException and throw an EJBException to indi-
cate the ejbLoad method failed to load the Employee information from the database.

When a client invokes EmployeeHome method findByPrimaryKey, the EJB
container invokes method ejbFindByPrimaryKey (lines 266–306). Method find-
ByPrimaryKey must take a single argument whose type is the EJB’s primary-key class.
Lines 273–281 create a PreparedStatement to SELECT data from the database for
the Employee with the given employeeID primary key. Lines 287–294 check on
whether the Employee was found and return its primary key. If the Employee with the
given primary key was not found in the database, lines 298–299 throw an ObjectNot-
FoundException. If there was an error in searching for the Employee, lines 303–305
catch an SQLException and throw a new EJBException.

The EJB container invokes method setEntityContext after the EJB instance is
first created, but before the EJB instance is associated with a particular database record. The
EntityContext argument provides methods for obtaining information about the EJB
container in which the EJB instance executes. Line 313 sets the entityContext
member variable so other methods can use the given EntityContext to discover infor-
mation about the EJB container. There are some restrictions on what can be done in method
setEntityContext, because when this method is invoked, the EJB instance is not yet
associated with a particular database record. For example, the EJB must not invoke Enti-
tyContext method getPrimaryKey, because there is no primary key associated with
the current EJB instance. Invoking EntityContext method getPrimaryKey would
cause an IllegalStateException.

Method setEntityContext should allocate resources the EJB instance will need
throughout its lifetime. This Employee EJB implementation uses bean-managed persis-

918 Entity EJBs Chapter 15

tence and therefore needs a database Connection to exchange data with the database
throughout the EJB’s lifetime. Line 317 creates a new InitialContext that the EJB
will use to look up the Employee database in the JNDI directory. Lines 320–322 invoke
InitialContext method lookup to obtain a DataSource reference to the
Employee database. J2EE applications use a special JNDI naming context called
java:comp/env, which stands for “component environment.” There are subcontexts in
the java:comp/env naming context for different types of objects. For example, EJBs
are found in the ejb subcontext and databases are found in the jdbc subcontext. Line 322
uses the JNDI name java:comp/env/jdbc/Employee to locate the Employee
database in the JNDI directory. Line 325 sets the connection member variable to a
newly created database Connection. If the database with the given name cannot be
found, lines 329–331 catch a NamingException, which is thrown by the Initial-
Context constructor or by method lookup.

Common Programming Error 15.1
The java:comp/env naming context is available only within a J2EE application (e.g., in
a servlet, JSP or EJB). Using this naming context in a Java application or applet will result
in a javax.naming.NamingException. 15.1

The EJB container invokes method unsetEntityContext (lines 340–358) when
the EJB instance is no longer needed. Method unsetEntityContext should deallocate
any resources the EJB instance used throughout its lifetime. Line 346 closes the Connec-
tion to the database. If there was an error closing the database Connection, lines 350–
352 catch an SQLException and throw an EJBException. Lines 355–357 set the
Connection to null for later reuse.

The EJB container maintains a pool of inactive EJB instances that the container can
associate with particular database records when needed. This pooling prevents the EJB con-
tainer from incurring the overhead required to create a new EJB instance each time an EJB
instance is needed. The EJB container invokes method ejbPassivate (lines 361–364)
to place an active EJB back in the inactive pool. Line 363 sets the employeeID to null
because a passivated EJB is no longer associated with any particular database record.

The EJB container invokes method ejbActivate (lines 367–371) to activate an
EJB instance taken from the pool of inactive EJB instances. Line 369 sets the employ-
eeID to the primaryKey value retrieved from the EJB’s entityContext to associate
the EJB with the appropriate database record.

15.5.2 Employee EJB Deployment

Deploying entity EJBs is similar to deploying session EJBs (Chapter 14), but with the fol-
lowing changes. In the General dialog of the New Enterprise Bean Wizard, select the
Entity radio button in the Bean Type field (Fig. 15.4). Next, select the type of persistence
in the Entity Settings dialog. Click the Bean-Managed Persistence radio button for
bean-managed persistence and enter the class name for the primary key in the Primary
Key Class text field (Fig. 15.5). Finally, in the Resource References dialog, add a ref-
erence to the Employee database. The information for the reference must match that in
Fig. 15.6. The rest of the deployment is the same as deploying a session EJB. For the Em-
ployee EJB’s JNDI name, we recommend you specify BMPEmployee for the bean-man-
aged persistence version.

Chapter 15 Entity EJBs 919

Fig. 15.4Fig. 15.4Fig. 15.4Fig. 15.4 General dialog of New Enterprise Bean Wizard.

Fig. 15.5Fig. 15.5Fig. 15.5Fig. 15.5 Bean-Managed Persistence selected in Entity Settings dialog.

920 Entity EJBs Chapter 15

15.6 Employee EJB with Container-Managed Persistence
Figure 15.7 shows an Employee EJB implementation that uses container-managed per-
sistence to simplify the EJB implementation. Class EmployeeEJB implements interface
EntityBean (line 12), indicating that this is an entity EJB. Line 14 declares an Enti-
tyContext reference to store the EntityContext associated with the EJB instance.

Lines 17–22 declare the container-managed fields for the Employee EJB. Container-
managed fields are member variables that a container-managed persistence EJB instance
uses to cache data retrieved from the database. The container-managed fields must have the
same names as the fields in the corresponding database table. The container-managed fields
also must be marked public so the EJB container can access them directly. The EJB con-
tainer is responsible for synchronizing the container-managed fields with the database.
When deploying the EJB, the deployer must provide the SQL statements for updating,
inserting, deleting and retrieving data from the database. Lines 25–88 provide implemen-
tations of the methods declared in the Employee remote interface.

Method ejbCreate (lines 91–96) takes an Integer primaryKey argument and
stores this primaryKey in the employeeID member variable (line 93). The EJB con-
tainer executes the SQL INSERT statement (supplied by the deployer) after method ejb-
Create completes. This SQL INSERT statement takes the current values of the
container-managed fields in the EJB and inserts their values into the database. Note that,
although method ejbCreate specifies Integer as its return type (line 91), line 95
returns null. According to the EJB specification, method ejbCreate must return the
primary-key class type, which for the Employee EJB is Integer. However, the EJB
container ignores the return value from ejbCreate when using container-managed per-

Fig. 15.6Fig. 15.6Fig. 15.6Fig. 15.6 Resource References dialog in New Enterprise Bean Wizard.

Chapter 15 Entity EJBs 921

sistence, so we return null. The EJB specification requires an ejbPostCreate method
for each ejbCreate method. Line 99 provides an empty implementation of method
ejbPostCreate because this EJB requires no further initialization.

Methods setEntityContext (lines 102–105) and unsetEntityContext
(lines 108–111) manage the EntityContext member variable. This EJB implementa-
tion does not have any resources it needs throughout the EJB lifetime, so no other work is
done in either method.

1 // EmployeeEJB.java
2 // EmployeeEJB is an entity EJB that uses container-managed
3 // persistence to persist Employee data in a database.
4 package com.deitel.advjhtp1.ejb.entity.cmp;
5
6 // Java core libraries
7 import java.rmi.RemoteException;
8
9 // Java standard extensions

10 import javax.ejb.*;
11
12 public class EmployeeEJB implements EntityBean {
13
14 private EntityContext entityContext;
15
16 // container-managed fields
17 public Integer employeeID;
18 public String socialSecurityNumber;
19 public String firstName;
20 public String lastName;
21 public String title;
22 public Double salary;
23
24 // get Employee ID
25 public Integer getEmployeeID()
26 {
27 return employeeID;
28 }
29
30 // set social security number
31 public void setSocialSecurityNumber(String number)
32 {
33 socialSecurityNumber = number;
34 }
35
36 // get social security number
37 public String getSocialSecurityNumber()
38 {
39 return socialSecurityNumber;
40 }
41

Fig. 15.7Fig. 15.7Fig. 15.7Fig. 15.7 EmployeeEJB implementation of Employee remote interface using
container-managed persistence (part 1 of 3).

922 Entity EJBs Chapter 15

42 // set first name
43 public void setFirstName(String name)
44 {
45 firstName = name;
46 }
47
48 // get first name
49 public String getFirstName()
50 {
51 return firstName;
52 }
53
54 // set last name
55 public void setLastName(String name)
56 {
57 lastName = name;
58 }
59
60 // get last name
61 public String getLastName()
62 {
63 return lastName;
64 }
65
66 // set title
67 public void setTitle(String jobTitle)
68 {
69 title = jobTitle;
70 }
71
72 // get title
73 public String getTitle()
74 {
75 return title;
76 }
77
78 // set salary
79 public void setSalary(Double amount)
80 {
81 salary = amount;
82 }
83
84 // get salary
85 public Double getSalary()
86 {
87 return salary;
88 }
89
90 // create new Employee instance
91 public Integer ejbCreate(Integer primaryKey)
92 {
93 employeeID = primaryKey;

Fig. 15.7Fig. 15.7Fig. 15.7Fig. 15.7 EmployeeEJB implementation of Employee remote interface using
container-managed persistence (part 2 of 3).

Chapter 15 Entity EJBs 923

Methods ejbActivate (lines 114–117) and ejbPassivate (lines 120–123) per-
form the same functions they did in the bean-managed persistence version of the
Employee EJB. Method ejbActivate associates an EJB instance taken from the inac-
tive pool with a particular database record, and method ejbPassivate disassociates the
EJB instance from its database record.

Methods ejbLoad (line 126), ejbStore (line 129) and ejbRemove (line 132)
also perform the same functions they did in the bean-managed persistence version of the
Employee EJB. However with container-managed persistence, the deployer specifies the
necessary SELECT, UPDATE and DELETE statements when deploying the application.

94
95 return null;
96 }
97
98 // do post-creation tasks when creating new Employee
99 public void ejbPostCreate(Integer primaryKey) {}
100
101 // set EntityContext
102 public void setEntityContext(EntityContext context)
103 {
104 entityContext = context;
105 }
106
107 // unset EntityContext
108 public void unsetEntityContext()
109 {
110 entityContext = null;
111 }
112
113 // activate Employee instance
114 public void ejbActivate()
115 {
116 employeeID = (Integer) entityContext.getPrimaryKey();
117 }
118
119 // passivate Employee instance
120 public void ejbPassivate()
121 {
122 employeeID = null;
123 }
124
125 // load Employee instance in database
126 public void ejbLoad() {}
127
128 // store Employee instance in database
129 public void ejbStore() {}
130
131 // remove Employee instance from database
132 public void ejbRemove() {}
133 }

Fig. 15.7Fig. 15.7Fig. 15.7Fig. 15.7 EmployeeEJB implementation of Employee remote interface using
container-managed persistence (part 3 of 3).

924 Entity EJBs Chapter 15

The EJB container executes these statements at runtime. These methods could perform fur-
ther processing on the data if necessary. No further processing is necessary in this
Employee EJB, so these methods are given empty implementations.

Common Programming Error 15.2
For entity EJBs using container-managed persistence, the EJB container loads database
data and invokes method ejbLoad when the client first invokes a business method. Howev-
er, the business method must be invoked in a transaction context. 15.2

Performance Tip 15.1
Entity EJBs using container-managed persistence might not perform as well as their bean-
managed persistence counterparts, because all database data is loaded before the EJB con-
tainer invokes method ejbLoad. Entity EJBs using bean-managed persistence can defer the
loading of data from the database until the data is needed, which may enhance performance
for EJBs with large amounts of data. 15.1

To deploy the container-managed persistence version of the Employee EJB, follow the
instructions in Section 15.5.2. We recommend you use the JNDI Name CMPEmployee for
the container-managed persistence version of the Employee EJB. In the Persistence
Management dialog (Fig. 15.8), click the Container-Managed Persistence radio
button and place check marks next to each container-managed field. Enter the class name
of the primary key in the Primary Key Class text field and select the primary key field
name from the Primary Key Field Name drop-down menu.

Fig. 15.8Fig. 15.8Fig. 15.8Fig. 15.8 Container-Managed Persistence selected in Entity Settings dialog.

Chapter 15 Entity EJBs 925

15.7 Employee EJB Client
Figure 15.9 shows class EmployeeEJBClient for interacting with entity EJB Em-
ployee. The GUI provides buttons for finding, adding, updating and deleting Employee
EJBs, and JTextFields for displaying Employee information. Lines 26–27 declare an
EmployeeHome reference and an Employee reference for accessing the Employee
EJB. The EmployeeEJBClient constructor takes a String argument containing the
JNDI Name of the Employee EJB to load. This client works with both the bean-managed
and container-managed persistence versions of the Employee EJB, because both versions
use the same home and remote interfaces. The constructor uses the JNDIName argument
to determine which version of the Employee EJB to use.

Line 47 creates a new InitialContext to look up the Employee EJB using the
JNDIName argument. Lines 50–51 look up the EmployeeHome interface using Ini-
tialContext method lookup. Lines 54–56 use PortableRemoteObject method
narrow to convert the Object reference returned by method lookup to an Employ-
eeHome reference. We will use this EmployeeHome reference throughout the program
to create, find and remove Employee EJBs. If there is an error creating the Initial-
Context or looking up the EmployeeHome interface, lines 60–62 catch a
NamingException.

Method getEmployeeID (lines 74–85) displays a JOptionPane to prompt the
user for an employeeID. This employeeID can be used to find an existing Employee
EJB instance or to create a new Employee EJB instance.

Method getEmployee (lines 88–119) uses method getEmployeeID on line 91 to
prompt the user for the employeeID of the Employee the user would like to find. Lines
99–100 use EmployeeHome method findByPrimaryKey to locate the Employee
EJB instance for the Employee with the given employeeID. Method findByPrima-
ryKey returns a remote reference to the Employee EJB instance. Line 103 invokes
method setCurrentEmployee to display the Employee’s information to the user. If
there was an error communicating with the Employee EJB, lines 107–111 catch a
RemoteException. If there is no Employee with the given employeeID, lines 114–
118 catch a FinderException.

Method addEmployee (lines 122–150) adds a new Employee to the database by
creating a new Employee EJB. Line 126 invokes method getEmployeeID to prompt
the user for an employeeID. Line 133 invokes EmployeeHome method create to
create a new Employee EJB instance with the given employeeID. Line 136 invokes
method setCurrentEmployee to display the Employee’s information to the user.
Lines 140–143 catch a CreateException, which is thrown if there is an error cre-
ating the Employee EJB. For example, if the employeeID entered by the user is already
in use by another Employee EJB, the EJB container will throw a DuplicateKeyEx-
ception, which is a subclass of CreateException. If there is an error communi-
cating with the Employee EJB, lines 146–149 catch a RemoteException.

Method updateEmployee (lines 153–184) uses the values provided in the JText-
Fields to update the current Employee’s information. Lines 159–175 invoke the
Employee EJB set methods with values from each JTextField. If there is an error com-
municating with the Employee EJB, lines 180–183 catch a RemoteException.

Method deleteEmployee (lines 187–214) deletes the current Employee from the
database by invoking Employee EJB method remove (line 191). Lines 194–199 set the

926 Entity EJBs Chapter 15

JTextFields in the user interface to the empty string. If there is an error communicating
with the Employee EJB, lines 204–207 catch a RemoteException. If there is an
error removing the Employee EJB, lines 210–213 catch a RemoveException.

Method setCurrentEmployee (lines 217–266) takes an Employee remote ref-
erence argument and updates the user interface with the information from this Employee
EJB. Lines 224–258 retrieve values for each of the Employee EJB properties and update
the JTextFields in the user interface. If there is an error communicating with the
Employee EJB, lines 262–265 catch a RemoteException.

1 // EmployeeEJBClient.java
2 // EmployeeEJBClient is a user interface for interacting with
3 // bean- and container-managed persistence Employee EJBs.
4 package com.deitel.advjhtp1.ejb.entity.client;
5
6 // Java core libraries
7 import java.awt.*;
8 import java.awt.event.*;
9 import java.text.*;

10 import java.util.*;
11 import java.rmi.RemoteException;
12
13 // Java standard extensions
14 import javax.swing.*;
15 import javax.ejb.*;
16 import javax.naming.*;
17 import javax.rmi.*;
18
19 // Deitel libraries
20 import com.deitel.advjhtp1.ejb.entity.*;
21
22 public class EmployeeEJBClient extends JFrame {
23
24 // variables for accessing EJBs
25 private InitialContext initialContext;
26 private EmployeeHome employeeHome;
27 private Employee currentEmployee;
28
29 // JTextFields for user input
30 private JTextField employeeIDTextField;
31 private JTextField socialSecurityTextField;
32 private JTextField firstNameTextField;
33 private JTextField lastNameTextField;
34 private JTextField titleTextField;
35 private JTextField salaryTextField;
36
37 // BMPEmployeeEJBClient constructor
38 public EmployeeEJBClient(String JNDIName)
39 {
40 super("Employee EJB Client");
41

Fig. 15.9Fig. 15.9Fig. 15.9Fig. 15.9 EmployeeEJBClient for interacting with Employee EJB (part 1 of 9).

Chapter 15 Entity EJBs 927

42 // create user interface
43 createGUI();
44
45 // get EmployeeHome reference for Employee EJB
46 try {
47 initialContext = new InitialContext();
48
49 // look up Employee EJB using given JNDI name
50 Object homeObject =
51 initialContext.lookup(JNDIName);
52
53 // get EmployeeHome interface
54 employeeHome = (EmployeeHome)
55 PortableRemoteObject.narrow(
56 homeObject, EmployeeHome.class);
57 }
58
59 // handle exception when looking up Employee EJB
60 catch (NamingException namingException) {
61 namingException.printStackTrace(System.err);
62 }
63
64 // close application when user closes window
65 setDefaultCloseOperation(EXIT_ON_CLOSE);
66
67 // set size of application window and make it visible
68 setSize(600, 300);
69 setVisible(true);
70
71 } // end EmployeeEJBClient constructor
72
73 // prompt user for employeeID
74 private Integer getEmployeeID()
75 {
76 String primaryKeyString = JOptionPane.showInputDialog(
77 this, "Please enter an employeeID");
78
79 // check if primaryKeyString is null, else return
80 // Integer
81 if (primaryKeyString == null)
82 return null;
83 else
84 return new Integer(primaryKeyString);
85 }
86
87 // get Employee reference for user-supplied employeeID
88 private void getEmployee()
89 {
90 // prompt user for employeeID and get Employee reference
91 Integer employeeID = getEmployeeID();
92

Fig. 15.9Fig. 15.9Fig. 15.9Fig. 15.9 EmployeeEJBClient for interacting with Employee EJB (part 2 of 9).

928 Entity EJBs Chapter 15

93 // return if employeeID is null
94 if (employeeID == null)
95 return;
96
97 try {
98 // find Employee with given employeeID
99 Employee employee =
100 employeeHome.findByPrimaryKey(employeeID);
101
102 // update display with current Employee
103 setCurrentEmployee(employee);
104 }
105
106 // handle exception when finding Employee
107 catch (RemoteException remoteException) {
108 JOptionPane.showMessageDialog(
109 EmployeeEJBClient.this,
110 remoteException.getMessage());
111 }
112
113 // handle exception when finding Employee
114 catch (FinderException finderException) {
115 JOptionPane.showMessageDialog(
116 EmployeeEJBClient.this, "Employee not " +
117 "found: " + finderException.getMessage());
118 }
119 } // end method getEmployee
120
121 // add new Employee by creating new Employee EJB instance
122 private void addEmployee()
123 {
124 // prompt user for employeeID and create Employee
125 try {
126 Integer employeeID = getEmployeeID();
127
128 // return if employeeID null
129 if (employeeID == null)
130 return;
131
132 // create new Employee
133 Employee employee = employeeHome.create(employeeID);
134
135 // update display with new Employee
136 setCurrentEmployee(employee);
137 }
138
139 // handle exception when creating Employee
140 catch (CreateException createException) {
141 JOptionPane.showMessageDialog(this,
142 createException.getMessage());
143 }
144

Fig. 15.9Fig. 15.9Fig. 15.9Fig. 15.9 EmployeeEJBClient for interacting with Employee EJB (part 3 of 9).

Chapter 15 Entity EJBs 929

145 // handle exception when creating Employee
146 catch (RemoteException remoteException) {
147 JOptionPane.showMessageDialog(this,
148 remoteException.getMessage());
149 }
150 } // end method addEmployee
151
152 // update current Employee with user-supplied information
153 private void updateEmployee()
154 {
155 // get information from JTextFields and update Employee
156 try {
157
158 // set Employee socialSecurityNumber
159 currentEmployee.setSocialSecurityNumber(
160 socialSecurityTextField.getText());
161
162 // set Employee firstName
163 currentEmployee.setFirstName(
164 firstNameTextField.getText());
165
166 // set Employee lastName
167 currentEmployee.setLastName(
168 lastNameTextField.getText());
169
170 // set Employee title
171 currentEmployee.setTitle(titleTextField.getText());
172
173 // set Employee salary
174 Double salary = new Double(salaryTextField.getText());
175 currentEmployee.setSalary(salary);
176
177 } // end try
178
179 // handle exception invoking Employee business methods
180 catch (RemoteException remoteException) {
181 JOptionPane.showMessageDialog(this,
182 remoteException.getMessage());
183 }
184 } // end method updateEmployee
185
186 // delete current Employee
187 private void deleteEmployee()
188 {
189 // remove current Employee EJB
190 try {
191 currentEmployee.remove();
192
193 // clear JTextFields
194 employeeIDTextField.setText("");
195 socialSecurityTextField.setText("");

Fig. 15.9Fig. 15.9Fig. 15.9Fig. 15.9 EmployeeEJBClient for interacting with Employee EJB (part 4 of 9).

930 Entity EJBs Chapter 15

196 firstNameTextField.setText("");
197 lastNameTextField.setText("");
198 titleTextField.setText("");
199 salaryTextField.setText("");
200
201 } // end try
202
203 // handle exception when removing Employee
204 catch (RemoteException remoteException) {
205 JOptionPane.showMessageDialog(this,
206 remoteException.getMessage());
207 }
208
209 // handle exception when removing Employee
210 catch (RemoveException removeException) {
211 JOptionPane.showMessageDialog(this,
212 removeException.getMessage());
213 }
214 } // end method deleteEmployee
215
216 // update display with current Employee information
217 private void setCurrentEmployee(Employee employee)
218 {
219 // get information for currentEmployee and update display
220 try {
221 currentEmployee = employee;
222
223 // get the employeeID
224 Integer employeeID = (Integer)
225 currentEmployee.getEmployeeID();
226
227 // update display
228 employeeIDTextField.setText(employeeID.toString());
229
230 // set socialSecurityNumber in display
231 socialSecurityTextField.setText(
232 currentEmployee.getSocialSecurityNumber());
233
234 // set firstName in display
235 firstNameTextField.setText(
236 currentEmployee.getFirstName());
237
238 // set lastName in display
239 lastNameTextField.setText(
240 currentEmployee.getLastName());
241
242 // set title in display
243 titleTextField.setText(currentEmployee.getTitle());
244
245 // get Employee salary
246 Double salary = (Double) currentEmployee.getSalary();
247

Fig. 15.9Fig. 15.9Fig. 15.9Fig. 15.9 EmployeeEJBClient for interacting with Employee EJB (part 5 of 9).

Chapter 15 Entity EJBs 931

248 // ensure salary is not null and update display
249 if (salary != null) {
250 NumberFormat dollarFormatter =
251 NumberFormat.getCurrencyInstance(
252 Locale.US);
253
254 salaryTextField.setText(dollarFormatter.format(
255 salary));
256 }
257 else
258 salaryTextField.setText("");
259 } // end try
260
261 // handle exception invoking Employee business methods
262 catch (RemoteException remoteException) {
263 JOptionPane.showMessageDialog(this,
264 remoteException.getMessage());
265 }
266 } // end method setCurrentEmployee
267
268 // create the application GUI
269 private void createGUI()
270 {
271 // create JPanel for Employee form components
272 JPanel formPanel = new JPanel(new GridLayout(6, 2));
273
274 // create read-only JTextField for employeeID
275 employeeIDTextField = new JTextField();
276 employeeIDTextField.setEditable(false);
277 formPanel.add(new JLabel("Employee ID"));
278 formPanel.add(employeeIDTextField);
279
280 // create JTextField and JLabel for social security #
281 socialSecurityTextField = new JTextField();
282 formPanel.add(new JLabel("Social Security #"));
283 formPanel.add(socialSecurityTextField);
284
285 // create JTextField and JLabel for first name
286 firstNameTextField = new JTextField();
287 formPanel.add(new JLabel("First Name"));
288 formPanel.add(firstNameTextField);
289
290 // create JTextField and JLabel for last name
291 lastNameTextField = new JTextField();
292 formPanel.add(new JLabel("Last Name"));
293 formPanel.add(lastNameTextField);
294
295 // create JTextField and JLabel for job title
296 titleTextField = new JTextField();
297 formPanel.add(new JLabel("Title"));
298 formPanel.add(titleTextField);
299

Fig. 15.9Fig. 15.9Fig. 15.9Fig. 15.9 EmployeeEJBClient for interacting with Employee EJB (part 6 of 9).

932 Entity EJBs Chapter 15

300 // create JTextField and JLabel for salary
301 salaryTextField = new JTextField();
302 formPanel.add(new JLabel("Salary"));
303 formPanel.add(salaryTextField);
304
305 // add formPanel to the JFrame's contentPane
306 Container contentPane = getContentPane();
307 contentPane.add(formPanel, BorderLayout.CENTER);
308
309 // create JPanel for JButtons
310 JPanel employeeButtonPanel =
311 new JPanel(new FlowLayout());
312
313 // create JButton for adding Employees
314 JButton addButton = new JButton("Add Employee");
315 addButton.addActionListener(
316 new ActionListener() {
317
318 public void actionPerformed(ActionEvent event)
319 {
320 addEmployee();
321 }
322 }
323);
324 employeeButtonPanel.add(addButton);
325
326 // create JButton for saving Employee information
327 JButton saveButton = new JButton("Save Changes");
328 saveButton.addActionListener(
329 new ActionListener() {
330
331 public void actionPerformed(ActionEvent event)
332 {
333 updateEmployee();
334 }
335 }
336);
337 employeeButtonPanel.add(saveButton);
338
339 // create JButton for deleting Employees
340 JButton deleteButton = new JButton("Delete Employee");
341 deleteButton.addActionListener(
342 new ActionListener() {
343
344 public void actionPerformed(ActionEvent event)
345 {
346 deleteEmployee();
347 }
348 }
349);
350 employeeButtonPanel.add(deleteButton);
351

Fig. 15.9Fig. 15.9Fig. 15.9Fig. 15.9 EmployeeEJBClient for interacting with Employee EJB (part 7 of 9).

Chapter 15 Entity EJBs 933

352 // create JButton for finding existing Employees
353 JButton findButton = new JButton("Find Employee");
354 findButton.addActionListener(
355 new ActionListener() {
356
357 public void actionPerformed(ActionEvent event)
358 {
359 getEmployee();
360 }
361 }
362);
363 employeeButtonPanel.add(findButton);
364
365 // add employeeButtonPanel to JFrame's contentPane
366 contentPane.add(employeeButtonPanel,
367 BorderLayout.NORTH);
368
369 } // end method createGUI
370
371 // execute application
372 public static void main(String[] args)
373 {
374 // ensure user provided JNDI name for Employee EJB
375 if (args.length != 1) {
376 System.err.println(
377 "Usage: java EmployeeEJBClient <JNDI Name>");
378 System.exit(1);
379 }
380
381 // start application using provided JNDI name
382 else
383 new EmployeeEJBClient(args[0]);
384 }
385 }

Fig. 15.9Fig. 15.9Fig. 15.9Fig. 15.9 EmployeeEJBClient for interacting with Employee EJB (part 8 of 9).

934 Entity EJBs Chapter 15

Method createGUI (lines 269–369) builds the user interface for the EmployeeE-
JBClient. Lines 275–303 create JTextFields and JLabels for each Employee
property. Lines 314–363 create JButtons and associated ActionListeners to allow
the user to add, update, delete and find Employees.

Method main (lines 372–384) requires that the user provide a command-line argu-
ment containing the JNDI name of the Employee EJB to use in the application. This com-
mand-line argument enables the user to specify the JNDI name of either the bean- or
container-managed persistence version of the Employee EJB (i.e., BMPEmployee or
CMPEmployee). Lines 376–377 print instructions to the user if a JNDI name is not pro-
vided. Line 383 creates a new instance of the EmployeeEJBClient using the given
JNDI name argument. When executing the EmployeeEJBClient, be sure that the client
JAR for the Employee EJB is in the EmployeeEJBClient’s CLASSPATH.

15.8 Internet and World Wide Web Resources
java.sun.com/products/ejb/news.html
This site provides articles and news related to Enterprise JavaBeans.

www.theserverside.com/resources/pdf/ejbmatrix11.pdf
This document (in PDF format) provides a quick reference for EJB interfaces, classes and methods.

java.sun.com/products/ejb/docs.html
The Enterprise JavaBeans specification home page provides documentation and specifications for EJBs.

developer.java.sun.com/developer/technicalArticles/J2EE/build
This article at the Java Developer Connection (requires free registration) discusses techniques for en-
suring J2EE applications are portable across application servers from different vendors.

java.sun.com/j2ee/blueprints
The J2EE Blueprints discuss proven strategies for building enterprise applications with J2EE. Includ-
ed are technical articles that discuss the blueprints and code examples that implement the blueprints
in real systems.

Fig. 15.9Fig. 15.9Fig. 15.9Fig. 15.9 EmployeeEJBClient for interacting with Employee EJB (part 9 of 9).

Chapter 15 Entity EJBs 935

SUMMARY
• Entity EJBs provide an object-oriented representation of persistent data, such as data stored in a

relational database.

• Entity EJBs that use bean-managed persistence require the developer to implement code for stor-
ing and retrieving data from the persistent data sources the EJB represents.

• Entity EJBs use container-managed persistence rely on the EJB container to implement the data-
access calls to their persistent data sources. The deployer must supply information about the per-
sistent data source when deploying the EJB.

• Entity EJBs provide create methods for creating new EJB instances, remove methods for re-
moving EJB instances and finder methods for finding EJB instances. Each create method per-
forms INSERT operations to create new records in the database. Each remove method performs
DELETE operations to remove records from the database. Each finder method locates entity EJB
instances that match certain criteria.

• Method findByPrimaryKey is one type of finder method for entity EJBs. Every entity EJB
must have a findByPrimaryKey method that takes the entity EJB’s primary-key class as an
argument. Entity EJBs can also define other finder methods. A finder method name must begin
with findBy and should end with the name of property to be used as the search criteria.

• All entity EJB implementations must implement interface EntityBean.

• An EntityContext provides the EJB with information about the container in which the EJB
is deployed.

• All ejbCreate methods in entity EJBs are required to return the EJB’s primary-key class. Most
EJBs use a standard Java class (e.g., Integer or String) as their primary-key class.

• If a database table has a complex primary key (i.e., a primary key that consists of more than one
field), the developer must define a custom primary-key class.

• The EJB container invokes method ejbPostCreate after invoking method ejbCreate to
perform any required tasks after creating the EJB instance.

• To remove an entity EJB instance means to DELETE the associated database record. A Re-
moveException indicates that removing the EJB instance failed.

• There are some restrictions on what can be done in method setEntityContext, because when
this method is invoked, the EJB instance is not yet associated with a particular database record.
For example, the EJB must not invoke EntityContext method getPrimaryKey, because
there is no primary key associated with the current EJB instance.

• Method setEntityContext should allocate resources the EJB instance will need throughout
its lifetime (e.g., a database connection).

• J2EE applications use a special JNDI naming context called java:comp/env, which stands for
“component environment.” EJBs are found in the ejb subcontext and databases are found in the
jdbc subcontext.

• Container-managed fields are member variables that a container-managed persistence EJB in-
stance uses to cache data retrieved from the database. The container-managed fields must have the
same names as the fields in the corresponding database table. The container-managed fields also
must be marked public so the EJB container can access them directly.

TERMINOLOGY
application server complex primary key
bean-managed persistence container-managed field
business methods container-managed persistence

936 Entity EJBs Chapter 15

SELF-REVIEW EXERCISES
15.1 State which of the following are true and which are false. If false, explain why.

a) Data associated with an entity EJB typically is stored in a relational database.
b) The remote interface for an entity EJB represents the database table with which the EJB

is associated.
c) Entity EJBs that use bean-managed persistence require the deployer to specify SQL que-

ries for inserting, updating, deleting and querying data from the database.
d) The create methods in the home interface for an entity EJB insert new records into the

underlying database.
e) Entity EJBs should obtain necessary resources in method ejbCreate.
f) Entity EJBs that use container-managed persistence must implement interface CMPEn-

tityBean, whereas those that use bean-managed persistence must implement interface
EntityBean.

15.2 Fill in the blanks in each of the following:
a) For entity EJBs that use persistence to represent data in a relational database,

the must specify SQL queries when deploying the EJB.
b) For entity EJBs that use persistence to represent data in a relational database,

the must implement code that synchronizes data with the database.
c) Each create method in the home interface must have a corresponding method

in the EJB implementation.
d) If an entity EJB has a complex primary key, the developer must provide a custom

 that represents the complex primary key.

ANSWERS TO SELF-REVIEW EXERCISES
15.1 a) True. b) False. The remote interface specifies the business methods for the EJB. The home
interface represents the database table. c) False. The developer must provide code for managing syn-
chronization with the underlying database. d) True. e) False. Entity EJBs should obtain necessary re-
sources in method setEntityContext. f) False. All entity EJBs must implement interface
EntityBean.

15.2 a) container-managed, deployer. b) bean-managed persistence, developer. c) ejbCreate.
d) primary-key class.

EXERCISES
15.3 What types of persistence can entity EJBs use? What are the benefits of each?

15.4 Create an entity EJB for the Titles table in the books database of Chapter 8. The entity
EJB should use bean-managed persistence to synchronize its data members with the values in the da-
tabase. Provide set and get methods for each field in the Titles table. Provide a create method
that takes the ISBN and Title as arguments.

15.5 Modify the entity EJB you created in Exercise 15.4 to use container-managed persistence in-
stead of bean-managed persistence.

EntityBean interface finder methods
EntityContext interface home interface
findByPrimaryKey method javax.ejb.EntityBean interface
ejbCreate methods primary-key class
ejbPassivate method remove methods
ejbRemove method setEntityContext method
entity EJB unsetEntityContext method

16
Messaging with JMS

Objectives
• To understand message-oriented middleware.
• To understand the point-to-point messaging model.
• To understand the publish/subscribe messaging

model.
• To understand the difference between the two

messaging models and when it is appropriate to use
each.

• To understand how to use the Java Message Service
(JMS) API to build messaging applications in Java.

• To introduce message-driven EJBs.
The next thing most like living one’s life over again seems to
be a recollection of that life, and to make that recollection as
durable as possible by putting it down in writing.
Benjamin Franklin

Sow good services: sweet remembrances will grow from
them.
Anne Louise Germaine de Stael

… And many a message from the skies, …
Robert Burns

938 Messaging with JMS Chapter 16

16.1 Introduction
When creating enterprise applications, it often is useful for ordinarily uncoupled compo-
nents of the applications to "talk" to each other. For instance, a book supplier’s clients need
to communicate book orders to the supplier. One solution is to loosely couple the client’s
buying application with the supplier’s ordering application through a messaging system,
sometimes called message-oriented middleware (MOM). Messaging systems allow com-
ponents to post messages for other components to read. There are two basic messaging-sys-
tem models—point-to-point and publish/subscribe.

The point-to-point messaging model allows components to send messages to a mes-
sage queue. In this model, the sender intends the messages for one message consumer—a
target component that processes the received messages. When this target component con-
nects to the queue to receive messages, the target component receives any messages not yet
consumed. A message is consumed once the server sends the message to the target compo-
nent. Note that in the point-to-point model, exactly one client consumes a message.

The publish/subscribe messaging model allows components to publish messages to a
topic on a server. The server maintains various topics to which components can connect.
Components interested in messages published to a particular topic can subscribe to that
topic. When a publisher publishes a message to a given topic, current subscribers receive
that message. Note that in the publish/subscribe model, unlike in the point-to-point model,
zero or more subscribers consume each published message.

Outline

16.1 Introduction
16.2 Installation and Configuration of J2EE 1.3
16.3 Point-To-Point Messaging

16.3.1 Voter Application: Overview
16.3.2 Voter Application: Sender Side
16.3.3 Voter Application: Receiver Side
16.3.4 Voter Application: Configuring and Running

16.4 Publish/Subscribe Messaging
16.4.1 Weather Application: Overview
16.4.2 Weather Application: Publisher Side
16.4.3 Weather Application: Subscriber Side
16.4.4 Weather Application: Configuring and Running

16.5 Message-Driven Enterprise JavaBeans
16.5.1 Voter Application: Overview
16.5.2 Voter Application: Receiver Side
16.5.3 Voter Application: Configuring and Running

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Chapter 16 Messaging with JMS 939

In both messaging models, a message consists of a header, properties (optional) and a
body (also optional). The message header contains information, such as the message desti-
nation and the sending time. Message properties allow message receivers to select which
types of messages they would like to receive; the sender of a message can set these proper-
ties. Message receivers use message selectors to filter out messages. Filtering is done on
the server side; the server does not send those messages to the receiver.

Message-driven beans are Enterprise JavaBeans that support messaging. Like an EJB
container can use any instance of a stateless session EJB to handle client requests, the EJB
container for message-driven beans can use any instance of a message-driven bean to pro-
cess incoming messages for a given queue or topic. Since the container may use any
instance, message-driven beans cannot maintain state for a specific client. Using message-
driven beans, a component can receive messages asynchronously, without tying up
resources waiting for a message to arrive.

In this chapter, we explore the Java Message Service (JMS) API. JMS standardizes the
API for enterprise messaging, and supports both the point-to-point and publish/subscribe
messaging models. JMS provides five types of messages—BytesMessages, MapMes-
sages, ObjectMessages, StreamMessages and TextMessages. There are sev-
eral implementations of JMS available from various vendors. For more information on
these vendors and JMS, please visit java.sun.com/jms.

16.2 Installation and Configuration of J2EE 1.3
The Java 2 Enterprise Edition version 1.3 reference implementation provides support for
the Java Message Service API. At the time of this writing, the beta 2 release of the J2EE
1.3 reference implementation was available. Note that J2EE 1.3 beta 2 supports only the
Windows 2000, Windows NT 4.0, Solaris SPARC 7, Solaris SPARC 8 and RedHat Linux
v. 6.1 operating systems. Also note that J2SE 1.3.1 is required for J2EE 1.3 beta 2. To in-
stall the J2EE 1.3 reference implementation, follow these steps:

1. Download and unpack the appropriate software bundle from java.sun.com/
j2ee/j2sdkee-beta/index.html.

2. Set the environment variables according to the values in Fig. 16.1.

Environment
variable Value

J2EE_HOME Directory in which J2EE 1.3 is installed (e.g., C:\j2sdkee1.3).

JAVA_HOME Directory in which J2SE 1.3.1 is installed (e.g., C:\jdk1.3.1).

PATH The existing PATH plus the J2EE 1.3 bin directory (e.g.,
C:\j2sdkee1.3\bin).

Fig. 16.1Fig. 16.1Fig. 16.1Fig. 16.1 Setting environment variables for J2EE 1.3 installation.

940 Messaging with JMS Chapter 16

16.3 Point-To-Point Messaging
The point-to-point messaging model (Fig. 16.2) allows clients to send messages to a mes-
sage queue. A receiver connects to the queue to consume messages that have not been con-
sumed. In general, messages in a queue are intended for exactly one client, so only one
client connects as the receiver. If there is no receiver, the server maintains messages sent to
the queue until a receiver connects and consumes those messages.

16.3.1 Voter Application: Overview

To demonstrate point-to-point messaging, we present an application that tallies votes for the
voters’ favorite programming language. Class Voter (Section 16.3.2) sends votes as mes-
sages to the Votes queue. These messages are simple TextMessage objects (package
javax.jms). The message body contains the candidate name. Class VoteCollector
(Section 16.3.3) consumes the messages and tallies the votes. Class VoteCollector can
connect to the Votes queue before or after messages have been sent. As additional votes ar-
rive in the queue, the VoteCollector updates the tallies and displays the totals.
Figure 16.3 provides a diagram overview of the application.

Fig. 16.2Fig. 16.2Fig. 16.2Fig. 16.2 Point-to-point messaging model.

Fig. 16.3Fig. 16.3Fig. 16.3Fig. 16.3 Voter application overview.

Receiver

Sender

Sender

Queue
Message

Messages

Message

VoteCollector

Voter Voter

TextMessage

Votes
queue

TextMessages

TextMessage

Chapter 16 Messaging with JMS 941

16.3.2 Voter Application: Sender Side
The sender side of the application consists of a single class—Voter (Fig. 16.4). Class
Voter allows the user to select a programming language and sends a vote for the selected
language to the Votes queue as a TextMessage.

1 // Voter.java
2 // Voter is the GUI that allows the client to vote
3 // for a programming language. Voter sends the vote
4 // to the "Votes" queue as a TextMessage.
5 package com.deitel.advjhtp1.jms.voter;
6
7 // Java core packages
8 import java.awt.*;
9 import java.awt.event.*;

10
11 // Java extension packages
12 import javax.swing.*;
13 import javax.jms.*;
14 import javax.naming.*;
15
16 public class Voter extends JFrame {
17
18 private String selectedLanguage;
19
20 // JMS variables
21 private QueueConnection queueConnection;
22 private QueueSession queueSession;
23 private QueueSender queueSender;
24
25 // Voter constructor
26 public Voter()
27 {
28 // lay out user interface
29 super("Voter");
30
31 Container container = getContentPane();
32 container.setLayout(new BorderLayout());
33
34 JTextArea voteArea =
35 new JTextArea("Please vote for your\n" +
36 "favorite programming language");
37 voteArea.setEditable(false);
38 container.add(voteArea, BorderLayout.NORTH);
39
40 JPanel languagesPanel = new JPanel();
41 languagesPanel.setLayout(new GridLayout(0, 1));
42
43 // add each language as its own JCheckBox
44 // ButtonGroup ensures exactly one language selected
45 ButtonGroup languagesGroup = new ButtonGroup();
46 CheckBoxHandler checkBoxHandler = new CheckBoxHandler();

Fig. 16.4Fig. 16.4Fig. 16.4Fig. 16.4 Voter class submits votes as messages to queue (part 1 of 4).

942 Messaging with JMS Chapter 16

47 String languages[] =
48 { "C", "C++", "Java", "Lisp", "Python" };
49 selectedLanguage = "";
50
51 // create JCheckBox for each language
52 // and add to ButtonGroup and JPanel
53 for (int i = 0; i < languages.length; i++) {
54 JCheckBox checkBox = new JCheckBox(languages[i]);
55 checkBox.addItemListener(checkBoxHandler);
56 languagesPanel.add(checkBox);
57 languagesGroup.add(checkBox);
58 }
59
60 container.add(languagesPanel, BorderLayout.CENTER);
61
62 // create button to submit vote
63 JButton submitButton = new JButton("Submit vote!");
64 container.add(submitButton, BorderLayout.SOUTH);
65
66 // invoke method submitVote when submitButton clicked
67 submitButton.addActionListener (
68
69 new ActionListener() {
70
71 public void actionPerformed (ActionEvent event) {
72 submitVote();
73 }
74 }
75);
76
77 // invoke method quit when window closed
78 addWindowListener(
79
80 new WindowAdapter() {
81
82 public void windowClosing(WindowEvent event) {
83 quit();
84 }
85 }
86);
87
88 // connect to message queue
89 try {
90
91 // create JNDI context
92 Context jndiContext = new InitialContext();
93
94 // retrieve queue connection factory and
95 // queue from JNDI context
96 QueueConnectionFactory queueConnectionFactory =
97 (QueueConnectionFactory)
98 jndiContext.lookup("VOTE_FACTORY");
99 Queue queue = (Queue) jndiContext.lookup("Votes");

Fig. 16.4Fig. 16.4Fig. 16.4Fig. 16.4 Voter class submits votes as messages to queue (part 2 of 4).

Chapter 16 Messaging with JMS 943

100
101 // create connection, session and sender
102 queueConnection =
103 queueConnectionFactory.createQueueConnection();
104 queueSession =
105 queueConnection.createQueueSession(false,
106 Session.AUTO_ACKNOWLEDGE);
107 queueSender = queueSession.createSender(queue);
108 }
109
110 // process Naming exception from JNDI context
111 catch (NamingException namingException) {
112 namingException.printStackTrace();
113 System.exit(1);
114 }
115
116 // process JMS exception from queue connection or session
117 catch (JMSException jmsException) {
118 jmsException.printStackTrace();
119 System.exit(1);
120 }
121
122 } // end Voter constructor
123
124 // submit selected vote to "Votes" queue as TextMessage
125 public void submitVote()
126 {
127 if (selectedLanguage != "") {
128
129 // create text message containing selected language
130 try {
131 TextMessage voteMessage =
132 queueSession.createTextMessage();
133 voteMessage.setText(selectedLanguage);
134
135 // send the message to the queue
136 queueSender.send(voteMessage);
137 }
138
139 // process JMS exception
140 catch (JMSException jmsException) {
141 jmsException.printStackTrace();
142 }
143 }
144
145 } // end method submitVote
146
147 // close client application
148 public void quit()
149 {
150 if (queueConnection != null) {
151

Fig. 16.4Fig. 16.4Fig. 16.4Fig. 16.4 Voter class submits votes as messages to queue (part 3 of 4).

944 Messaging with JMS Chapter 16

Line 13 imports package javax.jms, which contains JMS API classes and inter-
faces. Lines 29–86 set up the GUI for the Voter client. Lines 53–58 create JCheckBox
objects to allow the client to vote. Note that these are added to a ButtonGroup (lines 45–
58) so that the user can select only one candidate.

Lines 89–120 set up JMS connections. Line 92 creates the JNDI context, from which
the program retrieves a QueueConnectionFactory and Queue, identified by
VOTE_FACTORY and Votes, respectively. Note that the server administrator must create
the queue connection factory and queue (Section 16.3.4). A queue connection factory
allows the client to create a QueueConnection (lines 102–103). The QueueConnec-
tion creates a QueueSession (lines 104–106). Finally, the QueueSession creates
either a QueueSender or a QueueReceiver. Here, the QueueSession creates a
QueueSender for the Votes queue (line 107); the QueueSender now can post mes-
sages to the queue.

152 // close queue connection if it exists
153 try {
154 queueConnection.close();
155 }
156
157 // process JMS exception
158 catch (JMSException jmsException) {
159 jmsException.printStackTrace();
160 }
161 }
162
163 System.exit(0);
164
165 } // end method quit
166
167 // launch Voter application
168 public static void main(String args[])
169 {
170 Voter voter = new Voter();
171 voter.pack();
172 voter.setVisible(true);
173 }
174
175 // CheckBoxHandler handles event when checkbox checked
176 private class CheckBoxHandler implements ItemListener {
177
178 // checkbox event
179 public void itemStateChanged(ItemEvent event)
180 {
181 // update selectedLanguage
182 JCheckBox source = (JCheckBox) event.getSource();
183 selectedLanguage = source.getText();
184 }
185 }
186 }

Fig. 16.4Fig. 16.4Fig. 16.4Fig. 16.4 Voter class submits votes as messages to queue (part 4 of 4).

Chapter 16 Messaging with JMS 945

When the user selects a language and clicks the Submit vote button (Fig. 16.5),
method submitVote creates a TextMessage object and sets the text of the message to
selectedLanguage (lines 131–133). Line 136 sends the message to the Votes queue.

The program invokes method quit (lines 148–165) when the user closes the applica-
tion window. Lines 150–161 close the connection to the queue.

16.3.3 Voter Application: Receiver Side

In the Voter application example, a VoteCollector (Fig. 16.6) is the intended receiver
of messages sent to the Votes queue. Class VoteCollector tallies and displays votes
it receives from the queue. Note that the Voter can send messages to the queue before the
VoteCollector has connected; once connected, the VoteCollector will receive
these messages.

Fig. 16.5Fig. 16.5Fig. 16.5Fig. 16.5 Voter application votes for favorite programming language

1 // VoteCollector.java
2 // VoteCollector tallies and displays the votes
3 // posted as TextMessages to the "Votes" queue.
4 package com.deitel.advjhtp1.jms.voter;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9 import java.util.*;

10
11 // Java extension packages
12 import javax.swing.*;
13 import javax.jms.*;
14 import javax.naming.*;
15
16 public class VoteCollector extends JFrame {
17
18 private JPanel displayPanel;
19 private Map tallies = new HashMap();
20
21 // JMS variables
22 private QueueConnection queueConnection;

Fig. 16.6Fig. 16.6Fig. 16.6Fig. 16.6 VoteCollector class retrieves and tallies votes (part 1 of 4).

946 Messaging with JMS Chapter 16

23
24 // VoteCollector constructor
25 public VoteCollector()
26 {
27 super("Vote Tallies");
28
29 Container container = getContentPane();
30
31 // displayPanel will display tally results
32 displayPanel = new JPanel();
33 displayPanel.setLayout(new GridLayout(0, 1));
34 container.add(new JScrollPane(displayPanel));
35
36 // invoke method quit when window closed
37 addWindowListener(
38
39 new WindowAdapter() {
40
41 public void windowClosing(WindowEvent event) {
42 quit();
43 }
44 }
45);
46
47 // connect to "Votes" queue
48 try {
49
50 // create JNDI context
51 Context jndiContext = new InitialContext();
52
53 // retrieve queue connection factory
54 // and queue from JNDI context
55 QueueConnectionFactory queueConnectionFactory =
56 (QueueConnectionFactory)
57 jndiContext.lookup("VOTE_FACTORY");
58 Queue queue = (Queue) jndiContext.lookup("Votes");
59
60 // create connection, session and receiver
61 queueConnection =
62 queueConnectionFactory.createQueueConnection();
63 QueueSession queueSession =
64 queueConnection.createQueueSession(false,
65 Session.AUTO_ACKNOWLEDGE);
66 QueueReceiver queueReceiver =
67 queueSession.createReceiver(queue);
68
69 // initialize and set message listener
70 queueReceiver.setMessageListener(
71 new VoteListener(this));
72
73 // start connection
74 queueConnection.start();
75 }

Fig. 16.6Fig. 16.6Fig. 16.6Fig. 16.6 VoteCollector class retrieves and tallies votes (part 2 of 4).

Chapter 16 Messaging with JMS 947

76
77 // process Naming exception from JNDI context
78 catch (NamingException namingException) {
79 namingException.printStackTrace();
80 System.exit(1);
81 }
82
83 // process JMS exception from queue connection or session
84 catch (JMSException jmsException) {
85 jmsException.printStackTrace();
86 System.exit(1);
87 }
88
89 } // end VoteCollector constructor
90
91 // add vote to corresponding tally
92 public void addVote(String vote)
93 {
94 if (tallies.containsKey(vote)) {
95
96 // if vote already has corresponding tally
97 TallyPanel tallyPanel =
98 (TallyPanel) tallies.get(vote);
99 tallyPanel.updateTally();
100 }
101
102 // add to GUI and tallies
103 else {
104 TallyPanel tallyPanel = new TallyPanel(vote, 1);
105 displayPanel.add(tallyPanel);
106 tallies.put(vote, tallyPanel);
107 validate();
108 }
109 }
110
111 // quit application
112 public void quit()
113 {
114 if (queueConnection != null) {
115
116 // close the queue connection if it exists
117 try {
118 queueConnection.close();
119 }
120
121 // process JMS exception
122 catch (JMSException jmsException) {
123 jmsException.printStackTrace();
124 System.exit(1);
125 }
126
127 }
128

Fig. 16.6Fig. 16.6Fig. 16.6Fig. 16.6 VoteCollector class retrieves and tallies votes (part 3 of 4).

948 Messaging with JMS Chapter 16

Class VoteCollector collects and tallies votes retrieved from the Votes queue.
Variable tallies (line 19) is a Map from candidate names to corresponding Tally-
Panel objects (Fig. 16.9); it updates tallies when a new vote is received. Lines 27–45 lay
out the GUI. Note that the GUI initially displays nothing as the VoteCollector has
received no votes.

Lines 48–87 establish a connection to the Votes queue. Line 51 creates a JNDI con-
text for retrieving the QueueConnectionFactory and Queue (lines 55–58). The
QueueConnectionFactory allows the program to create the QueueConnection
(lines 61–62). The QueueConnection creates the QueueSession (lines 63–65). The
QueueSession, in turn, creates the QueueReceiver (lines 66–67), which recieves
votes from the Queue. Lines 70–71 create a new VoteListener (Fig. 16.8) and set the
VoteListener as the message listener for the QueueReceiver. Line 74 starts the
queueConnection; at this point, the VoteListener will process messages received
from the queue.

Method addVote (lines 92–109) updates the tallies and display (Fig. 16.7). If there
is a TallyPanel corresponding to the vote’s candidate, lines 97–99 increment the tally
by invoking method updateTally. If there is no corresponding TallyPanel, lines
104–106 add a new entry to the tallies Map. The program invokes method quit (lines
112–131) when the client closes the application window. Lines 114–127 close the queue-
Connection.

129 System.exit(0);
130
131 } // end method quit
132
133 // launch VoteCollector
134 public static void main(String args[])
135 {
136 VoteCollector voteCollector = new VoteCollector();
137 voteCollector.setSize(200, 200);
138 voteCollector.setVisible(true);
139 }
140 }

Fig. 16.7Fig. 16.7Fig. 16.7Fig. 16.7 VoteCollector tallies and displays votes.

Fig. 16.6Fig. 16.6Fig. 16.6Fig. 16.6 VoteCollector class retrieves and tallies votes (part 4 of 4).

Chapter 16 Messaging with JMS 949

Class VoteListener (Fig. 16.8) implements interface MessageListener.
When the QueueReceiver receives a message, the QueueReceiver’s message lis-
tener processes the message. Interface MessageListener specifies the single method
onMessage (lines 22–49), which the program invokes when a new message arrives. Line
29 checks that the message is of type TextMessage. If so, lines 30–31 retrieve the text
of the message; line 32 then invokes method addVote of class VoteCollector to
update the tallies.

1 // VoteListener.java
2 // VoteListener is the message listener for the
3 // receiver of the "Votes" queue. It implements
4 // the specified onMessage method to update the
5 // GUI with the received vote.
6 package com.deitel.advjhtp1.jms.voter;
7
8 // Java extension packages
9 import javax.jms.*;

10
11 public class VoteListener implements MessageListener {
12
13 private VoteCollector voteCollector;
14
15 // VoteListener constructor
16 public VoteListener(VoteCollector collector)
17 {
18 voteCollector = collector;
19 }
20
21 // receive new message
22 public void onMessage(Message message)
23 {
24 TextMessage voteMessage;
25
26 // retrieve and process message
27 try {
28
29 if (message instanceof TextMessage) {
30 voteMessage = (TextMessage) message;
31 String vote = voteMessage.getText();
32 voteCollector.addVote(vote);
33
34 System.out.println("Received vote: " + vote);
35 }
36
37 else {
38 System.out.println("Expecting " +
39 "TextMessage object, received " +
40 message.getClass().getName());
41 }
42 }
43

Fig. 16.8Fig. 16.8Fig. 16.8Fig. 16.8 VoteListener class receives messages from the queue (part 1 of 2).

950 Messaging with JMS Chapter 16

Class TallyPanel (Fig. 16.9) maintains and displays the tally for a vote candi-
date. Method updateTally (lines 37–41) increments the tally by one.

44 // process JMS exception from message
45 catch (JMSException jmsException) {
46 jmsException.printStackTrace();
47 }
48
49 } // end method onMessage
50 }

1 // TallyPanel.java
2 // TallPanel is the GUI component which displays
3 // the name and tally for a vote candidate.
4 package com.deitel.advjhtp1.jms.voter;
5
6 // Java core packages
7 import java.awt.*;
8
9 // Java extension packages

10 import javax.swing.*;
11
12 public class TallyPanel extends JPanel {
13
14 private JLabel nameLabel;
15 private JTextField tallyField;
16 private String name;
17 private int tally;
18
19 // TallyPanel constructor
20 public TallyPanel(String voteName, int voteTally)
21 {
22 name = voteName;
23 tally = voteTally;
24
25 nameLabel = new JLabel(name);
26 tallyField =
27 new JTextField(Integer.toString(tally), 10);
28 tallyField.setEditable(false);
29 tallyField.setBackground(Color.white);
30
31 add(nameLabel);
32 add(tallyField);
33
34 } // end TallyPanel constructor
35
36 // update tally by one vote
37 public void updateTally()
38 {
39 tally++;

Fig. 16.9Fig. 16.9Fig. 16.9Fig. 16.9 TallyPanel class displays candidate name and tally (part 1 of 2).

Fig. 16.8Fig. 16.8Fig. 16.8Fig. 16.8 VoteListener class receives messages from the queue (part 2 of 2).

Chapter 16 Messaging with JMS 951

16.3.4 Voter Application: Configuring and Running
To run the application, issue the following commands at a command prompt:

1. Start J2EE server in a command window:

j2ee -verbose

2. In a new command window, create the Votes queue:

j2eeadmin -addJmsDestination Votes queue

3. Verify that the queue was created:

j2eeadmin -listJmsDestination

4. Create the connection factory:

j2eeadmin -addJmsFactory VOTE_FACTORY queue

5. Start VoteCollector:

java -classpath %J2EE_HOME%\lib\j2ee.jar;.
-Djms.properties=%J2EE_HOME%\config\jms_client.properties
com.deitel.advjhtp1.jms.voter.VoteCollector

6. Start Voter in a new command window:

java -classpath %J2EE_HOME%\lib\j2ee.jar;.
-Djms.properties=%J2EE_HOME%\config\jms_client.properties
com.deitel.advjhtp1.jms.voter.Voter

Once you have finished running the application, you can remove the connection fac-
tory with the command:

j2eeadmin -removeJmsFactory VOTE_FACTORY

To remove the topic, use the command:

j2eeadmin -removeJmsDestination Votes

To stop J2EE server, use the command:

j2ee -stop

16.4 Publish/Subscribe Messaging
The publish/subscribe messaging model (Fig. 16.10) allows multiple clients to connect to
a topic on the server and send and receive messages. Once connected, the client may pub-
lish messages or subscribe to the topic. When a client publishes a message, the server sends
the message to those clients that subscribe to the topic. A client may obtain two types of
subscriptions—nondurable and durable. Nondurable subscriptions receive messages only
while the subscriptions are active. Durable subscriptions, however, can receive messages

40 tallyField.setText(Integer.toString(tally));
41 }
42 }

Fig. 16.9Fig. 16.9Fig. 16.9Fig. 16.9 TallyPanel class displays candidate name and tally (part 2 of 2).

952 Messaging with JMS Chapter 16

while inactive—the server maintains messages sent to the topic while the subscription is
inactive and sends those messages to the client when the client reactivates the subscription.
Note that if a client specifies a message selector to filter the messages, the server maintains
only those messages that satisfy the selector.

16.4.1 Weather Application: Overview

We present an example of publish/subscribe messaging that uses a nondurable subscrip-
tion. The following application publishes messages to a Weather topic on the server.
These messages contain weather information for various U. S. cities retrieved from the Na-
tional Weather Service Travelers Forecast page (iwin.nws.noaa.gov/iwin/us/
traveler.html). Class WeatherPublisher (Section 16.4.2) retrieves weather up-
dates and publishes them as messages to the topic. Class WeatherSubscriber
(Section 16.4.3), presents a graphical user interface that allows the user to select cities for
which to display weather updates. Class WeatherSubscriber subscribes to the
Weather topic and receives messages corresponding to the selected cities, using a mes-
sage selector. Figure 16.11 provides an overview of the application.

Fig. 16.10Fig. 16.10Fig. 16.10Fig. 16.10 Publish/subscribe messaging model.

Fig. 16.11Fig. 16.11Fig. 16.11Fig. 16.11 Weather application overview.

Publisher

Publisher

Topic

Message

MessagesMessage

Subscriber
Messages

Subscriber

National Weather
Service

WeatherPublisher

Weather topic

ObjectMessage

HTML

WeatherSubscriber WeatherSubscriber

ObjectMessage ObjectMessage

Chapter 16 Messaging with JMS 953

16.4.2 Weather Application: Publisher Side
Class WeatherPublisher (Fig. 16.12) retrieves weather updates from the National
Weather Service and publishes those updates as messages to the Weather topic. An Ob-
jectMessage contains each city’s weather conditions. The ObjectMessage’s
String property City specifies the corresponding city. The WeatherSubscriber
uses the City property in its message selector.

1 // WeatherPublisher.java
2 // WeatherPublisher retrieves weather conditions from the National
3 // Weather Service and publishes them to the Weather topic
4 // as ObjectMessages containing WeatherBeans. The city name is
5 // used in a String property "City" in the message header.
6 package com.deitel.advjhtp1.jms.weather;
7 \
8 // Java core packages
9 import java.io.*;

10 import java.net.*;
11 import java.util.*;
12
13 // Java extension packages
14 import javax.jms.*;
15 import javax.naming.*;
16
17 // Deitel packages
18 import com.deitel.advjhtp1.rmi.weather.WeatherBean;
19
20 public class WeatherPublisher extends TimerTask {
21
22 private BufferedReader in;
23 private TopicConnection topicConnection;
24
25 // WeatherPublisher constructor
26 public WeatherPublisher()
27 {
28 // update weather conditions every minute
29 Timer timer = new Timer();
30 timer.scheduleAtFixedRate(this, 0, 60000);
31
32 // allow user to quit
33 InputStreamReader inputStreamReader =
34 new InputStreamReader(System.in);
35 char answer = '\0';
36
37 // loop until user enters q or Q
38 while (!((answer == 'q') || (answer == 'Q'))) {
39
40 // read in character
41 try {
42 answer = (char) inputStreamReader.read();
43 }

Fig. 16.12Fig. 16.12Fig. 16.12Fig. 16.12 WeatherPublisher class publishes messages to Weather topic (part
1 of 5).

954 Messaging with JMS Chapter 16

44
45 // process IO exception
46 catch (IOException ioException) {
47 ioException.printStackTrace();
48 System.exit(1);
49 }
50
51 } // end while
52
53 // close connections
54 try {
55
56 // close topicConnection if it exists
57 if (topicConnection != null) {
58 topicConnection.close();
59 }
60
61 in.close(); // close connection to NWS Web server
62 timer.cancel(); // stop timer
63 }
64
65 // process JMS exception from closing topic connection
66 catch (JMSException jmsException) {
67 jmsException.printStackTrace();
68 System.exit(1);
69 }
70
71 // process IO exception from closing connection
72 // to NWS Web server
73 catch (IOException ioException) {
74 ioException.printStackTrace();
75 System.exit(1);
76 }
77
78 System.exit(0);
79
80 } // end WeatherPublisher constructor
81
82 // get weather information from NWS
83 public void run()
84 {
85 // connect to topic "Weather"
86 try {
87 System.out.println("Update weather information...");
88
89 // create JNDI context
90 Context jndiContext = new InitialContext();
91 String topicName = "Weather";
92

Fig. 16.12Fig. 16.12Fig. 16.12Fig. 16.12 WeatherPublisher class publishes messages to Weather topic (part
2 of 5).

Chapter 16 Messaging with JMS 955

93 // retrieve topic connection factory and topic
94 // from JNDI context
95 TopicConnectionFactory topicConnectionFactory =
96 (TopicConnectionFactory)
97 jndiContext.lookup("WEATHER_FACTORY");
98
99 Topic topic =
100 (Topic) jndiContext.lookup(topicName);
101
102 // create connection, session, publisher and message
103 topicConnection =
104 topicConnectionFactory.createTopicConnection();
105
106 TopicSession topicSession =
107 topicConnection.createTopicSession(false,
108 Session.AUTO_ACKNOWLEDGE);
109
110 TopicPublisher topicPublisher =
111 topicSession.createPublisher(topic);
112
113 ObjectMessage message =
114 topicSession.createObjectMessage();
115
116 // connect to National Weather Service
117 // and publish conditions to topic
118
119 // National Weather Service Travelers Forecast page
120 URL url = new URL(
121 "http://iwin.nws.noaa.gov/iwin/us/traveler.html");
122
123 // set up text input stream to read Web page contents
124 in = new BufferedReader(
125 new InputStreamReader(url.openStream()));
126
127 // helps determine starting point of data on Web page
128 String separator = "TAV12";
129
130 // locate separator string in Web page
131 while (!in.readLine().startsWith(separator))
132 ; // do nothing
133
134 // strings representing headers on Travelers Forecast
135 // Web page for daytime and nighttime weather
136 String dayHeader =
137 "CITY WEA HI/LO WEA HI/LO";
138
139 String nightHeader =
140 "CITY WEA LO/HI WEA LO/HI";
141
142 String inputLine = "";
143

Fig. 16.12Fig. 16.12Fig. 16.12Fig. 16.12 WeatherPublisher class publishes messages to Weather topic (part
3 of 5).

956 Messaging with JMS Chapter 16

144 // locate header that begins weather information
145 do {
146 inputLine = in.readLine();
147 }
148
149 while (!inputLine.equals(dayHeader) &&
150 !inputLine.equals(nightHeader));
151
152 // create WeatherBean objects for each city's data
153 // publish to Weather topic using city as message's type
154 inputLine = in.readLine(); // get first city's info
155
156 // the portion of inputLine containing relevant data is
157 // 28 characters long. If the line length is not at
158 // least 28 characters long, done processing data.
159 while (inputLine.length() > 28) {
160
161 // create WeatherBean object for city
162 // first 16 characters are city name
163 // next six characters are weather description
164 // next six characters are HI/LO temperature
165 WeatherBean weather = new WeatherBean(
166 inputLine.substring(0, 16).trim(),
167 inputLine.substring(16, 22).trim(),
168 inputLine.substring(23, 29).trim());
169
170 // publish WeatherBean object with city name
171 // as a message property,
172 // used for selection by clients
173 message.setObject(weather);
174 message.setStringProperty("City",
175 weather.getCityName());
176 topicPublisher.publish(message);
177
178 System.out.println("published message for city: "
179 + weather.getCityName());
180
181 inputLine = in.readLine(); // get next city's info
182 }
183
184 System.out.println("Weather information updated.");
185
186 } // end try
187
188 // process Naming exception from JNDI context
189 catch (NamingException namingException) {
190 namingException.printStackTrace();
191 System.exit(1);
192 }
193

Fig. 16.12Fig. 16.12Fig. 16.12Fig. 16.12 WeatherPublisher class publishes messages to Weather topic (part
4 of 5).

Chapter 16 Messaging with JMS 957

Class WeatherPublisher publishes weather information for U.S. cities to the
Weather topic on the server. Every minute, the WeatherPublisher obtains the
weather information from the National Weather Service and publishes an individual mes-
sage for each city’s weather. Figure 16.13 shows the server in progress. Method run (lines
83–213)—specified by class TimerTask—connects to the topic and publishes the mes-
sages. Line 90 creates the JNDI context, in which the WeatherPublisher looks up the
TopicConnectionFactory and Topic (lines 95–100). The TopicConnection-
Factory—which the server administrator must create—creates a TopicConnection
(lines 103–104). The TopicConnection then creates a TopicSession (lines 106–
108). Lines 110–111 obtain the TopicPublisher from the TopicSession. The
TopicSession also creates an ObjectMessage (lines 113–114); the ObjectMes-
sage will contain WeatherBean objects (see Fig. 13.3 in Chapter 13, Remote Method
Invocation) that maintain the weather information for a given city. Lines 165–168 create
the WeatherBean object with data from the National Weather Service. Method setO-
bject of class ObjectMessage stores the WeatherBean object in the message.
Lines 174–175 use the setStringProperty of class Message to set String prop-

194 // process JMS exception from connection,
195 // session, publisher or message
196 catch (JMSException jmsException) {
197 jmsException.printStackTrace();
198 System.exit(1);
199 }
200
201 // process failure to connect to National Weather Service
202 catch (java.net.ConnectException connectException) {
203 connectException.printStackTrace();
204 System.exit(1);
205 }
206
207 // process other exceptions
208 catch (Exception exception) {
209 exception.printStackTrace();
210 System.exit(1);
211 }
212
213 } // end method run
214
215 // launch WeatherPublisher
216 public static void main(String args[])
217 {
218 System.err.println("Initializing server...\n" +
219 "Enter 'q' or 'Q' to quit");
220
221 WeatherPublisher publisher = new WeatherPublisher();
222 }
223 }

Fig. 16.12Fig. 16.12Fig. 16.12Fig. 16.12 WeatherPublisher class publishes messages to Weather topic (part
5 of 5).

958 Messaging with JMS Chapter 16

erty City to the city name. The subscriber can use this property to filter the messages.
Finally, the topicPublisher publishes the message to the topic (line 176).

16.4.3 Weather Application: Subscriber Side

Class WeatherSubscriber (Fig. 16.14) subscribes to the Weather topic to receive
weather updates for selected cities. Class WeatherSubscriber creates a graphical
user interface, which allows the user to choose cities, and displays the resulting weather
conditions.

As with the WeatherPublisher, the WeatherSubscriber uses a JNDI con-
text to obtain the TopicConnectionFactory and Topic (lines 55–65). The Topic-
ConnectionFactory creates a TopicConnection (lines 68–69), which creates a
TopicSession (lines 72–73). Line 76 initializes the message listener for the topic
receiver (created in method getWeather) to a new instance of the WeatherListener
class (Fig. 16.17). Lines 90–135 set up the user interface; the weather conditions are dis-
played in a WeatherDisplay (Fig. 16.18). Figure 16.15 shows the client GUI.

Fig. 16.13Fig. 16.13Fig. 16.13Fig. 16.13 WeatherPublisher publishing weather update messages.

1 // WeatherSubscriber.java
2 // WeatherSubscriber presents a GUI for the client to request
3 // weather conditions for various cities. The WeatherSubscriber
4 // retrieves the weather conditions from the Weather topic;
5 // each message body contains a WeatherBean object. The message
6 // header contains a String property "City," which allows
7 // the client to select the desired cities.
8 package com.deitel.advjhtp1.jms.weather;
9

10 // Java core packages
11 import java.awt.*;
12 import java.awt.event.*;

Fig. 16.14Fig. 16.14Fig. 16.14Fig. 16.14 WeatherSubscriber class allows user to receive weather updates
(part 1 of 6).

Chapter 16 Messaging with JMS 959

13
14 // Java extension packages
15 import javax.swing.*;
16 import javax.naming.*;
17 import javax.jms.*;
18
19 public class WeatherSubscriber extends JFrame {
20
21 // GUI variables
22 private WeatherDisplay weatherDisplay;
23 private JList citiesList;
24
25 // cities contains cities for which weather
26 // updates are available on "Weather" topic
27 private String cities[] = { "ALBANY NY", "ANCHORAGE",
28 "ATLANTA", "ATLANTIC CITY", "BOSTON", "BUFFALO",
29 "BURLINGTON VT", "CHARLESTON WV", "CHARLOTTE", "CHICAGO",
30 "CLEVELAND", "DALLAS FT WORTH", "DENVER", "DETROIT",
31 "GREAT FALLS", "HARTFORD SPGFLD", "HONOLULU",
32 "HOUSTON INTCNTL", "KANSAS CITY", "LAS VEGAS",
33 "LOS ANGELES", "MIAMI BEACH", "MPLS ST PAUL", "NEW ORLEANS",
34 "NEW YORK CITY", "NORFOLK VA", "OKLAHOMA CITY", "ORLANDO",
35 "PHILADELPHIA", "PHOENIX", "PITTSBURGH", "PORTLAND ME",
36 "PORTLAND OR", "RENO" };
37
38 // JMS variables
39 private TopicConnection topicConnection;
40 private TopicSession topicSession;
41 private Topic topic;
42 private TopicSubscriber topicSubscriber;
43 private WeatherListener topicListener;
44
45 // WeatherSubscriber constructor
46 public WeatherSubscriber()
47 {
48 super("JMS WeatherSubscriber...");
49 weatherDisplay = new WeatherDisplay();
50
51 // set up JNDI context and JMS connections
52 try {
53
54 // create JNDI context
55 Context jndiContext = new InitialContext();
56
57 // retrieve topic connection factory
58 // from JNDI context
59 TopicConnectionFactory topicConnectionFactory =
60 (TopicConnectionFactory) jndiContext.lookup(
61 "WEATHER_FACTORY");
62
63 // retrieve topic from JNDI context
64 String topicName = "Weather";

Fig. 16.14Fig. 16.14Fig. 16.14Fig. 16.14 WeatherSubscriber class allows user to receive weather updates
(part 2 of 6).

960 Messaging with JMS Chapter 16

65 topic = (Topic) jndiContext.lookup(topicName);
66
67 // create topic connection
68 topicConnection =
69 topicConnectionFactory.createTopicConnection();
70
71 // create topic session
72 topicSession = topicConnection.createTopicSession(false,
73 Session.AUTO_ACKNOWLEDGE);
74
75 // initialize listener
76 topicListener = new WeatherListener(weatherDisplay);
77 }
78
79 // process Naming exception from JNDI context
80 catch (NamingException namingException) {
81 namingException.printStackTrace();
82 }
83
84 // process JMS exceptions from topic connection or session
85 catch (JMSException jmsException) {
86 jmsException.printStackTrace();
87 }
88
89 // lay out user interface
90 Container container = getContentPane();
91 container.setLayout(new BorderLayout());
92
93 JPanel selectionPanel = new JPanel();
94 selectionPanel.setLayout(new BorderLayout());
95
96 JLabel selectionLabel = new JLabel("Select Cities");
97 selectionPanel.add(selectionLabel, BorderLayout.NORTH);
98
99 // create list of cities for which users
100 // can request weather updates
101 citiesList = new JList(cities);
102 selectionPanel.add(new JScrollPane(citiesList),
103 BorderLayout.CENTER);
104
105 JButton getWeatherButton = new JButton("Get Weather...");
106 selectionPanel.add(getWeatherButton, BorderLayout.SOUTH);
107
108 // invoke method getWeather when getWeatherButton clicked
109 getWeatherButton.addActionListener (
110
111 new ActionListener() {
112
113 public void actionPerformed (ActionEvent event)
114 {
115 getWeather();
116 }

Fig. 16.14Fig. 16.14Fig. 16.14Fig. 16.14 WeatherSubscriber class allows user to receive weather updates
(part 3 of 6).

Chapter 16 Messaging with JMS 961

117 }
118
119); // end call to addActionListener
120
121 container.add(selectionPanel, BorderLayout.WEST);
122 container.add(weatherDisplay, BorderLayout.CENTER);
123
124 // invoke method quit when window closed
125 addWindowListener(
126
127 new WindowAdapter() {
128
129 public void windowClosing(WindowEvent event)
130 {
131 quit();
132 }
133 }
134
135); // end call to addWindowListener
136
137 } // end WeatherSubscriber constructor
138
139 // get weather information for selected cities
140 public void getWeather()
141 {
142 // retrieve selected indices
143 int selectedIndices[] = citiesList.getSelectedIndices();
144
145 if (selectedIndices.length > 0) {
146
147 // if topic subscriber exists, method has
148 // been called before
149 if (topicSubscriber != null) {
150
151 // close previous topic subscriber
152 try {
153 topicSubscriber.close();
154 }
155
156 // process JMS exception
157 catch (JMSException jmsException) {
158 jmsException.printStackTrace();
159 }
160
161 // clear previous cities from display
162 weatherDisplay.clearCities();
163 }
164
165 // create message selector to retrieve specified cities
166 StringBuffer messageSelector = new StringBuffer();
167 messageSelector.append(
168 "City = '" + cities[selectedIndices[0]] + "'");

Fig. 16.14Fig. 16.14Fig. 16.14Fig. 16.14 WeatherSubscriber class allows user to receive weather updates
(part 4 of 6).

962 Messaging with JMS Chapter 16

169
170 for (int i = 1; i < selectedIndices.length; i++) {
171 messageSelector.append(" OR City = '" +
172 cities[selectedIndices[i]] + "'");
173 }
174
175 // create topic subscriber and subscription
176 try {
177 topicSubscriber = topicSession.createSubscriber(
178 topic, messageSelector.toString(), false);
179 topicSubscriber.setMessageListener(topicListener);
180 topicConnection.start();
181
182 JOptionPane.showMessageDialog(this,
183 "A weather update should be arriving soon...");
184 }
185
186 // process JMS exception
187 catch (JMSException jmsException) {
188 jmsException.printStackTrace();
189 }
190
191 } // end if
192
193 } // end method getWeather
194
195 // quit WeatherSubscriber application
196 public void quit()
197 {
198 // close connection and subscription to topic
199 try {
200
201 // close topic subscriber
202 if (topicSubscriber != null) {
203 topicSubscriber.close();
204 }
205
206 // close topic connection
207 topicConnection.close();
208 }
209
210 // process JMS exception
211 catch (JMSException jmsException) {
212 jmsException.printStackTrace();
213 System.exit(1);
214 }
215
216 System.exit(0);
217
218 } // end method quit
219

Fig. 16.14Fig. 16.14Fig. 16.14Fig. 16.14 WeatherSubscriber class allows user to receive weather updates
(part 5 of 6).

Chapter 16 Messaging with JMS 963

The program invokes method getWeather (lines 140–193) when the user clicks the
Get Weather button. If the method has been called previously (i.e., the user has clicked
the button before), lines 149–163 close the previous TopicSubscriber so that a new
subscriber can filter in the selected cities with a message selector. When a client specifies
a message selector for a subscription, the server will only send messages satisfying that
filter to the client. Lines 166–173 create a messageSelector so that the weather con-
ditions for the selected cities will be displayed. The messageSelector syntax is based
on SQL92 (see the Message javadoc for more details). Lines 177–178 create the Top-
icSubscriber from TopicSession, passing the Topic and messageSelector
as parameters. The third parameter, with value false, indicates that the subscriber can
receive messages published by its own connection. Line 179 sets the message listener for
the TopicSubscriber to topicListener. A TopicSubscriber’s message lis-
tener handles new messages when they arrive. Finally, line 180 starts the TopicConnec-
tion; once the connection has started, the TopicSubscriber will receive messages
published to the topic. Figure 16.16 shows the application after receiving messages.

When the user closes the application window, lines 202–204 close the TopicSub-
scriber if it exists. Line 207 closes the topicConnection.

Class WeatherListener (Fig. 16.17) implements interface MessageLis-
tener. It therefore defines method onMessage (lines 26–57) to receive incoming mes-
sages. When a new message arrives, line 32 checks that it is of the appropriate message
type—ObjectMessage. If so, method getObject gets the WeatherBean from the
ObjectMessage. The WeatherBean object is then passed to the WeatherDis-
play, which displays the corresponding information for the user. Figure 16.16 shows the
application window once it has received a weather update.

220 // launch WeatherSubscriber application
221 public static void main(String args [])
222 {
223 WeatherSubscriber subscriber = new WeatherSubscriber();
224 subscriber.pack();
225 subscriber.setVisible(true);
226 }
227 }

Fig. 16.15Fig. 16.15Fig. 16.15Fig. 16.15 WeatherSubscriber selecting cities for weather updates.

Fig. 16.14Fig. 16.14Fig. 16.14Fig. 16.14 WeatherSubscriber class allows user to receive weather updates
(part 6 of 6).

964 Messaging with JMS Chapter 16

Fig. 16.16Fig. 16.16Fig. 16.16Fig. 16.16 WeatherSubscriber having received updated weather
conditions.

1 // WeatherListener.java
2 // WeatherListener is the MessageListener for a subscription
3 // to the Weather topic. It implements the specified onMessage
4 // method to update the GUI with the corresponding city's
5 // weather.
6 package com.deitel.advjhtp1.jms.weather;
7
8 // Java extension packages
9 import javax.jms.*;

10 import javax.swing.*;
11
12 // Deitel packages
13 import com.deitel.advjhtp1.rmi.weather.WeatherBean;
14
15 public class WeatherListener implements MessageListener {
16
17 private WeatherDisplay weatherDisplay;
18
19 // WeatherListener constructor
20 public WeatherListener(WeatherDisplay display)
21 {
22 weatherDisplay = display;
23 }
24
25 // receive new message
26 public void onMessage(Message message)
27 {
28 // retrieve and process message
29 try {
30
31 // ensure Message is an ObjectMessage
32 if (message instanceof ObjectMessage) {
33
34 // get WeatherBean from ObjectMessage
35 ObjectMessage objectMessage =
36 (ObjectMessage) message;

Fig. 16.17Fig. 16.17Fig. 16.17Fig. 16.17 WeatherListener class subscribes to Weather topic to receive
weather forecasts (part 1 of 2).

Chapter 16 Messaging with JMS 965

Class WeatherDisplay (Fig. 16.18) displays WeatherBean objects in JList
weatherList. The weatherList uses classes WeatherListModel and Weath-
erCellRenderer (see Fig. 13.5 and Fig. 13.6 in Chapter 13, Remote Method Invoca-
tion) to display WeatherBean objects. Method addItem (lines 47–65) adds the
specified WeatherBean item to the display if the corresponding city is not displayed cur-
rently. If the city is in the display already, lines 56–58 remove the city’s previous Weath-
erBean object and add the updated WeatherBean object.

37 WeatherBean weatherBean =
38 (WeatherBean) objectMessage.getObject();
39
40 // add WeatherBean to display
41 weatherDisplay.addItem(weatherBean);
42
43 } // end if
44
45 else {
46 System.out.println("Expected ObjectMessage," +
47 " but received " + message.getClass().getName());
48 }
49
50 } // end try
51
52 // process JMS exception from message
53 catch (JMSException jmsException) {
54 jmsException.printStackTrace();
55 }
56
57 } // end method onMessage
58 }

1 // WeatherDisplay.java
2 // WeatherDisplay extends JPanel to display results
3 // of client's request for weather conditions.
4 package com.deitel.advjhtp1.jms.weather;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9 import java.util.*;

10
11 // Java extension packages
12 import javax.swing.*;
13
14 // Deitel packages
15 import com.deitel.advjhtp1.rmi.weather.*;

Fig. 16.18Fig. 16.18Fig. 16.18Fig. 16.18 WeatherDisplay displays WeatherBeans in a JList using a
WeatherCellRenderer (part 1 of 3).

Fig. 16.17Fig. 16.17Fig. 16.17Fig. 16.17 WeatherListener class subscribes to Weather topic to receive
weather forecasts (part 2 of 2).

966 Messaging with JMS Chapter 16

16
17 public class WeatherDisplay extends JPanel {
18
19 // WeatherListModel and Map for storing WeatherBeans
20 private WeatherListModel weatherListModel;
21 private Map weatherItems;
22
23 // WeatherDisplay constructor
24 public WeatherDisplay()
25 {
26 setLayout(new BorderLayout());
27
28 ImageIcon headerImage = new ImageIcon(
29 WeatherDisplay.class.getResource(
30 "images/header.jpg"));
31 add(new JLabel(headerImage), BorderLayout.NORTH);
32
33 // use JList to display updated weather conditions
34 // for requested cities
35 weatherListModel = new WeatherListModel();
36 JList weatherJList = new JList(weatherListModel);
37 weatherJList.setCellRenderer(new WeatherCellRenderer());
38
39 add(new JScrollPane(weatherJList), BorderLayout.CENTER);
40
41 // maintain WeatherBean items in HashMap
42 weatherItems = new HashMap();
43
44 } // end WeatherDisplay constructor
45
46 // add WeatherBean item to display
47 public void addItem(WeatherBean weather)
48 {
49 String city = weather.getCityName();
50
51 // check whether city is already in display
52 if (weatherItems.containsKey(city)) {
53
54 // if city is in Map, and therefore in display
55 // remove previous WeatherBean object
56 WeatherBean previousWeather =
57 (WeatherBean) weatherItems.remove(city);
58 weatherListModel.remove(previousWeather);
59 }
60
61 // add WeatherBean to Map and WeatherListModel
62 weatherListModel.add(weather);
63 weatherItems.put(city, weather);
64
65 } // end method addItem
66

Fig. 16.18Fig. 16.18Fig. 16.18Fig. 16.18 WeatherDisplay displays WeatherBeans in a JList using a
WeatherCellRenderer (part 2 of 3).

Chapter 16 Messaging with JMS 967

16.4.4 Weather Application: Configuring and Running

To run the application, issue the following commands at a command prompt:

1. Start J2EE server in a command window:

j2ee -verbose

2. In a new command window, create the Weather topic:

j2eeadmin -addJmsDestination Weather topic

3. Verify that the topic was created:

j2eeadmin -listJmsDestination

4. Create the connection factory:

j2eeadmin -addJmsFactory WEATHER_FACTORY topic

5. Start WeatherPublisher:

java -classpath %J2EE_HOME%\lib\j2ee.jar;.
-Djms.properties=%J2EE_HOME%\config\jms_client.properties
com.deitel.advjhtp1.jms.weather.WeatherPublisher

6. Start WeatherSubscriber in a new command window:

java -classpath %J2EE_HOME%\lib\j2ee.jar;.
-Djms.properties=%J2EE_HOME%\config\jms_client.properties
com.deitel.advjhtp1.jms.weather.WeatherSubscriber

Once you have finished running the application, you can remove the connection fac-
tory with the command:

j2eeadmin -removeJmsFactory WEATHER_FACTORY

To remove the topic, use the command:

j2eeadmin -removeJmsDestination Weather

To stop J2EE server, use the command:

j2ee -stop

67 // clear all cities from display
68 public void clearCities()
69 {
70 weatherItems.clear();
71 weatherListModel.clear();
72 }
73 }

Fig. 16.18Fig. 16.18Fig. 16.18Fig. 16.18 WeatherDisplay displays WeatherBeans in a JList using a
WeatherCellRenderer (part 3 of 3).

968 Messaging with JMS Chapter 16

16.5 Message-Driven Enterprise JavaBeans
Message-driven EJBs, or message-driven beans, are a new type of Enterprise JavaBean
available in Enterprise JavaBeans version 2.0, which is part of the Java 2 Enterprise Edition
version 1.3.1 Message-driven beans are capable of processing JMS messages posted to a
queue or topic. When a message is received, the EJB container uses any available instance
of a particular message-driven bean to process the message. This is similar to the way an
EJB container will use any instance of a stateless session EJB to handle a client request.
Since any message-driven EJB instance may be used, message-driven beans are not specif-
ic to particular client and must not maintain client state information. Note that any given
EJB instance may process messages from multiple clients. Unlike session and entity beans
(which require developers to provide home and remote interfaces), message-driven beans
require that developers to provide only the bean implementation class.

16.5.1 Voter Application: Overview
This section presents an implementation of the Voter application from Section 16.3 using
a message-driven bean to tally the votes posted to the Votes queue. Class Voter
(Fig. 16.4), which posts the vote messages to the queue, remains exactly the same—a ben-
efit of loosely-coupled applications. The sender simply sends messages to the queue re-
gardless of the receiver’s implementation. The receiving end of the application
(Section 16.5.2) is now a message-driven bean. Entity bean Candidate (Fig. 16.20,
Fig. 16.21 and Fig. 16.22) represents a particular candidate for which users can vote. Entity
bean Candidate stores the vote tallies in database Voting. Message-driven bean Vo-
teCollectorEJB (Fig. 16.23) uses the Candidate EJB to update the tallies when the
Votes queue receives a new vote message. Class TallyDisplay (Fig. 16.24) accesses
the Candidate EJB to present a GUI with the current tallies from the database.
Figure 16.19 provides an overview of the application.

1. At the time of this writing, the Java 2 Enterprise Edition Specification, version 1.3, was a Proposed
Final Draft in the Java Community Process.

Fig. 16.19Fig. 16.19Fig. 16.19Fig. 16.19 Voter application overview.

VoteCollectorEJB

Voter Voter

TextMessage

Votes
queue

TextMessages

TextMessage

Chapter 16 Messaging with JMS 969

16.5.2 Voter Application: Receiver Side
The Candidate entity EJB represents a particular candidate for which users can vote and
the total number of votes the Candidate has received. Home interface Candidate-
Home (Fig. 16.20) provides methods findByPrimaryKey (lines 15–16) and find-
AllCandidates (lines 19–20) to locate a particular Candidate or a Collection of
all Candidates, respectively. Method create (lines 23–24) creates a new Candi-
date EJB with the given candidateName and zero votes.

Remote interface Candidate (Fig. 16.21) provides method incrementVote-
Count to add a new vote for the Candidate. Method getVoteCount (line 18) returns
the current vote tally for the Candidate. Method getCandidateName (line 21)
returns the Candidate’s name.

1 // CandidateHome.java
2 // CandidateHome is the home interface for the Candidate EJB.
3 package com.deitel.advjhtp1.jms.mdb;
4
5 // Java core libraries
6 import java.rmi.*;
7 import java.util.*;
8
9 // Java standard extensions

10 import javax.ejb.*;
11
12 public interface CandidateHome extends EJBHome {
13
14 // find Candidate with given name
15 public Candidate findByPrimaryKey(String candidateName)
16 throws RemoteException, FinderException;
17
18 // find all Candidates
19 public Collection findAllCandidates()
20 throws RemoteException, FinderException;
21
22 // create new Candidate EJB
23 public Candidate create(String candidateName)
24 throws RemoteException, CreateException;
25 }

Fig. 16.20Fig. 16.20Fig. 16.20Fig. 16.20 CandidateHome interface for Candidate EJB.

1 // Candidate.java
2 // Candidate is the remote interface for the Candidate
3 // EJB, which maintains a tally of votes.
4 package com.deitel.advjhtp1.jms.mdb;
5
6 // Java core libraries
7 import java.rmi.RemoteException;
8

Fig. 16.21Fig. 16.21Fig. 16.21Fig. 16.21 Candidate remote interface for Candidate EJB (part 1 of 2).

970 Messaging with JMS Chapter 16

Class CandidateEJB (Fig. 16.22) implements the Candidate entity EJB. The
Candidate EJB uses container-managed persistence for storing Candidate information
in a database. Lines 17–18 declare container-managed fields voteCount and name for
storing the Candidate’s total vote tally and name, respectively. Method incrementVo-
teCount (lines 21–25) increments the Candidate’s vote tally. Method getName (lines
34–37) returns the Candidate’s name. Method ejbCreate (lines 40–47) creates a new
Candidate EJB, sets the Candidate’s name and initializes the voteCount to zero.

9 // Java standard extensions
10 import javax.ejb.EJBObject;
11
12 public interface Candidate extends EJBObject {
13
14 // place vote for this Candidate
15 public void incrementVoteCount() throws RemoteException;
16
17 // get total vote count for this Candidate
18 public Integer getVoteCount() throws RemoteException;
19
20 // get Candidate's name
21 public String getCandidateName() throws RemoteException;
22 }

1 // CandidateEJB.java
2 // CandidateEJB is an entity EJB that uses container-managed
3 // persistence to persist its Candidate and its vote tally.
4 package com.deitel.advjhtp1.jms.mdb;
5
6 // Java core libraries
7 import java.rmi.RemoteException;
8
9 // Java standard extensions

10 import javax.ejb.*;
11
12 public class CandidateEJB implements EntityBean {
13
14 private EntityContext entityContext;
15
16 // container-managed fields
17 public Integer voteCount;
18 public String name;
19
20 // place vote for this Candidate
21 public void incrementVoteCount()
22 {
23 int newVoteCount = voteCount.intValue() + 1;
24 voteCount = new Integer(newVoteCount);
25 }

Fig. 16.22Fig. 16.22Fig. 16.22Fig. 16.22 CandidateEJB class to maintain candidate tallies (part 1 of 3).

Fig. 16.21Fig. 16.21Fig. 16.21Fig. 16.21 Candidate remote interface for Candidate EJB (part 2 of 2).

Chapter 16 Messaging with JMS 971

26
27 // get total vote count for this Candidate
28 public Integer getVoteCount()
29 {
30 return voteCount;
31 }
32
33 // get Candidate's name
34 public String getCandidateName()
35 {
36 return name;
37 }
38
39 // create new Candidate
40 public String ejbCreate(String candidateName)
41 throws CreateException
42 {
43 name = candidateName;
44 voteCount = new Integer(0);
45
46 return null;
47 }
48
49 // do post-creation tasks when creating new Candidate
50 public void ejbPostCreate(String candidateName) {}
51
52 // set EntityContext
53 public void setEntityContext(EntityContext context)
54 {
55 entityContext = context;
56 }
57
58 // unset EntityContext
59 public void unsetEntityContext()
60 {
61 entityContext = null;
62 }
63
64 // activate Candidate instance
65 public void ejbActivate()
66 {
67 name = (String) entityContext.getPrimaryKey();
68 }
69
70 // passivate Candidate instance
71 public void ejbPassivate()
72 {
73 name = null;
74 }
75
76 // load Candidate from database
77 public void ejbLoad() {}
78

Fig. 16.22Fig. 16.22Fig. 16.22Fig. 16.22 CandidateEJB class to maintain candidate tallies (part 2 of 3).

972 Messaging with JMS Chapter 16

To handle incoming messages from the Votes queue, the container uses message-
driven bean class VoteCollectorEJB (Fig. 16.23). When VoteCollectorEJB
receives a new vote, the container invokes method onMessage (lines 21–48).

79 // store Candidate in database
80 public void ejbStore() {}
81
82 // remove Candidate from database
83 public void ejbRemove() {}
84 }

1 // VoteCollectorEJB.java
2 // VoteCollectorEJB is a MessageDriven EJB that tallies votes.
3 package com.deitel.advjhtp1.jms.mdb;
4
5 // Java core packages
6 import java.util.*;
7 import java.rmi.*;
8
9 // Java extension packages

10 import javax.ejb.*;
11 import javax.rmi.*;
12 import javax.jms.*;
13 import javax.naming.*;
14
15 public class VoteCollectorEJB
16 implements MessageDrivenBean, MessageListener {
17
18 private MessageDrivenContext messageDrivenContext;
19
20 // receive new message
21 public void onMessage(Message message)
22 {
23 TextMessage voteMessage;
24
25 // retrieve and process message
26 try {
27
28 if (message instanceof TextMessage) {
29 voteMessage = (TextMessage) message;
30 String vote = voteMessage.getText();
31 countVote(vote);
32
33 System.out.println("Received vote: " + vote);
34 } // end if
35

Fig. 16.23Fig. 16.23Fig. 16.23Fig. 16.23 VoteCollectorEJB class tallies votes from Votes queue (part 1 of 3).

Fig. 16.22Fig. 16.22Fig. 16.22Fig. 16.22 CandidateEJB class to maintain candidate tallies (part 3 of 3).

Chapter 16 Messaging with JMS 973

36 else {
37 System.out.println("Expecting " +
38 "TextMessage object, received " +
39 message.getClass().getName());
40 }
41
42 } // end try
43
44 // process JMS exception from message
45 catch (JMSException jmsException) {
46 jmsException.printStackTrace();
47 }
48 }
49
50 // add vote to corresponding tally
51 private void countVote(String vote)
52 {
53 // CandidateHome reference for finding/creating Candidates
54 CandidateHome candidateHome = null;
55
56 // find Candidate and increment vote count
57 try {
58
59 // look up Candidate EJB
60 Context initialContext = new InitialContext();
61
62 Object object = initialContext.lookup(
63 "java:comp/env/ejb/Candidate");
64
65 candidateHome =
66 (CandidateHome) PortableRemoteObject.narrow(
67 object, CandidateHome.class);
68
69 // find Candidate for whom the user voted
70 Candidate candidate =
71 candidateHome.findByPrimaryKey(vote);
72
73 // increment Candidate's vote count
74 candidate.incrementVoteCount();
75
76 } // end try
77
78 // if Candidate not found, create new Candidate
79 catch (FinderException finderException) {
80
81 // create new Candidate and increment its vote count
82 try {
83 Candidate newCandidate = candidateHome.create(vote);
84 newCandidate.incrementVoteCount();
85 }
86

Fig. 16.23Fig. 16.23Fig. 16.23Fig. 16.23 VoteCollectorEJB class tallies votes from Votes queue (part 2 of 3).

974 Messaging with JMS Chapter 16

Class VoteCollectorEJB implements interfaces MessageDrivenBean and
MessageListener. The container invokes method ejbCreate following instantia-
tion of a new bean instance and method ejbRemove just before the instance is destroyed.
Interface MessageDrivenBean specifies method setMessageDrivenContext.
Note that interface MessageDrivenBean also specifies that the message-driven context
should be stored as an instance variable (messageDrivenContext).

Upon receiving a message, the container invokes method onMessage, specified by
interface MessageListener. Line 28 checks that the received Message is of type
TextMessage. If so, line 31 invokes method countVote to count the received vote.
Method countVote (lines 51–104) looks up the Candidate EJB (lines 60–67) and
invokes method findByPrimaryKey of interface CandidateHome to locate the
Candidate for which the user voted. If the Candidate is found, line 74 invokes
method incrementVoteCount of interface Candidate to add a vote for the Can-
didate. If the Candidate is not found, lines 79–92 catch a FinderException.

87 // handle exceptions creating new Candidate
88 catch (Exception exception) {
89 throw new EJBException(exception);
90 }
91
92 } // end FinderException catch
93
94 // handle exception when looking up OrderProducts EJB
95 catch (NamingException namingException) {
96 throw new EJBException(namingException);
97 }
98
99 // handle exception when invoking OrderProducts methods
100 catch (RemoteException remoteException) {
101 throw new EJBException(remoteException);
102 }
103
104 } // end method countVote
105
106 // set message driven context
107 public void setMessageDrivenContext(
108 MessageDrivenContext context)
109 {
110 messageDrivenContext = context;
111 }
112
113 // create bean instance
114 public void ejbCreate() {}
115
116 // remove bean instance
117 public void ejbRemove() {}
118 }

Fig. 16.23Fig. 16.23Fig. 16.23Fig. 16.23 VoteCollectorEJB class tallies votes from Votes queue (part 3 of 3).

Chapter 16 Messaging with JMS 975

Class TallyDisplay (Fig. 16.24) displays a snapshot of the candidates and corre-
sponding tallies. Class TallyDisplay uses the Candidate EJB to retrieve the voting
data. Lines 36–46 look up the Candidate EJB and retrieve a Collection of all Candidates.

For each Candidate, lines 51–58 create and add a new TallyPanel (Fig. 16.26),
passing the candidate name and vote count as parameters to the TallyPanel constructor.

1 // TallyDisplay.java
2 // TallyDisplay displays the votes from database.
3 package com.deitel.advjhtp1.jms.mdb;
4
5 // Java core packages
6 import java.awt.*;
7 import java.awt.event.*;
8 import java.rmi.*;
9 import java.util.*;

10 import java.util.List;
11
12 // Java extension packages
13 import javax.swing.*;
14 import javax.ejb.*;
15 import javax.rmi.*;
16 import javax.naming.*;
17
18 public class TallyDisplay extends JFrame {
19
20 // TallyDisplay constructor
21 public TallyDisplay()
22 {
23 super("Vote Tallies");
24
25 Container container = getContentPane();
26
27 // displayPanel displays tally results
28 JPanel displayPanel = new JPanel();
29 displayPanel.setLayout(new GridLayout(0, 1));
30 container.add(new JScrollPane(displayPanel));
31
32 // find Candidates and display tallies
33 try {
34
35 // look up Candidate EJB
36 Context initialContext = new InitialContext();
37
38 Object object = initialContext.lookup(
39 "Candidate");
40 CandidateHome candidateHome =
41 (CandidateHome) PortableRemoteObject.narrow(
42 object, CandidateHome.class);
43
44 // find all Candidates
45 Collection candidates =
46 candidateHome.findAllCandidates();

Fig. 16.24Fig. 16.24Fig. 16.24Fig. 16.24 TallyDisplay displays candidate tallies from database (part 1 of 2).

976 Messaging with JMS Chapter 16

Figure 16.25 demonstrates the TallyDisplay. Note that the TallyDisplay dis-
plays only those votes already registered; the TallyDisplay does not update as new
votes are received.

Class TallyPanel (Fig. 16.26) displays the name and tally for an individual candi-
date in a JPanel.

47
48 // add TallyPanel with candidate name and
49 // vote count for each candidate
50 Iterator iterator = candidates.iterator();
51 while (iterator.hasNext()) {
52 Candidate candidate = (Candidate) iterator.next();
53
54 // create TallyPanel for Candidate
55 TallyPanel tallyPanel =
56 new TallyPanel(candidate.getCandidateName(),
57 candidate.getVoteCount().intValue());
58 displayPanel.add(tallyPanel);
59 }
60
61 } // end try
62
63 // handle exception finding Candidates
64 catch (FinderException finderException) {
65 finderException.printStackTrace();
66 }
67 // handle exception looking up Candidate EJB
68 catch (NamingException namingException) {
69 namingException.printStackTrace();
70 }
71
72 // handle exception communicating with Candidate
73 catch (RemoteException remoteException) {
74 remoteException.printStackTrace();
75 }
76
77 } // end TallyDisplay constructor
78
79 // launch TallyDisplay application
80 public static void main(String args[])
81 {
82 TallyDisplay tallyDisplay = new TallyDisplay();
83 tallyDisplay.setDefaultCloseOperation(EXIT_ON_CLOSE);
84 tallyDisplay.pack();
85 tallyDisplay.setVisible(true);
86 }
87 }

Fig. 16.24Fig. 16.24Fig. 16.24Fig. 16.24 TallyDisplay displays candidate tallies from database (part 2 of 2).

Chapter 16 Messaging with JMS 977

Fig. 16.25Fig. 16.25Fig. 16.25Fig. 16.25 TallyDisplay displays candidate tallies from database.

1 // TallyPanel.java
2 // TallPanel is the GUI component which displays
3 // the name and tally for a vote candidate.
4 package com.deitel.advjhtp1.jms.mdb;
5
6 // Java core packages
7 import java.awt.*;
8
9 // Java extension packages

10 import javax.swing.*;
11
12 public class TallyPanel extends JPanel {
13
14 private JLabel nameLabel;
15 private JTextField tallyField;
16 private String name;
17 private int tally;
18
19 // TallyPanel constructor
20 public TallyPanel(String voteName, int voteTally)
21 {
22 name = voteName;
23 tally = voteTally;
24
25 nameLabel = new JLabel(name);
26 tallyField =
27 new JTextField(Integer.toString(tally), 10);
28 tallyField.setEditable(false);
29 tallyField.setBackground(Color.white);
30
31 add(nameLabel);
32 add(tallyField);
33
34 } // end TallyPanel constructor
35
36 }

Fig. 16.26Fig. 16.26Fig. 16.26Fig. 16.26 TallyPanel class displays the name and tally for a candidate.

978 Messaging with JMS Chapter 16

16.5.3 Voter Application: Configuring and Running
This section presents the steps needed to deploy and run the message-driven bean Voter ap-
plication. Since the application relies on the Cloudscape database, the following lines must be
added to the file resource.properties within the config directory under the main
J2EE directory (e.g., C:\j2sdkee1.3\config\resource.properties):

jdbcDataSource.5.name=jdbc/Voting

jdbcDataSource.5.url=jdbc:cloudscape:rmi:VotingDB;create=true

Note that there may be several jdbcDataSource entries in this properties file. In the
above examples, you should replace the 5 with the number of the last jdbcDataSource
entry plus 1. For example, if the last jdbcDatSource entry is number 3, you would
specify jdbcDataSource.4.name and jdbcDataSource.4.url. Once you have
added these lines, start Cloudscape. Then start the J2EE server, using the command

j2ee -verbose

In a new command window, create the queue and connection factory (note that these might
still exist, if created in Section 16.3.4):

j2eeadmin -addJmsDestination Votes queue

j2eeadmin -listJmsDestination

j2eeadmin -addJmsFactory VOTE_FACTORY queue

To deploy the VoteCollector application, start

deploytool

Create a new application by selecting File -> New Application from the menu bar. In the
dialog, click Browse and navigate to the directory above the com directory. Enter Vote-
CollectorApp.ear as the File name and click New Application. Then click OK.

Now, add the Candidate EJB by selecting New Enterprise Bean from the File menu.
In the EJB JAR dialog, select the Create new EJB File in Application radio button,
highlighting VoteCollectorApp from the resulting pull-down menu. Enter VoteCol-
lectorJAR as the EJB Display Name. See Fig. 16.27 for details. Click the Edit button
to add the class files. Inside the Edit dialog, specify the directory that contains the
com.deitel.advjhtp1 packages structure as the Starting Directory. Navigate down
the tree to the mdb directory (com/deitel/advjhtp1/jms/mdb) and Add Candi-
date.class, CandidateEJB.class and CandidateHome.class (Fig. 16.28).
Click OK to exit the Edit dialog. Click Next to proceed to the General dialog.

In the General dialog, select the Entity radio button as the Bean Type. Select
com.deitel.advjhtp1.jms.mdb.CandidateEJB from the pull-down menu for
the Enterprise Bean Class. Enter Candidate as the Enterprise Bean Name. In the
Remote Interfaces section, select com.deitel.advjhtp1.jms.mdb.Candi-
dateHome and com.deitel.advjhtp1.jms.mdb.Candidate as the Remote
Home Interface and Remote Interface, respectively. (See Fig. 16.29 for details.) Click
Next to proceed to the Entity Settings dialog.

Chapter 16 Messaging with JMS 979

Fig. 16.27Fig. 16.27Fig. 16.27Fig. 16.27 EJB JAR settings for VoteCollectorApp application.

Fig. 16.28Fig. 16.28Fig. 16.28Fig. 16.28 Add class files for Candidate EJB.

980 Messaging with JMS Chapter 16

In the Entity Settings dialog, select radio button Container managed persis-
tence(1.0). Check both voteCount and name. Enter java.lang.String as the
Primary Key Class, and select name from the pull-down menu under the Primary Key
Field. See Fig. 16.30 for details. Click Finish.

Fig. 16.29Fig. 16.29Fig. 16.29Fig. 16.29 General settings for Candidate EJB.

Fig. 16.30Fig. 16.30Fig. 16.30Fig. 16.30 Entity settings for Candidate EJB.

Chapter 16 Messaging with JMS 981

In the main deploytool window, select Candidate and click the Entity tab
(Fig. 16.31). Click Deployment Settings. In the resulting dialog, click Database Set-
tings. Enter jdbc/Voting as the Database JNDI Name (Fig. 16.32). Click OK. In
the Deployment Settings dialog, click Generate Default SQL. A dialog will pop up,
indicating SQL Generation complete; click OK (Fig. 16.33). In the Deployment
Settings dialog, click OK. A warning dialog will appear that indicates there is no WHERE
clause for method findAllCandidates; click OK to ignore the warning (Fig. 16.34).

Fig. 16.31Fig. 16.31Fig. 16.31Fig. 16.31 Entity tab for Candidate EJB.

Fig. 16.32Fig. 16.32Fig. 16.32Fig. 16.32 Database settings for Candidate EJB.

982 Messaging with JMS Chapter 16

Now create the VoteCollector EJB by selecting File -> New Enterprise Bean
from the menu bar. Click radio button Add to Existing EJB File and select VoteCol-
lectorJAR(VoteCollectorApp) from the resulting pull-down menu (Fig. 16.35).
Click Edit and Add VoteCollectorEJB.class from tree structure com/deitel/
advjhtp1/jms/mdb (Fig. 16.36). Click OK to exit the Edit dialog. Click Next to pro-
ceed to the General dialog.

In the General dialog (Fig. 16.37), select Message-Driven Bean as the Bean
Type. Select com.deitel.advjhtp1.jms.mdb.VoteCollectorEJB as the
Enterprise Bean Class. Enter VoteCollector as the Enterprise Bean Name.
Click Next to proceed to the Transaction Management dialog.

In the Transaction Management dialog (Fig. 16.38), select Container-Man-
aged. Verify Transaction Attribute Required for method onMessage. Click Next
to proceed to the Message-Driven Bean Settings dialog.

Fig. 16.33Fig. 16.33Fig. 16.33Fig. 16.33 SQL generation for Candidate EJB.

Fig. 16.34Fig. 16.34Fig. 16.34Fig. 16.34 SQL warning for Candidate EJB.

Chapter 16 Messaging with JMS 983

Fig. 16.35Fig. 16.35Fig. 16.35Fig. 16.35 EJB JAR settings for VoteCollector EJB.

Fig. 16.36Fig. 16.36Fig. 16.36Fig. 16.36 Add class file for VoteCollector EJB.

984 Messaging with JMS Chapter 16

In the Message-Driven Bean dialog, select Queue as the Destination Type
(Fig. 16.39). Select Votes and VOTE_FACTORY from the pull-down menus for Destina-
tion and Connection Factory, respectively. Click Next to proceed to the Environ-
ment Entries dialog. Do not enter anything in this dialog; click Next again to proceed to
the Enterprise Bean References dialog.

In the Enterprise Bean References dialog (Fig. 16.40), click Add. For the
Coded Name, enter ejb/Candidate. Select Entity for Type and Remote for
Interfaces. Enter com.deitel.advjhtp1.jms.mdb.CandidateHome and
com.deitel.advjhtp1.jms.mdb.Candidate as the Home Interface and

Fig. 16.37Fig. 16.37Fig. 16.37Fig. 16.37 General settings for VoteCollector EJB.

Fig. 16.38Fig. 16.38Fig. 16.38Fig. 16.38 Transaction management settings for the VoteCollector EJB.

Chapter 16 Messaging with JMS 985

Local/Remote Interface, respectively. Select radio button JNDI Name and enter Can-
didate in the corresponding text field. Click Finish.

In the main deploytool window, select VoteCollectorApp from the tree, and
click the JNDI Names tab. Enter Candidate as the JNDI Name for Candidate.
Verify that Votes is the JNDI Name for VoteCollector (Fig. 16.41).

Fig. 16.39Fig. 16.39Fig. 16.39Fig. 16.39 Message-Driven Bean settings for VoteCollector EJB.

Fig. 16.40Fig. 16.40Fig. 16.40Fig. 16.40 Enterprise Bean References for VoteCollector EJB.

986 Messaging with JMS Chapter 16

Finally, deploy the application by selecting Deploy from the Tools menu. Select
VoteCollectorApp as the Object to Deploy. In the dialog, check Return Client
JAR (Fig. 16.42). Click Next and verify the JNDI names. Click Next, then Finish.

Fig. 16.41Fig. 16.41Fig. 16.41Fig. 16.41 Setting JNDI names for VoteCollectorApp.

Fig. 16.42Fig. 16.42Fig. 16.42Fig. 16.42 Deploying the VoteCollector application.

Chapter 16 Messaging with JMS 987

After deploying the VoteCollector application, run the Voter client application:

java -classpath %J2EE_HOME%\lib\j2ee.jar;.
 -Djms.properties=%J2EE_HOME%\config\jms_client.properties
 com.deitel.advjhtp1.jms.mdb.Voter

To view the current vote tallies, run TallyDisplay (note that the client JAR must be
included in the classpath)

java -classpath
 %J2EE_HOME%\lib\j2ee.jar;VoteCollectorAppClient.jar;.
 com.deitel.advjhtp1.jms.mdb.TallyDisplay

SUMMARY
• A messaging system loosely couples components.

• Messaging systems allow components to post messages for other components to read.

• There are two basic messaging system models—point-to-point and publish/subscribe. The point-
to-point messaging model allows components to send messages to a message queue. A message
consumer is a target component that processes the received messages.

• In the point-to-point model, exactly one client consumes a message; the server maintains messages
that have not been consumed.

• The publish/subscribe messaging model allows components to publish messages to a topic. Com-
ponents interested in messages published to a particular topic can subscribe to that topic.

• When a publisher publishes a message to a given topic, current subscribers receive that message.

• In the publish/subscribe model, zero or more subscribers consume a published message.

• A message consists of a header, properties (optional) and a body (also optional). The message
header contains information, such as the message destination and the sending time.

• Message properties allow message receivers to select which types of messages they would like to
receive; the sender of a message can set these properties. Message receivers use message selectors
to filter out messages; filtering is done on the server side.

• Message-driven beans are a type of enterprise bean that integrate nicely with MOM.

• The EJB container can use any instance of a message-driven bean to process incoming messages
to a given queue or topic. Using message-driven beans, a component can receive messages asyn-
chronously.

• The Java Message Service (JMS) API. JMS standardizes enterprise messaging, providing APIs for
both the point-to-point and publish/subscribe models.

• JMS provides five types of messages—BytesMessages, MapMessages, ObjectMessages,
StreamMessages and TextMessages.

• The server administrator creates the connection factories, queues and topics.

• A QueueConnectionFactory allows the client to create a QueueConnection.

• A QueueConnection creates a QueueSession. A QueueSession creates either a
QueueSender or a QueueReceiver.

• When the queue receiver or topic subscriber receives a message, the message listener processes
the message.

• Interface MessageListener declares method onMessage that is invoked when a new mes-
sage arrives.

• A client may obtain two types of subscriptions—nondurable and durable. Nondurable subscrip-
tions receive messages only while the subscriptions are active.

988 Messaging with JMS Chapter 16

• Durable subscriptions can receive messages while inactive—the server maintains messages sent
to the topic while the subscription is inactive and sends them to the client when the subscription is
reactivated. Note that, if a message selector is specified for the subscription to filter the messages,
the server maintains only the messages that satisfy the selector.

• A TopicConnectionFactory, which the server has created, creates a TopicConnec-
tion. A TopicConnection creates a TopicSession. A TopicSession creates a Top-
icPublisher or TopicSubscriber.

• A topic subscriber (or queue receiver) can filter messages with a message selector. When a client
specifies a message selector, the server will only send messages satisfying that filter to the client.
The message selector syntax is based on SQL92.

• Message-driven EJBs, or message-driven beans, are a new type of Enterprise JavaBean available
in Enterprise JavaBeans version 2.0, which is part of the Java 2 Enterprise Edition version 1.3.

• Message-driven beans are capable of processing JMS messages posted to a queue or topic.

• When a message is received, the EJB container uses any available instance of a particular message-
driven bean to process the message.

• Since any message-driven EJB instance may be used, message-driven beans are not specific to par-
ticular client and must not maintain client state information.

• Any given EJB instance may process messages from multiple clients.

• Unlike session and entity beans (which require interfaces), message-driven beans require only that
developers to provide the bean implementation class.

• Interface MessageDrivenBean declares setMessageDrivenContext and specifies that
the message-driven context should be stored as instance variable messageDrivenContext.

TERMINOLOGY

SELF-REVIEW EXERCISES
16.1 State which of the following are true and which are false. If false, explain why.

a) Messages in the point-to-point messaging model are intended for zero or more recipients.
b) Messages in the publish/subscribe messaging model are intended for zero or one recipient.

BytesMessage interface queue
durable subscription QueueConnection interface
Java Message Service (JMS) QueueConnectionFactory interface
MapMessage interface QueueReceiver interface
message QueueSender interface
message body QueueSession interface
message consumer receiver
message-driven bean sender
message header StreamMessage interface
message-oriented middleware (MOM) subscribe
message property subscriber
message selector subscription
messaging system TextMessage interface
nondurable subscription topic
ObjectMessage interface TopicConnection interface
point-to-point messaging model TopicConnectionFactory interface
publish TopicPublisher interface
publish/subscribe messaging model TopicSession interface
publisher TopicSubscriber interface

Chapter 16 Messaging with JMS 989

c) When a message selector is specified, filtering is done on the server side.
d) The server maintains messages published to a topic while there are no subscriptions until

a subscription is created.
e) The server maintains messages sent to a queue while there is no receiver until a receiver

connects.
f) Message-driven beans maintain state for a specific client.

16.2 Fill in the blanks in each of the following:
a) The two messaging models are and .
b) In the messaging model, the client sends a message a and in-

tends that message for exactly one recipient.
c) In the messaging model, the client sends a message to a and in-

tends that message for zero or more recipients.
d) The server will maintain messages for a subscription while the subscription

is inactive.
e) A bean is a type of enterprise bean, which integrates well with MOM.

ANSWERS TO SELF-REVIEW EXERCISES
16.1 a) False. Messages in the point-to-point messaging model are intended for exactly one recipient.
b) False. Messages in the publish/subscribe messaging model are intended for zero or more recipients.
c) True. d) False. If there are no current subscriptions, the server will not maintain an incoming mes-
sage; note that if there is a durable subscription that is inactive, however, the server will maintain mes-
sages for that subscription. e) True. f) False. A message-driven bean instance may process messages
from multiple clients; message-driven beans cannot maintain client-specific state.

16.2 a) Point-to-point, Publish/subscribe. b)Point-to-point, Queue. c) Publish/subscribe, Topic.
d) Durable. e) Message-driven.

EXERCISES
16.3 What is the purpose of a messaging system?

16.4 Compare and contrast the point-to-point messaging model and the publish/subscribe messag-
ing model. When would it be appropriate to use one over the other?

16.5 Using the point-to-point messaging model, create an application that allows a seller to re-
ceive bids on an item. The offering message should include the bidder’s email address and bid price.
(Hint: The seller should be the receiver of the offering messages, and the bidders should be the send-
ers of the offering messages.)

16.6 Modify your solution to Exercise 16.5 to allow the seller to filter out offers lower than a cer-
tain bid price. (Hint: Set the bid price as a double property of the offering messages and use this
property in a message selector.)

16.7 Create an application using the publish/subscribe messaging model that accepts orders from
a client. The order should be published as a message to a Domestic_orders topic if the client’s
shipping address is domestic or an International_orders topic if the client’s shipping address
is international.

16.8 Modify your solution to Exercise 16.7 to allow subscribers of the Domestic_orders and
International_orders topics to filter out product orders by category. For instance, suppose a
component is responsible for book orders—allow that component to filter out all orders not of the
"book" category. (Hint: Use a String property to set the order category and a message selector to
filter by that property.)

17
Enterprise Java Case
Study: Architectural

Overview

Objectives
• To understand the Deitel Bookstore Enterprise Java

case study architecture.
• To understand the decisions made in designing the

Deitel Bookstore.
• To understand the Model-View-Controller (MVC)

architecture in an Enterprise Java application context.
• To understand how XML and XSLT can generate

content for many different client types.
• To understand the roles that servlets and EJBs play in

enterprise applications.
• To understand multi-tier application design within the

J2EE framework.
It is easier to go down a hill than up,
but the view is from the top.
Arnold Bennett

The universe is wider than our views of it.
Henry David Thoreau

Don’t bother looking at the view—I have already composed it.
Gustav Mahler

A whole is that which has a beginning, middle and end.
Aristotle

The life of the law has not been logic: it has been experience.
Oliver Wendell Holmes, Jr.

Chapter 17 Enterprise Java Case Study: Architectural Overview 991

17.1 Introduction
The technologies that comprise the Java 2 Enterprise Edition (J2EE) enable developers to
build robust, scalable enterprise applications. In this case study, we build an online book-
store e-business application using several features of J2EE, including servlets and Enter-
prise JavaBeans, and other technologies, such as XML, XSLT, XHTML, WML and
cHTML.

We used the Model-View-Controller (MVC) architecture in Chapter 5 to build a sub-
stantial drawing application. The Deitel Drawing application used MVC to separate the
underlying representation of a drawing (a Collection of MyShapes) from views of that
drawing (rendered using Java 2D) and input-processing logic (MyShapeControllers
and a DragAndDropController). In this case study, we employ the MVC architecture
to separate data and business logic from presentation logic and controller logic in a Java 2
Enterprise Edition application. A relational database and entity EJBs comprise the applica-
tions model. Java servlets implement controller logic for processing user input, and XSL
transformations implement the application’s presentation logic.

XSLT presentation logic enables our application to present content to several client
types. XSL transformations process application data (marked up with XML) to generate
XHTML, WML and other presentations dynamically. We can extend the application to
support additional client types and customize output for certain client types by imple-
menting additional XSL transformations. For example, we could develop a J2ME MIDlet
for handheld devices and implement a set of XSL transformations that produce output suit-
able for that MIDlet.

In this chapter, we present an overview of the Deitel Bookstore case study architecture.
In the following chapters, we present the controller logic implementation with servlets
(Chapter 18) and the business logic and data abstraction implementations with EJBs (Chap-
ters 19 and 20). In Chapter 20, we also provide instructions for deploying the Deitel Book-
store case study on Sun Microsystems’ J2EE reference implementation application server.
In Chapter 21, Application Servers, we introduce three of the top J2EE-compliant commer-
cial application servers—BEA’s WebLogic, IBM’s WebSphere and the iPlanet Applica-
tion Server. We discuss the features of each application server, then deploy the Deitel
Bookstore case study on BEA’s WebLogic and IBM’s WebSphere.

Outline

17.1 Introduction
17.2 Deitel Bookstore
17.3 System Architecture
17.4 Enterprise JavaBeans

17.4.1 Entity EJBs
17.4.2 Stateful Session EJBs

17.5 Servlet Controller Logic
17.6 XSLT Presentation Logic

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises

992 Enterprise Java Case Study: Architectural Overview Chapter 17

17.2 Deitel Bookstore
The application we develop in this case study implements a subset of the functionality that
customers expect of commercial on-line stores. We provide a product catalog that custom-
ers can search or browse for available books. We also provide a shopping cart to which cus-
tomers can add products to be purchased. The customer can view the shopping cart, remove
products, change the quantity of any product or purchase the products.

We provide customer registration, in which customers enter billing and shipping infor-
mation. We also allow customers to view the details of previous orders and recover lost
passwords. Customers can access the on-line store, using standard Web browsers, Wireless
Markup Language (WML) browsers and cHTML (i-mode) browsers.

17.3 System Architecture
The Deitel Bookstore is a multi-tier application. Multi-tier applications—sometimes re-
ferred to as n-tier applications—divide functionality into separate tiers. Each tier may be
located on a separate physical computer. We use a three-tier architecture in the Deitel
Bookstore. Figure 17.1 presents the basic structure of three-tier applications.

The information tier (also called the data tier or the bottom tier) maintains data for the
application. The information tier of an enterprise application typically stores data in a rela-
tional database management system (RDBMS). In the Deitel Bookstore case study, the
database contains product information, such as a description, price and quantity in stock,
and customer information, such as a user name, billing address and credit-card number.

The middle tier implements business logic and controller logic that control interactions
between application clients and application data. The middle tier acts as an intermediary
between the data in the information tier and the application clients. The middle-tier con-
troller logic processes client requests (e.g., a request to view the product catalog) and
retrieves data from the database. The middle-tier presentation logic then processes data
from the information tier and presents the content to the client.

Software Engineering Observation 17.1
The Web server in a multi-tier application could be considered to be a separate tier, resulting
in a four-tier application. We consider the Web server to be part of the middle tier in this case
study, because the Web server simply delegates requests to the application server and for-
wards responses to the client tier. 17.1

Fig. 17.1Fig. 17.1Fig. 17.1Fig. 17.1 Three-tier application model in Deitel Bookstore.

Application
Server

Middle Tier Information TierClient Tier

RDBMS

Chapter 17 Enterprise Java Case Study: Architectural Overview 993

Business logic enforces business rules and ensures that data are reliable before
updating the database or presenting data to the user. Business rules dictate how clients of
the application can and cannot access data, and how data are processed within the applica-
tion. For example, an on-line store could have a business rule requiring that a customer’s
credit-card issuer verify the customer’s credit card before the warehouse can ship the cus-
tomer’s order. Business logic might implement this business rule by obtaining the credit-
card number, expiration date and billing address from the customer and performing the ver-
ification. If the verification is successful, the business logic would update the database to
indicate that the warehouse can ship the customer’s order.

The middle tier also implements the application’s presentation logic. Web applications
typically present information to clients as XHTML documents. With recent advances in
wireless technologies, many Web applications also present information to wireless clients
as WML and cHTML documents. The middle tier of the Deitel Bookstore uses XML and
XSLT to generate content for different client types dynamically, enabling support for Web
browsers (XHTML), WAP browsers (WML) and i-mode browsers (cHTML).

The client tier, or top tier, is the application’s user interface. For Web applications, the
client tier typically consists of a Web browser. Users view application output in the Web
browser and click hyperlinks and form buttons to interact with the application. The Web
browser then communicates with the middle tier to make requests and retrieve data from
the information tier. The Deitel Bookstore supports Web, WML and cHTML browsers in
the client tier. Developers can add support for other clients by providing XSL transforma-
tions for those other clients. Figure 17.2 presents a detailed diagram of the Deitel Bookstore
enterprise application architecture. We discuss each portion of the diagram in the following
sections.

17.4 Enterprise JavaBeans
Enterprise JavaBeans (EJBs) implement the Deitel Bookstore’s business logic and database
abstraction layer. The primary business logic component is a stateful session EJB that rep-
resents a customer’s shopping cart. The entity EJBs in the Deitel Bookstore, which provide
an object-based interface to the information tier, implement the Deitel Bookstore applica-
tion’s model. Any program that can communicate using RMI-IIOP can use the EJB busi-
ness logic. For example, an administrative tool could be developed as a stand-alone Java
application that uses EJB business logic to modify application data. Servlets use the EJB
business logic in the Deitel Bookstore application to create an on-line store.

17.4.1 Entity EJBs

Entity EJBs provide an object-based abstraction of the application’s information tier. Each
entity EJB represents a particular object stored in the application’s relational database. In-
stances of each entity EJB represent individual rows in the database. For example, a Cus-
tomer EJB instance represents a store customer. The database stores each customer’s first
name, last name, billing address, shipping address and credit-card information. Each Cus-
tomer EJB instance represents a particular customer and provides methods for retrieving
and storing the customer’s information.

994 Enterprise Java Case Study: Architectural Overview Chapter 17

To facilitate transmitting data through the application, each entity EJB has a corre-
sponding model class that has properties for each entity EJB property. For example, the
Product EJB, which represents a product in the database, has a corresponding Pro-
ductModel class with properties for the product’s ISBN, price, author, etc. Each model
class implements interface Serializable and therefore is suitable for transmission over
RMI-IIOP. Encapsulating data into model classes relieves network congestions by
reducing the number of remote method calls required to obtain information from an entity
EJB. For example, a servlet can invoke method getProductModel to obtain informa-

Fig. 17.2Fig. 17.2Fig. 17.2Fig. 17.2 Detailed architecture of Deitel Bookstore Enterprise Java case study.

Middle Tier

Servlet Container

Web Server

Servlets
implement the
application’s
controller and
communicate
with EJBs using
RMI-IIOP.

XML

XSL
transformations
implement the
application’s
view,
customizing
content for
each client
type.

Clients
communicate
with the Web
server, which
forwards
requests to the
servlets running
in the
application
server’s servlet
container.

XSL
Transformer
(cHTML)

XSL

The EJB
container
provides run-
time services to
the EJBs, such
as database
connections,
and life-cycle
management.

The servlet
container
manages
servlet life-
cycles and
communication
with the Web
server.

WAP
Client

Web
Browser

Client Tier

i-mode
Client

RDBMS

Information Tier

The
information
tier and EJBs
form the
application’s
model.

EJB EJBEJB

EJB Container

Servlet

RMI-IIOP

A
p

p
lic

a
tio

n
 S

e
rv

e
r

XML

XSL
Transformer
(XHTML)

XSL

Servlet

XML

XSL
Transformer
(WML)

XSL

Servlet

JDBC

Chapter 17 Enterprise Java Case Study: Architectural Overview 995

tion about a Product, instead of invoking separate methods such as getISBN, get-
Price, getAuthor, etc. Each model class also implements interface XMLGenerator,
which declares method getXML for retrieving an XML representation of a particular
model class instance. The servlets in the Deitel Bookstore use these XML elements to build
XML documents, such as the product catalog and order history.

17.4.2 Stateful Session EJBs
The ShoppingCart stateful session EJB, which manages the customer’s shopping cart,
is the primary business-logic component in the Deitel Bookstore. Sometimes, customers
browse online stores and add products to their shopping carts, then decide not to purchase
those products. Such shopping carts are said to be abandoned. Rather than store an aban-
doned shopping cart in the database, the Deitel Bookstore uses a stateful session EJB to par-
allel more closely a user’s experience in brick-and-mortar stores. When a customer
abandons a shopping cart, the EJB container removes the ShoppingCart EJB instance.

17.5 Servlet Controller Logic
Servlets provide the middle-tier interface between the client and the EJB business logic.
The servlets in the Deitel Bookstore implement the controller in the application’s MVC ar-
chitecture. Servlets handle client requests (via HTTP and WAP) and interact with the EJB
business-logic components to fulfill those requests. The servlets then process data retrieved
from the EJBs and generate XML documents that represent those data. These XML docu-
ments act as intermediate models of application data. The servlets then pass those XML
documents through XSL transformations, which produce presentations for each client type.

17.6 XSLT Presentation Logic
Each servlet in the Deitel Bookstore employs an XSL Transformer and XSL transfor-
mations to generate appropriate presentations for each client type. The application requires
a separate set of XSL transformations for each supported client type. For example, we pro-
vide one set of XSL transformations for producing XHTML, a second set for producing
WML and a third set for producing cHTML. The servlets use a configuration file to deter-
mine the appropriate XSL transformation to apply for a particular client type.

GetProductServlet obtains an XML description of a product from that product’s
ProductModel. An XSL Transformer uses an XSL transformation to extract data
from the XML document and create a presentation for the client. If the client is a Web
browser, the XSL Transformer uses an XSL transformation that produces XHTML. If
the client is a WAP browser (e.g., running on a cell phone), the XSL Transformer uses
an XSL transformation that produces WML.

Figure 17.3 shows a sample XML document generated by GetProductServlet.
This XML document marks up a product, including the product’s ISBN, title, author, pub-
lisher, price, etc.

 The XSL document of Fig. 17.4 transforms GetProductServlet’s XML docu-
ment into XHTML, which is rendered in a Web browser in Fig. 17.5. The transformation
simply extracts the relevant pieces of information from the XML document and creates an
appropriate XHTML representation. We discuss the structures of these XSL transforma-
tions in Chapter 18.

996 Enterprise Java Case Study: Architectural Overview Chapter 17

1 <?xml version="1.0" encoding="UTF-8"?>
2 <catalog>
3 <product>
4 <isbn>0130284173</isbn>
5 <publisher>Prentice Hall</publisher>
6 <author>Deitel, Deitel, Nieto, Lin & Sadhu</author>
7 <title>XML How to Program</title>
8 <price>$69.95</price>
9 <pages>1200</pages>

10 
11 <media>CD</media>
12 <quantity>500</quantity>
13 </product>
14 </catalog>

Fig. 17.3Fig. 17.3Fig. 17.3Fig. 17.3 XML file generated by GetProductServlet.

1 <?xml version = "1.0"?>
2
3 <!-- ProductDetails.xsl -->
4 <!-- XSLT stylesheet for transforming content generated by -->
5 <!-- GetProductServlet into XHTML. -->
6
7 <xsl:stylesheet version = "1.0"
8 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
9

10 <xsl:output method = "xml" omit-xml-declaration = "no"
11 indent = "yes" doctype-system = "DTD/xhtml1-strict.dtd"
12 doctype-public = "-//W3C//DTD XHTML 1.0 Strict//EN"/>
13
14 <!-- include template for processing error elements -->
15 <xsl:include href = "/XSLT/XHTML/error.xsl"/>
16
17 <!-- template for product element -->
18 <xsl:template match = "product">
19 <html xmlns = "http://www.w3.org/1999/xhtml"
20 xml:lang = "en" lang = "en">
21
22 <head>
23 <title>
24 <xsl:value-of select = "title"/> -- Description
25 </title>
26
27 <link rel = "StyleSheet" href = "styles/default.css"/>
28 </head>
29
30 <body>
31
32 <!-- copy navigation header into XHTML document -->
33 <xsl:for-each select =
34 "document('/XSLT/XHTML/navigation.xml')">

Fig. 17.4Fig. 17.4Fig. 17.4Fig. 17.4 XSL transformation for generating XHTML from GetProductServlet
(part 1 of 3).

Chapter 17 Enterprise Java Case Study: Architectural Overview 997

35 <xsl:copy-of select = "."/>
36 </xsl:for-each>
37
38 <div class = "header">
39 <xsl:value-of select = "title"/>
40 </div>
41
42 <div class = "author">
43 by <xsl:value-of select = "author"/>
44 </div>
45
46 <!-- create div element with details of Product -->
47 <div class = "productDetails">
48 <table style = "width: 100%;">
49 <tr>
50 <td style = "text-align: center;">
51 <img class = "bookCover"
52 src = "images/{image}"
53 alt = "{title} cover image."/>
54 </td>
55
56 <td>
57 <p style = "text-align: right;">
58 Price: <xsl:value-of select = "price"/>
59 </p>
60
61 <p style = "text-align: right;">
62 ISBN: <xsl:value-of select = "ISBN"/>
63 </p>
64
65 <p style = "text-align: right;">
66 Pages: <xsl:value-of select = "pages"/>
67 </p>
68
69 <p style = "text-align: right;">
70 Publisher:
71 <xsl:value-of select = "publisher"/>
72 </p>
73
74 <!-- AddToCart button -->
75 <form method = "post" action = "AddToCart">
76 <p style = "text-align: center;">
77 <input type = "submit"
78 value = "Add to cart"/>
79
80 <input type = "hidden" name = "ISBN"
81 value = "{ISBN}"/>
82 </p>
83 </form>
84 </td>
85 </tr>
86 </table>

Fig. 17.4Fig. 17.4Fig. 17.4Fig. 17.4 XSL transformation for generating XHTML from GetProductServlet
(part 2 of 3).

998 Enterprise Java Case Study: Architectural Overview Chapter 17

87 </div>
88
89 </body>
90 </html>
91 </xsl:template>
92 </xsl:stylesheet>

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "DTD/xhtml1-strict.dtd">
4 <html xmlns="http://www.w3.org/1999/xhtml"
5 lang="en" xml:lang="en">
6 <head>
7 <title>XML How to Program -- Description</title>
8 <link href="styles/default.css" rel="StyleSheet" />
9 </head>

10 <body>
11 <div>
12 <div class="logo">
13 <table style="width: 100%;">
14 <tr>
15 <td style="text-align: left;">
16 <img src="images/logotiny.gif"
17 alt="Deitel & Associates, Inc. logo." />
18 </td>
19
20 <td style="text-align: right;">
21 <div style=
22 "position: relative; bottom: -50px;">
23 <form action="ProductSearch" method="get">
24 <p><input type="text" size="15"
25 name="searchString" />
26 <input type="submit" value="Search" />
27 </p>
28 </form>
29 </div>
30 </td>
31 </tr>
32 </table>
33 </div>
34
35 <div class="navigation">
36 <table class="menu">
37 <tr>
38 <td class="menu">
39 Product Catalog
40 </td>
41

Fig. 17.5Fig. 17.5Fig. 17.5Fig. 17.5 XHTML document generated by XSLT in GetProductServlet (part 1 of
3).

Fig. 17.4Fig. 17.4Fig. 17.4Fig. 17.4 XSL transformation for generating XHTML from GetProductServlet
(part 3 of 3).

Chapter 17 Enterprise Java Case Study: Architectural Overview 999

42 <td class="menu">
43 Create Account
44 </td>
45
46 <td class="menu">
47 Log in
48 </td>
49
50 <td class="menu">
51 Shopping Cart
52 </td>
53
54 <td class="menu">
55 Order History
56 </td>
57 </tr>
58 </table>
59 </div>
60
61 </div>
62 <div class="header">XML How to Program</div>
63 <div class="author">
64 by Deitel, Deitel, Nieto, Lin & Sadhu</div>
65 <div class="productDetails">
66 <table style="width: 100%;">
67 <tr>
68 <td style="text-align: center;">
69 <img alt="XML How to Program cover image."
70 src="images/xmlhtp1.jpg"
71 class="bookCover" /></td>
72 <td>
73 <p style="text-align: right;">
74 Price: $69.95</p>
75 <p style="text-align: right;">
76 ISBN: 0130284173</p>
77 <p style="text-align: right;">
78 Pages: 1100</p>
79 <p style="text-align: right;">
80 Publisher: Prentice Hall</p>
81
82 <form action="AddToCart" method="post">
83 <p style="text-align: center;">
84 <input value="Add to cart"
85 type="submit" />
86 <input value="0130284173"
87 name="ISBN" type="hidden" /></p>
88 </form>
89 </td>
90 </tr>
91 </table>
92 </div>
93 </body>

Fig. 17.5Fig. 17.5Fig. 17.5Fig. 17.5 XHTML document generated by XSLT in GetProductServlet (part 2 of
3).

1000 Enterprise Java Case Study: Architectural Overview Chapter 17

The XSL transformation of Fig. 17.6 transforms GetProductServlet’s XML
document into WML, which appears in a WML browser in Fig. 17.7. Note that in the WML
document there is little formatting information. WML is rendered on small devices, such
as cell phones, so display capabilities are limited. These devices also have limited network
connections, so the amount of data sent should be kept to a minimum. For example, the
WML document does not contain an image of the books cover, which would be cumber-
some to download over a wireless connection.

94 </html>

1 <?xml version = "1.0"?>
2
3 <xsl:stylesheet version = "1.0"
4 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
5
6 <xsl:output method = "xml" omit-xml-declaration = "no"
7 doctype-system = "http://www.wapforum.org/DTD/wml_1.1.xml"
8 doctype-public = "-//WAPFORUM//DTD WML 1.1//EN"/>
9

10 <xsl:include href = "/XSLT/WML/error.xsl"/>

Fig. 17.6Fig. 17.6Fig. 17.6Fig. 17.6 XSL transformation for generating WML from GetProductServlet
(part 1 of 2).

Fig. 17.5Fig. 17.5Fig. 17.5Fig. 17.5 XHTML document generated by XSLT in GetProductServlet (part 3 of
3).

Chapter 17 Enterprise Java Case Study: Architectural Overview 1001

11
12 <xsl:template match = "product">
13 <wml>
14
15 <card id = "product" title = "{title}">
16 <do type = "accept" label = "Add To Cart">
17 <go href = "AddToCart" method = "post">
18 <postfield name = "ISBN" value = "{ISBN}"/>
19 </go>
20 </do>
21
22 <do type = "prev" label = "Back">
23 <prev/>
24 </do>
25
26 <p>Description:</p>
27 <p><xsl:value-of select = "title"/></p>
28 <p>by <xsl:value-of select = "author"/></p>
29
30 <p>
31 <table columns = "2" title = "info">
32 <tr>
33 <td>ISBN:
34 <xsl:value-of select = "ISBN"/>
35 </td>
36 <td>Price:
37 $<xsl:value-of select = "price"/>
38 </td>
39 </tr>
40 <tr>
41 <td>Publisher:
42 <xsl:value-of select = "publisher"/>
43 </td>
44 <td>Pages:
45 <xsl:value-of select = "pages"/>
46 </td>
47 </tr>
48 </table>
49 </p>
50 </card>
51
52 </wml>
53 </xsl:template>
54 </xsl:stylesheet>

1 <?xml version="1.0"?>
2 <!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
3 "http://www.wapforum.org/DTD/wml_1.1.xml">

Fig. 17.7Fig. 17.7Fig. 17.7Fig. 17.7 WML document generated by XSLT in GetProductServlet (part 1 of
2). (Image © 2001 Nokia Mobile Phones.)

Fig. 17.6Fig. 17.6Fig. 17.6Fig. 17.6 XSL transformation for generating WML from GetProductServlet
(part 2 of 2).

1002 Enterprise Java Case Study: Architectural Overview Chapter 17

4
5 <wml>
6 <card title="XML How to Program" id="product">
7 <do label="Add To Cart" type="accept">
8 <go method="post" href="AddToCart">
9 <postfield value="0130284173" name="ISBN"/></go>

10 </do>
11 <do label="Back" type="prev"><prev/></do>
12
13 <p>Description:</p>
14 <p>XML How to Program</p>
15 <p>by Deitel, Deitel, Nieto, Lin & Sadhu</p>
16 <p>
17 <table title="info" columns="2">
18 <tr>
19 <td>ISBN: 0130284173</td>
20 <td>Price: $$69.95</td>
21 </tr>
22 <tr>
23 <td>Publisher: Prentice Hall</td>
24 <td>Pages: 1100</td>
25 </tr>
26 </table>
27 </p>
28 </card>
29 </wml>

Fig. 17.7Fig. 17.7Fig. 17.7Fig. 17.7 WML document generated by XSLT in GetProductServlet (part 2 of
2). (Image © 2001 Nokia Mobile Phones.)

Chapter 17 Enterprise Java Case Study: Architectural Overview 1003

The XSL document of Fig. 17.8 transforms GetProductServlet’s XML docu-
ment into cHTML, which appears in a cHTML browser in Fig. 17.9.

1 <?xml version = "1.0"?>
2
3 <xsl:stylesheet version = "1.0"
4 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
5
6 <xsl:output method = "html"
7 omit-xml-declaration = "yes"
8 indent = "yes"
9 doctype-system =

10 "http://www.w3.org/MarkUp/html-spec/html-spec_toc.html"
11 doctype-public = "-//W3C//DTD HTML 2.0//EN"/>
12
13 <xsl:include href = "/XSLT/cHTML/error.xsl"/>
14
15 <xsl:template match = "product">
16 <html>
17
18 <head>
19 <title>
20 <xsl:value-of select = "title"/> -- Description
21 </title>
22 </head>
23
24 <body>
25 <div class = "header">
26 <xsl:value-of select = "title"/>
27 </div>
28
29 <div class = "author">
30 by <xsl:value-of select = "author"/>
31 </div>
32
33 <!-- create div element with details of Product -->
34 <div class = "productDetails">
35 <table>
36 <tr>
37 <td style = "text-align: center;">
38 <img class = "bookCover"
39 src = "images/{image}"/>
40 </td>
41
42 <td>
43 <p style = "text-align: right;">
44 Price: <xsl:value-of select = "price"/>
45 </p>
46
47 <p style = "text-align: right;">
48 ISBN: <xsl:value-of select = "ISBN"/>
49 </p>

Fig. 17.8Fig. 17.8Fig. 17.8Fig. 17.8 XSL transformation for generating cHTML from GetProductServlet
(part 1 of 2).

1004 Enterprise Java Case Study: Architectural Overview Chapter 17

50
51 <p style = "text-align: right;">
52 Pages: <xsl:value-of select = "pages"/>
53 </p>
54
55 <p style = "text-align: right;">
56 Publisher:
57 <xsl:value-of select = "publisher"/>
58 </p>
59
60 <!-- AddToCart button -->
61 <form method="post" action="AddToCart">
62 <p style = "text-align: center;">
63 <input type = "submit"
64 value = "Add to cart"/>
65 </p>
66
67 <input type = "hidden" name = "ISBN"
68 value = "{ISBN}"/>
69 </form>
70 </td>
71 </tr>
72 </table>
73 </div>
74 </body>
75
76 </html>
77 </xsl:template>
78 </xsl:stylesheet>

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 2.0//EN"
2 "http://www.w3.org/MarkUp/html-spec/html-spec_toc.html">
3 <html>
4 <head>
5 <META http-equiv="Content-Type"
6 content="text/html; charset=UTF-8">
7 <title>XML How to Program -- Description</title>
8 </head>
9 <body>

10 <div class="header">XML How to Program</div>
11 <div class="author">
12 by Deitel, Deitel, Nieto, Lin & Sadhu</div>
13 <div class="productDetails">
14 <table>
15 <tr>
16 <td style="text-align: center;">
17
18 </td>

Fig. 17.9Fig. 17.9Fig. 17.9Fig. 17.9 cHTML document generated by XSLT in GetProductServlet (part 1 of
2). (Image courtesy of Pixo, Inc.)

Fig. 17.8Fig. 17.8Fig. 17.8Fig. 17.8 XSL transformation for generating cHTML from GetProductServlet
(part 2 of 2).

Chapter 17 Enterprise Java Case Study: Architectural Overview 1005

19 <td>
20 <p style="text-align: right;">Price: $69.95</p>
21
22 <p style="text-align: right;">ISBN: 0130284173</p>
23
24 <p style="text-align: right;">Pages: 1100</p>
25
26 <p style="text-align: right;">
27 Publisher: Prentice Hall</p>
28
29 <form action="AddToCart" method="post">
30 <p style="text-align: center;">
31 <input value="Add to cart" type="submit">
32 </p>
33 <input value="0130284173" name="ISBN"
34 type="hidden">
35 </form>
36 </td>
37 </tr>
38 </table>
39 </div>
40 </body>
41 </html>

Fig. 17.9Fig. 17.9Fig. 17.9Fig. 17.9 cHTML document generated by XSLT in GetProductServlet (part 2 of
2). (Image courtesy of Pixo, Inc.)

1006 Enterprise Java Case Study: Architectural Overview Chapter 17

This chapter overviewed the Deitel Bookstore case study architecture, which uses
powerful enterprise Java capabilities, including servlets, EJBs, RMI, XML and XSLT.
Chapters 18, 19 and 20 present the implementations of each tier. In Chapters 20–21, we
provide instructions for deploying the Deitel Bookstore using the J2EE reference imple-
mentation, BEA’s WebLogic and IBM’s WebSphere.

SUMMARY
• The MVC design pattern, as applied in this enterprise application case study, separates data and

business logic from presentation logic and controller logic.

• Multi-tier applications—sometimes referred to as n-tier applications—are divided into modular
parts called tiers. Each tier may be located on a separate physical computer.

• The information tier, or data tier, maintains data for the application. The information tier typically
stores data in a relational database management system (RDBMS). The database could contain
product information, such as a description, price and quantity in stock, and customer information,
such as a user name, billing address and credit-card number.

• The middle tier implements business logic and presentation logic to control interactions between
application clients and application data. The middle tier acts as an intermediary between the data
in the information tier and application clients.

• Middle-tier controller logic processes client requests (e.g., a request to view the product catalog)
and retrieves data from the database. The middle-tier presentation logic then processes data from
the information tier and presents the content to the client.

• Business logic enforces business rules and ensures that data are reliable before updating the data-
base or presenting data to the user. Business rules dictate how clients of the application can and
cannot access data and how data are processed within the application.

• The middle tier also implements the application’s presentation logic. The middle tier accepts client
requests, retrieves data from the information tier and presents content to clients.

• Web applications typically present information to clients as XHTML documents. Many Web ap-
plications present information to wireless clients as Wireless Markup Language (WML) docu-
ments or Compact HyperText Markup Language (cHTML) documents.

• The middle tier of the Deitel Bookstore uses XML and XSLT to generate content for different cli-
ent types dynamically, enabling support for XHTML, WML, cHTML and virtually any other cli-
ent type.

• The client tier is the application’s user interface. Users interact directly with the application
through the user interface. The client interacts with the middle tier to make requests and retrieve
data from the application. The client then displays data retrieved from the middle tier to the user.

• Enterprise JavaBeans (EJBs) implement the Deitel Bookstore’s business rules. The entity EJBs in
the Deitel Bookstore, along with the database they represent, are the model for the Deitel Book-
store application.

• Any program that can communicate using RMI-IIOP can use EJB business logic and database ab-
straction objects. For example, an administrative tool could be developed as a stand-alone Java ap-
plication that uses the EJB business logic to process orders.

• Entity EJBs provide an object-based representation of the application’s information tier. Each en-
tity EJB represents a particular object stored in the database. Instances of each entity EJB represent
individual rows in the database.

• On-line store customers often browse the store catalog and add products to their shopping carts,
but decide not to purchase the products. The shopping cart is therefore abandoned. Rather than

Chapter 17 Enterprise Java Case Study: Architectural Overview 1007

store the abandoned shopping cart in the database, we use session EJBs to parallel more closely a
user’s experience in brick-and-mortar stores.

• Servlets provide the middle-tier interface between the client and the EJB business logic. The serv-
lets in the Deitel Bookstore implement the controller of the MVC architecture. Servlets handle user
requests (via HTTP and WAP) and interact with the EJB business logic.

• Servlets process data retrieved from EJBs and generate XML representations, which act as inter-
mediate models of application data.

• XSL transformations act as the application view by transforming the XML model to appropriate
formats for various client types.

• Each servlet in the Deitel Bookstore employs an XSL Transformer and XSL transformations
to generate appropriate content for each client type. A separate set of XSL transformations gener-
ates content for each client type.

• The servlets produce XML documents to which the XSL Transformer applies XSL transfor-
mations to generate the appropriate content. To support additional client types, the developer can
create additional sets of XSL transformations.

TERMINOLOGY

SELF-REVIEW EXERCISES
17.1 What architectural pattern plays a major role in the Deitel Bookstore application architecture?
What benefits does this design pattern provide?

17.2 Which part of the Deitel Bookstore application architecture could be separated into an addi-
tional tier? Why?

17.3 Section 17.3 describes a hypothetical business rule requiring credit-card verification. De-
scribe an additional business rule appropriate for the Deitel Bookstore.

17.4 What are the controller-logic components in the Deitel Bookstore? What are the business-
logic components? How do the controller-logic components in the application server communicate
with the business-logic components?

abandoned shopping cart Enterprise JavaBean (EJB)
application server entity EJB
bottom tier four-tier application
brick-and-mortar store information tier
business logic middle tier
business rules model-view-controller (MVC)
business-logic component multi-tier application
client tier n-tier application
Compact HyperText Markup Language (cHTML) presentation logic
container-managed persistence shopping cart e-commerce model
controller logic three-tier architecture
controller-logic component top tier
data tier Wireless Access Protocol (WAP)
delegate Wireless Markup Language (WML)
design patterns XHTML
e-business XML
e-business application XSL transformation
e-commerce XSL Transformer
e-commerce application XSLT

1008 Enterprise Java Case Study: Architectural Overview Chapter 17

17.5 What type of EJB in the Deitel Bookstore closely parallels customer experiences in brick-
and-mortar stores?

17.6 How is the Deitel Bookstore application able to present content to clients of virtually any
type?

17.7 How could a B2B partner (e.g., a corporate client) communicate with the Deitel Bookstore
application? For example, a B2B partner may wish to order, on a periodic basis, large numbers of cop-
ies of a particular book used for training new employees. How could this B2B partner order the books
programmatically?

ANSWERS TO SELF-REVIEW EXERCISES
17.1 The Deitel Bookstore application architecture uses the Model-View-Controller (MVC) archi-
tecture. MVC separates business logic from controller logic and presentation logic. Implementations
of the business logic, controller logic and presentation logic can change independently of one another
without requiring changes in the other components.

17.2 The Web server could be separated into a fourth tier. Separating the Web server into a fourth
tier would provide a more modular design for applications that support clients using other protocols,
in addition to HTTP.

17.3 An additional business rule could require customers to provide their e-mail addresses in the
registration. Business logic could process the registration forms and reject registrations that do not
include e-mail addresses.

17.4 Servlets are the controller-logic components in the Deitel Bookstore. Enterprise JavaBeans
are the business-logic components. The servlets communicate with the EJBs through the EJB con-
tainer using RMI-IIOP.

17.5 The ShoppingCart EJB is implemented as a stateful session EJB to simulate a shopping
cart in a brick-and-mortar store.

17.6 The Deitel Bookstore application uses XSL transformations to present content for each client
type. The servlets generate XML documents, and the developer supplies XSL transformations to
transform the servlet XML documents for each client type.

18
Enterprise Java Case

Study: Presentation and
Controller Logic

Objectives
• To understand the role of presentation logic in a

multitier application.
• To understand the role of controller logic in a multitier

application.
• To understand the use of servlets in the middle tier of

an Enterprise Java application.
• To understand how XML and XSLT can enable

support for a variety of client types in a Web
application.

• To understand how servlet initialization parameters
can make servlets more flexible.

First come, first served.
Traditional Proverb

’Tis distance lends enchantment to the view…
Thomas Campbell

Invention is nothing more than a fine deviation from, or
enlargment on a fine model…
Edward G. Bulwer-Lytton

Do not become the slave of your model.
Vincent Van Gogh

While Genius was thus wasting his strength in eccentric
flights, I saw a person of a very different appearance, named
Application.
Anna Letitia Barbauld

1010 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

18.1 Introduction
In this chapter, we present the controller and presentation logic for the Deitel Bookstore.
Controller logic in an application is responsible for processing user requests. For example,
when a customer makes a request to add a book to a shopping cart, controller logic handles
the request and invokes the appropriate business-logic methods to perform the requested
action. The presentation logic then shows the output from the request to the user.

Java servlets in the implement the Deitel Bookstore’s controller logic. After invoking
business-logic methods to process client requests, the servlets generate XML documents
that contain content to presented to the client. These XML documents are not specific to
any particular type of client (e.g., Web browser, cell phone, etc.); they simply mark up the
data that the business logic supplies. XSL transformations implement the application’s pre-
sentation logic—the view in the MVC architecture—by transforming the XML documents
into output suitable for each client type. For example, an XSL transformation might gen-
erate an XHTML document to present to a Web browser on a desktop computer, or a WML
document to present to a WAP browser in a cell phone.

Using XSL transformations as presentation logic enable developers to extend the set
of client types that the application supports without modifying the controller logic or busi-
ness logic. To support a new client type, the developer simply supplies an additional set of

Outline

18.1 Introduction
18.2 XMLServlet Base Class
18.3 Shopping Cart Servlets

18.3.1 AddToCartServlet

18.3.2 ViewCartServlet

18.3.3 RemoveFromCartServlet

18.3.4 UpdateCartServlet

18.3.5 CheckoutServlet

18.4 Product Catalog Servlets
18.4.1 GetAllProductsServlet

18.4.2 GetProductServlet

18.4.3 ProductSearchServlet

18.5 Customer Management Servlets
18.5.1 RegisterServlet

18.5.2 LoginServlet

18.5.3 ViewOrderHistoryServlet

18.5.4 ViewOrderServlet

18.5.5 GetPasswordHintServlet

Self-Review Exercises • Answers to Self-Review Exercises

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1011

XSL transformations that produce appropriate output for the new client type. The developer
then modifies an XML configuration file to install support for the new client type. [Note:
The Deitel Bookstore requires the Apache Software Foundation’s Xalan XSL transformer.
Download Xalan version 2.1 from xml.apache.org/dist/xalan-j and copy
xalan.jar and xerces.jar to your J2SE SDK’s jre/lib/ext directory.]

This chapter is the first of three chapters that present the implementation of the Deitel
Bookstore case study. In Chapters 19 and 20 we present the business logic and entity EJB
components required for processing orders and working with the database.

18.2 XMLServlet Base Class
Each servlet in the Deitel Bookstore case study extends class XMLServlet (Fig. 18.1),
which provides common initialization and utility methods. To enable support for multiple
client types, each servlet in the Deitel Bookstore creates an XML document that represents
raw application data retrieved from the application’s business logic and information tier.
An XSLT transformation processes this XML document and presents the output to the cli-
ent. Class XMLServlet implements this common functionality.

Method init (lines 41–85) initializes the servlet. The servlet container provides the
ServletConfig argument when the container initializes the servlet. Line 49 retrieves
the name of the XSL transformation that will transform the servlet’s content for each client
type. This file name is provided as a servlet-initialization parameter, so the deployer must
define this parameter when deploying the servlet. Line 52 creates a DocumentBuild-
erFactory instance, which will be used to create DocumentBuilders for building
XML documents. Line 55 creates a TransformerFactory, with which instances of
XMLServlet perform XSL transformations. Lines 58–81 set a URIResolver for the
TransformerFactory to enable its Transformers to resolve relative URIs in XSL
documents. For example, if an XSL document references another XSL document using ele-
ment xsl:include with a relative URI (e.g., /XSLT/XHTML/error.xsl), the
Transformer invokes method resolve of interface URIResolver to determine from
where the Transformer should load the included XSL. Line 67 resolves the relative URI
by invoking ServletContext method getResource, which returns a URL. Line 71
returns a StreamSource for the URLs InputStream. The Transformer uses this
StreamSource to read the contents of the included XSL document.

1 // XMLServlet.java
2 // XMLServlet is a base class for servlets that generate
3 // XML documents and perform XSL transformations.
4 package com.deitel.advjhtp1.bookstore.servlets;
5
6 // Java core packages
7 import java.io.*;
8 import java.util.*;
9 import java.net.URL;

10
11 // Java extension packages
12 import javax.servlet.*;
13 import javax.servlet.http.*;

Fig. 18.1Fig. 18.1Fig. 18.1Fig. 18.1 XMLServlet base class for servlets in the Deitel Bookstore (part 1 of 8).

1012 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

14 import javax.xml.parsers.*;
15 import javax.xml.transform.*;
16 import javax.xml.transform.dom.*;
17 import javax.xml.transform.stream.*;
18
19 // third-party packages
20 import org.w3c.dom.*;
21 import org.xml.sax.SAXException;
22
23 // Deitel packages
24 import com.deitel.advjhtp1.bookstore.model.*;
25
26 public class XMLServlet extends HttpServlet {
27
28 // factory for creating DocumentBuilders
29 private DocumentBuilderFactory builderFactory;
30
31 // factory for creating Transformers
32 private TransformerFactory transformerFactory;
33
34 // XSL file that presents servlet's content
35 private String XSLFileName;
36
37 // ClientModel List for determining client type
38 private List clientList;
39
40 // initialize servlet
41 public void init(ServletConfig config)
42 throws ServletException
43 {
44 // call superclass's init method for initialization
45 super.init(config);
46
47 // use InitParameter to set XSL file for transforming
48 // generated content
49 setXSLFileName(config.getInitParameter("XSL_FILE"));
50
51 // create new DocumentBuilderFactory
52 builderFactory = DocumentBuilderFactory.newInstance();
53
54 // create new TransformerFactory
55 transformerFactory = TransformerFactory.newInstance();
56
57 // set URIResolver for resolving relative paths in XSLT
58 transformerFactory.setURIResolver(
59
60 new URIResolver() {
61
62 // resolve href as relative to ServletContext
63 public Source resolve(String href, String base)
64 {
65 try {
66 ServletContext context = getServletContext();

Fig. 18.1Fig. 18.1Fig. 18.1Fig. 18.1 XMLServlet base class for servlets in the Deitel Bookstore (part 2 of 8).

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1013

67 URL url = context.getResource(href);
68
69 // create StreamSource to read document from URL
70 return new StreamSource(url.openStream());
71 }
72
73 // handle exceptions obtaining referenced document
74 catch (Exception exception) {
75 exception.printStackTrace();
76
77 return null;
78 }
79 }
80 }
81); // end call to setURIResolver
82
83 // create ClientModel ArrayList
84 clientList = buildClientList();
85 }
86
87 // get DocumentBuilder instance for building XML documents
88 public DocumentBuilder getDocumentBuilder(boolean validating)
89 {
90 // create new DocumentBuilder
91 try {
92
93 // set validation mode
94 builderFactory.setValidating(validating);
95
96 // return new DocumentBuilder to the caller
97 return builderFactory.newDocumentBuilder();
98 }
99
100 // handle exception when creating DocumentBuilder
101 catch (ParserConfigurationException parserException) {
102 parserException.printStackTrace();
103
104 return null;
105 }
106
107 } // end method getDocumentBuilder
108
109 // get non-validating parser
110 public DocumentBuilder getDocumentBuilder()
111 {
112 return getDocumentBuilder(false);
113 }
114
115 // set XSL file name for transforming servlet's content
116 public void setXSLFileName(String fileName)
117 {
118 XSLFileName = fileName;
119 }

Fig. 18.1Fig. 18.1Fig. 18.1Fig. 18.1 XMLServlet base class for servlets in the Deitel Bookstore (part 3 of 8).

1014 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

120
121 // get XSL file name for transforming servlet's content
122 public String getXSLFileName()
123 {
124 return XSLFileName;
125 }
126
127 // write XML document to client using provided response
128 // Object after transforming XML document with
129 // client-specific XSLT document
130 public void writeXML(HttpServletRequest request,
131 HttpServletResponse response, Document document)
132 throws IOException
133 {
134 // get current session, create if not extant
135 HttpSession session = request.getSession(true);
136
137 // get ClientModel from session Object
138 ClientModel client = (ClientModel)
139 session.getAttribute("clientModel");
140
141 // if client is null, get new ClientModel for this
142 // User-Agent and store in session
143 if (client == null) {
144 String userAgent = request.getHeader("User-Agent");
145 client = getClientModel(userAgent);
146 session.setAttribute("clientModel", client);
147 }
148
149 // set appropriate Content-Type for client
150 response.setContentType(client.getContentType());
151
152 // get PrintWriter for writing data to client
153 PrintWriter output = response.getWriter();
154
155 // build file name for XSLT document
156 String xslFile = client.getXSLPath() + getXSLFileName();
157
158 // open InputStream for XSL document
159 InputStream xslStream =
160 getServletContext().getResourceAsStream(xslFile);
161
162 // transform XML document using XSLT
163 transform(document, xslStream, output);
164
165 // flush and close PrintWriter
166 output.close();
167
168 } // end method writeXML
169
170 // transform XML document using provided XSLT InputStream
171 // and write resulting document to provided PrintWriter

Fig. 18.1Fig. 18.1Fig. 18.1Fig. 18.1 XMLServlet base class for servlets in the Deitel Bookstore (part 4 of 8).

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1015

172 public void transform(Document document,
173 InputStream xslStream, PrintWriter output)
174 {
175 // create Transformer and apply XSL transformation
176 try {
177
178 // create DOMSource for source XML document
179 Source xmlSource = new DOMSource(document);
180
181 // create StreamSource for XSLT document
182 Source xslSource =
183 new StreamSource(xslStream);
184
185 // create StreamResult for transformation result
186 Result result = new StreamResult(output);
187
188 // create Transformer for XSL transformation
189 Transformer transformer =
190 transformerFactory.newTransformer(xslSource);
191
192 // transform and deliver content to client
193 transformer.transform(xmlSource, result);
194
195 } // end try
196
197 // handle exception when transforming XML document
198 catch (TransformerException transformerException) {
199 transformerException.printStackTrace();
200 }
201
202 } // end method transform
203
204 // build error element containing error message
205 public Node buildErrorMessage(Document document,
206 String message)
207 {
208 // create error element
209 Element error = document.createElement("error");
210
211 // create message element
212 Element errorMessage =
213 document.createElement("message");
214
215 // create message text and append to message element
216 errorMessage.appendChild(
217 document.createTextNode(message));
218
219 // append message element to error element
220 error.appendChild(errorMessage);
221
222 return error;
223 }
224

Fig. 18.1Fig. 18.1Fig. 18.1Fig. 18.1 XMLServlet base class for servlets in the Deitel Bookstore (part 5 of 8).

1016 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

225 // build list of ClientModel Objects for delivering
226 // appropriate content to each client
227 private List buildClientList()
228 {
229 // get validating DocumentBuilder for client XML document
230 DocumentBuilder builder = getDocumentBuilder(true);
231
232 // create client ArrayList
233 List clientList = new ArrayList();
234
235 // get name of XML document containing client
236 // information from ServletContext
237 String clientXML = getServletContext().getInitParameter(
238 "CLIENT_LIST");
239
240 // read clients from XML document and build ClientModels
241 try {
242
243 // open InputStream to XML document
244 InputStream clientXMLStream =
245 getServletContext().getResourceAsStream(
246 clientXML);
247
248 // parse XML document
249 Document clientsDocument =
250 builder.parse(clientXMLStream);
251
252 // get NodeList of client elements
253 NodeList clientElements =
254 clientsDocument.getElementsByTagName("client");
255
256 // get length of client NodeList
257 int listLength = clientElements.getLength();
258
259 // process NodeList of client Elements
260 for (int i = 0; i < listLength; i++) {
261
262 // get next client Element
263 Element client =
264 (Element) clientElements.item(i);
265
266 // get agent Element from client Element
267 Element agentElement = (Element)
268 client.getElementsByTagName(
269 "userAgent").item(0);
270
271 // get agent Element's child text node
272 Text agentText =
273 (Text) agentElement.getFirstChild();
274
275 // get value of agent Text node
276 String agent = agentText.getNodeValue();
277

Fig. 18.1Fig. 18.1Fig. 18.1Fig. 18.1 XMLServlet base class for servlets in the Deitel Bookstore (part 6 of 8).

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1017

278 // get contentType Element
279 Element typeElement = (Element)
280 client.getElementsByTagName(
281 "contentType").item(0);
282
283 // get contentType Element's child text node
284 Text typeText =
285 (Text) typeElement.getFirstChild();
286
287 // get value of contentType text node
288 String type = typeText.getNodeValue();
289
290 // get XSLPath element
291 Element pathElement = (Element)
292 client.getElementsByTagName(
293 "XSLPath").item(0);
294
295 // get Text node child of XSLPath
296 Text pathText =
297 (Text) pathElement.getFirstChild();
298
299 // get value of XSLPath text node
300 String path = pathText.getNodeValue();
301
302 // add new ClientModel with userAgent, contentType
303 // and XSLPath for this client Element
304 clientList.add(
305 new ClientModel(agent, type, path));
306 }
307
308 } // end try
309
310 // handle SAXException when parsing XML document
311 catch (SAXException saxException) {
312 saxException.printStackTrace();
313 }
314
315 // catch IO exception when reading XML document
316 catch (IOException ioException) {
317 ioException.printStackTrace();
318 }
319
320 // return newly creating list of ClientModels
321 return clientList;
322
323 } // end method buildClientList
324
325 // get ClientModel for given User-Agent HTTP header
326 private ClientModel getClientModel(String header)
327 {
328 // get Iterator for clientList
329 Iterator iterator = clientList.iterator();
330

Fig. 18.1Fig. 18.1Fig. 18.1Fig. 18.1 XMLServlet base class for servlets in the Deitel Bookstore (part 7 of 8).

1018 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

Line 84 invokes method buildClientList, which reads the clients.xml con-
figuration file and produces a List of ClientModels (Fig. 18.4). Instances of
XMLServlet use these ClientModels to determine which XSL transformation to
apply for each client type.

Method getDocumentBuilder (lines 88–107) creates a DocumentBuilder
object for parsing and creating XML documents. The boolean argument specifies
whether method getDocumentBuilder should create a validating XML parser. Class
XMLServlet stores a DocumentBuilderFactory in an instance variable (line 29),
which prevents the need to create a new DocumentBuilderFactory each time a
DocumentBuilder is needed. The overloaded getDocumentBuilder (lines 110–
113) invokes method getDocumentBuilder with a false argument to create a non-
validating XML parser.

Methods setXSLFileName and getXSLFileName (lines 116–125) are set and
get methods for the XSLFileName property of class XMLServlet. The XSLFile-
Name property specifies the name of the XSLT document that transforms the servlet’s con-
tent for a particular client type. The Deitel Bookstore application separates the XSL
transformations for the various client types into separate directories. For example, the file
products.xsl in directory /XSLT/XHTML produces XHTML output, whereas the ver-
sion of products.xsl in directory /XSLT/WML produces WML output. The XSL-
FileName property specifies only the filename (e.g., products.xsl); each
ClientModel specifies the appropriate directory for a particular client type.

Method writeXML (lines 130–168) determines which type of client is accessing the
servlet and invokes method transform to perform an XSL transformation. Lines 138–
139 attempt to obtain a ClientModel from the HttpSession. If the HttpSession
does not contain a ClientModel, line 144 obtains the client’s User-Agent header,
which uniquely identifies the client type. Line 145 invokes method getClientModel to
get an appropriate ClientModel for the given client type. Line 146 places the Client-
Model in the HttpSession for later use. Line 150 obtains the content type for the client

331 // find ClientModel whose userAgent property is a
332 // substring of given User-Agent HTTP header
333 while (iterator.hasNext()) {
334 ClientModel client = (ClientModel) iterator.next();
335
336 // if this ClientModel's userAgent property is a
337 // substring of the User-Agent HTTP header, return
338 // a reference to the ClientModel
339 if (header.indexOf(client.getUserAgent()) > -1)
340 return client;
341 }
342
343 // return default ClientModel if no others match
344 return new ClientModel(
345 "DEFAULT CLIENT", "text/html", "/XHTML/");
346
347 } // end method getClientModel
348 }

Fig. 18.1Fig. 18.1Fig. 18.1Fig. 18.1 XMLServlet base class for servlets in the Deitel Bookstore (part 8 of 8).

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1019

from the ClientModel and configure the HttpServletResponse object. Line 156
constructs the complete relative path for the XSL transformation by concatenating the
ClientModel’s XSLPath property with the servlet’s XSLFileName property. Lines
159–160 open an InputStream for the XSL transformation. Line 163 invokes method
transform to perform the transformation and send the result to the client.

Method transform (lines 172–202) performs the given XSL transformation on the
given XML document, and writes the result of the transformation to the given Print-
Writer. Line 179 creates a DOMSource for the XML document. Lines 182–183 create
a StreamSource for the XSL document. Line 159 creates a StreamResult for the
PrintWriter to which the Transformer will write the results of the XSL transfor-
mation. Lines 189–190 create a Transformer by invoking TransformerFactory
method newTransformer. Line 193 invokes Transformer method transform to
perform the XSL transformation on the given Source object and writes the result to the
given Result object.

Method buildErrorMessage (lines 205–223) is a utility method for constructing
XML Element that contains an error message. Line 209 creates an error Element
using the provided document. Lines 212–213 create a errorMessage Element that
will contain the actual error message. Lines 189–190 create a Text node that contains the
text of the error message and append this Text node to the errorMessage Element.
Line 220 appends the errorMessage Element to the error Element, and line 223
returns the complete error Element.

Method buildClientList (lines 227–323) constructs a List of Client-
Models by reading client information from an XML configuration file (Fig. 18.2). Lines
237–238 retrieve the name of the configuration file from an initialization parameter in the
servlet’s ServletContext. The deployer must specify the value of this parameter when
deploying the application. Lines 244–246 open an InputStream to the configuration
file. Lines 249–50 parse the XML configuration file and build a Document object in
memory. Lines 253–254 get a NodeList of client Elements from the document.
Each client Element has a name Attribute and three child Elements—user-
Agent, contentType and XSLPath—each of which corresponds to a ClientModel
property. Lines 260–306 construct a ClientModel for each client Element in the
XML configuration file and add those ClientModels to the List.

Method getClientModel (lines 326–347) returns a ClientModel that matches
the given User-Agent header. The UserAgent property of class ClientModel con-
tains a substring of the User-Agent header that uniquely identifies a particular client type.
For example, the User-Agent substring Mozilla/4.0 (compatible; MSIE 5
uniquely identifies the Microsoft Internet Explorer version 5 client. Lines 333–341 compare
the UserAgent property of each ClientModel with the given User-Agent header. If
the UserAgent property is a substring of the User-Agent header, the ClientModel is
a match and line 340 returns it to the caller. Lines 344–345 construct a generic XHTML Cli-
entModel as a default if no others match the given User-Agent header.

Figure 18.2 presents a sample configuration file that enables application support for
several popular client types. Figure 18.3 presents the DTD for this configuration file.

Class ClientModel (Fig. 18.4) represents a particular client type. Lines 18–23
define the ClientModel constructor. Lines 26–59 provide set and get methods for the
UserAgent, ContentType and XSLPath properties.

1020 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

1 <?xml version = "1.0" encoding = "UTF-8"?>
2 <!DOCTYPE clients SYSTEM
3 "http://www.deitel.com/advjhtp1/clients.dtd">
4
5 <!-- Client configuration file for the Deitel Bookstore -->
6
7 <clients>
8
9 <!-- Microsoft Internet Explorer version 5 client -->

10 <client name = "Microsoft Internet Explorer 5">
11 <userAgent>Mozilla/4.0 (compatible; MSIE 5</userAgent>
12 <contentType>text/html</contentType>
13 <XSLPath>/XSLT/XHTML/</XSLPath>
14 </client>
15
16 <!-- Microsoft Internet Explorer version 6 client -->
17 <client name = "Microsoft Internet Explorer 6">
18 <userAgent>Mozilla/4.0 (compatible; MSIE 6</userAgent>
19 <contentType>text/html</contentType>
20 <XSLPath>/XSLT/XHTML/</XSLPath>
21 </client>
22
23 <!-- Netscape version 4.7x client -->
24 <client name = "Netscape 4.7">
25 <userAgent>Mozilla/4.7</userAgent>
26 <contentType>text/html</contentType>
27 <XSLPath>/XSLT/XHTML/</XSLPath>
28 </client>
29
30 <!-- Mozilla/Netscape version 6 client -->
31 <client name = "Mozilla/Netscape 6">
32 <userAgent>Gecko</userAgent>
33 <contentType>text/html</contentType>
34 <XSLPath>/XSLT/XHTML/</XSLPath>
35 </client>
36
37 <!-- Phone.com WML browser client -->
38 <client name = "Openwave SDK Browser">
39 <userAgent>UP.Browser/4</userAgent>
40 <contentType>text/vnd.wap.wml</contentType>
41 <XSLPath>/XSLT/WML/</XSLPath>
42 </client>
43
44 <!-- Nokia WML browser client -->
45 <client name = "Nokia WAP Toolkit Browser">
46 <userAgent>Nokia-WAP</userAgent>
47 <contentType>text/vnd.wap.wml</contentType>
48 <XSLPath>/XSLT/WML/</XSLPath>
49 </client>
50
51 <!-- Pixo iMode browser client -->
52 <client name = "Pixo Browser">

Fig. 18.2Fig. 18.2Fig. 18.2Fig. 18.2 Configuration file for enabling support for various client types
(clients.xml) (part 1 of 2).

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1021

53 <userAgent>Pixo-Browser</userAgent>
54 <contentType>text/html</contentType>
55 <XSLPath>/XSLT/cHTML/</XSLPath>
56 </client>
57
58 </clients>

1 <!-- clients.dtd -->
2 <!-- DTD for specifying Bookstore client types -->
3
4 <!ELEMENT clients (client+)>
5
6 <!ELEMENT client (userAgent, contentType, XSLPath)>
7 <!ATTLIST client name CDATA #REQUIRED>
8
9 <!ELEMENT userAgent (#PCDATA)>

10 <!ELEMENT contentType (#PCDATA)>
11 <!ELEMENT XSLPath (#PCDATA)>

Fig. 18.3Fig. 18.3Fig. 18.3Fig. 18.3 DTD for clients.xml.

1 // ClientModel.java
2 // ClientModel is a utility class for determining the proper
3 // Content-Type and path for XSL files for each type of client
4 // supported by the Bookstore application.
5 package com.deitel.advjhtp1.bookstore.model;
6
7 // Java core packages
8 import java.io.*;
9

10 public class ClientModel implements Serializable {
11
12 // ClientModel properties
13 private String userAgent;
14 private String contentType;
15 private String XSLPath;
16
17 // ClientModel constructor for initializing data members
18 public ClientModel(String agent, String type, String path)
19 {
20 setUserAgent(agent);
21 setContentType(type);
22 setXSLPath(path);
23 }
24

Fig. 18.4Fig. 18.4Fig. 18.4Fig. 18.4 ClientModel for representing supported clients (part 1 of 2).

Fig. 18.2Fig. 18.2Fig. 18.2Fig. 18.2 Configuration file for enabling support for various client types
(clients.xml) (part 2 of 2).

1022 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

18.3 Shopping Cart Servlets
Several e-commerce models have become common for shopping on the Web. These mod-
els include auction sites, bargain shoppers, bartering and name your own price. Our appli-
cation uses the familiar shopping-cart model, in which a customer browses through the
store and selects items for purchase. Each of these items is placed in a virtual shopping cart.
When the customer is finished shopping, a checkout process gathers the person’s billing
and shipping information to complete the transaction. Maintaining the shopping cart is part
of the business logic implemented in the application’s EJBs.

Figure 18.5 shows the flow of client requests and responses for a new customer who
orders multiple copies of a book using a Web browser. The customer enters the site at
index.html. The customer then selects a link to view the product catalog, which is gen-
erated by GetAllProductsServlet. The customer then chooses a product from the

25 // set UserAgent substring
26 public void setUserAgent(String agent)
27 {
28 userAgent = agent;
29 }
30
31 // get UserAgent substring
32 public String getUserAgent()
33 {
34 return userAgent;
35 }
36
37 // set ContentType
38 public void setContentType(String type)
39 {
40 contentType = type;
41 }
42
43 // get ContentType
44 public String getContentType()
45 {
46 return contentType;
47 }
48
49 // set XSL path
50 public void setXSLPath(String path)
51 {
52 XSLPath = path;
53 }
54
55 // get XSL path
56 public String getXSLPath()
57 {
58 return XSLPath;
59 }
60 }

Fig. 18.4Fig. 18.4Fig. 18.4Fig. 18.4 ClientModel for representing supported clients (part 2 of 2).

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1023

product catalog, and GetProductServlet shows the details of the product, including
a picture of the cover, the price and the author(s). The customer adds the product to the
shopping cart through AddToCartServlet, and ViewCartServlet shows the shop-
ping cart contents. The customer updates the quantity to be purchased through Update-
CartServlet, and ViewCartServlet again shows the shopping cart contents to the
customer. The customer then selects a link to register as a new customer and fills out the
registration form in register.html. The customer submits the form to Regis-
terServlet, which then invokes LoginServlet to log the customer into the store.
The customer then selects a link to invoke CheckoutServlet. CheckoutServlet
places the order and forwards the customer to ViewOrderServlet, which shows the
details of the customer’s order.

18.3.1 AddToCartServlet

As customers browse through our on-line store, they add products they wish to purchase to
their shopping carts. Servlet AddToCartServlet (Fig. 18.6) handles each customer re-
quest to add a product to the shopping cart. Class AddToCartServlet extends class
XMLServlet, which implements functionality common to all servlets in the Deitel Book-
store, such as initialization and XSL transformations.

Line 41 retrieves from the HttpServletRequest object the ISBN of the product the
customer would like purchase. Lines 37–38 retrieve a reference to the customer’s Shop-
pingCart from the servlet’s HttpSession object. It is possible that the customer does
not yet have a shopping cart, in which case the ShoppingCart reference will be null. If
this is the case, line 59 creates a new ShoppingCart using the ShoppingCart home
interface, and stores its reference in the servlet’sHttpSession object (line 62) for later use.
The ShoppingCart EJB is a stateful session bean and will therefore maintain the contents
of the customer’s ShoppingCart throughout the browsing session.

Once the servlet has a valid ShoppingCart reference, line 66 invokes the Shop-
pingCart’s addProduct business method with the product’s ISBN as an argument.
Line 70 invokes method sendRedirect of class HttpServletResponse to redirect
the client to ViewCartServlet, which displays a list of products in the shopping cart.

There are three checked exceptions that could be thrown from the try block on lines
44–72. Lines 75–86 catch a NamingException if the ShoppingCart EJB is not
found in the JNDI directory. Lines 89–99 catch a CreateException if there is an
error creating the customer’s shopping cart. Lines 102–110 catch a ProductNot-
FoundException, which is an application-specific exception that we present in detail
in Chapter 19. A ProductNotFoundException indicates that a product with the
given ISBN could not be found in the database.

Each of these exception handlers uses XMLServlet method buildErrorMes-
sage to create an XML error message to present to the client. In each case, we provide a
message to inform the user of the error, and print a stack trace of the exception to aid the
developer in debugging the application. Invoking XMLServlet method writeXML
(lines 85, 98 and 109) sends the content to the client.

18.3.2 ViewCartServlet

Once the customer has added an item to the shopping cart, ViewCartServlet (Fig. 18.7)
displays the shopping cart’s contents. This servlet is a subclass of XMLServlet.

1024 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

Fig. 18.5Fig. 18.5Fig. 18.5Fig. 18.5 Flow of client requests and data returned in the Deitel Bookstore for
XHTML clients.

1 // AddToCartServlet.java
2 // AddToCartServlet adds a Product to the Customer's
3 // ShoppingCart.
4 package com.deitel.advjhtp1.bookstore.servlets;
5
6 // Java core packages
7 import java.io.*;
8
9 // Java extension packages

10 import javax.servlet.*;
11 import javax.servlet.http.*;
12 import javax.naming.*;
13 import javax.rmi.*;
14 import javax.ejb.*;
15
16 // third-party packages
17 import org.w3c.dom.*;
18
19 // Deitel packages
20 import com.deitel.advjhtp1.bookstore.model.*;
21 import com.deitel.advjhtp1.bookstore.ejb.*;
22 import com.deitel.advjhtp1.bookstore.exceptions.*;
23

Fig. 18.6Fig. 18.6Fig. 18.6Fig. 18.6 AddToCartServlet for adding products to a shopping cart
 (part 1 of 3).

register.html

index.html GetAllProductsServlet GetProductServlet

UpdateCartServlet ViewCartServlet AddToCartServlet

RegisterServlet

LoginServlet CheckoutServlet ViewOrderServlet

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1025

24 public class AddToCartServlet extends XMLServlet {
25
26 // respond to HTTP post requests
27 public void doPost(HttpServletRequest request,
28 HttpServletResponse response)
29 throws ServletException, IOException
30 {
31 Document document = getDocumentBuilder().newDocument();
32
33 // get HttpSession Object for this user
34 HttpSession session = request.getSession();
35
36 // get Customer's ShoppingCart
37 ShoppingCart shoppingCart =
38 (ShoppingCart) session.getAttribute("cart");
39
40 // get ISBN parameter from request Object
41 String isbn = request.getParameter("ISBN");
42
43 // get ShoppingCart and add Product to be purchased
44 try {
45 InitialContext context = new InitialContext();
46
47 // create ShoppingCart if Customer does not have one
48 if (shoppingCart == null) {
49 Object object = context.lookup(
50 "java:comp/env/ejb/ShoppingCart");
51
52 // cast Object reference to ShoppingCartHome
53 ShoppingCartHome shoppingCartHome =
54 (ShoppingCartHome)
55 PortableRemoteObject.narrow(
56 object, ShoppingCartHome.class);
57
58 // create ShoppingCart using ShoppingCartHome
59 shoppingCart = shoppingCartHome.create();
60
61 // store ShoppingCart in session
62 session.setAttribute("cart", shoppingCart);
63 }
64
65 // add Product to Customer's ShoppingCart
66 shoppingCart.addProduct(isbn);
67
68 // redirect Customer to ViewCartServlet to view
69 // contents of ShoppingCart
70 response.sendRedirect("ViewCart");
71
72 } // end try
73
74 // handle exception when looking up ShoppingCart EJB
75 catch (NamingException namingException) {

Fig. 18.6Fig. 18.6Fig. 18.6Fig. 18.6 AddToCartServlet for adding products to a shopping cart
 (part 2 of 3).

1026 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

76 namingException.printStackTrace();
77
78 String error = "The ShoppingCart EJB was not " +
79 "found in the JNDI directory.";
80
81 // append error message to XML document
82 document.appendChild(buildErrorMessage(
83 document, error));
84
85 writeXML(request, response, document);
86 }
87
88 // handle exception when creating ShoppingCart EJB
89 catch (CreateException createException) {
90 createException.printStackTrace();
91
92 String error = "ShoppingCart could not be created";
93
94 // append error message to XML document
95 document.appendChild(buildErrorMessage(
96 document, error));
97
98 writeXML(request, response, document);
99 }
100
101 // handle exception when Product is not found
102 catch (ProductNotFoundException productException) {
103 productException.printStackTrace();
104
105 // append error message to XML document
106 document.appendChild(buildErrorMessage(
107 document, productException.getMessage()));
108
109 writeXML(request, response, document);
110 }
111
112 } // end method doGet
113 }

1 // ViewCartServlet.java
2 // ViewCartServlet presents the contents of the Customer's
3 // ShoppingCart.
4 package com.deitel.advjhtp1.bookstore.servlets;
5
6 // Java core packages
7 import java.io.*;
8 import java.util.*;
9 import java.text.*;

10

Fig. 18.7Fig. 18.7Fig. 18.7Fig. 18.7 ViewCartServlet for viewing contents of shopping cart (part 1 of 3).

Fig. 18.6Fig. 18.6Fig. 18.6Fig. 18.6 AddToCartServlet for adding products to a shopping cart
 (part 3 of 3).

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1027

11 // Java extension packages
12 import javax.servlet.*;
13 import javax.servlet.http.*;
14 import javax.rmi.*;
15
16 // third-party packages
17 import org.w3c.dom.*;
18
19 // Deitel packages
20 import com.deitel.advjhtp1.bookstore.model.*;
21 import com.deitel.advjhtp1.bookstore.ejb.*;
22
23 public class ViewCartServlet extends XMLServlet {
24
25 // respond to HTTP get requests
26 public void doGet(HttpServletRequest request,
27 HttpServletResponse response)
28 throws ServletException, IOException
29 {
30 Document document = getDocumentBuilder().newDocument();
31 HttpSession session = request.getSession();
32
33 // get Customer's ShoppingCart from session
34 ShoppingCart shoppingCart =
35 (ShoppingCart) session.getAttribute("cart");
36
37 // build XML document with contents of ShoppingCart
38 if (shoppingCart != null) {
39
40 // create cart element in XML document
41 Element root = (Element) document.appendChild(
42 document.createElement("cart"));
43
44 // get total cost of Products in ShoppingCart
45 double total = shoppingCart.getTotal();
46
47 // create NumberFormat for local currency
48 NumberFormat priceFormatter =
49 NumberFormat.getCurrencyInstance();
50
51 // format total price for ShoppingCart and add it
52 // as an attribute of element cart
53 root.setAttribute("total",
54 priceFormatter.format(total));
55
56 // get contents of ShoppingCart
57 Iterator orderProducts =
58 shoppingCart.getContents().iterator();
59
60 // add an element for each Product in ShoppingCart
61 // to XML document
62 while (orderProducts.hasNext()) {
63 OrderProductModel orderProductModel =

Fig. 18.7Fig. 18.7Fig. 18.7Fig. 18.7 ViewCartServlet for viewing contents of shopping cart (part 2 of 3).

1028 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

A remote reference to the customer’s ShoppingCart is stored in the HttpSes-
sion object. Lines 34–35 retrieve this remote reference. After ensuring the Shopping-
Cart remote reference is not null, lines 41–42 begin building the XML document that
describes the customer’s shopping cart by creating element cart. Line 45 obtains the total
price for the items in the shopping cart by invoking ShoppingCart method getTotal.
Lines 48–49 format the total using a NumberFormat and append the formatted
total to the XML document.

Lines 62–68 iterate through the Collection of OrderProductModels in the
shopping cart. Each OrderProductModel represents a product and the quantity of that
product in the shopping cart. Line 67 invokes OrderProductModel method getXML
to obtain an XML element that describes the OrderProductModel, including the
product’s ISBN and quantity. Lines 66–67 append this description to the servlet’s XML
document.

If the ShoppingCart remote reference stored in the HttpSession object was
null, lines 72–78 generate an error message. Line 81 invokes method writeXML to
transforms the XML content using XSLT and present that content to the client.

The XSL transformation of Fig. 18.8 produces XHTML for ViewCartServlet.
Lines 6–8 set the output parameters for the transformation. Line 10 includes templates from
error.xsl for transforming error messages. Lines 23–27 load a navigation header from
an external XML document. Note that we refer to the error.xsl and naviga-
tion.xml documents with relative URIs. Recall that class XMLServlet creates a
custom URIResolver that enables the XSL transformer to resolve these relative URIs.
Had we not provided a custom URIResolver, each XSL transformation would have to
specify the complete URI for these documents, which would make the application less por-
table. This header contains links for viewing the product catalog, creating an online

64 (OrderProductModel) orderProducts.next();
65
66 root.appendChild(
67 orderProductModel.getXML(document));
68 }
69
70 } // end if
71
72 else {
73 String error = "Your ShoppingCart is empty.";
74
75 // append error message to XML document
76 document.appendChild(buildErrorMessage(
77 document, error));
78 }
79
80 // write content to client
81 writeXML(request, response, document);
82
83 } // end method doGet
84 }

Fig. 18.7Fig. 18.7Fig. 18.7Fig. 18.7 ViewCartServlet for viewing contents of shopping cart (part 3 of 3).

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1029

account, viewing the shopping cart, etc. Lines 42–43 apply a template that populates a table
with product information, including the title, author, ISBN price and quantity. The form
on lines 51–54 enables the customer to check out from the online store to place the order.
The xsl:template on lines 61–91 extracts each product’s information from the View-
CartServlet’s XML document and creates a table row. The form on lines 75–80
enables the user to change the quantity of the product in the shopping cart. The form on
lines 84–88 enables the user to remove the product from the shopping cart.

The XSL transformation of Fig. 18.9 produces cHTML for ViewCartServlet.
Lines 28-29 display the total cost of products in the cart. Lines 38–41 apply the xsl:tem-
plate for orderProduct elements to produce an unordered list of product informa-
tion. The form on lines 44–47 enables the customer to check out of the online store to place
the order. The form on lines 64–69 enables the customer to update the quantity of a par-
ticular product in the shopping cart. The form on lines 72–76 enables the customer to
remove a product from the shopping cart.

1 <?xml version = "1.0"?>
2
3 <xsl:stylesheet version = "1.0"
4 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
5
6 <xsl:output method = "xml" omit-xml-declaration = "no"
7 indent = "yes" doctype-system = "DTD/xhtml1-strict.dtd"
8 doctype-public = "-//W3C//DTD XHTML 1.0 Strict//EN"/>
9

10 <xsl:include href = /XSLT/XHTML/error.xsl"/>
11
12 <xsl:template match = "cart">
13 <html xmlns = "http://www.w3.org/1999/xhtml"
14 xml:lang = "en" lang = "en">
15
16 <head>
17 <title>Your Online Shopping Cart</title>
18 <link rel = "StyleSheet" href = "styles/default.css"/>
19 </head>
20
21 <body>
22
23 <xsl:for-each select =
24 "document('/XSLT/XHTML/navigation.xml')">
25
26 <xsl:copy-of select = "."/>
27 </xsl:for-each>
28
29 <div class = "header">Your Shopping Cart:</div>
30
31 <table class = "cart">
32 <tr>
33 <th>Title</th>
34 <th>Author(s)</th>

Fig. 18.8Fig. 18.8Fig. 18.8Fig. 18.8 ViewCartServlet XSL transformation for XHTML browsers (XHTML/
viewCart.xsl) (part 1 of 3).

1030 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

35 <th>ISBN</th>
36 <th>Price</th>
37 <th>Quantity</th>
38 </tr>
39
40 <xsl:apply-templates
41 select = "orderProduct"/>
42
43 </table>
44
45 <p>
46 Your total:
47 <xsl:value-of select = "@total"/>
48 </p>
49
50 <p>
51 <form action = "Checkout" method = "post">
52 <input name = "submit" type = "submit"
53 value = "Check Out"/>
54 </form>
55 </p>
56
57 </body>
58 </html>
59 </xsl:template>
60
61 <xsl:template match = "orderProduct">
62 <tr>
63 <td>
64
65 <xsl:value-of select = "product/title"/>
66 </td>
67
68 <td><xsl:value-of select = "product/author"/></td>
69
70 <td><xsl:value-of select = "product/ISBN"/></td>
71
72 <td><xsl:value-of select = "product/price"/></td>
73
74 <td>
75 <form action = "UpdateCart" method = "post">
76 <input type = "text" size = "2"
77 name = "{product/ISBN}"
78 value = "{quantity}"/>
79 <input type = "submit" value = "Update"/>
80 </form>
81 </td>
82
83 <td align = "center">
84 <form action = "RemoveFromCart" method = "post">
85 <input name = "ISBN" type = "hidden"
86 value = "{product/ISBN}"/>

Fig. 18.8Fig. 18.8Fig. 18.8Fig. 18.8 ViewCartServlet XSL transformation for XHTML browsers (XHTML/
viewCart.xsl) (part 2 of 3).

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1031

87 <input type = "submit" value = "Remove"/>
88 </form>
89 </td>
90 </tr>
91 </xsl:template>
92 </xsl:stylesheet>

1 <?xml version = "1.0"?>
2
3 <xsl:stylesheet version = "1.0"
4 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
5
6 <xsl:output method = "html"
7 omit-xml-declaration = "yes"
8 indent = "yes"
9 doctype-system =

10 "http://www.w3.org/MarkUp/html-spec/html-spec_toc.html"
11 doctype-public = "-//W3C//DTD HTML 2.0//EN"/>
12
13 <xsl:include href = "/XSLT/cHTML/error.xsl"/>
14

Fig. 18.9Fig. 18.9Fig. 18.9Fig. 18.9 ViewCartServlet XSL transformation for i-mode browsers (cHTML/
viewCart.xsl) (part 1 of 3). (Image courtesy of Pixo, Inc.)

Fig. 18.8Fig. 18.8Fig. 18.8Fig. 18.8 ViewCartServlet XSL transformation for XHTML browsers (XHTML/
viewCart.xsl) (part 3 of 3).

1032 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

15 <xsl:template match = "cart">
16 <html>
17
18 <head>
19 <title>Your Online Shopping Cart</title>
20 </head>
21
22 <body>
23 <div class = "header">
24 Your Shopping Cart:
25 </div>
26
27 <p>
28 Your total:
29 <xsl:value-of select = "@total"/>
30 </p>
31
32 <p>Title</p>
33 <p>Author(s)</p>
34 <p>ISBN</p>
35 <p>Price</p>
36 <p>Quantity</p>
37
38
39 <xsl:apply-templates
40 select = "orderProduct"/>
41
42
43 <p>
44 <form method = "post" action = "Checkout">
45 <input type = "submit" name = "Checkout"
46 value = "Checkout"/>
47 </form>
48 </p>
49
50 </body>
51
52 </html>
53 </xsl:template>
54
55 <xsl:template match = "orderProduct">
56
57
58 <xsl:value-of select = "product/title"/>
59

60 <p><xsl:value-of select = "product/author"/></p>
61 <p><xsl:value-of select = "product/ISBN"/></p>
62 <p><xsl:value-of select = "product/price"/></p>
63 <p>
64 <form method = "post" action = "UpdateCart">
65 <input type = "text" size = "2"
66 name = "{product/ISBN}"

Fig. 18.9Fig. 18.9Fig. 18.9Fig. 18.9 ViewCartServlet XSL transformation for i-mode browsers (cHTML/
viewCart.xsl) (part 2 of 3). (Image courtesy of Pixo, Inc.)

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1033

The XSL transformation of Fig. 18.10 produces WML for ViewCartServlet. The
do element on lines 21–23 enables the user to check out of the online store to place the
order. Lines 25–49 mark up the list of products in the shopping cart. The card element on
lines 55–64 displays information about a single product. The card element on lines 66–81
provides an interface for changing the quantity of a particular product in the shopping cart.
[Note: To download the Nokia WAP Toolkit WML browser, please visit
www.nokia.com/corporate/wap/downloads.html.]

67 value = "{quantity}"/>
68 <input type = "submit" value = "Update"/>
69 </form>
70 </p>
71 <p>
72 <form method = "post" action = "RemoveFromCart">
73 <input type = "hidden" name = "ISBN"
74 value = "{product/ISBN}"/>
75 <input type = "submit" value = "Remove"/>
76 </form>
77 </p>
78

79
80 </xsl:template>
81 </xsl:stylesheet>

Fig. 18.9Fig. 18.9Fig. 18.9Fig. 18.9 ViewCartServlet XSL transformation for i-mode browsers (cHTML/
viewCart.xsl) (part 3 of 3). (Image courtesy of Pixo, Inc.)

1034 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

18.3.3 RemoveFromCartServlet
Once a customer has added a product to the shopping cart, the customer may wish to re-
move that product. RemoveFromCartServlet (Fig. 18.11) processes requests to re-
move products from shopping carts. Line 34 retrieves from the HttpSession the ISBN
of the product that the customer would like to remove from the shopping cart. Lines 39–40
obtain the ShoppingCart remote reference from the HttpSession object. After en-
suring that the ShoppingCart reference is not null, line 44 invokes ShoppingCart
method removeProduct, providing the ISBN as an argument. Line 48 redirects the cli-
ent to ViewCartServlet to display the results of removing the product from the shop-
ping cart. Method removeProduct throws a ProductNotFoundException if a
product with the given ISBN is not found in the shopping cart. Lines 53–61 catch this
exception and generate an error message to inform the user of the problem.

18.3.4 UpdateCartServlet
Products in a customer’s shopping cart each have an associated quantity. UpdateCart-
Servlet (Fig. 18.12) enables customers to change the quantities of products in their
shopping carts. Lines 37–38 retrieve the customer’s ShoppingCart from the Ht-
tpSession object. Line 44 retrieves an Enumeration of parameter names from the
HttpServletRequest object. Each parameter name is the ISBN of a product in the
customer’s shopping cart. The value of each parameter is the desired quantity of the product
in the shopping cart. For each product in the shopping cart, lines 50–51 obtain the
newQuantity for that product from the request parameter. Lines 55–56 set the quan-
tity for each product in the shopping cart by invoking ShoppingCart method setPro-
ductQuantity. Once all of the quantities have been updated, line 61 redirects the client
to ViewCartServlet to show the updates to the shopping cart.

1 <?xml version = "1.0"?>
2
3 <xsl:stylesheet version = "1.0"
4 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
5
6 <xsl:output method = "xml" omit-xml-declaration = "no"
7 doctype-system = "http://www.wapforum.org/DTD/wml_1.1.xml"
8 doctype-public = "-//WAPFORUM//DTD WML 1.1//EN"/>
9

10 <xsl:include href = "/XSLT/WML/error.xsl"/>
11
12 <xsl:template match = "cart">
13 <wml>
14
15 <card title = "Shopping Cart">
16 <do type = "prev">
17 <prev/>
18 </do>
19

Fig. 18.10Fig. 18.10Fig. 18.10Fig. 18.10 ViewCartServlet XSL transformation for WML browsers (WML/
viewCart.xsl) (part 1 of 3). (Image © 2001 Nokia Mobile Phones.)

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1035

20 <do type = "accept" label = "Check Out">
21 <go href = "Checkout" method = "post"/>
22 </do>
23
24 <p>Shopping Cart</p>
25
26 <p>
27 Your total: $<xsl:value-of select = "@total"/>
28
29 <table columns = "2">
30 <tr>
31 <td>Title</td>
32 <td>Price</td>
33 </tr>
34
35 <xsl:for-each select = "orderProduct">
36 <tr>
37 <td>
38
39 <xsl:value-of select = "product/title"/>
40
41 </td>
42 <td>
43 $<xsl:value-of select = "product/price"/>
44 </td>
45 </tr>
46 </xsl:for-each>
47
48 </table>
49 </p>
50
51 </card>
52
53 <xsl:for-each select = "orderProduct" >
54 <card id = "ISBN{product/ISBN}">
55 <do label = "OK" type = "prev"><prev/></do>
56 <do label = "Change Quant" type = "options">
57 <go href = "#quant{product/ISBN}"/>
58 </do>
59 <p><xsl:value-of select = "product/title"/></p>
60 <p>Quantity: <xsl:value-of select = "quantity"/></p>
61 <p><xsl:value-of select = "product/author"/></p>
62 <p><xsl:value-of select = "product/ISBN"/></p>
63 </card>
64
65 <card id = "quant{product/ISBN}">
66 <p>Enter new quantity
67 <input name = "quantity" emptyok = "false"
68 type = "text" format = "*n"/>
69 </p>
70

Fig. 18.10Fig. 18.10Fig. 18.10Fig. 18.10 ViewCartServlet XSL transformation for WML browsers (WML/
viewCart.xsl) (part 2 of 3). (Image © 2001 Nokia Mobile Phones.)

1036 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

71 <do type = "accept" label = "Update Quantity">
72 <go href = "UpdateCart" method = "post">
73 <postfield name = "{product/ISBN}"
74 value = "$quantity"/>
75 </go>
76 </do>
77
78 <do type = "prev" label = "Cancel"><prev/></do>
79
80 </card>
81 </xsl:for-each>
82
83 </wml>
84 </xsl:template>
85 </xsl:stylesheet>

1 // RemoveFromCartServlet.java
2 // RemoveFromCartServlet removes a Product from the Customer's
3 // ShoppingCart.
4 package com.deitel.advjhtp1.bookstore.servlets;
5
6 // Java core packages
7 import java.io.*;

Fig. 18.11Fig. 18.11Fig. 18.11Fig. 18.11 RemoveFromCartServlet for removing products from shopping cart
(part 1 of 3).

Fig. 18.10Fig. 18.10Fig. 18.10Fig. 18.10 ViewCartServlet XSL transformation for WML browsers (WML/
viewCart.xsl) (part 3 of 3). (Image © 2001 Nokia Mobile Phones.)

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1037

8
9 // Java extension packages

10 import javax.servlet.*;
11 import javax.servlet.http.*;
12
13 // third-party packages
14 import org.w3c.dom.*;
15
16 // Deitel packages
17 import com.deitel.advjhtp1.bookstore.model.*;
18 import com.deitel.advjhtp1.bookstore.ejb.*;
19 import com.deitel.advjhtp1.bookstore.exceptions.*;
20
21 public class RemoveFromCartServlet extends XMLServlet {
22
23 // respond to HTTP post requests
24 public void doPost(HttpServletRequest request,
25 HttpServletResponse response)
26 throws ServletException, IOException
27 {
28 Document document = getDocumentBuilder().newDocument();
29
30 // remove Product from ShoppingCart
31 try {
32
33 // get ISBN of Product to be removed
34 String isbn = request.getParameter("ISBN");
35
36 // get Customer's ShoppingCart from session
37 HttpSession session = request.getSession();
38
39 ShoppingCart shoppingCart =
40 (ShoppingCart) session.getAttribute("cart");
41
42 // if ShoppingCart is not null, remove Product
43 if (shoppingCart != null)
44 shoppingCart.removeProduct(isbn);
45
46 // redirect Customer to ViewCartServlet to view
47 // the contents of ShoppingCart
48 response.sendRedirect("ViewCart");
49
50 } // end try
51
52 // handle exception if Product not found in ShoppingCart
53 catch (ProductNotFoundException productException) {
54 productException.printStackTrace();
55
56 // append error message to XML document
57 document.appendChild(buildErrorMessage(
58 document, productException.getMessage()));
59

Fig. 18.11Fig. 18.11Fig. 18.11Fig. 18.11 RemoveFromCartServlet for removing products from shopping cart
(part 2 of 3).

1038 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

60 writeXML(request, response, document);
61 }
62
63 } // end method doGet
64 }

1 // UpdateCartServlet.java
2 // UpdateCartServlet updates the quantity of a Product in the
3 // Customer's ShoppingCart.
4 package com.deitel.advjhtp1.bookstore.servlets;
5
6 // Java core packages
7 import java.io.*;
8 import java.util.*;
9

10 // Java extension packages
11 import javax.servlet.*;
12 import javax.servlet.http.*;
13
14 // third-party packages
15 import org.w3c.dom.*;
16
17 // Deitel packages
18 import com.deitel.advjhtp1.bookstore.model.*;
19 import com.deitel.advjhtp1.bookstore.ejb.*;
20 import com.deitel.advjhtp1.bookstore.exceptions.*;
21
22 public class UpdateCartServlet extends XMLServlet {
23
24 // respond to HTTP post requests
25 public void doPost(HttpServletRequest request,
26 HttpServletResponse response)
27 throws ServletException, IOException
28 {
29 Document document = getDocumentBuilder().newDocument();
30
31 // update quantity of given Product in ShoppingCart
32 try {
33
34 // get Customer's ShoppingCart from session
35 HttpSession session = request.getSession(false);
36
37 ShoppingCart shoppingCart = (ShoppingCart)
38 session.getAttribute("cart");
39
40 // get Enumeration of parameter names
41 Enumeration parameters = request.getParameterNames();

Fig. 18.12Fig. 18.12Fig. 18.12Fig. 18.12 UpdateCartServlet for updating quantities of products in shopping
cart (part 1 of 2).

Fig. 18.11Fig. 18.11Fig. 18.11Fig. 18.11 RemoveFromCartServlet for removing products from shopping cart
(part 3 of 3).

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1039

Method setProductQuantity throws a ProductNotFoundException if
the product with the given ISBN is not found in the shopping cart. Lines 66–73 handle this
exception and generate an XML error message using method buildErrorMessage. the
Method writeXML presents the error message to the client (line 72).

18.3.5 CheckoutServlet

Once the customer has finished browsing through the store and adding products to the shop-
ping cart, CheckOutServlet (Fig. 18.13) completes the customer’s Order.

A customer must log into the on-line store before checking out. Lines 32–33 retrieve
the customer’s userID from the HttpSession. Lines 39–40 then obtain a remote ref-
erence to the customer’s ShoppingCart from the session object. After ensuring that
neither the ShoppingCart nor the userID is null, line 51 invokes ShoppingCart

42
43 // update quantity for each ISBN parameter
44 while (parameters.hasMoreElements()) {
45
46 // get ISBN of Product to be updated
47 String ISBN = (String) parameters.nextElement();
48
49 // get new quantity for Product
50 int newQuantity = Integer.parseInt(
51 request.getParameter(ISBN));
52
53 // set quantity in ShoppingCart for Product
54 // with given ISBN
55 shoppingCart.setProductQuantity(ISBN,
56 newQuantity);
57 }
58
59 // redirect Customer to ViewCartServlet to view
60 // contents of ShoppingCart
61 response.sendRedirect("ViewCart");
62
63 } // end try
64
65 // handle exception if Product not found in ShoppingCart
66 catch (ProductNotFoundException productException) {
67 productException.printStackTrace();
68
69 document.appendChild(buildErrorMessage(
70 document, productException.getMessage()));
71
72 writeXML(request, response, document);
73 }
74
75 } // end method doGet
76 }

Fig. 18.12Fig. 18.12Fig. 18.12Fig. 18.12 UpdateCartServlet for updating quantities of products in shopping
cart (part 2 of 2).

1040 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

method checkout to place the order. Method checkout returns a remote reference to
an Order EJB instance, which represents the customer’s order. Line 54 gets the orderID
for the Order by invoking method getPrimaryKey. Lines 57–58 redirect the client to
ViewOrderServlet, which displays the details of the order that was placed.

If the userID is null, lines 60–70 generates an error message indicating that the
customer is not logged in. Lines 75–83 catch a ProductNotFoundException, which
method checkout throws if the shopping cart is empty (i.e., contains no products).

18.4 Product Catalog Servlets
Servlets GetAllProductsServlet and ProductSearchServlet provide an on-
line catalog. These servlets retrieve a list of products and present the list to the customer.
GetProductServlet shows the details of a given product.

18.4.1 GetAllProductsServlet

GetAllProductsServlet (Fig. 18.14) provides a list of products available at our on-
line store. Lines 35–44 retrieve a remote reference to the Product EJB, which represents
a product in the store. Method findAllProducts of interface ProductHome returns
a Collection of Product EJBs, each of which represents a single product (lines 47–
48). Lines 58–70 iterate through the Collection of products to build an XML document
that contains information about each product. Lines 64–65 obtain a ProductModel for
each product and lines 68–69 retrieve each product’s XML description.

1 // CheckOutServlet.java
2 // CheckOutServlet allows a Customer to checkout of the online
3 // store to purchase the Products in the ShoppingCart.
4 package com.deitel.advjhtp1.bookstore.servlets;
5
6 // Java core packages
7 import java.io.*;
8
9 // Java extension packages

10 import javax.servlet.*;
11 import javax.servlet.http.*;
12
13 // third-party packages
14 import org.w3c.dom.*;
15
16 // Deitel packages
17 import com.deitel.advjhtp1.bookstore.model.*;
18 import com.deitel.advjhtp1.bookstore.ejb.*;
19 import com.deitel.advjhtp1.bookstore.exceptions.*;
20
21 public class CheckoutServlet extends XMLServlet {
22
23 // respond to HTTP post requests
24 public void doPost(HttpServletRequest request,
25 HttpServletResponse response)

Fig. 18.13Fig. 18.13Fig. 18.13Fig. 18.13 CheckoutServlet for placing Orders (part 1 of 3). (Images courtesy
Pixo, Inc. or © 2001 Nokia Mobile Phones.)

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1041

26 throws ServletException, IOException
27 {
28 Document document = getDocumentBuilder().newDocument();
29 HttpSession session = request.getSession();
30
31 // get Customer's userID from session
32 String userID = (String)
33 session.getAttribute("userID");
34
35 // get ShoppingCart and check out
36 try {
37
38 // get Customer's ShoppingCart from session
39 ShoppingCart shoppingCart = (ShoppingCart)
40 session.getAttribute("cart");
41
42 // ensure Customer has a ShoppingCart
43 if (shoppingCart == null)
44 throw new ProductNotFoundException("Your " +
45 "ShoppingCart is empty.");
46
47 // ensure userID is neither null nor empty
48 if (!(userID == null || userID.equals(""))) {
49
50 // invoke checkout method to place Order
51 Order order = shoppingCart.checkout(userID);
52
53 // get orderID for Customer's Order
54 Integer orderID = (Integer) order.getPrimaryKey();
55
56 // go to ViewOrder to show completed order
57 response.sendRedirect("ViewOrder?orderID=" +
58 orderID);
59 }
60 else {
61 // userID was null, indicating Customer is
62 // not logged in
63 String error = "You are not logged in.";
64
65 // append error message to XML document
66 document.appendChild(buildErrorMessage(document,
67 error));
68
69 writeXML(request, response, document);
70 }
71
72 } // end try
73
74 // handle exception if Product not found in ShoppingCart
75 catch (ProductNotFoundException productException) {
76 productException.printStackTrace();
77

Fig. 18.13Fig. 18.13Fig. 18.13Fig. 18.13 CheckoutServlet for placing Orders (part 2 of 3). (Images courtesy
Pixo, Inc. or © 2001 Nokia Mobile Phones.)

1042 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

78 // append error message to XML document
79 document.appendChild(buildErrorMessage(
80 document, productException.getMessage()));
81
82 writeXML(request, response, document);
83 }
84
85 } // end method doPost
86 }

Fig. 18.13Fig. 18.13Fig. 18.13Fig. 18.13 CheckoutServlet for placing Orders (part 3 of 3). (Images courtesy
Pixo, Inc. or © 2001 Nokia Mobile Phones.)

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1043

1 // GetAllProductsServlet.java
2 // GetAllProductsServlet retrieves a list of all Products
3 // available in the store and presents the list to the client.
4 package com.deitel.advjhtp1.bookstore.servlets;
5
6 // Java core packages
7 import java.io.*;
8 import java.util.*;
9

10 // Java extension packages
11 import javax.servlet.*;
12 import javax.servlet.http.*;
13 import javax.rmi.*;
14 import javax.naming.*;
15 import javax.ejb.*;
16
17 // third-party packages
18 import org.w3c.dom.*;
19
20 // Deitel packages
21 import com.deitel.advjhtp1.bookstore.model.*;
22 import com.deitel.advjhtp1.bookstore.ejb.*;
23
24 public class GetAllProductsServlet extends XMLServlet {
25
26 // respond to HTTP get requests
27 public void doGet(HttpServletRequest request,
28 HttpServletResponse response)
29 throws ServletException, IOException
30 {
31 Document document = getDocumentBuilder().newDocument();
32
33 // generate Product catalog
34 try {
35 InitialContext context = new InitialContext();
36
37 // look up Product EJB
38 Object object =
39 context.lookup("java:comp/env/ejb/Product");
40
41 // get ProductHome interface to find all Products
42 ProductHome productHome = (ProductHome)
43 PortableRemoteObject.narrow(object,
44 ProductHome.class);
45
46 // get Iterator for Product list
47 Iterator products =
48 productHome.findAllProducts().iterator();
49
50 // create root of XML document
51 Element rootElement =
52 document.createElement("catalog");

Fig. 18.14Fig. 18.14Fig. 18.14Fig. 18.14 GetAllProductsServlet for viewing the product catalog (part 1 of
3). (Images courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.)

1044 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

53
54 // append catalog Element to XML document
55 document.appendChild(rootElement);
56
57 // add each Product to the XML document
58 while (products.hasNext()) {
59 Product product = (Product)
60 PortableRemoteObject.narrow(products.next(),
61 Product.class);
62
63 // get ProductModel for current Product
64 ProductModel productModel =
65 product.getProductModel();
66
67 // add an XML element to document for Product
68 rootElement.appendChild(
69 productModel.getXML(document));
70 }
71
72 } // end try
73
74 // handle exception when looking up Product EJB
75 catch (NamingException namingException) {
76 namingException.printStackTrace();
77
78 String error = "The Product EJB was not found in " +
79 "the JNDI directory.";
80
81 // append error message to XML document
82 document.appendChild(buildErrorMessage(
83 document, error));
84 }
85
86 // handle exception when a Product cannot be found
87 catch (FinderException finderException) {
88 finderException.printStackTrace();
89
90 String error = "No Products found in the store.";
91
92 // append error message to XML document
93 document.appendChild(buildErrorMessage(
94 document, error));
95 }
96
97 // ensure content is written to client
98 finally {
99 writeXML(request, response, document);
100 }
101
102 } // end method doGet
103 }

Fig. 18.14Fig. 18.14Fig. 18.14Fig. 18.14 GetAllProductsServlet for viewing the product catalog (part 2 of
3). (Images courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.)

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1045

Fig. 18.14Fig. 18.14Fig. 18.14Fig. 18.14 GetAllProductsServlet for viewing the product catalog (part 3 of
3). (Images courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.)

1046 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

Method lookup (line 39) throws a NamingException if the Product EJB
cannot be found in the JNDI directory. The corresponding catch block (lines 75–84) pro-
duces an XML error message indicating that the JNDI lookup of the Product EJB failed.
Method findAllProducts (line 48) throws a FinderException if no Products
are found. Lines 87–95 catch this exception and build an XML error message that indi-
cates there were no products found in the database. The finally block (lines 98–100)
presents the content to the client using method writeXML.

18.4.2 GetProductServlet
GetAllProductsServlet presents a list of all Products in the store. To view the
details of a given product, the customer invokes GetProductServlet (Fig. 18.15).
This servlet uses the application’s business logic to retrieve detailed information about a
given product for the customer.

1 // GetProductServlet.java
2 // GetProductServlet retrieves the details of a Product and
3 // presents them to the customer.
4 package com.deitel.advjhtp1.bookstore.servlets;
5
6 // Java core packages
7 import java.io.*;
8
9 // Java extension packages

10 import javax.servlet.*;
11 import javax.servlet.http.*;
12 import javax.naming.*;
13 import javax.ejb.*;
14 import javax.rmi.*;
15
16 // third-party packages
17 import org.w3c.dom.*;
18
19 // Deitel packages
20 import com.deitel.advjhtp1.bookstore.model.*;
21 import com.deitel.advjhtp1.bookstore.ejb.*;
22
23 public class GetProductServlet extends XMLServlet {
24
25 public void doGet(HttpServletRequest request,
26 HttpServletResponse response)
27 throws ServletException, IOException
28 {
29 Document document = getDocumentBuilder().newDocument();
30
31 // get ISBN from request object
32 String isbn = request.getParameter("ISBN");
33
34 // generate XML document with Product details

Fig. 18.15Fig. 18.15Fig. 18.15Fig. 18.15 GetProductServlet for viewing product details (part 1 of 4). (Images
courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.)

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1047

35 try {
36 InitialContext context = new InitialContext();
37
38 // look up Product EJB
39 Object object =
40 context.lookup("java:comp/env/ejb/Product");
41
42 // get ProductHome interface to find Product
43 ProductHome productHome = (ProductHome)
44 PortableRemoteObject.narrow(
45 object, ProductHome.class);
46
47 // find Product with given ISBN
48 Product product =
49 productHome.findByPrimaryKey(isbn);
50
51 // create XML document root Element
52 Node rootNode =
53 document.createElement("bookstore");
54
55 // append root Element to XML document
56 document.appendChild(rootNode);
57
58 // get Product details as a ProductModel
59 ProductModel productModel =
60 product.getProductModel();
61
62 // build an XML document with Product details
63 rootNode.appendChild(
64 productModel.getXML(document));
65
66 } // end try
67
68 // handle exception when looking up Product EJB
69 catch (NamingException namingException) {
70 namingException.printStackTrace();
71
72 String error = "The Product EJB was not found in " +
73 "the JNDI directory.";
74
75 document.appendChild(buildErrorMessage(
76 document, error));
77 }
78
79 // handle exception when Product is not found
80 catch (FinderException finderException) {
81 finderException.printStackTrace();
82
83 String error = "The Product with ISBN " + isbn +
84 " was not found in our store.";
85

Fig. 18.15Fig. 18.15Fig. 18.15Fig. 18.15 GetProductServlet for viewing product details (part 2 of 4). (Images
courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.)

1048 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

86 document.appendChild(buildErrorMessage(
87 document, error));
88 }
89
90 // ensure content is written to client
91 finally {
92 writeXML(request, response, document);
93 }
94
95 } // end method doGet
96 }

Fig. 18.15Fig. 18.15Fig. 18.15Fig. 18.15 GetProductServlet for viewing product details (part 3 of 4). (Images
courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.)

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1049

The Product EJB provides the details of a given product as a ProductModel.
Lines 39–45 retrieve a reference to the ProductHome interface. Lines 48–49 invoke
ProductHome interface method findByPrimaryKey to obtain the Product EJB for
the given ISBN. Lines 59–64 obtain the details of the product as a ProductModel and
use method getXML to generate the XML content for the client.

Lines 69–77 catch a NamingException if the lookup of the ProductHome
interface fails. Lines 80–88 catch a FinderException, which is generated by the call
to findByPrimaryKey on line 49 if a product with the given ISBN is not found in the
database. In each catch block, we create an XML error message to inform the user of the
error. The finally block on lines 91–93 ensures that the content is presented to the client,
regardless of any exceptions that may be thrown.

18.4.3 ProductSearchServlet

ProductSearchServlet (Fig. 18.16) searches the database for products whose titles
contain a particular keyword. Method findByTitle of the Product EJB’s home inter-
face takes a String as an argument and finds a product whose title contains the provided
keyword. Because a search of this type may match many different products, method
findByTitle returns an Collection of Product EJB remote references.

Fig. 18.15Fig. 18.15Fig. 18.15Fig. 18.15 GetProductServlet for viewing product details (part 4 of 4). (Images
courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.)

1050 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

Lines 34–35 get the searchString parameter from the request object and place a
wildcard character (%) before and after the searchString. The database uses this wild-
card character to match titles that contains the given searchString. Lines 50–51 create
an Iterator to iterate through the list of products returned by the search. Lines 58–69
add an XML representation to the XML document for each product found.

1 // ProductSearchServlet.java
2 // ProductSearchServlet allows a Customer to search through
3 // the store for a particular Product.
4 package com.deitel.advjhtp1.bookstore.servlets;
5
6 // Java core packages
7 import java.io.*;
8 import java.util.*;
9

10 // Java extension packages
11 import javax.servlet.*;
12 import javax.servlet.http.*;
13 import javax.naming.*;
14 import javax.ejb.*;
15 import javax.rmi.PortableRemoteObject;
16
17 // third-party packages
18 import org.w3c.dom.*;
19
20 // Deitel packages
21 import com.deitel.advjhtp1.bookstore.model.*;
22 import com.deitel.advjhtp1.bookstore.ejb.*;
23
24 public class ProductSearchServlet extends XMLServlet {
25
26 // respond to HTTP get requests
27 public void doGet(HttpServletRequest request,
28 HttpServletResponse response)
29 throws ServletException, IOException
30 {
31 Document document = getDocumentBuilder().newDocument();
32
33 // get the searchString from the request object
34 String searchString = "%" +
35 request.getParameter("searchString") + "%";
36
37 // find Product using Product EJB
38 try {
39 InitialContext context = new InitialContext();
40
41 // look up Product EJB
42 Object object =
43 context.lookup("java:comp/env/ejb/Product");
44
45 ProductHome productHome = (ProductHome)

Fig. 18.16Fig. 18.16Fig. 18.16Fig. 18.16 ProductSearchServlet for searching product catalog (part 1 of 3).
(Images courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.)

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1051

46 PortableRemoteObject.narrow(
47 object, ProductHome.class);
48
49 // find Products that match searchString
50 Iterator products = productHome.findByTitle(
51 searchString).iterator();
52
53 // create catalog document element
54 Node rootNode = document.appendChild(
55 document.createElement("catalog"));
56
57 // generate list of matching products
58 while (products.hasNext()) {
59 Product product = (Product)
60 PortableRemoteObject.narrow(products.next(),
61 Product.class);
62
63 ProductModel productModel = product.getProductModel();
64
65 // append XML element to the document for the
66 // current Product
67 rootNode.appendChild(
68 productModel.getXML(document));
69 }
70
71 } // end try
72
73 // handle exception when looking up Product EJB
74 catch (NamingException namingException) {
75 namingException.printStackTrace();
76
77 String error = "The Product EJB was not found in " +
78 "the JNDI directory.";
79
80 document.appendChild(buildErrorMessage(
81 document, error));
82 }
83
84 // handle exception when Product is not found
85 catch (FinderException finderException) {
86 finderException.printStackTrace();
87
88 String error = "No Products match your search.";
89
90 document.appendChild(buildErrorMessage(
91 document, error));
92 }
93
94 // ensure content is written to client
95 finally {
96 writeXML(request, response, document);
97 }

Fig. 18.16Fig. 18.16Fig. 18.16Fig. 18.16 ProductSearchServlet for searching product catalog (part 2 of 3).
(Images courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.)

1052 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

98
99 } // end method doGet
100 }

Fig. 18.16Fig. 18.16Fig. 18.16Fig. 18.16 ProductSearchServlet for searching product catalog (part 3 of 3).
(Images courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.)

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1053

18.5 Customer Management Servlets
Online stores typically allow customers to register personal information (e.g., name, e-mail
address and shipping address) with the store, for a number of purposes. Primarily, the store
needs the information provided in a customer registration to bill the customer and ship
products from the store. By registering, a customer will need to enter this information only
once. Later, a customer can return to the store and log-in with a user name and password to
retrieve previously entered billing and shipping information. Customer registrations also
allow on-line stores to provide customers with personalized content and order-tracking in-
formation. Some on-line stores also can use customer registration information to help target
advertisements to customers with certain preferences or within particular demographics.

RegisterServlet (Section 18.5.1) handles customer registrations for the Deitel
Bookstore. Once a customer registers, LoginServlet allows the customer to log into the
site with a user name and password. ViewOrderHistoryServlet allows customers
to see information about orders they already have placed. GetLostPasswordServlet
provides Customers with a hint to remind them of forgotten passwords.

18.5.1 RegisterServlet

RegisterServlet (Fig. 18.17) processes the registration forms submitted by new cus-
tomers. The servlet creates a CustomerModel instance (line 34) and uses the parameter
values received from the client to populate the model with details about the customer (lines
38–125). Once the CustomerModel has been populated with data, line 133 looks up the
Customer EJB, which represents a customer in the database. Lines 141–142 create a new
customer registration in the database by invoking Customer EJB method create with
the newly created CustomerModel object as an argument. After registering the custom-
er, lines 147–157 forward the customer to LoginServlet to log into the store.

1 // RegisterServlet.java
2 // RegisterServlet processes the Customer registration form
3 // to register a new Customer.
4 package com.deitel.advjhtp1.bookstore.servlets;
5
6 // Java core packages
7 import java.io.*;
8 import java.util.*;
9

10 // Java extension packages
11 import javax.servlet.*;
12 import javax.servlet.http.*;
13 import javax.ejb.*;
14 import javax.naming.*;
15 import javax.rmi.*;
16
17 // third-party packages
18 import org.w3c.dom.*;
19

Fig. 18.17Fig. 18.17Fig. 18.17Fig. 18.17 RegisterServlet for registering new Customers (part 1 of 5).

1054 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

20 // Deitel packages
21 import com.deitel.advjhtp1.bookstore.model.*;
22 import com.deitel.advjhtp1.bookstore.ejb.*;
23
24 public class RegisterServlet extends XMLServlet {
25
26 // respond to HTTP post requests
27 public void doPost(HttpServletRequest request,
28 HttpServletResponse response)
29 throws ServletException, IOException
30 {
31 Document document = getDocumentBuilder().newDocument();
32
33 // create CustomerModel to store registration data
34 CustomerModel customerModel = new CustomerModel();
35
36 // set properties of CustomerModel using values
37 // passed through request object
38 customerModel.setUserID(request.getParameter(
39 "userID"));
40
41 customerModel.setPassword(request.getParameter(
42 "password"));
43
44 customerModel.setPasswordHint(request.getParameter(
45 "passwordHint"));
46
47 customerModel.setFirstName(request.getParameter(
48 "firstName"));
49
50 customerModel.setLastName(request.getParameter(
51 "lastName"));
52
53 // set credit card information
54 customerModel.setCreditCardName(request.getParameter(
55 "creditCardName"));
56
57 customerModel.setCreditCardNumber(request.getParameter(
58 "creditCardNumber"));
59
60 customerModel.setCreditCardExpirationDate(
61 request.getParameter("creditCardExpirationDate"));
62
63 // create AddressModel for billing address
64 AddressModel billingAddress = new AddressModel();
65
66 billingAddress.setFirstName(request.getParameter(
67 "billingAddressFirstName"));
68
69 billingAddress.setLastName(request.getParameter(
70 "billingAddressLastName"));
71
72 billingAddress.setStreetAddressLine1(

Fig. 18.17Fig. 18.17Fig. 18.17Fig. 18.17 RegisterServlet for registering new Customers (part 2 of 5).

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1055

73 request.getParameter("billingAddressStreet1"));
74
75 billingAddress.setStreetAddressLine2(
76 request.getParameter("billingAddressStreet2"));
77
78 billingAddress.setCity(request.getParameter(
79 "billingAddressCity"));
80
81 billingAddress.setState(request.getParameter(
82 "billingAddressState"));
83
84 billingAddress.setZipCode(request.getParameter(
85 "billingAddressZipCode"));
86
87 billingAddress.setCountry(request.getParameter(
88 "billingAddressCountry"));
89
90 billingAddress.setPhoneNumber(request.getParameter(
91 "billingAddressPhoneNumber"));
92
93 customerModel.setBillingAddress(billingAddress);
94
95 // create AddressModel for shipping address
96 AddressModel shippingAddress = new AddressModel();
97
98 shippingAddress.setFirstName(request.getParameter(
99 "shippingAddressFirstName"));
100
101 shippingAddress.setLastName(request.getParameter(
102 "shippingAddressLastName"));
103
104 shippingAddress.setStreetAddressLine1(
105 request.getParameter("shippingAddressStreet1"));
106
107 shippingAddress.setStreetAddressLine2(
108 request.getParameter("shippingAddressStreet2"));
109
110 shippingAddress.setCity(request.getParameter(
111 "shippingAddressCity"));
112
113 shippingAddress.setState(request.getParameter(
114 "shippingAddressState"));
115
116 shippingAddress.setZipCode(request.getParameter(
117 "shippingAddressZipCode"));
118
119 shippingAddress.setCountry(request.getParameter(
120 "shippingAddressCountry"));
121
122 shippingAddress.setPhoneNumber(request.getParameter(
123 "shippingAddressPhoneNumber"));
124
125 customerModel.setShippingAddress(shippingAddress);

Fig. 18.17Fig. 18.17Fig. 18.17Fig. 18.17 RegisterServlet for registering new Customers (part 3 of 5).

1056 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

126
127 // look up Customer EJB and create new Customer
128 try {
129 InitialContext context = new InitialContext();
130
131 // look up Customer EJB
132 Object object =
133 context.lookup("java:comp/env/ejb/Customer");
134
135 CustomerHome customerHome = (CustomerHome)
136 PortableRemoteObject.narrow(object,
137 CustomerHome.class);
138
139 // create new Customer using the CustomerModel with
140 // Customer's registration information
141 Customer customer =
142 customerHome.create(customerModel);
143
144 customerModel = customer.getCustomerModel();
145
146 // get RequestDispatcher for Login servlet
147 RequestDispatcher dispatcher =
148 getServletContext().getRequestDispatcher("/Login");
149
150 // set userID and password for Login servlet
151 request.setAttribute("userID",
152 customerModel.getUserID());
153 request.setAttribute("password",
154 customerModel.getPassword());
155
156 // forward user to LoginServlet
157 dispatcher.forward(request, response);
158
159 } // end try
160
161 // handle exception when looking up Customer EJB
162 catch (NamingException namingException) {
163 namingException.printStackTrace();
164
165 String error = "The Customer EJB was not " +
166 "found in the JNDI directory.";
167
168 document.appendChild(buildErrorMessage(
169 document, error));
170
171 writeXML(request, response, document);
172 }
173
174 // handle exception when creating Customer
175 catch (CreateException createException) {
176 createException.printStackTrace();
177
178 String error = "The Customer could not be created";

Fig. 18.17Fig. 18.17Fig. 18.17Fig. 18.17 RegisterServlet for registering new Customers (part 4 of 5).

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1057

Lines 162–172 catch a NamingException, which indicates that the Custom-
erHome interface could not be found in the JNDI directory. Because Regis-
terServlet creates a new Customer, lines 175–184 catch a CreateException
in case the Customer EJB could not be created. Each catch block builds an XML error
message using method buildErrorMessage and invokes method writeXML to dis-
play the error message to the customer.

18.5.2 LoginServlet

To log into the store, a registered customer must provide a valid userID and password,
which the client submits to LoginServlet. LoginServlet (Fig. 18.18) checks the
userID and password against the userIDs and passwords stored in the database.

179
180 document.appendChild(buildErrorMessage(
181 document, error));
182
183 writeXML(request, response, document);
184 }
185
186 } // end method doPost
187 }

1 // LoginServlet.java
2 // LoginServlet that logs an existing Customer into the site.
3 package com.deitel.advjhtp1.bookstore.servlets;
4
5 // Java core packages
6 import java.io.*;
7
8 // Java extension packages
9 import javax.servlet.*;

10 import javax.servlet.http.*;
11 import javax.naming.*;
12 import javax.ejb.*;
13 import javax.rmi.*;
14
15 // third-party packages
16 import org.w3c.dom.*;
17
18 // Deitel packages
19 import com.deitel.advjhtp1.bookstore.model.*;
20 import com.deitel.advjhtp1.bookstore.ejb.*;
21
22 public class LoginServlet extends XMLServlet {
23

Fig. 18.18Fig. 18.18Fig. 18.18Fig. 18.18 LoginServlet for authenticating registered Customers (part 1 of
4).(Images courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.)

Fig. 18.17Fig. 18.17Fig. 18.17Fig. 18.17 RegisterServlet for registering new Customers (part 5 of 5).

1058 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

24 // respond to HTTP post requests
25 public void doPost(HttpServletRequest request,
26 HttpServletResponse response)
27 throws ServletException, IOException
28 {
29 Document document = getDocumentBuilder().newDocument();
30
31 String userID = request.getParameter("userID");
32 String password = request.getParameter("password");
33
34 // use Customer EJB to authenticate user
35 try {
36 InitialContext context = new InitialContext();
37
38 // look up Customer EJB
39 Object object =
40 context.lookup("java:comp/env/ejb/Customer");
41
42 CustomerHome customerHome = (CustomerHome)
43 PortableRemoteObject.narrow(object,
44 CustomerHome.class);
45
46 // find Customer with given userID and password
47 Customer customer =
48 customerHome.findByLogin(userID, password);
49
50 // get CustomerModel for Customer
51 CustomerModel customerModel =
52 customer.getCustomerModel();
53
54 // set userID in Customer's session
55 request.getSession().setAttribute("userID",
56 customerModel.getUserID());
57
58 // create login XML element
59 Element login = document.createElement("login");
60 document.appendChild(login);
61
62 // add Customer's first name to XML document
63 Element firstName =
64 document.createElement("firstName");
65
66 firstName.appendChild(document.createTextNode(
67 customerModel.getFirstName()));
68
69 login.appendChild(firstName);
70
71 } // end try
72
73 // handle exception when looking up Customer EJB
74 catch (NamingException namingException) {
75 namingException.printStackTrace();

Fig. 18.18Fig. 18.18Fig. 18.18Fig. 18.18 LoginServlet for authenticating registered Customers (part 2 of
4).(Images courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.)

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1059

76
77 String error = "The Customer EJB was not found in " +
78 "the JNDI directory.";
79
80 document.appendChild(buildErrorMessage(
81 document, error));
82 }
83
84 // handle exception when Customer is not found
85 catch (FinderException finderException) {
86 finderException.printStackTrace();
87
88 String error = "The userID and password entered " +
89 "were not found.";
90
91 document.appendChild(buildErrorMessage(
92 document, error));
93 }
94
95 // ensure content is written to client
96 finally {
97 writeXML(request, response, document);
98 }
99
100 } // end method doPost
101 }

Fig. 18.18Fig. 18.18Fig. 18.18Fig. 18.18 LoginServlet for authenticating registered Customers (part 3 of
4).(Images courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.)

1060 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

LoginServlet uses the Customer EJB to validate the userID and password that
the customer entered. Lines 39–44 obtain a reference to the CustomerHome interface.
Lines 47–48 invoke CustomerHome method findByLogin, which returns a remote
reference to the Customer with the userID and password that the user provided.
Once the Customer is found, lines 59–69 build a simple XML document that indicates
the customer has successfully logged into the store.

Lines 74–82 catch a NamingException if the Customer EJB cannot be found in
the JNDI directory. If no Customer is found that matches the userID and password the
user entered, lines 85–93 catch a FinderException. Each catch block builds an
XML error message for the client to display. Lines 96–98 present the content to the client.

18.5.3 ViewOrderHistoryServlet

Registered customers may want to see information about orders they have placed in the
past. ViewOrderHistoryServlet (Fig. 18.19) allows customers to see orders they
have placed, along with the dates the orders were taken, the total costs of the orders and
whether or not the orders were shipped from the warehouse.

Fig. 18.18Fig. 18.18Fig. 18.18Fig. 18.18 LoginServlet for authenticating registered Customers (part 4 of
4).(Images courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.)

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1061

1 // ViewOrderHistoryServlet.java
2 // ViewOrderHistoryServlet presents a list of previous Orders
3 // to the Customer.
4 package com.deitel.advjhtp1.bookstore.servlets;
5
6 // Java core packages
7 import java.io.*;
8 import java.util.*;
9

10 // Java extension packages
11 import javax.servlet.*;
12 import javax.servlet.http.*;
13 import javax.naming.*;
14 import javax.rmi.*;
15 import javax.ejb.*;
16
17 // third-party packages
18 import org.w3c.dom.*;
19
20 // Deitel packages
21 import com.deitel.advjhtp1.bookstore.model.*;
22 import com.deitel.advjhtp1.bookstore.ejb.*;
23 import com.deitel.advjhtp1.bookstore.exceptions.*;
24
25 public class ViewOrderHistoryServlet extends XMLServlet {
26
27 // respond to HTTP get requests
28 public void doGet(HttpServletRequest request,
29 HttpServletResponse response)
30 throws ServletException, IOException
31 {
32 Document document = getDocumentBuilder().newDocument();
33
34 HttpSession session = request.getSession();
35 String userID = (String)
36 session.getAttribute("userID");
37
38 // build order history using Customer EJB
39 try {
40 InitialContext context = new InitialContext();
41
42 // look up Customer EJB
43 Object object =
44 context.lookup("java:comp/env/ejb/Customer");
45
46 CustomerHome customerHome = (CustomerHome)
47 PortableRemoteObject.narrow(
48 object, CustomerHome.class);
49
50 // find Customer with given userID
51 Customer customer =

Fig. 18.19Fig. 18.19Fig. 18.19Fig. 18.19 ViewOrderHistoryServlet for viewing customer’s previously
placed Orders (part 1 of 4). (Images courtesy Pixo, Inc. or © 2001 Nokia
Mobile Phones.)

1062 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

52 customerHome.findByUserID(userID);
53
54 // create orderHistory element
55 Element rootNode = (Element) document.appendChild(
56 document.createElement("orderHistory"));
57
58 // get Customer's Order history
59 Iterator orderHistory =
60 customer.getOrderHistory().iterator();
61
62 // loop through Order history and add XML elements
63 // to XML document for each Order
64 while (orderHistory.hasNext()) {
65 OrderModel orderModel =
66 (OrderModel) orderHistory.next();
67
68 rootNode.appendChild(
69 orderModel.getXML(document));
70 }
71 } // end try
72
73 // handle exception when Customer has no Order history
74 catch (NoOrderHistoryException historyException) {
75 historyException.printStackTrace();
76
77 document.appendChild(buildErrorMessage(document,
78 historyException.getMessage()));
79 }
80
81 // handle exception when looking up Customer EJB
82 catch (NamingException namingException) {
83 namingException.printStackTrace();
84
85 String error = "The Customer EJB was not found in " +
86 "the JNDI directory.";
87
88 document.appendChild(buildErrorMessage(
89 document, error));
90 }
91
92 // handle exception when Customer is not found
93 catch (FinderException finderException) {
94 finderException.printStackTrace();
95
96 String error = "The Customer with userID " + userID +
97 " was not found.";
98
99 document.appendChild(buildErrorMessage(
100 document, error));
101 }
102

Fig. 18.19Fig. 18.19Fig. 18.19Fig. 18.19 ViewOrderHistoryServlet for viewing customer’s previously
placed Orders (part 2 of 4). (Images courtesy Pixo, Inc. or © 2001 Nokia
Mobile Phones.)

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1063

103 // ensure content is written to client
104 finally {
105 writeXML(request, response, document);
106 }
107
108 } // end method doGet
109 }

Fig. 18.19Fig. 18.19Fig. 18.19Fig. 18.19 ViewOrderHistoryServlet for viewing customer’s previously
placed Orders (part 3 of 4). (Images courtesy Pixo, Inc. or © 2001 Nokia
Mobile Phones.)

1064 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

Customer EJB method getOrderHistory returns a Collection of the cus-
tomer’s previous orders. Lines 51–52 obtain the Customer EJB for the Customer, who
must be logged into the bookstore. Lines 59–60 retrieve an Iterator for the customer’s
order history. Lines 64–70 loop through the order history and build the XML document to
present to the client.

If the customer has not placed any orders in our on-line store, method getOrder-
History throws a NoOrderHistoryException. Lines 74–79 catch this exception
and build an error message to display to the customer. If the CustomerHome interface
could not be found or the Customer could not be found in the database, a NamingEx-
ception or FinderException is thrown, respectively. Lines 82–101 catch each of
these exceptions and construct an error message, using method buildErrorMessage.
Line 105 presents the content to the client, using method writeXML.

18.5.4 ViewOrderServlet

ViewOrderServlet (Fig. 18.20) displays the details of an order. CheckoutServ-
let forwards clients to ViewOrderServlet when a customer places an order.
ViewOrderHistoryServlet forwards clients to ViewOrderServlet to present
the details of an order that has already been placed.

Fig. 18.19Fig. 18.19Fig. 18.19Fig. 18.19 ViewOrderHistoryServlet for viewing customer’s previously
placed Orders (part 4 of 4). (Images courtesy Pixo, Inc. or © 2001 Nokia
Mobile Phones.)

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1065

Lines 39–44 obtain a reference to interface OrderHome. Lines 47–48 retrieve the
orderID parameter from the request object. Line 51 invokes OrderHome method
findByPrimaryKey to obtain a remote reference to the Order with the given
orderID. Lines 54–58 get the OrderModel for the Order and append its XML repre-
sentation to the XML document.

Lines 63–71 catch a NamingException, which is thrown from method lookup
if the Order EJB cannot be found in the JNDI directory. Lines 74–82 catch a Finder-
Exception, which is thrown by method findByPrimaryKey if an Order with the
given orderID is not found. Line 86 presents the XML document to the client, using
method writeXML.

1 // ViewOrderServlet.java
2 // ViewOrderServlet presents the contents of a Customer's
3 // Order.
4 package com.deitel.advjhtp1.bookstore.servlets;
5
6 // Java core packages
7 import java.io.*;
8
9 // Java extension packages

10 import javax.servlet.*;
11 import javax.servlet.http.*;
12 import javax.naming.*;
13 import javax.ejb.*;
14 import javax.rmi.*;
15
16 // third-party packages
17 import org.w3c.dom.*;
18
19 // Deitel packages
20 import com.deitel.advjhtp1.bookstore.model.*;
21 import com.deitel.advjhtp1.bookstore.ejb.*;
22
23 public class ViewOrderServlet extends XMLServlet {
24
25 // respond to HTTP get requests
26 public void doGet(HttpServletRequest request,
27 HttpServletResponse response)
28 throws ServletException, IOException
29 {
30 Document document = getDocumentBuilder().newDocument();
31 Integer orderID = null;
32
33 // look up Order EJB and get details of Order with
34 // given orderID
35 try {
36 InitialContext context = new InitialContext();
37
38 // look up Order EJB

Fig. 18.20Fig. 18.20Fig. 18.20Fig. 18.20 ViewOrderServlet for viewing details of an order (part 1 of 3). (Images
courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.)

1066 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

39 Object object =
40 context.lookup("java:comp/env/ejb/Order");
41
42 OrderHome orderHome = (OrderHome)
43 PortableRemoteObject.narrow(
44 object, OrderHome.class);
45
46 // get orderID from request object
47 orderID = new Integer(
48 request.getParameter("orderID"));
49
50 // find Order with given orderID
51 Order order = orderHome.findByPrimaryKey(orderID);
52
53 // get Order details as an OrderModel
54 OrderModel orderModel = order.getOrderModel();
55
56 // add Order details to XML document
57 document.appendChild(
58 orderModel.getXML(document));
59
60 } // end try
61
62 // handle exception when looking up Order EJB
63 catch (NamingException namingException) {
64 namingException.printStackTrace();
65
66 String error = "The Order EJB was not found in " +
67 "the JNDI directory.";
68
69 document.appendChild(buildErrorMessage(
70 document, error));
71 }
72
73 // handle exception when Order is not found
74 catch (FinderException finderException) {
75 finderException.printStackTrace();
76
77 String error = "An Order with orderID " + orderID +
78 " was not found.";
79
80 document.appendChild(buildErrorMessage(
81 document, error));
82 }
83
84 // ensure content is written to client
85 finally {
86 writeXML(request, response, document);
87 }
88
89 } // end method doGet
90 }

Fig. 18.20Fig. 18.20Fig. 18.20Fig. 18.20 ViewOrderServlet for viewing details of an order (part 2 of 3). (Images
courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.)

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1067

18.5.5 GetPasswordHintServlet

Registered Customers occasionally forget their passwords. GetPasswordHint-
Servlet (Fig. 18.21) provides hints to help Customers remember their passwords. The
customer supplies the password hint as part of the registration process.

Fig. 18.20Fig. 18.20Fig. 18.20Fig. 18.20 ViewOrderServlet for viewing details of an order (part 3 of 3). (Images
courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.)

1068 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

The hint is stored with other customer registration information in the Customer EJB.
Lines 38–47 look up the CustomerHome interface and retrieve the Customer EJB
remote reference. Customer EJB method getPasswordHint (line 55) returns the hint
the user entered when registering on the site. Line 58 adds the hint to the XML document.

In this chapter, we presented the controller and presentation logic for the Deitel Book-
store. This controller logic provides an HTTP interface to the business logic objects we
present in Chapters 18 and 19. Java servlets provide a robust and flexible controller logic
implementation. XSLT presentation logic allows the Deitel Bookstore application to sup-
port many different client types without a need for changes in controller logic implementa-
tions. In Chapters 19 and 20, we present the business logic for the Deitel Bookstore, using
Enterprise JavaBeans.

1 // GetPasswordHintServlet.java
2 // GetPasswordHintServlet allows a customer to retrieve a
3 // lost password.
4 package com.deitel.advjhtp1.bookstore.servlets;
5
6 // Java core packages
7 import java.io.*;
8
9 // Java extension packages

10 import javax.servlet.*;
11 import javax.servlet.http.*;
12 import javax.naming.*;
13 import javax.ejb.*;
14 import javax.rmi.*;
15
16 // third-party packages
17 import org.w3c.dom.*;
18
19 // Deitel packages
20 import com.deitel.advjhtp1.bookstore.model.*;
21 import com.deitel.advjhtp1.bookstore.ejb.*;
22
23 public class GetPasswordHintServlet extends XMLServlet {
24
25 // respond to HTTP get requests
26 public void doGet(HttpServletRequest request,
27 HttpServletResponse response)
28 throws ServletException, IOException
29 {
30 Document document = getDocumentBuilder().newDocument();
31 String userID = request.getParameter("userID");
32
33 // get password hint from Customer EJB
34 try {
35 InitialContext context = new InitialContext();
36
37 // look up Customer EJB
38 Object object =

Fig. 18.21Fig. 18.21Fig. 18.21Fig. 18.21 GetPasswordHintServlet for viewing a Customer’s password hint
(part 1 of 3). (Images courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.)

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1069

39 context.lookup("java:comp/env/ejb/Customer");
40
41 CustomerHome customerHome = (CustomerHome)
42 PortableRemoteObject.narrow(object,
43 CustomerHome.class);
44
45 // find Customer with given userID
46 Customer customer =
47 customerHome.findByUserID(userID);
48
49 // create passwordHint element in XML document
50 Element hintElement =
51 document.createElement("passwordHint");
52
53 // add text of passwordHint to XML element
54 hintElement.appendChild(document.createTextNode(
55 customer.getPasswordHint()));
56
57 // append passwordHint element to XML document
58 document.appendChild(hintElement);
59
60 } // end try
61
62 // handle exception when looking up Customer EJB
63 catch (NamingException namingException) {
64 namingException.printStackTrace();
65
66 String error = "The Customer EJB was not found in " +
67 "the JNDI directory.";
68
69 document.appendChild(buildErrorMessage(
70 document, error));
71 }
72
73 // handle exception when Customer is not found
74 catch (FinderException finderException) {
75 finderException.printStackTrace();
76
77 String error = "No customer was found with userID " +
78 userID + ".";
79
80 document.appendChild(buildErrorMessage(
81 document, error));
82 }
83
84 // ensure content is written to client
85 finally {
86 writeXML(request, response, document);
87 }
88
89 } // end method doGet
90 }

Fig. 18.21Fig. 18.21Fig. 18.21Fig. 18.21 GetPasswordHintServlet for viewing a Customer’s password hint
(part 2 of 3). (Images courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.)

1070 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

SELF-REVIEW EXERCISES
18.1 Which part of the MVC architecture do the servlets in the Deitel Bookstore implement? Which
part of the MVC architecture do the XSL transformations implement?

Fig. 18.21Fig. 18.21Fig. 18.21Fig. 18.21 GetPasswordHintServlet for viewing a Customer’s password hint
(part 3 of 3). (Images courtesy Pixo, Inc. or © 2001 Nokia Mobile Phones.)

Chapter 18 Enterprise Java Case Study: Presentation and Controller Logic 1071

18.2 Write a code snippet for looking up the ShoppingCart EJB in the JNDI directory and cre-
ating a new instance using interface ShoppingCartHome. Be sure to catch any exceptions thrown
when looking up the EJB or creating a new instance.

18.3 How does ViewOrderServlet (Fig. 18.20) locate the Order that the user requested to
view?

18.4 What common functionality does class XMLServlet (Fig. 18.1) provide for the servlets in
the Deitel Bookstore? Describe the purposes of the main methods of class XMLServlet.

18.5 How does class XMLServlet determine the name of the XSLT stylesheet to use when
transforming content generated by the servlet? What benefit does this strategy provide?

18.6 How does class XMLServlet determine the particular XSLT stylesheet to use when trans-
forming content generated by the servlet for a particular type of client? What benefit does this strategy
provide?

ANSWERS TO SELF-REVIEW EXERCISES

18.1 The servlets implement the controller in the MVC architecture, because they handle all user re-
quests and process user input. The XSL transformations implement the view in the MVC design pat-
tern because they produce presentations of application data.

18.2 The following code snippet looks up the ShoppingCart EJB in the JNDI directory and
creates a new instance using interface ShoppingCartHome:

try {
 InitialContext context = new InitialContext;

 Object object = context.lookup(
 "java:comp/env/ejb/ShoppingCart");

 ShoppingCartHome shoppingCartHome =
 (ShoppingCartHome) PortableRemoteObject.narrow(
 object, ShoppingCartHome.class);

 ShoppingCart shoppingCart = shoppingCartHome.create();
}

catch (NamingException namingException) {
 namingException.printStackTrace();
}

catch (CreateException createException) {
 createException.printStackTrace();
}

18.3 ViewOrderServlet uses OrderHome method findByPrimaryKey to locate the
Order, with the orderID passed as a parameter to the HttpServletRequest object.

18.4 Class XMLServlet provides a common init method for initializing the Document-
BuilderFactory, TransformerFactory and properties each servlet uses. Class XMLServ-
let provides method buildErrorMessage, which creates an XML element to describe an error
message. Class XMLServlet also provides method writeXML, which uses method transform
to transform the XML content generated by each servlet using client-specific XSL transformations.

1072 Enterprise Java Case Study: Presentation and Controller Logic Chapter 18

18.5 Class XMLServlet has property XSLFileName that specifies the name of the XSL file to
use when transforming the servlet’s content. Class XMLServlet’s init method sets the XSL-
FileName property to the value specified in the XSL_FILE servlet initialization parameter. Deter-
mining the file name from an initialization parameter enables the deployer to specify the file name
when deploying the application. The file name can be changed later without the need to recompile the
servlet.

18.6 Class XMLServlet uses a ClientModel to determine which directory contains the XSL
transformation for XML content generated by the servlet. Class XMLServlet creates a list of Cli-
entModels from an XML configuration file when the servlet is first initialized. Each ClientMod-
el specifies a User-Agent header that uniquely identifies the client, the Content-Type for
sending data to the client and the directory in which the XSL transformations can be found for gen-
erating content specific to the client. This enables the developer to add support for new client types
without modifying any servlet code. The developer simply provides a set of XSL transformations for
the new client type and includes information about the new client type in clients.xml.

19
Enterprise Java Case

Study: Business Logic
Part 1

Objectives
• To understand the EJB data model for the Deitel

Bookstore case study.
• To understand the business logic used in the Deitel

Bookstore case study.
• To understand performance issues involved in

transmitting objects over RMI-IIOP.
• To understand the benefits of EJBs that use container-

managed persistence for database storage.
• To understand the usage of primary-key classes that

represent complex primary keys.
Drive thy business, or it will drive thee.
Benjamin Franklin

Everybody’s business is nobody’s business, and nobody’s
business is my business.
Clara Barton

1074 Enterprise Java Case Study: Business Logic Part 1 Chapter 19

19.1 Introduction
In this chapter, we present the EJB business logic for the shopping-cart e-commerce model,
and entity EJBs that provide an object-based interface to the store’s product catalog. After
reading this chapter, you will understand the use of EJBs in an e-commerce application
context, as well as more advanced EJB topics, such as custom primary-key classes and
many-to-many relationships.

19.2 EJB Architecture
EJBs implement the business logic of the Deitel Bookstore case study. Servlet controller
logic communicates with EJB business logic to process user requests and retrieve data from
the database. For example, GetProductServlet handles Customer requests to view
Product details. GetProductServlet uses the JNDI directory to locate the Prod-
uct EJB’s home interface. GetProductServlet invokes ProductHome method
findByPrimaryKey to retrieve a remote reference to the Product with the requested

Outline

19.1 Introduction
19.2 EJB Architecture
19.3 ShoppingCart Implementation

19.3.1 ShoppingCart Remote Interface
19.3.2 ShoppingCartEJB Implementation
19.3.3 ShoppingCartHome Interface

19.4 Product Implementation
19.4.1 Product Remote Interface
19.4.2 ProductEJB Implementation
19.4.3 ProductHome Interface
19.4.4 ProductModel

19.5 Order Implementation
19.5.1 Order Remote Interface
19.5.2 OrderEJB Implementation
19.5.3 OrderHome Interface
19.5.4 OrderModel

19.6 OrderProduct Implementation
19.6.1 OrderProduct Remote Interface
19.6.2 OrderProductEJB Implementation
19.6.3 OrderProductHome Interface
19.6.4 OrderProductPK Primary-Key Class
19.6.5 OrderProductModel

Chapter 19 Enterprise Java Case Study: Business Logic Part 1 1075

ISBN. GetProductServlet must then use methods in the Product remote interface
to retrieve information about the Product. Each method call on the Product remote in-
terface incurs network traffic, because communication with the EJB is performed over
RMI-IIOP (discussed in Chapter 27). If separate method calls were required to retrieve the
Product’s title, author, price and other properties, the network overhead would
severely limit the performance and scalability of the application.

The entity EJBs in the Deitel Bookstore case study alleviate this network congestion
by using models to transmit EJB data. A model is a Serializable class that contains
all the data for a given EJB. These classes are called models because each model class
implements a piece of the model in the MVC architecture. Each entity EJB provides a get
method that returns its model representation. For example, the Product EJB has method
getProductModel, which returns a ProductModel containing the ISBN, author,
price and other properties of a Product. Many of the entity EJBs also provide create
methods that accept models as arguments. These create methods create new EJB instances
and set the data in the EJB, using property values provided in the model.

Performance Tip 19.1
Aggregating entity EJB data into a model class and returning instances of this model class
from EJB business methods can improve EJB performance by reducing the network traffic
associated with multiple method calls over RMI-IIOP. 19.1

Figure 19.1 shows a sample communication between servlet GetProductServlet
and the Product EJB. To get the details of a given Product, GetProductServlet
invokes Product method getProductModel. Method getProductModel returns
a ProductModel object containing data for a given Product and serializes the Pro-
ductModel over RMI-IIOP. GetProductServlet retrieves the ProductModel’s
property values to build the output for the user.

19.3 ShoppingCart Implementation
Stateful session EJB ShoppingCart implements business logic for managing each Cus-
tomer’s shopping cart. The ShoppingCart EJB consists of a remote interface, an EJB
implementation and a home interface. We implement ShoppingCart as a stateful ses-
sion EJB so each ShoppingCart instance will persist throughout a customer’s shopping
session. Just as customers of brick-and-mortar stores use shopping carts to gather products,
customers of our on-line store use ShoppingCart EJBs to gather products while they
browse through our store.

19.3.1 ShoppingCart Remote Interface
Remote interface ShoppingCart (Fig. 19.2) defines business logic methods available in
the ShoppingCart EJB. Each remote interface method must declare that it throws
RemoteException. Each method also must declare any application-specific exceptions
that may be thrown from the implementation. Method getContents (line 20) returns an
Collection of Products in the ShoppingCart. Method addProduct (lines 23–
24) takes as a String argument the ISBN of a Product to add to the ShoppingCart.
Method addProduct throws ProductNotFoundException, which is an applica-
tion-specific exception that indicates the Product with the given ISBN is not in the da-
tabase and therefore could not be added to the ShoppingCart.

1076 Enterprise Java Case Study: Business Logic Part 1 Chapter 19

Method removeProduct (lines 27–28) removes the Product with the given
ISBN from the ShoppingCart. If the Product with the given ISBN is not found in the
ShoppingCart, method removeProduct throws a ProductNotFoundExcep-
tion.

Method setProductQuantity (lines 32–34) updates the quantity of the
Product with the given ISBN in the ShoppingCart. For example, if there were one
copy of Advanced Java 2 Platform How to Program in the Customer’s Shopping-
Cart, setProductQuantity could be called with the ISBN of Advanced Java How
to Program and the integer 5 to purchase five copies of the book. If the Product with the
given ISBN is not in the ShoppingCart, method setProductQuantity throws the
application-specific ProductNotFoundException.

Method checkout (lines 37–38) places an Order for the Products in the Cus-
tomer’s ShoppingCart. Method checkout takes as a String argument the
userID of the customer placing the Order. Only registered customers may place
Orders. Method getTotal (line 41) returns the total cost of the Products in the Cus-
tomer’s ShoppingCart.

Fig. 19.1Fig. 19.1Fig. 19.1Fig. 19.1 Communication between GetProductServlet and Product
EJB.

1 // ShoppingCart.java
2 // ShoppingCart is the remote interface for stateful session
3 // EJB ShoppingCart.
4 package com.deitel.advjhtp1.bookstore.ejb;
5
6 // Java core packages
7 import java.rmi.RemoteException;
8 import java.util.ArrayList;
9

10 // Java extension packages
11 import javax.ejb.EJBObject;
12
13 // Deitel packages
14 import com.deitel.advjhtp1.bookstore.model.*;
15 import com.deitel.advjhtp1.bookstore.exceptions.*;

Fig. 19.2Fig. 19.2Fig. 19.2Fig. 19.2 ShoppingCart remote interface for adding, removing and updating
Products, checking out and calculating the Order’s total cost
 (part 1 of 2).

ProductModel

GetProductServlet

getProductModel

Servlet Container EJB Container

Product EJB

Chapter 19 Enterprise Java Case Study: Business Logic Part 1 1077

19.3.2 ShoppingCartEJB Implementation
ShoppingCart remote interface implementation ShoppingCartEJB (Fig. 19.3) con-
tains an Collection of OrderProductModels (line 24). An OrderProductMod-
el (Fig. 19.25) represents an item in the ShoppingCart. Each
OrderProductModel contains a Product and that Product’s quantity in the
ShoppingCart. Method ejbCreate (lines 27–30) initializes the Collection (line
29). Method getContents (line 33–36) returns the contents of the ShoppingCart as
a Collection of OrderProductModels.

16
17 public interface ShoppingCart extends EJBObject {
18
19 // get contents of ShoppingCart
20 public Collection getContents() throws RemoteException;
21
22 // add Product with given ISBN to ShoppingCart
23 public void addProduct(String isbn)
24 throws RemoteException, ProductNotFoundException;
25
26 // remove Product with given ISBN from ShoppingCart
27 public void removeProduct(String isbn)
28 throws RemoteException, ProductNotFoundException;
29
30 // change quantity of Product in ShoppingCart with
31 // given ISBN to given quantity
32 public void setProductQuantity(String isbn, int quantity)
33 throws RemoteException, ProductNotFoundException,
34 IllegalArgumentException;
35
36 // checkout ShoppingCart (i.e., create new Order)
37 public Order checkout(String userID)
38 throws RemoteException, ProductNotFoundException;
39
40 // get total cost for Products in ShoppingCart
41 public double getTotal() throws RemoteException;
42 }

1 // ShoppingCartEJB.java
2 // Stateful session EJB ShoppingCart represents a Customer's
3 // shopping cart.
4 package com.deitel.advjhtp1.bookstore.ejb;
5
6 // Java core packages
7 import java.util.*;
8 import java.rmi.RemoteException;

Fig. 19.3Fig. 19.3Fig. 19.3Fig. 19.3 ShoppingCartEJB implementation of ShoppingCart remote
interface (part 1 of 7).

Fig. 19.2Fig. 19.2Fig. 19.2Fig. 19.2 ShoppingCart remote interface for adding, removing and updating
Products, checking out and calculating the Order’s total cost
 (part 2 of 2).

1078 Enterprise Java Case Study: Business Logic Part 1 Chapter 19

9 import java.text.DateFormat;
10
11 // Java extension packages
12 import javax.ejb.*;
13 import javax.naming.*;
14 import javax.rmi.PortableRemoteObject;
15
16 // Deitel packages
17 import com.deitel.advjhtp1.bookstore.model.*;
18 import com.deitel.advjhtp1.bookstore.exceptions.*;
19
20 public class ShoppingCartEJB implements SessionBean {
21 private SessionContext sessionContext;
22
23 // OrderProductModels (Products & quantities) in ShoppingCart
24 private Collection orderProductModels;
25
26 // create new ShoppingCart
27 public void ejbCreate()
28 {
29 orderProductModels = new ArrayList();
30 }
31
32 // get contents of ShoppingCart
33 public Collection getContents()
34 {
35 return orderProductModels;
36 }
37
38 // add Product with given ISBN to ShoppingCart
39 public void addProduct(String isbn)
40 throws ProductNotFoundException, EJBException
41 {
42 // check if Product with given ISBN is already
43 // in ShoppingCart
44 Iterator iterator = orderProductModels.iterator();
45
46 while (iterator.hasNext()) {
47 OrderProductModel orderProductModel =
48 (OrderProductModel) iterator.next();
49
50 ProductModel productModel =
51 orderProductModel.getProductModel();
52
53 // if Product is in ShoppingCart, increment quantity
54 if (productModel.getISBN().equals(isbn)) {
55
56 orderProductModel.setQuantity(
57 orderProductModel.getQuantity() + 1);
58
59 return;
60 }

Fig. 19.3Fig. 19.3Fig. 19.3Fig. 19.3 ShoppingCartEJB implementation of ShoppingCart remote
interface (part 2 of 7).

Chapter 19 Enterprise Java Case Study: Business Logic Part 1 1079

61
62 } // end while
63
64 // if Product is not in ShoppingCart, find Product with
65 // given ISBN and add OrderProductModel to ShoppingCart
66 try {
67 InitialContext context = new InitialContext();
68
69 Object object = context.lookup(
70 "java:comp/env/ejb/Product");
71
72 ProductHome productHome = (ProductHome)
73 PortableRemoteObject.narrow(object,
74 ProductHome.class);
75
76 // find Product with given ISBN
77 Product product = productHome.findByPrimaryKey(isbn);
78
79 // get ProductModel
80 ProductModel productModel = product.getProductModel();
81
82 // create OrderProductModel for ProductModel and set
83 // its quantity
84 OrderProductModel orderProductModel =
85 new OrderProductModel();
86
87 orderProductModel.setProductModel(productModel);
88 orderProductModel.setQuantity(1);
89
90 // add OrderProductModel to ShoppingCart
91 orderProductModels.add(orderProductModel);
92
93 } // end try
94
95 // handle exception when finding Product record
96 catch (FinderException finderException) {
97 finderException.printStackTrace();
98
99 throw new ProductNotFoundException("The Product " +
100 "with ISBN " + isbn + " was not found.");
101 }
102
103 // handle exception when invoking Product EJB methods
104 catch (Exception exception) {
105 throw new EJBException(exception);
106 }
107
108 } // end method addProduct
109
110 // remove Product with given ISBN from ShoppingCart
111 public void removeProduct(String isbn)
112 throws ProductNotFoundException

Fig. 19.3Fig. 19.3Fig. 19.3Fig. 19.3 ShoppingCartEJB implementation of ShoppingCart remote
interface (part 3 of 7).

1080 Enterprise Java Case Study: Business Logic Part 1 Chapter 19

113 {
114 Iterator iterator = orderProductModels.iterator();
115
116 while (iterator.hasNext()) {
117
118 // get next OrderProduct in ShoppingCart
119 OrderProductModel orderProductModel =
120 (OrderProductModel) iterator.next();
121
122 ProductModel productModel =
123 orderProductModel.getProductModel();
124
125 // remove Product with given ISBN from ShoppingCart
126 if (productModel.getISBN().equals(isbn)) {
127 orderProductModels.remove(orderProductModel);
128
129 return;
130 }
131
132 } // end while
133
134 // throw exception if Product not found in ShoppingCart
135 throw new ProductNotFoundException("The Product " +
136 "with ISBN " + isbn + " was not found in your " +
137 "ShoppingCart.");
138
139 } // end method removeProduct
140
141 // set quantity of Product in ShoppingCart
142 public void setProductQuantity(String isbn,
143 int productQuantity) throws ProductNotFoundException
144 {
145 // throw IllegalArgumentException if uantity not valid
146 if (productQuantity < 0)
147 throw new IllegalArgumentException(
148 "Quantity cannot be less than zero.");
149
150 // remove Product if productQuantity less than 1
151 if (productQuantity == 0) {
152 removeProduct(isbn);
153 return;
154 }
155
156 Iterator iterator = orderProductModels.iterator();
157
158 while (iterator.hasNext()) {
159
160 // get next OrderProduct in ShoppingCart
161 OrderProductModel orderProductModel =
162 (OrderProductModel) iterator.next();
163
164 ProductModel productModel =

Fig. 19.3Fig. 19.3Fig. 19.3Fig. 19.3 ShoppingCartEJB implementation of ShoppingCart remote
interface (part 4 of 7).

Chapter 19 Enterprise Java Case Study: Business Logic Part 1 1081

165 orderProductModel.getProductModel();
166
167 // set quantity for Product with given ISBN
168 if (productModel.getISBN().equals(isbn)) {
169 orderProductModel.setQuantity(productQuantity);
170 return;
171 }
172
173 } // end while
174
175 // throw exception if Product not found in ShoppingCart
176 throw new ProductNotFoundException("The Product " +
177 "with ISBN " + isbn + " was not found in your " +
178 "ShoppingCart.");
179
180 } // end method setProductQuantity
181
182 // checkout of store (i.e., create new Order)
183 public Order checkout(String userID)
184 throws ProductNotFoundException, EJBException
185 {
186 // throw exception if ShoppingCart is empty
187 if (orderProductModels.isEmpty())
188 throw new ProductNotFoundException("There were " +
189 "no Products found in your ShoppingCart.");
190
191 // create OrderModel for Order details
192 OrderModel orderModel = new OrderModel();
193
194 // set OrderModel's date to today's Date
195 orderModel.setOrderDate(new Date());
196
197 // set list of OrderProduct in OrderModel
198 orderModel.setOrderProductModels(orderProductModels);
199
200 // set OrderModel's shipped flag to false
201 orderModel.setShipped(false);
202
203 // use OrderHome interface to create new Order
204 try {
205 InitialContext context = new InitialContext();
206
207 // look up Order EJB
208 Object object = context.lookup(
209 "java:comp/env/ejb/Order");
210
211 OrderHome orderHome = (OrderHome)
212 PortableRemoteObject.narrow(object,
213 OrderHome.class);
214
215 // create new Order using OrderModel and
216 // Customer's userID

Fig. 19.3Fig. 19.3Fig. 19.3Fig. 19.3 ShoppingCartEJB implementation of ShoppingCart remote
interface (part 5 of 7).

1082 Enterprise Java Case Study: Business Logic Part 1 Chapter 19

217 Order order = orderHome.create(orderModel, userID);
218
219 // empty ShoppingCart for further shopping
220 orderProductModels = new ArrayList();
221
222 // return Order EJB that was created
223 return order;
224
225 } // end try
226
227 // handle exception when looking up Order EJB
228 catch (Exception exception) {
229 throw new EJBException(exception);
230 }
231
232 } // end method checkout
233
234 // get total cost for Products in ShoppingCart
235 public double getTotal()
236 {
237 double total = 0.0;
238 Iterator iterator = orderProductModels.iterator();
239
240 // calculate Order's total cost
241 while (iterator.hasNext()) {
242
243 // get next OrderProduct in ShoppingCart
244 OrderProductModel orderProductModel =
245 (OrderProductModel) iterator.next();
246
247 ProductModel productModel =
248 orderProductModel.getProductModel();
249
250 // add OrderProduct extended price to total
251 total += (productModel.getPrice() *
252 orderProductModel.getQuantity());
253 }
254
255 return total;
256
257 } // end method getTotal
258
259 // set SessionContext
260 public void setSessionContext(SessionContext context)
261 {
262 sessionContext = context;
263 }
264
265 // activate ShoppingCart EJB instance
266 public void ejbActivate() {}
267

Fig. 19.3Fig. 19.3Fig. 19.3Fig. 19.3 ShoppingCartEJB implementation of ShoppingCart remote
interface (part 6 of 7).

Chapter 19 Enterprise Java Case Study: Business Logic Part 1 1083

Method addProduct (lines 39–108) adds a Product to the ShoppingCart. Lines
46–62 determine if the ShoppingCart already contains the given Product. If the
Product is found in the ShoppingCart, lines 56–57 increment the associated Order-
ProductModel’s quantity. Otherwise, method findByPrimaryKey of interface
ProductHome locates the Product with the given ISBN (line 77). Lines 84–85 create an
OrderProductModel to store the Product in the ShoppingCart. Line 87 adds the
ProductModel to the OrderProductModel, and line 88 sets the OrderProduct-
Model’s quantity to 1. Line 91 adds the OrderProductModel to the Collection,
which completes the addition of the Product to the ShoppingCart.

If method findByPrimaryKey of interface ProductHome does not find the
Product with the given primary key, lines 96–101 catch a FinderException. Lines
99–100 throw a ProductNotFoundException to indicate that a Product with the
given ISBN could not be found.

Method removeProduct (lines 111–139) compares the ISBN of each Product in
the ShoppingCart’s OrderProductModel Collection with the ISBN of the
Product to be removed. If the Product with the given ISBN is found, line 127 removes
the associated OrderProductModel from the Collection. If the Product is not
found in the ShoppingCart, lines 135–137 throw a ProductNotFoundExcep-
tion.

Method setProductQuantity (lines 142–180) sets the quantity of an
OrderProductModel in the ShoppingCart. If argument productQuantity is
less than 0, lines 147–148 throw an IllegalArgumentException. If the pro-
ductQuantity equals 0, line 152 removes the Product from the ShoppingCart.
Lines 158–173 compare the ISBN of each Product in the OrderProductModel
Collection with the given ISBN. Line 169 updates the matching OrderProduct-
Model’s quantity by invoking OrderProductModel method setQuantity. If
the Product with the given ISBN is not found in the ShoppingCart, lines 176–178
throw a ProductNotFoundException.

Method checkout (lines 183–232) places an Order for the Products in the
ShoppingCart. Each Order must have an associated Customer, so method
checkout takes the Customer’s userID as an argument. Lines 192–201 create an
OrderModel to represent the Order’s details. Each Order has an orderDate, a
shipped flag and a Collection of OrderProductModels. Line 195 sets the date
in the OrderModel. Line 198 invokes method setOrderProductModels of class
OrderModel to add the OrderProductModels list to the Order. Line 201 sets the
shipped flag to false, to indicate that the Order has not shipped from the warehouse.
We discuss entity EJB Order in detail in Section 19.5.

268 // passivate ShoppingCart EJB instance
269 public void ejbPassivate() {}
270
271 // remove ShoppingCart EJB instance
272 public void ejbRemove() {}
273 }

Fig. 19.3Fig. 19.3Fig. 19.3Fig. 19.3 ShoppingCartEJB implementation of ShoppingCart remote
interface (part 7 of 7).

1084 Enterprise Java Case Study: Business Logic Part 1 Chapter 19

Line 217 invokes method create of interface OrderHome to create a new Order.
Method create takes as arguments an OrderModel containing the details of the
Order to be created and a String containing the Customer’s userID. Line 220 emp-
ties the ShoppingCart by creating assigning a new ArrayList to Collection ref-
erence orderProductModels. Line 223 returns a remote reference to the newly
created Order. Lines 228–230 catch any exceptions that occur.

Method getTotal (lines 235–257) iterates through the Collection of Order-
ProductModels and calculates the total cost of items in the ShoppingCart.

19.3.3 ShoppingCartHome Interface

Interface ShoppingCartHome (Fig. 19.4) defines a single create method (lines 15–
16) that creates new ShoppingCart EJB instances. The EJB container provides the im-
plementation for method create.

Figure 19.5 and Figure 19.6 show the deployment settings for stateful session EJB
ShoppingCart. In addition to the settings shown here, be sure to set the Transaction
Type to Required for all business methods.

1 // ShoppingCartHome.java
2 // ShoppingCartHome is the home interface for stateful session
3 // EJB ShoppingCart.
4 package com.deitel.advjhtp1.bookstore.ejb;
5
6 // Java core packages
7 import java.rmi.RemoteException;
8
9 // Java extension packages

10 import javax.ejb.*;
11
12 public interface ShoppingCartHome extends EJBHome {
13
14 // create new ShoppingCart EJB
15 public ShoppingCart create()
16 throws RemoteException, CreateException;
17 }

Fig. 19.4Fig. 19.4Fig. 19.4Fig. 19.4 ShoppingCartHome interface for creating ShoppingCart EJB
instances.

ShoppingCart General Deployment Settings

Bean Type Stateful Session

Enterprise
Bean Class

com.deitel.advjhtp1.bookstore.ejb.ShoppingCartEJB

Fig. 19.5Fig. 19.5Fig. 19.5Fig. 19.5 ShoppingCart general deployment settings (part 1 of 2).

Chapter 19 Enterprise Java Case Study: Business Logic Part 1 1085

19.4 Product Implementation
Entity EJB Product uses container-managed persistence to represent a Product in the
Deitel Bookstore. The EJB container implements methods that select, insert, update and de-
lete database data. The deployer must provide information about how the database table
should be created and the SQL queries to be used for the create, remove and finder
methods at deployment time.

19.4.1 Product Remote Interface
Remote interface Product (Fig. 19.7) declares method getProductModel (line 17–
18), which returns a ProductModel that contains the Product’s details.

Home
Interface

com.deitel.advjhtp1.bookstore.ejb.ShoppingCartHome

Remote
Interface

com.deitel.advjhtp1.bookstore.ejb.ShoppingCart

ShoppingCart EJB References

Coded Name ejb/Product

Type Entity

Home com.deitel.advjhtp1.bookstore.ejb.ProductHome

Remote com.deitel.advjhtp1.bookstore.ejb.Product

JNDI Name Product

Coded Name ejb/Order

Type Entity

Home com.deitel.advjhtp1.bookstore.ejb.OrderHome

Remote com.deitel.advjhtp1.bookstore.ejb.Order

JNDI Name Order

Fig. 19.6Fig. 19.6Fig. 19.6Fig. 19.6 ShoppingCart EJB references.

1 // Product.java
2 // Product is the remote interface for entity EJB Product.
3 package com.deitel.advjhtp1.bookstore.ejb;

Fig. 19.7Fig. 19.7Fig. 19.7Fig. 19.7 Product remote interface for modifying details of Product EJB
instances (part 1 of 2).

ShoppingCart General Deployment Settings

Fig. 19.5Fig. 19.5Fig. 19.5Fig. 19.5 ShoppingCart general deployment settings (part 2 of 2).

1086 Enterprise Java Case Study: Business Logic Part 1 Chapter 19

19.4.2 ProductEJB Implementation

Product remote interface implementation ProductEJB (Fig. 19.8) uses container-
managed persistence. The EJB container manages the synchronization of the public data
members declared on lines 18–24 with the database. Method getProductModel (lines
27–43) creates a ProductModel that contains the Product’s details. Line 30 creates
the ProductModel instance, and lines 33–39 invoke set methods to initialize the Pro-
ductModel’s data members.

4
5 // Java core packages
6 import java.rmi.RemoteException;
7
8 // Java extension packages
9 import javax.ejb.*;

10
11 // Deitel packages
12 import com.deitel.advjhtp1.bookstore.model.*;
13
14 public interface Product extends EJBObject {
15
16 // get Product details as ProductModel
17 public ProductModel getProductModel()
18 throws RemoteException;
19 }

1 // ProductEJB.java
2 // Entity EJB Product represents a Product, including the
3 // ISBN, publisher, author, title, price number of pages
4 // and cover image.
5 package com.deitel.advjhtp1.bookstore.ejb;
6
7 // Java extension packages
8 import javax.ejb.*;
9

10 // Deitel packages
11 import com.deitel.advjhtp1.bookstore.model.*;
12 import com.deitel.advjhtp1.bookstore.*;
13
14 public class ProductEJB implements EntityBean {
15 private EntityContext entityContext;
16
17 // container-managed fields
18 public String ISBN;
19 public String publisher;
20 public String author;
21 public String title;
22 public double price;

Fig. 19.8Fig. 19.8Fig. 19.8Fig. 19.8 ProductEJB implementation of Product remote interface (part 1 of 3).

Fig. 19.7Fig. 19.7Fig. 19.7Fig. 19.7 Product remote interface for modifying details of Product EJB
instances (part 2 of 2).

Chapter 19 Enterprise Java Case Study: Business Logic Part 1 1087

23 public int pages;
24 public String image;
25
26 // get Product details as ProductModel
27 public ProductModel getProductModel()
28 {
29 // construct new ProductModel
30 ProductModel productModel = new ProductModel();
31
32 // initialize ProductModel with data from Product
33 productModel.setISBN(ISBN);
34 productModel.setPublisher(publisher);
35 productModel.setAuthor(author);
36 productModel.setTitle(title);
37 productModel.setPrice(price);
38 productModel.setPages(pages);
39 productModel.setImage(image);
40
41 return productModel;
42
43 } // end method getProductModel
44
45 // set Product details using ProductModel
46 private void setProductModel(ProductModel productModel)
47 {
48 // populate Product's data members with data in
49 // provided ProductModel
50 ISBN = productModel.getISBN();
51 publisher = productModel.getPublisher();
52 author = productModel.getAuthor();
53 title = productModel.getTitle();
54 price = productModel.getPrice();
55 pages = productModel.getPages();
56 image = productModel.getImage();
57
58 } // end method setProductModel
59
60 // create instance of Product EJB using given ProductModel
61 public String ejbCreate(ProductModel productModel)
62 {
63 setProductModel(productModel);
64 return null;
65 }
66
67 // perform any necessary post-creation tasks
68 public void ejbPostCreate(ProductModel productmodel) {}
69
70 // set EntityContext
71 public void setEntityContext(EntityContext context)
72 {
73 entityContext = context;
74 }
75

Fig. 19.8Fig. 19.8Fig. 19.8Fig. 19.8 ProductEJB implementation of Product remote interface (part 2 of 3).

1088 Enterprise Java Case Study: Business Logic Part 1 Chapter 19

Method setProductModel (lines 46–58) sets the Product’s details, using values
in the given ProductModel. Line 50 sets the value of the ISBN data member to the value
of the ISBN contained in the ProductModel argument. Lines 51–56 set the values of the
other ProductEJB data members. Method ejbCreate (lines 61–65) accepts a Pro-
ductModel argument. Method ejbCreate invokes method setProductModel
with the provided ProductModel to initialize the Product EJB instance (line 63).

19.4.3 ProductHome Interface

Interface ProductHome (Fig. 19.9) creates new ProductEJB instances and declares
finder methods for finding existing Products. Method create (lines 18–19) corre-
sponds to method ejbCreate of Fig. 19.8, and provides an interface for creating a Pro-
ductEJB instance. Method findByPrimaryKey (lines 22–23) takes as a String
argument the ISBN for a particular Product in the database. Method findAllProd-
ucts (lines 26–27) returns a Collection of all Products in the database. Method
findByTitle (lines 30–31) searches for Products whose titles contain the given
searchString and returns a Collection of Product remote references. The EJB
container implements each finder method, using SQL queries the deployer must provide at
deployment time.

76 // unset EntityContext
77 public void unsetEntityContext()
78 {
79 entityContext = null;
80 }
81
82 // activate Product EJB instance
83 public void ejbActivate()
84 {
85 ISBN = (String) entityContext.getPrimaryKey();
86 }
87
88 // passivate Product EJB instance
89 public void ejbPassivate()
90 {
91 ISBN = null;
92 }
93
94 // remove Product EJB instance
95 public void ejbRemove() {}
96
97 // store Product EJB data in database
98 public void ejbStore() {}
99
100 // load Product EJB data from database
101 public void ejbLoad() {}
102 }

Fig. 19.8Fig. 19.8Fig. 19.8Fig. 19.8 ProductEJB implementation of Product remote interface (part 3 of 3).

Chapter 19 Enterprise Java Case Study: Business Logic Part 1 1089

19.4.4 ProductModel

Class ProductModel (Fig. 19.10) implements interface Serializable, so that in-
stances may be serialized over RMI-IIOP. ProductModel has a private data member
(lines 18–25) and set and get methods (lines 28–109) for each Product EJB property.

1 // ProductHome.java
2 // ProductHome is the home interface for entity EJB Product.
3 package com.deitel.advjhtp1.bookstore.ejb;
4
5 // Java core packages
6 import java.rmi.RemoteException;
7 import java.util.Collection;
8
9 // Java extension packages

10 import javax.ejb.*;
11
12 // Deitel packages
13 import com.deitel.advjhtp1.bookstore.model.*;
14
15 public interface ProductHome extends EJBHome {
16
17 // create Product EJB using given ProductModel
18 public Product create(ProductModel productModel)
19 throws RemoteException, CreateException;
20
21 // find Product with given ISBN
22 public Product findByPrimaryKey(String isbn)
23 throws RemoteException, FinderException;
24
25 // find all Products
26 public Collection findAllProducts()
27 throws RemoteException, FinderException;
28
29 // find Products with given title
30 public Collection findByTitle(String title)
31 throws RemoteException, FinderException;
32 }

Fig. 19.9Fig. 19.9Fig. 19.9Fig. 19.9 ProductHome interface for finding and creating Product EJB
instances.

1 // ProductModel.java
2 // ProductModel represents a Product in the Deitel Bookstore,
3 // including ISBN, author, title and a picture of the cover.
4 package com.deitel.advjhtp1.bookstore.model;
5
6 // Java core packages
7 import java.io.*;
8 import java.util.*;
9 import java.text.*;

10

Fig. 19.10Fig. 19.10Fig. 19.10Fig. 19.10 ProductModel class for serializing Product data (part 1 of 4).

1090 Enterprise Java Case Study: Business Logic Part 1 Chapter 19

11 // third-party packages
12 import org.w3c.dom.*;
13
14 public class ProductModel implements Serializable,
15 XMLGenerator {
16
17 // ProductModel properties
18 private String ISBN;
19 private String publisher;
20 private String author;
21 private String title;
22 private double price;
23 private int pages;
24 private String image;
25 private int quantity;
26
27 // set ISBN
28 public void setISBN(String productISBN)
29 {
30 ISBN = productISBN;
31 }
32
33 // get ISBN
34 public String getISBN()
35 {
36 return ISBN;
37 }
38
39 // set publisher
40 public void setPublisher(String productPublisher)
41 {
42 publisher = productPublisher;
43 }
44
45 // get publisher
46 public String getPublisher()
47 {
48 return publisher;
49 }
50
51 // set author
52 public void setAuthor(String productAuthor)
53 {
54 author = productAuthor;
55 }
56
57 // get author
58 public String getAuthor()
59 {
60 return author;
61 }
62

Fig. 19.10Fig. 19.10Fig. 19.10Fig. 19.10 ProductModel class for serializing Product data (part 2 of 4).

Chapter 19 Enterprise Java Case Study: Business Logic Part 1 1091

63 // set title
64 public void setTitle(String productTitle)
65 {
66 title = productTitle;
67 }
68
69 // get title
70 public String getTitle()
71 {
72 return title;
73 }
74
75 // set price
76 public void setPrice(double productPrice)
77 {
78 price = productPrice;
79 }
80
81 // get price
82 public double getPrice()
83 {
84 return price;
85 }
86
87 // set number of pages
88 public void setPages(int pageCount)
89 {
90 pages = pageCount;
91 }
92
93 // get number of pages
94 public int getPages()
95 {
96 return pages;
97 }
98
99 // set URL of cover image
100 public void setImage(String productImage)
101 {
102 image = productImage;
103 }
104
105 // get URL of cover image
106 public String getImage()
107 {
108 return image;
109 }
110
111 // get XML representation of Product
112 public Element getXML(Document document)
113 {
114 // create product Element
115 Element product = document.createElement("product");

Fig. 19.10Fig. 19.10Fig. 19.10Fig. 19.10 ProductModel class for serializing Product data (part 3 of 4).

1092 Enterprise Java Case Study: Business Logic Part 1 Chapter 19

ProductModel also implements interface XMLGenerator (Fig. 19.11), which
defines a single method, getXML. Method getXML of class ProductModel (lines 112–

116
117 // create ISBN Element
118 Element temp = document.createElement("ISBN");
119 temp.appendChild(
120 document.createTextNode(getISBN()));
121 product.appendChild(temp);
122
123 // create publisher Element
124 temp = document.createElement("publisher");
125 temp.appendChild(
126 document.createTextNode(getPublisher()));
127 product.appendChild(temp);
128
129 // create author Element
130 temp = document.createElement("author");
131 temp.appendChild(
132 document.createTextNode(getAuthor()));
133 product.appendChild(temp);
134
135 // create title Element
136 temp = document.createElement("title");
137 temp.appendChild(
138 document.createTextNode(getTitle()));
139 product.appendChild(temp);
140
141 NumberFormat priceFormatter =
142 NumberFormat.getCurrencyInstance(Locale.US);
143
144 // create price Element
145 temp = document.createElement("price");
146 temp.appendChild(document.createTextNode(
147 priceFormatter.format(getPrice())));
148 product.appendChild(temp);
149
150 // create pages Element
151 temp = document.createElement("pages");
152 temp.appendChild(document.createTextNode(
153 String.valueOf(getPages())));
154 product.appendChild(temp);
155
156 // create image Element
157 temp = document.createElement("image");
158 temp.appendChild(
159 document.createTextNode(getImage()));
160 product.appendChild(temp);
161
162 return product;
163
164 } // end method getXML
165 }

Fig. 19.10Fig. 19.10Fig. 19.10Fig. 19.10 ProductModel class for serializing Product data (part 4 of 4).

Chapter 19 Enterprise Java Case Study: Business Logic Part 1 1093

164) generates an XML Element for the data contained in the ProductModel. This
method uses the Document argument to create XML elements for each ProductModel
data member. However, method getXML does not modify the Document. Line 162
returns the newly created product element.

Figure 19.12 and Fig. 19.13 show the deployment settings for entity EJB Product.
In addition to the settings shown here, be sure to set the Transaction Type to Required
for all business methods.

1 // XMLGenerator.java
2 // XMLGenerator is an interface for classes that can generate
3 // XML Elements. The XML element returned by method getXML
4 // should contain Elements for each public property.
5 package com.deitel.advjhtp1.bookstore.model;
6
7 // third-party packages
8 import org.w3c.dom.*;
9

10 public interface XMLGenerator {
11
12 // build an XML element for this Object
13 public Element getXML(Document document);
14 }

Fig. 19.11Fig. 19.11Fig. 19.11Fig. 19.11 XMLGenerator interface for generating XML Elements for public
properties.

Product General Deployment Settings

Bean Type Entity

Enterprise
Bean Class

com.deitel.advjhtp1.bookstore.ejb.ProductEJB

Home
Interface

com.deitel.advjhtp1.bookstore.ejb.ProductHome

Remote
Interface

com.deitel.advjhtp1.bookstore.ejb.Product

Fig. 19.12Fig. 19.12Fig. 19.12Fig. 19.12 Product general deployment settings.

Product Entity and Deployment Settings

Persistence
Management

Container-Managed Persistence

Fig. 19.13Fig. 19.13Fig. 19.13Fig. 19.13 Product Entity and deployment settings (part 1 of 2).

1094 Enterprise Java Case Study: Business Logic Part 1 Chapter 19

19.5 Order Implementation
Entity EJB Order represents an Order placed at the Deitel Bookstore. Each Order con-
sists of a list of Products and their associated quantities, as well as the customerID of
the Customer who placed the Order.

Primary Key
Class

java.lang.String

Primary Key
Field Name

ISBN

Database JNDI
Name

jdbc/Bookstore

Method findBy-
Title SQL
Statement

SELECT ISBN FROM Product WHERE title LIKE ?1

Method find-
AllProducts
SQL Statement

SELECT ISBN FROM Product WHERE 1 = 1

Method ejb-
Store SQL
Statement

UPDATE Product SET author = ?, image = ?, pages =
?, price = ?, publisher = ?, title = ?
WHERE ISBN = ?

Method ejb-
Create SQL
Statement

INSERT INTO Product (ISBN, author, image, pages,
price, publisher, title) VALUES (?, ?, ?, ?,
?, ?, ?)

Method ejb-
Remove SQL
Statement

DELETE FROM Product WHERE ISBN = ?

Method find-
ByPrimaryKey
SQL Statement

SELECT ISBN FROM Product WHERE ISBN = ?

Method ejb-
Load SQL State-
ment

SELECT author, image, pages, price, publisher,
title FROM Product WHERE ISBN = ?

Table Create
SQL Statement

CREATE TABLE Product (ISBN VARCHAR(255), author
VARCHAR(255), image VARCHAR(255), pages INTE-
GER NOT NULL, price DOUBLE PRECISION NOT NULL,
publisher VARCHAR(255), title VARCHAR(255),
CONSTRAINT pk_Product PRIMARY KEY (ISBN))

Table Delete
SQL Statement

DROP TABLE Product

Product Entity and Deployment Settings

Fig. 19.13Fig. 19.13Fig. 19.13Fig. 19.13 Product Entity and deployment settings (part 2 of 2).

Chapter 19 Enterprise Java Case Study: Business Logic Part 1 1095

19.5.1 Order Remote Interface
The Order EJB remote interface (Fig. 19.14) defines the business methods available in the
Order EJB. Method getOrderModel (line 17) returns an OrderModel containing
Order details. Method setShipped (lines 20–21) marks an Order as having been
shipped from the warehouse. Method isShipped (line 24) returns a boolean that indi-
cates whether the Order has been shipped.

19.5.2 OrderEJB Implementation
Order remote interface implementation OrderEJB (Fig. 19.15) declares public data
members for container-manage persistence (lines 26–29). Method getOrderModel
(lines 32–91) constructs an OrderModel instance that contains Order details. Lines 42–
44 populate the OrderModel with the values of the Order EJB’s data members.

1 // Order.java
2 // Order is the remote interface for entity EJB Order.
3 package com.deitel.advjhtp1.bookstore.ejb;
4
5 // Java core packages
6 import java.rmi.RemoteException;
7
8 // Java extension packages
9 import javax.ejb.*;

10
11 // Deitel packages
12 import com.deitel.advjhtp1.bookstore.model.*;
13
14 public interface Order extends EJBObject {
15
16 // get Order details as OrderModel
17 public OrderModel getOrderModel() throws RemoteException;
18
19 // set shipped flag
20 public void setShipped(boolean flag)
21 throws RemoteException;
22
23 // get shipped flag
24 public boolean isShipped() throws RemoteException;
25 }

Fig. 19.14Fig. 19.14Fig. 19.14Fig. 19.14 Order remote interface for modifying details of Order EJB instances.

1 // OrderEJB.java
2 // Entity EJB Order represents an Order, including the
3 // orderID, Order date, total cost and whether the Order
4 // has shipped.
5 package com.deitel.advjhtp1.bookstore.ejb;
6

Fig. 19.15Fig. 19.15Fig. 19.15Fig. 19.15 OrderEJB implementation of Order remote interface (part 1 of 6).

1096 Enterprise Java Case Study: Business Logic Part 1 Chapter 19

7 // Java core packages
8 import java.util.*;
9 import java.text.DateFormat;

10 import java.rmi.RemoteException;
11
12 // Java extension packages
13 import javax.ejb.*;
14 import javax.naming.*;
15 import javax.rmi.PortableRemoteObject;
16
17 // Deitel packages
18 import com.deitel.advjhtp1.bookstore.model.*;
19
20 public class OrderEJB implements EntityBean {
21 private EntityContext entityContext;
22 private InitialContext initialContext;
23 private DateFormat dateFormat;
24
25 // container-managed fields
26 public Integer orderID;
27 public Integer customerID;
28 public String orderDate;
29 public boolean shipped;
30
31 // get Order details as OrderModel
32 public OrderModel getOrderModel() throws EJBException
33 {
34 // construct new OrderModel
35 OrderModel orderModel = new OrderModel();
36
37 // look up OrderProduct EJB to retrieve list
38 // of Products contained in the Order
39 try {
40
41 // populate OrderModel data members with data from Order
42 orderModel.setOrderID(orderID);
43 orderModel.setOrderDate(dateFormat.parse(orderDate));
44 orderModel.setShipped(shipped);
45
46 initialContext = new InitialContext();
47
48 Object object = initialContext.lookup(
49 "java:comp/env/ejb/OrderProduct");
50
51 OrderProductHome orderProductHome =
52 (OrderProductHome) PortableRemoteObject.narrow(
53 object, OrderProductHome.class);
54
55 // get OrderProduct records for Order
56 Collection orderProducts =
57 orderProductHome.findByOrderID(orderID);
58
59 Iterator iterator = orderProducts.iterator();

Fig. 19.15Fig. 19.15Fig. 19.15Fig. 19.15 OrderEJB implementation of Order remote interface (part 2 of 6).

Chapter 19 Enterprise Java Case Study: Business Logic Part 1 1097

60
61 // OrderProductModels to place in OrderModel
62 Collection orderProductModels = new ArrayList();
63
64 // get OrderProductModel for each Product in Order
65 while (iterator.hasNext()) {
66 OrderProduct orderProduct = (OrderProduct)
67 PortableRemoteObject.narrow(iterator.next(),
68 OrderProduct.class);
69
70 // get OrderProductModel for OrderProduct record
71 OrderProductModel orderProductModel =
72 orderProduct.getOrderProductModel();
73
74 // add OrderProductModel to list of
75 // OrderProductModels in the Order
76 orderProductModels.add(orderProductModel);
77 }
78
79 // add Collection of OrderProductModels to OrderModel
80 orderModel.setOrderProductModels(orderProductModels);
81
82 } // end try
83
84 // handle exception working with OrderProduct EJB
85 catch (Exception exception) {
86 throw new EJBException(exception);
87 }
88
89 return orderModel;
90
91 } // end method getOrderModel
92
93 // set shipped flag
94 public void setShipped(boolean flag)
95 {
96 shipped = flag;
97 }
98
99 // get shipped flag
100 public boolean isShipped()
101 {
102 return shipped;
103 }
104
105 // create new Order EJB using given OrderModel and userID
106 public Integer ejbCreate(OrderModel order, String userID)
107 throws CreateException
108 {
109 // retrieve unique value for primary key of this
110 // Order using SequenceFactory EJB
111 try {
112 initialContext = new InitialContext();

Fig. 19.15Fig. 19.15Fig. 19.15Fig. 19.15 OrderEJB implementation of Order remote interface (part 3 of 6).

1098 Enterprise Java Case Study: Business Logic Part 1 Chapter 19

113
114 Object object = initialContext.lookup(
115 "java:comp/env/ejb/SequenceFactory");
116
117 SequenceFactoryHome sequenceFactoryHome =
118 (SequenceFactoryHome)
119 PortableRemoteObject.narrow(
120 object, SequenceFactoryHome.class);
121
122 // find sequence for CustomerOrder table
123 SequenceFactory sequenceFactory =
124 sequenceFactoryHome.findByPrimaryKey(
125 "CustomerOrders");
126
127 // get next unique orderID
128 orderID = sequenceFactory.getNextID();
129
130 // get date, cost, shipped flag and list of
131 // OrderProduct from provided OrderModel
132 orderDate = dateFormat.format(order.getOrderDate());
133 shipped = order.getShipped();
134
135 // get OrderProductModels that comprise OrderModel
136 Collection orderProductModels =
137 order.getOrderProductModels();
138
139 // create OrderProduct EJBs for each Product in
140 // Order to keep track of quantity
141 object = initialContext.lookup(
142 "java:comp/env/ejb/OrderProduct");
143
144 OrderProductHome orderProductHome =
145 (OrderProductHome) PortableRemoteObject.narrow(
146 object, OrderProductHome.class);
147
148 Iterator iterator = orderProductModels.iterator();
149
150 // create an OrderProduct EJB with Product's
151 // ISBN, quantity and orderID for this Order
152 while (iterator.hasNext()) {
153
154 OrderProductModel orderProductModel =
155 (OrderProductModel) iterator.next();
156
157 // set orderID for OrderProduct record
158 orderProductModel.setOrderID(orderID);
159
160 // create OrderProduct EJB instance
161 orderProductHome.create(orderProductModel);
162 }
163
164 // get customerID for customer placing Order
165 object = initialContext.lookup(

Fig. 19.15Fig. 19.15Fig. 19.15Fig. 19.15 OrderEJB implementation of Order remote interface (part 4 of 6).

Chapter 19 Enterprise Java Case Study: Business Logic Part 1 1099

166 "java:comp/env/ejb/Customer");
167
168 CustomerHome customerHome =
169 (CustomerHome) PortableRemoteObject.narrow(
170 object, CustomerHome.class);
171
172 // use provided userID to find Customer
173 Customer customer =
174 customerHome.findByUserID(userID);
175
176 customerID = (Integer) customer.getPrimaryKey();
177
178 } // end try
179
180 // handle exception when looking up EJBs
181 catch (Exception exception) {
182 throw new CreateException(exception.getMessage());
183 }
184
185 return null;
186
187 } // end method ejbCreate
188
189 // perform any necessary post-creation tasks
190 public void ejbPostCreate(OrderModel order, String id) {}
191
192 // set EntityContext
193 public void setEntityContext(EntityContext context)
194 {
195 entityContext = context;
196 dateFormat = DateFormat.getDateTimeInstance(
197 DateFormat.FULL, DateFormat.SHORT, Locale.US);
198 }
199
200 // unset EntityContext
201 public void unsetEntityContext()
202 {
203 entityContext = null;
204 }
205
206 // activate Order EJB instance
207 public void ejbActivate()
208 {
209 orderID = (Integer) entityContext.getPrimaryKey();
210 }
211
212 // passivate Order EJB instance
213 public void ejbPassivate()
214 {
215 orderID = null;
216 }
217
218 // remove Order EJB instanceCus

Fig. 19.15Fig. 19.15Fig. 19.15Fig. 19.15 OrderEJB implementation of Order remote interface (part 5 of 6).

1100 Enterprise Java Case Study: Business Logic Part 1 Chapter 19

In addition to the orderDate, orderID and shipped flag, an Order contains a
list of OrderProductModels. The relationship between an Order and its associated
Products and quantities is represented by a many-to-many relationship in the database
(i.e., an Order can contain many Products, and a single Product can be found in
many Orders). The OrderProduct EJB represents this relationship by mapping an
orderID to the ISBNs of Products in the Order. For each Order, there are records
in the OrderProduct table containing the ISBNs and quantities of each Product in
the Order. For example, if a Customer orders one copy of Java How to Program and
two copies of Advanced Java 2 Platform How to Program, there will be two records in the
OrderProduct table. Each record will have the same orderID, but one will have the
ISBN for Java How to Program and the quantity 1, and the other will have the ISBN
for Advanced Java 2 Platform How to Program and the quantity 2.

Lines 56–57 invoke method findByOrderID to obtain the OrderProduct
records for the Order. Method findByOrderID returns a Collection of Order-
Product remote references. Lines 65–77 traverse the Collection of OrderProd-
ucts using an Iterator, and lines 71–72 retrieve an OrderProductModel for each
OrderProduct record. Line 76 adds each OrderProductModel to a Collection.
Line 80 adds the OrderProductModel Collection to the OrderModel, and line
89 returns the newly created OrderModel.

Method setShipped (lines 94–97) accepts a boolean argument and updates the
Order EJB’s shipped flag. An order-tracking application could use method set-
Shipped to update the status of the Order when the warehouse ships the Order.
Method isShipped (lines 100–103) returns the shipped data member’s current value,
indicating whether the Order has been shipped from the warehouse.

Method ejbCreate (lines 106–187) creates an Order EJB using data from the
given OrderModel and userID. Each Order has an associated orderID, which
serves as the primary key in the Order EJB database table. SequenceFactory method
getNextID generates a unique orderID for the Order (line 128).

Lines 132–133 populate the Order with data from the OrderModel. The Order-
Model also provides the Products and quantities in the Order as an Collection of
OrderProductModels. Lines 152–162 process the Collection of OrderPro-
ductModels and create OrderProduct records for each, using interface OrderPro-
ductHome method create (line 161).

Each Order also must have an associated Customer who placed the Order. This
is a one-to-many relationship, because one Customer can place many orders, but an
Order can be associated with only one Customer. Lines 173–174 retrieve the Cus-

219 public void ejbRemove() {}
220
221 // store Order EJB data in database
222 public void ejbStore() {}
223
224 // load Order EJB data from database
225 public void ejbLoad() {}
226 }

Fig. 19.15Fig. 19.15Fig. 19.15Fig. 19.15 OrderEJB implementation of Order remote interface (part 6 of 6).

Chapter 19 Enterprise Java Case Study: Business Logic Part 1 1101

tomer EJB for the given userID. Customer method getPrimaryKey retrieves the
Customer’s customerID. Line 176 sets the customerID for the Order.

19.5.3 OrderHome Interface

Interface OrderHome (Fig. 19.16) creates Order instances and finds existing Orders.
Method create (lines 18–19) corresponds to method ejbCreate of Fig. 19.15 and cre-
ates new Orders, using an OrderModel and userID. Method findByPrimaryKey
(lines 22–23) locates an existing Order, using its orderID. Method findByCusto-
merID (lines 26–27) retrieves a Collection of Orders for the given Customer.

19.5.4 OrderModel

Class OrderModel (Fig. 19.17) encapsulates the details of an Order EJB in a Seri-
alizable object suitable for delivery over RMI-IIOP. OrderModel has private
data members (lines 19–22) with associated set and get methods (lines 31–102) for each
Order EJB data member. OrderModel also maintains a Collection of OrderPro-
ductModels, to keep track of the Products in the Order. OrderModel implements
interface XMLGenerator and method getXML to facilitate the generation of an XML
representation of an Order (lines 105–166).

1 // OrderHome.java
2 // OrderHome is the home interface for entity EJB Order.
3 package com.deitel.advjhtp1.bookstore.ejb;
4
5 // Java core packages
6 import java.util.*;
7 import java.rmi.RemoteException;
8
9 // Java extension packages

10 import javax.ejb.*;
11
12 // Deitel packages
13 import com.deitel.advjhtp1.bookstore.model.*;
14
15 public interface OrderHome extends EJBHome {
16
17 // create Order using given OrderModel and userID
18 public Order create(OrderModel orderModel, String userID)
19 throws RemoteException, CreateException;
20
21 // find Order using given orderID
22 public Order findByPrimaryKey(Integer orderID)
23 throws RemoteException, FinderException;
24
25 // find Orders for given customerID
26 public Collection findByCustomerID(Integer customerID)
27 throws RemoteException, FinderException;
28 }

Fig. 19.16Fig. 19.16Fig. 19.16Fig. 19.16 OrderHome interface for finding and creating Order EJB instances.

1102 Enterprise Java Case Study: Business Logic Part 1 Chapter 19

1 // OrderModel.java
2 // OrderModel represents an Order and contains the order ID,
3 // date, total cost and a boolean indicating whether or not the
4 // order has shipped.
5 package com.deitel.advjhtp1.bookstore.model;
6
7 // Java core packages
8 import java.io.*;
9 import java.util.*;

10 import java.text.*;
11
12 // third-party packages
13 import org.w3c.dom.*;
14
15 public class OrderModel implements Serializable,
16 XMLGenerator {
17
18 // OrderModel properties
19 private Integer orderID;
20 private Date orderDate;
21 private boolean shipped;
22 private Collection orderProductModels;
23
24 // construct empty OrderModel
25 public OrderModel()
26 {
27 orderProductModels = new ArrayList();
28 }
29
30 // set order ID
31 public void setOrderID(Integer id)
32 {
33 orderID = id;
34 }
35
36 // get order ID
37 public Integer getOrderID()
38 {
39 return orderID;
40 }
41
42 // set order date
43 public void setOrderDate(Date date)
44 {
45 orderDate = date;
46 }
47
48 // get order date
49 public Date getOrderDate()
50 {
51 return orderDate;
52 }
53

Fig. 19.17Fig. 19.17Fig. 19.17Fig. 19.17 OrderModel class for serializing Order data (part 1 of 4).

Chapter 19 Enterprise Java Case Study: Business Logic Part 1 1103

54 // get total cost
55 public double getTotalCost()
56 {
57 double total = 0.0;
58
59 Iterator iterator = orderProductModels.iterator();
60
61 // calculate Order's total cost
62 while (iterator.hasNext()) {
63
64 // get next OrderProduct in ShoppingCart
65 OrderProductModel orderProductModel =
66 (OrderProductModel) iterator.next();
67
68 ProductModel productModel =
69 orderProductModel.getProductModel();
70
71 // add OrderProduct extended price to total
72 total += (productModel.getPrice() *
73 orderProductModel.getQuantity());
74 }
75
76 return total;
77 }
78
79 // set shipped flag
80 public void setShipped(boolean orderShipped)
81 {
82 shipped = orderShipped;
83 }
84
85 // get shipped flag
86 public boolean getShipped()
87 {
88 return shipped;
89 }
90
91 // set list of OrderProductModels
92 public void setOrderProductModels(Collection models)
93 {
94 orderProductModels = models;
95 }
96
97 // get OrderProductModels
98 public Collection getOrderProductModels()
99 {
100 return Collections.unmodifiableCollection(
101 orderProductModels);
102 }
103
104 // get XML representation of Order
105 public Element getXML(Document document)
106 {

Fig. 19.17Fig. 19.17Fig. 19.17Fig. 19.17 OrderModel class for serializing Order data (part 2 of 4).

1104 Enterprise Java Case Study: Business Logic Part 1 Chapter 19

107 // create order Element
108 Element order = document.createElement("order");
109
110 // create orderID Element
111 Element temp = document.createElement("orderID");
112 temp.appendChild(document.createTextNode(
113 String.valueOf(getOrderID())));
114 order.appendChild(temp);
115
116 // get DateFormat for writing Date to XML document
117 DateFormat formatter = DateFormat.getDateTimeInstance(
118 DateFormat.DEFAULT, DateFormat.MEDIUM, Locale.US);
119
120 // create orderDate Element
121 temp = document.createElement("orderDate");
122 temp.appendChild(document.createTextNode(
123 formatter.format(getOrderDate())));
124 order.appendChild(temp);
125
126 NumberFormat costFormatter =
127 NumberFormat.getCurrencyInstance(Locale.US);
128
129 // create totalCost Element
130 temp = document.createElement("totalCost");
131 temp.appendChild(document.createTextNode(
132 costFormatter.format(getTotalCost())));
133 order.appendChild(temp);
134
135 // create shipped Element
136 temp = document.createElement("shipped");
137
138 if (getShipped())
139 temp.appendChild(
140 document.createTextNode("yes"));
141 else
142 temp.appendChild(
143 document.createTextNode("no"));
144
145 order.appendChild(temp);
146
147 // create orderProducts Element
148 Element orderProducts =
149 document.createElement("orderProducts");
150
151 Iterator iterator = getOrderProductModels().iterator();
152
153 // add orderProduct element for each OrderProduct
154 while (iterator.hasNext()) {
155 OrderProductModel orderProductModel =
156 (OrderProductModel) iterator.next();
157
158 orderProducts.appendChild(
159 orderProductModel.getXML(document));

Fig. 19.17Fig. 19.17Fig. 19.17Fig. 19.17 OrderModel class for serializing Order data (part 3 of 4).

Chapter 19 Enterprise Java Case Study: Business Logic Part 1 1105

Figure 19.18, Fig. 19.19 and Fig. 19.20 show the deployment settings for entity EJB
Order. In addition to the settings shown here, be sure to set the Transaction Type to
Required for all business methods.

160 }
161
162 order.appendChild(orderProducts);
163
164 return order;
165
166 } // end method getXML
167 }

Order General Deployment Settings

Bean Type Entity

Enterprise
Bean Class

com.deitel.advjhtp1.bookstore.ejb.OrderEJB

Home
Interface

com.deitel.advjhtp1.bookstore.ejb.OrderHome

Remote
Interface

com.deitel.advjhtp1.bookstore.ejb.Order

Fig. 19.18Fig. 19.18Fig. 19.18Fig. 19.18 Order general deployment settings.

Order Entity and Deployment Settings

Persistence
Management

Container-Managed Persistence

Primary Key
Class

java.lang.Integer

Primary Key
Field Name

orderID

Database JNDI
Name

jdbc/Bookstore

Method findBy-
CustomerID
SQL Statement

SELECT orderID FROM CustomerOrders WHERE custom-
erID = ?1

Fig. 19.19Fig. 19.19Fig. 19.19Fig. 19.19 Order entity and deployment settings (part 1 of 2).

Fig. 19.17Fig. 19.17Fig. 19.17Fig. 19.17 OrderModel class for serializing Order data (part 4 of 4).

1106 Enterprise Java Case Study: Business Logic Part 1 Chapter 19

Method ejb-
Store SQL
Statement

UPDATE CustomerOrders SET customerID = ?,
orderDate = ?, shipped = ? WHERE orderID = ?

Method ejbCre-
ate SQL State-
ment

INSERT INTO CustomerOrders (customerID,
orderDate, orderID, shipped) VALUES (?, ?, ?, ?)

Method ejbRe-
move SQL State-
ment

DELETE FROM CustomerOrders WHERE orderID = ?

Method find-
ByPrimaryKey
SQL Statement

SELECT orderID FROM CustomerOrders WHERE
orderID = ?

Method ejb-
Load SQL State-
ment

SELECT customerID, orderDate, shipped FROM
CustomerOrders WHERE orderID = ?

Table Create
SQL Statement

CREATE TABLE CustomerOrders (customerID
INTEGER, orderDate VARCHAR(255), orderID
INTEGER, shipped BOOLEAN NOT NULL, CONSTRAINT
pk_CustomerOrders PRIMARY KEY (orderID))

Table Delete
SQL Statement

DROP TABLE CustomerOrders

Order EJB References

Coded Name ejb/Product

Type Entity

Home com.deitel.advjhtp1.bookstore.ejb.ProductHome

Remote com.deitel.advjhtp1.bookstore.ejb.Product

JNDI Name Product

Coded Name ejb/SequenceFactory

Type Entity

Home com.deitel.advjhtp1.bookstore.ejb.SequenceFactory-
Home

Remote com.deitel.advjhtp1.bookstore.ejb.SequenceFactory

JNDI Name SequenceFactory

Coded Name ejb/Customer

Fig. 19.20Fig. 19.20Fig. 19.20Fig. 19.20 Order EJB references (part 1 of 2).

Order Entity and Deployment Settings

Fig. 19.19Fig. 19.19Fig. 19.19Fig. 19.19 Order entity and deployment settings (part 2 of 2).

Chapter 19 Enterprise Java Case Study: Business Logic Part 1 1107

19.6 OrderProduct Implementation
Entity EJB OrderProduct represents the many-to-many relationship between Orders
and Products. Each OrderProduct EJB includes an orderID, Product ISBN and
quantity, and represents one line item in an Order.

19.6.1 OrderProduct Remote Interface
The OrderProduct remote interface (Fig. 19.21) defines the business methods for the
OrderProduct EJB. The OrderProduct EJB maps Product ISBNs to orderIDs
and quantities. Method getOrderProductModel (lines 18–19) returns an Order-
ProductModel that contains the details of an OrderProduct record.

Type Entity

Home com.deitel.advjhtp1.bookstore.ejb.CustomerHome

Remote com.deitel.advjhtp1.bookstore.ejb.Customer

JNDI Name Customer

Coded Name ejb/OrderProduct

Type Entity

Home com.deitel.advjhtp1.bookstore.ejb.OrderProductHome

Remote com.deitel.advjhtp1.bookstore.ejb.OrderProduct

JNDI Name OrderProduct

1 // OrderProduct.java
2 // OrderProduct is the remote interface for entity EJB
3 // OrderProduct.
4 package com.deitel.advjhtp1.bookstore.ejb;
5
6 // Java core packages
7 import java.rmi.RemoteException;
8
9 // Java extension packages

10 import javax.ejb.*;
11
12 // Deitel packages
13 import com.deitel.advjhtp1.bookstore.model.*;
14
15 public interface OrderProduct extends EJBObject {
16
17 // get OrderProduct details as OrderProductModel

Fig. 19.21Fig. 19.21Fig. 19.21Fig. 19.21 OrderProduct remote interface for modifying details of
OrderProduct EJB instances (part 1 of 2).

Order EJB References

Fig. 19.20Fig. 19.20Fig. 19.20Fig. 19.20 Order EJB references (part 2 of 2).

1108 Enterprise Java Case Study: Business Logic Part 1 Chapter 19

19.6.2 OrderProductEJB Implementation
OrderProduct remote interface implementation OrderProductEJB (Fig. 19.22) de-
clares container-managed fields ISBN, orderID and quantity (lines 22–24). Method
getOrderProductModel (lines 27–69) returns the details of the OrderProduct
record as an OrderProductModel. Method setOrderProductModel (lines 72–
77) sets the details of the OrderProduct record, using data from the OrderProduct-
Model argument.

18 public OrderProductModel getOrderProductModel()
19 throws RemoteException;
20 }

1 // OrderProductEJB.java
2 // Entity EJB OrderProductEJB represents the mapping between
3 // a Product and an Order, including the quantity of the
4 // Product in the Order.
5 package com.deitel.advjhtp1.bookstore.ejb;
6
7 // Java core packages
8 import java.rmi.RemoteException;
9

10 // Java extension packages
11 import javax.ejb.*;
12 import javax.naming.*;
13 import javax.rmi.PortableRemoteObject;
14
15 // Deitel packages
16 import com.deitel.advjhtp1.bookstore.model.*;
17
18 public class OrderProductEJB implements EntityBean {
19 private EntityContext entityContext;
20
21 // container-managed fields
22 public String ISBN;
23 public Integer orderID;
24 public int quantity;
25
26 // get OrderProduct details as OrderProductModel
27 public OrderProductModel getOrderProductModel()
28 throws EJBException
29 {
30 OrderProductModel model = new OrderProductModel();
31
32 // get ProductModel for Product in this OrderProduct
33 try {
34 Context initialContext = new InitialContext();

Fig. 19.22Fig. 19.22Fig. 19.22Fig. 19.22 OrderProductEJB implementation of OrderProduct remote
interface (part 1 of 3).

Fig. 19.21Fig. 19.21Fig. 19.21Fig. 19.21 OrderProduct remote interface for modifying details of
OrderProduct EJB instances (part 2 of 2).

Chapter 19 Enterprise Java Case Study: Business Logic Part 1 1109

35
36 // look up Product EJB
37 Object object = initialContext.lookup(
38 "java:comp/env/ejb/Product");
39
40 // get ProductHome interface
41 ProductHome productHome = (ProductHome)
42 PortableRemoteObject.narrow(object,
43 ProductHome.class);
44
45 // find Product using its ISBN
46 Product product =
47 productHome.findByPrimaryKey(ISBN);
48
49 // get ProductModel
50 ProductModel productModel =
51 product.getProductModel();
52
53 // set ProductModel in OrderProductModel
54 model.setProductModel(productModel);
55
56 } // end try
57
58 // handle exception when looking up Product EJB
59 catch (Exception exception) {
60 throw new EJBException(exception);
61 }
62
63 // set orderID and quantity in OrderProductModel
64 model.setOrderID(orderID);
65 model.setQuantity(quantity);
66
67 return model;
68
69 } // end method getOrderProductModel
70
71 // set OrderProduct details using OrderProductModel
72 private void setOrderProductModel(OrderProductModel model)
73 {
74 ISBN = model.getProductModel().getISBN();
75 orderID = model.getOrderID();
76 quantity = model.getQuantity();
77 }
78
79 // create OrderProduct for given OrderProductModel
80 public OrderProductPK ejbCreate(OrderProductModel model)
81 {
82 setOrderProductModel(model);
83 return null;
84 }
85
86 // perform any necessary post-creation tasks

Fig. 19.22Fig. 19.22Fig. 19.22Fig. 19.22 OrderProductEJB implementation of OrderProduct remote
interface (part 2 of 3).

1110 Enterprise Java Case Study: Business Logic Part 1 Chapter 19

The EJB container calls method ejbCreate (lines 80–84) to create new instances of
the OrderProduct EJB. The ISBN, orderID and quantity for the OrderProduct
record are provided in the OrderProductModel argument. Line 82 invokes method
setOrderProductModel to complete the creation of the OrderProduct record.

19.6.3 OrderProductHome Interface
Interface OrderProductHome (Fig. 19.23) provides methods for creating new Order-
Product EJB instances and locating existing OrderProduct records. Method create
(lines 19–20) corresponds to method ejbCreate of the OrderProductEJB implemen-

87 public void ejbPostCreate(OrderProductModel model) {}
88
89 // set EntityContext
90 public void setEntityContext(EntityContext context)
91 {
92 entityContext = context;
93 }
94
95 // unset EntityContext
96 public void unsetEntityContext()
97 {
98 entityContext = null;
99 }
100
101 // activate OrderProduct EJB instance
102 public void ejbActivate()
103 {
104 OrderProductPK primaryKey =
105 (OrderProductPK) entityContext.getPrimaryKey();
106
107 ISBN = primaryKey.getISBN();
108 orderID = primaryKey.getOrderID();
109 }
110
111 // passivate OrderProduct EJB instance
112 public void ejbPassivate()
113 {
114 ISBN = null;
115 orderID = null;
116 }
117
118 // remove OrderProduct EJB instance
119 public void ejbRemove() {}
120
121 // store OrderProduct EJB data in database
122 public void ejbStore() {}
123
124 // load OrderProduct EJB data from database
125 public void ejbLoad() {}
126 }

Fig. 19.22Fig. 19.22Fig. 19.22Fig. 19.22 OrderProductEJB implementation of OrderProduct remote
interface (part 3 of 3).

Chapter 19 Enterprise Java Case Study: Business Logic Part 1 1111

tation (Fig. 19.22). Method findByOrderID (lines 23–24) locates all OrderProduct
records with the provided orderID and returns a Collection of OrderProduct re-
mote references. Method findByPrimaryKey (lines 27–28) locates an OrderProduct
record, using an instance of the OrderProductPK primary-key class.

19.6.4 OrderProductPK Primary-Key Class
OrderProductPK (Fig. 19.24) is the primary-key class for the OrderProduct EJB.
An orderID and ISBN are required to identify a particular OrderProduct EJB in-
stance uniquely. An entity EJB that has a complex primary key (i.e., a primary key that con-
sists of multiple fields) requires a custom primary-key class. A custom primary-key class
must have a public data member for each field in the complex primary key. The primary-
key class OrderProductPK has two public data members (lines 12–13)—ISBN and
orderID, which correspond to OrderProductEJB’s two primary-key fields
(Fig. 19.22). A custom primary-key class also must override methods hashCode and
equals of class Object. The overridden implementations of methods hashCode (lines
38–41) and equals (lines 44–57) enable the EJB container and OrderProduct EJB
clients to determine if two OrderProduct EJB instances are equal by comparing their
primary-key class instances.

1 // OrderProductHome.java
2 // OrderProductHome is the home interface for entity EJB
3 // OrderProduct.
4 package com.deitel.advjhtp1.bookstore.ejb;
5
6 // Java core packages
7 import java.util.Collection;
8 import java.rmi.RemoteException;
9

10 // Java extension packages
11 import javax.ejb.*;
12
13 // Deitel packages
14 import com.deitel.advjhtp1.bookstore.model.*;
15
16 public interface OrderProductHome extends EJBHome {
17
18 // create OrderProduct using given OrderProductModel
19 public OrderProduct create(OrderProductModel model)
20 throws RemoteException, CreateException;
21
22 // find OrderProduct for given orderID
23 public Collection findByOrderID(Integer orderID)
24 throws RemoteException, FinderException;
25
26 // find OrderProduct for given primary key
27 public OrderProduct findByPrimaryKey(OrderProductPK pk)
28 throws RemoteException, FinderException;
29 }

Fig. 19.23Fig. 19.23Fig. 19.23Fig. 19.23 OrderProductHome interface for finding and creating
OrderProduct EJB instances.

1112 Enterprise Java Case Study: Business Logic Part 1 Chapter 19

1 // OrderProductPK.java
2 // OrderProductPK is a primary-key class for entity EJB
3 // OrderProduct.
4 package com.deitel.advjhtp1.bookstore.ejb;
5
6 // Java core packages
7 import java.io.*;
8
9 public class OrderProductPK implements Serializable {

10
11 // primary-key fields
12 public String ISBN;
13 public Integer orderID;
14
15 // no-argument constructor
16 public OrderProductPK() {}
17
18 // construct OrderProductPK with ISBN and orderID
19 public OrderProductPK(String isbn, Integer id)
20 {
21 ISBN = isbn;
22 orderID = id;
23 }
24
25 // get ISBN
26 public String getISBN()
27 {
28 return ISBN;
29 }
30
31 // get orderID
32 public Integer getOrderID()
33 {
34 return orderID;
35 }
36
37 // calculate hashCode for this Object
38 public int hashCode()
39 {
40 return getISBN().hashCode() ^ getOrderID().intValue();
41 }
42
43 // custom implementation of Object equals method
44 public boolean equals(Object object)
45 {
46 // ensure object is instance of OrderProductPK
47 if (object instanceof OrderProductPK) {
48 OrderProductPK otherKey =
49 (OrderProductPK) object;
50
51 // compare ISBNs and orderIDs
52 return (getISBN().equals(otherKey.getISBN())

Fig. 19.24Fig. 19.24Fig. 19.24Fig. 19.24 OrderProductPK primary-key class for OrderProduct EJB
 (part 1 of 2).

Chapter 19 Enterprise Java Case Study: Business Logic Part 1 1113

19.6.5 OrderProductModel

Model class OrderProductModel (Fig. 19.25) represents an OrderProduct record.
Line 18 declares a ProductModel reference for the Product associated with this Or-
derProduct record. The quantity (line 19) is the quantity of the Product in the
Order. The Order is identified by its orderID (line 20). Method getXML (lines 59–
76) generates an XML Element that represents the OrderProductModel.

53 && getOrderID().equals(otherKey.getOrderID()));
54 }
55
56 return false;
57 }
58 }

1 // OrderProductModel.java
2 // OrderProductModel represents a Product and its quantity in
3 // an Order or ShoppingCart.
4 package com.deitel.advjhtp1.bookstore.model;
5
6 // Java core packages
7 import java.io.*;
8 import java.util.*;
9 import java.text.*;

10
11 // third-party packages
12 import org.w3c.dom.*;
13
14 public class OrderProductModel implements Serializable,
15 XMLGenerator {
16
17 // OrderProductModel properties
18 private ProductModel productModel;
19 private int quantity;
20 private Integer orderID;
21
22 // set ProductModel
23 public void setProductModel(ProductModel model)
24 {
25 productModel = model;
26 }
27
28 // get ProductModel
29 public ProductModel getProductModel()
30 {
31 return productModel;
32 }

Fig. 19.25Fig. 19.25Fig. 19.25Fig. 19.25 OrderProductModel class for serializing OrderProduct data
 (part 1 of 2).

Fig. 19.24Fig. 19.24Fig. 19.24Fig. 19.24 OrderProductPK primary-key class for OrderProduct EJB
 (part 2 of 2).

1114 Enterprise Java Case Study: Business Logic Part 1 Chapter 19

Figure 19.26, Fig. 19.27 and Fig. 19.28 show the deployment settings for entity EJB
OrderProduct. In addition to the settings shown here, be sure to set the Transaction
Type to Required for all business methods. Note that because entity EJB Order-
Product uses a custom primary-key class, the Primary Key Field Name (Fig. 19.27)
must be left blank.

33
34 // set quantity
35 public void setQuantity(int productQuantity)
36 {
37 quantity = productQuantity;
38 }
39
40 // get quantity
41 public int getQuantity()
42 {
43 return quantity;
44 }
45
46 // set orderID
47 public void setOrderID(Integer id)
48 {
49 orderID = id;
50 }
51
52 // get orderID
53 public Integer getOrderID()
54 {
55 return orderID;
56 }
57
58 // get XML representation of OrderProduct
59 public Element getXML(Document document)
60 {
61 // create orderProduct Element
62 Element orderProduct =
63 document.createElement("orderProduct");
64
65 // append ProductModel product Element
66 orderProduct.appendChild (
67 getProductModel().getXML(document));
68
69 // create quantity Element
70 Element temp = document.createElement("quantity");
71 temp.appendChild(document.createTextNode(
72 String.valueOf (getQuantity())));
73 orderProduct.appendChild(temp);
74
75 return orderProduct;
76 }
77 }

Fig. 19.25Fig. 19.25Fig. 19.25Fig. 19.25 OrderProductModel class for serializing OrderProduct data
 (part 2 of 2).

Chapter 19 Enterprise Java Case Study: Business Logic Part 1 1115

OrderProduct General Deployment Settings

Bean Type Entity

Enterprise
Bean Class

com.deitel.advjhtp1.bookstore.ejb.OrderProductEJB

Home
Interface

com.deitel.advjhtp1.bookstore.ejb.OrderProductHome

Remote
Interface

com.deitel.advjhtp1.bookstore.ejb.OrderProduct

Fig. 19.26Fig. 19.26Fig. 19.26Fig. 19.26 OrderProduct general deployment settings.

OrderProduct Entity and Deployment Settings

Persistence
Management

Container-Managed Persistence

Primary Key
Class

com.deitel.advjhtp1.bookstore.ejb.OrderProductPK

Primary Key
Field Name

N/A

Database JNDI
Name

jdbc/Bookstore

Method findBy-
OrderID SQL
Statement

SELECT ISBN, orderID FROM OrderProduct WHERE
orderID = ?1

Method ejb-
Store SQL
Statement

UPDATE OrderProduct SET quantity = ? WHERE ISBN =
? AND orderID = ?

Method ejbCre-
ate SQL State-
ment

INSERT INTO OrderProduct (ISBN, orderID,
quantity) VALUES (?, ?, ?)

Method ejbRe-
move SQL State-
ment

DELETE FROM OrderProduct WHERE ISBN = ? AND
orderID = ?

Method find-
ByPrimaryKey
SQL Statement

SELECT ISBN, orderID FROM OrderProduct WHERE ISBN
= ? AND orderID = ?

Method ejb-
Load SQL State-
ment

SELECT quantity FROM OrderProduct WHERE ISBN = ?
AND orderID = ?

Fig. 19.27Fig. 19.27Fig. 19.27Fig. 19.27 OrderProduct entity and deployment settings (part 1 of 2).

1116 Enterprise Java Case Study: Business Logic Part 1 Chapter 19

In this chapter, we presented the business logic for managing the Customer’s Shop-
pingCart and the data model for Products and Orders in our on-line store. We also
discussed how Serializable objects can be used to reduce network traffic when com-
municating with EJBs. In the next chapter, we present EJBs for managing Customers of
the on-line store.

Table Create
SQL Statement

CREATE TABLE OrderProduct (ISBN VARCHAR(255),
orderID INTEGER, quantity INTEGER NOT NULL,
CONSTRAINT pk_OrderProduct PRIMARY KEY (ISBN,
orderID))

Table Delete
SQL Statement

DROP TABLE OrderProduct

OrderProduct EJB References

Coded Name ejb/Product

Type Entity

Home com.deitel.advjhtp1.bookstore.ejb.ProductHome

Remote com.deitel.advjhtp1.bookstore.ejb.Product

JNDI Name Product

Fig. 19.28Fig. 19.28Fig. 19.28Fig. 19.28 OrderProduct EJB references.

OrderProduct Entity and Deployment Settings

Fig. 19.27Fig. 19.27Fig. 19.27Fig. 19.27 OrderProduct entity and deployment settings (part 2 of 2).

20
Enterprise Java Case

Study: Business Logic
Part 2

Objectives
• To understand the data model for Customer

management in the Deitel Bookstore case study.
• To implement an EJB for storing billing and shipping

information.
• To build an EJB for generating primary keys.
• To understand the benefits of declarative transaction

semantics.
• To understand the steps necessary to deploy the Deitel

Bookstore case study.
The best investment is in the tools of one’s own trade.
Benjamin Franklin

Creativity is not the finding of a thing, but the making
something out of it after it is found.
James Russell Lowell

Events that are predestined require but little management.
They manage themselves.
Amelia Barr

All meanings, we know, depend on the key of interpretation.
George Eliot

1118 Enterprise Java Case Study: Business Logic Part 2 Chapter 20

20.1 Introduction
In this chapter, we present entity EJBs for managing customers. Maintaining information
about the customers of an on-line store can make purchases more convenient, because bill-
ing and shipping information is stored on the server. The on-line store’s marketing depart-
ment also can use gathered data for distribution of marketing materials and analysis of
demographic information.

We also present an entity EJB that generates unique IDs for the Customer, Order
and Address EJBs. Instances of these EJBs are created when new Customers register
and when Customers place new Orders. Relational databases require unique primary
keys to maintain referential integrity and perform queries. We provide the Sequence-
Factory EJB to generate these unique IDs, because not all databases can generate these
primary-key values automatically. Finally, we provide instructions for deploying the
Deitel Bookstore case study on Sun Microsystems’ J2EE reference implementation
application server.

20.2 Customer Implementation
The Customer entity EJB represents a customer in the underlying database. The follow-
ing subsections present the EJB implementation and its corresponding model class.

Outline

20.1 Introduction
20.2 Customer Implementation

20.2.1 Customer Remote Interface
20.2.2 CustomerEJB Implementation
20.2.3 CustomerHome Interface
20.2.4 CustomerModel

20.3 Address Implementation
20.3.1 Address Remote Interface
20.3.2 AddressEJB Implementation
20.3.3 AddressHome Interface
20.3.4 AddressModel

20.4 SequenceFactory Implementation
20.4.1 SequenceFactory Remote Interface
20.4.2 SequenceFactoryEJB Implementation
20.4.3 SequenceFactoryHome Interface

20.5 Deitel Bookstore Application Deployment with J2EE
20.5.1 Deploying Deitel Bookstore CMP Entity EJBs
20.5.2 Deploying Deitel Bookstore Servlets

Chapter 20 Enterprise Java Case Study: Business Logic Part 2 1119

20.2.1 Customer Remote Interface
The Customer EJB remote interface (Fig. 20.1) defines the business logic methods in the
EJB. Method getCustomerModel (lines 19–20) builds a Serializable object of
class CustomerModel, which contains the details of the Customer. Method ge-
tOrderHistory (lines 23–24) returns a Collection of OrderModels that contains
information about past Orders the Customer has placed. Method getPasswor-
dHint (line 27) returns a String containing a hint to remind Customers of forgotten
passwords.

20.2.2 CustomerEJB Implementation

The CustomerEJB implementation (Fig. 20.2) of remote interface Customer
(Fig. 20.1) contains instance variables for each Customer property (lines 25–36). These
instance variables are public, so the EJB container can synchronize their values with the
associated database table.

1 // Customer.java
2 // Customer is the remote interface for entity EJB Customer.
3 package com.deitel.advjhtp1.bookstore.ejb;
4
5 // Java core libraries
6 import java.rmi.RemoteException;
7 import java.util.ArrayList;
8
9 // Java standard extensions

10 import javax.ejb.*;
11
12 // Deitel Bookstore libraries
13 import com.deitel.advjhtp1.bookstore.model.*;
14 import com.deitel.advjhtp1.bookstore.exceptions.*;
15
16 public interface Customer extends EJBObject {
17
18 // get Customer data as a CustomerModel
19 public CustomerModel getCustomerModel()
20 throws RemoteException;
21
22 // get Order history for CustomerModel
23 public Collection getOrderHistory()
24 throws RemoteException, NoOrderHistoryException;
25
26 // get password hint for CustomerModel
27 public String getPasswordHint() throws RemoteException;
28 }

Fig. 20.1Fig. 20.1Fig. 20.1Fig. 20.1 Customer remote interface for modifying Customer details, getting
an Order history and password hint.

1120 Enterprise Java Case Study: Business Logic Part 2 Chapter 20

1 // CustomerEJB.java
2 // Entity EJB Customer represents a Customer, including
3 // the Customer's user name, password, billing
4 // address, shipping address and credit card information.
5 package com.deitel.advjhtp1.bookstore.ejb;
6
7 // Java core packages
8 import java.util.*;
9 import java.rmi.RemoteException;

10
11 // Java extension packages
12 import javax.ejb.*;
13 import javax.naming.*;
14 import javax.rmi.PortableRemoteObject;
15
16 // Deitel packages
17 import com.deitel.advjhtp1.bookstore.model.*;
18 import com.deitel.advjhtp1.bookstore.exceptions.*;
19
20 public class CustomerEJB implements EntityBean {
21 private EntityContext entityContext;
22 private InitialContext initialContext;
23
24 // container-managed fields
25 public Integer customerID;
26 public String userID;
27 public String password;
28 public String passwordHint;
29 public String firstName;
30 public String lastName;
31 public Integer billingAddressID;
32 public Integer shippingAddressID;
33
34 public String creditCardName;
35 public String creditCardNumber;
36 public String creditCardExpirationDate;
37
38 // get CustomerModel
39 public CustomerModel getCustomerModel() throws EJBException
40 {
41 // construct new CustomerModel
42 CustomerModel customer = new CustomerModel();
43
44 // populate CustomerModel with data for this Customer
45 customer.setCustomerID(customerID);
46 customer.setUserID(userID);
47 customer.setPassword(password);
48 customer.setPasswordHint(passwordHint);
49 customer.setFirstName(firstName);
50 customer.setLastName(lastName);
51
52 // use Address EJB to get Customer billing and shipping

Fig. 20.2Fig. 20.2Fig. 20.2Fig. 20.2 CustomerEJB implementation of Customer remote interface
 (part 1 of 6).

Chapter 20 Enterprise Java Case Study: Business Logic Part 2 1121

53 // Address instances
54 try {
55 initialContext = new InitialContext();
56
57 Object object = initialContext.lookup(
58 "java:comp/env/ejb/Address");
59
60 AddressHome addressHome = (AddressHome)
61 PortableRemoteObject.narrow(object,
62 AddressHome.class);
63
64 // get remote reference to billing Address
65 Address billingAddress =
66 addressHome.findByPrimaryKey(billingAddressID);
67
68 // add billing AddressModel to CustomerModel
69 customer.setBillingAddress(
70 billingAddress.getAddressModel());
71
72 // get remote reference to shipping Address
73 Address shippingAddress =
74 addressHome.findByPrimaryKey(shippingAddressID);
75
76 // add shipping AddressModel to CustomerModel
77 customer.setShippingAddress(
78 shippingAddress.getAddressModel());
79
80 } // end try
81
82 // handle exception using Address EJB
83 catch (Exception exception) {
84 throw new EJBException(exception);
85 }
86
87 // set credit card information in CustomerModel
88 customer.setCreditCardName(creditCardName);
89 customer.setCreditCardNumber(creditCardNumber);
90 customer.setCreditCardExpirationDate(
91 creditCardExpirationDate);
92
93 return customer;
94
95 } // end method getCustomerModel
96
97 // get Order history for Customer
98 public Collection getOrderHistory()
99 throws NoOrderHistoryException, EJBException
100 {
101 Collection history = new ArrayList();
102
103 // use Order EJB to obtain list of Orders for Customer
104 try {

Fig. 20.2Fig. 20.2Fig. 20.2Fig. 20.2 CustomerEJB implementation of Customer remote interface
 (part 2 of 6).

1122 Enterprise Java Case Study: Business Logic Part 2 Chapter 20

105 initialContext = new InitialContext();
106
107 Object object = initialContext.lookup(
108 "java:comp/env/ejb/Order");
109
110 OrderHome orderHome = (OrderHome)
111 PortableRemoteObject.narrow(object,
112 OrderHome.class);
113
114 // find Orders for this Customer
115 Collection orders =
116 orderHome.findByCustomerID(customerID);
117
118 Iterator iterator = orders.iterator();
119
120 // use list of Orders to build Order history
121 while (iterator.hasNext()) {
122 Order order = (Order) PortableRemoteObject.narrow(
123 iterator.next(), Order.class);
124
125 // retrieve OrderModel for the Order
126 OrderModel orderModel = order.getOrderModel();
127
128 // add each OrderModel to Order history
129 history.add(orderModel);
130 }
131
132 } // end try
133
134 // handle exception when finding Order records
135 catch (FinderException finderException) {
136 throw new NoOrderHistoryException("No order " +
137 "history found for the customer with userID " +
138 userID);
139 }
140
141 // handle exception when invoking Order EJB methods
142 catch (Exception exception) {
143 exception.printStackTrace();
144 throw new EJBException(exception);
145 }
146
147 return history;
148
149 } // end method getOrderHistory
150
151 // get password hint for Customer
152 public String getPasswordHint()
153 {
154 return passwordHint;
155 }
156

Fig. 20.2Fig. 20.2Fig. 20.2Fig. 20.2 CustomerEJB implementation of Customer remote interface
 (part 3 of 6).

Chapter 20 Enterprise Java Case Study: Business Logic Part 2 1123

157 // set Customer data using CustomerModel
158 private void setCustomerModel(CustomerModel customer)
159 {
160 // set Customer data members to CustomerModel values
161 userID = customer.getUserID();
162 password = customer.getPassword();
163 passwordHint = customer.getPasswordHint();
164 firstName = customer.getFirstName();
165 lastName = customer.getLastName();
166
167 billingAddressID =
168 customer.getBillingAddress().getAddressID();
169
170 shippingAddressID =
171 customer.getShippingAddress().getAddressID();
172
173 creditCardName = customer.getCreditCardName();
174 creditCardNumber = customer.getCreditCardNumber();
175
176 creditCardExpirationDate =
177 customer.getCreditCardExpirationDate();
178
179 } // end method setCustomerModel
180
181 // create Customer EJB using given CustomerModel
182 public Integer ejbCreate(CustomerModel customerModel)
183 throws CreateException
184 {
185 // retrieve unique value for primary key using
186 // SequenceFactory EJB
187 try {
188 initialContext = new InitialContext();
189
190 // look up SequenceFactory EJB
191 Object object = initialContext.lookup(
192 "java:comp/env/ejb/SequenceFactory");
193
194 SequenceFactoryHome sequenceFactoryHome =
195 (SequenceFactoryHome) PortableRemoteObject.narrow(
196 object, SequenceFactoryHome.class);
197
198 // find sequence for Customer EJB
199 SequenceFactory sequenceFactory =
200 sequenceFactoryHome.findByPrimaryKey("Customer");
201
202 // retrieve next available customerID
203 customerID = sequenceFactory.getNextID();
204
205 // create Address EJBs for billing and shipping
206 // Addresses
207 object = initialContext.lookup(
208 "java:comp/env/ejb/Address");

Fig. 20.2Fig. 20.2Fig. 20.2Fig. 20.2 CustomerEJB implementation of Customer remote interface
 (part 4 of 6).

1124 Enterprise Java Case Study: Business Logic Part 2 Chapter 20

209
210 AddressHome addressHome = (AddressHome)
211 PortableRemoteObject.narrow(object,
212 AddressHome.class);
213
214 // get Customer's billing address
215 AddressModel billingAddressModel =
216 customerModel.getBillingAddress();
217
218 // create Address EJB for billing Address
219 Address billingAddress =
220 addressHome.create(billingAddressModel);
221
222 // set addressID in billing AddressModel
223 billingAddressModel.setAddressID((Integer)
224 billingAddress.getPrimaryKey());
225
226 // get Customer's shipping address
227 AddressModel shippingAddressModel =
228 customerModel.getShippingAddress();
229
230 // create Address EJB for shipping Address
231 Address shippingAddress =
232 addressHome.create(shippingAddressModel);
233
234 // set addressID in shipping AddressModel
235 shippingAddressModel.setAddressID((Integer)
236 shippingAddress.getPrimaryKey());
237
238 // use CustomerModel to set data for new Customer
239 setCustomerModel(customerModel);
240
241 } // end try
242
243 // handle exception when looking up, finding and using EJBs
244 catch (Exception exception) {
245 throw new CreateException(exception.getMessage());
246 }
247
248 // EJB container will return a remote reference
249 return null;
250
251 } // end method ejbCreate
252
253 // perform any necessary post-creation tasks
254 public void ejbPostCreate(CustomerModel customer) {}
255
256 // set EntityContext
257 public void setEntityContext(EntityContext context)
258 {
259 entityContext = context;
260 }

Fig. 20.2Fig. 20.2Fig. 20.2Fig. 20.2 CustomerEJB implementation of Customer remote interface
 (part 5 of 6).

Chapter 20 Enterprise Java Case Study: Business Logic Part 2 1125

Method getCustomerModel (lines 39–95) constructs a CustomerModel whose
data members contain values from the CustomerEJB. Address EJBs maintain address
information for each Customer. The Customer EJB stores the addressID for each
Address (billing and shipping). Method getCustomerModel uses interface
AddressHome to obtain the Customer’s Address EJBs (lines 65–78). For each
Address EJB, method getCustomerModel obtains an AddressModel and adds it
to the CustomerModel.

Method getOrderHistory (lines 98–149) builds a Collection that contains an
OrderModel for each Order the Customer has placed. Method findByCusto-
merID of interface OrderHome returns a Collection of Orders for a given Cus-
tomer (line 116). Lines 115–130 obtain the Collection of Orders and build an
Collection of OrderModels to represent the Customer’s Order history.

Method setCustomerModel (lines 158–179) is a helper method for method ejb-
Create (lines 182–251). Method setCustomerModel modifies the details of the
CustomerEJB, using data in the CustomerModel argument. Lines 161–177 retrieve
the data members of the CustomerModel and set the values of the CustomerEJB data
members.

The EJB container invokes method ejbCreate (lines 182–251) when creating a new
instance of the Customer EJB. Method ejbCreate takes a CustomerModel argu-

261
262 // unset EntityContext
263 public void unsetEntityContext()
264 {
265 entityContext = null;
266 }
267
268 // activate Customer EJB instance
269 public void ejbActivate()
270 {
271 customerID = (Integer) entityContext.getPrimaryKey();
272 }
273
274 // passivate Customer EJB instance
275 public void ejbPassivate()
276 {
277 customerID = null;
278 }
279
280 // remove Customer EJB instance
281 public void ejbRemove() {}
282
283 // store Customer EJB data in database
284 public void ejbStore() {}
285
286 // load Customer EJB data from database
287 public void ejbLoad() {}
288 }

Fig. 20.2Fig. 20.2Fig. 20.2Fig. 20.2 CustomerEJB implementation of Customer remote interface
 (part 6 of 6).

1126 Enterprise Java Case Study: Business Logic Part 2 Chapter 20

ment, with which it invokes method setCustomerModel to initialize the Custom-
erEJB data members (line 239). Method ejbCreate uses SequenceFactory
method getNextID to generate a unique customerID for the new Customer (line
203). Each Customer has a billing address and a shipping address, each of which is stored
in an Address EJB. Lines 215–236 create these Address EJBs, using data from the
AddressModels given in the CustomerModel argument.

20.2.3 CustomerHome Interface

Interface CustomerHome (Fig. 20.3) provides create methods for creating new Cus-
tomers and finder methods for finding existing Customers. Method create (lines 17–
18) corresponds to method ejbCreate in the CustomerEJB implementation
(Fig. 20.2). Method findByLogin (lines 21–22) returns a Customer remote reference
for the Customer with the given userID and password. This method authenticates
Customers when they attempt to log into the store. Method findByUserID (lines 25–
26) returns the Customer with the given userID. Method findByPrimaryKey (lines
29–30) returns the Customer with the given customerID. The EJB container provides
implementations for these methods, using SQL queries the developer provides when de-
ploying the application.

1 // CustomerHome.java
2 // CustomerHome is the home interface for entity EJB Customer.
3 package com.deitel.advjhtp1.bookstore.ejb;
4
5 // Java core libraries
6 import java.rmi.RemoteException;
7
8 // Java standard extensions
9 import javax.ejb.*;

10
11 // Deitel Bookstore libraries
12 import com.deitel.advjhtp1.bookstore.model.*;
13
14 public interface CustomerHome extends EJBHome {
15
16 // create Customer EJB using given CustomerModel
17 public Customer create(CustomerModel customerModel)
18 throws RemoteException, CreateException;
19
20 // find Customer with given userID and password
21 public Customer findByLogin(String userID, String pass)
22 throws RemoteException, FinderException;
23
24 // find Customer with given userID
25 public Customer findByUserID(String userID)
26 throws RemoteException, FinderException;
27
28 // find Customer with given customerID

Fig. 20.3Fig. 20.3Fig. 20.3Fig. 20.3 CustomerHome interface for creating and finding Customer EJB
instances (part 1 of 2).

Chapter 20 Enterprise Java Case Study: Business Logic Part 2 1127

20.2.4 CustomerModel
CustomerModel (Fig. 20.4) is a model class for the Customer EJB. CustomerMod-
el contains private data members (lines 17–29) for each public data member in the
CustomerEJB implementation (Fig. 20.2). Class CustomerModel maintains referenc-
es to AddressModel objects for the Customer’s billing and shipping addresses (lines
24–25). CustomerModel has set and get methods for each of its properties, implements
interface XMLGenerator and provides method getXML (lines 168–233), for generating
an XML Element that describes the Customer.

29 public Customer findByPrimaryKey(Integer customerID)
30 throws RemoteException, FinderException;
31 }

1 // CustomerModel.java
2 // CustomerModel represents a Deitel Bookstore Customer,
3 // including billing, shipping and credit card information.
4 package com.deitel.advjhtp1.bookstore.model;
5
6 // Java core libraries
7 import java.io.*;
8 import java.util.*;
9

10 // third-party libraries
11 import org.w3c.dom.*;
12
13 public class CustomerModel implements Serializable,
14 XMLGenerator {
15
16 // CustomerModel properties
17 private Integer customerID;
18 private String userID;
19 private String password;
20 private String passwordHint;
21 private String firstName;
22 private String lastName;
23
24 private AddressModel billingAddress;
25 private AddressModel shippingAddress;
26
27 private String creditCardName;
28 private String creditCardNumber;
29 private String creditCardExpirationDate;
30
31 // construct empty CustomerModel
32 public CustomerModel() {}
33
34 // set customer ID

Fig. 20.4Fig. 20.4Fig. 20.4Fig. 20.4 CustomerModel for serializing Customer data (part 1 of 5).

Fig. 20.3Fig. 20.3Fig. 20.3Fig. 20.3 CustomerHome interface for creating and finding Customer EJB
instances (part 2 of 2).

1128 Enterprise Java Case Study: Business Logic Part 2 Chapter 20

35 public void setCustomerID(Integer id)
36 {
37 customerID = id;
38 }
39
40 // get customer ID
41 public Integer getCustomerID()
42 {
43 return customerID;
44 }
45
46 // set user ID
47 public void setUserID(String id)
48 {
49 userID = id;
50 }
51
52 // get user ID
53 public String getUserID()
54 {
55 return userID;
56 }
57
58 // set password
59 public void setPassword(String customerPassword)
60 {
61 password = customerPassword;
62 }
63
64 // get password
65 public String getPassword()
66 {
67 return password;
68 }
69
70 // set password hint
71 public void setPasswordHint(String passwordHint)
72 {
73 passwordHint = passwordHint;
74 }
75
76 // get password hint
77 public String getPasswordHint()
78 {
79 return passwordHint;
80 }
81
82 // set first name
83 public void setFirstName(String name)
84 {
85 firstName = name;
86 }
87

Fig. 20.4Fig. 20.4Fig. 20.4Fig. 20.4 CustomerModel for serializing Customer data (part 2 of 5).

Chapter 20 Enterprise Java Case Study: Business Logic Part 2 1129

88 // get first name
89 public String getFirstName()
90 {
91 return firstName;
92 }
93
94 // set last name
95 public void setLastName(String name)
96 {
97 lastName = name;
98 }
99
100 // get last name
101 public String getLastName()
102 {
103 return lastName;
104 }
105
106 // set billing address
107 public void setBillingAddress(AddressModel address)
108 {
109 billingAddress = address;
110 }
111
112 // get billing address
113 public AddressModel getBillingAddress()
114 {
115 return billingAddress;
116 }
117
118 // set shipping address
119 public void setShippingAddress(AddressModel address)
120 {
121 shippingAddress = address;
122 }
123
124 // get shipping address
125 public AddressModel getShippingAddress()
126 {
127 return shippingAddress;
128 }
129
130 // set name of credit card
131 public void setCreditCardName(String name)
132 {
133 creditCardName = name;
134 }
135
136 // get name of credit card
137 public String getCreditCardName()
138 {
139 return creditCardName;
140 }

Fig. 20.4Fig. 20.4Fig. 20.4Fig. 20.4 CustomerModel for serializing Customer data (part 3 of 5).

1130 Enterprise Java Case Study: Business Logic Part 2 Chapter 20

141
142 // set credit card number
143 public void setCreditCardNumber(String number)
144 {
145 creditCardNumber = number;
146 }
147
148 // get credit card number
149 public String getCreditCardNumber()
150 {
151 return creditCardNumber;
152 }
153
154 // set expiration date of credit card
155 public void setCreditCardExpirationDate(String date)
156 {
157 creditCardExpirationDate = date;
158 }
159
160 // get expiration date of credit card
161 public String getCreditCardExpirationDate()
162 {
163 return creditCardExpirationDate;
164 }
165
166 // build an XML representation of this Customer including
167 // all public properties as nodes
168 public Element getXML(Document document)
169 {
170 // create customer Element
171 Element customer =
172 document.createElement("customer");
173
174 // create customerID Element
175 Element temp = document.createElement("customerID");
176 temp.appendChild(document.createTextNode(
177 String.valueOf(getCustomerID())));
178 customer.appendChild(temp);
179
180 // create userID Element
181 temp = document.createElement("userID");
182 temp.appendChild(
183 document.createTextNode(getUserID()));
184 customer.appendChild(temp);
185
186 // create firstName Element
187 temp = document.createElement("firstName");
188 temp.appendChild(document.createTextNode(
189 getFirstName()));
190 customer.appendChild(temp);
191
192 // create lastName Element
193 temp = document.createElement("lastName");

Fig. 20.4Fig. 20.4Fig. 20.4Fig. 20.4 CustomerModel for serializing Customer data (part 4 of 5).

Chapter 20 Enterprise Java Case Study: Business Logic Part 2 1131

Figure 20.5, Fig. 20.6 and Fig. 20.7 list the deployment settings for entity EJB Cus-
tomer. In addition to the settings shown here, be sure to set the Transaction Type to
Required for all business methods.

20.3 Address Implementation
The application maintains a billing address and a shipping address for each Customer.
Each address contains similar information (e.g., street address, city, state and zip code), so
we abstract these two address types into a single Address EJB. Each Customer EJB
stores an ID for the billing address and an ID for the shipping address.

194 temp.appendChild(document.createTextNode(
195 getLastName()));
196 customer.appendChild(temp);
197
198 // create billingAddress Element
199 temp = document.createElement("billingAddress");
200 temp.appendChild(billingAddress.getXML(document));
201
202 // create shippingAddress Element
203 temp = document.createElement("shippingAddress");
204 temp.appendChild(shippingAddress.getXML(document));
205
206 // create creditCardName Element
207 temp = document.createElement("creditCardName");
208 temp.appendChild(document.createTextNode(
209 getCreditCardName()));
210 customer.appendChild(temp);
211
212 // create creditCardNumber Element
213 temp = document.createElement("creditCardNumber");
214 temp.appendChild(document.createTextNode(
215 getCreditCardNumber()));
216 customer.appendChild(temp);
217
218 // create creditCardExpirationDate Element
219 temp = document.createElement(
220 "creditCardExpirationDate");
221 temp.appendChild(document.createTextNode(
222 getCreditCardExpirationDate()));
223 customer.appendChild(temp);
224
225 // create passwordHint Element
226 temp = document.createElement("passwordHint");
227 temp.appendChild(document.createTextNode(
228 getPasswordHint()));
229 customer.appendChild(temp);
230
231 return customer;
232
233 } // end method getXML
234 }

Fig. 20.4Fig. 20.4Fig. 20.4Fig. 20.4 CustomerModel for serializing Customer data (part 5 of 5).

1132 Enterprise Java Case Study: Business Logic Part 2 Chapter 20

Customer General Deployment Settings

Bean Type Entity

Enterprise
Bean Class

com.deitel.advjhtp1.bookstore.ejb.CustomerEJB

Home
Interface

com.deitel.advjhtp1.bookstore.ejb.CustomerHome

Remote
Interface

com.deitel.advjhtp1.bookstore.ejb.Customer

Fig. 20.5Fig. 20.5Fig. 20.5Fig. 20.5 Customer general deployment settings.

Customer Entity and Deployment Settings

Persistence
Management

Container-Managed Persistence

Primary Key
Class

java.lang.Integer

Primary Key
Field Name

customerID

Database JNDI
Name

jdbc/Bookstore

Method findBy-
UserID SQL
Statement

SELECT customerID FROM Customer WHERE userID = ?1

Method findBy-
Login SQL
Statement

SELECT customerID FROM Customer WHERE userID = ?1
AND password = ?2

Method ejb-
Store SQL
Statement

UPDATE Customer SET billingAddressID = ?,
creditCardExpirationDate = ?, creditCardName = ?,
creditCardNumber = ?, firstName = ?, lastName = ?,
password = ?, passwordHint = ?,
shippingAddressID = ?, userID = ? WHERE
customerID = ?

Method ejb-
Create SQL
Statement

INSERT INTO Customer (billingAddressID,
creditCardExpirationDate, creditCardName,
creditCardNumber, customerID, firstName, lastName,
password, passwordHint, shippingAddressID,
userID) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?,
?, ?)

Fig. 20.6Fig. 20.6Fig. 20.6Fig. 20.6 Customer entity and deployment settings (part 1 of 2).

Chapter 20 Enterprise Java Case Study: Business Logic Part 2 1133

Method ejb-
Remove SQL
Statement

DELETE FROM Customer WHERE customerID = ?

Method find-
ByPrimaryKey
SQL Statement

SELECT customerID FROM Customer WHERE
customerID = ?

Method ejb-
Load SQL
Statement

SELECT billingAddressID, creditCardExpirationDate,
creditCardName, creditCardNumber, firstName,
lastName, password, passwordHint,
shippingAddressID, userID FROM Customer
WHERE customerID = ?

Table Create
SQL Statement

CREATE TABLE Customer (billingAddressID INTEGER,
creditCardExpirationDate VARCHAR(255),
creditCardName VARCHAR(255), creditCardNumber
VARCHAR(255), customerID INTEGER, firstName
VARCHAR(255), lastName VARCHAR(255), password
VARCHAR(255), passwordHint VARCHAR(255),
shippingAddressID INTEGER, userID VARCHAR(255),
CONSTRAINT pk_Customer PRIMARY KEY (customerID))

Table Delete
SQL Statement

DROP TABLE Customer

Customer EJB References

Coded Name ejb/Order

Type Entity

Home com.deitel.advjhtp1.bookstore.ejb.OrderHome

Remote com.deitel.advjhtp1.bookstore.ejb.Order

JNDI Name Order

Coded Name ejb/SequenceFactory

Type Entity

Home com.deitel.advjhtp1.bookstore.ejb.SequenceFactory-
Home

Remote com.deitel.advjhtp1.bookstore.ejb.SequenceFactory

JNDI Name SequenceFactory

Coded Name ejb/Address

Fig. 20.7Fig. 20.7Fig. 20.7Fig. 20.7 Customer EJB References (part 1 of 2).

Customer Entity and Deployment Settings

Fig. 20.6Fig. 20.6Fig. 20.6Fig. 20.6 Customer entity and deployment settings (part 2 of 2).

1134 Enterprise Java Case Study: Business Logic Part 2 Chapter 20

20.3.1 Address Remote Interface
The Address remote interface (Fig. 20.8) has set and get methods for updating data in and
retrieving data from the Address EJB. Method getAddressModel (lines 17–18) con-
structs an AddressModel that contains the details of a particular Address EJB.

20.3.2 AddressEJB Implementation

AddressEJB (Fig. 20.9) is the implementation of the Address remote interface. Class
AddressEJB contains public, container-managed data members for the first and last
names of the contact person at the Address, as well as the street address, city, state, zip
code, country and phone number (lines 24–33).

Type Entity

Home com.deitel.advjhtp1.bookstore.ejb.AddressHome

Remote com.deitel.advjhtp1.bookstore.ejb.Address

JNDI Name Address

1 // Address.java
2 // Address is the remote interface for entity EJB Address.
3 package com.deitel.advjhtp1.bookstore.ejb;
4
5 // Java core libraries
6 import java.rmi.RemoteException;
7
8 // Java standard extensions
9 import javax.ejb.*;

10
11 // Deitel Bookstore libraries
12 import com.deitel.advjhtp1.bookstore.model.*;
13
14 public interface Address extends EJBObject {
15
16 // get Address data as an AddressModel
17 public AddressModel getAddressModel()
18 throws RemoteException;
19 }

Fig. 20.8Fig. 20.8Fig. 20.8Fig. 20.8 Address remote interface for modifying Address details.

1 // AddressEJB.java
2 // Entity EJB Address represents an Address, including
3 // the street address, city, state and zip code.

Fig. 20.9Fig. 20.9Fig. 20.9Fig. 20.9 AddressEJB implementation of Address remote interface (part 1 of 4).

Customer EJB References

Fig. 20.7Fig. 20.7Fig. 20.7Fig. 20.7 Customer EJB References (part 2 of 2).

Chapter 20 Enterprise Java Case Study: Business Logic Part 2 1135

4 package com.deitel.advjhtp1.bookstore.ejb;
5
6 // Java core packages
7 import java.util.*;
8 import java.rmi.RemoteException;
9

10 // Java extension packages
11 import javax.ejb.*;
12 import javax.naming.*;
13 import javax.rmi.PortableRemoteObject;
14
15 // Deitel packages
16 import com.deitel.advjhtp1.bookstore.model.*;
17 import com.deitel.advjhtp1.bookstore.exceptions.*;
18
19 public class AddressEJB implements EntityBean {
20 private EntityContext entityContext;
21
22 // container-managed fields
23 public Integer addressID;
24 public String firstName;
25 public String lastName;
26 public String streetAddressLine1;
27 public String streetAddressLine2;
28 public String city;
29 public String state;
30 public String zipCode;
31 public String country;
32 public String phoneNumber;
33
34 // get AddressModel
35 public AddressModel getAddressModel()
36 {
37 // construct new AddressModel
38 AddressModel address = new AddressModel();
39
40 // populate AddressModel fields with Address EJB
41 // data members
42 address.setAddressID(addressID);
43 address.setFirstName(firstName);
44 address.setLastName(lastName);
45 address.setStreetAddressLine1(streetAddressLine1);
46 address.setStreetAddressLine2(streetAddressLine2);
47 address.setCity(city);
48 address.setState(state);
49 address.setZipCode(zipCode);
50 address.setCountry(country);
51 address.setPhoneNumber(phoneNumber);
52
53 return address;
54
55 } // end method getAddressModel
56

Fig. 20.9Fig. 20.9Fig. 20.9Fig. 20.9 AddressEJB implementation of Address remote interface (part 2 of 4).

1136 Enterprise Java Case Study: Business Logic Part 2 Chapter 20

57 // set Address data using AddressModel
58 private void setAddressModel(AddressModel address)
59 {
60 // update Address' data members using values provided
61 // in the AddressModel
62 firstName = address.getFirstName();
63 lastName = address.getLastName();
64 streetAddressLine1 = address.getStreetAddressLine1();
65 streetAddressLine2 = address.getStreetAddressLine2();
66 city = address.getCity();
67 state = address.getState();
68 zipCode = address.getZipCode();
69 country = address.getCountry();
70 phoneNumber = address.getPhoneNumber();
71
72 } // end method setAddressModel
73
74 // create Address EJB using given AddressModel
75 public Integer ejbCreate(AddressModel address)
76 throws CreateException
77 {
78 // retrieve unique value for primary key using
79 // SequenceFactory EJB
80 try {
81 Context initialContext = new InitialContext();
82
83 // look up SequenceFactory EJB
84 Object object = initialContext.lookup(
85 "java:comp/env/ejb/SequenceFactory");
86
87 SequenceFactoryHome sequenceFactoryHome =
88 (SequenceFactoryHome)
89 PortableRemoteObject.narrow(
90 object, SequenceFactoryHome.class);
91
92 // find sequence for Address EJB
93 SequenceFactory sequenceFactory =
94 sequenceFactoryHome.findByPrimaryKey("Address");
95
96 // retrieve next available addressID
97 addressID = sequenceFactory.getNextID();
98
99 // set addressID for Address (primary key)
100 address.setAddressID(addressID);
101
102 // use AddressModel to set data for new Address
103 setAddressModel(address);
104
105 } // end try
106
107 // handle exception using SequenceFactory EJB
108 catch (Exception exception) {
109 throw new CreateException(exception.getMessage());

Fig. 20.9Fig. 20.9Fig. 20.9Fig. 20.9 AddressEJB implementation of Address remote interface (part 3 of 4).

Chapter 20 Enterprise Java Case Study: Business Logic Part 2 1137

Method getAddressModel (lines 35–55) constructs an AddressModel, sets its
properties to the values of the Address EJB’s public data members and returns the
AddressModel to the caller. Method setAddressModel (lines 58–72) is a utility
method that takes an AddressModel argument and updates the values in the
AddressEJB’s data members.

The EJB container invokes method ejbCreate (lines 75–115) to create a new
AddressEJB. Each Address must have a unique addressID for its primary key.

110 }
111
112 // EJB container will return a remote reference
113 return null;
114
115 } // end method ejbCreate
116
117 // perform any necessary post-creation tasks
118 public void ejbPostCreate(AddressModel address) {}
119
120 // set EntityContext
121 public void setEntityContext(EntityContext context)
122 {
123 entityContext = context;
124 }
125
126 // unset EntityContext
127 public void unsetEntityContext()
128 {
129 entityContext = null;
130 }
131
132 // activate Address EJB instance
133 public void ejbActivate()
134 {
135 addressID = (Integer) entityContext.getPrimaryKey();
136 }
137
138 // passivate Address EJB instance
139 public void ejbPassivate()
140 {
141 addressID = null;
142 }
143
144 // remove Address EJB instance
145 public void ejbRemove() {}
146
147 // store Address EJB data in database
148 public void ejbStore() {}
149
150 // load Address EJB data from database
151 public void ejbLoad() {}
152 }

Fig. 20.9Fig. 20.9Fig. 20.9Fig. 20.9 AddressEJB implementation of Address remote interface (part 4 of 4).

1138 Enterprise Java Case Study: Business Logic Part 2 Chapter 20

SequenceFactory method getNextID (line 97) generates this unique addressID.
Line 100 sets the addressID value in the AddressModel. Line 103 passes the
AddressModel to method setAddressModel to complete initialization of the
AddressEJB.

20.3.3 AddressHome Interface
Interface AddressHome (Fig. 20.10) provides methods for creating and finding Ad-
dress EJBs. Method create (lines 18–19) takes an AddressModel argument. The
EJB container invokes method ejbCreate (Fig. 20.9) when a client invokes method
create. Method findByPrimaryKey (lines 22–23) locates an existing Address
EJB, using its addressID primary key, and returns a remote reference to the Address.

20.3.4 AddressModel

Class AddressModel (Fig. 20.11) is a model class that implements interface XML-
Generator and method getXML to generate an XML description of an Address.
Class AddressModel contains properties (lines 17–149) for each public data mem-
ber in the AddressEJB implementation (Fig. 20.9). Method getXML (lines 152–212)
builds an XML Element that contains child Elements for each of the AddressMod-
el’s properties.

1 // AddressHome.java
2 // AddressHome is the home interface for entity EJB Address.
3 package com.deitel.advjhtp1.bookstore.ejb;
4
5 // Java core libraries
6 import java.rmi.RemoteException;
7
8 // Java standard extensions
9 import javax.ejb.EJBHome;

10 import javax.ejb.*;
11
12 // Deitel Bookstore libraries
13 import com.deitel.advjhtp1.bookstore.model.*;
14
15 public interface AddressHome extends EJBHome {
16
17 // create Address EJB using given AddressModel
18 public Address create(AddressModel address)
19 throws RemoteException, CreateException;
20
21 // find Address with given addressID
22 public Address findByPrimaryKey(Integer addressID)
23 throws RemoteException, FinderException;
24 }

Fig. 20.10Fig. 20.10Fig. 20.10Fig. 20.10 AddressHome interface for creating and finding Address EJB
instances.

Chapter 20 Enterprise Java Case Study: Business Logic Part 2 1139

1 // AddressModel.java
2 // AddressModel represents a Customer's address, including
3 // street, city, state and zip code.
4 package com.deitel.advjhtp1.bookstore.model;
5
6 // Java core libraries
7 import java.io.*;
8 import java.util.*;
9

10 // third-party libraries
11 import org.w3c.dom.*;
12
13 public class AddressModel implements Serializable,
14 XMLGenerator {
15
16 // AddressModel properties
17 private Integer addressID;
18 private String firstName;
19 private String lastName;
20 private String streetAddressLine1;
21 private String streetAddressLine2;
22 private String city;
23 private String state;
24 private String zipCode;
25 private String country;
26 private String phoneNumber;
27
28 // construct empty AddressModel
29 public AddressModel() {}
30
31 // set addressID
32 public void setAddressID(Integer id)
33 {
34 addressID = id;
35 }
36
37 // get addressID
38 public Integer getAddressID()
39 {
40 return addressID;
41 }
42
43 // set first name
44 public void setFirstName(String name)
45 {
46 firstName = name;
47 }
48
49 // get first name
50 public String getFirstName()
51 {
52 return firstName;
53 }
54

Fig. 20.11Fig. 20.11Fig. 20.11Fig. 20.11 AddressModel for serializing Address EJB data (part 1 of 4).

1140 Enterprise Java Case Study: Business Logic Part 2 Chapter 20

55 // set last name
56 public void setLastName(String name)
57 {
58 lastName = name;
59 }
60
61 // get last name
62 public String getLastName()
63 {
64 return lastName;
65 }
66
67 // set first line of street address
68 public void setStreetAddressLine1(String address)
69 {
70 streetAddressLine1 = address;
71 }
72
73 // get first line of street address
74 public String getStreetAddressLine1()
75 {
76 return streetAddressLine1;
77 }
78
79 // set second line of street address
80 public void setStreetAddressLine2(String address)
81 {
82 streetAddressLine2 = address;
83 }
84
85 // set second line of street address
86 public String getStreetAddressLine2()
87 {
88 return streetAddressLine2;
89 }
90
91 // set city
92 public void setCity(String addressCity)
93 {
94 city = addressCity;
95 }
96
97 // get city
98 public String getCity()
99 {
100 return city;
101 }
102
103 // set state
104 public void setState(String addressState)
105 {
106 state = addressState;
107 }
108

Fig. 20.11Fig. 20.11Fig. 20.11Fig. 20.11 AddressModel for serializing Address EJB data (part 2 of 4).

Chapter 20 Enterprise Java Case Study: Business Logic Part 2 1141

109 // get state
110 public String getState()
111 {
112 return state;
113 }
114
115 // set zip code
116 public void setZipCode(String zip)
117 {
118 zipCode = zip;
119 }
120
121 // get zip code
122 public String getZipCode()
123 {
124 return zipCode;
125 }
126
127 // set country
128 public void setCountry(String addressCountry)
129 {
130 country = addressCountry;
131 }
132
133 // get country
134 public String getCountry()
135 {
136 return country;
137 }
138
139 // set phone number
140 public void setPhoneNumber(String phone)
141 {
142 phoneNumber = phone;
143 }
144
145 // get phone number
146 public String getPhoneNumber()
147 {
148 return phoneNumber;
149 }
150
151 // build XML representation of Customer
152 public Element getXML(Document document)
153 {
154 // create address Element
155 Element address = document.createElement("address");
156
157 // crate firstName Element
158 Element temp = document.createElement("firstName");
159 temp.appendChild(
160 document.createTextNode(getFirstName()));
161 address.appendChild(temp);
162
163 // create lastName Element

Fig. 20.11Fig. 20.11Fig. 20.11Fig. 20.11 AddressModel for serializing Address EJB data (part 3 of 4).

1142 Enterprise Java Case Study: Business Logic Part 2 Chapter 20

Figure 20.12, Fig. 20.13 and Fig. 20.14 show the deployment settings for entity EJB
Address. In addition to the settings shown here, be sure to set the Transaction Type to
Required for all business methods.

164 temp = document.createElement("lastName");
165 temp.appendChild(
166 document.createTextNode(getLastName()));
167 address.appendChild(temp);
168
169 // create streetAddressLine1 Element
170 temp = document.createElement("streetAddressLine1");
171 temp.appendChild(
172 document.createTextNode(getStreetAddressLine1()));
173 address.appendChild(temp);
174
175 // create streetAddressLine2 Element
176 temp = document.createElement("streetAddressLine2");
177 temp.appendChild(
178 document.createTextNode(getStreetAddressLine2()));
179 address.appendChild(temp);
180
181 // create city Element
182 temp = document.createElement("city");
183 temp.appendChild(document.createTextNode(city));
184 address.appendChild(temp);
185
186 // create state Element
187 temp = document.createElement("state");
188 temp.appendChild(
189 document.createTextNode(getState()));
190 address.appendChild(temp);
191
192 // create zipCode Element
193 temp = document.createElement("zipCode");
194 temp.appendChild(
195 document.createTextNode(getZipCode()));
196 address.appendChild(temp);
197
198 // create country Element
199 temp = document.createElement("country");
200 temp.appendChild(
201 document.createTextNode(getCountry()));
202 address.appendChild(temp);
203
204 // create phoneNumber Element
205 temp = document.createElement("phoneNumber");
206 temp.appendChild(
207 document.createTextNode(getPhoneNumber()));
208 address.appendChild(temp);
209
210 return address;
211
212 } // end method getXML
213 }

Fig. 20.11Fig. 20.11Fig. 20.11Fig. 20.11 AddressModel for serializing Address EJB data (part 4 of 4).

Chapter 20 Enterprise Java Case Study: Business Logic Part 2 1143

Address General Deployment Settings

Bean Type Entity

Enterprise
Bean Class

com.deitel.advjhtp1.bookstore.ejb.AddressEJB

Home
Interface

com.deitel.advjhtp1.bookstore.ejb.AddressHome

Remote
Interface

com.deitel.advjhtp1.bookstore.ejb.Address

Fig. 20.12Fig. 20.12Fig. 20.12Fig. 20.12 Address General deployment settings.

Address Entity and Deployment Settings

Persistence
Management

Container-Managed Persistence

Primary Key
Class

java.lang.Integer

Primary Key
Field Name

addressID

Database JNDI
Name

jdbc/Bookstore

Method ejb-
Store SQL
Statement

UPDATE Address SET city = ?, country = ?,
firstName = ?, lastName = ?, phoneNumber = ?,
state = ?, streetAddressLine1 = ?,
streetAddressLine2 = ?, zipCode = ?
WHERE addressID = ?

Method ejb-
Create SQL
Statement

INSERT INTO Address (addressID, city, country,
firstName, lastName, phoneNumber, state,
streetAddressLine1, streetAddressLine2, zipCode)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)

Method ejb-
Remove SQL
Statement

DELETE FROM Address WHERE addressID = ?

Method find-
ByPrimaryKey
SQL Statement

SELECT addressID FROM Address WHERE addressID = ?

Method ejb-
Load SQL State-
ment

SELECT city, country, firstName, lastName,
phoneNumber, state, streetAddressLine1,
streetAddressLine2, zipCode FROM Address
WHERE addressID = ?

Fig. 20.13Fig. 20.13Fig. 20.13Fig. 20.13 Address entity and deployment settings (part 1 of 2).

1144 Enterprise Java Case Study: Business Logic Part 2 Chapter 20

20.4 SequenceFactory Implementation
One of the fundamental concepts in relational databases is that of a primary key, which
uniquely identifies a row in a database table. The primary key is needed to define relation-
ships between tables in the database. For example, in our case study, each Order relates
to a Customer by storing the Customer table’s primary key—customerID—as a
field (called a foreign key) in the Order table. The customerID is guaranteed to be
unique, so it can be used to determine which Customer placed an Order. The Custom-
er, Order and Address EJBs all have SequenceFactory records from which these
EJBs can obtain primary keys.

20.4.1 SequenceFactory Remote Interface

Interface SequenceFactory (Fig. 20.15) is the remote interface for the Sequence-
Factory EJB. Method getNextID (line 15) returns the next available primary key.

Table Create
SQL Statement

CREATE TABLE Address (addressID INTEGER, city
VARCHAR(255), country VARCHAR(255), firstName
VARCHAR(255), lastName VARCHAR(255),
phoneNumber VARCHAR(255), state VARCHAR(255),
streetAddressLine1 VARCHAR(255),
streetAddressLine2 VARCHAR(255),
zipCode VARCHAR(255),
CONSTRAINT pk_Address PRIMARY KEY (addressID))

Table Delete
SQL Statement

DROP TABLE Address

Address EJB References

Coded Name ejb/SequenceFactory

Type Entity

Home com.deitel.advjhtp1.bookstore.ejb.SequenceFactory-
Home

Remote com.deitel.advjhtp1.bookstore.ejb.SequenceFactory

JNDI Name SequenceFactory

Fig. 20.14Fig. 20.14Fig. 20.14Fig. 20.14 Address EJB references.

Address Entity and Deployment Settings

Fig. 20.13Fig. 20.13Fig. 20.13Fig. 20.13 Address entity and deployment settings (part 2 of 2).

Chapter 20 Enterprise Java Case Study: Business Logic Part 2 1145

20.4.2 SequenceFactoryEJB Implementation

Figure 20.16 shows the SequenceFactoryEJB implementation of the Sequence-
Factory remote interface. The EJB container manages the synchronization of the pub-
lic data members (lines 19–22) with the database.

Method getNextOrderID (lines 25–31) calculates the next available unique
orderID by incrementing the current value of the orderID (line 27). This new value is
saved in the EJB (line 28) and returned to the caller (line 30). Method getNextCustom-
erID, (lines 34–40) increments the current value of the customerID field and returns
the value to the caller (line 39). Method getNextAddressID (lines 43–49) increments
the value of the addressID field and returns the value to the caller on line 48.

For the SequenceFactory EJB to calculate unique orderIDs, customerIDs
and addressIDs properly, there must be only one SequenceFactory EJB instance.
If there were more than one SequenceFactory EJB instance, duplicate orderIDs,
customerIDs or addressIDs could be generated. SequenceFactory EJB clients
should use only method findSequenceFactory of interface SequenceFactory-
Home to obtain the correct SequenceFactory EJB instance. The deployer must specify
an SQL query that will return the same SequenceFactory record each time a method
findSequenceFactory is invoked.

1 // SequenceFactory.java
2 // SequenceFactory is the remote interface for the entity EJB
3 // SequenceFactory.
4 package com.deitel.advjhtp1.bookstore.ejb;
5
6 // Java core packages
7 import java.rmi.RemoteException;
8
9 // Java extension packages

10 import javax.ejb.EJBObject;
11
12 public interface SequenceFactory extends EJBObject {
13
14 // get next available unique ID
15 public Integer getNextID() throws RemoteException;
16 }

Fig. 20.15Fig. 20.15Fig. 20.15Fig. 20.15 SequenceFactory remote interface for generating primary keys.

1 // SequenceFactoryEJB.java
2 // Entity EJB SequenceFactory generates unique primary keys.
3 package com.deitel.advjhtp1.bookstore.ejb;
4
5 // Java core packages
6 import java.rmi.RemoteException;
7 import java.util.ArrayList;
8
9 // Java extension packages

Fig. 20.16Fig. 20.16Fig. 20.16Fig. 20.16 SequenceFactoryEJB implementation of SequenceFactory
remote interface (part 1 of 3).

1146 Enterprise Java Case Study: Business Logic Part 2 Chapter 20

10 import javax.ejb.*;
11 import javax.naming.*;
12 import javax.rmi.PortableRemoteObject;
13
14 public class SequenceFactoryEJB implements EntityBean {
15 private EntityContext entityContext;
16
17 // container-managed fields
18 public String tableName; // table name for ID sequence
19 public Integer nextID; // next available unique ID
20
21 // get next available orderID
22 public Integer getNextID()
23 {
24 // store nextID for returning to caller
25 Integer ID = new Integer(nextID.intValue());
26
27 // increment ID to produce next available unique ID
28 nextID = new Integer(ID.intValue() + 1);
29
30 return ID;
31 }
32
33 // set entity context
34 public void setEntityContext(EntityContext context)
35 {
36 entityContext = context;
37 }
38
39 // unset entity context
40 public void unsetEntityContext()
41 {
42 entityContext = null;
43 }
44
45 // activate SequenceFactory EJB instance
46 public void ejbActivate()
47 {
48 tableName = (String) entityContext.getPrimaryKey();
49 }
50
51 // passivate SequenceFactory EJB instance
52 public void ejbPassivate()
53 {
54 tableName = null;
55 }
56
57 // remove SequenceFactory EJB instance
58 public void ejbRemove() {}
59
60 // store SequenceFactory EJB data in database
61 public void ejbStore() {}

Fig. 20.16Fig. 20.16Fig. 20.16Fig. 20.16 SequenceFactoryEJB implementation of SequenceFactory
remote interface (part 2 of 3).

Chapter 20 Enterprise Java Case Study: Business Logic Part 2 1147

20.4.3 SequenceFactoryHome Interface

Interface SequenceFactoryHome (Fig. 20.17) is the home interface for the Se-
quenceFactory EJB. Method findByPrimaryKey (lines 15–16) returns a remote
reference to the SequenceFactory EJB for the database table with the given name.

Figure 20.18 and Fig. 20.19 show the deployment settings for entity EJB Sequence-
Factory. In addition to the settings shown here, be sure to set the Transaction Type to
Required for all business methods.

62
63 // load SequenceFactory EJB data from database
64 public void ejbLoad() {}
65 }

1 // SequenceFactoryHome.java
2 // SequenceFactoryHome is the home interface for entity EJB
3 // SequenceFactory.
4 package com.deitel.advjhtp1.bookstore.ejb;
5
6 // Java core packages
7 import java.rmi.RemoteException;
8
9 // Java extension packages

10 import javax.ejb.*;
11
12 public interface SequenceFactoryHome extends EJBHome {
13
14 // find SequenceFactory with given primary key
15 public SequenceFactory findByPrimaryKey(String tableName)
16 throws RemoteException, FinderException;
17 }

Fig. 20.17Fig. 20.17Fig. 20.17Fig. 20.17 SequenceFactoryHome interface for finding
SequenceFactory EJB instances.

SequenceFactory General Deployment Settings

Bean
Type

Entity

Enter-
prise
Bean
Class

com.deitel.advjhtp1.bookstore.ejb.SequenceFactoryEJB

Fig. 20.18Fig. 20.18Fig. 20.18Fig. 20.18 SequenceFactory general deployment settings (part 1 of 2).

Fig. 20.16Fig. 20.16Fig. 20.16Fig. 20.16 SequenceFactoryEJB implementation of SequenceFactory
remote interface (part 3 of 3).

1148 Enterprise Java Case Study: Business Logic Part 2 Chapter 20

Home
Interface

com.deitel.advjhtp1.bookstore.ejb.SequenceFactoryHome

Remote
Interface

com.deitel.advjhtp1.bookstore.ejb.SequenceFactory

SequenceFactory Entity and Deployment Settings

Persistence
Management

Container-Managed Persistence

Primary Key
Class

java.lang.String

Primary Key
Field Name

tableName

Database JNDI
Name

jdbc/Bookstore

Method ejb-
Store SQL
Statement

UPDATE SequenceFactory SET nextID = ?
WHERE tableName = ?

Method ejb-
Create SQL
Statement

INSERT INTO SequenceFactory (nextID, tableName)
VALUES (?, ?)

Method ejb-
Remove SQL
Statement

DELETE FROM SequenceFactory WHERE tableName = ?

Method find-
ByPrimaryKey
SQL Statement

SELECT tableName FROM SequenceFactory
WHERE tableName = ?

Method ejb-
Load SQL State-
ment

SELECT nextID FROM SequenceFactory
WHERE tablename = ?

Table Create
SQL Statement

CREATE TABLE SequenceFactory (nextID INTEGER,
tableName VARCHAR(255), CONSTRAINT
pk_SequenceFactory PRIMARY KEY (tableName))

Table Delete
SQL Statement

DROP TABLE SequenceFactory

Fig. 20.19Fig. 20.19Fig. 20.19Fig. 20.19 SequenceFactory entity and deployment settings.

SequenceFactory General Deployment Settings

Fig. 20.18Fig. 20.18Fig. 20.18Fig. 20.18 SequenceFactory general deployment settings (part 2 of 2).

Chapter 20 Enterprise Java Case Study: Business Logic Part 2 1149

20.5 Deitel Bookstore Application Deployment with J2EE
Deploying the components of the Deitel Bookstore on the Java 2 Enterprise Edition (J2EE)
Reference Implementation requires the use of the Application Deployment Tool. The
following steps walk through the process of deploying the Order EJB. The deployment
process for the other entity EJBs is similar. For general instructions on deploying stateful
session EJBs, such as the ShoppingCart EJB, please refer to Chapter 14, Session EJBs
and Distributed Transactions. For general instructions on deploying Java servlets, please
refer to Chapter 11, Case Study: Servlet and JSP Bookstore.

20.5.1 Deploying Deitel Bookstore CMP Entity EJBs

To begin deploying the entity EJBs for the Deitel Bookstore, select the New Enterprise
Bean... menu item in the Application Deployment Tool’s File menu (Fig. 20.20) to
begin deploying the EJB. You then will be presented with a wizard-style interface for cre-
ating the EJB JAR file (Fig. 20.21). The JAR Display Name field contains the text that
will appear for this EJB JAR in the Application Deployment Tool, but has no effect on
the deployment of the application. Click the Add... button next to the Contents field to
add the class files for the EJB to the JAR.

To add the EJB class files to the EJB JAR file, you must specify the Root Directory
that contains the class’ package structure (Fig. 20.22). For example, the Order EJB is in
the package com.deitel.advjhtp1.bookstore.ejb. If the compiled class file is
placed in the directory D:\BookStore\com\deitel\advjhtp1\book-
store\ejb\, select D:\BookStore as the Root Directory. Click the Browse...
button to use a file selection dialog to select the Root Directory.

Fig. 20.20Fig. 20.20Fig. 20.20Fig. 20.20 Adding an EJB to an enterprise application.

1150 Enterprise Java Case Study: Business Logic Part 2 Chapter 20

Once you have selected the proper Root Directory, select the class files for the EJB
remote interface, home interface, implementation and other classes that the EJB requires (e.g.,
OrderModel.class, XMLGenerator.class, application-specific exception classes,
etc.). By holding down the CTRL key, you may select multiple files at once. Click the Add
button to add the selected class files to the EJB JAR and click OK (Fig. 20.23). Figure 20.24
shows the results of adding the class files for the Order EJB to the EJB JAR file.

Fig. 20.21Fig. 20.21Fig. 20.21Fig. 20.21 Creating an EJB JAR file.

Fig. 20.22Fig. 20.22Fig. 20.22Fig. 20.22 Specifying the Root Directory for EJB classes.

Chapter 20 Enterprise Java Case Study: Business Logic Part 2 1151

Once you have added the class files to the EJB JAR file, you must specify the class
files that contain the remote interface, the home interface and the EJB implementation
(Fig. 20.25). Select the appropriate class from the drop-down list as shown in Fig. 20.25.
The Order EJB is an entity bean, so select the Entity radio button under the Bean Type
heading (Fig. 20.26).

Fig. 20.23Fig. 20.23Fig. 20.23Fig. 20.23 Adding EJB classes to an EJB JAR file.

Fig. 20.24Fig. 20.24Fig. 20.24Fig. 20.24 Results of adding EJB classes to an EJB JAR file.

1152 Enterprise Java Case Study: Business Logic Part 2 Chapter 20

The Order EJB uses container-managed persistence to synchronize its data with the
corresponding database table. In the following step of the EJB wizard (Fig. 20.27), select
the Container-Managed Persistence radio button and place checkmarks next to each
of the container-managed fields. Specify the complete class name of the primary-key class
(including its package name) in the Primary Key Class field. For the Order EJB, enter

Fig. 20.25Fig. 20.25Fig. 20.25Fig. 20.25 Specifying classes for EJB, home interface and remote interface.

Fig. 20.26Fig. 20.26Fig. 20.26Fig. 20.26 Setting Bean Type to Entity.

Chapter 20 Enterprise Java Case Study: Business Logic Part 2 1153

java.lang.Integer as the primary-key class. If your EJB uses a user-defined pri-
mary-key class (e.g., the OrderProduct EJB), you must also specify the complete
package name (e.g., com.deitel.advjhtp1.bookstore.ejb.OrderPro-
ductPK). Select the field that contains the primary key from the Primary Key Field
Name drop-down list (e.g., orderID).

If your EJB references other EJBs in its implementation, these EJBs must be specified
in the Application Deployment Tool (Fig. 20.28). Click the Add button to add a new
EJB reference. The Coded Name column corresponds to the String used to locate the
EJB in the JNDI directory. For example, to locate the Product EJB, we use the String
java:comp/env/ejb/Product. The corresponding coded name is ejb/Product.
Select the appropriate type for the EJB (i.e., Session or Entity) from the Type drop-
down list. Provide the full class name (including the package name) for the home and
remote interfaces in the Home and Remote columns. For example, in the Home column
for the Product EJB, specify com.deitel.advjhtp1.bookstore.ejb.Pro-
ductHome. Enter the JNDI name for the referenced EJB in the JNDI Name field (e.g.,
Product).

J2EE application servers provide transaction management, the semantics of which can
be specified when deploying an application. For each of the business methods, specify the
appropriate Transaction Type (Fig. 20.29), as discussed in Chapter 15.

Figure 20.30 shows the XML descriptor that was generated by the previous steps. This
XML descriptor can be used when deploying this application on any J2EE-compliant appli-
cation server.

Fig. 20.27Fig. 20.27Fig. 20.27Fig. 20.27 Configuring container-managed fields and primary-key class.

1154 Enterprise Java Case Study: Business Logic Part 2 Chapter 20

Fig. 20.28Fig. 20.28Fig. 20.28Fig. 20.28 Specifying other EJBs referenced by this EJB.

Fig. 20.29Fig. 20.29Fig. 20.29Fig. 20.29 Specifying Container-Managed Transactions for EJB business
methods.

Chapter 20 Enterprise Java Case Study: Business Logic Part 2 1155

You must now configure the database to which the CMP entity bean will persist its
data. Click the Deployment Settings... button in the Entity tab (Fig. 20.31).

Specify the JNDI name for the database in the Database JNDI Name field
(Fig. 20.32). In the J2EE Reference Implementation, this value corresponds to the value
specified in the default.properties configuration file (e.g., jdbc/BookStore).
Once you have specified the JNDI name for the database, click the Generate SQL Now
button to create the necessary SQL statements for the EJB finder and create methods.

Fig. 20.30Fig. 20.30Fig. 20.30Fig. 20.30 XML descriptor generated by Application Deployment Tool.

Fig. 20.31Fig. 20.31Fig. 20.31Fig. 20.31 Specifying EJB Deployment Settings.

1156 Enterprise Java Case Study: Business Logic Part 2 Chapter 20

You will be prompted to provide SQL WHERE clauses for any custom finder methods
specified in the EJB’s home interface (Fig. 20.33). For each method listed under EJB
Method (e.g., findByPrimaryKey, ejbStore, Table Create, etc.) enter the
appropriate SQL query from the tables in Chapters 19–20. For example, Fig. 20.6 lists the
appropriate SQL queries for the Customer EJB.

20.5.2 Deploying Deitel Bookstore Servlets

The servlets in the Deitel Bookstore take advantage of context and initialization parame-
ters—which the deployer supplies when deploying the application—to facilitate the instal-
lation of new client types. Figure 20.35 lists each servlet, the value for that servlet’s
XSL_FILE initialization parameter and that servlet’s alias.

In addition, you must set the Web Context for the servlet’s WAR file to the value
bookstore (Fig. 20.36).

Fig. 20.32Fig. 20.32Fig. 20.32Fig. 20.32 Configuring EJB Database Settings.

Fig. 20.33Fig. 20.33Fig. 20.33Fig. 20.33 Dialog indicating methods that require WHERE clauses for SQL queries.

Chapter 20 Enterprise Java Case Study: Business Logic Part 2 1157

Fig. 20.34Fig. 20.34Fig. 20.34Fig. 20.34 Specifying SQL query for method findByCustomerID.

Servlet
XSL_FILE Initialization
Parameter Value Servlet Alias

AddToCartServlet error.xsl AddToCart

RemoveFromCartServlet error.xsl RemoveFromCart

UpdateCartServlet error.xsl UpdateCart

ViewCartServlet viewCart.xsl ViewCart

CheckoutServlet error.xsl Checkout

ViewOrderServlet viewOrder.xsl ViewOrder

ViewOrderHistoryServlet viewOrderHistory.xsl ViewOrderHistory

GetAllProductsServlet products.xsl GetAllProducts

GetProductServlet productDetails.xsl GetProduct

ProductSearchServlet products.xsl ProductSearch

RegisterServlet error.xsl Register

LoginServlet login.xsl Login

GetPasswordHintServlet passwordHint.xsl GetPasswordHint

Fig. 20.35Fig. 20.35Fig. 20.35Fig. 20.35 Deployment settings for Deitel Bookstore servlets.

1158 Enterprise Java Case Study: Business Logic Part 2 Chapter 20

Recall that the servlets in the Deitel Bookstore read client configuration information
from the CLIENT_LIST servlet context parameter. Specify the value for this context
parameter as shown in Fig. 20.37.

The servlets in the Deitel Bookstore utilize EJB business logic to maintain the cus-
tomers shopping cart, create customer registrations, etc. To enable the servlets to access the
EJBs, we must specify EJB references in the deployment tool. Figure 20.38 shows the nec-
essary EJB references. Be sure to specify the JNDI name for each EJB (e.g., Shopping-
Cart) and full class names for the home and remote interfaces.

Fig. 20.36Fig. 20.36Fig. 20.36Fig. 20.36 Setting the Context Root for the Deitel Bookstore servlets.

Fig. 20.37Fig. 20.37Fig. 20.37Fig. 20.37 Setting the CLIENT_LIST Context Parameter for the Deitel Bookstore
servlets.

Chapter 20 Enterprise Java Case Study: Business Logic Part 2 1159

The final step before deploying the Deitel Bookstore case study is to add the XSL
transformation documents and other supporting files to the servlet WAR file.
Figure 20.39 lists these supporting files, their relative paths in the servlet WAR file and
a description of each.

Fig. 20.38Fig. 20.38Fig. 20.38Fig. 20.38 Servlet EJB References.

File Name(s) Relative Path Description

clients.xml / Configuration file for enabling client support.

index.html / Welcome page for XHTML client.s

login.html / Login form for XHTML clients.

registration.html / Registration form for XHTML clients.

index.wml / Welcome page for WML clients.

login.wml / Login form for WML clients

default.css /styles/ Cascading Style Sheet for XHTML clients.

*.jpg /images/ Book cover images for bookstore products.

*.xsl /XSLT/XHTML/ XSL transformations for XHTML clients.

navigation.xml /XSLT/XHTML/ Navigation header for XHTML clients.

Fig. 20.39Fig. 20.39Fig. 20.39Fig. 20.39 Supporting files for inclusion in servlet WAR file (part 1 of 2).

1160 Enterprise Java Case Study: Business Logic Part 2 Chapter 20

After completing the EJB and servlet configuration in the Application Deployment
Tool, select Deploy Application from the Tools menu to deploy the application to the
J2EE reference implementation application server. You can access the newly deployed
application by opening the URL http://localhost:8000/bookstore/
index.html in a Web browser or i-mode simulator, or the URL http://local-
host:8000/bookstore/index.wml for a WML simulator.

This concludes our discussion of the Deitel Bookstore case study. This case study inte-
grated several enterprise Java technologies into a substantial online application. In Chapter
21, Application Servers, we introduce three of the most popular J2EE-compliant commer-
cial application servers—BEA’s WebLogic, IBM’s WebSphere and the iPlanet Applica-
tion Server. We then discuss the steps necessary to deploy the Deitel Bookstore case study
on BEA’s WebLogic and IBM’s WebSphere.

*.xsl /XSLT/WML/ XSL transformations for WML clients.

*.xsl /XSLT/cHTML/ XSL transformations for cHTML clients.

File Name(s) Relative Path Description

Fig. 20.39Fig. 20.39Fig. 20.39Fig. 20.39 Supporting files for inclusion in servlet WAR file (part 2 of 2).

21
Application Servers

Objectives
• To introduce several popular commercial application

servers.
• To introduce open-source alternatives to commercial

application servers.
• To understand the requirements for J2EE-compliant

application servers.
• To understand the differences among commercial

application server implementations.
• To deploy the Deitel Bookstore Enterprise Java case

study on two leading commercial application servers.
Can anything be so elegant as to have few wants, and to
serve them one’s self?
Ralph Waldo Emerson

“Contrariwise,” continued Tweedledee, “if it was so, it
might be; and if it were so, it would be; but as it isn’t, it ain’t.
That’s logic.”
Lewis Carroll

Eloquence is logic on fire.
Lyman Beecher

…a pool that nobody’s fathomed the depth of, and paths
threaded with flowers planted by the mind.
Katherine Mansfield

1162 Application Servers Chapter 21

[***

21.1 Introduction
The Java 2 Enterprise Edition is a specification for enterprise runtime environments. Al-
though Sun provides a reference implementation of this specification, real-world systems
must use an application server from a commercial vendor. In this chapter, we introduce the
three most popular J2EE-compliant, commercial application servers—BEA WebLogic,
IBM WebSphere and iPlanet Application Server. We also introduce the JBoss open-source
application server. We deploy the Deitel Bookstore application from Chapters 17–20 to
demonstrate the portability of applications written for the J2EE specification. After reading
this chapter you will understand the role of an Application Server in an enterprise applica-
tion, and be able to deploy your own applications on commercial application servers.

21.2 J2EE Specification and Benefits
For many years, there did not exist a standard for application servers. Each application serv-
er vendor provided its own set of APIs and varying functionality. If a company wished to
move its enterprise applications to a new application-server platform, that company’s de-
velopers would need to rewrite large amounts of code, resulting in a complex and expensive
migration process. Sun Microsystems, along with a large community of application-server
vendors, developed the Java 2 Enterprise Edition specification through the Java Communi-
ty Process (Appendix F, Java Community Process). J2EE defines an application server
platform and supporting APIs for building enterprise applications that are portable across
application servers, and, because they use Java, across platforms. J2EE extends Java’s
“Write Once, Run Anywhere™” principle to enterprise applications. J2EE facilitates port-
ability among application servers by enabling deployers to specify server-dependant fea-
tures, such as distributed transactions and database queries at deployment time. At the time
of this writing, the J2EE specification was evolving through the Java Community Process.
The current release is 1.2.1, and version 1.3 is in beta.

Outline

21.1 Introduction
21.2 J2EE Specification and Benefits
21.3 Commercial Application Servers

21.3.1 BEA WebLogic 6.0
21.3.2 iPlanet Application Server 6.0
21.3.3 IBM WebSphere Advanced Application Server 4.0
21.3.4 JBoss 2.2.2 Application Server

21.4 Deploying the Deitel Bookstore on BEA WebLogic
21.5 Deploying the Deitel Bookstore on IBM WebSphere
21.6 Internet and World Wide Web Resources

Summary • Terminology • Works Cited

Chapter 21 Application Servers 1163

The J2EE specification can be broken down into several pieces, including API support,
security, transaction management and deployment processes. An application server vendor
is required to provide runtime support for the APIs of the J2EE platform. Figure 21.1 lists
the specific API requirements for version 1.2 of the J2EE specification.3

21.3 Commercial Application Servers
To be J2EE certified, an application server must implement the minimum functionality that
the J2EE specification defines. Application server vendors can provide functionality that
goes beyond the J2EE specification to differentiate their products. For example, application
servers can provide advanced deployment tools, enhanced security strength, higher perfor-
mance, error recovery, etc. This section describes four popular application servers—BEA
WebLogic, iPlanet Application Server, IBM WebSphere and JBoss.

21.3.1 BEA WebLogic 6.0

BEA Systems is currently the number one application-server provider in the world. We-
bLogic’s popularity is largely based upon its first-to-market advantage and its reputation
with current enterprises. BEA provides a general-purpose application server, balancing
speed with stability and solid support for various features beyond the J2EE specification.

Required APIs Web Containers EJBs

Java Data Base Connectiv-
ity(JDBC) 2.0 Extension

required required

Remote Method Invocation-
Internet Inter-ORB Proto-
col(RMI-IIOP) 1.0

required required

Enterprise Java Beans(EJB)
1.1

required required

Servlets 2.2 required N/A

Java Server Pages(JSP) 1.1 required N/A

Java Messaging System(JMS)
1.0

required required

Java Naming and Directory
Interface(JNDI) 1.2

required required

Java Transaction API (JTA)
1.0

required required

JavaMail 1.1 required required

Java Activation
Framework(JAF) 1.0

required required

Fig. 21.1Fig. 21.1Fig. 21.1Fig. 21.1 Application server required APIs.

1164 Application Servers Chapter 21

WebLogic provides data pools, which eliminate the need to create new database con-
nections for each client. Establishing database connections has considerable overhead—up
to several seconds per connection for some database servers. By maintaining a pool of open
connections and assigning these to clients as needed, WebLogic increases application per-
formance. WebLogic also provides a mechanism for “hot” deployment. The application
server continually checks a specified directory for new applications; if the application
server finds a new application in that directory, WebLogic automatically deploys the appli-
cation without restarting the server. WebLogic also will undeploy an application if the
administrator removes that application from the deployment directory. Hot deployment
increases server up time and makes deployment simpler. However, BEA does not recom-
mend enabling hot deployment in production environments. Rather, hot deployment can be
useful for developers when testing applications.

WebLogic uses clustering to increase availability through failover support for EJBs
and Web components. Servers within a cluster enable redundancy—if a server conducting
a transaction fails, another server can take over transparently without interrupting the trans-
action. This redundancy also facilitates load balancing. In a load-balanced environment,
the application server distributes requests among several servers based on their load (i.e.,
how many requests each server already is handling). Load balancing helps prevent indi-
vidual servers from failing under high numbers of requests.

For single-server environments, WebLogic provides multi-pooling—a service that dis-
tributes transactions among data sources. Whereas a connection pool is limited to a single
data source; multi-pooling allows an application to access several pools, thus distributing
requests among multiple data sources. Multi-pooling divides labor among data sources to
provide a degree of load balancing within a single application server.

WebLogic is completely J2EE 1.2 compliant and already supports many requirements
of the J2EE 1.3 beta specification. WebLogic includes a Web server, but no longer includes
a graphical deployment tool, so deployers must code deployment descriptors manually.
WebLogic also works with several popular Java Development environments, including
JBuilder and Visual Café.

WebLogic also provides advanced security. User access and control are managed
within WebLogic through Access control lists (ACLs)–ACLs provide an efficient method
for managing users and permissions, WebLogic also includes SSL support and digital cer-
tificates.1

21.3.2 iPlanet Application Server 6.0

iPlanet E-Commerce Solutions is an alliance between Netscape Communications and Sun
Microsystems. iPlanet has created a fully J2EE-certified application server as a replace-
ment for Netscape’s application server. iPlanet’s primary goals are speed, stability and full
J2EE compliance. iPlanet integrates C++ with Java to produce a fast, scalable application
server. iPlanet provides failover support, connection pooling and several unique features.

The Web connector controls load balancing in iPlanet application server. The Web
connector manages communication between the application server and the Web server. The
Web connector distributes requests among server instances based on server response time.
For more control, the application server may handle its own load balancing. Requests are
distributed according to a specific algorithm defined by the deployer in the configuration
tool. iPlanet includes support for “sticky” load balancing—if a components is flagged as

Chapter 21 Application Servers 1165

“sticky,” then the normal load-balancing algorithm will be bypassed and the component
will always be executed on the “sticky” machine. “Sticky” load balancing helps in situa-
tions where the overhead of creating connections between servers for a given EJB is greater
than the time saved by load balancing.

iPlanet uses the Lightweight Directory Access Protocol (LDAP) to manage security.
Users may be assigned group and individual permissions to access parts of applications.
Configuring LDAP permissions adds additional complexity to the server configuration pro-
cess, but enables tight control over user permissions. iPlanet Application Server is inte-
grated with, and includes, the iPlanet Directory Server and the iPlanet Web Server.

At the time of this writing, iPlanet was about to release a new version of iPlanet Appli-
cation Server. To download the latest version, please visit www.iplanet.com/
ias_deitel. When this new version of iPlanet is available, we will provide a complete
description of the iPlanet deployment process for the Deitel Bookstore application on our
Web site, www.deitel.com

21.3.3 IBM WebSphere Advanced Application Server 4.0

IBM WebSphere is a popular application server that is approaching BEA’s WebLogic in
market share. Version 4.0 is a substantial improvement over previous versions, including
simpler configuration options, faster response time and enhanced security. Version 4.0 pro-
vides a simple user interface for administration and deployment, and a focus on speed and
scalability. WebSphere includes IBM’s version of the Apache Web server, failover sup-
port, data pooling, and user-level security controls.

21.3.4 JBoss 2.2.2 Application Server
JBoss, combined with the Apache Software Foundation’s Tomcat servlet container, cur-
rently is the only J2EE 1.2-compliant, open-source application server. JBoss is distributed
under the Lesser General Public License (LGPL). The source code for JBoss is freely avail-
able, and can be used to serve commercial applications. JBoss aims to maintain compliance
with future J2EE specifications. Currently, JBoss includes most features of commercial ap-
plication servers. JBoss was one of the first application servers to support hot deployment,
and it runs with a small memory footprint, which leaves more resources for applications.2

JBoss lacks clustering support, which may not be a concern for many small to mid-
sized businesses, but prevents JBoss from competing in the commercial market. JBoss also
does not provide graphical tools for deployment or configuration. Fortunately, the JBoss
community consists of a large and generally helpful user base that will help with most con-
figuration issues quickly.

21.4 Deploying the Deitel Bookstore on BEA WebLogic
Configuring an application server can be a complex task. In this section, we guide you
through the steps required to install and configure BEA WebLogic for the Deitel Bookstore
case study. Please refer to e-docs.bea.com/wls/docs60/install/inst-
prg.html for installation instructions. For these configuration instructions we assume
c:\bea as the home directory, Deitel as the WebLogic administration domain name,
and bookstore as the server name. We also assume Cloudscape is installed in

1166 Application Servers Chapter 21

c:\cloudscape_3.6 and our database is c:\cloudscape_3.6\databas-
es\Bookstore. Depending on your security requirements you may wish to create a file
named password.ini with the password you entered during installation. Placing
password.ini in c:\bea\wlserver6.0\config\deitel\ will prevent We-
bLogic from asking for your password each time you start the application server.

First, we configure WebLogic to enable Cloudscape database support. Open the file
c:\bea\wlserver6.0\config\CaseStudyDS\startWebLogic.cmd with a
text editor, such as Notepad. Near the bottom of the file replace the line

set CLASSPATH=.;.\lib\weblogic_sp.jar;.\lib\weblogic.jar

with

set CLASSPATH=.;.\lib\weblogic_sp.jar;.\lib\weblogic.jar;
c:\cloudscape_3.6\lib\cloudscape.jar

which includes the Cloudscape packages in the CLASSPATH. The following line contains
the parameters to start the server:

%JAVA_HOME%\bin\java -hotspot -ms64m -mx64m -classpath
%CLASSPATH% -Dweblogic.Domain=deitel
-Dweblogic.Name=bookstore -Dbea.home=C:\bea
-Djava.security.policy==C:\bea\wlserver6.0/lib/weblogic.pol-
icy -Dweblogic.management.password=%WLS_PW% weblogic.Server

To simplify detection of our database, we specify property cloudscape.sys-
tem.home with value c:/cloudscape_3.6/databases/ on the command line.

Next, run startWeblogic.cmd either by double clicking it, or typing its name at
the console. If a console window loads, and, after a minute, presents text similar to:

<WebLogic Server started>
<Notice> <WebLogicServer> <SSLListenThread listening on port
7002>
<Notice> <WebLogicServer> <ListenThread listening on port
7001>

the application server is ready for configuration.
Use your Web browser to access localhost:7001/console. A window should

prompt for your network password. Enter system under User Name and the password
you specified during WebLogic installation. Your Web browser should display the page
shown in Fig. 21.2. This is the administration console for managing most aspects of the
application server.

We now configure the JDBC data pool and data source. In the main pane of the admin-
istration console, select Connection Pools under the JDBC heading. The top of the right
pane should contain the link Create new JDBC Connection Pool. Configure the
options as shown in Fig. 21.3. Specify BookstorePool for the pool Name, the URL
jdbc:cloudscape:Bookstore and the Driver Classname COM.cloud-
scape.core.JDBCDriver. Finally, set the password and server properties to
none. After entering these values, select Apply. You need not restart the server until we
have made a few more changes.

Chapter 21 Application Servers 1167

Next, select the Targets tab—select Bookstore from available servers, click the
arrow pointing right to add this connection pool to the bookstore server then click Apply.
In the right pane select CaseStudyDS > Services > JDBC > Data Sources then,

Fig. 21.2Fig. 21.2Fig. 21.2Fig. 21.2 WebLogic administration console. (Courtesy BEA Systems.)

Fig. 21.3Fig. 21.3Fig. 21.3Fig. 21.3 JDBC Connection pool properties. (Courtesy of BEA Systems, Inc.)

1168 Application Servers Chapter 21

Create new JDBC data source. Specify the name of the data source (e.g., Book-
storeDataSource), enter jdbc/Bookstore as the JNDI name, BookstorePool
as the pool name and select Create. Finally, assign Bookstore under the Targets tab
and click Apply. Shut down the server, close the WebLogic command window and restart
the server with startWebLogic.cmd.

We now create the deployment descriptors for our bookstore application. Extract the
contents of bookstore.ear into a new directory. You may use any zip or jar utility to
extract the files. To extract the files via the jar utility included with the JDK, enter the
command

jar xvf bookstore.ear

Next, extract the contents of ejb-jar-ic.jar into a temporary directory named
ejb-jar. Create a text file named weblogic-ejb-jar.xml and save it in the ejb-
jar\META-INF directory. This file is the WebLogic-specific deployment descriptor. If
you are not familiar with XML please refer to Appendix A, Creating Markup with XML.

The Deployment descriptor webLogic-ejb-jar.xml (Fig. 21.4) defines name
caching, persistence, transaction options, and other options for the EJBs in the Deitel Book-
store. Lines 6–8 specify the DTD for the descriptor. We specify the WebLogic 5.1.0 doc-
type because our application uses EJB 1.1. Element weblogic-ejb-jar (line 11–356)
contains deployment information for all EJBs in the EJB JAR. Element weblogic-
enterprise-bean (line 13–71) contains deployment information for the Customer
EJB. Element ejb-name (line 14) specifies the name of this bean. Element ejb-name
must match the name found in ejb-jar.xml for WebLogic to correctly identify the cur-
rent bean. Lines 17–21 contain the descriptions of caching properties. Element max-
beans-in-cache (Line 18) defines the maximum number of active instances the con-
tainer should allow. When this limit is reached, the EJB container will passivate idle EJB
instances. Element cache-strategy (line 19) sets how EJBs should cache data. Valid
values include Read-Write or Read-Only. Read-Write, the default value, allows
clients to write information to the bean in a standard transaction, and the container invokes
ejbStore at the completion of the transaction. Read-Only does not allow the ejb-
Store method to be called, but it does allow the bean to be updated by an underlying data
source periodically, for example this may be useful as a stock ticker bean. Line 19 defines
this bean as a standard transaction bean. Element read-timeout-seconds is not used
for Read-Write beans, if this were a Read-Only bean, the value specifies the number
of seconds between database update intervals. When set to 0, the Read-Only bean updates
only when it is first created.

1 <?xml version = "1.0" encoding = "UTF-8"?>
2
3 <!-- weblogic-ejb-jar.xml deployment descriptor for bookstore -->
4 <!-- describes weblogic specific properties of each bean -->
5
6 <!DOCTYPE weblogic-ejb-jar PUBLIC
7 '-//BEA Systems, Inc.//DTD WebLogic 5.1.0 EJB//EN'
8 'http://www.bea.com/servers/wls510/dtd/weblogic-ejb-jar.dtd'>

Fig. 21.4Fig. 21.4Fig. 21.4Fig. 21.4 Weblogic-ejb-jar.xml defines WebLogic deployment properties
for Bookstore case study (part 1 of 8).

Chapter 21 Application Servers 1169

9
10 <!-- Customer EJB weblogic descriptor -->
11 <weblogic-ejb-jar>
12
13 <weblogic-enterprise-bean>
14 <ejb-name>Customer</ejb-name>
15
16 <!-- determines caching properties -->
17 <caching-descriptor>
18 <max-beans-in-cache>100</max-beans-in-cache>
19 <cache-strategy>Read-Write</cache-strategy>
20 <read-timeout-seconds>0</read-timeout-seconds>
21 </caching-descriptor>
22
23 <!-- maps cmp types for bean -->
24 <persistence-descriptor>
25
26 <persistence-type>
27 <type-identifier>
28 WebLogic_CMP_RDBMS
29 </type-identifier>
30 <type-version>5.1.0</type-version>
31 <type-storage>
32 META-INF/weblogic-cmp-rdbms-jar-Customer.xml
33 </type-storage>
34 </persistence-type>
35
36 <persistence-use>
37 <type-identifier>
38 WebLogic_CMP_RDBMS
39 </type-identifier>
40 <type-version>5.1.0</type-version>
41 </persistence-use>
42 </persistence-descriptor>
43
44 <!-- transaction paramaters -->
45 <transaction-descriptor>
46 <trans-timeout-seconds>200</trans-timeout-seconds>
47 </transaction-descriptor>
48
49 <!-- maps references to ejb names -->
50 <reference-descriptor>
51 <ejb-reference-description>
52 <ejb-ref-name>ejb/Order</ejb-ref-name>
53 <jndi-name>ejb/Order</jndi-name>
54 </ejb-reference-description>
55
56 <ejb-reference-description>
57 <ejb-ref-name>ejb/SequenceFactory</ejb-ref-name>
58 <jndi-name>ejb/SequenceFactory</jndi-name>
59 </ejb-reference-description>
60

Fig. 21.4Fig. 21.4Fig. 21.4Fig. 21.4 Weblogic-ejb-jar.xml defines WebLogic deployment properties
for Bookstore case study (part 2 of 8).

1170 Application Servers Chapter 21

61 <ejb-reference-description>
62 <ejb-ref-name>ejb/Address</ejb-ref-name>
63 <jndi-name>ejb/Address</jndi-name>
64 </ejb-reference-description>
65
66 </reference-descriptor>
67
68 <!-- assigns JNDI name to EJB -->
69 <jndi-name>ejb/Customer</jndi-name>
70
71 </weblogic-enterprise-bean> <!-- end customer descriptor -->
72
73 <!-- Sequence factory EJB weblogic descriptor -->
74 <weblogic-enterprise-bean>
75
76 <ejb-name>SequenceFactory</ejb-name>
77
78 <!-- manages beans caching behavior -->
79 <caching-descriptor>
80 <max-beans-in-cache>100</max-beans-in-cache>
81 <idle-timeout-seconds>20</idle-timeout-seconds>
82 <cache-strategy>Read-Write</cache-strategy>
83 <read-timeout-seconds>0</read-timeout-seconds>
84 </caching-descriptor>
85
86 <!-- map bean to CMP descriptor -->
87 <persistence-descriptor>
88 <persistence-type>
89 <type-identifier>
90 WebLogic_CMP_RDBMS
91 </type-identifier>
92 <type-version>5.1.0</type-version>
93 <type-storage>
94 META-INF/weblogic-cmp-rdbms-jar-Sequence.xml
95 </type-storage>
96 </persistence-type>
97
98 <persistence-use>
99 <type-identifier>
100 WebLogic_CMP_RDBMS
101 </type-identifier>
102 <type-version>5.1.0</type-version>
103 </persistence-use>
104 </persistence-descriptor>
105
106 <!-- transaction management properties -->
107 <transaction-descriptor>
108 <trans-timeout-seconds>200</trans-timeout-seconds>
109 </transaction-descriptor>
110
111 <!-- assigns JNDI name to bean -->
112 <jndi-name>ejb/SequenceFactory</jndi-name>

Fig. 21.4Fig. 21.4Fig. 21.4Fig. 21.4 Weblogic-ejb-jar.xml defines WebLogic deployment properties
for Bookstore case study (part 3 of 8).

Chapter 21 Application Servers 1171

113
114 </weblogic-enterprise-bean>
115 <!-- end SequenceFactory descriptor -->
116
117 <!-- Order EJB weblogic descriptor -->
118 <weblogic-enterprise-bean>
119 <ejb-name>Order</ejb-name>
120
121 <!-- defines caching properties, set to defaults -->
122 <caching-descriptor>
123 <max-beans-in-cache>100</max-beans-in-cache>
124 <idle-timeout-seconds>20</idle-timeout-seconds>
125 <cache-strategy>Read-Write</cache-strategy>
126 <read-timeout-seconds>0</read-timeout-seconds>
127 </caching-descriptor>
128
129 <!-- maps bean to specific CMP descriptor -->
130 <persistence-descriptor>
131 <persistence-type>
132 <type-identifier>
133 WebLogic_CMP_RDBMS
134 </type-identifier>
135 <type-version>5.1.0</type-version>
136 <type-storage>
137 META-INF/weblogic-cmp-rdbms-jar-order.xml
138 </type-storage>
139 </persistence-type>
140
141 <persistence-use>
142 <type-identifier>
143 WebLogic_CMP_RDBMS
144 </type-identifier>
145 <type-version>5.1.0</type-version>
146 </persistence-use>
147 </persistence-descriptor>
148
149 <!-- defines transaction attributes -->
150 <transaction-descriptor>
151 <trans-timeout-seconds>200</trans-timeout-seconds>
152 </transaction-descriptor>
153
154 <!-- maps bean references to JNDI names -->
155 <reference-descriptor>
156 <ejb-reference-description>
157 <ejb-ref-name>ejb/SequenceFactory</ejb-ref-name>
158 <jndi-name>ejb/SequenceFactory</jndi-name>
159 </ejb-reference-description>
160
161
162 <ejb-reference-description>
163 <ejb-ref-name>ejb/OrderProduct</ejb-ref-name>
164 <jndi-name>ejb/OrderProduct</jndi-name>

Fig. 21.4Fig. 21.4Fig. 21.4Fig. 21.4 Weblogic-ejb-jar.xml defines WebLogic deployment properties
for Bookstore case study (part 4 of 8).

1172 Application Servers Chapter 21

165 </ejb-reference-description>
166
167 <ejb-reference-description>
168 <ejb-ref-name>ejb/Customer</ejb-ref-name>
169 <jndi-name>ejb/Customer</jndi-name>
170 </ejb-reference-description>
171
172 </reference-descriptor>
173 <jndi-name>ejb/Order</jndi-name>
174
175 </weblogic-enterprise-bean> <!-- end Order descriptor -->
176
177 <!-- Address EJB weblogic deployment descriptor -->
178 <weblogic-enterprise-bean>
179 <ejb-name>Address</ejb-name>
180
181 <!-- defines caching properties for bean -->
182 <caching-descriptor>
183 <max-beans-in-cache>100</max-beans-in-cache>
184 <idle-timeout-seconds>20</idle-timeout-seconds>
185 <cache-strategy>Read-Write</cache-strategy>
186 <read-timeout-seconds>0</read-timeout-seconds>
187 </caching-descriptor>
188
189 <!-- maps EJB to specific cmp descriptor -->
190 <persistence-descriptor>
191 <persistence-type>
192 <type-identifier>
193 WebLogic_CMP_RDBMS
194 </type-identifier>
195 <type-version>5.1.0</type-version>
196 <type-storage>
197 META-INF/weblogic-cmp-rdbms-jar-address.xml
198 </type-storage>
199 </persistence-type>
200
201 <persistence-use>
202 <type-identifier>
203 WebLogic_CMP_RDBMS
204 </type-identifier>
205 <type-version>5.1.0</type-version>
206 </persistence-use>
207 </persistence-descriptor>
208
209 <!-- defines transaction properties -->
210 <transaction-descriptor>
211 <trans-timeout-seconds>200</trans-timeout-seconds>
212 </transaction-descriptor>
213
214 <!-- maps referenced to JNDI names of beans -->
215 <reference-descriptor>
216 <ejb-reference-description>

Fig. 21.4Fig. 21.4Fig. 21.4Fig. 21.4 Weblogic-ejb-jar.xml defines WebLogic deployment properties
for Bookstore case study (part 5 of 8).

Chapter 21 Application Servers 1173

217 <ejb-ref-name>ejb/SequenceFactory</ejb-ref-name>
218 <jndi-name>ejb/SequenceFactory</jndi-name>
219 </ejb-reference-description>
220 </reference-descriptor>
221
222 <!-- assigns JNDI name to this bean -->
223 <jndi-name>ejb/Address</jndi-name>
224
225 </weblogic-enterprise-bean> <!-- end Address descriptor -->
226
227 <!-- OrderProduct EJB weblogic deployment descriptor -->
228 <weblogic-enterprise-bean>
229 <ejb-name>OrderProduct</ejb-name>
230
231 <!-- sets default caching properties -->
232 <caching-descriptor>
233 <max-beans-in-cache>100</max-beans-in-cache>
234 <idle-timeout-seconds>20</idle-timeout-seconds>
235 <cache-strategy>Read-Write</cache-strategy>
236 <read-timeout-seconds>0</read-timeout-seconds>
237 </caching-descriptor>
238
239 <!-- maps this bean to specific cmp descriptor -->
240 <persistence-descriptor>
241 <persistence-type>
242 <type-identifier>
243 WebLogic_CMP_RDBMS
244 </type-identifier>
245 <type-version>5.1.0</type-version>
246 <type-storage>
247 META-INF/weblogic-cmp-rdbms-jar-orderProduct.xml
248 </type-storage>
249 </persistence-type>
250
251 <persistence-use>
252 <type-identifier>
253 WebLogic_CMP_RDBMS
254 </type-identifier>
255 <type-version>5.1.0</type-version>
256 </persistence-use>
257 </persistence-descriptor>
258
259 <!-- maps references to JNDI names of beans -->
260 <reference-descriptor>
261 <ejb-reference-description>
262 <ejb-ref-name>ejb/Product</ejb-ref-name>
263 <jndi-name>ejb/Product</jndi-name>
264 </ejb-reference-description>
265 </reference-descriptor>
266
267 <!-- assigns JNDI name of this bean -->
268 <jndi-name>ejb/OrderProduct</jndi-name>

Fig. 21.4Fig. 21.4Fig. 21.4Fig. 21.4 Weblogic-ejb-jar.xml defines WebLogic deployment properties
for Bookstore case study (part 6 of 8).

1174 Application Servers Chapter 21

269
270 </weblogic-enterprise-bean>
271 <!-- end OrderProduct Descriptor -->
272
273 <!-- Product EJB weblogic deployment descriptor -->
274 <weblogic-enterprise-bean>
275 <ejb-name>Product</ejb-name>
276
277 <!-- defines caching properties for EJB -->
278 <caching-descriptor>
279 <idle-timeout-seconds>20</idle-timeout-seconds>
280 <cache-strategy>Read-Write</cache-strategy>
281 <read-timeout-seconds>0</read-timeout-seconds>
282 </caching-descriptor>
283
284 <!-- maps this bean to its CMP descriptor -->
285 <persistence-descriptor>
286 <persistence-type>
287 <type-identifier>
288 WebLogic_CMP_RDBMS
289 </type-identifier>
290 <type-version>5.1.0</type-version>
291 <type-storage>
292 META-INF/weblogic-cmp-rdbms-jar-product.xml
293 </type-storage>
294 </persistence-type>
295
296 <persistence-use>
297 <type-identifier>
298 WebLogic_CMP_RDBMS
299 </type-identifier>
300 <type-version>5.1.0</type-version>
301 </persistence-use>
302 </persistence-descriptor>
303
304 <!-- defines transaction properties -->
305 <transaction-descriptor>
306 <trans-timeout-seconds>200</trans-timeout-seconds>
307 </transaction-descriptor>
308
309 <!-- assigns JNDI name -->
310 <jndi-name>ejb/Product</jndi-name>
311
312 </weblogic-enterprise-bean> <!-- end Product descriptor -->
313
314 <!-- ShoppingCart EJB weblogic deployment descriptor -->
315 <weblogic-enterprise-bean>
316 <ejb-name>ShoppingCart</ejb-name>
317
318 <!-- defines chaching properties, set to defaults -->
319 <caching-descriptor>
320 <max-beans-in-cache>100</max-beans-in-cache>

Fig. 21.4Fig. 21.4Fig. 21.4Fig. 21.4 Weblogic-ejb-jar.xml defines WebLogic deployment properties
for Bookstore case study (part 7 of 8).

Chapter 21 Application Servers 1175

Element persistence-descriptor (Lines 24–42) defines the EJBs persistence
properties. The Customer bean uses container-managed persistence (CMP). WebLogic
requires each CMP bean to have its own separate XML descriptor, thus the persistence
block in this code simply identifies the name and type of persistence-management
descriptor. Element persistence-type (lines 26–34) contains the elements type-
identifier (line 27–29), which must be WebLogic_CMP_RDBMS. Element type-
version is 5.1.0 for EJB 1.1 and 6.0 for EJB 1.2. The version number must correspond
to the weblogic-ejb-jar DTD. Element type-storage (lines 31–33) specifies the
location of the CMP descriptor, a file we will create next. You may define multiple per-
sistence-types, in the next block, persistence-use you choose which per-
sistence-type to use. Lines 36–41 tell WebLogic to use the persistence given in the
previous element. Currently, element transaction-descriptor contains only a

321 <idle-timeout-seconds>20</idle-timeout-seconds>
322 <cache-strategy>Read-Write</cache-strategy>
323 <read-timeout-seconds>0</read-timeout-seconds>
324 </caching-descriptor>
325
326 <!-- assigns a store directory for bean -->
327 <persistence-descriptor>
328 <stateful-session-persistent-store-dir>
329 /config/deitel/
330 </stateful-session-persistent-store-dir>
331 </persistence-descriptor>
332
333 <!-- defines transaction attributes -->
334 <transaction-descriptor>
335 <trans-timeout-seconds>200</trans-timeout-seconds>
336 </transaction-descriptor>
337
338 <!-- maps EJB references to JNDI names -->
339 <reference-descriptor>
340
341 <ejb-reference-description>
342 <ejb-ref-name>ejb/Product</ejb-ref-name>
343 <jndi-name>ejb/Product</jndi-name>
344 </ejb-reference-description>
345
346 <ejb-reference-description>
347 <ejb-ref-name>ejb/Order</ejb-ref-name>
348 <jndi-name>ejb/Order</jndi-name>
349 </ejb-reference-description>
350
351 </reference-descriptor>
352 <jndi-name>ejb/ShoppingCart</jndi-name>
353
354 </weblogic-enterprise-bean> <!-- end ShoppingCart descriptor -->
355
356 </weblogic-ejb-jar> <!-- end weblogic descriptor -->

Fig. 21.4Fig. 21.4Fig. 21.4Fig. 21.4 Weblogic-ejb-jar.xml defines WebLogic deployment properties
for Bookstore case study (part 8 of 8).

1176 Application Servers Chapter 21

single option—trans-timeout-seconds (Line 46). If a transaction lasts longer than
the specified length, it will be rolled back. Element reference-descriptor (lines
50–66) maps each reference to the correct JNDI name. Each block contains ejb-ref-
name and jndi-name elements for resolving references to other EJBs.

The descriptors for each of the other entity EJBs follow the same format as the
descriptor for Customer. The only differences are the reference to the RDBMS persis-
tence descriptor file and each bean’s EJB references.

Stateful session EJB ShoppingCart (lines 315–354) requires slightly different
deployment information. Stateful session beans do not require a RDBMS persistence
descriptor file. Instead they simply require a location in which to store persistent sessions
and a directory location in which to store passivated sessions. Element stateful-ses-
sion-persistent-store-dir within element persistence-descriptor
defines where the container should store passivated sessions.4

Figure 21.5 lists some optional elements in weblogic-ejb-jar.xml. For a full
listing, please consult edocs.bea.com. If an element is not defined, WebLogic uses its
default value.

The RDBMS descriptor specifies the interactions of an entity EJB with the database.
The descriptor specifies a connection pool and table name, maps EJB fields to database
fields, and defines custom finders for home interface methods.

Parent Element Element Description

caching-descriptor max-beans-in-free-pool Valid for stateless
session EJBs,
defines the maxi-
mum number of free
beans to keep in the
pool. The default is
no limit.

caching-descriptor initial-beans-in-free-
pool

Valid for stateless
session EJBs,
defines the number
of initial bean
instances. The
default is 0.

persistence-descriptor is-modified-method-name Method name to be
called when EJB is
stored, method must
return a boolean
value. If method
returns true EJB is
saved.

Fig. 21.5Fig. 21.5Fig. 21.5Fig. 21.5 Optional tags for weblogic-ejb-jar.xml not used in text
 (part 1 of 3).

Chapter 21 Application Servers 1177

persistence-descriptor delay-updates-until-end-
of-tx

When set to false,
the beans database
table is updated after
every method. If
true database is
updated at the end of
the transaction. The
default is true.

persistence-descriptor finders-call-ejbload Valid for entity
beans, the value
true specifies that
bean is loaded after
it is first referenced
with a finder
method. Value
false specifies
that the bean is
loaded when first
invoked. The default
is false.

persistence-descriptor db-is-shared Valid for entity
beans, For value
false bean
assumes it has
exclusive access to
database and does
not reload data. For
value true data is
reloaded before each
transaction. The
default is true.

reference-descriptor resource-descriptor Contains descrip-
tion of resource fac-
tories referenced in
ejb-jar.xml

resource-descriptor res-ref-name Resource reference
name found in ejb-
jar.xml

resource-descriptor jndi-name Assigns a JNDI
name for resource
factory

Parent Element Element Description

Fig. 21.5Fig. 21.5Fig. 21.5Fig. 21.5 Optional tags for weblogic-ejb-jar.xml not used in text
 (part 2 of 3).

1178 Application Servers Chapter 21

Descriptor weblogic-cmp-rdbms-jar-address.xml (Fig. 21.6) follows the
WebLogic version 5.1 DTD. Element weblogic-rdbms-bean (line 11) is the base ele-
ment for the descriptor, there may be only one webLogic-rdbms-bean element per
file. Element pool-name on line 14 must contain the name for a data pool already defined
in WebLogic. The value of table-name must correspond to the table within the data-
source that this bean uses. In our case study, EJB Address writes to table Address (line
17). Element attribute-map contains the mappings between EJB fields and database
fields defined in ejb-jar.xml. In our example the database field names are the same as
the EJB field names, but this is not required. Defining mappings within a deployment
descriptor allows deployers to customize EJBs to particular databases without changing
any EJB code. Element object-link (line 21–24) contains the mappings between the
EJB fields and database fields for zipCode. The bean field and database field names are
specified within bean-field and dbms-column, respectively.

security-role-
assignment

role-name Security role name
defined in ejb-
jar.xml

security-role-
assignment

principal-name Maps the role name
to a principal
defined in
WebLogic. Consult
edocs.bea.com
for valid principal
names.

weblogic-enterprise-
bean

enable-call-by-reference When EJBs are on
the same server
arguments are
passed by reference,
setting this value to
false will cause
variables to be
passed by value.

1 <?xml version = "1.0" encoding = "UTF-8" ?>
2
3 <!-- weblogic-cmp-rdbms-jar-address.xml rdbms deployment -->
4 <!-- descriptor for EJB Address. Defines database properties -->
5

Fig. 21.6Fig. 21.6Fig. 21.6Fig. 21.6 Weblogic-cmp-rdbms-jar-address.xml defines WebLogic
CMP database properties for EJB Address (part 1 of 3).

Parent Element Element Description

Fig. 21.5Fig. 21.5Fig. 21.5Fig. 21.5 Optional tags for weblogic-ejb-jar.xml not used in text
 (part 3 of 3).

Chapter 21 Application Servers 1179

6 <!DOCTYPE weblogic-rdbms-bean PUBLIC
7 '-//BEA Systems, Inc.//DTD WebLogic 5.1.0 EJB RDBMS Persistence/

/EN'
8 'http://www.bea.com/servers/wls510/dtd/weblogic-rdbms-persis-

tence.dtd'>
9

10 <!-- main block for rdbms descriptor -->
11 <weblogic-rdbms-bean>
12
13 <!-- Sets data pool to BookstorePool -->
14 <pool-name>BookstorePool</pool-name>
15
16 <!-- Sets database table to ADDRESS -->
17 <table-name>Address</table-name>
18
19 <!-- maps EJB fields to database fields -->
20 <attribute-map>
21 <object-link>
22 <bean-field>zipCode</bean-field>
23 <dbms-column>zipCode</dbms-column>
24 </object-link>
25
26 <object-link>
27 <bean-field>state</bean-field>
28 <dbms-column>state</dbms-column>
29 </object-link>
30
31 <object-link>
32 <bean-field>addressID</bean-field>
33 <dbms-column>addressID</dbms-column>
34 </object-link>
35
36 <object-link>
37 <bean-field>streetAddressLine2</bean-field>
38 <dbms-column>streetAddressLine2</dbms-column>
39 </object-link>
40
41 <object-link>
42 <bean-field>country</bean-field>
43 <dbms-column>country</dbms-column>
44 </object-link>
45
46 <object-link>
47 <bean-field>streetAddressLine1</bean-field>
48 <dbms-column>streetAddressLine1</dbms-column>
49 </object-link>
50
51 <object-link>
52 <bean-field>city</bean-field>
53 <dbms-column>city</dbms-column>
54 </object-link>
55

Fig. 21.6Fig. 21.6Fig. 21.6Fig. 21.6 Weblogic-cmp-rdbms-jar-address.xml defines WebLogic
CMP database properties for EJB Address (part 2 of 3).

1180 Application Servers Chapter 21

WebLogic XML descriptor weblogic-cmp-rdbms-jar-Customer.xml
(Fig. 21.7) is the database deployment descriptor for the Customer EJB. The database
descriptors closely mirror each other in terms of structure. For each EJB you must provide
field mappings, the database table name and custom queries for finder methods.

56 <object-link>
57 <bean-field>firstName</bean-field>
58 <dbms-column>firstName</dbms-column>
59 </object-link>
60
61 <object-link>
62 <bean-field>lastName</bean-field>
63 <dbms-column>lastName</dbms-column>
64 </object-link>
65
66 <object-link>
67 <bean-field>phoneNumber</bean-field>
68 <dbms-column>phoneNumber</dbms-column>
69 </object-link>
70 </attribute-map>
71
72 <options>
73 <use-quoted-names>false</use-quoted-names>
74 </options>
75
76 </weblogic-rdbms-bean> <!-- end Address RDBMS descriptor -->

1 <?xml version = "1.0" encoding = "UTF-8"?>
2
3 <!-- weblogic-cmp-rdbms-jar-Customer.xml ejb descriptor for -->
4 <!-- CustomerEJB defines rdbms properties for WebLogic -->
5
6 <!DOCTYPE weblogic-rdbms-bean PUBLIC
7 '-//BEA Systems, Inc.//DTD WebLogic 5.1.0 EJB RDBMS Persistence/

/EN'
8 'http://www.bea.com/servers/wls510/dtd/weblogic-rdbms-persis-

tence.dtd'>
9

10 <!-- element containing rdbms properties for Customer EJB -->
11 <weblogic-rdbms-bean>
12
13 <!-- assigns this bean to pool named BookstorePool -->
14 <pool-name>BookstorePool</pool-name>
15
16 <!-- assigns this bean to table named CUSTOMER -->
17 <table-name>Customer</table-name>
18

Fig. 21.7Fig. 21.7Fig. 21.7Fig. 21.7 WebLogic-cmp-rdbms-jar-Customer.xml defines WebLogic
CMP database properties for EJB CustomerEJB (part 1 of 4).

Fig. 21.6Fig. 21.6Fig. 21.6Fig. 21.6 Weblogic-cmp-rdbms-jar-address.xml defines WebLogic
CMP database properties for EJB Address (part 3 of 3).

Chapter 21 Application Servers 1181

19 <!-- element containing field mappings -->
20 <attribute-map>
21
22 <!-- field mapping for customerID -->
23 <object-link>
24 <bean-field>customerID</bean-field>
25 <dbms-column>customerID</dbms-column>
26 </object-link>
27
28 <!-- field mapping for creditCardExpirationDate -->
29 <object-link>
30 <bean-field>creditCardExpirationDate</bean-field>
31 <dbms-column>creditCardExpirationDate</dbms-column>
32 </object-link>
33
34 <!-- field mapping for shippingAddressID -->
35 <object-link>
36 <bean-field>shippingAddressID</bean-field>
37 <dbms-column>shippingAddressID</dbms-column>
38 </object-link>
39
40 <!-- field mapping for billingAddressID -->
41 <object-link>
42 <bean-field>billingAddressID</bean-field>
43 <dbms-column>billingAddressID</dbms-column>
44 </object-link>
45
46 <!-- field mapping for passwordHint -->
47 <object-link>
48 <bean-field>passwordHint</bean-field>
49 <dbms-column>passwordHint</dbms-column>
50 </object-link>
51
52 <!-- field mapping for creditCardName -->
53 <object-link>
54 <bean-field>creditCardName</bean-field>
55 <dbms-column>creditCardName</dbms-column>
56 </object-link>
57
58 <!-- field mapping for firstName -->
59 <object-link>
60 <bean-field>firstName</bean-field>
61 <dbms-column>firstName</dbms-column>
62 </object-link>
63
64 <!-- field mapping for password -->
65 <object-link>
66 <bean-field>password</bean-field>
67 <dbms-column>password</dbms-column>
68 </object-link>
69

Fig. 21.7Fig. 21.7Fig. 21.7Fig. 21.7 WebLogic-cmp-rdbms-jar-Customer.xml defines WebLogic
CMP database properties for EJB CustomerEJB (part 2 of 4).

1182 Application Servers Chapter 21

70 <!-- field mapping for lastName -->
71 <object-link>
72 <bean-field>lastName</bean-field>
73 <dbms-column>lastName</dbms-column>
74 </object-link>
75
76 <!-- field mapping for userID -->
77 <object-link>
78 <bean-field>userID</bean-field>
79 <dbms-column>userID</dbms-column>
80 </object-link>
81
82 <!-- field mapping for creditCardNumber -->
83 <object-link>
84 <bean-field>creditCardNumber</bean-field>
85 <dbms-column>creditCardNumber</dbms-column>
86 </object-link>
87
88 </attribute-map>
89
90 <!-- list of custom finders -->
91 <finder-list>
92
93 <!-- finder for findByUserID -->
94 <finder>
95 <method-name>findByUserID</method-name>
96 <method-params>
97 <method-param>java.lang.String</method-param>
98 </method-params>
99
100 <!-- get fields where userID matches argument string -->
101 <finder-query>
102 <![CDATA[(like userID $0)]]>
103 </finder-query>
104 </finder>
105
106 <!-- finder for findByLogin -->
107 <finder>
108 <method-name>findByLogin</method-name>
109 <method-params>
110 <method-param>java.lang.String</method-param>
111 <method-param>java.lang.String</method-param>
112 </method-params>
113
114 <!-- fields where userID and password match arguments -->
115 <finder-query>
116 <![CDATA[(& (like userID $0)(like password $1))]]>
117 </finder-query>
118 </finder>
119
120 </finder-list>
121

Fig. 21.7Fig. 21.7Fig. 21.7Fig. 21.7 WebLogic-cmp-rdbms-jar-Customer.xml defines WebLogic
CMP database properties for EJB CustomerEJB (part 3 of 4).

Chapter 21 Application Servers 1183

Element finder-list (lines 91–120) contains finder methods for the customer
EJB. WebLogic requires a finder element for each customer finder method in the home
interface. You must define the finder name, parameters, and the query to use. The value of
element method-name (line 95) is a string that matches a finder method defined in the
home interface. Element method-params (lines 96–98) contains element method-
param (line 97), which specifies the fully qualified type of any passed parameters (e.g.
java.lang.String). The finder-query is a query written in WebLogic Query
Language (WQL). Be sure to place WQL expressions in CDATA sections to escape special
characters.

Figure 21.8 lists operators and syntax examples in WQL. The operands of the expres-
sions may be arguments, literals, bean-fields within this descriptor, or other expres-
sions. The syntax $n signifies that the operator is an argument and n corresponds to the
order of the passed arguments, beginning at 0. Literals must always be enclosed in single
quotes. Lines 107–118 define findByLogin, which takes two arguments and returns
only the fields that match both.5

122 <!-- additional options -->
123 <options>
124 <use-quoted-names>false</use-quoted-names>
125 </options>
126
127 </weblogic-rdbms-bean>
128 <!-- end rdbms descriptor for CustomerEJB -->

Operator Function Syntax example

= equal to (= ID $0)

< less than (< price $0)

> greater than (> quantity $0)

<= less than or equal (<= operand1 operand2)

>= greater than or equal (>= operand1 operand2)

! not (! (= quantity '0'))

& and (& (< price $0) (> quantity $1))

| or (| (> quantity '0') (> onOrder $0)

like string equal to, % indi-
cates wildcard

(like '%Java%')

isNull check for null reference (isNull bookID)

isNotNull check if not null (isNotNull bookID)

Fig. 21.8Fig. 21.8Fig. 21.8Fig. 21.8 Some WebLogic Query Language operations and examples (part 1 of 2).

Fig. 21.7Fig. 21.7Fig. 21.7Fig. 21.7 WebLogic-cmp-rdbms-jar-Customer.xml defines WebLogic
CMP database properties for EJB CustomerEJB (part 4 of 4).

1184 Application Servers Chapter 21

Figure 21.9 through Fig. 21.12 contain the remaining CMP descriptors, which each
follow the same basic structure.

orderBy order by a column
name, desc indicates
descending

(like '%Java%' orderBy 'Price')

1 <?xml version = "1.0" encoding = "UTF-8"?>
2
3 <!-- weblogic-cmp-rdbms-jar-order.xml ejb descriptor for -->
4 <!-- OrderEJB defines rdbms properties for WebLogic -->
5
6 <!DOCTYPE weblogic-rdbms-bean PUBLIC
7 '-//BEA Systems, Inc.//DTD WebLogic 5.1.0 EJB RDBMS Persistence/

/EN'
8 'http://www.bea.com/servers/wls510/dtd/weblogic-rdbms-persis-

tence.dtd'>
9

10
11 <!-- element containing rdbms properties for OrderEJB -->
12 <weblogic-rdbms-bean>
13
14 <!-- assigns this bean to pool named BookstorePool -->
15 <pool-name>BookstorePool</pool-name>
16
17
18 <!-- assigns this bean to table named CUSTOMERORDERS -->
19 <table-name>CustomerOrders</table-name>
20
21 <!-- element containing field mappings -->
22 <attribute-map>
23
24
25 <!-- field mapping for orderDate -->
26 <object-link>
27 <bean-field>orderDate</bean-field>
28 <dbms-column>orderDate</dbms-column>
29 </object-link>
30
31
32 <!-- field mapping for shipped -->
33 <object-link>
34 <bean-field>shipped</bean-field>
35 <dbms-column>shipped</dbms-column>
36 </object-link>

Fig. 21.9Fig. 21.9Fig. 21.9Fig. 21.9 Weblogic-cmp-rdbms-jar-order.xml defines WebLogic CMP
database properties for EJB OrderEJB (part 1 of 2).

Operator Function Syntax example

Fig. 21.8Fig. 21.8Fig. 21.8Fig. 21.8 Some WebLogic Query Language operations and examples (part 2 of 2).

Chapter 21 Application Servers 1185

37
38
39 <!-- field mapping for customerID -->
40 <object-link>
41 <bean-field>customerID</bean-field>
42 <dbms-column>customerID</dbms-column>
43 </object-link>
44
45 <!-- field mapping for orderID -->
46 <object-link>
47 <bean-field>orderID</bean-field>
48 <dbms-column>orderID</dbms-column>
49 </object-link>
50
51 </attribute-map>
52
53 <finder-list>
54
55 <!-- finder for findByCustomerID -->
56 <finder>
57 <method-name>findByCustomerID</method-name>
58 <method-params>
59 <method-param>java.lang.Integer</method-param>
60 </method-params>
61
62 <!-- return enumeration where customerID = argument -->
63 <finder-query>
64 <![CDATA[(= customerID $0)]]>
65 </finder-query>
66 </finder>
67
68 </finder-list>
69
70 <!-- additional options -->
71 <options>
72 <use-quoted-names>false</use-quoted-names>
73 </options>
74
75 </weblogic-rdbms-bean>
76 <!-- end rdbms descriptor for OrderEJB -->

1 <?xml version = "1.0" encoding = "UTF-8"?>
2
3 <!-- weblogic-cmp-rdbms-jar-orderProduct.xml ejb descriptor for -->
4 <!-- OrderProductEJB defines rdbms properties for WebLogic -->
5

Fig. 21.10Fig. 21.10Fig. 21.10Fig. 21.10 Weblogic-cmp-rdbms-jar-orderProduct.xml defines
WebLogic CMP database properties for the OrderProduct EJB
 (part 1 of 3).

Fig. 21.9Fig. 21.9Fig. 21.9Fig. 21.9 Weblogic-cmp-rdbms-jar-order.xml defines WebLogic CMP
database properties for EJB OrderEJB (part 2 of 2).

1186 Application Servers Chapter 21

6 <!DOCTYPE weblogic-rdbms-bean PUBLIC
7 '-//BEA Systems, Inc.//DTD WebLogic 5.1.0 EJB RDBMS Persistence/

/EN'
8 'http://www.bea.com/servers/wls510/dtd/weblogic-rdbms-persis-

tence.dtd'>
9

10 <!-- element containing rdbms properties for OrderProductsEJB -->
11 <weblogic-rdbms-bean>
12
13 <!-- assigns this bean to pool named BookstorePool -->
14 <pool-name>BookstorePool</pool-name>
15
16 <!-- assigns this bean to table named ORDERPRODUCT -->
17 <table-name>OrderProduct</table-name>
18
19 <!-- element containing field mappings -->
20 <attribute-map>
21
22 <!-- field mapping for quantity -->
23 <object-link>
24 <bean-field>quantity</bean-field>
25 <dbms-column>quantity</dbms-column>
26 </object-link>
27
28 <!-- field mapping for ISBN -->
29 <object-link>
30 <bean-field>ISBN</bean-field>
31 <dbms-column>ISBN</dbms-column>
32 </object-link>
33
34 <!-- field mapping for orderID -->
35 <object-link>
36 <bean-field>orderID</bean-field>
37 <dbms-column>orderID</dbms-column>
38 </object-link>
39
40 </attribute-map>
41
42
43 <finder-list>
44
45 <!-- finder for findByOrderID -->
46 <finder>
47 <method-name>findByOrderID</method-name>
48 <method-params>
49 <method-param>java.lang.Integer</method-param>
50 </method-params>
51
52 <!-- select fields where orderID matches argument -->
53 <finder-query>
54 <![CDATA[(like orderID $0)]]>

Fig. 21.10Fig. 21.10Fig. 21.10Fig. 21.10 Weblogic-cmp-rdbms-jar-orderProduct.xml defines
WebLogic CMP database properties for the OrderProduct EJB
 (part 2 of 3).

Chapter 21 Application Servers 1187

55 </finder-query>
56 </finder>
57
58 </finder-list>
59
60 <!-- additional options -->
61 <options>
62 <use-quoted-names>false</use-quoted-names>
63 </options>
64
65 </weblogic-rdbms-bean> <!-- end OrderProduct Descriptor -->

1 <?xml version = "1.0" encoding = "UTF-8"?>
2
3 <!-- weblogic-cmp-rdbms-jar-product.xml ejb descriptor for -->
4 <!-- ProductEJB defines rdbms properties for WebLogic -->
5
6 <!DOCTYPE weblogic-rdbms-bean PUBLIC
7 '-//BEA Systems, Inc.//DTD WebLogic 5.1.0 EJB RDBMS Persistence/

/EN'
8 'http://www.bea.com/servers/wls510/dtd/weblogic-rdbms-persis-

tence.dtd'>
9

10 <!-- element containing rdbms properties for ProductEJB -->
11 <weblogic-rdbms-bean>
12
13 <!-- assigns this bean to pool named BookstorePool -->
14 <pool-name>BookstorePool</pool-name>
15
16 <!-- assigns this bean to table named PRODUCT -->
17 <table-name>Product</table-name>
18
19 <!-- element containing field mappings -->
20 <attribute-map>
21
22 <!-- field mapping for pages -->
23 <object-link>
24 <bean-field>pages</bean-field>
25 <dbms-column>pages</dbms-column>
26 </object-link>
27
28 <!-- field mapping for author -->
29 <object-link>
30 <bean-field>author</bean-field>
31 <dbms-column>author</dbms-column>
32 </object-link>

Fig. 21.11Fig. 21.11Fig. 21.11Fig. 21.11 weblogic-cmp-rdbms-jar-product.xml defines WebLogic
CMP database properties for the Product EJB (part 1 of 3).

Fig. 21.10Fig. 21.10Fig. 21.10Fig. 21.10 Weblogic-cmp-rdbms-jar-orderProduct.xml defines
WebLogic CMP database properties for the OrderProduct EJB
 (part 3 of 3).

1188 Application Servers Chapter 21

33
34 <!-- field mapping for publisher -->
35 <object-link>
36 <bean-field>publisher</bean-field>
37 <dbms-column>publisher</dbms-column>
38 </object-link>
39
40 <!-- field mapping for price -->
41 <object-link>
42 <bean-field>price</bean-field>
43 <dbms-column>price</dbms-column>
44 </object-link>
45
46 <!-- field mapping for image -->
47 <object-link>
48 <bean-field>image</bean-field>
49 <dbms-column>image</dbms-column>
50 </object-link>
51
52 <!-- field mapping for ISBN -->
53 <object-link>
54 <bean-field>ISBN</bean-field>
55 <dbms-column>ISBN</dbms-column>
56 </object-link>
57
58 <!-- field mapping for title -->
59 <object-link>
60 <bean-field>title</bean-field>
61 <dbms-column>title</dbms-column>
62 </object-link>
63
64 </attribute-map>
65
66 <finder-list>
67
68 <!-- finder for findAllProducts -->
69 <finder>
70 <method-name>findAllProducts</method-name>
71
72 <!-- select fields where ISBN is not null -->
73 <finder-query>
74 <![CDATA[(isNotNull ISBN)]]>
75 </finder-query>
76 </finder>
77
78 <!-- finder for findByTitle -->
79 <finder>
80 <method-name>findByTitle</method-name>
81 <method-params>
82 <method-param>java.lang.String</method-param>
83 </method-params>
84

Fig. 21.11Fig. 21.11Fig. 21.11Fig. 21.11 weblogic-cmp-rdbms-jar-product.xml defines WebLogic
CMP database properties for the Product EJB (part 2 of 3).

Chapter 21 Application Servers 1189

85 <!-- select fields that title matches argument -->
86 <finder-query>
87 <![CDATA[(like title $0)]]>
88 </finder-query>
89 </finder>
90
91 </finder-list>
92
93
94 <!-- additional options -->
95 <options>
96 <use-quoted-names>false</use-quoted-names>
97 </options>
98
99 </weblogic-rdbms-bean> <!-- end ProductEJB Descriptor -->

1 <?xml version = "1.0" encoding = "UTF-8"?>
2
3 <!-- weblogic-cmp-rdbms-jar-sequence.xml ejb descriptor for -->
4 <!-- SequenceFactory defines rdbms properties for WebLogic -->
5
6 <!DOCTYPE weblogic-rdbms-bean PUBLIC
7 '-//BEA Systems, Inc.//DTD WebLogic 5.1.0 EJB RDBMS Persistence/

/EN'
8 'http://www.bea.com/servers/wls510/dtd/weblogic-rdbms-persis-

tence.dtd'>
9

10 <!-- element containing rdbms properties for SequenceFactoryEJB -->
11 <weblogic-rdbms-bean>
12
13 <!-- assigns this bean to pool named BookstorePool -->
14 <pool-name>BookstorePool</pool-name>
15
16 <!-- assigns this bean to table SEQUENCEFACTORY -->
17 <table-name>SequenceFactory</table-name>
18
19 <!-- element containing field mappings -->
20 <attribute-map>
21
22 <!-- field mapping for addressID -->
23 <object-link>
24 <bean-field>tableName</bean-field>
25 <dbms-column>tableName</dbms-column>
26 </object-link>
27

Fig. 21.12Fig. 21.12Fig. 21.12Fig. 21.12 Weblogic-cmp-rdbms-jar-sequence.xml defines WebLogic
CMP database properties for the SequenceFactory EJB (part 1 of 2).

Fig. 21.11Fig. 21.11Fig. 21.11Fig. 21.11 weblogic-cmp-rdbms-jar-product.xml defines WebLogic
CMP database properties for the Product EJB (part 3 of 3).

1190 Application Servers Chapter 21

Finally, the EJB references in the servlets must be mapped to the JNDI names for each
EJB. The deployment descriptor weblogic.xml in Web application directory WEB-INF
defines these mappings. Figure 21.13 contains the mappings for the Bookstore servlets.
Optional element description provides a simple description for the web application.
Element reference-descriptor is the only required element for our application.
This element maps references defined in web.xml to the JNDI names of the referenced
EJBs. We have named the references the same as the JNDI names, but that is not required.
Each reference description is contained within element ejb-reference-descrip-
tion. A mapping requires the ejb-ref-name and jndi-name contained within
ejb-reference-description. Lines 22–29 map the ShoppingCart EJB refer-
ence to its JNDI name.

28 <!-- field mapping for primaryKey -->
29 <object-link>
30 <bean-field>nextID</bean-field>
31 <dbms-column>nextID</dbms-column>
32 </object-link>
33
34 </attribute-map>
35
36 <options>
37 <use-quoted-names>false</use-quoted-names>
38 </options>
39
40 </weblogic-rdbms-bean>

1 <?xml version = "1.0" encoding = "UTF-8"?>
2
3 <!-- weblogic.xml Deployment descriptor for servlets -->
4 <!-- maps ejb references to JNDI names -->
5
6 <!DOCTYPE weblogic-web-app PUBLIC
7 "-//BEA Systems, Inc.//DTD Web Application 6.0//EN"
8 "http://www.bea.com/servers/wls600/dtd/weblogic-web-jar.dtd">
9

10 <!-- main block for descriptor -->
11 <weblogic-web-app>
12
13 <!-- optional, provides description for war file. -->
14 <description>
15 Bookstore servlets
16 </description>
17
18 <!-- block contains ejb reference maps -->
19 <reference-descriptor>
20

Fig. 21.13Fig. 21.13Fig. 21.13Fig. 21.13 Weblogic.xml Web application deployment descriptor (part 1 of 2).

Fig. 21.12Fig. 21.12Fig. 21.12Fig. 21.12 Weblogic-cmp-rdbms-jar-sequence.xml defines WebLogic
CMP database properties for the SequenceFactory EJB (part 2 of 2).

Chapter 21 Application Servers 1191

This completes the deployment descriptors for our case study application; you are
almost ready to deploy. Our application uses Xalan version 2.1, so prepend xalan.jar
and xerces.jar to the CLASSPATH in startWeblogic.cmd. Your final class-
path entry should be:

set CLASSPATH=.;c:\xalan-j_2_1_0\xerces.jar;c:\xalan-
j_2_1_0\xalan.jar;.\lib\weblogic_sp.jar;.\lib\weblogic.jar;c:
\cloudscape_3.6\lib\cloudscape.jar

Be sure to replace c:\xalan-j_2_1_0 with the correct path to the Xalan JAR files. Ex-
ecute startWeblogic.cmd and open your Web browser to localhost:7001/
bookstore to access the bookstore.

21.5 Deploying the Deitel Bookstore on IBM WebSphere
This section presents the configuration and deployment of the Deitel Bookstore application
on IBM WebSphere 4.0. Consult the WebSphere documentation for specific information

21 <!-- individual reference map -->
22 <ejb-reference-description>
23
24 <!-- reference name defined in web.xml -->
25 <ejb-ref-name>ejb/ShoppingCart</ejb-ref-name>
26
27 <!-- JNDI name specified within weblogic-ejb-jar.xml -->
28 <jndi-name>ejb/ShoppingCart</jndi-name>
29 </ejb-reference-description>
30
31 <!-- individual reference map -->
32 <ejb-reference-description>
33 <ejb-ref-name>ejb/Product</ejb-ref-name>
34 <jndi-name>ejb/Product</jndi-name>
35 </ejb-reference-description>
36
37 <!-- individual reference map -->
38 <ejb-reference-description>
39 <ejb-ref-name>ejb/Customer</ejb-ref-name>
40 <jndi-name>ejb/Customer</jndi-name>
41 </ejb-reference-description>
42
43 <!-- individual reference map -->
44 <ejb-reference-description>
45 <ejb-ref-name>ejb/Order</ejb-ref-name>
46 <jndi-name>ejb/Order</jndi-name>
47 </ejb-reference-description>
48
49 </reference-descriptor>
50
51 </weblogic-web-app>
52 <!-- end servlet descriptor -->

Fig. 21.13Fig. 21.13Fig. 21.13Fig. 21.13 Weblogic.xml Web application deployment descriptor (part 2 of 2).

1192 Application Servers Chapter 21

on installing the application server on your system. We assume that Cloudscape is installed
in C:\cloudscape_3.6, the WebSphere application server is installed in c:\Web-
Sphere\AppServer and the IBM HTTP Server (included with installation) is installed
in c:\IBM HTTP Server. You also must copy xalan.jar and xerces.jar to
c:\WebSphere\AppServer\lib\ext, which ensures that our application has ac-
cess to the correct XML parser and XSL transformer.

Next, run the StartServerBasic script from the WebSphere\App-
Server\bin directory to launch the application server. When the server completes
loading, open the URL localhost:9090/admin in a Web browser. You may specify
any user name in the login page—the name is used to track changes, not for security. To
configure the JDBC driver and data source, select Resources > JDBC Drivers then
click the New button from the right pane. Enter c:\cloudscape_3.6\lib\cloud-
scape.jar for the Server Class Path, Bookstore for the Name and
COM.cloudscape.core.LocalConnectionPoolDataSource for the Imple-
mentation Class Name. After entering these values, click OK and save the configura-
tion. Expand the recently created driver (Bookstore) and select Data Sources. Click
the New button, and fill in the fields as follows. The Name is Bookstore, the JNDI
Name is jdbc/Bookstore, the Database Name should be the full path to the data
base (e.g., c:\cloudscape_3.6\databases\bookstore\). Click OK and save
the configuration.

Next, we must generate the deployment descriptors for WebSphere. WebSphere
includes a graphical tool for creating deployment descriptors. Open the Application
Assembly Tool by executing the assembly script in the WebSphere/AppServer/
bin directory. When the tool loads, select the Existing tab from the welcome window.
Then, enter the full path to bookstore.ear, or select browse to locate the file. Click
Open to open the file and begin deployment configuration.

In the left pane, expand Bookstore > EJB modules > EJBs > Session Beans
> Shopping Cart. Select EJB ShoppingCart and choose the Bindings tab from the
main pane (the bottom right pane). Enter ShoppingCart as the JNDI Name. Select
EJB References from the upper right pane. Be sure ejb/Order is selected and use the
Link drop-down box to select the appropriate reference. You also must select the Bind-
ings tab from the main pane and enter Order for the reference’s JNDI Name. Complete
the same steps to map the reference ejb/Product to the Product EJB.

Select Bookstore > EJB Modules > EJBs > Entity Beans > Address. Select
the Bindings tab from the main pane and enter the JNDI Name Address, and set the
datasource JNDI Name jdbc/Bookstore. Select EJB References from the upper
pane and map ejb/SequenceFactory to SequenceFactory with JNDI Name
SequenceFactory. Configure the EJB references for the other EJBs using the same
process.

After defining the JNDI names and EJB references for the Customer EJB select
Method Extensions. You must define custom finder queries for methods findBy-
UserID and findByLogin. To define a custom query, select each method, check the
Finder Descriptor box and specify the appropriate WHERE clause (Fig. 21.14). The
WHERE clause option will fill in the SELECT and FROM SQL statements for you—all you
must define is the WHERE clause. WebSphere determines the table name from the EJB
name, thus to specify a different table you must rename the EJB. When deploying the Deitel

Chapter 21 Application Servers 1193

Bookstore be sure to select the Order EJB and change the EJB name to Customer-
Orders, which is the table for storing order information.

To configure the servlets in WebSphere you must select Bookstore > Web Mod-
ules > Servlets > EJB references and map each reference as you did for each EJB.
After you map the references you can generate the code for deployment. Select the File
menu and Generate code for deployment. Specify the Deployed module location
text field to the path in which to save the deployed EAR. Enter the path to xalan.jar
and xerces.jar in the Dependent Classpath field. The Database type is
Generic/SQL-92, Database Name is jdbc/Bookstore and Schema is APP. Fill
in these values then select the Generate Now button.

You may now deploy the application in the administration tool Web page (local-
host:9090/admin). In the left pane, select Nodes > Computer Name > Enter-
prise Applications. Click the Install button then use the Browse button to locate the
deployed EAR file (e.g., Deployed_Bookstore.ear) and click Next. The following
page shows the JNDI name mapping—be sure to double check each value then select Next.
The following page shows each EJB reference. The following page verifies the database
mappings. Each field must contain the value jdbc/Bookstore. The Database type
must be Generic/SQL-92 and the Schema name is APP. The next page defines the
servlet mapping to default_host. In the following page, uncheck the option to rede-
ploy the application. Click Next, confirm the values and click Finish to deploy. After the
application is deployed, click the link at the top of the page to regenerate the Web server
plug-in configuration. Save the configuration and restart the server by running the stop-
Server script followed by the startServerBasic script. Finally, open the URL
localhost/bookstore to browse the Deitel Bookstore.

21.6 Internet and World Wide Web Resources
serverwatch.internet.com/appservers.html
Application server news site, also includes reviews and comparisons of popular application servers.

www.appserver-zone.com
The Application Server Zone Web site provides technical articles, product comparisons and other in-
formation related to application servers.

java.sun.com/j2ee
Sun’s J2EE site, includes the J2EE specification, J2EE news and SDK download and support.

Bean method Where clause

Customer findByLogin userID = ? AND password = ?

Customer findByUserID userID = ?

Order findByCustomerID customerID = ?

OrderProduct findByOrderID orderID = ?

Product findAllProducts 1 = 1

Product findByTitle title like ?

Fig. 21.14Fig. 21.14Fig. 21.14Fig. 21.14 WHERE clauses for bookstore finder methods.

1194 Application Servers Chapter 21

SUMMARY
• The Java 2 Enterprise Edition is a specification for enterprise runtime environments. Although Sun

provides a reference implementation of this specification, real-world systems must use an appli-
cation server from a commercial vendor.

• Sun Microsystems, along with a large community of application-server vendors, developed the
Java 2 Enterprise Edition specification through the Java Community Process. J2EE defines an ap-
plication server platform and supporting APIs for building enterprise applications that are portable
across application servers, and, because they use Java, across platforms.

• The J2EE specification can be broken down into several pieces, including API support, security,
transaction management and deployment processes. An application server vendor is required to
provide runtime support for the APIs of the J2EE platform.

• To be J2EE certified, an application server must implement the minimum functionality that the
J2EE specification defines. Application server vendors also can provide functionality that goes be-
yond the J2EE specification to differentiate their products.

• BEA provides a general-purpose application server, balancing speed with stability and solid sup-
port for various features beyond the J2EE specification, including data pools, “hot” deployment
clustering, failover support for EJBs and Web components and load balancing.

• For single-server environments, WebLogic provides multi-pooling—a service that distributes
transactions among data sources. Whereas a connection pool is limited to a single data source;
multi-pooling allows an application to access several pools, thus distributing requests among mul-
tiple data sources.

• iPlanet E-Commerce Solutions is an alliance between Netscape Communications and Sun Micro-
systems. iPlanet’s primary goals are speed, stability and full J2EE compliance. iPlanet provides
failover support, connection pooling and several unique features.

• The Web connector controls load balancing in iPlanet application server. The Web connector man-
ages communication between the application server and the Web server. The Web connector dis-
tributes requests among server instances based on server response time.

• iPlanet includes support for “sticky” load balancing—if a components is flagged as “sticky,” then
the normal load-balancing algorithm will be bypassed and the component will always be executed
on the “sticky” machine.

• iPlanet uses the Lightweight Directory Access Protocol (LDAP) to manage security. Users may
be assigned group and individual permissions to access parts of applications. Configuring LDAP
permissions enables tight control over user permissions.

• IBM WebSphere is a popular application server that is approaching BEA’s WebLogic in market
share. Version 4.0 provides a simple user interface for administration and deployment, and a focus
on speed and scalability. WebSphere includes IBM’s version of the Apache Web server, failover
support, data pooling, and user-level security controls.

• JBoss, combined with the Apache Software Foundation’s Tomcat servlet container, currently is
the only J2EE 1.2-compliant, open-source application server. JBoss aims to maintain compliance
with future J2EE specifications. Currently, JBoss includes most features of commercial applica-
tion servers.

TERMINOLOGY
Access Control List (ACL) BEA Weblogic
application server bean-field element
attribute-map cache-strategy element

Chapter 21 Application Servers 1195

WORKS CITED
1. “BEA WebLogic Server® Datasheet,” <www.bea.com/products/weblogic/
server/datasheet.shtml>

2. “Frequently Asked Questions,” <www.jboss.org/faq.jsp>.

3. Shannon, B., “Java™ 2 Platform Enterprise Edition Specification, v1.2,” 17 December 1999
<java.sun.com/j2ee/download.html>

4. “Using WebLogic Server RDBMS Persistence,” 2000 <www.weblogic.com/docs51/
classdocs/API_ejb/EJB_environment.html#1022233>.

5. “weblogic-cmp-rdbms-jar.xml Properties,” 2000 <www.weblogic.com/
docs51/classdocs/API_ejb/EJB_reference.html#1026608>.

data pool object-link element
data source persistence-descriptor element
dbms-column element persistence-type element
deployment descriptor persistence-use element
description element pool-name element
ejb-name element read-timeout-seconds element
ejb-reference-description

element
reference-descriptor element
reference-descriptor element

ejb-ref-name element
ejbStore method

stateful-session-persistent-
store-dir element

failover sticky load balancing
finder element table-name element
finder-list element three-tier
finder-query element transaction management
hot deployment transaction-descriptor element
IBM WebSphere trans-timeout-seconds element
iPlanet Application Server type-identifier element
J2EE specification type-storage element
JBoss type-version element
jndi-name element Web connector
life cycle WebLogic Query Language (WQL)
load balancing WebLogic_CMP_RDBMS element
max-beans-in-cache element weblogic-ejb-jar element
method-name element weblogic-enterprise-bean element
method-param element weblogic-rdbms-bean element
method-params element weblogic-web-app element
multi pool

22
Jini

Objectives
• To understand the Jini Technology Architecture.
• To be able to identify the major components of a Jini

solution.
• To be able to implement Jini services and register

those services with Jini lookup services.
• To be able to write a Jini client.
• To be able to use Jini helper classes to simplify service

implementations.
The real voyage of discovery consists not in seeking new
landscapes, but in having new eyes.
Marcel Proust

For, when with beauty we can virtue join,
We paint the semblance of a form divine.
Matthew Prior

…To tell your name the livelong day
To an admiring bog.
Emily Dickinson

…And summer’s lease hath all too short a date.
William Shakespeare

Chapter 22 Jini 1197

22.1 Introduction
Many network devices provide services to network clients. For example, a network printer
provides printing services to many clients by allowing them to share the printer. Similarly,
a Web server provides a service by allowing many clients to access documents over a net-
work. We can extend this idea of providing services beyond computer-based networks and
into home-based networks. For example, when you arrive home, your car could use a wire-
less network to notify your home’s lighting service to turn on the lights over the walkway,
so you can walk into your home safely. Each service mentioned here has a well-defined in-
terface. The network-printing service provides an interface that enables applications to
print documents. A Web server provides an HTTP interface that enables Web browsers to
download documents. Your home’s lighting service provides an interface that enables other
devices on the network to turn the lights on and off.

To use a service, a client must be able to discover that a service exists and must know
the interface for interacting with the service. For example, your car must be able to discover
that your home provides a lighting service and must know the service’s interface to interact
with the lighting service. However, the car need not know the implementation of the under-
lying lighting service.

Outline

22.1 Introduction
22.2 Installing Jini
22.3 Configuring the Jini Runtime Environment
22.4 Starting the Required Services
22.5 Running the Jini LookupBrowser
22.6 Discovery

22.6.1 Unicast Discovery
22.6.2 Multicast Discovery

22.7 Jini Service and Client Implementations
22.7.1 Service Interfaces and Supporting Classes
22.7.2 Service Proxy and Service Implementations
22.7.3 Registering the Service with Lookup Services
22.7.4 Jini Service Client

22.8 Introduction to High-Level Helper Utilities
22.8.1 Discovery Utilities
22.8.2 Entry Utilities
22.8.3 Lease Utilities
22.8.4 JoinManager Utility
22.8.5 Service Discovery Utilities

22.9 Internet and World Wide Web Resources
Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises •
Bibliography

1198 Jini Chapter 22

Jini extends RMI (Chapter 13) to provide services, such as those mentioned above, to a
network. Jini services are plug-and-play—clients can discover services on the network
dynamically, transparently download classes required to use those services, then begin inter-
acting with those services. Jini, like RMI, requires clients to know the interface of a service
to use that service. However, RMI’s dynamic class-downloading capability enables Jini cli-
ents to use services without installing special driver software for those services in advance.
For Jini clients to discover and use Jini services, standardized interfaces for common services
must be developed. Many such interfaces are under development now. For example, printer
manufacturers are working on a standard interface fofsr Jini-based printing services.

In this chapter, we introduce Jini technology to build plug-and-play, network-based ser-
vices. We begin with Jini lookup services, which enable clients to discover other services on
the network. We build a simple Jini service that provides information about fictitious profes-
sional seminars offered by Deitel & Associates, Inc. and we build a simple Jini client to use
that service. The chapter ends with introductions to various Jini utility classes that facilitate
discovering lookup services, registering Jini services and building Jini clients. After com-
pleting this chapter, you will be able to build simple Jini services and clients that interact with
those services. [Note: The commands to execute the examples in this chapter often are quite
long. For this reason, we provide batch files containing the commands. These batch files can
be found with the examples on the CD that accompanies this book. You can modify these
batch files as specified in the text, then use them to execute the programs.]

A new technology that is generating exceitement in the computing industry is peer-to-
peer computing, which enables communication between computers without connecting
through a centralized server. In Chapter 28, we use the Jini technology presented in this
chapter as one means of implementing a peer-to-peer instant-messaging application.

22.2 Installing Jini
The basic software requirements for Jini include the Java 2 Standard Edition (J2SE) and the
Jini Technology Starter Kit. If you are going to write commercial Jini services and want to
test their compatibility with the Jini platform, you also need to download the Jini Technol-
ogy Core Platform Compatibility Kit (Jini TCK).

The Jini Starter Kit has three components—the Jini Technology Core Platform (JCP),
the Jini Technology Extended Platform (JXP) and the Jini Software Kit (JSK). The JCP
contains the fundamental Jini interfaces and classes. The JXP provides helper utilities for
implementing Jini services and clients. The JSK contains an implementation of the services
specified in the JCP and the JXP. The JSK also includes a JavaSpaces technology imple-
mentation. We discuss JavaSpaces in Chapter 23.

Jini can be downloaded from Sun’s Web site at:

www.sun.com/communitysource/jini/download.html

Downloading Jini requires a free registration. After completing the registration, download
and extract JINI-1.1-G-CS.zip, which contains the Jini Technology Starter Kit. At
the time of this writing, the latest version of Jini is 1.1.

22.3 Configuring the Jini Runtime Environment
To compile and execute Jini services and clients the JAR files jini-core.jar, jini-
ext.jar and sun-util.jar must be included in the CLASSPATH environment vari-

Chapter 22 Jini 1199

able. These three JAR files are in the lib directory of the Jini Starter Kit—they correspond
to the Jini Technology Core Platform, the Jini Technology Extended Platform and the Jini
Software Kit, respectively. To set the CLASSPATH environment variable on Windows
platforms, enter

set CLASSPATH=C:\jini1_1\lib\jini-core.jar;C:\jini1_1\lib\
jini-ext.jar;C:\jini1_1\lib\sun-util.jar;%CLASSPATH%;.

in a command window. To set the CLASSPATH environment variable on most UNIX sys-
tems, enter

set CLASSPATH=/jini1_1/lib/jini-core.jar:/jini1_1/lib/
jini-ext.jar:/jini1_1/lib/sun-util.jar:$CLASSPATH:.

export CLASSPATH

in a command window. Note that you will need to do this in every command window from
which you intend to use Jini unless you set the CLASSPATH permanently on your system.
See your operating system’s documentation for information on setting environment vari-
ables. These are the only Jini JAR files that should be in the CLASSPATH. Be sure not to
include other JAR files from the Jini distribution. If you extracted the Jini files to a different
directory, be sure to specify the appropriate directory name.

22.4 Starting the Required Services
Jini depends heavily on a number of network services at run time. Jini uses Java and RMI to
provide facilities for downloading resources from the network and for moving Java objects
from one JVM to another on demand. To achieve these capabilities, Jini provides various
support services. The Jini distribution comes with three services that must be running cor-
rectly before executing Jini applications. The following required services must be started:

1. A Web server to enable Jini clients to download class files through RMI, so the
clients can access Jini services dynamically.

2. The RMI activation daemon (rmid) to enable the RMI infrastructure that allows
Jini clients to communicate with Jini services. The RMI activation daemon en-
ables Activatable services to function properly.

3. A lookup service to maintain information about available Jini services, and to en-
able clients to discover and use those services.

Testing and Debugging Tip 22.1
The Web server and rmid must be executing (they can be started in any order) before start-
ing the lookup service. 22.1

The Jini Technology Core Platform implementation includes the StartService
GUI tool for launching required services. Before running the StartService tool, be
sure to set the CLASSPATH environment variable properly as specified in Section 22.3. To
start the GUI on Windows, enter the following at a command prompt:

java -classpath %CLASSPATH%;C:\jini1_1\lib\jini-examples.jar
 com.sun.jini.example.launcher.StartService

1200 Jini Chapter 22

Figure 22.1 shows the StartService user interface. Jini provides a basic property
file for configuring the StartService tool. For Windows, the property file is
jini1_1\example\launcher\jini11_win32.properties. To load this
property file, go to the File menu, select Open Property File and select the property file
from the appropriate directory.

Configure the Web Server
To configure the Web server, select the WebServer panel. Figure 22.2 shows the values
for configuring the Web server. If you install the Jini Starter Kit in a directory other than
C:\jini1_1, be sure to enter the appropriate directory name. Note the Port number in
Fig. 22.2, which is required in each of the later examples.

Fig. 22.1Fig. 22.1Fig. 22.1Fig. 22.1 StartService window.

Fig. 22.2Fig. 22.2Fig. 22.2Fig. 22.2 WebServer configuration tab.

Chapter 22 Jini 1201

Configure the RMI Activation Daemon
To configure the RMI activation daemon (rmid), select the RMID panel. Figure 22.3 shows
the default values used to configure the RMI activation daemon. If you want to use your own
policy, or you want to add other options (i.e., port number or log directory), you can put all
of them in the Options parameter. Use a single space to separate the options. Figure 22.4
shows a sample that specifies the directory in which rmid will write its log files.

Configure the Lookup Service
To configure the lookup service, select the Reggie panel. Figure 22.5 shows the configu-
ration values. Replace hostname in the Codebase field with the name or IP address of
your computer. Replace the port number (8081) with the port number you specified in the
Web server’s configuration (e.g., 9000). Also, be sure to specify for Log Directory a
directory that actually exists on your computer, or create a new directory, to avoid excep-
tions when running the lookup service. The Groups value in this example (public) spec-
ifies that the lookup service supports any clients on the network. You can define other
values that can be used to restrict the set of clients supported by the lookup service.

Fig. 22.3Fig. 22.3Fig. 22.3Fig. 22.3 RMID configuration tab.

Fig. 22.4Fig. 22.4Fig. 22.4Fig. 22.4 Specifying the RMID log directory.

1202 Jini Chapter 22

Common Programming Error 22.1
Specifying the local computer’s name or using a file: URL for the Codebase is an error.
Use an http: URL with a fully qualified name or IP address. 22.1

Common Programming Error 22.2
Starting the lookup service without creating a log directory causes exceptions at run-time.
Create the log directory before starting the lookup service. 22.2

Common Programming Error 22.3
Create different log directories if you run multiple lookup service instances. Failure to do so
can cause an exception that says the directory exists when trying to start a lookup service. 22.3

Starting Required Services
To run the required services, select the Run panel in the StartService window
(Fig. 22.6). Click the Start RMID button to start the RMI activation daemon. Click the
Start WebServer button to start the Web server. Click the Start Reggie button to start
the lookup service. Remember to start the RMI activation daemon and the Web server be-
fore starting the lookup service.

Fig. 22.5Fig. 22.5Fig. 22.5Fig. 22.5 Reggie lookup service configuration tab.

Fig. 22.6Fig. 22.6Fig. 22.6Fig. 22.6 Run panel for starting and stopping Jini basic services.

Chapter 22 Jini 1203

22.5 Running the Jini LookupBrowser
After starting these services, use the Jini LookupBrowser to test your configuration. The
following command starts the browser on Windows:

java -cp c:\jini1_1\lib\jini-examples.jar
 -Djava.security.policy=c:\jini1_1\example\browser\policy
 -Djava.rmi.server.codebase=http://hostname:port/
jini-examples-dl.jar
 com.sun.jini.example.browser.Browser

where hostname is the hostname running the Web server and port is the port number for the
Web server (e.g., 9000).

You also can start the browser via the StartService GUI. Select the LookupBrowser
panel. Replace hostname with the name or IP address of the computer on which the Web
server is running. Change the port number if you specified a different one when you started
the Web server. Then go to the Run panel and click the Start LookupBrowser button.
Figure 22.7 shows the LookupBrowser panel in the StartService window.

Figure 22.8 shows the result of running the LookupBrowser sample. This output
indicates that there is one lookup service registered with rmid. Actually, this uses a dis-
covery protocol to find the lookup service. If you set up two lookup services, you would
see “2 registrars, not selected.” The number of registrars found is equal to the number
of lookup services. If you see “no registrar to select,” the part of the prior configuration
was performed incorrectly. In this case, check whether the lookup service started, then
check that you specified the correct Codebase in the Reggie panel.

If you click the Registrar menu, you should see the hostname (or IP address) and port
number on which the lookup service registered. In Fig. 22.9, the hostname is DRAGONFLY.
The default port number was used, so no port number appears in this screen capture.

Fig. 22.7Fig. 22.7Fig. 22.7Fig. 22.7 LookupBrowser configuration tab.

1204 Jini Chapter 22

22.6 Discovery
The Jini lookup service is the heart of a Jini community. The process of finding the lookup
services and obtaining references to them is called discovery. A service registers itself with
one or more lookup services to make itself available to clients. To do so, the services must
first discover the lookup services. Clients search the lookup services to locate the services
they require. To do so, the clients must first discover the lookup services. Hence discovery
is a common task for both services and clients.

Discovery distinguishes Jini technology from RMI. In RMI, you must know in
advance where to register an object. In Jini, you do not need to know where—just how. The
discovery process determines where, but hides the details from the developer. Discovery
can be accomplished using either unicast discovery or multicast discovery.

22.6.1 Unicast Discovery

Unicast discovery, or locator discovery, enables a Jini service or client to discover lookup
services on a specific host. The Jini service or client sends a discovery request to the com-
puter, which responds with a remote reference to the lookup service running on that com-
puter on the given port.

The application of Fig. 22.10 demonstrates unicast discovery. Class UnicastDis-
covery uses class net.jini.core.discovery.LookupLocator to perform
unicast discovery. Lines 17–18 import class LookupLocator, for discovering lookup
services, and interface ServiceRegistrar (package net.jini.core.lookup),
which represents a lookup service. The UnicastDiscovery constructor (lines 29–52)
creates JButton discoverButton and JTextArea outputArea. When the user
clicks discoverButton, line 43 invokes method discoverLookupServices,
which displays information about discovered lookup services in outputArea.

Fig. 22.8Fig. 22.8Fig. 22.8Fig. 22.8 LookupBrowser application window.

Fig. 22.9Fig. 22.9Fig. 22.9Fig. 22.9 Registrar menu for viewing computers that provide lookup services.

Chapter 22 Jini 1205

1 // UnicastDiscovery.java
2 // UnicastDiscovery is an application that demonstrates Jini
3 // lookup service discovery for a known host (unicast).
4 package com.deitel.advjhtp1.jini.discovery;
5
6 // Java core packages
7 import java.rmi.*;
8 import java.net.*;
9 import java.io.*;

10 import java.awt.*;
11 import java.awt.event.*;
12
13 // Java extension packages
14 import javax.swing.*;
15
16 // Jini core packages
17 import net.jini.core.discovery.LookupLocator;
18 import net.jini.core.lookup.ServiceRegistrar;
19
20 public class UnicastDiscovery extends JFrame {
21
22 private JTextArea outputArea = new JTextArea(10, 20);
23 private JButton discoverButton;
24
25 // hostname for discovering lookup services
26 private String hostname;
27
28 // UnicastDiscovery constructor
29 public UnicastDiscovery(String host)
30 {
31 super("UnicastDiscovery Output");
32
33 hostname = host; // set target hostname for discovery
34
35 // create JButton to discover lookup services
36 discoverButton = new JButton("Discover Lookup Services");
37 discoverButton.addActionListener(
38 new ActionListener() {
39
40 // discover lookup services on given host
41 public void actionPerformed(ActionEvent event)
42 {
43 discoverLookupServices();
44 }
45 }
46);
47
48 Container contentPane = getContentPane();
49 contentPane.add(outputArea, BorderLayout.CENTER);
50 contentPane.add(discoverButton, BorderLayout.NORTH);
51
52 } // end UnicastDiscovery constructor

Fig. 22.10Fig. 22.10Fig. 22.10Fig. 22.10 UnicastDiscovery performs unicast discovery to locate Jini lookup
services (part 1 of 3).

1206 Jini Chapter 22

53
54 // discover lookup services on given host and get details
55 // about each lookup service from ServiceRegistrar
56 public void discoverLookupServices()
57 {
58 // construct Jini URL
59 String lookupURL = "jini://" + hostname + "/";
60
61 // connect to the lookup service at lookupURL
62 try {
63 LookupLocator locator = new LookupLocator(lookupURL);
64 outputArea.append("Connecting to " + lookupURL + "\n");
65
66 // perform unicast discovery to get ServiceRegistrar
67 ServiceRegistrar registrar =
68 locator.getRegistrar();
69
70 // print lookup service information and
71 outputArea.append("Got ServiceRegistrar\n" +
72 " Lookup Service Host: " + locator.getHost() + "\n" +
73 " Lookup Service Port: " + locator.getPort() + "\n");
74
75 // get groups that lookup service supports
76 String[] groups = registrar.getGroups();
77 outputArea.append("Lookup service supports " +
78 + groups.length + " group(s):\n");
79
80 // get group names; if empty, write public
81 for (int i = 0; i < groups.length ; i++) {
82
83 if (groups[i].equals(""))
84 outputArea.append(" public\n");
85
86 else
87 outputArea.append(" " + groups[i] + "\n");
88 }
89 }
90
91 // handle exception if URL is invalid
92 catch (MalformedURLException exception) {
93 exception.printStackTrace();
94 outputArea.append(exception.getMessage());
95 }
96
97 // handle exception communicating with ServiceRegistrar
98 catch (RemoteException exception) {
99 exception.printStackTrace();
100 outputArea.append(exception.getMessage());
101 }
102

Fig. 22.10Fig. 22.10Fig. 22.10Fig. 22.10 UnicastDiscovery performs unicast discovery to locate Jini lookup
services (part 2 of 3).

Chapter 22 Jini 1207

Method discoverLookupServices (lines 56–115) locates services on a partic-
ular computer. Line 59 creates a String that represents the URL for the computer running
the lookup services. This URL must specify the jini protocol, a hostname and, optionally,
the port on which to connect (e.g., jini://mycomputer.mydomain.com:1234). If
the URL does not specify a port, the default port 4160 is used. Class UnicastDis-
covery reads the hostname from a command-line argument and stores it in instance vari-
able hostname. Line 63 creates a new LookupLocator for discovering lookup
services. This LookupLocator constructor takes as an argument the Jini URL for the

103 // handle ClassNotFoundException obtaining ServiceRegistrar
104 catch (ClassNotFoundException exception) {
105 exception.printStackTrace();
106 outputArea.append(exception.getMessage());
107 }
108
109 // handle IOException obtaining ServiceRegistrar
110 catch (IOException exception) {
111 exception.printStackTrace();
112 outputArea.append(exception.getMessage());
113 }
114
115 } // end method discoverLookupServices
116
117 // launch UnicastDiscovery application
118 public static void main(String args[])
119 {
120 // set SecurityManager
121 if (System.getSecurityManager() == null)
122 System.setSecurityManager(
123 new RMISecurityManager());
124
125 // check command-line arguments for hostname
126 if (args.length != 1) {
127 System.err.println(
128 "Usage: java UnicastDiscovery hostname");
129 }
130
131 // create UnicastDiscovery for given hostname
132 else {
133 UnicastDiscovery discovery =
134 new UnicastDiscovery(args[0]);
135
136 discovery.setDefaultCloseOperation(EXIT_ON_CLOSE);
137 discovery.pack();
138 discovery.setVisible(true);
139 }
140 }
141 }

Fig. 22.10Fig. 22.10Fig. 22.10Fig. 22.10 UnicastDiscovery performs unicast discovery to locate Jini lookup
services (part 3 of 3).

1208 Jini Chapter 22

computer running the lookup service. A MalformedURLException occurs if the URL
specified does not follow the appropriate format.

Line 68 invokes method getRegistrar of class LookupLocator to perform uni-
cast discovery. Method getRegistrar returns a ServiceRegistrar, which repre-
sents a lookup service. An overloaded version of method getRegistrar takes as an
integer argument the maximum number of milliseconds to wait for the unicast discovery to
locate a ServiceRegistrar before issuing a timeout.

Lines 71–88 display information about the discovered lookup service in output-
Area. Lines 72–73 invoke methods getHost and getPort of class LookupLocator
to retrieve the hostname and port number where the lookup service was discovered. Line
76 invokes method getGroups of interface ServiceRegistrar to retrieve an array
of supported group names. An empty string indicates the public group.

 Method main (lines 118–140) launches the UnicastDiscovery application.
Lines 121–122 install an RMISecurityManager to enable network class loading—
downloading executable code over the network. When class UnicastDiscovery dis-
covers a new lookup service, the classes that implement that lookup service are loaded over
the network. This class loading is a security risk, because the code will execute locally. A
malicious programmer could access, modify or destroy sensitive data on the local machine.
Installing a SecurityManager restricts downloaded code from performing tasks that
are not granted explicitly in the current security policy. For more information on setting
security policies, please see Chapter 7, Security. For the examples in this chapter, we use
the policy file of Fig. 22.11, which grants AllPermission to the code in each example.
This is a security risk and should not be used with production applications.

Lines 126–128 of Fig. 22.10 check the command-line arguments for a hostname and
print out usage instructions if no hostname is provided. Lines 133–138 create a new Uni-
castDiscovery instance and display the user interface.

Before executing class UnicastDiscovery, start rmid, the Web server and the
Reggie lookup service (if necessary, review Section 22.4). To execute the UnicastDis-
covery application, enter

java -Djava.security.policy=policy
 com.deitel.advjhtp1.jini.discovery.UnicastDiscovery host

where policy is a security file that specifies the security policy and host is the hostname or
IP address of the computer running the lookup service. Be sure that you execute this com-
mand from the directory that contains the com.deitel.advjhtp1 package structure,
and be sure that the CLASSPATH environment variable includes the current directory.
Figure 22.12 shows the running application.

1 // policy.all
2 // grant AllPermission to all code (DANGEROUS!)
3 grant {
4 permission java.security.AllPermission "", "";
5 };

Fig. 22.11Fig. 22.11Fig. 22.11Fig. 22.11 Policy file that grants AllPermission to all code.

Chapter 22 Jini 1209

22.6.2 Multicast Discovery

Multicast discovery, or group discovery, enables a Jini service or client to discover lookup
services when the particular host running the lookup service is not known. Recall that when
using unicast discovery, the Jini service or client must request lookup services from a par-
ticular host. A multicast discovery request uses network multicast to discover nearby look-
up services. Lookup services, in turn, periodically issue multicast announcements to notify
interested Jini services and clients that the lookup services are available.

The application of Fig. 22.13 demonstrates multicast discovery Class Multicast-
Discovery uses class net.jini.discovery.LookupDiscovery to perform dis-
covery. Class MulticastDiscovery implements the interface DiscoveryListener
(line 22) to enable the class MulticastDiscovery to receive DiscoveryEvents—
notifications of discovered lookup services. Line 36 creates a LookupDiscovery. The
LookupDiscovery constructor takes as an argument an array of Strings in which each
element is the name of a group. The LookupDiscovery object will discover all nearby
lookup services that support the groups specified in this String array. Line 37 creates a new
String array with an empty string as its only element. This indicates that the LookupDis-
covery instance should discover lookup services that support the “public” group. Line
43 invokes method addDiscoveryListener of class LookupDiscovery to register
the MulticastDiscovery object as the listener for DiscoveryEvents.

Class LookupDiscovery invokes method discovered (lines 56–114) when
LookupDiscovery locates new lookup services. Line 59 invokes method getRegis-
trars of class DiscoveryEvent to obtain an array of discovered ServiceRegis-
trars. Lines 74–80 create a new TextAppender that contains information about a
discoveredServiceRegistrar. Class TextAppender (lines 130–148) appends
text to the outputArea. Lines 75–80 obtain information about the ServiceRegis-
trar and build an output string. Line 83 invokes method invokeLater of class
SwingUtilities with the TextAppender as an argument to append the text to out-
putArea. Lines 91–97 obtain group information from the ServiceRegistrar and
lines 100–101 append the group information to outputArea.

Class LookupDiscovery invokes method discarded (lines 118–126) when a
lookup service should be discarded because it is no longer available or because it no longer
matches the set of groups in which the Jini service or client is interested. Lines 120–121
invoke method getRegistrars of class DiscoveryEvent to obtain an array of dis-
carded ServiceRegistrars. Lines 123–125 add the number of discarded Service-
Registrars to the display.

Fig. 22.12Fig. 22.12Fig. 22.12Fig. 22.12 UnicastDiscovery application output.

1210 Jini Chapter 22

1 // MulticastDiscovery.java
2 // MulticastDiscovery is an application that demonstrates Jini
3 // lookup service discovery using multicast.
4 package com.deitel.advjhtp1.jini.discovery;
5
6 // Java core packages
7 import java.rmi.*;
8 import java.io.*;
9 import java.awt.*;

10 import java.awt.event.*;
11
12 // Java extension packages
13 import javax.swing.*;
14
15 // Jini core packages
16 import net.jini.core.lookup.ServiceRegistrar;
17
18 // Jini extension packages
19 import net.jini.discovery.*;
20
21 public class MulticastDiscovery extends JFrame
22 implements DiscoveryListener {
23
24 // number of lookup services discovered through multicast
25 private int servicesFound = 0;
26
27 private JTextArea outputArea = new JTextArea(10, 20);
28
29 // MulticastDiscovery constructor
30 public MulticastDiscovery ()
31 {
32 super("MulticastDiscovery");
33
34 // discover lookup services in public group using multicast
35 try {
36 LookupDiscovery lookupDiscovery = new LookupDiscovery(
37 new String[] { "" });
38
39 outputArea.append("Finding lookup services for " +
40 "public group ...\n");
41
42 // listen for DiscoveryEvents
43 lookupDiscovery.addDiscoveryListener (this);
44 }
45
46 // handle exception discovering lookup services
47 catch (IOException exception) {
48 exception.printStackTrace();
49 }
50

Fig. 22.13Fig. 22.13Fig. 22.13Fig. 22.13 MulticastDiscovery performs multicast discovery to locate Jini
lookup services (part 1 of 4).

Chapter 22 Jini 1211

51 getContentPane().add(new JScrollPane(outputArea),
52 BorderLayout.CENTER);
53 }
54
55 // receive notification of found lookup services
56 public void discovered (DiscoveryEvent event)
57 {
58 // get the ServiceRegistrars for found lookup services
59 ServiceRegistrar[] registrars = event.getRegistrars();
60 int order = 0;
61
62 // get the information for each lookup service found
63 for (int i = 0; i < registrars.length ; i++) {
64 ServiceRegistrar registrar = registrars[i];
65
66 if (registrar != null) {
67
68 // append information about discovered services
69 // to outputArea
70 try {
71 order = servicesFound + i + 1;
72
73 // get the hostname and port number
74 Runnable appender = new TextAppender(
75 "Lookup Service " + order + ":\n" +
76 " Host: " +
77 registrar.getLocator().getHost() + "\n" +
78 "\n Port: " +
79 registrar.getLocator().getPort() + "\n" +
80 " Group support: ");
81
82 // append to outputArea on event-dispatch thread
83 SwingUtilities.invokeLater(appender);
84
85 // get the group(s) the lookup service served
86 String[] groups = registrar.getGroups();
87
88 StringBuffer names = new StringBuffer();
89
90 // get the group names, if empty write public
91 for (int j = 0; j < groups.length ; j++) {
92
93 if (groups[j].equals(""))
94 names.append("public\t");
95 else
96 names.append(groups[j] + "\t");
97 }
98
99 // append group names to outputArea
100 SwingUtilities.invokeLater(
101 new TextAppender(names + "\n"));
102 }

Fig. 22.13Fig. 22.13Fig. 22.13Fig. 22.13 MulticastDiscovery performs multicast discovery to locate Jini
lookup services (part 2 of 4).

1212 Jini Chapter 22

103
104 // handle exception communicating with ServiceRegistrar
105 catch (RemoteException exception) {
106 exception.printStackTrace();
107 }
108 }
109 }
110
111 // update number of services found
112 servicesFound = order;
113
114 } // end method discovered
115
116 // receive notification of discarded lookup services that
117 // are no longer valid
118 public void discarded(DiscoveryEvent event)
119 {
120 ServiceRegistrar[] discardedRegistrars =
121 event.getRegistrars();
122
123 SwingUtilities.invokeLater(
124 new TextAppender("Number of discarded registrars: " +
125 discardedRegistrars.length + "\n"));
126 }
127
128 // TextAppender is a Runnable class for appending
129 // text to outputArea on the event-dispatching thread.
130 private class TextAppender implements Runnable {
131
132 private String textToAppend; // text to append to outputArea
133
134 // TextAppender constructor
135 public TextAppender(String text)
136 {
137 textToAppend = text;
138 }
139
140 // append text to outputArea and scroll to bottom
141 public void run()
142 {
143 outputArea.append(textToAppend);
144 outputArea.setCaretPosition(
145 outputArea.getText().length());
146 }
147
148 } // end inner class TextAppender
149
150 // launch MulticastDiscovery application
151 public static void main(String args[])
152 {

Fig. 22.13Fig. 22.13Fig. 22.13Fig. 22.13 MulticastDiscovery performs multicast discovery to locate Jini
lookup services (part 3 of 4).

Chapter 22 Jini 1213

Before running this example, start several instances of the Reggie lookup service. If
there is only one lookup service running, the result is the same as the Unicast-
Discovery example (Fig. 22.10). To start multiple instances of the Reggie lookup ser-
vice, specify a different log directory in the Reggie panel, then click Start Reggie from
the Run panel. Try adding new group names to some of the lookup services (e.g., “test”
or “MyGroup”). To execute MulticastDiscovery, enter the following at a command
prompt:

java -Djava.security.policy=policy
 com.deitel.advjhtp1.jini.discovery.MulticastDiscovery

where policy is an appropriate security policy. Figure 22.14 shows the output window with
several lookup services running.

153 // set SecurityManager
154 if (System.getSecurityManager() == null)
155 System.setSecurityManager(
156 new RMISecurityManager());
157
158 MulticastDiscovery discovery = new MulticastDiscovery();
159 discovery.setDefaultCloseOperation(EXIT_ON_CLOSE);
160 discovery.pack();
161 discovery.setVisible(true);
162 }
163 }

Fig. 22.13Fig. 22.13Fig. 22.13Fig. 22.13 MulticastDiscovery performs multicast discovery to locate Jini
lookup services (part 4 of 4).

Fig. 22.14Fig. 22.14Fig. 22.14Fig. 22.14 MulticastDiscovery application output.

1214 Jini Chapter 22

22.7 Jini Service and Client Implementations
In this section, we develop a Jini service that provides information about fictitious seminars
offered at Deitel & Associates, Inc. Then, we create a client for that service. A Jini service
consists of several components, each of which contributes to the flexibility and portability
of the Jini architecture. A service proxy is an intermediary between a Jini service and its
clients. The seminar service proxy implements the service’s public interface, which de-
clares the methods that the service provides. The service proxy communicates with the ac-
tual service implementation through the service’s back-end interface, which defines
methods in the service implementation. A separate application discovers lookup services
and registers the Jini service, making the service available to Jini clients.

Software Engineering Observation 22.1
Providing a back-end interface for the service implementation is not required. However, us-
ing a back-end interface makes the Jini service more flexible, since the back-end implemen-
tation can be changed without requiring changes in the service proxy. 22.1

Software Engineering Observation 22.2
An alternative to providing a back-end interface and implementation is to implement the ser-
vice’s functionality in the service proxy itself. 22.2

A Jini client uses the lookup service discovery techniques presented earlier in this
chapter to discover lookup services. The Jini client then uses the discovered lookup services
to locate the desired Jini service. When the lookup service locates the service requested by
the Jini client, the lookup service serializes the service proxy and delivers the proxy to the
Jini client. The client can then invoke methods defined in the service’s public interface
directly on the service proxy, which implements that interface. The service proxy commu-
nicates with the service implementation through the back-end interface.

Our Jini service provides information about fictitious seminars offered at Deitel & Asso-
ciates, Inc. Information about these seminars is stored in instances of class Seminar
(Fig. 22.15). Interface SeminarInterface (Fig. 22.16) is the public interface for the Jini
service. Class SeminarProxy (Fig. 22.18) implements interface SeminarInterface
and communicates with the service implementation through BackendInterface
(Fig. 22.17). Class SeminarInfo (Fig. 22.19) is the service implementation, which imple-
ments interface BackendInterface. Class SeminarInfoService (Fig. 22.21) dis-
covers lookup services and registers the SeminarInfo Jini service. Class
UnicastSeminarInfoClient (Fig. 22.22) is a Jini client that uses unicast discovery to
discover lookup services and locate the SeminarInfo Jini service. This client allows a user
to select a day of the week and view the seminars offered on that day.

22.7.1 Service Interfaces and Supporting Classes

Class Seminar (Fig. 22.15) represents a fictitious seminar, including the seminar’s title
and location. It implements Serializable, so that objects of this class can be sent from
the Jini service to its clients across the network.

Line 13 explicitly specifies the serialVersionUID for class Seminar. Developers
can define this static member in Serializable classes to ensure compatibility
between versions of such classes. If an object of one version of a class is serialized, the
object can be deserialized into an object of a newer version of the class as long as both ver-

Chapter 22 Jini 1215

sions use the same serialVersionUID (and are implemented in a compatible manner).
Changing the serialVersionUID for a new version of the class indicates that the new
version is not compatible with older versions. In this case, deserialization would not work
correctly.

Interface SeminarInterface (Fig. 22.16) defines a single method getSeminar,
which takes as a String argument a day of the week. Method getSeminar returns a
Seminar object containing information about the Seminar offered on the given day.
The service proxy must implement this interface, because Jini clients use this interface to
interact with the service.

1 // Seminar.java
2 // Seminar represents a seminar, or lecture, including the
3 // Seminar title and location.
4 package com.deitel.advjhtp1.jini.seminar;
5
6 // Java core package
7 import java.io.Serializable;
8
9 public class Seminar implements Serializable

10 {
11 private String title;
12 private String location;
13 private static final long serialVersionUID = 20010724L;
14
15 // Seminar constructor
16 public Seminar(String seminarTitle, String seminarLocation)
17 {
18 title = seminarTitle;
19 location = seminarLocation;
20 }
21
22 // get String representation of Seminar object
23 public String toString()
24 {
25 return "Seminar title: " + getTitle() +
26 "; location: " + getLocation();
27 }
28
29 // get Seminar title
30 public String getTitle()
31 {
32 return title;
33 }
34
35 // get Seminar location
36 public String getLocation()
37 {
38 return location;
39 }
40 }

Fig. 22.15Fig. 22.15Fig. 22.15Fig. 22.15 Seminar maintains the location and title of a seminar.

1216 Jini Chapter 22

Interface BackendInterface (Fig. 22.17) defines methods that the service proxy
uses to communicate with the service implementation. The proxy invokes method get-
Seminar to retrieve Seminar information for the requested day. In this Jini service, the
seminar proxy communicates with the service implementation using RMI, although Jini
implementations may use any protocol to communicate with back-end implementations.

Software Engineering Observation 22.3
Jini does not require that service proxies communicate with back-end implementations using
RMI. Service proxies may use RMI, TCP/IP, CORBA or any suitable protocol to connect to
back-end implementations. 22.3

1 // SeminarInterface.java
2 // SeminarInterface defines methods available from the SeminarInfo
3 // Jini service.
4 package com.deitel.advjhtp1.jini.seminar.service;
5
6 // Java core packages
7 import java.rmi.Remote;
8
9 // Deitel packages

10 import com.deitel.advjhtp1.jini.seminar.Seminar;
11
12 public interface SeminarInterface {
13
14 // get Seminar for given date
15 public Seminar getSeminar(String date);
16 }

Fig. 22.16Fig. 22.16Fig. 22.16Fig. 22.16 SeminarInterface defines the methods available from the
SeminarInfo Jini service.

1 // BackendInterface.java
2 // BackendInterface defines the interface through which the
3 // service proxy communicates with the back-end service.
4 package com.deitel.advjhtp1.jini.seminar.service;
5
6 // Java core packages
7 import java.rmi.*;
8
9 // Deitel packages

10 import com.deitel.advjhtp1.jini.seminar.Seminar;
11
12 public interface BackendInterface extends Remote {
13
14 // get Seminar for given day of the week
15 public Seminar getSeminar(String day) throws RemoteException;
16 }

Fig. 22.17Fig. 22.17Fig. 22.17Fig. 22.17 BackEndInterface defines methods available to the SeminarInfo
service proxy.

Chapter 22 Jini 1217

Software Engineering Observation 22.4
Service proxies can use non-Java protocols (e.g., TCP/IP or CORBA) to communicate with
back-end implementations, enabling programmers to provide Jini services that are imple-
mented in languages other than Java. 22.4

22.7.2 Service Proxy and Service Implementations

Class SeminarProxy (Fig. 22.18) is a service proxy for the SeminarInfo Jini service.
Line 12 specifies that class SeminarProxy implements SeminarInterface, which
is the public interface for the SeminarInfo Jini service. The service proxy must im-
plement this interface to enable Jini clients to communicate with the SeminarInfo ser-
vice. The service proxy also must implement interface Serializable (line 13), so that
instances can be delivered to the remote client over RMI. The SeminarProxy construc-
tor (lines 18–21) initializes the proxy with a remote reference to the back-end implementa-
tion. Method getSeminar (lines 24–38) invokes the back-end implementation’s
getSeminar method to retrieve the seminar information (line 28).

1 // SeminarProxy.java
2 // SeminarProxy is a proxy for the SeminarInfo Jini service.
3 package com.deitel.advjhtp1.jini.seminar.service;
4
5 // Java core packages
6 import java.io.Serializable;
7 import java.rmi.*;
8
9 // Deitel packages

10 import com.deitel.advjhtp1.jini.seminar.Seminar;
11
12 public class SeminarProxy implements SeminarInterface,
13 Serializable {
14
15 private BackendInterface backInterface;
16
17 // SeminarProxy constructor
18 public SeminarProxy(BackendInterface inputInterface)
19 {
20 backInterface = inputInterface;
21 }
22
23 // get Seminar for given date through BackendInterface
24 public Seminar getSeminar(String date)
25 {
26 // get Seminar from service through BackendInterface
27 try {
28 return backInterface.getSeminar(date);
29 }
30

Fig. 22.18Fig. 22.18Fig. 22.18Fig. 22.18 SeminarProxy is a service proxy that clients use to communicate with
the SeminarInfo service (part 1 of 2).

1218 Jini Chapter 22

Class SeminarInfo (Fig. 22.19) is an RMI object that implements the Jini service’s
back-end interface. The service proxy communicates with this back-end implementation
through interface BackendInterface using RMI. Method getSeminar (lines 29–
91) reads seminar information from file SeminarInfo.txt and returns a new Sem-
inar object containing Seminar information for the given day of the week.

File SeminarInfo.txt (Fig. 22.20) contains Seminar information that the Sem-
inarInfo service provides to its clients. A semicolon separates the Seminar title from
the Seminar location.

31 // handle exception communicating with back-end service
32 catch (RemoteException remoteException) {
33 remoteException.printStackTrace();
34 }
35
36 return null;
37
38 } // end method getSeminar
39 }

1 // SeminarInfo.java
2 // SeminarInfo is a Jini service that provides information
3 // about Seminars offered throughout the week.
4 package com.deitel.advjhtp1.jini.seminar.service;
5
6 // Java core packages
7 import java.io.*;
8 import java.rmi.server.UnicastRemoteObject;
9 import java.rmi.RemoteException;

10 import java.util.StringTokenizer;
11
12 // Deitel packages
13 import com.deitel.advjhtp1.jini.seminar.Seminar;
14
15 public class SeminarInfo extends UnicastRemoteObject
16 implements BackendInterface {
17
18 // Strings that represent days of the week
19 private static final String MONDAY = "MONDAY";
20 private static final String TUESDAY = "TUESDAY";
21 private static final String WEDNESDAY = "WEDNESDAY";
22 private static final String THURSDAY = "THURSDAY";
23 private static final String FRIDAY = "FRIDAY";
24
25 // SeminarInfo no-argument constructor
26 public SeminarInfo() throws RemoteException {}
27

Fig. 22.19Fig. 22.19Fig. 22.19Fig. 22.19 SeminarInfo implements the SeminarInfo Jini service (part 1 of 3).

Fig. 22.18Fig. 22.18Fig. 22.18Fig. 22.18 SeminarProxy is a service proxy that clients use to communicate with
the SeminarInfo service (part 2 of 2).

Chapter 22 Jini 1219

28 // get Seminar information for given day
29 public Seminar getSeminar(String date)
30 throws RemoteException
31 {
32 String[] titles = new String[] { "", "", "", "", "" };
33 String[] locations = new String[] { "", "", "", "", "" };
34
35 // read seminar information from text file
36 try {
37 String fileName = SeminarInfo.class.getResource(
38 "SeminarInfo.txt").toString();
39 fileName = fileName.substring(6);
40
41 FileInputStream inputStream =
42 new FileInputStream(fileName);
43
44 BufferedReader reader = new BufferedReader(
45 new InputStreamReader(inputStream));
46
47 String line = reader.readLine();
48
49 // read seminar info from the file
50 for (int lineNo = 0; (line != null)
51 && (lineNo < 5); lineNo++) {
52 StringTokenizer tokenizer =
53 new StringTokenizer(line, ";");
54
55 titles[lineNo] = tokenizer.nextToken();
56 locations[lineNo] = tokenizer.nextToken();
57 line = reader.readLine();
58 }
59 }
60
61 // handle exception loading Seminar file
62 catch (FileNotFoundException fileException) {
63 fileException.printStackTrace();
64 }
65
66 // handle exception reading from Seminar file
67 catch (IOException ioException) {
68 ioException.printStackTrace();
69 }
70
71 // match given day of the week to available seminars
72 if (date.equalsIgnoreCase(MONDAY)) {
73 return new Seminar(titles[0], locations[0]);
74 }
75 else if (date.equalsIgnoreCase(TUESDAY)) {
76 return new Seminar(titles[1], locations[1]);
77 }
78 else if (date.equalsIgnoreCase(WEDNESDAY)) {
79 return new Seminar(titles[2], locations[2]);
80 }

Fig. 22.19Fig. 22.19Fig. 22.19Fig. 22.19 SeminarInfo implements the SeminarInfo Jini service (part 2 of 3).

1220 Jini Chapter 22

22.7.3 Registering the Service with Lookup Services
Class SeminarInfoService (Fig. 22.21) discovers lookup services using multicast
discovery and registers the SeminarInfo service with discovered lookup services. Lines
29–30 create a LookupDiscovery object to perform multicast discovery for the “pub-
lic” group. Line 33 registers the SeminarInfoService object as a Discovery-
Listener to receive lookup service discovery notifications. Line 42 creates an array of
Entry objects. An Entry (in package net.jini.core.entry) describes a service,
which enables Jini clients to search for services of a particular description. Line 43 creates
a new Name Entry (in package net.jini.lookup.entry) and adds it to array en-
tries to provide the name of the Jini service. Lines 46–47 create a new ServiceItem
(in package net.jini.core.lookup) for the SeminarInfo Jini service. The look-
up service requires a ServiceItem to register a Jini service. The first argument to the
ServiceItem constructor is the Jini service’s ID. The null argument on line 53 causes
the lookup service to assign a new, unique ID to the service. To keep the services persistent,
the service provider should use the previously assigned service ID when re-registering ser-
vices. The second argument is an instance of the service proxy for the Jini service. The third
argument is the array of Entry objects that describe the service.

81 else if (date.equalsIgnoreCase(THURSDAY)) {
82 return new Seminar(titles[3], locations[3]);
83 }
84 else if (date.equalsIgnoreCase(FRIDAY)) {
85 return new Seminar(titles[4], locations[4]);
86 }
87 else {
88 return new Seminar("Empty", "Not available");
89 }
90
91 } // end method getSeminar
92 }

1 Advanced Swing GUI Components; Deitel Seminar Room
2 Model-View-Controller Architecture; Deitel Seminar Room
3 Java 2 Enterprise Edition; Deitel Seminar Room
4 Introduction to Jini; Deitel Seminar Room
5 Java 2 Micro Edition; Deitel Seminar Room

Fig. 22.20Fig. 22.20Fig. 22.20Fig. 22.20 Content of SeminarInfo.txt.

1 // SeminarInfoService.java
2 // SeminarInfoService discovers lookup services and registers
3 // the SeminarInfo service with those lookup services.
4 package com.deitel.advjhtp1.jini.seminar.service;
5

Fig. 22.21Fig. 22.21Fig. 22.21Fig. 22.21 SeminarInfoService registers the SeminarInfo service with
lookup services (part 1 of 4).

Fig. 22.19Fig. 22.19Fig. 22.19Fig. 22.19 SeminarInfo implements the SeminarInfo Jini service (part 3 of 3).

Chapter 22 Jini 1221

6 // Java core packages
7 import java.rmi.RMISecurityManager;
8 import java.rmi.RemoteException;
9 import java.io.IOException;

10
11 // Jini core packages
12 import net.jini.core.lookup.*;
13 import net.jini.core.entry.Entry;
14
15 // Jini extension packages
16 import net.jini.discovery.*;
17 import net.jini.lookup.entry.Name;
18
19 public class SeminarInfoService implements DiscoveryListener {
20
21 private ServiceItem serviceItem;
22 private final int LEASETIME = 10 * 60 * 1000;
23
24 // SeminarInfoService constructor
25 public SeminarInfoService()
26 {
27 // search for lookup services with public group
28 try {
29 LookupDiscovery discover =
30 new LookupDiscovery(new String[] { "" });
31
32 // add listener for DiscoveryEvents
33 discover.addDiscoveryListener(this);
34 }
35
36 // handle exception creating LookupDiscovery
37 catch (IOException exception) {
38 exception.printStackTrace();
39 }
40
41 // create an Entry for this service
42 Entry[] entries = new Entry[1];
43 entries[0] = new Name("Seminar");
44
45 // set the service's proxy and Entry name
46 serviceItem = new ServiceItem(
47 null, createProxy(), entries);
48
49 } // end SeminarInfoService constructor
50
51 // receive lookup service discovery notifications
52 public void discovered(DiscoveryEvent event)
53 {
54 ServiceRegistrar[] registrars = event.getRegistrars();
55

Fig. 22.21Fig. 22.21Fig. 22.21Fig. 22.21 SeminarInfoService registers the SeminarInfo service with
lookup services (part 2 of 4).

1222 Jini Chapter 22

56 // register service with each lookup service
57 for (int i = 0; i < registrars.length; i++) {
58 ServiceRegistrar registrar = registrars[i];
59
60 // register service with discovered lookup service
61 try {
62 ServiceRegistration registration =
63 registrar.register(serviceItem, LEASETIME);
64 }
65
66 // catch the remote exception
67 catch (RemoteException exception) {
68 exception.printStackTrace();
69 }
70
71 } // end for
72
73 } // end method discovered
74
75 // ignore discarded lookup services
76 public void discarded(DiscoveryEvent event) {}
77
78 // create the seminar service proxy
79 private SeminarInterface createProxy()
80 {
81 // get BackendInterface for service and create SeminarProxy
82 try {
83 return new SeminarProxy(new SeminarInfo());
84 }
85
86 // handle exception creating SeminarProxy
87 catch (RemoteException exception) {
88 exception.printStackTrace();
89 }
90
91 return null;
92
93 } // end method discovered
94
95 // method main keeps the application alive
96 public static void main(String args[])
97 {
98 // set SecurityManager
99 if (System.getSecurityManager() == null)
100 System.setSecurityManager(new RMISecurityManager());
101
102 new SeminarInfoService();
103
104 Object keepAlive = new Object();
105

Fig. 22.21Fig. 22.21Fig. 22.21Fig. 22.21 SeminarInfoService registers the SeminarInfo service with
lookup services (part 3 of 4).

Chapter 22 Jini 1223

Method discovered (lines 52–73) receives notifications of discovered lookup ser-
vices. For each discovered lookup service, line 62 invokes method register of interface
ServiceRegistrar to register the Jini service’s serviceItem with the lookup ser-
vice. Method register takes as arguments a serviceItem, which contains the ser-
vice proxy and a lease time. The lease time specifies the length of time for which the service
should be available from the lookup service. For this example, the lease time is 10 minutes.
The LEASETIME specified in method register is the service requested lease time. In
fact, Sun’s implementation limits it to 5 minutes. This means the desired lease time is not
necessarily granted. After 10 minutes or even less, the Jini service’s lease expires and the
service is no longer available through the lookup service. It is the service provider’s respon-
sibility to store the ServiceRegistation (line 62) returned by method register
and use it to periodically renew the lease. We discuss leasing and how to manage leases in
Section 22.8.3.

Method createProxy (lines 79–93) creates a new SeminarProxy service proxy
for our Jini service. Line 83 creates a new instance of the SeminarInfo back-end imple-
mentation. Line 84 returns a new SeminarProxy service proxy for the SeminarInfo
service back-end implementation.

Method main (lines 95–118) launches the SeminarInfoService application.
Line 99 sets a SecurityManager and line 101 creates a new instance of class Semi-
narInfoService, which discovers lookup services and registers the SeminarInfo
service. Lines 103–115 create an Object named keepAlive. The synchronized
block (lines 105–116) prevents the main thread from terminating, which would cause the
SeminarInfoService application to terminate, thus shutting down the Seminar-
Info service. Clients then would be unable to access Seminar information.

22.7.4 Jini Service Client
Class UnicastSeminarInfoClient (Fig. 22.22) is a Jini client that uses the
SeminarInfo service to retrieve information about Seminars available on a given day.
Class UnicastSeminarInfoClient performs unicast discovery to discover lookup

106 synchronized (keepAlive) {
107
108 // keep application alive
109 try {
110 keepAlive.wait();
111 }
112
113 // handle exception if wait interrupted
114 catch (InterruptedException exception) {
115 exception.printStackTrace();
116 }
117 }
118
119 } // end method main
120 }

Fig. 22.21Fig. 22.21Fig. 22.21Fig. 22.21 SeminarInfoService registers the SeminarInfo service with
lookup services (part 4 of 4).

1224 Jini Chapter 22

services. The UnicastSeminarInfoClient constructor (lines 44–82) initializes the
application GUI.

Line 51 creates a JButton that the user can click to begin the discovery process and
retrieve Seminar information. Line 61 invokes method discoverLookupServices
to discover lookup services using unicast discovery. Lines 63–64 obtain a remote reference
to the SeminarInfo service’s service proxy by invoking method lookupSemi-
narService. Lines 66–69 prompt the user for the day of the week for which the user
would like Seminar information. Line 71 invokes method showSeminars to display
the Seminar information for the selected day.

1 // UnicastSeminarInfoClient.java
2 // UnicastSeminarInfoClient uses unicast discovery to locate
3 // lookup services for the SeminarInfo service.
4 package com.deitel.advjhtp1.jini.seminar.client;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9 import java.io.*;

10 import java.rmi.*;
11 import java.net.*;
12 import java.util.*;
13
14 // Java extension packages
15 import javax.swing.*;
16
17 // Jini core packages
18 import net.jini.core.discovery.LookupLocator;
19 import net.jini.core.lookup.*;
20 import net.jini.core.entry.Entry;
21
22 // Jini extension packages
23 import net.jini.lookup.entry.Name;
24
25 // Deitel packages
26 import com.deitel.advjhtp1.jini.seminar.Seminar;
27 import com.deitel.advjhtp1.jini.seminar.service.SeminarInterface;
28
29 public class UnicastSeminarInfoClient extends JFrame {
30
31 // Strings representing the days of the week on which
32 // Seminars are offered
33 private static final String[] days = { "Monday", "Tuesday",
34 "Wednesday", "Thursday", "Friday" };
35
36 // hostname and ServiceRegistrar for lookup services
37 private String hostname;
38 private ServiceRegistrar registrar;
39

Fig. 22.22Fig. 22.22Fig. 22.22Fig. 22.22 UnicastSeminarInfoClient is a client for the SeminarInfo service
(part 1 of 4).

Chapter 22 Jini 1225

40 // JButton for finding Seminars
41 private JButton findSeminarButton;
42
43 // UnicastSeminarInfoClient constructor
44 public UnicastSeminarInfoClient(String host)
45 {
46 super("UnicastSeminarInfoClient");
47
48 hostname = host; // set target hostname for discovery
49
50 // create JButton for finding Seminars
51 findSeminarButton = new JButton("Find Seminar");
52 findSeminarButton.addActionListener(
53
54 new ActionListener() {
55
56 // discover lookup services, look up SeminarInfo
57 // service, prompt user for desired day of the
58 // week and display available Seminars
59 public void actionPerformed(ActionEvent event)
60 {
61 discoverLookupServices();
62
63 SeminarInterface seminarService =
64 lookupSeminarService();
65
66 String day = (String) JOptionPane.showInputDialog(
67 UnicastSeminarInfoClient.this, "Select Day",
68 "Day Selection", JOptionPane.QUESTION_MESSAGE,
69 null, days, days[0]);
70
71 showSeminars(seminarService, day);
72 }
73 }
74
75); // end call to addActionListener
76
77 JPanel buttonPanel = new JPanel();
78 buttonPanel.add(findSeminarButton);
79
80 getContentPane().add(buttonPanel, BorderLayout.CENTER);
81
82 } // end UnicastSeminarInfoClient constructor
83
84 // discover lookup services using unicast discovery
85 private void discoverLookupServices()
86 {
87 String lookupURL = "jini://" + hostname + "/";
88
89 // Get the lookup service locator at jini://hostname
90 // use default port
91 try {

Fig. 22.22Fig. 22.22Fig. 22.22Fig. 22.22 UnicastSeminarInfoClient is a client for the SeminarInfo service
(part 2 of 4).

1226 Jini Chapter 22

92 LookupLocator locator = new LookupLocator(lookupURL);
93
94 // return registrar
95 registrar = locator.getRegistrar();
96 }
97
98 // handle exceptions discovering lookup services
99 catch (Exception exception) {
100 exception.printStackTrace();
101 }
102
103 } // end method discoverLookupServices
104
105 // lookup SeminarInfo service in given ServiceRegistrar
106 private SeminarInterface lookupSeminarService()
107 {
108 // specify the service requirement
109 Class[] types = new Class[] { SeminarInterface.class };
110 Entry[] attribute = new Entry[] { new Name("Seminar") };
111 ServiceTemplate template =
112 new ServiceTemplate(null, types, attribute);
113
114 // find the service
115 try {
116 SeminarInterface seminarInterface =
117 (SeminarInterface) registrar.lookup(template);
118 return seminarInterface;
119 }
120
121 // handle exception looking up SeminarInfo service
122 catch (RemoteException exception) {
123 exception.printStackTrace();
124 }
125
126 return null;
127
128 } // end method lookupSeminarService
129
130 // show Seminar in given SeminarInfo service for given
131 // day of the week
132 private void showSeminars(SeminarInterface seminarService,
133 String day)
134 {
135 StringBuffer buffer = new StringBuffer();
136
137 // get Seminar from SeminarInfo service
138 if (seminarService != null) {
139 Seminar seminar = seminarService.getSeminar(day);
140
141 // get subject and location from Seminar object
142 buffer.append("Seminar information: \n");
143 buffer.append(day + ":\n");

Fig. 22.22Fig. 22.22Fig. 22.22Fig. 22.22 UnicastSeminarInfoClient is a client for the SeminarInfo service
(part 3 of 4).

Chapter 22 Jini 1227

Method discoverLookupServices (lines 85–103) performs unicast discovery
to discover lookup services on a particular host, specified at the command line. Line 92 cre-
ates a LookupLocator, and line 95 invokes method getRegistrar of class Look-
upLocator to obtain a ServiceRegistrar reference to the lookup service, which is
stored in instance variable registrar.

Method lookupSeminarService uses the ServiceRegistrar discovered in
method discoverLookupServices to obtain a SeminarProxy for the Seminar-
Info service. Line 109 creates an array of Class objects and initializes the first element
to SeminarInterface’s Class object. The ServiceRegistrar uses this array of
Class objects to locate the appropriate service proxies for the Jini client. Line 110 creates
an array of Entry objects. Recall that when we registered the SeminarInfo service, we
provided an array of Entry objects to describe that service. Line 110 populates the

144 buffer.append(seminar.getTitle() + "\n"); // title
145 buffer.append(seminar.getLocation()); // location
146 }
147 else // SeminarInfo service does not available
148 buffer.append(
149 "SeminarInfo service does not available. \n");
150
151 // display Seminar information
152 JOptionPane.showMessageDialog(this, buffer);
153
154 } // end method showSeminars
155
156 // launch UnicastSeminarInfoClient application
157 public static void main (String args[])
158 {
159 // check command-line arguments for hostname
160 if (args.length != 1) {
161 System.err.println(
162 "Usage: java UnicastSeminarInfoClient hostname");
163 }
164
165 // create UnicastSeminarInfoClient for given hostname
166 else {
167 System.setSecurityManager(new RMISecurityManager());
168
169 UnicastSeminarInfoClient client =
170 new UnicastSeminarInfoClient(args[0]);
171
172 client.setDefaultCloseOperation(EXIT_ON_CLOSE);
173 client.pack();
174 client.setSize(250, 65);
175 client.setVisible(true);
176 }
177
178 } // end method main
179 }

Fig. 22.22Fig. 22.22Fig. 22.22Fig. 22.22 UnicastSeminarInfoClient is a client for the SeminarInfo service
(part 4 of 4).

1228 Jini Chapter 22

entries array with a single Name Entry. The ServiceRegistrar uses this array
of Entry objects to locate the desired service. Lines 111–112 create a ServiceTem-
plate (package net.jini.core.lookup) that contains the Class and Entry
arrays from lines 109–110. The ServiceRegistrar uses this ServiceTemplate to
locate a service that matches the given set of Class and Entry objects. The first argu-
ment to the ServiceTemplate constructor is the service ID for the Jini service. We pass
a null argument to indicate that we do not know the service ID for the desired service.

Lines 116–117 invoke method lookup of interface ServiceRegistrar to per-
form the lookup and retrieve a SeminarProxy service proxy. Line 117 passes the Ser-
viceTemplate to method lookup. The ServiceRegistrar matches the
information in the ServiceTemplate to the ServiceItems registered in the lookup
service. For a ServiceItem to match a ServiceTemplate when a ServiceTem-
plate contains a non-null service ID, the service ID must match that in the Service-
Template. Also, the service must be an instance of every class in the Class array in the
ServiceTemplate. Finally, the service attributes must match one or more of the
attributes in the Entry array in the ServiceTemplate. Line 118 returns a reference to
the SeminarProxy returned by method lookup.

Method showSeminars (lines 132–154) takes as arguments a SeminarInter-
face and a String containing the day of the week for which the user would like Seminar
information. Line 139 invokes method getSeminar of interface SeminarInterface
and passes as an argument the day. Recall that SeminarInterface is the public inter-
face for the SeminarInfo Jini service and defines all methods available for that service.
Line 152 displays the Seminar information in a JOptionPane message dialog.

Method main (lines 157–178) launches the UnicastSeminarInfoClient
application. Lines 160–163 ensure that the user enters the hostname on which to perform
lookup service discovery. Lines 167–175 set a SecurityManager and start Unicast-
SeminarInfoClient.

Running the Service and Client
Clients and services typically run on different computers. To mimic this configuration on
a single computer, we must separate the class files for the Jini client, the class files for the
Jini service and the downloadable Jini service class files. In this example, we package the
service’s class files in a JAR file named SeminarService.jar. Figure 22.23 shows
the contents of SeminarService.jar.

Class File Directory in SeminarService.jar

Seminar.class

com\deitel\advjhtp1\jini\seminar\

SeminarInterface.class

com\deitel\advjhtp1\jini\seminar\service\

SeminarProxy.class

com\deitel\advjhtp1\jini\seminar\service\

Fig. 22.23Fig. 22.23Fig. 22.23Fig. 22.23 SeminarService.jar contents (part 1 of 2).

Chapter 22 Jini 1229

Recall that class SeminarInfo is an RMI remote object from which the Seminar-
Proxy retrieves Seminar information. This requires that we use the RMI stub compiler
(rmic) to compile a stub file for class SeminarInfo and place this stub file
(SeminarInfo_Stub.class) in SeminarService.jar.

We place our Jini client’s class files in JAR file SeminarClient.jar. To access the
SeminarInfo Jini Service, the client needs the class file for the service’s public inter-
face, as well as any supporting classes that used by methods in the public interface. Sem-
inarClient.jar contains Seminar.class and SeminarInterface.class,
which contains the service’s public interface. Figure 22.24 shows the contents of Semi-
narClient.jar.

When the client requests the SeminarInfo service from a lookup service, the client
uses network class loading to load the service proxy class into memory and execute
methods on the Jini service. Therefore, we must package the necessary class files for the
Jini client to download. The client requires the service proxy’s class file and class files for
objects that the service proxy references. Recall that the client interacts with the service
proxy through interface SeminarInterface. The client does not know about the ser-
vice proxy SeminarProxy or its supporting classes. Therefore, the client must download
the SeminarProxy class file and its supporting class files at run time using network class
loading. The download classes include BackendInterface.class and Seminar-
Info_Stub.class, which the service proxy uses to communicate with the Seminar-
Info remote object. We package these files in SeminarServiceDownload.jar
(Fig. 22.25) and publish this JAR file on a Web server for the client to download.

After creating these JAR files, start rmid, a Web server and the Reggie lookup service
(if necessary, review Section 22.4 for detailed instructions). Configure and start an addi-
tional Web server to enable clients to download the service proxy and supporting files.
Place SeminarServiceDownload.jar in the Document Area directory specified
in this additional Web server’s configuration (e.g., C:\Jini\seminar\service).
Figure 22.26 shows a sample Web server configuration that uses port 9090. We specify this
port number in the java.rmi.server.codebase command-line property when we
launch the SeminarInfo service.

BackendInterface.class

com\deitel\advjhtp1\jini\seminar\service\

SeminarInfo.class

com\deitel\advjhtp1\jini\seminar\service\

SeminarInfo_Stub.class

com\deitel\advjhtp1\jini\seminar\service\

SeminarInfoService.class

com\deitel\advjhtp1\jini\seminar\service\

Class File Directory in SeminarService.jar

Fig. 22.23Fig. 22.23Fig. 22.23Fig. 22.23 SeminarService.jar contents (part 2 of 2).

1230 Jini Chapter 22

Class File Directory in SeminarClient.jar

Seminar.class

com\deitel\advjhtp1\jini\seminar\

SeminarInterface.class

com\deitel\advjhtp1\jini\seminar\service\

UnicastSeminarInfoClient.class

com\deitel\advjhtp1\jini\seminar\client\

UnicastSeminarInfoClient$1.class

com\deitel\advjhtp1\jini\seminar\client\

UnicastSeminarInfoClient$2.class

com\deitel\advjhtp1\jini\seminar\client\

Fig. 22.24Fig. 22.24Fig. 22.24Fig. 22.24 SeminarClient.jar contents.

Class File Directory in SeminarServiceDownload.jar

SeminarProxy.class

com\deitel\advjhtp1\jini\seminar\service\

BackendInterface.class

com\deitel\advjhtp1\jini\seminar\service\

SeminarInfo_Stub.class

com\deitel\advjhtp1\jini\seminar\service\

Fig. 22.25Fig. 22.25Fig. 22.25Fig. 22.25 SeminarServiceDownload.jar contents.

Fig. 22.26Fig. 22.26Fig. 22.26Fig. 22.26 Web server configuration for SeminarInfo service.

Chapter 22 Jini 1231

Start the SeminarInfo service by launching SeminarInfoService. Be sure
that jini-core.jar, jini-ext.jar and sun-util.jar are in your CLASS-
PATH, and enter the following command at the command prompt:

java -classpath %CLASSPATH%;SeminarService.jar
 -Djava.security.policy=policy
 -Djava.rmi.server.codebase=http://hostname:9090/
SeminarServiceDownload.jar
 com.deitel.advjhtp1.jini.seminar.service.SeminarInfoService

where policy is an appropriate security policy and hostname is the hostname on which the
Web server for downloading the Jini service proxy is running. Be sure to specify the proper
port number for the Web server that serves SeminarServiceDownload.jar (e.g.,
9090).

Start the SeminarInfo Jini client by launching UnicastSeminarInfoSer-
vice. Ensure that jini-core.jar, jini-ext.jar and sun-util.jar are in
your CLASSPATH, and that none of the SeminarInfo service class files are in your
CLASSPATH. Type the following from a command prompt:

java -classpath %CLASSPATH%;SeminarClient.jar
 -Djava.security.policy=policy
 com.deitel.advjhtp1.jini.seminar.client.
UnicastSeminarInfoClient hostname

where policy is an appropriate security policy and hostname is the hostname of the comput-
er providing lookup services. Figure 22.27 shows the UnicastSeminarInfoClient
application output.

Common Programming Error 22.4
Placing the JAR file or classes for the SeminarInfo service in the Jini client’s CLASS-
PATH prevents the client from downloading the class files at runtime using network class
loading. 22.4

Fig. 22.27Fig. 22.27Fig. 22.27Fig. 22.27 UnicastSeminarInfoClient application output.

1232 Jini Chapter 22

22.8 Introduction to High-Level Helper Utilities
One can build a complete Jini-aware service using previously introduced technology. How-
ever, Jini helper utilities simplify the process of developing the Jini applications. These
helper utilities provide high-level management capabilities. As we proceed, you will see
how these utilities make developing and using Jini services easier.

22.8.1 Discovery Utilities

As you now know, before a client or a server can interact with a lookup service, it must first
discover the lookup service. Figure 22.13 introduced a low-level discovery utility, Look-
upDiscovery. This section discusses two high-level discovery utilities—class
net.jini.discovery.LookupLocatorDiscovery and class net.ji-
ni.discovery.LookupDiscoveryManager.

LookupLocatorDiscovery Utility
In the UnicastDiscovery example (Fig. 22.10), we used class LookupLocator to
discover lookup services on a known host. Using that technique to discover lookup services
located on several known hosts would require several LookupLocators—one for each
host that provides lookup services. Class LookupLocatorDiscovery enables a Jini
service or client to discover lookup services on multiple known hosts more easily. Class
LookupLocatorDiscovery uses DiscoveryEvents to notify the Jini service or
client of discovered lookup services. This is similar to the task class LookupDiscovery
performs for multicast discovery.

Class UnicastDiscoveryUtility (Fig. 22.28) uses class LookupLocator-
Discovery to perform unicast lookup-service discovery on multiple known hosts. Class
UnicastDiscoveryUtility implements interface DiscoveryListener to
receive DiscoveryEvents from the LookupLocatorDiscovery object.

The UnicastDiscoveryUtility constructor (lines 31–62) takes a String
array as an argument containing a list of jini: URLs on which to perform unicast dis-
covery. Lines 42–43 create an array of LookupLocators and lines 49–50 create a
LookupLocator object for each URL in array urls. Line 53 registers the Unicast-
DiscoveryUtility object as a DiscoveryListener for the LookupLocator-
Discovery object.

1 // UnicastDiscoveryUtility.java
2 // Demonstrating how to locate multiple lookup services
3 // using LookupLocatorDiscovery utility
4 package com.deitel.advjhtp1.jini.utilities.discovery;
5
6 // Java core packages
7 import java.rmi.*;
8 import java.io.*;
9 import java.awt.*;

10 import java.awt.event.*;
11 import java.net.*;

Fig. 22.28Fig. 22.28Fig. 22.28Fig. 22.28 UnicastDiscoveryUtility uses class LookupLocatorDis-
covery to facilitate lookup service discovery (part 1 of 4).

Chapter 22 Jini 1233

12
13 // Java swing package
14 import javax.swing.*;
15
16 // Jini core packages
17 import net.jini.core.lookup.ServiceRegistrar;
18 import net.jini.core.discovery.LookupLocator;
19
20 // Jini extension packages
21 import net.jini.discovery.LookupLocatorDiscovery;
22 import net.jini.discovery.DiscoveryListener;
23 import net.jini.discovery.DiscoveryEvent;
24
25 public class UnicastDiscoveryUtility extends JFrame
26 implements DiscoveryListener {
27
28 private JTextArea outputArea = new JTextArea(10, 20);
29
30 // UnicastDiscoveryUtility constructor
31 public UnicastDiscoveryUtility(String urls[])
32 {
33 super("UnicastDiscoveryUtility");
34
35 getContentPane().add(new JScrollPane(outputArea),
36 BorderLayout.CENTER);
37
38 // discover lookup services using LookupLocatorDiscovery
39 try {
40
41 // create LookupLocator for each URL
42 LookupLocator locators[] =
43 new LookupLocator[urls.length];
44
45 for (int i = 0; i < locators.length ; i++)
46 locators[i] = new LookupLocator(urls[i]);
47
48 // create LookupLocatorDiscovery object
49 LookupLocatorDiscovery locatorDiscovery =
50 new LookupLocatorDiscovery(locators);
51
52 // register DiscoveryListener
53 locatorDiscovery.addDiscoveryListener(this);
54
55 } // end try
56
57 // handle invalid Jini URL
58 catch (MalformedURLException exception) {
59 exception.printStackTrace();
60 }
61
62 } // end UnicastDiscoveryUtility constructor
63

Fig. 22.28Fig. 22.28Fig. 22.28Fig. 22.28 UnicastDiscoveryUtility uses class LookupLocatorDis-
covery to facilitate lookup service discovery (part 2 of 4).

1234 Jini Chapter 22

64 // receive notification of found lookup services
65 public void discovered(DiscoveryEvent event)
66 {
67 // get the proxy registrars for those services
68 ServiceRegistrar[] registrars = event.getRegistrars();
69
70 // display information for each lookup service found
71 for (int i = 0; i < registrars.length ; i++)
72 displayServiceDetails(registrars[i]);
73
74 } // end method discovered
75
76 // display details of given ServiceRegistrar
77 private void displayServiceDetails(ServiceRegistrar registrar)
78 {
79 try {
80 final StringBuffer buffer = new StringBuffer();
81
82 // get the hostname and port number
83 buffer.append("Lookup Service: ");
84 buffer.append("\n Host: " +
85 registrar.getLocator().getHost());
86 buffer.append("\n Port: " +
87 registrar.getLocator().getPort());
88 buffer.append("\n Group support: ");
89
90 // get lookup service groups
91 String[] groups = registrar.getGroups();
92
93 // get group names; if empty write public
94 for (int i = 0; i < groups.length ; i++) {
95
96 if (groups[i].equals(""))
97 buffer.append("public,");
98
99 else
100 buffer.append(groups[i] + ",");
101 }
102
103 buffer.append("\n\n");
104
105 // append information to outputArea
106 SwingUtilities.invokeLater(
107
108 // create Runnable for appending text
109 new Runnable() {
110
111 // append text and update caret position
112 public void run()
113 {
114 outputArea.append(buffer.toString());

Fig. 22.28Fig. 22.28Fig. 22.28Fig. 22.28 UnicastDiscoveryUtility uses class LookupLocatorDis-
covery to facilitate lookup service discovery (part 3 of 4).

Chapter 22 Jini 1235

Class LookupLocatorDiscovery invokes method discovered (lines 65–74)
when it discovers new lookup services. Line 68 retrieves an array of ServiceRegis-
trars from the DiscoveryEvent object and line 72 invokes method displaySer-
viceDetails to show information about each discovered lookup service. Method
displayServiceDetails (lines 77–129) places host, port and group information

115 outputArea.setCaretPosition(
116 outputArea.getText().length());
117 }
118 }
119
120); // end call to invokeLater
121
122 } // end try
123
124 // handle exception communicating with lookup service
125 catch (RemoteException exception) {
126 exception.printStackTrace();
127 }
128
129 } // end method displayServiceDetails
130
131 // ignore discarded lookup services
132 public void discarded(DiscoveryEvent event) {}
133
134 // launch UnicastDiscoveryUtility application
135 public static void main(String args[])
136 {
137 // set SecurityManager
138 if (System.getSecurityManager() == null)
139 System.setSecurityManager(new RMISecurityManager());
140
141 // check command-line arguments for hostnames
142 if (args.length < 1) {
143 System.err.println(
144 "Usage: java UnicastDiscoveryUtility " +
145 "jini://hostname:port [jini://hostname:port] ...");
146 }
147
148 // launch UnicastDiscoveryUtility for set of hostnames
149 else {
150 UnicastDiscoveryUtility unicastUtility =
151 new UnicastDiscoveryUtility(args);
152
153 unicastUtility.setDefaultCloseOperation(EXIT_ON_CLOSE);
154 unicastUtility.setSize(300, 300);
155 unicastUtility.setVisible(true);
156 }
157
158 } // end method main
159 }

Fig. 22.28Fig. 22.28Fig. 22.28Fig. 22.28 UnicastDiscoveryUtility uses class LookupLocatorDis-
covery to facilitate lookup service discovery (part 4 of 4).

1236 Jini Chapter 22

about a ServiceRegistrar in a StringBuffer (lines 83–103) and appends the text
in that StringBuffer to outputArea (lines 106–120).

To demonstrate the UnicastDiscoverUtility application on a single com-
puter, start multiple instances of the Jini lookup service. Remember that you must specify
a different log directory for each Reggie instance. After starting several Reggie instances,
run the MulticastDiscovery application of Fig. 22.13 to obtain the various port num-
bers on which Reggies are running. Recall that UnicastDiscoverUtility uses
unicast discovery, therefore you must specify the hostnames and port numbers for the com-
puters running the lookup services. Using the MulticastDiscovery application is an
easy way to determine these hostnames and port numbers for testing class UnicastDis-
coveryUtility. Figure 22.29 shows sample output from application Multicast-
Discovery with four lookup services running on the local machine. Note that each
lookup service uses a different port number. We use these port numbers when specifying
jini: URLs for application UnicastDiscoveryUtility.

After running the MulticastDiscovery application to find the available lookup
services, enter the following to launch UnicastDiscoveryUtility:

java -Djava.security.policy=policy
 com.deitel.advjhtp1.jini.utilities.discovery.
UnicastDiscoveryUtility
 jini://hostname:3249 jini://hostname:3257 jini://hostname:3240
jini://hostname:4160

where policy is an appropriate security policy and hostname is the hostname running the
lookup services. Remember to replace the port numbers in the preceding command with the
port numbers that application MulticastDiscovery found on your computer.
Figure 22.30 shows the UnicastDiscoveryUtility application output.

Fig. 22.29Fig. 22.29Fig. 22.29Fig. 22.29 Using MulticastDiscovery to obtain sample data for testing
UnicastDiscoveryUtility.

Chapter 22 Jini 1237

LookupDiscoveryManager Utility
Class LookupDiscoveryManager provides flexible lookup service discovery by en-
abling Jini applications and clients to perform both unicast and multicast lookup service
discovery using a single class. Class LookupDiscoveryManager combines the func-
tionality provided in classes LookupLocatorDiscovery (for unicast discovery) and
LookupDiscovery (for multicast discovery).

Class GeneralDiscoveryUtility (Fig. 22.31) performs unicast and multicast
discovery using class LookupDiscoveryManager. Lines 38–51 create and lay out two
JTextAreas—one for displaying unicast discovery notifications and one for displaying
multicast discovery notifications. Lines 55–60 create an array of LookupLocators and
populate the array with jini: URLs from the command-line arguments. Lines 63–64
create a new LookupDiscoveryManager. The LookupDiscoveryManager con-
structor takes as its first argument an array of group names for performing multicast dis-
covery. The constant DiscoveryGroupManagement.ALL_GROUPS specifies that
the LookupDiscoveryManager should discover all lookup services. This constant is
equivalent to passing null as the first argument. If the first argument is an empty String
array, no multicast discovery is performed. The second argument to the LookupDiscov-
eryManager constructor is an array of LookupLocators for performing unicast dis-
covery. If the LookupLocator array is null or empty, no unicast discovery is
performed. The final argument is the DiscoveryListener to which discovery notifi-
cations should be sent.

Method discovered (lines 80–101) receives discovery notifications from the
LookupDiscoveryManager. Line 83 retrieves an array of discovered ServiceReg-
istrars from the DiscoveryEvent object. Line 89 invokes method getFrom of
class LookupDiscoveryManager to determine which form of discovery—unicast or
multicast—discovered the given ServiceRegistrar. Constant LookupDiscov-
eryManager.FROM_GROUP (line 90) identifies ServiceRegistrars discovered
through multicast, or group, discovery. If the ServiceRegistrar was discovered
through multicast discovery, lines 92–93 invoke method displayServiceDetails to

Fig. 22.30Fig. 22.30Fig. 22.30Fig. 22.30 UnicastDiscoveryUtility application output.

1238 Jini Chapter 22

display information about the ServiceRegistrar in multicastArea. If the Ser-
viceRegistrar was not discovered through multicast discovery, line 98 invokes
method displayServiceDetails to display the ServiceRegistrar information
in unicastArea.

1 // GeneralDiscoveryUtility.java
2 // GeneralDiscoveryUtility demonstrates using class
3 // LookupDiscoveryManager for performing multicast
4 // and unicast discovery.
5 package com.deitel.advjhtp1.jini.utilities.discovery;
6
7 // Java core packages
8 import java.rmi.*;
9 import java.io.*;

10 import java.awt.*;
11 import java.awt.event.*;
12 import java.net.*;
13
14 // Java standard extensions
15 import javax.swing.*;
16 import javax.swing.border.*;
17
18 // Jini core packages
19 import net.jini.core.lookup.ServiceRegistrar;
20 import net.jini.core.discovery.LookupLocator;
21
22 // Jini extension packages
23 import net.jini.discovery.*;
24
25 public class GeneralDiscoveryUtility extends JFrame
26 implements DiscoveryListener {
27
28 private LookupDiscoveryManager lookupManager;
29 private JTextArea multicastArea = new JTextArea(15, 20);
30 private JTextArea unicastArea = new JTextArea(15, 20);
31
32 // GeneralDiscoveryUtility constructor
33 public GeneralDiscoveryUtility(String urls[])
34 {
35 super("GeneralDiscoveryUtility");
36
37 // lay out JTextAreas
38 JPanel multicastPanel = new JPanel();
39 multicastPanel.setBorder(
40 new TitledBorder("Multicast (Group) Notifications"));
41 multicastPanel.add(new JScrollPane(multicastArea));
42
43 JPanel unicastPanel = new JPanel();
44 unicastPanel.setBorder(
45 new TitledBorder("Unicast (Locator) Notifications"));

Fig. 22.31Fig. 22.31Fig. 22.31Fig. 22.31 GeneralDiscoveryUtility uses class LookupDiscoveryMan-
ager to perform both unicast and multicast lookup service discovery (part
1 of 4).

Chapter 22 Jini 1239

46 unicastPanel.add(new JScrollPane(unicastArea));
47
48 Container contentPane = getContentPane();
49 contentPane.setLayout(new FlowLayout());
50 contentPane.add(unicastPanel);
51 contentPane.add(multicastPanel);
52
53 // get LookupLocators and LookupDiscoveryManager
54 try {
55 LookupLocator locators[] =
56 new LookupLocator[urls.length];
57
58 // get array of LookupLocators
59 for (int i = 0; i < urls.length ; i++)
60 locators[i] = new LookupLocator(urls[i]);
61
62 // instantiate a LookupDiscoveryManager object
63 lookupManager = new LookupDiscoveryManager(
64 DiscoveryGroupManagement.ALL_GROUPS, locators, this);
65 }
66
67 // handle invalid Jini URL
68 catch (MalformedURLException exception) {
69 exception.printStackTrace();
70 }
71
72 // handle exception creating LookupDiscoveryManager
73 catch (IOException exception) {
74 exception.printStackTrace();
75 }
76
77 } // end GeneralDiscoveryUtility constructor
78
79 // receive notifications of discovered lookup services.
80 public void discovered(DiscoveryEvent event)
81 {
82 // get the proxy registrars for those services
83 ServiceRegistrar[] registrars = event.getRegistrars();
84
85 // display information for each lookup service found
86 for (int i = 0; i < registrars.length ; i++) {
87
88 // display multicast results in multicastArea
89 if (lookupManager.getFrom(registrars[i]) ==
90 LookupDiscoveryManager.FROM_GROUP) {
91
92 displayServiceDetails(registrars[i],
93 multicastArea);
94 }
95

Fig. 22.31Fig. 22.31Fig. 22.31Fig. 22.31 GeneralDiscoveryUtility uses class LookupDiscoveryMan-
ager to perform both unicast and multicast lookup service discovery (part
2 of 4).

1240 Jini Chapter 22

96 // display unicast results in unicastArea
97 else
98 displayServiceDetails(registrars[i], unicastArea);
99 }
100
101 } // end method discovered
102
103 // display details of given ServiceRegistrar
104 private void displayServiceDetails(
105 ServiceRegistrar registrar, final JTextArea outputArea)
106 {
107 try {
108 final StringBuffer buffer = new StringBuffer();
109
110 // get hostname and port number
111 buffer.append("Lookup Service: ");
112 buffer.append("\n Host: " +
113 registrar.getLocator().getHost());
114 buffer.append("\n Port: " +
115 registrar.getLocator().getPort());
116 buffer.append("\n Group support: ");
117
118 // get lookup service groups
119 String[] groups = registrar.getGroups();
120
121 // get group names; if empty write public
122 for (int i = 0; i < groups.length ; i++) {
123
124 if (groups[i].equals(""))
125 buffer.append("public,");
126
127 else
128 buffer.append(groups[i] + ",");
129 }
130
131 buffer.append("\n\n");
132
133 // append information to outputArea
134 SwingUtilities.invokeLater(
135
136 // create Runnable for appending text
137 new Runnable() {
138
139 // append text and update caret position
140 public void run()
141 {
142 outputArea.append(buffer.toString());
143 outputArea.setCaretPosition(
144 outputArea.getText().length());
145 }
146 }

Fig. 22.31Fig. 22.31Fig. 22.31Fig. 22.31 GeneralDiscoveryUtility uses class LookupDiscoveryMan-
ager to perform both unicast and multicast lookup service discovery (part
3 of 4).

Chapter 22 Jini 1241

Method displayServiceDetails (lines 104–159) takes as arguments a Ser-
viceRegistrar and a JTextArea in which to display that ServiceRegistrar’s
information. Lines 111–131 append the ServiceRegistrar’s information to a
StringBuffer. Lines 134–148 invoke static method invokeLater of class
SwingUtilities to append the ServiceRegistrar information to the appropriate
JTextArea.

Method main (lines 163–176) installs an RMISecurityManager (line 167) and
creates a new GeneralDiscoveryUtility instance, passing the array of command-
line arguments to the constructor (lines 170–171). If the user does not supply any jini:
URLs as command-line arguments, GeneralDiscoveryUtility will not perform
unicast discovery. To execute GeneralDiscoveryUtility, enter the following at a
command prompt:

java -Djava.security.policy=policy
 com.deitel.advjhtp1.jini.utilities.discovery.
GeneralDiscoveryUtility jini://hostname:4160

147
148); // end call to invokeLater
149
150 } // end try
151
152 // handle exception communicating with lookup service
153 catch (RemoteException exception) {
154 exception.printStackTrace();
155 }
156
157 } // end method displayServiceDetails
158
159 // receive discarded lookup service notifications
160 public void discarded(DiscoveryEvent event) {}
161
162 // launch GeneralDiscoveryUtility application
163 public static void main(String[] args)
164 {
165 // set SecurityManager
166 if (System.getSecurityManager() == null)
167 System.setSecurityManager(new RMISecurityManager());
168
169 // launch GeneralDiscoveryUtility for set of hostnames
170 GeneralDiscoveryUtility utility =
171 new GeneralDiscoveryUtility(args);
172 utility.setDefaultCloseOperation(EXIT_ON_CLOSE);
173 utility.pack();
174 utility.setVisible(true);
175
176 } // end method main
177 }

Fig. 22.31Fig. 22.31Fig. 22.31Fig. 22.31 GeneralDiscoveryUtility uses class LookupDiscoveryMan-
ager to perform both unicast and multicast lookup service discovery (part
4 of 4).

1242 Jini Chapter 22

where policy is an appropriate security policy, hostname is the hostname for a known com-
puter running a lookup service and 4160 is the default lookup service port number.
Figure 22.32 shows the output from GeneralDiscoveryUtility with several look-
up services running on the local machine.

22.8.2 Entry Utilities

Entry attributes specify characteristics of Jini services. We used the Name Entry in
Fig. 22.21 to provide a name for the SeminarInfo Jini service. Entry attributes help
clients identify Jini services. By attaching attributes to services, service providers can pub-
lish services with detailed information, such as the service location and the functionality of
the service. Jini provides seven common attributes (Fig. 22.33).

Fig. 22.32Fig. 22.32Fig. 22.32Fig. 22.32 GeneralDiscoveryUtility application output.

Attribute Description

Address Specifies the physical location of a service. (e.g., the city and street address of
an Automated Teller Machine).

Comment Provides general descriptive comments about a service.

Location Provides more detailed location information, such as floor, suite and room
number.

Name Provides the service’s name, suitable for use by people to identify a service
(e.g., “BankABC ATM”).

ServiceInfo Provides basic information about a service. For example, the manufacturer
and model number of a printer.

ServiceType Provides a human-understandable description of the service type (e.g., “Print
Queue”).

Status Describes the current status of the service in varying levels of severity.

Fig. 22.33Fig. 22.33Fig. 22.33Fig. 22.33 Standard Jini Entry attributes.

Chapter 22 Jini 1243

Developers also can create custom attributes for Jini services. Class Seminar-
Provider (Fig. 22.34) is an Entry attribute that gives the name of the company that pro-
vides Seminars for a given SeminarInfo service. Class SeminarProvider
extends class AbstractEntry and implements interface ServiceControlled.
AbstractEntry is a basic implementation of interface Entry. By implementing inter-
face ServiceControlled, class SeminarProvider indicates that the service itself
controls the SeminarProvider attribute.

An Entry class must supply a no-argument constructor (line 12). Also, instance vari-
ables must be public references to Serializable objects, so clients can perform
searches using these instance variables. Line 12 declares public String reference
providerName, which contains the name of the organization providing the Seminars.

To use the SeminarProvider attribute for our SeminarInfo Jini service, we
need to modify class SeminarInfoService, which registers the SeminarInfo ser-
vice with ServiceRegistrars. Replace line 43 of Fig. 22.21 with the line

entries[0] = new
 com.deitel.advjhtp1.jini.utilities.entry.SeminarProvider(
 "Deitel");

We also must modify UnicastSeminarInfoClient to search for the SeminarIn-
foServices using the new SeminarProvider attribute. Replace line 110 of
Fig. 22.22 with the line

Entry[] attribute = new Entry[] { new
 com.deitel.advjhtp1.jini.utilities.entry.SeminarProvider(
 "Deitel") };

1 // SeminarProvider.java
2 // SeminarProvider is an Entry object for the SeminarInfo service.
3 package com.deitel.advjhtp1.jini.utilities.entry;
4
5 // Jini extension package
6 import net.jini.entry.*;
7 import net.jini.lookup.entry.*;
8
9 public class SeminarProvider extends AbstractEntry

10 implements ServiceControlled
11 {
12 public String providerName = "";
13
14 // no-argument constructor
15 public SeminarProvider() {}
16
17 // SeminarProvider constructor for specifying providerName
18 public SeminarProvider(String provider)
19 {
20 providerName = provider;
21 }
22 }

Fig. 22.34Fig. 22.34Fig. 22.34Fig. 22.34 SeminarProvider subclass of Entry for describing the Seminar
provider as a Jini attribute.

1244 Jini Chapter 22

Compile and run the Jini service and UnicastSeminarInfoClient to locate the
SeminarInfo service using the new SeminarProvider attribute. Be sure to include
SeminarProvider.class in the service and client JAR files.

22.8.3 Lease Utilities
Jini uses leasing to ensure integrity in distributed systems built with Jini. Recall that Jini
services register with lookup services to make the Jini service’s functionality available to
other members in the Jini community. If all goes well, other members of the Jini commu-
nity use the service and the service stays up and running perpetually. However, in reality,
services fail for many reasons. Network outages can make a service unreachable. A physi-
cal device associated with a service (e.g., a printer) might need repairs. The service itself
could encounter an unrecoverable exception. In these and many other situations, a service
could become unavailable and that service might not be able to unregister itself from look-
up services to prevent other clients from attempting to use that service.

One goal of Jini technology is to make Jini communities “self-healing” and able to
recover from common problems, such as network outages, hardware failures and software
failures. Therefore, when a Jini service registers with a lookup service, the registration is
not permanent. The registration is leased for a specific amount of time, after which the
lookup service revokes the registration. This prevents problematic services from disrupting
the entire Jini community. If a Jini service fails, the Jini service’s lease eventually expires,
and lookup services will no longer provide the failed Jini service to clients.

The leasing strategy that Jini employs is strict—if a Jini service does not renew its lease,
the lookup service terminates the registration when the lease expires and the service becomes
unavailable to clients. Therefore, developers must ensure that their Jini services manage reg-
istration leases to ensure that services do not lose their registrations prematurely.

Our SeminarInfo Jini service does not perform any lease maintenance. After the
SeminarInfo service’s first lease expires (i.e., 10 minutes), the SeminarInfo service
is no longer available to clients. The service itself continues executing, but the lookup ser-
vices with which the service registered will have terminated the registrations.

Class LeaseRenewalManager is a Jini utility class that enables services to manage
their leases to ensure that the service’s leases do not expire prematurely. Class Seminar-
InfoLeaseService (Fig. 22.35) uses class LeaseRenewalManager to manage
leases for the SeminarInfo service. Class SeminarInfoLeaseService is similar
to class SeminarInfoService (Fig. 22.21), so we concentrate only on lease manage-
ment in this example.

1 // SeminarInfoLeaseService.java
2 // SeminarInfoLeaseService discovers lookup services, registers
3 // the SeminarInfo service, and creates a LeaseRenewalManager
4 // to maintain the SeminarInfo service lease.
5 package com.deitel.advjhtp1.jini.utilities.leasing;
6
7 // Java core packages
8 import java.rmi.RMISecurityManager;

Fig. 22.35Fig. 22.35Fig. 22.35Fig. 22.35 SeminarInfoLeaseService uses class LeaseRenewalManager
to manage SeminarInfo service leasing (part 1 of 4).

Chapter 22 Jini 1245

9 import java.rmi.RemoteException;
10 import java.io.IOException;
11
12 // Jini core packages
13 import net.jini.core.lookup.*;
14 import net.jini.core.entry.Entry;
15 import net.jini.core.lease.Lease;
16
17 // Jini extension packages
18 import net.jini.discovery.*;
19 import net.jini.lookup.entry.Name;
20 import net.jini.lease.LeaseRenewalManager;
21
22 // Deitel packages
23 import com.deitel.advjhtp1.jini.seminar.service.*;
24 import com.deitel.advjhtp1.jini.utilities.entry.SeminarProvider;
25
26 public class SeminarInfoLeaseService implements DiscoveryListener {
27
28 private LookupDiscovery discover;
29 private ServiceItem item;
30 private static final int LEASETIME = 10 * 60 * 1000;
31
32 // SeminarInfoLeaseService constructor
33 public SeminarInfoLeaseService()
34 {
35 // search for lookup services with public group
36 try {
37 discover = new LookupDiscovery(new String[] { "" });
38
39 // register DiscoveryListener
40 discover.addDiscoveryListener(this);
41 }
42
43 // handle exception creating LookupDiscovery
44 catch (IOException exception) {
45 exception.printStackTrace();
46 }
47
48 // create and set Entry name for service
49 Entry[] entries = new Entry[1];
50 entries[0] = new SeminarProvider("Deitel");
51
52 // specify the service's proxy and entry
53 item = new ServiceItem(null, createProxy(), entries);
54
55 } // end SeminarInfoLeaseService constructor
56
57 // receive notifications of discovered lookup services
58 public void discovered (DiscoveryEvent event)
59 {
60 ServiceRegistrar[] registrars = event.getRegistrars();

Fig. 22.35Fig. 22.35Fig. 22.35Fig. 22.35 SeminarInfoLeaseService uses class LeaseRenewalManager
to manage SeminarInfo service leasing (part 2 of 4).

1246 Jini Chapter 22

61
62 // register the service with the lookup service
63 for (int i = 0; i < registrars.length; i++) {
64
65 ServiceRegistrar registrar = registrars[i];
66
67 // register the service with the lookup service
68 try {
69 ServiceRegistration registration =
70 registrar.register(item, LEASETIME);
71
72 // create LeaseRenewalmanager
73 LeaseRenewalManager leaseManager =
74 new LeaseRenewalManager();
75
76 // renew SeminarInfo lease indefinitely
77 leaseManager.renewUntil(registration.getLease(),
78 Lease.FOREVER, null);
79
80 } // end try
81
82 // handle exception registering ServiceItem
83 catch (RemoteException exception) {
84 exception.printStackTrace();
85 }
86
87 } // end for
88
89 } // end method discovered
90
91 // ignore discarded lookup services
92 public void discarded(DiscoveryEvent event) {}
93
94 // create seminar service proxy
95 private SeminarInterface createProxy()
96 {
97 // get BackendInterface reference to SeminarInfo
98 try {
99 BackendInterface backInterface = new SeminarInfo();
100
101 return new SeminarProxy(backInterface);
102 }
103
104 // handle exception creating SeminarProxy
105 catch (RemoteException exception) {
106 exception.printStackTrace();
107 }
108
109 return null;
110
111 } // end method createProxy
112

Fig. 22.35Fig. 22.35Fig. 22.35Fig. 22.35 SeminarInfoLeaseService uses class LeaseRenewalManager
to manage SeminarInfo service leasing (part 3 of 4).

Chapter 22 Jini 1247

In method discovered, lines 69–70 register the SeminarInfo service’s Servi-
ceItem with the discovered ServiceRegistrar. Lines 73–74 create a new Lease-
RenewalManager, which class SeminarInfoLeaseService uses to manage the
SeminarInfo service’s lease. Lines 77–78 invoke method renewUntil of class
LeaseRenewalManager. Method renewUntil takes as its first argument the Lease
object to be renewed. In this example, we obtain the Lease object by invoking method
getLease of class ServiceRegistration. The second argument specifies the
desired expiration time (in milliseconds) for renewed Leases. Line 78 specifies the con-
stant Lease.FOREVER to request a Lease that never expires. This does not guarantee
that the lookup service will provide an everlasting Lease—the lookup service is free to
grant a lease that is shorter than the requested length. The third argument to method
renewUntil is the LeaseListener, to notify of problems encountered when
renewing the Lease. We pass null as the third argument to disregard such notifications.

To run the SeminarInfo Jini service with lease management, create a new JAR file
named SeminarServiceWithLeasing.jar. Figure 22.36 shows the contents of
SeminarServiceWithLeasing.jar. Note that this JAR file replaces Seminar-
InfoService.class with SeminarInfoLeaseService.class. Note also that

113 // launch SeminarInfoLeaseService
114 public static void main(String args[])
115 {
116 // set SecurityManager
117 if (System.getSecurityManager() == null) {
118 System.setSecurityManager(new RMISecurityManager());
119 }
120
121 SeminarInfoLeaseService service =
122 new SeminarInfoLeaseService();
123
124 Object keepAlive = new Object();
125
126 // wait on keepAlive Object to keep service running
127 synchronized (keepAlive) {
128
129 // keep application alive
130 try {
131 keepAlive.wait();
132 }
133
134 // handle exception if wait interrupted
135 catch (InterruptedException exception) {
136 exception.printStackTrace();
137 }
138
139 } // end synchronized block
140
141 } // end method main
142 }

Fig. 22.35Fig. 22.35Fig. 22.35Fig. 22.35 SeminarInfoLeaseService uses class LeaseRenewalManager
to manage SeminarInfo service leasing (part 4 of 4).

1248 Jini Chapter 22

this JAR file includes SeminarProvider.class, which is our custom Entry object
for the SeminarInfo service.

After packaging the classes in SeminarServiceWithLeasing.jar, run the
new version of the service by typing the following command at a command prompt:

java -classpath %CLASSPATH%;SeminarServiceWithLeasing.jar
 -Djava.security.policy=policy
 -Djava.rmi.server.codebase=http://hostname:9090/
SeminarServiceDownload.jar
 com.deitel.advjhtp1.jini.utilities.leasing.
SeminarInfoLeaseService

where policy is an appropriate security policy and hostname is the hostname where the Web
server for downloading the SeminarInfo service proxy is running. The Lease-
RenewalManager will renew the SeminarInfo service’s lease to maintain the ser-
vice’s lookup service registrations.

22.8.4 JoinManager Utility

As we have seen, making a Jini service available in a Jini community requires several steps.
The service must discover lookup services, register with discovered lookup services and
maintain registration leases. Class JoinManager is a utility class that facilitates the pro-
cess of deploying a Jini service by performing lookup discovery, service registration and
lease management in a single class.

Class File Directory in SeminarServiceWithLeasing.jar

Seminar.class

com\deitel\advjhtp1\jini\seminar\

SeminarInterface.class

com\deitel\advjhtp1\jini\seminar\service\

SeminarProxy.class

com\deitel\advjhtp1\jini\seminar\service\

BackendInterface.class

com\deitel\advjhtp1\jini\seminar\service\

SeminarInfo.class

com\deitel\advjhtp1\jini\seminar\service\

SeminarInfo_Stub.class

com\deitel\advjhtp1\jini\seminar\service\

SeminarProvider.class

com\deitel\advjhtp1\jini\utilities\entry\

SeminarInfoLeaseService.class

com\deitel\advjhtp1\jini\utilities\leasing\

Fig. 22.36Fig. 22.36Fig. 22.36Fig. 22.36 SeminarServiceWithLeasing.jar contents.

Chapter 22 Jini 1249

Class SeminarInfoJoinService (Fig. 22.37) uses class JoinManager to
deploy the SeminarInfo service. Lines 38–40 create a LookupDiscoveryManger
that the JoinManager will use to discover lookup services. We pass as the first argument
to the LookupDiscoveryManager constructor a String array with a single element,
which is an empty String. This argument specifies that the LookupDiscoveryMan-
ager should perform multicast discovery for lookup services that support the “public”
group. For the second and third arguments, line 40 passes the value null. These arguments
disable unicast discovery and specify a null DiscoveryListener, respectively. The
JoinManager handles the discovery process, so class SeminarInfoJoinService
need not handle DiscoveryEvents.

Lines 43–44 create a new Entry array with a single SeminarProvider element
that specifies the provider of Seminars for the SeminarInfo service. Lines 47–49
create a new instance of class JoinManager to discover lookup services, register the ser-
vice and maintain the service’s registration leases. Line 47 invokes method cre-
ateProxy to create a SeminarProxy for the SeminarInfo service. The second
argument to the JoinManager constructor is the array of Entry attributes that describe
the service. The third argument is a reference to a ServiceIDListener. When the
JoinManager registers the Jini service with a lookup service, the JoinManager noti-
fies the ServiceIDListener of the service ID that the lookup service assigns to the
Jini service. The fourth argument is a DiscoveryManagement object for discovering
lookup services. For this example, we pass the LookupDiscoveryManager created on
lines 38–40. The final argument to the JoinManager constructor is a LeaseRenewal-
Manager for maintaining the service’s registration leases.

1 // SeminarInfoJoinService.java
2 // SeminarInfoJoinService uses a JoinManager to find lookup
3 // services, register the Seminar service with the lookup
4 // services and manage lease renewal.
5 package com.deitel.advjhtp1.jini.utilities.join;
6
7 // Java core packages
8 import java.rmi.RMISecurityManager;
9 import java.rmi.RemoteException;

10 import java.io.IOException;
11
12 // Jini core packages
13 import net.jini.core.lookup.ServiceID;
14 import net.jini.core.entry.Entry;
15
16 // Jini extension packages
17 import net.jini.lookup.entry.Name;
18 import net.jini.lease.LeaseRenewalManager;
19 import net.jini.lookup.JoinManager;
20 import net.jini.discovery.LookupDiscoveryManager;
21 import net.jini.lookup.ServiceIDListener;
22

Fig. 22.37Fig. 22.37Fig. 22.37Fig. 22.37 SeminarInfoJoinService uses class JoinManager to facilitate
registering the SeminarInfo service and manage its leasing (part 1 of 3).

1250 Jini Chapter 22

23 // Deitel packages
24 import com.deitel.advjhtp1.jini.seminar.service.*;
25 import com.deitel.advjhtp1.jini.utilities.entry.*;
26
27 public class SeminarInfoJoinService implements ServiceIDListener {
28
29 // SeminarInfoJoinService constructor
30 public SeminarInfoJoinService()
31 {
32 // use JoinManager to register SeminarInfo service
33 // and manage lease
34 try {
35
36 // create LookupDiscoveryManager for discovering
37 // lookup services
38 LookupDiscoveryManager lookupManager =
39 new LookupDiscoveryManager(new String[] { "" },
40 null, null);
41
42 // create and set Entry name for service
43 Entry[] entries = new Entry[1];
44 entries[0] = new SeminarProvider("Deitel");
45
46 // create JoinManager
47 JoinManager manager = new JoinManager(createProxy(),
48 entries, this, lookupManager,
49 new LeaseRenewalManager());
50 }
51
52 // handle exception creating JoinManager
53 catch (IOException exception) {
54 exception.printStackTrace();
55 }
56
57 } // end SeminarInfoJoinService constructor
58
59 // create seminar service proxy
60 private SeminarInterface createProxy()
61 {
62 // get SeminarProxy for SeminarInfo service
63 try {
64 return new SeminarProxy(new SeminarInfo());
65 }
66
67 // handle exception creating SeminarProxy
68 catch (RemoteException exception) {
69 exception.printStackTrace();
70 }
71
72 return null;
73
74 } // end method createProxy

Fig. 22.37Fig. 22.37Fig. 22.37Fig. 22.37 SeminarInfoJoinService uses class JoinManager to facilitate
registering the SeminarInfo service and manage its leasing (part 2 of 3).

Chapter 22 Jini 1251

Method serviceIDNotify (lines 77–80) is required by interface Service-
IDListener. The JoinManager invokes method serviceIDNotify to notify a
ServiceIDListener that a lookup service has assigned a service ID to the Jini service.
Line 79 simply prints out the service ID.

Method main (lines 83–92) sets the RMISecurityManager and launches the
SeminarInfoJoinService application. Note that method main does not use a
keepAlive Object to keep the application running, as was required in previous exam-
ples. The JoinManager keeps the application alive.

To run the SeminarInfo service using the JoinManager, create the JAR file
SeminarServiceJoinManager.jar with the contents listed in Figure 22.38.

75
76 // receive notification of ServiceID assignment
77 public void serviceIDNotify(ServiceID serviceID)
78 {
79 System.err.println("Service ID: " + serviceID);
80 }
81
82 // launch SeminarInfoJoinService
83 public static void main(String args[])
84 {
85 // set SecurityManager
86 if (System.getSecurityManager() == null) {
87 System.setSecurityManager(new RMISecurityManager());
88 }
89
90 // create SeminarInfoJoinService
91 new SeminarInfoJoinService();
92 }
93 }

Service ID: 0084d3a0-4bbe-4b76-aa0b-f73294738fec

Class File Directory in SeminarServiceJoinManager.jar

Seminar.class

com\deitel\advjhtp1\jini\seminar\

SeminarInterface.class

com\deitel\advjhtp1\jini\seminar\service\

SeminarProxy.class

com\deitel\advjhtp1\jini\seminar\service\

Fig. 22.38Fig. 22.38Fig. 22.38Fig. 22.38 SeminarServiceJoinManager.jar contents (part 1 of 2).

Fig. 22.37Fig. 22.37Fig. 22.37Fig. 22.37 SeminarInfoJoinService uses class JoinManager to facilitate
registering the SeminarInfo service and manage its leasing (part 3 of 3).

1252 Jini Chapter 22

After packaging the classes in SeminarServiceJoinManager.jar, run the
new version of the service by typing the following at a command prompt:

java -classpath %CLASSPATH%;SeminarServiceJoinManager.jar
 -Djava.security.policy=policy
 -Djava.rmi.server.codebase=http://hostname:9090/
SeminarServiceDownload.jar
 com.deitel.advjhtp1.jini.utilities.join.
SeminarInfoJoinService

where policy is an appropriate security policy and hostname is the hostname where the Web
server for downloading the SeminarInfo service proxy is running. Figure 22.37 shows
a sample service ID output from application SeminarInfoJoinService.

22.8.5 Service Discovery Utilities

Complex Jini clients often have specific requirements for the Jini services they employ. To
satisfy these requirements, the Jini client often must work with sets of Jini services. The
client searches through these services to locate the particular service that can satisfy the cli-
ent’s needs. For example, a Jini client that provides users with information about printers
available in a given office needs a set of services for the available printers. This printer-
monitoring program would need to be aware of the status of each printer to know when a
new printer has been added. The service also should be able to search among the printers
for particular features (color support, print quality, capacity, speed etc.).

Class net.jini.lookup.ServiceDiscoveryManager provides Jini clients
with a richer set of service and lookup-service management features than interface
ServiceRegistrar provides. Class ServiceDiscoveryManager facilitates dis-
covering available services and enables clients to perform finer-grained searches than are
possible with the ServiceRegistrar interface. Jini clients also can use class Ser-
viceDiscoveryManager to enhance application performance by maintaining a local
cache of services. There are three primary ways in which Jini clients use class Service-
DiscoveryManager—creating a local cache of services, receiving event notifications

BackendInterface.class

com\deitel\advjhtp1\jini\seminar\service\

SeminarInfo.class

com\deitel\advjhtp1\jini\seminar\service\

SeminarInfo_Stub.class

com\deitel\advjhtp1\jini\seminar\service\

SeminarProvider.class

com\deitel\advjhtp1\jini\utilities\entry\

SeminarInfoJoinService.class

com\deitel\advjhtp1\jini\utilities\join\

Class File Directory in SeminarServiceJoinManager.jar

Fig. 22.38Fig. 22.38Fig. 22.38Fig. 22.38 SeminarServiceJoinManager.jar contents (part 2 of 2).

Chapter 22 Jini 1253

when services become available or unavailable and performing detailed searches not pos-
sible with simple ServiceTemplates.

Class ServiceDiscoveryManager can enhance Jini-client performance by cre-
ating a local cache of discovered services. This local cache—implemented as a
net.jini.lookup.LookupCache—enables the client to perform additional service
lookups without incurring the network overhead of a remote call to a lookup service. When
the client needs a particular service that is in the LookupCache, the client simply invokes
method lookup of interface LookupCache to retrieve the service from the local cache.

Jini clients also can use a LookupCache retrieved from a ServiceDiscovery-
Manager to receive notifications related to a set of services. By implementing interface
ServiceDiscoveryListener and registering with a LookupCache, a Jini client
can receive events indicating when a particular service has been discovered, when a ser-
vice’s attributes have changed and when the service is removed from the LookupCache.
This event notification is particularly useful for Jini clients that monitor available
resources, such as our printer-monitoring example.

Class ServiceDiscoveryManager also provides an enhanced interface that
enables Jini clients to search for services using more specific search criteria. Jini clients can
use class ServiceDiscoverManager with implementations of interface Service-
ItemFilter to locate services whose attribute values fall within a particular range. For
example, a Jini client could use a ServiceItemFilter to locate all automated teller
machines in the area whose service charge is less than two dollars. Such a specific query is
not possible using the standard ServiceTemplate matching available through interface
ServiceRegistrar.

For more information on class ServiceDiscoveryManager, please see the Jini
API documentation included with the Jini Technology Core Platform.

22.9 Internet and World Wide Web Resources
www.jini.org
Home of the Jini community.

www.sun.com/jini/specs/jini1.1html/coreTOC.html
The site for Jini Technology Core Platform Specification.

www.sun.com/jini/specs/jini1.1html/collectionTOC.html
This site contains a collection of Jini Technology Helper Utilities and Services Specifications.

www.sun.com/jini/specs/jini1.1html/jsTOC.html
This site provides JavaSpaces Service Specification.

developer.java.sun.com/developer/products/jini/installation.in-
dex.html
This site provides installation instructions for Jini technology.

SUMMARY
• Many network devices provide services to network clients.

• Each service has a well-defined interface.

• To use a service, a client must be able to discover that a service exists and must know the interface
for interacting with the service.

• Jini extends RMI to provide services to a network.

1254 Jini Chapter 22

• Jini services are plug-and-play—clients can discover services on the network dynamically, transpar-
ently download classes required to use those services, then begin interacting with those services.

• RMI’s dynamic class-downloading capability enables Jini clients to use services without installing
special driver software for those services in advance.

• For Jini clients to discover and use Jini services, standardized interfaces for common services must
be developed.

• The basic software requirements for Jini include the Java 2 Standard Edition (J2SE) and the Jini
Technology Starter Kit. If you are going to write commercial Jini services and want to test their
compatibility with the Jini platform, you also need to download the Jini Technology Core Platform
Compatibility Kit (Jini TCK).

• The Jini Starter Kit has three components—the Jini Technology Core Platform (JCP), the Jini Tech-
nology Extended Platform (JXP) and the Jini Software Kit (JSK). The JCP contains the fundamental
Jini interfaces and classes. The JXP provides helper utilities for implementing Jini services and cli-
ents. The JSK contains an implementation of the services specified in the JCP and the JXP.

• To compile and execute Jini services and clients the JAR files jini-core.jar, jini-
ext.jar and sun-util.jar must be included in the CLASSPATH environment variable. These
three JAR files are in the lib directory of the Jini Starter Kit—they correspond to the Jini Technol-
ogy Core Platform, the Jini Technology Extended Platform and the Jini Software Kit, respectively.

• The Jini distribution comes with three services that must be running correctly before executing Jini
applications—a Web server to enable Jini clients to download class files through RMI, so the cli-
ents can access Jini services dynamically; the RMI activation daemon (rmid) to enable the RMI
infrastructure that allows Jini clients to communicate with Jini services; and a lookup service to
maintain information about available Jini services, and to enable clients to discover and use those
services. The Web server and rmid must be executing (they can be started in any order) before
starting the lookup service.

• The Jini Technology Core Platform implementation includes the StartService GUI tool for
launching required services.

• The Jini lookup service is the heart of a Jini community. The process of finding the lookup services
and obtaining references to them is called discovery.

• Discovery distinguishes Jini technology from RMI. In RMI, you must know in advance where to
register an object. In Jini, you do not need to know where—just how. The discovery process de-
termines where, but hides the details from the developer.

• Discovery can be accomplished using either unicast discovery or multicast discovery.

• Unicast discovery, or locator discovery, enables a Jini service or client to discover lookup services
on a specific host.

• Method getRegistrar of class LookupLocator performs unicast discovery. The method
returns a ServiceRegistrar, which represents a lookup service. An overloaded version of
method getRegistrar takes as an integer argument the maximum number of milliseconds to
wait for the unicast discovery to locate a ServiceRegistrar before issuing a timeout.

• Methods getHost and getPort of class LookupLocator retrieve the hostname and port
number where a lookup service was discovered.

• Multicast discovery, or group discovery, enables a Jini service or client to discover lookup services
when the particular host running the lookup service is not known. A multicast discovery request uses
network multicast to discover nearby lookup services. Lookup services periodically issue multicast
announcements to notify interested Jini services and clients that the lookup services are available.

• Class net.jini.discovery.LookupDiscovery performs multicast discovery.

• Implementing interface DiscoveryListener enables an object of a class to receive Dis-
coveryEvents—notifications of discovered lookup services.

Chapter 22 Jini 1255

• Class LookupDiscovery invokes method discovered when LookupDiscovery locates
new lookup services.

• Method getRegistrars of DiscoveryEvent obtains an array of ServiceRegistrars.

• Class LookupDiscovery invokes method discarded when a lookup service should be dis-
carded because it is no longer available or because it no longer matches the set of groups in which
the Jini service or client is interested.

• A Jini service consists of several components, each of which contributes to the flexibility and porta-
bility of the Jini architecture. A service proxy is an intermediary between a Jini service and its clients.
The service proxy communicates with the actual service implementation through the service’s back-
end interface, which defines methods in the service implementation. A separate application discovers
lookup services and registers the Jini service, making the service available to Jini clients.

• A Jini client uses the lookup service discovery techniques to discover lookup services. The Jini
client then uses the discovered lookup services to locate the desired Jini service. When the lookup
service locates the service requested by the Jini client, the lookup service serializes the service
proxy and delivers the proxy to the Jini client. The client can then invoke methods defined in the
service’s public interface directly on the service proxy, which implements that interface. The
service proxy communicates with the service implementation through the back-end interface.

• An Entry (package net.jini.core.entry) describes a service, which enables Jini clients
to search for services of a particular description.

• The lookup service requires a ServiceItem (package net.jini.core.lookup) to regis-
ter a Jini service.

• Jini helper utilities simplify the process of developing the Jini applications. These helper utilities
provide high-level management capabilities.

• Class LookupLocatorDiscovery enables a Jini service or client to discover lookup services
on multiple known hosts. Class LookupLocatorDiscovery uses DiscoveryEvents to
notify the Jini service or client of discovered lookup services.

• Class LookupDiscoveryManager provides flexible lookup service discovery by enabling
Jini applications and clients to perform both unicast and multicast lookup service discovery using
a single class.

• Entry attributes specify characteristics of Jini services. By attaching attributes to services, ser-
vice providers can publish services with detailed information, such as the service location and the
functionality of the service. Developers also can create custom attributes for Jini services. Class
AbstractEntry provides a basic implementation of interface Entry.

• An Entry class must supply a no-argument constructor. Also, instance variables must be pub-
lic references to Serializable objects.

• One goal of Jini technology is to make Jini communities “self-healing” and able to recover from
common problems, such as network outages, hardware failures and software failures. Therefore,
when a Jini service registers with a lookup service, the registration is not permanent. The registra-
tion is leased for a specific amount of time, after which the lookup service revokes the registration.
This prevents problematic services from disrupting the entire Jini community.

• The leasing strategy that Jini employs is strict—if a Jini service does not renew its lease, the lookup
service terminates the registration when the lease expires, making the service unavailable to clients.

• Class LeaseRenewalManager is a Jini utility class that enables services to manage their leases
to ensure that the service’s leases do not expire prematurely.

• Class JoinManager is a utility class that facilitates the process of deploying a Jini service by
performing lookup discovery, service registration and lease management in a single class.

• Complex Jini clients often have specific requirements for the Jini services they employ. To satisfy
these requirements, the Jini client often must work with sets of Jini services. The client searches

1256 Jini Chapter 22

through these services to locate the particular service that can satisfy the client’s needs. Class
ServiceDiscoveryManager facilitates discovering available services and enables clients to
perform finer-grained searches than are possible with the ServiceRegistrar interface.

• There are three primary ways in which Jini clients use class ServiceDiscoveryManager—
creating a local cache of services, receiving event notifications when services become available or
unavailable and performing detailed searches not possible with simple ServiceTemplates.

• Class ServiceDiscoveryManager can enhance Jini-client performance by creating a local
cache of discovered services. This local cache—implemented as a LookupCache.

TERMINOLOGY

SELF-REVIEW EXERCISES
22.1 Fill in the blanks in each of the following statements:

a) Name three required services for running Jini services and clients: ,
 and .

b) Two ways to discover lookup services are and .

serviceAdded method of
 ServiceDiscoveryListener

LeaseRenewalManager class
locator discovery

AbstractEntry class lookup method of
 ServiceDiscoveryManagercreateLookupCache method of

 ServiceDiscoveryManager lookup method of
 ServiceDiscoveryManagerdiscovery

DiscoveryEvent class lookup method of LookupCache
DiscoveryListener interface lookup service
DiscoveryManagement class LookupCache interface
Entry interface LookupDiscovery class
getFrom method of
 LookupDiscoveryManager

LookupDiscoveryManager class
LookupLocator class

getGroups method of LookupDiscovery LookupLocatorDiscovery class
getHost method of class LookupLocator multicast discovery
getPort method of class LookupLocator Name class
getRegistrar method of class
 LookupLocator

plug and play
Reggie lookup service

getRegistrars method of class
 LookupDiscovery

renewFor method of
 LeaseRenewalManager

group discovery renewUntil method of
 LeaseRenewalManagerJini

Jini client ServiceDiscoveryListener interface
Jini Software Kit ServiceDiscoveryManager class
Jini Technology Core Platform Compatibility Kit ServiceID class
Jini Technology Starter Kit serviceIDNotify method of

 ServiceIDListenerJini transaction manager service
jini: URL ServiceItem class
join protocol ServiceItemFilter interface
JoinManager class ServiceRegistrar interface
Lease class serviceRemoved method in

 ServiceDiscoveryListenerlease renewal service
Lease.FOREVER constant ServiceTemplate class
LeaseListener interface unicast discovery

Chapter 22 Jini 1257

c) To generate the stub file for a remote object, use .
d) A service proxy that is exported to the remote client must implement interface

.
e) Service providers use to describe a service. Jini clients use to

find a matching service.

22.2 State whether each of the following is true or false. If false, explain why.
a) Unicast discovery is also known as locator discovery.
b) The JoinManager can discover lookup services, register a service and renew a ser-

vice’s lease.
c) Class LookupDiscoveryManager can perform only unicast discovery.
d) Jini requires only the RMI activation daemon (rmid) and a Web server.
e) Jini clients must have all the .class files for a Jini service in the local CLASSPATH.

ANSWERS TO SELF-REVIEW EXERCISES
22.1 a) the HTTP Web server, the rmi activation daemon, the lookup service. b) unicast discovery,
multicast discovery. c) rmic. d) Serializable. e) ServiceItem, ServiceTemplate.

22.2 a) True. b) True. c) False. Class LookupDiscoveryManager performs both unicast and
multicast discovery. d) False. Jini also requires lookup services to enable clients to locate Jini servic-
es. e) False. Jini clients require that only the public interface and supporting classes be in the local
CLASSPATH. Having the Jini service’s .class files in the client’s CLASSPATH prevents network
class loading.

EXERCISES
22.3 Modify class MulticastDiscovery (Fig. 22.13) to perform multicast discovery for look-
up services that support any group, not just the public group. Can you use null for a wildcard match?

22.4 Create an application to find all services that are registered with local lookup services.

22.5 Write a currency exchange service using Jini technology. This currency exchange service sim-
ply does one function: It exchanges the currency of one country to the currency of another country. The
exchange rate can be dynamically loaded from an on-line resource or can be just statically loaded from
a file. Create the public interface, service proxy, back-end interface and service implementation.

22.6 Register the currency exchange service with the lookup services on the local machine using
JoinManager.

22.7 Create a Jini client that allows a user to use the exchange service. Search the currency ex-
change service with the lookup service on the local machine, and use the found service to exchange
one currency into another currency.

22.8 Modify Exercise 22.6 to add a set of Entry attributes to the service. The attributes should
include the name of the exchange service, the address of the exchange service and any other attributes
you want to add to the service. Use part or all of the attributes set to find a matching service.

BIBLIOGRAPHY
Edwards, W. K., Core Jini (Second Edition), Upper Saddle River, NJ: Prentice Hall, Inc. 2001

Li, S., Professional Jini, Birmingham, U.K.: Wrox Press Ltd. 2000

Newmarch, J., A Programer’s Guide to Jini Technology, New York, NY: Springer-Verlag New York,
Inc. 2000

Oaks, S., and Wong, H., Jini in a Nutshell, Sebastopol, CA: O’Reilly & Associates, Inc. 2000

23
JavaSpaces

Objectives
• To be able to use the JavaSpaces service for building

distributed applications.
• To understand the operations available in a

JavaSpaces service.
• To be able to match entries in a JavaSpaces service

against templates.
• To understand the use of transactions in JavaSpaces

services.
• To be able to use notifications to build event-driven

JavaSpaces applications.
The world is a book, and those who do not travel read only a
page.
Saint Augustine

Write what you like; there is no other rule.
O. Henry

Take nothing on its looks: take everything on evidence.
There’s no better rule.
Charles Dickens

Believe nothing, no matter where you read it, or who said it,
no matter if I have said it, unless it agrees with your own
reason and your own common sense.
Buddha

Chapter 23 JavaSpaces 1259

23.1 Introduction
Objects that take part in distributed systems must be able to communicate with one another
and share information. Thus far we have introduced several mechanisms by which Java ob-
jects in distributed systems can communicate. Java servlets (Chapter 9) enable Java objects
(and non-Java objects) to communicate using the HTTP protocol. RMI (Chapter 13) en-
ables Java objects running in separate virtual machines to invoke methods on one another
as if those objects were in the same virtual machine. The Java Message Service (Chapter
16) enables Java objects (and non-Java objects) to communicate by publishing and con-
suming simple messages.

The JavaSpaces service is a Jini service that implements a simple, high-level architec-
ture for building distributed systems. The JavaSpaces service enables Java objects to com-
municate, share objects and coordinate tasks using an area of shared memory.1 A
JavaSpaces service provides three fundamental operations—write, take and read. The write
operation places an object—called an entry—into the JavaSpaces service. The take opera-

Outline

23.1 Introduction
23.2 JavaSpaces Service Properties
23.3 JavaSpaces Service
23.5 JavaSpace Interface
23.6 Defining an Entry
23.4 Discovering the JavaSpaces Service
23.7 Write Operation
23.8 Read and Take Operations

23.8.1 Read Operation
23.8.2 Take Operation

23.9 Notify Operation
23.10 Method snapshot
23.11 Updating Entries with Jini Transaction Service

23.11.1 Defining the User Interface
23.11.2 Discovering the TransactionManager Service
23.11.3 Updating an Entry

23.12 Case Study: Distributed Image Processing
23.12.1 Defining an Image Processor
23.12.2 Partitioning an Image into Smaller Pieces
23.12.3 Compiling and Running the Example

23.13 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises •
Works Cited • Bibliography

1260 JavaSpaces Chapter 23

tion specifies a template and removes from the JavaSpaces service an entry that matches
the given template. The read operation is similar to the take operation, but does not remove
the matching entry from the JavaSpaces service. In addition to the three basic operations,
JavaSpaces services support transactions through the Jini transaction manager, and a noti-
fication mechanism that notifies an object when an entry that matches a given template is
written to the JavaSpaces service.

In the first half of this chapter, we present fundamental JavaSpaces technology con-
cepts and use simple examples to demonstrate operations, transactions and notifications.
The case study at the end of this chapter uses JavaSpaces services to build a distributed
image-processing application. This image-processing application uses JavaSpaces services
to distribute the work of applying filters to images across many programs (normally on sep-
arate computers).

23.2 JavaSpaces Service Properties
JavaSpaces technology eases the design and development of distributed systems. A Jav-
aSpaces service has five major properties:2

1. A JavaSpaces service is a Jini service.

1. Multiple processes can access a JavaSpaces service concurrently.

2. An entry stored in a JavaSpaces service will remain in the JavaSpaces service until
its lease expires or until a program takes the entry from the JavaSpaces service.

3. A JavaSpaces service locates objects by comparing those objects to a template.
The template specifies the search criteria against which the JavaSpaces service
compares each entry. When one or more entries match the template, the JavaSpac-
es service returns a single matching entry.

4. JavaSpaces services use the Jini transaction manager to ensure operations execute
atomically.

5. Objects in a JavaSpaces service are shared. Programs can read and take entries
from the JavaSpaces service, modify the public fields in those entries and write
them back to the JavaSpaces service for other programs to use.

23.3 JavaSpaces Service
The JavaSpaces service provides distributed, shared storage for Java objects. Any Java-com-
patible client can put shared objects into the storage. However, several restrictions apply to
these Java objects. First, any object stored in the JavaSpaces service must implement interface
Entry (package net.jini.core.entry). JavaSpaces service Entrys adhere to the
Jini Entry contract defined in the Jini Core Specification (see Chapter 22, Jini). An Entry
can have multiple constructors and as many methods as required. Other requirements include
a public no-argument constructor, public fields and no-primitive type fields. The Jav-
aSpaces service proxy uses the no-argument constructor to instantiate the matching Entry
during the deserialization process. All fields that will be used as the template matching fields
in an Entry must be public (for more information on template matching fields, see Sec-
tion 23.8). As defined by the Jini Core Specification, an Entry cannot have primitive-type
fields. The object field requirement simplifies the model for template matching because prim-
itive types cannot have null values, which are used as wildcards in templates.

Chapter 23 JavaSpaces 1261

JavaSpaces technology, like Jini, requires several underlying services. The JavaSpaces
service depends on the Jini lookup service (for more information on Jini services, see
Chapter 22, Jini). When transactions are required, the Jini transaction service
(Section 23.11.2) must be started. JavaSpaces services also depend on a Web server and
rmid (for more information on starting these services, see Chapter 22, Jini). Section 23.6
explains the relationships between JavaSpaces services and these Jini services. Section
23.11 demonstrates using the Transaction service with the JavaSpaces service. To use the
JavaSpaces service, we need to start outrigger, which is Sun’s implementation of the
JavaSpaces service. Two versions of the JavaSpaces service are available. One is the tran-
sient JavaSpaces service (nonactivatable). The other is the persistent JavaSpaces service
(activatable). The transient JavaSpaces service does not require the RMI activation daemon
(rmid), because the transient JavaSpaces service is not activatable. Once the transient Jav-
aSpaces service terminates, all state information is lost and rmid is unable to restart the
service.The persistent JavaSpaces service is activatable, and therefore requires the RMI
activation daemon. If the persistent JavaSpaces service terminates, all of its state informa-
tion is stored in a log file and rmid can restart the service at a later time.

To start the transient JavaSpaces service enter the following a command prompt

java -Djava.security.policy=policy
 -Djava.rmi.server.codebase=
 http://hostname:port/outrigger-dl.jar
 -jar c:\files\jini1_1\lib\transient-outrigger.jar public

where policy is the path to an appropriate policy file, hostname is the name of the machine
on which the Web server is running and port specifies the port number on which the Web
server will accept connections. The argument public specifies to which group this ser-
vice belongs.

The following command starts the persistent JavaSpaces service:

java -jar c:\files\jini1_1\lib\outrigger.jar
 http://hostname:port/outrigger-dl.jar

policy log_path public

where hostname is the name of the machine on which the Web server is running, port
specifies the port number from which the Web server will accept connections, policy is
the full path of the policy file and log_path is the location where the outrigger log will
be created.

An additional parameter is useful in systems where two or more JavaSpaces services
operate. The parameter is

-Dcom.sun.jini.outrigger.spaceName=name

where name defines the String with which the JavaSpaces service will register itself in
the Jini lookup service. The default name for the JavaSpaces service is "JavaSpace".
When searching for a specific JavaSpaces service in the Jini lookup service, you must use
a Name Entry (package net.jini.lookup.entry) and initialize it to the String
specified in the previous parameter. While this is a necessary parameter for systems with
two or more JavaSpaces services, the examples in this chapter assume that only one Jav-
aSpaces service exists in the system. The examples introduce a simple by which clients can
locate the JavaSpaces service from the Jini lookup service.

1262 JavaSpaces Chapter 23

You can start either a transient or persistent JavaSpaces service from the StartSer-
vice GUI tool included in the Jini distributions. Start the GUI as in Chapter 21, then
choose the TransientSpace tab (for a transient JavaSpaces service) or the FrontEnd-
Space (for a persistent JavaSpaces service). Go to the Run tab and click the Start Tran-
sientSpace button to run the transient service or click the Start FrontEndSpace button
to run the persistent service.

23.4 Discovering the JavaSpaces Service
Upon initialization, each JavaSpaces service registers itself with local Jini lookup services.
We assume that you already know how to start a Web server and RMI activation daemon
from Chapter 22. The following is an example of a command that starts the persistent Jav-
aSpaces service. Replace hostname with the name or IP address of your computer and port
with the port number on which the Web server is listening.

java -jar C:\files\jini1_1\lib\outrigger.jar
 http://hostname:port/outrigger-dl.jar
 C:\files\jini1_1\policy\policy.all
 C:\tmp\outrigger_log public

Class JavaSpaceFinder (Fig. 23.1) shows how to obtain access to a JavaSpaces ser-
vice. (We use this class in the example of Fig. 23.3.) The application performs unicast dis-
covery to find the Jini lookup service on the hostname that the user specifies. Lines 35–36 get
the LookupLocator at a user-specified Jini URL and obtain its ServiceRegistrar.
Lines 55-68 look for all JavaSpaces services registered in the lookup service. Lines 55–57
specify a ServiceTemplate object (package net.jini.core.lookup). Lines 61–
62 use the ServiceTemplate to search for all matching services in the lookup service and
obtain a JavaSpace. Method getJavaSpace (lines 77–80) returns the discovered Jav-
aSpace. For more information on how to use the Jini lookup service, please refer to Chapter
22, Jini.

1 // JavaSpaceFinder.java
2 // This application unicast discovers the JavaSpaces service.
3 package com.deitel.advjhtp1.javaspace.common;
4
5 // Jini core packages
6 import net.jini.core.discovery.LookupLocator;
7 import net.jini.core.lookup.*;
8 import net.jini.core.entry.Entry;
9

10 // Jini extension package
11 import net.jini.space.JavaSpace;
12
13 // Java core packages
14 import java.io.*;
15 import java.rmi.*;
16 import java.net.*;
17

Fig. 23.1Fig. 23.1Fig. 23.1Fig. 23.1 Discovering a JavaSpaces service (part 1 of 3).

Chapter 23 JavaSpaces 1263

18 // Java extension package
19 import javax.swing.*;
20
21 public class JavaSpaceFinder {
22
23 private JavaSpace space;
24
25 public JavaSpaceFinder(String jiniURL)
26 {
27 LookupLocator locator = null;
28 ServiceRegistrar registrar = null;
29
30 System.setSecurityManager(new RMISecurityManager());
31
32 // get lookup service locator at "jini://hostname"
33 // use default port and registrar of the locator
34 try {
35 locator = new LookupLocator(jiniURL);
36 registrar = locator.getRegistrar();
37 }
38
39 // handle exception invalid jini URL
40 catch (MalformedURLException malformedURLException) {
41 malformedURLException.printStackTrace();
42 }
43
44 // handle exception I/O
45 catch (java.io.IOException ioException) {
46 ioException.printStackTrace();
47 }
48
49 // handle exception finding class
50 catch (ClassNotFoundException classNotFoundException) {
51 classNotFoundException.printStackTrace();
52 }
53
54 // specify the service requirement
55 Class[] types = new Class[] { JavaSpace.class };
56 ServiceTemplate template =
57 new ServiceTemplate(null, types, null);
58
59 // find service
60 try {
61 space =
62 (JavaSpace) registrar.lookup(template);
63 }
64
65 // handle exception getting JavaSpaces service
66 catch (RemoteException remoteException) {
67 remoteException.printStackTrace();
68 }
69

Fig. 23.1Fig. 23.1Fig. 23.1Fig. 23.1 Discovering a JavaSpaces service (part 2 of 3).

1264 JavaSpaces Chapter 23

23.5 JavaSpace Interface
Clients access objects in a JavaSpaces service through interface JavaSpace (package
net.jini.space). Interface JavaSpace provides several methods—notify,
read, readIfExists, take, takeIfExists, write and snapshot. The purpose
of each method is as follows:3

1. write—This method implements the write operation. The write operation
inserts an Entry into a JavaSpaces service. If an identical Entry already exists
in the JavaSpaces service, this operation does not overwrite the existing Entry.
Instead, the write operation places a copy of the Entry into the JavaSpaces ser-
vice. JavaSpaces services may contain multiple copies of the same Entry.
Section 23.7 demonstrates how to use the write operation.

2. read, readIfExists—These two methods implement the read operation,
which attempts to read an Entry that matches an Entry template from a Jav-
aSpaces service. If no matching Entry exists in the JavaSpaces service, this oper-
ation returns null. If multiple matching Entry exist in the JavaSpaces service,
the read operation arbitrarily picks one among the matching Entrys. Method
read blocks until a matching Entry is found in the JavaSpaces service or until a
time-out occurs. Method readIfExists checks to see if a matching Entry ex-
ists within the JavaSpaces service. If an Entry does not exist in the JavaSpaces
service, method readIfExists should return null immediately. Method
readIfExists does not block unless the matching Entry is a participant in an
uncommitted transaction. For information on transactions, see Section 23.11.
Section 23.8.1 demonstrates the read and readIfExists operations.

3. take, takeIfExists—These two methods implement the take operation,
which attempts to remove an Entry that matches an Entry template from a Jav-
aSpaces service. This operation works like the read operation, except that the
take operation removes the matching Entry from the JavaSpaces service.
Method take blocks until a matching Entry is found in the JavaSpaces service
or until a time-out occurs. Method takeIfExists checks to see if a matching
Entry exists within the JavaSpaces service. If an Entry does not exist in the
JavaSpaces service, method takeIfExists should return null immediately.

70 // if does not find any matching service
71 if (space == null) {
72 System.out.println("No matching service");
73 }
74
75 } // end JavaSpaceFinder constructor
76
77 public JavaSpace getJavaSpace()
78 {
79 return space;
80 }
81 }

Fig. 23.1Fig. 23.1Fig. 23.1Fig. 23.1 Discovering a JavaSpaces service (part 3 of 3).

Chapter 23 JavaSpaces 1265

Method takeIfExists does not block unless the matching Entry is part of
an uncommitted transaction. Section 23.8.2 demonstrates the take and take-
IfExists operations.

4. notify—This method implements the notify operation, which requests that
the JavaSpaces service sends a notification to a listener object when a client writes
a matching Entry into the JavaSpaces service. With this method, an application
does not need to check repeatedly for an Entry in a JavaSpaces service.
Section 23.9 demonstrates the notify operation.

5. snapshot—This method increases performance when a program must serialize
one Entry repeatedly. Each time a program transfers an Entry into a JavaSpac-
es service (e.g., by writing that Entry or by using that Entry as a template), that
Entry must be serialized. If a program transfers the same Entry to a JavaSpaces
service many times, the serialization process can be time consuming. Invoking
method snapshot serializes the Entry once and reuses this serialized Entry
for future transfers. Section 23.10 demonstrates how to use method snapshot.

23.6 Defining an Entry
The following sections and subsections create an application for managing registrations for
fictitious seminars offered at Deitel & Associates, Inc. For each seminar, an administration
tool writes an AttendeeCounter (Fig. 23.2) into the JavaSpaces service. Each At-
tendeeCounter keeps track of the number of attendees registered for a particular sem-
inar. We implement the complete application one step at a time to demonstrate the
mechanics of each of each JavaSpaces service operation.

AttendeeCounter (Fig. 23.2) is an Entry that represents a count of the number
of people attending a seminar. Recall that Entrys require non-primitive type, public
fields (lines 9–10) and an empty constructor (line 13). The AttendeeCounter con-
structor on lines 16–19 takes as a String argument the day of the week for which this
AttendeeCounter tracks attendee registrations.

Common Programming Error 23.1
Including primitive fields in an Entry does not cause an error during compilation. Howev-
er, an IllegalArgumentException does occur during serialization. 23.1

1 // Fig. 23.2: AttendeeCounter.java
2 // This class defines the AttendeeCounter Entry.
3 package com.deitel.advjhtp1.javaspace.common;
4
5 import net.jini.core.entry.Entry;
6
7 public class AttendeeCounter implements Entry {
8
9 public String day;

10 public Integer counter;
11

Fig. 23.2Fig. 23.2Fig. 23.2Fig. 23.2 AttendeeCounter is an Entry for keeping track of registrations for a
seminar on a particular day (part 1 of 2).

1266 JavaSpaces Chapter 23

Software Engineering Observation 23.1
Use wrapper classes rather than primitive types in Entry fields. 23.1

23.7 Write Operation
The write operation places an Entry in a JavaSpaces service. Method write takes three
arguments—an Entry, a Transaction object and a long value that requests an
amount of time for which the JavaSpaces service should keep the Entry. The long value
represents the lease length for the Entry. Normally, the JavaSpaces service grants each
written Entry a lease time of 5 minutes. The JavaSpaces service will not keep the Entry
beyond the lease time granted. A developer can extend the life of an Entry by renewing
its lease before it expires. Method write returns a net.jini.lease.Lease object
that contains the time that the JavaSpaces service granted to the Entry. Method write
throws two exceptions. Method write throws a RemoteException (package ja-
va.rmi) when a network failure occurs or a variety of other errors occur on the server.
When a write operation takes place under an invalid transaction, method write throws
a TransactionException (package net.jini.core.transaction). For in-
formation on transactions, see Section 23.11.

The WriteOperation application (Fig. 23.3) uses class AttendeeCounter
(Fig. 23.2) and class JavaSpaceFinder (Fig. 23.1) to demonstrate writing an Entry
into a JavaSpaces service. In this example, a seminar administrator would use the Writ-
eOperation application to place AttendeeCounter Entrys for each available sem-
inar in the JavaSpaces service. The constructor (lines 30–36) takes a JavaSpace as an
argument. Method writeEntry (lines 39–62) writes an Entry into the JavaSpaces ser-
vice. Lines 44–45 initialize an Entry by setting the number of people who register for the
seminar to zero. Line 46 writes the Entry into the JavaSpaces service. The first argument
(counter) specifies the Entry to write into the JavaSpaces service. The second argu-
ment (null) indicates that the write operation does not use a Transaction. When the
write operation completes, the written Entry is ready for a read or take operation. If a
Transaction object is specified, the write operation uses that Transaction to
ensure that a series of operations completes successfully. This means that until the transac-
tion completes successfully, other clients cannot read or take the Entry from the Jav-
aSpaces service. The third argument (Lease.FOREVER) specifies how long the
JavaSpaces service should keep the Entry. Although we request that the JavaSpaces ser-
vice keep our Entry forever, Sun’s implementation limits the lease to 5 minutes. Pro-

12 // empty constructor
13 public AttendeeCounter() {}
14
15 // constructor has a single String input
16 public AttendeeCounter(String seminarDay)
17 {
18 day = seminarDay;
19 }
20 }

Fig. 23.2Fig. 23.2Fig. 23.2Fig. 23.2 AttendeeCounter is an Entry for keeping track of registrations for a
seminar on a particular day (part 2 of 2).

Chapter 23 JavaSpaces 1267

grams can use the Jini lease-renewal mechanism to maintain Leases for Entrys. After
the lease expires, the JavaSpaces service removes and destroys the object.

Method showOutput (lines 65–75) displays the results. In method main, lines 81–
85 check the user-specified hostname. Lines 88–90 ask user to choose a particular day to
write. Figure 23.4 shows the results of running the WriteOperation application.

1 // WriteOperation.java
2 // This application initializes an new Entry,
3 // and puts this Entry to the JavaSpace.
4 package com.deitel.advjhtp1.javaspace.write;
5
6 // Jini core packages
7 import net.jini.core.lease.Lease;
8 import net.jini.core.transaction.TransactionException;
9

10 // Jini extension package
11 import net.jini.space.JavaSpace;
12
13 // Java core package
14 import java.rmi.RemoteException;
15
16 // Java extension package
17 import javax.swing.*;
18
19 // Deitel package
20 import com.deitel.advjhtp1.javaspace.common.*;
21
22 public class WriteOperation {
23
24 private JavaSpace space;
25 private static final String[] days = { "Monday", "Tuesday",
26 "Wednesday", "Thursday", "Friday" };
27 private String output = "\n";
28
29 // WriteOperation constructor
30 public WriteOperation(String hostname)
31 {
32 // get JavaSpace
33 String jiniURL = "jini://" + hostname;
34 JavaSpaceFinder findtool = new JavaSpaceFinder(jiniURL);
35 space = findtool.getJavaSpace();
36 }
37
38 // deposit new Entry to JavaSpace
39 public void writeEntry(String day)
40 {
41 // initialize AttendeeCounter Entry and deposit
42 // Entry in JavaSpace
43 try {
44 AttendeeCounter counter = new AttendeeCounter(day);
45 space.write(counter, null, Lease.FOREVER);
46

Fig. 23.3Fig. 23.3Fig. 23.3Fig. 23.3 Writing an Entry into a JavaSpaces service (part 1 of 2).

1268 JavaSpaces Chapter 23

47 output += "Initialize the Entry: \n";
48 output += " Day: " + day + "\n";
49 output += " Count: 0\n";
50 }
51
52 // handle exception network failure
53 catch (RemoteException exception) {
54 exception.printStackTrace();
55 }
56
57 // handle exception invalid transaction
58 catch (TransactionException exception) {
59 exception.printStackTrace();
60 }
61 }
62
63 // show output
64 public void showOutput()
65 {
66 JTextArea outputArea = new JTextArea();
67 outputArea.setText(output);
68 JOptionPane.showMessageDialog(null, outputArea,
69 "WriteOperation Output",
70 JOptionPane.INFORMATION_MESSAGE);
71
72 // terminate program
73 System.exit(0);
74 }
75
76 // method main
77 public static void main(String args[])
78 {
79 // get hostname
80 if (args.length != 1) {
81 System.out.println(
82 "Usage: WriteOperation hostname");
83 System.exit(1);
84 }
85
86 // get user input day
87 String day = (String) JOptionPane.showInputDialog(
88 null, "Select Day", "Day Selection",
89 JOptionPane.QUESTION_MESSAGE, null, days, days[0]);
90
91 // write Entry
92 WriteOperation write = new WriteOperation(args[0]);
93 write.writeEntry(day);
94
95 write.showOutput();
96
97 } // end method main
98 }

Fig. 23.3Fig. 23.3Fig. 23.3Fig. 23.3 Writing an Entry into a JavaSpaces service (part 2 of 2).

Chapter 23 JavaSpaces 1269

This application takes a command-line argument that specifies the hostname of a com-
puter that has the JavaSpaces service running. The following steps compile and execute the
WriteOperation application. Ensure that your CLASSPATH includes jini-
core.jar, jini-ext.jar and sun-util.jar. Compile the java files in the
com\deitel\advjhtp1\javaspace\common directory. Run WriteOpera-
tion by specifying the hostname of the Jini lookup service. Do not forget to specify to the
JVM the policy file with the proper permissions.

23.8 Read and Take Operations
The read and the take operations retrieve Entrys from a JavaSpaces service. A client
can read or take an Entry from the JavaSpaces service by supplying a template Entry
against which to compare the public fields of Entrys in the JavaSpaces service. The
template indicates which fields to use for comparison purposes.

The retrieval process uses a template-matching mechanism to match Entrys according
to the values of their public fields. Each Entry in the JavaSpaces service requires its
public fields to be object references, so each field is either null or a reference to an object.
Fields in the template with non-null values must match with their Entry counterparts in
the JavaSpaces service exactly. Fields in the template that are set to null act as wildcards.
If a set of Entrys of the same type exist within a JavaSpaces service, only those fields which
equal those of the template are used to match an Entry or a set of Entrys contained in the
JavaSpaces service. Fields in the template set to null can have their matching counterparts
in the JavaSpaces service have any value in the corresponding field(s).

23.8.1 Read Operation
The read operation obtains Entrys without removing them from the JavaSpaces service.
Methods read and readIfExists perform the read operation. Each method takes three
arguments—an Entry that specifies the template to match, a Transaction object and a
long value. The long value has different meanings in methods read and readIfEx-
ists. Method read specifies a period of time for which the read operation should block be-
fore simply returning null. Method readIfExists is a non-blocking version of method
read. If there are no matching Entrys, readIfExists returns null immediately.
Method readIfExists blocks only if the developer specifies a period of time for which
the readIfExists waits if, at first, the matching Entry is a part of an incomplete trans-
action. If the matching Entry is not involved in any transaction, then the read operation
returns the matching Entry immediately. Both the read and readIfExists methods re-

Fig. 23.4Fig. 23.4Fig. 23.4Fig. 23.4 Results of running the WriteOperation application.

1270 JavaSpaces Chapter 23

turn only one Entry. If multiple Entrys match the template, the read operation picks one
arbitrarily. These methods throw four exception types—RemoteException, Transac-
tionException, UnusableEntryException and InterruptedException.
The first two are the same as in method write. If the matching Entry cannot be deserial-
ized, these methods throw an UnusableEntryException (package net.ji-
ni.core.entry).

The ReadOperation application (Fig. 23.5) uses class AttendeeCounter
(Fig. 23.2) and class JavaSpaceFinder (Fig. 23.1) to demonstrate reading an Entry
from a JavaSpaces service. A seminar administrator or prospective attendee could use this
application to determine the current enrollment for a particular seminar. Line 47 specifies
the matching template against which to compare Entrys. Users must specify the day for
which they would like to see attendee registrations.

1 // ReadOperation.java
2 // This application reads an Entry from the JavaSpace and
3 // displays the Entry information.
4 package com.deitel.advjhtp1.javaspace.read;
5
6 // Jini core packages
7 import net.jini.core.transaction.TransactionException;
8 import net.jini.core.entry.UnusableEntryException;
9

10 // Jini extension package
11 import net.jini.space.JavaSpace;
12
13 // Java core packages
14 import java.rmi.RemoteException;
15 import java.lang.InterruptedException;
16
17 // Java extension package
18 import javax.swing.*;
19
20 // Deitel package
21 import com.deitel.advjhtp1.javaspace.common.*;
22
23 public class ReadOperation {
24
25 private JavaSpace space;
26 private static final String[] days = { "Monday", "Tuesday",
27 "Wednesday", "Thursday", "Friday" };
28 private String output = "\n";
29
30 // constructor gets JavaSpace
31 public ReadOperation(String hostname)
32 {
33 // get JavaSpace
34 String jiniURL = "jini://" + hostname;
35 JavaSpaceFinder findtool = new JavaSpaceFinder(jiniURL);
36 space = findtool.getJavaSpace();
37 }
38

Fig. 23.5Fig. 23.5Fig. 23.5Fig. 23.5 Reading an Entry from JavaSpaces service (part 1 of 3).

Chapter 23 JavaSpaces 1271

39 // read Entry from JavaSpace
40 public void readEntry(String day)
41 {
42 // specify matching template, read template
43 // from JavaSpace and output Entry information
44 try {
45
46 // read Entry from JavaSpace
47 AttendeeCounter counter = new AttendeeCounter(day);
48 AttendeeCounter resultCounter = (AttendeeCounter)
49 space.read(counter, null, JavaSpace.NO_WAIT);
50
51 if (resultCounter == null) {
52 output += "Sorry, cannot find an Entry for "
53 + day + "!\n";
54 }
55 else {
56
57 // get Entry information
58 output += "Count Information:\n";
59 output += " Day: " + resultCounter.day;
60 output += "\n";
61 output += " Count: "
62 + resultCounter.counter.intValue() + "\n";
63 }
64 }
65
66 // handle exception network failure
67 catch (RemoteException exception) {
68 exception.printStackTrace();
69 }
70
71 // handle exception invalid transaction
72 catch (TransactionException exception) {
73 exception.printStackTrace();
74 }
75
76 // handle exception unusable Entry
77 catch (UnusableEntryException exception) {
78 exception.printStackTrace();
79 }
80
81 // handle exception interrupting
82 catch (InterruptedException exception) {
83 exception.printStackTrace();
84 }
85
86 } // end method readEntry
87
88 // show output
89 public void showOutput()
90 {
91 JTextArea outputArea = new JTextArea();

Fig. 23.5Fig. 23.5Fig. 23.5Fig. 23.5 Reading an Entry from JavaSpaces service (part 2 of 3).

1272 JavaSpaces Chapter 23

The first argument to method read (lines 48–49) specifies an Entry that the tem-
plate-matching mechanism will use. The second argument (null) indicates that this read
operation does not use a Transaction. The third argument (JavaSpace.NO_WAIT)
specifies the period for which the read operations wait for the read operation to find a
matching Entry before simply returning null. Our example sets the method read to
JavaSpace.NO_WAIT, which equals zero. If the template-matching mechanism does
not locate a matching Entry, the read operation returns null immediately. Figure 23.6
shows the results of running the ReadOperation application.

This application takes a command-line argument that specifies the hostname of a
machine that has the JavaSpaces service service running. The following steps compile and
execute the ReadOperation application. Ensure that your CLASSPATH includes
jini-core.jar, jini-ext.jar and sun-util.jar. Compile the java files in the
com\deitel\advjhtp1\javaspace\read directory. Run ReadOperation by
specifying the hostname of the Jini lookup service. Do not forget to specify to the JVM the
policy file with the proper permissions.

92 outputArea.setText(output);
93 JOptionPane.showMessageDialog(null, outputArea,
94 "ReadOperation Output",
95 JOptionPane.INFORMATION_MESSAGE);
96
97 // terminate program
98 System.exit(0);
99 }
100
101 // method main
102 public static void main(String args[])
103 {
104 // get hostname
105 if (args.length != 1) {
106 System.out.println(
107 "Usage: ReadOperation hostname");
108 System.exit(1);
109 }
110
111 // get user input day
112 String day = (String) JOptionPane.showInputDialog(
113 null, "Select Day", "Day Selection",
114 JOptionPane.QUESTION_MESSAGE, null, days, days[0]);
115
116 // read an Entry
117 ReadOperation read = new ReadOperation(args[0]);
118 read.readEntry(day);
119
120 read.showOutput();
121
122 } // end method main
123 }

Fig. 23.5Fig. 23.5Fig. 23.5Fig. 23.5 Reading an Entry from JavaSpaces service (part 3 of 3).

Chapter 23 JavaSpaces 1273

Software Engineering Observation 23.2
The read operation returns only a single matching Entry. If multiple matching Entrys
exist, the read operation may return different matching objects each time. 23.2

23.8.2 Take Operation

The take operation obtains an Entry and removes it from the JavaSpaces service. Meth-
ods take and takeIfExists perform the take operation. Methods take and take-
IfExists are similar to methods read and readIfExists. The only difference is
that the matching Entry returned by a take or takeIfExists operation is removed
from the JavaSpaces service.

The TakeOperation application (Fig. 23.7) uses class AttendeeCounter
(Fig. 23.2) and class JavaSpaceFinder (Fig. 23.1) to demonstrate taking an Entry
from a JavaSpaces service. This application is similar to the ReadOperation applica-
tion. The only difference is that this application calls method take (lines 46–47) of inter-
face JavaSpace to remove the AttendeeCounter from the JavaSpaces service. A
seminar administrator could use this application to remove from the JavaSpaces service an
AttendeeCounter for a seminar that has already been given or for a seminar that was
cancelled. Figure 23.8 shows the results of running the TakeOperation application.

This application takes a command-line argument that specifies the hostname of a
machine that has the JavaSpaces service running. The following steps compile and execute
the TakeOperation application. Ensure that your CLASSPATH includes jini-
core.jar, jini-ext.jar and sun-util.jar. Compile the java files in the
com\deitel\advjhtp1\javaspace\take directory. Run TakeOperation by
specifying the hostname of the Jini lookup service. Do not forget to specify to the JVM the
policy file with the proper permissions.

Fig. 23.6Fig. 23.6Fig. 23.6Fig. 23.6 Results of running the ReadOperation application.

1 // TakeOperation.java
2 // This application removes an Entry from the JavaSpace.
3 package com.deitel.advjhtp1.javaspace.take;
4
5 // Jini core packages
6 import net.jini.core.transaction.TransactionException;
7 import net.jini.core.entry.UnusableEntryException;
8

Fig. 23.7Fig. 23.7Fig. 23.7Fig. 23.7 Taking an Entry from a JavaSpaces service (part 1 of 4).

1274 JavaSpaces Chapter 23

9 // Jini extension package
10 import net.jini.space.JavaSpace;
11
12 // Java core packages
13 import java.rmi.RemoteException;
14
15 // Java extension package
16 import javax.swing.*;
17
18 // Deitel package
19 import com.deitel.advjhtp1.javaspace.common.*;
20
21 public class TakeOperation {
22
23 private JavaSpace space = null;
24 private static final String[] days = { "Monday", "Tuesday",
25 "Wednesday", "Thursday", "Friday" };
26 private String output = "\n";
27
28 // constructor gets JavaSpace
29 public TakeOperation(String hostname)
30 {
31 // get JavaSpace
32 String jiniURL = "jini://" + hostname;
33 JavaSpaceFinder findtool = new JavaSpaceFinder(jiniURL);
34 space = findtool.getJavaSpace();
35 }
36
37 // remove Entry from JavaSpace
38 public void TakeAnEntry(String day)
39 {
40 AttendeeCounter resultCounter = null;
41
42 // specify matching template, remove template
43 // from JavaSpace
44 try {
45 AttendeeCounter count = new AttendeeCounter(day);
46 resultCounter = (AttendeeCounter) space.take(count,
47 null, JavaSpace.NO_WAIT);
48
49 if (resultCounter == null) {
50 output += "No Entry for " + day
51 + " is available from the JavaSpace.\n";
52 }
53 else {
54 output += "Entry is taken away from ";
55 output += "the JavaSpace successfully.\n";
56 }
57 }
58

Fig. 23.7Fig. 23.7Fig. 23.7Fig. 23.7 Taking an Entry from a JavaSpaces service (part 2 of 4).

Chapter 23 JavaSpaces 1275

59 // handle exception network failure
60 catch (RemoteException exception) {
61 exception.printStackTrace();
62 }
63
64 // handle exception invalid transaction
65 catch (TransactionException exception) {
66 exception.printStackTrace();
67 }
68
69 // handle exception unusable entry
70 catch (UnusableEntryException exception) {
71 exception.printStackTrace();
72 }
73
74 // handle exception interrupt
75 catch (InterruptedException exception) {
76 exception.printStackTrace();
77 }
78
79 } // end method TakeAnEntry
80
81 // show output
82 public void showOutput()
83 {
84 JTextArea outputArea = new JTextArea();
85 outputArea.setText(output);
86 JOptionPane.showMessageDialog(null, outputArea,
87 "TakeOperation Output",
88 JOptionPane.INFORMATION_MESSAGE);
89
90 // terminate program
91 System.exit(0);
92 }
93
94 public static void main(String args[])
95 {
96 // get hostname
97 if (args.length != 1) {
98 System.out.println(
99 "Usage: WriteOperation hostname");
100 System.exit(1);
101 }
102
103 // get user input day
104 String day = (String) JOptionPane.showInputDialog(
105 null, "Select Day", "Day Selection",
106 JOptionPane.QUESTION_MESSAGE, null, days, days[0]);
107
108 // take Entry
109 TakeOperation take = new TakeOperation(args[0]);
110 take.TakeAnEntry(day);
111

Fig. 23.7Fig. 23.7Fig. 23.7Fig. 23.7 Taking an Entry from a JavaSpaces service (part 3 of 4).

1276 JavaSpaces Chapter 23

Software Engineering Observation 23.3
The take operation returns only a single matching Entry. If multiple matching Entrys ex-
ist, the take operation can remove only one Entry from the JavaSpaces service each time.
To take all the matching Entrys away from the JavaSpaces service, execute the TakeOp-
eration application repeatedly until the TakeOperation application returns a mes-
sage that says “No Entry is available from the JavaSpaces service”. 23.3

23.9 Notify Operation
The notify operation asks the JavaSpaces service to send a notification to a listener when
a client writes a matching Entry into the JavaSpaces service. Method notify takes five
parameters—an Entry that specifies the matching template, a Transaction object, a
listener that implements interface RemoteEventListener (package net.ji-
ni.core.event), a long value that specifies the lease time for the registration of the
listener and a MarshalledObject (package java.rmi) that the JavaSpaces service
will pass to the remote listener as part of a notification. This method may throw exceptions
of type RemoteException and TransactionException. A RemoteExcep-
tion occurs due to a network failure. A TransactionException occurs when a no-
tify operation takes place as part of an invalid transaction.

Class EntryListener (Fig. 23.9) defines a listener that the JavaSpaces service will
notify when an Entry matching the given template is written to the JavaSpaces service. The
EntryListener listens on the JavaSpaces service for a matching Entry written into the
JavaSpaces service. This listener must implement interface RemoteEventListener
(line 14). A person interested in attending a seminar on a particular day could use this appli-
cation to be notified when an AttendeeCounter is added for a seminar on a particular
day. The constructor takes one argument—a RemoteEventListener and exports the
listener to the JavaSpaces service so that when a client writes a matching Entry into the
JavaSpaces service, the JavaSpaces service will call notify. Method notify (lines 35–
40) forwards the notification to the NotifyOperation application (Fig. 23.10).

112 take.showOutput();
113
114 } // end method main
115 }

Fig. 23.8Fig. 23.8Fig. 23.8Fig. 23.8 Results of running the TakeOperation application.

Fig. 23.7Fig. 23.7Fig. 23.7Fig. 23.7 Taking an Entry from a JavaSpaces service (part 4 of 4).

Chapter 23 JavaSpaces 1277

The NotifyOperation application (Fig. 23.10) demonstrates how to write a pro-
gram that receives a notification when a matching Entry is written into a JavaSpaces ser-
vice. Lines 30–36 define the constructor, which gets a JavaSpaces service. In method
notifyEntry (lines 39–61), line 42 gets an EntryListener that listens on the Jav-
aSpaces service for matching Entrys. This EntryListener will be passed to method
notify of interface JavaSpace. Line 48 creates the matching template. Lines 50–51
define the object to send to the listener when a notification occurs. Lines 52–53 call the
notify method of the JavaSpace interface. The first argument (counter) specifies
an Entry that is used as a matching template. The second argument (null) indicates that

1 // EntryListener.java
2 // This class defines the listener for the NotifyOperation
3 // application.
4 package com.deitel.advjhtp1.javaspace.notify;
5
6 // Jini core packages
7 import net.jini.core.event.*;
8
9 // Java core packages

10 import java.rmi.RemoteException;
11 import java.rmi.server.UnicastRemoteObject;
12 import java.io.Serializable;
13
14 public class EntryListener implements RemoteEventListener {
15
16 private RemoteEventListener eventListener;
17
18 // EntryListener constructor
19 public EntryListener(RemoteEventListener listener)
20 {
21 eventListener = listener;
22
23 // export stub object
24 try {
25 UnicastRemoteObject.exportObject(this);
26 }
27
28 // handle exception exporting stub
29 catch (RemoteException remoteException) {
30 remoteException.printStackTrace();
31 }
32 }
33
34 // receive notifications
35 public void notify(RemoteEvent remoteEvent)
36 throws UnknownEventException, RemoteException
37 {
38 // forward notifications to NotifyOperation application
39 eventListener.notify(remoteEvent);
40 }
41 }

Fig. 23.9Fig. 23.9Fig. 23.9Fig. 23.9 EntryListener for NotifyOperation application.

1278 JavaSpaces Chapter 23

the notify operation does not occur within a transaction. The third argument (lis-
tener) is an instance of the EntryListener class. The fourth argument (600000)
specifies the number of milliseconds requested for the lease. After the expiration of the lis-
tener’s granted lease, the listener will cease to be active. The last argument (handback—
a reference to a MarshalledObject) is an object that the JavaSpaces service provides
to the remote listener as part of the notification.

1 // NotifyOperation.java
2 // This application receives a notification when a matching entry
3 // is written to the JavaSpace.
4 package com.deitel.advjhtp1.javaspace.notify;
5
6 // Jini core packages
7 import net.jini.core.transaction.TransactionException;
8 import net.jini.core.lease.Lease;
9 import net.jini.core.event.*;

10
11 // Jini extension package
12 import net.jini.space.JavaSpace;
13
14 // Java core packages
15 import java.rmi.*;
16
17 // Java standard extensions
18 import javax.swing.*;
19
20 // Deitel packages
21 import com.deitel.advjhtp1.javaspace.common.*;
22
23 public class NotifyOperation implements RemoteEventListener
24 {
25 private JavaSpace space;
26 private static final String[] days = { "Monday", "Tuesday",
27 "Wednesday", "Thursday", "Friday" };
28
29 // constructor gets JavaSpace
30 public NotifyOperation(String hostname)
31 {
32 // get JavaSpace
33 String jiniURL = "jini://" + hostname;
34 JavaSpaceFinder findtool = new JavaSpaceFinder(jiniURL);
35 space = findtool.getJavaSpace();
36 }
37
38 // call notify method of JavaSpace
39 public void notifyEntry(String day)
40 {
41 // get Entry listener
42 EntryListener listener = new EntryListener(this);
43

Fig. 23.10Fig. 23.10Fig. 23.10Fig. 23.10 Receiving notifications when matching Entrys are written into
JavaSpace (part 1 of 3).

Chapter 23 JavaSpaces 1279

44 // specify matching template, asks JavaSpace to
45 // send notification when matching entry is written
46 // to JavaSpace
47 try {
48 AttendeeCounter counter = new AttendeeCounter(day);
49
50 MarshalledObject handback = new MarshalledObject(
51 "JavaSpace Notification");
52 space.notify(
53 counter, null, listener, 10 * 60 * 1000, handback);
54 }
55
56 // handle exception notifying space
57 catch (Exception exception) {
58 exception.printStackTrace();
59 }
60
61 } // end method notifyEntry
62
63 // show output
64 public void showOutput(String output)
65 {
66 JTextArea outputArea = new JTextArea();
67 outputArea.setText(output);
68 JOptionPane.showMessageDialog(null, outputArea,
69 "NotifyOperation Output",
70 JOptionPane.INFORMATION_MESSAGE);
71 }
72
73 // receive notifications
74 public void notify(RemoteEvent remoteEvent)
75 {
76 String output = "\n";
77
78 // prepare output
79 try {
80 output += "id: " + remoteEvent.getID() + "\n";
81 output += "sequence number: "
82 + remoteEvent.getSequenceNumber() + "\n";
83 String handback = (String)
84 remoteEvent.getRegistrationObject().get();
85 output += "handback: " + handback + "\n";
86
87 // display output
88 showOutput(output);
89 }
90
91 // handle exception getting handback
92 catch (Exception exception) {
93 exception.printStackTrace();
94 }
95 }

Fig. 23.10Fig. 23.10Fig. 23.10Fig. 23.10 Receiving notifications when matching Entrys are written into
JavaSpace (part 2 of 3).

1280 JavaSpaces Chapter 23

The following steps execute the NotifyOperation application. Ensure that your
CLASSPATH includes jini-core.jar, jini-ext.jar and sun-util.jar.
Compile the source files in the com\deitel\advjhtp1\javaspace\notify
directory. Start a Web server. Generate a stub for class EntryListener (Fig. 23.9).
Create a JAR file for EntryListener_Stub.class and place it in the Web server’s
document directory. Run NotifyOperation by specifying the hostname of the Jini
lookup service. Do not forget to specify to the JVM the codebase and the policy file with
the proper permissions.

Figure 23.11 shows sample outputs of this application. To test this application, execute
several WriteOperation applications.

96
97 // method main
98 public static void main(String args[])
99 {
100 // get hostname
101 if (args.length != 1) {
102 System.out.println(
103 "Usage: NotifyOperation hostname");
104 System.exit(1);
105 }
106
107 // get user input day
108 String day = (String) JOptionPane.showInputDialog(
109 null, "Select Day", "Day Selection",
110 JOptionPane.QUESTION_MESSAGE, null, days, days[0]);
111
112 // notify Entry
113 NotifyOperation notifyOperation =
114 new NotifyOperation(args[0]);
115
116 notifyOperation.notifyEntry(day);
117
118 } // end method main
119 }

Fig. 23.11Fig. 23.11Fig. 23.11Fig. 23.11 NotifyOperation Output samples.

Fig. 23.10Fig. 23.10Fig. 23.10Fig. 23.10 Receiving notifications when matching Entrys are written into
JavaSpace (part 3 of 3).

Chapter 23 JavaSpaces 1281

Software Engineering Observation 23.4
JavaSpaces service notifications are not guaranteed to be delivered, as network problems
may interfere with notification delivery. 23.4

23.10 Method snapshot
Method snapshot optimizes interactions with a JavaSpaces service by reducing the over-
head of continually serializing Entrys. Every time we pass a matching template to methods
in the JavaSpace interface, the template must be serialized before it is moved to the Jav-
aSpaces service. When the same template is passed to a JavaSpaces service repeatedly, it is
preferable to avoid multiple serializations of the same Entry. Fortunately, method snap-
shot provides such a mechanism. Method snapshot takes a matching template and re-
turns a specialized representation of the Entry (a snapshot Entry). This snapshot Entry
can be used only in the JavaSpaces service that generated it. For example, to remove all the
seminar Entrys for Monday from the JavaSpaces service, we call the snapshot method
to create a snapshot Entry, then pass this snapshot Entry to the take method repeatedly.

The SnapshotUsage application (Fig. 23.12) removes Entrys from the Jav-
aSpaces service and uses method snapshot to avoid repeated serialization of the
matching template. Line 49 defines the original matching template. We do not pass this
original template to method take. Instead, we pass the snapshot to the take method. Line
50 calls method snapshot to get the snapshot Entry of the original template.

1 // SnapshotUsage.java
2 // This application removes entries from the JavaSpace using
3 // method snapshot.
4 package com.deitel.advjhtp1.javaspace.snapshot;
5
6 // Jini core packages
7 import net.jini.core.transaction.TransactionException;
8 import net.jini.core.entry.UnusableEntryException;
9 import net.jini.core.entry.Entry;

10
11 // Jini extension package
12 import net.jini.space.JavaSpace;
13
14 // Java core packages
15 import java.rmi.RemoteException;
16
17 // Java extension package
18 import javax.swing.*;
19
20 // Deitel packages
21 import com.deitel.advjhtp1.javaspace.common.*;
22
23 public class SnapshotUsage {
24
25 private JavaSpace space;

Fig. 23.12Fig. 23.12Fig. 23.12Fig. 23.12 Removing entries from JavaSpaces service using method snapshot
 (part 1 of 3).

1282 JavaSpaces Chapter 23

26 private static final String[] days = { "Monday", "Tuesday",
27 "Wednesday", "Thursday", "Friday" };
28 private String output = "\n";
29
30 // constructor gets JavaSpace
31 public SnapshotUsage(String hostname)
32 {
33 // get JavaSpace
34 String jiniURL = "jini://" + hostname;
35 JavaSpaceFinder findtool = new JavaSpaceFinder(jiniURL);
36 space = findtool.getJavaSpace();
37 }
38
39 // create snapshot Entry, pass this object as
40 // Entry parameter to take method
41 public void snapshotEntry(String day)
42 {
43 // specify matching template, snapshot template
44 // and remove matching entries from JavaSpace using
45 // snapshot entry
46 try {
47 AttendeeCounter counter = new AttendeeCounter(day);
48 Entry snapshotentry = space.snapshot(counter);
49 AttendeeCounter resultCounter = (AttendeeCounter)
50 space.take(snapshotentry, null, JavaSpace.NO_WAIT);
51
52 // keep removing entries until no more entry exists
53 // in space
54 while (resultCounter != null) {
55 output += "Removing an entry ... \n";
56 resultCounter = (AttendeeCounter) space.take(
57 snapshotentry, null, JavaSpace.NO_WAIT);
58 }
59
60 output += "No more entry to remove!\n";
61 }
62
63 // handle exception network failure
64 catch (RemoteException remoteException) {
65 remoteException.printStackTrace();
66 }
67
68 // handle exception invalid transaction
69 catch (TransactionException transactionException) {
70 transactionException.printStackTrace();
71 }
72
73 // handle exception unusable entry
74 catch (UnusableEntryException unusableEntryException) {
75 unusableEntryException.printStackTrace();
76 }
77

Fig. 23.12Fig. 23.12Fig. 23.12Fig. 23.12 Removing entries from JavaSpaces service using method snapshot
 (part 2 of 3).

Chapter 23 JavaSpaces 1283

The only argument of method snapshot (line 48) specifies the template to serialize.
Method snapshot returns a snapshot Entry that represents the matching template.
Lines 49–51 call method take to remove the Entrys that match the template from the
JavaSpaces service. Lines 54–58 remove all matching Entrys in the JavaSpaces service.
Figure 23.13 shows the output of running the SnapshotUsage application. This output
indicates that there are three matching Entrys in the JavaSpaces service. The take opera-
tion removes all three matching Entrys from the JavaSpaces service.

78 // handle exception interrupt
79 catch (InterruptedException interruptedException) {
80 interruptedException.printStackTrace();
81 }
82
83 } // end method snapshotEntry
84
85 // show output
86 public void showOutput()
87 {
88 JTextArea outputArea = new JTextArea();
89 outputArea.setText(output);
90 JOptionPane.showMessageDialog(null, outputArea,
91 "SnapshotUsage Output",
92 JOptionPane.INFORMATION_MESSAGE);
93
94 // terminate program
95 System.exit(0);
96 }
97
98 // method main
99 public static void main(String args[])
100 {
101 // get hostname
102 if (args.length != 1) {
103 System.out.println(
104 "Usage: SnapshotUsage hostname");
105 System.exit(1);
106 }
107
108 // get user input day
109 String day = (String) JOptionPane.showInputDialog(
110 null, "Select Day", "Day Selection",
111 JOptionPane.QUESTION_MESSAGE, null, days, days[0]);
112
113 // snapshot Entry
114 SnapshotUsage snapshot = new SnapshotUsage(args[0]);
115 snapshot.snapshotEntry(day);
116
117 snapshot.showOutput();
118
119 } // end method main
120 }

Fig. 23.12Fig. 23.12Fig. 23.12Fig. 23.12 Removing entries from JavaSpaces service using method snapshot
 (part 3 of 3).

1284 JavaSpaces Chapter 23

The following steps compile and execute the SnapshotUsage application. Make sure
your CLASSPATH includes jini-core.jar, jini-ext.jar and sun-util.jar.
Compile the java files in the com\deitel\advjhtp1\javaspace\snapshot direc-
tory. Run SnapshotUsage by specifying the hostname of the Jini lookup service. Do not
forget to specify to the JVM the policy file with the proper permissions.

Software Engineering Observation 23.5
Using the snapshot Entry is equivalent to using the original Entry, as long as all opera-
tions take place on the same JavaSpaces service that generated the snapshot. 23.5

23.11 Updating Entries with Jini Transaction Service
We cannot modify an Entry in a JavaSpaces service directly. Instead, we must take the
Entry away from the JavaSpaces service, change the values of the Entry fields, then
place the Entry back into the JavaSpaces service. To ensure that the JavaSpaces service
does not lose the Entry when a process takes that Entry away, we can perform the take,
update and write processes in a transaction. If all these processes succeed, the transaction
completes. Otherwise, the transaction fails and the JavaSpaces service returns the Entry
to its state prior to the transaction.

Assume a distributed system in which dedicated nodes take Entrys from a Jav-
aSpaces service, process each Entry, and write them back to the JavaSpaces service
when finished. What happens if a problem occurs and one of the dedicated nodes never
returns a processed Entry? The information that node processed could be permanently
lost. Furthermore, because the processing node removed the Entry from the JavaSpaces
service, the unprocessed Entry is also lost. The use of a transaction manager protects a
JavaSpaces service from these situations. When a transaction fails, the transaction manager
restores the Entry to its previous state—as if the client never took the Entry.

Our next example demonstrates how to update an Entry in a JavaSpaces service. The
application takes an AttendeeCounter Entry from the JavaSpaces service, updates
the count variable and reinserts the Entry back into the JavaSpaces service. A seminar
administrator could use this application to register a new attendee for a seminar and update
the appropriate AttendeeCounter. We have to ensure that if a client takes an Entry
from the JavaSpaces service, it will write the Entry back into the JavaSpaces service later.
In this example, we use the Jini transaction manager to guarantee that only one client at a
time can update a seminar Entry. Otherwise, one client potentially could overwrite a pre-
viously written Entry, thus corrupting the proper count of the number of people who will
attend a seminar.

Fig. 23.13Fig. 23.13Fig. 23.13Fig. 23.13 SnapshotUsage Output window.

Chapter 23 JavaSpaces 1285

23.11.1 Defining the User Interface
This section defines the user interface for the application. To update an Entry, the pro-
gram must know which AttendeeCounter to update and the number to add to the
counter. Class UpdateInputWindow (Fig. 23.14) prompts the user for the day of the
week to update and the number of people who will attend the seminar on that day.

1 // UpdateInputWindow.java
2 // This application is an user interface used
3 // to get the input data.
4 package com.deitel.advjhtp1.javaspace.update;
5
6 // Java extension package
7 import javax.swing.*;
8
9 // Java core packages

10 import java.awt.*;
11 import java.awt.event.*;
12
13 public class UpdateInputWindow extends JFrame {
14
15 private String[] dates = { "Monday", "Tuesday",
16 "Wednesday", "Thursday", "Friday" };
17 private JButton okButton;
18 private JComboBox dateComboBox;
19 private JLabel firstLabel;
20 private JTextField numberText;
21 private String date = "Monday";
22 private int count = 0;
23 private String hostname;
24
25 public UpdateInputWindow(String name)
26 {
27 super("UpdateInputWindow");
28 Container container = getContentPane();
29
30 hostname = name;
31
32 // define center panel
33 JPanel centerPanel = new JPanel();
34 centerPanel.setLayout(new GridLayout(2, 2, 0, 5));
35
36 // add label
37 firstLabel = new JLabel("Please choose a date:",
38 SwingConstants.CENTER);
39 centerPanel.add(firstLabel);
40
41 // add combo box
42 dateComboBox = new JComboBox(dates);
43 dateComboBox.setSelectedIndex(0);
44 centerPanel.add(dateComboBox);
45

Fig. 23.14Fig. 23.14Fig. 23.14Fig. 23.14 UpdateInputWindow user interface (part 1 of 3).

1286 JavaSpaces Chapter 23

46 // install listener to combo box
47 dateComboBox.addItemListener(
48
49 new ItemListener() {
50
51 public void itemStateChanged(ItemEvent itemEvent)
52 {
53 date = (String)dateComboBox.getSelectedItem();
54 }
55 }
56);
57
58 // add label
59 JLabel numberLabel = new JLabel(
60 "Please specify a number:", SwingConstants.CENTER);
61 centerPanel.add(numberLabel);
62
63 // add text field
64 numberText = new JTextField(10);
65 centerPanel.add(numberText);
66
67 // install listener to text field
68 numberText.addActionListener(
69
70 new ActionListener() {
71
72 public void actionPerformed(ActionEvent event)
73 {
74 count = Integer.parseInt(
75 event.getActionCommand());
76 }
77 }
78);
79
80 // define button panel
81 JPanel buttonPanel = new JPanel();
82 buttonPanel.setLayout(new GridLayout(1, 1, 0, 5));
83
84 // add OK button
85 okButton = new JButton("OK");
86 buttonPanel.add(okButton);
87
88 // add listener to OK button
89 okButton.addActionListener(
90
91 new ActionListener() {
92
93 public void actionPerformed(ActionEvent event)
94 {
95 // get user input
96 count = Integer.parseInt(numberText.getText());
97

Fig. 23.14Fig. 23.14Fig. 23.14Fig. 23.14 UpdateInputWindow user interface (part 2 of 3).

Chapter 23 JavaSpaces 1287

23.11.2 Discovering the TransactionManager Service

Creating a transaction, requires a transaction manager. In our example, we use Jini’s
TransactionManager service to obtain a transaction manager. We assume that you al-
ready know how to start the Web server and the RMI activation daemon from Chapter 22.

java -jar
 -Dcom.sun.jini.mahalo.managerName=TransactionManager
 c:\files\jini1_1\lib\mahalo.jar
 http://hostname:port/mahalo-dl.jar
 c:\files\jini1_1\policy\policy.all
 c:\mahalo\txn_log public

Class TransactionManagerFinder (Fig. 23.15) demonstrates the Trans-
actionManager service. This application performs unicast discovery to find the Jini
lookup service, through which we can get a reference to the TransactionManager.
The application looks for a TransactionManager in the lookup service. Lines 40–
43 specify a ServiceTemplate object with which lines 46–47 search the lookup ser-
vice. Method getTransactionManager (lines 72–75) returns a Transaction
Manager.

98 if (count == 0) {
99 System.out.println(
100 "Please Specify a Number");
101 }
102
103 else {
104 UpdateOperation update = new UpdateOperation();
105 String jiniURL = "jini://" + hostname;
106 update.getServices(jiniURL);
107 update.updateEntry(date, count);
108
109 setVisible(false);
110 update.showOutput();
111 }
112 }
113 }
114);
115
116 // put everything together
117 container.add(centerPanel, BorderLayout.CENTER);
118 container.add(buttonPanel, BorderLayout.SOUTH);
119
120 // set window size and display it
121 setSize(320, 130);
122 setVisible(true);
123
124 } // end updateInputWindow constructor
125 }

Fig. 23.14Fig. 23.14Fig. 23.14Fig. 23.14 UpdateInputWindow user interface (part 3 of 3).

1288 JavaSpaces Chapter 23

1 // TransactionManagerFinder.java
2 // This application unicast discovers the
3 // TransactionManager service.
4 package com.deitel.advjhtp1.javaspace.common;
5
6 // Jini core packages
7 import net.jini.core.discovery.LookupLocator;
8 import net.jini.core.lookup.*;
9 import net.jini.core.entry.Entry;

10 import net.jini.core.transaction.server.TransactionManager;
11
12 // Java core packages
13 import java.io.*;
14 import java.rmi.RMISecurityManager;
15 import java.net.*;
16
17 // Java extension package
18 import javax.swing.*;
19
20 public class TransactionManagerFinder {
21
22 private TransactionManager transactionManager = null;
23
24 public TransactionManagerFinder(String jiniURL)
25 {
26 LookupLocator locator = null;
27 ServiceRegistrar registrar = null;
28
29 System.setSecurityManager(new RMISecurityManager());
30
31 // get lookup service locator at "jini://hostname"
32 // use default port
33 try {
34 locator = new LookupLocator(jiniURL);
35
36 // get registrar for the locator
37 registrar = locator.getRegistrar();
38
39 // specify service requirement
40 Class[] types = new Class[] {
41 TransactionManager.class };
42 ServiceTemplate template =
43 new ServiceTemplate(null, types, null);
44
45 // find service
46 transactionManager =
47 (TransactionManager) registrar.lookup(template);
48 }
49
50 // handle exception invalid jini URL
51 catch (MalformedURLException malformedURLException) {
52 malformedURLException.printStackTrace();
53 }

Fig. 23.15Fig. 23.15Fig. 23.15Fig. 23.15 Finding Jini TransactionManager (part 1 of 2).

Chapter 23 JavaSpaces 1289

23.11.3 Updating an Entry

We now have the user interface (class UpdateInputWindow), the transaction manager
(class TransactionManagerFinder) and the JavaSpaces service (class Java-
SpaceFinder) ready for use. The next step is to put everything together to build an ap-
plication for updating AttendeeCounters.

The UpdateOperation application (Fig. 23.16) demonstrates updating an Entry
within a transaction. The main method constructs an UpdateInputWindow to allow
the user to select a day and enter a count for the AttendeeCounter to update. Method
getServices (lines 40–50) obtains a reference to the JavaSpaces service.

Method updateEntry (lines 53–136) updates an AttendeeCounter in the con-
text of a transaction. Lines 67–68 create a transaction by passing the transaction manager
and the lease duration to TransactionFactory method create, which returns a
Transaction.Created object. Lines 69–70 specify the lease time for the transaction.
Line 85 creates an AttendeeCounter template that will match all Attendee-
Counters in the JavaSpaces service. Lines 86–87 take an Entry from the JavaSpaces
service using transactionCreated.transaction. If UpdateOperation
retrieves an AttendeeCounter successfully, then it modifies the Attendee-
Counter with the day and count information (lines 98–102) and writes it back to the
JavaSpaces service. If UpdateOperation finds no AttendeeCounter, then it does
nothing. Lines 115–116 commit the transaction, thus finalizing the transaction and ending
the transaction’s lease. If an exception occurs at any time, lines 126–127 abort the transac-
tion and end the transaction’s lease.

54
55 // handle exception I/O
56 catch (IOException ioException) {
57 ioException.printStackTrace();
58 }
59
60 // handle exception finding class
61 catch (ClassNotFoundException classNotFoundException) {
62 classNotFoundException.printStackTrace();
63 }
64
65 // does not find any matching service
66 if (transactionManager == null) {
67 System.out.println("No matching service");
68 }
69
70 } // end TransactionManagerFinder constructor
71
72 public TransactionManager getTransactionManager()
73 {
74 return transactionManager;
75 }
76 }

Fig. 23.15Fig. 23.15Fig. 23.15Fig. 23.15 Finding Jini TransactionManager (part 2 of 2).

1290 JavaSpaces Chapter 23

1 // UpdateOperation.java
2 // This application removes an Entry from the JavaSpace,
3 // changes the variable's value in the returned Entry and
4 // deposits the updated Entry into the JavaSpace. All these
5 // operations are occurred within a transaction.
6 package com.deitel.advjhtp1.javaspace.update;
7
8 // Jini core package
9 import net.jini.core.lease.Lease;

10 import net.jini.core.transaction.*;
11 import net.jini.core.entry.UnusableEntryException;
12 import net.jini.core.transaction.server.TransactionManager;
13
14 // Jini extension package
15 import net.jini.space.JavaSpace;
16 import net.jini.lease.*;
17
18 // Java core packages
19 import java.rmi.RemoteException;
20
21 // Java extension packages
22 import javax.swing.*;
23
24 // Deitel packages
25 import com.deitel.advjhtp1.javaspace.common.*;
26
27 public class UpdateOperation {
28
29 private JavaSpace space;
30 private TransactionManager transactionManager;
31 private static String hostname = "";
32 private static String day = "";
33 private static int inputCount = 0;
34 private static String output = "\n";
35
36 // default constructor
37 public UpdateOperation() {}
38
39 // constructor gets JavaSpace and TransactionManager
40 public void getServices(String jiniURL)
41 {
42 // get JavaSpace and TransactionManager
43 JavaSpaceFinder findtool =
44 new JavaSpaceFinder(jiniURL);
45 space = findtool.getJavaSpace();
46 TransactionManagerFinder findTransaction =
47 new TransactionManagerFinder(jiniURL);
48 transactionManager =
49 findTransaction.getTransactionManager();
50 }
51

Fig. 23.16Fig. 23.16Fig. 23.16Fig. 23.16 Updating an entry using Jini TransactionManager (part 1 of 4).

Chapter 23 JavaSpaces 1291

52 // update Entry
53 public void updateEntry(String inputDay, int countNumber)
54 {
55 day = inputDay;
56 inputCount = countNumber;
57
58 AttendeeCounter resultCounter = null;
59 Transaction.Created transactionCreated = null;
60 LeaseRenewalManager manager = new LeaseRenewalManager();
61
62 int oldCount = 0;
63 int newCount = 0;
64
65 // create transaction and renew transaction's lease
66 try {
67 transactionCreated = TransactionFactory.create(
68 transactionManager, Lease.FOREVER);
69 manager.renewUntil(
70 transactionCreated.lease, Lease.FOREVER, null);
71 }
72
73 // handle exception creating transaction and renewing lease
74 catch (Exception exception) {
75 exception.printStackTrace();
76 }
77
78 // specify matching template, remove template
79 // from JavaSpace in transaction, change
80 // variable's value and write updated template back
81 // to JavaSpace within a transaction
82 try {
83
84 // take Entry away from JavaSpace
85 AttendeeCounter count = new AttendeeCounter(day);
86 resultCounter = (AttendeeCounter) space.take(count,
87 transactionCreated.transaction, JavaSpace.NO_WAIT);
88
89 // if no matching entry
90 if (resultCounter == null) {
91
92 // set output message
93 output += " No matching Entry is available!\n";
94 }
95 else { // if find a matching entry
96
97 // update value
98 oldCount = resultCounter.counter.intValue();
99 newCount = oldCount + inputCount;
100
101 // put updated Entry back to JavaSpace
102 resultCounter.counter = new Integer(newCount);
103 space.write(resultCounter,
104 transactionCreated.transaction, Lease.FOREVER);

Fig. 23.16Fig. 23.16Fig. 23.16Fig. 23.16 Updating an entry using Jini TransactionManager (part 2 of 4).

1292 JavaSpaces Chapter 23

105
106 // output result if transaction completes
107 output += "Count Information:\n";
108 output += " Day: ";
109 output += resultCounter.day + "\n";
110 output += " Old Count: " + oldCount + "\n";
111 output += " New Count: " + newCount + "\n";
112 }
113
114 // commit transaction and release lease
115 transactionCreated.transaction.commit();
116 manager.remove(transactionCreated.lease);
117
118 } // end try
119
120 // handle exception updating Entry
121 catch (Exception exception) {
122 exception.printStackTrace();
123
124 // revert change and release lease
125 try {
126 transactionCreated.transaction.abort();
127 manager.remove(transactionCreated.lease);
128 }
129
130 // handle exception reverting change
131 catch (Exception abortException) {
132 abortException.printStackTrace();
133 }
134 }
135
136 } // end method updateEntry
137
138 // show output
139 public void showOutput()
140 {
141 JTextArea outputArea = new JTextArea();
142 outputArea.setText(output);
143 JOptionPane.showMessageDialog(null, outputArea,
144 "UpdateOperation Output",
145 JOptionPane.INFORMATION_MESSAGE);
146
147 // terminate program
148 System.exit(0);
149 }
150
151 public static void main(String args[])
152 {
153 // get hostname
154 if (args.length != 1) {
155 System.out.println(
156 "Usage: UpdateOperation hostname");

Fig. 23.16Fig. 23.16Fig. 23.16Fig. 23.16 Updating an entry using Jini TransactionManager (part 3 of 4).

Chapter 23 JavaSpaces 1293

Figure 23.17 and Fig. 23.18 show the results of running the update Entry application.
The WriteOperation Output window in Fig. 23.17 is the result of running the Write-
Operation application. We initialize the Entry for Wednesday. The Update-
InputWindow in Fig. 23.17 is the interface for the user to provide the update information,
such as the number of attendees for a seminar on a given day. In that window, we want to
send 15 people to attend Wednesday’s seminar. The UpdateOperation Output window
in Fig. 23.18 shows the result of running the UpdateOperation application. The
ReadOperation Output window in Fig. 23.18 shows the result of reading Wednesday’s
Entry via the ReadOperation application.

To execute this application a Web server, the RMI activation daemon, the Jini lookup
service, the JavaSpaces service and the TransactionManager service should be run-
ning. The following steps compile and execute the UpdateOperation application.
Ensure that your CLASSPATH includes jini-core.jar, jini-ext.jar and sun-
util.jar. Compile the java files in the com\deitel\advjhtp1\jav-
aspace\common and com\deitel\advjhtp1\javaspace\update directories.
Run application UpdateOperation by specifying the hostname of the Jini lookup ser-
vice. Do not forget to specify a policy file with the proper permissions.

157 System.exit(1);
158 }
159 else
160 hostname = args[0];
161
162 // get user input day
163 UpdateInputWindow input = new UpdateInputWindow(hostname);
164
165 } // end method main
166 }

Fig. 23.17Fig. 23.17Fig. 23.17Fig. 23.17 WriteOperation Output and UpdateInputWindow user interface.

Fig. 23.16Fig. 23.16Fig. 23.16Fig. 23.16 Updating an entry using Jini TransactionManager (part 4 of 4).

1294 JavaSpaces Chapter 23

23.12 Case Study: Distributed Image Processing
Image processing can be a time-consuming task, especially for large images. In this case
study, we use JavaSpaces services to build a distributed image-processing system for ap-
plying filters to images (e.g., blur, sharpen, etc.). We define class ImageProcessor-
Client to partition a large image into smaller pieces and write these pieces into a
JavaSpaces service. Multiple ImageProcessors run in parallel to process the smaller
images by applying appropriate filters, then write the processed images back into the Jav-
aSpaces service. The ImageProcessorClient then takes the processed subimages
from the JavaSpaces service and builds the complete, processed image. Figure 23.19
shows the basic structure of the ImageProcessor application.

Fig. 23.18Fig. 23.18Fig. 23.18Fig. 23.18 UpdateOperation Output and ReadOperation Output.

Fig. 23.19Fig. 23.19Fig. 23.19Fig. 23.19 Structure of the ImageProcessor distributed application.

JavaSpace

Processed
ImageEntry

Unprocessed
ImageEntry

ImageProcessorClient

take
processed
ImageEntry

write
unprocessed
ImageEntry

ImageProcessor

write
processed
ImageEntry

take
unprocessed
ImageEntry

ImageProcessor

ImageProcessor

ImageProcessor

.

.

.

Chapter 23 JavaSpaces 1295

23.12.1 Defining an Image Processor
In this case study, the distributed infrastructure consists of a set of dedicated image-proces-
sor nodes that retrieve Entrys from a JavaSpaces service. Each of these nodes processes
an Entry and writes it back to the JavaSpaces service. The image processors have four
filters—blur, color, invert and sharpen. A blur filter blurs an image. A color filter alters the
RGB color bands of an image. An invert filter inverts an image’s RGB color values. A
sharpen filter sharpens the edges of an image. Each image-processor node in this distributed
system polls the JavaSpaces service constantly looking for Entrys to process.

Applications can use the distributed system to process images. The application in our
case study is ImageProcessorClient (Fig. 23.23). ImageProcessorClient
will prompt the user for a file name and the number of pieces in which to divide the original
image. ImageProcessorClient then writes the pieces to the JavaSpaces service.
ImageProcessorClient will then poll the JavaSpaces service until it retrieves all of
the processed pieces. Finally, the application will assemble the image and display the
results to the user.

Class ImageEntry (Fig. 23.20) defines the Entrys that the application can store in
the JavaSpaces service. Lines 16–20 define the public fields of the Entry. Line 23
defines the required empty constructor. Lines 26–34 define a constructor that initializes all
fields in ImageEntry. Lines 37–41 define a constructor that initializes the name and
processed fields. Lines 44–47 define a constructor that initializes the name field.

Class ImageProcessor (Fig. 23.21) represents each node of the image-processing
distributed system that is capable of processing images. Each ImageProcessor node
polls the JavaSpaces service for ImageEntrys. When a client writes an unprocessed
ImageEntry into the JavaSpaces service, the first ImageProcessor node to retrieve
that Entry will process it. Each ImageProcessor node creates a transaction for each
Entry it retrieves and doesn’t commit the transaction until it successfully writes the pro-
cessed ImageEntry back to the JavaSpaces service, so if an ImageProcessor were
to fail, the ImageEntry would not be lost.

1 // Fig. 23.20 ImageEntry.java
2 // This class defines the Entry for the image.
3 package com.deitel.advjhtp1.javaspace.ImageProcessor;
4
5 // Java core packages
6 import java.util.*;
7
8 // Java standard extension
9 import javax.swing.ImageIcon;

10
11 // Jini core packages
12 import net.jini.core.entry.Entry;
13
14 public class ImageEntry implements Entry {
15
16 public String name;
17 public String filter;

Fig. 23.20Fig. 23.20Fig. 23.20Fig. 23.20 ImageEntry defines the Entrys to store in the JavaSpaces service
 (part 1 of 2).

1296 JavaSpaces Chapter 23

18 public Integer number;
19 public Boolean processed;
20 public ImageIcon imageIcon;
21
22 // empty constructor
23 public ImageEntry() {}
24
25 // ImageEntry constructor
26 public ImageEntry(String imageName, String imageFilter,
27 int order, boolean done, ImageIcon icon)
28 {
29 name = imageName;
30 filter = imageFilter;
31 number = new Integer(order);
32 processed = new Boolean(done);
33 imageIcon = icon;
34 }
35
36 // ImageEntry constructor
37 public ImageEntry(String imageName, boolean done)
38 {
39 name = imageName;
40 processed = new Boolean(done);
41 }
42
43 // ImageEntry constructor
44 public ImageEntry(String imageName)
45 {
46 name = imageName;
47 }
48 }

1 // Fig. 23.21 ImageProcessor.java
2 // Takes entries from the JavaSpace, applies a filter to
3 // the image piece, and writes processed entry back to JavaSpace.
4 package com.deitel.advjhtp1.javaspace.ImageProcessor;
5
6 // Java standard extensions
7 import javax.swing.*;
8
9 // Jini core packages

10 import net.jini.core.lease.Lease;
11 import net.jini.core.transaction.*;
12 import net.jini.core.transaction.server.TransactionManager;
13 import net.jini.core.entry.*;
14 import net.jini.core.transaction.*;
15 import net.jini.lease.*;
16

Fig. 23.21Fig. 23.21Fig. 23.21Fig. 23.21 Image processing node that uses the JavaSpaces service (part 1 of 4).

Fig. 23.20Fig. 23.20Fig. 23.20Fig. 23.20 ImageEntry defines the Entrys to store in the JavaSpaces service
 (part 2 of 2).

Chapter 23 JavaSpaces 1297

17 // Jini extension package
18 import net.jini.space.JavaSpace;
19
20 // Deitel packages
21 import com.deitel.advjhtp1.javaspace.common.*;
22
23 public class ImageProcessor {
24
25 private JavaSpace space;
26 private TransactionManager manager;
27
28 // ImageProcessor constructor
29 public ImageProcessor (String hostname)
30 {
31 // get the JavaSpace
32 String jiniURL = "jini://" + hostname;
33 JavaSpaceFinder finder =
34 new JavaSpaceFinder(jiniURL);
35 space = finder.getJavaSpace();
36
37 // get the TransactionManager
38 TransactionManagerFinder findTransaction =
39 new TransactionManagerFinder(jiniURL);
40 manager =
41 findTransaction.getTransactionManager();
42 }
43
44 // wait for unprocessed image
45 public void waitForImage()
46 {
47 LeaseRenewalManager leaseManager =
48 new LeaseRenewalManager();
49
50 while (true) {
51
52 // get unprocessed image and process it
53 try {
54 Transaction.Created transactionCreated =
55 TransactionFactory.create(
56 manager, Lease.FOREVER);
57
58 // renew transaction's lease
59 leaseManager.renewUntil(
60 transactionCreated.lease, Lease.FOREVER, null);
61
62 ImageEntry template = new ImageEntry(null, false);
63 ImageEntry entry = (ImageEntry) space.take(
64 template, transactionCreated.transaction,
65 Lease.FOREVER);
66

Fig. 23.21Fig. 23.21Fig. 23.21Fig. 23.21 Image processing node that uses the JavaSpaces service (part 2 of 4).

1298 JavaSpaces Chapter 23

67 if (entry != null) {
68
69 // get image icon
70 ImageIcon imageIcon = entry.imageIcon;
71
72 Filters filters = new Filters(imageIcon);
73
74 if (entry.filter.equals("BLUR"))
75 filters.blurImage();
76
77 else if (entry.filter.equals("COLOR"))
78 filters.colorFilter();
79
80 else if (entry.filter.equals("INVERT"))
81 filters.invertImage();
82
83 else if (entry.filter.equals("SHARP"))
84 filters.sharpenImage();
85
86 // update the fields of result entry
87 entry.imageIcon = filters.getImageIcon();
88 entry.processed = new Boolean(true);
89
90 // put the updated Entry back to JavaSpace
91 Lease writeLease = space.write(entry,
92 transactionCreated.transaction,
93 Lease.FOREVER);
94 leaseManager.renewUntil(
95 writeLease, Lease.FOREVER, null);
96
97 } // end if
98
99 // commit the transaction and release the lease
100 transactionCreated.transaction.commit();
101 leaseManager.remove(transactionCreated.lease);
102
103 } // end try
104
105 // handle exception
106 catch (Exception exception) {
107 exception.printStackTrace();
108 }
109
110 } // end while
111
112 } // end method wait for images
113
114 public static void main(String[] args)
115 {
116 // get the hostname
117 if (args.length != 1) {
118 System.out.println(
119 "Usage: ImageProcessor hostname");

Fig. 23.21Fig. 23.21Fig. 23.21Fig. 23.21 Image processing node that uses the JavaSpaces service (part 3 of 4).

Chapter 23 JavaSpaces 1299

Constructor ImageProcessor (lines 29–42) gets a JavaSpaces service and a
TransactionManager service from the user-specified hostname. Classes Java-
SpaceFinder and TransactionManagerFinder are defined in Fig. 23.1 and
Fig. 23.15 respectively. Method waitForImage (lines 45–112) waits for an unprocessed
image. Lines 50–110 cycle indefinitely to process Entrys from the JavaSpaces service.
Line 62 defines the Entry template that ImageProcessor will use to retrieve unproc-
essed ImageEntry from the JavaSpaces service. Lines 63–65 retrieve an object from the
JavaSpaces service. If the Entry retrieved from the JavaSpaces service is not null, lines
70–84 apply a filter to the image. Lines 87–88 set fields in the ImageEntry with values
that will identify the ImageEntry as a processed Entry. Lines 91–91-93 write the pro-
cessed ImageEntry back to the JavaSpaces service. Line 100 commits the transaction.
Line 101 expires the lease on the transaction.

Method main (lines 114–129) gets the user-specified hostname and calls
ImageProcessor constructor. Method waitForImage starts polling the JavaSpaces
service for an unprocessed image.

Class Filters (Fig. 23.22) filters an image. It provides four types of filters—blur,
sharpen, invert and color. These four filters can be found in the Chapter 4 package
com.deitel.advjhtp.java2d. The Filters constructor (lines 26–40) takes an
ImageIcon and converts the ImageIcon to the BufferedImage. Method
blurImage (lines 43–46) applies a blur filter to the BufferedImage. Method
sharpenImage (lines 49–53) applies a sharpen filter to the BufferedImage. Method
invertImage (lines 56–60) applies an invert filter to the BufferedImage. Method
colorFilter (lines 63–67) applies a color filter to a BufferedImage. Method get-
ImageIcon (lines 70–73) returns the filtered image as an ImageIcon.

120 System.exit(1);
121 }
122
123 ImageProcessor processor =
124 new ImageProcessor(args[0]);
125
126 // wait for image
127 processor.waitForImage();
128
129 } // end method main
130 }

1 // Fig. 23.22: Filters.java
2 // Applies blurring, sharpening, converting, modifying on images.
3 package com.deitel.advjhtp1.javaspace.ImageProcessor;
4
5 // Java core packages
6 import java.awt.*;
7 import java.awt.image.*;
8

Fig. 23.22Fig. 23.22Fig. 23.22Fig. 23.22 Class Filters applies a Java 2D filter to an image (part 1 of 3).

Fig. 23.21Fig. 23.21Fig. 23.21Fig. 23.21 Image processing node that uses the JavaSpaces service (part 4 of 4).

1300 JavaSpaces Chapter 23

9 // Java standard extensions
10 import javax.swing.*;
11
12 // Deitel packages
13 import com.deitel.advjhtp1.java2d.*;
14
15 public class Filters {
16
17 Java2DImageFilter blurFilter;
18 Java2DImageFilter sharpenFilter;
19 Java2DImageFilter invertFilter;
20 Java2DImageFilter colorFilter;
21
22 BufferedImage bufferedImage;
23
24 // constructor method initializes ImageFilters and pulls
25 // BufferedImage out of ImageIcon
26 public Filters(ImageIcon icon)
27 {
28 blurFilter = new BlurFilter();
29 sharpenFilter = new SharpenFilter();
30 invertFilter = new InvertFilter();
31 colorFilter = new ColorFilter();
32
33 Image image = icon.getImage();
34 bufferedImage = new BufferedImage(
35 image.getWidth(null), image.getHeight(null),
36 BufferedImage.TYPE_INT_RGB);
37
38 Graphics2D gg = bufferedImage.createGraphics();
39 gg.drawImage(image, null, null);
40 }
41
42 // apply BlurFilter to bufferedImage
43 public void blurImage()
44 {
45 bufferedImage = blurFilter.processImage(bufferedImage);
46 }
47
48 // apply SharpenFilter to bufferedImage
49 public void sharpenImage()
50 {
51 bufferedImage = sharpenFilter.processImage(
52 bufferedImage);
53 }
54
55 // apply InvertFilter to bufferedImage
56 public void invertImage()
57 {
58 bufferedImage = invertFilter.processImage(
59 bufferedImage);
60 }
61

Fig. 23.22Fig. 23.22Fig. 23.22Fig. 23.22 Class Filters applies a Java 2D filter to an image (part 2 of 3).

Chapter 23 JavaSpaces 1301

23.12.2 Partitioning an Image into Smaller Pieces

To parallelize the task of filtering a large image, we can partition the image into smaller pieces
and let multiple ImageProcessors concurrently filter the smaller images. Then, we can
combine the processed pieces to create the complete, processed image. Class ImagePro-
cessorClient (Fig. 23.23) prompts the user for an image file to process and partitions the
large image. ImageProcessorClient wraps the image pieces in ImageEntrys and
write them into the JavaSpaces service. Once ImageProcessorClient writes all image
pieces into the JavaSpaces service, it reads back all processed ImageEntrys.

 The ImageProcessorClient constructor (lines 42–192) defines the user interface
to get the user input data. Lines 66–81 display a JChooserPanel when a user presses the
Choose file to process button to prompt the user for an image file. Lines 90–111 define
a JLabel and a JTextfield which obtains the user-specified number of subimages.
Lines 114–135 create a label and a drop-down box that allows the user to specify the filter
to apply on the image. Lines 142–186 add an OK button to the window. Lines 152–186
define the action when the user clicks the OK button. The application first checks whether
the user specified the image name and partition number. If so, the application passes the user
specified data to the ImageSeparator (Fig. 23.24) constructor and calls methods par-
titionImage and storeImage of class ImageSeparator to partition the image and
store the sub images in a JavaSpaces service, respectively. Method collect obtains a ref-
erence to the JavaSpaces service (lines 198–201). Lines 211–212 verify that the user input
number divides evenly between columns and rows. If the user-input number does not divide
evenly, then the image will be broken into 4 pieces. Line 215 creates a template that will
match all processed image pieces. Line 218 creates a snapshot of the template. Lines 221–
225 retrieve all processed ImageEntrys from the JavaSpaces service. Lines 251–265 reas-
semble the image and display the resulting image in a separate window. Lines 267–274 dis-
play an error message if the file was not found. Method main (lines 278–294) gets the user-
specified hostname from the command line and displays the GUI.

Class ImageSeparator (Fig. 23.24) partitions an image into smaller pieces and
places the subimages into a JavaSpaces service. The constructor (lines 33–39) gets the
image name, number of subimages and this filter to be apply to the image. Method par-
titionImage (lines 42–50) gets the ImageIcon from the image file (lines 44–45) and
calls method parseImage of class ImageParser (Fig. 23.25) to partition the image

62 // apply ColorFilter to bufferedImage
63 public void colorFilter()
64 {
65 bufferedImage = colorFilter.processImage(
66 bufferedImage);
67 }
68
69 // constructs and returns an ImageIcon from bufferedImage
70 public ImageIcon getImageIcon()
71 {
72 return (new ImageIcon(bufferedImage));
73 }
74 }

Fig. 23.22Fig. 23.22Fig. 23.22Fig. 23.22 Class Filters applies a Java 2D filter to an image (part 3 of 3).

1302 JavaSpaces Chapter 23

into smaller pieces. Method displayImage (lines 53–60) creates a ImageDisplayer
(Fig. 23.26) to display the original image. Method storeImage (lines 63–101) writes the
subimages into a JavaSpaces service. Lines 77–88 write each image into the JavaSpaces
service and renew the image’s lease to Lease.FOREVER.

1 // Fig. 23.23 ImageProcessingClient.java
2 // The application asks for user-specified image file, image
3 // filter type and image partition number, filters the image
4 // and displays the processed image.
5 package com.deitel.advjhtp1.javaspace.ImageProcessor;
6
7 // Java core packages
8 import java.awt.*;
9 import java.awt.event.*;

10 import java.util.*;
11 import java.io.*;
12
13 // Java extension packages
14 import javax.swing.*;
15
16 // Jini core packages
17 import net.jini.core.lease.Lease;
18 import net.jini.core.entry.*;
19 import net.jini.core.transaction.*;
20 import net.jini.core.transaction.server.TransactionManager;
21
22 // Jini extension packages
23 import net.jini.space.JavaSpace;
24
25 // Deitel packages
26 import com.deitel.advjhtp1.javaspace.common.*;
27
28 public class ImageProcessingClient extends JFrame {
29
30 private String[] operations = { "BLUR", "COLOR",
31 "INVERT", "SHARP" };
32 private JButton okButton;
33 private JComboBox operationComboBox;
34 private JTextField imageText;
35 private JTextField numberText;
36
37 private static String hostname = "";
38 private String imageName;
39 private String operation = "BLUR";
40 private int partitionNumber = 0;
41
42 public ImageProcessingClient(String host)
43 {
44 super ("ImageProcessInput");
45
46 hostname = host;
47 Container container = getContentPane();

Fig. 23.23Fig. 23.23Fig. 23.23Fig. 23.23 Image-processing distributed system client (part 1 of 6).

Chapter 23 JavaSpaces 1303

48
49 // define the center panel
50 JPanel centerPanel = new JPanel();
51 centerPanel.setLayout(new GridLayout(3, 2, 0, 5));
52
53 // add image label
54 JLabel imageLabel = new JLabel("Image File:",
55 SwingConstants.CENTER);
56 centerPanel.add(imageLabel);
57
58 JButton openFile = new JButton(
59 "Choose file to process");
60 openFile.addActionListener(
61
62 new ActionListener() {
63
64 public void actionPerformed(ActionEvent event)
65 {
66 JFileChooser fileChooser = new JFileChooser();
67
68 fileChooser.setFileSelectionMode(
69 JFileChooser.FILES_ONLY);
70 int result = fileChooser.showOpenDialog(null);
71 File file;
72
73 // user clicked Cancel button on dialog
74 if (result == JFileChooser.CANCEL_OPTION)
75 file = null;
76 else {
77 file = fileChooser.getSelectedFile();
78 imageName = file.getPath();
79 }
80
81 } // end method actionPerformed
82
83 } // end ActionListener constructor
84
85); // end addActionListener
86
87 centerPanel.add(openFile);
88
89 // add number label
90 JLabel numberLabel = new JLabel("Partition Number:",
91 SwingConstants.CENTER);
92 centerPanel.add(numberLabel);
93
94 // add number text field
95 numberText = new JTextField(10);
96 centerPanel.add(numberText);
97
98 // install a listener to the number text field
99 numberText.addActionListener(
100

Fig. 23.23Fig. 23.23Fig. 23.23Fig. 23.23 Image-processing distributed system client (part 2 of 6).

1304 JavaSpaces Chapter 23

101 new ActionListener() {
102
103 // get the text when the user feeds a return
104 // character in the text field
105 public void actionPerformed(ActionEvent event)
106 {
107 partitionNumber = Integer.parseInt(
108 event.getActionCommand());
109 }
110 }
111);
112
113 // add operation label
114 JLabel operationLabel = new JLabel("Operation Type:",
115 SwingConstants.CENTER);
116 centerPanel.add(operationLabel);
117
118 // add a combo box
119 operationComboBox = new JComboBox(operations);
120 operationComboBox.setSelectedIndex(0);
121 centerPanel.add(operationComboBox);
122
123 // install a listener to the combo box
124 operationComboBox.addItemListener(
125
126 new ItemListener() {
127
128 // an operation other than BLUR is selected
129 public void itemStateChanged(ItemEvent itemEvent)
130 {
131 operation =
132 (String) operationComboBox.getSelectedItem();
133 }
134 }
135);
136
137 // define the button panel
138 JPanel buttonPanel = new JPanel();
139 buttonPanel.setLayout(new GridLayout(1, 1, 0, 5));
140
141 // add the OK button
142 okButton = new JButton("OK");
143 buttonPanel.add(okButton);
144
145 // add a listener to the OK button
146 okButton.addActionListener(
147
148 new ActionListener() {
149

Fig. 23.23Fig. 23.23Fig. 23.23Fig. 23.23 Image-processing distributed system client (part 3 of 6).

Chapter 23 JavaSpaces 1305

150 // partition image file into number of pieces user
151 // specified
152 public void actionPerformed(ActionEvent event)
153 {
154 // get user inputs
155 partitionNumber = Integer.parseInt(
156 numberText.getText());
157
158 // check whether the user
159 // fills in both text fields
160 if ((partitionNumber == 0)
161 || (imageName == null)) {
162 JOptionPane.showMessageDialog(null,
163 "Either image name or partition number "
164 + "is not specified!", "Error",
165 JOptionPane.ERROR_MESSAGE);
166 }
167
168 else {
169 setVisible(false);
170
171 // partition the image into smaller pieces
172 // and store the sub images into a JavaSpace
173 ImageSeparator imageSeparator =
174 new ImageSeparator(
175 imageName, operation, partitionNumber);
176 imageSeparator.partitionImage();
177 imageSeparator.storeImage(hostname);
178 imageSeparator.displayImage();
179 collect();
180 }
181
182 } // end method actionPerformed
183
184 } // end ActionListener constructor
185
186); // end addActionListener
187
188 // put everything together
189 container.add(centerPanel, BorderLayout.CENTER);
190 container.add(buttonPanel, BorderLayout.SOUTH);
191
192 } // end ImageProcessingClient constructor
193
194 // collect processed images
195 public void collect()
196 {
197 // get the JavaSpace
198 String jiniURL = "jini://" + hostname;
199 JavaSpaceFinder findtool =
200 new JavaSpaceFinder(jiniURL);
201 JavaSpace space = findtool.getJavaSpace();
202

Fig. 23.23Fig. 23.23Fig. 23.23Fig. 23.23 Image-processing distributed system client (part 4 of 6).

1306 JavaSpaces Chapter 23

203 Vector unOrderedImages = new Vector();
204 Vector orderedImages = null;
205
206 // removes all images in the JavaSpace
207 // that have the specified name
208 try {
209 double squareRoot = Math.sqrt(partitionNumber);
210
211 if (Math.floor(squareRoot) != (squareRoot))
212 partitionNumber = 4;
213
214 // specify the matching template
215 ImageEntry template = new ImageEntry(imageName, true);
216
217 // snapshot the template
218 Entry snapshotEntry = space.snapshot(template);
219
220 // collect images
221 for (int i = 0; i < partitionNumber ; i++) {
222 ImageEntry remove = (ImageEntry) space.take(
223 snapshotEntry, null, Lease.FOREVER);
224 unOrderedImages.add(remove);
225 }
226
227 int imageCount = unOrderedImages.size();
228 orderedImages =
229 new Vector(imageCount);
230
231 // initialize the Vector
232 for (int i = 0; i < imageCount; i++)
233 orderedImages.add(null);
234
235 // order the sub images
236 for (int i = 0; i < imageCount; i++) {
237 ImageEntry image =
238 (ImageEntry) unOrderedImages.elementAt(i);
239 orderedImages.setElementAt(
240 image.imageIcon, image.number.intValue());
241 }
242
243 } // end try
244
245 // handle exception collecting images
246 catch (Exception exception) {
247 exception.printStackTrace();
248 }
249
250 // put images together and display the result image
251 if (orderedImages.size() > 0) {
252 ImageParser imageParser = new ImageParser();
253
254 ImageIcon icon = imageParser.putTogether(
255 orderedImages);

Fig. 23.23Fig. 23.23Fig. 23.23Fig. 23.23 Image-processing distributed system client (part 5 of 6).

Chapter 23 JavaSpaces 1307

256
257 ImageDisplayer imageDisplayer =
258 new ImageDisplayer(icon);
259
260 imageDisplayer.setSize(icon.getIconWidth() + 50,
261 icon.getIconHeight() + 50);
262 imageDisplayer.setVisible(true);
263 imageDisplayer.setDefaultCloseOperation(
264 JFrame.EXIT_ON_CLOSE);
265 }
266
267 else {
268 JOptionPane.showMessageDialog(null,
269 "Invalid image name", "Error",
270 JOptionPane.ERROR_MESSAGE);
271
272 // terminate program
273 System.exit(0);
274 }
275
276 } // end method collect
277
278 public static void main(String[] args)
279 {
280 // get the hostname
281 if (args.length != 1) {
282 System.out.println(
283 "Usage: ImageProcessingClient hostname");
284 System.exit(1);
285 }
286
287 ImageProcessingClient processor =
288 new ImageProcessingClient(args[0]);
289
290 // set the window size and display it
291 processor.setSize(350, 150);
292 processor.setVisible(true);
293
294 } // end method main
295 }

1 // Fig. 23.24 ImageSeparator.java
2 // This class partitions the image into smaller pieces evenly
3 // and stores the smaller images into a JavaSpace.
4 package com.deitel.advjhtp1.javaspace.ImageProcessor;
5
6 // Java core packages
7 import java.util.*;
8 import java.rmi.*;

Fig. 23.24Fig. 23.24Fig. 23.24Fig. 23.24 Partitioning an image into smaller pieces and storing subimages in a
JavaSpaces service (part 1 of 3).

Fig. 23.23Fig. 23.23Fig. 23.23Fig. 23.23 Image-processing distributed system client (part 6 of 6).

1308 JavaSpaces Chapter 23

9
10 // Java standard extensions
11 import javax.swing.*;
12
13 // Jini core packages
14 import net.jini.core.lease.Lease;
15 import net.jini.core.transaction.TransactionException;
16
17 // Jini extension packages
18 import net.jini.space.JavaSpace;
19 import net.jini.lease.*;
20
21 // Deitel packages
22 import com.deitel.advjhtp1.javaspace.common.*;
23
24 public class ImageSeparator {
25
26 private String imageName;
27 private String filterType;
28 private int partitionNumber;
29 private Vector imagePieces;
30 private ImageIcon icon;
31
32 // ImageSeparator constructor
33 public ImageSeparator(
34 String name, String type, int number)
35 {
36 imageName = name;
37 filterType = type;
38 partitionNumber = number;
39 }
40
41 // partition the image into smaller pieces evenly
42 public void partitionImage()
43 {
44 ImageParser imageParser = new ImageParser();
45 icon = new ImageIcon(imageName);
46
47 // partition the image
48 imagePieces = imageParser.parseImage(
49 icon, partitionNumber);
50 }
51
52 // display the image
53 public void displayImage()
54 {
55 ImageDisplayer imageDisplayer =
56 new ImageDisplayer(icon);
57 imageDisplayer.setSize(icon.getIconWidth() + 50,
58 icon.getIconHeight() + 50);
59 imageDisplayer.setVisible(true);
60 }

Fig. 23.24Fig. 23.24Fig. 23.24Fig. 23.24 Partitioning an image into smaller pieces and storing subimages in a
JavaSpaces service (part 2 of 3).

Chapter 23 JavaSpaces 1309

Class ImageParser (Fig. 23.25) partitions an image into smaller pieces and puts sub-
images together to reform a large image. Method parseImage (lines 25–66) partitions an
image into smaller pieces. If the number of subimages specified by the user does not divide
evenly between the number of rows and columns, then the default number 4 is used (lines 29–
35). Lines 42–62 partition the image. The resulting subimages are stored in a Vector.
Method putTogether (lines 71–106) puts subimages back together. Lines 93–102 get the
subimages from the input Vector and piece them together into a BufferedImage to
form a complete image. Line 104 returns the image as an ImageIcon.

61
62 // write image pieces into a JavaSpace
63 public void storeImage(String hostname)
64 {
65 // get the JavaSpace
66 String jiniURL = "jini://" + hostname;
67 JavaSpaceFinder findtool =
68 new JavaSpaceFinder(jiniURL);
69 JavaSpace space = findtool.getJavaSpace();
70
71 LeaseRenewalManager leaseManager =
72 new LeaseRenewalManager();
73
74 // write sub images to JavaSpace
75 try {
76
77 for (int i = 0; i < imagePieces.size(); i++) {
78 ImageIcon subImage =
79 (ImageIcon) imagePieces.elementAt(i);
80
81 ImageEntry imageEntry = new ImageEntry(
82 imageName, filterType, i, false, subImage);
83
84 Lease writeLease = space.write(
85 imageEntry, null, Lease.FOREVER);
86 leaseManager.renewUntil(
87 writeLease, Lease.FOREVER, null);
88 }
89 }
90
91 // if a network failure occurs
92 catch (RemoteException remoteException) {
93 remoteException.printStackTrace();
94 }
95
96 // if write operates under an invalid transaction
97 catch (TransactionException transactionException) {
98 transactionException.printStackTrace();
99 }
100
101 } // end method storeImage
102 }

Fig. 23.24Fig. 23.24Fig. 23.24Fig. 23.24 Partitioning an image into smaller pieces and storing subimages in a
JavaSpaces service (part 3 of 3).

1310 JavaSpaces Chapter 23

Class ImageDisplayer (Fig. 23.26) is a JFrame subclass for displaying an image.
The constructor (lines 15–30) gets an ImageIcon and displays it in a JLabel.

1 // Fig. 23.25: ImageParser.java
2 // This class partitions an image into smaller pieces.
3 package com.deitel.advjhtp1.javaspace.ImageProcessor;
4
5 // Java core packages
6 import java.awt.image.*;
7 import java.net.URL;
8 import java.awt.*;
9 import java.lang.*;

10 import java.util.Vector;
11 import java.awt.geom.*;
12
13 // Java standard extensions
14 import javax.swing.*;
15
16 public class ImageParser {
17
18 ImageIcon image;
19
20 public ImageParser() {}
21
22 // pass parseImage an ImageIcon on the number of piece
23 // you want it split into the number of piece must be a
24 // perfect square - this can be extended later
25 public Vector parseImage(
26 ImageIcon imageIcon, int numberPieces)
27 {
28 Vector vector = new Vector();
29 double squareRoot = Math.sqrt(numberPieces);
30
31 if (Math.floor(squareRoot) != (squareRoot)) {
32 System.out.println("This is not a square number,"
33 + " setting to default...");
34 numberPieces = 4;
35 }
36
37 // get number of rows and columns
38 int numberRows = (int) Math.sqrt(numberPieces);
39 int numberColumns = (int) Math.sqrt(numberPieces);
40
41 // retrieve Image from BufferedImage
42 Image image = imageIcon.getImage();
43 BufferedImage bufferedImage = new BufferedImage(
44 image.getWidth(null), image.getHeight(null),
45 BufferedImage.TYPE_INT_RGB);
46
47 Graphics2D g2D = bufferedImage.createGraphics();
48 g2D.drawImage(image, null, null);
49

Fig. 23.25Fig. 23.25Fig. 23.25Fig. 23.25 Partitioning and reforming an image (part 1 of 3).

Chapter 23 JavaSpaces 1311

50 // get size of each piece
51 int width = bufferedImage.getWidth() / numberColumns;
52 int height = bufferedImage.getHeight() / numberRows;
53
54 // make each of images
55 for (int x = 0; x < numberRows; x++) {
56
57 for (int y = 0; y < numberColumns; y++) {
58 vector.add(new ImageIcon(
59 bufferedImage.getSubimage(
60 x * width, y * height, width, height)));
61 }
62 }
63
64 return vector;
65
66 } // end method parseImage
67
68 // takes a vector of image icons (must be a square number)
69 // of elements and returns an image icon with the images
70 // put back together again
71 public ImageIcon putTogether(Vector vector)
72 {
73 double size = vector.size();
74 int numberRowColumn = (int) Math.sqrt(size);
75
76 // step 1, get first Image
77 Image tempImage =
78 ((ImageIcon) vector.get(0)).getImage();
79
80 // get total size of one piece
81 int width = tempImage.getWidth(null);
82 int height = tempImage.getHeight(null);
83
84 // create buffered image
85 BufferedImage totalPicture = new BufferedImage(
86 width * numberRowColumn, height * numberRowColumn,
87 BufferedImage.TYPE_INT_RGB);
88
89 // create Graphics for BufferedImage
90 Graphics2D graphics = totalPicture.createGraphics();
91
92 // draw images from the vector into buffered image
93 for (int x = 0; x < numberRowColumn; x++) {
94
95 for (int y = 0; y < numberRowColumn; y++) {
96 Image image = ((ImageIcon) vector.get(
97 y + numberRowColumn * x)).getImage();
98 graphics.drawImage(image,
99 AffineTransform.getTranslateInstance(
100 x * width, y * height), null);
101 }
102 }

Fig. 23.25Fig. 23.25Fig. 23.25Fig. 23.25 Partitioning and reforming an image (part 2 of 3).

1312 JavaSpaces Chapter 23

23.12.3 Compiling and Running the Example

Before compiling the sample code, ensure that jini-core.jar, jini-ext.jar and
sun-util.jar are included in the CLASSPATH. To execute the example, start:

1. a Web server,

2. the RMI activation daemon,

3. the Jini lookup service,

4. the JavaSpaces service, and

5. the Jini Transaction service.

103
104 return new ImageIcon(totalPicture);
105
106 } // end method putTogether
107 }

1 // Fig. 23.26: ImageDisplayer.java
2 // This application is an user interface used
3 // to display an image.
4 package com.deitel.advjhtp1.javaspace.ImageProcessor;
5
6 // Java extension packages
7 import javax.swing.*;
8
9 // Java core packages

10 import java.awt.*;
11 import java.awt.event.*;
12
13 public class ImageDisplayer extends JFrame {
14
15 public ImageDisplayer(ImageIcon icon)
16 {
17 super("ImageDisplay");
18 Container container = getContentPane();
19
20 // define the center panel
21 JPanel centerPanel = new JPanel();
22
23 // add display label
24 JLabel imageLabel = new JLabel(
25 icon, SwingConstants.LEFT);
26 centerPanel.add(imageLabel);
27
28 container.add(centerPanel, BorderLayout.CENTER);
29
30 } // end ImageDisplayer constructor
31 }

Fig. 23.26Fig. 23.26Fig. 23.26Fig. 23.26 Displaying an image.

Fig. 23.25Fig. 23.25Fig. 23.25Fig. 23.25 Partitioning and reforming an image (part 3 of 3).

Chapter 23 JavaSpaces 1313

On a second computer, perform the following tasks:

1. compile all java files in directory com\deitel\advjhtp1\java-
space\ImageProcessor, and

2. start the ImageProcessorClient application by specifying the hostname of
the computer running the Jini lookup service (you also must specify an appropriate
policy file).

On at least one other machine, start an ImageProcessor node and specify the hostname
of the computer running the Jini lookup service (you also must specify an appropriate pol-
icy file).

One important thing to note in this example is that doubling the number of
ImageProcessor nodes that retrieve Entrys from the JavaSpaces service doubles the
processing power of the application. If you do not have multiple computers, you can run
the entire application on a single computer. Although this defeats the purpose of a distrib-
uted system, running the application on a single computer can be useful for testing and
debugging the application. Figure 23.27 displays the GUI for the ImageProcessor-
Client application

Fig. 23.28 displays the image on the left-hand side before application ImageProces-
sorClient distributes the image to the ImageProcessor nodes. The ImagePro-
cessor nodes apply the blur filter to the image. The image on the right-hand side shows the
resulting image after ImageProcessorClient assembles the processed pieces.

Fig. 23.27Fig. 23.27Fig. 23.27Fig. 23.27 GUI from ImageProcessorMain and ImageCollector
applications.

Fig. 23.28Fig. 23.28Fig. 23.28Fig. 23.28 Images before and after blurring.

1314 JavaSpaces Chapter 23

23.13 Internet and World Wide Web Resources
www.sun.com/jini/specs/js1_1.pdf
This site provides the Jini JavaSpaces service Specification.

www.javaworld.com/jw-11-1999/jw-11-jiniology.html
www.javaworld.com/jw-01-2000/jw-01-jiniology.html
www.javaworld.com/jw-03-2000/jw-03-jiniology.html
www.javaworld.com/jw-04-2000/jw-0421-jiniology.html
www.javaworld.com/jw-06-2000/jw-0623-jiniology.html
These JavaWorld online magazine URLs represent a series of articles that introduce JavaSpaces tech-
nology, including the available operations, transactions and leasing.

www.byte.com/documents/s=146/BYT19990921S0001/index.htm
This article provides an overview of JavaSpaces technology and introduces its basic concepts.

SUMMARY
• A JavaSpaces service is a Jini service that implements a simple, high-level architecture for build-

ing distributed systems. The JavaSpaces service enables Java objects to communicate, share ob-
jects and coordinate tasks using an area of shared memory.

• A JavaSpaces service provides three fundamental operations—write, take and read. The write op-
eration places an object—called an entry—into the JavaSpaces service.

• The take operation specifies a template and removes from the JavaSpaces service an entry that
matches the given template. The read operation is similar to the take operation, but does not re-
move the matching entry from the JavaSpaces service.

• In addition to the three basic operations, JavaSpaces services support transactions through the Jini
transaction manager, and a notification mechanism that notifies an object when an entry that
matches a given template is written to the JavaSpaces service.

• An entry stored in a JavaSpaces service will remain in the JavaSpaces service until its lease expires
or until a program takes the entry from the JavaSpaces service.

• A JavaSpaces service locates objects by comparing those objects to a template. The template spec-
ifies the search criteria against which the JavaSpaces service compares each entry. When one or
more entries match the template, the JavaSpaces service returns a single matching entry.

• JavaSpaces services can use the Jini transaction manager to ensure operations execute atomically.

• Objects in a JavaSpaces service are shared. Programs can read and take entries from the JavaSpac-
es service, modify the public fields in those entries and write them back to the JavaSpaces ser-
vice for other programs to use.

• Any object stored in the JavaSpaces service must implement interface Entry (package net.ji-
ni.core.entry). JavaSpaces services Entrys adhere to the Jini Entry contract defined in
the Jini Core Specification.

• An Entry can have multiple constructors and as many methods as required. Other requirements
include a public no-argument constructor, public fields and no-primitive type fields. The Jav-
aSpaces service proxy uses the no-argument constructor to instantiate the matching Entry during
the deserialization process.

• All fields that will be used as the template matching fields in an Entry must be public (for
more information on template matching fields, see Section 23.8). As defined by the Jini Core
Specification, an Entry cannot have primitive-type fields.

• JavaSpaces technology, like Jini, requires several underlying services. The JavaSpaces service de-
pends on the Jini lookup service. When transactions are required, the Jini transaction service must
be started. JavaSpaces services also depend on a Web server and rmid

Chapter 23 JavaSpaces 1315

• Two versions of JavaSpaces services are available. One is the transient JavaSpaces service (non-
activatable). The other is the persistent JavaSpaces service (activatable).

• The transient JavaSpaces service does not require the RMI activation daemon (rmid), because the
transient JavaSpaces service is not activatable. Once the transient JavaSpaces service terminates,
all state information is lost and rmid is unable to restart the service.

• The persistent JavaSpaces service is activatable, and therefore requires the RMI activation dae-
mon. If the persistent JavaSpaces servicee terminates, all of its state information is stored in a log
file and rmid can restart the service at a later time.

• Upon initialization, each JavaSpaces service registers itself with local Jini lookup services.

• Clients access objects in a JavaSpaces service through interface JavaSpace (package net.ji-
ni.space). Interface JavaSpace provides several methods—notify, read, readIfEx-
ists, take, takeIfExists, write and snapshot.

• The write operation inserts an Entry into a JavaSpaces service. If an identical Entry already
exists in the JavaSpaces service, this operation does not overwrite the existing Entry. Instead,
the write operation places a copy of the Entry into the JavaSpaces service.

• The read operation attempts to read an Entry that matches an Entry template from a Jav-
aSpaces service. If no matching Entry exists in the JavaSpaces service, this operation returns
null. If multiple matching Entry exist in the JavaSpaces service, the read operation arbitrarily
picks one among the matching Entrys. Method read blocks until a matching Entry is found
in the JavaSpaces service or until a time-out occurs.

• Method readIfExists checks to see if a matching Entry exists within the JavaSpaces ser-
vice. If an Entry does not exist in the JavaSpaces service, method readIfExists should re-
turn null immediately. Method readIfExists does not block unless the matching Entry is
a participant in an uncommitted transaction.

• The take operation attempts to remove an Entry that matches an Entry template from a Jav-
aSpaces service. This operation works like the read operation, except that the take operation
removes the matching Entry from the JavaSpaces service.

• Method take blocks until a matching Entry is found in the JavaSpaces service or until a time-
out occurs.

• Method takeIfExists checks to see if a matching Entry exists within the JavaSpaces ser-
vice. If an Entry does not exist in the JavaSpaces service, method takeIfExists should re-
turn null immediately. Method takeIfExists does not block unless the matching Entry is
part of an uncommitted transaction.

• The notify operation requests that the JavaSpaces service sends a notification to a listener object
when a client writes a matching Entry into the JavaSpaces service. With this method, an appli-
cation does not need to check repeatedly for an Entry in a JavaSpaces service.

• Method snapshot increases performance when a program must serialize one Entry repeatedly.
Each time a program transfers an Entry into a JavaSpaces service (e.g., by writing that Entry
or by using that Entry as a template), that Entry must be serialized. Invoking method snap-
shot serializes the Entry once and reuses this serialized Entry for future transfers.

• Method write takes three arguments—an Entry, a Transaction object and a long value
that requests an amount of time for which the JavaSpaces service should keep the Entry. The
long value represents the lease length for the Entry.

• The read and the take operations retrieve Entrys from a JavaSpaces service. A client can read
or take an Entry from the JavaSpaces service by supplying a template Entry against which to
compare the public fields of Entrys in the JavaSpaces service. The template indicates which
fields should be used for comparison purposes.

1316 JavaSpaces Chapter 23

• The retrieval process is based on the a template-matching mechanism, which matches Entrys ac-
cording to the values of their public fields. Fields in the template with non-null values must
match with their Entry counterparts in the JavaSpaces service exactly. Fields in the template that
are set to null act as wildcards.

• If a set of Entrys of the same type exist within a JavaSpaces service, only those fields which
equal those of the template are used to match an Entry or a set of Entrys contained in the Jav-
aSpaces service. Fields in the template set to null can have their matching counterparts in the
JavaSpaces service have any value in the corresponding field(s).

• The read operation obtains Entrys without removing them from the JavaSpaces service. Methods
read and readIfExists perform the read operation. Each method takes three arguments—an
Entry that specifies the template to match, a Transaction object and a long value.

• Method read specifies a period of time for which the read operation should block before simply
returning null. Method readIfExists is a non-blocking version of method read. If there
are no matching Entrys, readIfExists returns null immediately.

• Method readIfExists blocks only if the developer specifies a period of time for which the
readIfExists waits if, at first, the matching Entry is a part of an incomplete transaction. If
the matching Entry is not involved in any transaction, then the read operation returns the
matching Entry immediately.

• Both the read and readIfExists methods return only one Entry. If multiple Entrys match
the template, the read operation picks one arbitrarily.

• The take operation obtains an Entry and removes it from the JavaSpaces service. Methods
take and takeIfExists perform the take operation. Methods take and takeIfExists
are similar to methods read and readIfExists. The only difference is that the matching En-
try returned by a take or takeIfExists operation is removed from the JavaSpaces service.

• The notify operation asks the JavaSpaces service to send a notification to a listener when a client
writes a matching Entry into the JavaSpaces service. Method notify takes five parameters—an
Entry that specifies the matching template, a Transaction object, a listener that implements in-
terface RemoteEventListener (package net.jini.core.event), a long value that
specifies the lease time for the registration of the listener and a MarshalledObject (package
java.rmi) that the JavaSpaces service will pass to the remote listener as part of a notification.

• Method snapshot takes a matching template and returns a specialized representation of the En-
try (a snapshot Entry). This snapshot Entry can be used only in the JavaSpaces service that
generated it.

TERMINOLOGY
abort method of class Transaction snapshot method of JavaSpace
commit method of class Transaction take method of JavaSpace
Entry class (net.jini.core.entry) takeIfExists method of JavaSpace
JavaSpace interface (net.jini.space) template matching mechanism
JavaSpaces service transaction
notify method of JavaSpace Transaction.Created class
outrigger JavaSpace implementation Transaction.Created.transaction

interface persistent JavaSpaces service
read method of interface JavaSpace TransactionException class
readIfExists method of interface

JavaSpace
TransactionManager service
transient JavaSpaces service

RemoteEventListener interface
(net.jini.core.event)

UnusableEntryException class
write method of JavaSpace

Chapter 23 JavaSpaces 1317

SELF-REVIEW EXERCISES
23.1 Fill in the blanks in each of the following statements:

a) The JavaSpaces technology is an queue.
b) Objects placed in the JavaSpaces service must implement the interface.
c) Two methods of the JavaSpace interface that read an Entry from the JavaSpaces ser-

vice are and .
d) Creating a transaction, requires a .
e) Method can be used to avoid unnecessary serializations of an Entry.

23.2 State whether each of the following is true or false. If false, explain why.
a) Entrys may have private fields that are used for template matching.
b) Method take can remove all matching Entrys from the JavaSpaces service.
c) To modify an Entry in a JavaSpaces service, we need to take the Entry away from the

JavaSpaces service, change the values of the Entry and put the Entry back to the Java-
Spaces service.

d) Objects stored in a JavaSpaces service cannot have primitive type fields.
e) When writing an Entry to a JavaSpaces service, if the Entry already exists, the new

Entry overwrites the old Entry.

ANSWERS TO SELF-REVIEW EXERCISES
23.1 a) object-based message-oriented. b) Entry. c) read, readIfExists. d) transaction man-
ager. e) snapshot.

23.2 a) False. The fields in an Entry used for template matching must be public because the
JavaSpaces service needs to access these fields. b) False. If multiple Entrys match the template,
method take removes only one. c) True. d) True. e) False. JavaSpaces services can have multiple
copies of the same Entry. No matter whether an Entry exist, the write operation puts the Entry
into the JavaSpaces service, unless an exception occurs during the write process.

EXERCISES
23.3 Describe the difference between method take and method takeIfExists in the Java-
Space interface.

23.4 Start a JavaSpaces service with a name other than the default name and find this JavaSpaces
service with Jini lookup service using a Name Entry.

23.5 In the WriteOperation application (Fig. 23.3), the Entrys written into the JavaSpaces
service are kept in the JavaSpaces service for at most 5 minutes. Using LeaseRenewalManager,
rewrite the application so that the written Entrys are kept in the JavaSpaces service forever.

23.6 Write a program that uses method take to remove all Entrys that match a specific tem-
plate. Compare the speed of running this application with the speed of running the SnapshotEn-
try application.

23.7 Write a program that uses method notify to track all Entrys written into a JavaSpaces
service. Can you tell whether there are any Entrys that the listener does not track?

23.8 In our examples, we use class JavaSpaceFinder to find a JavaSpaces service and class
TransactionManagerFinder to find a transaction manager. These two classes are similar.
Write a program called ServiceFinder that takes the Class object (i.e., JavaSpace.class)
as input and returns the service object (i.e., JavaSpace object). Does ServiceFinder return the
same JavaSpace object if you have multiple JavaSpaces services running? If not, how can you fix
it so that ServiceFinder always returns the JavaSpaces service you wanted. [Hint: set the name

1318 JavaSpaces Chapter 23

for each JavaSpaces service instance using the com.sun.jini.outrigger.spaceName prop-
erty when running the JavaSpaces service from the commandline. This property will register the cor-
responding JavaSpace stub in the Jini lookup service with the Name Entry set to the value
specified.

23.9 Write a program that reads all matching Entrys from a JavaSpaces service without remov-
ing them from the JavaSpaces service.

WORKS CITED
1. <java.sun.com/products/javaspaces/faqs/jsfaq.html>.

2. <www.javaworld.com/javaworld/jw-11-1999/jw-11-jiniology_p.html>.

3. <www.javaworld.com/javaworld/jw-11-1999/jw-11-jiniology_p.html>.

BIBLIOGRAPHY
Freeman, E.; S. Hupfer; and K. Arnold, JavaSpaces Principles, Patterns, and Practice. Reading,

MA: Addison Wesley Publishing, 1999.

Edwards, W. K., Core Jini (Second Edition), Upper Saddle River, NY: Prentice-Hall, Inc., 2001.

Li, S., Professional Jini, Birmingham, UK: Wrox Press Ltd. 2000

Newmarch, J., A Programer’s Guide to Jini Technology, New York, NY: Springer-Verlag New York,
Inc., 2000.

Oaks, S., and H., Wong, Jini in a Nutshell, Sebastopol, CA: O’Reilly & Associates, Inc., 2000.

24
Java Management
Extensions (JMX)

Objectives
• To understand the JMX technology architecture.
• To understand the design pattern of the standard

MBeans.
• To make a resource manageable by defining a

management interface for the resource and exposing
this interface through MBeans.

• To understand the JMX agent architecture.
• To be able to design and develop management agents

to expose MBeans.
• To be able to develop management applications to

interact with management agents.
Imagination is a powerful agent for creating, as it were, a
second nature out of the material supplied to it by actual
nature.
Immanuel Kant

There’s nothing remarkable about it. All one has to do is hit
the right keys at the right time and the instrument plays itself.
Johann Sebastian Bach

Facts are stupid until brought into connection with some
general law.
Louis Agassiz

1320 Java Management Extensions (JMX) Chapter 24

24.1 Introduction
Networks play an important role in today’s business. Businesses increasingly need net-
works that provide services which are customized to customer demands, consistently avail-
able and easily updated. As more organizations add networks and expand existing networks
to increase productivity, network management becomes more difficult. Furthermore, every
day more devices are network capable. The proper functionality of printers, network routers
and other devices—many of which play an integral role in the productivity of a firm—has
increased in importance. As more devices are networked and as networks grow larger, more
problems can occur. Existing tools for managing networked devices often use proprietary
protocols and management tools. The diversity of such protocols and tools make managing
a diverse network difficult.

Another problem that plagues network management is that many existing network
management schemes are inflexible and non-automated. This usually means that large
amounts of time and resources are spent trying to fix and operate large networks. New tech-
nologies are required that will help shift the burden of routine network management issues
to the network management software itself and leave special network maintenance issues
to the network manager.

Most current network-management solutions distribute management responsibilities
among several autonomous programs called agents. Typical agents pass information from
the network resources to the management application and control the network resources
based on commands from the management application. Only the management application
makes decisions in the agent-based paradigm. These types of agents—called static
agents—cannot respond on their own to problems that occur within the network. An SNMP
(Simple Network Management Protocol) agent is a good example. An SNMP agent is a
static agent designed to handle communication between a manageable network device and
a management application. For these agent types, all managed resources must be pre-
defined during development. This makes extending management applications to manage
new resources difficult. Agents, such as the SNMP agents, lack management intelligence,
because they do not have the capacity to respond to problems as they occur.

Outline

24.1 Introduction
24.2 Installation
24.3 Case Study

24.3.1 Instrument Resources
24.3.2 Implementation of the JMX Management Agent
24.3.3 Broadcasting and Receiving Notifications
24.3.4 Management Application
24.3.5 Compiling and Running the Example

24.4 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises •
Bibliography

Chapter 24 Java Management Extensions (JMX) 1321

Recent technological advances have provided network management developers with
the tools necessary to develop smart agents that are capable of assuming various responsi-
bilities in a network management solution. These technological developments allow agents
to incorporate themselves into frameworks in which numerous agents interact with each
other and provide a dynamic and extensible network management solution.

The Java Management Extensions (JMX), developed by Sun and network-management
industry leaders, define a component framework that enables developers to build automated,
intelligent and dynamic network-management solutions. JMX defines a three-level manage-
ment architecture—instrumentation level, agent level and manager level (Fig. 24.1).1 The
instrumentation level makes any Java-based object manageable. The agent level provides
management services that expose the managed resources for management. The manager level
allows management application access to managed resources and operates these resources via
the JMX agents. In addition, JMX provides support for existing management protocols (such
as SNMP) so JMX can integrate itself with existing management solutions.

With these design specifications, JMX provides:

1. platform independence, through of the Java programming language.

2. protocol independence, through support for multiple protocols.

3. reusable code, because managed resources follow JavaBeans component
guidelines.

4. intelligent agents, because JMX allows agents to respond to resources directly,
without having to wait for decisions from a resource manager.

5. scalability, because the agents are deployed in any device that runs a JVM.

1. Sun Microsystems, Inc. “JMX Instrumentation and Agent Specification v1.0,” July 2000
<jcp.org/aboutJava/communityprocess/final/jsr003/index.html>

Fig. 24.1Fig. 24.1Fig. 24.1Fig. 24.1 JMX’s three-level management architecture.

Management Application

Java Dynamic Management Agent

Managed ResourceManaged Resource Managed ResourceInstrumentation Level

Agent Level

Manager Level

1322 Java Management Extensions (JMX) Chapter 24

24.2 Installation
Many implementations of the JMX standard exist. One such implementation is Sun’s Java
Dynamic Management Kit (JDMK). JMX provides a standard API for building network
management applications, but there are numerous vendors that provide additional features
not specified in the JMX standard. Each vendor implementation offers advantages when
solving different management problems.

To build dynamic network management solutions using JDMK, you must first down-
load the Java Dynamic Management Kit. The Java Dynamic Management Kit 4.2 evalua-
tion software is available at:

www.sun.com/software/java-dynamic/try.html

The Java Dynamic Management Kit is compatible with Solaris SPARC, Linux, Windows
2000 and Windows NT platforms. To download JDMK for Windows 2000 and Linux, se-
lect the link for “Other Platforms.” Download the appropriate file for your platform.

The download for Windows 2000 is a zip file. Unzipping the file creates the SUN-
Wjdmk directory, which contains directories and files needed for developing management
solution with JDMK. The files jdmkrt.jar and jdmktk.jar (located in the SUN-
Wjdmk\jdmk4.2\1.2\lib directory) must be added to the CLASSPATH to compile
and execute the examples.

24.3 Case Study
In the following sections, we develop a management solution using the Java Dynamic Man-
agement Kit. A complete management solution includes managed resources, the manage-
ment agent and the management application. In this case study, the managed resource is a
printer. Not everyone has access to a printer with management capabilities, so we devel-
oped a printer simulator. The printer is manageable by instrumenting it as an MBean—a
manageable JavaBean component. The management application manages the printer
through the MBeanServer—a registry for MBeans. The RMI connector service, provid-
ed by the JDMK, makes remote management possible. Figure 24.2 shows the architecture
of the management solution.

Section 24.3.1 describes how to make a Java object manageable by exposing the man-
aged resource. Section 24.3.2 demonstrates how to create a JMX management agent with
an MBeanServer and the RMI connector service provided by JDMK. Section 24.3.3
describes how the management agent receives notifications sent by the managed resource.
Section 24.3.4 develops a management application to interact with the management agent.
Section 24.3.5 explains how to compile and run the example.

24.3.1 Instrument Resources

Instrumentation makes resources manageable. Resources can be devices, applications, or
any Java-based objects that need to be managed through a management application. Instru-
menting a resource exposes the resource’s management interface so that managers can
communicate with the resource. The management interface contains properties that de-
scribe the resource and operations for managing the resource.

Chapter 24 Java Management Extensions (JMX) 1323

To instrument a resource, the simplest and fastest way is to write a standard MBean.
MBeans, also called Managed Beans, are Java objects that instrument the resources to be
managed.2 A standard MBean has two parts—an MBean interface and a Java class that
implements the MBean interface (called an MBean class). A standard MBean must follow
design patterns defined by the Java Management Extensions to standardize the instrumen-
tation of managed resources. The design patterns for the MBean interface are as follows:

1. The MBean interface name must be composed of the MBean implementation’s
Java class name followed by the suffix MBean.

2. The MBean interface specifies all get and set methods that expose the properties
of the management interface.

3. Each property can have at most one set method and one get method in the man-
agement interface.

4. The MBean interface declares all operations available through the management
interface. An operation is a public method whose name does not begin with
get, is or set. Only public methods are exposed.

Fig. 24.2Fig. 24.2Fig. 24.2Fig. 24.2 Architecture of case study management application.

2. Another type of MBean is a dynamic MBean that only exposes its methods at runtime. Dynamic
MBeans allow developers to change MBean behaviors at runtime.

Printer MBean

RmiConnectorClient: 5555

 RmiConnectorServer: 5555

MBeanServer

PrinterEventBroadcaster MBean

PrinterSimulator

Management Application

1324 Java Management Extensions (JMX) Chapter 24

5. Return values and parameters for the set and get methods must be serializable ob-
jects.

The design patterns for the MBean class are as follows:

1. The MBean class must implement its corresponding MBean interface.

2. The MBean class must be public and concrete (non-abstract) so that it can be
instantiated.

3. The MBean class must have at least one public constructor.

Interface PrinterMBean (Fig. 24.3) is the MBean interface for our simulated
printer. The MBean interface declares printer features that will be manageable. This
example exposes only a small number of the printer’s manageable resources. The number
of manageable resources exposed through the MBean interface relies heavily on the partic-
ular management solution being developed. The PrinterMBean interface defines three
get methods whose names begin with is (lines 11–17) for Boolean properties, four get
methods whose names begin with get (lines 20–29) and one set method whose name
begins with set (line 32). In addition, three operations are defined—replenish the paper
tray (line 35), cancel pending print jobs (line 38) and start the printing process (line 41).

1 // Fig. 24.3: PrinterMBean.java
2 // This interface specifies the methods that will be implemented
3 // by Printer, which will function as an MBean.
4
5 // deitel package
6 package com.deitel.advjhtp1.jmx.PrinterManagement;
7
8 public interface PrinterMBean {
9

10 // is it printing?
11 public Boolean isPrinting();
12
13 // is it online?
14 public Boolean isOnline();
15
16 // is paper jammed?
17 public Boolean isPaperJam();
18
19 // returns paper amount in tray
20 public Integer getPaperTray();
21
22 // returns ink level in toner cartridge
23 public Integer getToner();
24
25 // returns ID of print job that is currently printing
26 public String getCurrentPrintJob();
27
28 // returns array of all queued up print jobs
29 public String [] getPendingPrintJobs();
30

Fig. 24.3Fig. 24.3Fig. 24.3Fig. 24.3 Defining the PrinterMBean interface that exposes the printer’s
management capabilities (part 1 of 2).

Chapter 24 Java Management Extensions (JMX) 1325

Interface PrinterEventListener (Fig. 24.4) defines the methods a printer-
event listener must implement. The interface defines three events—out of paper, low toner
and paper jam.

Class Printer (Fig. 24.5) is the implementation of interface PrinterMBean. It
shows how to implement and instrument this particular MBean.

31 // sets availability status of printer
32 public void setOnline(Boolean online);
33
34 // fills up paper tray again with paper
35 public void replenishPaperTray();
36
37 // cancel pending print jobs
38 public void cancelPendingPrintJobs();
39
40 // start printing process
41 public void startPrinting();
42 }

1 // Fig. 24.4: PrinterEventListener.java
2 // The listener interface for printer events.
3
4 // deitel package
5 package com.deitel.advjhtp1.jmx.Printer;
6
7 public interface PrinterEventListener {
8
9 public void outOfPaper();

10
11 public void lowToner();
12
13 public void paperJam();
14 }

Fig. 24.4Fig. 24.4Fig. 24.4Fig. 24.4 Defining an event listener for the printer to handle out-of-paper, low-toner,
and paper-jam events.

1 // Fig. 24.5: Printer.java
2 // This class provides implementation for interface PrinterMBean
3 // and registers a managing MBean for the Printer device,
4 // which is simulated by PrinterSimulator.java.
5
6 // deitel package
7 package com.deitel.advjhtp1.jmx.PrinterManagement;
8
9 // Java core package

10 import java.lang.Thread;

Fig. 24.5Fig. 24.5Fig. 24.5Fig. 24.5 Printer MBean implementation class that represents the management
contact point for all applications wishing to manage the printer (part 1 of 7).

Fig. 24.3Fig. 24.3Fig. 24.3Fig. 24.3 Defining the PrinterMBean interface that exposes the printer’s
management capabilities (part 2 of 2).

1326 Java Management Extensions (JMX) Chapter 24

11 import java.util.ArrayList;
12
13 // JMX core packages
14 import javax.management.*;
15
16 // Deitel packages
17 import com.deitel.advjhtp1.jmx.Printer.*;
18
19 public class Printer implements PrinterMBean,
20 PrinterEventListener {
21
22 private PrinterSimulator printerSimulator;
23 private static final int PAPER_STACK_SIZE = 50;
24 private ObjectInstance eventBroadcasterInstance;
25 private ObjectName eventBroadcasterName;
26 private ObjectName printerName;
27 private MBeanServer mBeanServer;
28
29 public Printer()
30 {
31 // connect to the printer device
32 printerSimulator = new PrinterSimulator(this) ;
33 Thread myThread = new Thread(printerSimulator) ;
34 myThread.start();
35
36 // find all MBean servers in current JVM
37 ArrayList arrayList =
38 MBeanServerFactory.findMBeanServer(null);
39
40 // retrieve the MBeanServer reference
41 if (arrayList.size() == 0)
42 System.out.println("Cannot find a MBeanServer!");
43
44 else {
45
46 // get the MBeanServer that has the
47 // PrinterEventBroadcaster MBean registered with it
48 for (int i = 0; i < arrayList.size(); i++) {
49 MBeanServer foundMBeanServer =
50 (MBeanServer) arrayList.get(i);
51
52 // obtain the object name for the
53 // PrinterEventBroadcaster MBean
54 try {
55 String name = foundMBeanServer.getDefaultDomain()
56 + ":type=" + "PrinterEventBroadcaster";
57 eventBroadcasterName = new ObjectName(name);
58 }
59

Fig. 24.5Fig. 24.5Fig. 24.5Fig. 24.5 Printer MBean implementation class that represents the management
contact point for all applications wishing to manage the printer (part 2 of 7).

Chapter 24 Java Management Extensions (JMX) 1327

60 // handle exception when creating ObjectName
61 catch (MalformedObjectNameException exception) {
62 exception.printStackTrace();
63 }
64
65 // check whether the PrinterEventBroadcaster MBean is
66 // registered with this MBeanServer
67 if (foundMBeanServer.isRegistered(
68 eventBroadcasterName)) {
69 mBeanServer = foundMBeanServer;
70 break;
71 }
72
73 } // end for loop
74
75 } // end if-else to get the MBeanServer reference
76
77 } // end PrinterSimulator constructor
78
79 // will stop the printer thread from executing
80 // once execution should stop.
81 public void stop()
82 {
83 printerSimulator.stop();
84 }
85
86 // Is it printing?
87 public Boolean isPrinting()
88 {
89 return new Boolean(printerSimulator.isPrinting());
90 }
91
92 // is online?
93 public Boolean isOnline()
94 {
95 return printerSimulator.isOnline();
96 }
97
98 // is paper jammed?
99 public Boolean isPaperJam()
100 {
101 return printerSimulator.isPaperJam();
102 }
103
104 // is paper tray empty?
105 public Integer getPaperTray()
106 {
107 return printerSimulator.getPaperTray();
108 }
109

Fig. 24.5Fig. 24.5Fig. 24.5Fig. 24.5 Printer MBean implementation class that represents the management
contact point for all applications wishing to manage the printer (part 3 of 7).

1328 Java Management Extensions (JMX) Chapter 24

110 // is toner low?
111 public Integer getToner()
112 {
113 return printerSimulator.getToner();
114 }
115
116 // returns ID of print job that is currently printing
117 public String getCurrentPrintJob()
118 {
119 return printerSimulator.getCurrentPrintJob();
120 }
121
122 // returns array of all queued up print jobs
123 public String[] getPendingPrintJobs()
124 {
125 return printerSimulator.getPendingPrintJobs();
126 }
127
128 // sets status availability of printer
129 public void setOnline(Boolean online)
130 {
131 if (online.booleanValue() == true)
132 printerSimulator.setOnline();
133 else
134 printerSimulator.setOffline();
135 }
136
137 // fills up the paper tray again with paper.
138 public void replenishPaperTray()
139 {
140 printerSimulator.replenishPaperTray (
141 Printer.PAPER_STACK_SIZE);
142 }
143
144 // cancel pending print jobs
145 public void cancelPendingPrintJobs()
146 {
147 printerSimulator.cancelPendingPrintJobs();
148 }
149
150 // start the printing process
151 public void startPrinting()
152 {
153 printerSimulator.startPrintingProcess();
154 }
155
156 // send out of paper event to JMX layer
157 protected void fireOutOfPaperEvent()
158 {
159 // construct parameters and signatures
160 Object[] parameter = new Object[1];

Fig. 24.5Fig. 24.5Fig. 24.5Fig. 24.5 Printer MBean implementation class that represents the management
contact point for all applications wishing to manage the printer (part 4 of 7).

Chapter 24 Java Management Extensions (JMX) 1329

161 parameter[0] = new Notification(
162 "PrinterEvent.OUT_OF_PAPER", this, 0L);
163 String[] signature = new String[1];
164 signature[0] = "javax.management.Notification";
165
166 // invoke notification
167 try {
168 mBeanServer.invoke(eventBroadcasterName,
169 "sendNotification", parameter, signature);
170 }
171
172 // handle exception when invoking method
173 catch (ReflectionException exception) {
174 exception.printStackTrace();
175 }
176
177 // handle exception when communicating with MBean
178 catch (MBeanException exception) {
179 exception.printStackTrace();
180 }
181
182 // handle exception if MBean not found
183 catch (InstanceNotFoundException exception) {
184 exception.printStackTrace();
185 }
186
187 } // end method outOfPaperEvent
188
189 // send low toner event to JMX layer
190 protected void fireLowTonerEvent()
191 {
192 // construct parameters and signatures
193 Object[] parameter = new Object[1];
194 parameter[0] = new Notification(
195 "PrinterEvent.LOW_TONER", this, 0L);
196 String[] signature = new String[1];
197 signature[0] = "javax.management.Notification";
198
199 // invoke notification
200 try {
201 mBeanServer.invoke(eventBroadcasterName,
202 "sendNotification", parameter, signature);
203 }
204
205 // handle exception when invoking method
206 catch (ReflectionException exception) {
207 exception.printStackTrace();
208 }
209

Fig. 24.5Fig. 24.5Fig. 24.5Fig. 24.5 Printer MBean implementation class that represents the management
contact point for all applications wishing to manage the printer (part 5 of 7).

1330 Java Management Extensions (JMX) Chapter 24

210 // handle exception communicating with MBean
211 catch (MBeanException exception) {
212 exception.printStackTrace();
213 }
214
215 // handle exception if MBean not found
216 catch (InstanceNotFoundException exception) {
217 exception.printStackTrace();
218 }
219
220 } // end method lowTonerEvent
221
222 // send paper jam event to JMX layer
223 protected void firePaperJamEvent()
224 {
225 // construct parameters and signatures
226 Object[] parameter = new Object[1];
227 parameter[0] = new Notification(
228 "PrinterEvent.PAPER_JAM", this, 0L);
229 String[] signature = new String[1];
230 signature[0] = "javax.management.Notification";
231
232 // invoke notification
233 try {
234 mBeanServer.invoke(eventBroadcasterName,
235 "sendNotification", parameter, signature);
236 }
237
238 // handle exception when invoking method
239 catch (ReflectionException exception) {
240 exception.printStackTrace();
241 }
242
243 // handle exception communicating with MBean
244 catch (MBeanException exception) {
245 exception.printStackTrace();
246 }
247
248 // handle exception if MBean not found
249 catch (InstanceNotFoundException exception) {
250 exception.printStackTrace();
251 }
252
253 } // end method paperJamEvent
254
255 // interface implementation
256 public void outOfPaper()
257 {
258 // delegate call
259 fireOutOfPaperEvent();
260 }
261

Fig. 24.5Fig. 24.5Fig. 24.5Fig. 24.5 Printer MBean implementation class that represents the management
contact point for all applications wishing to manage the printer (part 6 of 7).

Chapter 24 Java Management Extensions (JMX) 1331

In the Printer constructor, a Printer first connects to a printer device (lines 32–
34). Typically, when managing networked resources, a connection must be established to
the networked device. Because the managed resource in our example exists in the same
machine as a printer simulator, we do not include the code that would establish a network
connection with the printer resource. Lines 36–38 find all MBean servers in the current
JVM. Method findMBeanServer of class MBeanServerFactory (package
javax.management) provides a way to find references to MBean servers that have
been instantiated in the current JVM. Method findMBeanServer takes one argument—
a String that specifies the agent of the MBean server. If null is passed to method
findMBeanServer, it returns all MBean servers in the JVM.

Lines 48–73 retrieve the MBeanServer reference that has the PrinterEvent-
Broadcaster (discussed in Fig. 24.10) MBean registered with it. An ObjectName
uniquely identifies an MBean in the MBean server. Lines 55–57 define the ObjectName
for the PrinterEventBroadcaster MBean. The ObjectName constructor takes
one argument—an arbitrary String that uniquely identifies the MBean within the
MBeanServer instance. The input string must follow the format domainName: followed
by a list of one or more property=value pairs separated by commas.3

The domainName is any String that describes a location to which one or more
MBeans may belong. This helps organize MBeans into different categories. For example,
a domainName may be anything, such as "MyBuilding", "Boston", "College-
Printers", etc... These categories can be defined such that all managed devices of a spe-
cific type on the same network are included in the same domainName or such that all
networked devices in a particular area are grouped together. MBeans with different
domainNames may register with the same MBean server. JMX provides an MBean pattern
matching mechanism that allows users to single out MBeans that match specific domain-
Names or other search criteria. The pattern matching mechanism requires that * represents
zero or more characters, ? represents one or more characters and any other characters
appearing in the string are matched literally.

262 // interface implementation
263 public void lowToner()
264 {
265 // delegate call
266 fireLowTonerEvent();
267 }
268
269 // interface implementation
270 public void paperJam()
271 {
272 // delegate call
273 firePaperJamEvent();
274 }
275 }

3. The String may contain any characters except * ? , : =

Fig. 24.5Fig. 24.5Fig. 24.5Fig. 24.5 Printer MBean implementation class that represents the management
contact point for all applications wishing to manage the printer (part 7 of 7).

1332 Java Management Extensions (JMX) Chapter 24

When categorizing MBeans is not of great importance, a default domainName can be
used. This domainName can be obtained from method getDefaultDomain of interface
MBeanServer. Lines 67–68 check whether the PrinterEventBroadcaster
MBean is registered with the retrieved MBeanServer. If so, the loop terminates.

Lines 86–102 implement the “is” getter methods defined in the PrinterMBean
interface. Lines 104–126 implement the “get” getter methods defined in the MBean inter-
face. Lines 128–135 implement the setter method defined in the MBean interface. Lines
137–154 implement the operations defined in the MBean interface. Each of the operations
interacts with the printer simulator in Fig. 24.6.

Lines 156–253 handle delegated calls from the method implementations of interface
PrinterEventListener (lines 255–274). Three events could happen to the printer—
the out-of-paper event, the low-toner event and the paper-jam event. Lines 168–169 prop-
agate the out-of-paper event to the management agent, lines 201–202 propagate the low-
toner event to the management agent and lines 234–235 propagate the paper-jam event to
the management agent. In each case, the notification of the event occurs by invoking the
method sendNotification of PrinterEventBroadcaster MBean. The
MBeanServer’s method invoke performs this invocation. Method invoke takes four
arguments—an ObjectName that specifies the MBean on which the method is invoked
(PrinterEventBroadcaster MBean), a String that specifies the method to be
invoked ("sendNotification"), an array of Objects that indicates the parameters
to be set when the method is invoked and an array of Strings that indicates the signature
of the operation. Method invoke throws three exceptions—ReflectionException,
MBeanException and InstanceNotFoundException.

Class PrinterSimulator (Fig. 24.6) mimics the printer device to which
Printer (Fig. 24.5) connects.

1 // Fig. 24.6: PrinterSimulator.java
2 // This class simulates a printer device on a network.
3
4 // deitel package
5 package com.deitel.advjhtp1.jmx.Printer;
6
7 // java core package
8 import java.util.Stack;
9

10 public class PrinterSimulator implements Runnable {
11
12 private Stack printerStack = new Stack();
13 private boolean isOnline = true;
14 private boolean isPrinting = false;
15 private boolean isPaperJam = false;
16
17 // 50 sheets of paper in tray
18 private Integer paperInTray = new Integer(50);
19
20 // 100% full of ink
21 private Integer tonerCartridge = new Integer(100);
22

Fig. 24.6Fig. 24.6Fig. 24.6Fig. 24.6 Printer simulation class capable of triggering three events (part 1 of 6).

Chapter 24 Java Management Extensions (JMX) 1333

23 private String currentPrintJob;
24 private boolean isAlive = true;
25 private PrinterEventListener eventListener;
26
27 // default public constructor
28 public PrinterSimulator(
29 PrinterEventListener listener)
30 {
31 eventListener = listener;
32 }
33
34 // stops execution of thread
35 public void stop()
36 {
37 isAlive = false;
38 }
39
40 // main life-cycle of the printer.
41 // prints one job from print job stack
42 // 1) if offline, it pauses and waits.
43 // 2) if online, handles one print job
44 public void run()
45 {
46 // main loop within thread
47 while (isAlive) {
48
49 // pause if offline
50 if (!isOnline) {
51 synchronized (this) {
52
53 // waits for printer become online
54 try {
55 wait();
56 }
57
58 // if interrupt occurs
59 catch (InterruptedException exception) {
60 exception.printStackTrace();
61 System.exit(-1);
62 }
63
64 } // end synchronized
65
66 } // end if
67
68 // prints one job from print job stack
69 startPrintingProcess();
70
71 } // end while
72 }
73

Fig. 24.6Fig. 24.6Fig. 24.6Fig. 24.6 Printer simulation class capable of triggering three events (part 2 of 6).

1334 Java Management Extensions (JMX) Chapter 24

74 public void startPrintingProcess()
75 {
76 // warm up the printer, print top print job from print
77 // stack and adjust paper values and toner values
78 try {
79 // warm up printer for incoming batch of print jobs
80 Thread.sleep(1000 * 5);
81
82 if ((paperInTray.intValue() > 0) &&
83 (tonerCartridge.intValue() > 10) &&
84 (!isPaperJam)) {
85
86 // start the printing process
87 currentPrintJob = getNextPrintJob();
88 isPrinting = true;
89
90 // 12 seconds to print a normal document
91 Thread.sleep(1000 * 12);
92
93 // each print job uses 10 pages
94 updatePaperInTray(paperInTray.intValue() - 10);
95 updateToner();
96 updatePaperJam();
97 isPrinting = false;
98
99 // make sure no references are left dangling
100 currentPrintJob = null;
101 }
102 }
103
104 // if interrupt occurs
105 catch (InterruptedException exception) {
106 exception.printStackTrace();
107 System.exit(-1);
108 }
109
110 } // end method startPrintingProcess
111
112 // returns current printed job
113 public String getCurrentPrintJob()
114 {
115 return currentPrintJob;
116 }
117
118 // is printer online?
119 public Boolean isOnline()
120 {
121 return new Boolean (isOnline);
122 }
123

Fig. 24.6Fig. 24.6Fig. 24.6Fig. 24.6 Printer simulation class capable of triggering three events (part 3 of 6).

Chapter 24 Java Management Extensions (JMX) 1335

124 // update amount of paper in paper tray
125 public synchronized void updatePaperInTray(int newValue)
126 {
127 paperInTray = new Integer (newValue);
128
129 // fire event if paper tray low
130 if (paperInTray.intValue() <= 0) {
131 eventListener.outOfPaper();
132 }
133 }
134
135 // is paper jammed?
136 public Boolean isPaperJam()
137 {
138 return new Boolean(isPaperJam);
139 }
140
141 // cancel pending print jobs
142 public void cancelPendingPrintJobs()
143 {
144 synchronized (printerStack) {
145 printerStack.clear();
146 }
147 }
148
149 // update amount of toner available in toner cartridge
150 public synchronized void updateToner()
151 {
152 // after every print job, toner levels drop 1%
153 tonerCartridge = new Integer (
154 tonerCartridge.intValue() - 1);
155
156 // fire event if toner is low
157 if (tonerCartridge.intValue() <= 10) {
158 eventListener.lowToner();
159 }
160 }
161
162 public synchronized void updatePaperJam()
163 {
164 if (Math.random() > 0.9) {
165 isPaperJam = true;
166 eventListener.paperJam();
167 }
168 }
169
170 // returns number of pages in paper tray
171 public synchronized Integer getPaperTray()
172 {
173 return paperInTray;
174 }
175

Fig. 24.6Fig. 24.6Fig. 24.6Fig. 24.6 Printer simulation class capable of triggering three events (part 4 of 6).

1336 Java Management Extensions (JMX) Chapter 24

176 // returns amount of toner in toner cartridge
177 public synchronized Integer getToner()
178 {
179 return tonerCartridge;
180 }
181
182 // generates a random number of print jobs with varying IDs
183 public void populatePrintStack()
184 {
185 int numOfJobs = (int) (Math.random () * 10) + 1;
186
187 // generate print jobs
188 synchronized (printerStack) {
189 for (int i = 0 ; i < numOfJobs ; i++) {
190 printerStack.add ("PRINT_JOB_ID #" + i);
191 }
192 }
193 }
194
195 // returns next print job in stack, populating the stack
196 // if it is empty
197 public String getNextPrintJob()
198 {
199 if (printerStack.isEmpty()) {
200 populatePrintStack ();
201
202 // simulates absence of print jobs
203 try {
204 Thread.sleep (
205 (int) (Math.random() * 1000 * 10));
206 }
207
208 // if interrupt occurs
209 catch (InterruptedException exception) {
210 exception.printStackTrace() ;
211 System.exit (-1) ;
212 }
213 }
214
215 // Remove topmost queued resource.
216 String printJob;
217
218 synchronized (printerStack) {
219 printJob = (String) printerStack.pop();
220 }
221
222 return printJob;
223
224 } // end method getNextPrintJob
225

Fig. 24.6Fig. 24.6Fig. 24.6Fig. 24.6 Printer simulation class capable of triggering three events (part 5 of 6).

Chapter 24 Java Management Extensions (JMX) 1337

The PrinterSimulator constructor (lines 28–32) takes as an argument the
PrinterEventListener to which PrinterSimulator should send events. In this
example, PrinterEventListener will be the gateway through which Printer-

226 // returns all jobs yet to be printed
227 public String[] getPendingPrintJobs()
228 {
229 String[] pendingPrintJobs;
230
231 // create array of pending print jobs
232 synchronized (printerStack) {
233 Object[] temp = printerStack.toArray() ;
234 pendingPrintJobs = new String[temp.length] ;
235
236 for (int i = 0 ; i < pendingPrintJobs.length ; i++) {
237 pendingPrintJobs [i] = (String)temp[i];
238 }
239 }
240
241 return pendingPrintJobs;
242
243 } // end method getPendingPrintJobs
244
245 // sets printer status to online
246 public void setOnline()
247 {
248 isOnline = true;
249
250 // notify all waiting states
251 synchronized (this) {
252 notifyAll() ;
253 }
254 }
255
256 // sets printer status to offline
257 public void setOffline()
258 {
259 isOnline = false;
260 }
261
262 // replenishes amount of paper in paper tray to specified
263 // value
264 public void replenishPaperTray (int paperStack)
265 {
266 updatePaperInTray(paperStack) ;
267 }
268
269 // is printer printing?
270 public boolean isPrinting()
271 {
272 return isPrinting;
273 }
274 }

Fig. 24.6Fig. 24.6Fig. 24.6Fig. 24.6 Printer simulation class capable of triggering three events (part 6 of 6).

1338 Java Management Extensions (JMX) Chapter 24

Simulator communicates events to the Printer MBean. As mentioned before, real
scenarios would make use of other communication protocols, such as SNMP or HTTP, to
facilitate communications between the managed resource on the network and the corre-
sponding MBean. Method stop (lines 35–38) sets the printer off-line.

Method run (lines 44–72) defines the life-cycle of PrinterSimulator, which will
be associated with a Thread object in the simulation. If the printer is online, run calls
method startPrintingProcess (lines 74–110) to mimic the printer functionality.

Method startPrintingProcess takes five seconds to warm up the printer. If the
paper tray is not empty, toner is not low and no paper is jammed, the printer starts printing
the next print job. Line 91 assumes each print job takes twelve seconds. Lines 94–96 call
methods to reset the properties of the printer.

Method getCurrentPrintJob (lines 113–116) returns the current print job.
Method isOnline (lines 119–122) returns true if the printer is online. Method
updatePaperTray (lines 125–133) updates the amount of paper in the paper tray. If no
paper is available in the paper tray, it fires an out-of-paper event. Method isPaperJam
(lines 136–139) returns true if the paper is jammed. Method cancelPendingPrint-
Jobs (lines 142–147) removes pending print jobs.

Method updateToner (lines 150–160) updates the amount of toner available in the
toner cartridge. If the toner is low, it fires a low-toner event. Method updatePaperJam
(lines 162–168) fires a paper-jam event if the paper is jammed.

Method getPaperTray (lines 171–174) returns the number of pages in the paper
tray. Method getToner (lines 177–180) returns the toner level of the printer. Method
populatePrintStack (lines 183–193) generates print jobs. Method getNext-
PrintJob (lines 197–224) returns the next print job and generates new print jobs if the
print job stack is empty. Method getPendingPrintJobs (lines 227–243) returns a list
of print jobs to be printed. Method setOnline (lines 246–254) sets the printer status to
online. Method setOffline (lines 257–260) sets the printer status to offline. Method
replenishPaperTray (lines 264–267) fills the paper tray with the specified amount
of paper. Method isPrinting (lines 270–273) returns true if the printer is printing.

24.3.2 Implementation of the JMX Management Agent

The JMX management agent acts as a bridge between the MBeans and the management ap-
plication. A JMX agent typically contains an MBean server, a set of MBeans that represent
the managed resources and at least one protocol adaptor or connector—MBeans that allow
remote management applications to access the MBeanServer. An MBeanServer in-
stance behaves as a registry for all MBeans. The MBeans representing the manageable re-
sources are controlled by the management application through the MBean server.
Figure 24.7 shows the JMX Agent Architecture.

MBeans represent the managed resources or management services; they are registered
with the MBean server. The protocol adaptor or connector provides a gateway that allows
remote applications to interact with the MBean server’s registered MBeans. Because con-
nectors are MBeans and all MBeans can interact with each other through the MBean server,
the JMX Agent Architecture allows either local or remote management applications access
to MBean properties and public operations. Local management applications can manip-
ulate MBeans directly through the MBean server; remote management applications can
manipulate MBeans indirectly through connector or adapter MBeans.

Chapter 24 Java Management Extensions (JMX) 1339

Application PrinterManagementAgent (Fig. 24.8) is a JMX management agent.
PrinterManagementAgent creates an MBeanServer and starts an RMI connector
MBean service to act as a connector, starts a PrinterEventBroadcaster MBean
that broadcasts notifications sent by the printer and starts a Printer MBean that is the
communication bridge between the PrinterSimulator and the MBean server.
Method createMBeanServer of class MBeanServerFactory creates a new
MBean server. Lines 21–22 create an MBean server with a default domain name provided
by the MBeanServerFactory. Lines 29–30 create an RMIConnectorServer by
calling method createMBean of interface MBeanServer. Method createMBean of
interface MBeanServer takes two arguments—a String that specifies the class name
to be instantiated and an ObjectName object that specifies the name of the MBean.
Method createMBean returns an ObjectInstance that represents the MBean. The
string that specifies the class name cannot be null. If ObjectName is null, the RMI-
ConnectorServer MBean—the MBean responsible for handling remote RMI connec-
tions—can provide the object name automatically. Lines 33–40 instantiate and register a
PrinterEventBroadcaster MBean in the MBean server. Lines 43–50 instantiate
and register the Printer MBean in the MBean server. Lines 55–77 catch the exceptions
that may occur when creating the MBean and defining the object names of the MBeans.
Lines 88–90 invoke method setPort of the RMIConnectorServer MBean to set the
RMI connector’s port number to 5555. Lines 91–93 invoke method start of the RMI-
ConnectorServer MBean to start the connector. Lines 97–109 catch the exceptions
that may occur when invoking the methods of the MBean.

Fig. 24.7Fig. 24.7Fig. 24.7Fig. 24.7 JMX Agent Architecture.

1 // Fig. 24.8: PrinterManagementAgent.java
2 // This application creates an MBeanServer and starts an RMI
3 // connector MBean service.
4
5 // deitel package
6 package com.deitel.advjhtp1.jmx.PrinterManagement;
7

Fig. 24.8Fig. 24.8Fig. 24.8Fig. 24.8 Creating and starting a management agent (part 1 of 3).

MBean

 MBean Server

MBean MBean

Protocol Adaptor
 or Connector

MBean

1340 Java Management Extensions (JMX) Chapter 24

8 // JMX core packages
9 import javax.management.*;

10
11 public class PrinterManagementAgent {
12
13 public static void main(String[] args)
14 {
15 ObjectInstance rmiConnectorServer = null;
16 ObjectInstance printer = null;
17 ObjectInstance broadcaster = null;
18 ObjectName objectName = null;
19
20 // create an MBeanServer
21 MBeanServer server =
22 MBeanServerFactory.createMBeanServer();
23
24 // create an RMI connector service, a printer simulator
25 // MBean and a broadcaster MBean
26 try {
27
28 // create an RMI connector server
29 rmiConnectorServer = server.createMBean (
30 "com.sun.jdmk.comm.RmiConnectorServer", null);
31
32 // create a broadcaster MBean
33 String name = server.getDefaultDomain()
34 + ":type=" + "PrinterEventBroadcaster";
35 String className = "com.deitel.advjhtp1.jmx."
36 + "PrinterManagement.PrinterEventBroadcaster";
37
38 objectName = new ObjectName(name);
39 printer = server.createMBean(
40 className, objectName);
41
42 // create a printer simulator MBean
43 name = server.getDefaultDomain()
44 + ":type=" + "Printer";
45 className = "com.deitel.advjhtp1.jmx."
46 + "PrinterManagement.Printer";
47
48 objectName = new ObjectName(name);
49 broadcaster = server.createMBean(
50 className, objectName);
51
52 } // end try
53
54 // handle class not JMX-compliant MBean exception
55 catch (NotCompliantMBeanException exception) {
56 exception.printStackTrace();
57 }
58
59 // handle MBean constructor exception
60 catch (MBeanException exception) {

Fig. 24.8Fig. 24.8Fig. 24.8Fig. 24.8 Creating and starting a management agent (part 2 of 3).

Chapter 24 Java Management Extensions (JMX) 1341

61 exception.printStackTrace();
62 }
63
64 // handle MBean already exists exception
65 catch (InstanceAlreadyExistsException exception) {
66 exception.printStackTrace();
67 }
68
69 // handle MBean constructor exception
70 catch (ReflectionException exception) {
71 exception.printStackTrace();
72 }
73
74 // handle invalid object name exception
75 catch (MalformedObjectNameException exception) {
76 exception.printStackTrace();
77 }
78
79 // set port number
80 Object[] parameter = new Object[1];
81 parameter[0] = new Integer(5555);
82 String[] signature = new String[1];
83 signature[0] = "int";
84
85 // invoke method setPort on RmiConnectorServer MBean
86 // start the RMI connector service
87 try {
88 server.invoke(
89 rmiConnectorServer.getObjectName(), "setPort",
90 parameter, signature);
91 server.invoke(
92 rmiConnectorServer.getObjectName(), "start" ,
93 new Object[0], new String[0]);
94 }
95
96 // handle exception when executing method
97 catch (ReflectionException exception) {
98 exception.printStackTrace();
99 }
100
101 // handle exception communicating with MBean
102 catch (MBeanException exception) {
103 exception.printStackTrace();
104 }
105
106 // handle exception if MBean not found
107 catch (InstanceNotFoundException exception) {
108 exception.printStackTrace();
109 }
110
111 } // end method main
112 }

Fig. 24.8Fig. 24.8Fig. 24.8Fig. 24.8 Creating and starting a management agent (part 3 of 3).

1342 Java Management Extensions (JMX) Chapter 24

24.3.3 Broadcasting and Receiving Notifications
This section explains how the managed resources or devices broadcast notifications via a
notification broadcaster MBean and how the remote management application receives no-
tifications sent by a notification broadcaster MBean. A notification broadcaster is an
MBean that defines one or more event types. It has the ability to broadcast events to all reg-
istered listeners as the events are received from the managed resources. The notification
broadcaster MBean must implement the NotificationBroadcaster interface to de-
clare itself as a source of notifications. To receive notifications, the management applica-
tion needs to contact the notification broadcasters of the manageable resource MBeans. In
our case, the manageable resource is the Printer MBean, and the notification broadcast-
er is the PrinterEventBroadcaster MBean that is registered with the MBean server
instantiated in the PrinterManagementAgent class (Fig. 24.8).

Interface PrinterEventBroadcasterMBean (Fig. 24.9) is an interface for the
notification broadcaster MBean of the printer. This interface defines a single operation—
sendNotification. The broadcaster is also an MBean, so we need this interface to
successfully register it as a standard MBean in the MBeanServer instance.

Class PrinterEventBroadcaster (Fig. 24.10) is a standard MBean that imple-
ments the PrinterEventBroadcasterMBean interface. PrinterEventBroad-
caster sends notifications of printer events to registered listeners. It extends the
functionality of the javax.management.NotificationBroadcasterSupport
class (line 15), which provides services such as listener registration. Lines 18–23 define
three notification types. PrinterEventBroadcaster overrides method getNoti-
ficationInfo to return an array of MBeanNotificationInfo objects (package
javax.management) containing the notification class name and the notification types
sent. Lines 33–39 specify an array of Strings containing the notification types. Line 42
specifies the class name of the notifications. Lines 45–46 create a String that describes
the notifications that PrinterEventBroadcaster MBean can broadcast. The
MBeanNotificationInfo constructor (lines 49–50) takes three arguments—an array
of Strings that specifies the notification types, a String that indicates the class name
of the notifications and a String containing the notifications’ description. Line 52 returns
the MBeanNotificationInfo array.

1 // Fig. 24.9: PrinterEventBroadcasterMBean.java
2 // This class defines the MBean interface.
3
4 // deitel package
5 package com.deitel.advjhtp1.jmx.PrinterManagement;
6
7 // JMX core packages
8 import javax.management.Notification;
9

10 public interface PrinterEventBroadcasterMBean {
11
12 public void sendNotification(Notification notification);
13 }

Fig. 24.9Fig. 24.9Fig. 24.9Fig. 24.9 Notification broadcaster MBean interface.

Chapter 24 Java Management Extensions (JMX) 1343

 Class PrinterEventHandler (Fig. 24.11) receives event notifications from the
broadcaster MBean. Lines 24–53 define an anonymous inner class implementing the noti-
fication listener interface (javax.management.NotificationListener). The
implementation of method handleNotification (lines 26–51) handles incoming
events. Lines 33–37 handle the out-of-paper event. Lines 39–43 handle the low-toner event.
Lines 45–49 handle the paper-jam event. Line 64 of the PrinterEventHandler con-
structor (lines 56–86) sets the notification forwarding mode to ClientNotification-
Handler.PUSH_MODE (package com.sun.jdmk.comm). In push mode, as soon as
the RMI connector server receives a notification, it forwards the notification to the RMI
connector client. Lines 68–73 add a notification listener to the broadcaster MBean. Lines
68–70 specify the object name of the broadcaster MBean. Method addNotification-
Listener (lines 72–73) takes four arguments—an ObjectName that specifies the name
of the broadcaster MBean on which the notification listener will be registered, a Notifi-
cationListener that handles the notifications sent by the broadcaster MBean, a class
that implements interface NotificationFilter to filter the notification and an
Object that contains the context to be sent to the listener. In our example, the Notifi-
cationListener (specified in lines 24–53) is registered with the PrinterEvent-
Broadcaster MBean that is connected to the MBean server. Lines 76–84 catch the
exceptions that may occur when adding the listener. Method handleOutOfPaper-
Event (lines 89–92) delegates the out-of-paper event. Method handleLowToner-
Event (lines 95–98) delegates the low-toner event. Method handlePaperJamEvent
(lines 101–104) delegates the paper-jam event.

1 // Fig. 24.10: PrinterEventBroadcaster.java
2 // This class defines an MBean that
3 // provides events information.
4
5 // deitel package
6 package com.deitel.advjhtp1.jmx.PrinterManagement;
7
8 // JMX core packages
9 import javax.management.MBeanNotificationInfo;

10 import javax.management.NotificationBroadcasterSupport;
11
12 // extends NotificationBroadcasterSupport to adopt its
13 // functionality.
14 public class PrinterEventBroadcaster
15 extends NotificationBroadcasterSupport
16 implements PrinterEventBroadcasterMBean {
17
18 private static final String OUT_OF_PAPER =
19 "PrinterEvent.OUT_OF_PAPER";
20 private static final String LOW_TONER =
21 "PrinterEvent.LOW_TONER";
22 private static final String PAPER_JAM =
23 "PrinterEvent.PAPER_JAM";
24

Fig. 24.10Fig. 24.10Fig. 24.10Fig. 24.10 Notification broadcaster MBean implementation that broadcasts events
generated by the printer (part 1 of 2).

1344 Java Management Extensions (JMX) Chapter 24

25 // provide information about deliverable events
26 public MBeanNotificationInfo[] getNotificationInfo()
27 {
28 // array containing descriptor objects
29 MBeanNotificationInfo[] descriptorArray =
30 new MBeanNotificationInfo[1];
31
32 // different event types
33 String[] notificationTypes = new String[3];
34 notificationTypes[0] =
35 PrinterEventBroadcaster.OUT_OF_PAPER;
36 notificationTypes[1] =
37 PrinterEventBroadcaster.LOW_TONER;
38 notificationTypes[2] =
39 PrinterEventBroadcaster.PAPER_JAM;
40
41 // notification class type
42 String classType = "javax.management.Notification";
43
44 // description of MBeanNotificationInfo
45 String description =
46 "Notification types for PrinterEventBroadcaster";
47
48 // populate descriptor array
49 descriptorArray[0] = new MBeanNotificationInfo(
50 notificationTypes, classType, description);
51
52 return descriptorArray;
53
54 } // end method getNotificationInfo
55 }

1 // Fig. 24.11: PrinterEventHandler.java
2 // The class adds a listener to the broadcaster MBean and
3 // defines the event handlers when event occurs.
4
5 // deitel package
6 package com.deitel.advjhtp1.jmx.Client;
7
8 // JMX core packages
9 import javax.management.*;

10
11 // JDMK core packages
12 import com.sun.jdmk.comm.RmiConnectorClient;
13 import com.sun.jdmk.comm.ClientNotificationHandler;
14
15 // Deitel packages
16 import com.deitel.advjhtp1.jmx.Printer.*;

Fig. 24.11Fig. 24.11Fig. 24.11Fig. 24.11 Receiving event notifications from the MBean server and handling the
printer-specific events (part 1 of 3).

Fig. 24.10Fig. 24.10Fig. 24.10Fig. 24.10 Notification broadcaster MBean implementation that broadcasts events
generated by the printer (part 2 of 2).

Chapter 24 Java Management Extensions (JMX) 1345

17
18 public class PrinterEventHandler {
19
20 private RmiConnectorClient rmiClient;
21 private PrinterEventListener eventTarget;
22
23 // notification listener annonymous inner class
24 private NotificationListener notificationListener =
25 new NotificationListener() {
26 public void handleNotification(
27 Notification notification, Object handback)
28 {
29 // retrieve notification type
30 String notificationType = notification.getType();
31
32 // handle different notifications
33 if (notificationType.equals(
34 "PrinterEvent.OUT_OF_PAPER")) {
35 handleOutOfPaperEvent();
36 return;
37 }
38
39 if (notificationType.equals(
40 "PrinterEvent.LOW_TONER")) {
41 handleLowTonerEvent();
42 return;
43 }
44
45 if (notificationType.equals(
46 "PrinterEvent.PAPER_JAM")) {
47 handlePaperJamEvent();
48 return;
49 }
50
51 } // end method handleNotification
52
53 }; // end annonymous inner class
54
55 // default constructor
56 public PrinterEventHandler(
57 RmiConnectorClient inputRmiClient,
58 PrinterEventListener inputEventTarget)
59 {
60 rmiClient = inputRmiClient;
61 eventTarget = inputEventTarget;
62
63 // set notification push mode
64 rmiClient.setMode(ClientNotificationHandler.PUSH_MODE);
65

Fig. 24.11Fig. 24.11Fig. 24.11Fig. 24.11 Receiving event notifications from the MBean server and handling the
printer-specific events (part 2 of 3).

1346 Java Management Extensions (JMX) Chapter 24

24.3.4 Management Application

The management application in our example provides a simple graphical user interface for
managing the printer. Class ClientPrinterManagement (Fig. 24.12) establishes a
connection to the MBean server via the RmiConnectorClient (package
com.sun.jdmk.comm). The management of the printer relies on the MBean server. The
ClientPrinterManagement constructor (lines 24–39) creates a RmiConnector-
Client corresponding to the RmiConnectorServer that is attached to the MBean-
Server created by PrinterManagementAgent (Fig. 24.8). Line 27 creates the

66 // register listener
67 try {
68 ObjectName objectName = new ObjectName(
69 rmiClient.getDefaultDomain()
70 + ":type=" + "PrinterEventBroadcaster");
71
72 rmiClient.addNotificationListener(objectName,
73 notificationListener, null, null);
74 }
75
76 // if MBean does not exist in the MBean server
77 catch (InstanceNotFoundException exception) {
78 exception.printStackTrace();
79 }
80
81 // if the format of the object name is wrong
82 catch (MalformedObjectNameException exception) {
83 exception.printStackTrace();
84 }
85
86 } // end PrinterEventHandler constructor
87
88 // delegate out of paper event
89 private void handleOutOfPaperEvent()
90 {
91 eventTarget.outOfPaper();
92 }
93
94 // delegate low toner event
95 private void handleLowTonerEvent()
96 {
97 eventTarget.lowToner();
98 }
99
100 // delegate paper jam event
101 private void handlePaperJamEvent()
102 {
103 eventTarget.paperJam();
104 }
105 }

Fig. 24.11Fig. 24.11Fig. 24.11Fig. 24.11 Receiving event notifications from the MBean server and handling the
printer-specific events (part 3 of 3).

Chapter 24 Java Management Extensions (JMX) 1347

RmiConnectorClient. Lines 30–31 obtain the address for the connector client. Line
34 specifies the port number for the connector client. The port number of the connector cli-
ent should agree with that of the connector server. Line 37 establishes a connection with
the remote MBeanServer. Method getClient (lines 42–45) returns RmiConnec-
torClient reference. In the main method, lines 57–58 start the GUI for the manage-
ment application. Lines 61–63 display the output window (shown in Fig. 24.14–
Fig. 24.18).

1 // Fig. 24.12: ClientPrinterManagement.java
2 // This application establishes a connection to the MBeanServer
3 // and creates an MBean for PrinterSimulator.
4
5 // deitel package
6 package com.deitel.advjhtp1.jmx.Client;
7
8 // Java core packages
9 import java.awt.*;

10 import java.awt.event.*;
11
12 // JMX core packages
13 import javax.management.*;
14
15 // JDMX core packages
16 import com.sun.jdmk.comm.RmiConnectorClient;
17 import com.sun.jdmk.comm.RmiConnectorAddress;
18
19 public class ClientPrinterManagement {
20
21 private RmiConnectorClient rmiClient;
22
23 // instantiate client connection
24 public ClientPrinterManagement()
25 {
26 // create connector client instance
27 rmiClient = new RmiConnectorClient();
28
29 // create address instance
30 RmiConnectorAddress rmiAddress =
31 new RmiConnectorAddress();
32
33 // specify port
34 rmiAddress.setPort(5555);
35
36 // establish connection
37 rmiClient.connect(rmiAddress);
38
39 } // end ClientPrinterManagement constructor
40

Fig. 24.12Fig. 24.12Fig. 24.12Fig. 24.12 Connecting to the MBeanServer remotely and creating a
PrinterSimulator MBean (part 1 of 2).

1348 Java Management Extensions (JMX) Chapter 24

Class PrinterManagementGUI (Fig. 24.13) defines the GUI for the management
application. The GUI contains a panel for displaying the printer status and buttons for
updating the status, adding paper and cancelling pending print jobs.

41 // return RmiConnectorClient referrence
42 public RmiConnectorClient getClient()
43 {
44 return rmiClient;
45 }
46
47 public static void main(String[] args)
48 {
49 // instantiate client connection
50 ClientPrinterManagement clientManager =
51 new ClientPrinterManagement();
52
53 // get RMIConnectorClient handle
54 RmiConnectorClient client = clientManager.getClient();
55
56 // start GUI
57 PrinterManagementGUI printerManagementGUI =
58 new PrinterManagementGUI(client);
59
60 // display the output
61 printerManagementGUI.setSize(
62 new Dimension(500, 500));
63 printerManagementGUI.setVisible(true);
64
65 } // end method main
66 }

1 // Fig. 24.13: PrinterManagementGUI.java
2 // This class defines the GUI for the
3 // printer management application.
4
5 // deitel package
6 package com.deitel.advjhtp1.jmx.Client;
7
8 // Java AWT core package
9 import java.awt.*;

10 import java.awt.event.*;
11
12 // Java standard extensions
13 import javax.swing.*;
14
15 // JMX core packages
16 import javax.management.*;
17

Fig. 24.13Fig. 24.13Fig. 24.13Fig. 24.13 GUI for the management application (part 1 of 9).

Fig. 24.12Fig. 24.12Fig. 24.12Fig. 24.12 Connecting to the MBeanServer remotely and creating a
PrinterSimulator MBean (part 2 of 2).

Chapter 24 Java Management Extensions (JMX) 1349

18 // JDMX core packages
19 import com.sun.jdmk.comm.RmiConnectorClient;
20 import com.sun.jdmk.comm.RmiConnectorAddress;
21
22 // Deitel packages
23 import com.deitel.advjhtp1.jmx.Printer.*;
24
25 public class PrinterManagementGUI extends JFrame
26 implements PrinterEventListener {
27
28 // TextAppender appends text to a JTextArea. This Runnable
29 // object should be executed only using SwingUtilities
30 // methods invokeLater or invokeAndWait as it modifies
31 // a live Swing component.
32 private class TextAppender implements Runnable {
33
34 private String text;
35 private JTextArea textArea;
36
37 // TextAppender constructor
38 public TextAppender(JTextArea area, String newText)
39 {
40 text = newText;
41 textArea = area;
42 }
43
44 // display new text in JTextArea
45 public void run()
46 {
47 // append new message
48 textArea.append(text);
49
50 // move caret to end of messageArea to ensure new
51 // message is visible on screen
52 textArea.setCaretPosition(
53 textArea.getText().length());
54 }
55
56 } // end TextAppender inner class
57
58 private ObjectName objectName;
59 private RmiConnectorClient client;
60 private JTextArea printerStatusTextArea = new JTextArea();
61 private JTextArea printerEventTextArea = new JTextArea();
62
63 public PrinterManagementGUI(RmiConnectorClient rmiClient)
64 {
65 super("JMX Printer Management Example");
66
67 Container container = getContentPane();
68
69 // status panel
70 JPanel printerStatusPanel = new JPanel();

Fig. 24.13Fig. 24.13Fig. 24.13Fig. 24.13 GUI for the management application (part 2 of 9).

1350 Java Management Extensions (JMX) Chapter 24

71 printerStatusPanel.setPreferredSize(
72 new Dimension(512, 200));
73 JScrollPane statusScrollPane = new JScrollPane();
74 statusScrollPane.setAutoscrolls(true);
75 statusScrollPane.setPreferredSize(
76 new Dimension(400, 150));
77 statusScrollPane.getViewport().add(
78 printerStatusTextArea, null);
79 printerStatusPanel.add(statusScrollPane, null);
80
81 // buttons panel
82 JPanel buttonPanel = new JPanel();
83 buttonPanel.setPreferredSize(
84 new Dimension(512, 200));
85
86 // define action for Check Status button
87 JButton checkStatusButton =
88 new JButton("Check Status");
89 checkStatusButton.addActionListener(
90
91 new ActionListener() {
92
93 public void actionPerformed(ActionEvent event) {
94 checkStatusButtonAction(event);
95 }
96 }
97);
98
99 // define action for Add Paper button
100 JButton addPaperButton = new JButton("Add Paper");
101 addPaperButton.addActionListener(
102 new ActionListener() {
103
104 public void actionPerformed(ActionEvent event) {
105 addPaperButtonAction(event);
106 }
107 }
108);
109
110 // define action for Cancel Pending Print Jobs button
111 JButton cancelPendingPrintJobsButton = new JButton(
112 "Cancel Pending Print Jobs");
113 cancelPendingPrintJobsButton.addActionListener(
114 new ActionListener() {
115
116 public void actionPerformed(ActionEvent event) {
117 cancelPendingPrintJobsButtonAction(event);
118 }
119 }
120);
121
122 // add three buttons to the panel
123 buttonPanel.add(checkStatusButton, null);

Fig. 24.13Fig. 24.13Fig. 24.13Fig. 24.13 GUI for the management application (part 3 of 9).

Chapter 24 Java Management Extensions (JMX) 1351

124 buttonPanel.add(addPaperButton, null);
125 buttonPanel.add(cancelPendingPrintJobsButton, null);
126
127 // events panel
128 JPanel printerEventPanel = new JPanel();
129 printerEventPanel.setPreferredSize(
130 new Dimension(512, 200));
131 JScrollPane eventsScrollPane = new JScrollPane();
132 eventsScrollPane.setAutoscrolls(true);
133 eventsScrollPane.setPreferredSize(
134 new Dimension(400, 150));
135 eventsScrollPane.getViewport().add(
136 printerEventTextArea, null);
137 printerEventPanel.add(eventsScrollPane, null);
138
139 // initialize the text
140 printerStatusTextArea.setText("Printer Status: ---\n");
141 printerEventTextArea.setText("Events: --- \n");
142
143 // put all the panels together
144 container.add(printerStatusPanel, BorderLayout.NORTH);
145 container.add(printerEventPanel, BorderLayout.SOUTH);
146 container.add(buttonPanel, BorderLayout.CENTER);
147
148 // set RmiConnectorClient reference
149 client = rmiClient;
150
151 // invoke method startPrinting of the
152 // PrinterSimulator MBean
153 try {
154 String name = client.getDefaultDomain()
155 + ":type=" + "Printer";
156 objectName = new ObjectName(name);
157 client.invoke(objectName, "startPrinting",
158 new Object[0], new String[0]);
159 }
160
161 // invalid object name
162 catch (MalformedObjectNameException exception) {
163 exception.printStackTrace();
164 }
165
166 // if cannot invoke the method
167 catch (ReflectionException exception) {
168 exception.printStackTrace();
169 }
170
171 // if invoked method throws exception
172 catch (MBeanException exception) {
173 exception.printStackTrace();
174 }
175

Fig. 24.13Fig. 24.13Fig. 24.13Fig. 24.13 GUI for the management application (part 4 of 9).

1352 Java Management Extensions (JMX) Chapter 24

176 // if MBean is not registered with MBean server
177 catch (InstanceNotFoundException exception) {
178 exception.printStackTrace();
179 }
180
181 // instantiate PrinterEventNotifier
182 PrinterEventHandler printerEventHandler =
183 new PrinterEventHandler(client, this);
184
185 // unregister MBean when close the window
186 addWindowListener(
187 new WindowAdapter() {
188 public void windowClosing(WindowEvent event)
189 {
190 // unregister MBean
191 try {
192
193 // unregister the PrinterSimulator MBean
194 client.unregisterMBean(objectName);
195
196 // unregister the PrinterEventBroadcaster
197 // MBean
198 String name = client.getDefaultDomain()
199 + ":type=" + "PrinterEventBroadcaster";
200 objectName = new ObjectName(name);
201 client.unregisterMBean(objectName);
202 }
203
204 // if invalid object name
205 catch (MalformedObjectNameException exception) {
206 exception.printStackTrace();
207 }
208
209 // if exception is caught from method preDeregister
210 catch (MBeanRegistrationException exception) {
211 exception.printStackTrace();
212 }
213
214 // if MBean is not registered with MBean server
215 catch (InstanceNotFoundException exception) {
216 exception.printStackTrace();
217 }
218
219 // terminate the program
220 System.exit(0);
221
222 } // end method windowClosing
223
224 } // end WindowAdapter constructor
225
226); // end addWindowListener
227
228 } // end PrinterManagementGUI constructor

Fig. 24.13Fig. 24.13Fig. 24.13Fig. 24.13 GUI for the management application (part 5 of 9).

Chapter 24 Java Management Extensions (JMX) 1353

229
230 // out of paper events
231 public void outOfPaper()
232 {
233 SwingUtilities.invokeLater(
234 new TextAppender(printerEventTextArea,
235 "\nEVENT: Out of Paper!\n"));
236 }
237
238 // toner low events
239 public void lowToner()
240 {
241 SwingUtilities.invokeLater(
242 new TextAppender(printerEventTextArea,
243 "\nEVENT: Toner Low!\n"));
244 }
245
246 // paper jam events
247 public void paperJam()
248 {
249 SwingUtilities.invokeLater(
250 new TextAppender(printerEventTextArea,
251 "\nEVENT: Paper Jam!\n"));
252 }
253
254 // add paper to the paper tray
255 public void addPaperButtonAction(ActionEvent event)
256 {
257 try {
258 client.invoke(objectName, "replenishPaperTray",
259 new Object[0], new String[0]);
260 }
261
262 // if cannot invoke the method
263 catch (ReflectionException exception)
264 {
265 exception.printStackTrace();
266 }
267
268 // if invoked method throws exception
269 catch (MBeanException exception) {
270 exception.printStackTrace();
271 }
272
273 // if MBean is not registered with MBean server
274 catch (InstanceNotFoundException exception) {
275 exception.printStackTrace();
276 }
277
278 } // end method addPaperButtonAction
279

Fig. 24.13Fig. 24.13Fig. 24.13Fig. 24.13 GUI for the management application (part 6 of 9).

1354 Java Management Extensions (JMX) Chapter 24

280 // cancel pending print jobs
281 public void cancelPendingPrintJobsButtonAction(
282 ActionEvent event)
283 {
284 try {
285 client.invoke(objectName, "cancelPendingPrintJobs",
286 new Object[0], new String[0]);
287 }
288
289 // if cannot invoke the method
290 catch (ReflectionException exception)
291 {
292 exception.printStackTrace();
293 }
294
295 // if invoked method throws exception
296 catch (MBeanException exception) {
297 exception.printStackTrace();
298 }
299
300 // if MBean is not registered with MBean server
301 catch (InstanceNotFoundException exception) {
302 exception.printStackTrace();
303 }
304
305 } // end method cancelPendingPrintJobsButtonAction
306
307 public void checkStatusButtonAction(ActionEvent event)
308 {
309 Object onlineResponse = null;
310 Object paperJamResponse = null;
311 Object printingResponse = null;
312 Object paperTrayResponse = null;
313 Object pendingPrintJobsResponse = null;
314
315 // manage printer remotely
316 try {
317
318 // check if the printer is on line
319 onlineResponse = client.invoke(objectName,
320 "isOnline", new Object[0], new String[0]);
321
322 // check if the printer is paper jammed
323 paperJamResponse = client.invoke(objectName,
324 "isPaperJam", new Object[0], new String[0]);
325
326 // check if the printing is pringint
327 printingResponse = client.invoke(objectName,
328 "isPrinting", new Object[0], new String[0]);
329
330 // get the paper tray
331 paperTrayResponse = client.invoke(objectName,
332 "getPaperTray", new Object[0], new String[0]);

Fig. 24.13Fig. 24.13Fig. 24.13Fig. 24.13 GUI for the management application (part 7 of 9).

Chapter 24 Java Management Extensions (JMX) 1355

333
334 // get pending print jobs
335 pendingPrintJobsResponse = client.invoke(objectName,
336 "getPendingPrintJobs" , new Object[0],
337 new String[0]);
338 }
339
340 // if cannot invoke the method
341 catch (ReflectionException exception) {
342 exception.printStackTrace();
343 }
344
345 // if invoked method throws exception
346 catch (MBeanException exception) {
347 exception.printStackTrace();
348 }
349
350 // if MBean is not registered with MBean server
351 catch (InstanceNotFoundException exception) {
352 exception.printStackTrace();
353 }
354
355 // status for the online condition
356 boolean isOnline =
357 ((Boolean) onlineResponse).booleanValue();
358
359 // display status
360 if (isOnline) {
361 SwingUtilities.invokeLater(new TextAppender(
362 printerStatusTextArea,
363 "\nPrinter is ONLINE.\n"));
364 }
365 else {
366 SwingUtilities.invokeLater(new TextAppender(
367 printerStatusTextArea,
368 "\nPrinter is OFFLINE.\n"));
369 }
370
371 // status for the paper jam condition
372 boolean isPaperJam =
373 ((Boolean) paperJamResponse).booleanValue();
374
375 // display status
376 if (isPaperJam) {
377 SwingUtilities.invokeLater(new TextAppender(
378 printerStatusTextArea,
379 "Paper jammed.\n"));
380 }
381 else {
382 SwingUtilities.invokeLater(new TextAppender(
383 printerStatusTextArea,
384 "No Paper Jam.\n"));
385 }

Fig. 24.13Fig. 24.13Fig. 24.13Fig. 24.13 GUI for the management application (part 8 of 9).

1356 Java Management Extensions (JMX) Chapter 24

Lines 32–56 define a private inner class, TextAppender to append text to the
Swing container in a thread-safe manner. Lines 154–158 call method startPrinting
of the Printer MBean to ask the printer to start the printing process. The management
application needs to handle events received from the broadcaster MBean. Lines 182–183
call the PrinterEventHandler (Fig. 24.11) constructor to add a notification listener
to the broadcaster MBean. The constructor takes two arguments. The first argument, Rmi-

386
387 // status for the printing condition
388 boolean isPrinting =
389 ((Boolean)printingResponse).booleanValue();
390
391 // display status
392 if (isPrinting) {
393 SwingUtilities.invokeLater(new TextAppender(
394 printerStatusTextArea,
395 "Printer is currently printing.\n"));
396 }
397 else {
398 SwingUtilities.invokeLater(new TextAppender(
399 printerStatusTextArea,
400 "Printer is not printing.\n"));
401 }
402
403 // status for paper tray condition
404 int paperRemaining =
405 ((Integer)paperTrayResponse).intValue();
406
407 // display status
408 SwingUtilities.invokeLater(new TextAppender(
409 printerStatusTextArea,
410 "Printer paper tray has " + paperRemaining +
411 " pages remaining.\n"));
412
413 // status for pending print jobs
414 Object[] pendingPrintJobs =
415 (Object[]) pendingPrintJobsResponse;
416 int pendingPrintJobsNumber = pendingPrintJobs.length;
417
418 // display status
419 SwingUtilities.invokeLater(new TextAppender(
420 printerStatusTextArea,
421 "Number of pending print jobs: " +
422 pendingPrintJobsNumber + "\n"));
423
424
425 } // end method checkStatusButtonAction
426 }

Fig. 24.13Fig. 24.13Fig. 24.13Fig. 24.13 GUI for the management application (part 9 of 9).

Chapter 24 Java Management Extensions (JMX) 1357

ConnectorClient, provides a reference to the connector client through which the reg-
istration process can occur. The second argument, PrinterEventListener, is a
reference to class PrinterManagementGUI that will handle all transmitted events.

Lines 186–226 install a window listener that unregisters the Printer MBean and the
PrinterEventBroadcaster MBean when the user closes the output window. Line
194 unregisters the PrinterSimulator MBean. Lines 198–201 unregister the
PrinterEventBroadcaster MBean. Method unregisterMBean (lines 194 and
201) takes one argument—an ObjectName that specifies the name of the MBean to be
removed from the remote MBeanServer. Method unregisterMBean deletes an
MBean reference from the remote MBeanServer.

Method outOfPaper (lines 231–236) displays the out-of-paper event in the event
panel. Method lowToner (lines 239–244) displays the low-toner event in the event
panel. Method paperJam (lines 247–252) displays the paper-jam event in the event
panel. Method addPaperButtonAction (lines 255–278) executes when the user
clicks the Add Paper button. Lines 258–259 invoke the Printer MBean’s replen-
ishPaperTray operation, which fills the paper tray with 50 pages. Method cancel-
PendingPrintJobsButtonAction (lines 281–305) executes when the user clicks
the Cancel Pending Print Jobs button. Lines 285–288 invoke the Printer
MBean’s cancelPendingPrintJobs operation. Method checkStatusBut-
tonAction (lines 307–425) performs when the user clicks on the Check Status
button. Lines 318–337 invoke the Printer MBean’s isOnline, isPaperJam,
isPrinting, getPaperTray, and getPendingPrintJobs get methods. Lines
355–422 prepare the outputs.

24.3.5 Compiling and Running the Example

Before compiling the Java code, the JAR files jdmkrt.jar and jdmktk.jar should
be included in the CLASSPATH. Compile the files in package com.dei-
tel.advjhtp1.jmx.Printer first, then compile the files in package com.dei-
tel.advjhtp1.jmx.PrinterManagement. Finally compile the files in package
com.deitel.advjhtp1.jmx.Client.

To run the example, first start the PrinterManagementAgent. Class Printer-
ManagementAgent creates an MBeanServer and initializes the RMI connector ser-
vice. Start the ClientPrinterManagement application. Class
ClientPrinterManagement starts the printer simulator and invokes the GUI to
manage the printer. Figure 24.14 shows the initial output window.

Figure 24.15 shows the printer status by after an out-of-paper event has occurred and
the user pressed the Check Status button.

Figure 24.16 shows the printer status by after clicking the Add Paper button and the
Check Status button.

Figure 24.17 shows the printer status after a paper-jam event has occurred and the user
clicked the Check Status button.

Figure 24.18 shows the printer status after clicking the Cancel Pending Print Jobs
button and Check Status button.

1358 Java Management Extensions (JMX) Chapter 24

Fig. 24.14Fig. 24.14Fig. 24.14Fig. 24.14 Initial output window.

Fig. 24.15Fig. 24.15Fig. 24.15Fig. 24.15 Printer status after an out-of-paper event occurred.

Chapter 24 Java Management Extensions (JMX) 1359

Fig. 24.16Fig. 24.16Fig. 24.16Fig. 24.16 Printer status after an add-paper action is taken.

Fig. 24.17Fig. 24.17Fig. 24.17Fig. 24.17 Printer status after a paper-jam event occurred.

1360 Java Management Extensions (JMX) Chapter 24

24.4 Internet and World Wide Web Resources
www.sun.com/software/java-dynamic/service_driven.html
This page introduces the new generation network—service driven network.

www.sun.com/software/java-dynamic/wp_jkmk40.html
This page is the white paper for the Java Dynamic Management Kit.

www.sun.com/software/java-dynamic/wp_jini_jdmk.html
This page demonstrates how the Jini and the Java Dynamic Management Kit work together to provide
spontaneous management.

www.sun.com/software/java-dynamic/qa.html
This site contains the FAQs about the Java Dynamic Management Kit.

jw.itworld.com/javaworld/jw-11-1999/jw-11-management_p.html
This site contains the article Java enters the management arena with JMX and Java DMK written by
Max Goff.

java.sun.com/products/JavaManagement/wp
This page contains the Java Management Extensions White Paper.

SUMMARY
• Today’s network management is performed through management applications via agents.

• Many existing agents are limited because they lack event handling capabilities that adapt to chang-
ing network conditions.

Fig. 24.18Fig. 24.18Fig. 24.18Fig. 24.18 Printer status after a cancel pending print jobs action is taken.

Chapter 24 Java Management Extensions (JMX) 1361

• The management capabilities of a static agent must be predefined during development.

• The Java Dynamic Management Kit (JDMK) provides developers of Java-based applications with
means to build automated and intelligent dynamic network management solutions.

• JMX defines a three-level management architecture—instrumentation level, agent level and man-
ager level. The instrumentation level makes any Java-based object manageable by exposing its
management interface. The agent level provides management services to expose the managed re-
sources for management. The management level allows a management application to access and
operate the managed resources via the JMX agents.

• JMX implementations provide interfaces to existing management protocols so that developers can
integrate new management applications with existing management solutions.

• JMX uses JavaBeans to build reusable management solutions.

• Java Dynamic Management Kit (JDMK) is one of many implementations of the JMX specification.

• To run an management application written with JDMK, the JAR files jdmkrt.jar and jdmk-
tk.jar must be added to the CLASSPATH.

• A complete management solution includes the managed resources, the management agent and the
management application.

• The task of instrumentation is to make resources manageable. Resources can be devices, applica-
tions and any Java-based objects that need to be managed through a management application.

• An MBean is used to instrument a resource (i.e., make it manageable).

• A standard MBean has two parts—the MBean interface and the Java class that implements the
MBean interface (i.e., the MBean class).

• A standard MBean must follow design patterns defined by the Java Management Extensions spec-
ification to standardize the instrumentation of managed resources.

• The MBean interface must have MBean implementation’s Java class name followed by the MBean
suffix.

• An operation is a public method whose name does not begin with get, is or set. Only pub-
lic methods are exposed.

• Method findMBeanServer of class MBeanServerFactory provides a way to obtain ref-
erences to MBean servers that have been instantiated in the JVM.

• Method invoke of interface MBeanServer invokes a specified method on the indicated
MBean.

• Method createMBean of interface MBeanServer instantiates an MBean object and gives it a
unique identifying name.

• The JMX management agent acts as a communication bridge between the MBeans and the man-
agement application.

• A JMX agent typically contains an MBean server, a set of MBeans that represent either the man-
aged sources or the management resources, and at least one protocol adaptor or connector to allow
remote management application access to the agent.

• The MBeans represent the managed resources or management services; they are registered with
the MBean server.

• The local management application manipulates the MBean directly through the MBean server.
The remote management application manipulates the MBean indirectly through the MBean server
via either a protocol adaptor or a connector.

• Method createMBeanServer of class MBeanServerFactory creates an MBean server.

• A notification broadcaster MBean is an MBean that contains the source of notifications.

1362 Java Management Extensions (JMX) Chapter 24

• The notification broadcaster MBean has the ability to broadcast the notifications received from the
managed resources or devices to the MBean server.

• Event broadcaster classes can extend class NotificationBroadcasterSupport (package
javax.management) to inherit services such as listener registration.

• In push mode, as soon as the RMI connector server receives a notification, it forwards the notifi-
cation to the RMI connector client.

• Method unregisterMBean removes an MBean reference from the remote MBean server.

TERMINOLOGY

SELF-REVIEW EXERCISES
24.1 Fill in the blanks in each of the following:

a) JMX defines a three-level management architecture: , and
.

b) A(n) instruments a resource for management.
c) Method of class MBeanServerFactory obtains references to MBean

servers instantiated in the JVM.
d) To instantiate and register an MBean in the MBean server, call method of

interface MBeanServer.
e) A JMX agent contains at least one or to allow remote manage-

ment applications to access the agent.
f) The notification broadcaster MBean can implement interface to declare it-

self as a source of notifications.

24.2 State whether each of the following is true or false. If false, explain why.
a) A property in a standard MBean can have multiple set methods.
b) When implementing an MBean, if no public constructor is defined, the Java compiler

will display an error message.
c) Each MBean object registered in the MBean server must have a unique object name.
d) By extending class NotificationBroadcasterSupport, a notification broad-

caster MBean inherits the services of this class and does not need to implement interface
NotificationBroadcaster.

addNotificationListener of
RmiConnectorClient

JDMK
JMX

agent JMX management agent
agent level Managed Beans
ClientNotificationHandler interface management level
connector MBean
design patterns MBeanException
findMBeanServer method of

MBeanServerFactory
MBeanNotificationInfo
MBeanServer interface

getDefaultDomain method of
MBeanServer

MBeanServerFactory class
notification broadcaster

handleNotification method of
NotificationListener

protocol adaptor
protocol independent

instrumentation level ReflectionException
intelligent agent RmiConnectorClient class
Java Dynamic Management Kit (JDMK) scalability
Java Management Extensions (JMX) SNMP
JavaBeans standard MBean

Chapter 24 Java Management Extensions (JMX) 1363

e) The MBean interface must have the MBean implementation’s Java class name followed
by the MBean suffix.

ANSWERS TO SELF-REVIEW EXERCISES
24.1 a) instrumentation level, agent level, manager level. b) standard MBean.
c) findMBeanServer. d) createMBean. e) protocol adaptor, connector.
f) NotificationBroadcaster.

24.2 a) False. Only one setter method and one getter method are allowed for a single property in
the management interface. b) False. The Java compiler provides a public, no-argument constructor
to the MBean class by default. c) True. d) True. e) True.

EXERCISES
24.3 What is the purpose of connector and adaptor MBeans in JMX? How are connector and adap-
tor MBeans similar to other MBeans? How are they different? Compare and contrast connector
MBeans to our Printer MBean.

24.4 Add an HTML protocol adaptor to the MBeanServer created in PrinterManagement-
Agent.java. Run the ClientPrinterManagement application as before. Use URL http://
localhost:8082 to view the MBeans that are registered with the MBean server. How many
MBeans can you see? Explain why they are there. Can you distinguish the MBeans that are directly reg-
istered with the MBean server from those that are not? Use the JMX API documentation for assistance.

24.5 Try to change properties and perform operations in the Printer MBean (Fig. 24.5) from
the URL given in the previous exercise. Do results correspond with those of the GUI that is invoked
by the ClientPrinterManagement application?

24.6 Expand the capabilities of class PrinterSimulator (Fig. 24.6) to include a method
called removePaperJam that will fix any paper jam event that occurs. Modify the GUI in
Fig. 24.13 to include a button labeled Remove Paper Jam. Modify all necessary files in the printer
simulator example such that when a paper jam event occurs, the user may fix the paper jam by press-
ing the new button.

24.7 Modify all necessary files in the printer simulator example to allow a manager to shut down
and start up a printer remotely through the PrinterManagementGUI.

24.8 Modify the PrinterSimulator MBean and GUI such that the client application can per-
form a refillToner operation when the toner is lower than 10%.

BIBLIOGRAPHY
“JSR-000003 Java Management Extensions.” (July 2000) <jcp.org/aboutJava/communi-

typrocess/final/jsr003/jmx_instr_agent.zip>.

“What is the Service-Driven Network?” Dynamic Service Kit Overview (2000) <www.sun.com/
software/java-dynamic/service_driven.html>.

“Jini™ Technology and the Java Dynamic Management™ Kit Demonstration Spontaneous Manage-
ment in the Service Age.” Java Dynamic Management Kit (2000) <www.sun.com/
software/java-dynamic/wp_jini_jdmk.html>.

“Frequently Asked Questions.” Java Dynamic Management Kit (2000) <www.sun.com/soft-
ware/java-dynamic/qa.html>.

Goff, Max. “Java in the Management Sphere, Part 2.” (November 1999) <jw.itworld.com/
javaworld/jw-11-1999/jw-11-management_p.html>.

“Java Management Extensions White Paper.” (8 May 2001) <java.sun.com/products/
JavaManagement/wp/>.

25
Jiro

Objectives
• To understand the Jiro technology architecture.
• To be able to locate static services.
• To understand how the controller service, event

service, log service, scheduling service and
transaction service work.

• To be able to deploy dynamic services.
• To be able to instantiate dynamic services.
All love that has not friendship for its base,

Is like a mansion built upon the sand
Ella Wheeler Wilcox

You know my method. It is founded upon the observance of
trifles.
Arthur Conan Doyle

Oh let us love our occupations,

Bless the squire and his relations,

Live upon our daily rations,

And always know our proper stations.
Charles Dickens

Chapter 25 Jiro 1365

25.1 Introduction
The management of distributed resources, networks and storage devices is becoming in-
creasingly sophisticated in response to the complexity of distributed resources, heteroge-
neous networks and heterogeneous storage devices. A network may include computers and
devices from many different manufacturers. Computers connected to a network may have
different architectures, platforms and even data formats. All of these increase the complex-
ity and costs of managing networks.

To reduce complexity and cost, a management solution should be:

1. automated, so that the management can be monitored and controlled to minimize
human response when problems occur;

2. centralized, so that distributed resources can be managed from a single location;

3. standardized, so that management software can communicate with other related
management software;

4. open and interoperable, so that management software can interact with various
different types of manageable resources across a network;

5. platform independent, so that cross-platform information can be managed;

6. fast to develop and easy to deploy,

Outline

25.1 Introduction
25.2 Installation
25.3 Starting Jiro
25.4 Dynamic vs. Static Services
25.5 Dynamic Services

25.5.1 Dynamic-Service Implementation
25.6 Static Services

25.6.1 Locating Static Services with Class ServiceFinder
25.6.2 Event Service
25.6.3 Log Service
25.6.4 Scheduling Service

25.7 Dynamic Service Deployment
25.7.1 Dynamic–Service Usage

25.8 Management Policies
25.8.1 Policy–Management Deployment

25.9 Closing Notes on the Printer Management Solution
25.10 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises•
Bibliography

1366 Jiro Chapter 25

7. highly available.

Sun’s Java-based Jiro™ Technology provides infrastructure to develop management
solutions that can manage distributed resources over heterogeneous networks. Jiro is an
implementation of the Federated Management Architecture (FMA) specification (devel-
oped under the Java Community Process) that defines an architecture for communication
between heterogeneous managed resources (such as devices, systems and applications).
Jiro technology uses a three-tier architecture for management solutions (Fig. 25.1). The top
tier is the client tier. The client, in the top tier, locates and communicates with the manage-
ment services. The middle tier is the Jiro technology that provides both static and dynamic
management services. The bottom tier consists of the heterogeneous managed resources.

Besides Jiro, several other industry standards exist. Among these standards, the best
known are SNMP and CIM. The Simple Network Management Protocol (SNMP) provides
a standardized network-management protocol for managing devices connected to a TCP/IP
network. The Common Information Model (CIM) defines a standard model for describing
management information in networks. Jiro supports both standards.

Jiro does not manage resources directly. Instead, it provides both a management infra-
structure and management services, which are necessary to develop a management appli-
cation. The management infrastructure uses the RMI activation system, Jini and a class
server. The RMI activation system activates or restarts services as they are needed. Jini pro-
vides a dynamic lookup service that enable management domains to find services and each
other without prior knowledge of the lookup service’s location. The class server provides
the classes downloaded dynamically by clients.

25.2 Installation
To develop a management application with Jiro, first ensure that you have the Java 2 SDK
version 1.3.x installed. Then, download and install the Jiro Runtime Environment and the
Jiro Technology Software Development Kit (Jiro SDK). The Jiro Runtime Environment and
the Jiro SDK (for Windows NT/2000 and Solaris) can be downloaded from:

www.jiro.com/downloads

Fig. 25.1Fig. 25.1Fig. 25.1Fig. 25.1 Jiro technology three-tier management architecture.

Clients

Jiro Management Services
(Static & Dynamic)

Resources

Chapter 25 Jiro 1367

We discuss the Windows NT/2000 version here. The steps for the Solaris version are sim-
ialr. Although downloading Jiro is free, you are required to register and accept the licence
agreement first. At the time of this publication, the current version of the Jiro Runtime is
v1.5 and the current version of the Jiro SDK is v1.5.

When installing the Jiro Runtime Environment, you will be asked to provide the loca-
tion of Java v1.3.x. You also will be asked to provide the Jiro management domain’s name.
A Jiro management domain contains the managed resources and the management services
to manage those resources. The name of the Jiro management domain should be a String
that uniquely identifies on the local network each shared management server (responsible
for providing many of the essential services in a Jiro network). The domain name can be of
any string format, as long as the string does not contain space characters. A typical repre-
sentation of the domain name has the format jiro:domainName. To ensure the unique-
ness of the domainName, replace our domain name with the hostname of the machine on
which you install Jiro.

When installing the Jiro SDK, you will be asked to enter the location of Java v1.3.x
and the Jiro management domain name. Use the same domainName as in the Jiro Runtime
Environment installation.

After installing the Jiro Runtime Environment and the Jiro SDK, update the execution
PATH environment variable so that it includes the path to the Jiro executables. The Jiro exe-
cutables normally are located in JiroSDK\bin.

Software Engineering Observation 25.1
The Jiro management domain name should be unique within the IP multicast radius.1 Use
the localhost name as the management domain name, to ensure uniqueness. 25.1

25.3 Starting Jiro
Before starting Jiro, the Jiro management domain name must be specified. If you did not
specify the domain name at installation time, you should specify the domain name in the
JiroSDK\etc\server.config file. The Jiro distribution provides a graphical user
interface for configuring, starting and stopping the Jiro framework. You can execute this
GUI using the file igniter.bat in the bin directory of the Jiro installation. Figure 25.2
shows the initial screen of the GUI.

1. The IP multicast radius defines the "range" of the Jini multicast discovery protocols.

Fig. 25.2Fig. 25.2Fig. 25.2Fig. 25.2 Jiro GUI: Igniter initial screen.

1368 Jiro Chapter 25

The five red lights indicate that Jiro is not yet running. You can start Jiro with a
cleaning process by checking the Clean before start checkbox, or you can start without
a cleaning process by unchecking the Clean before start checkbox. The cleaning process
removes previously deployed dynamic services and resets state information from previous
Jiro executions. Clicking the Start button starts Jiro with the default configuration, unless
the Jiro configuration files have been modified previously. Once Jiro starts, the class server,
the rmid, the transaction service, the shared Jiro station, the controller service, the log ser-
vice, the event service and the scheduling service also start. We discuss these services in
Section 25.6. The transaction service, the shared Jiro station, the controller service, the log
service, the event service and the scheduling service register with the Jini lookup service,
which also starts when the user clicks the Start button. If startup completes successfully,
the five lights turn green. To view the output of the start process, go to the Options menu
and check the Display Console checkbox. Figure 25.3 shows the Igniter GUI with Dis-
play Console checked after the startup process completes. Select the Errors panel to
view the error messages during the startup process.

To configure the settings of Jiro, stop Jiro by clicking the Stop button if Jiro is run-
ning, then go to the File menu and select Edit Configuration. For information about con-
figuration parameters, please refer to the Jiro Technology Installation and Configuration
Guide that comes with the Jiro SDK installation. This document is located in the Jiro instal-
lation’s docs directory and is available in PDF (install_config.pdf) and postscript
(install_config.ps) formats.

Software Engineering Observation 25.2
You cannot edit the Jiro configuration while Jiro is running. 25.2

Fig. 25.3Fig. 25.3Fig. 25.3Fig. 25.3 GUI with Display Console checked after the start process is completed.

Chapter 25 Jiro 1369

25.4 Dynamic vs. Static Services
At the heart of all Jiro management solutions lies the management software. Management
software, in the Jiro sense, consists of one or more services that provide customized man-
agement functionality to a network. These services—dynamic services—represent software
that manages one or more resources.

Developers often find, when developing management solutions for any network, that
it is necessary for their dynamic services to perform a fixed set of routine procedures. To
aid dynamic-service developers and reduce development time, Jiro provides a set of stan-
dard services required by many management solutions. During initialization, Jiro starts a
series of static services—also known as base services, because they commonly are used in
distributed management solutions—and registers them with the Jini lookup service. The
difference between dynamic services and static services is that dynamic services define the
management solution that is deployed in a network and static services are tools that are glo-
bally available to all dynamic services to simplify development. The static services include:

1. the Jiro event service transmits events via the network to registered listeners;

2. the Jiro scheduling service fires events at scheduled times;

3. the Jiro log service enables logging of selected actions that occur in a Jiro network
and any error messages that occur;

4. the Jiro transaction service is responsible for ensuring synchronized access to
methods; and

5. the Jiro controller service creates controllers to enforce synchronized access to
dynamic services.

Each Jiro domain has one instance of each standard service for use by remote clients or
dynamic services. [Note: The transaction service and the controller service topics are be-
yond the scope of this chapter. For further information, please visit www.jiro.com .]

25.5 Dynamic Services
Jiro provides each management domain with a station that hosts dynamic services and en-
ables remote clients to invoke methods on the hosted dynamic services. Jiro provides the
station at startup.

In Jiro, a dynamic service that provides access to a managed resource or a set of related
dynamic services is called a Management Facade. A Jiro component’s Management
Facade enables other Jiro components to manage those devices to which the Management
Facade provides access. The Facade provides access to manage these devices by serving as
a unique entry point for all Jiro components to interact with that Facade’s dynamic services.
The Management Facade shields clients from that Facade’s complex underlying structure
and behavior.

The Management Facade is an example of the Facade design pattern. This design pat-
tern reduces system complexity, because a client interacts with only one object—called the
facade object. In the field of software development, the Facade design pattern shields appli-
cations developers from subsystem complexities. Developers need to be familiar with only
the operations of the facade object, rather than with the more detailed operations of the
entire subsystem.

1370 Jiro Chapter 25

When driving a car, you know that pressing the gas pedal accelerates your car, but you
are unaware of exactly how the gas pedal causes your car to accelerate. The facade object
provides a simple interface for the behaviors of a subsystem—an aggregate of objects that
collectively comprise a major system responsibility. The gas pedal, for example, is the
facade object for the car’s acceleration subsystem, the steering wheel is the facade object
for the car’s steering subsystem and the brake is the facade object for the car’s deceleration
subsystem. A client object uses the facade object to interact with the objects behind the
facade. The client remains unaware of how the objects behind the facade fulfill responsi-
bilities, so the subsystem complexity is hidden from the client. When you press the gas
pedal you act as a client object. In Jiro, the Management Facade is the facade object, and
Jiro components that use the Management Facade to manage underlying resources are the
client objects.

To make a dynamic service available in a management domain, dynamic-service pro-
viders must follow two steps—implement the dynamic service (a step performed by a
developer) and deploy the dynamic service to a station in a management domain (a step
usually performed by a system administrator). In the rest of this section, we demonstrate
how to develop, deploy and access a dynamic service that manages a network printer. As
in Chapter 24, this chapter uses a printer simulator to represent the resource that our
dynamic service manages.

The printer interface has a limited number of operations. Our dynamic service exposes
this interface. We will create a management console that enables a system administrator to
manage the printer remotely. The resulting management solution provides a simple
example of a typical Jiro management solution.

25.5.1 Dynamic-Service Implementation

To implement a dynamic service, a developer must first define a public interface for the
service. The public interface exposes to clients and to other dynamic services the oper-
ations one can perform on a resource2 that will be managed.

PrinterManagement (Fig. 25.4) exposes the management operations we can per-
form on the printer. From this interface, a developer will be able to provide access to the
printer’s state at any given moment, through such methods as isPrinting, isOnline,
isPaperJam and getPendingPrintJobs. Developers will also have the ability to
operate the printer, through such operations as addPaper, addToner and cancel-
PendingPringJobs. In our implementation, the PrinterManagement dynamic
service will schedule the printer to shut down every weekend. Operation terminate-
ScheduledTasks permits clients to cancel all tasks scheduled for the printer by the
PrinterManagement dynamic service.

2. Resources in the Jiro sense are not limited to physical devices on a network. They also include
other dynamic services that can be accessed through the Jiro station or through other means.

1 // Fig. 25.4: PrinterManagement.java
2 // This class defines the interface for the dynamic service.
3 package com.deitel.advjhtp1.jiro.DynamicService.service;
4

Fig. 25.4Fig. 25.4Fig. 25.4Fig. 25.4 PrinterManagement interface definition (part 1 of 2).

Chapter 25 Jiro 1371

Class PrinterManagementImpl (Fig. 25.5) is the dynamic service implementa-
tion that we developed for the network printer simulator (class Printer in Fig. 25.8).
Note that PrinterManagementImpl uses static services that we explain in subsequent
sections (see Section 25.6 for more details).

5 // Java core package
6 import java.rmi.*;
7 import java.util.*;
8
9 // Jini core package

10 import net.jini.core.event.*;
11
12 public interface PrinterManagement
13 extends RemoteEventListener {
14
15 public void addPaper(int amount)
16 throws RemoteException;
17
18 public boolean isPrinting() throws RemoteException;
19
20 public boolean isPaperJam() throws RemoteException;
21
22 public int getPaperInTray() throws RemoteException;
23
24 public boolean isOnline() throws RemoteException;
25
26 public void cancelPendingPrintJobs() throws RemoteException;
27
28 public void terminateScheduledTasks() throws RemoteException;
29
30 public void addToner() throws RemoteException;
31
32 public String[] getPendingPrintJobs() throws RemoteException;
33 }

1 // PrinterManagementImpl.java
2 // This class schedules turn-on and turn-off printer
3 // periodically and issues a log message to LogService
4 // when error events happen.
5 package com.deitel.advjhtp1.jiro.DynamicService.service;
6
7 // Java core packages
8 import java.io.Serializable;
9 import java.rmi.*;

10 import java.util.*;
11
12 // Java standard extensions
13 import javax.swing.*;

Fig. 25.5Fig. 25.5Fig. 25.5Fig. 25.5 PrinterManagementImpl implementation of interface
PrinterManagement (part 1 of 8).

Fig. 25.4Fig. 25.4Fig. 25.4Fig. 25.4 PrinterManagement interface definition (part 2 of 2).

1372 Jiro Chapter 25

14
15 // Jini core packages
16 import net.jini.core.event.*;
17 import net.jini.core.entry.*;
18 import net.jini.core.lease.*;
19
20 // Jini extension packages
21 import net.jini.lease.LeaseRenewalManager;
22 import net.jini.lookup.entry.*;
23
24 // Jiro packages
25 import javax.fma.services.ServiceFinder;
26 import javax.fma.services.event.EventService;
27 import javax.fma.services.log.LogMessage;
28 import javax.fma.services.log.LogService;
29 import javax.fma.services.scheduling.SchedulingService;
30 import javax.fma.services.scheduling.SchedulingService.*;
31 import javax.fma.util.*;
32
33 // Deitel packages
34 import com.deitel.advjhtp1.jiro.DynamicService.printer.*;
35
36 public class PrinterManagementImpl
37 implements PrinterManagement {
38
39 private Printer printer;
40 private LogService logService = null;
41 private Lease observerLease;
42 private LeaseRenewalManager leaseRenewalManager;
43 private Ticket turnOffPrinter;
44 private Ticket turnOnPrinter;
45
46 // default constructor
47 public PrinterManagementImpl()
48 {
49 System.out.println("Dynamic service started.\n");
50
51 // start a printer
52 printer = new Printer() ;
53 Thread printerThread = new Thread(printer) ;
54 printerThread.start();
55
56 // subscribe to printer events
57 try {
58
59 // get the event service
60 EventService eventService =
61 ServiceFinder.getEventService();
62
63 // get the log service
64 logService = ServiceFinder.getLogService();
65

Fig. 25.5Fig. 25.5Fig. 25.5Fig. 25.5 PrinterManagementImpl implementation of interface
PrinterManagement (part 2 of 8).

Chapter 25 Jiro 1373

66 // get a listener
67 PrinterEventListener listener =
68 new PrinterEventListener(this);
69
70 // subscribe as an observing listener to event with
71 // topic ".Printer.Error"
72 observerLease = eventService.subscribeObserver(
73 ".Printer.Error", listener, null, 10 * 60 * 1000);
74
75 // renew observer listener's lease
76 leaseRenewalManager = new LeaseRenewalManager();
77 leaseRenewalManager.renewUntil(
78 observerLease, Lease.FOREVER, null);
79
80 // get the scheduling service
81 SchedulingService schedulingService =
82 ServiceFinder.getSchedulingService();
83
84 // define the schedule for turn-off printer task
85 // printer is turned off at 8:00PM every friday
86 GregorianCalendar calendar = new GregorianCalendar();
87 calendar.set(2001, 7, 27);
88 Date startDate = calendar.getTime();
89 calendar.set(2003, 7, 27);
90 Date endDate = calendar.getTime();
91 int[] monthsOff = { Calendar.JANUARY,
92 Calendar.FEBRUARY, Calendar.MARCH, Calendar.APRIL,
93 Calendar.MAY, Calendar.JUNE, Calendar.JULY,
94 Calendar.AUGUST, Calendar.SEPTEMBER,
95 Calendar.OCTOBER, Calendar.NOVEMBER,
96 Calendar.DECEMBER };
97 int[] daysOfWeekOff = { Calendar.FRIDAY };
98 int[] hoursOff = { 20 };
99 int[] minutesOff = { 0 };
100
101 // create the schedule for turn-off printer task
102 Schedule turnOffSchedule =
103 schedulingService.newRepeatedDateSchedule(
104 startDate, endDate, monthsOff, null,
105 daysOfWeekOff, hoursOff, minutesOff,
106 calendar.getTimeZone());
107
108 // create the message description
109 LocalizableMessage turnOffMessage =
110 new LocalizableMessage(PrinterManagementImpl.class,
111 "TurnOffPrinter", null, null);
112
113 // define the handback object of the
114 // turn-off printer task
115 MarshalledObject handbackOff = new MarshalledObject(
116 new String("turn-off"));
117

Fig. 25.5Fig. 25.5Fig. 25.5Fig. 25.5 PrinterManagementImpl implementation of interface
PrinterManagement (part 3 of 8).

1374 Jiro Chapter 25

118 // schedule task and get the Ticket for
119 // the scheduled task
120 turnOffPrinter = schedulingService.scheduleTask(
121 listener, turnOffMessage, turnOffSchedule,
122 SchedulingService.NONE, handbackOff);
123
124 // define the schedule for turn-on printer task
125 // printer is turned on at 7:00AM every Monday
126 calendar = new GregorianCalendar();
127 calendar.set(2001, 7, 27);
128 startDate = calendar.getTime();
129 calendar.set(2003, 7, 27);
130 endDate = calendar.getTime();
131 int[] monthsOn = { Calendar.JANUARY,
132 Calendar.FEBRUARY, Calendar.MARCH, Calendar.APRIL,
133 Calendar.MAY, Calendar.JUNE, Calendar.JULY,
134 Calendar.AUGUST, Calendar.SEPTEMBER,
135 Calendar.OCTOBER, Calendar.NOVEMBER,
136 Calendar.DECEMBER };
137 int[] daysOfWeekOn = { Calendar.MONDAY };
138 int[] hoursOn = { 7 };
139 int[] minutesOn = { 0 };
140
141 // create the schedule for turn-on printer task
142 Schedule turnOnSchedule =
143 schedulingService.newRepeatedDateSchedule(
144 startDate, endDate, monthsOn, null,
145 daysOfWeekOn, hoursOn, minutesOn,
146 calendar.getTimeZone());
147
148 // create the message description
149 LocalizableMessage turnOnMessage =
150 new LocalizableMessage(PrinterManagementImpl.class,
151 "TurnOnPrinter", null, null);
152
153 // define the handback object of the
154 // turn-on printer task
155 MarshalledObject handbackOn = new MarshalledObject(
156 new String("turn-on"));
157
158 // schedule task and get the Ticket for
159 // the scheduled task
160 turnOnPrinter = schedulingService.scheduleTask(
161 listener, turnOnMessage, turnOnSchedule,
162 SchedulingService.NONE, handbackOn);
163
164 } // end try
165
166 // handle exception schedulling task
167 catch (Exception exception) {
168 System.out.println("PrinterManagementImpl: " +
169 "Exception occurred when scheduling tasks.");

Fig. 25.5Fig. 25.5Fig. 25.5Fig. 25.5 PrinterManagementImpl implementation of interface
PrinterManagement (part 4 of 8).

Chapter 25 Jiro 1375

170 System.out.println("Please read debug file ...\n");
171 Debug.debugException("schedulling task", exception);
172 }
173
174 } // end PrinterManagementImpl constructor
175
176 // cancel scheduled tasks
177 public void terminateScheduledTasks()
178 {
179 // cancel turn-on and turn-off printer tasks
180 try {
181 turnOffPrinter.cancel();
182 turnOnPrinter.cancel();
183 }
184
185 // handle exception canceling scheduled task
186 catch (Exception exception) {
187 System.out.println("PrinterManagementImpl: " +
188 "Exception occurred when canceling tasks.");
189 System.out.println("Please read debug file ...\n");
190 Debug.debugException(
191 "cancel scheduled task", exception);
192 }
193
194 } // end cancel scheduled task
195
196 // add paper to printer
197 public void addPaper(int amount)
198 {
199 System.out.println(
200 "PrinterManagementImpl: Adding paper ...\n");
201 printer.replenishPaperTray(amount);
202 }
203
204 // is printer printing?
205 public boolean isPrinting()
206 {
207 return printer.isPrinting();
208 }
209
210 // is printer jammed?
211 public boolean isPaperJam()
212 {
213 return printer.isPaperJam();
214 }
215
216 // get printer's pages count
217 public int getPaperInTray()
218 {
219 return printer.getPaperInTray();
220 }
221

Fig. 25.5Fig. 25.5Fig. 25.5Fig. 25.5 PrinterManagementImpl implementation of interface
PrinterManagement (part 5 of 8).

1376 Jiro Chapter 25

222 // get pending jobs
223 public String[] getPendingPrintJobs()
224 {
225 return printer.getPendingPrintJobs();
226 }
227
228 // is printer online?
229 public boolean isOnline()
230 {
231 return printer.isOnline();
232 }
233
234 // cancel pending printing jobs
235 public void cancelPendingPrintJobs()
236 {
237 System.out.println("PrinterManagementImpl: "
238 + "Canceling pending print jobs ... \n");
239 printer.cancelPendingPrintJobs();
240 }
241
242 // receive notifications
243 public void notify(RemoteEvent remoteEvent)
244 throws UnknownEventException, RemoteException
245 {
246 String subString =
247 "com.deitel.advjhtp1.jiro.DynamicService.printer";
248 String source = (String) remoteEvent.getSource();
249 source = source.substring(0, subString.length());
250
251 // printer event
252 if (source.equals(subString))
253 eventHandler(remoteEvent);
254
255 else // scheduled task
256 performTask(remoteEvent);
257 }
258
259 // add toner to printer
260 public void addToner()
261 {
262 System.out.println(
263 "PrinterManagementImpl: Adding toner ...\n");
264 printer.addToner();
265 }
266
267 // perform task when scheduled time arrives
268 private void performTask(RemoteEvent remoteEvent)
269 {
270 // perform task
271 try {
272

Fig. 25.5Fig. 25.5Fig. 25.5Fig. 25.5 PrinterManagementImpl implementation of interface
PrinterManagement (part 6 of 8).

Chapter 25 Jiro 1377

273 // get task type
274 String type =
275 (String) remoteEvent.getRegistrationObject().get();
276
277 // turn-off printer
278 if (type.equals("turn-off"))
279 printer.setOffline();
280
281 // turn-on printer
282 else if (type.equals("turn-on"))
283 printer.setOnline();
284 }
285
286 // handle exception performing scheduled task
287 catch (Exception exception) {
288 System.out.println("PrinterManagementImpl: " +
289 "Exception occurred when performing tasks.");
290 System.out.println("Please read debug file ...\n");
291 Debug.debugException(
292 "perform scheduled task", exception);
293 }
294
295 } // end method performTask
296
297 // handle event
298 private synchronized void eventHandler (
299 RemoteEvent remoteEvent)
300 {
301 String source = (String) remoteEvent.getSource();
302
303 // generate the log message
304 Serializable params[] = new Serializable[2];
305 params[0] = source;
306 params[1] = new Date();
307
308 // define localizable message
309 LocalizableMessage localizableMessage =
310 new LocalizableMessage(PrinterManagementImpl.class,
311 "Event", params, Locale.US);
312
313 // define log message
314 LogMessage logMessage = new LogMessage(
315 localizableMessage, LogMessage.TRACE + ".printer."
316 + source, null);
317
318 // post the log message
319 try {
320 logService.log(logMessage);
321 }
322

Fig. 25.5Fig. 25.5Fig. 25.5Fig. 25.5 PrinterManagementImpl implementation of interface
PrinterManagement (part 7 of 8).

1378 Jiro Chapter 25

Access to dynamic services occurs through proxy objects that a client instantiates. The
jirocw tool generates a dynamic service’s proxy class at deployment time. We discuss
the deployment of this management application in Section 25.7. We generate Printer-
ManagementImplProxy—the proxy class for dynamic service implementation
PrinterManagementImpl—using the jirocw tool. The only means by which a
dynamic service can be instantiated is through instantiating its proxy object. When a client
instantiates PrinterManagementImplProxy, the proxy remotely calls the no-argu-
ment constructor of the PrinterManagementImpl dynamic service.

If the dynamic service implements method getLookupEntries (lines 334–343), the
Jiro station submits a PrinterManagementImplProxy reference to the domain’s Jini
lookup service with the Entry attributes returned by getLookupEntries at instantiation
time. Dynamic services and clients wanting to interact with the PrinterManagement
dynamic service after a different client instantiates the proxy, must do so through the
PrinterManagementImplProxy reference stored in the Jini lookup service.

Lines 52–54 start the thread that will simulate the printer we are managing. Class
Printer’s run method controls the thread. Lines 60–82 obtain references to several
static services used by the PrinterManagement dynamic service. We mention each
static service here and discuss each in detail in Section 25.6. The standard static services
are obtained through helper class ServiceFinder (discussed in Section 25.6.1). Lines
60–61 obtain a reference to the event service (see Section 25.6.2). Line 64 obtains a refer-
ence to the log service (Section 25.6.3). Lines 67–68 create a new PrinterEventLis-
tener to listen for events originating from the Printer. Lines 72–73 subscribe
PrinterEventListener in the event service. Lines 80–81 renew the lease granted to
the listener. Lines 81-82 obtain a reference to the scheduling service (Section 25.6.4). Lines

323 // handle exception posting log message
324 catch (Exception exception) {
325 System.out.println("PrinterManagementImpl: " +
326 "Exception occurred when posting log message.");
327 System.out.println("Please read debug file ...\n");
328 Debug.debugException("log service", exception);
329 }
330
331 } // end eventHandler
332
333 // entry object
334 private Entry[] getLookupEntries()
335 {
336 return (new Entry[] {
337 new ServiceInfo("PrinterManagementImpl",
338 "Deitel Association, Inc.",
339 "Deitel Association, Inc",
340 "1.0", "Model 0", "0.0.0.1")
341 }
342);
343 }
344 }

Fig. 25.5Fig. 25.5Fig. 25.5Fig. 25.5 PrinterManagementImpl implementation of interface
PrinterManagement (part 8 of 8).

Chapter 25 Jiro 1379

86–122 and 126–162 schedule two events—turn printer off and turn printer on—to occur
every weekend.

Method terminateScheduledTasks (lines 177–194) will terminate all sched-
uled tasks. Method addPaper will add paper to the printer by delegating its call to
Printer. Methods isOnline, isPrinting, isPaperJam, getPaperTray,
getPendingPrintJobs, addToner and cancelPendingPrintJobs follow the
pattern of addPaper, delegating calls to their respective methods in Printer.

Method notify (lines 243–257) receives delegated notifications from a Printer-
EventListener and determines whether the event notification is an event triggered by
Printer or by the scheduling service. Method notify calls to method performTask
(lines 268–295) if the event received was triggered by the scheduling service. Lines 252–
256 determine the type of event and perform the corresponding action. Method notify
makes a call to method eventHandler (lines 298–331) if the event received was trig-
gered by the Printer. Method eventHandler logs a message pertaining to the event
received (lines 304–320).

Lines 334–343 implement method getLookupEntries—the only way to declare
a class as a dynamic service. A class that presents a declaration of method getLookup-
Entries is called a point object. Dynamic services may involve more than one class to
provide the underlying definition of a dynamic service. The Jiro specification states that
only one object, the entry point for a dynamic service instance, may exist. Instantiating the
entry-point object is the only allowed way to instantiate a dynamic service and the classes
on which it depends. Method getLookupEntries returns a set of entries. These entries
are used by the station to register the dynamic service’s proxy in the Jini lookup service of
the domain.

Figure 25.6 (PrinterEventListener.java) is the event listener instantiated in
PrinterManagementImpl lines 67–68. PrinterEventListener implements
interface RemoteEventListener—Jiro requires this for all event subscribers.
Figure 25.6 shows our RemoteEventListener implementation. The event service
calls method notify (lines 36–41) when an event occurs

1 // PrinterEventListener.java
2 // This class defines the listener that listens for events
3 // issued by a printer.
4 package com.deitel.advjhtp1.jiro.DynamicService.service;
5
6 // Java core packages
7 import java.rmi.*;
8 import java.rmi.server.UnicastRemoteObject;
9

10 // Jini core packages
11 import net.jini.core.event.*;
12
13 public class PrinterEventListener
14 implements RemoteEventListener {
15
16 private RemoteEventListener eventListener;

Fig. 25.6Fig. 25.6Fig. 25.6Fig. 25.6 PrinterEventListener used by all classes subscribed for events
from Printer (part 1 of 2).

1380 Jiro Chapter 25

25.6 Static Services
Printer (Fig. 25.8) and PrinterManagementImpl (Fig. 25.5) use Jiro’s static ser-
vices. Printer publishes events to the event service (line 320 of Fig. 25.8). Class
PrinterManagementImpl uses the event service to listen for events, the log service
to record messages pertaining to events received and the scheduling service to schedule the
printer to go offline for servicing every week from 8PM on Friday to 7AM on Monday. The
following subsections explain how to obtain and use Jiro’s static services. The case study
does not use all the static services provided by Jiro, so the following sections discuss the
remaining services.

25.6.1 Locating Static Services with Class ServiceFinder

Before using the static services, we need to get the service proxies of these static services.
Class ServiceFinder (packagejavax.fma.service) provides methods for locat-
ing the static services. The class contains ten methods—two for each static service. To get
the proxy for a static service, an application or dynamic service either calls method Ser-
viceFinder.getServiceName with no arguments, which locates the service for the lo-
cal management domain3, or calls method ServiceFinder.getServiceName with an
argument that specifies the management domain, which locates the service for that specific
management domain. For example, method getLogService with no arguments returns

17
18 // PrinterEventListener constructor
19 public PrinterEventListener(RemoteEventListener listener)
20 {
21 eventListener = listener;
22
23 // export the stub object
24 try {
25 UnicastRemoteObject.exportObject(this);
26 }
27
28 // handle exception exporting stub
29 catch (RemoteException remoteException) {
30 remoteException.printStackTrace();
31 }
32
33 } // end PrinterEventListener constructor
34
35 // receive the notification
36 public void notify(RemoteEvent remoteEvent)
37 throws UnknownEventException, RemoteException
38 {
39 // forward notification
40 eventListener.notify(remoteEvent);
41 }
42 }

Fig. 25.6Fig. 25.6Fig. 25.6Fig. 25.6 PrinterEventListener used by all classes subscribed for events
from Printer (part 2 of 2).

Chapter 25 Jiro 1381

the log service for the local management domain. Similarly, static services can also be
found through the Jini lookup service. ServiceFinder is a convenience class that en-
capsulates the calls to the Jini lookup service.

25.6.2 Event Service

Event objects encapsulate an action that happened in a network (locally or remotely). They
allow actions that occur in one part of the network to be handled in another part. Publish–
subscribe event systems, such as Jiro’s, are one type of event-driven network. Such net-
works generally are composed of three types of elements—the event publisher that propa-
gates events throughout the network, the event subscriber that listens on one end of the
network for events that are published and the events. The event service is a bridge between
the event publisher and the event subscriber. In the context of Jiro, an event publisher posts
an event or series of events to the event service. An event subscriber receives the event(s)
from the event service. The event subscriber can subscribe to types of events—also known
as topics of events—that have not yet been published.

An event subscriber can subscribe to the event service as an observer listener or a
responsible listener. An observer listener can receive an event, but cannot handle or con-
sume an event. A responsible listener has special priority to respond and consume specific
events. Responsible listeners must decide whether or not to consume an event. If a respon-
sible listener decides not to consume an event, its notify method must throw an Event-
NotHandledException. This causes the event service to propagate the event to the
next responsible listener in the chain.

Jiro’s event service uses the Chain-of-Responsibility design pattern to ensure that a
responsible listener handles an event. Often, a system needs to determine at run time the
object that will handle a particular message. For example, consider the design of a three-
line office phone system. When a person calls the office, the first line handles the call—if
the first line is busy, the second line handles the call, and if the second line is busy, the third
line handles the call. If all lines in the system are busy, an automated speaker instructs that
person to wait for the next available line—when a line becomes available, that line handles
the call. When an event occurs that applies to both responsible listeners and observer lis-
teners, all observer listeners and the first responsible listener in the chain will get the event.

The Chain-of-Responsibility design pattern enables a system to determine at run time
the object that will handle a message. This pattern allows an object to send a message to
several objects in a chain of objects. Each object in the chain either may handle the message
or pass the message to the next object in the chain. For instance, the first line in the phone
system is the first object in the chain of responsibility, the second line is the second object,
the third line is the third object, and the automated speaker is the fourth object. Note that
this mechanism is not the final object in the chain—the next available line handles the mes-
sage, and that line is the final object in the chain. The chain is created dynamically in
response to the presence or absence of specific message handlers. In Jiro, the event pub-
lisher sends an event to a responsible listener—if the listener cannot handle the event, the
Event Service sends the event to another responsible listener. The Event Service propagates
this event to other listeners, until a listener handles the event.

3. Clients can find the local management domain information through the javax.fma.domain
system property.

1382 Jiro Chapter 25

Class PrinterManagementImpl (Fig. 25.5) is an example of a class that sub-
scribes a listener to the event service. Class PrinterManagementImpl registers its
PrinterEventListener as an observer listener upon initialization. Lines 72–73 sub-
scribe to events with “.Printer.Error” as their topic. Method subscribe-
Observer takes four arguments—a String that specifies the topic of the event, a
listener that implements the RemoteEventListener so that notifications can be sent
when the event service receives events for that topic, a MarshalledObject that is
passed to the listener with each event (may be null) and a long value that specifies the
length of the lease for the listener’s subscription. In the Jiro architecture, topics classify
events and enable the event service to deliver events to the proper subscriber(s). A topic is
a dot-delimited String that defines a tree-like structure. This structure helps identify
event types and related subtypes.

All event types start at the root—".". A simple dot represents the root of the tree-like
structure. All elements belong to the root; therefore, all event topics match the "." string.
".A" represents all events of topic ".A". To define a subtype for this topic, append a
period and the subtype name. Examples of two possible subtype topics for event topic
".A" could be ".A.aa" and ".A.bb". If an event subscriber registers with the event
service as an observer for all events of topic ".A", the event subscriber will receive events
of topic ".A" as well as events of topic ".A.aa" and ".A.bb". If a listener subscribes
to event topics of type ".A.bb", only events of type ".A.bb" and its subtypes will be
received.

Any event object posted to the event service must extend Event (package
javax.fma.services.event). Class PrinterErrorEvent (Fig. 25.7) extends
class Event. Event classes must implement method clone, so that the event service can
copy event-objects and pass them to all the subscribed listeners (lines 18–21).

1 // PrinterErrorEvent.java
2 // This class defines the events issued by a printer.
3 package com.deitel.advjhtp1.jiro.DynamicService.printer;
4
5 // Jiro package
6 import javax.fma.services.event.Event;
7
8 public class PrinterErrorEvent
9 extends Event implements Cloneable {

10
11 // PrinterErrorEvent constructor
12 public PrinterErrorEvent(Object source, String topic)
13 {
14 super (source, topic);
15 }
16
17 // clone event
18 public Object clone()
19 {
20 return new PrinterErrorEvent(source, getTopic());
21 }
22 }

Fig. 25.7Fig. 25.7Fig. 25.7Fig. 25.7 Custom error class thrown by Printer.

Chapter 25 Jiro 1383

Class Printer (Fig. 25.8) is a slightly different implementation from class Print-
erSimulator implementation presented in Chapter 24. (See Chapter 24 for implemen-
tation details on class Printer). Class Printer is an example of a class that publishes
events to the event service. Method fireEvent (lines 308–328) publishes all events orig-
inating from the printer. Lines 314–317 create a PrinterErrorEvent (Fig. 25.7)
object and initialize it to the proper value. The first argument in the PrinterError-
Event is the source. We have chosen our source to be a String that describes where the
event originated, plus additional information pertaining to the type of event that occurred.
The second argument contains the event topic. The topic’s root is ".Printer.Error";
the child of the event can be either OutofPaper, LowToner or PaperJam. A source
of an event can be any object except null. To post an event, call method post (line 320).
Method post takes one argument—the event to post for delivery to the listeners.

1 // Printer.java
2 // This class simulates a printer device on a network.
3 // deitel package
4 package com.deitel.advjhtp1.jiro.DynamicService.printer;
5
6 // java core package
7 import java.util.Stack;
8 import java.rmi.*;
9 import java.io.*;

10
11 // Jiro packages
12 import javax.fma.services.ServiceFinder;
13 import javax.fma.services.event.EventService;
14 import javax.fma.util.*;
15
16 public class Printer implements Runnable {
17
18 private Stack printerStack = new Stack();
19 private boolean isPrinting = false;
20 private boolean isPaperJam = false;
21 private boolean isOnline = true;
22
23 // 50 sheets of paper in tray
24 private int paperInTray = 50;
25
26 // 100% full of ink
27 private int tonerCartridge = 100;
28
29 private String currentPrintJob;
30 private boolean isAlive = true;
31
32 private EventService eventService;
33
34 // printer constructor
35 public Printer()
36 {

Fig. 25.8Fig. 25.8Fig. 25.8Fig. 25.8 Printer simulator implementation (part 1 of 7).

1384 Jiro Chapter 25

37 // get EventService at gaven management domain
38 try {
39 eventService = ServiceFinder.getEventService();
40 }
41
42 // handle exception getting EventService
43 catch (Exception exception) {
44 Debug.debugException(
45 "getting EventService", exception);
46 }
47 }
48
49 // stops execution of thread
50 public void stop()
51 {
52 isAlive = false;
53 }
54
55 // main life-cycle of the printer.
56 // prints one job from print job stack
57 // 1) if offline, it pauses and waits.
58 // 2) if online, handles one print job
59 public void run()
60 {
61 // main loop within thread
62 while (isAlive) {
63
64 // printer will be offline
65 if (!isOnline) {
66
67 synchronized (this) {
68
69 // waits for printer become online
70 try {
71 wait();
72 }
73
74 // handle exception waiting
75 catch (InterruptedException exception) {
76 Debug.debugException(
77 "printer wait", exception);
78 }
79
80 } // end synchronized
81
82 } // end if
83
84 // prints one job from print job stack
85 startPrintingProcess();
86
87 } // end while
88 }
89

Fig. 25.8Fig. 25.8Fig. 25.8Fig. 25.8 Printer simulator implementation (part 2 of 7).

Chapter 25 Jiro 1385

90 // start printing process
91 private synchronized void startPrintingProcess()
92 {
93 // warm up the printer, print top print job from print
94 // stack and adjust paper values and toner values
95 try {
96
97 // warm up printer for incoming batch of print jobs
98 Thread.sleep(1000 * 2);
99
100 if (isOnline && (paperInTray > 0) &&
101 (tonerCartridge > 10) && (!isPaperJam)) {
102
103 // start the printing process
104 currentPrintJob = getNextPrintJob();
105 isPrinting = true;
106
107 // 12 seconds to print a normal document
108 Thread.sleep(1000 * 12);
109
110 // each print job uses 10 pages
111 updatePaperInTray(paperInTray - 10);
112 updateToner();
113 updatePaperJam();
114 isPrinting = false;
115
116 // make sure no referrences are left dangling
117 currentPrintJob = null;
118
119 } // end if
120 }
121
122 // handle exception starting printing process
123 catch(InterruptedException exception) {
124 Debug.debugException(
125 "starting printing process", exception);
126 }
127
128 } // end method startPrintingProcess
129
130 // returns current printed job
131 private String getCurrentPrintJob()
132 {
133 return currentPrintJob;
134 }
135
136 // update amount of paper in paper tray
137 private synchronized void updatePaperInTray(int newValue)
138 {
139 paperInTray = newValue;
140

Fig. 25.8Fig. 25.8Fig. 25.8Fig. 25.8 Printer simulator implementation (part 3 of 7).

1386 Jiro Chapter 25

141 // fire event if paper tray low
142 if (paperInTray <= 0) {
143 System.out.println("Printer: out of paper. ");
144 fireEvent("OutofPaper");
145 }
146 }
147
148 // is paper jammed?
149 public boolean isPaperJam()
150 {
151 return isPaperJam;
152 }
153
154 // is printer printing?
155 public boolean isPrinting()
156 {
157 return isPrinting;
158 }
159
160 // is printer online?
161 public boolean isOnline()
162 {
163 return isOnline;
164 }
165
166 // return number of pages in paper tray
167 public synchronized int getPaperInTray()
168 {
169 return paperInTray;
170 }
171
172 // update amount of toner available in toner cartridge
173 public synchronized void updateToner()
174 {
175 // after every print job, toner levels drop 1%
176 tonerCartridge = tonerCartridge - 1;
177
178 // fire event if toner is low
179 if (tonerCartridge <= 10) {
180 System.out.println("Printer: low toner. ");
181 fireEvent("LowToner");
182 }
183 }
184
185 // update paper jam
186 public synchronized void updatePaperJam()
187 {
188 if (Math.random() > 0.9) {
189 isPaperJam = true;
190 System.out.println("Printer: paper jam. ");
191 fireEvent("PaperJam");
192 }
193 }

Fig. 25.8Fig. 25.8Fig. 25.8Fig. 25.8 Printer simulator implementation (part 4 of 7).

Chapter 25 Jiro 1387

194
195 // return amount of toner in toner cartridge
196 public synchronized int getToner()
197 {
198 return tonerCartridge;
199 }
200
201 // replenishe amount of paper in paper tray to specified
202 // value
203 public void replenishPaperTray (int paperStack)
204 {
205 System.out.println("Printer: adding " + paperStack
206 + " pages to printer ... \n");
207 updatePaperInTray (paperInTray + paperStack) ;
208 }
209
210 // generates a random number of print jobs with varying IDs
211 private synchronized void populatePrintStack()
212 {
213 int numOfJobs = (int) (Math.random () * 10) + 1;
214
215 // generate print jobs
216 for (int i = 0; i < numOfJobs ; i++) {
217
218 synchronized (printerStack) {
219 printerStack.add ("PRINT_JOB_ID #" + i);
220 }
221 }
222 }
223
224 // add toner
225 public synchronized void addToner()
226 {
227 System.out.println("Printer: adding toner . . . \n");
228 tonerCartridge = 100;
229 }
230
231 // cancel pending print jobs
232 public synchronized void cancelPendingPrintJobs()
233 {
234 synchronized (printerStack) {
235 printerStack.clear();
236 }
237 }
238
239 // return next print job in stack, populating the stack
240 // if it is empty
241 private synchronized String getNextPrintJob()
242 {
243 if (printerStack.isEmpty()) {
244 populatePrintStack ();
245

Fig. 25.8Fig. 25.8Fig. 25.8Fig. 25.8 Printer simulator implementation (part 5 of 7).

1388 Jiro Chapter 25

246 // simulates absence of print jobs
247 try {
248 Thread.sleep (
249 (int) (Math.random() * 1000 * 10));
250 }
251
252 // handle exception thread sleep
253 catch (InterruptedException exception) {
254 Debug.debugException(
255 "getting next print job", exception);
256 }
257 }
258
259 // Remove topmost queued resource.
260 String nextJob;
261
262 synchronized (printerStack) {
263 nextJob = (String) printerStack.pop();
264 }
265
266 return nextJob;
267
268 } // end method getNextPrintJob
269
270 // return all jobs yet to be printed
271 public synchronized String[] getPendingPrintJobs()
272 {
273 String[] pendingJobs;
274
275 // create array of pending print jobs
276 synchronized (printerStack) {
277 Object[] temp = printerStack.toArray() ;
278 pendingJobs = new String[temp.length] ;
279
280 for (int i = 0; i < pendingJobs.length ; i++) {
281 pendingJobs [i] = (String) temp[i];
282 }
283 }
284
285 return pendingJobs;
286 }
287
288 // set printer status to online
289 public void setOnline()
290 {
291 System.out.println("Printer: setting online ... \n");
292 isOnline = true;
293
294 // notify all waiting states
295 synchronized (this) {
296 notifyAll() ;
297 }
298 }

Fig. 25.8Fig. 25.8Fig. 25.8Fig. 25.8 Printer simulator implementation (part 6 of 7).

Chapter 25 Jiro 1389

25.6.3 Log Service
The log service can be to log information when an important event such as application in-
vocation or an error occurs. The log service provides methods log and search to access
to the log repository. Each message written to the log repository must be in the form of a
javax.fma.service.log.LogMessage object. The log service is international-
ized. This means that applications can adapt logged messages for viewing in different lan-
guages and different regions. The client or the service can either post a log message to the
log service or retrieve log messages from the log service, obeying search criteria.

Class PrinterManagementImpl (Fig. 25.5) uses the log service to log every
event it receives from the printer. This class uses ServiceFinder to get the service
proxy for the log service. Line 64 of PrinterManagementImpl gets the log service by
calling method ServiceFinder.getLogService with no arguments.

A log message contains a localizable message (a message in a format that any applica-
tion can convert to a readable format for a given locale), a category to specify the type of
log message and a Throwable—posted if the message is created when an error condition
arises. The category of a log message must be a dot-delimited String that begins with

299
300 // set printer status to offline
301 public void setOffline()
302 {
303 System.out.println("Printer: setting offline ... \n");
304 isOnline = false;
305 }
306
307 // fire event
308 private void fireEvent(String error)
309 {
310 // post event to EventService
311 try {
312
313 // define event
314 PrinterErrorEvent event = new PrinterErrorEvent(
315 "com.deitel.advjhtp1.jiro.DynamicService.printer."
316 + "ErrorMessage=" + error,
317 ".Printer.Error." + error);
318
319 // post event
320 eventService.post(event);
321 }
322
323 // handle exception posting event
324 catch (Exception exception) {
325 Debug.debugException("posting event", exception);
326 }
327
328 } // end method fireEvent
329 }

Fig. 25.8Fig. 25.8Fig. 25.8Fig. 25.8 Printer simulator implementation (part 7 of 7).

1390 Jiro Chapter 25

one of the following standard categories: LogMessage.AUDIT, LogMes-
sage.DEBUG, LogMessage.WARNING, LogMessage.INFO, LogMes-
sage.ERROR, LogMessage.TRACE. Lines 309–311 of
PrinterManagementImpl create a localizable message. The LocalizableMes-
sage (package javax.fma.util) constructor takes four arguments—a Class repre-
senting the localization resource file, a String that specifies the message key, an array of
Serializable objects and a Locale that is used to create the fall-back text for this
message. Both the Class and the String arguments passed to the LocalizableMes-
sage cannot be null, otherwise an IllegalArgumentException will be thrown.
Both the Serializable array and the Locale may be null. Both serve special pur-
poses that are out of the scope of this example—the Serializable array serves as a way
of storing object types within the message,4 Locale helps specify what language format
the message is originally stored in. If a client cannot convert the LocalizableMessage
to its current locale, then a the log service generates a fall-back message, using the
Locale. If a client passes null as the Locale argument, the default locale is used. In
this example, the class specifies the PrinterManagementImpl.class as the root of
the resource file and "TurnOnPrinter" as the message key. A properties file that
will be associated to LocalizableMessage must be created and be placed in a speci-
fied directory. Instructions on how to create the properties file will be provided
shortly. The properties file contain a "key=value" pair with "TurnOnPrinter" as
the message key.

The log message is created in lines 314–316 of PrinterManagementImpl. The
LogMessage (package javax.fma.service.log) constructor takes three argu-
ments—a LocalizableMessage that contains the message, a String that indicates
the category of the message and a Throwable that contains the stored exceptions. Both
the LocalizableMessage argument and the category String arguments cannot be
null. The Throwable argument can be null. The class specifies the category of the
log message as TRACE.printer.source, where source is the event source. Line 320 of
PrinterManagementImpl posts the log message to the log service by calling method
log of interface LogService.

Before executing an application that uses the log service, you must to provide a
resource file. The resource file for PrinterManagementImpl must have the name
PrinterManagementImpl.properties. This file should be stored in the
resources directory where PrinterManagementImpl.class is located. In our
example, PrinterManagementImpl.class is located at

C:\com\deitel\advjhtp1\jiro\DynamicService\service

so the PrinterManagementImpl.properties resource file should be located at

C:\com\deitel\advjhtp1\jiro\DynamicService\service\resources

The resource file contains messageKey=messageText pairs. Both the message key and the
message text must be strings. Figure 25.9 shows the resource file used in PrinterMan-
agement application.

4. Contents of the serializable array will replace the numbers enclosed within braces (e.g., {0}, {1},
{2}) in a log message template obtained from the properties file.

Chapter 25 Jiro 1391

The Jiro SDK has a viewlog tool to view log messages. To start the viewlog tool,
open a command prompt and type

viewlog -domain jiro:JIROTEST

This command starts the viewlog tool, which displays log messages for domain
jiro:JIROTEST. Figure 25.32 shows the viewlog tool GUI. For information about
how to use this tool, refer to the Jiro Technology SDK programmer’s Reference in the Jiro
SDK installation directory’s docs subdirectory. The Jiro Technology SDK Programmer’s
Reference is available in PDF (install_config.pdf) and postscript
(install_config.ps) formats.

Common Programming Error 25.1
Class LocalizableMessage throws a javax.fma.util.LocalizableMes-
sage.LocalizationError if the resource file does not exist, the location of the re-
source file is not correct or the resource file does not contain the message key. 25.1

Software Engineering Observation 25.3
Starting Jiro with the Clean before start checkbox checked clears the log messages. 25.3

25.6.4 Scheduling Service

The scheduling service schedules tasks that to be performed at future times. The scheduling
service provides methods to schedule tasks at specific times, repeatedly for a specific du-
ration or repeatedly according to calendar dates.

Class PrinterManagementImpl (Fig. 25.5) uses the scheduling service to
schedule the shutdown of the printer during the week, from Friday at 8PM to Monday at
7AM. Lines 81–82 obtain the scheduling service. All schedules are created by using a fac-
tory method that the scheduling service provides.

 Lines 86–162 create a schedule for two tasks that will be performed based on a cal-
endar date. PrinterManagement performs two tasks: shut down printer on Friday at
8PM and turn on printer on Monday at 7AM. The tasks are performed by two separate
scheduled events. In both cases, method newRepeatedDateSchedule schedules the
events. Method newRepeatedDateSchedule takes eight arguments—a Date that
specifies the date and time on which the task will first be performed; a Date that specifies
the date and time after which no task will be performed; an int array that specifies the
months (0–11) during which the task will be performed; an int array that specifies the
days in a month on which the task will be performed; an int array that specifies the days
in a week on which the task will be performed; an int array that specifies the hours (0–
23) at which the task will be performed; an int array that specifies the minutes (0–59) at
which the task will be performed; and a TimeZone that specifies the time zone in which
the task will be performed. If any of the arguments are null, an IllegalArgument-
Exception occurs.

1 Event = {0} event occurred on {1}.
2 TurnOffPrinter = Turn off the printer.
3 TurnOnPrinter = Turn on the printer.

Fig. 25.9Fig. 25.9Fig. 25.9Fig. 25.9 PrinterManagementImpl.properties file.

1392 Jiro Chapter 25

Method newRepeatedDateSchedule returns a Schedule object. Lines 102–
106 and 160–162 of PrinterManagementImpl create the message descriptions for
each schedule created. These descriptions are passed to method scheduleTask to
schedule the task. Method scheduleTask takes five arguments—a task that implements
RemoteEventListener, a LocalizableMessage that describes the task, a
Schedule on which the task runs, an int that states the late-performance policy and a
MarshalledObject that the scheduling service passes to the task listener when the
scheduled event is fired. In our case, the MarshalledObject will be a String object
that describes what task the dynamic service should perform. The task, the description of
the task and the schedule of the task cannot be null, otherwise an IllegalArgument-
Exception occurs. The late-performance policy specifies those tasks that must be per-
formed upon restarting if a scheduling service misses scheduled tasks, such as during
system shut down or for any reason that renders the service inoperable. There are three
choices for the late performance policy—SchedulingService.NONE indicates no
late performances, SchedulingService.ONE indicates one late performance and
SchedulingService.ALL indicates the maximum integer value of Integer worth
of late performances. If the policy is set to NONE, then late performances are not allowed.
If the policy is set to ONE, then only one late performance is allowed. If the policy is set to
ALL, then all late performances are allowed. Method scheduleTask returns a Ticket
object that can be used later to cancel the task.

A listener that implements the RemoteEventListener interface is required to
schedule tasks. At the scheduled times, the scheduling service calls method notify of
classes implementing interface RemoteEventListener. The implementation of
method notify performs or delegates the tasks received. Class PrinterEventLis-
tener (Fig. 25.6) is the RemoteEventListener in this example.

25.7 Dynamic Service Deployment
Various command-line tools provided by Jiro facilitate the complicated task of dynamic
service deployment.

The first step in deploying our dynamic service is to generate a proxy for our dynamic
services. Generating a proxy creates the entry-point object that is remotely accessible to cli-
ents. The proxy also is responsible for instantiating the dynamic service each time the proxy
constructor is called. Jiro provides two tools to generate the proxy for a dynamic service—
jiroc and jirocw (available in the bin directory of the Jiro SDK installation). The
jiroc tool is a GUI tool to generate the proxy, while the jirocw tool is a command-line
tool to generate the proxy. These tools are available in the bin directory of the Jiro SDK
installation. To generate the proxy with jirocw, first compile the interface and imple-
mentation of the service (PrinterManagement.java and PrinterManage-
mentImpl.java). These examples are compiled under Windows 2000. For instructions
on how to compile under different operating systems, please refer to Java documentation.
We assume that the JiroSDK was installed at the location c:\jirosdk.

You will need to set a JIRO_CLASSPATH environment variable. This variable con-
tains the path to all necessary JAR files located in the JiroSDK\lib directory—jini-
core.jar, jini-ext.jar, jiro.jar, and jiro-tools.jar. For the Windows
2000 environment, the following command line sets the JIRO_CLASSPATH:

Chapter 25 Jiro 1393

set JIRO_CLASSPATH=
 c:\jirosdk\lib\jini-core.jar;
 c:\jirosdk\lib\jini-ext.jar;
 c:\jirosdk\lib\jiro.jar;
 c:\jirosdk\lib\jiro-tools.jar

[Note: You can also set this environment variable permanently, so you do not need to type
the preceding command in each new command window.] The following command lines
compile the necessary files for our case study:

javac -classpath .;%JIRO_CLASSPATH% com\deitel\
 advjhtp1\jiro\DynamicService\common*.java

javac -classpath .;%JIRO_CLASSPATH% com\deitel\
 advjhtp1\jiro\DynamicService\printer*.java

javac -classpath .;%JIRO_CLASSPATH% com\deitel\
 advjhtp1\jiro\DynamicService\service*.java

PrinterManagement.class should now exist. Next, use command jirocw to gen-
erate the dynamic-service entry-point-object proxy file5:

jirocw com.deitel.advjhtp1.jiro.DynamicService.service.
 PrinterManagementImpl

The resulting file (PrinterManagementProxy.java) is located in the com\dei-
tel\advjhtp1\jiro\DynamicService\service directory. Next, compile the
newly generated proxy file with the command:

javac -classpath .;%JIRO_CLASSPATH% com\deitel\
 advjhtp1\jiro\DynamicService\service\
 PrinterManagementImplProxy.java

PrinterManagement subscribes PrinterEventListener as an observer listener,
therefore it must implement RemoteEventListener which uses RMI to deliver
events. Generate the proxy stub for RemoteEventListener with the following com-
mand line:

rmic -classpath .;%JIRO_CLASSPATH% com.deitel.
 advjhtp1.jiro.DynamicService.service.PrinterEventListener

The next step involves creating a deployment JAR file that will contain all of our dynamic
service’s class files, plus all related properties files. The following command line generates
a JAR file called PrinterManagementService.jar:

jar -cvf PrinterManagementService.jar
 com\deitel\advjhtp1\jiro\DynamicService\common*.class
 com\deitel\advjhtp1\jiro\DynamicService\printer*.class
 com\deitel\advjhtp1\jiro\DynamicService\service*.class
 com\deitel\advjhtp1\jiro\DynamicService\service\resources\
 *.properties

5. The root directory (in this case c:\) must be in CLASSPATH, because jirocw does not include
a classpath parameter option.

1394 Jiro Chapter 25

We must create an interface JAR file. The interface JAR file contains all the interfaces that
a dynamic service implements plus the classes these interfaces depend on:

jar -cvf PrinterManagementService-ifc.jar
 com\deitel\advjhtp1\jiro\DynamicService\service\
 PrinterManagement.class
 com\deitel\advjhtp1\jiro\DynamicService\service\
 PrinterManagementImplProxy.class

We also must create a download JAR file. The download JAR file contains all the classes
that the clients of the dynamic service might need to load dynamically:

jar -cvf PrinterManagementService-dl.jar
 com\deitel\advjhtp1\jiro\DynamicService\service\
 PrinterManagement.class
 com\deitel\advjhtp1\jiro\DynamicService\service\
 PrinterManagementImplProxy.class

Finally, we must create an implementation JAR file. The implementation JAR file contains
all the classes required to run the dynamic service.

jar -cvf PrinterManagementService-impl.jar
 com\deitel\advjhtp1\jiro\DynamicService\common*.class
 com\deitel\advjhtp1\jiro\DynamicService\printer*.class
 com\deitel\advjhtp1\jiro\DynamicService\service*.class
 com\deitel\advjhtp1\jiro\DynamicService\service\resources\
 *.properties

At this point, all the files required by the jarpackw tool have been created. The jar-
packw tool creates the JAR files we need to deploy dynamic services. To use the jar-
packw tool, type

jarpackw -pool %JIRO_CLASSPATH%;
 c:\PrinterManagementService.jar
 -ifc PrinterManagementService-ifc.jar
 -impl PrinterManagementService-impl.jar
 -dl PrinterManagementService-dl.jar

The -pool option specifies the path to the source and the JAR files needed to execute the
dynamic service. The -ifc option specifies the interface JAR file. The -impl option
specifies the implementation JAR file. The -dl option specifies the download JAR file.

Finally, jardeploy tool deploys our dynamic service in the specified domain:

jardeploy -station SharedJiroStation -domain domainName
 -impl PrinterManagementService-impl.jar
 -dl PrinterManagementService-dl.jar -verbose -inventory

where domainName is the domain name in which to deploy our dynamic service. The com-
mand-line option station specifies the deployment station name. In this case, Shared-
JiroStation is the default name given to the Jiro station during installation. The
domain option specifies the management domain on which the station is running. The
impl option specifies the implementation JAR file. The dl option specifies the download
JAR file. The verbose option activates the verbose mode to display status information

Chapter 25 Jiro 1395

on the deployment of the dynamic service. The inventory option prints out the invento-
ry of the station that contains deployed dynamic services.

If deployment is successful, the jardeploy tool displays the deployment results in
the Output panel of the Igniter GUI. Figure 25.10 shows the deployment results.

Common Programming Error 25.2
A DeploymentException with the key "no_point_objects" occurs if an entry-
point class is not found in the deployed JAR. 25.2

25.7.1 Dynamic–Service Usage

Deployment does not instantiate our dynamic service. We must do this by constructing an
instance of the proxy we generated using the jirocw tool. PrinterManagement-
Starter (Fig. 25.11) is a class that remotely instantiates the PrinterManagement-
Impl dynamic service.

A StationAddress identifies the station to which we will connect. The Sta-
tionAddress constructor requires eight arguments—a String that specifies the man-
agement domain on which the station runs, a String that specifies the role of the station,
and six other fields inherited from the ServiceInfo entry.6 Line 35 calls Printer-
ManagementImplProxy constructor. Upon initialization, the Jiro station will register
the proxy stub of PrinterManagementImpl in the Jini lookup service. From this point
forward, all clients use this stub located in the lookup service to access the PrinterMan-
agementImpl instance. Compile class PrinterManagementStarter and execute
it to instantiate the PrinterManagement dynamic service.

6. StationAddress’ fields are used to match Station Proxies registered in the Jini lookup service.
All non null fields are matched exactly. Fields that are null act as wild cards, thus matching
any values. Precisely specifying as many fields as possible is the key to accurate results.

Fig. 25.10Fig. 25.10Fig. 25.10Fig. 25.10 Deployment results.

1396 Jiro Chapter 25

1 // Fig. 25.11 : PrinterManagementStarter.java
2 // This application demonstrates how to obtain the proxies of
3 // a dynamic service.
4 package com.deitel.advjhtp1.jiro.DynamicService.client;
5
6 // Java core package
7 import java.rmi.*;
8
9 // Jiro packages

10 import javax.fma.common.*;
11
12 // Deitel packages
13 import com.deitel.advjhtp1.jiro.DynamicService.service.*;
14
15 public class PrinterManagementStarter {
16
17 // PrinterManagementStarter constructor
18 public PrinterManagementStarter(String domain) {
19
20 PrinterManagement managementProxy;
21
22 // set security manager
23 if (System.getSecurityManager() == null)
24 System.setSecurityManager(new RMISecurityManager());
25
26 // obtain station address
27 StationAddress stationAddress =
28 new StationAddress(domain,
29 null, null, null, null, null, null, null);
30
31 // get the proxies of dynamic services
32 // and start the services
33 try {
34 managementProxy =
35 new PrinterManagementImplProxy(stationAddress);
36 }
37
38 // handle exception getting proxies and starting policies
39 catch (RemoteException exception) {
40 exception.printStackTrace();
41 }
42
43 } // end PrinterManagementStarter constructor
44
45 // method main
46 public static void main(String args[])
47 {
48 String domain = "";
49

Fig. 25.11Fig. 25.11Fig. 25.11Fig. 25.11 PrinterManagementStarter dynamic service instantiator program
(part 1 of 2).

Chapter 25 Jiro 1397

After instantiating the PrinterManagement dynamic service, a reference to the
dynamic service can be obtained through the Jini lookup service. We provide class
DynamicServiceFinder (Fig. 25.12) as a helper class that encapsulates the Jini
lookup service discovery process and the retrieval of services. For details on the Jini lookup
service, Chapter 22.

50 // get the domain name
51 if (args.length != 1) {
52 System.out.println(
53 "Usage: PrinterManagementStarter Domain");
54 System.exit(1);
55 }
56 else
57 domain = args[0];
58
59 PrinterManagementStarter printerManagementStarter =
60 new PrinterManagementStarter(domain);
61
62 } // end main method
63 }

1 // DynamicServiceFinder.java
2 // This class discovers lookup services and
3 // gets dynamic service proxy.
4 package com.deitel.advjhtp1.jiro.DynamicService.common;
5
6 // Java core packages
7 import java.rmi.*;
8 import java.io.*;
9

10 // Jini core packages
11 import net.jini.core.entry.Entry;
12 import net.jini.core.lookup.*;
13
14 // Jini extension packages
15 import net.jini.discovery.*;
16 import net.jini.lookup.entry.ServiceInfo;
17
18 // Jiro packages
19 import javax.fma.util.*;
20
21 public class DynamicServiceFinder
22 implements DiscoveryListener {
23
24 private int servicesFound = 0;
25 private ServiceRegistrar[] registrars;
26 private Entry[] entries;
27

Fig. 25.12Fig. 25.12Fig. 25.12Fig. 25.12 Finds dynamic service proxies within a lookup service (part 1 of 3).

Fig. 25.11Fig. 25.11Fig. 25.11Fig. 25.11 PrinterManagementStarter dynamic service instantiator program
(part 2 of 2).

1398 Jiro Chapter 25

28 // DynamicServiceFinder constructor
29 public DynamicServiceFinder (
30 String domain, Entry[] serviceEntries)
31 {
32 System.setSecurityManager(new RMISecurityManager());
33
34 entries = serviceEntries;
35 LookupDiscovery lookupDiscovery = null;
36
37 // discover lookup services
38 try {
39 lookupDiscovery = new LookupDiscovery(
40 new String[] { domain });
41 }
42
43 // catch the IOException
44 catch (IOException exception) {
45 Debug.debugException(
46 "discover lookup service", exception);
47 }
48
49 // install a listener
50 lookupDiscovery.addDiscoveryListener (this);
51
52 // wait until woken up by notification
53 try {
54
55 synchronized (this) {
56 wait();
57 }
58 }
59
60 // handle exception waiting for notification
61 catch (Exception exception) {
62 Debug.debugException(
63 "wait for lookup service", exception);
64 }
65
66 } // end DynamicServiceFinder constructor
67
68 // discover new lookup services
69 public void discovered(DiscoveryEvent event)
70 {
71 // get the proxy registrars for those services
72 registrars = event.getRegistrars();
73
74 // wake up all waiting threads
75 synchronized (this) {
76 notifyAll();
77 }
78 }
79

Fig. 25.12Fig. 25.12Fig. 25.12Fig. 25.12 Finds dynamic service proxies within a lookup service (part 2 of 3).

Chapter 25 Jiro 1399

The DynamicServiceFinder constructor (lines 29–66) uses multicast request
protocol to discover all Jini lookup services in the network. The constructor blocks until the
first Jini lookup service is discovered. The constructor achieves the blocking behavior by
calling method wait (line 56). Method discovered (lines 69–78) is called when a
lookup service is discovered. This calls method notifyAll (line 76) to allow the con-
structor to continue execution. Method getService (lines 84–102) returns all matching
entries from the first lookup service found.7

Class PrinterClientGUI (Fig. 25.13) demonstrates remote method calls to the
dynamic service. Our constructor (lines 48–160) takes one argument that specifies the man-
agement domain. Lines 271–274 register RemoteEventListenerImpl as an observer
listener with the event service. Lines 275–276 create a lease renewal manager that renews
the lease granted to the listener. RemoteEventListenerImpl receives all notifica-
tions of topic ".Printer.Error". Note that RemoteEventListenerImpl is a
convenience class provided by Jiro. It is a simple remote event listener implementation
available to both clients and Jiro stations. This eliminates the need for dynamic class
loading. Lines 66–75 define the upper panel (the printer status panel) of the GUI. Lines 78–
110 define the middle panel (the button panel) of the GUI, which contains two buttons—
Check Status and Cancel Pending Print Jobs. Lines 113–122 define the lower panel
(the event panel) of the GUI, which displays the printer events. Lines 135–158 define a
window listener for the output window. When the window is closed, the observer listener
is released and the scheduled task is cancelled.

80 // discover invalid lookup services
81 public void discarded(DiscoveryEvent event) {}
82
83 // get dynamic service proxy
84 public Object getService()
85 {
86 // search lookup service to get dynamic service proxy
87 try {
88 ServiceTemplate template = new ServiceTemplate(
89 null, null, entries);
90 Object service = registrars[0].lookup(template);
91
92 return service;
93 }
94
95 // handle exception getting dynamic service proxy
96 catch (Exception exception) {
97 Debug.debugException("getting proxy", exception);
98 }
99
100 return null;
101
102 } // end method getService
103 }

7. Please note that in our example, line 90 makes the assumption that only one Jini lookup service
exists in the network. In some cases, multiple Jini lookup services may exist.

Fig. 25.12Fig. 25.12Fig. 25.12Fig. 25.12 Finds dynamic service proxies within a lookup service (part 3 of 3).

1400 Jiro Chapter 25

Method checkStatusButtonAction (lines 163–226) displays the printer’s
status to the status panel when Check Status button is clicked. Lines 175–188 call the
proxy’s methods to get the current status of the printer. Lines 197–224 process the infor-
mation obtained and display it in the status panel.

Method cancelJobsButtonAction (lines 229–241) executes when the user
clicks the Cancel Pending Print Jobs button. Line 233 invokes the proxy’s cancel-
PendingPrintJobs method to cancel pending print jobs.

Method getPrinterManagementProxy (lines 244–260) obtains a proxy refer-
ence to the PrinterManagement dynamic service. This reference enables us to invoke
methods on the PrinterManagement dynamic service.

1 // Fig. 25.13: PrinterClientGUI.java
2 // This application demonstrates how to obtain the proxy of
3 // a dynamic service and management policies, and call methods
4 // of the dynamic service.
5 package com.deitel.advjhtp1.jiro.DynamicService.client;
6
7 // Java core packages
8 import java.rmi.*;
9 import java.io.*;

10 import java.awt.*;
11 import java.awt.event.*;
12 import java.util.*;
13 import java.net.*;
14
15 // Java standard extensions
16 import javax.swing.*;
17
18 // Jini core package
19 import net.jini.core.lease.Lease;
20 import net.jini.core.event.*;
21 import net.jini.core.entry.Entry;
22
23 // Jini extension package
24 import net.jini.lease.LeaseRenewalManager;
25 import net.jini.lookup.entry.*;
26
27 // Jiro packages
28 import javax.fma.common.*;
29 import javax.fma.services.*;
30 import javax.fma.services.event.EventService;
31 import com.sun.jiro.util.*;
32
33 // Deitel packages
34 import com.deitel.advjhtp1.jiro.DynamicService.common.*;
35 import com.deitel.advjhtp1.jiro.DynamicService.service.*;
36
37 public class PrinterClientGUI extends JFrame
38 implements RemoteEventListener {
39
40 private PrinterManagement printerManagementProxy;

Fig. 25.13Fig. 25.13Fig. 25.13Fig. 25.13 Management console user interface (part 1 of 7).

Chapter 25 Jiro 1401

41 private JTextArea printerStatusTextArea =
42 new JTextArea();
43 private JTextArea printerEventTextArea =
44 new JTextArea();
45 private Lease observerLease;
46 private LeaseRenewalManager leaseRenewalManager;
47
48 public PrinterClientGUI(String domain)
49 {
50 super("JIRO Printer Management Example");
51
52 // set security manager
53 if (System.getSecurityManager() == null)
54 System.setSecurityManager(new RMISecurityManager());
55
56 // obtain reference to proxy
57 printerManagementProxy =
58 getPrinterManagementProxy(domain);
59
60 // subscribe to event service as an observer listener
61 subscriberObserver(domain);
62
63 Container container = getContentPane();
64
65 // status panel
66 JPanel printerStatusPanel = new JPanel();
67 printerStatusPanel.setPreferredSize(
68 new Dimension(512, 200));
69 JScrollPane statusScrollPane = new JScrollPane();
70 statusScrollPane.setAutoscrolls(true);
71 statusScrollPane.setPreferredSize(
72 new Dimension(400, 150));
73 statusScrollPane.getViewport().add(
74 printerStatusTextArea, null);
75 printerStatusPanel.add(statusScrollPane, null);
76
77 // buttons panel
78 JPanel buttonPanel = new JPanel();
79 buttonPanel.setPreferredSize(
80 new Dimension(512, 200));
81
82 // define action for Check Status button
83 JButton checkStatusButton =
84 new JButton("Check Status");
85 checkStatusButton.addActionListener(
86
87 new ActionListener() {
88
89 public void actionPerformed(ActionEvent event) {
90 checkStatusButtonAction(event);
91 }
92 }
93);

Fig. 25.13Fig. 25.13Fig. 25.13Fig. 25.13 Management console user interface (part 2 of 7).

1402 Jiro Chapter 25

94
95 // define action for Remove Jammed Paper button
96 JButton cancelJobsButton = new JButton(
97 "Cancel Pending Print Jobs");
98 cancelJobsButton.addActionListener(
99
100 new ActionListener() {
101
102 public void actionPerformed(ActionEvent event) {
103 cancelJobsButtonAction(event);
104 }
105 }
106);
107
108 // add three buttons to the panel
109 buttonPanel.add(checkStatusButton, null);
110 buttonPanel.add(cancelJobsButton, null);
111
112 // events panel
113 JPanel printerEventPanel = new JPanel();
114 printerEventPanel.setPreferredSize(
115 new Dimension(512, 200));
116 JScrollPane eventsScrollPane = new JScrollPane();
117 eventsScrollPane.setAutoscrolls(true);
118 eventsScrollPane.setPreferredSize(
119 new Dimension(400, 150));
120 eventsScrollPane.getViewport().add(
121 printerEventTextArea, null);
122 printerEventPanel.add(eventsScrollPane, null);
123
124 // initialize the text
125 printerStatusTextArea.setText("Printer Status: ---\n");
126 printerEventTextArea.setText("Events: --- \n");
127
128 // put all the panels together
129 container.add(printerStatusPanel, BorderLayout.NORTH);
130 container.add(printerEventPanel, BorderLayout.SOUTH);
131 container.add(buttonPanel, BorderLayout.CENTER);
132
133 // release observer listener and cancel scheduled task
134 // when window closing
135 addWindowListener(
136
137 new WindowAdapter() {
138
139 public void windowClosing(WindowEvent event)
140 {
141 // release listener and cancel scheduled task
142 try {
143 leaseRenewalManager.remove(observerLease);
144 }
145

Fig. 25.13Fig. 25.13Fig. 25.13Fig. 25.13 Management console user interface (part 3 of 7).

Chapter 25 Jiro 1403

146 // handle exception releasing observer listener
147 catch (Exception exception) {
148 exception.printStackTrace();
149 }
150
151 // terminate the program
152 System.exit(0);
153
154 } // end method windowClosing
155
156 } // end WindowAdapter constructor
157
158); // end addWindowListener
159
160 } // end PrinterManagementGUI constructor
161
162 // check print status
163 public void checkStatusButtonAction(ActionEvent event)
164 {
165 boolean isOnline = false;
166 boolean isPaperJam = false;
167 boolean isPrinting = false;
168 int paperRemaining = 0;
169 String[] pendingJobs = null;
170
171 // manage printer remotely
172 try {
173
174 // check if the printer is on line
175 isOnline = printerManagementProxy.isOnline();
176
177 // check if the printer is paper jammed
178 isPaperJam = printerManagementProxy.isPaperJam();
179
180 // check if the printing is pringint
181 isPrinting = printerManagementProxy.isPrinting();
182
183 // get the paper tray
184 paperRemaining = printerManagementProxy.getPaperInTray();
185
186 // get pending jobs
187 pendingJobs =
188 printerManagementProxy.getPendingPrintJobs();
189 }
190
191 // handle exception calling dynamic service methods
192 catch (Exception exception) {
193 exception.printStackTrace();
194 }
195

Fig. 25.13Fig. 25.13Fig. 25.13Fig. 25.13 Management console user interface (part 4 of 7).

1404 Jiro Chapter 25

196 // status for the online condition
197 if (isOnline)
198 printerStatusTextArea.append(
199 "\nPrinter is ONLINE.\n");
200 else
201 printerStatusTextArea.append(
202 "\nPrinter is OFFLINE.\n");
203
204 // status for the paper jam condition
205 if (isPaperJam)
206 printerStatusTextArea.append("Paper jammed.\n");
207 else
208 printerStatusTextArea.append("No Paper Jam.\n");
209
210 // status for the printing condition
211 if (isPrinting)
212 printerStatusTextArea.append(
213 "Printer is currently printing.\n");
214 else
215 printerStatusTextArea.append(
216 "Printer is not printing.\n");
217
218 // status for paper tray condition
219 printerStatusTextArea.append("Printer paper tray has "
220 + paperRemaining + " pages remaining.\n");
221
222 // number of pending jobs
223 printerStatusTextArea.append("Number of pending jobs: "
224 + pendingJobs.length + "\n");
225
226 } // end method checkStatusButtonAction
227
228 // cancel print jobs
229 public void cancelJobsButtonAction(ActionEvent event)
230 {
231 // cancel pending print jobs
232 try {
233 printerManagementProxy.cancelPendingPrintJobs();
234 }
235
236 // handle exception canceling pending print jobs
237 catch (Exception exception) {
238 exception.printStackTrace();
239 }
240
241 } // end method cancelJobsButtonAction
242
243 // get dynamic service proxy
244 public PrinterManagement getPrinterManagementProxy(
245 String domain)
246 {

Fig. 25.13Fig. 25.13Fig. 25.13Fig. 25.13 Management console user interface (part 5 of 7).

Chapter 25 Jiro 1405

247 Entry[] entries = new Entry[] {
248 new ServiceInfo("PrinterManagementImpl",
249 "Deitel Association, Inc.",
250 "Deitel Association, Inc",
251 "1.0", "Model 0", "0.0.0.1")
252 };
253
254 DynamicServiceFinder finder = new DynamicServiceFinder(
255 domain, entries);
256
257 // return dynamic service proxy
258 return (PrinterManagement) finder.getService();
259
260 } // end method getPrinterManagementProxy
261
262 // listener for events
263 public void subscriberObserver(String domain)
264 {
265 // subscribe to printer events
266 try {
267 EventService eventService =
268 ServiceFinder.getEventService(domain);
269
270 // subscribe as an observing listener to certain event
271 RemoteEventListener listener =
272 new RemoteEventListenerImpl(this);
273 observerLease = eventService.subscribeObserver(
274 ".Printer.Error", listener, null, 10 * 60 * 1000);
275 leaseRenewalManager = new LeaseRenewalManager(
276 observerLease, Lease.FOREVER, null);
277 }
278
279 // handle exception subscribing to events
280 catch (Exception exception) {
281 exception.printStackTrace();
282 }
283 }
284
285 // receive notification
286 public void notify(RemoteEvent event)
287 {
288 String output = "\nEVENT: " + (String) event.getSource()
289 + "\n";
290 SwingUtilities.invokeLater(
291 new TextAppender(printerEventTextArea, output));
292 }
293
294 // method main
295 public static void main(String args[])
296 {
297 String domain = "";
298

Fig. 25.13Fig. 25.13Fig. 25.13Fig. 25.13 Management console user interface (part 6 of 7).

1406 Jiro Chapter 25

We would like PrinterClientGUI to receive notifications when printer events
occur. Lines 263–283 subscribe to printer events as an observer listener. The event services
invokes method notify (lines 286–292) when a printer event occurs. Lines 290–291 dis-
play the printer event in the lower panel of the GUI. Lines 318–342 define a private inner
class, TextAppender to append text to the Swing container in a thread-safe manner.

299 // get the domain
300 if (args.length != 1) {
301 System.out.println(
302 "Usage: PrinterClientGUI Domain");
303 System.exit(1);
304 }
305 else
306 domain = args[0];
307
308 PrinterClientGUI client = new PrinterClientGUI(domain);
309 client.setSize(500, 500);
310 client.setVisible(true);
311
312 } // end main method
313
314 // TextAppender appends text to a JTextArea. This Runnable
315 // object should be executed only using SwingUtilities
316 // methods invokeLater or invokeAndWait as it modifies
317 // a live Swing component.
318 private class TextAppender implements Runnable {
319
320 private String text;
321 private JTextArea textArea;
322
323 // TextAppender constructor
324 public TextAppender(JTextArea area, String newText)
325 {
326 text = newText;
327 textArea = area;
328 }
329
330 // display new text in JTextArea
331 public void run()
332 {
333 // append new message
334 textArea.append(text);
335
336 // move caret to end of messageArea to ensure new
337 // message is visible on screen
338 textArea.setCaretPosition(
339 textArea.getText().length());
340 }
341
342 } // end TextAppender inner class
343 }

Fig. 25.13Fig. 25.13Fig. 25.13Fig. 25.13 Management console user interface (part 7 of 7).

Chapter 25 Jiro 1407

Compile PrinterClientGUI.java and all other files in its package directory
with the command:

javac -classpath c:\;c:\jirosdk\lib\jiro.jar
 com\deitel\advjhtp1\jiro\DynamicService\client*.java

Run PrinterManagementStarter to instantiate the PrinterManagement dy-
namic service:

java -cp c:\;c:\jirosdk\lib\jiro.jar
 -Djava.security.policy=policy.all
 com.deitel.advjhtp1.jiro.DynamicService.client.
 PrinterManagementStarter

domainName

where domainName is the domain where we deployed the PrinterManagement dy-
namic service.

Now execute the management console (PrinterClientGUI):

java -cp c:\;c:\jirosdk\lib\jiro.jar
 -Djava.security.policy=policy.all
 com.deitel.advjhtp1.jiro.DynamicService.client.
 PrinterClientGUI

domainName

Figure 25.14 shows the resulting output when the user clicks the Check Status button.

Fig. 25.14Fig. 25.14Fig. 25.14Fig. 25.14 Checking printer status.

1408 Jiro Chapter 25

Figure 25.15 shows the output on the Igniter tool display window after an out-of-
paper event occurs.

Figure 25.16 shows the corresponding output on the PrinterClientGUI window
after it receives notification of an out-of-paper event.

Fig. 25.15Fig. 25.15Fig. 25.15Fig. 25.15 Igniter showing printer out-of-paper event.

Fig. 25.16Fig. 25.16Fig. 25.16Fig. 25.16 PrinterClientGUI showing printer out-of-paper event.

Chapter 25 Jiro 1409

We designed this case study to report exceptions using method debugException
from class Debug. Jiro includes the tools viewdbg and viewdbgw that provide access
to the debug files. Whenever an exception occurs, the Igniter error panel displays the loca-
tion and filename that contains the debug information. The full path name for debug files
usually follows the following format:

FMA_number\xnumber.debug

where number represents a number that identifies the debug message.
To view a debug error message, type

viewdbg path\filename.debug

or

viewdbgw path\filename.debug

where path and filename are the path and name of the file which contains the debug in-
formaiton.

25.8 Management Policies
The dynamic service we have developed is capable of many tasks. Unfortunately, one task
it cannot perform is handling events autonomously. Management policies define how
events that occur in a network should be handled. Management policies in Jiro are defined
as dynamic services. Developers can customize such dynamic services to respond to events
without system-administrator intervention. By defining management policies, network ad-
ministrators are free to deal exclusively with important events that cannot be automated.

In our example, we would like to use the following management policy

Printers should always have paper and toner.

Each management policy should have a single well-defined task. The preceding manage-
ment policy has two tasks—the printer must always have paper and must always have ton-
er. In this case, we should break up the preceding management policy for our printer
example into two smaller management policies:

Printers should always have paper.

and

Printers should always have toner.

The proper definition of a policy gives network administrators fine-grained control over
how to manage a network. Furthermore, distributing the management policy to a set of dy-
namic services allows network administrators to replace and extend individual policies.

Our printer-management example will use two policies to enhance our network-man-
agement solution. Class OutofPaperPolicyImpl defines the policy, “Printers should
always have paper.” OutofPaperPolicy (Fig. 25.17) exposes the interface for our out
of paper policy dynamic service.

Class OutofPaperPolicyImpl (Fig. 25.18) implements OutofPaperPolicy.
Lines 65–68 register class PrinterEventListener with the event service as a respon-

1410 Jiro Chapter 25

sible listener. Method subscribeResponsibleBefore takes six arguments—the
event topic to which this event listener will respond, the responsible listener in front of
which to place our responsible listener (null will cause the listener to be placed at the
front of the responsible listener list), the subscriber that is the listener we are attempting to
register, the object that the event service passes to the listener with each event (may be
null) and the lease length (which represents the length for which this listener is requesting
to be active). The method returns a Lease object representing the amount of time the event
service granted to the listener. To keep our listener active for a longer period than the event
service grants, we must renew the lease using a LeaseRenewalManager. Lines 71–72
renew our listener’s lease with Lease.FOREVER. Constructor LeaseRenewalMan-
ager takes three arguments—a reference to the lease that will be renewed, the desired
expiration for the lease and the lease listener that will receive notifications if exceptions
occur during lease renewal (may be null).

Method stopPolicy exposes the stop operation on the out-of-paper policy. Clients
may call method stopPolicy to halt the OutofPaperPolicy dynamic service exe-
cution. Line 96 cancels the lease on the LeaseRenewalManager object by passing as
an argument the lease object to expire. Method notify receives events from the Print-
erEventListener. Line 121 obtains the source object, which contains information per-
taining to the entity that triggered the event. Line 134 verifies that the source object is an
instance of String. If it is not, we know that the event was not fired by our printer. In this
case, line 136 throws a NotHandledException that causes the event service to con-
tinue propagating the event to its internal list of listeners. If the source object is a String,
we verify that the String is of the format that our printer implementation fires (lines 143–
144). Line 153 calls method addPaper in the entry-point object of the PrinterMan-
agement dynamic service. Lines 156–172 log a message describing the action taken when
handling the out-of-paper event. Lines 200–216 define method getPrinterManage-
mentProxy, which uses our DynamicServiceFinder helper class to find a previ-
ously initialized proxy stub for the PrinterManagement dynamic service. Lines 219–
228 define method getLookupEntries, which is required for all entry-point objects of
a dynamic service.

1 // OutofPaperPolicy.java
2 // This class defines the interface for the dynamic service.
3 package com.deitel.advjhtp1.jiro.DynamicService.policy;
4
5 // Java core package
6 import java.rmi.*;
7 import java.util.*;
8
9 // Jini core package

10 import net.jini.core.event.*;
11
12 public interface OutofPaperPolicy extends RemoteEventListener {
13
14 public void stopPolicy() throws RemoteException;
15 }

Fig. 25.17Fig. 25.17Fig. 25.17Fig. 25.17 OutofPaperPolicy interface.

Chapter 25 Jiro 1411

1 // OutofPaperPolicyImpl.java
2 // Handles events generated by printer by registering
3 // as a responsible listener
4 package com.deitel.advjhtp1.jiro.DynamicService.policy;
5
6 // Java core packages
7 import java.io.Serializable;
8 import java.rmi.*;
9 import java.util.*;

10
11 // Java standard extensions
12 import javax.swing.*;
13
14 // Jini core packages
15 import net.jini.core.event.*;
16 import net.jini.core.entry.*;
17 import net.jini.core.lease.*;
18
19 // Jini extension packages
20 import net.jini.lease.LeaseRenewalManager;
21 import net.jini.lookup.entry.*;
22
23 // Jiro packages
24 import javax.fma.services.ServiceFinder;
25 import javax.fma.services.event.*;
26 import javax.fma.services.log.*;
27 import javax.fma.util.*;
28 import javax.fma.common.*;
29 import javax.fma.server.*;
30
31 // Deitel packages
32 import com.deitel.advjhtp1.jiro.DynamicService.service.*;
33 import com.deitel.advjhtp1.jiro.DynamicService.common.*;
34
35 public class OutofPaperPolicyImpl
36 implements OutofPaperPolicy {
37
38 private Lease listenerLease;
39 private LeaseRenewalManager leaseRenewalManager;
40
41 private LogService logService;
42 private PrinterEventListener listener;
43 private PrinterManagement printerManagementProxy;
44
45 // OutofPaperPolicyImpl constructor
46 public OutofPaperPolicyImpl()
47 {
48 // subscribe as an responsible listener to certain event
49 listener = new PrinterEventListener(this);
50

Fig. 25.18Fig. 25.18Fig. 25.18Fig. 25.18 OutofPaperPolicy implementation (part 1 of 5).

1412 Jiro Chapter 25

51 // start the OutofPaper management policy
52 try {
53
54 // obtain referrence to dynamic service entry point
55 printerManagementProxy = getPrinterManagementProxy();
56
57 // obtain referrence to log service
58 logService = ServiceFinder.getLogService();
59
60 // obtain referrence to log service
61 EventService eventService =
62 ServiceFinder.getEventService();
63
64 // subscribe as responsible listener
65 listenerLease =
66 eventService.subscribeResponsibleBefore(
67 ".Printer.Error.OutofPaper", null, listener,
68 "OutofPaperEventListener", null, Lease.FOREVER);
69
70 // renew lease indefinitely
71 leaseRenewalManager = new LeaseRenewalManager(
72 listenerLease, Lease.FOREVER, null);
73
74 } // end try
75
76 // handle exception starting policy
77 catch (Exception exception) {
78 System.out.println("OutofPaperPolicyImpl: " +
79 "Exception occurred when starting policy.");
80 System.out.println("Please read debug file ... \n");
81 Debug.debugException(
82 "starting LowTonerPolicy", exception);
83 }
84
85 System.out.println("OutofPaperPolicyImpl: started.");
86
87 } // end OutofPaperPolicyImpl constructor
88
89 // stop OutofPaperPolicyImpl
90 public void stopPolicy()
91 {
92 // stopping OutofPaper management policy
93 try {
94
95 // expire lease
96 leaseRenewalManager.cancel(listenerLease);
97 System.out.println("OutofPaperPolicyImpl: stopping.");
98 }
99
100 // handle exception canceling lease
101 catch (Exception exception) {
102 System.out.println("OutofPaperPolicyImpl: " +
103 "Exception occurred when canceling lease.");

Fig. 25.18Fig. 25.18Fig. 25.18Fig. 25.18 OutofPaperPolicy implementation (part 2 of 5).

Chapter 25 Jiro 1413

104 System.out.println("Please read debug file ... \n");
105 Debug.debugException(
106 "stopping OutofPaper policy", exception);
107 }
108 }
109
110 // receive notification calls
111 public void notify(RemoteEvent remoteEvent)
112 throws UnknownEventException, RemoteException,
113 EventNotHandledException
114 {
115 Object sourceObject = null;
116
117 // event source
118 try {
119
120 // get event source
121 sourceObject = remoteEvent.getSource();
122 }
123
124 // handle exception getting event source
125 catch (Exception exception) {
126 System.out.println("OutofPaperPolicyImpl: " +
127 "Exception occurred when getting event source.");
128 System.out.println("Please read debug file ... \n");
129 Debug.debugException(
130 "getting event source", exception);
131 }
132
133 // definitely not from our printer
134 if (!(sourceObject instanceof String)) {
135
136 throw new EventNotHandledException();
137 }
138
139 // obtain String value
140 String source = (String) sourceObject;
141
142 // verify origin of event
143 if (source.equals("com.deitel.advjhtp1.jiro."
144 + "DynamicService.printer.ErrorMessage=OutofPaper")) {
145
146 System.out.println("OutfPaperPolicy: "
147 + "handling OutofPaperEvent...");
148
149 // take action
150 try {
151
152 // replenish paper tray
153 printerManagementProxy.addPaper(50);
154
155 // generate the log message parameters
156 Serializable params[] = new Serializable[2];

Fig. 25.18Fig. 25.18Fig. 25.18Fig. 25.18 OutofPaperPolicy implementation (part 3 of 5).

1414 Jiro Chapter 25

157 params[0] = source;
158 params[1] = new Date();
159
160 // generate localizable message
161 LocalizableMessage localizableMessage =
162 new LocalizableMessage(
163 OutofPaperPolicyImpl.class,
164 "Action", params, Locale.US);
165
166 // generate log message
167 LogMessage logMessage = new LogMessage(
168 localizableMessage, LogMessage.TRACE
169 + ".OutofPaperEvent." + source, null);
170
171 // log action message
172 logService.log(logMessage);
173
174 } // end try
175
176 // handle exception posting log message
177 catch (Exception exception) {
178 System.out.println("OutofPaperPolicyImpl: " +
179 "Exception occurred when posting log message.");
180 System.out.println("Please read debug file ...\n");
181 Debug.debugException("log service", exception);
182 }
183
184 } // end if
185
186 // not event from our printer
187 else {
188
189 System.out.println("OutfPaperPolicy: " +
190 " NOT handling OutofPaperEvent...");
191
192 // responsible listener requirement
193 // when not handling event.
194 throw new EventNotHandledException();
195 }
196
197 } // end method notify
198
199 // get dynamic services proxies
200 public PrinterManagement getPrinterManagementProxy()
201 {
202 Entry[] entries = new Entry[] {
203 new ServiceInfo("PrinterManagementImpl",
204 "Deitel Association, Inc.",
205 "Deitel Association, Inc",
206 "1.0", "Model 0", "0.0.0.1")
207 };
208

Fig. 25.18Fig. 25.18Fig. 25.18Fig. 25.18 OutofPaperPolicy implementation (part 4 of 5).

Chapter 25 Jiro 1415

OutofPaperPolicyImpl requires a properties file to log messages through
the log service. See Section 25.6.3 for information on how to create the properties file.
Fig. 25.19 shows the contents of that file.

LowTonerPolicy (Fig. 25.20) defines the interface for our second management
policy, “Printers should always have toner.” The implementation details are similar to those
of management policy OutofPaperPolicyImpl (Fig. 25.18). The differences
between the two management policy implementations occur in the information that is
logged by the log service and the actions taken when handling events. Fig. 25.20 shows the
interface for the LowTonerPolicy dynamic service. Figure 25.21 shows the implemen-
tation for LowTonerPolicyImpl.

209 String domain = System.getProperty("javax.fma.domain");
210 DynamicServiceFinder finder =
211 new DynamicServiceFinder(domain, entries);
212
213 // return proxy
214 return (PrinterManagement) finder.getService();
215
216 } // end method getPrinterManagementProxy
217
218 // defines class as dynamic service during deployment
219 private Entry[] getLookupEntries()
220 {
221 return (new Entry[] {
222 new ServiceInfo("OutofPaperPolicyImpl",
223 "Deitel Association, Inc.",
224 "Deitel Association, Inc",
225 "1.0", "Model 0", "0.0.0.1")
226 }
227);
228 }
229 }

1 Action = Added paper to {0} on {1}.

Fig. 25.19Fig. 25.19Fig. 25.19Fig. 25.19 OutofPaperPolicyImpl.properties property file for
OutofPaperPolicyImpl.

1 // Fig. 25.20 : LowTonerPolicy.java
2 // This class defines the interface for the dynamic service.
3 package com.deitel.advjhtp1.jiro.DynamicService.policy;
4
5 // Java core package
6 import java.rmi.*;
7 import java.util.*;
8

Fig. 25.20Fig. 25.20Fig. 25.20Fig. 25.20 Low toner policy interface (part 1 of 2).

Fig. 25.18Fig. 25.18Fig. 25.18Fig. 25.18 OutofPaperPolicy implementation (part 5 of 5).

1416 Jiro Chapter 25

LowTonerPolicyImpl also requires a properties file to log messages through
the log service. See Section 25.6.3 for information on how to create the properties file.
Figure 25.22 shows the contents of that file.

9 // Jini core package
10 import net.jini.core.event.*;
11
12 public interface LowTonerPolicy extends RemoteEventListener {
13
14 public void stopPolicy() throws RemoteException;
15 }

1 // LowTonerPolicyImpl.java
2 // Handles events generated by printer by registering
3 // as a responsible listener
4 package com.deitel.advjhtp1.jiro.DynamicService.policy;
5
6 // Java core packages
7 import java.io.Serializable;
8 import java.rmi.*;
9 import java.util.*;

10
11 // Java standard extensions
12 import javax.swing.*;
13
14 // Jini core packages
15 import net.jini.core.event.*;
16 import net.jini.core.entry.*;
17 import net.jini.core.lease.*;
18
19 // Jini extension packages
20 import net.jini.lease.LeaseRenewalManager;
21 import net.jini.lookup.entry.*;
22
23 // Jiro packages
24 import javax.fma.services.*;
25 import javax.fma.services.event.*;
26 import javax.fma.services.log.*;
27 import javax.fma.util.*;
28 import javax.fma.common.*;
29 import javax.fma.server.*;
30
31 // Deitel packages
32 import com.deitel.advjhtp1.jiro.DynamicService.service.*;
33 import com.deitel.advjhtp1.jiro.DynamicService.common.*;
34
35 public class LowTonerPolicyImpl
36 implements LowTonerPolicy {
37
38 private Lease listenerLease;

Fig. 25.21Fig. 25.21Fig. 25.21Fig. 25.21 Low toner policy implementation (part 1 of 5).

Fig. 25.20Fig. 25.20Fig. 25.20Fig. 25.20 Low toner policy interface (part 2 of 2).

Chapter 25 Jiro 1417

39 private LeaseRenewalManager leaseRenewalManager;
40
41 private LogService logService;
42 private PrinterEventListener listener;
43 private PrinterManagement printerManagementProxy;
44
45 // LowTonerPolicyImpl constructor
46 public LowTonerPolicyImpl()
47 {
48 // subscribe as an responsible listener to certain event
49 listener = new PrinterEventListener(this);
50
51 // start the LowToner management policy
52 try {
53
54 // obtain referrence to dynamic service entry point
55 printerManagementProxy = getPrinterManagementProxy();
56
57 // obtain referrence to log service
58 logService = ServiceFinder.getLogService();
59
60 // obtain referrence to log service
61 EventService eventService =
62 ServiceFinder.getEventService();
63
64 // subscribe as responsible listener
65 listenerLease =
66 eventService.subscribeResponsibleBefore(
67 ".Printer.Error.LowToner", null, listener,
68 "LowTonerEventListener", null, Lease.FOREVER);
69
70 // renew lease indefinitely
71 leaseRenewalManager = new LeaseRenewalManager(
72 listenerLease, Lease.FOREVER, null);
73 }
74
75 // handle exception starting policy
76 catch (Exception exception) {
77 System.out.println("LowTonerPolicyImpl: " +
78 "Exception occurred when starting policy.");
79 System.out.println("Please read debug file ... \n");
80 Debug.debugException(
81 "starting LowTonerPolicyImpl", exception);
82 }
83
84 System.out.println("LowTonerPolicyImpl: started.");
85
86 } // end LowTonerPolicyImpl constructor
87
88 // stop OutofPaperPolicy
89 public void stopPolicy()
90 {

Fig. 25.21Fig. 25.21Fig. 25.21Fig. 25.21 Low toner policy implementation (part 2 of 5).

1418 Jiro Chapter 25

91 // stop the LowToner management policy
92 try {
93
94 // expire lease
95 leaseRenewalManager.cancel(listenerLease);
96 System.out.println("LowTonerPolicyImpl: stopping.");
97 }
98
99 // handle exception canceling lease
100 catch (Exception exception) {
101 System.out.println("LowTonerPolicyImpl: " +
102 "Exception occurred when canceling lease.");
103 System.out.println("Please read debug file ... \n");
104 Debug.debugException(
105 "stopping LowTonerPolicyImpl", exception);
106 }
107 }
108
109 // receive notification calls
110 public void notify(RemoteEvent remoteEvent)
111 throws UnknownEventException, RemoteException,
112 EventNotHandledException
113 {
114 // event source
115 Object sourceObject = null;
116
117 // get event source
118 try {
119 sourceObject = remoteEvent.getSource();
120 }
121
122 // handle exception getting event source
123 catch (Exception exception) {
124 System.out.println("LowTonerPolicyImpl: " +
125 "Exception occurred when getting event source.");
126 System.out.println("Please read debug file ... \n");
127 Debug.debugException(
128 "getting event source", exception);
129 }
130
131 // definitely not from our printer
132 if (!(sourceObject instanceof String)) {
133
134 throw new EventNotHandledException();
135 }
136
137 // obtain String value
138 String source = (String) sourceObject;
139
140 // verify origin of event
141 if (source.equals("com.deitel.advjhtp1.jiro."
142 + "DynamicService.printer.ErrorMessage=LowToner")) {
143

Fig. 25.21Fig. 25.21Fig. 25.21Fig. 25.21 Low toner policy implementation (part 3 of 5).

Chapter 25 Jiro 1419

144 System.out.println(
145 "LowTonerPolicyImpl: handling LowTonerEvent...");
146
147 // take action
148 try {
149
150 // replenish toner cartridge
151 printerManagementProxy.addToner();
152
153 // generate the log message parameters
154 Serializable params[] = new Serializable[2];
155 params[0] = source;
156 params[1] = new Date();
157
158 // generate localizable message
159 LocalizableMessage localizableMessage =
160 new LocalizableMessage(
161 LowTonerPolicyImpl.class, "Action",
162 params, Locale.US);
163
164 // generate log message
165 LogMessage logMessage = new LogMessage(
166 localizableMessage, LogMessage.TRACE
167 + ".LowTonerEvent." + source, null);
168
169 // log action message
170 logService.log(logMessage);
171
172 } // end try
173
174 // handle exception posting log message
175 catch (Exception exception) {
176 System.out.println("LowTonerPolicyImpl:" +
177 "Exception occurred when taking action.");
178 System.out.println("Please read debug file...\n");
179 Debug.debugException("take action", exception);
180 }
181
182 } // end if
183
184 // not event from our printer
185 else {
186 System.out.println("LowTonerPolicyImpl: "
187 + "NOT handling OutofPaperEvent...");
188
189 // responsible listener requirement
190 // when not handling event.
191 throw new EventNotHandledException();
192 }
193
194 } // end method notify
195

Fig. 25.21Fig. 25.21Fig. 25.21Fig. 25.21 Low toner policy implementation (part 4 of 5).

1420 Jiro Chapter 25

25.8.1 Policy–Management Deployment

Before we activate our management policies, we must deploy them. For this example, we
will restart Jiro with the Clean before Start option checked. This ensures that the previ-
ous PrinterManagement dynamic service is not operating when we redeploy the
PrinterManagement dynamic service with our new management policies. We must
follow the same steps shown in Section 25.7 for both management policies. Due to the de-
pendencies between PrinterManagement dynamic service and the management poli-
cies, we will deploy them together.

To deploy the new management solution, review Section 25.7 and perform the fol-
lowing steps:

1. Compile all .java files in the following directories:

196 // get dynamic services proxies
197 public PrinterManagement getPrinterManagementProxy()
198 {
199 Entry[] entries = new Entry[] {
200 new ServiceInfo("PrinterManagementImpl",
201 "Deitel Association, Inc.",
202 "Deitel Association, Inc",
203 "1.0", "Model 0", "0.0.0.1")
204 };
205
206 String domain = System.getProperty("javax.fma.domain");
207 DynamicServiceFinder finder =
208 new DynamicServiceFinder(domain, entries);
209
210 // return proxy
211 return (PrinterManagement) finder.getService();
212
213 } // end method getPrinterManagementProxy
214
215 // defines class as dynamic service during deployment
216 private Entry[] getLookupEntries()
217 {
218 return (new Entry[] {
219 new ServiceInfo("LowTonerPolicyImpl",
220 "Deitel Association, Inc.",
221 "Deitel Association, Inc",
222 "1.0", "Model 0", "0.0.0.1")
223 }
224);
225 }
226 }

1 Action = Added toner to {0} on {1}.

Fig. 25.22Fig. 25.22Fig. 25.22Fig. 25.22 Property file for LowTonerPolicyImpl.

Fig. 25.21Fig. 25.21Fig. 25.21Fig. 25.21 Low toner policy implementation (part 5 of 5).

Chapter 25 Jiro 1421

com\deitel\advjhtp1\jiro\dynamicService\common\
com\deitel\advjhtp1\jiro\dynamicService\printer\
com\deitel\advjhtp1\jiro\dynamicService\service\
com\deitel\advjhtp1\jiro\dynamicService\policy\

2. Generate the proxy .java file using the jirocw tool for the following classes:

com.deitel.advjhtp1.jiro.DynamicService.service.
 PrinterManagementImpl
com.deitel.advjhtp1.jiro.DynamicService.policy.
 OutofPaperPolicyImpl
com.deitel.advjhtp1.jiro.DynamicService.policy.
 LowTonerPolicyImpl

3. Compile the newly generated proxy files:

com\deitel\advjhtp1\jiro\DynamicService\service\
 PrinterManagementImplProxy.java
com\deitel\advjhtp1\jiro\DynamicService\policy\
 OutofPaperPolicyImplProxy.java
com\deitel\advjhtp1\jiro\DynamicService\policy\
 LowTonerPolicyImplProxy.java

4. Use rmic to generate the proxy stub for the :

com.deitel.advjhtp1.jiro.DynamicService.service.
 PrinterEventListener

5. Create PrinterManagementService.jar with the files listed in
Fig. 25.23.

Directory Files

com\deitel\advjhtp1\jiro\DynamicService\common\

DynamicServiceFinder.class

com\deitel\advjhtp1\jiro\DynamicService\printer\

Printer.class

PrinterErrorEvent.class

com\deitel\advjhtp1\jiro\DynamicService\service\

PrinterEventListener.class

PrinterEventListener_Stub.class

PrinterManagement.class

PrinterManagementImpl.class

PrinterManagementImplProxy.class

com\deitel\advjhtp1\jiro\DynamicService\service\resources\

PrinterManagementImpl.properties

Fig. 25.23Fig. 25.23Fig. 25.23Fig. 25.23 Contents of PrinterManagementService.jar (part 1 of 2).

1422 Jiro Chapter 25

6. Create PrinterManagementService-ifc.jar with the files listed in
Fig. 25.24.

7. Create PrinterManagementService-dl.jar with the files listed in
Fig. 25.25.

8. Create PrinterManagementService-impl.jar with the files listed in
Fig. 25.26.

9. Use the jarpackw tool with the command-line arguments in Fig. 25.27.

com\deitel\advjhtp1\jiro\DynamicService\policy\

LowTonerPolicy.class

LowTonerPolicyImpl.class

LowTonerPolicyImplProxy.class

OutofPaperPolicy.class

OutofPaperPolicyImpl.class

OutofPaperPolicyImplProxy.class

com\deitel\advjhtp1\jiro\DynamicService\policy\resources\

LowTonerPolicyImpl.properties

OutofPaperPolicyImpl.properties

Directory Class Files

com\deitel\advjhtp1\jiro\DynamicService\service\

PrinterManagement.class

PrinterManagementImplProxy.class

Fig. 25.24Fig. 25.24Fig. 25.24Fig. 25.24 Contents of PrinterManagementService-ifc.jar

Directory Class Files

com\deitel\advjhtp1\jiro\DynamicService\service\

PrinterManagement.class

PrinterManagementImplProxy.class

Fig. 25.25Fig. 25.25Fig. 25.25Fig. 25.25 Contents of PrinterManagementService-ifc.jar.

Directory Files

Fig. 25.23Fig. 25.23Fig. 25.23Fig. 25.23 Contents of PrinterManagementService.jar (part 2 of 2).

Chapter 25 Jiro 1423

Directory Files

com\deitel\advjhtp1\jiro\DynamicService\common\

DynamicServiceFinder.class

com\deitel\advjhtp1\jiro\DynamicService\printer\

Printer.class

PrinterErrorEvent.class

com\deitel\advjhtp1\jiro\DynamicService\service\

PrinterEventListener.class

PrinterEventListener_Stub.class

PrinterManagement.class

PrinterManagementImpl.class

PrinterManagementImplProxy.class

com\deitel\advjhtp1\jiro\DynamicService\service\resources\

PrinterManagementImpl.properties

com\deitel\advjhtp1\jiro\DynamicService\policy\

LowTonerPolicy.class

LowTonerPolicyImpl.class

LowTonerPolicyImplProxy.class

OutofPaperPolicy.class

OutofPaperPolicyImpl.class

OutofPaperPolicyImplProxy.class

com\deitel\advjhtp1\jiro\DynamicService\policy\resources\

LowTonerPolicyImpl.properties

OutofPaperPolicyImpl.properties

Fig. 25.26Fig. 25.26Fig. 25.26Fig. 25.26 Contents of PrinterManagementService-impl.jar.

Flag Value

–pool

%JIRO_CLASSPATH%

c:\PrinterManagementService.jar

–ifc

PrinterManagementService-ifc.jar

–impl

PrinterManagementService-impl.jar

Fig. 25.27Fig. 25.27Fig. 25.27Fig. 25.27 Command line arguments for jarpackw (part 1 of 2).

1424 Jiro Chapter 25

10. Deploy the dynamic services in the Jiro station using the jardeploy tool with
the command-line arguments in Fig. 25.28.

We have now deployed our two management policies with the PrinterManage-
ment dynamic service. Now we must start our PrinterManagement dynamic service.
Run PrinterManagementStarter (Fig. 25.11) to instantiate the PrinterMan-
agement dynamic service remotely. Next, we will start the deployed management poli-
cies. Class PoliciesStarter (Fig. 25.29) instantiates OutofPaperPolicyImpl
and LowTonerPolicyImpl remotely.

Lines 28–30 define the StationAddress where our management policies should
be instantiated. Lines 34–37 instantiate both management policies—OutofPaper-
Policy and LowTonerPolicy.

–dl

PrinterManagementService-dl.jar

Flag Value

–station

SharedJiroStation

–domain

domainName

–impl

PrinterManagementService-Impl.jar

–dl

PrinterManagementService-dl.jar

–verbose

–inventory

Fig. 25.28Fig. 25.28Fig. 25.28Fig. 25.28 Command line arguments for jardeploy.

1 // Fig. 25.29 : PoliciesStarter.java
2 // This application demonstrates how to obtain the proxies of
3 // management policies.
4 package com.deitel.advjhtp1.jiro.DynamicService.client;
5
6 // Java core package
7 import java.rmi.*;

Fig. 25.29Fig. 25.29Fig. 25.29Fig. 25.29 Management policies instantiating utility (part 1 of 3).

Flag Value

Fig. 25.27Fig. 25.27Fig. 25.27Fig. 25.27 Command line arguments for jarpackw (part 2 of 2).

Chapter 25 Jiro 1425

8
9 // Jiro packages

10 import javax.fma.common.*;
11
12 // Deitel packages
13 import com.deitel.advjhtp1.jiro.DynamicService.policy.*;
14
15 public class PoliciesStarter {
16
17 // PoliciesStarter constructor
18 public PoliciesStarter(String domain) {
19
20 OutofPaperPolicy paperPolicyProxy;
21 LowTonerPolicy tonerPolicyProxy;
22
23 // set security manager
24 if (System.getSecurityManager() == null)
25 System.setSecurityManager(new RMISecurityManager());
26
27 // obtain station address
28 StationAddress stationAddress =
29 new StationAddress(domain,
30 null, null, null, null, null, null, null);
31
32 // get the proxies of management policies
33 try {
34 paperPolicyProxy =
35 new OutofPaperPolicyImplProxy(stationAddress);
36 tonerPolicyProxy =
37 new LowTonerPolicyImplProxy(stationAddress);
38 }
39
40 // handle exception getting proxies and starting policies
41 catch (RemoteException exception) {
42 exception.printStackTrace();
43 }
44
45 } // end PoliciesStarter constructor
46
47 // method main
48 public static void main(String args[])
49 {
50 String domain = "";
51
52 // get the domain name
53 if (args.length != 1) {
54 System.out.println(
55 "Usage: PoliciesStarter Domain");
56 System.exit(1);
57 }
58 else
59 domain = args[0];
60

Fig. 25.29Fig. 25.29Fig. 25.29Fig. 25.29 Management policies instantiating utility (part 2 of 3).

1426 Jiro Chapter 25

To instantiate our PrinterManagement, OutofPaperPolicy and LowTon-
erPolicy dynamic services, we must:

1. Compile PrinterClientGUI, PrinterManagementStarter and Pol-
iciesStarter in the following directory:

com\deitel\advjhtp1\jiro\DynamicService\client\

2. Run class com.deitel.advjhtp1.jiro.DynamicService.cli-
ent.PrinterManagementStarter using a policy.all policy file. You
must include the domainName as an argument to PrinterManagement-
Starter.

3. Run class com.deitel.advjhtp1.jiro.DynamicService.cli-
ent.PoliciesStarter using a policy.all policy file. You must include
the domainName as an argument to PoliciesStarter.

4. Run class com.deitel.advjhtp1.jiro.DynamicService.cli-
ent.PrinterClientGUI using a policy.all policy file. You must in-
clude the domainName as an argument to PrinterClientGUI.

Figure 25.30 shows the output on the Igniter display window when an out-of-paper event
occurs.

61 PoliciesStarter policiesStarter =
62 new PoliciesStarter(domain);
63
64 } // end main method
65 }

Fig. 25.29Fig. 25.29Fig. 25.29Fig. 25.29 Management policies instantiating utility (part 3 of 3).

Fig. 25.30Fig. 25.30Fig. 25.30Fig. 25.30 Igniter displaying out-of-paper event.

Chapter 25 Jiro 1427

Figure 25.31 shows the resulting action by the OutofPaperPolicy dynamic ser-
vice when it receives an out-of-paper event notification.

Figure 25.32 shows the information displayed by the viewlog tool after running the
management policies.

Fig. 25.31Fig. 25.31Fig. 25.31Fig. 25.31 OutofPaperPolicy handling out-of-paper event.

Fig. 25.32Fig. 25.32Fig. 25.32Fig. 25.32 Log contents after events handled by management policies.

1428 Jiro Chapter 25

Figure 25.33 shows the result of double-clicking a message log entry in the viewlog
tool GUI.

25.9 Closing Notes on the Printer Management Solution
The system developed in this chapter has a complex workflow that can be difficult to fol-
low. Obtaining a solid grasp on the workflow of this system is necessary to understand the
elegance of a Jiro solution for network management.

Our system contains several important components. The PrinterManagement
component represents our entry point object. PrinterManagementImpl implements
the core functionality of PrinterManagement. PrinterManagementImpl can
delegate calls to a Printer and return events from a Printer. PrinterManage-
mentImpl is responsible for logging all events it receives from the printer.

Our managed entity is the Printer simulator, which exposes an interface that
PrinterManagement represents. Printer simulates three events and posts them to
the event service with a corresponding topic—".Printer.Error.OutofPaper" or
".Printer.Error.LowToner" or ".Printer.Error.PaperJam". The event
service sends a posted event to all observer listeners (PrinterClientGUI and
PrinterManagementImpl) and the first responsible listener in the event service’s list
of responsible listeners (OutofPaperPolicyImpl’s listener or LowTonerPolicy-
Impl’s listener, depending on the event topic).

Fig. 25.33Fig. 25.33Fig. 25.33Fig. 25.33 Detailed log information for a specified entry.

Chapter 25 Jiro 1429

Classes OutofPaperPolicyImpl and LowTonerPolicyImpl are the man-
agement policy implementations that we deployed to help automate trivial and not-so-
trivial tasks. OutofPaperPolicyImpl registers an instance of Printer-
EventListener (a listener we developed for all printer-related events) as a responsible
listener to handle all events with topic ".Printer.Error.OutofPaper". The event
service sends all OutofPaperEvents from the printer to this instance of Printer-
EventListener, which delegates the event to OutofPaperPolicyImpl. Class
OutofPaperPolicyImpl handles an OutOfPaperEvent by invoking method
addPaper on PrinterManagementImpl, then logs a message through the log ser-
vice reporting which action it took. LowTonerPolicy handles all LowTonerEvents.
LowTonerPolicyImpl’s response to events is similar to that of OutofPaper-
PolicyImpl.

We also created a management console. All events are sent to the management con-
sole PrinterClientGUI, because it registered for events of topic
".Printer.Error". PrinterClientGUI displays all information about each
event it receives. It also enables users to view the printer status at any time and allows
users to cancel pending print jobs, which may be useful when paper-jam events occur. To
cancel print jobs, PrinterClientGUI remotely invokes method cancelPending-
PrintJobs of class PrinterManagementImpl through the shared station.

The resulting system is an automated, self-contained management system that can log
events and respond to those event in an appropriate manner. Figure 25.34 illustrates the
general structure of the application.

The power of the Jiro management solution in this case study is its ability to delegate
responsibilities elegantly and efficiently. Jiro is not limited to bridging the gap between
the system administrator’s console and the device; it extends to providing highly exten-
sible, dynamic management facilities to any network.

25.10 Internet and World Wide Web Resources
jiro.com/documentcenter/
This site contains the Jiro-related documents from the Jiro-technology home page.

www.jiro.com/overview/
This site provides an overview of Jiro technology.

sunjweb-001.jiro.com/faqs/
This site contains frequently asked questions about Jiro technology.

www.jiro.com/education/recipes/
This site contains links to technical analysis of the event service.

www.jiro.com/education/recipes/service/
This site describes how to declare a class as a dynamic service.

www.sce.carleton.ca/netmanage/NMfor90s/SimpleNM.html
This article discusses network management for the 1990s.

sunjweb-001.jiro.com/cgi-bin/Ultimate.cgi?action=intro
This site contains a Jiro discussion forum.

1430 Jiro Chapter 25

SUMMARY
• Jiro provides infrastructure to develop management solutions for distributed resources on a heter-

ogeneous network.

• Jiro technology can simplify and automate management of distributed resources.

Fig. 25.34Fig. 25.34Fig. 25.34Fig. 25.34 Printer management solution work flow diagram.

 GUI
Admin Console

Management Application

 Shared
Management
 Station

 Printer
Management

 Dynamic Services

Management Policies

OutofPaper
 Policy

LowToner
 Policy

Scheduling
 Service

 Log
 Service

 Event
 Service

schedule
 task

perform
 task

 post
 log
messages

subscribe notify

Printer
Resource

Jiro

publish events
operations

subscribe

Chapter 25 Jiro 1431

• Automated management can monitor and control management to minimize human response when
reaction is needed.

• Jiro facilitates the development of management solutions that are easy to deploy and expand.

• Jiro uses a three-tier architecture for management solutions.

• Jiro supports other industry standards, such as SNMP and CIM.

• A Jiro management domain contains the managed network resources and the management services
that manage the resources.

• Before starting Jiro, a Jiro management domain name must be specified.

• Staring Jiro also starts the class server, rmid, transaction service, shared Jiro station, controller
service, log service, event service and scheduling service.

• Jiro provides a lookup service for each management domain, so that the static management servic-
es and the dynamic management services can be registered with the lookup service.

• Base services or static services include the controller service, the event service, the log service, the
scheduling service and the transaction service. Base services are available to the entire manage-
ment domain.

• Class javax.fma.services.ServiceFinder provides a convenient way to locate static
services.

• An event publisher posts events to the event service. An event subscriber receives events from the
event service.

• A client or service can either post a log message to the log service or retrieve log messages from
the log service, obeying search criteria.

• If an application uses the log service, then a resource file that describes the log-message key and
value (message template) is required.

• The scheduling service provides methods to schedule a task to perform on a specific date, schedule
tasks to perform on event intervals or schedule tasks to perform repeatedly, based on a calendar.

• Method newRepeatedDateSchedule creates a schedule for tasks that will be performed re-
peatedly, based on a calendar date.

• There are three choices for the later-performance policy—SchedulingService.NONE,
SchedulingService.ONE and SchedulingService.ALL.

• Static services are always present in a management domain, but dynamic services are not.

• Jiro provides a management station to support dynamic services distributed throughout the man-
agement domain and communicate with managed resources.

• A dynamic service that provides access to a managed resource is called Management Facade.

• To make a dynamic service available in a management domain, the dynamic service provider is
required to implement the dynamic service and deploy the dynamic service to a station within a
management domain.

• Implementing method getLookupEntries declares a class as a dynamic service.

• A class that defines method getLookupEntries is called a point object. Such a class is the
entry point for the dynamic service.

• Jiro provides tools jiroc and jirocw to generate the proxy of a service.

• Before a dynamic service can be instantiated, it must be deployed to a station. Jiro provides the
tool jardeploy to deploy a dynamic service.

1432 Jiro Chapter 25

• Jiro provides the GUI tool jarpack and the command-line tool jarpackw to create the JAR
files used by the jardeploy tool.

• To use the jarpackw tool, three seed JAR files are required—an interface JAR file, an imple-
mentation JAR file and a download JAR file.

• The interface JAR file contains all the interfaces that a dynamic service implements, as well as all
classes the interfaces depend on.

• The implementation JAR file contains all the classes that required to run the dynamic service.

• The download JAR file contains all the classes that should be available to clients of the dynamic
service for downloading purposes.

TERMINOLOGY

SELF-REVIEW EXERCISES
25.1 Fill in the blanks in each of the following statements:

a) Jiro is an implementation of the .
b) Five static services provided by Jiro are , , ,

 and .

automated management jirocw tool
base services LocalizableMessage
cancel method of Ticket log method of class LogSearchCriteria
centralized management LogMessage.AUDIT
ClientController class LogMessage.DEBUG
Common Information Model LogMessage.ERROR
Context class LogMessage.INFO
Controller class LogMessage.TRACE
distributed resources LogMessage.WARNING
download JAR management facade
Federated Management Architecture newClientController method of

ControllerServicegetControllerService method of
ServiceFinder newDateSchedule method of

SchedulingServicegetEventService method of
ServiceFinder newDurationSchedule method of

SchedulingServicegetLogService method of ServiceFinder
getLookupEntries method newRepeatedSchedule method of

SchedulingServicegetSchedulingService method of
ServiceFinder point object

getTransactionService method of
ServiceFinder

post method of EventService
search of class LogSearchCriteria

heterogeneous network ServiceFinder class
igniter Simple Network Management Protocol (SNMP)
IllegalArgumentException static management services
implementation JAR station
interface JAR StationAddress class
interoperable subscribeObserver method of

EventServicejardeploy tool
jarpack tool three-tier architecture
jarpackw tool Throwable
Jiro Technology Software Development Kit TransactionManager
jiroc tool viewlog tool

Chapter 25 Jiro 1433

c) Class provides a convenient way to locate the static services.
d) A file must be defined before posting a log message to the LogService.
e) A dynamic service must have method declared in its class.
f) To use the jarpackw tool, three seed JAR files are required: ,

and .
g) Jiro provides a tool to deploy dynamic services.

25.2 State whether each of the following is true or false. If false, explain why.
a) Jiro allows cross-platform information management.
b) Management applications wishing to listen to events from the event service must register

a RemoteEventListenerImpl and be running a Web server.
c) Devices using the Simple Network Management Protocol can be managed by Jiro.
d) Jiro can manage devices on its own.
e) The Jiro Event Service sends matching events to all responsible listeners registered for

those events.

ANSWERS TO SELF-REVIEW EXERCISES
25.1 a) Federated Management Architecture. b) controller service, event service, log service, sched-
uling service, transaction service. c) ServiceFinder. d) resource. e) getLookupEntries.
f) Interface JAR file, implementation JAR file, download JAR file. g) jardeploy.

25.2 a) True. b) False. If a management application registers a RemoteEventListenerImpl
with the event service, the need for a Web server is avoided because both the management application
and the Jiro station share RemoteEventListenerImpls. If a management application registers
its custom RemoteEventListener implementation, then the management application system
must run a Web server that will allow the event service to dynamically load the custom Remo-
teEventListener implementation. c) True. d) False. Developers need to write applications us-
ing Jiro to manage devices and services. e) False. The event service sends matching events to the first
responsible listener in the responsible listener chain. If that responsible listener throws an Event-
NotHandledException, then the event service will send the event to the next responsible listener
in the chain. The event will propagate down the chain of responsible listeners until a responsible lis-
tener does not throw an EventNotHandledException.

EXERCISES
25.3 Describe the similarities and differences between static services and dynamic services.

25.4 Describe the difference between responsible listeners and observer listeners. Why is it im-
portant to have two different types of listeners?

25.5 Compare and contrast the PrinterManagement dynamic service and the management
policies OutofPaperPolicy and LowTonerPolicy. How are these dynamic services similar?
How are they different?

25.6 Modify our Printer simulator to include a method handlePaperJam, which will fix
any paper jams in our printer. Modify the PrinterManagement dynamic service to expose this
new operation on the printer. Finally, modify PrinterClientGUI to include a button which,
when pressed, will call to the new operation through the dynamic service.

25.7 Create and deploy the following management policy:

"Printer will never be inoperational because of a paper jam."

25.8 Lines 52–54 of PrinterManagementImpl.java (Fig. 25.5) create a Printer-simu-
lator thread. In a real-world scenario, a dynamic service would establish a remote connection to this

1434 Jiro Chapter 25

printer. This connection could be performed via any popular management protocol (SNMP, WEBM,
RMI, etc.). For this exercise:

a) Define interface RemotePrinter which exposes the management operations of class
Printer (Fig. 25.8). RemotePrinter must extend interface Remote. Create a
stand-alone application, RemotePrinterImpl, that starts a Printer thread. Class
RemotePrinterImpl must implement RemotePrinter interface. Remote-
PrinterImpl must post an RMI stub reference of itself in the Jini lookup service of
the Jiro domain. Class RemotePrinterImpl must delegate any remote method calls
to its Printer instance.

b) Modify PrinterManagementImpl (Fig. 25.5) to retrieve a RemotePrinter stub
from the Jini lookup service of the local Jiro domain. PrinterManagement dynamic
service must delegate all printer management operations to stub RemotePrinter.

BIBLIOGRAPHY
"Declaring a Class as a Dynamic Service." Jiro Web site. <www.jiro.com/education/rec-

ipes/service/>.

Deri, L. “Network Management for the 90s,” Paper, IBM Zurich Research Laboratory, University of
Berne. <www.sce.carleton.ca/netmanage/NMfor90s/SimpleNM.html>.

“Executive Overview.” Jiro Web site. <www.jiro.com/overview/>.

“Frequently Asked Questions.” Jiro Web site. <www.jiro.com/faqs/>.

“Jiro Document Center.” Jiro Web site. <jiro.com/documentcenter/>.

“Jiro Recipes.” Jiro Web site. <jiro.com/education/recipes/>.

“Jiro Technical Overview.” Jiro Web site. <www.jiro.com/overview/
tech_overview.html>.

“Jiro Technology Discussion Forum.” Jiro Web site. <www.jiro.com/cgi-bin/Ulti-
mate.cgi?action=intro>.

Monday, P., and W. Connor. The Jiro Technology Programmer’s Guide And Federated Management
Architecture. Boston, MA: Addison-Wesley, 2001.

26
Common Object Request

Broker Architecture
(CORBA): Part 1

Objectives
• To introduce CORBA (Common Object Request

Broker Architecture).
• To introduce the Interface Definition Language

(IDL).
• To use CORBA to develop push-model and pull-

model applications.
• To understand distributed exceptions.
• To implement the Deitel Messenger application using

CORBA.
• To compare CORBA to other technologies for

building distributed systems.
In the master there is a servant, in the servant a master.
Marcus Tullius Cicero

Excellence is to do a common thing in an uncommon way.
Booker T. Washington

The virtue in most request is conformity.
Ralph Waldo Emerson

It is often wonderful how putting down on paper a clear
statement of a case helps one to see, not perhaps the way out,
but the way in.
A.C. Benson

1436 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

26.1 Introduction*

To appreciate what Java has brought to the software-development industry in the past few
years, one must first appreciate the happenings just beneath the radar screens of most de-
velopers prior to Java’s introduction—the gradual acceptance that legacy systems were not
going away and that there existed a need to take advantage of these systems. In addition,
the explosive growth of the Web has made it critical to develop systems that can be distrib-
uted (networked) “out of the box” rather than building the same communications infra-
structure repeatedly. Java offered several features that made these systems possible but did
not offer higher-level classes, tools or abstractions for building large-grained distributed
systems in generic and predictable fashions. Java lacked the ability to make invocations on

Outline

26.1 Introduction
26.2 Step-by-Step
26.3 First Example: SystemClock

26.3.1 SystemClock.idl

26.3.2 SystemClockImpl.java

26.3.3 SystemClockClient.java

26.3.4 Running the Example
26.4 Technical/Architectural Overview
26.5 CORBA Basics
26.6 Example: AlarmClock

26.6.1 AlarmClock.idl

26.6.2 AlarmClockImpl.java

26.6.3 AlarmClockClient.java

26.7 Distributed Exceptions
26.8 Case Study: Chat

26.8.1 chat.idl

26.8.2 ChatServerImpl.java

26.8.3 DeitelMessenger.java

26.8.4 Running Chat
26.8.5 Issues

26.9 Comments and Comparisons
26.10 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises •
Works Cited • Bibliography

*. This chapter was co-authored by Carlos Valcarcel of EinTech, Inc.

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1437

local objects that, in reality, were invocations on remote objects. This capability would
have allowed Java to make standard method calls on objects that appeared local, but were
in a different process space. The supporting infrastructure was not available to Java, so ven-
dors in the distributed-object arena began porting their infrastructure products to support
Java. The infrastructure that was the best fit with Java turned out to be CORBA.

CORBA stands for the Common Object Request Broker Architecture. More accurately,
CORBA stands for “glue.” It allows programs written in various languages, with varying
implementations running in disparate locations, to communicate with each other as easily
as if they were in the same process address space. Conceptually, in the same way objects
cooperate to accomplish specific tasks, CORBA describes architecture made of cooper-
ating services.

Software Engineering Observation 26.1
CORBA does not enforce good systems-integration practice; it merely enables the integra-
tion of disparate systems. 26.1

CORBA relies on object technology to accomplish this. Encapsulation, inheritance,
polymorphism and dynamic binding hide implementation details, making CORBA’s work
appear transparent. Transparency is a crucial goal of CORBA. This transparency enables
developers and system integrators to define standard services that legacy systems provide
and make these services available to other systems that want to use them. Within this trans-
parent infrastructure, a myriad of services are available to other users that need the services.
Three areas leveraged by clients using CORBA are invocation transparency, implementa-
tion transparency and location transparency.

Invocation transparency defines the viewpoint of a client sending a message to a
server. The language used to implement a client specifies how a called object receives a
message—how arguments are passed on the stack, how the proper method is called, and
how return values are delivered. Once a server (an object that is responsible for delivering
a collection of related services) is defined within a CORBA framework, a client can make
method calls to this CORBA-enabled object similarly as a call to any other object imple-
mented within the target language. This kind of behavior is more naturally understood by
developers using an object-oriented language (e.g., Java, C++, and Smalltalk), but is
equally valid for developers using a non-OO language (e.g., C, COBOL, or Lisp). CORBA
supports a number of object-oriented and non-object-oriented languages (10 altogether)—
C, C++, Java, COBOL, Ada, Lisp, Smalltalk, PL/1, Python and IDLscript.

Implementation transparency is a encapsulation applied to distributed systems. A
client knows three things about a method invocation—the method name, the method
parameters (if any) and the method return type. The client is not concerned with how the
underlying code processes parameters and ensures returning valid values—even with per-
formance considerations, the client can notify the server as to any performance constraints
prior to making any method invocations. A client invokes a method in the target (client’s)
language, and the code invoked to satisfy the method call is executed in any language sup-
ported by an OMG mapping.

Location transparency allows a client to invoke CORBA-enabled code that might exe-
cute elsewhere on the network. This builds on implementation transparency—the clients
appear to make local calls, but in reality, they call code that executes in different languages
outside of the process space where the client is located (e.g., a Java servlet running in New

1438 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

York communicates with a COBOL legacy database running in Japan). All of this is pos-
sible because of various object-technology concepts (encapsulation, inheritance, and poly-
morphism) used in implementation-independent ways.

The Object Management Group (OMG) is the consortium responsible for CORBA.
Founded in April 1989, the OMG’s goals are far reaching and have the backing of approx-
imately 800 members. Their main goal is to create a “component-based software market-
place by hastening the introduction of standardized object software.”1 A major step toward
the creation of this object marketplace was the defining of the OMG’s Object Management
Architecture (OMA).

The Object Management Architecture (OMA) distinguishes CORBA from other dis-
tributed system technologies. Objects in an object-oriented system cooperate to achieve
solutions to domain problems. The OMA (as a reference architecture) defines a system con-
sisting of cooperating services solving a domain problem. The granularity of the solution
is larger, but the concept of objects (or components) working together toward a common
goal remains the same.

So, how do the goals of systems integration, transparency, and ease of use come
together, using a reference architecture in a fashion that allows multilanguage, multiplat-
form, and multilocation issues to be handled in a consistent and straightforward fashion?
The answer is in these three acronyms—IDL, ORB and IIOP.

For objects to appear to speak the same language, they must use a common mapping
to their particular language. For code in languages such as COBOL, Java, C, and Python to
communicate to one another, an intermediate language must bind them. This intermediate
language should be simple to use, easy to learn and have minimal overhead.

OMG IDL™, the OMG Interface Definition Language (commonly referred to as IDL),
allows developers to describe the interface (or API) of the data type they wish to use
remotely in a language-independent fashion. IDL is a pure description language—no
implementation details are included in IDL files (unless someone deliberately inserts com-
ments describing implementation assumptions). Using a C++-like syntax, developers
describe only two things—the interface to an object and any data structures a method call
to the object may take or return as values. An IDL compiler takes an IDL file (convention-
ally ending with .idl) and generates the code needed for a client to call a CORBA-com-
pliant object and for the CORBA-compliant object to receive and return values. When we
speak of a CORBA-compliant “object” we make no assumptions about whether it is an
object in the way Java describes a object or procedural COBOL code that implements the
operations (methods) defined in an IDL file in a non-object oriented fashion. The code that
implements the operations (i.e., handles client requests to a CORBA object) constitutes a
servant. In a non-object-oriented language there is an individual servant for each operation.
In an object-oriented language, one servant (object) may implement all of the operations.
The client does not know about the implementation issues involved, so a servant can exist
for the duration of a method call, for until the server within which the servant is running is
shut down or for some duration in between (this, however, is controlled by an object
adapter which mediates all access to servants. We discuss this in more detail in
Section 26.4).

An IDL compiler creates a number of language-dependent files for each IDL file com-
piled. A project would need as many IDL compilers as there are target languages in the
system to be developed. To develop a Java front-end to a legacy COBOL system, two IDL

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1439

compilers are needed—one to generate the client-side Java code, and one to generate the
server-side COBOL code. For example, a Java front end would need the following gener-
ated client-side Java files to interact with a back-end system named StockTicker:

StockTicker.java
StockTickerOperations.java
StockTickerHolder.java
StockTickerHelper.java
_StockTickerStub.java

StockTicker.java contains the base definition of the remote server. The
StockTickerOperations source file contains method definitions of the operations
that the CORBA object supports. The _StockTickerStub class is responsible for
client-side communication, while the StockerTickerHelper file defines a conve-
nience class usable by the client for CORBA-related tasks.

These files hide the invocation mechanism from a caller. StockTicker.java and
StockTickerOperations.java define interfaces for use by implementation
classes; _StockTickerStub.java defines actual CORBA invocation code to make
the remote method call to a server. Files StockTickerHelper.java and Stock-
TickerHolder.java are additional support files that we discuss later.

The vendor who supplies the server component ships an IDL file that describes the API
to their server object. Using the vendor-supplied IDL file and an IDL compiler, a developer
would generate the needed client-side files to talk directly to this server-side object.

If a GUI written in C for the StockTicker system were to attempt to send messages
to server-side objects written in Java (CORBA-enabled Java objects) the following Java
files would have been generated by an IDL compiler to allow the Java server object to
receive messages from any callers:

StockTicker.java
StockTickerOperations.java
_StockTickerImplBase.java

The files StockTicker.java and StockTickerOperations.java are the
same as above (interfaces for use by implementation classes), and
_StockTickerImplBase.java represents the CORBA code used by the server to
accept method calls and deliver values across the network.

In addition to declaring Java interfaces for developer use, both client-side and server-
side files defined above implement base classes as proxies—stand-ins for other objects.
Proxies allow a client to believe it is sending a message to one object when the client is
really sending the message to another object. CORBA defines two related proxies—a stub
and a skeleton. A stub is the client-side proxy and a skeleton is the server-side proxy. Both
proxies hide the use of the ORB from the client and the server.

The Object Request Broker is the “ORB part” of CORBA. Interoperability is the
ORB’s central purpose. All CORBA-enabled objects must use an ORB to make or receive
method requests, but those same objects rarely see the ORB. In the examples that follow,
note the similarity of the code for connecting various pieces. This code similarity is the
OMG at work. The base connectivity CORBA API is the same regardless of the CORBA
implementation.

1440 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

Portability Tip 26.1
Unless you use vendor-specific value-added features under CORBA 3.0, the replacement of
an existing ORB installation with an ORB vendor’s new product should not require the mod-
ification of existing CORBA code. 26.1

When a client invokes an operation on a distributed object, the client’s ORB uses an
object reference to complete the invocation request. For example, if the client was written in
Java, it behaves as if the reference is to a local version of the object being invoked. The object
reference used by the client (supporting the public API of the object defined in the IDL file)
contain an opaque network reference (opaque because neither the client nor server infer
implementation details with the information contained in the reference). A client invokes
operations on a distributed object through an object reference, whereas an Interoperable
Object Reference (IOR) refers specifically to an object reference whose structure is well-
understood by ORBs using the OMG-supported protocols (such as IIOP, discussed momen-
tarily). The object reference comes from an object adapter pointing to the remote object. The
object reference contains three important pieces of information—the distributed object’s
location (an address, but not a memory address), a reference to the adapter that created the
object reference and an object ID for the servant. All CORBA-compliant ORBs understand
what object references are (and, for true interoperability, they must understand IORs) and
how to use them to connect clients to servants. The final piece needed for interoperability is
the creation and parsing of the IOR into the “on-the-wire” protocol to send a request across
the network.2 However, knowledge of IORs is not enough to allow one vendor’s ORB to
communicate predictably with another vendor’s ORB. To enable robust, predictable
communication, the OMG specified the Internet Inter-ORB Protocol or IIOP.

All vendors must support IIOP (Internet Inter-ORB Protocol) for their ORBs to be
CORBA-compliant. Vendors can support their own protocol as well, but, at a minimum, they
must also support IIOP. IIOP is the protocol for how ORBs communicate with each other.
The average developer does not need to know anything about IIOP; a CORBA site adminis-
trator maintains the appropriate ORB protocol at any particular location. ORBs that expect to
communicate with each other must speak the same protocol. If the ORBs support different
protocols, custom bridges must be developed to map the protocols to enable communications
between nonstandard-protocol ORBs. As the standard ORB protocol, IIOP should be the
default protocol for any ORB installation, although IIOP is not the only choice.

IIOP is the implementation of another OMG standard—the General Inter-ORB Pro-
tocol, or GIOP. GIOP defines the messages needed by ORBs to communicate with each
other and the support for the underlying transport mechanism of the platform on which the
ORB runs. TCP/IP is the preferred transport—there is also specification support for Novell
IPX and OSI. Vendors are free to support other transport mechanisms. Java, with its built-
in network support, and CORBA, with its “under-the-covers” transport to connect distrib-
uted objects transparently, are complementary technologies.

Every programming language that the OMG supports must have an IDL-to-target-lan-
guage mapping. Shortly after Java’s introduction, a number of ORB vendors made their
own mappings to satisfy the demand for distributed Java applications. The OMG adopted
a Java mapping as a CORBA standard in July 1998. When the OMG ratified the official
IDL-to-Java mapping, vendors upgraded their products to conform. Conformity to the IDL
mappings is an important step to maintaining integrity in the CORBA world. The IDL-to-
Java mapping defines how the standard IDL keywords and data types translate into Java

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1441

constructs. Java 2 was the first official Sun release to support the OMG mappings directly.
We discuss IDL-to-Java mappings shortly.

26.2 Step-by-Step
The steps necessary to implement a distributed system using Java and CORBA are:

1. Perform analysis and design by modeling the problem domain, modeling the sys-
tem domain and defining subsystems using the system domain.

2. Define the IDL by specifying the API of the subsystems to be distributed and spec-
ifying any data structures that cross system boundaries.

3. Implement the servant, using files generated by the IDL compiler.

4. Implement a client, using the stub files generated by the IDL compiler.

5. Decide on a method to distribute the servant’s object reference (traditionally done
using a Naming Service, but this is not required).

6. Start the servant implementation.

7. Run the client.

Software Engineering Observation 26.2
Implementing a distributed system is a nontrivial task. Developers must follow standard soft-
ware development practices when using CORBA as an enabling infrastructure to bind vari-
ous legacy systems together. 26.2

Good Programming Practice 26.1
Several processes and methodologies for modeling problem domains exist. Make sure the
model you choose maps to the problem being solved (otherwise, you might find yourself re-
doing your project. 26.1

The OMG’s OMA remains the preferred reference architecture for directing architec-
tural concerns. OMA defines architecture in the context of a collection of cooperating ser-
vices. Consider the subsystems you declare as sharing responsibilities. There are more
opportunities for process reuse if your system defines fundamental services that are usable
by other development groups.

Once subsystems have been defined, you want to decide which subsystems to con-
figure as distributed services. If all of the subsystem designs assume distributed/sharable
functionality, the migration of subsystems to CORBA becomes much easier. In any case,
the public API of the service becomes the interface accessible by clients. In typical OO
fashion, the interface revealed in the IDL can be a subset of the available functionality
offered by a server. It is not until the implementation of the server (we use Java as the target
language) that the developer worries about how much additional functionality (administra-
tion, security, etc.) the server is given.

If there are data structures that a server must return to a client (or vice versa), the iden-
tification and definition of these data structures must be in the IDL file. This is a bit of a
throwback to the way languages such as C define data structures, but the CORBA model
makes allows non-object-oriented languages to describe non-object-oriented constructs in
a “pseudo-object” fashion. Two CORBA constructs support this mechanism—the struct

1442 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

and the valuetype. A client and a server pass IDL structs back and forth as raw data
for allowing local handling of information. A standard optimization is sending this data
directly to the client so the server can handle more demanding requests. The valuetype
construct is the IDL description of an entity consisting of both data and behavior. A
struct consists of pure data (and a struct compiled into Java defines the instance
attributes as public), whereas a valuetype encapsulates the data and adds any logic
for making the object as simple or complex as needed. Section 26.8.5 explains a CORBA
valuetype in more detail.

Performance Tip 26.1
Make all methods transactional. Remember, every method call is a call across the network. The
granularity of services should be such that a useful level of functionality is achievable in as few
methods as possible (preferably one method call). If you need to get a Customer’s street ad-
dress, city, state and zip code, create an Address class that encapsulates this information.
The caller can make one call to the Address, rather than make five individual method calls.26.1

After declaring the server API in an IDL file, the only thing missing is the actual imple-
mentation of the server. The IDL compiler parses the completed IDL file and generates a
collection of support files needed by the server to handle incoming requests. Once the sup-
port files are created, the developer can now write implementation code; until this time, the
only thing the developer has done is declare the interface, attributes and data needed by the
server to handle requests. As a first cut, a developer could implement a “dummy” server
that simply returns test data so another developer could write a system client (or possibly a
test client) to exercise the server. A more typical example is to write a server that wraps
around a legacy back end but hides that fact from any clients.

Assume that the declared server API is in an IDL file and an IDL compiler has com-
piled the file. Now the client uses the generated client-side files needed to speak with the
server. The client needs only the IDL-generated files to take advantage of the underlying
mechanism that allows communication across the network transparently. The client could
instantiate a local version of the server (instead of using a CORBA object reference, they
could simply perform a new ServerImpl()) and send messages directly, but the server
would no longer be a distributed object—the server would be running in the client’s process
space having lost the low-coupling advantage we originally had by using the glue code
located in the generated files.

26.3 First Example: SystemClock
This example provides a basic service (time) and allows a client to query for the current
time. The requirements are:

• Retrieve the current system time.

• Display the current system time in a GUI window.

The SystemClock server interface declares a single method current-
TimeMillis (which mimics the call in class java.lang.System). The method
returns the system time as a long. A Date object would have been more appropriate for
Java. If this were an example of the CORBA Time Service, a Universal Time Object would
have been even more appropriate. However, a long helps keep this pure-Java example
simple (a non-trivial time service factors issues such as network latency).

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1443

26.3.1 SystemClock.idl

Figure 26.1 declares the IDL for the SystemClock server. Lines 1 and 2 are single-line
comments; they follow standard C++ syntax with the double slash (//) denoting a single-
line comment. Line 4 is the first real line of “code” (CORBA does not dictate implementa-
tion, so the IDL is not technically code). The module keyword maps a given name directly
to a Java package. Nested module names concatenated together create a complete package
name. The module name in Fig. 26.1 is clock.

The curly braces at lines 4 and 10 denote scope boundaries of the block. Note that, in
IDL, a semicolon always identifies the end of a block (including the module declaration).
Java, C and C++ are block-scoped languages and use a similar syntax but do not consider
the block itself as a line that requires a semicolon to be complete. A missing semicolon is
a syntax error in IDL.

Lines 7-9 declare the interface the SystemClock server. Is the server type actually
SystemClock? From the client’s perspective, the answer is yes—the data type of the
server is SystemClock. From the server’s perspective, the answer is no—that is not the
direct type. The server is a derived class (concrete implementation) of interface Sys-
temClock. The indirection to the client is deliberate, allowing an arbitrary server imple-
mentation.

The curly braces at lines 7 and 9 mark the boundary of the interface declaration.
Again, notice the semicolon at the end of line 9 used to identify the end of the block.

Line 8 is a method/function/message declaration. Everything declared in IDL is
public, so there are no special keywords in IDL interfaces to denote public, pri-
vate or protected declarations (although metatypes component and valuetype
have keywords private and public). The method currentTimeMillis, by defi-
nition, is public and returns an IDL long long, which maps to a Java long (a single
IDL long maps to a Java int).

The Java IDL compiler, idlj, compiles systemclock.idl with the command line

idlj -td c:\src -pkgPrefix clock com.deitel.advjhtp1.idl
 -fall systemclock.idl

We discuss the Java tool idlj and its command line options shortly. The Java IDL
compiler generates the following server-side files after compiling systemclock.idl:

SystemClock.java
SystemClockOperations.java
_SystemClockImplBase.java

1 // Fig. 26.1: systemclock.idl
2 // IDL definition of SystemClock.
3
4 module clock {
5
6 // The definition of the CORBA-enabled service
7 interface SystemClock {
8 long long currentTimeMillis();
9 };

10 };

Fig. 26.1Fig. 26.1Fig. 26.1Fig. 26.1 IDL definition for server SystemClock.

1444 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

SystemClock.java and SystemClockOperations.java are interfaces.
SystemClock.java (Fig. 26.2) shows interface SystemClock.

Lines 11 and 12 declare interface SystemClock and the three interfaces
from which SystemClock inherits. Two of the three are CORBA-defined types from
which all CORBA-enabled objects must inherit org.omg.CORBA.Object and
org.omg.CORBA.portable.IDLEntity. The third—interface System-
ClockOperations (Fig. 26.3)—is generated from the IDL and declares the public
operations of the server. SystemClock inherits from SystemClockOperations, but
is otherwise empty. SystemClock defines a base class that inherits from System-
ClockOperations and the CORBA interfaces mentioned previously—part of the
structure needed by derived classes to appear as proper CORBA objects. SystemClock-
Operations, inheriting from nothing, declares the single method current-
TimeMillis originally defined in the IDL. _SystemClockImplBase inherits from
SystemClock, another CORBA interface (InvokeHandler), and a base CORBA
implementation class named org.omg.CORBA.portable.ObjectImpl (Impl is
an abbreviation for “implementation”). The server requires these three object types to
inherit the structure and behavior needed to be a valid CORBA-enabled distributed object.
The interface InvokeHandler declares method invoke, which
_SystemClockImplBase implements. The ORB uses method invoke to call the var-
ious SystemClock methods in a generic fashion. The _SystemClockImplBase
method invoke is generated by the IDL compiler based on the IDL interface declared in
the IDL file systemclock.idl.

26.3.2 SystemClockImpl.java
SystemClockImpl (Fig. 26.4) is the SystemClock interface implementation. Con-
ventionally, the concrete class that implements a CORBA distributed object’s public inter-
face is named <IDL interface name>Impl. This class does not have to declare a main
method, but it can.

Lines 7–9 are standard import statements. We use classes outside the java.lang
namespace, so we include them in the Java file. A discussion of the classes declared in these
imports follows shortly.

1 package com.deitel.advjhtp1.idl.clock;
2
3
4 /**
5 * com/deitel/jhtp4/idl/clock/SystemClock.java
6 * Generated by the IDL-to-Java compiler (portable), version "3.0"
7 * from systemclock.idl
8 * Wednesday, February 28, 2001 8:24:01 PM PST
9 */

10
11 public interface SystemClock extends SystemClockOperations,
12 org.omg.CORBA.Object, org.omg.CORBA.portable.IDLEntity
13 {
14 } // interface SystemClock

Fig. 26.2Fig. 26.2Fig. 26.2Fig. 26.2 A Java interface generated by idlj.

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1445

Method main (lines 62–74) starts the SystemClock server. Line 65 instantiates the
SystemClockImpl object. The SystemClockImpl constructor (lines 20–23) is for
the startup initialization. We instantiate SystemClockImpl like any other Java object
and, in this example, we do not appear to use the object for anything (in fact, the object is
waiting for an incoming client request). Line 68 creates an object we can lock against and
call its thread’s wait method (line 72). The use of keyword synchronized (line 71)
means no other object can access object while the synchronized block is active.
Line 72 stores the object in the thread queue until someone calls object.notify.
Object timeServer could call notify within its own scope, but that would potentially
cause the server to terminate when it completes handling an incoming call.

1 package com.deitel.advjhtp1.idl.clock;
2
3
4 /**
5 * com/deitel/advjhtp1/idl/clock/SystemClockOperations.java
6 * Generated by the IDL-to-Java compiler (portable), version "3.0"
7 * from systemclock.idl
8 * Sunday, July 1, 2001 10:36:53 PM PDT
9 */

10
11
12 // The definition of the CORBA-enabled service
13 public interface SystemClockOperations
14 {
15 long currentTimeMillis ();
16 } // interface SystemClockOperations

Fig. 26.3Fig. 26.3Fig. 26.3Fig. 26.3 SystemClockOperations interface generated by idlj.

1 // Fig. 26.4: SystemClockImpl.java
2 // SystemClock service implementation.
3
4 package com.deitel.advjhtp1.idl.clock;
5
6 // OMG CORBA packages
7 import org.omg.CORBA.ORB;
8 import org.omg.CosNaming.*;
9 import org.omg.CosNaming.NamingContextPackage.*;

10
11 public class SystemClockImpl extends _SystemClockImplBase {
12
13 // return computer's current time in milliseconds
14 public long currentTimeMillis()
15 {
16 return System.currentTimeMillis();
17 }
18

Fig. 26.4Fig. 26.4Fig. 26.4Fig. 26.4 Implementation of the SystemClock server (part 1 of 3).

1446 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

19 // initialize SystemClockImpl object by calling method register
20 public SystemClockImpl(String params[]) throws Exception
21 {
22 register("TimeServer", params);
23 }
24
25 // register SystemClockImpl object with Naming Service
26 private void register(String corbaName, String params[])
27 throws org.omg.CORBA.ORBPackage.InvalidName,
28 org.omg.CosNaming.NamingContextPackage.InvalidName,
29 CannotProceed, NotFound
30 {
31 // Check name of service. If name is null or blank
32 // do not attempt to bind to Naming Service.
33 if ((corbaName == null) ||
34 (corbaName.trim().length() == 0))
35 throw new IllegalArgumentException(
36 "Registration name cannot be null or blank.");
37
38 // create and initialize ORB
39 ORB orb = ORB.init(params, null);
40
41 // register this object with ORB
42 orb.connect(this);
43
44 // find Naming Service
45 org.omg.CORBA.Object corbaObject =
46 orb.resolve_initial_references("NameService");
47 NamingContext naming =
48 NamingContextHelper.narrow(corbaObject);
49
50 // create NameComponent array with path information to
51 // find this object
52 NameComponent namingComponent =
53 new NameComponent(corbaName, "");
54 NameComponent path[] = { namingComponent };
55
56 // bind SystemClockImpl object with ORB
57 naming.rebind(path, this);
58 System.out.println("Rebind complete");
59 }
60
61 // main method to execute server
62 public static void main(String[] args) throws Exception
63 {
64 // Create the SystemClock CORBA object.
65 SystemClock timeServer = new SystemClockImpl(args);
66
67 // Wait for requests from the outside.
68 java.lang.Object object = new java.lang.Object();
69

Fig. 26.4Fig. 26.4Fig. 26.4Fig. 26.4 Implementation of the SystemClock server (part 2 of 3).

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1447

The SystemClockImpl constructor can throw exceptions of type Exception.
For this example, we allow the constructor to throw Exception out of expedience and
not out of correctness. The incoming argument params is an array of Strings that may
contain properties needed to run the server. The register method takes array params
and the String “TimeServer” to initialize the SystemClock service.

Lines 26–59 declare method register. Aside from the SystemClock service
receiving a name (contained in variable corbaName) and any useful configuration param-
eters (params), this method can throw one of four exceptions:

• InvalidName thrown by the ORB

• InvalidName thrown by the Naming Service

• CannotProceed

• NotFound

The ORB or the Naming Service may throw one of these exceptions based on server
interactions. In this case, the ORB is part of the process space of the SystemClock
server. The server instantiates the objects needed to accomplish its tasks and does not know
what kind of ORB it uses. As the CORBA standard does not specify the ORB’s implemen-
tation the ORB can be either a local object taking care of network connectivity or a proxy
to a daemon process (a background process running in its own address space) taking care
of network connectivity. The Naming Service is a separate process the server registers with
to allow clients to find them.

Lines 35–36 throw a Java IllegalArgumentException if the incoming argu-
ment corbaName is null or blank (checked at line 33–34). The server cannot register
itself for use by others without a name—this error is severe enough that we would not want
to continue without one.

Line 39 is a static method call to the ORB class requesting the creation of a new
ORB object based on the incoming arguments. A valid incoming argument is a command-
line option telling the ORB what communications port to use (for example, ORBIni-
tialPort). There is also a no-argument version of init that returns a default ORB
instead of instantiating a newly configured ORB based on incoming properties. The init
method can have its arguments as null.

Line 42 passes the implementation object to the ORB. All access to the server is now
the responsibility of the ORB. The ORB (depending on its implementation) is responsible
for load balancing, security, custom filters, etc. In addition, the ORB is responsible for the
underlying protocol’s basic operation—the particulars of every generated ImplBase class
will vary based on its IDL definition (the methods being invoked and the object types

70 // keep server alive
71 synchronized(object) {
72 object.wait();
73 }
74 }
75 } // end class SystemClockImpl

Fig. 26.4Fig. 26.4Fig. 26.4Fig. 26.4 Implementation of the SystemClock server (part 3 of 3).

1448 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

involved can be different per server type), but ultimately the functionality is the same. The
ORB calls method _invoke (found in the _SystemClockImplBase class);
_invoke takes care of marshaling incoming arguments (converting values into a format
suitable for network transport) and unmarshaling any return values (converting values back
into a usable form). Once the ORB has the implementation object, the object cannot be
accessed except through the ORB.

A server can make itself available to clients in a number of ways. Lines 45–48 show
the easiest way to register a distributed object for client access. The SystemClock server
(implemented in SystemClockImpl) registers itself with some directory service clients
can reference when they look for services. A directory service serves the same purpose a
file system does—it maintains a listing of resources and their locations in an accessible
form. A standard CORBA directory service is the Naming Service, which lists resources for
future use by clients. The act of registration with Naming does not mean a server is per-
forming any tasks; the server is merely making itself available for client use. The service
should be prepared to handle incoming requests for functionality needed by a calling client
at any moment. The startup sequence for a server, or bootstrapping, can be problematic—
how does the server find the Naming Service the first time the server starts up? Is there a
Naming Service finder?

The ORB solves the problem for us—method resolve_initial_references
knows a select list of services reachable directly from the ORB. The string “NameSer-
vice” is a standard name defined in the CORBA specification (along with a list of other
names3). The ORB effectively has a mini-naming service with which it can perform the
lookup of base services.

Lines 45–46 retrieve the object reference to the Naming Service. However, for
resolve_initial_reference to work with any of a number of different services,
the method returns the object reference as an object of type org.omg.CORBA.Object.
Lines 47–48 use static method narrow of class NamingContextHelper to con-
vert the returned object reference into an object of the proper type (in this case, Naming-
Context). The narrow method is the CORBA mechanism to cast one reference type into
another safely. The narrow method checks if the interface into which we are trying to cast
the target object is supported by the target object. Standard casting does not work with
CORBA object references, because the object reference is a proxy to remote information.
All Helper classes have a static narrow method that allows us to cast from a parent
class to a derived class.

Lines 52–54 create a NameComponent object and place it in an array. For a name to
be properly registered (or bound) the resource must set up a naming context. The server is
registered in the main (or root) naming context, so the only thing needed by the Naming
Service is the server’s name, which the server sends at line 57 (the name was passed in as
an argument to register) using rebind. Method rebind enters the NameCompo-
nent if it is not in the Naming Service or re-enters the NameComponent if it is in the
Naming Service. However, using rebind in this way allows only one instance of the
SystemClock to be accessed at a time (the NamingContext has been hard-coded to
the incoming corbaName and every running instance will use the same name). The last
SystemClock registered is the server to which clients bind.

In summary, the IDL describes the server, the compiler generates the needed Java sup-
port files and SystemClockImpl implements the server.

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1449

26.3.3 SystemClockClient.java
SystemClockClient (Fig. 26.5) represents the client that connects to System-
Clock. SystemClockClient’s primary functionality is in method run (lines 58–80).
This object connects to the SystemClock service, requests the current time and displays
a String in a JOptionPane. Every time the user clicks the OK button, the client re-
quests the latest time from the server and displays the new time. When the user clicks Can-
cel, the client application exits.

Method connectToTimeServer (lines 29–48) throws the same exceptions
(InvalidName, NotFound and CannotProceed) as method register of class
SystemClockImpl. The client and the server throw the same exceptions, because the
logic the client uses to read from the Naming Service is similar to the logic used by the
server to write to the Naming Service.

Line 35 calls static method init of class ORB to create an ORB. The String
array params allows the dynamic configuration of the ORB at runtime (which was passed
from method main, which received the String array from the command line). When the
client obtains the ORG, lines 37–38 call method resolve_initial_references of
this ORB to get the object reference to the Naming Service. Lines 39–40 cast the object ref-
erence from a CORBA Object to a NamingContext object using method Naming-
ContextHelper.narrow.

1 // Fig. 26.5: SystemClockClient.java
2 // Client application for the SystemClock example.
3
4 package com.deitel.advjhtp1.idl.clock;
5
6 // Java core packages
7 import java.text.DateFormat;
8 import java.util.*;
9

10 // Java extension packages
11 import javax.swing.JOptionPane;
12
13 // OMG CORBA packages
14 import org.omg.CORBA.ORB;
15 import org.omg.CosNaming.*;
16 import org.omg.CosNaming.NamingContextPackage.*;
17
18 public class SystemClockClient implements Runnable {
19 private SystemClock timeServer;
20
21 // initialize client
22 public SystemTimeClient(String params[]) throws Exception
23 {
24 connectToTimeServer(params);
25 startTimer();
26 }
27

Fig. 26.5Fig. 26.5Fig. 26.5Fig. 26.5 Client that connects to SystemClock (part 1 of 3).

1450 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

28 // use NameService to connect to time server
29 private void connectToTimeServer(String params[])
30 throws org.omg.CORBA.ORBPackage.InvalidName,
31 org.omg.CosNaming.NamingContextPackage.InvalidName,
32 NotFound, CannotProceed
33 {
34 // connect to SystemClock server
35 ORB orb = ORB.init(params, null);
36
37 org.omg.CORBA.Object corbaObject =
38 orb.resolve_initial_references("NameService");
39 NamingContext naming =
40 NamingContextHelper.narrow(corbaObject);
41
42 // resolve object reference in naming
43 NameComponent nameComponent =
44 new NameComponent("TimeServer", "");
45 NameComponent path[] = { nameComponent };
46 corbaObject = naming.resolve(path);
47 timeServer = SystemClockHelper.narrow(corbaObject);
48 }
49
50 // start timer thread
51 private void startTimer()
52 {
53 Thread thread = new Thread(this);
54 thread.start();
55 }
56
57 // talk to server on regular basis and display results
58 public void run()
59 {
60 long time = 0;
61 Date date = null;
62 DateFormat format =
63 DateFormat.getTimeInstance(DateFormat.LONG);
64 String timeString = null;
65 int response = 0;
66
67 while(true) {
68 time = timeServer.currentTimeMillis();
69 date = new Date(time);
70 timeString = format.format(date);
71
72 response = JOptionPane.showConfirmDialog(null, timeString,
73 "SystemClock Example", JOptionPane.OK_CANCEL_OPTION);
74
75 if (response == JOptionPane.CANCEL_OPTION)
76 break; // Get us out of here
77 }
78
79 System.exit(0);
80 }

Fig. 26.5Fig. 26.5Fig. 26.5Fig. 26.5 Client that connects to SystemClock (part 2 of 3).

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1451

The client must ask the Naming Service for an object reference to the service the client
seeks—the SystemClock service, named “TimeServer” (declared in the System-
ClockImpl class).

Good Programming Practice 26.2
 Store service names in a .properties file, rather than hard-code them in a class. Hard-
coding implies additional maintenance of the class files when the values change. A .prop-
erties file allows for configuring an already deployed system, thereby making the fix an
administrative issue, not a development issue. 26.2

Lines 43–44 creates a NameComponent object. In SystemClockImpl (Fig. 26.4)
we used the NameComponent object to register with the NamingContext the path to
(and IOR of) where the SystemClock is located. In this case, SystemClockClient
uses the NameComponent object to ask the NamingContext for the location of a ser-
vice with a particular name. Lines 45–46 store the NameComponent object in an array,
then pass the array to the NamingContext through its method resolve. This method
returns an object of type CORBA Object, so we use static method SystemClock-
Helper.narrow to downcast the object reference to the desired derived class. At this
point, the client has an active distributed object, and the client calls the distributed object
when the user clicks the OK button.

81
82 // main method to execute client application
83 public static void main(String args[]) throws Exception
84 {
85 // create client
86 try {
87 new SystemClockClient(args);
88 }
89
90 // process exceptions that occur while client executes
91 catch (Exception exception) {
92 System.out.println(
93 "Exception thrown by SystemClockClient:");
94 exception.printStackTrace();
95 }
96 }
97 } // end of class SystemClockClient

Fig. 26.5Fig. 26.5Fig. 26.5Fig. 26.5 Client that connects to SystemClock (part 3 of 3).

1452 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

26.3.4 Running the Example
Before running the preceding example, make sure that JDK 1.3 is installed on a workstation
and the PATH environment variable is updated to include the bin directory of the JDK 1.3
installation.

The steps to execute the SystemClock example are as follows:

1. Compile the IDL file using idlj.

2. Implement and compile the server class.

3. Implement and compile the client class.

4. Run a Naming Service.

5. Run the server.

6. Run the client.

To compile the IDL file on the command line, use the idlj compiler supplied with
the JDK. A partial list of idlj’s command-line options are:

• -f<client | server | all>

• -pkgPrefix <module name or IDL type> <prefix to be appended>

• -td <output directory>

The -f option to the idlj compiler controls the code generation of the stubs and skel-
etons. Option -fclient generates only client-side files, -fserver generates only
server-side files and -fall generates both. The -pkgPrefix option generates package
names. This option is used with a module name. A module named modName compiled with
-pkgPrefix modName prefix would generate Java files with a package name of
prefix.modName. The -td option directs idlj to write the generated files in the spec-
ified directory.

For example, if you had your source code in C:\src, the command line would look
like this (based on the IDL defined in Fig. 26.1):

idlj –pkgPrefix clock com.deitel.advjhtp1.idl –td c:\src
 –fall SystemClock.idl

This generates both the server-side and client-side CORBA-Java files. After imple-
menting the client and server, compile the client and server code. The code supplied in
Fig. 26.4 and Fig. 26.5 (SystemClockImpl.java and SystemClock-
Client.java) is sufficient for this example.

Java 2 includes tnameserv, which is the basic implementation of the CORBA Object
Service (COS) Naming Service. The tnameserv tool is not intended as a production-
ready Naming Service; rather, it serves as a testing tool to ensure that clients and servers
communicate properly. The Naming Service must execute before the server (System-
ClockImpl) can run. Run tnameserv as a background process (in Windows, run
tnameserv in a separate command window; under UNIX, just append an ampersand to
the end of the line starting tnameserv):

tnameserv -ORBInitialPort 1050

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1453

All the processes started for this example use port 1050 to communicate. The default
port for the name server shipped with Java 2 is port 900—however, sometimes that port is
available only to administrators.

Start SystemClockImpl as a separate process:

java com.deitel.advjhtp1.idl.clock.SystemClockImpl
 -ORBInitialPort 1050

Start SystemClockClient in the same way:

java com.deitel.advjhtp1.idl.clock.SystemClockClient
 -ORBInitialPort 1050

When the client displays its GUI, clicking the OK button notifies the client to read the
time from the server and to display a String with the formatted time. The first Java/
CORBA example is complete.

26.4 Technical/Architectural Overview
The underlying concepts in CORBA discussed so far should be familiar to those developers
who are familiar with design patterns. Stubs and skeletons are proxies (objects that control
access to other objects). Services that return objects are factories (objects that create ob-
jects, but defer object implementation to derived classes). Factories and proxies can be
found everywhere in the CORBA landscape. Those classes and objects that use design pat-
terns hide a multitude of implementation details from developers.

Good Programming Practice 26.3
Design patterns standardize design terms and solutions. Learning design patterns helps de-
velopers reuse designs, components, services and frameworks. 26.3

The ORB is the central mechanism of CORBA. All CORBA-enabled objects must
have an ORB standing between them and whatever is calling them (Fig. 26.6). One ORB
must exist for every object in a CORBA-enabled distributed system.

Fig. 26.6Fig. 26.6Fig. 26.6Fig. 26.6 Call path from a client to a distributed object.

call path in reality

Client Server

Client Server

Stub Skeleton

ORB ORB

call path from client perspective

1454 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

We can view an Object Request Broker as the back plane (or communication bus) of
distributed systems. As a communication bus, the implication is that everything using an
ORB can communicate with everything else on the communication bus using an ORB.
What advantage is there to using ORBs? ORBs are a flexible construct, but what problems
do they solve? The OMG addressed both of these questions in the Object Management
Architecture.

A typical software system addresses various business needs. Legacy systems (i.e.,
anything system installed earlier than yesterday) are typically separate, distinct and do
not share information. They solve a focused problem, even if the solution involves large
volumes of data. Over time, as modifications are made to the systems, they become more
expensive to enhance. Over the last 30-40 years, these systems became incompatible. The
changing hardware, software, and business landscape created a plethora of incompatible
systems until the systems-integration field handled this communication problem. The
invention of custom solutions to integrate these systems emphasized the need to make the
integration less of a duplication of effort and more of an “out-of-the-box” solution. The
OMG, together with its member vendors, created the Object Management Architecture
(shown in Fig. 26.7).4

The Object Management Architecture (OMA) is the OMG’s reference architecture for
distributed systems based on the concept of an Object Request Broker. Using object-tech-
nology concepts, the OMA defines a plug-and-play framework where publicly defined
objects are available for use by any other object or service through an object broker. The
object broker is a transparent communication mechanism that ensures that objects send
messages reliably to one another regardless of their location. The OMA defines an abstrac-
tion that hides the fact that various systems use different programming languages or use
incompatible versions of the same language.

The Common Object Request Broker Architecture specifies how the Object Request
Broker behaves and works using different languages. OMA defines a polymorphic frame-
work of common services that appear similar from the outside (their API), but differ on the
inside (their implementation).

ORBs can be implemented in one of two ways—as libraries or as daemons. Neither the
client nor the servant are concerned with the means of implementation. The creation of an
ORB object hides the underlying implementation. Traditionally, the client uses a library-
based ORB, whereas the server uses a daemon-based ORB. This is an implementation
detail for system administrators to decide. From the perspective of the running process,
nothing changes.

The ORB plays the most fundamental role possible in the OMA. We now examine how
both the client and the servant perceive the ORB. The client communicates with the ORB
in one of three ways—through a static stub (generated by the IDL compiler), a dynamic
interface (using CORBA’s dynamic invocation API) or the ORB’s API. Conceptually, an
ORB communicates with a servant in three ways—through a static skeleton, a dynamic
interface or the servant’s object adapter (which appears as if the ORB directly interacts with
servant). When a servant wants to communicate with another servant, the servant
“becomes” a client and all its mechanisms become client-based.

The most straightforward way to communicate with an ORB is through the static stubs
and skeletons. They contain the necessary communications code and enables static typing
based on the defined IDL. Dynamic invocations (either from a client or a servant) consume

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1455

more overhead but are more flexible because they allow developers to control programmat-
ically how remote objects are invoked (Section 27.2 discusses dynamic invocations). Exe-
cution of remote methods through direct ORB calls is possible, but not recommended. The
indirection that gives CORBA its strength is bypassed and becomes difficult to restore once
system implementation is under way. The client/servant communicates with the ORB to
access certain actions that are possible only through the ORB—operations on object refer-
ences and access to the Interface and Implementation Repositories (two data stores of
object meta-data). Low-level CORBA development of that kind is needed only to imple-
ment infrastructure support, such as drivers and bridges. Figure 26.8 illustrates the ORB
interactions.5 6

Fig. 26.7Fig. 26.7Fig. 26.7Fig. 26.7 Object Management Architecture reference model. Courtesy of Object
Management Group, Inc.

Fig. 26.8Fig. 26.8Fig. 26.8Fig. 26.8 ORB request-interface structure. Courtesy of Object Management
Group, Inc.

CORBAfacilities

Object Request Broker

Object Services

Application Interfaces Domain InterfacesCORBAfacilitiesCommon Facilities

Non-standardized app-
specific interfaces

Application domain-
specific interfaces

Horizontal facility
interfaces

General service interfaces

Dynamic
Invocation

ORB

Clients Servants

IDL
Stubs

ORB
Interface

Static IDL
Skeleton

Dynamic
Skeleton

Object
Adapter

1456 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

A CORBA concept discussed earlier was that of object adapters—objects that stand
between a client and server to control access to the distributed object. The object adapter
acts as a “connector” between a client and the servant code that executes when an operation
is invoked (the ever-present ORB stands between the client and the object adapter). Prior
to CORBA 3.0, the standard object adapter was the Basic Object Adapter, or BOA. The
BOA facilitated binding between a client and a server. CORBA 3.0 defined another object
adapter called the Portable Object Adapter (POA). The POA replaces the BOA as the
object adapter of choice. The BOA design did not meet demands required by Internet appli-
cations. When the OMG first specified BOAs, what is now considered standard function-
ality (i.e., better CORBA portability between vendors) was not perceived as a high-priority
issue. In the same way that Java has supplanted various technologies, the CORBA specifi-
cation deprecates the BOA in favor of the POA.

The Portable Object Adapter serves many purposes, including the ability to separate
the availability of the servant from the actual servant. When a client needs a service, the
client needs particular functionality at a particular time. Several components interact to
make this possible. First, the client has an object reference represented by a CORBA object.
Using the object reference, this CORBA object contains information to find the object
adapter that created it. The object adapter handles the client’s invocation by deciding which
entity (or servant) can handle the invocation and completing the invocation as needed
(based on various configuration options set when the object adapter was created). If the
client, holding onto the object reference it received when it first connected to the servant,
does not actually need to call the servant for some extended period, waiting for the client
to use the servant should not penalize the servant. Scalability would suffer, making
CORBA an ineffective solution for systems-integration. By separating the servant from the
client’s handle to the service, different servant objects (controlled through object lifetime
and activation patterns) can handle the method calls made on a service. There are a number
of issues wrapped up in that last statement. The indirection gained by using a POA means
transparent handling of those issues.

Chapter 27 discusses the dynamic interface that the client and server use. Static stubs
(using the Static Invocation Interface or SII) have hard-coded object types to perform their
type checking at compile time, whereas dynamic stubs (using the Dynamic Invocation
Interface or DII) perform their type checking at runtime.

CORBAservices are the baseline services available to all objects sitting on the ORB
communication bus. Because the ORB is the center of a CORBA system, CORBAservices
can assume the existence of an ORB when they are running. There are sixteen services:7

1. Naming Service

2. Event Management Service

3. Life Cycle Service

4. Persistent State Service

5. Transaction Service

6. Concurrency Service

7. Relationship Service

8. Externalization Service

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1457

9. Query Service

10. Licensing Service

11. Property Service

12. Time Service

13. Security Service

14. Notification Service

15. Trader Service

16. Collections Service

These services are so fundamental that the Enterprise JavaBeans specification dictates
the use of four of them as a requirement (naming, security, persistence and transaction). The
CORBAservices all have standard IDL interfaces that describe the functionality that these
services offer. The purpose of standard interfaces fits right in with another OMA goal:
pluggable services should have standard mechanisms for access.

The CORBAfacilities are a step above the intermediate CORBAservices and come in
two groups—horizontal and vertical. The horizontal facilities target client-side function-
ality, the vertical facilities target domain-specific functionality. The horizontal CORBAfa-
cilities have only three specifications: 8 9

1. Mobile Agents Facility

2. Printing Facility

3. Internationalization Facility

All three are course-grained enough not to be grouped with CORBAservices, but abstract
enough not to conflict with potential vendor offerings that could be built on top of COR-
BAservices.

The vertical CORBAfacilities—also called CORBA Domains—are between the COR-
BAservices and the Applications Objects (Fig. 26.7). They make use of various COR-
BAservices and horizontal facilities and define domain-specific services. Eleven domain
task forces define the various business areas:10

1. Common Enterprise Models

2. Finance/Insurance

3. Electronic Commerce

4. Manufacturing

5. Healthcare

6. Telecommunications

7. Transportation

8. Life Science Research

9. Utilities

10. C4I (Command, Control, Communications, Computers, and Intelligence)

11. Space

1458 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

The various OMG committees for different industries are creating, enhancing and
voting on dozens of specifications. CORBA Domains are worth the effort of a visit to the
OMG site (www.omg.org).

The Applications Objects are the top layer of the OMA. Relatively speaking, devel-
opers find the least amount of reusable code here; the objects at this layer address enter-
prise-specific domain areas. Applications Objects have the functionality not found at the
domain layer, facilities layer or the services layer. Custom applications sit securely in the
OMA framework, using existing IDL-defined services or brand new services developers
have written in response to design requests.

An understanding of the OMA means a head start in developing an architecture,
because so many of the pieces needed in most systems are defined in the OMA. Distributed
systems are inherently complex and interesting, but the basic concepts are the same regard-
less of the designed system’s size.

26.5 CORBA Basics
Distributed objects need to be defined so they can be discovered and used by other distrib-
uted objects. We define the distributed objects in IDL and use the stubs and skeletons gen-
erated by the IDL compiler to mediate the invocations in a consistent manner.’

ORB vendors ship IDL compilers with their products. As of Java 1.2, Javasoft com-
moditized the OMG libraries for Java by shipping them with the JDK. Having the CORBA
libraries available allows Java/CORBA developers to generate their own stubs and skele-
tons using the Java-supplied IDL compiler idlj. Ideally, the Java stubs generated by the
compiler should interoperate with the skeleton code running under another vendor’s ORB
(and the stub code from other vendor’s ORBs should interoperate with the Java skeleton
code), but test often and be aware of possible incompatibilities.

OMG document formal/99-07-53 defines the IDL-to-Java mapping and covers every-
thing from package names to Helpers to mapping CORBA pseudo objects. Syntactically
IDL is similar to C++, but the similarity ends there. Figure 26.9 lists the most frequently
used specification mappings.11

IDL Java

module package

interface interface

struct class

const public static final

boolean boolean

char char

wchar wchar

octet octet

string java.lang.String

Fig. 26.9Fig. 26.9Fig. 26.9Fig. 26.9 IDL keywords, types and their mappings to Java keywords (part 1 of 2).

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1459

Packages starting with org.omg contain the Java packages that comprise the core
CORBA infrastructure. CORBA vendors deliver their version of the CORBA libraries with
their Java ORB products.

The following example walks through various IDL keywords and their Java counter-
parts. The IDL in Fig. 26.10 uses many of the IDL keywords so that we can see how the
IDL compiler maps the keywords in the generated files listed in Fig. 26.11–Fig. 26.13.

wstring java.lang.String

short short

unsigned short short

long int

unsigned long int

long long long

unsigned long long long

float float

double double

fixed (not supported in idlj) java.math.BigDecimal

sequence [] (array)

[] (array) [] (array)

1 /*
2 * Any comments located outside of the module declaration are
3 * ignored by the IDL compiler. This multi-line comment does
4 * not appear in any of the files generated by idlj.
5 */
6
7 // This single-line comment is also ignored by the IDL compiler
8
9 module maptest {

10
11 // This comment appears in the generated files for StructMap
12 struct StructMap {
13
14 // This comment appears at start of the type declarations
15 boolean boolValue;
16 char charValue;
17 wchar wCharValue;
18 octet octetValue;
19 string stringValue;
20 wstring wStringValue;
21 short shortValue;

Fig. 26.10Fig. 26.10Fig. 26.10Fig. 26.10 IDL file testing many of the IDL keywords and types (part 1 of 2).

IDL Java

Fig. 26.9Fig. 26.9Fig. 26.9Fig. 26.9 IDL keywords, types and their mappings to Java keywords (part 2 of 2).

1460 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

File maptest.idl starts with two different types of comments—one multi-line
block (lines 1–5), and a single-line comment (line 7). These comments do not appear in the
generated files created by the IDL compiler. The comments are for the author and main-
tainers of the .idl file as a documentation aid. Comments placed in an IDL file appear in
the generated files only if they are within the module scope. Therefore, lines 1–5 and line
7 from maptest.idl are extraneous to the .java files but not to the .idl file.

The module name maptest (line 9) maps directly to a package named maptest
(however, the compiler can handle the prepending of a package name using the -pkg-
Prefix command line option as we did in the SystemClock example). The module
and its curly braces represent the highest level of symbol scope in IDL.

The comment on line 11 appears in the generated file so any documentation appro-
priate to the Java code can be included (it is within the scope of the module). Lines 12–
31 declare struct StructMap. StructMap uses the bulk of the IDL data types to
observe how they map to Java data types. Line 31 completes struct StructMap with
a closing brace and a semicolon.

It would seem, from the table listing the translation points, that IDL does not handle
complex types. In fact, structs allow for the complex aggregation of primitives and

22 unsigned short uShortValue;
23 long longValue;
24 unsigned long uLongValue;
25 long long longLongValue;
26 unsigned long long uLongLongValue;
27 float floatValue;
28 double doubleValue;
29
30 // fixed fixedValue; not supported by JavaIDL
31 };
32
33 typedef sequence <StructMap> StructMapSeq;
34 typedef sequence <StructMap, 5> BoundStructMapSeq;
35
36 typedef long IntArray[5];
37
38 // This comment appears above
39 // the interface declaration for interfaceName
40 interface interfaceName {
41
42 // comment above the readwrite attribute
43 attribute long anAttribute;
44 readonly attribute long roAttribute;
45 const long constantValue = 42;
46
47 // comment above the methods
48 void seqMethod(in StructMapSeq seq);
49 void boundSeqMethod(in BoundStructMapSeq seq);
50 void arrayMethod(in IntArray array);
51 void intOutMethod(inout long intValue);
52 };
53 }; // end module maptest

Fig. 26.10Fig. 26.10Fig. 26.10Fig. 26.10 IDL file testing many of the IDL keywords and types (part 2 of 2).

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1461

object references. However, because a struct is not really a class (even though it gets
converted into one), the compiler generates a public final class to prevent the creation
of derived classes from the struct. A struct is a collection of data compiled into a
class definition that a remote servant can return to, or receive from, a client at runtime. In
both cases, a local copy of the data is received (instead of an object reference).

Most of the primitive IDL-to-Java mappings are straightforward. The IDL compiler
maps signed primitives to corresponding signed primitive types in Java; unsigned IDL prim-
itives run the risk of truncation, because they are mapped to their signed Java primitive coun-
terparts (a signed short cannot store as large a value as an unsigned short). The IDL compiler
also enforces the clean initialization of the instance variables by setting them to integer zero,
0.0, false or null (casting where necessary). Notice, in the generated Java code from
StructMap.java (Fig. 26.11) that the declared instance variables are public. The IDL-
generated code breaks encapsulation. In fact, everything in IDL is public, because C,
COBOL and other IDL-mapped languages do not support encapsulation concepts.

Software Engineering Observation 26.3
Write wrapper classes to surround the structs-turned-objects as a way of restoring encap-
sulation. Wrapper classes define objects that mediate access to another object through a
well-defined API. Pass the object representing the CORBA struct into the wrapper ob-
ject’s constructor when the wrapper object is instantiated. 26.3

An interface (line 40) declares attributes clients can query and methods that cli-
ents can invoke on remote objects. A struct represents a real chunk of runtime data,
whereas an interface represents a remote object that might be in a different process
space, but appears as a local object. The interface represents the remote object because
the IDL compiler does not implement the distributed object. The developer must take the
generated code and implement the actual servant, using the generated definitions. Two of
the generated interface files (InterfaceNameOperations.java and Inter-
faceName.java) encourage developers to (1) structure the servant in a way that allows
polymorphic access to the servant through the parent interface (InterfaceName) and
(2) inherit the distributed protocol behavior we need from an abstract class
(_InterfaceNameImplBase).

The distributed object definition interface InterfaceName contains two
attributes, one constant and four operations. Line 43 declares an attribute that can
be read and changed while line 44 explicitly defines attribute roAttribute to be
readonly. The const keyword on line 45 declares the constantValue field
unchangeable.

Only an interface can have attribute declarations. If the attribute key-
word is used alone, the compiler generates two methods—an accessor (get method) and a
mutator (set method). Using the readonly keyword with attribute would generate
only the accessor. Originally, the accessor methods looked like JavaBean-style get methods
(getAge, getAttribute). In the latest incarnation of the IDL specification, the Java-
Beans naming convention is effectively deprecated. Overloaded methods are generated for
both the accessor and mutator using the name of the attribute and are different based on
their signatures—the accessor method signature for attribute balance would return
a value while the mutator would take an incoming argument and return nothing. The impli-
cation is that CORBA objects cannot be JavaBeans, but that discussion continues in the
CORBAcomponents section in Chapter 27.

1462 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

In IDL, the const keyword declares a constant. Syntactically, Java declares constant
values using the final keyword. Idiomatically, the Java keywords static and final
declare constants as there is no point in having multiple copies of an unchangeable value.
The IDL compiler generated code complies with the Java idiom (Fig. 26.13, line 14). The
IDL compiler also acknowledges the fact that integral values in Java start out as longs and
so casts the literal to the smaller type.

The mapping of methods, the parameter-passing modes, holders and arrays represent
the remaining concepts needed to define server-side objects and the services they provide.
Java developers take many of these features for granted as Java defines cross-platform data
sizes and mechanisms to invoke operations on objects in the Java Language Specification.
CORBA IDL mappings make the same guarantees for data and invocations between any
CORBA-supported languages.

Note the use of the in keyword in the method declaration in Fig. 26.10, line 48. IDL
includes keywords in, out and inout to describe method arguments. A variable
declared as in has a copy of itself passed to the called method. The scope of a change made
by the servant is visible only to the servant (similar to call-by-value). When the method
returns, the client will not see any changes. An out variable must be a reference to a Java
object containing another Java object where the contained Java object may be substituted
with another Java object and the change is visible to the client (similar to call-by-reference).
A variable declared as inout uses both semantics. Java has two value types—primitives
and object references. An object reference is, by definition, a call-by-reference. Use of a
primitive, on the other hand, is only as a value. CORBA uses Holder objects to make the
changing of values by a server-side object similar for both primitives and references. A
Holder can have its values modified and the client can see the modification. In fact, this
works similar to Java Number objects that wrap primitive values—however, Java Number
objects are immutable while Holders are mutable (modifiable).

Every time a struct or interface is declared, the IDL compiler generates an
associated Holder class for use when the struct or interface is an inout or out
variable. If a servant needs to read a value (whether primitive or object), send the value as
an in variable. If a servant needs to send a value to a client (whether primitive or object),
send the value as an out (or inout) variable, and use the Holder objects to transport
them across the network safely. All of the Java primitives have Holder classes available
for them in the org.omg.CORBA package and the IDL compiler generates the proper
method signature in the Operations interface defining the Holder object needed.

Lines 33 and 36 present the two ways to declare arrays in IDL—using the keyword
sequence and the use of open-and-close square brackets ([]). The sequence keyword
or [] are not used alone in either case. The IDL writer must declare a type definition (a
typedef) using sequence or [] to declare the array as a simple name. For example,
the type StructMapSeq is a sequence (array) of type struct StructMap.

Common Programming Error 26.1
 The symbol sequence <StructMap> cannot define an array identifier; the IDL compiler
requires a typedef-defined identifier for array types or the compiler generates a syntax er-
ror. Renaming the array declaration makes the new symbol become an additional object type. 26.1

The sequence keyword can be used in one of two ways—bounded or unbounded.
When a length is given, the sequence is considered bounded (line 34); otherwise, it is

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1463

considered unbounded (line 33). In both cases, the IDL-to-Java compiler unrolls the
typedef back to an actual array declaration and generates Helper and Holder types
for those array types (in this case, StructMapSeqHelper, StructMapSeqHolder,
BoundStructMapSeqHelper, and BoundStructMapSeqHolder). We examine
the Holders when we discuss parameter passing modes.

The standard square brackets notation also can declare arrays. However, the use of IDL
arrays is non-standard to Java. In Java, lengths are not part of the intrinsic definition of a data
type. In IDL, the new array (using []) defined using typedef has a bounded length
enforced in the stub/skeleton proxies. The typedef keyword defines an array of a particular
data type using a new data type name and the array length. A typedef in IDL is similar to
a typedef in C and C++—a new data type appears to exist, but the data type is an alias for
use by the compiler. Using a typedef allows the IDL developer to define new data types
without the implementation issues involved in the declaration. In maptest.idl,
(Fig. 26.10) an array of struct StructMap is declared using the keyword typedef, the
type to be redefined and the new name, which is surrounded by <> (lines 33–34). The array’s
length (its bound) is declared in the name, but is not used anywhere else; the array is bounded.

Figure 26.11 is the listing for StructMap.java—one of the generated files from
maptest.idl. Line 1 (and the first line in each upcoming generated file) declares the
package name as maptest. Lines 12 and 17 are the comments listed in Fig. 26.10 at
lines 11 and 14. IDL authors and maintainers are responsible for including information on
the IDL and its intended use, rather than including information on implementation specific
details that can change.

The instance variables declared in lines 18–31 of Fig. 26.11 are the declared struct
variables from Fig. 26.10. The Java code initializes the instance variables to include the use
of explicit casting. The Java class mapped from the struct has two constructors available
for object instantiation—a zero-argument constructor, and a constructor with all of the
struct’s field types as arguments. Creating objects of this type can have default values
(using the zero-argument constructor) or pre-defined values (using the second constructor).

InterfaceNameOperations.java (Fig. 26.12) contains the interface
information declared in Fig. 26.10 at lines 40–52. The IDL compiler translated the opera-
tions into Java syntax and the comments from the IDL file are visible in the generated code
at lines 12, 15, 18 and 22. A Java interface cannot contain any instance variables or
implementation code, which makes an interface a perfect choice for declaring the vis-
ible structure for the implementation object. Note that InterfaceNameOpera-
tions.java does not declare the attributes defined in Fig. 26.10 lines 43–44,
except indirectly through the available accessor and mutator (lines 16, 19 and 20). The IDL
does not dictate the implementation of the attributes—the IDL dictates that they be
available through a particular interface.

1 package maptest;
2
3
4 /**
5 * maptest/StructMap.java

Fig. 26.11Fig. 26.11Fig. 26.11Fig. 26.11 IDL-generated file StructMap.java (re-formatted for clarity)
 (part 1 of 3).

1464 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

6 * Generated by the IDL-to-Java compiler (portable), version "3.0"
7 * from maptest.idl
8 * Monday, May 14, 2001 4:18:09 PM PDT
9 */

10
11
12 // This comment appears in the generated files for StructMap
13 public final class StructMap implements
14 org.omg.CORBA.portable.IDLEntity
15 {
16
17 // This comment appears at start of the type declarations
18 public boolean boolValue = false;
19 public char charValue = (char) 0;
20 public char wCharValue = (char) 0;
21 public byte octetValue = (byte) 0;
22 public String stringValue = null;
23 public String wStringValue = null;
24 public short shortValue = (short) 0;
25 public short uShortValue = (short) 0;
26 public int longValue = (int) 0;
27 public int uLongValue = (int) 0;
28 public long longLongValue = (long) 0;
29 public long uLongLongValue = (long) 0;
30 public float floatValue = (float) 0;
31 public double doubleValue = (double) 0;
32
33 public StructMap ()
34 {
35 } // ctor
36
37 public StructMap(boolean _boolValue, char _charValue,
38 char _wCharValue, byte _octetValue, String _stringValue,
39 String wStringValue, short _shortValue,
40 short _uShortValue, int _longValue, int _uLongValue,
41 long _longLongValue, long _uLongLongValue,
42 float _floatValue, double _doubleValue)
43 {
44 boolValue = _boolValue;
45 charValue = _charValue;
46 wCharValue = _wCharValue;
47 octetValue = _octetValue;
48 stringValue = _stringValue;
49 wStringValue = _wStringValue;
50 shortValue = _shortValue;
51 uShortValue = _uShortValue;
52 longValue = _longValue;
53 uLongValue = _uLongValue;
54 longLongValue = _longLongValue;
55 uLongLongValue = _uLongLongValue;

Fig. 26.11Fig. 26.11Fig. 26.11Fig. 26.11 IDL-generated file StructMap.java (re-formatted for clarity)
 (part 2 of 3).

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1465

The final generated file discussed is InterfaceName.java in Fig. 26.13. The dec-
laration of interface InterfaceName extends three interfaces and declares
the constant constantValue at line 14 (otherwise, the interface is empty). Constants
always appear in the file named after the interface declared in the IDL file.

When the IDL compiler processes an IDL file, primary responsibilities for the com-
piler is to generate these two proxy classes (one for the server, and one for the client). These
proxies do not contain any application-specific functionality—they handle only connecting
the client to the server. The stub, which directly reflects the API of the server declared in
the IDL, can have any of the public methods of the server called from it. In the Sys-
temClock example, when the client makes a call to currentTimeMillis, the client
calls a method in the stub that handles calling method _invoke in the stub’s abstract
parent (org.omg.CORBA.portable.ObjectImpl). ObjectImpl’s _invoke

56 floatValue = _floatValue;
57 doubleValue = _doubleValue;
58 } // ctor
59
60 } // class StructMap

1 package maptest;
2
3
4 /**
5 * maptest/InterfaceNameOperations.java
6 * Generated by the IDL-to-Java compiler (portable), version "3.0"
7 * from maptest.idl
8 * Monday, May 14, 2001 4:18:09 PM PDT
9 */

10
11
12 // the interface declaration for InterfaceName
13 public interface InterfaceNameOperations
14 {
15 // comment above the readwrite attribute
16 int anAttribute();
17
18 // comment above the readwrite attribute
19 void anAttribute(int newAnAttribute);
20 int roAttribute();
21
22 // comment above methods
23 void seqMethod(maptest.StructMap[] seq);
24 void boundSeqMethod(maptest.StructMap[] seq);
25 void arrayMethod(int[] array);
26 void intOutMethod(org.omg.CORBA.IntHolder intValue);
27 } // interface InterfaceNameOperations

Fig. 26.12Fig. 26.12Fig. 26.12Fig. 26.12 IDL-generated file InterfaceNameOperations.java
(re-formatted for clarity).

Fig. 26.11Fig. 26.11Fig. 26.11Fig. 26.11 IDL-generated file StructMap.java (re-formatted for clarity)
 (part 3 of 3).

1466 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

method marshals any incoming values (in this case there are none), and the stub code takes
care of unmarshaling any return values (which in this case is a long value). From the
client’s perspective, it makes a method call on the server and blocks until the method
returns with a value. In reality, the ORB makes the request by calling _invoke on the stub
to handle the method call. The _invoke method calls the proper method on the servant,
waits for the method to return and unmarshals any return values.

Prior to CORBA 3, there were two types of static invocations—synchronous and
oneway (there was also one for dynamic invocation, but more on that later). When a client
makes a synchronous method call to a server, the client blocks (does not return) until the
server’s method completes. The oneway modifier declared an invoked method as
returning immediately—but did not declare any quality-of-service options. Quality of Ser-
vice (known as QoS) defines the policy assigned to a particular task allowing the task to
complete within a reasonable length of time.12 The OMG considered QoS so important a
separate QoS framework specification exists to allow developers to control QoS at various
levels (generally speaking they are ORB level, thread level and object-reference level).
Object reference level QoS overrides thread level QoS and thread level QoS overrides ORB
level QoS.13 QoS makes CORBA 3 invocation choices much more symmetrical—they can
be synchronous (normal or oneway) or asynchronous (callback or polling). A callback is
an invocation made from the server, whereas polling is an invocation made from the
client—in either case, a method is being invoked based on the needs of the calling object.
From an implementation perspective, a callback has more overhead as the callback object
(the client) needs to use CORBA libraries to behave as a CORBA server. A polling client
has no additional overhead to make repeated calls to a server. The distinction has to do with
a met condition (a server alerts a callback object) or an expected condition (a client polls
an object to check on state changes).

Portability Tip 26.2
The OMG has not yet decided on standard default values for QoS, ORB vendors can define
nonportable values. If you use these values, place them in a separate.properties file for
the system to read on start-up. 26.2

1 package maptest;
2
3 /**
4 * maptest/InterfaceName.java
5 * Generated by the IDL-to-Java compiler (portable), version "3.0"
6 * from maptest.idl
7 * Monday, May 14, 2001 4:18:09 PM PDT
8 */
9

10 // the interface declaration for InterfaceName
11 public interface InterfaceName extends InterfaceNameOperations,
12 org.omg.CORBA.Object, org.omg.CORBA.portable.IDLEntity
13 {
14 public static final int constantValue = (int) (42);
15 } // interface InterfaceName

Fig. 26.13Fig. 26.13Fig. 26.13Fig. 26.13 IDL-generated file InterfaceName.java (re-formatted for clarity).

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1467

A synchronous call is a standard method invocation—a client invokes a method and
blocks until the call completes. If an IDL method signature includes the oneway keyword,
the compiler generates code that does not block on the invocation and returns based on the
QoS settings. To return immediately, the method must receive only in arguments, must not
return values and cannot throw exceptions. The caller does not need to wait for a response
(it notifies the server something has happened and does not care what happens next) or the
client wants to make itself available as soon as possible to other callers. In either case, a
synchronous call is client-initiated.

An asynchronous call differs from a synchronous call. In a callback situation, the
server can call a client at any time. In many cases, a server calling a client asynchronously
works fine (e.g., listeners in the Java event model), but consider when a client needs the
server to notify it in a more controlled fashion? The CORBA Asynchronous Method Invo-
cation specification supports both callback and polling models. The callback model sup-
ports (with various QoS options) the ability of a servant to call a client arbitrarily at the
discretion of the servant. In the polling model, the client decides when to retrieve a possible
result based on a call to a oneway method. In standard polling, there may be nothing to
retrieve, so the client continues polling until it receives a valid value or decides to stop.

As a matter of convention, passing an object reference to another distributed object
(especially for the express intent of callbacks) demands declaring its registration method as
oneway. The oneway keyword tells the IDL compiler to generate code that does not
block on the invocation waiting for the called operation to return. This nonblocking
behavior prevents the registration method from making method calls on the incoming
object reference. If neither object is multithreaded, a server calling a client can cause dead-
lock. Without the use of oneway, the client would wait for the server to return, and the
server would wait for the client method to return (Fig. 26.14). Section 26.6 presents an
explicit example of the use of the oneway keyword.

Good Programming Practice 26.4
To avoid deadlock, use the oneway keyword whenever passing an object reference to a cli-
ent through a server method. 26.4

Fig. 26.14Fig. 26.14Fig. 26.14Fig. 26.14 Deadlock caused by client calling a server that calls the client.

Client Server

1. registerClient(this)

2. clent.endMessage()

Client and server are now deadlocked.

1468 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

26.6 Example: AlarmClock
The AlarmClock example is a different type of application from the SystemClock ex-
ample. SystemClock is a typical pull-model application—the client decides when to re-
trieve information from the server. The AlarmClock example, on the other hand, is a
typical push-model application—the server decides when to send information to the client.
In AlarmClock, the client sets a server-side “alarm,” then waits for the server to wake it
up when the alarm sounds. In this example, the client generates a random sleep time with
which to set the alarm clock. When the alarm goes off, the server notifies the client and the
awakened client displays a new sleep time and resets the alarm.

26.6.1 AlarmClock.idl

Figure 26.15 is the IDL declaring the two servers.
Line 4 declares the module name, and lines 5 and 9 declare the names of the server

types. The module has two interface declarations—the server interface and the
callback interface. The main server is AlarmClock, and AlarmListener is the
callback definition. Using the keyword const, line 10 defines a constant called NAME for
the implementation code when we bind to the Naming Service. AlarmClock method
addAlarmListener at line 12–13 adds AlarmListener objects to a list of callback
objects—any object holding a reference to an AlarmListener can call method upda-
teTime. The caller sends in an arbitrary name for the server to associate the caller’s object
reference with the name as a primary key. An AlarmListener object is a reference to a
listener, so we add keyword oneway to make sure the compiler generates nonblocking
code for this operation. The object implementing the AlarmListener interface can reg-
ister itself with AlarmClock and then wait until the alarm expires. Figure 26.16 is the
implementation of the “real” server.

1 // Fig. 26.15: alarmclock1.idl
2 // The IDL for the AlarmClock example
3
4 module alarm {
5 interface AlarmListener {
6 void updateTime(in long long newTime);
7 };
8
9 interface AlarmClock {

10 const string NAME = "AlarmClock";
11
12 oneway void addAlarmListener(in string listenerName,
13 in AlarmListener listener);
14
15 void setAlarm(in string listenerName,
16 in long long seconds);
17 };
18 };

Fig. 26.15Fig. 26.15Fig. 26.15Fig. 26.15 alarmclock1.idl.

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1469

26.6.2 AlarmClockImpl.java
In Fig. 26.16, lines 21–52 are the same as method register in SystemClockImpl
(Fig. 26.4, lines 26–59). Lines 26–29 check the incoming arguments. Line 32 creates an ORB
using the ORB.init factory method, and line 35 connects with the ORB. Lines 38–41 find
a reference to a Naming Service. Lines 45–47 create a NameComponent object, and line 50
sends this NameComponent object to the Naming Service using method rebind.

Lines 56–77 declares the addAlarmListener registration method. After the stan-
dard argument checks, Line 76 stores the listener the incoming name in a Hashtable, if
the name and listener had not been saved. The Hashtable contains the listener name and
an AlarmTimer object that sleeps the required number of seconds, then notifies the lis-
tener that the alarm has sounded (AlarmTimer inherits from java.util.Timer
which handles the threading for calling the client independent of the main thread). Inner
class TaskWrapper (registered with the AlarmTimer at lines 90 and 91) calls the lis-
tener method updateTime in method TaskWrapper.run (lines 143–151) and
promptly removes itself as an alarm. Every time a client sets an alarm using method set-
Alarm (lines 81–92), we create a new TaskWrapper and return to the caller as fast as
we can.

1 // Fig. 26.16: AlarmClockImpl.java
2 // Implementation of AlarmClock server.
3
4 package com.deitel.advjhtp1.idl.alarm;
5
6 // Java core packages
7 import java.util.*;
8
9 // Java extension packages

10 import org.omg.CORBA.ORB;
11 import org.omg.CosNaming.*;
12 import org.omg.CosNaming.NamingContextPackage.*;
13
14 public class AlarmClockImpl extends _AlarmClockImplBase {
15
16 // list contains name/alarm pairs of
17 // registered objects waiting for an alarm
18 private Hashtable alarmList = new Hashtable();
19
20 // register AlarmClockImpl object with Naming Service
21 public void register(String corbaName, String params[])
22 throws org.omg.CORBA.ORBPackage.InvalidName,
23 org.omg.CosNaming.NamingContextPackage.InvalidName,
24 CannotProceed, NotFound
25 {
26 if ((corbaName == null) ||
27 (corbaName.trim().length() == 0))
28 throw new IllegalArgumentException(
29 "Registration name cannot be null or blank");
30

Fig. 26.16Fig. 26.16Fig. 26.16Fig. 26.16 AlarmClockImpl is the AlarmClock server implementation
 (part 1 of 4).

1470 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

31 // create and initialize ORB
32 ORB orb = ORB.init(params, null);
33
34 // register this object with ORB
35 orb.connect(this);
36
37 // retrieve reference to Naming Service
38 org.omg.CORBA.Object corbaObject =
39 orb.resolve_initial_references("NameService");
40 NamingContext naming =
41 NamingContextHelper.narrow(corbaObject);
42
43 // create NameComponent array with path information to
44 // find this object
45 NameComponent namingComponent =
46 new NameComponent(corbaName, "");
47 NameComponent path[] = { namingComponent };
48
49 // bind AlarmClockImpl object with ORB
50 naming.rebind(path, this);
51 System.out.println("Rebind complete");
52 }
53
54 // method used by clients wanting to register
55 // as callback/listener objects
56 public void addAlarmListener(String listenerName,
57 AlarmListener listener)
58 throws DuplicateNameException
59 {
60 if (listenerName == null ||
61 listenerName.trim().length() == 0)
62 throw new IllegalArgumentException(
63 "Name cannot be null or blank");
64 else
65
66 if (alarmList.get(listenerName) != null)
67 th row new IllegalArgumentException(
68 "Name is already registered, please choose another");
69 else
70
71 if (listener == null)
72 throw new IllegalArgumentException(
73 "Listener cannot be null");
74
75 // create new Timer and save it under listener name
76 alarmList.put(listenerName, new AlarmTimer(listener));
77 }
78

Fig. 26.16Fig. 26.16Fig. 26.16Fig. 26.16 AlarmClockImpl is the AlarmClock server implementation
 (part 2 of 4).

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1471

79 // Set an alarm for a client. If client not registered
80 // throw a runtime exception.
81 public void setAlarm(String name, long seconds)
82 {
83 // get alarm for particular client
84 AlarmTimer timer = (AlarmTimer) alarmList.get(name);
85
86 if (timer == null)
87 throw new IllegalArgumentException(
88 "No clock found for the incoming name");
89 else
90 timer.schedule(new TaskWrapper(timer.getListener(),
91 seconds), seconds * 1000);
92 }
93
94 // main method to execute AlarmClock server
95 public static void main(String args[]) throws Exception
96 {
97 AlarmClockImpl alarm = new AlarmClockImpl();
98 alarm.register(AlarmClock.NAME, args);
99
100 java.lang.Object object = new java.lang.Object();
101
102 // keep server alive
103 synchronized(object) {
104 object.wait();
105 }
106 }
107
108 // Every listener get an AlarmTimer assigned to them.
109 private class AlarmTimer extends Timer {
110
111 // The listener this Timer is assigned to.
112 private AlarmListener listener;
113
114 public AlarmTimer(AlarmListener l)
115 {
116 listener = l;
117 }
118
119 // Accessor method so we can get to the listener
120 // object reference.
121 public AlarmListener getListener()
122 {
123 return listener;
124 }
125 } // end of private inner class TaskWrapper
126

Fig. 26.16Fig. 26.16Fig. 26.16Fig. 26.16 AlarmClockImpl is the AlarmClock server implementation
 (part 3 of 4).

1472 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

26.6.3 AlarmClockClient.java

Figure 26.17 is a simple GUI for the application. The GUI consists of a JFrame that dis-
plays a String informing the user when the alarm has sounded.

127 // TaskWrapper takes care of calling our clients
128 // when their alarm expires.
129 private class TaskWrapper extends TimerTask {
130
131 // The reference to our listener
132 private AlarmListener listener;
133 private long seconds;
134
135 // TaskWrapper needs to know who to call and
136 // how long was the alarm set (in seconds).
137 public TaskWrapper(AlarmListener l, long s)
138 {
139 listener = l;
140 seconds = s;
141 }
142
143 public void run()
144 {
145 // Go wake them up!
146 listener.updateTime(seconds);
147
148 // Discard this TaskWrapper. When the client
149 // wants a new alarm we create a new TaskWrapper.
150 this.cancel();
151 }
152 } // end private inner class TaskWrapper
153 } // end class AlarmClockImpl

1 // Fig. 26.17: ClockClientGUI.java
2 // GUI used by the AlarmClockClient.
3
4 package com.deitel.advjhtp1.idl.alarm;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9

10 // Java extension packages
11 import javax.swing.*;
12
13 public class ClockClientGUI extends JFrame {
14 private JLabel outputLabel;
15

Fig. 26.17Fig. 26.17Fig. 26.17Fig. 26.17 ClockClientGUI informs the user when the alarm has sounded
 (part 1 of 2).

Fig. 26.16Fig. 26.16Fig. 26.16Fig. 26.16 AlarmClockImpl is the AlarmClock server implementation
 (part 4 of 4).

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1473

AlarmClockClient (Fig. 26.18) is the client for the AlarmClock service. Lines
22–38 define the AlarmClockClient constructor. Using the system time, Alarm-
ClockClient gives itself a name and, after creating the GUI, passes the name to method
connectToAlarmServer (lines 41–68) along with any incoming parameters. Alarm-
ClockClient connects to the AlarmClock the same way SystemClockClient
connects to the TimeServer. Line 48 creates an ORB object, using the ORB factory
method init. By passing the client reference in as the second argument, AlarmClock-
Client registers itself with the ORB. The newly instantiated ORB handles mediating all
calls made from and sent to the client. The ORB, created as an object separate from the
AlarmClockClient, can control access to and from the AlarmClockClient, but
only if the ORB has a usable reference to complete invocations started (or ending) in the
stub client code. Method init makes the AlarmClockClient ORB-enabled. Using
the same ORB, AlarmClockClient can obtain a reference to the Naming Service. As
in the example from Fig. 26.5, ORBs have mini-naming services that allow them to boot-
strap with a predefined list of external services (naming being one of them). Using the
NamingContextHelper.narrow method, line 55 downcasts the CORBA object
returned from resolve_initial_references to an object of type NamingCon-
text. Figure 26.18 displays the output when the client and server connected.

NameComponents allow clients to traverse the Naming Service to look for needed
services. Lines 58–59 create a NameComponent object that the Naming Service uses to
find the AlarmClock service. When the AlarmClockClient calls the Naming Ser-
vice methods resolve and downcasts the returned object reference into an object of type

16 // set up GUI
17 public ClockClientGUI()
18 {
19 super("Clock GUI");
20
21 outputLabel =
22 new JLabel("The alarm has not gone off...");
23 getContentPane().add(outputLabel, BorderLayout.NORTH);
24
25 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
26 setResizable(false);
27 Dimension screenSize =
28 Toolkit.getDefaultToolkit().getScreenSize();
29 setSize(new Dimension(450, 100));
30 setLocation((screenSize.width - 450) / 2,
31 (screenSize.height - 100) / 2);
32 }
33
34 // set label's text
35 public void setText(String message)
36 {
37 outputLabel.setText(message);
38 }
39
40 } // end of class ClockClientGUI

Fig. 26.17Fig. 26.17Fig. 26.17Fig. 26.17 ClockClientGUI informs the user when the alarm has sounded
 (part 2 of 2).

1474 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

AlarmClock (lines 61–62), the AlarmClockClient can make a remote method call.
Line 65 registers the client with the AlarmClock as an AlarmListener, making itself
an asynchronous callback object. The AlarmClockClient finishes method con-
nectToAlarmServer after displaying the GUI and setting the alarm through method
updateTime (lines 71–80)—this method (declared in the IDL interface AlarmLis-
tener) resets the alarm after every call from the server, allowing the client to sleep until
the time expires. The main difference between this code and that of SystemClock-
Client is the client behavior after finding the Naming Service. The AlarmClock-
Helper.narrow method is the only nonreusable code.

1 // Fig. 26.18: AlarmClockClient.java
2 // Client of the AlarmClock service
3
4 package com.deitel.advjhtp1.idl.alarm;
5
6 // OMG CORBA packages
7 import org.omg.CORBA.ORB;
8 import org.omg.CosNaming.*;
9 import org.omg.CosNaming.NamingContextPackage.*;

10
11 public class AlarmClockClient extends _AlarmListenerImplBase {
12
13 // Reference to the GUI to be displayed
14 private ClockClientGUI gui;
15
16 // Reference to the alarm clock server we connect to
17 private AlarmClock alarmClock;
18
19 // Name of this client used by server to make proper callback
20 private String name;
21
22 public AlarmClockClient(String params[]) throws Exception
23 {
24 // create displayable name that is unique among VMs
25 // running on same computer (or at least randomly unique)
26 name = new Long(
27 System.currentTimeMillis() % 10000).toString();
28
29 // create GUI to display name and
30 // number of seconds before alarm expires
31 gui = new ClockClientGUI();
32
33 // connect to TimeService
34 connectToAlarmServer(name, params);
35
36 // display GUI and wait for user to terminate app.
37 gui.show();
38 }
39

Fig. 26.18Fig. 26.18Fig. 26.18Fig. 26.18 AlarmClockClient is the AlarmClock client (part 1 of 3).

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1475

40 // perform connection to AlarmServer
41 private void connectToAlarmServer(
42 String name, String params[])
43 throws org.omg.CORBA.ORBPackage.InvalidName,
44 org.omg.CosNaming.NamingContextPackage.InvalidName,
45 NotFound, CannotProceed
46 {
47 // connect AlarmClockClient to an ORB
48 ORB orb = ORB.init(params, null);
49
50 // connect to Naming Service and find object
51 // reference for AlarmClock service
52 org.omg.CORBA.Object corbaObject =
53 orb.resolve_initial_references("NameService");
54 NamingContext naming =
55 NamingContextHelper.narrow(corbaObject);
56
57 // resolve object reference in naming
58 NameComponent nameComponent =
59 new NameComponent(AlarmClock.NAME, "");
60 NameComponent path[] = { nameComponent };
61 alarmClock =
62 AlarmClockHelper.narrow(naming.resolve(path));
63
64 // register this object with AlarmClock service
65 alarmClock.addAlarmListener(name, this);
66 gui.show();
67 updateTime(0);
68 }
69
70 // The callback method defined in AlarmListener.
71 public void updateTime(long seconds)
72 {
73 // Make up a length of time to use for the alarm setting.
74 int newTime = (int)(Math.random() * 10.0) + 1;
75 gui.setText("Alarm " + name + " came in at " + seconds +
76 " seconds. Resetting to " + newTime + " seconds");
77 alarmClock.setAlarm(name, newTime);
78 }
79
80 // main method to execute client
81 public static void main(String args[]) throws Exception
82 {
83 // create client
84 try {
85 AlarmClockClient client = new AlarmClockClient(args);
86 }
87
88 // process exceptions that occur while client executes
89 catch (Exception exception) {
90 System.out.println(
91 "Exception thrown by AlarmClockClient:");

Fig. 26.18Fig. 26.18Fig. 26.18Fig. 26.18 AlarmClockClient is the AlarmClock client (part 2 of 3).

1476 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

26.7 Distributed Exceptions
Exceptions in an object-oriented environment are the preferred means of handling error sit-
uations. Java’s exception-handling mechanism works at two levels—compile-time and
runtime. Developers can handle exceptions at compile-time using try blocks or by ex-
panding method signatures to include any exceptions they throw. If a particular exception
is so general that code is written solely to provide specialized error recovery, the exception
can inherit from RuntimeException—the developer then decides explicitly when the
exception should be handled. At runtime, the code is already set to handle normal excep-
tions, and any code that could throw a RuntimeException has to be carefully scruti-
nized prior to being called to minimize the risk of abnormal code termination. We must
consider the happenings when Java code throws exceptions across the network. In COR-
BA, the server with which a client is communicating might be in a different language. Does
this result in using antiquated methods to check status codes?

CORBA specifies two exception types—system exceptions and user exceptions.
System exceptions are defined for use by CORBA infrastructure and all operations defined
using IDL. User exceptions are CORBA exceptions defined using IDL by the developers of
a CORBA system. Every call to a distributed object can throw an exception. Every opera-
tion on a CORBA object can throw a CORBA SystemException—developers then
write code that handle these exceptions. However, even runtime exceptions need attention
occasionally, so consider writing additional try blocks or wrappers around the stub of a
distributed object so that the client does not have to know there is additional error handling
occurring when an exception is thrown.

Developers can find the exceptions thrown by a CORBA object by looking in the
object’s associated IDL file. For example, the Naming Service declares the rebind
method in CosNaming.idl:14

void rebind(in Name n, in Object obj)
 raises(NotFound, CannotProceed,
 InvalidName);

92 exception.printStackTrace();
93 }
94 }
95
96 } // end of class AlarmClockClient

Fig. 26.18Fig. 26.18Fig. 26.18Fig. 26.18 AlarmClockClient is the AlarmClock client (part 3 of 3).

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1477

The keyword raises maps to the Java keyword throws. Method rebind
raises three exceptions—NotFound, CannotProceed and InvalidName. Cos-
Naming.idl defines them as15

enum NotFoundReason {
 missing_node,
 not_context,
 not_object
};

exception NotFound {
 NotFoundReason why;
 Name rest_of_name;
};
exception CannotProceed {
 NamingContext cxt;
 Name rest_of_name;
};

exception InvalidName{};

Note the use of the keyword exception. IDL exceptions map to Java exceptions
inheriting indirectly from java.lang.Exception (they inherit directly from User-
Exception). The InvalidName exception—a java.lang.Exception sub-
class—is closer to standard Java practice, but only as a means of specifying a particular
problem area. Exception CannotProceed defines additional attributes available to
anyone receiving the exception object, but the attributes are all public.

By definition, standard CORBA exceptions map to Java exceptions as final classes. If
a CORBA exception inherits from SystemException, it is also a RuntimeExcep-
tion. All CORBA exceptions are available for use by developers in the various org.omg
packages shipped with the JDK. Use CORBA exceptions within a server when appropriate;
throw CORBA exceptions only when a CORBA problem has surfaced. Define custom dis-
tributed exceptions for service-specific problems that need the attention of the remote caller.

Defining custom exceptions in IDL is straightforward. In Fig. 26.19, lines 2–4 declare
an exception useful in alerting a caller that a problem occurred when trying to retrieve
a customer record. The find operation (line 7) declares its intention to throw a Data-
baseException by using keyword raises.

The IDL compiler generates the exception class definition and needs no further work on
the developer’s part. The generated DatabaseException class appears in Fig. 26.20.

To make the AlarmClock more client-friendly, we can add user-defined Duplicat-
eNameException to method addAlarmListener (lines 16–18) in Fig. 26.21. Adding
the exception to the signature of addAlarmListener also removes keyword oneway,
which does not allow the use of out or inout return values or the throwing of exceptions.

1 module domain {
2 exception DatabaseException {
3 string msg;
4 };

Fig. 26.19Fig. 26.19Fig. 26.19Fig. 26.19 A user-defined CORBA exception (DatabaseException) and an
operation capable of throwing the exception (part 1 of 2).

1478 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

5
6 interface CustomerHome {
7 void find(in long key) raises (DatabaseException);
8 };
9 };

1 public final class DatabaseException
2 extends org.omg.CORBA.UserException
3 implements org.omg.CORBA.portable.IDLEntity
4 {
5 public String msg = null;
6
7 public DuplicateNameException ()
8 {
9 } // ctor

10
11 public DuplicateNameException(String _msg)
12 {
13 msg = _msg;
14 } // ctor
15 } // class DatabaseException

Fig. 26.20Fig. 26.20Fig. 26.20Fig. 26.20 The generated DatabaseException.java file (reformatted for
clarity).

1 // Fig. 26.21: alarmclock2.idl
2 // The IDL for the AlarmClock example
3
4 module alarm {
5 exception DuplicateNameException {
6 string msg;
7 };
8
9 interface AlarmListener {

10 void updateTime(in long long newTime);
11 };
12
13 interface AlarmClock {
14 const string NAME = "AlarmClock";
15
16 void addAlarmListener(in string listenerName,
17 in AlarmListener listener)
18 raises(DuplicateNameException);
19
20 void setAlarm(in string listenerName,
21 in long long seconds);
22 };
23 };

Fig. 26.21Fig. 26.21Fig. 26.21Fig. 26.21 alarmclock2.idl is the IDL for the AlarmClock example.

Fig. 26.19Fig. 26.19Fig. 26.19Fig. 26.19 A user-defined CORBA exception (DatabaseException) and an
operation capable of throwing the exception (part 2 of 2).

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1479

With the addition of the exception to method addAlarmListener, clients cannot
register to set alarms if they have the same name. This should be a precondition for this
method in any case, but the sentiment is the same. The only changes we need to make to
method addAlarmListener (Fig. 26.16) are shown in Fig. 26.22 (lines 57 and 66).
Line 57 adds the throws DuplicateNameException clause to match the method
declaration in AlarmClockOperations.java (the interface generated when we
compiled alarmclock2.idl). Line 65 performs the duplicate name check, and line 66
throws the exception if there is an existing listener registered using the incoming name.

Adding DuplicateNameException to addAlarmListener’s signature has
an impact on any methods that call it. In this case, method connectToAlarmServer
(Fig. 26.18) must add DuplicateNameException to its method signature. Making
this change to the signature of connectToAlarmServer requires any callers either to
catch the exception or pass it on to their callers (this example catches everything in method
main).

Extending Java exceptions by making them distributed does not imply that all Java
mechanisms have the same additional capabilities. An area not discussed in CORBA is gar-
bage collection—the reclamation of allocated memory. CORBA does not handle the allo-
cation and deallocation of objects directly. CORBA does not dictate implementation, so we
discuss garbage collection in the context of Java in a CORBA environment. Non-Java lan-
guages have their own mechanisms for memory allocation and deallocation—these mech-
anisms create objects for remote use or create structs given to another process
somewhere “out there.” Java does not force developers to perform memory deallocation.
The same features that attracted millions of developers to Java in the first place are still
available even when used in conjunction with legacy languages glued together using
CORBA.

1 public void addAlarmListener(String listenerName,
2 AlarmListener listener) throws DuplicateNameException
3 {
4 if (listenerName == null ||
5 listenerName.trim().length() == 0)
6 throw new IllegalArgumentException(
7 "Name cannot be null or blank");
8 else
9

10 if (list.get(listenerName) != null)
11 throw new DuplicateNameException(
12 "Name is already registered, please choose another");
13 else
14
15 if (listener == null)
16 throw new IllegalArgumentException(
17 "Listener cannot be null");
18
19 // Create a new Timer and save it under the listener name
20 alarmList.put(listenerName, new AlarmTimer(listener));
21 }

Fig. 26.22Fig. 26.22Fig. 26.22Fig. 26.22 Excerpt from AlarmClockImpl.java.

1480 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

When structs are instantiated in Java, as we have stated before, all of the instance
variables are public, leaving us with an exposed object. When a client sends a struct
object as an argument to a remote operation, the skeleton makes a copy on the server side
for use as a local object. What happens to the original data object on the client side? As long
as some variable has a handle to the reference, the struct object is not deallocated. As
soon as no more variables are pointing to the object (the reference count has become zero)
the object is garbage collected. Server-side Java behaves the same way—incoming objects
(i.e., references or data objects) exist for as long as a server-side resource has a handle to
it—otherwise, these objects are marked for garbage collection.

26.8 Case Study: Chat
Chapter 13 presented a straightforward implementation of the RMI Messenger example.
This next example ports the RMI Messenger to CORBA using the concepts discussed in
the SystemClock and AlarmClock examples. A chat program is a natural application
for distributed system technologies like RMI and CORBA. Chat is a basic network appli-
cation using a central broadcasting point where a collection of clients pushes in messages
and the middleware pushes out messages.

The architectural model for CORBA Messenger begins with determining large, trans-
actional, visible (to the user) functionality offered by the application. The Unified Mod-
eling Language calls the list and description of user-visible functionality use cases.
CORBA Messenger has the following use cases:

1. Connect: A client finds and connects to a chat server.

2. Disconnect: A client completes a chat session by disconnecting from the chat serv-
er.

3. Send message: A connected client creates a chat message and gives the message
to the chat server.

4. Receive message: A connected client receives messages delivered by the chat
server. All clients connected to the chat server receive the same message.

Testing and Debugging Tip 26.1
Create test objects as soon as possible in the development cycle of the distributed object. Test
the load-bearing capabilities expected of the server on a regular basis. 26.1

The Naming Service is a fundamental implementation point for a CORBA system.
Naming is the standard way clients can find the service(s) they need to accomplish their
tasks. The name for the CORBA Messenger chat server is “ChatServer”. When
requested, the Naming Service returns the Interoperable Object Reference (IOR) associated
with the chat server name (which the server gave the Naming Service when the server was
first started).

Another way for a client to find a service is to use a stringified version of the service’s
Interoperable Object Reference. As we mentioned earlier, an object reference contains net-
work information needed by an ORB to find a distributed object. When discovered from a
Naming Service, the object reference (in the form of an IOR) is valid for the activation life-
time of the remote object through a particular ORB. The stringified IOR is valid as long as

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1481

a server is available to handle any invocations (this is subject to the servant’s POA’s quality
of service settings). If desired, an external file can save the IOR for future use.

The object reference of every distributed object can be returned as a string for
external use by clients using ORB method object_to_string, but using the stringified
IOR is not a guarantee that the object is available for use. What a stringified IOR does guar-
antee is a valid object reference for any session where the object is alive (going through the
ORB at the location stated in the object reference). However, clients always expect the
Naming Service to have the latest path to a particular object, while there can be no guaran-
tees as to the validity of a stringified IOR. This is similar to the process of starting a car—
knowing how to hot wire a vehicle means all cars are available for use, but hot wiring is
harder than simply using the ignition key of a particular car.

Abstractions such as the IOR give developers more implementation flexibility. At first
glance, passing the message as a string to the ChatServer appears sufficient to allow
the server to send messages to all clients. However, modeling the problem domain enables
us to abstract the string into a Message, allowing us to do more with the value object
being passed between client and server (for example, sending the originating chat name
along with the message). Making the ChatMessage a struct means all connected cli-
ents receive their own copy of the message for local manipulation rather than sharing one
central object (lines 6–11 of Fig. 26.23). The simultaneous access of one shared Chat-
Message object among all the users of the system would create a severe bottleneck in the
system when all of the clients try to read the object’s contents at the same time.

The use of structs in IDL is an ongoing issue from an object-oriented implementa-
tion perspective. A struct is useful for sending collections of data across the network due
to a design decision such as performance (i.e., sending 10 struct-like objects between a
client and a server offers better performance than sending 10 object references as individual
data-member accesses). However, when mapping a non-object-oriented construct (e.g., a
struct) to an object-oriented target language, the mapping will not be fully object-ori-
ented without raising more issues than are being solved. In the case of structs, the data
becomes unencapsulated. CORBA is language-neutral, and IDL is not an implementation
language. As mentioned earlier, everything in IDL is public because C, COBOL and
other languages do not support encapsulation concepts. If the middleware were a C server,
the stubs and skeletons involved would have to know how to map the proper Java object
into a proper C struct. This mapping can be handled by the code generated using the IDL
compiler. However, making the generated code more complex raises other issues, such as
how the object scope can be opened to allow for the marshaling of these now properly
encapsulated values. Remember, CORBA is the glue used to enable systems integration,
not an object-oriented solution to domain problems.

Developers do not have to do anything with the code generated to represent structs
(they just have to be careful with using unencapsulated values). If ChatMessage were
going to be a distributed object, we would have to define ChatMessage as an IDL
interface, which developers would have to implement.

26.8.1 chat.idl
The server needs server-side interfaces to register and unregister a client and deliver mes-
sages to all clients. The client uses its own server-side interfaces to accept messages (after
registering with the server).

1482 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

Figure 26.23 defines the two server interfaces for the Chat application. Lines
29–44 reflect the IDL of the three services (operations) offered in interface Chat-
Server. The nested module names client (line 13) and server (line 24) create new
scope levels. Line 33 references type client::ChatClient for use with method
registerClient (the double colons resolve IDL namespace the same way the dot
resolves Java package/class namespace). Lines 14–21 define the ChatClient and its ser-
vice of delivering incoming messages to a user. ChatServer’s knowledge of the symbol
ChatClient defines the symbol linkage for the callback. The IDL gives no indication
that ChatClient needs to know anything but the symbol ChatMessage.

1 // Chat.idl
2 // This file contains the IDL defining the API to the ChatServer
3 // as well as the ChatClient and ChatMessage.
4
5 module corba {
6 struct ChatMessage {
7
8 // ChatMessage properties
9 string from;

10 string message;
11 };
12
13 module client {
14 interface ChatClient {
15
16 // receive new message
17 void deliverMessage(in ChatMessage message);
18
19 // method called when server shuting down
20 void serverStopping();
21 };
22 };
23
24 module server {
25 interface StoppableChatServer {
26 void stopServer();
27 };
28
29 interface ChatServer {
30 const string NAME = "ChatServer";
31
32 // register new ChatClient with ChatServer
33 oneway void registerClient(in client::ChatClient client);
34
35 // unregister ChatClient with ChatServer
36 void unregisterClient(in client::ChatClient client);
37
38 // post new message to ChatServer
39 void postMessage(in ChatMessage message);
40 };

Fig. 26.23Fig. 26.23Fig. 26.23Fig. 26.23 ChatServer, ChatClient and ChatMessage interface definitions
(part 1 of 2).

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1483

26.8.2 ChatServerImpl.java
The IDL compiler generated the following files for server-side use when we compile
chat.idl:

• messenger\client_ChatClientImplBase.java

• messenger\server_ChatServerImplBase.java

• messenger\client\ChatClient.java

• messenger\client\ChatClientOperations.java

• messenger\ChatMessage.java

• messenger\server\ChatServer.java

• messenger\server\ChatServerOperations.java

In addition, the compiler generated two class files that are not used directly:

• messenger\ChatMessageHelper.java

• messenger\ChatMessageHolder.java

The ImplBase classes use ChatMessageHelper to read and write from the
Stream for sending objects. Developers never see this use of ChatMessageHelper
unless they look at the generated files. On the other hand, developers will use ChatMes-
sageHolder directly if they had declared ChatMessage an out variable. (Chat-
Message is used only as an in variable, so ChatMessageHolder is unused.)

Note that ChatClient, ChatClientOperations and _ChatClientImpl-
Base seem to refer to a client—from the ChatServer’s perspective, ChatClient is
another server (which makes ChatServer a client during calls to ChatClient). We
revisit these files in the client-implementation discussion.

The ChatServer is responsible for keeping a list of clients that want to be part of
the broadcast of messages filtering through the server. For simplicity, we use a Hash-
table with the user name as the key and the object reference to the ChatClient as the
value. In general, method registerClient saves the user name and object reference to
the ChatClient in the Hashtable, method removeClient removes the object ref-
erence using the user name as the key into the Hashtable and method postMessage
iterates the list of object references and calls deliverMessage on each registered client.

In Fig. 26.24, lines 11–13 import the standard packages that contain the symbols for
the CORBA classes. At line 19, ChatServerImpl inherits from
_ChatServerImplBase. Abstract class _ChatServerImplBase implements

41
42 // Create a combination interface
43 interface ChatService : ChatServer, StoppableChatServer {
44 };
45 };
46
47 }; // end module corba

Fig. 26.23Fig. 26.23Fig. 26.23Fig. 26.23 ChatServer, ChatClient and ChatMessage interface definitions
(part 2 of 2).

1484 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

interface ChatServer, which extends ChatServerOperations and requires
that ChatServerImpl implement the methods defined in interface ChatServerOp-
erations. The implementation of the three methods is straightforward and is not signif-
icantly different from the original ChatServerImpl found in Chapter 13 (which used a
Vector instead of a Hashtable). Line 25 defines the HashMap to hold the references
to registered clients (the HashMap is also instantiated).

Method register (lines 81–106) looks similar to the register methods from
other examples. In this case, we are close enough to the top of the call stack that having a
RuntimeException thrown keeps us from continuing if we do not successfully bind to
the Naming Service.

Software Engineering Observation 26.4
A good habit to get into is placing try blocks at strategic locations for easier recovery to
catch thrown RuntimeExceptions (even if that location is main). 26.4

At line 41 of method registerClient, we store the reference to the listener, using
the client’s stringified IOR as a key in the Hashtable. Method unregisterClient
(lines 49–59) removes listeners at line 75. Other than storing (or removing) the IOR of the
incoming client, we have kept CORBA use to a minimum.

Method postMessage (lines 62–78) is the only use of the saved IOR. Line 68
retrieves an Enumeration of the clients in the HashSet, and lines 72–75 loops through
the clients and calls method deliverMessage on each of them.

1 // ChatServerImpl.java
2 // ChatServerImpl implements the CORBA ChatServer.
3 package com.deitel.messenger.corba.server;
4
5 // Java core packages
6 import java.io.*;
7 import java.util.*;
8 import java.net.MalformedURLException;
9

10 // Java extension packages
11 import org.omg.CosNaming.*;
12 import org.omg.CosNaming.NamingContextPackage.*;
13 import org.omg.CORBA.*;
14
15 // Deitel packages
16 import com.deitel.messenger.corba.ChatMessage;
17 import com.deitel.messenger.corba.client.ChatClient;
18
19 public class ChatServerImpl extends _ChatServerImplBase {
20
21 // The ORB that connects us to the network
22 private ORB orb;
23
24 // Map of ChatClient references
25 private Map clients = new HashMap();
26

Fig. 26.24Fig. 26.24Fig. 26.24Fig. 26.24 ChatServerImpl implementation of the CORBA ChatServer
 (part 1 of 4).

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1485

27 // construct new ChatServerImpl
28 public ChatServerImpl(String[] args)
29 throws Exception
30 {
31 super();
32 register(ChatServer.NAME, args);
33 }
34
35 // register new ChatClient with ChatServer
36 public void registerClient(ChatClient client)
37 {
38 // add client to Map of registered clients
39 String key = orb.object_to_string(client);
40 synchronized(clients) {
41 clients.put(key, client);
42 }
43
44 System.out.println("Registered Client: " + key);
45
46 } // end method registerClient
47
48 // unregister client with ChatServer
49 public void unregisterClient(ChatClient client)
50 {
51 // remove client from Map of registered clients
52 String key = orb.object_to_string(client);
53 synchronized(clients) {
54 clients.remove(key);
55 }
56
57 System.out.println("Unregistered Client: " + key);
58
59 } // end method unregisterClient
60
61 // post new message to ChatServer
62 public void postMessage(ChatMessage message)
63 {
64 Iterator iterator = null;
65
66 // get Iterator for Set of registered clients
67 synchronized(clients) {
68 iterator = new HashSet(clients.entrySet()).iterator();
69 }
70
71 // send message to every ChatClient
72 while (iterator.hasNext()) {
73 ChatClient client =
74 (ChatClient) ((Map.Entry) iterator.next()).getValue();
75 client.deliverMessage(message);
76 }
77
78 } // end method postMessage

Fig. 26.24Fig. 26.24Fig. 26.24Fig. 26.24 ChatServerImpl implementation of the CORBA ChatServer
 (part 2 of 4).

1486 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

79
80 // Register ChatServerImpl object with Naming Service
81 public void register(String serverName, String[] parameters)
82 throws NotFound, CannotProceed,
83 org.omg.CosNaming.NamingContextPackage.InvalidName,
84 org.omg.CORBA.ORBPackage.InvalidName
85 {
86 if (serverName == null)
87 throw new IllegalArgumentException(
88 "Registration name can not be null");
89
90 // Bind ChatServerImpl object to Naming Service.
91 // Create and initialize ORB.
92 orb = ORB.init(parameters, null);
93
94 // create servant and register it with ORB
95 orb.connect(this);
96
97 org.omg.CORBA.Object corbaObject =
98 orb.resolve_initial_references("NameService");
99 NamingContext naming =
100 NamingContextHelper.narrow(corbaObject);
101 NameComponent namingComponent =
102 new NameComponent(serverName, "");
103 NameComponent path[] = { namingComponent };
104 naming.rebind(path, this);
105 System.out.println("Server bound to naming");
106 }
107
108 // notify each client that server is shutting down and
109 // terminate server application
110 public void stopServer()
111 {
112 System.out.println("Terminating server ...");
113
114 Iterator iterator = null;
115
116 // get Iterator for Set of registered clients
117 synchronized(clients) {
118 iterator = new HashSet(clients.entrySet()).iterator();
119 }
120
121 // send serverStopping message to every ChatClient
122 while (iterator.hasNext()) {
123 ChatClient client = (ChatClient) iterator.next();
124 client.serverStopping();
125 System.err.println("Disconnected: " + client);
126 }
127

Fig. 26.24Fig. 26.24Fig. 26.24Fig. 26.24 ChatServerImpl implementation of the CORBA ChatServer
 (part 3 of 4).

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1487

128 // create Thread to terminate application after
129 // stopServer method returns to caller
130 Thread terminator = new Thread(
131 new Runnable() {
132
133 // sleep for 5 seconds, print message and terminate
134 public void run()
135 {
136 // sleep
137 try {
138 Thread.sleep(5000);
139 }
140
141 // ignore InterruptedExceptions
142 catch (InterruptedException exception) {}
143
144 System.err.println("Server terminated");
145 System.exit(0);
146 }
147 }
148);
149
150 terminator.start(); // start termination thread
151
152 } // end method stopServer
153
154 // main method to execute ChatServerImpl
155 public static void main(String[] args)
156 {
157 // set up ChatServerImpl object and bind to Naming Service
158 try {
159
160 // create ChatServerImpl object
161 ChatServerImpl chatServerImpl =
162 new ChatServerImpl(args);
163
164 java.lang.Object object = new java.lang.Object();
165
166 // keep server alive
167 synchronized(object) {
168 object.wait();
169 }
170 }
171
172 // process problems setting up ChatServerImpl object
173 catch (Exception exception) {
174 exception.printStackTrace();
175 System.exit(1);
176 }
177
178 } // end method main
179 }

Fig. 26.24Fig. 26.24Fig. 26.24Fig. 26.24 ChatServerImpl implementation of the CORBA ChatServer
 (part 4 of 4).

1488 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

Method main (lines 155–178) creates the server at lines 161–162. Once again, main
creates an object named object (line 164) and calls object.wait (line 168) to keep
the server alive by keeping object sitting in the thread queue. A try block surrounds the
core logic in main to control the handling of any thrown exceptions.

26.8.3 DeitelMessenger.java
The following generated files are available for client-side use after the compile of
chat.idl:

1. messenger\client_ChatClientStub.java

2. messenger\server_ChatServerStub.java

3. messenger\client\ChatClient.java

4. messenger\client\ChatClientOperations.java

5. messenger\ChatMessage.java

6. messenger\server\ChatServer.java

7. messenger\server\ChatServerHelper.java

8. messenger\server\ChatServerOperations.java

However, as we mentioned before, the following generated server-side files are available
for the client to accept callback invocations from the server:

1. messenger\client_ChatClientImplBase.java

2. messenger\client\ChatClient.java

3. messenger\client\ChatClientOperations.java

In addition, the following Java source files were generated and not used explicitly:

1. messenger\client\ChatClientHelper.java

2. messenger\client\ChatClientHolder.java

3. messenger\ChatMessageHelper.java

4. messenger\ChatMessageHolder.java

5. messenger\server\ChatServerHolder.java

The <data type name>Helper classes are for the direct manipulation of mechanisms
like the ORB’s object stream. The <data type name>Holder classes are for out and
inout variable use as dictated in the code generated by the IDL compiler.

A standard CORBA client is concerned with connecting to the Naming Service, getting
the object reference to a server (i.e., the ChatServer) and making calls to the server. In
this case, the client also takes on the role of a server. To be a proper CORBA server the
client must inherit from _ChatClientImplBase and implement any methods declared
in ChatClientOperations. Class _ChatClientImplBase implements class
ChatClient, which extends ChatClientOperations so the ChatClient server
implementation has to implement method deliverMessage. Figure 26.25, line 23
declares the inheritance to _ChatClientImplBase which implies the client must
implement method deliverMessage somewhere. The client is an implementation of

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1489

MessageManager (line 24)—an interface that represents the connectivity portion of the
DeitelMessenger GUI client.

1 // CORBAMessageManager.java
2 // CORBAMessageManager implements the ChatClient remote
3 // interface and manages incoming and outgoing chat messages
4 // using CORBA.
5 package com.deitel.messenger.corba.client;
6
7 // Java core packages
8 import java.awt.*;
9 import java.awt.event.*;

10 import java.util.*;
11
12 // Java extension packages
13 import org.omg.CosNaming.*;
14 import org.omg.CosNaming.NamingContextPackage.*;
15 import org.omg.CORBA.*;
16
17 // Deitel packages
18 import com.deitel.messenger.*;
19 import com.deitel.messenger.corba.client.ChatClient;
20 import com.deitel.messenger.corba.ChatMessage;
21 import com.deitel.messenger.corba.server.*;
22
23 public class CORBAMessageManager extends _ChatClientImplBase
24 implements MessageManager {
25
26 // incoming ORB configuration parameters
27 private String[] configurationParameters;
28
29 // listeners for incoming messages and disconnect notifications
30 private MessageListener messageListener;
31 private DisconnectListener disconnectListener;
32
33 // ChatServer for sending and receiving messages
34 private ChatServer chatServer;
35
36 // CORBAMessageManager constructor
37 public CORBAMessageManager(String[] parameters)
38 {
39 configurationParameters = parameters;
40 }
41
42 // connect to ChatServer
43 public void connect(MessageListener listener)
44 throws Exception
45 {
46
47 // find ChatServer remote object
48 ORB orb = ORB.init(configurationParameters, null);

Fig. 26.25Fig. 26.25Fig. 26.25Fig. 26.25 CORBAMessageManager implementation of interface
MessageManager using CORBA (part 1 of 3).

1490 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

49 org.omg.CORBA.Object corbaObject =
50 orb.resolve_initial_references("NameService");
51 NamingContext naming =
52 NamingContextHelper.narrow(corbaObject);
53
54 // Resolve the object reference in naming
55 NameComponent nameComponent =
56 new NameComponent(ChatServer.NAME, "");
57 NameComponent path[] = { nameComponent };
58 chatServer =
59 ChatServerHelper.narrow(naming.resolve(path));
60
61 // register client with ChatServer to receive messages
62 chatServer.registerClient(this);
63
64 // set listener for incoming messages
65 messageListener = listener;
66
67 } // end method connect
68
69 // disconnect from ChatServer
70 public void disconnect(MessageListener listener)
71 throws Exception
72 {
73 if (chatServer == null)
74 return;
75
76 chatServer.unregisterClient(this);
77 messageListener = null;
78
79 // notify listener of disconnect
80 fireServerDisconnected("");
81
82 } // end method disconnect
83
84 // send ChatMessage to ChatServer
85 public void sendMessage(String fromUser, String message)
86 throws Exception
87 {
88 if (chatServer == null)
89 return;
90
91 // create ChatMessage with message text and user name
92 ChatMessage chatMessage =
93 new ChatMessage(fromUser, message);
94
95 // post message to ChatServer
96 chatServer.postMessage(chatMessage);
97
98 } // end method sendMessage
99

Fig. 26.25Fig. 26.25Fig. 26.25Fig. 26.25 CORBAMessageManager implementation of interface
MessageManager using CORBA (part 2 of 3).

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1491

The GUI client is not concerned with registering with the Naming Service. Chat-
Server has the client-registration method registerClient, so the ChatClient
(CorbaMessengeManager) passes itself in and makes itself available to the server.

Let us now look at the chat client as a client. The relevant methods for the client are
connect, disconnect and sendMessage.

Method connect (lines 43–67) initializes an ORB, gets the Naming Service object
reference and asks for the ChatServer reference from the Naming Service. Line 62
passes the client to the server for callback invocations (as in the AlarmClock example—
view the client as a listener, the ChatServer as an event generator and the ChatMes-
sage as an event object passed to the listener). If we execute the call to method regis-
terClient successfully, the client is now ready to receive messages from any clients
connected to the ChatServer.

Method deliverMessage (lines 101–106), which implements the operation
declared in chat.idl, takes the incoming message, and sends it to objects registered with
the MessageManager to receive messages. There is no indication of CORBA at work
except for the direct access of fields from and message at lines 104–105. Knowing that
ChatMessage is an IDL struct allows us to understand why we are violating encap-
sulation, but does not make the transgression any easier to accept. The good news is that

100 // process delivery of ChatMessage from ChatServer
101 public void deliverMessage(ChatMessage message)
102 {
103 if (messageListener != null)
104 messageListener.messageReceived(message.from,
105 message.message);
106 }
107
108 // process server shutting down notification
109 public void serverStopping()
110 {
111 chatServer = null;
112 fireServerDisconnected("Server shut down.");
113 }
114
115 // register listener for disconnect notifications
116 public void setDisconnectListener(
117 DisconnectListener listener)
118 {
119 disconnectListener = listener;
120 }
121
122 // send disconnect notification
123 private void fireServerDisconnected(String message)
124 {
125 if (disconnectListener != null)
126 disconnectListener.serverDisconnected(message);
127 }
128 }

Fig. 26.25Fig. 26.25Fig. 26.25Fig. 26.25 CORBAMessageManager implementation of interface
MessageManager using CORBA (part 3 of 3).

1492 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

changing either of the two fields has no impact on the other clients receiving the message
(the object is local), but leaves open the possibility of another object in any particular chat
client changing the information in an uncontrolled fashion. From a design perspective,
ChatMessage should be a read-only (immutable) object. Once the server has sent a mes-
sage, there is no reason to update the message; the other clients cannot see the change. A
possible solution is to wrap the ChatServer in a client-side proxy object (which would
allow us to handle client-side CORBA exceptions in a transparent way) and have the
ChatServer proxy instantiate a read-only wrapper around the ChatMessage before
sending it to the chat client. The implementation issues become problematic at that point,
however, because the proxy would have to register itself with the real ChatServer as the
callback target instead of the client registering itself with the ChatServer. The client
would become the callback target of the chat server proxy when the proxy decides to call
the client’s deliverMessage method.

DeitelMessenger (Fig. 26.26), as the entry point to the client-state implementa-
tion, controls the instantiation of the CORBAMessageManager (lines 15–16) and the
ClientGUI objects (line 19).

26.8.4 Running Chat

The steps for running this example are as follows:

1. Compile the IDL file using idlj—for example (all on one line):

idlj –pkgPrefix chat com.deitel.advjhtp1.idl –td c:\src
–fall chat.idl

2. Implement and compile the server class (Fig. 26.24).

3. Implement and compile the client class (Fig. 26.26).

4. Open a window and run the tnamserver Naming Service:

tnameserv -ORBInitialPort 1050

5. Open a window and run the server:

java com.deitel.messenger.corba.server.ChatServerImpl
 -ORBInitialPort 1050

6. Open a window and run the client (then open another window and run another cli-
ent):

java com.deitel.messenger.corba.client.DeitelMessenger
 -ORBInitialPort 1050

26.8.5 Issues

CORBAMessenger was a straightforward port of RMIMessenger. The differences be-
tween the two versions are minimal, with the largest being the use of a CORBA struct
compared to the use of a serialized object. The number of remote objects, the operations
and the result (broadcasting messages to registered clients) are identical in both cases.

Why use a local object for the messages received by the clients? How would making
ChatMessage a distributed object alter the application’s complexity?

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1493

The current schema of a ChatMessage object is a struct holding two strings. For
the client to use this object that contains two public data members with no accessor/
mutator methods, it creates a String that accesses first the instance variable from, then
variable message. If this struct were changed into an interface and the from and
message fields turned into interface attributes, the advantages are the fol-
lowing:

1. The proper encapsulation of ChatMessage. ChatMessage would not have to
reveal its complexity to any callers.

2. ChatMessage would be a remote object. All clients, once given the ChatMes-
sage object reference, could inspect the message object and would see changes
to the object immediately. In addition, the ChatMessage data would not have
to be unmarshaled upon arrival to the client.

3. The client would have a clearly defined API with which to work. Having no pub-
lic data members means the object can properly offer services through its oper-
ations rather than direct data access.

4. All connected clients could share a single ChatMessage. ChatMessage
would be a direct open pipeline to the clients. If the server makes a change, the
clients see the change immediately and can access the message when appropriate.

The disadvantages of turning ChatMessage into an interface (i.e., a true distrib-
uted object) are the following:

1 // DeitelMessenger.java
2 // DeitelMessenger uses ClientGUI and CORBAMessageManager to
3 // implement an CORBA chat client.
4 package com.deitel.messenger.corba.client;
5
6 // Deitel packages
7 import com.deitel.messenger.*;
8
9 public class DeitelMessenger {

10
11 // launch DeitelMessenger application
12 public static void main(String args[]) throws Exception
13 {
14 // create CORBAMessageManager for communicating with server
15 MessageManager messageManager =
16 new CORBAMessageManager(args);
17
18 // configure and display chat window
19 ClientGUI clientGUI = new ClientGUI(messageManager);
20 clientGUI.setSize(300, 400);
21 clientGUI.setResizable(false);
22 clientGUI.setVisible(true);
23 }
24 }

Fig. 26.26Fig. 26.26Fig. 26.26Fig. 26.26 DeitelMessenger application for launching the CORBA chat client.

1494 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

1. ChatMessage would be a remote object. As a distributed object, all the regis-
tered clients would share a single ChatMessage, creating a massive network
bottleneck at the server. If a particular object has a substantial amount of informa-
tion to share with clients, consider putting the information inside a struct. This
is important because of one fact—during the access of a distributed object, there
is marshaling of data, protocol mapping, and unmarshaling of data when the call
completes (if the operation has data to return). The overhead to deliver a Chat-
Message struct (a complete round-trip network call) occurs once. The over-
head of a distributed ChatMessage starts with the first network call to receive
the object reference, accessing the from attribute involves another network call
and accessing the message attribute yet another, bringing the total number of
network calls up to three. ChatMessage, as a struct, has trivial network
overhead when it arrives—the unmarshaling of the data. Additional overhead is
the creation of an object to hold the data, but this represents a fixed startup cost in
addition to the single network call. The more data in the object, the greater the ad-
vantage to having a local copy.

2. All connected clients could share ChatMessage. In many situations, having nu-
merous clients sharing a distributed object is a valid practice. However, in this
case, not giving the clients their own copy means dealing with data locking issues.
When do we know that no one is accessing the message? Behavior similar to Java
synchronized is advantageous, but CORBA does not directly support this be-
havior (the developer is always free to programmatically support this behavior). In
addition, giving others the ability to change shared data (or data with the potential
to be shared) without some straightforward mechanism for notifying interested
parties of the change is not a good idea.

Sending a local object to a client circumvents all of the preceding problems.

Performance Tip 26.2
Use structs or valuetypes whenever passing data around from a client to a server or vice
versa. An object reference is convenient for communication purposes, but can have significant
overhead if used solely for the transmission of data. Not only are structs and valuetypes
an optimal way to pass around presentation information, but the distributed service that gen-
erated the data can also continue to respond to service requests in a timely fashion. 26.2

In RMI, when an object is serializable, it is streamed across the network and reassem-
bled in the JVM of the caller. The reason to send an object by value is the same as the reason
to use structs—a local copy of an object has less access overhead than a remote object
that needs repeated access. A serialized object in RMI is a real object with all of the stan-
dard advantages inherent to an object. A CORBA struct has no behavior. The target lan-
guage of the mapped struct adds some overhead (in a non-object-oriented target
language, the overhead is almost nonexistent), but beyond that, the ORB adds nothing.
Structurally, all IDL structs mapped to Java classes implement
org.omg.CORBA.portable.IDLEntity but do not inherit behavior or structure
from any classes (except for java.lang.Object). Is there a CORBA mechanism that
works like RMI, but maintains the language neutrality of CORBA? The answer is “yes.”

The Objects-by-Value (OBV) specification defines a new kind of interface type—
a struct with behavior semantics (the ability to support the declaration of operations)

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1495

called a valuetype. The advantage of valuetypes is the ability to pass copies of
“objects” around a distributed system that contain behavior in addition to data. This maps
indirectly with Java serialized objects, yet continues to support language neutrality. As a
matter of record, the OBV specification had to support the concept of objects-by-value in
all the target languages approved by the OMG.

Implementing objects-by-value is not a trivial undertaking. Declaring a valuetype
is straightforward, as is seen in Fig. 26.27, lines 7–17.

To create a Java valuetype object, define the valuetype in an IDL file and com-
pile the definition using idlj (or a vendor-supplied IDL compiler). Derive a new class
from the base valuetype class definition, and make sure there is a no-argument con-
structor as well as a constructor capable of receiving each of the fields belonging to the
valuetype defined in the IDL. In addition to the generated valuetype files, the com-
piler creates a <valuetype>DefaultFactory source file. If necessary, subclass the
<valuetype>DefaultFactory generated by the IDL, and add any addition operations
included in the IDL file. Use of an object instantiated from a valuetype is the same as
the use of any other Java object. Figure 26.28 lists some keywords added to IDL to support
valuetypes.

1 // Fig. 26.27: Chat.idl
2 // This file contains the IDL defining the
3 // API to the ChatServer as well as the
4 // ChatClient and ChatMessage.
5
6 module obvcorba {
7 valuetype ChatMessage {
8
9 // ChatMessage properties

10 private string from;
11 private string message;
12
13 string getSenderName();
14 string getMessage();
15
16 factory create(in string from, in string message);
17 };
18
19 module client {
20 interface ChatClient {
21
22 // receive new message
23 void deliverMessage(in ChatMessage message);
24 };
25 };
26
27 module server {
28 interface ChatServer {
29 const string NAME = "ChatServer";
30

Fig. 26.27Fig. 26.27Fig. 26.27Fig. 26.27 chat.idl with ChatMessage changed to be a valuetype
 (part 1 of 2).

1496 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

The keyword private is misleading—private valuetype fields become pro-
tected Java instance variables. This allows the derived class to access the variables, but
outside callers cannot (at least non-package-level outside callers. Java scope rules allow
objects defined in a package to access the protected fields of the other objects defined
in the same package.)

Generated code handles everything else. The server creates the valuetype object
the way the server always creates objects (using new or factory methods, but using the
derived class definition). The client receives a valuetype object and treats it as a local
object. The stubs and skeletons call the DefaultFactory when a valuetype arrives.

ChatMessage, instead of being complete when we compile the IDL, is now a base
class for us to derive. ChatMessageImpl.java (Fig. 26.29) is the class definition to
use to instantiate a valuetype object.

31 // register new ChatClient with ChatServer
32 void registerClient(in string chatName,
33 in client::ChatClient client);
34
35 // unregister ChatClient with ChatServer
36 void unregisterClient(in string chatName);
37
38 // post new message to ChatServer
39 void postMessage(in ChatMessage message);
40 };
41 };
42 }; // end of module obvmessenger

Keywords specific to valuetypes

valuetype

private

public

factory

custom

supports

truncatable

Fig. 26.28Fig. 26.28Fig. 26.28Fig. 26.28 Keywords specific to valuetypes.

1 // Fig. 26.29: ChatMessageImpl.java
2 package com.deitel.messenger.obvcorba;
3

Fig. 26.29Fig. 26.29Fig. 26.29Fig. 26.29 ChatMessageImpl is the ChatMessage implementation (part 1 of 2).

Fig. 26.27Fig. 26.27Fig. 26.27Fig. 26.27 chat.idl with ChatMessage changed to be a valuetype
 (part 2 of 2).

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1497

ChatServerImpl does not change. The server receives an object of type Chat-
Message (i.e., ChatMessageImpl) and sends that object to the registered clients.
DeitelMessenger has two changes at lines 92–93:

ChatMessage message =
new ChatMessageImpl(userName, messageToSend);

and at lines 245–246:

messageArea.append("\n" + message.getSenderName() +
"> " + message.getMessage());

Everything else happens via standard CORBA mechanisms, so DeitelMessenger and
ChatServerImpl objects continue to work as written.

At CORBAMessageManager time of this writing, the idlj delivered with JDK
1.3.0_02 does not support the valuetypes as specified in the OBV specification. The
code presented works under the Java 2 Software Development Kit. Updated code examples
will be available at www.deitel.com when idlj complies more closely with the OBV
specification.

4 public class ChatMessageImpl extends ChatMessage {
5
6 // default constructor for empty ChatMessageImpl object
7 public ChatMessageImpl()
8 {
9 this("", "");

10 }
11
12 // constructor to initialize from and message properties
13 public ChatMessageImpl(String sender, String text)
14 {
15 from = sender;
16 message = text;
17 }
18
19 // return name of sender
20 public String getSenderName()
21 {
22 return from;
23 }
24
25 // get message
26 public String getMessage()
27 {
28 return message;
29 }
30 }

Fig. 26.29Fig. 26.29Fig. 26.29Fig. 26.29 ChatMessageImpl is the ChatMessage implementation (part 2 of 2).

1498 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

26.9 Comments and Comparisons
Comparing the RMI version of the chat example to the CORBA version raises a couple of
interesting questions not the least of which is the use of a Hashtable instead of a Vec-
tor in the CORBA version of the server. Using a Vector is much simpler than using a
Hashtable (but bear in mind that this is an implementation detail. The type of object
used to hold a collection can change many times during the design of a sub-system). In this
particular case, Hashtables allow a lookup by primary key, whereas Vectors do not.
Primary key lookup is important because of the way RMI communicates with remote ob-
jects compared to CORBA. In the beginning, RMI required both stubs and skeletons to
communicate, but switched over to a skeleton-optional implementation protocol in JDK
1.2. When a client passes its remote object reference, the client-side Java object that con-
tains the RMI object reference communicates directly with the server (in effect, “pretend-
ing” to be the server’s skeleton code). The underlying RMI mechanism matches the remote
object reference with the Java object on the server-side that contains the object reference.

CORBA, on the other hand, has the stub communicating with the skeleton before going
to the server. The CORBA object reference is always the same, but the Java object holding
the reference is different. The skeleton is responsible for unmarshaling all incoming argu-
ments, so a Java object is always created for non-primitive argument values. Also, the cur-
rent version of JavaIDL supports only BOAs and does not support POAs, which would
have offered slightly different behavior. In RMI, the Java object is always identical for each
client because there is no skeleton between the stub and the server.

More fundamentally, is this the best design for a chat application? OMA has the final
answer—use services whenever possible. CORBA specifies a Notification Service that
delivers messages synchronously and asynchronously. Using the Notification Service as
the messaging middleware makes the chat-application implementation even simpler.

CORBA is a powerful means of designing robust distributed systems. Legacy applica-
tions have become valuable long-term assets, and new applications have become reusable
services that can exchange data in a platform-neutral fashion. IIOP allows ORBs to com-
municate in a predictable and robust way, and the Object Management Architecture gives
developers a roadmap to follow as they design and implement systems to accomplish tasks
of substantial complexity. The OMG continues to push the boundaries of system design and
integration with specifications in areas where commonality of purpose and design give
developers more leverage to build larger systems. In Chapter 27, we present an in-depth
look at system architecture, including CORBAservices, the CORBA Component Model,
Enterprise JavaBeans and an assessment of CORBA and RMI.

26.10 Internet and World Wide Web Resources
java.sun.com/products/jdk/idl/index.html
The JavaIDL Home Page lists various documents relating to JavaIDL and Javasoft’s implementation
of various OMG specifications.

www.omg.org
The Object Management Group home page. This is the ultimate portal for CORBA information. The
OMG home page lists membership information as well as information on the latest happenings in the
distributed systems world.

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1499

www.omg.org/technology/documents/formal/
object_management_architecture.htm
Download the Object Management Architecture Specification from this HTML page as either a PDF
or a postscript file.

www.omg.org/technology/documents/formal/index.htm
OMG Formal Documentation. All of the approved specifications in the various areas the OMG is in-
volved in are at this location. The latest CORBA, CORBAservices and IDL mapping specifications
have their own link.

www.omg.org/technology/documents/formal/corbaiiop.htm
The CORBA 2.4 specification describes the mappings and functionality required for a product to be
considered CORBA-compliant.

www.omg.org/technology/documents/formal/
omg_idl_to_java_language_mapping.htm
The OMG IDL-to-Java Mapping Specification explains how IDL-described services translate into Ja-
va. This specification is the definitive source for mapping information.

www.omg.org/technology/documents/formal/naming_service.htm
The Naming Service Specification describes the baseline functionality needed by a distributed naming
service to be useful to a distributed architecture. The specification explains definitions and Naming
Service IDL in detail.

www.omg.org/cgi-bin/doc?orbos/98-01-18
This link has the February 1998 paper Objects-by-Value, Joint Revised Submission - w/Errata.

www.omg.org/cgi-bin/doc?formal/98-12-09
This link on the Object Management Group Web site has the CORBAservices: Common Object Ser-
vices Specification document.

www.corba.net
The CORBAnet site, sponsored by the OMG and the Distributed Systems Technology Centre in Aus-
tralia, showcases CORBA technology in concrete ways, including a web-based application showing
interoperability between different vendor’s ORBs.

Open Source ORBs

openorb.exolab.org
ExoLab Group’s OpenORB is an open source implementation of the CORBA specification. Open-
ORB is at CORBA 2.4.1 compliance and includes many of the standard tools developers expect from
a full-fledged CORBA product.

www.cs.wustl.edu/~schmidt/TAO.html
The Ace ORB (TAO). The ACE project is a collection of frameworks and CORBA concepts imple-
mented in an open source ORB reflecting high quality and best practice.

CORBA Vendors
The following vendors sell ORBs or products built on ORBs. The following is not a comprehensive
list.

www.iona.com
Iona.

www.inprise.com/visibroker
Inprise.

www.capeclear.com
Cape Clear.

1500 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

www.vertel.com
Vertel.

CORBAservices Vendors

www.prismtechnologies.com
Prism Technologies is a commercial CORBA vendor that has implemented many of the defined COR-
BAservices.

www.ooc.com
Object Oriented Concepts, Inc. (an Iona company) is also a commercial ORB vendor. OOC’s free (for
non-commercial use) download includes a handful of CORBAservices with their ORBacus product.

openorb.exolab.org/services.html
The same ExoLab Group folks that implemented OpenORB also have implemented many of the stan-
dard CORBAservices. These CORBAservices are available for free download.

SUMMARY
• CORBA stands for the Common Object Request Broker Architecture.

• The reason CORBA exists is to allow programs written in various languages, with varying imple-
mentations running in disparate locations, to communicate with each other as easily as if they were
in the same process address space.

• Transparency is a crucial goal of CORBA.

• Invocation transparency defines the viewpoint of a client sending a message to a server.

• Implementation transparency is a standard object concept (encapsulation) applied to distributed
systems.

• Location transparency allows a client to invoke CORBA-enabled code that could be executing
anywhere on the network without worrying about where the method call is happening.

• The Object Management Architecture (OMA) is one of the defining features that distinguish COR-
BA from other distributed system technologies.

• The OMA (as a reference architecture) defines a system consisting of cooperating services solving
a domain problem.

• IDL, the Interface Definition Language, allows developers to describe the interface (or API) of the
data type they wish to use remotely in a language-independent fashion.

• IDL is a pure description language—no implementation details are included in IDL files.

• An IDL compiler creates a number of language-dependent files. A project would need as many
IDL compilers as target languages in the system to be developed.

• Any CORBA-enabled objects must use an ORB to make or receive method requests, but those
same objects rarely see the ORB.

• When a client using an ORB connects to a distributed object, the ORB returns an object reference
to the object in question.

• CORBA defines an object reference as being an Interoperable Object Reference (IOR). The IOR
contains three important pieces of information—the distributed object’s location (an address, but
not a memory address), a reference to the adapter that created the IOR and an object ID for the
servant.

• IIOP is the standard ORB protocol that all vendors must support for their ORB’s to be considered
CORBA-compliant.

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1501

• IIOP is the concrete implementation of another OMG standard—the General Inter-ORB Protocol,
or GIOP. GIOP defines the messages needed by ORBs to communicate with each other as well as
support for the underlying transport mechanism of the platform on which the ORB is running.

• Java 2 was the first official JavaSoft release to support the OMG mappings directly.

• The steps necessary to implement a distributed system using Java and CORBA are: 1) perform
analysis and design, 2) define the IDL, 3) implement the servant using files generated by the IDL
compiler, 4) implement a client using the stub files generated by the IDL compiler, 5) execute a
CORBA Naming Service, 6) execute the servant implementation, 7) execute the client.

• IDL follows standard C++ syntax with the double slash (//) denoting a single-line comment.

• The module keyword maps a given name directly to a Java package. Nested module names con-
catenated together create a complete package name.

• Curly braces denote the boundaries of a scope block and always end with a semicolon.

• The keyword interface defines a CORBA-enabled object.

• Everything declared in IDL is public so there are no special keywords to denote public, private or
protected declarations.

• Conventionally, the concrete class that implements the interface that defines the public API to a
CORBA distributed object is named <interface name>Impl.

• Once the ORB has the implementation object, no one accesses the object except through the ORB.

• A standard CORBA directory service is the Naming Service. It exists for the sole purpose of listing
resources for future use by clients.

• Method resolve_initial_references knows a select list of services reachable directly
from the ORB. The ORB effectively has a mini-naming service with which it can perform the
lookup of base services.

• For a name to be properly registered (or bound, in CORBA terminology) the resource must set up
a naming context using a NameComponent object.

• The tnameserv tool is a basic implementation of the CORBA Object Service (COS) Naming Ser-
vice.

• We can think of an Object Request Broker as the back plane (or communication bus) of distributed
systems.

• The Object Management Architecture is the OMG’s reference architecture for distributed systems
based on the concept of an Object Request Broker.

• The OMA defines a plug-and-play framework where publicly defined objects are available for use
by any other object or service through an object broker.

• The Common Object Request Broker Architecture defines how the Object Request Broker be-
haves and how it works using different languages.

• ORBs can be implemented in one of two ways—as libraries, or as standalone processes known as
daemons.

• The client can talk to the ORB either through a static stub, a dynamic interface or directly.

• An ORB can talk to a servant in one of three ways—through a static skeleton, a dynamic interface
or directly.

• Object adapters are objects that stand between a client and server to control access to the actual
distributed object.

• CORBA 3.0 defined an object adapter called the Portable Object Adapter (POA).

1502 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

• The Portable Object Adapter serves a number of purposes, including the ability to separate the
availability of the servant from the actual servant itself.

• Static stubs (using the Static Invocation Interface or SII) have hard-coded object types to allow for
compile-time type checking while dynamic stubs (the Dynamic Invocation Interface or DII) per-
form their type checking at runtime.

• CORBAservices are the baseline services available to all objects sitting on the ORB communica-
tion bus.

• The ORB is the central core of a CORBA system, so the CORBAservices can assume the existence
of an ORB when they are running.

• The CORBAservices all have standard IDL interfaces that describe what the various services offer
in the way of functionality.

• The CORBAfacilities are a step above the intermediate CORBAservices and come in two
groups—horizontal and vertical.

• The horizontal facilities target client-side functionality.

• The vertical CORBAfacilities—also called CORBA Domains—are between the CORBAservices
and the Applications Objects.

• The Applications Objects are the top layer of the OMA. They have functionality not found at the
domain layer, facilities layer or the services layer.

• Distributed objects need to be defined in a manner that allows them to be discovered and used by
others distributed objects.

• OMG document formal/99-07-53 defines the IDL-to-Java mapping and covers everything from
package names to helpers to mapping CORBA pseudo objects.

• The Java packages that constitute the core CORBA infrastructure are located in the packages that
start with org.omg.*.

• Comments placed in an IDL file appear in the generated files only if they are within the module
scope. Any other comments are purely for the maintainer of the IDL file.

• A struct is the definition of a collection of data compiled into a class definition that a remote
servant can return to or receive from a client at runtime.

• Most of the primitive IDL-to-Java mappings are straightforward. Signed primitives stay that way
(except there is no keyword int in IDL); unsigned IDL primitives run the risk of truncation when
they are mapped to their signed Java primitive counterparts (a signed short cannot store as large a
value as a unsigned short).

• The IDL compiler also initializes the instance variables by setting them to integer zero, 0.0,
false or null (casting where necessary).

• There are two ways to declare arrays in IDL—using the keyword sequence or by the use of
open-and-close square brackets.

• The sequence keyword can be used in two ways—bounded and unbounded. When a length is
given, the sequence is considered bounded, otherwise it is considered unbounded.

• The more standard square brackets notation can also declare arrays. However, the use of IDL ar-
rays is nonstandard to Java. The typedef keyword would define an array of a particular data
type, using a new data type name and the array length.

• IDL includes keywords in, out and inout to describe method arguments. A variable declared
as in has a copy of itself passed to the called method. An out variable must be a reference to an
object containing another object where the contained object may be substituted with another object

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1503

and the change is visible to the client (mimicking call-by-reference). A variable declared as in-
out uses both semantics.

• Every time a struct or interface is declared, the IDL compiler generates an associated
Holder class for use when the struct or interface is an out variable.

• All of the Java primitives have Holder classes available for them in the org.omg.CORBA
package, and the IDL generates an Operations interface defining the Holder object needed.

• Only an interface can have attribute declarations.

• If the attribute keyword is used alone the compiler generates two methods—an accessor (get
method) and a mutator (set method).

• Using the readonly keyword with attribute would generate only the accessor.

• In IDL, the const keyword declares a constant.

• Proxies are stand-ins for other objects. They allow a client to believe it is sending a message to one
object when the client is really sending the message to another object.

• CORBA defines two related proxies—a stub and a skeleton. A stub is the client-side proxy and a
skeleton is the server-side proxy. Both proxies hide the use of the ORB from the client and the
server.

• In CORBA 3, static invocation choices can be synchronous (normal or oneway) or asynchronous
(callback or polling).

• The use of a callback or polling mechanism is purely one of perspective—a callback is an invoca-
tion made from the server while polling is an invocation made from the client. The distinction has
to do with a met condition (a server alerts a callback object) or an expected condition (a client poll
an object to check on state changes).

• A normal synchronous call is a standard method invocation—a client invokes a method and blocks
until the call completes.

• If an IDL method signature includes the oneway keyword, the compiler generates code that does
not block on the invocation and returns based on the QoS settings.

• The CORBA Asynchronous Method Invocation specification supports both callback and polling
models.

• The callback model supports (with various QoS options) the ability of a servant to call a client at
arbitrary times at the discretion of the servant.

• In the polling model the client decides when to retrieve a possible result based on a call to a one-
way method.

• When structs are instantiated in Java, all of the instance variables are public.

• Another way for a client to find a service is to use a stringified version of the service’s Interoper-
able Object Reference.

• The stringified IOR is valid at all times, as long as a server is available to handle any invocations.

• The <data type name>Helper classes are for the direct manipulation of mechanisms like the
ORB’s object stream.

• The <data type name>Holder classes are for out and inout variable use as dictated in the
code generated by the IDL compiler.

• Every call to a distributed object can throw an exception.

• Developers can find the exceptions thrown by a CORBA object by looking in the object’s associ-
ated IDL file.

1504 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

• The keyword raises maps to the Java keyword throws.

• IDL exceptions map indirectly to Java exceptions inheriting from java.lang.Exception
(they directly inherit from UserException).

• Standard CORBA exceptions map to Java exceptions as final classes.

• If a CORBA exception inherits from SystemException, then it is also a RuntimeExcep-
tion.

• The reason to send an object by value is the same as the reason to use structs—a local copy of
an object has less access overhead than a remote object that needs repeated access.

• The target language of the mapped struct adds some overhead (in a nonobject-oriented target
language, the overhead is almost nonexistent), but beyond that, the ORB adds nothing.

• Structurally, all IDL structs mapped to Java classes implement org.omg.CORBA.porta-
ble.IDLEntity, but do not inherit behavior or structure from any classes (except for the ubiq-
uitous java.lang.Object).

• The Objects-by-Value (OBV) specification defines a new kind of interface type—a struct
with behavior semantics (the ability to support the declaration of operations) called a value-
type.

• The advantage of valuetypes is the ability to pass copies of “objects” around a distributed sys-
tem that contain not just data, but behavior.

• In the beginning, RMI required both stubs and skeletons to communicate, but, in JDK 1.2, RMI
switched over to a skeleton-optional implementation protocol.

• CORBA specifies a Notification Service that delivers messages synchronously and asynchronously.

TERMINOLOGY
activation interface
Architecture (CORBA) Interface Definition Language (IDL)
Asynchronous Method Invocation (AMI) Internet Inter-ORB Protocol (IIOP)
attribute Interoperable Object Reference (IOR)
Basic Object Adapter (BOA) invocation transparency
client location transparency
Common Object Request Broker marshaling
const module
CORBA Component Model (CCM) Naming Service
CORBAfacilities object activation
CORBAservices Object Management Architecture (OMA)
distributed computing Object Management Group (OMG)
Dynamic Invocation Interface (DII) Object Request Broker (ORB)
exception objects-by-reference
factory objects-by-value
General Inter-ORB Protocol (GIOP) oneway
Helper opaque network reference
Holder out
idlj Portable Object Adapter (POA)
IIOP (Internet Inter-ORB Protocol) proxy
implementation transparency Quality of Service (QoS)
in raises
inout readonly

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1505

SELF-REVIEW EXERCISES
26.1 Fill in the blanks in each of the following statements:

a) is the highest-level scope in an IDL file.
b) In an IDL file, declarations of data without operations appear in a .
c) An IDL interface maps to a Java .
d) An IDL operation uses the keyword to declare its use of an exception.
e) A client would use the service to retrieve a server’s IOR.
f) The CORBA proxy used by a client is called a , and the proxy used by a serv-

er is called a .
g) To find the initial object reference to standard services like the Naming Service, use the

ORB method .

26.2 State whether each of the following is true or false. If false, explain why.
a) An IDL interface maps to a Java interface of the same name.
b) An IDL struct can declare operations.
c) An IDL valuetype can declare operations.
d) The only way a client can get an object reference to a server is by using a Naming Service.
e) IDL is an implementation language.

ANSWERS TO SELF-REVIEW EXERCISES
26.1 a) module. b) struct. c) interface. d) raises. e) Naming. f) stub, skeleton.
g) resolve_initial_reference(String serviceName).

26.2 a) True.
b) False. An IDL struct only contains data definitions.
c) True.
d) False. A client can read an object reference from a stringified IOR.
e) False. IDL defines data, structures of data and interfaces to distributed objects, not their

implementation.

EXERCISES
26.3 Write the IDL for a server named Server with one operation called getString and have
the operation return a string. Implement the server. Write a client named Client that requests
the string and displays the returned value.

26.4 Modify Exercise 26.3 to do the following:
a) Return a struct containing the string.
b) Change the get operation of the server. Have the client give the server the struct.
c) Modify part a) above to have the client modify the struct object given to it by the serv-

er and have the client send the object back to the server.

Remote Method Invocation (RMI) stringified IOR
RMI (Remote Method Invocation) struct
sequence stub
servant SystemException
singleton typedef
skeleton unmarshaling
Static Invocation Interface (SII) valuetype

1506 Common Object Request Broker Architecture (CORBA): Part 1 Chapter 26

d) Wrap the creation of the server (including the code to resolve the object reference) in-
side a client-side proxy. The client-side server proxy constructor should not throw any
CORBA exceptions.

e) Wrap the struct in an object created in the proxy implemented in part d), using a fac-
tory method.

26.5 Create a service that returns object references to a Customer (do not make the Customer
a struct). This service is the implementation of the factory design pattern as it creates and returns
objects of a given type without revealing their actual type. Give the Customer two attributes and
have a test client display the attributes (a primary key and an attribute).

26.6 Write a server with an operation that returns an IDL unsigned short. Have the server
return Short.MAX_VALUE + 1. Display the value returned by the server in a JOptionDialog.
How does Java’s lack of support for unsigned values affect its interaction with servers that return
values larger than Java can handle for certain data types?

26.7 Write a class named FileServer that returns a file requested by a client (use an array of
IDL type octet). The client can display the file in a JTextArea. What limitations are there in the
use of an IDL array?

26.8 Modify the FileServer to return a FileStream object. FileStream should cache
the file on the server side until the client makes a request. FileStream should have an operation to
return one line at a time.

WORKS CITED
1. “OMG Background Information” <www.omg.org/news/about>,

2. “The Common Object Request Broker Architecture and Specification,” Editorial Revision:
CORBA 2.4.2 February 2001: 5–3.

3. “The Common Object Request Broker Architecture and Specification,” 4–23.

4. “A Discussion of the Object Management Architecture” January 1997 <www.omg.org/
technology/documents/formal/object_management_architecture.htm>.

5. “The Common Object Request Broker Architecture and Specification” Editorial Revision:
CORBA 2.4.2 February 2001: 2-3.

6. Siegel, CORBA 3, Second Edition (New York, NY: Wiley Computer Publishing, 2000) 79.

7. “CORBAservices: Common Object Services Specification,” December 1998
<ftp.omg.org/pub/docs/formal/8-12-09.pdf>.

8. CORBA Common Facilities Specifications<www.omg.org/technology/documents/
formal/corba_common_facilities_specific.htm,>.

9. Recently Adopted CORBA Facilities Specifications” <www.omg.org/technology/doc-
uments/recent/corba_facilities.htm>.

10. Siegel, 377.

11. “IDL to Java™ Language Mapping Submission” June 2001 <www.omg.org/cgi-bin/
doc?formal/01-06-06>.

12. Siegel, 164.

13. “The Common Object Request Broker: Architecture and Specification” October 2000
<www.omg.org/cgi-bin/doc?formal/01-02-33>.

14. “CORBAservices: Common Object Services Specification” <ftp.omg.org/pub/docs/
formal/8-12-09.pdf>.

Chapter 26 Common Object Request Broker Architecture (CORBA): Part 1 1507

15. CORBAservices: Common Object Services Specification” <ftp.omg.org/pub/docs/
formal/8-12-09.pdf>.

BIBLIOGRAPHY
Balen, H,, M. Elenko, J. Jones and G. Palumbo, Distributed Object Architectures with CORBA. New

York, NY: Cambridge University Press, 2000.

Hoque, Reaz, CORBA 3. Foster City, CA: IDG Books, 1998.

Siegel, J, CORBA 3, Second Edition. New York, NY: Wiley Computer Publishing, 2000.

27
Common Object Request

Broker Architecture
(CORBA): Part 2

Objectives
• To introduce the Dynamic Invocation Interface (DII).
• To understand the differences among BOAs, POAs

and TIEs.
• To introduce CORBAservices, including Naming,

Security, Object Transaction and Persistent State
services.

• To understand the differences between RMI and
CORBA.

• To introduce RMI-IIOP for integrating RMI with
CORBA.

Two elements are needed to form a truth—a fact and an
abstraction.
Remy de Gourmont

If two friends ask you to judge a dispute, don’t accept,
because you will lose one friend; on the other hand, if two
strangers come with the same request, accept because you
will gain one friend.
Saint Augustine

The profoundest thought or passion sleeps as in a mine, until
an equal mind and heart finds and publishes it.
Ralph Waldo Emerson

Chapter 27 Common Object Request Broker Architecture (CORBA): Part 2 1509

27.1 Introduction*

The previous chapter introduced the world of distributed systems through the eyes of the
OMG (Object Management Group). This is a group vision (the OMG has approximately
800 members at last count), and the architectural issues are all relevant and practical—these
are vendors who have been building (and in some cases rebuilding) systems of this kind for
years. Their combined expertise and resolve have produced far-reaching, influential speci-
fications that have made huge enterprise-level systems possible. Their goal of an object
marketplace is coming closer.

JavaIDL is the first step into the world of CORBA and distributed systems. Under-
standing of CORBA concepts at both the low level (i.e., object adapters) and high level
(CORBAservices and CORBAcomponents) is important.

Outline

27.1 Introduction
27.2 Static Invocation Interface (SII), Dynamic Invocation Interface (DII)

and Dynamic Skeleton Interface (DSI)
27.3 BOAs, POAs and TIEs
27.4 CORBAservices

27.4.1 Naming Service
27.4.2 Security Service
27.4.3 Object Transaction Service
27.4.4 Persistent State Service
27.4.5 Event and Notification Services

27.5 EJBs and CORBAcomponents
27.6 CORBA vs. RMI

27.6.1 When to Use RMI
27.6.2 When to Use CORBA
27.6.3 RMI-IIOP

27.7 RMIMessenger Case Study Ported to RMI-IIOP
27.7.1 ChatServer RMI-IIOP Implementation
27.7.2 ChatClient RMI-IIOP Implementation
27.7.3 Compiling and Running the ChatServer and ChatClient

27.8 Future Directions
27.9 Internet and World Wide Web Resources

Summary • Terminology • Internet and World Wide web Resources • Self-Review Exercises • An-
swers to Self-Review Exercises • Exercises • Works Cited • Bibliography

*. This chapter was co-authored by Carlos Valcarcel of EinTech, Inc.

1510 Common Object Request Broker Architecture (CORBA): Part 2 Chapter 27

27.2 Static Invocation Interface (SII), Dynamic Invocation
Interface (DII) and Dynamic Skeleton Interface (DSI)
There are two ways to invoke a request in CORBA—statically and dynamically. All of the
examples presented up to this point use the Static Invocation Interface or SII.

SII relies on the compile-time definition of an object type (an IDL interface) and the
object operations (IDL methods within an IDL interface). When the IDL compiler gener-
ates the client-side stub and server-side skeleton, there is no question what the contract is
on both sides of the invocation. The generated stub/skeleton code defines the static type of
the interface in an IDL file. From the server’s perspective, the server receives a request and,
using any incoming parameters, executes code and returns any values necessary. The
server-side ORB receives the pieces needed to complete a request, but does not know about
the process that created the request.

The server-side skeleton’s ability to receive an invocation request that is independent
of the mechanism to create the request makes a dynamically typed call to a server possible.
A client has two choices available to make an invocation on a server: use the static stubs
generated by the IDL compiler or manually create an invocation request programmatically.
A client uses the Dynamic Invocation Interface (DII) API create and send an execution
request directly to the server-side ORB without the assistance of a stub. The code written
by a developer using the DII API looks similar to the code generated for the stub; the dif-
ference is the additional flexibility of programmatic control over the API instead of the
hard-coded instructions found in the stubs.

On the other side of the invocation, the server can process the request in one of two ways:
the static skeleton generated by the IDL compiler can process the incoming request or the ser-
vant (the object implementation under the control of an object adapter) can process the
request manually. When a servant receives an invocation and manually extracts the data
needed from the incoming request the servant uses the Dynamic Skeleton Interface (DSI). Cli-
ents and servers can use DII and DSI together or separately. Clients using the invocation inter-
face can invoke operations on a server regardless of that server’s use of static or dynamic
skeletons. Servers can accept incoming invocation requests from clients regardless of a
client’s use of static stubs or dynamic invocations. Developers are responsible for passing and
guaranteeing the proper type and number of arguments to the invocation.

The Interface Repository (IR) contains descriptive information about distributed
objects. Such information includes the modules available, the interfaces defined within the
modules, the names of the operations defined within the interfaces, the argument types
acceptable to the operations, the return types of the operations and any exceptions raised.
A client can discover this information about an object by retrieving metadata from the Inter-
face Repository.

JavaIDL does not ship with an Interface Repository, so a truly dynamic working DII
example is not possible with the ORB shipped with JDK 1.3. A basic code example is pos-
sible—we can bind directly to a remote object and, using a known operation signature,
make a dynamic invocation to the object’s operation.

The steps needed to make a DII call (without using the Interface Repository) are as fol-
lows:

1. Obtain an object reference to the server object.

2. Create and initialize a Request object.

Chapter 27 Common Object Request Broker Architecture (CORBA): Part 2 1511

3. Invoke the Request and wait for the call to unblock (return).

4. Get the results.

Using the Interface Repository entails finding the Interface Repository entry for the
object type in question after getting the object’s reference to the server object. The fol-
lowing are the new steps:

1. Obtain an object reference to the server object.

2. Look up the desired method in the Interface Repository.

3. Build the argument list for the target operation using the Interface Repository’s
OperationDef.

4. Create and initialize a Request object.

5. Invoke the Request and wait for the call to unblock (return).

6. Get the results.

With the level of control possible using DII comes the high price of code complexity.
Developers must craft every method invocation carefully, and the amount of custom code
varies based on the complexity of the arguments, result types and exceptions. However,
developers often find that the control that DII offers makes learning DII worthwhile.
System-framework architects find DII useful in implementing hot-swappable components,
administrative plugins and more. The Interface Repository becomes the central data store
for finding registered object types—CORBA vendors are responsible for implementing
robust, multiuser repositories that support the high-bandwidth, global distributed systems
being developed today.

We have modified the SystemClock example to support DII. The files needed for
SystemClock are clock.idl, SystemClock.java, SystemClockOpera-
tions.java, _SystemClockImplBase.java, SystemClockImpl.java and
SystemClockClient.java. The only generated files needed are the server-side files,
so idlj needs just the –fserver option set instead of –fall. The Helper and
Holder files are unnecessary. SystemClockClient.java (Fig. 27.1) is the only file
that needs updating.

1 // SystemClockClient.java
2 // Client that uses DII to request the system time from a servant.
3 package com.deitel.advjhtp1.idl.dii;
4
5 // Java core packages
6 import java.text.DateFormat;
7 import java.util.*;
8
9 // Java extension packages

10 import javax.swing.JOptionPane;
11
12 // OMG CORBA packages
13 import org.omg.CORBA.ORB;
14 import org.omg.CosNaming.*;
15 import org.omg.CosNaming.NamingContextPackage.*;

Fig. 27.1Fig. 27.1Fig. 27.1Fig. 27.1 SystemClockClient modified to support DII (part 1 of 3).

1512 Common Object Request Broker Architecture (CORBA): Part 2 Chapter 27

16
17 public class SystemClockClient implements Runnable {
18
19 // object reference to desired server
20 private org.omg.CORBA.Object timeServer;
21 private ORB orb;
22
23 // initialize client
24 public SystemClockClient(String[] params) throws Exception
25 {
26 connectToTimeServer(params);
27 startTimer();
28 }
29
30 // use NameService to connect to time server
31 private void connectToTimeServer(String [] params)
32 throws org.omg.CORBA.ORBPackage.InvalidName,
33 org.omg.CosNaming.NamingContextPackage.InvalidName,
34 NotFound, CannotProceed
35 {
36 // Connect to the SystemClock server
37 orb = ORB.init(params, null);
38
39 org.omg.CORBA.Object corbaObject =
40 orb.resolve_initial_references("NameService");
41 NamingContext naming =
42 NamingContextHelper.narrow(corbaObject);
43
44 // Resolve the object reference in naming
45 NameComponent nameComponent =
46 new NameComponent("TimeServer", "");
47 NameComponent path[] = { nameComponent };
48 timeServer = naming.resolve(path);
49 }
50
51 // start timer thread
52 private void startTimer()
53 {
54 Thread thread = new Thread(this);
55 thread.start();
56 }
57
58 // talk to server on a regular basis and display the results
59 public void run()
60 {
61 long time = 0;
62 Date date = null;
63 DateFormat format =
64 DateFormat.getTimeInstance(DateFormat.LONG);
65 String timeString = null;
66 int response = 0;
67

Fig. 27.1Fig. 27.1Fig. 27.1Fig. 27.1 SystemClockClient modified to support DII (part 2 of 3).

Chapter 27 Common Object Request Broker Architecture (CORBA): Part 2 1513

First, we need two instance variables to use in the client. Line 20 declares a reference
to a generic CORBA object called timeServer, which will hold the reference to the
remote server. The orb variable (line 22) holds the ORB reference used in both methods
connectToTimeServer (lines 31–49) and run (lines 59–93) to connect the client to
the server and to create support objects for the invocation to the server. Method connect-
ToTimeServer places the newly created ORB object in variable orb and binding the
client to server timeServer.

68 org.omg.CORBA.Request request =
69 timeServer._request("currentTimeMillis");
70 request.set_return_type(orb.get_primitive_tc(
71 org.omg.CORBA.TCKind.tk_longlong)
72);
73
74 while(true) {
75
76 // invoke method currentTimeMillis using the request object
77 // time = timeServer.currentTimeMillis();
78 request.invoke();
79
80 // get time value from request object
81 time = request.result().value().extract_longlong();
82 date = new Date(time);
83 timeString = format.format(date);
84
85 response = JOptionPane.showConfirmDialog(null, timeString,
86 "SystemClock Example", JOptionPane.OK_CANCEL_OPTION);
87
88 if (response == JOptionPane.CANCEL_OPTION)
89 break;
90 }
91
92 System.exit(0);
93 }
94
95 // main method to execute client application
96 public static void main(String args[])
97 {
98 // create client
99 try {
100 new SystemClockClient(args);
101 }
102
103 // process exceptions that occur while client executes
104 catch (Exception exception) {
105 System.out.println(
106 "Exception thrown by SystemClockClient:");
107 exception.printStackTrace();
108 }
109 }
110 }

Fig. 27.1Fig. 27.1Fig. 27.1Fig. 27.1 SystemClockClient modified to support DII (part 3 of 3).

1514 Common Object Request Broker Architecture (CORBA): Part 2 Chapter 27

The invocation of server method currentTimeMillis occurs at line 78 (the orig-
inal code is commented out at line 77). Prior to the while loop, the client asked the
CORBA.Object returned by the call to resolve (saved in variable timeServer) to
create and return a Request object. This CORBA.Object (the client-side construct that
holds the server object reference) returns a Request object that the client uses to call the
server. The client’s sole task is to set the request return type to an IDL long long
(TCKind.tk_longlong). The call to currentTimeMillis does not need any
incoming arguments, so the preparation of the dynamic call is complete once the return type
of the method is set in the request (lines 70–71).

The call to currentTimeMillis becomes a multiline dynamic call to the target
method of the timeServer (line 78 invokes the method and line 81 unmarshals the return
value). The call to invoke sends the request object to our bound server and blocks until
the operation returns. The client queries the request object for the result, queries the
result for the result’s internal value and requests the value of the result as an
IDL long long (line 81).

Running the transient Naming Service (tnameserv), SystemClockImpl and
SystemClockClient should produce the same results as the SystemClock example
in Chapter 26 with minimal additional overhead. The indirect call to current-
TimeMillis did not receive any arguments, and the example does not need to reconstruct
the Request object repeatedly to invoke the method on the remote object.

DII is composed of a number of useful technologies. Using the Interface Repository
enables flexibility at runtime to discover more about the types available in a distributed
system and yields options for a client to interact with future distributed objects. Think of
the Interface Repository (and the API to access it) as a distributed version of the Java reflec-
tion mechanism. Highly-flexible frameworks can take advantage of the information con-
tained within the IR as well as interested clients who need type information about a
particular CORBA object they are working with at a particular moment in time.

JavaIDL is not a complete implementation of CORBA. The Javadocs for package
org.omg.CORBA list the various parts of the JavaIDL packages defined in the API but
not implemented in JavaIDL. Rather than work against Sun’s implementation, we recom-
mend using a commercial ORB vendor’s CORBA implementation when the modeling and
analysis of a Java-based distributed system are complete. Open-source implementations of
CORBA for Java are also available that include a working Interface Repository.

27.3 BOAs, POAs and TIEs
When a client interacts with a distributed object, more than just a pair of ORBs are involved.
When we consider implementation in a CORBA system, clients are made thin purposefully.
Distributed systems are weighed heavily on the server, while client-side invocation issues
are taken care of by the IDL generated stubs. Clients do not worry about issues such as load
balancing or persistence—these are server-side issues. The indirection that enables this lop-
sided view is the object adapter, which stands between a distributed object and its ORB
(Fig. 26.8). Many ORB services of use to a distributed object are accessed through its ob-
ject adapter.1 Some of the ORB services the object adapter transparently performs are IOR
generation, security and activation/deactivation. The first adapter type specified by the
OMG was the Basic Object Adapter or BOA. In CORBA 2.0, the definition of a BOA was

Chapter 27 Common Object Request Broker Architecture (CORBA): Part 2 1515

vague, so incongruities existed among various BOA implementations, which hindered the
portability and interoperability of generated code that used ORBs from different vendors.
To resolve these problems, the OMG deprecated the use of BOAs in favor of the POA, the
Portable Object Adapter. The indirection introduced with POAs opens up many more pos-
sibilities and makes interoperability easier to guarantee. From one perspective, BOAs are
easier to use (even if their behavior is inconsistent), but POAs are more widely employed.

A POA connects an object reference to developer-written code using the code found
in the skeleton generated by the IDL compiler. As configurable objects, POAs allow fine-
grained control over the object implementation (called a servant when attached to a POA).
In the same fashion that our server inherited from the ImplBase definition (Fig. 26.4, line
11), a servant inherits from the POA base definition generated by the IDL compiler. In this
case, our distributed object inherits the structure needed to be an object usable by a POA,
and the POA controls all access to the servant based on various policies set within the POA.
Policies describe characteristics of the objects under the control of a particular POA. These
policies, once set, are immutable.

Three POA policies are ImplicitObjectActivation, IDAssignment-
Policy, and RequestProcessingPolicy (there are seven policy types all
together). The POA ImplicitObjectActivation policy of
NO_IMPLICIT_ACTIVATION tells the POA an outside object created the servant under
the POA’s control and passed the object to the POA using method activate_object
or activate_object_with_id. An object id is a unique identifier that can be defined
by either the developer or the system. Each object id is associated with a particular servant.
Activating an object within a POA makes it available for use by clients. Deactivating an
object makes the object unavailable, although the object may be activated again at a later
time. The use of method activate_object or activate_object_with_id rests
on the use of POA policy IDAssignmentPolicy, which can be set to either USER_ID
or SYSTEM_ID. A POA policy of IDAssignmentPolicy USER_ID implies that a
caller needing to associate a servant with a POA will define the servant’s unique identifier
rather than letting the POA generate the object id (which would be the case if IDAssign-
mentPolicy SYSTEM_ID were used). Together with RequestProcessing-
Policy USE_DEFAULT_SERVANT (and method set_servant) the above mentioned
policies will configure a POA that will not create servants (however, the POA will route
invocations to them), associate user-supplied object ids with various servants and route all
invocations to a default servant if the incoming object id does not match an already active
object. An example of this interaction is as follows: a client makes a request to a particular
server using that server’s object reference. One of the pieces of information contained
within an object reference is the servant’s object id. The POA, processing the invocation
using the RequestProcessingPolicy, uses the object id either to find the servant
that matches the object id or to invoke the default servant that uses the object id to perform
a lookup in a database. If the default servant is called, it can create the requested object,
returns the new object to the POA, and the POA would passes it on to the ORB for delivery
to the client.

If there is no explicit need for an id, the POA can generate an id for internal use. In
either case, when a request comes in for a particular servant, the POA uses a combination
of policies and object ids to connect the request to a particular object. The indirection cre-
ated by the use of a POA allows one POA to control one servant or many servants.

1516 Common Object Request Broker Architecture (CORBA): Part 2 Chapter 27

Although the combination of POA policies can be confusing, it enables various levels of
QoS and scalability.

Another way for developers to use a POA is to wrap their servants in a TIE. TIEs enable
interaction with a POA without having the servant’s object implementation inherit structure
from a POAImpl. By delegating the CORBA functionality to the TIE object, the servant
can inherit from some other base class freely (in Java, we want to inherit only when appro-
priate). A TIE object that mimics the servant’s API contains the created servant and invokes
the proper operation at runtime.

Good Programming Practice 27.1
When using POAs, consider using TIE POAs. The potential distributed object can inherit
from the Operations interface and gain CORBA functionality in a transparent fashion
from the TIE POA wrapper class. 27.1

BOAs, POAs and TIEs rely on the code generated by the IDL compiler. The JDK-sup-
plied IDL compiler, idlj, does not yet support the generation of POAs and TIEs, so devel-
opers are recommended to seek out 3rd party CORBA implementations if their system
design warrants the use of POAs or TIEs.

27.4 CORBAservices
CORBAservices are the Object Services of the Object Management Architecture
(Fig. 26.7). CORBAservices define base services and a support structure useful to a wide
range of applications. The 16 services mentioned in Section 26.4 offer a wide range of
functionality. The five services described in this section are the most commonly used (and
are already the specified services for the CORBA equivalent of Enterprise JavaBeans, the
CORBA Components Model, or CCM).

27.4.1 Naming Service

The Naming Service associates name objects with an arbitrary value (known as name bind-
ings). Any arbitrary value can be used, as long as it inherits from org.omg.CORBA.Ob-
ject. In the context of a CORBA system, the association is between a name and an object
reference. However, there are no restrictions as to the use of a Naming Service nor that the
collection of objects the Naming Service contains must be homogeneous. A path to a name
binding consists of zero or more naming contexts (a collection of unique name bindings).
Resolving a name binding from within the Naming Service returns the object associated
with the name. Binding a name to the Naming Service creates the association between a
name and an object. Associating names to naming contexts creates a naming graph that rep-
resents the various paths available to the nodes holding a name binding. Multiple name
bindings can point to a single object.

Naming represents a fundamental service in CORBA. Some of the CORBAservices
inherit IDL interfaces from other CORBAservices, both for backward compatibility and for
consistency of their APIs. Naming does not rely on other IDL interfaces, nor does the spec-
ification dictate administration of the service or what the name bindings mean. Anything
that a client can associate with a name can be contained in the Naming Service. In addition,
a group of Naming Services can participate as part of a naming graph to support the distrib-
uted discovery of name bindings.

Chapter 27 Common Object Request Broker Architecture (CORBA): Part 2 1517

27.4.2 Security Service
The Security Service is one of the more complex CORBAservices. It consists of two levels.
Level 1 provides basic security for:

1. User authentication.

2. Invocation security.

3. Availability of authentication principals to security-aware applications.

Level 1 allows applications to ignore the system-security requirements. The security
needs are limited in scope, and the ORB will usually handle these needs to the total igno-
rance of the objects involved in an invocation. A normal ORB does not care about addi-
tional processing of object invocations. However, for security to work pervasively, a
security-enabled ORB must support the passing of credentials from an initial caller (and
any intermediate objects) to a target object.

Level 1 security requires support for the no delegation and the simple delegation
models among a client, an invoked object and a final target object. In the no delegation
model, a client passes credentials to an intermediate object—this object creates interme-
diate credentials for use in calling the final target object. In the simple delegation model,
an intermediate object can use the client’s credentials to make invocations on a target
object. If there are no restrictions on how an intermediate object can call the target using
the client’s credentials, the intermediate object impersonates the client.2

Level 2 is everything Level 1 provides plus the following security areas:

1. More fine-grained user authentication (i.e., user authentication can be checked at
method invocation).

2. Greater invocation security.

3. Auditing.

4. Finer control over secure invocations.

5. Delegation.

6. Administrators can set security policies.

7. Discovery of security policies by security-aware applications.

8. Discovery of security policies by ORBs and other services.

Security level 2 gives a system full use of all the functionality listed previously
(through the use of APIs defined by the various Security Service interfaces). Separate
administration programs modify security policies.3

27.4.3 Object Transaction Service

The Object Transaction Service (OTS) enables CORBA objects to execute as parts of dis-
tributed transactions. The OTS specification was one of the first of the CORBAservices
specifications and has undergone recent changes to increase its flexibility and to fix various
implementability issues. A transaction describes a collection of interactions where multiple
users may access and/or modify data and the data’s integrity is guaranteed (a transaction is
also known in the database world as a unit of work).The acronym ACID describes the four
standard requirements for reliable transactions:

1518 Common Object Request Broker Architecture (CORBA): Part 2 Chapter 27

• Atomic—the completion of the transaction signals either full success or complete
failure; if five steps were to be completed within the course of a transaction, then
all five steps must terminate successfully or the changes made in each step must
be undone. In an atomic transaction, there will never be a situation where some of
the steps completed, but others did not.

• Consistent—the effects of the transaction are repeatable and predictable. Execut-
ing the same steps on the same data set will always return the same result (also
known as preserving invariants).

• Isolated—the transaction is not interruptible from the outside and gives no indica-
tion if execution is proceeding serially or concurrently.

• Durable—short of a catastrophic failure (power outage, earthquake etc.), the
transaction results are persistent.

A transaction completes in one of two ways—committed (the changes made persist) or
rolled back (all changes made to the data are discarded). The OTS adds to the properties of
a reliable transaction service the ability to control transactions across a distributed system.

Functionally, the Object Transaction Service supports flat and (optionally) nested
transactions. Flat transactions are the most common type. Nested transactions support
ACID for the duration of a child transaction, yet allow for a partial rollback if a child trans-
action fails. A complete rollback of child transactions occurs when the parent transaction
fails. When the top-level transaction—the transaction with no parent—fails, the entire
transaction rolls back.

The OTS allows developers to add distributed transactions to existing systems.
CORBA facilitates the joining of heterogeneous systems. The OTS, in conjunction with
standards such as the Open Group’s XA Specification,4 enables a client to use transactions
implicitly or explicitly. An implicit use of a transaction sends the transaction context trans-
parently from ORB to ORB once the transaction is created. An explicit transaction passes
the transaction context as a parameter to any called methods. OTS also allows servers to
register with the transaction service. To enable the joining of heterogeneous systems, the
OTS also supports the X/Open Distributed Transaction Processing model, which allows
OTS to communicate with with procedural transaction systems.

In CORBA 3, the Asynchronous Method Invocation (AMI) specification dictates the
behavior of asynchronous calls in a distributed system. In a CORBA system the behavior
of asynchronous invocations is almost purely a client-side issue; servants have their trans-
actional requirements set through their POA, and clients making asynchronous calls must
have their invocations handled by intermediate routers that will create a new transaction
context involving the servant.

POAs dictate the transactions types supported by servants—allow or require only
shared transactions, allow or require only unshared transactions, or allow or require either
transaction type. If the transaction policy is set at the POA level, that means every object
(servant) under the control of the POA has the same transaction policy. A POA can control
more than one object at a time, so the objects under the POA’s control have the same trans-
actional requirements.

The concepts of transactional clients, transactional objects and recoverable objects
define the OTS. A Transactional Client interacts with the OTS to create and commit or roll-
back a transaction. A transactional object’s behavior varies when invoked within a transac-

Chapter 27 Common Object Request Broker Architecture (CORBA): Part 2 1519

tion, but object’s data may not be recoverable. A recoverable object is a transactional object
in which data is recoverable (e.g., an object that represents a row in a database). Recoverable
objects maintain their data and, in the event of a persistence failure, assist in restoring their
lost state. Two types of application servers that use transactional objects are transactional and
recoverable servers. A transactional server has no recoverable objects, whereas a recoverable
server has at least one recoverable object. The OTS specifies that both server types can roll
back a transaction, but only the recoverable server can participate in the commit.5

The Java Transaction Service (JTS) is the Java implementation of the distributed trans-
action service. The API of the JTS is defined by the Java Transaction API (JTA). The JTS
uses the CORBA OTS specifications to define the protocol between transaction managers
during the exchange of transaction contexts.

27.4.4 Persistent State Service
The Persistent State Service (PSS) stores and retrieves objects. In conjunction with an OTS,
the PSS abstracts the interaction between objects and datastores. Ideally, systems should
persist their objects into object datastores. However, relational databases dominate the mar-
ketplace—mapping objects into these databases in a consistent, predictable manner is not
trivial. The Persistent State Service relies on the Object Transaction Service and Security
Service to maintain transactional integrity and access control.

In the same way that IDL defines the interface of a distributed object, a new Persistent
State Definition Language (PSDL) defines a distributed object schema in a portable fashion
(PSDL is a superset of IDL). Two new constructs are storagetype and storagehome
(usable with or without the keyword abstract). A PSDL file contains two definition
types: an abstract definition and a concrete definition. In addition, a factory (or home) can
be declared that creates objects of the newly defined type. The abstract storage-
type or abstract storagehome do not define concrete object definitions—rather,
they define the portable definition of the persistable state of a CORBA object. The concepts
and constructs of an object factory and factory-created objects should look familiar to
anyone working with Enterprise JavaBeans (Java interfaces EJBHome and EJBObject
are the corresponding base classes used in the definition of EJBs). Figure 27.2 shows an
example of PSDL for a customer storagehome and storagetype.

1 // The schema for a domain object. This is the abstract definition
2 // needed by the PSS. The concrete definition of Customer is below.
3 abstract storagetype Customer {
4 // The accountNumber is our primary key
5 readonly state string accountNumber;
6 state string name;
7 };
8
9 // The factory to be used to retrieve Customer objects

10 abstract storagehome CustomerHome of Customer {
11 // The creation method will create persistent Customers
12 Customer create(in string accountNumber);
13 };
14

Fig. 27.2Fig. 27.2Fig. 27.2Fig. 27.2 Persistent State Definition Language example (part 1 of 2).

1520 Common Object Request Broker Architecture (CORBA): Part 2 Chapter 27

Line 3 declares the abstract storagetype for the Customer. In addition,
Lines 5–6 declare a read-only accountNumber and readable/writable name using the
keyword state to notify the PSDL compiler of which fields to persist. The Customer
is instantiated by a factory, so there should be a declaration of an abstract Custom-
erHome factory.

Lines 10–13 declare storagehome CustomerHome. This factory creates Cus-
tomers using method create, each with an accountNumber as the primary key. A
developer does not implement the home class. The PSS software generates the code needed
to map the data store to the declared definition of the object. The PSS vendor is responsible
for delivering a tool that maps these objects to the data store in which the objects persist.

The two abstract declarations (lines 3 and 10) and the two concrete declarations (lines
25 and 27) are enough information for the PSDL compiler to generate the code creating
CustomerHomeImpl and CustomerImpl classes along with any needed supporting
interfaces and abstract classes.

27.4.5 Event and Notification Services

The Event Service defines the mechanism that decouples the delivery of events (messages)
from the source of the events. The Event Service is responsible for keeping track of such
as ActionEvent and ActionListener for use by objects that want to send or receive
events. In a similar fashion, EventChannels use the CORBA data type Any to send an
event of any type (either primitive or object) across the network in a consistent fashion, as
there are no predefined event types in the Event Service specification. However, there is no
distributed Java event model, whereas the CORBA model is distributed.

In general, a supplier creates events that are processed by a consumer. In a push model,
a supplier sends event messages asynchronously to all consumers registered to receive the
messages. In a pull model, the consumer polls the supplier for events—if none are available,
the consumer may block until events become available. A nonblocking consumer looking for
events has to poll the supplier on a regular basis for events. For example, Java uses the push
model for Swing and AWT events. A handler object implements the ActionListener
interface and registers with a Swing component, which notifies the handler of state changes
to the GUI component by calling the handler's actionPerformed method with an

15 // Our factory finder. Use the CustomerDirectory to
16 // find any factories used by the system to create
17 // domain objects like Customer
18 catalog CustomerDirectory {
19 provides CustomerHome customerHome;
20 };
21
22 // This is the concrete declaration of the Customer defined
23 // above. These declarations are empty as we are not adding
24 // any addition structure to Customer or its factory.
25 storagetype CustomerImpl implements Customer {};
26
27 storagehome CustomerHomeImpl of CustomerImpl
28 implements CustomerHome {};

Fig. 27.2Fig. 27.2Fig. 27.2Fig. 27.2 Persistent State Definition Language example (part 2 of 2).

Chapter 27 Common Object Request Broker Architecture (CORBA): Part 2 1521

ActionEvent. The GUI component sends the event to the handler object asynchronously.
However, Java events are different than Event Service events—the Event Service does not
define an event type. Java events are strongly typed, whereas CORBA Event Service events
can be typed or untyped, based on the kind of event channel used.

Suppliers and consumers can be either pull or push, and the type of model they use
does not have to match. A push supplier can create messages for consumption by a pull con-
sumer, and a push consumer can wait passively for messages to arrive from a pull supplier.
The Event Service acts as the queue (also called the channel) where events wait for their
consumers. The supplier can either push events into the event channel or have events pulled
by the event channel. Once the event is sitting in the queue, the channel pushes the event to
a push consumer or waits for the pull consumer to ask for the event. There is no mechanism
for finding particular event channels and no defined quality of service in the Event Service,
but these important capabilities are added by the Notification Service.

The Notification Service is the industrial-strength Event Service. The Notification Ser-
vice is a direct extension of the Event Service, as it inherits from the original Event Service
IDL interfaces. Objects can create and destroy event channels arbitrarily and can filter their
output using Filter Objects and the Object Constraint Language grammar (originally
defined for the Trader service and known as the Trader Constraint Language or TCL). The
Notification Service provides full support for the Event Service. Method EventSer-
viceHelper.narrow safely converts the object reference of a Notification Service into
an Event Service object reference. In addition, the Notification Service also defines an
event type named StructuredEvent.

Figure 27.3 depicts the levels of indirection inherent in the CORBA Event/Notification
Service and shows how the decoupling of the event’s supplier from the event’s consumer
adds flexibility as additional objects come into play. The standard flow of a Structure-
dEvent starts with the supplier finding the object reference to the Notification Service (an
object of type EventChannelFactory). The EventChannelFactory creates an
EventChannel, and the supplier asks the EventChannel to return a Suppli-
erAdmin object. The SupplierAdmin returns one of many Consumer proxy types
(such as StructuredProxyPushConsumer), and the supplier uses this consumer
proxy. A StructuredProxyPushConsumer is a proxy to an event channel that
accepts StructuredEvents from a supplier. The EventChannel created for the
SupplierAdmin created the StructuredProxyPushConsumer, so all the objects
in this chain communicate on the same event channel. Using a non-blocking push method,
the supplier can create and push StructuredEvents into the channel and prepare to
send more events as appropriate.

The consumer does the same from the opposite side. The consumer finds the reference
to the Notification Service, narrows the object reference to an EventChannelFactory
reference, gets a known channel, retrieves a ConsumerAdmin object, retrieves a Struc-
turedProxyPushSupplier, connects to the supplier and waits for events to arrive.

A concrete use of the Notification Service is a chat application. A chat object that sends
a message is a supplier. A chat object that receives that message is the consumer. Tradition-
ally, chat applications use a pure push model (the chat message supplier pushing messages
to the chat message consumer waiting to be pushed). The application does not need to use
custom IDL if the event had carried standard CORBA data types. If custom data types are
needed (for example, struct or valuetype TextMessage), the developer has to

1522 Common Object Request Broker Architecture (CORBA): Part 2 Chapter 27

write the appropriate IDL. A chat application using the Notification Service is an example
of a peer-to-peer application—an application in which clients communicate with each
other directly, without going through a central server.

27.5 EJBs and CORBAcomponents
Enterprise JavaBeans (EJBs) define “a standard component architecture for building dis-
tributed object-oriented business applications in the Java™ programming language.”6 The
OMG released the CORBA Component Model (CCM) Request for Proposal (RFP), which
recommended the JavaBeans component model as the basis of a server-side framework.
During the analysis and design of a pure Java server-side component framework, Sun de-
cided not to use JavaBeans as the basis for a server-side distributed component architec-
ture—instead, Sun decided to use Enterprise JavaBeans (EJBs are JavaBeans in name
alone—JavaBeans support the throwing of events while EJBs are not required to support
events). The CORBA Component Model submitter companies chose to follow and based
their component architecture on many of the ideas from EJB, while taking advantage of the
advanced features already found in CORBA.

Fig. 27.3Fig. 27.3Fig. 27.3Fig. 27.3 Supplier-to-consumer flow using the Event/Notification Service.

ProxySupplier

Consumer

EventChannel

ProxyConsumer

Supplier

ConsumerSupplier

Consumer

Supplier

EventChannel

Event

Event

Event

Event

Event

Event

Event

Conceptually, a Supplier sends an Event to a Consumer.

An EventChannel decouples the Supplier from the Consumer.

Adding a ProxyConsumer and ProxySupplier enables further decoupling
and makes it possible to support both the push and pull models.

Chapter 27 Common Object Request Broker Architecture (CORBA): Part 2 1523

The OMG defines technology standards to support an object marketplace, thus facili-
tating the construction of object-oriented systems. Components, as coarse-level objects,
bring this marketplace one step closer to reality. The use of encapsulation, inheritance,
polymorphism and dynamic binding enables reusable architectural frameworks. The
designers of CCM based CORBAcomponents on the Component Implementation Frame-
work (CIF) architecture. CIF specifies a successful architectural pattern based on CORBA
and CORBA technologies. CIF defines a superset of the Persistent State Definition Lan-
guage called Component IDL (CIDL) a component model for CORBA objects and a con-
tainer-programming model where CORBA components exist at runtime.

The CCM defines several additions and extensions to CORBA to make CCM possible.
An understanding of Enterprise JavaBeans facilitates understanding these concepts. The
CCM specification extends IDL with the keywords listed in Fig. 27.4.

These keywords enable developers to define components in a high-level fashion, allow
for single-class inheritance and multiple-interface inheritance (for those mapped languages
that support an inheritance model) and support all the normal attribute and operation syntax
found in IDL interfaces (including the recently added keywords private, public,
attribute etc.).

The Component Interface Definition Language (CIDL) is a superset of the Persistent
State Definition Language introduced in Section 27.4.4. As a superset of PSDL, CIDL
defines components in a way that enables the automatic generation of the component's per-
sistence code. CIDL also defines component implementation as well as state management.
A developer compiles a .cidl file with a CIDL compiler.

When a collection of components is complete, the developer organizes the components
as an assembly together with a descriptor that describes how the components are deployed.
The descriptor is an extension of the Open Software Description (OSD) Format (an XML
vocabulary). OSD describes the installation and distribution rules of software for the
desktop.7 CCM defines a modified version of OSD to support component packaging.

The most interesting parts of CCM are its container programming model, how the POA
fits into CCM and EJB interoperability. Commercial CCM implementations are expected
any day, but for now, the OpenCCM Platform out of the Université des Sciences et Tech-
nologies de Lille (LIFL) is available. OpenCCM is a work in progress and is free.

A Container class creates a containment hierarchy grouping components and other
containers together (such as a Panel from the Java AWT package). The Container pro-
gramming model is a runtime environment in which component implementations use their
enclosing containers to access various services the container provides. The containers use
the implementation of services available to them by their deployment environment (an
application server, for example). Four key areas make up the CCM container programming
model:

IDL keywords to support the CORBA Component Model (CCM)

component home provides

consumes import setRaises

Fig. 27.4Fig. 27.4Fig. 27.4Fig. 27.4 IDL keywords to support the CORBA Component Model (part 1 of 2).

1524 Common Object Request Broker Architecture (CORBA): Part 2 Chapter 27

• External types—the interfaces seen by a client wanting to communicate with a
component.

• Container types—the API that the component uses to communicate with the run-
time container.

• Container Implementation types—different containers have different relation-
ships with the surrounding system. The three CORBA containers types available
are stateless, conversational and durable. Each container type defines its system
support.

• Component Category—where a component fits in the overall framework. The ex-
ternal types and container types define this view.

The three container implementation types are subtly different from one another. A
stateless container expects to call the servant referenced by a POA regardless of the object
id used to make the invocation. A conversational container expects a transient servant ref-
erenced with a particular object id to handle the operation. A durable container has a per-
sistent servant that answers to a particular object ID to handle invocations. These container
types directly reflect a subset of the policies used by POAs, because CCM containers can
be viewed as specialized POAs. POAs are associated with containers and the POAs are con-
figured based on their associated container type.

The container defines the API for component security, persistence, transactions, events
and lifecycle (creation, persistence, etc.). Using a container’s internal interfaces, a compo-
nent has full access to the services a container supports. The component implements call-
back interfaces to allow container-to-component communication. Containers can create
either transient components or persistent components. A component is associated with only
one container type (stateless, conversational or durable).

CCM containers support both single and multithreaded models (serial or concurrent
access). A container with a policy of serialize forces all invocations on a component to be
handled sequentially. A policy of multithreaded advises the container as to the compo-
nent’s ability to handle multithreaded access to the component’s state. The deployment
descriptor specifies the component’s threading policy.

Components can be either transient or persistent. Factories provide creation points
for components, which may or may not have primary keys. Finder methods do not create
objects; they simply find requested objects using some arbitrary key criteria. When a fac-
tory client requests an object to be found at runtime the object may be instantiated to
complete the request. From the client’s perspective the object was found from an existing
data store and did not need to be created. Logically, an object is only “created” when a

emits local supports

finder multiple typeId

getRaises primaryKey typePrefix

IDL keywords to support the CORBA Component Model (CCM)

Fig. 27.4Fig. 27.4Fig. 27.4Fig. 27.4 IDL keywords to support the CORBA Component Model (part 2 of 2).

Chapter 27 Common Object Request Broker Architecture (CORBA): Part 2 1525

factory create method is invoked. CIDL defines factories and finders as the creation
point for our components, but transient components can only be created by factories
while persistent components can be created by factories and located by finders. Transient
components do not have primary keys (or at least not primary keys available outside the
container where the component exists), so finder methods have no key with which to
search for them. Persistent components, having primary keys attached, support two kinds
of persistence—container-managed and component-managed. Container-managed per-
sistence is maintenance and administration intensive, while component-managed persis-
tence is developer intensive. Figure 27.5 lists the CORBA component types and their
descriptions.8

Activation and passivation are actions around the invocation boundaries of an object
operation. When a request comes in to an ORB to invoke an operation on an object, the
ORB sends the request to the POA. The POA sends the request to the container managing
a particular component, and the container activates the object. The object’s deployment
information defines the passivation policy of the object. The passivation policies are
method (passivate when the operation completes), transaction (passivate at the conclusion
of the transaction), component (passivate at the request of the component) or container
(passivate at the container’s discretion). Activation and passivation occur when a container
calls a component using one of the component’s callback interfaces.

In distributed systems, clients do not create objects directly; they discover the objects
needed. The discovery process can be either through a file containing the object’s IOR or
through a Naming Service. Factories create our components, or, in CCM terminology,
ComponentHome objects create our components. A component definition must also
define the component’s factory and, if the component is persistent, a find method using
the component’s primary key.

CORBAcomponents use a subset of CORBAservices for the Component Implemen-
tation Framework. These include security, transaction, persistence and notification ser-
vices.

The Security Service defines authorization based on roles. Every component can have
differing security requirements (defined in the component’s deployment descriptor), but
the container is responsible for keeping them consistent. If the container updates the secu-
rity of a component, the new policy stays in effect until the invocation of another compo-
nent occurs and that component’s security policy becomes active. The standard Security
Service specification did not change to support these requirements.

The CCM allows the use of a lite version of the Object Transaction Service. The Per-
sistent State Service specification defines the lite version of OTS to allow the use of smaller
implementations of the OTS (one which allows the underlying datastore to be responsible
for all transactional access). The OTS interfaces do not change in any way, which means
replacing the underlying OTS does not change code using the OTS. In addition, the con-
tainer can control the transaction boundaries or the component can. An example transaction
boundary is at the activation/passivation point.

The Persistent State Service manages object persistence. In container-managed persis-
tence, the use of PSS is transparent to the component. This might seem like the most con-
venient method for persistence—container-managed persistence is not necessarily ideal for
every design situation. Components managing their own persistence should still use the
PSS to save their state, but this comes at the price of future maintenance.

1526 Common Object Request Broker Architecture (CORBA): Part 2 Chapter 27

CCM components access an event service indirectly based on whether or not they use
the IDL keywords publishes and emits. The container in which the component runs
mediates use of the event service by the component. The notification Quality-of-Service
settings needed by a particular component are also set by the container. The notification and
event services supported by the container have to support only the notification and event
service subsets defined by the CCM specification, respectively. Using the generated com-
ponent API does not preclude the direct use of the Notification Service, but component
developers are encouraged to define the events in the IDL as a way of keeping the compo-
nent’s functional description in one location.

The keywords publishes and emits are similar. The difference is in the number
of consumers allowed to receive events sent by components. Any number of consumers can

Component Type Description

Service • Does not maintain state information (completely stateless)

• Does not have a unique id (primary key)

• Implements needed behavior
(e.g., calculateInterest,
addItemToShoppingCart, etc.)

• Can use transactions, is not included in the current
transaction

Session • Maintains internal-state information

• Has a unique id that is usable only by its container

• Implements needed behavior

• Can use transactions, but is not included in the current
transaction

• Maps to Session EJBs

Entity • Container- or component-managed persistent state

• Has a unique id (primary key)

• Implements needed behavior that is optionally transactional

• Maps to Entity EJBs

Process • Container-managed or component-managed persistent state
that is inaccessible to clients

• Container-managed or component-managed persistence of
the component’s primary key (identity) with visibility of
the primary key through user-defined methods

• Implements needed behavior and the behavior is optionally
transactional

Fig. 27.5Fig. 27.5Fig. 27.5Fig. 27.5 CORBA component types and descriptions.

Chapter 27 Common Object Request Broker Architecture (CORBA): Part 2 1527

subscribe to an event that a component publishes, whereas only one consumer can sub-
scribe to an event a component emits. Events declared using publishes are expected
to be part of the shared interface of the component (the API available to all clients). The
event channel created for emits is expected to be a private channel used internally by the
system. Figure 27.6 declares a Customer component that publishes a Property-
Event to multiple consumers if the Customer has exceeded their credit limit and emits
an InvariantEvent to one particular event consumer if the Customer’s internal state
has been set improperly.

Components, like other CORBA objects, can communicate with CORBAservices.
Components use ORBs to discover available services. This discovery process implies the
use of the Naming Service, but CCM introduces a HomeFinder service for components
to discover ComponentHomes for other components. HomeFinder is a kind of Naming
Service strictly for discovering ComponentHomes.

CCM defines a framework for implementing enterprise-level distributed objects using
CORBA. The CCM infrastructure enables the use of a subset of CORBA services (Naming,
Security, Transaction, Persistence and Event). The IDL-defined component factories sub-
class ComponentHome. These component factories are found using HomeFinders—
this is another use of the Naming Service. CCM components come in four types—service,
session, entity and process. Based on the amount of state the components declare and
whether any of the state needs to persist, these components can delegate persistence to the
container in which they exist (container-managed persistence) or can handle the persistence
on their own (component-managed persistence). CCM containers can be single-threaded or
multithreaded, based on whether the CCM component can handle multithreaded access.
Clients access the components through the container in which the components execute.

Enterprise JavaBeans (Chapters 14 and 15) and CORBAcomponents share a signifi-
cant amount of lineage. A design point in the CCM specification is that CORBA compo-
nents-programming model (they run in the process space of a runtime environment, either
an application or EJB server). The EJB specification dictates that the runtime environment
must support Naming, Security, Persistence and Transaction services. The EJB distributed-
object framework uses RMI as the client-side/server-side glue, defines EJBHome as the
base interface for component factories and defines EJBObject as the base interface for
components. EJBs come in two types—session (stateless and stateful) and entity (stateful).
Stateless session beans never persist, stateful session beans are persisted based on the con-
tainer’s policies and entity beans always persist. EJBs should be single threaded; the con-
tainers are not specified as having configurable threading policies. Clients access EJBs
through the EJB container.9

1 // Our Customer can send two events:
2 // creditEvent if the customer's credit limit has been exceeded
3 // and internalStateEvent if the some data in the customer
4 // has not been updated properly
5 component Customer {
6 publishes PropertyEvent creditEvent;
7 emits InvariantEvent internalStateEvent;
8 };

Fig. 27.6Fig. 27.6Fig. 27.6Fig. 27.6 Customer component IDL definition demonstrating keywords
publishes and emits for issuing events.

1528 Common Object Request Broker Architecture (CORBA): Part 2 Chapter 27

The CCM and EJB models are quite similar. The CCM specification defines two levels
of components—basic and extended. A basic component mirrors the EJB model almost
exactly. A basic component lives in a container that supports only single threading; the
component uses only the security, transaction and persistence services; the component
exposes only a single interface to clients. An extended component supports multiple inter-
faces. The CCM defines advanced storage types and allows them to be properly persisted.
An extended component also supports the use of event services.

Sun developed Enterprise JavaBeans independently of the CORBAcomponents archi-
tecture. However, the OMG and Sun worked closely in joining the two architectures during
the design of CCM, Enterprise JavaBeans is now an official subset of the CCM architec-
ture. Ideally, an EJB implementation built on top of a CCM system would be a much more
extensible system than an EJB system built from scratch. The EJB Specification, Version
2.0 requires support for IIOP. Vendors who ship EJB 2.0-compliant products must support
the CORBA protocol. IIOP support does not mean that EJB containers can handle CCM
components. Developers can write CCM components in any language for which the
CORBA CCM mappings exist. The implication is that EJB is the first real introduction of
a distributed components architecture (not just distributed objects). Systems integration is
entering a mature phase of development, in which COBOL components can interact side-
by-side with Java components or C++ components in software frameworks that use similar
concepts and APIs.

27.6 CORBA vs. RMI
CORBA is a comprehensive view of distributed systems architecture, whereas RMI de-
scribes only the communication proxies and protocols between a client object and server
object. The OMA specification defines a road map for integrating systems that use object
technology and system architecture concepts. CORBA follows the OMA specification and
benefits from the breadth of industry expertise that created it. The member organizations of
the OMG have evolved CORBA into a useful and robust technology.

27.6.1 When to Use RMI

RMI is suitable for smaller distributed applications in which are scalability, architecture,
heterogeneity, and extensibility are not major concerns. For a time, there was no long-range
architecture road map for RMI the way CORBA has the OMA. Architecturally, building
the infrastructure for an RMI system is not a trivial undertaking. A mapping of RMI and
RMI capabilities to the OMA encompasses only Applications Objects and the ORB. Appli-
cations Objects are specific to the application or system and therefore have no formal spec-
ification. The RMI communications infrastructure mimics an ORB (with the RMIRegistry
used as a naming service). In addition to missing standard infrastructure—e.g., such as that
defined by the CORBAservices and CORBAfacilities—RMI does not define Quality of
Service or asynchronous invocations. RMI has no equivalent to the Portable Object Adapt-
er and the range of control afforded through use of a POA. In addition, RMI automatic and
dynamic class loading permits a client to perform some operations locally rather than via
network calls. CORBA has the struct keyword, but this places the burden of implemen-
tation and binding on the client, which is not ideal for some applications.

Chapter 27 Common Object Request Broker Architecture (CORBA): Part 2 1529

Enterprise JavaBeans, on the other hand, is a larger view of systems and where tech-
nology such as Java is heading to address the concerns of customers with large-scale, real-
world problems. Security and data manipulation are the highest risk elements of many sys-
tems, implying the need for specialized subsystems to mitigate those risks. These sub-
systems (i.e., security and persistence) and others (for example, transactions and
messaging) appear repeatedly as standard players in nontrivial systems. Prior to CORBA,
systems integrators built custom (sometimes brittle) frameworks to accomplish reliable
communications between heterogeneous systems and standard services. Once CORBA and
RMI standardized the communications infrastructure, frameworks began to grow around
them. A framework such as Enterprise JavaBeans is a reliable and cost-effective way to
build large-scale distributed systems. EJB is the Java implementation of a first-generation
framework with direct lineage to CORBA.

RMI allows objects to participate in distributed systems consistently and predictably.
RMI is a natural choice for distributed systems built in Java. RMI is inappropriate for
system architectures that require container services, load balancing or other framework
functionality without custom development. A pure Java-distributed system needs to be con-
sidered from an architectural perspective where the distributed issues can be discovered and
resolved before the implementation issues are decided. Too often, the question of where to
use RMI becomes the issue, when a more appropriate question is “what design problems
are best solved using RMI?”

27.6.2 When to Use CORBA

If developers should not use custom RMI except for small projects, this leaves IDL in an
awkward position. IDL is not difficult to learn, but it is not a trivial undertaking for de-
velopers who are unfamiliar with C/C++ syntax. CORBA can have a steep learning curve
for those starting to learn object technology. Yet CORBA is still an excellent way to de-
velop the full range of distributed systems, even without a framework like CORBA com-
ponents. The reason CORBA is a good choice in the design of nontrivial systems has to
do with implementation concepts (e.g., OMA). In the area of connectivity, both RMI and
CORBA share the same protocol (IIOP), but RMI falls short in many other areas com-
pared to CORBA.

• Architecture: RMI does not define an architecture in any way, shape or form.
CORBA has defined an established distributed-systems architecture since the
1980s. Moving to distributed component architectures similar to Enterprise Java-
Beans had always been in the road map. Proven architecture, like EJB (which uses
mechanisms such as RMI), helps the OMG continue standardizing accepted/exist-
ing practice.

• Quality of Service (QoS): The Quality-of-Service specification establishes poli-
cies for distributed-object behavior at many levels. There are no programmatic
QoS concepts in Java, RMI or EJB yet.

• Scalability: RMI supports the concept of an object adapter but only as a basic
mechanism to hide the method-invocation complexity. The concept behind the
Portable Object Adapter, which has various selectable policies for activation (in-
cluding one that allows a single servant to handle calls to different object types) is
unknown in RMI.

1530 Common Object Request Broker Architecture (CORBA): Part 2 Chapter 27

• Heterogeneity: Java, as an implementation language, runs on many different op-
erating systems and, by extension, several kinds of hardware platforms. This dif-
fers from CORBA’s view of heterogeneity—CORBA enables interoperability
between systems written in different languages and different operating systems
and hardware platforms. CORBA has no implementation except that developed by
various vendors. CORBA encourages vendors to port CORBA’s technology to
many platforms and languages.

• Extensibility: Being hardware-neutral, language-neutral, and location-transparent
keeps CORBA in the forefront of many system-integration projects.

27.6.3 RMI-IIOP

In a joint effort, Sun and IBM implemented RMI-over-IIOP (RMI-IIOP) to replace RMI’s
underlying communication protocol (Java Remote Method Protocol or JRMP) with COR-
BA’s IIOP. Inprise, Netscape, and Oracle, working with Sun and IBM, specified a reverse
mapping of Java-to-IDL to allow the RMI compiler (rmic) to output IDL, stubs and skel-
etons needed by a server to accept invocations and a client to make the invocations. Restric-
tions in the reverse mapping include the following10:

1. Constants can be of primitive types or of class java.lang.String only.

2. IDL normally does not support overloading of method names.

3. A class cannot inherit a method with the same signature from two different inter-
faces.

4. Interfaces and value types must be public.

5. The compiler considers packages and interface names to be identical if the only
difference is case sensitivity.

The mapping also identifies four runtime limitations:11

1. Sending a tree graph (an object containing references to other objects) from ORB
to ORB may be problematic if multiple nodes point to one object (copies will
probably be sent instead).

2. CORBA does not define distributed garbage collection.

3. Casting stubs may not work properly, so using the static method narrow of class
java.rmi.PortableRemoteObject is encouraged. RMI downloads the
stubs needed by the client to communicate with a server, but CORBA does not
support that behavior.

Writing a distributed application using RMI-IIOP involves the standard RMI develop-
ment steps (Chapter 13, Remote Method Invocation) with a small number of changes:

1. Use javax.rmi.PortableRemoteObject instead of using
java.rmi.UnicastRemoteObject. A workaround would be to use value-
types (discussed in Chapter 26).

2. Use the JNDI (Java Naming and Directory Interface) instead of the RMI Registry.

3. Do not downcast remote objects to subclass types; use method narrow of class
PortableRemoteObject to cast distributed objects as subclass types.

Chapter 27 Common Object Request Broker Architecture (CORBA): Part 2 1531

27.7 RMIMessenger Case Study Ported to RMI-IIOP
In this section, we modify the RMI messenger program of Chapter 13 to use RMI-IIOP.
Porting the RMI messenger to RMI-IIOP is easier than porting the application to CORBA
(Chapter 26). The remote interfaces (ChatServer, StoppableChatServer and
ChatClient) remain the same. The modular approach we used to design the Deitel mes-
senger system enables us to reuse the supporting classes and interfaces (ChatMessage,
ClientGUI, MessageListener, MessageManager and Disconnect-
Listener) also without modification.

For the RMI-IIOP messenger, we provide new implementations of the ChatServer
remote interface (ChatServerImpl), the ChatServerAdministrator, the Mes-
sageManager interface (RMIIIOPMessageManager) and the client launcher
(DeitelMessenger).

27.7.1 ChatServer RMI-IIOP Implementation

Class ChatServerImpl (Fig. 27.7) implements the ChatServer remote interface as
a subclass of class javax.rmi.PortableRemoteObject (line 20), which is the base
class for RMI-IIOP remote objects. No changes are required in either the ChatServer or
StoppableChatServer remote interfaces, which class ChatServerImpl imple-
ments (line 21). Class ChatServerImpl does not implement method register,
which registered the Activatable RMI ChatServer with the RMI registry. Instead,
the RMI-IIOP version of class ChatServerAdministrator (Fig. 27.8) handles reg-
istration with name services. The remainder of the RMI-IIOP ChatServerImpl is iden-
tical to its RMI counterpart.

Class ChatServerAdministrator (Fig. 27.8) is a utility program for starting
and stopping the RMI-IIOP ChatServer implementation. Method startServer
(lines 21–53) creates an instance of ChatServerImpl (line 27) and registers this Chat-
Server with a naming service (lines 30–35). The RMI-IIOP equivalent to the RMI reg-
istry is the CORBA Naming Service. Instead of connecting to a naming service in a
CORBA-specific way, Java recommends using the Java Naming and Directory Interface
(JNDI), which abstracts the concept of naming and directory services. Package
javax.naming (line 13) contains JNDI classes and interfaces. Line 30 creates an Ini-
tialContext, which represents the naming service. Line 35 invokes method rebind
of interface Context to bind the ChatServerImpl object to the name “Chat-
Server” in the naming service, thus making the ChatServer available to clients. At
runtime, the InitialContext uses two system properties to discover the underlying
naming service (the Javadocs for javax.naming.InitialContext and
javax.naming.Context specify the system-naming properties and useful default
values). Property java.naming.factory.initial defines the class name of the
factory that will create the InitialContext object. Class com.sun.jndi.cos-
naming.CNCtxFactory is the default factory class for connecting to CORBA Naming
Services. Property java.naming.provider.url specifies the URL for the Naming
Service, including the port to which the Naming Service is attached (e.g., iiop://
localhost:1050).

Method terminateServer (lines 56–91) locates and stops the running Chat-
Server and removes the ChatServer registration from the naming service. Line 62

1532 Common Object Request Broker Architecture (CORBA): Part 2 Chapter 27

creates an InitialContext for the naming service in which the ChatServer is reg-
istered. Lines 65–66 invoke method lookup, passing as an argument the name under
which the ChatServer registered. Method lookup returns an Object reference to the
ChatServer remote object. Lines 69–71 create a StoppableChatServer reference
to the ChatServer remote object. Recall that RMI-IIOP requires that remote objects be
converted to specific types using method narrow of class PortableRemoteObject,
as opposed to using casting. Method narrow takes as arguments an Object reference to
the remote object and the Class object for the target reference type. Line 71 passes
remoteObject and the Class object for interface StoppableChatServer to
method narrow. Line 74 invokes method stopServer of interface Stoppa-
bleChatServer to terminate the ChatServer. Line 77 invokes method unbind of
interface Context to remove the ChatServer’s registration from the naming service.
Lines 82–84 catch a NamingException if the ChatServer is not found in the
naming service. Lines 87–89 catch a RemoteException if there is a problem
obtaining the ChatServer remote object or invoking its remote methods.

1 // ChatServerImpl.java
2 // ChatServerImpl implements the ChatServer and StoppableChatServer
3 // remote interfaces using RMI over IIOP.
4 package com.deitel.messenger.rmi_iiop.server;
5
6 // Java core packages
7 import java.io.*;
8 import java.util.*;
9 import java.net.MalformedURLException;

10 import java.rmi.*;
11
12 // Java extension packages
13 import javax.rmi.*;
14
15 // Deitel packages
16 import com.deitel.messenger.rmi.ChatMessage;
17 import com.deitel.messenger.rmi.client.ChatClient;
18 import com.deitel.messenger.rmi.server.*;
19
20 public class ChatServerImpl extends PortableRemoteObject
21 implements ChatServer, StoppableChatServer {
22
23 // Set of ChatClient references
24 private Set clients = new HashSet();
25
26 // construct new ChatServerImpl
27 public ChatServerImpl() throws RemoteException
28 {
29 super();
30 }
31

Fig. 27.7Fig. 27.7Fig. 27.7Fig. 27.7 ChatServerImpl implements the Deitel messenger ChatServer
using RMI-IIOP (part 1 of 3).

Chapter 27 Common Object Request Broker Architecture (CORBA): Part 2 1533

32 // register new ChatClient with ChatServer
33 public void registerClient(ChatClient client)
34 throws RemoteException
35 {
36 // add client to Set of registered clients
37 synchronized(clients) {
38 clients.add(client);
39 }
40
41 System.out.println("Registered Client: " + client);
42
43 } // end method registerClient
44
45 // unregister client with ChatServer
46 public void unregisterClient(ChatClient client)
47 throws RemoteException
48 {
49 // remove client from Set of registered clients
50 synchronized(clients) {
51 clients.remove(client);
52 }
53
54 System.out.println("Unregistered Client: " + client);
55
56 } // end method unregisterClient
57
58 // post new message to ChatServer
59 public void postMessage(ChatMessage message)
60 throws RemoteException
61 {
62 Iterator iterator = null;
63
64 // get Iterator for Set of registered clients
65 synchronized(clients) {
66 iterator = new HashSet(clients).iterator();
67 }
68
69 // send message to every ChatClient
70 while (iterator.hasNext()) {
71 ChatClient client = (ChatClient) iterator.next();
72 client.deliverMessage(message);
73 }
74
75 } // end method postMessage
76
77 // notify each client that server is shutting down and
78 // terminate server application
79 public void stopServer() throws RemoteException
80 {
81 System.out.println("Terminating server ...");
82
83 Iterator iterator = null;

Fig. 27.7Fig. 27.7Fig. 27.7Fig. 27.7 ChatServerImpl implements the Deitel messenger ChatServer
using RMI-IIOP (part 2 of 3).

1534 Common Object Request Broker Architecture (CORBA): Part 2 Chapter 27

84
85 // get Iterator for Set of registered clients
86 synchronized(clients) {
87 iterator = new HashSet(clients).iterator();
88 }
89
90 // send serverStopping message to every ChatClient
91 while (iterator.hasNext()) {
92 ChatClient client = (ChatClient) iterator.next();
93 client.serverStopping();
94 System.err.println("Disconnected: " + client);
95 }
96
97 // create Thread to terminate application after
98 // stopServer method returns to caller
99 Thread terminator = new Thread(
100 new Runnable() {
101
102 // sleep for 5 seconds, print message and terminate
103 public void run()
104 {
105 // sleep
106 try {
107 Thread.sleep(5000);
108 }
109
110 // ignore InterruptedExceptions
111 catch (InterruptedException exception) {}
112
113 System.err.println("Server terminated");
114 System.exit(0);
115 }
116 }
117);
118
119 terminator.start(); // start termination thread
120
121 } // end method stopServer
122 }

1 // ChatServerAdministrator.java
2 // ChatServerAdministrator is a utility for starting and stopping
3 // the RMI-IIOP ChatServer implementation.
4 package com.deitel.messenger.rmi_iiop.server;
5
6 // Java core packages
7 import java.rmi.*;
8 import java.rmi.activation.*;

Fig. 27.8Fig. 27.8Fig. 27.8Fig. 27.8 ChatServerAdministrator application for starting and stopping
RMI-IIOP ChatServer (part 1 of 4).

Fig. 27.7Fig. 27.7Fig. 27.7Fig. 27.7 ChatServerImpl implements the Deitel messenger ChatServer
using RMI-IIOP (part 3 of 3).

Chapter 27 Common Object Request Broker Architecture (CORBA): Part 2 1535

9 import java.util.*;
10
11 // Java extension packages
12 import javax.rmi.*;
13 import javax.naming.*;
14
15 // Deitel packages
16 import com.deitel.messenger.rmi.server.StoppableChatServer;
17
18 public class ChatServerAdministrator {
19
20 // set up ChatServer object
21 private static void startServer()
22 {
23 // register ChatServer in Naming Service
24 try {
25
26 // create ChatServerImpl object
27 ChatServerImpl chatServerImpl = new ChatServerImpl();
28
29 // create InitialContext for naming service
30 Context namingContext = new InitialContext();
31
32 System.err.println("Binding server to naming service..");
33
34 // bind ChatServerImpl object to naming service
35 namingContext.rebind("ChatServer", chatServerImpl);
36
37 System.out.println("Server bound to naming service");
38
39 } // end try
40
41 // handle exception registering ChatServer
42 catch (NamingException namingException) {
43 namingException.printStackTrace();
44 System.exit(1);
45 }
46
47 // handle exception creating ChatServer
48 catch (RemoteException remoteException) {
49 remoteException.printStackTrace();
50 System.exit(1);
51 }
52
53 } // end method startServer
54
55 // terminate server
56 private static void terminateServer()
57 {
58 // look up and terminate ChatServer
59 try {
60

Fig. 27.8Fig. 27.8Fig. 27.8Fig. 27.8 ChatServerAdministrator application for starting and stopping
RMI-IIOP ChatServer (part 2 of 4).

1536 Common Object Request Broker Architecture (CORBA): Part 2 Chapter 27

61 // create naming Context for looking up server
62 Context namingContext = new InitialContext();
63
64 // find ChatServer remote object
65 Object remoteObject =
66 namingContext.lookup("ChatServer");
67
68 // narrow remoteObject to StoppableChatServer
69 StoppableChatServer chatServer =
70 (StoppableChatServer) PortableRemoteObject.narrow(
71 remoteObject, StoppableChatServer.class);
72
73 // stop ChatServer
74 chatServer.stopServer();
75
76 // remove ChatServer from Naming Service
77 namingContext.unbind("ChatServer");
78
79 } // end try
80
81 // handle exception looking up ChatServer
82 catch (NamingException namingException) {
83 namingException.printStackTrace();
84 }
85
86 // handle exception communicating with ChatServer
87 catch (RemoteException remoteException) {
88 remoteException.printStackTrace();
89 }
90
91 } // end method terminateServer
92
93 // launch ChatServerAdministrator application
94 public static void main(String args[])
95 {
96 // check command-line arguments and start or stop server
97 if (args[0].equals("start"))
98 startServer();
99
100 else if (args[0].equals("stop"))
101 terminateServer();
102
103 // print usage information
104 else
105 System.err.println(
106 "Usage: java ChatServerAdministrator start | stop");
107
108 } // end method main
109 }

Fig. 27.8Fig. 27.8Fig. 27.8Fig. 27.8 ChatServerAdministrator application for starting and stopping
RMI-IIOP ChatServer (part 3 of 4).

Chapter 27 Common Object Request Broker Architecture (CORBA): Part 2 1537

Figure 27.8 shows text output from ChatServerAdministrator. In this output,
ChatServerAdministrator launches the ChatServer and binds it to a naming
service. Three clients connect to the naming service—the first client then disconnects. The
ChatServerAdministrator terminates the ChatServer, which disconnects the
remaining two clients and shuts down the server.

Binding server to naming service...
Server bound to naming service
Registered Client:
IOR:0000000000000040524d493a636f6d2e64656974656c2e6d657373656e6765722
e726d692e636c69656e742e43686174436c69656e743a303030303030303030303030
3030303000000000010000000000000054000101000000000d3139322e3136382e312
e3435000005e000000018afabcaff00000002243bba8f000000080000000100000000
0000000100000001000000140000000000010020000000000001010000000000
Registered Client:
IOR:0000000000000040524d493a636f6d2e64656974656c2e6d657373656e6765722
e726d692e636c69656e742e43686174436c69656e743a303030303030303030303030
3030303000000000010000000000000054000101000000000d3139322e3136382e312
e3435000005e500000018afabcaff00000002243bbbed000000080000000100000000
0000000100000001000000140000000000010020000000000001010000000000
Registered Client:
IOR:0000000000000040524d493a636f6d2e64656974656c2e6d657373656e6765722
e726d692e636c69656e742e43686174436c69656e743a303030303030303030303030
3030303000000000010000000000000054000101000000000d3139322e3136382e312
e3435000005ea00000018afabcaff00000002243bbd5c000000080000000100000000
0000000100000001000000140000000000010020000000000001010000000000
Unregistered Client:
IOR:0000000000000040524d493a636f6d2e64656974656c2e6d657373656e6765722
e726d692e636c69656e742e43686174436c69656e743a303030303030303030303030
3030303000000000010000000000000054000101000000000d3139322e3136382e312
e3435000005e000000018afabcaff00000002243bba8f000000080000000100000000
0000000100000001000000140000000000010020000000000001010000000000
Terminating server ...
Disconnected:
IOR:0000000000000040524d493a636f6d2e64656974656c2e6d657373656e6765722
e726d692e636c69656e742e43686174436c69656e743a303030303030303030303030
3030303000000000010000000000000054000101000000000d3139322e3136382e312
e3435000005e500000018afabcaff00000002243bbbed000000080000000100000000
0000000100000001000000140000000000010020000000000001010000000000
Disconnected:
IOR:0000000000000040524d493a636f6d2e64656974656c2e6d657373656e6765722
e726d692e636c69656e742e43686174436c69656e743a303030303030303030303030
3030303000000000010000000000000054000101000000000d3139322e3136382e312
e3435000005ea00000018afabcaff00000002243bbd5c000000080000000100000000
0000000100000001000000140000000000010020000000000001010000000000
Server terminated

Fig. 27.8Fig. 27.8Fig. 27.8Fig. 27.8 ChatServerAdministrator application for starting and stopping
RMI-IIOP ChatServer (part 4 of 4).

1538 Common Object Request Broker Architecture (CORBA): Part 2 Chapter 27

27.7.2 ChatClient RMI-IIOP Implementation
To implement a ChatClient for the RMI-IIOP messenger, we must provide an RMI-
IIOP implementation of interface MessageManager. We then must create a new
DeitelMessenger application for launching ClientGUI with the new Message-
Manager implementation.

Class RMIIIOPMessageManager (Fig. 27.9) implements the ChatClient and
MessageManager interfaces using RMI-IIOP. Like the RMIMessageManager
implementation from Chapter 13, class RMIIIOPMessageManager is a remote object
that communicates with the ChatServer remote object. However, class RMI-
IIOPMessageManager extends class PortableRemoteObject for compatibility
with IIOP (line 24). Method connect (lines 38–57) creates an InitialContext for
the Naming Service (line 42) and invokes method lookup of interface Context to
retrieve a remote reference to the RMI-IIOP ChatServer (lines 45–46). Lines 48–49
invoke method narrow of class PortableRemoteObject to convert the Object
remote reference to a ChatServer remote reference. Line 52 invokes method
registerClient of interface ChatServer to register the RMIIIOPMessage-
Manager as a ChatServer client. Line 55 sets the MessageListener to which
incoming ChatMessages should be delivered. The remainder of class RMIIIOP-
MessageManager is identical to class RMIMessageManager.

Class DeitelMessenger (Fig. 27.10) launches the Deitel messenger client using
classes ClientGUI and RMIIIOPMessageManager. Line 18 creates an instance of
class RMIIIOPMessageManager for communicating with the ChatServer. Lines
21–24 create a ClientGUI for the RMIIIOPMessageManager and display the GUI
to the user.

1 // RMIIIOPMessageManager.java
2 // RMIIIOPM22essageManager implements the ChatClient remote
3 // interface and manages incoming and outgoing chat messages
4 // using RMI over IIOP.
5 package com.deitel.messenger.rmi_iiop.client;
6
7 // Java core packages
8 import java.awt.*;
9 import java.awt.event.*;

10 import java.rmi.*;
11 import java.rmi.server.*;
12 import java.util.*;
13
14 // Java extension packages
15 import javax.rmi.*;
16 import javax.naming.*;

Fig. 27.9Fig. 27.9Fig. 27.9Fig. 27.9 RMIIIOPMessageManager implements the ChatClient and
MessageManager interfaces using RMI-IIOP (part 1 of 3).

Chapter 27 Common Object Request Broker Architecture (CORBA): Part 2 1539

17
18 // Deitel packages
19 import com.deitel.messenger.*;
20 import com.deitel.messenger.rmi.client.ChatClient;
21 import com.deitel.messenger.rmi.ChatMessage;
22 import com.deitel.messenger.rmi.server.ChatServer;
23
24 public class RMIIIOPMessageManager extends PortableRemoteObject
25 implements ChatClient, MessageManager {
26
27 // listeners for incoming messages and disconnect notifications
28 private MessageListener messageListener;
29 private DisconnectListener disconnectListener;
30
31 // ChatServer for sending and receiving messages
32 private ChatServer chatServer;
33
34 // RMIMessageManager constructor
35 public RMIIIOPMessageManager() throws RemoteException {}
36
37 // connect to ChatServer
38 public void connect(MessageListener listener)
39 throws Exception
40 {
41 // create naming Context for looking up server
42 Context namingContext = new InitialContext();
43
44 // find ChatServer remote object
45 Object remoteObject =
46 namingContext.lookup("ChatServer");
47
48 chatServer = (ChatServer) PortableRemoteObject.narrow(
49 remoteObject, ChatServer.class);
50
51 // register client with ChatServer to receive messages
52 chatServer.registerClient(this);
53
54 // set listener for incoming messages
55 messageListener = listener;
56
57 } // end method connect
58
59 // disconnect from ChatServer
60 public void disconnect(MessageListener listener)
61 throws Exception
62 {
63 if (chatServer == null)
64 return;
65
66 chatServer.unregisterClient(this);
67 messageListener = null;
68

Fig. 27.9Fig. 27.9Fig. 27.9Fig. 27.9 RMIIIOPMessageManager implements the ChatClient and
MessageManager interfaces using RMI-IIOP (part 2 of 3).

1540 Common Object Request Broker Architecture (CORBA): Part 2 Chapter 27

69 // notify listener of disconnect
70 fireServerDisconnected("");
71
72 } // end method disconnect
73
74 // send ChatMessage to ChatServer
75 public void sendMessage(String fromUser, String message)
76 throws Exception
77 {
78 if (chatServer == null)
79 return;
80
81 // create ChatMessage with message text and user name
82 ChatMessage chatMessage =
83 new ChatMessage(fromUser, message);
84
85 // post message to ChatServer
86 chatServer.postMessage(chatMessage);
87
88 } // end method sendMessage
89
90 // process delivery of ChatMessage from ChatServer
91 public void deliverMessage(ChatMessage message)
92 throws RemoteException
93 {
94 if (messageListener != null)
95 messageListener.messageReceived(message.getSender(),
96 message.getMessage());
97 }
98
99 // process server shutting down notification
100 public void serverStopping() throws RemoteException
101 {
102 chatServer = null;
103 fireServerDisconnected("Server shut down.");
104 }
105
106 // register listener for disconnect notifications
107 public void setDisconnectListener(
108 DisconnectListener listener)
109 {
110 disconnectListener = listener;
111 }
112
113 // send disconnect notification
114 private void fireServerDisconnected(String message)
115 {
116 if (disconnectListener != null)
117 disconnectListener.serverDisconnected(message);
118 }
119 }

Fig. 27.9Fig. 27.9Fig. 27.9Fig. 27.9 RMIIIOPMessageManager implements the ChatClient and
MessageManager interfaces using RMI-IIOP (part 3 of 3).

Chapter 27 Common Object Request Broker Architecture (CORBA): Part 2 1541

27.7.3 Compiling and Running the ChatServer and ChatClient

Compile ChatServerImpl, ChatServerAdministrator, RMIIIOPMessage-
Manager and DeitelMessenger using the Java compiler. You must also compile the
RMI-IIOP stub classes for the ChatServerImpl and RMIIIOPMessageManager
remote objects. Use the rmic tool with the -iiop command-line option to generate the
appropriate stubs, for example,

rmic -iiop com.deitel.messenger.rmi_iiop.server.ChatServer-
Impl

Running the RMI-IIOP Deitel messenger system requires a CORBA Naming Service.
For this example, we use tnameserv, which we used for the examples in Chapter 26.
Start tnameserv by typing the following at a command prompt:

tnameserv -ORBInitialPort 1050

Class ChatServerAdministrator launches the ChatServer and registers the
server with the Naming Service. To start ChatServer, type the following at a command
prompt:

1 // DeitelMessenger.java
2 // DeitelMessenger uses ClientGUI and RMIIIOPMessageManager to
3 // implement an RMI over IIOP chat client.
4 package com.deitel.messenger.rmi_iiop.client;
5
6 // Java core packages
7 import java.rmi.RMISecurityManager;
8
9 // Deitel packages

10 import com.deitel.messenger.*;
11
12 public class DeitelMessenger {
13
14 // launch DeitelMessenger application
15 public static void main(String args[]) throws Exception
16 {
17 // create RMIIIOPMessageManager for communicating with server
18 MessageManager messageManager = new RMIIIOPMessageManager();
19
20 // configure and display chat window
21 ClientGUI clientGUI = new ClientGUI(messageManager);
22 clientGUI.setSize(300, 400);
23 clientGUI.setResizable(false);
24 clientGUI.setVisible(true);
25 }
26 }

Fig. 27.10Fig. 27.10Fig. 27.10Fig. 27.10 DeitelMessenger creates a ClientGUI and
RMIIIOPMessageManager to launch the RMI-IIOP messenger client.

1542 Common Object Request Broker Architecture (CORBA): Part 2 Chapter 27

java -Djava.naming.factory.initial=com.sun.jndi.cos-
naming.CNCtxFactory
 -Djava.naming.provider.url=iiop://localhost:1050
 com.deitel.messenger.rmi_iiop.server.ChatServerAdministra-
tor start

The -D command-line option specifies system properties for the virtual machine. Recall
that property java.naming.factory.initial specifies the class that implements
the Naming Service’s InitialContext. Property java.naming.provider.url
specifies the location and port where the Naming Service is running. For this example, the
Naming Service runs on the local machine on port 1050.

Once ChatServer is running and bound to the Naming Service, launch several cli-
ents by typing the following at a command prompt and executing repeatedly:

java -Djava.naming.factory.initial=com.sun.jndi.cos-
naming.CNCtxFactory
 -Djava.naming.provider.url=iiop://localhost:1050
 com.deitel.messenger.rmi_iiop.client.DeitelMessenger

27.8 Future Directions
The Object Management Architecture defined the various levels of object services in the
first version of a full CORBA architecture back in 1990. The OMA is the guiding document
for the design of many CORBA systems, yet falls short in average-size systems that still
have needs for distributed system concepts. CORBA and OMA expect developers to use
the reference architecture’s flexibility to make the same fine-grained decisions for each sys-
tem being built. (How should the POAs be configured? What activation policies should be
enabled and when? Is there a process for choosing the proper CORBAservices and integrat-
ing them into a general, reusable framework?)

The CORBA Component Model and Enterprise JavaBeans abstract many system
issues through programming constructs such as containers and subsystems. CCM guaran-
tees Enterprise JavaBeans’ place in the future by allowing future programming languages
to interoperate with Java transparently, so Java can interoperate with COBOL, C, C++ and
other IDL-mapped languages.

OMG is now working on an architectural process called the Model Driven Architec-
ture™ (MDA). In late 2000 and early 2001, OMG members noticed that the occasional
introduction of new middleware platforms turned into a steady stream which was not likely
to slow or stop anytime in the foreseeable future. To restore stability to standards and the
enterprise development process, OMG created and adopted the MDA as the basis for its
future specifications. In the MDA, a specification or application is defined first and funda-
mentally as a Platform-Independent Model (PIM) in the Unified Modeling Language
(UML). MDA tools generate one or more Platform-Specific Models (PSM) from the appli-
cation’s PIM, following OMG-standardized mappings. In a third step, the MDA tool gen-
erates interfaces, stub and template code, configuration files, build and deployment files
and application code from the PSM. MDA supports, and OMG will publish standards in,
many middleware platforms such as EJB, XML/SOAP, C#/.NET and CORBA. Interoper-
ability is provided by bridges or by bridging code generated by MDA tools from models.
The PIM retains its value as the technology around it shifts over time. Industry standards
groups, including especially OMG's Domain Task Forces, shifted quickly to MDA for their

Chapter 27 Common Object Request Broker Architecture (CORBA): Part 2 1543

work because specifications formulated as PIMs embody only business functionality and
behavior, and so outlast individual technologies and trends.

This expansion of OMG’s architecture beyond CORBA (which receives the same level
of support as before MDA) is giving new vitality to OMG and its commitment to tech-
nology-independent domain standards.

27.9 Internet and World Wide Web Resources
www.omg.org/cgi-bin/doc?formal/99-07-59
The OMG Java-to-IDL Specification describes in detail the various mappings and limitations inherent
in using this reverse IDL mapping. This document is also available in Postscript and PDF.

www.omg.org/technology/documents/formal/
corba_services_available_electro.htm
This OMG page lists the CORBAservices specifications that are available electronically. Downloads
of each specification are available as Postscript and PDF files.

www.omg.org/cgi-bin/doc?orbos/98-01-18
Objects-by-Value, as a distinguishing characteristic between RMI and CORBA, is explained in this
document. The specification describes applicable keywords, mechanism concepts and how OBV ap-
plies to Java.

www.w3.org/TR/NOTE-ice
This site gives the definitive description and thinking of Open Software Description Format. An un-
derstanding of XML and Web technologies is necessary to appreciate what OSD (and by extension
the Information and Content Exchange Protocol) is trying to do.

openorb.exolab.org/openorb.html
In the spirit of open source, ExoLab Group has released (and updates) a full, open-source implemen-
tation of CORBA 2.4.1 for the development of distributed systems. OpenORB supports both POAs
and BOAs and includes various tools (such as IDL compilers).

openorb.exolab.org/services.html
Although not a full set of CORBAservices, this open-source alternative offers a collection of useful
services for developers building CORBA frameworks. Naming, Persistence and Transaction are avail-
able (to name a few). Follow the Extensions link to find their implementation of RMI-IIOP.

www.omg.org/cgi-bin/doc?formal/01-06-07
This Web page provides a link to the June 2001 paper, Java Language to IDL Mapping.

www.omg.org/cgi-bin/doc?formal/98-12-09
Object Management Group, CORBAservices: Common Object Services Specification, December 1998.

www.omg.org/cgi-bin/doc?ptc/99-10-03
This page on the Object Management Group’s Web site offers the Component FTF Edited Drafts of
CORBA Core Chapters, originally published October 1999.

www.omg.org/technology/documents/formal/
internationalization_and_time.htm,
The January 2000 paper, Internationalization, Time Operations, and Related Facilities, is available
on this page.

www.omg.org/technology/documents/formal/mobile_agent_facility.htm
The Mobile Agent Facility Specification is available at this link.

www.cs.wustl.edu/~schmidt/PDF/CBSE.pdf
This site contains an excellent collaborative work, Overview of the CORBA Component Model.

1544 Common Object Request Broker Architecture (CORBA): Part 2 Chapter 27

java.sun.com/j2se/1.3/docs/guide/rmi-iiop/rmi_iiop_pg.html
Learn-by-doing is the approach taken by this well-written tutorial explaining how to use RMI-IIOP.
The RMI-IIOP Programmer’s Guide includes many links for background information useful to devel-
opers new to RMI, CORBA and IIOP.

CORBA Component Model Resources

corbaweb.lifl.fr/OpenCCM/
The OpenCCM Platform is an open-source implementation of the CORBA Component Model. Spon-
sored by the Laboratoire de Recherche en Informatique de l’Université des Sciences et Technologies
de Lille (LIFL) in France, this open-source implementation of the CORBA Component Model is a
worthwhile place for CORBA developers to inexpensively try out CCM technology.

www.cs.wustl.edu/~schmidt/PDF/CBSE.pdf
This document is an overview of the CORBA Component Model and why it is a worthwhile addition
to the CORBA marketplace. This well-written overview goes into more detail about containers, com-
ponents, deployment and the runtime environment a developer can expect from CCM.

Model Driven Architecture™ Resources

www.omg.org/mda/index.htm
Model Driven Architecture promises to leverage many existing technologies into a cohesive view al-
lowing the development of large-grained systems. The documents at this link explain the direction in
which the OMG expects MDA to go.

TERMINOLOGY
abstract EventChannel
ACID EventChannelFactory
activation Event Service
Asynchronous Method Invocation (AMI) flat transactions
Basic Object Adapter (BOA) HomeFinder
call-by-value Interface Repository (IR)
catalog Java Naming and Directory Interface (JNDI)
Component Implementation Framework (CIF) Model Driven Architecture™

Component Interface Definition Language NameComponent
(CIDL) Naming

ComponentHome NamingContext
component-managed persistence nested transactions
ConsumerAdmin Notification Service
Container programming model Object activation
container-managed persistence Object Constraint Language (OCL)
conversational container Object Transaction Service (OTS)
CORBA Component Model (CCM) Object-by-Reference
CORBAservices Object-by-Value
durable container Open Software Description Format (OSD)
Dynamic Invocation Interface (DII) OperationDef
Dynamic Skeleton Interface (DSI) passivation
emits Persistent State Definition Language (PSDL)
Enterprise JavaBeans Persistent State Service (PSS)
entity component Portable Object Adapter (POA)

Chapter 27 Common Object Request Broker Architecture (CORBA): Part 2 1545

SELF-REVIEW EXERCISES
27.1 Fill in the blanks in each of the following statements:

a) An association between a name and a value is called a .
b) In the context of transaction processing, ACID stands for , ,

 and .
c) Use of the Event Service is done through the .
d) In RMI-IIOP, the is used in place of the java.rmi.UnicastRemo-

teObject.
e) The DII allows -typed calls to be made from a client.
f) give components an environment to exist in and available services to use.

27.2 State whether each of the following is true or false. If false, explain why.
a) RMI uses the same underlying communication protocol as CORBA.
b) TIEs are POAs that use the delegation model.
c) The Event Service allows only one delivery model at a time: Either pull or push, but not

both.
d) Session CORBAcomponents are equivalent to EJB stateless session beans.
e) Session CORBAcomponents are equivalent to EJB stateful session beans.
f) Enterprise JavaBeans specify the use of an Event Service.
g) CCM supports multithreaded containers.

ANSWERS TO SELF-REVIEW EXERCISES
27.1 a) name binding. b) Atomic, Consistent, Isolated, Durable. c) EventChannelFactory.
d) javax.rmi.PortableRemoteObject. e) dynamically. f) Containers.

27.2 a) False. RMI uses the Java Remote Method Protocol (JRMP), CORBA uses the Internet
Inter-ORB Protocol (IIOP). RMI-IIOP uses IIOP. b) True. c) False. The Event Service allows a mix
of either pull or push in any combination by the suppliers and consumers. d) True. e) True. f) False.
The EJB specification requires only Naming, Security, Persistence and Transaction. g) True.

PortableRemoteObject storagehome
process component storagetype
publishes StructuredEvent
pull model StructuredProxyPushConsumer
push model StructuredProxyPushSupplier
recoverable object SupplierAdmin
recoverable server TIE (Object Adapter in delegation model)
Request Trader Constraint Language (TCL)
Request for Proposal (RFP) Transactional client
RMI-IIOP Transactional objects
Security Service Transactional server
servant Unified Modeling Language (UML)
service component unit of work
session component Unshared transaction
shared transaction XML Metadata Interchange (XMI™)
stateless container

1546 Common Object Request Broker Architecture (CORBA): Part 2 Chapter 27

EXERCISES
27.3 Write a QuoteService that works in either a push or pull model: define an operation to
allow clients to register and receive Quotes (push) and define another operation to return a Quote
for a specific Symbol (pull). Write a test client that gets pushed by the server and also pulls Quotes
from the server.

27.4 Write a GUI client that displays the Quote information in a JTable. Use a TableModel
to mediate access to the Quote data. Use a client-side proxy to wrap the remote QuoteService.
Use a client-side proxy to wrap the Quote object (if necessary).

27.5 Modify the QuoteService to return an array of Quotes based on an array of incoming
Symbol names.

27.6 Write a LoggingService. One model for logging messages is to connect to an object that
would deliver messages in an appropriate fashion based on how important they are. The API should
take into account the source, priority, topic and contents. System architecture would consider priority
a quality-of-service attribute. The LoggingService should be a write-only service (messages go
in, but not out). Take multiuser access into account in the API. What kind of activation policies can
a POA be assigned to handle some of these issues?

27.7 From an implementation perspective, the LoggingService could distribute the delivery
of the message in a number of ways. This is a classic trade-off between making the API straightfor-
ward (connect to the service and post messages directly to it) or making its use more complex, but
more flexible (make the service more of a pool of connections usable by many clients). Change the
name of the LoggingService to LoggingConnection and have it return a LogStream ob-
ject. The LogStream takes the source, priority, topic and contents of the message into account (just
as the previous example did), only now the load balancing is more explicit.

WORKS CITED
1. “The Common Object Request Broker: Architecture and Specification” October 2000
<www.omg.org/cgi-bin/doc?formal/01-02-33>.

2. “Interfaces,” Security Services Specification May 2000 <www.omg.org/cgi-bin/
doc?formal/2001-03-08>.

3. “Interfaces,” <www.omg.org/cgi-bin/doc?formal/2001-03-08>.

4. “Distributed Transaction Processing: The XA Specification,” <www.opengroup.org/
pubs/catalog/c193.htm.>.

5. “Transaction Services Specification,” May 2000: <www.omg.org/cgi-bin/doc?for-
mal/2001-05-02>.

6. L. DeMichiel, “Enterprise JavaBeans™ Specification,” 23 October 2000: 29.

7. “CORBA Components, Joint Revised Submission” 2 August 1999 <www.omg.org/cgi-
bin/doc?orbos/99-07-01>.

8. “CORBA Components, Joint Revised Submission” <www.omg.org/cgi-bin/
doc?orbos/99-07-01>.

9. DeMichiel, 29.

10. “RMI-IIOP Programmer's Guide,” <java.sun.com/j2se/1.3/docs/guide/rmi-
iiop/rmi_iiop_pg.html#Restrictions>.

11. “Java Language to IDL Mapping” June 2001 <www.omg.org/cgi-bin/doc?formal/
01-06-07>.

Chapter 27 Common Object Request Broker Architecture (CORBA): Part 2 1547

BIBLIOGRAPHY

Object Management Group Resources
Balen, H., M. Elenko, J. Jones and G. Palumbo, Distributed Object Architectures with CORBA. New

York, NY: Cambridge University Press, 2000.

Hoque, Reaz, CORBA 3. Foster City, CA: IDG Books, 1998.

Siegel, J, CORBA 3, Second Edition. New York, NY: Wiley Computer Publishing, 2000.

28
Peer-to-Peer

Applications and JXTA

Objectives
• To understand peer-to-peer application architectures.
• To understand how various popular peer-to-peer

applications work.
• To create a complete P2P instant-messenger

application using RMI and Jini technologies.
• To create a complete P2P instant-messenger

application using Multicast Sockets and RMI.
• To introduce the emerging JXTA peer-to-peer

technology.
No! let me taste the whole of it, fare like my peers,
The heroes of old,
Bear the brunt, in a minute pay glad life’s arrears
Of pain, darkness, and cold.
Robert Browning

If we do not lay out ourselves in the service of mankind whom
should we serve?
John Adams

We are as much as we see…
Henry David Thoreau

Good counselors lack no clients.
William Shakespeare

Chapter 28 Peer-to-Peer Applications and JXTA 1549

28.1 Introduction
Instant-messaging systems and document-sharing applications such as AOL Instant Mes-
senger™ and Gnutella have exploded in popularity, transforming the way users interact
with one another over networks. In a peer-to-peer (P2P) application, each node performs
both client and server functions. Such applications distribute processing responsibilities
and information to many computers, thus reclaiming otherwise wasted computing power
and storage space, and eliminating central points of failure.

In this chapter, we introduce the fundamental concepts of peer-to-peer applications.
Using Jini (Chapter 22), RMI (Chapter 13) and multicast sockets, we present two peer-to-
peer application case studies. We first implement an instant-messaging application with
Jini and RMI to demonstrate a more substantial Jini application and show the benefits of
integrating Jini with other technologies. We then implement the same instant-messaging
application using multicast sockets and RMI. Finally, we introduce JXTA (short for “jux-
tapose”)—a new open-source technology from Sun MicrosystemsTM that defines common
protocols for implementing peer-to-peer applications.

28.2 Client/Server and Peer-to-Peer Applications
Many network applications operate on the principle that computers should be segregated
by function. Some computers—called servers—offer common stores of programs and data.
Other computers—called clients—access the data provided by the servers. The Yahoo!™
search engine (www.yahoo.com) is an example of a client/server application. Client
send queries to the central servers, which have pre-compiled catalogs of the Internet. The
central servers refer to their databases and respond with the requested information.

Outline
28.1 Introduction
28.2 Client/Server and Peer-to-Peer Applications
28.3 Centralized vs. Decentralized Network Applications
28.4 Peer Discovery and Searching
28.5 Case Study: Deitel Instant Messenger
28.6 Defining the Service Interface
28.7 Defining the Service implementation
28.8 Registering the Service
28.9 Find Other Peers
28.10 Compiling and Running the Example
28.11 Improving Deitel Instant Messenger
28.12 Deitel Instant Messenger with Multicast Sockets

28.12.1 Registering the Peer
28.12.2 Finding Other Peers

28.13 Introduction to JXTA
28.14 Internet and World Wide Web Resources
Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1550 Peer-to-Peer Applications and JXTA Chapter 28

P2P applications are different than client/server applications. Instead of segregating
computers by function, all computers act as both clients and servers. P2P applications are
similar to the telephone system—a single user can both speak (send information) and listen
(receive information).1 Figure 28.1 lists some common peer-to-peer applications.

28.3 Centralized vs. Decentralized Network Applications
An application that uses a centralized server exemplifies the client/server relationship. One
major weakness of this centralized system is the dependency on the central server. If the
central node (i.e., server) fails, the entire application also fails. The server’s capabilities
limit the application’s overall performance. For instance, Web sites can fail when malicious
users overload the Web server(s) with an excessive number of requests. However, central-
ized architectures also have advantages, such as simplifying management tasks (e.g., mon-
itoring user access by providing single points of network control).

True P2P applications are completely decentralized and do not suffer from the same
deficiencies as applications that depend on centralized servers. If nodes in a P2P application
fail, well-designed P2P applications continue to function. P2P applications often leverage
distributed computational power. Freenet, for instance, allows users to share documents in
a way that precludes censorship. Peer-to-peer architectures allow real-time searches that
return up-to-date results. Centralized search engines today are slow to incorporate recently
created Web data into these catalogs. Peer-to-peer searches accurately reflect the network
status at the time of the query.2

1. E. Harold, JAVA Network Programming. Sebastopol: O’Relly & Associates, Inc., 1997: 26–27.

Distributed
Applications Description

Gnutella A P2P technology that does not use any central servers. There is no
authentication, and peers search for files via a distributed-search mech-
anism.

KaZaA A file-sharing application that is a hybrid between Gnutella and cen-
tralized applications. A central server authenticates all users. Certain
peers serve as search hubs, which catalog the files of peers connected
to them. Searches are distributed to each search hub, which then
respond with results that allow direct connections for file transfers.

Instant Messengers Peer-to-peer applications that enable users to send short text messages
and files to one another. Most instant messengers use central servers
that authenticate all users and route messages between peers.

Telephone System A peer-to-peer application that enables users to conduct voice conver-
sations remotely.

Fig. 28.1Fig. 28.1Fig. 28.1Fig. 28.1 Common P2P applications.

2. S. Waterhouse, “JXTA Search: Distributed Search for Distributed Networks,” May, 2001.
search.jxta.org/JXTAsearch.pdf

Chapter 28 Peer-to-Peer Applications and JXTA 1551

 Peer-to-peer applications have disadvantages as well. Anyone with the appropriate
software can join the network of peers and often remain anonymous—for this reason, deter-
mining who is on the network at any instant is difficult. Also, the lack of a central server
hinders the enforcement of copyright and intellectual-property laws. Real-time searches
can be slow and increase network traffic, because every query must propagate throughout
the entire network.

True client/server applications are completely centralized, whereas true peer-to-peer
applications are completely decentralized. Many applications adopt aspects of both to
achieve specific goals. For example, some file-sharing applications are not true peer-to-
peer applications, because they use central servers to authenticate users and index each
peer’s shared files. However, peers connect directly to one another to transfer files. In
such a system, centralization increases search performance but makes the network depen-
dent on a central server. Performing file transfers between peers decreases the load on the
central server.

28.4 Peer Discovery and Searching
Peer discovery is the act of finding peers in a P2P application. Decentralizing an applica-
tion often slows peer discovery and information searching. Gnutella presents one approach
for circumventing these problems. Gnutella is a true peer-to-peer technology that enables
distributed information storage and retrieval. Users can search for and download files from
any peer on the network. Users first join a Gnutella network by specifying the network ad-
dress of a known Gnutella peer. Without knowing of at least one peer on the network, a user
cannot join the network. Each user’s Gnutella software functions as a server and uses the
HTTP protocol to search for and transfer files.

To perform a search, a peer sends search criteria to several nearby peers. Those peers
then propagate the search throughout the network of peers. If a particular peer can satisfy
the search, that peer passes this information back to the originator. The originator then con-
nects directly to the target peer and downloads the information. The peer that made the orig-
inal query loses anonymity only when it connects directly to the peer with the requested file
to begin file transfer.

 In the Freenet P2P application, files also propagate throughout the network of peers.
Each peer that uses Freenet forwards search requests to only one other peer. If the search
fails, the peer that received the request forwards the request to the next known peer. If we
view the searching peer as the root of a hierarchical structure that represents the Gnutella
network, each search request traverses in a breadth-first fashion, because peers forward
each search request to several peers at once. Freenet works essentially like Gnutella, except
that each search request traverses depth-first.

Searches conducted in both Gnutella and Freenet are called distributed searches. Dis-
tributed searches make networks more robust by removing single points of failure, such as
central servers. Information found via distributed searches is current because it reflects the
current state of the network. Not only can peers find information in this way, but peers can
search for other peers via distributed searches as well.

28.5 Case Study: Deitel Instant Messenger
In the next several sections, we present a peer-to-peer application that allows users to send
instant messages to one other. The Deitel Instant Messenger application uses Jini to boot-

1552 Peer-to-Peer Applications and JXTA Chapter 28

strap—or register—users onto the peer-to-peer network. Jini lookup services store remote
references to peers on the network. Peers use RMI to connect to one another directly and
converse. Although we sometimes refer to an instance of the application as a client, each
application instance is both a client and a server.

 The application’s main window (Fig. 28.2, left-side image) displays a list of peers run-
ning Deitel Instant Messenger on the local network. To send an instant message, the user
selects a name and clicks the Connect button. The conversation window (Fig. 28.2, right-
side image) appears with the selected peer’s name as the title. The user can type a message,
then send it by clicking Send.

Deitel Instant Messenger uses Sun’s Jini technology, which requires at least one
lookup service. However, with only one lookup service, the application acts as a hybrid
between P2P and client/server applications. The lookup service is centralized to enable
peers to find other peers easily. Peers use RMI to connect to one another directly. A setup
with only one lookup service is similar to the setup that many instant messaging applica-
tions use today.

For Deitel Instant Messenger to be truly peer-to-peer, each node must run its own
lookup service. However, running a lookup service on each peer is inefficient and could
generate extensive network traffic. Thus, a compromise between using only one lookup
service and using a lookup service for every nod balances both reliability and robustness
with speed and efficiency.

If a node does not run a lookup service, that node depends on the existing lookup ser-
vices on the network—this results in centralization. Each client consists of a Jini-service
proxy and an RMI object that enables the peer-to-peer communication. The application reg-
isters with all known lookup services, which includes those found through both multicast
and unicast discovery. Users can add lookup services to the program by selecting the Add
Locator item in the File menu and supplying the lookup service’s URL.

After registering the client’s proxy with the lookup service, the Deitel Instant Mes-
senger client retrieves all other proxies in the Jini lookup service. These proxies represent
all known peers. To send messages, a client must hold a remote reference to the other peer.
Therefore, to begin a conversation, a client sends a reference to itself through the service
proxy to the other peer. The other peer responds by sending a remote reference back to the
peer that initiated the conversation. When each party has a reference to the other, they can
both send and receive messages.

Fig. 28.2Fig. 28.2Fig. 28.2Fig. 28.2 Sample windows of Deitel Instant Messenger.

Chapter 28 Peer-to-Peer Applications and JXTA 1553

The major steps in this example are as follows:

1. define a service interface that contains a remote reference to the service imple-
mentation,

2. define the service implementation,

3. provide methods for bootstrapping the service into the peer group and

4. compile and run the P2P application.

We discuss each step in detail in the next several sections, as we implement the Deitel In-
stant Messenger application.

28.6 Defining the Service Interface
The first step in the example is to define the service interface—IMService (Fig. 28.3).
Method connect (lines 16–17) enables remote users to send a remote reference to an IM-
Peer (the instant-messenger peer). A remote reference enables one-way communication.
To establish two-way communication, each client must have a remote reference to the other
client’s IMPeer objects.

IMPeer (Fig. 28.4) specifies the interface for communicating between peers. Method
connect (line 16) takes as an argument an IMPeer and returns an IMPeer reference.
Remote interface IMPeer describes the basic methods for interacting with an IMPeer.

1 // IMService.java
2 // IMService interface defines the methods
3 // through which the service proxy
4 // communicates with the service.
5 package com.deitel.advjhtp1.jini.IM.service;
6
7 // Java core packages
8 import java.rmi.*;
9

10 // Deitel packages
11 import com.deitel.advjhtp1.jini.IM.IMPeer;
12
13 public interface IMService extends Remote {
14
15 // return RMI reference to a remote IMPeer
16 public IMPeer connect(IMPeer sender)
17 throws RemoteException;
18 }

Fig. 28.3Fig. 28.3Fig. 28.3Fig. 28.3 Interface IMService specifies how service proxy interacts with the
service.

1 // IMPeer.java
2 // Interface that all Peer to Peer apps must implement
3 package com.deitel.advjhtp1.jini.IM;
4

Fig. 28.4Fig. 28.4Fig. 28.4Fig. 28.4 Interface IMPeer specifies interaction between peers (part 1 of 2).

1554 Peer-to-Peer Applications and JXTA Chapter 28

In line 9, IMPeer extends interface java.rmi.Remote, because IMPeers are
remote objects. The Deitel Instant Messenger client sends a message to a peer by calling
that peer’s sendMessage method (line 12–13) and passing a Message object as an
argument. Class Message (Fig. 28.5) represents a message that IMPeers can send to one
another.

5 //java core packages
6 import java.rmi.*;
7 import java.util.*;
8
9 public interface IMPeer extends Remote

10 {
11 // posts Message to peer
12 public void sendMessage(Message message)
13 throws RemoteException;
14
15 // information methods
16 public String getName() throws RemoteException;
17 }

1 // Message.java
2 // Message represents an object that can be sent to an IMPeer;
3 // contains the sender and content of the message.
4 package com.deitel.advjhtp1.jini.IM;
5
6 // Java core package
7 import java.io.Serializable;
8
9 public class Message implements Serializable

10 {
11 private static final long SerialVersionUID = 20010808L;
12 private String from;
13 private String content;
14
15 // Message constructor
16 public Message(String messageSenderName,
17 String messageContent)
18 {
19 from = messageSenderName;
20 content = messageContent;
21 }
22
23 // get String representation
24 public String toString()
25 {
26 return from + ": " + content + "\n";
27 }
28

Fig. 28.5Fig. 28.5Fig. 28.5Fig. 28.5 Class Message defines an object for sending and receiving messages
between peers (part 1 of 2).

Fig. 28.4Fig. 28.4Fig. 28.4Fig. 28.4 Interface IMPeer specifies interaction between peers (part 2 of 2).

Chapter 28 Peer-to-Peer Applications and JXTA 1555

In the upcoming exercises, we ask you to extend this class to allow more complex
types of communication. Line 10 specifies that class Message implements interface
Serializable, because Messages must be serialized for delivery over RMI. The
Message constructor (lines 16–21) takes as arguments the sender’s name and the content
of the message.

28.7 Defining the Service implementation
The second step in the example is defining the service implementation—IMService-
Impl (Fig. 28.6), which implements interface IMService. Lines 18–19 declare that
class IMServiceImpl extends UnicastRemoteObject, which facilitates exporting
the IMServiceImpl as a remote object.

29 // get Message sender's name
30 public String getSenderName()
31 {
32 return from;
33 }
34
35 // get Message content
36 public String getContent()
37 {
38 return content;
39 }
40 }

1 // IMServiceImpl.java
2 // IMServiceImpl implements IMService interface
3 // is service side of IM application
4 package com.deitel.advjhtp1.jini.IM.service;
5
6 // Java core packages
7 import java.io.*;
8 import java.rmi.server.UnicastRemoteObject;
9 import java.rmi.RemoteException;

10 import java.util.StringTokenizer;
11
12 // Deitel packages
13 import com.deitel.advjhtp1.jini.IM.IMPeer;
14 import com.deitel.advjhtp1.jini.IM.IMPeerImpl;
15 import com.deitel.advjhtp1.jini.IM.Message;
16 import com.deitel.advjhtp1.jini.IM.client.IMPeerListener;
17
18 public class IMServiceImpl extends UnicastRemoteObject
19 implements IMService, Serializable {
20

Fig. 28.6Fig. 28.6Fig. 28.6Fig. 28.6 IMServiceImpl service implementation for our case study (part 1 of 2).

Fig. 28.5Fig. 28.5Fig. 28.5Fig. 28.5 Class Message defines an object for sending and receiving messages
between peers (part 2 of 2).

1556 Peer-to-Peer Applications and JXTA Chapter 28

The second constructor (lines 28–31) takes as a String argument the user’s name.
This name appears in the PeerList window. Lines 40–56 implement method connect.

For two peers to communicate, each peer requires a remote reference to the other peer.
The following steps summarize the connection process:

1. Peer A sends a reference to itself to peer B by invoking IMService method
connect.

2. Peer B stores that reference (line 51) to peer A for use when conversation starts.

3. Peer B returns a reference to itself (line 54) to peer A.

The Deitel Instant Messenger creates an object of class IMPeerListener
(Fig. 28.7)—the GUI that starts the peer communication. The upper text area outputs mes-
sages sent via the remote reference to an IMPeer. The bottom text area contains text to be
sent via a remote method call.

21 private static final long SerialVersionUID = 20010808L;
22 private String userName = "Anonymous";
23
24 // IMService no-argument constructor
25 public IMServiceImpl() throws RemoteException{}
26
27 // IMService constructor takes userName
28 public IMServiceImpl(String name) throws RemoteException
29 {
30 userName = name;
31 }
32
33 // sets serviceís userName
34 public void setUserName(String name)
35 {
36 userName = name;
37 }
38
39 // return RMI reference to an IMPeer on the receiver side
40 public IMPeer connect(IMPeer sender)
41 throws RemoteException
42 {
43 // Make a GUI and IMPeerImpl to be sent to remote peer
44 IMPeerListener listener =
45 new IMPeerListener(userName);
46
47 IMPeerImpl me = new IMPeerImpl(userName);
48 me.addListener(listener);
49
50 // add remote peer to my GUI
51 listener.addPeer(sender);
52
53 //send my IMPeerImpl to him
54 return me;
55
56 } // end method connect
57 }

Fig. 28.6Fig. 28.6Fig. 28.6Fig. 28.6 IMServiceImpl service implementation for our case study (part 2 of 2).

Chapter 28 Peer-to-Peer Applications and JXTA 1557

1 // IMPeerListener.java
2 // IMPeerListener extends JFrame and provides GUI for
3 // conversations with other peers
4 package com.deitel.advjhtp1.jini.IM.client;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9 import java.rmi.RemoteException;

10
11 // Java extension packages
12 import javax.swing.*;
13 import javax.swing.text.*;
14 import javax.swing.border.*;
15
16 // Deitel Packages
17 import com.deitel.advjhtp1.jini.IM.IMPeer;
18 import com.deitel.advjhtp1.jini.IM.Message;
19
20 public class IMPeerListener extends JFrame {
21
22 // JTextAreas for displaying and inputting messages
23 private JTextArea messageArea;
24 private JTextArea inputArea;
25
26 // Actions for sending messages, etc.
27 private Action sendAction;
28
29 // userName to add to outgoing messages
30 private String userName = "";
31
32 // IMPeer to send messages to peer
33 private IMPeer remotePeer;
34
35 // constructor
36 public IMPeerListener(String name)
37 {
38 super("Conversation Window");
39
40 // set user name
41 userName = name;
42
43 // init sendAction
44 sendAction = new SendAction();
45
46 // create JTextArea for displaying messages
47 messageArea = new JTextArea(15, 15);
48
49 // disable editing and wrap words at end of line
50 messageArea.setEditable(false);
51 messageArea.setLineWrap(true);
52 messageArea.setWrapStyleWord(true);

Fig. 28.7Fig. 28.7Fig. 28.7Fig. 28.7 Class IMPeerListener is the GUI that starts peer communication
 (part 1 of 4).

1558 Peer-to-Peer Applications and JXTA Chapter 28

53
54 JPanel panel = new JPanel();
55 panel.setLayout(new BorderLayout(5, 5));
56 panel.add(new JScrollPane(messageArea),
57 BorderLayout.CENTER);
58
59 // create JTextArea for entering new messages
60 inputArea = new JTextArea(4, 12);
61 inputArea.setLineWrap(true);
62 inputArea.setWrapStyleWord(true);
63
64 // map Enter key in inputArea area to sendAction
65 Keymap keyMap = inputArea.getKeymap();
66 KeyStroke enterKey = KeyStroke.getKeyStroke(
67 KeyEvent.VK_ENTER, 0);
68 keyMap.addActionForKeyStroke(enterKey, sendAction);
69
70 // lay out inputArea and sendAction JButton in Box
71 Box box = Box.createVerticalBox();
72 box.add(new JScrollPane(inputArea));
73 box.add(new JButton(sendAction));
74
75 panel.add(box, BorderLayout.SOUTH);
76
77 // lay out components
78 Container container = getContentPane();
79 container.add(panel, BorderLayout.CENTER);
80
81 setSize(200, 400);
82 setVisible(true);
83 }
84
85 // Action for sending messages
86 private class SendAction extends AbstractAction {
87
88 // configure SendAction
89 public SendAction()
90 {
91 putValue(Action.NAME, "Send");
92 putValue(Action.SHORT_DESCRIPTION,
93 "Send Message");
94 putValue(Action.LONG_DESCRIPTION,
95 "Send an Instant Message");
96 }
97
98 // send message and clear inputArea
99 public void actionPerformed(ActionEvent event)
100 {
101 // send message to server
102 try {
103 Message message = new Message(userName,
104 inputArea.getText());

Fig. 28.7Fig. 28.7Fig. 28.7Fig. 28.7 Class IMPeerListener is the GUI that starts peer communication
 (part 2 of 4).

Chapter 28 Peer-to-Peer Applications and JXTA 1559

105
106 // use RMI reference to send a Message
107 remotePeer.sendMessage(message);
108
109 // clear inputArea
110 inputArea.setText("");
111 displayMessage(message);
112 }
113
114 // catch error sending message
115 catch(RemoteException remoteException) {
116 JOptionPane.showMessageDialog(null,
117 "Unable to send message.");
118
119 remoteException.printStackTrace();
120 }
121 } // end method actionPerformed
122
123 } // end sendAction inner class
124
125 public void displayMessage(Message message)
126 {
127 // displayMessage uses SwingUntilities.invokeLater
128 // to ensure thread-safe access to messageArea
129 SwingUtilities.invokeLater(
130 new MessageDisplayer(
131 message.getSenderName(), message.getContent()));
132 }
133
134 // MessageDisplayer displays a new message by appending
135 // the message to the messageArea JTextArea. This Runnable
136 // object should be executed only on the event-dispatch
137 // thread, as it modifies a live Swing component.
138 private class MessageDisplayer implements Runnable {
139
140 private String fromUser;
141 private String messageBody;
142
143 // MessageDisplayer constructor
144 public MessageDisplayer(String from, String body)
145 {
146 fromUser = from;
147 messageBody = body;
148 }
149
150 // display new message in messageArea
151 public void run()
152 {
153 // append new message
154 messageArea.append("\n" + fromUser + "> " +
155 messageBody);
156

Fig. 28.7Fig. 28.7Fig. 28.7Fig. 28.7 Class IMPeerListener is the GUI that starts peer communication
 (part 3 of 4).

1560 Peer-to-Peer Applications and JXTA Chapter 28

In Fig. 28.6, line 48 adds an IMPeerListener object to an IMPeerImpl object
using method addListener. IMPeerImpl method sendMessage sends Message
objects to the IMPeerListener.

Line 51 calls method addPeer to add a reference to a remote IMPeer object to the
IMPeerListener. This allows the IMPeerListener to send messages to the remote
peer. Notice the symmetry: IMPeerListener is also client/server, because the applica-
tion itself is client/server. Just as each peer must provide a reference to itself and store ref-
erences to the remote party, so must the IMPeerListener. IMPeerListener
mediates between the two peers.

IMPeerListener (Fig. 28.7) is the GUI for communication between peers. Method
addPeer (lines 167–173) stores a reference to the remote IMPeer and sets the title of the
conversation window to the name of the remote IMPeer. When the user presses the
JButton on the GUI, line 107 calls method sendMessage of the remote IMPeer,
passing the contents of inputArea as the argument. This is how the client sends mes-
sages to remote peers. On the receiving end, the remote IMPeerImpl (Fig. 28.8) calls
IMPeerListener method displayMethod to display the message.

157 // move caret to end of messageArea to ensure new
158 // message is visible on screen
159 messageArea.setCaretPosition(
160 messageArea.getText().length());
161 }
162
163 } // end MessageDisplayer inner class
164
165 // addPeer takes IMPeer as arg
166 // associates IMPeer with sendAction to send messages
167 public void addPeer(IMPeer peer) throws RemoteException
168 {
169 remotePeer = peer;
170
171 // change title of window to name of peer
172 setTitle(remotePeer.getName());
173 }
174 }

1 // IMPeerImpl.java
2 // Implements the IMPeer interface
3 package com.deitel.advjhtp1.jini.IM;
4
5 // Java core packages
6 import java.io.*;
7 import java.net.*;
8 import java.rmi.*;
9 import java.rmi.server.*;

10 import java.util.*;

Fig. 28.8Fig. 28.8Fig. 28.8Fig. 28.8 Class IMPeerImpl is the IMPeer implementation (part 1 of 2).

Fig. 28.7Fig. 28.7Fig. 28.7Fig. 28.7 Class IMPeerListener is the GUI that starts peer communication
 (part 4 of 4).

Chapter 28 Peer-to-Peer Applications and JXTA 1561

Class IMPeerImpl implements the IMPeer interface. An IMPeerImpl instance
represents each peer in conversations with other peers and allows peers to communicate
with one another. Lines 17–18 declare that IMPeerImpl extends UnicastRemoteOb-
ject, to facilitate exporting the IMPeerImpl as a remote object. Method addLis-
tener (lines 35–38) adds an object of type IMPeerListener that will display the
IMPeerImpl’s actions. Method sendMessage (lines 41–45) calls method dis-
playMessage of interface IMPeerListener to display the message.

11
12 // Deitel Packages
13 import com.deitel.advjhtp1.jini.IM.Message;
14 import com.deitel.advjhtp1.jini.IM.client.IMPeerListener;
15
16
17 public class IMPeerImpl extends UnicastRemoteObject
18 implements IMPeer {
19
20 private String name;
21 private IMPeerListener output;
22
23 // No argument constructor
24 public IMPeerImpl() throws RemoteException
25 {
26 super();
27 name = "anonymous";
28 }
29 // constructor takes userName
30 public IMPeerImpl(String myName) throws RemoteException
31 {
32 name = myName;
33 }
34
35 public void addListener(IMPeerListener listener)
36 {
37 output = listener;
38 }
39
40 // send message to this peer
41 public void sendMessage(Message message)
42 throws RemoteException
43 {
44 output.displayMessage(message);
45 }
46
47 // accessor for name
48 public String getName() throws RemoteException
49 {
50 return name;
51 }
52 }

Fig. 28.8Fig. 28.8Fig. 28.8Fig. 28.8 Class IMPeerImpl is the IMPeer implementation (part 2 of 2).

1562 Peer-to-Peer Applications and JXTA Chapter 28

28.8 Registering the Service
The third step in the example is registering (bootstrapping) the service with the peer group.
Class IMServiceManager (Fig. 28.9) takes the user’s name as a String argument and
uses the Jini’s JoinManager class to register the service with all known lookup services.
The code is similar to the JoinManager version of the SeminarInfo program in
Chapter 22. One difference is that the constructor (lines 33–65) takes a String that spec-
ifies the Name Entry for the service.

1 // IMServiceManager.java
2 // IMServiceManager uses JoinManager to find Lookup services,
3 // registers the IMService with the Lookup services,
4 // manages lease renewal
5 package com.deitel.advjhtp1.jini.IM;
6
7 // Java core packages
8 import java.rmi.RMISecurityManager;
9 import java.rmi.RemoteException;

10 import java.io.IOException;
11
12 // Jini core packages
13 import net.jini.core.lookup.ServiceID;
14 import net.jini.core.entry.Entry;
15
16 // Jini extension packages
17 import net.jini.lookup.entry.Name;
18 import net.jini.lease.LeaseRenewalManager;
19 import net.jini.lookup.JoinManager;
20 import net.jini.discovery.LookupDiscoveryManager;
21 import net.jini.lookup.ServiceIDListener;
22
23 // Deitel packages
24 import com.deitel.advjhtp1.jini.IM.service.*;
25
26 public class IMServiceManager implements ServiceIDListener {
27
28 JoinManager manager;
29 LookupDiscoveryManager lookupManager;
30 String serviceName;
31
32 // constructor takes name of the service
33 public IMServiceManager(String screenName)
34 {
35 System.setSecurityManager(new RMISecurityManager());
36
37 // sets the serviceName of this service
38 serviceName = screenName;
39

Fig. 28.9Fig. 28.9Fig. 28.9Fig. 28.9 Class IMServiceManager registers IMServiceImpl with lookup
services (part 1 of 3).

Chapter 28 Peer-to-Peer Applications and JXTA 1563

40 // use JoinManager to register SeminarInfo service
41 // and manage lease
42 try {
43
44 // create LookupDiscoveryManager for discovering
45 // lookup services
46 lookupManager =
47 new LookupDiscoveryManager(new String[] { "" },
48 null, null);
49
50 // create and set Entry name for service
51 // name used from constructor
52 Entry[] entries = new Entry[1];
53 entries[0] = new Name(serviceName);
54
55 // create JoinManager
56 manager = new JoinManager(createProxy(),
57 entries, this, lookupManager,
58 new LeaseRenewalManager());
59 }
60
61 // handle exception creating JoinManager
62 catch (IOException exception) {
63 exception.printStackTrace();
64 }
65 } // end SeminarInfoJoinService constructor
66
67 // return the LookupDiscoveryManager created by JoinManager
68 public LookupDiscoveryManager getDiscoveryManager()
69 {
70 return lookupManager;
71 }
72
73 // create service proxy
74 private IMService createProxy()
75 {
76 // get SeminarProxy for SeminarInfo service
77 try {
78 return(new IMServiceImpl(serviceName));
79 }
80
81 // handle exception creating SeminarProxy
82 catch (RemoteException exception) {
83 exception.printStackTrace();
84 }
85
86 return null;
87
88 } // end method createProxy
89

Fig. 28.9Fig. 28.9Fig. 28.9Fig. 28.9 Class IMServiceManager registers IMServiceImpl with lookup
services (part 2 of 3).

1564 Peer-to-Peer Applications and JXTA Chapter 28

28.9 Find Other Peers
Class PeerList (Fig. 28.10)—the main window of the Deitel Instant Messenger—lists
peers to whom the user can send instant messages. Line 264 creates a new IMService-
Manager, passing String userName as an argument to the IMServiceManager
constructor to name the peer.

IMPeer (Fig. 28.4) specifies the interface for communicating between peers. Method
connect (line 16) takes as an argument an IMPeer and returns an IMPeer reference.
Remote interface IMPeer describes the basic methods for interacting with an IMPeer.

A LookupCache also allows an application to respond to services being added,
removed, or changed without constantly polling lookup services. The Peer List uses a
LookupCache to determine when other peers join and leave the network. To use this
functionality, an application must pass a ServiceDiscoveryListener object to
method createLookupCache. PeerList implements ServiceDiscoveryLis-
tener (lines 33–34), so line 276 passes the this reference to method createLook-
upCache. ServiceDiscoveryManager uses remote events registered with lookup
services to implement asynchronous notification of ServiceDiscoveryEvents.
Therefore, we must provide lookup services with a way to download the stub class files for
the RemoteEvent handlers. Section 28.10 explains how to do this.

90 // receive notification of ServiceID assignment
91 public void serviceIDNotify(ServiceID serviceID)
92 {
93 System.err.println("Service ID: " + serviceID);
94 }
95
96 // informs all lookup services that service is ending
97 public void logout()
98 {
99 manager.terminate();
100 }
101 }

1 // PeerList.java
2 // Initializes ServiceManager, starts service discovery
3 // and lists all IM services in a window
4 package com.deitel.advjhtp1.jini.IM;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9 import java.net.MalformedURLException;

10 import java.util.*;
11 import java.util.List;
12 import java.io.IOException;
13 import java.rmi.*;

Fig. 28.10Fig. 28.10Fig. 28.10Fig. 28.10 Class PeerList is the GUI for finding peers (part 1 of 7).

Fig. 28.9Fig. 28.9Fig. 28.9Fig. 28.9 Class IMServiceManager registers IMServiceImpl with lookup
services (part 3 of 3).

Chapter 28 Peer-to-Peer Applications and JXTA 1565

14
15 // Java extension packages
16 import javax.swing.*;
17 import javax.swing.event.*;
18
19 // Jini core packages
20 import net.jini.core.lookup.ServiceItem;
21 import net.jini.core.lookup.ServiceTemplate;
22 import net.jini.lookup.*;
23 import net.jini.discovery.LookupDiscoveryManager;
24 import net.jini.lease.LeaseRenewalManager;
25 import net.jini.lookup.entry.Name;
26 import net.jini.core.entry.Entry;
27 import net.jini.core.discovery.LookupLocator;
28
29 // Deitel Packages
30 import com.deitel.advjhtp1.jini.IM.service.IMService;
31 import com.deitel.advjhtp1.jini.IM.client.IMPeerListener;
32
33 public class PeerList extends JFrame
34 implements ServiceDiscoveryListener {
35
36 private DefaultListModel peers;
37 private JList peerList;
38 private List serviceItems;
39 private ServiceDiscoveryManager serviceDiscoveryManager;
40 private LookupCache cache;
41 private IMServiceManager myManager;
42 private LookupDiscoveryManager lookupDiscoveryManager;
43
44 // initialize userName to anonymous
45 private String userName = "anonymous";
46
47 // method called when ServiceDiscoveryManager finds
48 // IM service adds service proxy to serviceItems
49 // adds Service name to ListModel for JList
50 public void serviceAdded(ServiceDiscoveryEvent event)
51 {
52 // get added serviceItem
53 ServiceItem item = event.getPostEventServiceItem();
54 Entry attributes[] = item.attributeSets;
55
56 // iterates through attributes to find name
57 for(int i = 0; i < attributes.length; i++)
58
59 if (attributes[i] instanceof Name) {
60 System.out.println("Added: " + item);
61 serviceItems.add(item.service);
62 peers.addElement(
63 ((Name)attributes[i]).name);
64 break;
65 }
66 } // end method serviceAdded

Fig. 28.10Fig. 28.10Fig. 28.10Fig. 28.10 Class PeerList is the GUI for finding peers (part 2 of 7).

1566 Peer-to-Peer Applications and JXTA Chapter 28

67
68 // empty method ignores seviceChanged event
69 public void serviceChanged(ServiceDiscoveryEvent event)
70 {}
71
72 // removes services from PeerList GUI and data structure
73 // when serviceRemoved event occurs
74 public void serviceRemoved(ServiceDiscoveryEvent event)
75 {
76 // getPreEvent because item has been removed
77 // getPostEvent would return null
78 ServiceItem item = event.getPreEventServiceItem();
79 Entry attributes[] = item.attributeSets;
80
81 // debug
82 System.out.println("Remove Event!");
83
84 // remove from arraylist and DefaultListModel
85 int index = serviceItems.indexOf(item.service);
86
87 // print name of person removed
88 if (index >= 0)
89 {
90 System.out.println("Removing from List:" +
91 serviceItems.remove(index));
92
93 System.out.println("Removing from DefList" +
94 peers.elementAt(index));
95
96 peers.removeElementAt(index);
97 }
98 } // end method ServiceRemoved
99
100 // constructor
101 public PeerList()
102 {
103 super("Peer List");
104
105 System.setSecurityManager(new RMISecurityManager());
106
107 // get desired userName
108 userName = JOptionPane.showInputDialog(
109 PeerList.this, "Please enter your name: ");
110
111 // change title of window
112 setTitle(userName + "'s Peer List Window");
113
114 // Init Lists
115 serviceItems = new ArrayList();
116
117 Container container = getContentPane();
118 peers = new DefaultListModel();
119

Fig. 28.10Fig. 28.10Fig. 28.10Fig. 28.10 Class PeerList is the GUI for finding peers (part 3 of 7).

Chapter 28 Peer-to-Peer Applications and JXTA 1567

120 // init components
121 peerList = new JList(peers);
122 peerList.setVisibleRowCount(5);
123 JButton connectButton = new JButton("Connect");
124
125 // do not allow multiple selections
126 peerList.setSelectionMode(
127 ListSelectionModel.SINGLE_SELECTION);
128
129 // set up event handler for connectButton
130 connectButton.addActionListener(
131 new ActionListener() {
132
133 public void actionPerformed(ActionEvent event)
134 {
135 int itemIndex = peerList.getSelectedIndex();
136
137 Object selectedService =
138 serviceItems.get(itemIndex);
139 IMService peerProxy =
140 (IMService)selectedService;
141
142 // send info to remote peer
143 // get RMI reference
144 try {
145
146 // set up gui and my peerImpl
147 IMPeerListener gui =
148 new IMPeerListener(userName);
149 IMPeerImpl me =
150 new IMPeerImpl(userName);
151 me.addListener(gui);
152
153 // Connect myGui to remote IMPeer object
154 IMPeer myPeer = peerProxy.connect(me);
155 gui.addPeer(myPeer);
156 }
157
158 // connecting may cause RemoteException
159 catch(RemoteException re) {
160 JOptionPane.showMessageDialog
161 (null, "Couldn't Connect");
162 re.printStackTrace();
163 }
164 }
165 }
166); // end connectButton actionListener
167
168 // set up File menu
169 JMenu fileMenu = new JMenu("File");
170 fileMenu.setMnemonic('F');
171

Fig. 28.10Fig. 28.10Fig. 28.10Fig. 28.10 Class PeerList is the GUI for finding peers (part 4 of 7).

1568 Peer-to-Peer Applications and JXTA Chapter 28

172 // about Item
173 JMenuItem aboutItem = new JMenuItem("About...");
174 aboutItem.setMnemonic('A');
175 aboutItem.addActionListener(
176 new ActionListener() {
177 public void actionPerformed(ActionEvent event)
178 {
179 JOptionPane.showMessageDialog(PeerList.this,
180 "Deitel Instant Messenger" ,
181 "About", JOptionPane.PLAIN_MESSAGE);
182 }
183 }
184);
185
186 fileMenu.add(aboutItem);
187
188 // AddLocator item
189 JMenuItem federateItem =
190 new JMenuItem("Add Locators");
191 federateItem.setMnemonic('L');
192 federateItem.addActionListener(
193
194 new ActionListener() {
195 public void actionPerformed(ActionEvent event)
196 {
197 // get LookupService url to be added
198 String locator =
199 JOptionPane.showInputDialog(
200 PeerList.this,
201 "Please enter locator in this" +
202 "form: jini://host:port/");
203
204 try {
205 LookupLocator newLocator =
206 new LookupLocator(locator);
207
208 // make one element LookupLocator array
209 LookupLocator[] locators = { newLocator };
210
211 // because addLocators takes array
212 lookupDiscoveryManager.addLocators(locators);
213 }
214
215 catch(MalformedURLException urlException) {
216
217 JOptionPane.showMessageDialog(
218 PeerList.this, "invalid url");
219 }
220 }
221 }
222);
223 fileMenu.add(federateItem);
224

Fig. 28.10Fig. 28.10Fig. 28.10Fig. 28.10 Class PeerList is the GUI for finding peers (part 5 of 7).

Chapter 28 Peer-to-Peer Applications and JXTA 1569

225 // set up JMenuBar and attach File menu
226 JMenuBar menuBar = new JMenuBar();
227 menuBar.add (fileMenu);
228 setJMenuBar(menuBar);
229
230 // handow window closing event
231 addWindowListener(
232 new WindowAdapter(){
233 public void windowClosing(WindowEvent w)
234 {
235 System.out.println("CLOSING WINDOW");
236
237 // disconnects from lookup services
238 myManager.logout();
239 System.exit(0);
240 }
241 }
242);
243
244 // lay out GUI components
245 peerList.setFixedCellWidth(100);
246 JPanel inputPanel = new JPanel();
247 inputPanel.add(connectButton);
248
249 container.add(new JScrollPane(peerList) ,
250 BorderLayout.NORTH);
251 container.add(inputPanel, BorderLayout.SOUTH);
252
253 setSize(100, 170);
254 setVisible(true);
255
256 // peer list displays only other IMServices
257 Class[] types = new Class[] { IMService.class };
258 ServiceTemplate IMTemplate =
259 new ServiceTemplate(null, types, null);
260
261 // Initialize IMServiceManager, ServiceDiscoveryManager
262 try {
263 myManager = new IMServiceManager(userName);
264
265 // store LookupDiscoveryManager
266 // generated by IMServiceManager
267 lookupDiscoveryManager = myManager.getDiscoveryManager();
268
269 // ServiceDiscoveryManager uses lookupDiscoveryManager
270 serviceDiscoveryManager =
271 new ServiceDiscoveryManager(lookupDiscoveryManager,
272 null);
273
274 // create a LookupCache
275 cache = serviceDiscoveryManager.createLookupCache(
276 IMTemplate, null, this);
277 }

Fig. 28.10Fig. 28.10Fig. 28.10Fig. 28.10 Class PeerList is the GUI for finding peers (part 6 of 7).

1570 Peer-to-Peer Applications and JXTA Chapter 28

The methods required to implement ServiceDiscoveryListener are ser-
viceAdded (lines 50–66), serviceChanged (lines 69–70) and serviceRemoved
(lines 74–98). Method ServiceAdded calls method getPostEventServiceItem
of the ServiceDiscoveryEvent to obtain a ServiceItem that represents the added
service. Lines 57–65 cycle through all the attributes of the ServiceItem. If line 59 finds
a Name entry, line 61 adds the service proxy to a List, and lines 62–63 add the service
Name to a DefaultListModel. Method serviceChanged is an empty method,
because we are not concerned whether services change their attributes. Method service-
Removed invokes method getPreEventServiceItem of the Service-
DiscoveryEvent to obtain a ServiceItem that represents the removed service.

The ActionListener (lines 130–167) of the connectButton object gets the
index of the selected item in the JList and retrieves the IMService proxy associated with
that index from List serviceItems (lines 138–141). Lines 147–148 create an
IMPeerListener object, and lines 149–150 create an IMPeerImpl object. Line 151
adds the IMPeerListener to the IMPeerImpl. The IMPeerImpl will post all mes-
sages sent by the remote peer to the IMPeerListener. Using method connect of the
IMService, line 154 sends a remote reference to the IMPeerImpl to the remote peer.
Line 155 adds the returned IMPeer remote reference to the IMPeerListener—this
allows the local peer to send messages to remote peer. If this sequence of events throws a
RemoteException, lines 160–162 inform the user of the error. If the connection succeeds,
the service returns an IMPeer, and communication occurs as described in earlier sections.

278
279 // catch all exceptions and inform user of problem
280 catch (Exception managerException) {
281 JOptionPane.showMessageDialog(null,
282 "Error initializing IMServiceManger" +
283 "or ServiceDisoveryManager");
284 managerException.printStackTrace();
285 }
286 }
287
288 public static void main(String args[])
289 {
290 new PeerList();
291 }
292 }

Fig. 28.10Fig. 28.10Fig. 28.10Fig. 28.10 Class PeerList is the GUI for finding peers (part 7 of 7).

Chapter 28 Peer-to-Peer Applications and JXTA 1571

Lines 189–223 create the Add Locator menu item in the File menu. Selecting this
menu item launches a dialog box that prompts the user for the URL of a Jini lookup service
to add via unicast discovery. Lines 204–213 add this URL to the list of LookupLoca-
tors—this results in the client’s registering with the newly added lookup service, and the
PeerList window lists all other peers registered with the new lookup service.

28.10 Compiling and Running the Example
Finally, we can compile and run the peer-to-peer application. This requires several steps.
First, compile the classes using javac.

Next, compile the remote classes IMServiceImpl and IMPeerImpl using the
rmic compiler to produce stub classes (see Chapter 13). Next, place the RMI stub classes
that need to be available to other Deitel Instance Messenger clients and lookup services
(IMServiceImpl_Stub and IMPeerImpl_Stub) in a JAR file (e.g.,
DIM_dl.jar) with the proper package structure.

For lookup services to notify our application when services are added or removed, the
ServiceDiscoveryManager needs to upload a remote-event listener. Change to the
root directory of your Web server and execute the following command lines:

jar xvf C:\jini1_1\lib\jini-ext.jar net\jini\lookup\Service-
DiscoveryManager$LookupCacheImpl$LookupListener_Stub.class

jar xvf C:\jini1_1\lib\jini-core.jar
net\jini\core\event\RemoteEventListener.class

This creates a net subdirectory in your Web server’s root directory.
To use the Deitel Instant Messenger, first start the RMI activation daemon, an HTTP

Server, and a lookup service (see Chapter 22). To start Deitel Instant Messenger, change to
the directory that contains the application’s package structure and execute the following
command line:

java -Djava.security.policy=policy.all
-Djava.rmi.server.codebase=http://host:port/DIM_dl.jar
com.deitel.advjhtp1.jini.IM.PeerList

Substitute the appropriate values for the host, port and JAR file name (e.g.,
DIM_dl.jar). The codebase provides the location of the JAR file which contains the
RMI stub files that remote peers and lookup services must download.

28.11 Improving Deitel Instant Messenger
The Deitel Instant Messenger Jini implementation does not address issues of security and
scalability. The ServiceDiscoveryManager downloads proxies for every user listed
on every known lookup service. As more users and lookup services join the network, net-
work overhead becomes overwhelming. The lack of security and authentication mecha-
nisms forces anonymity on clients, because there is no absolute way of verifying that users
are who they claim to be.

1572 Peer-to-Peer Applications and JXTA Chapter 28

There are various ways to address these problems. Filters can limit the number of ser-
vice proxies that the ServiceDiscoveryManager downloads. Lookup services can
limit the number of services they manage. The application also could use distributed
searches to locate peers (see Section 28.4). This involves sending a request to a known
search service, which forwards the request if unable to find the user. The ubiquitous use of
digital signatures and public and private keys can enable security and authentication—how-
ever, this does not solve the problem of having duplicate user names in a large-scale peer-
to-peer network. These solutions are incomplete.

28.12 Deitel Instant Messenger with Multicast Sockets
The Deitel Instant messenger uses Jini’s JoinManager and ServiceDiscovery-
Manager to advertise the existence of each peer and discover other peers. With Jini, a few
lines of code implemented this functionality. To adhere to a true peer-to-peer architecture,
each peer must run a lookup service. Lookup services require significant amounts of mem-
ory and processor time. Because of these performance and memory concerns, we introduce
an improved implementation of the Deitel Instant Messenger that uses multicast sockets
and a simple, text-based protocol to advertise and find peers in the network.

28.12.1 Registering the Peer

In the Jini implementation of the Deitel Instant Messenger, Jini provided the mechanism
that allowed peers to sign onto the network and find other peers. If a peer loses its connec-
tion without explicitly disconnecting (e.g., by calling method terminate of a Join-
Manager instance), the Jini lookup services remove the peer after the service’s lease
expires. When a peer’s lease expires, the Jini lookup service removes the peer’s service
from the registry—in the Deitel Instant Messenger, the peer disappears from the Peer-List
window. Because we are removing Jini from this application, we must implement these
mechanisms ourselves.

The first mechanism we implement is class MulticastSendingThread
(Fig. 28.11). MulticastSendingThread multicasts a peer’s presence. Multicast-
SendingThread periodically sends multicast packets throughout the network to notify
other peers that this peer is still available. Each peer on the receiving end renew’s the lease
for the multicasting peer. In the event that the multicasting peer stops advertising its pres-
ence (e.g., the user quits the peer application), that peer’s lease expires. Essentially, the peer
ceases to exist on the network.

1 // MulticastSendingThread.java
2 // Sends a multicast periodically containing a remote reference
3 // to the IMServiceImpl object
4 package com.deitel.advjhtp1.p2p;
5
6 // Java core packages
7 import java.net.MulticastSocket;
8 import java.net.*;
9 import java.rmi.*;

Fig. 28.11Fig. 28.11Fig. 28.11Fig. 28.11 MulticastSendingThread broadcasts DatagramPackets
 (part 1 of 4).

Chapter 28 Peer-to-Peer Applications and JXTA 1573

10 import java.rmi.registry.*;
11 import java.io.*;
12
13 // Deitel core packages
14 import com.deitel.advjhtp1.jini.IM.service.IMServiceImpl;
15 import com.deitel.advjhtp1.jini.IM.service.IMService;
16
17 public class MulticastSendingThread extends Thread
18 implements IMConstants {
19
20 // InetAddress of group for messages
21 private InetAddress multicastNetAddress;
22
23 // MulticastSocket for multicasting messages
24 private MulticastSocket multicastSocket;
25
26 // Datagram packet to be reused
27 private DatagramPacket multicastPacket;
28
29 // stub of local peer
30 private IMService peerStub;
31
32 // flag for terminating MulticastSendingThread
33 private boolean keepSending = true;
34
35 private String userName;
36
37 // MulticastSendingThread constructor
38 public MulticastSendingThread(String myName)
39 {
40 // invoke superclass constructor to name Thread
41 super("MulticastSendingThread");
42
43 userName = myName;
44
45 // create a registry on default port 1099
46 try {
47 Registry registry =
48 LocateRegistry.createRegistry(1099);
49 peerStub = new IMServiceImpl(userName);
50 registry.rebind(BINDING_NAME, peerStub);
51 }
52 catch (RemoteException remoteException) {
53 remoteException.printStackTrace();
54 }
55
56 try {
57
58 // create MulticastSocket for sending messages
59 multicastSocket =
60 new MulticastSocket (MULTICAST_SENDING_PORT);
61

Fig. 28.11Fig. 28.11Fig. 28.11Fig. 28.11 MulticastSendingThread broadcasts DatagramPackets
 (part 2 of 4).

1574 Peer-to-Peer Applications and JXTA Chapter 28

62 // set TTL for Multicast Socket
63 multicastSocket.setTimeToLive(MULTICAST_TTL);
64
65 // use InetAddress reserved for multicast group
66 multicastNetAddress = InetAddress.getByName(
67 MULTICAST_ADDRESS);
68
69 // create greeting packet
70 String greeting = new String(HELLO_HEADER + userName);
71
72 multicastPacket = new DatagramPacket(
73 greeting.getBytes(), greeting.getBytes().length,
74 multicastNetAddress, MULTICAST_LISTENING_PORT);
75 }
76
77 // MULTICAST_ADDRESS IS UNKNOWN HOST
78 catch (java.net.UnknownHostException unknownHostException)
79 {
80 System.err.println("MULTICAST_ADDRESS is unknown");
81 unknownHostException.printStackTrace();
82 }
83
84 // any other exception
85 catch (Exception exception)
86 {
87 exception.printStackTrace();
88 }
89 }
90
91 // deliver greeting message to peers
92 public void run()
93 {
94 while (keepSending) {
95
96 // deliver greeting
97 try {
98
99 // send greeting packet
100 multicastSocket.send(multicastPacket);
101
102 Thread.sleep(MULTICAST_INTERVAL);
103 }
104
105 // handle exception delivering message
106 catch (IOException ioException) {
107 ioException.printStackTrace();
108 continue;
109 }
110 catch (InterruptedException interruptedException) {
111 interruptedException.printStackTrace();
112 }
113

Fig. 28.11Fig. 28.11Fig. 28.11Fig. 28.11 MulticastSendingThread broadcasts DatagramPackets
 (part 3 of 4).

Chapter 28 Peer-to-Peer Applications and JXTA 1575

MulticastSendingThread extends class Thread. Lines 47–48 calls method
createRegistry of class LocateRegistry to instantiate an RMI registry on port
1099—the port that rmiregistry application normally uses. Line 49 creates a new
IMServiceImpl object. Line 50 rebinds the IMServiceImpl object to the RMI
registry, using BINDING_NAME—one of many constants defined in interface IMCon-
stants (Fig. 28.12), which class MulticastSendingThread implements.
Figure 28.12 shows the interface IMConstants, which defines all the constants used by
Deitel Instant Messenger.

114 } // end while
115
116 multicastSocket.close();
117
118 } // end method run
119
120 // send goodbye message
121 public void logout()
122 {
123 String goodbye = new String(GOODBYE_HEADER + userName);
124 System.out.println(goodbye);
125 multicastPacket = new DatagramPacket(
126 goodbye.getBytes(), goodbye.getBytes().length,
127 multicastNetAddress, MULTICAST_LISTENING_PORT);
128
129 try {
130 multicastSocket.send(multicastPacket);
131
132 Naming.unbind(BINDING_NAME);
133 }
134
135 // error multicasting
136 catch (IOException ioException) {
137 System.err.println("Couldn't Say Goodbye");
138 ioException.printStackTrace();
139 }
140
141 // unbinding may cause many possible exceptions
142 catch (Exception unbindingException) {
143 unbindingException.printStackTrace();
144 }
145
146 keepSending = false;
147
148 }
149 }

1 // IMConstants.java
2 // contains constants used by IM application

Fig. 28.12Fig. 28.12Fig. 28.12Fig. 28.12 Interface IMConstants defines Deitel-Instant-Messenger constants
 (part 1 of 2).

Fig. 28.11Fig. 28.11Fig. 28.11Fig. 28.11 MulticastSendingThread broadcasts DatagramPackets
 (part 4 of 4).

1576 Peer-to-Peer Applications and JXTA Chapter 28

Lines 59–60 of Fig. 28.11 create a MulticastSocket on the port number that con-
stant MULTICAST_SENDING_PORT defines. Line 63 sets the default Time To Live (TTL)
for DatagramPackets sent through the MulticastSocket. Lines 66–67 create an
InetAddress with the multicast IP address specified by constant
MULTICAST_ADDRESS.

Lines 70–74 create a DatagramPacket that contains a String with the peer’s
name. HELLO_HEADER informs all peers listening on the multicast port that this peer can
receive messages. MULTICAST_LISTENING_PORT specifies the port on the multicast
IP address on which all peers listen. Lines 78–82 catch an UnknownHostException if
MULTICAST_ADDRESS is an invalid multicast IP address.

Line 100 multicasts the MulticastPacket that the constructor generated. Line 102
specifies that the thread should wait MULTICAST_INTERVAL milliseconds between each
multicast. Line 116 closes the MulticastSocket when the user exits the application.

Lines 123–127 create a DatagramPacket that contains a String with the
GOODBYE_HEADER and the peer’s user name. GOODBYE_HEADER indicates that the peer
is leaving the network. Lines 130–133 send this DatagramPacket and unbind the

3 package com.deitel.advjhtp1.p2p;
4
5 public interface IMConstants {
6
7 public static final String MULTICAST_ADDRESS = "228.5.6.10";
8
9 public static final int MULTICAST_TTL = 30;

10
11 // port on local machine for broadcasting
12 public static final int MULTICAST_SENDING_PORT = 6800;
13
14 // port on local machine for receiving broadcasts
15 public static final int MULTICAST_RECEIVING_PORT = 6789;
16
17 // port on multicast ip address to send packets
18 public static final int MULTICAST_LISTENING_PORT = 6789;
19
20 public static final String HELLO_HEADER = "HELLOIM: ";
21
22 public static final String GOODBYE_HEADER = "GOODBYE: ";
23
24 // time in milliseconds to wait between each multicast
25 public static final int MULTICAST_INTERVAL = 10000;
26
27 // how many MUTLICAST_INTERVALS before LEASE EXPIRATION
28 public static final int PEER_TTL = 5;
29
30 public static final int MESSAGE_SIZE = 256;
31
32 public static String BINDING_NAME = "IMSERVICE";
33
34 }

Fig. 28.12Fig. 28.12Fig. 28.12Fig. 28.12 Interface IMConstants defines Deitel-Instant-Messenger constants
 (part 2 of 2).

Chapter 28 Peer-to-Peer Applications and JXTA 1577

IMServiceImpl associated with BINDING_NAME from the RMI registry. Line 146 sets
boolean keepSending to false to terminate the thread.

28.12.2 Finding Other Peers
In the Jini implementation of the Deitel Instant Messenger, the Jini lookup service listed
new peers and removed peers that left the network. Class ServiceDiscoveryMan-
ager updated the application when peers were either added or removed. To implement
these mechanisms, we create class MulticastReceivingThread (Figure 28.13),
which listens for DatagramPackets that contain notifications of peers joining and leav-
ing the network.

Lines 48–55 create a MulticastSocket on port MULTICAST_RE-
CEIVING_PORT and join the multicast group. Line 58 specifies that the Multicast-
Socket should time out receiving a packet takes longer than five seconds. Lines 69–71
start the LeasingThread as a daemon thread. We explain LeasingThread in greater
detail later in this section.

Line 89 receives a DatagramPacket from the MulticastSocket using by
invoking method receive. If the call to receive times out, lines 93–97 catch the
InterruptedIOException that is thrown. Lines 106–107 retrieve the message
String stored in the received DatagramPacket.

1 // MulticastReceivingThread.java
2 // Receive and process multicasts from multicast group
3 package com.deitel.advjhtp1.p2p;
4
5 // Java core packages
6 import java.net.MulticastSocket;
7 import java.net.*;
8 import java.io.*;
9 import java.util.*;

10
11 // Deitel packages
12 import com.deitel.advjhtp1.p2p.PeerDiscoveryListener;
13
14 public class MulticastReceivingThread extends Thread
15 implements IMConstants {
16
17 // HashMap containing peer names and time to live
18 // used to implement leasing
19 private HashMap peerTTLMap;
20
21 // LeasingThread reference
22 private LeasingThread leasingThread;
23
24 // object that will respond to peer added or removed events
25 private PeerDiscoveryListener peerDiscoveryListener;
26

Fig. 28.13Fig. 28.13Fig. 28.13Fig. 28.13 Class MulticastReceivingThread uses threads to add and remove
peers (part 1 of 6).

1578 Peer-to-Peer Applications and JXTA Chapter 28

27 // MulticastSocket for receiving broadcast messages
28 private MulticastSocket multicastSocket;
29
30 // InetAddress of group for messages
31 private InetAddress multicastNetAddress;
32
33 // flag for terminating MulticastReceivingThread
34 private boolean keepListening = true;
35
36 // MulticastReceivingThread constructor
37 public MulticastReceivingThread(String userName,
38 PeerDiscoveryListener peerEventHandler)
39 {
40 // invoke superclass constructor to name Thread
41 super("MulticastReceivingThread");
42
43 // set peerDiscoveryListener
44 peerDiscoveryListener = peerEventHandler;
45
46 // connect MulticastSocket to multicast address and port
47 try {
48 multicastSocket =
49 new MulticastSocket(MULTICAST_RECEIVING_PORT);
50
51 multicastNetAddress =
52 InetAddress.getByName(MULTICAST_ADDRESS);
53
54 // join multicast group to receive messages
55 multicastSocket.joinGroup(multicastNetAddress);
56
57 // set 5 second time-out when waiting for new packets
58 multicastSocket.setSoTimeout(5000);
59 }
60
61 // handle exception connecting to multicast address
62 catch(IOException ioException) {
63 ioException.printStackTrace();
64 }
65
66 peerTTLMap = new HashMap();
67
68 // create Leasing thread which decrements TTL of peers
69 leasingThread = new LeasingThread();
70 leasingThread.setDaemon(true);
71 leasingThread.start();
72
73 } // end MulticastReceivingThread constructor
74
75 // listen for messages from multicast group
76 public void run()
77 {

Fig. 28.13Fig. 28.13Fig. 28.13Fig. 28.13 Class MulticastReceivingThread uses threads to add and remove
peers (part 2 of 6).

Chapter 28 Peer-to-Peer Applications and JXTA 1579

78 while(keepListening) {
79
80 // create buffer for incoming message
81 byte[] buffer = new byte[MESSAGE_SIZE];
82
83 // create DatagramPacket for incoming message
84 DatagramPacket packet = new DatagramPacket(buffer,
85 MESSAGE_SIZE);
86
87 // receive new DatagramPacket (blocking call)
88 try {
89 multicastSocket.receive(packet);
90 }
91
92 // handle exception when receive times out
93 catch (InterruptedIOException interruptedIOException) {
94
95 // continue to next iteration to keep listening
96 continue;
97 }
98
99 // handle exception reading packet from multicast group
100 catch (IOException ioException) {
101 ioException.printStackTrace();
102 break;
103 }
104
105 // put message data into String
106 String message = new String(packet.getData(),
107 packet.getOffset(), packet.getLength());
108
109 // ensure non-null message
110 if (message != null) {
111
112 // trim extra whitespace from end of message
113 message = message.trim();
114
115 System.out.println(message);
116
117 // decide if goodbye or hello
118 if (message.startsWith(HELLO_HEADER)) {
119 processHello(
120 message.substring(HELLO_HEADER.length()),
121 packet.getAddress().getHostAddress()
122);
123 }
124
125 else if (message.startsWith(GOODBYE_HEADER))
126 processGoodbye(message.substring(
127 GOODBYE_HEADER.length()));
128
129 } // end if

Fig. 28.13Fig. 28.13Fig. 28.13Fig. 28.13 Class MulticastReceivingThread uses threads to add and remove
peers (part 3 of 6).

1580 Peer-to-Peer Applications and JXTA Chapter 28

130
131 } // end while
132
133 // leave multicast group and close MulticastSocket
134 try {
135 multicastSocket.leaveGroup(multicastNetAddress);
136 multicastSocket.close();
137 }
138
139 // handle exception leaving group
140 catch (IOException ioException) {
141 ioException.printStackTrace();
142 }
143
144 } // end run
145
146 // process hello message from peer
147 public void processHello(String peerName,
148 String registryAddress)
149 {
150 registryAddress += ("/" + BINDING_NAME);
151 synchronized(peerTTLMap)
152 {
153
154 // if it is a new peer, call peerAdded event
155 if (!peerTTLMap.containsKey(peerName)) {
156 peerDiscoveryListener.peerAdded(peerName,
157 registryAddress);
158 }
159
160 // add to map or if present, refresh TTL
161 peerTTLMap.put(peerName, new Integer(PEER_TTL));
162
163 }
164 }
165
166 // process goodbye message from peer
167 public void processGoodbye(String peerName)
168 {
169 synchronized(peerTTLMap)
170 {
171 System.out.println("Removing peer" + peerName);
172 if (peerTTLMap.containsKey(peerName)) {
173 peerDiscoveryListener.peerRemoved(peerName);
174 peerTTLMap.remove(peerName);
175 }
176 }
177 }
178
179 // periodically decrements the TTL of peers listed
180 private class LeasingThread extends Thread
181 {

Fig. 28.13Fig. 28.13Fig. 28.13Fig. 28.13 Class MulticastReceivingThread uses threads to add and remove
peers (part 4 of 6).

Chapter 28 Peer-to-Peer Applications and JXTA 1581

182 public void run()
183 {
184 while (keepListening)
185 {
186 // sleep
187 try {
188 Thread.sleep(MULTICAST_INTERVAL);
189 }
190
191 // InterruptedException may interrupt Thread Sleep
192 catch (InterruptedException interruptedException) {
193 interruptedException.printStackTrace();
194 }
195
196 // lock hashmap while decrementing TTL values
197 synchronized(peerTTLMap) {
198
199 // decrement peers
200 Iterator peerIterator =
201 peerTTLMap.entrySet().iterator();
202
203 while (peerIterator.hasNext()) {
204 // make new TTL of peer
205 Map.Entry tempMapEntry =
206 (Map.Entry) peerIterator.next();
207
208 Integer tempIntegerTTL =
209 (Integer) tempMapEntry.getValue();
210 int tempIntTTL = tempIntegerTTL.intValue();
211
212 // decrement TTL
213 tempIntTTL--;
214
215 // if lease expired, remove peer
216 if (tempIntTTL < 0) {
217 peerDiscoveryListener.peerRemoved(
218 (String) tempMapEntry.getKey());
219 peerIterator.remove();
220 }
221
222 // otherwise set TTL of peer to new value
223 else
224 tempMapEntry.setValue(
225 new Integer(tempIntTTL));
226
227 } // end while iterating through peers
228
229 } // end synchronized
230
231 } // end while in run method
232
233 } // end run method

Fig. 28.13Fig. 28.13Fig. 28.13Fig. 28.13 Class MulticastReceivingThread uses threads to add and remove
peers (part 5 of 6).

1582 Peer-to-Peer Applications and JXTA Chapter 28

Lines 118–123 call method processHello (lines 147–164) if the message String
begins with constant HELLO_HEADER. Lines 125–127 call method processGoodbye
(lines 167–177) if the message starts with GOODBYE_HEADER. When the while loop ter-
minates, lines 134–187 unsubscribe from the multicast group and close the socket.

Method processHello handles messages that contain the HELLO_HEADER. Line
150 appends BINDING_NAME to the given String containing the IP address of the peer
that sent the “hello” message. This forms an RMI URL with which the peer can connect to
the newly joined peer. Line 151 synchronizes object HashMap peerTTLMap, to prevent
other threads from accessing and modifying peerTTLMap. This HashMap stores peer
names as keys and stores the peer lease-expiration times as values. Line 155 tests if the peer
name specified in the “hello” message is in peerTTLMap. If the peer is not in peerT-
TLMap, line 156 calls method peerAdded of the peerDiscoveryListener object.
Each MulticastReceivingThread contains a reference of an object that implements
interface PeerDiscoveryListener (Fig. 28.14).

Methods peerAdded (line 8) and peerRemoved (line 11) inform the PeerDis-
coveryListener implementation that a peer has entered, or has been removed from,
the multicast group, respectively. Line 161 of class MulticastReceivingThread
puts an entry into peerTTLMap that contains the peer’s name and TTL (specified by
PEER_TTL). If the peer is already in peerTTLMap, line 161 replaces the pre-existing
entry with a new entry, which renews the peer’s lease by resetting its Time to Live (TTL).
Line 174 of class MulticastReceivingThread removes a peer from peerTTLMap.
Because every peer continuously multicasts “hello” packets, datagram packets may be
duplicated. Therefore, line 172 first checks if the given peer is in peerTTLMap before
attempting to remove it. Line 173 calls method peerRemoved on the registered Peer-
DiscoveryListener to inform it that a peer has left the multicast group.

234
235 } // end class LeasingThread
236
237 // stop listening for multicasts
238 public void logout()
239 {
240 // terminate thread
241 keepListening = false;
242 }
243 }

1 // PeerDiscoveryListener.java
2 // Interface for listening to peerAdded or peerRemoved events
3 package com.deitel.advjhtp1.p2p;
4
5 public interface PeerDiscoveryListener {
6

Fig. 28.14Fig. 28.14Fig. 28.14Fig. 28.14 Interface PeerDiscoveryListener listens for when peers are added
and removed from peer groups (part 1 of 2).

Fig. 28.13Fig. 28.13Fig. 28.13Fig. 28.13 Class MulticastReceivingThread uses threads to add and remove
peers (part 6 of 6).

Chapter 28 Peer-to-Peer Applications and JXTA 1583

Lines 180–235 define inner class LeasingThread. A single-leasing-thread instance
periodically decrements the TTL of each peer in the peerTTLMap. Line 197 synchronizes
peerTTLMap to prevent modification conflicts between threads trying to access peerT-
TLMap concurrently. Lines 200–201 obtain an Iterator object of peerTTLMap’s
entries. Lines 203–227 decrement the TTL of each entry in peerTTLMap. Lines 208–210
obtains an int that contains a peer’s TTL—line 213 decrements the TTL value. Line 216
checks if the modified TTL is less than zero, which indicates that the peer’s lease has
expired. Lines 217–218 then pass the expired peer’s name as an argument to method
peerRemoved of the PeerDiscoveryListener object. Line 219 calls Iterator
method remove, which removes the current entry from peerTTLMap. If the modified
TTL is greater than (or equal to) zero, the peer’s lease is still active, so lines 224–225 set
the peer’s TTL to the newly decremented value. Method logout (lines 238–242) enables
an outside object to terminate the MulticastReceivingThread.

To use classes MulticastReceivingThread and PeerDiscoveryListener
in the Deitel Instant Messenger, we had to modify class PeerList from our Instant Mes-
senger Jini implementation. Figure 28.15 contains the modified PeerList listing.

7 // add peer with given name and ip address
8 public void peerAdded(String name, String peerStubAddress);
9

10 // remove peer with given name
11 public void peerRemoved(String name);
12
13 }

1 // PeerList.java
2 // Starts broadcasting and receiving threads
3 // and lists all IM peers in a window
4 package com.deitel.advjhtp1.p2p;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9 import java.net.MalformedURLException;

10 import java.util.*;
11 import java.util.List;
12 import java.io.IOException;
13 import java.rmi.*;
14
15 // Java extension packages
16 import javax.swing.*;
17 import javax.swing.event.*;
18

Fig. 28.15Fig. 28.15Fig. 28.15Fig. 28.15 Modified PeerList enables the use of classes
MulticastReceivingThread and PeerDiscoveryListener
in the Deitel Instant Messenger (part 1 of 6).

Fig. 28.14Fig. 28.14Fig. 28.14Fig. 28.14 Interface PeerDiscoveryListener listens for when peers are added
and removed from peer groups (part 2 of 2).

1584 Peer-to-Peer Applications and JXTA Chapter 28

19 // Deitel Packages
20 import com.deitel.advjhtp1.jini.IM.service.IMService;
21 import com.deitel.advjhtp1.jini.IM.client.IMPeerListener;
22 import com.deitel.advjhtp1.jini.IM.IMPeerImpl;
23 import com.deitel.advjhtp1.jini.IM.IMPeer;
24
25 public class PeerList extends JFrame
26 implements PeerDiscoveryListener, IMConstants {
27
28 // initialize userName to anonymous
29 private String userName = "anonymous";
30 private MulticastSendingThread multicastSender;
31 private MulticastReceivingThread multicastReceiver;
32
33 // list variables
34 private DefaultListModel peerNames; // contains peer names
35 private List peerStubAddresses; // contains peer stubs
36 private JList peerJList;
37
38 // add peer name and peer stub to lists
39 public void peerAdded(String name, String peerStubAddress)
40 {
41 // add name to peerNames
42 peerNames.addElement(name);
43
44 // add stub to peerStubAddresses
45 peerStubAddresses.add(peerStubAddress);
46
47 } // end method peerAdded
48
49
50 // removes services from PeerList GUI and data structure
51 public void peerRemoved(String name)
52 {
53 // remove name from peerNames
54 int index = peerNames.indexOf(name);
55 peerNames.removeElementAt(index);
56
57 // remove stub from peerStubAddresses
58 peerStubAddresses.remove(index);
59
60 } // end method peerRemoved
61
62 // constructor
63 public PeerList()
64 {
65 super("Peer List");
66
67 // get desired userName
68 userName = JOptionPane.showInputDialog(
69 PeerList.this, "Please enter your name: ");

Fig. 28.15Fig. 28.15Fig. 28.15Fig. 28.15 Modified PeerList enables the use of classes
MulticastReceivingThread and PeerDiscoveryListener
in the Deitel Instant Messenger (part 2 of 6).

Chapter 28 Peer-to-Peer Applications and JXTA 1585

70
71 // change title of window
72 setTitle(userName + "'s Peer List Window");
73
74 // Init List data structures
75 peerNames = new DefaultListModel();
76 peerStubAddresses = new ArrayList();
77
78 // init components
79 Container container = getContentPane();
80 peerJList = new JList(peerNames);
81 peerJList.setVisibleRowCount(5);
82 JButton connectButton = new JButton("Connect");
83
84 // do not allow multiple selections
85 peerJList.setSelectionMode(
86 ListSelectionModel.SINGLE_SELECTION);
87
88 // set up event handler for connectButton
89 connectButton.addActionListener(
90 new ActionListener() {
91
92 public void actionPerformed(ActionEvent event)
93 {
94 int itemIndex = peerJList.getSelectedIndex();
95
96 String stubAddress =
97 (String) peerStubAddresses.get(itemIndex);
98
99 // get RMI reference to IMService and IMPeer
100 try {
101
102 IMService peerStub =
103 (IMService) Naming.lookup("rmi://" +
104 stubAddress);
105
106 // set up gui and my peerImpl
107 IMPeerListener gui =
108 new IMPeerListener(userName);
109 IMPeerImpl me =
110 new IMPeerImpl(userName);
111 me.addListener(gui);
112
113 // Connect myGui to remote IMPeer object
114 IMPeer myPeer = peerStub.connect(me);
115 gui.addPeer(myPeer);
116 }
117

Fig. 28.15Fig. 28.15Fig. 28.15Fig. 28.15 Modified PeerList enables the use of classes
MulticastReceivingThread and PeerDiscoveryListener
in the Deitel Instant Messenger (part 3 of 6).

1586 Peer-to-Peer Applications and JXTA Chapter 28

118 // malformedURL passed to lookup
119 catch(MalformedURLException exception) {
120 JOptionPane.showMessageDialog
121 (null, "Stub address incorrectly formatted");
122 exception.printStackTrace();
123 }
124
125
126 // Remote object not bound to remote registry
127 catch (NotBoundException notBoundException) {
128 JOptionPane.showMessageDialog
129 (null, "Remote object not present in Registry");
130 notBoundException.printStackTrace();
131 }
132
133 // connecting may cause RemoteException
134 catch (RemoteException remoteException) {
135 JOptionPane.showMessageDialog
136 (null, "Couldn't Connect");
137 remoteException.printStackTrace();
138 }
139
140 } // end method ActionPerformed
141
142 } // end ActionListener anonymous inner class
143
144); // end connectButton actionListener
145
146 // set up File menu
147 JMenu fileMenu = new JMenu("File");
148 fileMenu.setMnemonic('F');
149
150 // about Item
151 JMenuItem aboutItem = new JMenuItem("About...");
152 aboutItem.setMnemonic('A');
153 aboutItem.addActionListener(
154 new ActionListener() {
155 public void actionPerformed(ActionEvent event)
156 {
157 JOptionPane.showMessageDialog(PeerList.this,
158 "Deitel Instant Messenger" ,
159 "About", JOptionPane.PLAIN_MESSAGE);
160 }
161 }
162);
163
164 fileMenu.add(aboutItem);
165
166 // set up JMenuBar and attach File menu
167 JMenuBar menuBar = new JMenuBar();
168 menuBar.add (fileMenu);

Fig. 28.15Fig. 28.15Fig. 28.15Fig. 28.15 Modified PeerList enables the use of classes
MulticastReceivingThread and PeerDiscoveryListener
in the Deitel Instant Messenger (part 4 of 6).

Chapter 28 Peer-to-Peer Applications and JXTA 1587

169 setJMenuBar(menuBar);
170
171 // handow window closing event
172 addWindowListener(
173
174 new WindowAdapter(){
175
176 public void windowClosing(WindowEvent w)
177 {
178 System.out.println("CLOSING WINDOW");
179
180 // disconnects from lookup services
181 multicastSender.logout();
182 multicastReceiver.logout();
183
184 // join threads
185 try {
186 multicastSender.join();
187 multicastReceiver.join();
188 }
189 catch(InterruptedException interruptedException) {
190 interruptedException.printStackTrace();
191 }
192
193 System.exit(0);
194 }
195 }
196);
197
198 // lay out GUI components
199 peerJList.setFixedCellWidth(100);
200 JPanel inputPanel = new JPanel();
201 inputPanel.add(connectButton);
202
203 container.add(new JScrollPane(peerJList) ,
204 BorderLayout.NORTH);
205 container.add(inputPanel, BorderLayout.SOUTH);
206
207 // Initialize threads
208 try {
209
210 multicastReceiver =
211 new MulticastReceivingThread(userName, this);
212 multicastReceiver.start();
213
214 multicastSender =
215 new MulticastSendingThread(userName);
216 multicastSender.start();
217
218 }
219

Fig. 28.15Fig. 28.15Fig. 28.15Fig. 28.15 Modified PeerList enables the use of classes
MulticastReceivingThread and PeerDiscoveryListener
in the Deitel Instant Messenger (part 5 of 6).

1588 Peer-to-Peer Applications and JXTA Chapter 28

Class PeerList implements interface PeerDiscoveryListener—the Jini ver-
sion implemented interface ServiceDisoveryListener. Lines 210–211 create a
MulticastReceivingThread and passes the this reference as a Peer-
DiscoveryListener—line 212 starts this thread. Lines 214–215 create a Multi-
castSendingThread specifying the user name—line 216 starts this thread.

Lines 39–47 implement method PeerAdded, which takes two Strings—name and
peerStubAddress. Parameter name specifies the peer’s name. Parameter peer-
StubAddress is a URL-formatted String that contains the information needed to
make a Naming.lookup call on the remote peer. The Naming.lookup call obtains an
IMService remote reference. Lines 42–45 store the IMService remote reference.

Lines 51–60 implement method peerRemoved. Lines 54–58 remove the information
of the given peer from peerNames and peerStubAddresses.

Lines 89–141 specify the ActionListener for the JButton that we use to con-
nect peers. Line 96–97 obtains the peerStubAddress of the selected peer in the
JList. Lines 102–104 calls method Naming.lookup to obtain a reference to the
remote peer’s IMService object from the RMI registry. The code in lines 106–140 works
similarly to that of the previous Deitel Instant Messenger implementation.

Lines 176–194 specify instructions to execute when the user closes the PeerList
window. Lines 180–181 terminate each thread by calling method logout. Lines 186–187
join each thread, thereby blocking until each thread terminates. Line 193 exits the program.

28.13 Introduction to JXTA
 Sun Microsystems, Inc. created Project JXTA3 as a response to the growing popularity of
peer-to-peer applications. Project JXTA strives to create a standard, low-level, platform
and language-independent protocol that promotes interoperability among peer-to-peer ap-
plications. The current JXTA implementation is written in Java, but developers can imple-

220 // catch all exceptions and inform user of problem
221 catch (Exception managerException) {
222 JOptionPane.showMessageDialog(null,
223 "Error initializing MulticastSendingThread" +
224 "or MulticastReceivingThread");
225 managerException.printStackTrace();
226 }
227 }
228
229 public static void main(String args[])
230 {
231 PeerList peerlist = new PeerList();
232 peerlist.setSize(100, 170);
233 peerlist.setVisible(true);
234 }
235 }

3. For more information, see www.jxta.org.

Fig. 28.15Fig. 28.15Fig. 28.15Fig. 28.15 Modified PeerList enables the use of classes
MulticastReceivingThread and PeerDiscoveryListener
in the Deitel Instant Messenger (part 6 of 6).

Chapter 28 Peer-to-Peer Applications and JXTA 1589

ment JXTA in any programming language. JXTA provides a foundation from which
developers can build any type of P2P application.

JXTA attempts to solve the following problems of peer-to-peer applications:

1. Security/Authentication—Large peer-to-peer network applications, such as AOL
Instant Messenger and MSN Instant Messenger, use central servers to bootstrap
users onto the network. This bootstrapping ensures, to some degree, that the same
person uses a particular online identity.

2. Peer Discovery—Without a central server, it is difficult to realize the presence of
other peers on the network. Multicasting, as used by Jini, is not a viable solution
outside the LAN setting.

3. Network Incompatibility—Currently, each popular peer-to-peer application
yields a set of proprietary protocols that prevent compatibility with other peer-to-
peer networks. For example, the millions of users on the AIM platform cannot
communicate with Yahoo Instant Messenger users. Most new users opt for the
peer-to-peer application with the largest following.

4. Platform Incompatibility—Software developers must rewrite the low-level core
aspects of their peer-to-peer applications for each platform they wish to support.
Wireless phones and other mobile devices usually have a limited selection of P2P
applications, if any.

JXTA attempts to solve these problems by standardizing the low-level protocols that
govern peer-to-peer applications. JXTA is designed to be a general infrastructure, rather
than a special-purpose one. Therefore, developers can use JXTA to implement virtually any
type of P2P application. Because all JXTA-based P2P applications use identical low-level
protocols, they will be compatible with one another.

Networks built with the JXTA protocols consist of three basic types of entities—peer/
peer groups, advertisements and pipes/messages. Each JXTA runtime environment associ-
ates each entity’s name and network address with a unique 128-bit identifier.

A peer is any entity that uses JXTA protocols (Fig. 28.16) to communicate with other
peers. Each peer need support only some of the protocols, so devices with low processing
power and memory can participate in JXTA networks (albeit with limited functionality).
Peer groups are logical constructs that represent sets of peers. JXTA specifies only two
rules regarding peer groups

1. peers can join or leave groups

2. the group administrator, if the group has one, controls access to the group.

All peers are part of the World Peer Group. Membership in the World Peer Group does not
imply that each peer can discover and communicate with every other peer on the network.

Advertisements are XML documents that perform a function similar to that of multicast
packets in Jini. An entity in the JXTA network advertises itself to notify others of its exist-
ence by sending XML documents formatted according to JXTA specifications.

At the simplest level, pipes are unreliable one-way communication channels. More
sophisticated pipes may be reliable and multi-directional. Earlier in the chapter, we men-
tioned that an RMI peer reference allows one-way communication with that peer. Pipes per-
form similarly. Two peers communicate by configuring two pipes that “flow” in opposite
directions. Each peer communicates by sending Messages to the other peer through the

1590 Peer-to-Peer Applications and JXTA Chapter 28

pipe. JXTA specifies the Messages’ structure. The most recent JXTA implementation uses
XML Messages. The developers of JXTA use XML because of its portability. However,
JXTA does not restrict the Message format to XML.

JXTA is still in development and has not yet resolved all of the problems with peer-to-
peer applications. The implementation of peer discovery and security measures continues
to progress. JXTA suggests that peer discovery use a combination of LAN-based discovery,
discovery through invitation, cascaded discovery and rendezvous discovery. Jini illustrates
one means of LAN-based discovery. In LAN-based discovery, peers in a local network dis-
cover each other automatically by multicasting. Discovery through invitation occurs when
a peer receives a message from a previously unknown peer. Cascaded discovery is a dis-
tributed-search mechanism—similar to that of Gnutella. Rendezvous discovery is the cre-
ation of certain well-known sites that provide network addresses of many users on the
network to bootstrap new users.

For further information on the current state of JXTA and other P2P technologies, see
the resources provided in Section 28.14.

28.14 Internet and World Wide Web Resources
www.openp2p.com
openp2p.com is a Web site that is part of the O’Reilly Network. This online resource provides articles
and links about peer-to-peer technologies.

www.clip2.com
This site provides information and statistics regarding the popular and upcoming peer-to-peer tech-
nologies. This site also provides columns that explain how various peer-to-peer protocols work.

www.peer-to-peerwg.org
This page is published by the peer-to-peer working group.

Protocol Function

Peer Discovery Peers use this protocol to find other entities in the JXTA network by
searching for advertisements.

Peer Resolver Peers that help a search process (e.g., higher bandwidth, capacity
storage, etc.) implement this protocol.

Peer Information Peers obtain information about other peers via this protocol.

Peer Membership Peers use this protocol to learn about the requirements of groups,
how to apply for membership, how to modify their membership and
how to quit a group. Authentication and security are implemented
through this protocol.

Pipe Binding Peers can connect pipes to one another, via advertisements, through
this protocol.

Endpoint Routing Peer routers implement this protocol to provide other routing ser-
vices to other peers (e.g., tunneling through a firewall).

Fig. 28.16Fig. 28.16Fig. 28.16Fig. 28.16 JXTA low-level protocols.

Chapter 28 Peer-to-Peer Applications and JXTA 1591

www.jxta.org
This is the official Web site for Project JXTA and contains the newest downloads of the source code
and opportunities to participate in developing JXTA.

www.peerintelligence.com
This Web site publishes columns that discuss how peer-to-peer technologies are being developed into
enterprise solutions. This site focuses on how businesses can use peer-to-peer applications.

www.peertal.com
This site presents columns that discuss peer-to-peer technologies.

SUMMARY
• In a peer-to-peer (P2P) network architecture, each node can perform both client and server func-

tions. Such networks distribute processing and information to many computers, thus reclaiming
otherwise wasted computing power and storage space and eliminating central points of failure.

• Developers may implement P2P applications using various technologies, such as multicast sock-
ets.

• Many networks operate on the principle that computers should be segregated by function.

• Instead of segregating computers by function, in P2P networks all computers act as both clients
and servers.

• The concept of P2P applications is similar to that of the telephone system—a single user can both
speak (send information) and listen (receive information).

• Many network applications do not fall neatly into either client/server or peer-to-peer categories.

• One major weakness of this centralized system is the dependency on the central server. If the cen-
tral node (i.e., server) fails, so does the entire application.

• The capabilities of the server limit the overall performance of the application.

• Centralized architectures simplify management tasks, such as monitoring user access, by provid-
ing single points of network control.

• True P2P applications are completely decentralized and do not suffer from the same deficiencies
as applications that depend on centralized servers.

• Some P2P applications leverage distributed computational power.

• Peer-to-peer architectures allow real-time searches that return up-to-date results.

• Peer-to-peer searches reflect the status of the network at the time of the query.

• In peer-to-peer networks determining who is on the network at any instant is difficult.

• Real-time searches are slower and increase network traffic, because every query must propagate
throughout the entire network.

• A true client/server network is completely centralized, whereas a true peer-to-peer application is
completely decentralized.

• Many applications adopt aspects of both networking styles to achieve specific goals.

• Peer discovery is the act of finding peers in a P2P application.

• Decentralizing an application makes peer discovery and searching for information difficult.

• Distributed searches make networks more robust by removing single points of failure, such as cen-
tral servers.

• Information found via distributed searches is up-to-date because it reflects the current state of the
network.

1592 Peer-to-Peer Applications and JXTA Chapter 28

TERMINOLOGY

SELF-REVIEW EXERCISES
28.1 Fill in the blanks in each of the following statements:

a) For the Deitel Instant Messenger to send a message to a remote peer, it must hold a
_______ to the remote peer.

b) Pipes are ______ one-way communication channels.
c) Large peer-to-peer networks, such as AOL Instant Messenger and MSN Instant Messen-

ger, use _________ to bootstrap users onto the network.
d) Peer discovery is the act of _______ and __________ with other peers.
e) Class ________ can be used to cache proxies of all services listed in known lookups er-

vices.

28.2 State whether each of the following is true or false. If false, explain why.
a) In a peer-to-peer application, each peer performs both client and server functions.
b) One remote reference provides one-way communication.
c) Jini is the best tool for designing peer-to-peer applications.
d) Client/Server network architecture is the most efficient way of organizing groups of com-

puters.
e) The ServiceDiscoveryManager needs to export certain classes to asynchronously

notify ServiceDiscoveryListeners of ServiceDiscoveryEvents.
f) Broadcasting is a viable solution to the problem of discovering other peers on a large-

scale peer-to-peer network.
g) All network applications are either peer-to-peer or client/server.

ANSWERS TO SELF-REVIEW EXERCISES
28.1 a) reference. b) unreliable. c) central servers. d) finding, connecting.
e) ServiceDiscoveryManager.

28.2 a) True.
b) True.
c) False. Implementing authentication, security and large-scale networks is difficult in Jini.

There is no automatic means of peer discovery by distributed search.
d) False. Client/server computing wastes the unused processing power and storage space of

the client computers.
e) True.

authentication P2P (peer-to-peer) application
bootstrapping peer
central server peer discovery
centralization peer group
client/server computing pipe
decentralization proxy
distributed search real-time search
Freenet Remote Method Invocation (RMI)
Gnutella search engine
Jini search hub
JXTA Time to Live (TTL)
lookup service unicast discovery
multicast socket

Chapter 28 Peer-to-Peer Applications and JXTA 1593

f) False. Broadcasting is an inefficient way for computers to announce their existence in a
large network. As the number of computers in a network grow, broadcasting creates too
much network traffic to be a viable solution.

g) False. Many applications include elements of both peer-to-peer applications and client/
server applications.

EXERCISES
28.3 Modify Deitel Instant Messenger so that it can be used to send image files and display them
on the remote computer.

28.4 Modify Deitel Instant Messenger so that it plays a user-selected sound file when an incoming
message is received.

28.5 Deitel Instant Messenger can create multiple conversations with the same person. Modify
Deitel Instant Messenger so that it will not allow multiple conversations with the same person simul-
taneously.

28.6 Modify Deitel Instant Messenger so that peers notify any peers with whom they are speaking
when they close the conversation window. Remote peers will reconnect to continue sending messag-
es.

28.7 Expand Deitel Instant Messenger so that users can have a user profile. Enable users to search
for users with keywords.

29
Introduction to Web
Services and SOAP

Objectives
• To understand the Simple Object Access Protocol

(SOAP) and how it uses XML.
• To understand the structure of a SOAP message.
• To be able to write Java applications that send and

receive SOAP messages.
Nothing happens until something is sold.
Arthur H. Motley

Men are going to have to learn to be managers in a world
where the organization will come close to consisting of all
chiefs and one Indian. The Indian, of course, is the computer.
Thomas L. Whisler

…it is always the simple that produces the marvelous.
Amelia Barr

Resemblance reproduces the formal aspect of objects…
Ching Hao

…if the simple things of nature have a message that you
understand, rejoice, for your soul is alive…
Eleonora Duse

Chapter 29 Introduction to Web Services and SOAP 1595

29.1 Introduction
Interoperability, or seamless communication and interaction between different software
systems, is a primary goal of many businesses and organizations that rely heavily on com-
puters and electronic networks. Many applications use the Internet to transfer data. Some
of these applications run on client systems with little processing power, so they invoke
method calls on remote machines to process data. Many applications use proprietary data
specifications, which makes communication with other applications difficult, if not impos-
sible. The majority of applications also reside behind firewalls—security barriers that re-
strict communication between networks. The Simple Object Access Protocol (SOAP) is a
protocol that addresses these problems. Combining the powers of HTTP and XML, it pro-
vides a fully extensible mode of communication between software systems.

Web Services are an emerging area of distributed computing. Sun Microsystems’ Open
Net Environment (ONE) and Microsoft Corporation’s .NET initiative are frameworks for
writing and deploying Web services. There are several definitions of a Web service. A Web
service can be any Web-accessible application, such as a Web page with dynamic content. A
narrower definition of a Web service is an application that exposes a public interface usable
by other applications over the Web. Sun’s ONE requires Web services to be accessible
through HTTP and other Web protocols, to communicate with XML-based messages and to
be available through lookup services. SOAP provides the XML communication in many Web
services. Web services can provide great interoperability between diverse systems.1

A hypothetical Web service designed for the Sun ONE architecture might take a form in
which a service registry publishes a description of the Web service as a Universal Descrip-
tion, Discovery and Integration (UDDI) document. The client, such as a Web browser or Java
GUI client, searches a directory service for a needed Web service. The client uses the infor-
mation it receives through the lookup service to send an XML message via HTTP to the Web
server hosting the Web service. A servlet processes the client request. The servlet then
accesses an application server that provides Enterprise Java Beans. The EJBs in turn access a
database that stores the Web service’s information. After accessing the database, the EJB
responds to the servlet with the requested information. The servlet formats the information
for the client (e.g. creates a JavaServer Page). The HTTP server sends an XML response back
to the client. The client then parses the response and displays the information for the user.1

The great potential of Web services does not lie with the technology used to create them.
HTTP, XML and the other protocols used by Web services are not new. The interoperability
and scalability of Web services means developers can rapidly create large applications and
larger Web services from small Web services. Sun’s Open Net Environment describes an
architecture for creating smart Web services. Smart Web services share a common operating
environment with one another. By sharing context, smart Web services can perform common

Outline
29.1 Introduction
29.2 Simple Object Access Protocol (SOAP)
29.3 SOAP Weather Service
29.4 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1596 Introduction to Web Services and SOAP Chapter 29

authentication for financial transactions, provide location-specific recommendations and
directions, etc., among e-businesses. At the time of this writing, there are two major obstacles
in the way of developing smart Web services. There do not yet exist widely accepted stan-
dards for sharing context between Web services or ensuring the security and privacy of Web-
service transactions.

29.2 Simple Object Access Protocol (SOAP)
IBM, Lotus Development Corporation, Microsoft, DevelopMentor and Userland Software
developed and drafted SOAP, which is an HTTP-XML-based protocol that enables appli-
cations to communicate over the Internet, by using XML documents called SOAP messag-
es. SOAP is compatible with any object model, because it includes only functions and
capabilities that are absolutely necessary for defining a communication framework. Thus,
SOAP is both platform and software independent, and any programming language can im-
plement it. SOAP supports transport using almost any conceivable protocol. For example,
SOAP binds to HTTP and follows the HTTP request–response model. SOAP also supports
any method of encoding data, which enables SOAP-based applications to send virtually any
type information (e.g., images, objects, documents, etc.) in SOAP messages.

A SOAP message contains an envelope, which describes the content, intended recipient
and processing requirements of a message. The optional header element of a SOAP mes-
sage provides processing instructions for applications that receive the message. For example,
for implementations that support transactions, the header could specify details of that trans-
action. The header also can incorporate routing information. Through the header, more com-
plex protocols can be built onto SOAP. Header entries can modularly extend the message for
purposes such as authentication, transaction management and payment. The body of a SOAP
message contains application-specific data for the intended recipient of the message.

SOAP has the ability to make a Remote Procedure Call (RPC), which is a request
made to another machine to run a task. The RPC uses an XML vocabulary to specify the
method to be invoked, any parameters the method takes and the Universal Resource Iden-
tifier (URI) of the target object. An RPC call naturally maps to an HTTP request, so an
HTTP post sends the message. A SOAP-response message is an HTTP-response docu-
ment that contains the results of the method call (e.g., returned values, error messages, etc.).
SOAP also supports asynchronous RPC, in which program that invokes the RPC does not
wait for a response from the remote procedure.

At the time of this writing, SOAP is still under development, and many of the technol-
ogies that build on it are in the early stages of development. To realize the benefits of
SOAP, industry must establish higher-level specifications and standards that use this tech-
nology. Nevertheless, SOAP is the leading industry standard for an XML-distributed com-
puting infrastructure, providing previously nonexistent extensibility and interoperability.

Figure 29.1–Fig. 29.4 present a SOAP example using Apache’s SOAP implementation
API, version 2.2 (available at xml.apache.org/soap). The SOAP RPC requires a
servlet engine, such as Tomcat (jakarta.apache.org) and Apache’s Xerces parser for
Java (available at xml.apache.org/xerces-j/index.html). The SOAP documen-
tation (docs/install/index.html) includes installation instructions for both the
server and the client.

Figure 29.1 shows class SimpleService, which resides on the server and contains
method getWelcome. The Java application in Fig. 29.4 invokes this method using an RPC.

Chapter 29 Introduction to Web Services and SOAP 1597

Method getWelcome (lines 6–12) returns a String when invoked. To make this
method available to clients (i.e., to facilitate RPC), we need to provide the server with the
name of the method that processes the request—i.e., we must deploy the service.

To deploy the service, first copy the SimpleService.class file into the
jakarta-tomcat/classes directory. If you created a Java Archive (JAR) file, copy the
JAR file into the jakarta-tomcat/lib directory. Create the classes or lib directo-
ries if they do not exist. Jakarta-Tomcat includes files in these directories in the CLASSPATH.

Deploy the service with the XML-SOAP administration tool included in the SOAP
package (located in the directory webapps/soap). To run this application, type the URL
localhost:8080/soap/admin into a Web browser. Figure 29.2 and Fig. 29.3 show
the administration tool that allows you to deploy, remove and list services. The ID field in
Fig. 29.2 contains a URI (urn:xml-simple-message) that identifies the service to
the client. This URI is programmer defined. If one service has the same URI as another, the
client cannot differentiate between them; consequently, errors may occur. The Scope field
specifies the lifetime of the object created (on the server) for serving the SOAP request. The
object can exist for the duration of the Request, Session or Application. Request
denotes that the server deletes the object after it sends the response, Session indicates that
the object persists for the duration of the client’s session with the server. Application sig-
nifies that the object is available for all requests throughout the lifetime of the application.
The Methods field (Fig. 29.2) specifies the methods available for a SOAP request—in this
case, method getWelcome. The Provider Type field specifies the service implementa-
tion language. Languages supported include Java, JavaScript, Perl and Bean Markup Lan-
guage (BML). For the examples in this chapter, we use Java. In the Provider Class field
we specify the class that implements the service—SimpleService. The Script Lan-
guage, Script File and Script fields are used only for services implemented in a sup-
ported scripting language. The Type Mapping field allows manual mapping of Java types
to XML. The Apache SOAP implementation provides default mappings for most Java types
and for Java classes that follow the JavaBeans design patterns. After completing the form,
click the Deploy button on the bottom of the form to deploy the service. Click the List
button, which lists the services, to confirm that the service deployed successfully
(Fig. 29.3). Instructions for other methods of deployment (such as using the command line)
are provided in docs\guide\index.html.

1 // Fig. 29.1: SimpleService.java
2 // Implementation for the requested method on the server
3
4 public class SimpleService {
5
6 public String getWelcome(String message) throws Exception
7 {
8 String text =
9 "Welcome to SOAP!\nHere is your message: " + message;

10
11 return text; // response
12 }
13 }

Fig. 29.1Fig. 29.1Fig. 29.1Fig. 29.1 Class SimpleService.

1598 Introduction to Web Services and SOAP Chapter 29

Figure 29.4 lists the client-side code for the RPC. When executed, the program sends
a SOAP request to the server, which in our case is the same machine, the local host. The
client sends a message as a parameter to the remote method. (This message can be from the
command line; by default, the application uses the message Thanks!) When the server
invokes the method, it sends back the message

Welcome to SOAP!
Here is your message: Thanks!

Fig. 29.2Fig. 29.2Fig. 29.2Fig. 29.2 SOAP package administration tool.

Chapter 29 Introduction to Web Services and SOAP 1599

Fig. 29.3Fig. 29.3Fig. 29.3Fig. 29.3 Description of deployed service.

1 // Fig. 29.4 : GetMessage.java
2 // Program that makes a SOAP RPC
3
4 // import Java packages
5 import java.io.*;
6 import java.net.*;
7 import java.util.*;
8
9 // import third-party packages

10 import org.apache.soap.*;
11 import org.apache.soap.rpc.*;
12
13 public class GetMessage {
14
15 // main method
16 public static void main(String args[]) {
17 String encodingStyleURI = Constants.NS_URI_SOAP_ENC;
18 String message;

Fig. 29.4Fig. 29.4Fig. 29.4Fig. 29.4 Client making a SOAP request (part 1 of 3).

1600 Introduction to Web Services and SOAP Chapter 29

19
20 if (args.length != 0)
21 message = args[0];
22 else
23 message = "Thanks!";
24
25 // attempt SOAP remote procedure call
26 try {
27 URL url = new URL(
28 "http://localhost:8080/soap/servlet/rpcrouter");
29
30 // build call
31 Call remoteMethod = new Call();
32 remoteMethod.setTargetObjectURI(
33 "urn:xml-simple-message");
34
35 // set name of remote method to be invoked
36 remoteMethod.setMethodName("getWelcome");
37 remoteMethod.setEncodingStyleURI(encodingStyleURI);
38
39 // set parameters for remote method
40 Vector parameters = new Vector();
41
42 parameters.addElement(new Parameter("message",
43 String.class, message, null));
44 remoteMethod.setParams(parameters);
45 Response response;
46
47 // invoke remote method
48 response = remoteMethod.invoke(url, "");
49
50 // get response
51 if (response.generatedFault()) {
52 Fault fault = response.getFault();
53
54 System.err.println("CALL FAILED:\nFault Code = "
55 + fault.getFaultCode()+ "\nFault String = "
56 + fault.getFaultString());
57 }
58
59 else {
60 Parameter result = response.getReturnValue();
61
62 // display result of call
63 System.out.println(result.getValue());
64 }
65 }
66
67 // catch malformed URL exception
68 catch (MalformedURLException malformedURLException) {
69 malformedURLException.printStackTrace();
70 System.exit(1);
71 }

Fig. 29.4Fig. 29.4Fig. 29.4Fig. 29.4 Client making a SOAP request (part 2 of 3).

Chapter 29 Introduction to Web Services and SOAP 1601

Line 10 imports the SOAP package that provides the API for the SOAP implemen-
tation. The package org.apache.soap.rpc in line 11 provides the implementation for
RPC using SOAP. Line 17 specifies the encoding style used for the message. SOAP, which
has no default encoding style, supports many encoding styles—we use the standard RPC
encoding (WS_URI_SOAP_ENC). Lines 27–28 specify the server-side URL to which the
client sends message’s value, rpcrouter. This document, a Java servlet, receives the
SOAP envelope through the HTTP post method. Using the URI specified in the SOAP
message, it looks up the services deployed on the server in order to instantiate the appro-
priate object, in this case a SimpleService object.

Objects of class Call invoke remote methods. Line 31 instantiates a Call object and
assigns it to reference remoteMethod, and lines 32–33 set the remote method’s URI.
Line 36 specifies the name of the method to be invoked, getWelcome. We then set the
encoding style for the message on line 37. Lines 40–44 build the parameters passed to the
remote method for processing. Each parameter must be in its own object, and the parameter
objects must be placed in a Vector.

Lines 42–43 build a new parameter for the method by constructing a Parameter
object. The first constructor argument is the name of the variable or reference (message),
the second argument is the class to which the Parameter object belongs (String), the
third argument is the value of the parameter (the object message) and the fourth argument
specifies the parameter’s encoding. (null specifies the application’s default encoding.)
Method setParams in line 44 sets the parameters of the remoteMethod object.

We invoke the remote method by calling method invoke in line 48. It takes two argu-
ments: the server URL to which the SOAP message is being sent and the value of the
SOAPAction header, which specifies the intent of the request. The second argument can
take a null string if a SOAPAction header is not being used. Method invoke throws
a SOAPException (lines 74–78) if any network error occurs while the SOAP request is
being sent. Once the method is invoked on the server, the result is sent back to the client

72
73 // catch SOAPException
74 catch (SOAPException soapException) {
75 System.err.println("Error message: " +
76 soapException.getMessage());
77 System.exit(1);
78 }
79 }
80 }

java GetMessage
Welcome to SOAP!
Here is your message: Thanks!

java GetMessage "my message"
Welcome to SOAP!
Here is your message: my message

Fig. 29.4Fig. 29.4Fig. 29.4Fig. 29.4 Client making a SOAP request (part 3 of 3).

1602 Introduction to Web Services and SOAP Chapter 29

and stored in the object referenced by response (line 48). This object receives an error
message if a server error, such as a failure to locate the appropriate services, occurs. Lines
51–57 determine whether the received message is an error message. Lines 59–64 print the
output if no error has been received.

29.3 SOAP Weather Service
This section describes a simple Web service implemented with Java and SOAP. The Web ser-
vice is a modified version of the weather service implemented with RMI in Chapter 13. The
weather service now uses SOAP RPC instead of Java RMI to send information from the serv-
er to the client. The required software components are the same as the previous section.

The SOAP weather service uses classes WeatherBean, WeatherCellRen-
derer, WeatherItem and WeatherListModel from the RMI weather service
without modification. SOAP RPC does not require a Java interface like RMI, so this
example does not use interface WeatherService and class WeatherServiceImpl.
For this example, class WeatherService uses most of WeatherServiceImpl’s
code and exposes method getWeatherInformation via SOAP. Class Weath-
erServiceClient now uses SOAP RPC instead of Java RMI.

Class WeatherService (Fig. 29.5) provides method getWeatherInforma-
tion that class WeatherServiceClient calls through a SOAP RPC. Weath-
erService must be in the classes directory of the Tomcat servlet engine for the call
to be successful. The RMI version of method getWeatherInformation returns a
List of WeatherBean objects. SOAP does not support direct transmission of these Java
objects, so the SOAP RPC version of getWeatherInformation returns a Vector of
Strings. Lines 66–71 add the Strings parsed from the Traveler’s Forecast Web page
to Vector weatherInformation (line 13). Line 99 returns Vector weather-
Information. The rest of class WeatherService is identical to class Weather-
ServiceImpl from Chapter 13.

1 // Fig. 29.5: WeatherService.java
2 // WeatherService provides a method to retrieve weather
3 // information from the National Weather Service.
4 package com.deitel.advjhtp1.soap.weather;
5
6 // Java core packages
7 import java.io.*;
8 import java.net.URL;
9 import java.util.*;

10
11 public class WeatherService {
12
13 private Vector weatherInformation; // WeatherBean objects
14
15 // get weather information from NWS
16 private void updateWeatherConditions()
17 {
18 try {
19 System.out.println("Update weather information...");

Fig. 29.5Fig. 29.5Fig. 29.5Fig. 29.5 SOAP implementation of class WeatherService (part 1 of 3).

Chapter 29 Introduction to Web Services and SOAP 1603

20
21 // National Weather Service Travelers Forecast page
22 URL url = new URL(
23 "http://iwin.nws.noaa.gov/iwin/us/traveler.html");
24
25 // set up text input stream to read Web page contents
26 BufferedReader in = new BufferedReader(
27 new InputStreamReader(url.openStream()));
28
29 // helps determine starting point of data on Web page
30 String separator = "TAV12";
31
32 // locate separator string in Web page
33 while (!in.readLine().startsWith(separator))
34 ; // do nothing
35
36 // strings representing headers on Travelers Forecast
37 // Web page for daytime and nighttime weather
38 String dayHeader =
39 "CITY WEA HI/LO WEA HI/LO";
40 String nightHeader =
41 "CITY WEA LO/HI WEA LO/HI";
42
43 String inputLine = "";
44
45 // locate header that begins weather information
46 do {
47 inputLine = in.readLine();
48 } while (!inputLine.equals(dayHeader) &&
49 !inputLine.equals(nightHeader));
50
51 weatherInformation = new Vector(); // create Vector
52
53 // create WeatherBeans containing weather data and
54 // store in weatherInformation Vector
55 inputLine = in.readLine(); // get first city's data
56
57 // The portion of inputLine containing relevant data
58 // is 28 characters long. If the line length is not at
59 // least 28 characters long, then done processing data.
60 while (inputLine.length() > 28) {
61
62 // Prepare strings for WeatherBean for each city.
63 // First 16 characters are city name. Next, six
64 // characters are weather description. Next six
65 // characters are HI/LO or LO/HI temperature.
66 weatherInformation.add(
67 inputLine.substring(0, 16));
68 weatherInformation.add(
69 inputLine.substring(16, 22));
70 weatherInformation.add(
71 inputLine.substring(23, 29));
72

Fig. 29.5Fig. 29.5Fig. 29.5Fig. 29.5 SOAP implementation of class WeatherService (part 2 of 3).

1604 Introduction to Web Services and SOAP Chapter 29

Class WeatherServiceClient (Fig. 29.6) makes a SOAP remote procedure call
to method getWeatherInformation of class WeatherService. Lines 14–15
import the Apache SOAP packages. Lines 31–32 set the SOAP service’s URL. Line 35
creates a new Call object, which stores information needed to perform the remote proce-
dure call. Lines 36–37 set the URI that uniquely identifies the weather service in the servlet
engine. Lines 40–41 specify the method name for the RPC. Lines 42–43 set the encoding
for the call. Line 46 creates a Response object and calls method invoke on the Call
object with a URL as an argument. The Response object holds the response to the remote
procedure call. Line 49 determines if the response generates a Fault. If a Fault occurs,
lines 52–54 print the error code. If no Fault occurs, line 58 gets the object returned by the
remote procedure call. Lines 60–61 cast the Object to a Vector. Lines 64–65 create a
List and call method createBeans (lines 95–107) with the Vector of Strings as
a parameter. Method createBeans turns the Vector of Strings into a List of
WeatherBeans. Lines 68–69 create a ListModel of the List of WeatherBeans.
Lines 73–77 create a JList of the information obtained from the remote procedure call
and display the JList in a JFrame.

The weather service deploys in the same manner as the simple message service. Start
the Tomcat servlet engine and go to the SOAP administration tool (localhost:8080/
soap/admin) as shown in Fig. 29.7. Click Deploy and fill in the information in the form

73 inputLine = in.readLine(); // get next city's data
74 }
75
76 in.close(); // close connection to NWS Web server
77
78 System.out.println("Weather information updated.");
79 }
80
81 // process failure to connect to National Weather Service
82 catch(java.net.ConnectException connectException) {
83 connectException.printStackTrace();
84 System.exit(1);
85 }
86
87 // process other exceptions
88 catch(Exception exception) {
89 exception.printStackTrace();
90 System.exit(1);
91 }
92 }
93
94 // implementation for WeatherService interface method
95 public Vector getWeatherInformation()
96 {
97 updateWeatherConditions();
98
99 return weatherInformation;
100 }
101 }

Fig. 29.5Fig. 29.5Fig. 29.5Fig. 29.5 SOAP implementation of class WeatherService (part 3 of 3).

Chapter 29 Introduction to Web Services and SOAP 1605

1 // Fig. 29.6: WeatherServiceClient.java
2 // WeatherServiceClient accesses the WeatherService remote
3 // object via SOAP to retrieve weather information.
4 package com.deitel.advjhtp1.soap.weather;
5
6 // Java core packages
7 import java.util.*;
8 import java.net.*;
9

10 // Java extension packages
11 import javax.swing.*;
12
13 // third-party packages
14 import org.apache.soap.*;
15 import org.apache.soap.rpc.*;
16
17 // Deitel packages
18 import com.deitel.advjhtp1.rmi.weather.*;
19
20 public class WeatherServiceClient extends JFrame {
21
22 // WeatherServiceClient constructor
23 public WeatherServiceClient(String server)
24 {
25 super("SOAP WeatherService Client");
26
27 // connect to server and get weather information
28 try {
29
30 // URL of remote SOAP object
31 URL url = new URL("http://" + server + ":8080/soap/"
32 + "servlet/rpcrouter");
33
34 // build SOAP RPC call
35 Call remoteMethod = new Call();
36 remoteMethod.setTargetObjectURI(
37 "urn:xml-weather-service");
38
39 // set name of remote method to be invoked
40 remoteMethod.setMethodName(
41 "getWeatherInformation");
42 remoteMethod.setEncodingStyleURI(
43 Constants.NS_URI_SOAP_ENC);
44
45 // invoke remote method
46 Response response = remoteMethod.invoke(url, "");
47
48 // get response
49 if (response.generatedFault()) {
50 Fault fault = response.getFault();
51

Fig. 29.6Fig. 29.6Fig. 29.6Fig. 29.6 SOAP implementation of class WeatherServiceClient.

1606 Introduction to Web Services and SOAP Chapter 29

52 System.err.println("CALL FAILED:\nFault Code = "
53 + fault.getFaultCode() + "\nFault String = "
54 + fault.getFaultString());
55 }
56
57 else {
58 Parameter result = response.getReturnValue();
59
60 Vector weatherStrings = (Vector)
61 result.getValue();
62
63 // get weather information from result object
64 List weatherInformation = createBeans(
65 weatherStrings);
66
67 // create WeatherListModel for weather information
68 ListModel weatherListModel =
69 new WeatherListModel(weatherInformation);
70
71 // create JList, set its CellRenderer and add to
72 // layout
73 JList weatherJList = new JList(weatherListModel);
74 weatherJList.setCellRenderer(new
75 WeatherCellRenderer());
76 getContentPane().add(new
77 JScrollPane(weatherJList));
78 }
79
80 } // end try
81
82 // handle bad URL
83 catch (MalformedURLException malformedURLException) {
84 malformedURLException.printStackTrace();
85 }
86
87 // handle SOAP exception
88 catch (SOAPException soapException) {
89 soapException.printStackTrace();
90 }
91
92 } // end WeatherServiceClient constructor
93
94 // create List of WeatherBeans from Vector of Strings
95 public List createBeans(Vector weatherStrings)
96 {
97 List list = new ArrayList();
98 for (int i = 0; (weatherStrings.size() - 1) > i;
99 i += 3) {
100 list.add(new WeatherBean(
101 (String) weatherStrings.elementAt(i),
102 (String) weatherStrings.elementAt(i + 1),
103 (String) weatherStrings.elementAt(i + 2)));
104 }

Fig. 29.6Fig. 29.6Fig. 29.6Fig. 29.6 SOAP implementation of class WeatherServiceClient.

Chapter 29 Introduction to Web Services and SOAP 1607

as it appears in Fig. 29.8. Be sure to enter the fully qualified package name of Weath-
erService. Once the service is deployed, run WeatherServiceClient. The remote
procedure call retrieves the weather information and, the client displays it (Fig. 29.9).

105
106 return list;
107 }
108
109 // execute WeatherServiceClient
110 public static void main(String args[])
111 {
112 WeatherServiceClient client = null;
113
114 // if no server IP address or host name specified,
115 // use "localhost"; otherwise use specified host
116 if (args.length == 0)
117 client = new WeatherServiceClient("localhost");
118 else
119 client = new WeatherServiceClient(args[0]);
120
121 // configure and display application window
122 client.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
123 client.pack();
124 client.setResizable(false);
125 client.setVisible(true);
126 }
127 }

Fig. 29.7Fig. 29.7Fig. 29.7Fig. 29.7 Apache SOAP Admin page.

Fig. 29.6Fig. 29.6Fig. 29.6Fig. 29.6 SOAP implementation of class WeatherServiceClient.

1608 Introduction to Web Services and SOAP Chapter 29

29.4 Internet and World Wide Web Resources
www.sun.com/software/sunone/index.html
This is Sun Microsystem’s site for the Open Net Environment Web services architecture.

Fig. 29.8Fig. 29.8Fig. 29.8Fig. 29.8 Apache SOAP Service Deployment Descriptor Template.

Fig. 29.9Fig. 29.9Fig. 29.9Fig. 29.9 SOAP WeatherService Client.

Chapter 29 Introduction to Web Services and SOAP 1609

xml.apache.org/soap
Apache’s SOAP implementation can be downloaded from this site, which also provides information
and documentation.

xml.apache.org/xerces-j/index.html
Apache’s Xerces parser for Java can be downloaded from this site, along with documentation.

jakarta.apache.org
Web site for Apache’s Jakarta-Tomcat servlet engine.

SUMMARY
• A Web service can be any Web-accessible application, such as a Web page with dynamic content.

• A narrower definition of a Web service is an application that exposes a public interface usable by
other applications over the Web.

• Sun’s ONE requires a Web service to be accessible through HTTP and other Web protocols, to
communicate using XML-based messages and to be registered with a lookup service.

• Web services can provide great interoperability between diverse systems. The interopability and
scalability of Web services means developers can rapidly create large applications and larger Web
services from small Web services.

• Sun’s Open Net Environment describes an architecture for creating smart Web services. Accord-
ing to Sun, smart Web services share a common operating environment with other services.

• SOAP is an HTTP–XML-based protocol that allows applications to communicate over the Inter-
net, using XML documents called SOAP messages.

• SOAP is both platform and software independent and can be implemented in any programming
language. SOAP supports transport using almost any conceivable protocol.

• A SOAP message contains an envelope, which describes the content, intended recipient and pro-
cessing requirements of a message. The optional header element of a SOAP message specifies
additional processing information for applications that receive the SOAP message.

• Through the header, more complex protocols can be built onto SOAP. The body of a SOAP mes-
sage contains application-specific data for the intended recipient of the message.

• SOAP can be used to make a Remote Procedure Call (RPC), which is a request made to another
machine to run a task. The RPC uses an XML vocabulary to specify the method to be invoked, any
parameters the method takes and the URI of the target object.

• Because businesses use different platforms, applications and data specifications, exchanging data
can be difficult. Business partners therefore establish protocols and data formats to engage in elec-
tronic commerce.

TERMINOLOGY
application-to-application (A2A) integration messaging
asynchronous RPC org.apache.soap.rpc
Call class Parameter class
deploying a service Remote Procedure Call (RPC)
distributed object architecture request–response
Fault class schema
firewall setMethodName method of class Call
Hypertext Transfer Protocol (HTTP) setParams method of class Call
invoke method of class Call Simple Object Access Protocol (SOAP)
loosely coupled messaging Sun Open Net Environment

1610 Introduction to Web Services and SOAP Chapter 29

SELF-REVIEW EXERCISES
29.1 State whether each of the following is true or false. If false, explain why.

a) SOAP is a technology for facilitating data transfer across a network.
b) SOAP must be bound to HTTP in order to work.
c) In order to communicate with SOAP, software systems must have the same distributed

object architecture.
d) The body of a SOAP message can contain a Remote Procedure Call.

29.2 Fill in the blanks in each of the following statements:
a) A SOAP RPC requires the name of the method being called, its parameters and

.
b) A SOAP contains information that describes the content, recipient and pro-

cessing requirements of a SOAP message.
c) SOAP can pass through most firewalls because is its transport mechanism.
d) SOAP RPCs use the HTTP model.

ANSWERS TO SELF-REVIEW EXERCISES
29.1 a) True. b) False. SOAP can be bound to other protocols. c) False. SOAP is platform inde-
pendent. d) True.

29.2 a) the processing requirements of the message. b) envelope. c) HTTP. d) request–response.

EXERCISES
29.3 Write a server-side class with a sort method that can sort given numbers. Write a client-
side program that can make SOAP RPC invoke the sort method by sending a set of unsorted num-
bers. Display the results of sorting on the client.

29.4 Rewrite class WeatherServiceClient to update its information at a user-defined inter-
val. Change the settings of Tomcat to make the WeatherService object persistent. This make the
updates more efficient.

29.5 Write a client and server with a similar architecture to the weather service, but that obtains
pricing information from a price-comparison site, such as shopper.cnet.com.

29.6 Write a server-side class that stores and retrieves Strings. Deploy the class so it is persis-
tent on the server. Then write a client that stores and retrieves Strings from the server.

29.7 Write a simple peer-to-peer instant-messaging service. Write a server class with a method
that opens a window with a text message when it is called by a client. The client allows the user to
enter a text message and call the method on the server class to display the message on the other ma-
chine.

WORKS CITED
1. D. Savarese, "ONEWeb to Rule Them ALL," Java Pro August 2001: pg 58.

synchronous RPC Web services
Universal Description, Discovery and

Integration (UDDI)
XML-SOAP admin tool

A
 Creating Markup with

XML

Objectives
• To create custom markup using XML.
• To understand the concept of an XML parser.
• To use elements and attributes to mark up data.
• To understand the difference between markup text

and character data.
• To understand the concept of a well-formed XML

document.
• To understand the concept of an XML namespace.
• To be able to use CDATA sections and processing

instructions.
The chief merit of language is clearness, and we know that
nothing detracts so much from this as do unfamiliar terms.
Galen

Every country has its own language, yet the subjects of which
the untutored soul speaks are the same everywhere.
Tertullian

The historian, essentially, wants more documents than he
can really use; the dramatist only wants more liberties than
he can really take.
Henry James

Entities should not be multiplied unnecessarily.
William of Occam

1612 Creating Markup with XML Appendix A

A.1 Introduction
The Extensible Markup Language (XML) is a technology for marking up structured data
so that any software with an XML parser can understand and use its content. Data indepen-
dence, the separation of content from its presentation, is the essential characteristic of
XML. XML documents are simply text files that are marked up in a special way, so XML
is intelligible to both humans and machines. Any application can conceivably process XML
data. This makes XML ideal for data exchange.

Platform independence, the separation of an application from the platform on which it
runs, is the essential characteristic of Java. With Java, software developers can write a pro-
gram once, and it will run on any platform that has an implementation of the Java virtual
machine. Java and XML have common goals. Java allows the portability of executable
code across platforms. Likewise, XML allows the portability of structured data across
applications. When used together, these technologies allow applications and their associ-
ated data to work on any computer. Recognizing this fact, software developers across the
world are integrating XML into their Java applications to gain Web functionality and
interoperability.

In this appendix, we show how to incorporate XML into Java applications. We use a
Java application we created, named ParserTest, to output an XML document’s con-
tents. This application is included in the Appendix A examples directory on the CD-ROM
that accompanies this book.

A.2 Introduction to XML Markup
In this section, we begin marking up data using XML. Consider a simple XML document
(first.xml) that marks up a message (Fig. A.1). We output the entire XML document
to the command line.

Outline

A.1 Introduction
A.2 Introduction to XML Markup
A.3 Parsers and Well-Formed XML Documents
A.4 Characters

A.4.1 Characters vs. Markup
A.4.2 White Space, Entity References and Built-In Entities

A.5 CDATA Sections and Processing Instructions
A.6 XML Namespaces
A.7 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises

Appendix A Creating Markup with XML 1613

The document begins with the optional XML declaration in line 1. This declaration
identifies the document as an XML document. The version information parameter spec-
ifies the version of XML used in the document.

Portability Tip A.1
Although the XML declaration is optional, it should be used to identify the XML version to
which the document conforms. Otherwise, in the future, a document without an XML decla-
ration might be assumed to conform to the latest version of XML. Errors or other serious
problems may result. A.1

Common Programming Error A.1
Placing anything, including whitespace (i.e., spaces, tabs and newlines), before an XML dec-
laration is an error. A.1

Lines 3–4 are comments, which begin with <!-- and end with -->. Comments can
be placed almost anywhere in an XML document and can span multiple lines. For example,
we could have written lines 3–4 as

<!-- Fig. A.1 : first.xml
 Simple introduction to XML markup -->

Common Programming Error A.2
Placing -- between <!-- and --> is an error. A.2

In XML, data are marked up using tags, which are names enclosed in angle brackets
(< >). Tags are used in pairs to delimit the beginning and end of markup. A tag that begins
markup is called a start tag and a tag that terminates markup is called an end tag. Examples
of start tags are <myMessage> and <message> (lines 6–7). End tags differ from start tags
in that they contain a forward slash (/) character. Examples of end tags are </message>
and </myMessage> in lines 7–8. XML documents can contain any number of tags.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. A.1 : first.xml -->
4 <!-- Simple introduction to XML markup -->
5
6 <myMessage id = "643070">
7 <message>Welcome to XML!</message>
8 </myMessage>

C:\>java -jar ParserTest.jar first.xml
<?xml version="1.0" encoding="UTF-8"?>
<!-- Fig. A.1 : first.xml -->
<!-- Simple introduction to XML markup -->
<myMessage id="T643070">
 <message>Welcome to XML!</message>
</myMessage>

Fig. A.1Fig. A.1Fig. A.1Fig. A.1 Simple XML document containing a message .

1614 Creating Markup with XML Appendix A

Good Programming Practice A.1
XML elements and attribute names should be meaningful. For example, use <address> in-
stead of <adr>. A.1

s. Common Programming Error A.3
Using spaces in an XML element name or attribute name is an error. A.3

Individual units of markup (i.e., everything from a start tag to an end tag, inclusive) are
called elements, which are the most fundamental building blocks of an XML document.
XML documents contain exactly one element—called a root element (e.g., myMessage
in lines 6–8)—that contains all other elements in the document. Elements are embedded or
nested within each other to form hierarchies—with the root element at the top of the hier-
archy. This practice allows document authors to create explicit relationships between data.

Common Programming Error A.4
Improperly nesting XML tags is an error. For example, <x><y>hello</x></y> is an er-
ror; here the nested <y> tag must end before the </x> tag. A.4

Good Programming Practice A.2
When creating an XML document, add whitespace to emphasize the document’s hierarchical
structure. This makes documents more readable to humans. A.2

Common Programming Error A.5
Attempting to create more than one root element in an XML document is an error. 0.0

Elements, such as the root element, that contain other elements are called parent ele-
ments. Elements nested within a parent element are called children. Parent elements can
have any number of children, but an individual child element can have only one parent. As
we will see momentarily, it is possible for an element to be both a parent element and a child
element. Element message is an example of a child element and element myMessage is
an example of a parent element.

Common Programming Error A.6
XML element names are case sensitive. Using the wrong mixture of case is an error. For ex-
ample, using the start tag <message> and end tag </Message> is an error. A.6

In addition to being placed between tags, data can be placed in attributes, which are
name-value pairs in start tags. Elements can have any number of attributes. In Fig. A.1,
attribute id is assigned the value "643070". XML element and attribute names can be of
any length and may contain letters, digits, underscores, hyphens and periods; they must
begin with a letter or an underscore.

Common Programming Error A.7
Not placing an attribute’s value in either single or double quotes is a syntax error. A.7

Notice that the XML declaration output differs from the XML declaration in line 1.
The optional encoding declaration specifies the method used to represent characters
electronically. UTF-8 is a character encoding typically used for Latin-alphabet characters

Appendix A Creating Markup with XML 1615

(e.g., English) that can be stored in one byte. When present, this declaration allows authors
to specify a character encoding explicitly. When omitted, either UTF-8 or UTF-16 (a
format for encoding and storing characters in two bytes) is the default. We discuss character
encoding in Section A.4.

Portability Tip A.2
The encoding declaration allows XML documents to be authored in a wide variety of hu-
man languages. A.2

A.3 Parsers and Well-Formed XML Documents
A software program called an XML parser (or an XML processor) is required to process an
XML document. XML parsers read the XML document, check its syntax, report any errors
and allow programmatic access to the document’s contents. An XML document is consid-
ered well formed if it is syntactically correct (i.e., errors are not reported by the parser when
the document is processed). Figure A.1 is an example of a well-formed XML document.

If an XML document is not well formed, the parser reports errors. For example, if the
end tag (line 8) in Fig. A.1 is omitted, the error message shown in Fig. A.2 is generated by
the parser.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. A.2 : error.xml -->
4 <!-- XML document missing an end tag -->
5
6 <myMessage id = "643070">
7 <message>Welcome to XML!</message>

C:\>java -jar ParserTest.jar error.xml
Exception in thread "main" org.xml.sax.SAXParseException: End of entity
not allowed; an end tag is missing.
 at org.apache.crimson.parser.Parser2.fatal(Parser2.java:3035)
 at org.apache.crimson.parser.Parser2.fatal(Parser2.java:3023)
 at org.apache.crimson.parser.Parser2.content(Parser2.java:1758)
 at org.apache.crimson.parser.Parser2.maybeElement(Parser2.ja-
va:1468)
 at org.apache.crimson.parser.Parser2.parseInternal(Parser2.ja-
va:499)
 at org.apache.crimson.parser.Parser2.parse(Parser2.java:304)
 at org.apache.crimson.parser.XMLReaderImpl.parse(XMLReaderImpl.ja-
va:433)

 at org.apache.crimson.jaxp.DocumentBuilderImpl.parse(DocumentBuild-
erImpl.java:179)
 at javax.xml.parsers.DocumentBuilder.parse(DocumentBuilder.ja-
va:161)
 at ParserTest.main(ParserTest.java:42)

Fig. A.2Fig. A.2Fig. A.2Fig. A.2 XML document missing an end tag.

1616 Creating Markup with XML Appendix A

Most XML parsers can be downloaded at no charge. Several Independent Software
Vendors (ISVs) have developed XML parsers, which can be found at www.oasis-
open.org/cover/xml.html#xmlparsers. In this appendix, we will use the refer-
ence implementation for the Java API for XML Processing 1.1 (JAXP).

Parsers can support the Document Object Model (DOM) and/or the Simple API for
XML (SAX) for accessing a document’s content programmatically, using languages such as
Java™, Python, and C. A DOM-based parser builds a tree structure containing the XML
document’s data in memory. A SAX-based parser processes the document and generates
events (i.e., notifications to the application) when tags, text, comments, etc., are encoun-
tered. These events return data from the XML document. Software programs can “listen”
for the events to obtain data from the XML document.

The examples we present use DOM-based parsing. In Appendix C, we provide a detailed
discussion of the DOM. We do not discuss SAX-based parsing in these appendices.

A.4 Characters
In this section, we discuss the collection of characters—called a character set—permitted
in an XML document. XML documents may contain: carriage returns, line feeds and Uni-
code® characters. Unicode is a character set created by the Unicode Consortium
(www.unicode.org), which encodes the vast majority of the world’s commercially vi-
able languages. We discuss Unicode in detail in Appendix I.

A.4.1 Characters vs. Markup
Once a parser determines that all characters in a document are legal, it must differentiate
between markup text and character data. Markup text is enclosed in angle brackets (< and
>). Character data (sometimes called element content) is the text delimited by the start tag
and end tag. Child elements are considered markup—not character data. Lines 1, 3–4 and
6–8 in Fig. A.1 contain markup text. In line 7, the tags <message> and </message>
are the markup text and the text Welcome to XML! is character data.

A.4.2 White Space, Entity References and Built-In Entities

Spaces, tabs, line feeds and carriage returns are characters commonly called whitespace char-
acters. An XML parser is required to pass all characters in a document, including whitespace
characters, to the application (e.g., a Java application) using the XML document.

Figure A.3 demonstrates that whitespace characters are passed by the parser to the appli-
cation using the XML document. In this case, we simply print the data returned by the parser.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. A.3 : whitespace.xml -->
4 <!-- Demonstrating whitespace, entities -->
5 <!-- and empty elements -->

6

Fig. A.3Fig. A.3Fig. A.3Fig. A.3 Whitespace characters in an XML document (part 1 of 2).

Appendix A Creating Markup with XML 1617

A parser can inform an application as to whether individual whitespace characters are
significant (i.e., need to be preserved) or insignificant (i.e., need not be preserved). The output
window illustrates that the majority of whitespace characters in the document are considered
significant. Line 2 was considered insignificant by the application as well as the extra space
characters in the start tag of line 13. In Appendix B, you will see that whitespace may or may
not be significant, depending on the Document Type Definition (DTD) that an XML file uses.
We will explore the subtleties of whitespace interpretation in greater detail in Appendix B.

XML element markup consists of a start tag, character data and an end tag. The ele-
ment of line 10 is called an empty element, because it does not contain character data
between its start and end tags. The forward slash character closes the tag. Alternatively, this
empty element can be written as

<company name = "Deitel & Associates, Inc."></company>

Both forms are equivalent.
Almost any character can be used in an XML document, but the characters ampersand

(&) and left angle bracket (<) are reserved in XML and may not be used in character data.
To use these symbols in character data or in attribute values, entity references must be used.
Entity references begin with an ampersand (&) and end with a semicolon (;). XML pro-
vides entity references (or built-in entities) for the ampersand (&), left-angle bracket
(<), right angle bracket (>), apostrophe (') and quotation mark (").

7 <information>
8
9 <!-- empty element -->

10 <company name = "Deitel & Associates, Inc." />
11
12 <!-- start tag contains insignificant whitespace -->
13 <city > Sudbury </city>
14
15
16 <state>Massachusetts</state>
17 </information>

C:\>java -jar ParserTest.jar whitespace.xml
<?xml version="1.0" encoding="UTF-8"?>
<!-- Fig. A.3 : whitespace.xml -->
<!-- Demonstrating whitespace, entities -->
<!-- and empty elements -->
<information>
 <!-- empty element -->
 <company name="Deitel & Associates, Inc."/>

 <!-- start tag contains insignificant whitespace -->
 <city> Sudbury </city>

 <state>Massachusetts</state>
</information>

Fig. A.3Fig. A.3Fig. A.3Fig. A.3 Whitespace characters in an XML document (part 2 of 2).

1618 Creating Markup with XML Appendix A

Common Programming Error A.8
Attempting to use the left-angle bracket (<) in character data or in attribute values is an er-
ror. A.8

Common Programming Error A.9
Attempting to use the ampersand (&)—other than in an entity reference—in character data
or in attribute values is an error. A.9

A.5 CDATA Sections and Processing Instructions
In this section, we discuss parts of an XML document, called CDATA sections, that can con-
tain text, reserved characters (e.g., <) and whitespace characters. Character data in a CDA-
TA section are not processed by the XML parser. A common use of a CDATA section is for
programming code such as JavaScript and C++, which often include the characters & and
<. Figure A.4 presents an XML document that compares text in a CDATA section with char-
acter data.

The first sample element (lines 8–12) contains C++ code as character data. Each
occurrence of <, > and & is replaced by an entity reference. Lines 15–20 use a CDATA sec-
tion to indicate a block of text that the parser should not treat as character data or markup.
CDATA sections begin with <![CDATA[and terminate with]]>. Notice that the < and &
characters (lines 18–19) do not need to be replaced by entity references.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. A.4 : cdata.xml -->
4 <!-- CDATA section containing C++ code -->
5
6 <book title = "C++ How to Program" edition = "3">
7
8 <sample>
9 // C++ comment

10 if (this->getX() < 5 && value[0] != 3)
11 cerr << this->displayError();
12 </sample>
13
14 <sample>
15 <![CDATA[
16
17 // C++ comment
18 if (this->getX() < 5 && value[0] != 3)
19 cerr << this->displayError();
20]]>
21 </sample>
22
23 C++ How to Program by Deitel & Deitel
24
25 <?button cpp = "sample.cpp" ansi = "yes"?>
26 </book>

Fig. A.4Fig. A.4Fig. A.4Fig. A.4 Using a CDATA section (part 1 of 2).

Appendix A Creating Markup with XML 1619

Common Programming Error A.10
Placing one or more spaces inside the opening <![CDATA[or closing]]> is an error. 0.0

Because a CDATA section is not parsed, it can contain almost any text, including char-
acters normally reserved for XML syntax, such as < and &. However, CDATA sections
cannot contain the text]]>, because this is used to terminate a CDATA section. For
example,

<![CDATA[
 The following characters cause an error:]]>
]]>

is an error.
Line 25 is an example of a processing instruction (PI). Processing instructions provide

a convenient syntax to allow document authors to embed application-specific data within
an XML document. Processing instructions have no effect on a document if the application
processing the document does not use them. The information contained in a PI is passed to
the application that is using the XML document.

Processing instructions are delimited by <? and ?> and consist of a PI target and a PI
value. Almost any name may be used for a PI target, except the reserved word xml (in any
mixture of case). In the current example, the PI target is named button and the PI value is
cpp = "sample.cpp" ansi = "yes". This PI might be used by an application to create
a button that, when clicked, displays the entire code listing for a file named sample.cpp.

C:\>java -jar ParserTest.jar cdata.xml
<?xml version="1.0" encoding="UTF-8"?>
<!-- Fig. A.4 : cdata.xml -->
<!-- CDATA section containing C++ code -->
<book title="C++ How to Program" edition="3">

 <sample>
 // C++ comment
 if (this->getX() < 5 && value[0] != 3)
 cerr << this->displayError();
 </sample>

 <sample>
 <![CDATA[

 // C++ comment
 if (this->getX() < 5 && value[0] != 3)
 cerr << this->displayError();
]]>
 </sample>

 C++ How to Program by Deitel & Deitel

 <?button cpp = "sample.cpp" ansi = "yes"?>
</book>

Fig. A.4Fig. A.4Fig. A.4Fig. A.4 Using a CDATA section (part 2 of 2).

1620 Creating Markup with XML Appendix A

Software Engineering Observation A.1
Processing instructions provide a means for programmers to insert application-specific in-
formation into an XML document without affecting the document’s portability. A.1

A.6 XML Namespaces
Because XML allows document authors to create their own tags, naming collisions (i.e., con-
flicts between two different elements that have the same name) can occur. For example, we
may use the element book to mark up data about one of our publications. A stamp collector
may also create an element book to mark up data about a book of stamps. If both of these
elements were used in the same document, there would be a naming collision, and it would
be difficult to determine which kind of data each element contained. In this section, we dis-
cuss a method for preventing collisions called namespaces. In Appendix D, we begin using
namespaces.

For example,

<subject>Math</subject>

and

<subject>Thrombosis</subject>

use a subject element to mark up a piece of data. However, in the first case the subject
is something one studies in school, whereas in the second case the subject is in the field of
medicine. These two subject elements can be differentiated using namespaces. For ex-
ample

<school:subject>Math</school:subject>

and

<medical:subject>Thrombosis</medical:subject>

indicate two distinct subject elements. Both school and medical are namespace
prefixes. Namespace prefixes are prepended to element and attribute names in order to
specify the namespace in which the element or attribute can be found. Each namespace pre-
fix is tied to a uniform resource identifier (URI) that uniquely identifies the namespace.
Document authors can create their own namespace prefixes, as shown in Fig. A.5 (lines 6–
7). Virtually any name may be used for a namespace, except the reserved namespace xml.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. A.5 : namespace.xml -->
4 <!-- Namespaces -->
5
6 <text:directory xmlns:text = "urn:deitel:textInfo"
7 xmlns:image = "urn:deitel:imageInfo">
8

Fig. A.5Fig. A.5Fig. A.5Fig. A.5 Demonstrating XML namespaces (part 1 of 2).

Appendix A Creating Markup with XML 1621

In Fig. A.5, two distinct file elements are differentiated using namespaces. Lines 6–
7 use the XML namespace keyword xmlns to create two namespace prefixes: text and
image. The values assigned to attributes xmlns:text and xmlns:image are called
Uniform Resource Identifiers (URIs). By definition, a URI is a series of characters used to
differentiate names.

To ensure that a namespace is unique, the document author must provide a unique URI.
Here, we use the text urn:deitel:textInfo and urn:deitel:imageInfo as
URIs. A common practice is to use Universal Resource Locators (URLs) for URIs, because
the domain names (e.g., deitel.com) used in URLs are guaranteed to be unique. For
example, lines 6–7 could have been written as

<directory xmlns:text = "http://www.deitel.com/xmlns-text"
 xmlns:image = "http://www.deitel.com/xmlns-image">

where we use URLs related to the Deitel & Associates, Inc., domain name (www.dei-
tel.com). These URLs are never visited by the parser—they only represent a series of
characters for differentiating names and nothing more. The URLs need not even exist or be
properly formed.

Lines 9–11 use the namespace prefix text to describe elements file and descrip-
tion. Notice that end tags have the namespace prefix text applied to them as well. Lines
13–16 apply namespace prefix image to elements file, description and size.

9 <text:file filename = "book.xml">
10 <text:description>A book list</text:description>
11 </text:file>
12
13 <image:file filename = "funny.jpg">
14 <image:description>A funny picture</image:description>
15 <image:size width = "200" height = "100"/>
16 </image:file>
17
18 </text:directory>

<?xml version="1.0" encoding="UTF-8"?>
<!-- Fig. A.5 : namespace.xml -->
<!-- Namespaces -->
<text:directory xmlns:text="urn:deitel:textInfo" xmlns:image="urn:dei-
tel:imageInfo">

 <text:file filename="book.xml">
 <text:description>A book list</text:description>
 </text:file>

 <image:file filename="funny.jpg">
 <image:description>A funny picture</image:description>
 <image:size width="200" height="100"/>
 </image:file>

</text:directory>

Fig. A.5Fig. A.5Fig. A.5Fig. A.5 Demonstrating XML namespaces (part 2 of 2).

1622 Creating Markup with XML Appendix A

To eliminate the need to place a namespace prefix in each element, authors may
specify a default namespace for an element and all of its child elements. Figure A.6 dem-
onstrates the use of default namespaces.

We declare a default namespace using the xmlns attribute with a URI as its value (line
6). Once this default namespace is in place, child elements that are part of the namespace
do not need a namespace prefix. Element file (line 9) is in the namespace corresponding
to the URI urn:deitel:textInfo. Compare this usage with that in Fig. A.5, where
we prefixed the file and description elements with the namespace prefix text
(lines 9–11).

The default namespace applies to all elements contained in the directory element.
However, we may use a namespace prefix to specify a different namespace for particular

1 <?xml version = "1.0"?>
2
3 <!-- Fig. A.6 : defaultnamespace.xml -->
4 <!-- Using Default Namespaces -->
5
6 <directory xmlns = "urn:deitel:textInfo"
7 xmlns:image = "urn:deitel:imageInfo">
8
9 <file filename = "book.xml">

10 <description>A book list</description>
11 </file>
12
13 <image:file filename = "funny.jpg">
14 <image:description>A funny picture</image:description>
15 <image:size width = "200" height = "100"/>
16 </image:file>
17
18 </directory>

C:\>java -jar ParserTest.jar defaultnamespace.xml
<?xml version="1.0" encoding="UTF-8"?>
<!-- Fig. A.6 : defaultnamespace.xml -->
<!-- Using Default Namespaces -->
<directory xmlns="urn:deitel:textInfo" xmlns:image="urn:deitel:image-
Info">

 <file filename="book.xml">
 <description>A book list</description>
 </file>

 <image:file filename="funny.jpg">
 <image:description>A funny picture</image:description>
 <image:size width="200" height="100"/>
 </image:file>

</directory>

Fig. A.6Fig. A.6Fig. A.6Fig. A.6 Using default namespaces.

Appendix A Creating Markup with XML 1623

elements. For example, the file element on line 13 uses the prefix image to indicate that
the element is in the namespace corresponding to the URI urn:deitel:imageInfo.

A.7 Internet and World Wide Web Resources
www.w3.org/XML
Worldwide Web Consortium Extensible Markup Language home page. Contains links to related
XML technologies, recommended books, a time-line for publications, developer discussions, transla-
tions, software, etc.

www.w3.org/Addressing
Worldwide Web Consortium addressing home page. Contains information on URIs and links to other
resources.

www.xml.com
This is one of the most popular XML sites on the Web. It has resources and links relating to all aspects
of XML, including articles, news, seminar information, tools, Frequently Asked Questions (FAQs),
etc.

www.xml.org
“The XML Industry Portal” is another popular XML site that includes links to many different XML
resources, such as news, FAQs and descriptions of XML-derived markup languages.

www.oasis-open.org/cover
Oasis XML Cover Pages home page is a comprehensive reference for many aspects of XML and its
related technologies. The site includes links to news, articles, software and events.

html.about.com/compute/html/cs/xmlandjava/index.htm
This site contains articles about XML and Java and is updated regularly.

www.w3schools.com/xml
Contains a tutorial that introduces the reader to the major aspects of XML. The tutorial contains many
examples.

java.sun.com/xml
Home page of the Sun’s JAXP and parser technology.

SUMMARY
• XML is a technology for creating markup languages to describe data of virtually any type in a

structured manner.

• XML allows document authors to describe data precisely by creating their own tags. Markup lan-
guages can be created using XML for describing almost anything.

• XML documents are commonly stored in text files that end in the extension .xml. Any text editor
can be used to create an XML document. Many software packages allow data to be saved as XML
documents.

• The XML declaration specifies the version to which the document conforms.

• All XML documents must have exactly one root element that contains all of the other elements.

• To process an XML document, a software program called an XML parser is required. The XML
parser reads the XML document, checks its syntax, reports any errors and allows access to the doc-
ument’s contents.

• An XML document is considered well formed if it is syntactically correct (i.e., the parser did not
report any errors due to missing tags, overlapping tags, etc.). Every XML document must be well
formed.

1624 Creating Markup with XML Appendix A

• Parsers may or may not support the Document Object Model (DOM) and/or the Simple API for
XML (SAX) for accessing a document’s content programmatically by using languages such as Ja-
va, Python and C.

• XML documents may contain: carriage return, the line feed and Unicode characters. Unicode is a
standard that was released by the Unicode Consortium in 1991 to expand character representation
for most of the world’s major languages. The American Standard Code for Information Inter-
change (ASCII) is a subset of Unicode.

• Markup text is enclosed in angle brackets (i.e., < and >). Character data are the text between a start
tag and an end tag. Child elements are considered markup—not character data.

• Spaces, tabs, line feeds and carriage returns are whitespace characters. In an XML document, the
parser considers whitespace characters to be either significant (i.e., preserved by the parser) or in-
significant (i.e., not preserved by the parser).

• Almost any character may be used in an XML document. However, the characters ampersand (&)
and left-angle bracket (<) are reserved in XML and may not be used in character data, except in
CDATA sections. Angle brackets are reserved for delimiting markup tags. The ampersand is re-
served for delimiting hexadecimal values that refer to a specific Unicode character. These expres-
sions are terminated with a semicolon (;) and are called entity references. The apostrophe and
double-quote characters are reserved for delimiting attribute values.

• XML provides built-in entities for ampersand (&), left-angle bracket (<), right-angle
bracket (>), apostrophe (') and quotation mark (").

• All XML start tags must have a corresponding end tag and all start- and end tags must be properly
nested. XML is case sensitive, therefore start tags and end tags must have matching capitalization.

• Elements define a structure. An element may or may not contain content (i.e., child elements or
character data). Attributes describe elements. An element may have zero, one or more attributes
associated with it. Attributes are nested within the element’s start tag. Attribute values are en-
closed in quotes—either single or double.

• XML element and attribute names can be of any length and may contain letters, digits, under-
scores, hyphens and periods; and they must begin with either a letter or an underscore.

• A processing instruction’s (PI’s) information is passed by the parser to the application using the
XML document. Document authors may create their own processing instructions. Almost any
name may be used for a PI target except the reserved word xml (in any mixture of case). Process-
ing instructions allow document authors to embed application-specific data within an XML docu-
ment. This data are not intended to be readable by humans, but readable by applications.

• CDATA sections may contain text, reserved characters (e.g., <), words and whitespace characters.
XML parsers do not process the text in CDATA sections. CDATA sections allow the document au-
thor to include data that is not intended to be parsed. CDATA sections cannot contain the text]]>.

• Because document authors can create their own tags, naming collisions (e.g., conflicts that arise
when document authors use the same names for elements) can occur. Namespaces provide a means
for document authors to prevent naming collisions. Document authors create their own namespac-
es. Virtually any name may be used for a namespace, except the reserved namespace xml.

• A Universal Resource Identifier (URI) is a series of characters used to differentiate names. URIs
are used with namespaces.

TERMINOLOGY
<![CDATA[and]]> to delimit a CDATA

section
ampersand (&)
angle brackets (< and >)

<? and ?> to delimit a processing instruction apostrophe (')

Appendix A Creating Markup with XML 1625

SELF-REVIEW EXERCISES
A.1 State whether the following are true or false. If false, explain why.

a) XML is a technology for creating markup languages.
b) XML markup text is delimited by forward and backward slashes (/ and \).
c) All XML start tags must have corresponding end tags.
d) Parsers check an XML document’s syntax and may support the Document Object Model

and/or the Simple API for XML.
e) An XML document is considered well formed if it contains whitespace characters.
f) SAX-based parsers process XML documents and generate events when tags, text, com-

ments, etc., are encountered.
g) When creating new XML tags, document authors must use the set of XML tags provided

by the W3C.
h) The pound character (#), the dollar sign ($), the ampersand (&), the greater-than symbol

(>) and the less-than symbol (<) are examples of XML reserved characters.
i) Any text file is automatically considered to be an XML document by a parser.

A.2 Fill in the blanks in each of the following statements:
a) A/An processes an XML document.
b) Valid characters that can be used in an XML document are the carriage return, line feed

and characters.
c) An entity reference must be proceeded by a/an character.
d) A/An is delimited by <? and ?>.
e) Text in a/an section is not parsed.

application parser
ASCII (American Standard Code for Information

Interchange)
PI target
PI value

attribute processing instruction (PI)
built-in entity quotation mark (")
CDATA section reserved character
character data reserved keyword
child reserved namespace
child element right angle bracket (>)
comment root element
container element SAX-based parser
content significant whitespace character
element Simple API for XML (SAX)
empty element start tag
end tag structured data
entity references tree structure of an XML document
insignificant whitespace character Unicode
Java API for XML Parsing (JAXP) Unicode Consortium
left angle bracket (<) Universal Resource Identifier (URI)
markup language XML
markup text XML declaration
namespace XML document
namespace prefix XML namespace
namespace xml
naming collision

XML parser
XML processor

node XML version

1626 Creating Markup with XML Appendix A

f) An XML document is considered if it is syntactically correct.
g) help document authors prevent element-naming collisions.
h) A/An tag does not contain character data.
i) The built-entity for the ampersand is .

A.3 Identify and correct the error(s) in each of the following:
a) <my Tag>This is my custom markup<my Tag>
b) <!PI value!> <!-- a sample processing instruction -->
c) <myXML>I know XML!!!</MyXML>
d) <CDATA>This is a CDATA section.</CDATA>
e) <xml>x < 5 && x > y</xml> <!-- mark up a Java condition **>

ANSWERS TO SELF-REVIEW EXERCISES
A.4 a)True. b) False. In an XML document, markup text is any text delimited by angle brack-
ets (< and >), with a forward slash being used in the end tag. c) True. d) True. e) False. An XML
document is considered well formed if it is parsed successfully. f) True. g) False. When creating new
tags, programmers may use any valid name except the reserved word xml (in any mixture of case).
h) False. XML reserved characters include the ampersand (&) and the left angle bracket (<), but not
the right-angle bracket (>), # and $. i) False. The text file must be parsable by an XML parser. If pars-
ing fails, the document cannot be considered an XML document.

A.5 a) parser. b) Unicode. c) ampersand (&). d) processing instruction. e) CDATA. f) well formed.
g) namespaces. h) empty. i) &.

A.6 a) Element name my tag contains a space. The forward slash, /, is missing in the end tag.
The corrected markup is <myTag>This is my custom markup</myTag>

b) Incorrect delimiters for a processing instruction. The corrected markup is
<?PI value?> <!-- a sample processing instruction -->

c) Incorrect mixture of case in end tag. The corrected markup is
<myXML>I know XML!!!</myXML> or <MyXML>I know XML!!!</MyXML>

d) Incorrect syntax for a CDATA section. The corrected markup is
<![CDATA[This is a CDATA section.]]>

e) The name xml is reserved and cannot be used as an element. The characters <, & and >
must be represented using entities. The closing comment delimiter should be two hy-
phens—not two stars. Corrected markup is
<someName>x < 5 && x > y</someName>
<!-- mark up a Java condition -->

B
Document Type

Definition (DTD)

Objectives
• To understand what a DTD is.
• To be able to write DTDs.
• To be able to declare elements and attributes in a

DTD.
• To understand the difference between general entities

and parameter entities.
• To be able to use conditional sections with entities.
• To be able to use NOTATIONs.
• To understand how an XML document’s whitespace

is processed.
To whom nothing is given, of him can nothing be required.
Henry Fielding

Like everything metaphysical, the harmony between thought
and reality is to be found in the grammar of the language.
Ludwig Wittgenstein

Grammar, which knows how to control even kings.
Molière

1628 Document Type Definition (DTD) Appendix B

B.1 Introduction
In this appendix, we discuss Document Type Definitions (DTDs), which define an XML
document’s structure (e.g., what elements, attributes, etc. are permitted in the document).
An XML document is not required to have a corresponding DTD. However, DTDs are of-
ten recommended to ensure document conformity, especially in business-to-business
(B2B) transactions, where XML documents are exchanged. DTDs specify an XML docu-
ment’s structure and are themselves defined using EBNF (Extended Backus-Naur Form)
grammar—not the XML syntax introduced in Appendix A.

B.2 Parsers, Well-Formed and Valid XML Documents
Parsers are generally classified as validating or nonvalidating. A validating parser is able
to read a DTD and determine whether the XML document conforms to it. If the document
conforms to the DTD, it is referred to as valid. If the document fails to conform to the DTD
but is syntactically correct, it is well formed, but not valid. By definition, a valid document
is well formed.

A nonvalidating parser is able to read the DTD, but cannot check the document against
the DTD for conformity. If the document is syntactically correct, it is well formed.

In this appendix, we use a Java program we created to check a document conformance.
This program, named Validator.jar, is located in the Appendix B examples directory.
Validator.jar uses the reference implementation for the Java API for XML Pro-
cessing 1.1, which requires crimson.jar and jaxp.jar.

Outline

B.1 Introduction
B.2 Parsers, Well-Formed and Valid XML Documents
B.3 Document Type Declaration
B.4 Element Type Declarations

B.4.1 Sequences, Pipe Characters and Occurrence Indicators
B.4.2 EMPTY, Mixed Content and ANY

B.5 Attribute Declarations
B.6 Attribute Types

B.6.1 Tokenized Attribute Type (ID, IDREF, ENTITY, NMTOKEN)
B.6.2 Enumerated Attribute Types

B.7 Conditional Sections
B.8 Whitespace Characters
B.9 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises

Appendix B Document Type Definition (DTD) 1629

B.3 Document Type Declaration
DTDs are introduced into XML documents using the document type declaration (i.e.,
DOCTYPE). A document type declaration is placed in the XML document’s prolog (i.e., all
lines preceding the root element), begins with <!DOCTYPE and ends with >. The docu-
ment type declaration can point to declarations that are outside the XML document (called
the external subset) or can contain the declaration inside the document (called the internal
subset). For example, an internal subset might look like

<!DOCTYPE myMessage [
<!ELEMENT myMessage (#PCDATA)>

]>

The first myMessage is the name of the document type declaration. Anything inside
the square brackets ([]) constitutes the internal subset. As we will see momentarily, ELE-
MENT and #PCDATA are used in “element declarations.”

External subsets physically exist in a different file that typically ends with the.dtd
extension, although this file extension is not required. External subsets are specified using
either keyword the keyword SYSTEM or the keyword PUBLIC. For example, the DOC-
TYPE external subset might look like

<!DOCTYPE myMessage SYSTEM "myDTD.dtd">

which points to the myDTD.dtd document. The PUBLIC keyword indicates that the DTD
is widely used (e.g., the DTD for HTML documents). The DTD may be made available in
well-known locations for more efficient downloading. We used such a DTD in Chapters 9
and 10 when we created XHTML documents. The DOCTYPE

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

uses the PUBLIC keyword to reference the well-known DTD for XHTML version 1.0.
XML parsers that do not have a local copy of the DTD may use the URL provided to down-
load the DTD to perform validation.

Both the internal and external subset may be specified at the same time. For example,
the DOCTYPE

<!DOCTYPE myMessage SYSTEM "myDTD.dtd" [
<!ELEMENT myElement (#PCDATA)>

]>

contains declarations from the myDTD.dtd document, as well as an internal declaration.

Software Engineering Observation B.1
The document type declaration’s internal subset plus its external subset form the DTD. 0.0

Software Engineering Observation B.2
The internal subset is visible only within the document in which it resides. Other external
documents cannot be validated against it. DTDs that are used by many documents should be
placed in the external subset. 0.0

1630 Document Type Definition (DTD) Appendix B

B.4 Element Type Declarations
Elements are the primary building blocks used in XML documents and are declared in a
DTD with element type declarations (ELEMENTs). For example, to declare element
myMessage, we might write

<!ELEMENT myElement (#PCDATA)>

The element name (e.g., myElement) that follows ELEMENT is often called a generic
identifier. The set of parentheses that follow the element name specify the element’s al-
lowed content and is called the content specification. Keyword PCDATA specifies that the
element must contain parsable character data. These data will be parsed by the XML pars-
er, therefore any markup text (i.e., <, >, &, etc.) will be treated as markup. We will discuss
the content specification in detail momentarily.

Common Programming Error B.1
Attempting to use the same element name in multiple element type declarations is an error. 0.0

Figure B.1 lists an XML document that contains a reference to an external DTD in the
DOCTYPE. We use Validator.jar to check the document’s conformity against its DTD.

The document type declaration (line 6) specifies the name of the root element as
MyMessage. The element myMessage (lines 8–10) contains a single child element
named message (line 9).

 Line 3 of the DTD (Fig. B.2) declares element myMessage. Notice that the content
specification contains the name message. This indicates that element myMessage con-
tains exactly one child element named message. Because myMessage can have only an
element as its content, it is said to have element content. Line 4, declares element message
whose content is of type PCDATA.

Common Programming Error B.2
Having a root element name other than the name specified in the document type declaration
is an error. 0.0

If an XML document’s structure is inconsistent with its corresponding DTD, but is
syntactically correct, the document is only well formed—not valid. Figure B.3 shows the
messages generated when the required message element is omitted.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. B.1: welcome.xml -->
4 <!-- Using an external subset -->
5
6 <!DOCTYPE myMessage SYSTEM "welcome.dtd">
7
8 <myMessage>
9 <message>Welcome to XML!</message>

10 </myMessage>

Fig. B.1Fig. B.1Fig. B.1Fig. B.1 XML document declaring its associated DTD.

Appendix B Document Type Definition (DTD) 1631

B.4.1 Sequences, Pipe Characters and Occurrence Indicators

DTDs allow the document author to define the order and frequency of child elements. The
comma (,)—called a sequence—specifies the order in which the elements must occur. For
example,

<!ELEMENT classroom (teacher, student)>

specifies that element classroom must contain exactly one teacher element followed
by exactly one student element. The content specification can contain any number of
items in sequence.

Similarly, choices are specified using the pipe character (|), as in

<!ELEMENT dessert (iceCream | pastry)>

which specifies that element dessert must contain either one iceCream element or one
pastry element, but not both. The content specification may contain any number of pipe
character-separated choices.

An element’s frequency (i.e., number of occurrences) is specified by using either the
plus sign (+), asterisk (*) or question mark (?) occurrence indicator (Fig. B.4).

1 <!-- Fig. B.2: welcome.dtd -->
2 <!-- External declarations -->
3 <!ELEMENT myMessage (message)>
4 <!ELEMENT message (#PCDATA)>

C:\>java -jar Validator.jar welcome.xml
Document is valid.

Fig. B.2Fig. B.2Fig. B.2Fig. B.2 Validation by using an external DTD.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. B.3 : welcome-invalid.xml -->
4 <!-- well-formed, but invalid document -->
5
6 <!DOCTYPE myMessage SYSTEM "welcome.dtd">
7
8 <!-- Root element missing child element message -->
9 <myMessage>

10 </myMessage>

C:\>java -jar Validator.jar welcome-invalid.xml
error: Element "myMessage" requires additional elements.

Fig. B.3Fig. B.3Fig. B.3Fig. B.3 Invalid XML document.

1632 Document Type Definition (DTD) Appendix B

A plus sign indicates one or more occurrences. For example,

<!ELEMENT album (song+)>

specifies that element album contains one or more song elements.
The frequency of an element group (i.e., two or more elements that occur in some com-

bination) is specified by enclosing the element names inside the content specification with
parentheses, followed by either the plus sign, asterisk or question mark. For example,

<!ELEMENT album (title, (songTitle, duration)+)>

indicates that element album contains one title element followed by any number of
songTitle/duration element groups. At least one songTitle/duration group
must follow title, and in each of these element groups, the songTitle must precede
the duration. An example of markup that conforms to this is

<album>
 <title>XML Classical Hits</title>

 <songTitle>XML Overture</songTitle>
 <duration>10</duration>

 <songTitle>XML Symphony 1.0</songTitle>
 <duration>54</duration>
</album>

which contains one title element followed by two songTitle/duration groups.
The asterisk (*) character indicates an optional element that, if used, can occur any number
of times. For example,

<!ELEMENT library (book*)>

indicates that element library contains any number of book elements, including the
possibility of none at all. Markup examples that conform to this mark up are

<library>
<book>The Wealth of Nations</book>
<book>The Iliad</book>
<book>The Jungle</book>

</library>

Occurrence Indicator Description

Plus sign (+) An element can appear any number of times, but must appear at least
once (i.e., the element appears one or more times).

Asterisk (*) An element is optional, and if used, the element can appear any
number of times (i.e., the element appears zero or more times).

Question mark (?) An element is optional, and if used, the element can appear only
once (i.e., the element appears zero or one times).

Fig. B.4Fig. B.4Fig. B.4Fig. B.4 Occurrence indicators.

Appendix B Document Type Definition (DTD) 1633

and

<library></library>

Optional elements that, if used, may occur only once are followed by a question mark
(?). For example,

<!ELEMENT seat (person?)>

indicates that element seat contains at most one person element. Examples of markup
that conform to this are

<seat>
<person>Jane Doe</person>

</seat>

and

<seat></seat>

Now we consider three more element type declarations and provide a declaration for
each. The declaration

<!ELEMENT class (number, (instructor | assistant+),
 (credit | noCredit))>

specifies that a class element must contain a number element, either one instructor
element or any number of assistant elements and either one credit element or one
noCredit element. Markup examples that conform to this are

<class>
<number>123</number>
<instructor>Dr. Harvey Deitel</instructor>
<credit>4</credit>

</class>

and

<class>
<number>456</number>
<assistant>Tem Nieto</assistant>

 <assistant>Paul Deitel</assistant>
<credit>3</credit>

</class>

The declaration

<!ELEMENT donutBox (jelly?, lemon*,
 ((creme | sugar)+ | glazed))>

specifies that element donutBox can have zero or one jelly elements, followed by zero
or more lemon elements, followed by one or more creme or sugar elements or exactly
one glazed element. Markup examples that conform to this are

1634 Document Type Definition (DTD) Appendix B

<donutBox>
<jelly>grape</jelly>
<lemon>half-sour</lemon>

 <lemon>sour</lemon>
 <lemon>half-sour</lemon>

<glazed>chocolate</glazed>
</donutBox>

and

<donutBox>
<sugar>semi-sweet</sugar>

 <creme>whipped</creme>
 <sugar>sweet</sugar>
</donutBox>

The declaration

<!ELEMENT farm (farmer+, (dog* | cat?), pig*,
 (goat | cow)?,(chicken+ | duck*))>

indicates that element farm can have one or more farmer elements, any number of op-
tional dog elements or an optional cat element, any number of optional pig elements, an
optional goat or cow element and one or more chicken elements or any number of op-
tional duck elements. Examples of markup that conform to this are

<farm>
<farmer>Jane Doe</farmer>
<farmer>John Doe</farmer>

 <cat>Lucy</cat>
<pig>Bo</pig>

 <chicken>Jill</chicken>
</farm>

and

<farm>
<farmer>Red Green</farmer>

 <duck>Billy</duck>
 <duck>Sue</duck>
</farm>

B.4.2 EMPTY, Mixed Content and ANY

Elements must be further refined by specifying the types of content they contain. In the pre-
vious section, we introduced element content, indicating that an element can contain one or
more child elements as its content. In this section, we introduce content specification types
for describing nonelement content.

In addition to element content, three other types of content exist: EMPTY, mixed con-
tent and ANY. Keyword EMPTY declares empty elements, which do not contain character
data or child elements. For example,

<!ELEMENT oven EMPTY>

Appendix B Document Type Definition (DTD) 1635

declares element oven to be an empty element. The markup for an oven element would
appear as

<oven/>

or

<oven></oven>

in an XML document conforming to this declaration.
An element can also be declared as having mixed content. Such elements may contain

any combination of elements and PCDATA. For example, the declaration

<!ELEMENT myMessage (#PCDATA | message)*>

indicates that element myMessage contains mixed content. Markup conforming to this
declaration might look like

<myMessage>Here is some text, some
 <message>other text</message>and
 <message>even more text</message>.
</myMessage>

Element myMessage contains two message elements and three instances of character
data. Because of the *, element myMessage could have contained nothing.

Figure B.5 specifies the DTD as an internal subset (lines 6–10). In the prolog (line 1),
we use the standalone attribute with a value of yes. An XML document is standalone
if it does not reference an external subset. This DTD defines three elements: one that con-
tains mixed content and two that contain parsed character data.

1 <?xml version = "1.0" standalone = "yes"?>
2
3 <!-- Fig. B.5 : mixed.xml -->
4 <!-- Mixed content type elements -->
5
6 <!DOCTYPE format [
7 <!ELEMENT format (#PCDATA | bold | italic)*>
8 <!ELEMENT bold (#PCDATA)>
9 <!ELEMENT italic (#PCDATA)>

10]>
11
12 <format>
13 Book catalog entry:
14 <bold>XML</bold>
15 <italic>XML How to Program</italic>
16 This book carefully explains XML-based systems development.
17 </format>

C:\>java -jar Validator.jar mixed.xml
Document is valid.

Fig. B.5Fig. B.5Fig. B.5Fig. B.5 Example of a mixed-content element.

1636 Document Type Definition (DTD) Appendix B

Line 7 declares element format as a mixed content element. According to the dec-
laration, the format element may contain either parsed character data (PCDATA), ele-
ment bold or element italic. The asterisk indicates that the content can occur zero
or more times. Lines 8 and 9 specify that bold and italic elements only have
PCDATA for their content specification—they cannot contain child elements. Despite the
fact that elements with PCDATA content specification cannot contain child elements,
they are still considered to have mixed content. The comma (,), plus sign (+) and ques-
tion mark (?) occurrence indicators cannot be used with mixed-content elements that
contain only PCDATA.

Figure B.6 shows the results of changing the first pipe character in line 7 of Fig. B.5 to
a comma and the result of removing the asterisk. Both of these are illegal DTD syntax.

Common Programming Error B.3
When declaring mixed content, not listing PCDATA as the first item is an error. B.3

An element declared as type ANY can contain any content, including PCDATA, ele-
ments or a combination of elements and PCDATA. Elements with ANY content can also be
empty elements.

Software Engineering Observation B.3
Elements with ANY content are commonly used in the early stages of DTD development. Doc-
ument authors typically replace ANY content with more specific content as the DTD evolves. B.3

B.5 Attribute Declarations
In this section, we discuss attribute declarations. An attribute declaration specifies an at-
tribute list for an element by using the ATTLIST attribute list declaration. An element can
have any number of attributes. For example,

<!ELEMENT x EMPTY>
<!ATTLIST x y CDATA #REQUIRED>

1 <?xml version = "1.0" standalone = "yes"?>
2
3 <!-- Fig. B.6 : invalid-mixed.xml -->
4 <!-- Mixed content type elements -->
5
6 <!DOCTYPE format [
7 <!ELEMENT format (#PCDATA | bold, italic)>
8 <!ELEMENT bold (#PCDATA)>
9 <!ELEMENT italic (#PCDATA)>

10]>
11
12 <format>
13 Book catalog entry:
14 <bold>XML</bold>
15 <italic>XML How to Program</italic>
16 This book carefully explains XML-based systems development.
17 </format>

Fig. B.6Fig. B.6Fig. B.6Fig. B.6 Changing a pipe character to a comma in a DTD (part 1 of 2).

Appendix B Document Type Definition (DTD) 1637

declares EMPTY element x. The attribute declaration specifies that y is an attribute of x.
Keyword CDATA indicates that y can contain any character text except for the <, >, &, ' and
" characters. Note that the CDATA keyword in an attribute declaration has a different mean-
ing than the CDATA section in an XML document we introduced in Appendix A. Recall that
in a CDATA section all characters are legal except the]]> end tag. Keyword #REQUIRED
specifies that the attribute must be provided for element x. We will say more about other
keywords momentarily.

Figure B.7 demonstrates how to specify attribute declarations for an element. Line 9
declares attribute id for element message. Attribute id contains required CDATA.
Attribute values are normalized (i.e., consecutive whitespace characters are combined into
one whitespace character). We discuss normalization in detail in Section B.8. Line 13
assigns attribute id the value "6343070".

DTDs allow document authors to specify an attribute’s default value using attribute
defaults, which we briefly touched upon in the previous section. Keywords #IMPLIED,
#REQUIRED and #FIXED are attribute defaults. Keyword #IMPLIED specifies that if the
attribute does not appear in the element, then the application using the XML document can
use whatever value (if any) it chooses.

Keyword #REQUIRED indicates that the attribute must appear in the element. The
XML document is not valid if the attribute is missing. For example, the markup

<message>XML and DTDs</message>

C:>java -jar Validator.jar invalid-mixed.xml
fatal error: Mixed content model for "format" must end with ")*", not
",".

Fig. B.6Fig. B.6Fig. B.6Fig. B.6 Changing a pipe character to a comma in a DTD (part 2 of 2).

1 <?xml version = "1.0"?>
2
3 <!-- Fig. B.7: welcome2.xml -->
4 <!-- Declaring attributes -->
5
6 <!DOCTYPE myMessage [
7 <!ELEMENT myMessage (message)>
8 <!ELEMENT message (#PCDATA)>
9 <!ATTLIST message id CDATA #REQUIRED>

10]>
11
12 <myMessage>
13
14 <message id = "6343070">
15 Welcome to XML!
16 </message>
17
18 </myMessage>

Fig. B.7Fig. B.7Fig. B.7Fig. B.7 Declaring attributes (part 1 of 2).

1638 Document Type Definition (DTD) Appendix B

when checked against the DTD attribute list declaration

<!ATTLIST message number CDATA #REQUIRED>

does not conform to it because attribute number is missing from element message.
An attribute declaration with default value #FIXED specifies that the attribute value

is constant and cannot be different in the XML document. For example,

<!ATTLIST address zip #FIXED "02115">

indicates that the value "02115" is the only value attribute zip can have. The XML doc-
ument is not valid if attribute zip contains a value different from "02115". If element
address does not contain attribute zip, the default value "02115" is passed to the ap-
plication that is using the XML document’s data.

B.6 Attribute Types
Attribute types are classified as either string (CDATA), tokenized or enumerated. String at-
tribute types do not impose any constraints on attribute values, other than disallowing the
< and & characters. Entity references (e.g., <, &, etc.) must be used for these char-
acters. Tokenized attribute types impose constraints on attribute values, such as which char-
acters are permitted in an attribute name. We discuss tokenized attribute types in the next
section. Enumerated attribute types are the most restrictive of the three types. They can take
only one of the values listed in the attribute declaration. We discuss enumerated attribute
types in Section B.6.2.

B.6.1 Tokenized Attribute Type (ID, IDREF, ENTITY, NMTOKEN)

Tokenized attribute types allow a DTD author to restrict the values used for attributes. For
example, an author may want to have a unique ID for each element or allow an attribute to
have only one or two different values. Four different tokenized attribute types exist: ID,
IDREF, ENTITY and NMTOKEN.

Tokenized attribute type ID uniquely identifies an element. Attributes with type
IDREF point to elements with an ID attribute. A validating parser verifies that every ID
attribute type referenced by IDREF is in the XML document.

Figure B.8 lists an XML document that uses ID and IDREF attribute types. Element
bookstore consists of element shipping and element book. Each shipping ele-
ment describes who shipped the book and how long it will take for the book to arrive.

Line 9 declares attribute shipID as an ID type attribute (i.e., each shipping ele-
ment has a unique identifier). Lines 27–37 declare book elements with attribute
shippedBy (line 11) of type IDREF. Attribute shippedBy points to one of the ship-
ping elements by matching its shipID attribute.

C:\>java -jar Validator.jar welcome2.xml
Document is valid.

Fig. B.7Fig. B.7Fig. B.7Fig. B.7 Declaring attributes (part 2 of 2).

Appendix B Document Type Definition (DTD) 1639

Common Programming Error B.4
Using the same value for multiple ID attributes is a logic error: The document validated
against the DTD is not valid. B.4

The DTD contains an entity declaration for each of the entities isbnXML, isbnJava
and isbnCPP. The parser replaces the entity references with their values. These entities
are called general entities.

Figure B.9 is a variation of Fig. B.8 that assigns shippedBy (line 32) the value
"bug". No shipID attribute has a value "bug", which results in a invalid XML document.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. B.8: IDExample.xml -->
4 <!-- Example for ID and IDREF values of attributes -->
5
6 <!DOCTYPE bookstore [
7 <!ELEMENT bookstore (shipping+, book+)>
8 <!ELEMENT shipping (duration)>
9 <!ATTLIST shipping shipID ID #REQUIRED>

10 <!ELEMENT book (#PCDATA)>
11 <!ATTLIST book shippedBy IDREF #IMPLIED>
12 <!ELEMENT duration (#PCDATA)>
13 <!ENTITY isbnXML "0-13-028417-3">
14 <!ENTITY isbnJava "0-13-034151-7">
15 <!ENTITY isbnCPP "0-13-0895717-3">
16]>
17
18 <bookstore>
19 <shipping shipID = "bug2bug">
20 <duration>2 to 4 days</duration>
21 </shipping>
22
23 <shipping shipID = "Deitel">
24 <duration>1 day</duration>
25 </shipping>
26
27 <book shippedBy = "Deitel" isbn = "&isbnJava;">
28 Java How to Program 4th edition.
29 </book>
30
31 <book shippedBy = "Deitel" isbn = "&isbnXML;">
32 XML How to Program.
33 </book>
34
35 <book shippedBy = "bug2bug" isbn = "&isbnCPP;">
36 C++ How to Program 3rd edition.
37 </book>
38 </bookstore>

C:\>java -jar Validator.jar IDExample.xml
Document is valid.

Fig. B.8Fig. B.8Fig. B.8Fig. B.8 XML document with ID and IDREF attribute types (part 1 of 2).

1640 Document Type Definition (DTD) Appendix B

Common Programming Error B.5
Not beginning a type attribute ID ’s value with a letter, an underscore (_) or a colon (:) is
an error. B.5

Common Programming Error B.6
Providing more than one ID attribute type for an element is an error. B.6

Common Programming Error B.7
Declaring attributes of type ID as #FIXED is an error. B.7

Related to entities are entity attributes, which indicate that an attribute has an entity for
its value. Entity attributes are specified by using tokenized attribute type ENTITY. The pri-
mary constraint placed on ENTITY attribute types is that they must refer to external
unparsed entities. An external unparsed entity is defined in the external subset of a DTD
and consists of character data that will not be parsed by the XML parser.

Figure B.10 lists an XML document that demonstrates the use of entities and entity
attribute types.

C:\>java -jar ParserTest.jar idexample.xml
<?xml version="1.0" encoding="UTF-8"?>
<!-- Fig. B.8: IDExample.xml -->
<!-- Example for ID and IDREF values of attributes -->
<bookstore>
 <shipping shipID="bug2bug">
 <duration>2 to 4 days</duration>
 </shipping>

 <shipping shipID="Deitel">
 <duration>1 day</duration>
 </shipping>

 <book shippedBy="Deitel" isbn="0-13-034151-7">
 Java How to Program 4th edition.
 </book>

 <book shippedBy="Deitel" isbn="0-13-028417-3">
 XML How to Program.
 </book>

 <book shippedBy="bug2bug" isbn="0-13-0895717-3">
 C++ How to Program 3rd edition.
 </book>
</bookstore>

Fig. B.8Fig. B.8Fig. B.8Fig. B.8 XML document with ID and IDREF attribute types (part 2 of 2).

1 <?xml version = "1.0"?>
2

Fig. B.9Fig. B.9Fig. B.9Fig. B.9 Error displayed when an invalid ID is referenced (part 1 of 2).

Appendix B Document Type Definition (DTD) 1641

Line 7 declares a notation named html that refers to a SYSTEM identifier named
"iexplorer". Notations provide information that an application using the XML docu-
ment can use to handle unparsed entities. For example, the application using this document
may choose to open Internet Explorer and load the document tour.html (line 8).

Line 8 declares an entity named city that refers to an external document
(tour.html). Keyword NDATA indicates that the content of this external entity is not
XML. The name of the notation (e.g., html) that handles this unparsed entity is placed to
the right of NDATA.

Line 11 declares attribute tour for element company. Attribute tour specifies a
required ENTITY attribute type. Line 16 assigns entity city to attribute tour. If we
replaced line 16 with

3 <!-- Fig. B.9: invalid-IDExample.xml -->
4 <!-- Example for ID and IDREF values of attributes -->
5
6 <!DOCTYPE bookstore [
7 <!ELEMENT bookstore (shipping+, book+)>
8 <!ELEMENT shipping (duration)>
9 <!ATTLIST shipping shipID ID #REQUIRED>

10 <!ELEMENT book (#PCDATA)>
11 <!ATTLIST book shippedBy IDREF #IMPLIED>
12 <!ELEMENT duration (#PCDATA)>
13]>
14
15 <bookstore>
16 <shipping shipID = "bug2bug">
17 <duration>2 to 4 days</duration>
18 </shipping>
19
20 <shipping shipID = "Deitel">
21 <duration>1 day</duration>
22 </shipping>
23
24 <book shippedBy = "Deitel">
25 Java How to Program 4th edition.
26 </book>
27
28 <book shippedBy = "Deitel">
29 C How to Program 3rd edition.
30 </book>
31
32 <book shippedBy = "bug">
33 C++ How to Program 3rd edition.
34 </book>
35 </bookstore>

C:\>java -jar Validator.jar invalid-IDExample.xml
error: No element has an ID attribute with value "bug".

Fig. B.9Fig. B.9Fig. B.9Fig. B.9 Error displayed when an invalid ID is referenced (part 2 of 2).

1642 Document Type Definition (DTD) Appendix B

<company tour = "country">

the document fails to conform to the DTD because entity country does not exist.
Figure B.11 shows the error message generated when the above replacement is made.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. B.10: entityExample.xml -->
4 <!-- ENTITY and ENTITY attribute types -->
5
6 <!DOCTYPE database [
7 <!NOTATION xhtml SYSTEM "iexplorer">
8 <!ENTITY city SYSTEM "tour.html" NDATA xhtml>
9 <!ELEMENT database (company+)>

10 <!ELEMENT company (name)>
11 <!ATTLIST company tour ENTITY #REQUIRED>
12 <!ELEMENT name (#PCDATA)>
13]>
14
15 <database>
16 <company tour = "city">
17 <name>Deitel & Associates, Inc.</name>
18 </company>
19 </database>

C:\>java -jar Validator.jar entityexample.xml
Document is valid.

Fig. B.10Fig. B.10Fig. B.10Fig. B.10 XML document that contains an ENTITY attribute type.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. B.11: invalid-entityExample.xml -->
4 <!-- ENTITY and ENTITY attribute types -->
5
6 <!DOCTYPE database [
7 <!NOTATION xhtml SYSTEM "iexplorer">
8 <!ENTITY city SYSTEM "tour.html" NDATA xhtml>
9 <!ELEMENT database (company+)>

10 <!ELEMENT company (name)>
11 <!ATTLIST company tour ENTITY #REQUIRED>
12 <!ELEMENT name (#PCDATA)>
13]>
14
15 <database>
16 <company tour = "country">
17 <name>Deitel & Associates, Inc.</name>
18 </company>
19 </database>

Fig. B.11Fig. B.11Fig. B.11Fig. B.11 Error generated when a DTD contains a reference to an undefined entity
(part 1 of 2).

Appendix B Document Type Definition (DTD) 1643

Common Programming Error B.8
Not assigning an unparsed external entity to an attribute with attribute type ENTITY results
in an invalid XML document. 0.0

Attribute type ENTITIES may also be used in a DTD to indicate that an attribute has
multiple entities for its value. Each entity is separated by a space. For example

<!ATTLIST directory file ENTITIES #REQUIRED>

specifies that attribute file is required to contain multiple entities. An example of markup
that conforms to this might look like

<directory file = "animations graph1 graph2">

where animations, graph1 and graph2 are entities declared in a DTD.
A more restrictive attribute type is NMTOKEN (name token), whose value consists of let-

ters, digits, periods, underscores, hyphens and colon characters. For example, consider the
declaration

<!ATTLIST sportsClub phone NMTOKEN #REQUIRED>

which indicates sportsClub contains a required NMTOKEN phone attribute. An exam-
ple of markup that conforms to this is

<sportsClub phone = "555-111-2222">

An example that does not conform to this is

<sportsClub phone = "555 555 4902">

because spaces are not allowed in an NMTOKEN attribute.
Similarly, when an NMTOKENS attribute type is declared, the attribute may contain

multiple string tokens separated by spaces.

B.6.2 Enumerated Attribute Types

Enumerated attribute types declare a list of possible values an attribute can have. The at-
tribute must be assigned a value from this list to conform to the DTD. Enumerated type val-
ues are separated by pipe characters (|). For example, the declaration

<!ATTLIST person gender (M | F) "F">

contains an enumerated attribute type declaration that allows attribute gender to have ei-
ther the value M or the value F. A default value of "F" is specified to the right of the ele-
ment attribute type. Alternatively, a declaration such as

<!ATTLIST person gender (M | F) #IMPLIED>

C:\>java -jar Validator.jar invalid-entityexample.xml
error: Attribute value "country" does not name an unparsed entity.

Fig. B.11Fig. B.11Fig. B.11Fig. B.11 Error generated when a DTD contains a reference to an undefined entity
(part 2 of 2).

1644 Document Type Definition (DTD) Appendix B

does not provide a default value for gender. This type of declaration might be used to val-
idate a marked-up mailing list that contains first names, last names, addresses, etc. The ap-
plication that uses such a mailing list may want to precede each name by either Mr., Ms. or
Mrs. However, some first names are gender neutral (e.g., Chris, Sam, etc.), and the appli-
cation may not know the person’s gender. In this case, the application has the flexibility
to process the name in a gender-neutral way.

NOTATION is also an enumerated attribute type. For example, the declaration

<!ATTLIST book reference NOTATION (JAVA | C) "C">

indicates that reference must be assigned either JAVA or C. If a value is not assigned,
C is specified as the default. The notation for C might be declared as

<!NOTATION C SYSTEM
 "http://www.deitel.com/books/2000/chtp3/chtp3_toc.htm">

B.7 Conditional Sections
DTDs provide the ability to include or exclude declarations using conditional sections.
Keyword INCLUDE specifies that declarations are included, while keyword IGNORE speci-
fies that declarations are excluded. For example, the conditional section

<![INCLUDE[
<!ELEMENT name (#PCDATA)>
]]>

directs the parser to include the declaration of element name.
Similarly, the conditional section

<![IGNORE[
<!ELEMENT message (#PCDATA)>
]]>

directs the parser to exclude the declaration of element message. Conditional sections are
often used with entities, as demonstrated in Fig. B.12.

1 <!-- Fig. B.12: conditional.dtd -->
2 <!-- DTD for conditional section example -->
3
4 <!ENTITY % reject "IGNORE">
5 <!ENTITY % accept "INCLUDE">
6
7 <![%accept; [
8 <!ELEMENT message (approved, signature)>
9]]>

10
11 <![%reject; [
12 <!ELEMENT message (approved, reason, signature)>
13]]>
14
15 <!ELEMENT approved EMPTY>
16 <!ATTLIST approved flag (true | false) "false">

Fig. B.12Fig. B.12Fig. B.12Fig. B.12 Conditional sections in a DTD (part 1 of 2).

Appendix B Document Type Definition (DTD) 1645

Lines 4–5 declare entities reject and accept, with the values IGNORE and
INCLUDE, respectively. Because each of these entities is preceded by a percent (%) char-
acter, they can be used only inside the DTD in which they are declared. These types of enti-
ties—called parameter entities—allow document authors to create entities specific to a
DTD—not an XML document. Recall that the DTD is the combination of the internal subset
and external subset. Parameter entities may be placed only in the external subset.

Lines 7–13 use the entities accept and reject, which represent the strings
INCLUDE and IGNORE, respectively. Notice that the parameter entity references are pre-
ceded by %, whereas normal entity references are preceded by &. Line 7 represents the
beginning tag of an IGNORE section (the value of the accept entity is IGNORE), while
line 11 represents the start tag of an INCLUDE section. By changing the values of the enti-
ties, we can easily choose which message element declaration to allow.

Figure B.13 shows the XML document that conforms to the DTD in Fig. B.12.

Software Engineering Observation B.4
Parameter entities allow document authors to use entity names in DTDs without conflicting
with entities names used in an XML document. B.4

B.8 Whitespace Characters
In Appendix A, we briefly discussed whitespace characters. In this section, we discuss how
whitespace characters relate to DTDs. Depending on the application, insignificant
whitespace characters may be collapsed into a single whitespace character or even removed
entirely. This process is called normalization. Whitespace is either preserved or normal-
ized, depending on the context in which it is used.

17
18 <!ELEMENT reason (#PCDATA)>
19 <!ELEMENT signature (#PCDATA)>

Fig. B.12Fig. B.12Fig. B.12Fig. B.12 Conditional sections in a DTD (part 2 of 2).

1 <?xml version = "1.0" standalone = "no"?>
2
3 <!-- Fig. B.13: conditional.xml -->
4 <!-- Using conditional sections -->
5
6 <!DOCTYPE message SYSTEM "conditional.dtd">
7
8 <message>
9 <approved flag = "true" />

10 <signature>Chairman</signature>
11 </message>

C:\>java -jar Validator.jar conditional.xml
Document is valid.

Fig. B.13Fig. B.13Fig. B.13Fig. B.13 XML document that conforms to conditional.dtd.

1646 Document Type Definition (DTD) Appendix B

Figure B.14 contains a DTD and markup that conforms to the DTD. Line 28 assigns a
value containing multiple whitespace characters to attribute cdata. Attribute cdata
(declared in line 11) is required and must contain CDATA. As mentioned earlier, CDATA
can contain almost any text, including whitespace. As the output illustrates, spaces in
CDATA are preserved and passed on to the application that is using the XML document.

Line 30 assigns a value to attribute id that contains leading whitespace. Attribute id
is declared on line 14 with tokenized attribute type ID. Because this is not CDATA, it is nor-
malized and the leading whitespace characters are removed. Similarly, lines 32 and 34
assign values that contain leading whitespace to attributes nmtoken and enumera-
tion—which are declared in the DTD as an NMTOKEN and an enumeration, respectively.
Both these attributes are normalized by the parser.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. B.14 : whitespace.xml -->
4 <!-- Demonstrating whitespace parsing -->
5
6 <!DOCTYPE whitespace [
7 <!ELEMENT whitespace (hasCDATA,
8 hasID, hasNMTOKEN, hasEnumeration, hasMixed)>
9

10 <!ELEMENT hasCDATA EMPTY>
11 <!ATTLIST hasCDATA cdata CDATA #REQUIRED>
12
13 <!ELEMENT hasID EMPTY>
14 <!ATTLIST hasID id ID #REQUIRED>
15
16 <!ELEMENT hasNMTOKEN EMPTY>
17 <!ATTLIST hasNMTOKEN nmtoken NMTOKEN #REQUIRED>
18
19 <!ELEMENT hasEnumeration EMPTY>
20 <!ATTLIST hasEnumeration enumeration (true | false)
21 #REQUIRED>
22
23 <!ELEMENT hasMixed (#PCDATA | hasCDATA)*>
24]>
25
26 <whitespace>
27
28 <hasCDATA cdata = " simple cdata "/>
29
30 <hasID id = " i20"/>
31
32 <hasNMTOKEN nmtoken = " hello"/>
33
34 <hasEnumeration enumeration = " true"/>
35
36 <hasMixed>
37 This is text.
38 <hasCDATA cdata = " simple cdata"/>

Fig. B.14Fig. B.14Fig. B.14Fig. B.14 Processing whitespace in an XML document (part 1 of 2).

Appendix B Document Type Definition (DTD) 1647

B.9 Internet and World Wide Web Resources
www.wdvl.com/Authoring/HTML/Validation/DTD.html
Contains a description of the historical uses of DTDs, including a description of SGML and the
HTML DTD.

www.xml101.com/dtd
Contains tutorials and explanations on creating DTDs.

www.w3schools.com/dtd
Contains DTD tutorials and examples.

wdvl.internet.com/Authoring/Languages/XML/Tutorials/Intro/
index3.html
A DTD tutorial for Web developers.

www.schema.net
A DTD repository with XML links and resources.

www.networking.ibm.com/xml/XmlValidatorForm.html
IBM’s DOMit XML Validator.

39 This is some additional text.
40 </hasMixed>
41
42 </whitespace>

C:\Documents and Settings\Administrator\My Documents\advanced java xml
appendice
s\appBexamples>java -jar Validator.jar whitespace.xml
Document is valid.

C:\>java -jar ParserTest.jar ..\appBexamples\whitespace.xml
<?xml version="1.0" encoding="UTF-8"?>
<!-- Fig. B.14 : whitespace.xml -->
<!-- Demonstrating whitespace parsing -->
<whitespace>

 <hasCDATA cdata=" simple cdata "/>

 <hasID id="i20"/>

 <hasNMTOKEN nmtoken="hello"/>

 <hasEnumeration enumeration="true"/>

 <hasMixed>
 This is text.
 <hasCDATA cdata=" simple cdata"/>
 This is some additional text.
 </hasMixed>

</whitespace>

Fig. B.14Fig. B.14Fig. B.14Fig. B.14 Processing whitespace in an XML document (part 2 of 2).

1648 Document Type Definition (DTD) Appendix B

SUMMARY
• Document Type Definitions (DTDs) define an XML document’s structure (e.g., what elements,

attributes, etc. are permitted in the XML document). An XML document is not required to have a
corresponding DTD. DTDs use EBNF (Extended Backus-Naur Form) grammar.

• Parsers are generally classified as validating or nonvalidating. A validating parser can read the
DTD and determine whether or not the XML document conforms to it. If the document conforms
to the DTD, it is referred to as valid. If the document fails to conform to the DTD but is syntacti-
cally correct, it is well formed but not valid. By definition, a valid document is well formed.

• A nonvalidating parser is able to read a DTD, but cannot check the document against the DTD for
conformity. If the document is syntactically correct, it is well formed.

• DTDs are introduced into XML documents by using the document type declaration (i.e., DOC-
TYPE). The document type declaration can point to declarations that are outside the XML docu-
ment (called the external subset) or can contain the declaration inside the document (called the
internal subset).

• External subsets physically exist in a different file that typically ends with the .dtd extension,
although this file extension is not required. External subsets are specified using keyword SYSTEM
or PUBLIC Both the internal and external subset may be specified at the same time.

• Elements are the primary building block used in XML documents and are declared in a DTD with
element type declarations (ELEMENTs).

• The element name that follows ELEMENT is often called a generic identifier. The set of parenthe-
ses that follow the element name specify the element’s allowed content and is called the content
specification.

• Keyword PCDATA specifies that the element must contain parsable character data—that is, any
text except the characters less than (<) and ampersand (&).

• An XML document is a standalone XML document if it does not reference an external DTD.

• An XML element that can have only another element for content is said to have element content.

• DTDs allow document authors to define the order and frequency of child elements. The comma
(,)—called a sequence—specifies the order in which the elements must occur. Choices are spec-
ified using the pipe character (|). The content specification may contain any number of pipe-char-
acter-separated choices.

• An element’s frequency (i.e., number of occurrences) is specified by using either the plus sign (+),
asterisk (*) or question mark (?) occurrence indicator.

• The frequency of an element group (i.e., two or more elements that occur in some combination) is
specified by enclosing the element names inside the content specification, followed by an occur-
rence indicator.

• Elements can be further refined by describing the content types they may contain. Content speci-
fication types (e.g., EMPTY, mixed content, ANY, etc.) describe nonelement content.

• An element can be declared as having mixed content (i.e., a combination of elements and
PCDATA). The comma (,), plus sign (+) and question mark (?) occurrence indicators cannot be

used with mixed content elements.

• An element declared as type ANY can contain any content including PCDATA, elements, or a com-
bination of elements and PCDATA. Elements with ANY content can also be empty elements.

• An attribute list for an element is declared using the ATTLIST element type declaration.

• Attribute values are normalized (i.e., consecutive whitespace characters are combined into one
whitespace character).

Appendix B Document Type Definition (DTD) 1649

• DTDs allow document authors to specify an attribute’s default value using attribute defaults. Key-
words #IMPLIED, #REQUIRED and #FIXED are attribute defaults.

• Keyword #IMPLIED specifies that if the attribute does not appear in the element, then the appli-
cation using the XML document can apply whatever value (if any) it chooses.

• Keyword #REQUIRED indicates that the attribute must appear in the element. The XML docu-
ment is not valid if the attribute is missing.

• An attribute declaration with default value #FIXED specifies that the attribute value is constant
and cannot be different in the XML document.

• Attribute types are classified as either string (CDATA), tokenized or enumerated. String attribute
types do not impose any constraints on attribute values, other than disallowing the < and & char-
acters. Entity references (e.g., <, &, etc.) must be used for these characters. Tokenized
attributes impose constraints on attribute values, such as which characters are permitted in an at-
tribute name. Enumerated attributes are the most restrictive of the three types. They can take only
one of the values listed in the attribute declaration.

• Four different tokenized attribute types exist: ID, IDREF, ENTITY and NMTOKEN. Tokenized
attribute type ID uniquely identifies an element. Attributes with type IDREF point to elements
with an ID attribute. A validating parser verifies that every ID attribute type referenced by IDREF
is in the XML document.

• Entity attributes indicate that an attribute has an entity for its value and are specified using token-
ized attribute type ENTITY. The primary constraint placed on ENTITY attribute types is that they
must refer to external unparsed entities.

• Attribute type ENTITIES may also be used in a DTD to indicate that an attribute has multiple
entities for its value. Each entity is separated by a space.

• A more restrictive attribute type is attribute type NMTOKEN (name token), whose value consists of
letters, digits, periods, underscores, hyphens and colon characters.

• Attribute type NMTOKENS may contain multiple string tokens separated by spaces.

• Enumerated attribute types declare a list of possible values an attribute can have. The attribute
must be assigned a value from this list to conform to the DTD. Enumerated type values are sepa-
rated by pipe characters (|).

• NOTATION is also an enumerated attribute type. Notations provide information that an application
using the XML document can use to handle unparsed entities.

• Keyword NDATA indicates that the content of an external entity is not XML. The name of the no-
tation that handles this unparsed entity is placed to the right of NDATA.

• DTDs provide the ability to include or exclude declarations using conditional sections. Keyword
INCLUDE specifies that declarations are included, while keyword IGNORE specifies that decla-
rations are excluded. Conditional sections are often used with entities.

• Parameter entities are preceded by percent (%) characters and can be used only inside the DTD in
which they are declared. Parameter entities allow document authors to create entities specific to a
DTD—not an XML document.

• Whitespace is either preserved or normalized, depending on the context in which it is used. Spaces
in CDATA are preserved. Attribute values with tokenized attribute types ID, NMTOKEN and enu-
meration are normalized.

TERMINOLOGY
#FIXED #PCDATA
#IMPLIED #REQUIRED

1650 Document Type Definition (DTD) Appendix B

SELF-REVIEW EXERCISES
B.1 State whether the following are true or false. If the answer is false, explain why.

a) The document type declaration, DOCTYPE, introduces DTDs in XML documents.
b) External DTDs are specified by using the keyword EXTERNAL.
c) A DTD can contain either internal or external subsets of declarations, but not both.
d) Child elements are declared in parentheses, inside an element type declaration.
e) An element that appears any number of times is followed by an exclamation point (!).

.dtd extension ID tokenized attribute type
ANY IDREF tokenized attribute type
asterisk (*) IGNORE
ATTLIST statement INCLUDE
attribute content internal subset
attribute declaration mixed content
attribute default mixed-content element
attribute list mixed-content type
attribute name NDATA
attribute value NMTOKEN tokenized attribute type (name token)
CDATA nonvalid document
character data type nonvalidating parser
child element normalization
comma character NOTATION
conditional section notation type
content specification occurrence indicator
content specification type optional element
declaration parameter entity
default value of an attribute parsed character data
DOCTYPE (document type declaration) parser
document type declaration percent sign (%)
double quote (") period
DTD (Document Type Definition) pipe character (|)
EBNF (Extended Backus-Naur Form) grammar plus sign (+)
element question mark (?)
element content quote (')
element name sequence (,)
ELEMENT statement standalone XML document
element type declaration (!ELEMENT) string attribute type
EMPTY string token
empty element structural definition
ENTITIES syntax
entity attribute SYSTEM
ENTITY tokenized attribute type text
enumerated attribute type tokenized attribute type
Extended Backus-Naur Form (EBNF) grammar type
external subset valid document
external unparsed entity validating parser
fixed value validation
general entity well-formed document
generic identifier whitespace character
hyphen (-)

Appendix B Document Type Definition (DTD) 1651

f) A mixed-content element can contain text as well as other declared elements.
g) An attribute declared as type CDATA can contain all characters except for the asterisk (*)

and pound sign (#).
h) Each element attribute of type ID must have a unique value.
i) Enumerated attribute types are the most restrictive category of attribute types.
j) An enumerated attribute type requires a default value.

B.2 Fill in the blanks in each of the following statements:
a) The set of document type declarations inside an XML document is called the

.
b) Elements are declared with the type declaration.
c) Keyword indicates that an element contains parsable character data.
d) In an element type declaration, the pipe character (|) indicates that the element can con-

tain of the elements indicated.
e) Attributes are declared by using the type.
f) Keyword specifies that the attribute can take only a specific value that has

been defined in the DTD.
g) ID, IDREF, and NMTOKEN are all types of tokenized attributes.
h) The % character is used to declare a/an .
i) DTD is an acronym for .
j) Conditional sections of DTDs are often used with .

ANSWERS TO SELF-REVIEW EXERCISES
B.1 a) True. b) False. External DTDs are specified using keyword SYSTEM. c) False. A DTD
contains both the internal and external subsets. d) True. e) False. An element that appears one or zero
times is specified by a question mark (?). f) True. g) False. An attribute declared as type CDATA can
contain all characters except for ampersand (&), less than (<), greater than (>), quote (') and double
quotes ("). h) True. i) True. j) False. A default value is not required.

B.2 a) internal subset. b) ELEMENT. c) PCDATA. d) one. e) ATTLIST. f) #FIXED. g) ENTITY.
h) parameter entity. i) Document Type Definition. j) entities.

C
Document Object Model

(DOM™)

Objectives
• To understand what the Document Object Model is.
• To understand and be able to use the major DOM

features.
• To use Java to manipulate an XML document.
• To become familiar with DOM-based parsers.
Knowing trees, I understand the meaning of patience.
Knowing grass, I can appreciate persistence.
Hal Borland

There was a child went forth every day,
And the first object he look’d upon, that object he became.
Walt Whitman

I think that I shall never see
A poem lovely as a tree.
Joyce Kilmer

Appendix C Document Object Model (DOM™) 1653

C.1 Introduction
In previous appendices, we concentrated on basic XML markup and DTDs for validating
XML documents. In this appendix, we focus on manipulating the contents of an XML doc-
ument.

XML documents, when parsed, are represented as a hierarchical tree structure in
memory. This tree structure contains the document’s elements, attributes, content, etc.
XML was designed to be a live, dynamic technology—a programmer can modify the con-
tents of the tree structure, which essentially allows the programmer to add data, remove
data, query for data, etc. in a manner similar to manipulating a database.

The W3C provides a recommendation for building a tree structure in memory for XML
documents. This structure is called the XML Document Object Model (DOM). Any parser
that adheres to this recommendation is called a DOM-based parser. Each element,
attribute, CDATA section, etc., in an XML document is represented by a node in the DOM
tree. For example, the simple XML document

<?xml version = "1.0"?>
<message from = "Paul" to = "Tem">

<body>Hi, Tem!</body>
</message>

results in a DOM tree with several nodes. One node is created for the message element.
This node has a child node that corresponds to the body element. The body element has
a child node that corresponds to the text Hi, Tem!. The from and to attributes of the
message element also have corresponding nodes in the DOM tree as well. An XML dec-
laration is not placed in the tree.

A DOM-based parser exposes (i.e., makes available) a programmatic library—called
the DOM Application Programming Interface (API)—that allows data in an XML docu-
ment to be accessed and modified by manipulating the nodes in a DOM tree. In this
appendix, we use Sun Microsystem’s JAXP parsers.

Portability Tip C.1
The DOM interfaces for creating and manipulating XML documents are platform and lan-
guage independent. DOM parsers exist for many different languages, including Java, C,
C++, Python and Perl. 0.0

Outline
C.1 Introduction
C.2 DOM with Java
C.3 Setup Instructions
C.4 DOM Components
C.5 Creating Nodes
C.6 Traversing the DOM
C.7 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises

1654 Document Object Model (DOM™) Appendix C

C.2 DOM with Java
To introduce document manipulation with the XML Document Object Model, we begin
with a simple example that uses Java. This example takes an XML document (Fig. C.1) that
marks up an article and uses the JAXP API to display the document’s element names and
values. Figure C.2 lists the Java code that manipulates this XML document and displays its
content.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. C.1: article.xml -->
4 <!-- Article formatted with XML -->
5
6 <article>
7
8 <title>Simple XML</title>
9

10 <date>July 31, 2001</date>
11
12 <author>
13 <fname>Tem</fname>
14 <lname>Nieto</lname>
15 </author>
16
17 <summary>XML is easy.</summary>
18
19 <content>Once you have mastered XHTML, you can easily learn
20 XML. You must remember that XML is not for
21 displaying information but for managing information.
22 </content>
23
24 </article>

Fig. C.1Fig. C.1Fig. C.1Fig. C.1 Article marked up with XML tags.

1 // Fig C.2 : XMLInfo.java
2 // Outputs node information
3
4 // Java core libraries
5 import java.io.*;
6
7 // Java standard extensions
8 import javax.xml.parsers.*;
9

10 // third-party libraries
11 import org.w3c.dom.*;
12 import org.xml.sax.*;
13
14 public class XMLInfo {
15

Fig. C.2Fig. C.2Fig. C.2Fig. C.2 XMLInfo displays information about XML input (part 1 of 3).

Appendix C Document Object Model (DOM™) 1655

16 public static void main(String args[])
17 {
18
19 if (args.length != 1) {
20 System.err.println("Usage: java XMLInfo input.xml");
21 System.exit(1);
22 }
23
24 try {
25
26 // create DocumentBuilderFactory
27 DocumentBuilderFactory factory =
28 DocumentBuilderFactory.newInstance();
29
30 // create DocumentBuilder
31 DocumentBuilder builder = factory.newDocumentBuilder();
32
33 // obtain document object from XML document
34 Document document = builder.parse(
35 new File(args[0]));
36
37 // get root node
38 Node root = document.getDocumentElement();
39
40 System.out.print("Here is the document's root node:");
41 System.out.println(" " + root.getNodeName());
42
43 System.out.println("Here are its child elements: ");
44 NodeList childNodes = root.getChildNodes();
45 Node currentNode;
46
47 for (int i = 0; i < childNodes.getLength(); i++) {
48
49 currentNode = childNodes.item(i);
50
51 // print node name of each child element
52 System.out.println(currentNode.getNodeName());
53 }
54
55 // get first child of root element
56 currentNode = root.getFirstChild();
57
58 System.out.print("The first child of root node is: ");
59 System.out.println(currentNode.getNodeName());
60
61 // get next sibling of first child
62 System.out.print("whose next sibling is: ");
63 currentNode = currentNode.getNextSibling();
64 System.out.println(currentNode.getNodeName());
65
66 // print value of first child’s next sibling
67 System.out.println("value of " +
68 currentNode.getNodeName() + " element is: " +

Fig. C.2Fig. C.2Fig. C.2Fig. C.2 XMLInfo displays information about XML input (part 2 of 3).

1656 Document Object Model (DOM™) Appendix C

Lines 7–12 import several packages related to XML. Package
javax.xml.parsers provides classes related to parsing an XML document. Package
org.w3c.dom provides the DOM-API programmatic interface (i.e., classes, methods,
etc.).

Lines 27–28 create a new DocumentBuilderFactory. The DocumentBuild-
erFactory is required to produce an appropriate DocumentBuilder object for the
currently configured XML parser. JAXP can be configured to use many different XML
parsers, such as the Apache Group’s Xerces and IBM’s XML4J. JAXP also has its own
parser built in, which is used by default.

69 currentNode.getFirstChild().getNodeValue());
70
71 // print name of next sibling’s parent
72 System.out.print("Parent node of " +
73 currentNode.getNodeName() + " is: " +
74 currentNode.getParentNode().getNodeName());
75 }
76
77 // handle exception creating DocumentBuilder
78 catch (ParserConfigurationException parserError) {
79 System.err.println("Parser Configuration Error");
80 parserError.printStackTrace();
81 }
82
83 // handle exception reading data from file
84 catch (IOException fileException) {
85 System.err.println("File IO Error");
86 fileException.printStackTrace();
87 }
88
89 // handle exception parsing XML document
90 catch (SAXException parseException) {
91 System.err.println("Error Parsing Document");
92 parseException.printStackTrace();
93 }
94 }
95 }

Here is the document's root node: article
Here are its child elements:
title
date
author
summary
content
The first child of root node is: title
whose next sibling is: date
value of date element is: July 31, 2001
Parent node of date is: article

Fig. C.2Fig. C.2Fig. C.2Fig. C.2 XMLInfo displays information about XML input (part 3 of 3).

Appendix C Document Object Model (DOM™) 1657

Line 31 uses the DocumentBuilderFactory class to create a Document-
Builder object. Class DocumentBuilder provides a standard interface for loading
and parsing XML documents. Lines 34–35 use the DocumentBuilder method parse
to obtain a document object from the XML document.

Line 38 retrieves the root node of the XML document via Document method get-
DocumentElement. Line 41 retrieves and displays the name of the Node via method
getNodeName. Line 44 calles Node method getChildNodes to obtain a NodeList
object, which is list of nodes. The first item added is stored at index 0, the next at index 1,
and so forth. This index is used to access an individual item in the NodeList.

Line 47 uses NodeList method getLength to obtain the number of nodes in the
list. Lines 47–53 display the name of each Node in the NodeList, by calling NodeList
method item. This method is passed the index of the desired Node in the NodeList.

Line 56 calls method getFirstChild to obtain a Node reference to the first child
of Node root. Line 59 displays the name of the Node stored in currentNode. Line 63
calls Node method NextSibling to obtain a reference to the next sibling of the node.
Line 64 displays the sibling Node’s name. Lines 67–69 print the value of the first child of
currentNode. The Node method getNodeValue returns different objects for dif-
ferent types of nodes. In our XML document (Fig. C.1), the child node happens to be of
type text, so getNodeValue returns the String contents of the text node. We will
explain Node types in greater detail later in this appendix. Lines 78–92 catch Excep-
tions that various methods we have used throw.

C.3 Setup Instructions
To manipulate XML within Java, you must properly install the Java API for XML Process-
ing (JAXP). To do so, complete the following steps:

1. Download and run the JAXP 1.1 installer from
www.java.sun.com/xml

2. Copy jaxp.jar, crimson.jar, xalan.jar from the JAXP1.1 directory
to the C:\jdk1.3.1\jre\lib\ext\ directory.

3. Add C:\jdk1.3.1\jre\bin to the PATH environment variable before
C:\jdk1.3.1\bin.

4. Run each example as you normally would.

As we present an example, we will discuss any special steps necessary to execute it.
However the steps outlined in this section must be followed before attempting to execute
any example.

C.4 DOM Components
In this section, we will use Java, JAXP and interfaces described in Fig. C.3 to manipulate
an XML document. Due to the number of DOM interfaces and methods available, we pro-
vide only a partial list.

For a complete list of DOM classes and interfaces, browse the HTML documentation
(index.html in the api folder) included with JAXP.

1658 Document Object Model (DOM™) Appendix C

The Document interface represents the top-level node of an XML document in
memory and provides a means of creating nodes and retrieving nodes. Figure C.4 lists some
Document methods.

Interface Node represents an XML document node. Figure C.5 lists the methods of
interface Node.

Figure C.6 lists some node types that may be returned by method getNodeType.
Each type in Fig. C.6 is a static final (i.e., constant) member of class Node.

Interface Description

Document interface Represents the XML document’s top-level node, which pro-
vides access to all the document’s nodes, including the root
element.

Node interface Represents an XML document node.

NodeList interface Represents a read-only list of Node objects.

Element interface Represents an element node. Derives from Node.

Attr interface Represents an attribute node. Derives from Node.

CharacterData interface Represents character data. Derives from Node.

Text interface Represents a text node. Derives from
CharacterData.

Comment interface Represents a comment node. Derives from
CharacterData.

ProcessingInstruction
interface

Represents a processing instruction node. Derives from Node.

CDATASection interface Represents a CDATA section. Derives from Text.

Fig. C.3Fig. C.3Fig. C.3Fig. C.3 DOM classes and interfaces.

Method Name Description

createElement Creates an element node.

createAttribute Creates an attribute node.

createTextNode Creates a text node.

createComment Creates a comment node.

createProcessingInstruction Creates a processing instruction node.

createCDATASection Creates a CDATA section node.

getDocumentElement Returns the document’s root element.

appendChild Appends a child node.

getChildNodes Returns the child nodes.

Fig. C.4Fig. C.4Fig. C.4Fig. C.4 Some Document methods.

Appendix C Document Object Model (DOM™) 1659

Element represents an element node. Figure C.7 lists some Element methods.

Method Name Description

appendChild Appends a child node.

cloneNode Duplicates the node.

getAttributes Returns the node’s attributes.

getChildNodes Returns the node’s child nodes.

getNextSibling Returns the node’s next sibling.

getNodeName Returns the node’s name.

getNodeType Returns the node’s type (e.g., element, attribute, text, etc.). Node types
are described in greater detail in Fig. C.6.

getNodeValue Returns the node’s value.

getParentNode Returns the node’s parent.

hasChildNodes Returns true if the node has child nodes.

removeChild Removes a child node from the node.

replaceChild Replaces a child node with another node.

setNodeValue Sets the node’s value.

insertBefore Appends a child node in front of a child node.

Fig. C.5Fig. C.5Fig. C.5Fig. C.5 Node methods.

Node Type Description

Node.ELEMENT_NODE Represents an element node.

Node.ATTRIBUTE_NODE Represents an attribute node.

Node.TEXT_NODE Represents a text node.

Node.COMMENT_NODE Represents a comment node.

Node.PROCESSING_INSTRUCTION_NODE Represents a processing instruction node.

Node.CDATA_SECTION_NODE Represents a CDATA section node.

Fig. C.6Fig. C.6Fig. C.6Fig. C.6 Some node types.

Method Name Description

getAttribute Returns the value of the attribute with the given name.

getTagName Returns an element’s name.

Fig. C.7Fig. C.7Fig. C.7Fig. C.7 Element methods (part 1 of 2).

1660 Document Object Model (DOM™) Appendix C

 Figure C.8 lists a Java application that validates intro.xml (Fig. C.10) and replaces
the text in its message element with New Changed Message!!.

removeAttribute Removes an element’s attribute.

setAttribute Sets an attribute’s value.

1 // Fig C.8 : ReplaceText.java
2 // Reads intro.xml and replaces a text node.
3
4 // Java core packages
5 import java.io.*;
6
7 // Java extension packages
8 import javax.xml.parsers.*;
9 import javax.xml.transform.*;

10 import javax.xml.transform.stream.*;
11 import javax.xml.transform.dom.*;
12
13 // third-party libraries
14 import org.xml.sax.*;
15 import org.w3c.dom.*;
16
17
18 public class ReplaceText {
19 private Document document;
20
21 public ReplaceText()
22 {
23 // parse document, find/replace element, output result
24 try {
25
26 // obtain default parser
27 DocumentBuilderFactory factory =
28 DocumentBuilderFactory.newInstance();
29
30 // set parser as validating
31 factory.setValidating(true);
32
33 // obtain object that builds Documents
34 DocumentBuilder builder = factory.newDocumentBuilder();
35
36 // set error handler for validation errors
37 builder.setErrorHandler(new MyErrorHandler());
38
39 // obtain document object from XML document
40 document = builder.parse(new File("c:/intro.xml"));

Fig. C.8Fig. C.8Fig. C.8Fig. C.8 Simple example that replaces an existing text node (part 1 of 3).

Method Name Description

Fig. C.7Fig. C.7Fig. C.7Fig. C.7 Element methods (part 2 of 2).

Appendix C Document Object Model (DOM™) 1661

41
42 // retrieve the root node
43 Node root = document.getDocumentElement();
44
45 if (root.getNodeType() == Node.ELEMENT_NODE) {
46 Element myMessageNode = (Element) root;
47 NodeList messageNodes =
48 myMessageNode.getElementsByTagName("message");
49
50 if (messageNodes.getLength() != 0) {
51 Node message = messageNodes.item(0);
52
53 // create text node
54 Text newText = document.createTextNode(
55 "New Changed Message!!");
56
57 // get old text node
58 Text oldText =
59 (Text) message.getChildNodes().item(0);
60
61 // replace text
62 message.replaceChild(newText, oldText);
63 }
64 }
65
66 // output Document object
67
68 // create DOMSource for source XML document
69 Source xmlSource = new DOMSource(document);
70
71 // create StreamResult for transformation result
72 Result result = new StreamResult(System.out);
73
74 // create TransformerFactory
75 TransformerFactory transformerFactory =
76 TransformerFactory.newInstance();
77
78 // create Transformer for transformation
79 Transformer transformer =
80 transformerFactory.newTransformer();
81
82 transformer.setOutputProperty("indent", "yes");
83
84 // transform and deliver content to client
85 transformer.transform(xmlSource, result);
86 }
87
88 // handle exception creating DocumentBuilder
89 catch (ParserConfigurationException parserException) {
90 parserException.printStackTrace();
91 }
92
93 // handle exception parsing Document

Fig. C.8Fig. C.8Fig. C.8Fig. C.8 Simple example that replaces an existing text node (part 2 of 3).

1662 Document Object Model (DOM™) Appendix C

Lines 27–28 create a new DocumentBuilderFactory. Line 31 indicates that a
validating parser should be used by passing the value true as an argument to method
setValidating. Line 34 creates a new DocumentBuilder. Line 37 specifies that a
MyErrorHandler (Fig. C.9) object provides methods for handling exceptions related to
parsing. Line 40 calls method parse to load and parse the XML document stored in the
file intro.xml. If parsing is successful, a Document object is returned that contains
nodes representing each part of the intro.xml document. If parsing fails, a SAXExcep-
tion is thrown.

Line 43 gets the Document’s root node. Line 45 calls method getNodeType to
obtain the root node’s type and tests whether the root node is of type element.

Line 46 down casts root from a superclass Node type to an Element derived type.
As mentioned earlier, class Element inherits from class Node. Lines 47–48 get a
NodeList containing all the message elements in the XML document using method
getElementsByTagName. Line 50 determines whether the NodeList contains at
least one item. Line 51 retrieves the first Node in the NodeList.

Lines 54–55 call createTextNode to create a text node that contains the text New
Changed Message!!. This node exists in memory independent of the XML docu-

94 catch (SAXException saxException) {
95 saxException.printStackTrace();
96 }
97
98 // handle exception reading/writing data
99 catch (IOException ioException) {
100 ioException.printStackTrace();
101 System.exit(1);
102 }
103
104 // handle exception creating TransformerFactory
105 catch (
106 TransformerFactoryConfigurationError factoryError) {
107 System.err.println("Error while creating " +
108 "TransformerFactory");
109 factoryError.printStackTrace();
110 }
111
112 // handle exception transforming document
113 catch (TransformerException transformerError) {
114 System.err.println("Error transforming document");
115 transformerError.printStackTrace();
116 }
117 }
118
119 public static void main(String args[])
120 {
121 ReplaceText replace = new ReplaceText();
122 }
123 }

Fig. C.8Fig. C.8Fig. C.8Fig. C.8 Simple example that replaces an existing text node (part 3 of 3).

Appendix C Document Object Model (DOM™) 1663

ment—i.e., it has not been inserted into the document yet. Interface Text represents an ele-
ment or attribute’s character data.

Lines 58–59 get the first child node of the message element (referenced by Node
message in line 51), which is a text node containing the text Welcome to XML!. Method
item returns an object of superclass type Object which we downcast to Text. Line 62
calls method replaceChild to replace the Node referenced by the second argument
with the Node referenced by the first argument. The XML document has now been modi-
fied—element message now contains the text New Changed Message!!.

Lines 66–86 output the modified Document. Line 69 creates a new Source object
that wraps the modified Document object. Line 72 creates a new Result object passing
an OutputStream as an argument, which in this case is System.out. Lines 75–76
create a new TransformerFactory by calling static method newInstance.
Lines 79–80 create a new Transformer by calling method newTransformer.

Line 82 sets the "indent" output property to "yes," which causes the Trans-
former to add appropriate indentation when it produces the result document. Lines 89-90
handle a ParserConfigurationException, which can be thrown by Document-
BuilderFactory method newDocumentBuilder. Line 89 begins a catch block for
a SAXException. This exception contains information about errors thrown by the parser.

Figure C.9 presents MyErrorHandler.java, which provides the implementation
for handling errors thrown by the parser in ReplaceText.java. By default, JAXP does
not throw any exceptions when a document fails to conform to a DTD. The programmer
must provide an error handler, which is registered using method setErrorHandler
(line 38 in Fig. C.8).

1 // Fig C.9 : MyErrorHandler.java
2 // Error Handler for validation errors.
3
4 import org.xml.sax.ErrorHandler;
5 import org.xml.sax.SAXException;
6 import org.xml.sax.SAXParseException;
7
8 public class MyErrorHandler implements ErrorHandler
9 {

10
11 // throw SAXException for fatal errors
12 public void fatalError(SAXParseException exception)
13 throws SAXException
14 {
15 throw exception;
16 }
17
18 public void error(SAXParseException errorException)
19 throws SAXParseException
20 {
21 throw errorException;
22 }
23
24 // print any warnings

Fig. C.9Fig. C.9Fig. C.9Fig. C.9 Class definition for MyErrorHandler (part 1 of 2).

1664 Document Object Model (DOM™) Appendix C

Lines 4–6 of Fig. C.9 import ErrorHandler, SAXException and SAXPar-
seException. Interface ErrorHandler provides methods fatalError, error
and warning for fatal errors (i.e., errors that violate the XML 1.0 recommendation;
parsing is halted), errors (e.g., validity constraints that do not stop the parsing process) and
warnings (i.e., not classified as fatal errors or errors and that do not stop the parsing pro-
cess), respectively. These methods are overridden in lines 12, 18 and 25. Fatal errors and
errors are rethrown and warnings are output to the standard error device (System.err).
To run the example, compile the classes and execute class ReplaceText.

Figure C.10 lists the XML document manipulated by the Java application in Fig. C.8.
Notice that the message element’s text has been changed and the comments are missing.
The DTD is preserved, because we are using a validating parser—otherwise the DTD
would not be included in the file. Figure C.10’s output also sets the encoding attribute
in the XML declaration. The encoding specifies the character set used in the document.
Recall from Appendix A that XML uses the Unicode character set. Unicode provides char-
acters in most of the world’s major languages. Use an encoding (e.g., UTF-8) to specify
a subset of the characters in Unicode that will be used in a document.

25 public void warning(SAXParseException warningError)
26 throws SAXParseException
27 {
28 System.err.println("Warning: " + warningError.getMessage());
29 }
30 }

1 <?xml version = "1.0"?>
2
3 <!-- Fig. C.10 : intro.xml -->
4 <!-- Simple introduction to XML markup -->
5
6 <!DOCTYPE myMessage [
7 <!ELEMENT myMessage (message)>
8 <!ELEMENT message (#PCDATA)>
9]>

10
11 <myMessage>
12 <message>Welcome to XML!</message>
13 </myMessage>

<?xml version="1.0" encoding="UTF-8"?>
<!-- Fig. C.10 : intro.xml -->
<!-- Simple introduction to XML markup -->
<myMessage>
 <message>New Changed Message!!</message>
</myMessage>

Fig. C.10Fig. C.10Fig. C.10Fig. C.10 Input document (intro.xml) and output from ReplaceText.java.

Fig. C.9Fig. C.9Fig. C.9Fig. C.9 Class definition for MyErrorHandler (part 2 of 2).

Appendix C Document Object Model (DOM™) 1665

C.5 Creating Nodes
The majority of XML markup presented up to this point has been “hand coded” (i.e., typed
into an editor by a document author). Using the DOM, XML documents can be created in
an automated way through programming.

Figure C.11 lists a Java application that creates an XML document for a contact list.
This application is compiled and executed in the same manner as the last Java application.

1 // Fig. C.11 : BuildXml.java
2 // Creates element node, attribute node, comment node,
3 // processing instruction and a CDATA section.
4
5 // Java core packages
6 import java.io.*;
7
8 // Java extension packages
9 import javax.xml.parsers.*;

10 import javax.xml.parsers.*;
11 import javax.xml.transform.*;
12 import javax.xml.transform.stream.*;
13 import javax.xml.transform.dom.*;
14
15 // third-party libraries
16 import org.xml.sax.*;
17 import org.w3c.dom.*;
18
19 public class BuildXml {
20 private Document document;
21
22 public BuildXml()
23 {
24
25 DocumentBuilderFactory factory =
26 DocumentBuilderFactory.newInstance();
27
28 // create new DOM tree
29 try {
30
31 // get DocumentBuilder
32 DocumentBuilder builder =
33 factory.newDocumentBuilder();
34
35 // create root node
36 document = builder.newDocument();
37 }
38
39 // handle exception thrown by DocumentBuilder
40 catch (ParserConfigurationException parserException) {
41 parserException.printStackTrace();
42 }
43
44 Element root = document.createElement("root");

Fig. C.11Fig. C.11Fig. C.11Fig. C.11 Building an XML document with the DOM (part 1 of 3).

1666 Document Object Model (DOM™) Appendix C

45 document.appendChild(root);
46
47 // add comment to XML document
48 Comment simpleComment = document.createComment(
49 "This is a simple contact list");
50 root.appendChild(simpleComment);
51
52 // add child element
53 Node contactNode = createContactNode(document);
54 root.appendChild(contactNode);
55
56 // add processing instruction
57 ProcessingInstruction pi =
58 document.createProcessingInstruction(
59 "myInstruction", "action silent");
60 root.appendChild(pi);
61
62 // add CDATA section
63 CDATASection cdata = document.createCDATASection(
64 "I can add <, >, and ?");
65 root.appendChild(cdata);
66
67 // write the XML document to disk
68 try {
69
70 // create DOMSource for source XML document
71 Source xmlSource = new DOMSource(document);
72
73 // create StreamResult for transformation result
74 Result result = new StreamResult(
75 new FileOutputStream("myDocument.xml"));
76
77 // create TransformerFactory
78 TransformerFactory transformerFactory =
79 TransformerFactory.newInstance();
80
81 // create Transformer for transformation
82 Transformer transformer =
83 transformerFactory.newTransformer();
84
85 transformer.setOutputProperty("indent", "yes");
86
87 // transform and deliver content to client
88 transformer.transform(xmlSource, result);
89 }
90
91 // handle exception creating TransformerFactory
92 catch (
93 TransformerFactoryConfigurationError factoryError) {
94 System.err.println("Error creating " +
95 "TransformerFactory");
96 factoryError.printStackTrace();
97 }

Fig. C.11Fig. C.11Fig. C.11Fig. C.11 Building an XML document with the DOM (part 2 of 3).

Appendix C Document Object Model (DOM™) 1667

Lines 25–26 create and assign a DocumentBuilderFactory object to reference
factory. Lines 32–33 create a new DocumentBuilder object and assign it to refer-
ence builder. Line 36 calls method newDocument to create a new Document object.
We will use the Document object returned by newDocument to build an XML docu-
ment in memory.

Lines 44–45 create an element named root and append it to the document root. This
is the first element appended, so it is the root element of the document. Lines 48–50 create

98
99 // handle exception transforming document
100 catch (TransformerException transformerError) {
101 System.err.println("Error transforming document");
102 transformerError.printStackTrace();
103 }
104
105 // handle exception writing data to file
106 catch (IOException ioException) {
107 ioException.printStackTrace();
108 }
109 }
110
111 public Node createContactNode(Document document)
112 {
113
114 // create FirstName and LastName elements
115 Element firstName = document.createElement("FirstName");
116 Element lastName = document.createElement("LastName");
117
118 firstName.appendChild(document.createTextNode("Sue"));
119 lastName.appendChild(document.createTextNode("Green"));
120
121 // create contact element
122 Element contact = document.createElement("contact");
123
124 // create attribute
125 Attr genderAttribute = document.createAttribute("gender");
126 genderAttribute.setValue("F");
127
128 // append attribute to contact element
129 contact.setAttributeNode(genderAttribute);
130 contact.appendChild(firstName);
131 contact.appendChild(lastName);
132
133 return contact;
134 }
135
136 public static void main(String args[])
137 {
138 BuildXml buildXml = new BuildXml();
139 }
140 }

Fig. C.11Fig. C.11Fig. C.11Fig. C.11 Building an XML document with the DOM (part 3 of 3).

1668 Document Object Model (DOM™) Appendix C

a comment node using method createComment and append the node as a child of ele-
ment root. Line 53 calls programmer-defined method createContactNode (line
111) to create the contact element. We will discuss this method momentarily. Lines 57–
58 create a processing instruction node. The first argument passed to createProcess-
ingInstruction is the target myInstruction, and the second argument passed is
the value action silent. Line 60 appends the processing instruction to the root ele-
ment. Lines 63–64 create a CDATA section, which is appended to element root in line 65.

Line 111 defines method createContactNode that returns a Node object. This
method creates a contact element node and returns it. The returned Node is appended
to the root element in line 53. Lines 115–116 create elements FirstName and Last-
Name, which have their text values set on lines 118–119. Lines 125–126 create attribute
gender using method createAttribute and assign it a value using Attr method
setValue. Line 129 assigns the attribute to the contact element node using method
setAttributeNode.

The XML document is written to disk in lines 68–89. Figure C.12 lists the XML doc-
ument (myDocument.xml) created by BuildXml.java (Fig. C.11).

C.6 Traversing the DOM
In this section, we demonstrate how to use the DOM to traverse an XML document. In
Fig. C.13, we present a Java application that outputs element nodes, attribute nodes and text
nodes. This application takes the name of an XML document (e.g., simpleCon-
tact.xml in Fig. C.14) as an argument.

1 <?xml version = "1.0" encoding = "UTF-8"?>
2
3 <root>
4 <!--This is a simple contact list-->
5 <contact gender = "F">
6 <FirstName>Sue</FirstName>
7 <LastName>Green</LastName>
8 </contact>
9 <?myInstruction action silent?>

10 <![CDATA[I can add <, >, and ?]]>
11 </root>

Fig. C.12Fig. C.12Fig. C.12Fig. C.12 Output for buildXml.java.

1 // Fig. C.13 : TraverseDOM.java
2 // Traverses DOM and prints various nodes.
3
4 // Java core packages
5 import java.io.*;
6
7 // Java extension packages
8 import javax.xml.parsers.*;
9

10 // third-party libraries

Fig. C.13Fig. C.13Fig. C.13Fig. C.13 Traversing the DOM (part 1 of 3).

Appendix C Document Object Model (DOM™) 1669

11 import org.w3c.dom.*;
12 import org.xml.sax.*;
13
14 public class TraverseDOM {
15 private Document document;
16
17 public TraverseDOM(String file)
18 {
19 // parse XML, create DOM tree, call method processNode
20 try {
21
22 // obtain default parser
23 DocumentBuilderFactory factory =
24 DocumentBuilderFactory.newInstance();
25 factory.setValidating(true);
26 DocumentBuilder builder = factory.newDocumentBuilder();
27
28 // set error handler for validation errors
29 builder.setErrorHandler(new MyErrorHandler());
30
31 // obtain document object from XML document
32 document = builder.parse(new File(file));
33 processNode(document);
34 }
35
36 // handle exception thrown by DocumentBuilder
37 catch (ParserConfigurationException parserException) {
38 parserException.printStackTrace();
39 }
40
41 // handle exception thrown by Parser
42 catch (SAXException saxException) {
43 saxException.printStackTrace();
44 }
45
46 // handle exception thrown when reading data from file
47 catch (IOException ioException) {
48 ioException.printStackTrace();
49 System.exit(1);
50 }
51 }
52
53 public void processNode(Node currentNode)
54 {
55 switch (currentNode.getNodeType()) {
56
57 // process Document root
58 case Node.DOCUMENT_NODE:
59 Document doc = (Document) currentNode;
60
61 System.out.println(
62 "Document node: " + doc.getNodeName() +
63 "\nRoot element: " +

Fig. C.13Fig. C.13Fig. C.13Fig. C.13 Traversing the DOM (part 2 of 3).

1670 Document Object Model (DOM™) Appendix C

64 doc.getDocumentElement().getNodeName());
65 processChildNodes(doc.getChildNodes());
66 break;
67
68 // process Element node
69 case Node.ELEMENT_NODE:
70 System.out.println("\nElement node: " +
71 currentNode.getNodeName());
72 NamedNodeMap attributeNodes =
73 currentNode.getAttributes();
74
75 for (int i = 0; i < attributeNodes.getLength(); i++) {
76 Attr attribute = (Attr) attributeNodes.item(i);
77
78 System.out.println("\tAttribute: " +
79 attribute.getNodeName() + " ; Value = " +
80 attribute.getNodeValue());
81 }
82
83 processChildNodes(currentNode.getChildNodes());
84 break;
85
86 // process text node and CDATA section
87 case Node.CDATA_SECTION_NODE:
88 case Node.TEXT_NODE:
89 Text text = (Text) currentNode;
90
91 if (!text.getNodeValue().trim().equals(""))
92 System.out.println("\tText: " +
93 text.getNodeValue());
94 break;
95 }
96 }
97
98 public void processChildNodes(NodeList children)
99 {
100 if (children.getLength() != 0)
101
102 for (int i = 0; i < children.getLength(); i++)
103 processNode(children.item(i));
104 }
105
106 public static void main(String args[])
107 {
108 if (args.length < 1) {
109 System.err.println(
110 "Usage: java TraverseDOM <filename>");
111 System.exit(1);
112 }
113
114 TraverseDOM traverseDOM = new TraverseDOM(args[0]);
115 }
116 }

Fig. C.13Fig. C.13Fig. C.13Fig. C.13 Traversing the DOM (part 3 of 3).

Appendix C Document Object Model (DOM™) 1671

Lines 17–51 define the class constructor for TraverseDOM, which takes the name of
the file (i.e., simpleContact.xml) specified at the command line, loads and parses the
XML document before passing it to programmer-defined method processNode.

Lines 53–96 define method processNode, which takes one Node argument and
outputs information about the Node and its child elements. Line 55 begins a switch
structure that determines the Node type.

Line 58 matches the document node. This case outputs the document node (repre-
sented as #document) and processes its child nodes by calling method process-
ChildNodes (lines 98–104). We will discuss method processchildNodes
momentarily. Line 69 matches an element node. This case outputs the element’s attributes
and then processes its child nodes in processChildNodes.

Lines 87–88 match CDATA section nodes and text nodes. These cases output the
node’s text content (lines 91–93).

Lines 98–104 define method processChildNodes, which takes one NodeList
argument and calls processNode on a node’s child nodes. Each child node is retrieved
by calling NodeList method item (line 103).

Figure C.14 lists the contents of simpleContact.xml, the XML document used
by TraverseDOM.java.

C.7 Internet and World Wide Web Resources
www.w3.org/DOM
W3C DOM home page.

www.w3schools.com/dom/default.asp
The W3Schools DOM introduction, tutorial and links site.

www.oasis-open.org/cover/dom.html
The Oasis-Open DOM page contains a comprehensive overview of the Document Object Model with
references and links.

dmoz.org/Computers/Programming/Internet/W3C_DOM
This is a useful set of DOM links to different locations and instructional matter.

www.w3.org/DOM/faq.html
Answers to DOM Frequently Asked Questions (FAQs).

www.jdom.org
Home page for the JDOM XML API in Java.

1 <?xml version = "1.0"?>
2
3 <!-- Fig C.14 : simpleContact.xml -->
4 <!-- Input file for traverseDOM.java -->
5
6 <!DOCTYPE contacts [
7 <!ELEMENT contacts (contact+)>
8 <!ELEMENT contact (FirstName, LastName)>
9 <!ATTLIST contact gender (M | F) "M">

10 <!ELEMENT FirstName (#PCDATA)>
11 <!ELEMENT LastName (#PCDATA)>
12]>

Fig. C.14Fig. C.14Fig. C.14Fig. C.14 Sample execution of TraverseDOM.java (part 1 of 2).

1672 Document Object Model (DOM™) Appendix C

SUMMARY
• XML documents, when parsed, are represented as a hierarchal tree structure in memory. This tree

structure contains the document’s elements, attributes, text, etc. XML was designed to be a live,
dynamic technology—the contents of the tree structure can be modified by a programmer. This
essentially allows the programmer to add data, remove data, query for data, etc., in a manner sim-
ilar to manipulating a database.

• The W3C provides a recommendation for building a tree structure in memory for XML documents
called the XML Document Object Model (DOM). Any parser that adheres to this recommendation
is called a DOM-based parser.

• A DOM-based parser exposes (i.e., makes available) a programmatic library—called the DOM
Application Programming Interface (API)—that allows data in an XML document to be accessed
and manipulated. This API is available for many different programming languages.

• Property documentElement returns a document’s root element node. The root element node is
a reference point for retrieving child elements, text, etc.

• Property nodeName returns the name of an attribute, element, etc., which are collectively called
nodes.

• Property childNodes contains a node’s child nodes. Property length returns the number of
child nodes.

• Individual child nodes are accessed using the item method. Each node is given an integer value
(starting at zero) based on the order in which the nodes occur in the XML document.

• Property firstChild retrieves the root node’s first child node.

13
14 <contacts>
15 <contact gender = "M">
16 <FirstName>John</FirstName>
17 <LastName>Black</LastName>
18 </contact>
19 </contacts>

javac TraverseDOM.java
java TraverseDOM simpleContact.xml

Document node: #document
Root element: contacts

Element node: contacts

Element node: contact
 Attribute: gender ; Value = M

Element node: FirstName
 Text: John

Element node: LastName
 Text: Black

Fig. C.14Fig. C.14Fig. C.14Fig. C.14 Sample execution of TraverseDOM.java (part 2 of 2).

Appendix C Document Object Model (DOM™) 1673

• Nodes at the same level in a document (i.e., that have the same parent node) are called siblings.
Property nextSibling returns a node’s next sibling.

• A text node’s value is its text, an element node’s value is null (which indicates the absence of a
value) and an attribute node’s value is the attribute’s value.

• Property parentNode returns a node’s parent node.

• The Document object represents the top-level node of an XML document in memory and pro-
vides a means of creating nodes and retrieving nodes.

• Interface Node represents an XML document node.

• Element represents an element node.

• Sun Microsystems provides several packages related to XML. Package org.w3c.dom provides
the DOM-API programmatic interface (i.e., classes, methods, etc.). Package jav-
ax.xml.parsers provides classes related to parsing an XML document. Classes in jav-
ax.xml.transform.* are necessary to transform and output XML documents.

• A DOM-based parser may use an event-based implementation (i.e., as the document is parsed,
events are raised when starting tags, attributes, etc., are encountered) to help create the tree struc-
ture in memory. A popular event-based implementation is called the Simple API for XML (SAX).
Package org.xml.sax provides the SAX programmatic interface.

• Class DocumentBuilderFactory (package javax.xml.parsers) obtains an instance of
a parser.

• Method setValidating specifies whether a parser is validating or nonvalidating.

• Method parse loads and parses XML documents. If parsing is successful, a Document object
is returned. Otherwise, a SAXException is thrown.

• Method getDocumentElement returns the Document’s root node. The Document’s root
node represents the entire document—not the root element node.

• Method getNodeType retrieves the node’s type.

• Elements in the XML document are retrieved by calling method getElementsByTagName.
Each element is stored as an item (i.e., a Node) in a NodeList. The first item added is stored at
index 0, the next at index 1, and so forth. This index is used to access an individual item in the
NodeList.

• Interface Text represents an element’s or attribute’s character data.

• Method replaceChild replaces a Node.

• SAXParseException and SAXException contain information about errors and warnings
thrown by the parser. Class SAXParseException is a subclass of SAXException and in-
cludes methods for locating the error.

• By default, JAXP does not throw any exceptions when a document fails to conform to a DTD. Pro-
grammers must provide their own implementation, which is registered using method setEr-
rorHandler.

• Interface ErrorHandler provides methods fatalError, error and warning for fatal er-
rors (i.e., errors that violate the XML 1.0 syntax; parsing is halted), errors (e.g., such as validity
constraints that do not stop the parsing process) and warnings (i.e., not classified as fatal errors or
errors and that do not stop the parsing process), respectively.

• Method newDocument creates a new Document object, which can be used to build an XML
document in memory.

• Method createComment creates a comment node.

• Method createProcessingInstruction creates a processing instruction, and method
createCDATASection creates a CDATA section node.

1674 Document Object Model (DOM™) Appendix C

TERMINOLOGY

SELF-REVIEW EXERCISES
C.1 State whether each of the following are true or false. If false, explain why.

a) Class Transformer is a class in the JAXP API.
b) Text in XML document is not represented as a node.
c) A NodeList contains a list of Nodes.
d) Interface CDATASection extends interface CharacterData.
e) Interface Attr extends interface Element.
f) Method parse loads and parses an XML document.
g) Interface ErrorHandler defines methods fatalError, error and warning.
h) Method getElementByTagName of class Element returns the first element in the

XML document that matches the specified name.
i) The replaceChild method of Node can be used to replace child node with another

node.
j) An element’s node value is text (i.e., character data).

C.2 Fill in the blanks in each of the following statements:
a) DOM is an acronym for .

API getTagName
appendChild hasChildNodes
Attr item method
CDATA section Java API for XML Parsing (JAXP)
childNodes length
cloneNode nextSibling
Comment Node
comment node Node.ATTRIBUTE_NODE
createAttribute Node.CDATA_SECTION_NODE
createCDATASection Node.COMMENT_NODE
createComment Node.ELEMENT_NODE
createElement Node.PROCESSING_INSTRUCTION_NODE
createProcessingInstruction Node.TEXT_NODE
createTextNode NodeList
createXmlDocument nodeName
Document nodeValue
document root parentNode
DocumentBuilder processing instruction node
DocumentBuilderFactory ProcessingInstruction
documentElement removeAttribute
DOM removeChild
Element replaceChild
encoding declaration root element node
firstChild setAttribute
getAttribute setNodeValue
getChildNodes setOutputProperty
getDocumentElement setValue method of Attr
getNodeName Text
getNodeType Tranformer
getNodeValue TransformerFactory
getParentNode write

Appendix C Document Object Model (DOM™) 1675

b) DOM-based parsers represent an XML document’s data as a structure.
c) The number of Nodes in a NodeList is determined by calling method .
d) Method replaces one child node with another.
e) Method creates a text node.
f) Method returns a NodeList containing every occurrence of a particular el-

ement.
g) represents the root of an XML document.
h) is a static Node constant that represents an element.

ANSWERS TO SELF-REVIEW EXERCISES
C.1 a) True. b) False. Text is represented as a node. c) True. d) True. e) False. Interface Attr
is derived from interface Node. f) True. g) True. h) False. Method getElementByTagName re-
turns a NodeList containing all the element nodes that match the specified name. i) True. j) False.
An element’s node value is null.

C.2 a) Document Object Model. b) tree. c) getLength. d) replaceChild. e) create-
TextNode. f) getElementsByTagName. g) Document. h) NODE.ELEMENT_NODE.

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 8/23/01

D
XSL: Extensible

Stylesheet Language
Transformations (XSLT)

Objectives
• To understand what the Extensible Stylesheet

Language is and how it relates to XML.
• To understand what an Extensible Stylesheet

Language Transformation (XSLT) is.
• To be able to write XSLT documents.
• To be able to write templates.
• To be able to iterate through a node set.
• To be able to sort.
• To be able to perform conditional processing.
• To be able to declare variables.
Guess if you can, choose if you dare.
Pierre Corneille

A Mighty Maze! but not without a plan.
Alexander Pope

Behind the outside pattern
the dim shapes get clearer every day.
It is always the same shape, only very numerous.
Charlotte Perkins Gilman

Appendix D XSL: Extensible Stylesheet Language Transformations (XSLT) 1677

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 8/23/01

D.1 Introduction
The Extensible Stylesheet Language (XSL) provides rules for formatting XML documents.
In this appendix, we present the XSL Transformation Language (XSLT). XSLT transforms
an XML document to another text-based form, such as XHTML. We present many XSLT
examples and show the results of the transformations.

D.2 Applying XSLTs with Java
To process XSLT documents, you will need an XSLT processor. We have created a Java
program that uses the XSLT processor in the JAXP library to perform XSL transforma-
tions. Our program, Transform.java (Fig. D.1), takes as command-line arguments the
name of the XML document to be transformed, the name of the XSLT document and the
name of the document that will be created by the transformation.

Outline
D.1 Introduction
D.2 Applying XSLTs with Java
D.3 Templates
D.4 Creating Elements and Attributes
D.5 Iteration and Sorting
D.6 Conditional Processing
D.7 Combining Style Sheets
D.8 Variables
D.9 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises

1 // Fig. D.1 : Transform.java
2 // Performs XSL Transformations.
3
4 // Java core libraries
5 import java.io.*;
6 import java.util.*;
7
8 // Java standard extensions
9 import javax.xml.parsers.*;

10 import javax.xml.transform.*;
11 import javax.xml.transform.dom.*;
12 import javax.xml.transform.stream.*;
13
14 // third-party libraries
15 import org.w3c.dom.*;
16 import org.xml.sax.SAXException;
17

Fig. D.1Fig. D.1Fig. D.1Fig. D.1 Java application that performs XSL transformations (part 1 of 2).

1678 XSL: Extensible Stylesheet Language Transformations (XSLT) Appendix D

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 8/23/01

Lines 1–38 import the necessary classes and create a DocumentBuilderFactory,
a DocumentBuilder and a TransformerFactory. Line 40 creates a Document
object, passing it the XML file to be transformed. Line 43 creates a new DOMSource
object from which the Transformer reads the XML Document. Line 46 creates a
StreamSource object from which the Transformer reads the XSL File. DOM-
Source and StreamSource both implement the Source interface. Line 49 creates a
StreamResult object to which the Transformer writes a File containing the result
of the transformation. Lines 52–53 call method newTransformer, passing it the
Source object of the XSL file as an argument. Constructing a Transformer with an

18 public class Transform {
19
20 // execute application
21 public static void main(String args[]) throws Exception
22 {
23 if (args.length != 3) {
24 System.err.println("Usage: java Transform input.xml"
25 + "input.xsl output.xml");
26 System.exit(1);
27 }
28
29 // factory for creating DocumentBuilders
30 DocumentBuilderFactory builderFactory =
31 DocumentBuilderFactory.newInstance();
32
33 // factory for creating Transformers
34 TransformerFactory transformerFactory =
35 TransformerFactory.newInstance();
36
37 DocumentBuilder builder =
38 builderFactory.newDocumentBuilder();
39
40 Document document = builder.parse(new File(args[0]));
41
42 // create DOMSource for source XML document
43 Source xmlSource = new DOMSource(document);
44
45 // create StreamSource for XSLT document
46 Source xslSource = new StreamSource(new File(args[1]));
47
48 // create StreamResult for transformation result
49 Result result = new StreamResult(new File(args[2]));
50
51 // create Transformer for XSL transformation
52 Transformer transformer =
53 transformerFactory.newTransformer(xslSource);
54
55 // transform and deliver content to client
56 transformer.transform(xmlSource, result);
57 }
58 }

Fig. D.1Fig. D.1Fig. D.1Fig. D.1 Java application that performs XSL transformations (part 2 of 2).

Appendix D XSL: Extensible Stylesheet Language Transformations (XSLT) 1679

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 8/23/01

XSL file allows the Transformer to apply the rules in that file when transforming XML
documents. Line 56 applies the XSL transformation to the XML file to produce the result
File. In this appendix, you will use this Java application to apply XSL transformations to
XML files.

[Note: In this example we use a DOMSource to provide the XML document to the
Transformer, although we could have used a StreamSource to read from the XML
file directly. We chose this method, because in other examples in the book, we build the
DOM tree in memory and do not have a file from which to create a StreamSource
object.]

D.3 Templates
An XSLT document is an XML document with a root element stylesheet. The
namespace for an XSLT document is http://www.w3.org/1999/XSL/Trans-
form. The XSLT document shown in Fig. D.2 transforms intro.xml (Fig. D.3) into a
simple XHTML document (Fig. D.4).

XSLT uses XPath expressions to locate nodes in an XML document. [Note: A struc-
tured complete explanation of the XPath language is beyond the scope of this book. We
explain each XPath expression as we encounter it in the examples.] In an XSL transforma-
tion, there are two trees of nodes. The first node tree is the source tree. The nodes in this
tree correspond to the original XML document to which the transformation is applied. The
second node tree is the result tree. The result tree contains all of the nodes produced by the
XSL transformation. This result tree represents the document produced by the transforma-
tion. The document used as the source tree is not modified by an XSL transformation.

Lines 6–7 contain the XSLT document’s root element (i.e., xsl:stylesheet).
Attribute version indicates the XSLT specification used. Namespace prefix xsl is
defined and assigned the URI "http://www.w3.org/1999/XSL/Transform".

Line 9 contains a template element. This element matches specific XML document
nodes by using an XPath expression in attribute match. In this case, we match any
myMessage element nodes.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. D.2 : intro.xsl -->
4 <!-- Simple XSLT document for intro.xml -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:template match = "myMessage">

10 <html>
11 <body><xsl:value-of select = "message"/></body>
12 </html>
13 </xsl:template>
14
15 </xsl:stylesheet>

Fig. D.2Fig. D.2Fig. D.2Fig. D.2 Simple template.

1680 XSL: Extensible Stylesheet Language Transformations (XSLT) Appendix D

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 8/23/01

Lines 10–12 are the contents of the template element. When a myMessage ele-
ment node is matched in the source tree (i.e., the document being transformed), the contents
of the template element are placed in the result tree (i.e., the document created by the
transformation). By using element value-of and an XPath expression in attribute
select, the text contents of the node(s) returned by the XPath expression are placed in
the result tree.

Figure D.3 lists the input XML document. Figure D.4 lists the results of the transfor-
mation.

D.4 Creating Elements and Attributes
In the previous section, we demonstrated the use of XSLT for simple element

matching. This section discusses the creation of new elements and attributes within an
XSLT document. Figure D.5 lists an XML document that marks up various sports.

Figure D.6 lists the XSLT document that transforms the XML document in Fig. D.5
into another XML document.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. D.3 : intro.xml -->
4 <!-- Simple introduction to XML markup -->
5
6 <myMessage>
7 <message>Welcome to XSLT!</message>
8 </myMessage>

Fig. D.3Fig. D.3Fig. D.3Fig. D.3 Sample input XML document intro.xml.

1 <html>
2 <body>Welcome to XSLT!</body>
3 </html>

Fig. D.4Fig. D.4Fig. D.4Fig. D.4 Results of XSL transformation.

Appendix D XSL: Extensible Stylesheet Language Transformations (XSLT) 1681

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 8/23/01

1 <?xml version = "1.0"?>
2
3 <!-- Fig. D.5 : games.xml -->
4 <!-- Sports Database -->
5
6 <sports>
7
8 <game title = "cricket">
9 <id>243</id>

10
11 <para>
12 More popular among commonwealth nations.
13 </para>
14 </game>
15
16 <game title = "baseball">
17 <id>431</id>
18
19 <para>
20 More popular in America.
21 </para>
22 </game>
23
24 <game title = "soccer">
25 <id>123</id>
26
27 <para>
28 Most popular sport in the world.
29 </para>
30 </game>
31
32 </sports>

Fig. D.5Fig. D.5Fig. D.5Fig. D.5 XML document containing a list of sports.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. D.6 : elements.xsl -->
4 <!-- Using xsl:element and xsl:attribute -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:template match = "/">

10 <xsl:apply-templates/>
11 </xsl:template>
12
13 <xsl:template match = "sports">
14 <sports>
15 <xsl:apply-templates/>
16 </sports>
17 </xsl:template>

Fig. D.6Fig. D.6Fig. D.6Fig. D.6 Using XSLT to create elements and attributes (part 1 of 2).

1682 XSL: Extensible Stylesheet Language Transformations (XSLT) Appendix D

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 8/23/01

Lines 9–11 use the match attribute to select the document root (i.e., the parent of the
root element) of the XML document. The / character represents the document root. Ele-
ment apply-templates applies the templates to specific nodes. In this case, we
have not specified any particular nodes. By default, element apply-templates
matches all the child nodes of an element. In Fig. D.5, the child nodes of the document root
are two comment nodes and the sports element node.

The XSLT recommendation defines default templates for the nodes of an XML docu-
ment. If a programmer does not specify a template that matches a particular element, the
default XSLT template is applied. Default templates are described in Fig. D.7.

Lines 13–17 match element sports. We output the sports element and apply tem-
plates to the child nodes of the sports element. Line 19 matches element game. In the
input XML document, element game contains the name of a sport, its unique identifier and
a description.

18
19 <xsl:template match = "game">
20 <xsl:element name = "@title">
21
22 <xsl:attribute name = "id">
23 <xsl:value-of select = "id"/>
24 </xsl:attribute>
25
26 <comment>
27 <xsl:value-of select = "para"/>
28 </comment>
29
30 </xsl:element>
31 </xsl:template>
32
33 </xsl:stylesheet>

Template / Description

<xsl:template match = "/ | *">
<xsl:apply-templates/>

</xsl:template>
This template matches and applies templates to the child nodes of the document root (/) and any
element nodes (*).

<xsl:template match = "text() | @*">
 <xsl:value-of select = "."/>
</xsl:template>
This template matches and outputs the values of text nodes (text()) and attribute nodes (@).

Fig. D.7Fig. D.7Fig. D.7Fig. D.7 Default XSLT templates (part 1 of 2).

Fig. D.6Fig. D.6Fig. D.6Fig. D.6 Using XSLT to create elements and attributes (part 2 of 2).

Appendix D XSL: Extensible Stylesheet Language Transformations (XSLT) 1683

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 8/23/01

Line 20 shows the element element, which creates an element, with the element
name specified in attribute name. Therefore, the name of this XML element will be the
name of the sport contained in attribute title of element game. [Note: In XPath, the
symbol @ specifies an attribute.]

Lines 22–24 show element attribute, which creates an attribute for an element.
Attribute name provides the name of the attribute. The text in element attribute spec-
ifies the attribute’s value in the result tree. Here, the attribute statement will create attribute
id for the new element, which contains the text in element id of element game. Lines 26–
28 create element comment with the contents of element para.

Figure D.8 lists the output of the transformation. Your output may not look exactly like
that in the figure, because we have modified the output in the figure for presentation. The
original XML document has been transformed into a new XML document with sport names
as elements (instead of attributes, as in the original document).

D.5 Iteration and Sorting
XSLT allows for iteration through a node set (i.e., all nodes an XPath expression matches).
Node sets can also be sorted in XSLT. Figure D.9 shows an XML document containing in-
formation about a book.

<xsl:template match = "processing-instruction() | comment()"/>
This template matches processing-instruction nodes (processing-instruction()) and
comment nodes (comment()), but does not perform any actions with them.

1 <?xml version = "1.0" encoding = "UTF-8"?>
2 <sports>
3
4 <cricket id = "243">
5 <comment>
6 More popular among commonwealth nations.
7 </comment>
8 </cricket>
9

10 <baseball id = "431">
11 <comment>
12 More popular in America.
13 </comment>
14 </baseball>
15
16 <soccer id = "123">
17 <comment>
18 Most popular sport in the world.
19 </comment>

Fig. D.8Fig. D.8Fig. D.8Fig. D.8 Output of transformation (part 1 of 2).

Template / Description

Fig. D.7Fig. D.7Fig. D.7Fig. D.7 Default XSLT templates (part 2 of 2).

1684 XSL: Extensible Stylesheet Language Transformations (XSLT) Appendix D

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 8/23/01

Figure D.10 shows the XSLT style sheet that transforms the document in Fig. D.9.

20 </soccer>
21
22 </sports>

1 <?xml version = "1.0"?>
2
3 <!-- Fig. D.9 : usage.xml -->
4 <!-- Book information -->
5
6 <book isbn = "999-99999-9-X">
7 <title>Deitel's XML Primer</title>
8
9 <author>

10 <firstName>Paul</firstName>
11 <lastName>Deitel</lastName>
12 </author>
13
14 <chapters>
15 <preface num = "1" pages = "2">Welcome</preface>
16 <chapter num = "2" pages = "2">XML Elements?</chapter>
17 <chapter num = "1" pages = "4">Easy XML</chapter>
18 <appendix num = "1" pages = "9">Entities</appendix>
19 </chapters>
20
21 <media type = "CD"/>
22 </book>

Fig. D.9Fig. D.9Fig. D.9Fig. D.9 Book table of contents as XML.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. D.10 : usage.xsl -->
4 <!-- Transformation of book information into XHTML -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:template match = "/">

10 <html>
11 <xsl:apply-templates/>
12 </html>
13 </xsl:template>
14
15 <xsl:template match = "book">
16 <head>
17 <title>ISBN <xsl:value-of select = "@isbn"/> -
18 <xsl:value-of select = "title"/></title>
19 </head>

Fig. D.10Fig. D.10Fig. D.10Fig. D.10 Transforming XML data into XHTML (part 1 of 2).

Fig. D.8Fig. D.8Fig. D.8Fig. D.8 Output of transformation (part 2 of 2).

Appendix D XSL: Extensible Stylesheet Language Transformations (XSLT) 1685

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 8/23/01

20
21 <body>
22 <h1><xsl:value-of select = "title"/></h1>
23
24 <h2>by <xsl:value-of select = "author/lastName"/>,
25 <xsl:value-of select = "author/firstName"/></h2>
26
27 <table border = "1">
28 <xsl:for-each select = "chapters/preface">
29 <xsl:sort select = "@num" order = "ascending"/>
30 <tr>
31 <td align = "right">
32 Preface <xsl:value-of select = "@num"/>
33 </td>
34
35 <td>
36 <xsl:value-of select = "."/> (
37 <xsl:value-of select = "@pages"/> pages)
38 </td>
39 </tr>
40 </xsl:for-each>
41
42 <xsl:for-each select = "chapters/chapter">
43 <xsl:sort select = "@num" order = "ascending"/>
44 <tr>
45 <td align = "right">
46 Chapter <xsl:value-of select = "@num"/>
47 </td>
48
49 <td>
50 <xsl:value-of select = "."/> (
51 <xsl:value-of select = "@pages"/> pages)
52 </td>
53 </tr>
54 </xsl:for-each>
55
56 <xsl:for-each select = "chapters/appendix">
57 <xsl:sort select = "@num" order = "ascending"/>
58 <tr>
59 <td align = "right">
60 Appendix <xsl:value-of select = "@num"/>
61 </td>
62
63 <td>
64 <xsl:value-of select = "."/> (
65 <xsl:value-of select = "@pages"/> pages)
66 </td>
67 </tr>
68 </xsl:for-each>
69 </table>
70 </body>
71 </xsl:template>
72
73 </xsl:stylesheet>

Fig. D.10Fig. D.10Fig. D.10Fig. D.10 Transforming XML data into XHTML (part 2 of 2).

1686 XSL: Extensible Stylesheet Language Transformations (XSLT) Appendix D

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 8/23/01

Line 15 is an XSLT template that matches the book element. In this template, we con-
struct the body of the XHTML document. Lines 17–18 create the title for the XHTML doc-
ument. We use the ISBN of the book from attribute isbn and also the contents of element
title to create the title string, resulting in ISBN 999-99999-9-X - Deitel’s XML Primer.
Line 22 creates a header element with the title of the book, selected from element title.
Lines 24–25 create another header element, displaying the name of the book’s author. The
XPath expression author/lastName selects the author’s last name, and the expression
author/firstName selects the author’s first name.

Line 28 shows XSLT element for-each, which applies the contents of the element
to each of the nodes selected by attribute select. In this case, we select all preface ele-
ments of the chapters element. XSLT element sort (line 29) sorts the nodes selected
by the for-each element by the field in attribute select. Attribute order specifies
how these nodes should be ordered. Attribute order has possible values such as
"ascending" (i.e., A–Z) and "descending" (i.e., Z–A). In this for-each element,
we sort the nodes by attribute num, in ascending order.

Lines 30–39 output a table row displaying the preface number, the title of the preface
and the number of pages in that preface for each preface element. Similarly, lines 42–
54 output the chapter elements, and lines 56–68 output the appendix elements.

Figure D.11 shows the results of the transformation. Your output may look different,
because we have modified ours for presentation. Notice that the chapters have appeared in the
correct order, even though the XML document contained the elements in a different order.

1 <html>
2 <head>
3 <title>ISBN 999-99999-9-X - Deitel's XML Primer</title>
4 </head>
5
6 <body>
7 <h1>Deitel's XML Primer</h1>
8 <h2>by Deitel, Paul</h2>
9

10 <table border = "1">
11 <tr>
12 <td align = "right">Preface 1</td>
13 <td>Welcome (2 pages)</td>
14 </tr>
15
16 <tr>
17 <td align = "right">Chapter 1</td>
18 <td>Easy XML (4 pages)</td>
19 </tr>
20
21 <tr>
22 <td align = "right">Chapter 2</td>
23 <td>XML Elements? (2 pages)</td>
24 </tr>
25
26 <tr>
27 <td align = "right">Appendix 1</td>

Fig. D.11Fig. D.11Fig. D.11Fig. D.11 Output of the transformation (part 1 of 2).

Appendix D XSL: Extensible Stylesheet Language Transformations (XSLT) 1687

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 8/23/01

D.6 Conditional Processing
In the previous section, we discussed the iteration of a node set. XSLT also provides ele-
ments to perform conditional processing, such as if elements. Figure D.12 is an XML doc-
ument that a day planner application might use.

28 <td>Entities (9 pages)</td>
29 </tr>
30 </table>
31 </body>
32
33 </html>

1 <?xml version = "1.0"?>
2
3 <!-- Fig. D.12 : planner.xml -->
4 <!-- Day Planner XML document -->
5
6 <planner>
7
8 <year value = "2001">
9

10 <date month = "7" day = "15">
11 <note time = "1430">Doctor's appointment</note>
12 <note time = "1620">Physics class at BH291C</note>
13 </date>
14
15 <date month = "7" day = "4">
16 <note>Independence Day</note>
17 </date>

Fig. D.12Fig. D.12Fig. D.12Fig. D.12 Day planner XML document (part 1 of 2).

Fig. D.11Fig. D.11Fig. D.11Fig. D.11 Output of the transformation (part 2 of 2).

1688 XSL: Extensible Stylesheet Language Transformations (XSLT) Appendix D

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 8/23/01

Figure D.13 is an XSLT document for transforming the day planner XML document
into an XHTML document.

XSLT provides the choose element (lines 34–60) to allow alternative conditional
statements, similar to a nested if/else structure in Java. Element when corresponds to
an if statement. The test attribute of the when element specifies the expression that is
being tested. If the expression is true, the XSLT processor evaluates the code inside the
when element. Line 37, for instance, is an expression that will be true when the time is
between "0500" and "1200". The element choose serves to group all the when ele-
ments, thereby making them exclusive of one another (i.e., the first when element whose
conditional is satisfied will be executed). The element otherwise (lines 56–58) corre-
sponds to the final else statement in a nested if/else structure and is likewise optional.

Lines 64–66 show the if conditional statement. This if determines whether the cur-
rent node (represented as .) is empty. If so, n/a is inserted into the result tree. Unlike ele-
ment choose, element if provides a single conditional test.

18
19 <date month = "7" day = "20">
20 <note time = "0900">General Meeting in room 32-A</note>
21 </date>
22
23 <date month = "7" day = "20">
24 <note time = "1900">Party at Joe's</note>
25 </date>
26
27 <date month = "7" day = "20">
28 <note time = "1300">Financial Meeting in room 14-C</note>
29 </date>
30
31 </year>
32
33 </planner>

1 <?xml version = "1.0"?>
2
3 <!-- Fig. D.13 : conditional.xsl -->
4 <!-- xsl:choose, xsl:when and xsl:otherwise -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:template match = "/">

10 <html>
11
12 <body>
13 Appointments
14

Fig. D.13Fig. D.13Fig. D.13Fig. D.13 Using conditional elements (part 1 of 3).

Fig. D.12Fig. D.12Fig. D.12Fig. D.12 Day planner XML document (part 2 of 2).

Appendix D XSL: Extensible Stylesheet Language Transformations (XSLT) 1689

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 8/23/01

15 <xsl:apply-templates select = "planner/year"/>
16 </body>
17
18 </html>
19 </xsl:template>
20
21 <xsl:template match = "year">
22 Year:
23 <xsl:value-of select = "@value"/>
24

25 <xsl:for-each select = "date/note">
26 <xsl:sort select = "../@day" order = "ascending"
27 data-type = "number"/>
28
29 Day:
30 <xsl:value-of select = "../@day"/>/
31 <xsl:value-of select = "../@month"/>
32
33
34 <xsl:choose>
35
36 <xsl:when test =
37 "@time > '0500' and @time < '1200'">
38 Morning (<xsl:value-of select = "@time"/>):
39 </xsl:when>
40
41 <xsl:when test =
42 "@time > '1200' and @time < '1700'">
43 Afternoon (<xsl:value-of select = "@time"/>):
44 </xsl:when>
45
46 <xsl:when test =
47 "@time > '1700' and @time < '2000'">
48 Evening (<xsl:value-of select = "@time"/>):
49 </xsl:when>
50
51 <xsl:when test =
52 "@time > '2000' and @time < '2400'">
53 Night (<xsl:value-of select = "@time"/>):
54 </xsl:when>
55
56 <xsl:otherwise>
57 Entire day:
58 </xsl:otherwise>
59
60 </xsl:choose>
61
62 <xsl:value-of select = "."/>
63
64 <xsl:if test = ". = ''">
65 n/a
66 </xsl:if>
67

Fig. D.13Fig. D.13Fig. D.13Fig. D.13 Using conditional elements (part 2 of 3).

1690 XSL: Extensible Stylesheet Language Transformations (XSLT) Appendix D

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 8/23/01

D.7 Combining Style Sheets
XSLT allows for modularity in style sheets. This feature enables XSLT documents to im-
port other XSLT documents. Figure D.14 lists an XSLT document that is imported into the
XSLT document in Fig. D.15 using element import.

68

69 </xsl:for-each>
70
71 </xsl:template>
72
73 </xsl:stylesheet>

1 <?xml version = "1.0"?>
2
3 <!-- Fig. D.14 : usage2.xsl -->
4 <!-- xsl:import example -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:template match = "book">

10 <html>
11
12 <body>
13 <xsl:apply-templates/>
14 </body>
15 </html>
16
17 </xsl:template>
18

Fig. D.14Fig. D.14Fig. D.14Fig. D.14 XSLT document being imported (part 1 of 2).

Fig. D.13Fig. D.13Fig. D.13Fig. D.13 Using conditional elements (part 3 of 3).

Appendix D XSL: Extensible Stylesheet Language Transformations (XSLT) 1691

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 8/23/01

The XSLT document in Fig. D.14 is similar to the ones presented earlier. One notable
difference is line 33, which provides a template to match any element or text nodes. When
these nodes are matched, this template indicates that no data will be written to the result
tree. If the template is not provided, default templates will output the other nodes.

Line 9 in Fig. D.15 uses element import to use the templates defined in the XSLT
document (Fig. D.14) referenced by attribute href.

Line 13 provides a template for element title, which already has been defined
in the XSLT document being imported. This local template has higher precedence than
the imported template, so it is used instead of the imported template. Figure D.16 shows
the result of transforming usage.xml (Fig. D.9).

19 <xsl:template match = "title">
20 <xsl:value-of select = "."/>
21 </xsl:template>
22
23 <xsl:template match = "author">
24

25
26 <p>Author:
27 <xsl:value-of select = "lastName"/>,
28 <xsl:value-of select = "firstName"/>
29 </p>
30
31 </xsl:template>
32
33 <xsl:template match = "*|text()"/>
34
35 </xsl:stylesheet>

1 <?xml version = "1.0"?>
2
3 <!-- Fig. D.15 : usage1.xsl -->
4 <!-- xsl:import example using usage.xml -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:import href = "usage2.xsl"/>

10
11 <!-- this template has higher precedence over
12 templates being imported -->
13 <xsl:template match = "title">
14
15 <h2>
16 <xsl:value-of select = "."/>
17 </h2>
18
19 </xsl:template>

Fig. D.15Fig. D.15Fig. D.15Fig. D.15 Importing another XSLT document (part 1 of 2).

Fig. D.14Fig. D.14Fig. D.14Fig. D.14 XSLT document being imported (part 2 of 2).

1692 XSL: Extensible Stylesheet Language Transformations (XSLT) Appendix D

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 8/23/01

Figure D.17 shows an example of the XSLT element include, which includes other
XSLT documents in the current XSLT document. Lines 28–29 contain element include,
which includes the files referenced by attribute href. The difference between element
include and element import is that templates that are included have the same
precedence as the local templates. Therefore, if any templates are duplicated, the tem-
plate that occurs last is used.

20
21 </xsl:stylesheet>

1 <html>
2 <body>
3 <h2>Deitel's XML Primer</h2>
4

5 <p>
6 Author: Deitel, Paul
7 </p>
8 </body>
9 </html>

Fig. D.16Fig. D.16Fig. D.16Fig. D.16 Transformation results.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. D.17 : book.xsl -->
4 <!-- xsl:include example using usage.xml -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:template match = "/">

10
11 <html>
12 <body>
13 <xsl:apply-templates select = "book"/>
14 </body>
15 </html>
16
17 </xsl:template>
18
19 <xsl:template match = "book">
20
21 <h2>
22 <xsl:value-of select = "title"/>
23 </h2>
24

Fig. D.17Fig. D.17Fig. D.17Fig. D.17 Combining style sheets using xsl:include (part 1 of 2).

Fig. D.15Fig. D.15Fig. D.15Fig. D.15 Importing another XSLT document (part 2 of 2).

Appendix D XSL: Extensible Stylesheet Language Transformations (XSLT) 1693

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 8/23/01

Figure D.18 and Figure D.19 list the XSLT documents being included by Figure D.17.

25 <xsl:apply-templates/>
26 </xsl:template>
27
28 <xsl:include href = "author.xsl"/>
29 <xsl:include href = "chapters.xsl"/>
30
31 <xsl:template match = "*|text()"/>
32
33 </xsl:stylesheet>

1 <?xml version = "1.0"?>
2
3 <!-- Fig. D.18 : author.xsl -->
4 <!-- xsl:include example using usage.xml -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:template match = "author">

10
11 <p>Author:
12 <xsl:value-of select = "lastName"/>,
13 <xsl:value-of select = "firstName"/>
14 </p>
15
16 </xsl:template>
17
18 </xsl:stylesheet>

Fig. D.18Fig. D.18Fig. D.18Fig. D.18 XSLT document for rendering the author’s name.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. D.19 : chapters.xsl -->
4 <!-- xsl:include example using usage.xml -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:template match = "chapters">

10 Chapters:
11
12
13 <xsl:apply-templates select = "chapter"/>
14
15 </xsl:template>

Fig. D.19Fig. D.19Fig. D.19Fig. D.19 XSLT document for rendering chapter names (part 1 of 2).

Fig. D.17Fig. D.17Fig. D.17Fig. D.17 Combining style sheets using xsl:include (part 2 of 2).

1694 XSL: Extensible Stylesheet Language Transformations (XSLT) Appendix D

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 8/23/01

Figure D.20 shows the result of the XSLT document (Fig. D.17) applied to the XML
document describing a book (Fig. D.9).

16
17 <xsl:template match = "author">
18
19 <p>Author is:
20 <xsl:value-of select = "lastName"/>,
21 <xsl:value-of select = "firstName"/>
22 </p>
23
24 </xsl:template>
25
26 <xsl:template match = "chapter">
27
28
29 <xsl:value-of select = "."/>
30
31
32 </xsl:template>
33
34 </xsl:stylesheet>

1 <html>
2 <body>
3 <h2>Deitel's XML Primer</h2>
4 Author is: Deitel,
5 Paul</p>
6
7 Chapters:
8
9 XML Elements?

10 Easy XML
11
12 </body>
13 </html>

Fig. D.20Fig. D.20Fig. D.20Fig. D.20 Output of an XSLT document using element include.

Fig. D.19Fig. D.19Fig. D.19Fig. D.19 XSLT document for rendering chapter names (part 2 of 2).

Appendix D XSL: Extensible Stylesheet Language Transformations (XSLT) 1695

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 8/23/01

D.8 Variables
XSLT provides variables for storing information. These variables are not like Java vari-
ables, but rather more like Java constants. Figure D.21 provides an example of an XSLT
document using element variable.

Lines 13–14 use element variable to create a variable named pageCount, which
stores the total number of pages in the book. Attribute select has the value
"sum(book/chapters/*/@pages)", which is an XPath expression for summing
the number of pages. This XPath expression uses function sum to iterate over a set of
nodes and sum their values. The set of nodes includes any element (*) containing an
attribute pages that is a child of book/chapters.

Line 15 uses element value-of to output the variable pageCount’s value. The
dollar sign ($) references the variable’s content.

Figure D.22 shows the output of the XSLT document (Fig. D.21) when it is applied to
usage.xml (Fig. D.9). The total number of pages is 17.

D.9 Internet and World Wide Web Resources
www.w3.org/Style/XSL
The W3C Extensible Stylesheet Language Web site.

1 <?xml version = "1.0"?>
2
3 <!-- Fig. D.21 : variables.xsl -->
4 <!-- using xsl:variables -->
5
6 <xsl:stylesheet version = "1.0"
7 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">
8
9 <xsl:template match = "/">

10
11 <total>
12 Number of pages =
13 <xsl:variable name = "pageCount"
14 select = "sum(book/chapters/*/@pages)"/>
15 <xsl:value-of select = "$pageCount"/>
16 </total>
17
18 </xsl:template>
19
20 </xsl:stylesheet>

Fig. D.21Fig. D.21Fig. D.21Fig. D.21 Demonstrating xsl:variable.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <total>
3 Number of pages =
4 17</total>

Fig. D.22Fig. D.22Fig. D.22Fig. D.22 Result of variables.xsl transformation.

1696 XSL: Extensible Stylesheet Language Transformations (XSLT) Appendix D

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 8/23/01

www.w3.org/TR/xsl
The most current W3C XSL recommendation.

www.w3schools.com/xsl
This site features an XSL tutorial, along with a list of links and resources.

www.dpawson.co.uk/xsl/xslfaq.html
A comprehensive collection of XSL FAQs.

www.bayes.co.uk/xml/index.xml
A portal site that heavily uses XML and XSL.

msdn.microsoft.com/xml
Microsoft Developer Network XML home page, which provides information on XML and XML-re-
lated technologies, such as XSL/XSLT.

xml.apache.org/xalan-j/index.html
Home page for Apache’s XSLT processor Xalan.

java.sun.com/xml/xml_jaxp.html
Home page for JAXP, an implementation of XSLT in Java.

SUMMARY
• XSL Transformation Language (XSLT) transforms XML documents into other text-based docu-

ments using XSL format instructions. XSLT uses XPath to match nodes when transforming an
XML document into a different document. The resulting document may be XML, XHTML, plain
text or any other text-based document.

• To process XSLT documents, you will need an XSLT processor such as the Transformer-re-
lated classes in JAXP.

• An XSLT document is an XML document with a root element xsl:stylesheet. Attribute
version indicates the XSLT specification used.

• An XSLT document’s namespace URI is http://www.w3.org/1999/XSL/Transform.

• A template element matches specific XML document nodes by using an XPath expression in
attribute match.

• Element apply-templates applies an XSLT document’s templates to specific element nodes.
By default, element apply-templates matches all element child nodes.

• The XSLT specification defines default templates for an XML document’s nodes. The template

<xsl:template match = "/ | *">
<xsl:apply-templates/>

</xsl:template>

matches the document root node and any element nodes of an XML document and applies tem-
plates to their child nodes. The template

<xsl:template match = "text() | @*">
 <xsl:value-of select = "."/>
</xsl:template>

matches text nodes and attribute nodes and outputs their values. The template

<xsl:template match ="processing-instruction() | comment()"/>

matches processing-instruction nodes and comment nodes, but does not perform any actions with
them.

Appendix D XSL: Extensible Stylesheet Language Transformations (XSLT) 1697

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 8/23/01

• Element element creates an element with the name specified in attribute name.

• Element attribute creates an attribute for an element and can be contained only within an el-
ement element. Attribute name provides the name of the attribute.

• XSLT provides the capability to iterate through a node set returned by an XPath expression. XSLT
also provides the capability to sort a node set.

• XSLT element for-each applies the element’s contents to each of the nodes specified by at-
tribute select.

• Element sort sorts (in the order specified by attribute order) the nodes specified in attribute
select. Attribute order has values ascending (i.e., A–Z) and descending (i.e., Z–A).

• XSLT provides elements to perform conditional processing.

• Element choose allows alternative conditional statements to be processed.

• XSLT allows for modularity in style sheets. This feature allows XSLT documents to import other
XSLT documents by using element import. Other XSLT document are referenced using at-
tribute href.

• Local templates have higher precedence than imported templates. XSLT element include in-
cludes other XSLT documents in the current XSLT document.

• The difference between element include and element import is that templates included using
element include have the same precedence as the local templates. Therefore, if any templates
are duplicated, the template that occurs last is used.

• XSLT provides variables for storing values.

TERMINOLOGY

SELF-REVIEW EXERCISES
D.1 State whether the following are true or false. If false, explain why.

$ element include
ascending element otherwise
attribute href element sort
attribute match element value-of
attribute name element variable
attribute order element when
attribute select Extensible Stylesheet Language (XSL)
attribute test
attribute type

http://www.w3.org/1999/XSL/Trans-
form URI

attribute version if conditional statement
choose element otherwise condtional
conditional processing root element stylesheet
descending StreamSource
DOMSource template element
element apply-templates text-based document
element attribute when conditional
element element XPath
element for-each XPath expression
element if XSLT (XSL Transformation Language)
element import XSLT processor

1698 XSL: Extensible Stylesheet Language Transformations (XSLT) Appendix D

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 8/23/01

a) XSLT uses XHTML to match nodes for transforming an XML document into a different
document.

b) In its most current specification, XSLT does not allow for iteration through a node set
returned by an XPath expression.

c) By using XSLT, XML documents can easily be converted between formats.
d) Like element choose, element if provides a single conditional test.
e) XSLT allows for modularity in stylesheets, which enables XSLT documents to import

other XSLT documents.
f) The document resulting from an XSLT transformation may be in the format of an XML

document, XHTML/plain text or any other text-based document.
g) XSLT does not provide default templates; all templates must be custom built by the pro-

grammer.
h) XSLT provides elements to perform conditional processing, such as if elements.
i) XSLT does not provide variables.

D.2 Fill in the blanks in each of the following statements.
a) Attribute defines the XSLT specification used in an XSLT document.
b) An XSLT document is an XML document with a root element .
c) XSLT provides the element to allow alternative conditional statements.
d) The letter T in XSLT stands for .
e) Templates of an XSLT document can be applied to specific nodes of an element by using

element .
f) The template element matches specific of an XML document.
g) Attribute has values ascending and descending.
h) Element includes other XSLT documents in the current XSLT document.

ANSWERS TO SELF-REVIEW EXERCISES
D.1 a) False. XSLT uses XPath to match nodes when transforming an XML document into a dif-
ferent document. b) False. XSLT allows for iteration through a node set returned by an XPath expres-
sion. c) True. d) False. Unlike element choose, element if provides a single conditional test. e)
True. f) True. g) False. XSLT provides several default templates for the nodes of an XML document.
h) True. i) False. XSLT provides variables.

D.2 a) version. b) stylesheet. c) choose. d) Transformation. e) apply-templates.
f) nodes. g) order. h) include.

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 8/23/01

E
Downloading and

Installing J2EE 1.2.1

E.1 Introduction
In this appendix, we provide instructions for downloading, installing and configuring Sun
Microsystem’s Java 2 Enterprise Edition SDK (J2EE SDK), which is a reference imple-
mentation of the J2EE 1.2.1 specification. The J2EE SDK is not intended for use in produc-
tion environments, because it lacks the advanced features and stability of commercial
application servers. Instead, it serves as a tool that developers can use to test applications,
and as a guide for application-server vendors when building their own J2EE implementa-
tions.

E.2 Installation
The J2EE SDK version 1.2.1 is available for download from java.sun.com/j2ee/
j2sdkee. Download the appropriate version for your platform and follow the installation
instructions at java.sun.com/j2ee/j2sdkee/install.html. The J2EE SDK
requires two environment variables—J2EE_HOME and JAVA_HOME. The variables
should be set to your J2EE SDK installation directory (e.g., c:\j2sdkee1.2.1) and
J2SE SDK installation directory (e.g., c:\jdk1.3.1), respectively. In Windows 2000,
specify these environment variables in the System control panel on the Advanced tab.
For most UNIX systems, use the following commands to set the environment variables

J2EE_HOME=/usr/local/j2sdkee.1.2.1; export J2EE_HOME
JAVA_HOME=/usr/local/jdk1.3.1; export JAVA_HOME

Be sure to replace /usr/local/ with the name of the directory in which you installed
each SDK. If you require database drivers or other packages that are not part of the J2EE

1700 Downloading and Installing J2EE 1.2.1 Appendix E

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 8/23/01

or J2SE SDKs, you also must set the J2EE_CLASSPATH environment variable to include
those packages.

Throughout this book we use the Cloudscape 3.6 database. The J2EE SDK includes an
older version of Cloudscape. To upgrade Cloudscape to the current version, you must
replace the JAR files in the j2sdkee1.2.1\lib\cloudscape subdirectory with cur-
rent versions. Copy client.jar, tools.jar and cloudscape.jar from the
Cloudscape_3.6\lib\ directory to j2sdkee1.2.1\lib\cloudscape. Also,
copy RmiJdbc.jar from Cloudscape_3.6\frameworks\RmiJdbc\classes
to j2sdkee1.2.1\lib\cloudscape.

E.3 Configuration
After installing the J2EE SDK, you must configure several options in the SDK’s configu-
ration files. The following subsections provide instructions for configuring data sources
and the HTTP server in the J2EE SDK.

E.3.1 JDBC Drivers and Data Sources

The configuration file j2sdkee1.2.1\config\default.properties contains
configuration information for data sources, including URLs, JNDI names, properties and
JDBC driver classes. Property jdbc.drivers is a colon separated list of JDBC driver
class names. For example:

jdbc.drivers=COM.cloudscape.core.JDBCDriver:
oracle.jdbc.driver.OracleDriver

Note that there should be no spaces in the value of the jdbc.drivers property, and all
values must appear on a single line. Property jdbc.datasources assigns JNDI names,
URLs and properties for data sources. The pipe character separates JNDI names and URLs,
it also separates each data source entry. For example, the following line includes the JNDI
name and URL for the Deitel Bookstore database (Chapters 17–20) and for the authors
database of Chapter 8. Note that all entries must appear on the same line, and without spac-
es between entries.

jdbc.datasources=jdbc/books|jdbc:cloudscape:rmi:books;cre-
ate=true|jdbc/Bookstore|jdbc:cloudscape:rmi:Bookstore;cre-
ate=true

E.3.2 HTTP properties

HTTP and Web properties are configured in file web.properties. Property ht-
tp.port specifies the port number for the HTTP server. The default port is 8000. If you
have other services that use port 8000 running on your computer, you may need to change
the port value. Property documentroot configures the base location from the Web serv-
er serves documents. The default directory is j2eesdk1.2.1\public_html.

F
Java Community
ProcessSM (JCP)

F.1 Introduction
The Java Community Process (JCP)1, which started in 1998, is a community-built organi-
zation designed to improve the progress and efficiency of Java technologies. Through a
multistage process of testing and revision, the JCP creates and updates Java specifications.
Along with each specification, the JCP includes a reference implementation and a compat-
ibility test suite. The JCP enables everyone to participate in the development and ratifica-
tion of the Java Platform. After reading this appendix, you may wish to visit the JCP Web
site at www.jcp.org for further details on the JCP and to learn about the various speci-
fications currently under development.

F.2 Participants
The JCP consists of five participants who contribute to the improvement and evolution of
each Java specification—the Program Management Office (PMO), the Executive Commit-
tees (ECs), Experts, members and the public.

F.2.1 Program Management Office

The Program Management Office (PMO) is the branch of Sun Microsystems that governs
and directs JCP. The PMO does not work directly on the specifications, but instead it over-
sees the work and decisions of the Executive Committee.

F.2.2 Executive Committee
 JCP members are elected or ratified to serve three years on an Executive Committee (EC).
The primary function of the ECs is to vote on each Java Specification Request (JSR) and
the subsequent drafts of the specification. There are two ECs, each covering different Java

1. The jcp.org Web site was our primary resource for information presented in this appendix.

1702 Java Community ProcessSM (JCP) Appendix F

Platforms. One EC is responsible for desktop/server specifications, corresponding to the
Java 2 Standard Edition (J2SE) and Java 2 Enterprise Edition (J2EE); this EC currently
contains representatives from fifteen organizations and companies including IBM, Apple,
and BEA Systems, and one individual. The other EC is responsible for consumer/embed-
ded specifications, corresponding to the Java 2 Micro Edition (J2ME); this EC also consists
of sixteen represented companies including Sony, Palm, Motorola, and IBM.

F.2.3 Experts

Every Java Specification Request (JSR) has an Expert Group associated with it. Experts are
nominated representatives from JCP member organizations, or individuals who have com-
pleted an Individual Expert Participation Agreement (IEPA). Experts have an advanced
knowledge in the material covered by the particular JSR. Individuals may nominate them-
selves to join an Expert Group or other members may suggest them. Through a series of
public and community-restricted drafts, the Expert Group creates the specification pro-
posed in the JSR. Each JSR also has a Specification Lead (Spec Lead) associated with it;
an Expert from the Expert Group may accept the position and head the formation of the
specification. The submitter of the JSR proposal typically becomes the Spec Lead.

F.2.4 Members

JCP Members are companies or individuals who sign a Java Specification Participation
Agreement (JSPA) and pay a $5000 yearly fee for commercial businesses or a $2000 yearly
fee for government, education or non-profit organizations. Membership allows individuals
to submit JSRs, review all drafts of the specifications, vote for members of the Executive
Committees, and attend Java events. Currently, there are over 400 businesses, including
IBM, Bank of America, Motorola, and Xerox, holding a JCP membership.

F.2.5 Public Participation

The public (anyone with Internet access) also has the chance to be part of the development
process. Current JSRs and public drafts up for review are available for the public to down-
load, read and comment on via the Internet.

F.3 Java Community Process
The JCP follows a detailed procedure to ensure the practicality and assurance of each spec-
ification. Each proposed specification must pass a series of critiques, revisions, and ballots
before meeting the corresponding EC’s approval.

F.3.1 Initiation Phase
The introduction of a new specification or the revision of an old one begins with the JCP
members. A single member or group of members may produce and submit a JSR to the
PMO. Included in the JSR are the names of the members making the request, a proposed
Spec Lead and a list of preferred members for the Expert Group. The JSR states the grounds
for the proposal, goals for the outcome of the specification and helpful guides to beginning
the project.

Appendix F Java Community ProcessSM (JCP) 1703

Upon receiving a JSR, the PMO assigns the JSR to the appropriate EC. By creating a
Web page for the JSR, the PMO makes the JSR public. This begins the fourteen day JSR
Review process; current JSRs are available at jcp.org/jsr/all. After reading the pro-
posal, the public can submit comments and ideas. The EC then reviews these remarks and
posts them on the JSR’s Web Page. During the JSR Review, members have the opportunity
to submit applications to the PMO, requesting to join the Expert Group (should the EC
approve the JSR).

While the public, Experts and members review the JSR, the EC reads the JSR, con-
siders received comments and votes on the JSR Approval Ballot. After the fourteen day
period of the JSR Review, all votes are submitted, and the JSR passes or fails.

If the JSR fails, a new revision period of fourteen days begins. During this time, the
PMO sends all of the EC’s comments to the creators of the JSR. The creators may then
review the suggestions and criticisms and revise the JSR. When the PMO receives a
redrafted edition of the JSR, the PMO posts the fresh copy and the review period begins
again. If the revised document fails to receive approval in the JSR Reconsideration Ballot,
the failure status is permanent. If the JSR meets approval, the JSR is ready to be developed.

F.3.2 Community Draft Phase

After the JSR passes either the Approval Ballot or the Reconsideration Ballot, the Expert
Group forms. The Spec Lead position is usually filled by the Expert suggested in the JSR.
The Expert Group contains members requested in the JSR as well as members who applied
after viewing the JSR. Note that there is not a specified size for the Expert Group. The Spec
Lead, in accordance with the existing Expert Group, may accept new members, allowing
the Expert Group to diversify and gain a broad range of opinions.

The Spec Lead and the Expert Group work with software developers, computer
industry workers, educators and other members to form a draft of the specification suitable
for the community to review. During the Community Review (a thirty to ninety day
period), members and Experts review and comment on the Community Draft.

Throughout the Community Review, the Spec Lead is required to report all changes on
the draft to the PMO. The PMO then announces the alterations to the community and posts
the latest version of the draft on the JCP Web page.

In addition to the actual specification, JCP provides a Reference Implementation (RI)
and a Technology Compatibility Kit (TCK). The RI is an implementation of the specifica-
tion, confirming that the specification can in fact be implemented. The RI also will act as a
guide for others who implement the specification. The TCK is a set of trials, tools and
records that implementors of the specification use as a test suite. The Spec Lead is respon-
sible for both producing and licensing the RI and TCK. When the Community Draft
released, the Spec Lead provides information on the production and licensing of the RI and
TCK to the PMO.

In the final seven days of the Community Review, the EC votes on the Draft Specifi-
cation Approval Ballot. If the draft fails the vote, the Expert Group has thirty days to read
the comments provided by the EC and alter the draft. After a new edition is submitted, the
EC votes in the Draft Specification Reconsideration Ballot. If the draft meets the EC’s
approval, the Expert Group addresses appropriate feedback from the community review,
then makes the draft available for public review.

1704 Java Community ProcessSM (JCP) Appendix F

F.3.3 Public Draft Phase
During the Public Review (a thirty to ninety day period), the draft of the approved specifi-
cation is posted for both members and the public to view and comment on. The Expert
Group considers the received commentary and makes appropriate changes to the draft,
posting the latest version of the specification on the corresponding JSR Web page.

F.3.4 Final Phase

The Expert Group has the opportunity to update the draft after the public reviews it. Both
JCP members and the public may view the Proposed Final Draft on the JCP Web site.

The Spec Lead must test that it is possible to implement the specification. By providing
the RI, the Spec Lead ensures that an implementation of the specification is possible. The
Expert Group must confirm that the RI implements the specification adequately, that the
TCK provides sufficient test coverage and that the RI passes the tests in the TCK. Any
changes to the specification are posted on the JCP Web site and are open to comments. In
addition, the PMO requires the Spec Lead to record challenges faced with the tests in the
TCK; this information is also posted on the JCP Web site.

The PMO sends the Final Draft to the Executive Committee and announces where to
find the RI and TCK. In the Final Approval Ballot, the EC votes on the Final Draft. If the
draft fails, the Spec Lead and Expert Group have thirty days to modify the specification, RI
and TCK. If a modified specification is submitted, the EC votes on a Final Reconsideration
Ballot. If the Final Draft is approved, the Final Draft is posted on the JCP Web site, along
with all alterations. The JSR is complete, and the Expert Group is dismissed.

F.3.5 Maintenance Phase

After the specification, RI and TCK are finished and implemented, a Maintenance Period
begins. The Maintenance Lead (ML), usually the same person as the Spec Lead, answers
questions, clarifies discrepancies and decides if the specification should be updated. The
ML considers requests for alterations to the specification and enters them into a Change
Log as “proposed” changes. For the following thirty days, anyone can comment on the sug-
gested changes by visiting the JCP Web site.

After the thirty day Maintenance Period the ML categorizes a suggested change as
“accepted,” meaning the minor revision will be made, “deferred,” meaning the revision will
possibly become a JSR, or “proposed,” meaning the revision will remain as a suggested
idea. If the ML terms the revision as “deferred,” the ML may decide to submit the proposed
change as a JSR.

 During the Maintenance Period a member of the EC may request to change the status
of a minor change to a JSR. For this request the PMO will hold an Item Exception Ballot
in the last seven days of the Maintenance Period. If the ballot passes the revision will
change status to a JSR, otherwise the change remains in the “proposed” category.

Along with the upkeep of the specification, the ML also accordingly updates the TCK
and RI. The ML must record challenges of the tests contained in the TCK. If the original
TCK implementor is dissatisfied with the change, the implementor may appeal it by
sending a written document to the PMO. The EC votes on the complaint in an Appeal
Ballot.

G
Java Native Interface

(JNI)

Objectives
• To become familiar with basic JNI concepts.
• To create simple JNI applications.
• To convert C++ and JNI types.
• To learn how to interact with Java objects natively.
• To learn native exception handling.

1706 Java Native Interface (JNI) Appendix G

s

G.1 Introduction
The Java Native Interface (JNI) allows programmers to access existing libraries written in
other languages such as C and C++. JNI allows programmers to use Java without requiring
that existing libraries be entirely rebuilt. JNI makes it possible for large companies to mi-
grate to Java without sacrificing the resources required to port existing libraries to Java. JNI
also provides the developer with access to system libraries—at the cost of portability. JNI
can be useful in time-critical applications—programmers may write a piece of the applica-
tion in assembly code and link this program with Java to provide better performance. In
this appendix, we explain how to integrate Java with C++ libraries. We show how to call
native functions stored in compiled libraries from Java, and how to access Java objects,
methods and member variables from C++. This appendix assumes a familiarity with C or
C++. Although the examples are written in C++, they can be converted to C with little ef-
fort. Throughout this appendix we refer to native functions as the routines written in C++
and native methods as the native declarations contained in Java. Native code can be defined
as code which can be compiled down to a processor specific binary format.

Performance Tip G.1
Communication between Java and native code is slow, too many JNI calls will actually de-
grade performance. G.1

G.2 Getting Started with Java Native Interface
Enabling a Java program to call a native function requires several steps. A Java wrapper
class is a class that either aggregates methods from disparate sources into a single class or
encapsulates a complex API into simple method calls. In the wrapper classes presented in
this appendix, we will define native methods that correspond to functions implemented in
a C++ library. The javah utility generates header files that enable the Java program to in-
voke native methods. This utility is part of the J2SE SDK 1.3.1.

Class JNIPrintWrapper (Fig. G.1) is a wrapper class for a native method that
prints a simple message to the standard output. It contains an example of the code required
to load a library—the compiled code that will be accesses by the Java program (line 8).
System.loadLibrary will search your library paths for a library with the given name.
Generally, the library should be loaded in a static block. This ensures that the library is
loaded before any native methods are called. If the library is not loaded before a native call,
the program will exit with a UnsatisfiedLinkError. Line 12 declares method

Outline

G.1 Introduction
G.2 Getting Started with Java Native Interface
G.3 Accessing Java Methods and Objects from Native Code
G.4 JNI and Arrays
G.5 Handling Exceptions with JNI
G.6 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Appendix G Java Native Interface (JNI) 1707

printMessage with the keyword native, which indicates that the method is imple-
mented in a native library, not in Java. Similar to an abstract method, native method
definition is never provided in Java.

JNI needs specific header files to interact with native code. The JDK includes the tool
javah to produce ANSI C header files for use with native C and C++ code. The command
line indicates that javah should create JNI header files. You must run javah on each
compiled Java class that contains a native method. Do not edit these headers—if you
make a change to the wrapper class, run javah again on the compiled class to generate
appropriate header files. The following command:

javah -jni JNIPrintWrapper

creates the JNIPrintWrapper.h header file. If JNIPrintWrapper were in a pack-
age named utilities.native the resulting file would be named
utilities_native_JNIPrintWrapper.h. Note that the -jni option specifies
that headers are produced for JNI.1

Header JNIPrintWrapper (Fig. G.2) is the header that javah creates for Java
class JNIPrintWrapper. Line 2 includes jni.h, the header that contains JNI helper
functions required for the C++ library to interact with the Java. JNI requires the use of C-
style function identifiers, thus, the preprocessor commands on lines 7–9 ensure the native
functions are compiled correctly. The comments on lines 10–14 represent information
needed by JNI to use the methods. The signature (line 13) indicates the argument and the
return types of the function. Lines 15–16 contain two platform specific #defines—
JNIEXPORT and JNICALL, each help handle JNI interactions with the C++ code for your
system. The function name consists of Java_calling class_methodname. Function
printMessage takes three arguments. The first argument, of type JNIEnv is a pointer
to a table of functions that assist the native code’s interaction with Java. JNIEnv is always
passed as the first argument to a JNI function. In this appendix, JNIEnv variables are
accessed using C++. In C++ a JNIEnv* pointer would be accessed like an object:

env->functionName(args)

1. JNI was introduced in JDK 1.1—before that developers used a more cumbersome native interface,
the headers for this older style may be generated with the -stubs option.

1 // Fig. G.1 JNIPrintWrapper.java
2 // Allows access to native methods
3
4 public class JNIPrintWrapper {
5
6 // load library JNIPrintLibrary into JVM
7 static {
8 System.loadLibrary("JNIPrintLibrary");
9 }

10
11 // native C++ method
12 public native void printMessage(String message);
13 }

Fig. G.1Fig. G.1Fig. G.1Fig. G.1 JNIPrintWrapper loads a library and declares a native method.

1708 Java Native Interface (JNI) Appendix G

In C, it would be accessed using the syntax:

(*env)->functionName(env, args)

The second argument sent to printMessage is a reference to the Java object that called
this native function. Any arguments that follow are the values passed to the function from
the Java code.

Before using this header you must make sure that your compiler or IDE knows where
to look for jni.h and the #defines. They are located in the following directories:

JDK directory\include\
JDK directory\include\your platform\

Java primitive types and object types do not map directly to those used in C/C++. To
pass these types between languages, JNI includes a predefined set of types. All Java objects
are passed as jobjects, all Strings are passed as jstrings, and primitives are passed
as jtype (e.g., jint and jdouble). Conversion between C/C++ and JNI primitive types
is handled transparently. However, working with jobjects, including arrays is more
complicated.

The implementation of the javah header (Fig. G.3) JNIPrintWrapper-
Impl.cpp converts a jstring into a char * and uses C++ to output the string. Java
uses Unicode (see Appendix I) to represent its characters, however C++ uses an ANSI
format (Latin-1). Consequently, a direct assignment is not possible. Unicode may be con-
verted into an ANSI comparable format called UTF-8, which C++ supports. JNI performs
conversion with the function GetStringUTFChars, which returns a pointer to the string
in UTF-8 format. JNI sets jboolean variable copied to JNI_TRUE _if the string passed

1 /* DO NOT EDIT THIS FILE - it is machine generated */
2 #include <jni.h>
3 /* Header for class JNIPrintWrapper */
4
5 #ifndef _Included_JNIPrintWrapper
6 #define _Included_JNIPrintWrapper
7 #ifdef __cplusplus
8 extern "C" {
9 #endif

10 /*
11 * Class: JNIPrintWrapper
12 * Method: printMessage
13 * Signature: (Ljava/lang/String;)V
14 */
15 JNIEXPORT void JNICALL Java_JNIPrintWrapper_printMessage
16 (JNIEnv *, jobject, jstring);
17
18 #ifdef __cplusplus
19 }
20 #endif
21 #endif

Fig. G.2Fig. G.2Fig. G.2Fig. G.2 JNIPrintWrapper.h header file generated by javah.

Appendix G Java Native Interface (JNI) 1709

is a copy of the Java string and JNI_FALSE if it is a pointer to the original string. We dis-
cuss the differences between a values vs. a reference to a string or array in Section G.4. In
either case the returned string should be assigned to a char *. After displaying the string
release the memory used by the UTF-8 string. If the string is not released it will result in a
memory leak. Releasing the string requires a call to ReleaseStringUTFChars, with
the jstring and char * as arguments.

After creating the library and the wrapper class the native code must be loaded into the
the Java JVM. On Win32 platforms, libraries have the extension .dll. To avoid a Java
UnsatisfiedLinkError the path to the library must be set with this command:

set PATH=%PATH%;library path

On Solaris, with csh, the library must be named liblibraryname.so and the library path
is set with:

setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:library path

Class JNIPrintMain (Fig. G.4) demonstrates the main class of the JNI application.
The body of the main method (lines 14–17) demonstrates the benefit of the wrapper class.
Within the main Java application, native calls written in the same manner as other method
calls.

1 // Fig. G.3 JNIPrintWrapperImpl.cpp
2 // Implements the header created by Java
3 // to integrate with JNI.
4
5 // C++ core header
6 #include <iostream.h>
7
8 // header produced by javah
9 #include "JNIPrintWrapper.h"

10
11 // prints string provided by Java application
12 JNIEXPORT void JNICALL Java_JNIPrintWrapper_printMessage
13 (JNIEnv * env, jobject thisObject, jstring message)
14 {
15 // boolean to determine if string is copied
16 jboolean copied;
17
18 // call JNI method to convert jstring to cstring
19 const char* charMessage =
20 env->GetStringUTFChars(message, &copied);
21
22 // print message
23 cout << charMessage;
24
25 // release string to prevent memory leak
26 env->ReleaseStringUTFChars(message, charMessage);
27 }

Fig. G.3Fig. G.3Fig. G.3Fig. G.3 JNIPrintWrapperImpl.cpp implements the javah header to print
a message.

1710 Java Native Interface (JNI) Appendix G

G.3 Accessing Java Methods and Objects from Native Code
JNI can do far more with native code than just sending and receiving arguments. You may
access Java methods directly from the native library, create new Java objects and even cre-
ate a new instance of the JVM. This section includes demonstrations of method calling, ob-
ject creation and array handling, directly from native code.

Class JNIMethodWrapper (Fig. G.5) behaves similarly to the previous wrapper
class, except that it contains two methods. In the first native function we will call a method
on the PIContainer class passed to the function (line 12). In the second method, we do
not pass an instance of PIContainer, it is created in native code (line 13).

1 // Fig. G.4 JNIPrintMain.java
2 // Creates a new instance of the Java wrapper class,
3 // and calls the native methods.
4
5 public class JNIPrintMain{
6
7 // uses JNI to print a message
8 public static void main(String args[])
9 {

10 JNIPrintWrapper wrapper = new JNIPrintWrapper();
11
12 // call to native methods through JNIWrapper
13 wrapper.printMessage("Welcome to JNI!\n");
14 }
15 }

Welcome to JNI!

Fig. G.4Fig. G.4Fig. G.4Fig. G.4 JNIPrintMain calls the native method via the wrapper class.

1 // Fig. G.5 JNIPIWrapper.java
2 // Allows for access to native function.
3
4 public class JNIPIWrapper {
5
6 // load JNIPILibrary into JVM
7 static {
8 System.loadLibrary("JNIPILibrary");
9 }

10
11 // native c++ methods
12 public native double getPI(PIContainer container);
13 public native double getPI();
14 }

Fig. G.5Fig. G.5Fig. G.5Fig. G.5 JNIPIWrapper encapsulates the native methods and loads the
library.

Appendix G Java Native Interface (JNI) 1711

Class PIContainer (Fig. G.6) contains method getPI that returns the value of the
constant PI. The native code uses PIContainer to demonstrate the construction of Java
objects and the invocation of methods.

JNIPIMethodWrapper.h (Fig. G.7) is the javah-generated header for our
library, which includes the return type jdouble (line 15).

1 // Fig. G.6 PIContainer.java
2 // Contains one method, retrieves Math.PI.
3
4 public class PIContainer {
5
6 // return java.lang.Math PI member variable
7 public double getPI()
8 {
9 return Math.PI;

10 }
11 }

Fig. G.6Fig. G.6Fig. G.6Fig. G.6 PIContainer returns the PI member of java.lang.Math.

1 /* DO NOT EDIT THIS FILE - it is machine generated */
2 #include <jni.h>
3 /* Header for class JNIPIWrapper */
4
5 #ifndef _Included_JNIPIWrapper
6 #define _Included_JNIPIWrapper
7 #ifdef __cplusplus
8 extern "C" {
9 #endif

10 /*
11 * Class: JNIPIWrapper
12 * Method: getPI
13 * Signature: ()D
14 */
15 JNIEXPORT jdouble JNICALL Java_JNIPIWrapper_getPI__
16 (JNIEnv *, jobject);
17
18 /*
19 * Class: JNIPIWrapper
20 * Method: getPI
21 * Signature: (LPIContainer;)D
22 */
23 JNIEXPORT jdouble JNICALL Java_JNIPIWrapper_getPI__LPIContainer_2
24 (JNIEnv *, jobject, jobject);
25
26 #ifdef __cplusplus
27 }
28 #endif
29 #endif

Fig. G.7Fig. G.7Fig. G.7Fig. G.7 JNIPIWrapper.h is the javah generated header file for the native
functions.

1712 Java Native Interface (JNI) Appendix G

C++ file JNIPIWrapperImpl.cpp (Fig. G.8) uses JNI to create and invoke
native methods and objects. Lines 16–22 demonstrate invoking a method on an object
that has already been created. GetObjectClass in line 16 takes an argument of type
jobject and returns the jclass to which it belongs. The argument in this case is the
jobject passed by the calling method.

1 // Fig. G.8 JNIPIWrapperImpl.cpp
2 // Calls methods on the PIContainer object sent to it.
3 // Creates new Java objects.
4
5 // standard c header
6 #include <iostream.h>
7
8 // header produced by javah
9 #include "JNIPIWrapper.h"

10
11 // retrieves value of PI based on passed PIContainer
12 JNIEXPORT jdouble JNICALL Java_JNIPIWrapper_getPI__LPIContainer_2
13 (JNIEnv * env, jobject thisObject, jobject containerObject)
14 {
15 // retrieve PIContainer class
16 jclass PIClass = env->GetObjectClass(containerObject);
17
18 // retrieve method ID of getPI
19 jmethodID mid = env->GetMethodID(PIClass, "getPI", "()D");
20
21 // call method getPI of class PIContainer with no arguments
22 jdouble PI = env->CallDoubleMethod(containerObject, mid, NULL);
23
24 return PI;
25 }
26
27 // retrieves value of PI by creating new PIContainer
28 JNIEXPORT jdouble JNICALL Java_JNIPIWrapper_getPI__
29 (JNIEnv * env, jobject thisObject) {
30
31 // finds Class PIContainer
32 jclass PIClass = env->FindClass("PIContainer");
33
34 // retrieves ID of constructor
35 jmethodID constructorID =
36 env->GetMethodID(PIClass, "<init>", "()V");
37
38 // creates new PIContainer
39 jobject newContainer =
40 env->NewObject(PIClass, constructorID, NULL);
41
42 // retrieves method ID of getPI
43 jmethodID mid = env->GetMethodID(PIClass, "getPI", "()D");
44

Fig. G.8Fig. G.8Fig. G.8Fig. G.8 JNIPIWrapperImpl.cpp demonstrates method calls and object
construction (part 1 of 2).

Appendix G Java Native Interface (JNI) 1713

 Function GetMethodID (line 19) requires a jclass object to determine the method’s
jmethodID. A method ID is a unique ID created and associated with each class method.
Function GetMethodID also requires the name of a method within the jclass object and
a signature string specifying the arguments and return type of that method. If the specified
method cannot be found, the method ID returned is zero. The signature must be in the format:

(<argument types>) <return type>

Primitive types are usually specified by their uppercase first letter (e.g., D for double, I
for int and V for void). Exceptions to this rule are J for long and Z for boolean. Ob-
ject types must be prefixed by L followed by the class, including packages and terminated
by a semicolon. For example, Ljava/lang/String; specifies the String type. In-
cluding an open bracket ([) before a signature indicates an array,([D)V represents a meth-
od that requires an array of doubles and returns void. The full listing of type mappings
is shown in Fig. G.9.

Line 22 calls the function CallDoubleMethod to invoke the Java method getPI.
Methods can be called with CalltypeMethod, where type represents the return type.
CallObjectMethod can be called for any Java object. The first argument is a reference
to the object containing the method, the second contains the method ID and any additional
arguments are parameters to send to the method.

45 // call method getPI of class PIContainer with no arguments
46 jdouble PI = env->CallDoubleMethod(newContainer, mid, NULL);
47
48 return PI;
49 }

Fig. G.8Fig. G.8Fig. G.8Fig. G.8 JNIPIWrapperImpl.cpp demonstrates method calls and object
construction (part 2 of 2).

Type Signature

byte B

char C

double D

float F

int I

long J

short S

void V

boolean Z

class Lfull/class/name;

array of type [type

Fig. G.9Fig. G.9Fig. G.9Fig. G.9 Signature type mappings.

1714 Java Native Interface (JNI) Appendix G

The second function, lines 28–49 creates a new PIContainer, then retrieves its
value of PI. Line 32 demonstrates the use of JNI function FindClass, which returns a
reference to any fully qualified class name. If you do not have an object instance, call func-
tion FindClass from native code to retrieve the jclass object. After obtaining the
class, a new instance must be created. The first step is to obtain the method ID of <init>,
the method name used in JNI to signify a constructor. The method ID, along with the class,
and any constructor arguments must be used in the NewObject function to create a new
object of that class (line 40).

Class JNIPIMain (Fig. G.10) uses the wrapper class to retrieve PI. It creates a new
instance of PIContainer (line 12) for native use. The class displays the retrieved PI
value to demonstrate correct return value. Method getPI is then called again without
passing any arguments.

Next, we will demonstrate how to call static methods. An instance of a static
member cannot be obtained—thus the jobject which refers to an instance of an object
cannot be used. The static JNI functions require the jclass of the object, which
simply represents the class and contains any static members.

Class JNIStaticWrapper (Fig. G.11) is the wrapper class for gaining access to
static methods and variables. The native method in this class will receive static
variables from class MathConstants.

Class MathConstants (Fig. G.12) is a container class for the member variables of
class Math. MathConstants methods and variables will be accessed from native code.

JNIStaticWrapper.h (Fig. G.13) is the javah generated header file. The signa-
ture on line 12 specifies that the method must take an argument of type MathConstants.

1 // Fig. G.10 JNIPIMain.java
2 // Loads the native library, creates a new instance of the
3 // Java wrapper class and uses native code to call getPI.
4
5 public class JNIPIMain {
6
7 public static void main(String args[])
8 {
9 JNIPIWrapper wrapper = new JNIPIWrapper();

10
11 // native code retrieves PI from instance of PIContainer
12 double pi = wrapper.getPI(new PIContainer());
13 System.out.println("PI is " + pi);
14
15 // native code retrieves PI, creates its own PIContainer
16 double pi2 = wrapper.getPI();
17 System.out.println("PI2 is " + pi2);
18 }
19 }

PI is 3.141592653589793

PI2 is 3.141592653589793

Fig. G.10Fig. G.10Fig. G.10Fig. G.10 JNIPIMain calls each native method via the wrapper class.

Appendix G Java Native Interface (JNI) 1715

1 // Fig. G.11 JNIStaticWrapper.java
2 // Allows access to native printStaticMembers function.
3
4 public class JNIStaticWrapper {
5
6 // load library JNIMathLibrary into JVM
7 static {
8 System.loadLibrary("JNIMathLibrary");
9 }

10
11 // native C++ method
12 public native void printStaticMembers(MathConstants constants);
13
14 }

Fig. G.11Fig. G.11Fig. G.11Fig. G.11 JNIStaticWrapper loads JNIMathLibrary and declares
native method printStaticMembers.

1 // Fig. G.12 MathConstants.java
2 // Contains static member variables
3 // and methods for native retrieval.
4
5 // container class containing static math constants
6 public class MathConstants {
7
8 public static final double PI = Math.PI;
9 public final double E = Math.E;

10
11 public static double getPI()
12 {
13 return PI;
14 }
15 }

Fig. G.12Fig. G.12Fig. G.12Fig. G.12 MathConstants contains common math constants from Math.

1 /* DO NOT EDIT THIS FILE - it is machine generated */
2 #include <jni.h>
3 /* Header for class JNIStaticWrapper */
4 #ifndef _Included_JNIStaticWrapper
5 #define _Included_JNIStaticWrapper
6 #ifdef __cplusplus
7 extern "C" {
8 #endif
9 /*

10 * Class: JNIStaticWrapper
11 * Method: printStaticMembers
12 * Signature: (LMathConstants;)V
13 */
14 JNIEXPORT void JNICALL Java_JNIStaticWrapper_printStaticMembers
15 (JNIEnv *, jobject, jobject);

Fig. G.13Fig. G.13Fig. G.13Fig. G.13 JNIStaticWrapper.h javah generated header file (part 1 of 2).

1716 Java Native Interface (JNI) Appendix G

JNIStaticWrapperImpl.cpp (Fig. G.14) demonstrates native calls to static
and non-static members from native code. Accessing member variables follows the JNI
format—obtain the jclass, get the member ID and access the member. Lines 19–25
show these steps to access a static variable. GetFieldID obtains the jfieldID of
the variable you wish to access. A jfieldID is the unique ID of a variable field within
an object. The jfieldID can be used to locate a member variable the same way a
jmethodID can locate a method. You must specify the class, the variable name and the
field signature. Field signatures correspond to method signatures—however, only a single
type must be specified. GettypeField returns the non-static member contained within the
given object instance that matches the given jfieldID. To obtain the jfieldID of a
static member requires a call to GetStaticFieldID and requires the same argu-
ments as a call to a non-static field (line 30). Retrieving the field requires a call to Get-
StatictypeField, and passes jclass as the first argument (line 31–32). To set
member fields call SettypeField, with a jobject instance, the fieldID and a value
of type as arguments. Setting static fields requires a call to SetStatictypeField
with the jclass as the first argument. Invoking static methods uses the same tech-
nique: specify GetStaticMethodID, and call CallStatictypeMethod with the
jclass as an argument.

16
17 #ifdef __cplusplus
18 }
19 #endif
20 #endif

1 // Fig. G.14 JNIStaticWrapperImpl.cpp
2 // Integrates with JNI to retrieve the static
3 // members of the given MathConstant object.
4
5 // C++ header
6 #include <iostream.h>
7
8 // header produced by javah
9 #include "JNIStaticWrapper.h"

10
11 JNIEXPORT void JNICALL Java_JNIStaticWrapper_printStaticMembers
12 (JNIEnv * env, jobject thisObject, jobject MathObject)
13 {
14 jclass constantClass;
15 jfieldID fieldID;
16 jmethodID methodID;
17
18 // get class MathObject
19 constantClass = env->GetObjectClass(MathObject);
20

Fig. G.14Fig. G.14Fig. G.14Fig. G.14 JNIStaticWrapperImpl accesses and prints static members of
the given MathConstants class (part 1 of 2).

Fig. G.13Fig. G.13Fig. G.13Fig. G.13 JNIStaticWrapper.h javah generated header file (part 2 of 2).

Appendix G Java Native Interface (JNI) 1717

Class JNIStaticMain (Fig. G.15) is the main class for this example, it loads the
library, creates the wrapper and calls the native method.

21 // retrieve FieldID of static member variable E
22 fieldID = env->GetFieldID(constantClass, "E", "D");
23
24 // retrieves double at given fieldID
25 const jdouble E = env->GetDoubleField(MathObject, fieldID);
26
27 // output to show proper retrieval
28 cout << "Value of E in MathConstants is " << E << endl;
29
30 fieldID = env->GetStaticFieldID(constantClass, "PI", "D");
31 const jdouble PI = env->GetStaticDoubleField(constantClass,
32 fieldID);
33
34 cout << "Value of PI in MathConstants is " << PI << endl;
35
36 // retrieve static method id
37 methodID = env->GetStaticMethodID(
38 constantClass, "getPI", "()D");
39
40 // invoke static method getPI
41 env->CallStaticDoubleMethod(constantClass, methodID);
42 }

1 // Fig. G.15 JNIStaticMain.java
2 // creates a new instance of the Java wrapper class and calls to
3 // print the static members of the MathConstants class.
4
5 public class JNIStaticMain {
6
7 public static void main(String args[])
8 {
9 JNIStaticWrapper wrapper = new JNIStaticWrapper();

10
11 // access static members from MathConstants
12 wrapper.printStaticMembers(new MathConstants());
13 }
14 }

Value of E in MathConstants is 2.71828
Value of PI in MathConstants is 3.14159

Fig. G.15Fig. G.15Fig. G.15Fig. G.15 JNIStaticMain prints static math constants via the wrapper class.

Fig. G.14Fig. G.14Fig. G.14Fig. G.14 JNIStaticWrapperImpl accesses and prints static members of
the given MathConstants class (part 2 of 2).

1718 Java Native Interface (JNI) Appendix G

G.4 JNI and Arrays
Converting arrays from Java to native code is complex because, as opposed to native lan-
guages, elements in Java arrays are not always placed together in contiguous memory.
Thus, when a native function requires access to an array created in Java, JNI must organize
the array correctly, then it must ensure the array is returned back to Java when the native
function completes.

JNIArrayWrapper (Fig. G.16) contains functionality to print the array returned by
a native function. Method newRandomArray creates an array of random integers of
length size.

JNIArrayWrapper.h (Fig. G.17) declares the function with a return type of jin-
tArray, which is an array of integers. The suffix Array is added to any JNI type to
specify a Java array.

1 // Fig. G.16 JNIArrayWrapper.java
2 // Allows access to native methods.
3
4 public class JNIArrayWrapper {
5
6 // load library JNIArrayLibrary into JVM
7 static {
8 System.loadLibrary("JNIArrayLibrary");
9 }

10
11 // native C++ method
12 public native int[] newRandomArray(int size);
13
14 // Java method that calls native method
15 public void outputRandomNumbers(int amount)
16 {
17 int randomNumbers[] = newRandomArray(amount);
18
19 for (int i = 0 ; i < amount ; i++)
20 System.out.println(randomNumbers[i] +
21 " random number " + i);
22 }
23 }

Fig. G.16Fig. G.16Fig. G.16Fig. G.16 JNIArrayWrapper loads JNIArrayLibrary and displays the
numbers in the returned array.

1 /* DO NOT EDIT THIS FILE - it is machine generated */
2 #include <jni.h>
3 /* Header for class JNIArrayWrapper */
4
5 #ifndef _Included_JNIArrayWrapper
6 #define _Included_JNIArrayWrapper
7 #ifdef __cplusplus
8 extern "C" {
9 #endif

Fig. G.17Fig. G.17Fig. G.17Fig. G.17 JNIArrayWrapper.h javah generated header file (part 1 of 2).

Appendix G Java Native Interface (JNI) 1719

C++ file JNIArrayWrapperImpl.cpp (Fig. G.18) creates two arrays, one of prim-
itive type jintArray, and the other a jobject array containing Integer objects. Lines
29–30 create a new instance of class Integer. Line 33 invokes JNI function NewObjec-
tArray to create the Integer array. Function NewObjectArray takes as arguments the
array size, the array type and the initial value for each array element. Creating a primitive
integer array works similarly; however, function NewIntArray requires one argument, the
size, which is the size of the array. Each of these functions builds a Java array. Accordingly,
the elements may or may not be created contiguously in memory. To obtain access to indi-
vidual elements of a primitive array within native code requires a call to Getprimitivetype-
ArrayElements, with the jtypeArray and a jboolean as arguments. The jboolean
isCopy is passed by reference (line 40), and is set by the function to either JNI_TRUE or
JNI_FALSE. If the array is laid out in contiguous memory the resulting jboolean has the
value JNI_FALSE which indicates that the native code has direct access to the array. How-
ever, JNI_TRUE indicates that a copy of the array was created. If we have received a copy,
we must be careful to release the memory, and be sure the array is updated in Java. Lines 61–
63 determine how the array was received, if it is a copy it is released with the call Release-
typeArrayElements. Releasing an array requires passing the array, our pointer to the
array, and the way it is to be released. We set the final argument to 0 in line 62—this tells JNI
to release the memory and update the original array in Java. Other options include
JNI_ABORT which frees the memory but not update Java and JNI_COMMIT which will
update Java but does not release the memory. Currently there is no documentation on how to
release the memory manually, thus JNI_COMMIT is not recommended.

10 /*
11 * Class: JNIArrayWrapper
12 * Method: newRandomArray
13 * Signature: (I)[I
14 */
15 JNIEXPORT jintArray JNICALL Java_JNIArrayWrapper_newRandomArray
16 (JNIEnv *, jobject, jint);
17
18 #ifdef __cplusplus
19 }
20 #endif
21 #endif

1 // Fig. G.18 JNIArrayWrapperImpl.cpp
2 // Implements the header created by java
3 // to integrate with JNI. Creates a new array
4 // of random integers and returns it to java.
5
6 // C++ core header
7 #include <stdlib.h>
8 #include <time.h>

Fig. G.18Fig. G.18Fig. G.18Fig. G.18 JNIArrayWrapperImpl.cpp demonstrates primitive and Object
array creation and control (part 1 of 3).

Fig. G.17Fig. G.17Fig. G.17Fig. G.17 JNIArrayWrapper.h javah generated header file (part 2 of 2).

1720 Java Native Interface (JNI) Appendix G

9
10 // header produced by javah
11 #include "JNIArrayWrapper.h"
12
13 // creates and fills two arrays
14 JNIEXPORT jintArray JNICALL Java_JNIArrayWrapper_newRandomArray
15 (JNIEnv * env, jobject thisObject, jint size)
16 {
17 // boolean to determine if elements are copied
18 jboolean isCopy;
19 jclass integerClass;
20 jobjectArray objectArray;
21 jobject randomIntegerObject;
22 jmethodID mid;
23 int randomInt;
24
25 // seed rand function with time
26 srand(time(NULL));
27
28 // locate object and constructor
29 integerClass = env->FindClass("java/lang/Integer");
30 mid = env->GetMethodID(integerClass, "<init>", "(I)V");
31
32 // build new Integer array of length size
33 objectArray = env->NewObjectArray(size, integerClass, NULL);
34
35 // create new primitive int array
36 jintArray intArray = env->NewIntArray(size);
37
38 // return pointer to array of elements
39 jint * intArrayPointer =
40 env->GetIntArrayElements(intArray, &isCopy);
41
42 // fill arrays with random numbers
43 for (int i = 0 ; i < size ; i++) {
44
45 // create random int
46 randomInt = rand() % 100;
47
48 // create Integer containing random int
49 randomIntegerObject =
50 env->NewObject(integerClass, mid, randomInt);
51
52 // add element to Integer array
53 env->SetObjectArrayElement(
54 objectArray, i, randomIntegerObject);
55
56 // assign random int to primitive array
57 intArrayPointer[i] = randomInt;
58 }
59

Fig. G.18Fig. G.18Fig. G.18Fig. G.18 JNIArrayWrapperImpl.cpp demonstrates primitive and Object
array creation and control (part 2 of 3).

Appendix G Java Native Interface (JNI) 1721

Lines 39–54 populate both arrays with a set of random numbers. Function NewOb-
ject creates a new Integer object. However, unlike a primitive type, we do not have a
handle to the array in a format that C++ can use. We cannot directly convert a Java object
into a C++ object, thus we must access it in the Java memory space through JNI. JNI
includes the functions SetObjectArrayElement (line 49) and GetObjectAr-
rayElement to provide access to an object array. The first argument is the array of
objects, the third is the object to add to the array, and the second is the index at which to
place the object in the array. There is no need to release object arrays, they are never copied
from the JVM’s memory space, thus Java’s built-in garbage collector will manage the
object memory allocation.

JNIArrayMain (Fig. G.19) is similar to the other main classes, it instatiates a
wrapper object and calls the native method (line 19).

60 // if JNI made a copy, release it and update Java
61 if (isCopy == JNI_TRUE)
62 env->ReleaseIntArrayElements(intArray, intArrayPointer, 0);
63
64 return intArray;
65 }

1 // JNIArrayMain.java
2 // Loads the native library, creates a new instance of the
3 // Java wrapper class, and calls for it to print 10 random
4 // numbers.
5
6 public class JNIArrayMain {
7
8 // instantiate JNIArrayWrapper and call outputRandomNumbers
9 public static void main(String args[])

10 {
11 JNIArrayWrapper wrapper = new JNIArrayWrapper();
12
13 // outputs ten random numbers
14 wrapper.outputRandomNumbers(10);
15 }
16 }

41 random number 0
67 random number 1
34 random number 2
0 random number 3
69 random number 4
24 random number 5
78 random number 6
 (continued on next page)

Fig. G.19Fig. G.19Fig. G.19Fig. G.19 JNIArray loads library and calls JNIArrayWrapper to print 10
numbers (part 1 of 2).

Fig. G.18Fig. G.18Fig. G.18Fig. G.18 JNIArrayWrapperImpl.cpp demonstrates primitive and Object
array creation and control (part 3 of 3).

1722 Java Native Interface (JNI) Appendix G

G.5 Handling Exceptions with JNI
Handling exceptions natively can be essential when integrating native code with Java. JNI
allows native functions to catch exceptions themselves, or to throw exceptions back to
Java. The example in this section uses JNI to do image processing. A resource intensive
task such as image processing might gain performance via JNI. However, in our demon-
stration on exception handling we use of several JNI calls, which significantly reduces per-
formance.

The application calls method ImageSizeException (Fig. G.20) if there is an
attempt to process an image that is too large.

The application calls exception PixelTintException (Fig. G.21) if the parame-
ters entered for color tinting would increase the color value over an allowable value—255.\

 (continued from previous page)
58 random number 7
62 random number 8
64 random number 9

1 // Fig. G.20 ImageSizeException.java
2 // thrown when the image to be processed is too large.
3
4 public class ImageSizeException extends Exception {
5
6 // calls parent constructor
7 public ImageSizeException(String message)
8 {
9 super(message);

10 }
11 }

Fig. G.20Fig. G.20Fig. G.20Fig. G.20 ImageSizeException used when image is too large.

1 // Fig. G.21 PixelTintException.java
2 // extends exception, called when a pixel cannot be fully tinted.
3
4 public class PixelTintException extends Exception {
5
6 // calls parent constructor
7 public PixelTintException(String message)
8 {
9 super(message);

10 }
11 }

Fig. G.21Fig. G.21Fig. G.21Fig. G.21 PixelTintException is used for invalid pixel tint values.

Fig. G.19Fig. G.19Fig. G.19Fig. G.19 JNIArray loads library and calls JNIArrayWrapper to print 10
numbers (part 2 of 2).

Appendix G Java Native Interface (JNI) 1723

Class JNITintWrapper (Fig. G.22) calls the loadLibrary method to load the
native library JNITint (line 8). It also declares the native method tintImage. This
method takes an array of RGB color values and tint the color based on rTint, gTint and
bTint (lines 12–14). This method throws an ImageSizeException, which ensures
that the exception declared in the native code is handled by Java.

Good Programming Practice G.1
Specify the exceptions a native call throws in the wrapper class, this ensures that all calls
catch these exceptions. G.1

Header file JNITintWrapper.h (Fig. G.23) contains the JNI function declaration for
tintImage. The arguments passed are the JNI environment pointer, a reference to the
calling object, the RGB color array, the length of the array, the red tint, green tint and blue tint.

1 // Fig. G.22 JNITintWrapper.java
2 // loads library JNITint and wraps the native tintImage function.
3
4 public class JNITintWrapper {
5
6 // load library JNITint into JVM
7 static {
8 System.loadLibrary("JNITint");
9 }

10
11 // tints image based on tint values
12 public native int[] tintImage(
13 int[] image, int length, int rTint, int gTint, int bTint)
14 throws ImageSizeException;
15 }

Fig. G.22Fig. G.22Fig. G.22Fig. G.22 JNITintWrapper loads the native library and wraps the native
function.

1 /* DO NOT EDIT THIS FILE - it is machine generated */
2 #include <jni.h>
3 /* Header for class JNITintWrapper */
4
5 #ifndef _Included_JNITintWrapper
6 #define _Included_JNITintWrapper
7 #ifdef __cplusplus
8 extern "C" {
9 #endif

10 /*
11 * Class: JNITintWrapper
12 * Method: tintImage
13 * Signature: ([IIIII)[I
14 */
15 JNIEXPORT jintArray JNICALL Java_JNITintWrapper_tintImage
16 (JNIEnv *, jobject, jintArray, jint, jint, jint, jint);
17

Fig. G.23Fig. G.23Fig. G.23Fig. G.23 JNITintWrapper.h javah generated JNI header file (part 1 of 2).

1724 Java Native Interface (JNI) Appendix G

JNITintImage.cpp contains function tintImage, which separates the color
values from the int array and increases each by the tint amount to provide a tinting effect
(Fig. G.24). This is not the only, or most accurate method of tinting, but it is simple. Line
7 defines MAX_IMAGE_SIZE as 65536, the value of a 256x256 pixel image. Lines 18–
28 check the size of the image, and throw an exception if it is too large. Line 21 assigns the
jclass of ImageSizeException to sizeException with the FindClass func-
tion. Function ThrowNew throws an exception of the provided jclass type, with the
given message. After throwing an exception, tintImage exits (line 27), any thrown
exception declared in native code will be handled in Java if it is not cleared. Lines 52–106
contain the color tinting code. The ARGB integers passed to this function are in sRGB
format. This 32 bit format allocates 8 bits for each element, Alpha (transparency), red,
green then blue, in that order. We use bit masking to separate the colors from the combined
integer (line 54–61). Then, we shift the bits of the tint values to match the color location.
The colors are incremented by the tint values to produce a tinting effect. (lines 63–65).

Common Programming Error G.1
When an exception has been thrown, do not make any JNI function calls, except those that
deal with exceptions, until the flag has been cleared. Further calls may lead to unpredictable
results, including crashing the JVM. Check for any exception that can be fixed natively, clear
the exception, then fix it. G.1

18 #ifdef __cplusplus
19 }
20 #endif
21 #endif

Fig. G.23Fig. G.23Fig. G.23Fig. G.23 JNITintWrapper.h javah generated JNI header file (part 2 of 2).

1 // Fig. G.24 JNITintImage.cpp
2 // tints an array of RGB values by given colors. Throws
3 // exception if image is larger than 256x256, also returns an
4 // int array of indexes of pixels that could not be fully tinted.
5
6 // max image size is 256x256
7 #define MAX_IMAGE_SIZE 65536
8
9 // include JNI header

10 #include "JNITintWrapper.h"
11
12 JNIEXPORT jintArray JNICALL Java_JNITintWrapper_tintImage
13 (JNIEnv * env, jobject thisObject, jintArray imageRGB,
14 jint length, jint rTint, jint gTint, jint bTint) {
15
16 jclass sizeException, pixelTintException;
17
18 if (length > MAX_IMAGE_SIZE) {
19

Fig. G.24Fig. G.24Fig. G.24Fig. G.24 JNITintImages.cpp tints an array of sRGB color values to
demonstrate exception handling (part 1 of 4).

Appendix G Java Native Interface (JNI) 1725

20 // obtain jclass ImageSizeException
21 sizeException = env->FindClass("ImageSizeException");
22
23 // throw exception
24 env->ThrowNew(sizeException, "Image is too large");
25
26 // return and allow Java to handle the exception
27 return NULL;
28 }
29
30 // obtain jclass of PixelTintException for use later
31 pixelTintException = env->FindClass("PixelTintException");
32
33 jthrowable exception;
34 int warningCount = 0;
35 jboolean isCopy, isCopy1;
36 unsigned int red, blue, green;
37
38 // create new array of size length
39 jintArray warningArray = env->NewIntArray(length);
40
41 // obtain pointer to the array object
42 jint * warningArrayPointer =
43 env->GetIntArrayElements(warningArray, &isCopy);
44
45 // storage location for RGB array elements
46 long* elements;
47
48 // points elements to the integer array
49 elements = env->GetIntArrayElements(imageRGB, &isCopy1);
50
51
52 for (int i = 0; i < length; i++) {
53
54 // determine red element by masking
55 red = elements[i] & 0xFF0000;
56
57 // determine green element by masking
58 green = elements[i] & 0xFF00;
59
60 // determine blue element by masking
61 blue = elements[i] & 0xFF;
62
63 red += rTint << 16;
64 green += gTint << 8;
65 blue += bTint;
66
67 // throw exception if red value is too large
68 if (red > 0xFF0000) {
69 env->ThrowNew(
70 pixelTintException, "red value reduced to 255");

Fig. G.24Fig. G.24Fig. G.24Fig. G.24 JNITintImages.cpp tints an array of sRGB color values to
demonstrate exception handling (part 2 of 4).

1726 Java Native Interface (JNI) Appendix G

71 red = 0xFF0000;
72 }
73 // throw exception if green value is too large
74 if (green > 0xFF00) {
75 env->ThrowNew(
76 pixelTintException, "green value reduced to 255");
77 green = 0xFF00;
78 }
79 // throw exception if blue value is too large
80 if (blue > 0xFF) {
81 env->ThrowNew(
82 pixelTintException, "blue value reduced to 255");
83 blue = 0xFF;
84 }
85
86 // if an exception occurs store it in exception
87 if ((exception = env->ExceptionOccurred()) != NULL) {
88
89 // if exception was of type pixelTintException record
90 // the index in an array and clear the exception
91 if (env->IsInstanceOf(
92 exception, pixelTintException) == JNI_TRUE) {
93 warningArrayPointer[warningCount] = i;
94 warningCount++;
95 env->ExceptionClear();
96 }
97
98 // else we do not know the exception type, return.
99 else
100 return warningArray;
101 }
102
103 // shift bits to recreate pixel
104 elements[i] =
105 0xFF000000 | red | green | blue;
106 }
107
108 // if first array is copy, release it
109 if (isCopy)
110 env->ReleaseIntArrayElements(warningArray,
111 warningArrayPointer, 0);
112
113 // if second array is copy, release it
114 if (isCopy1)
115 env->ReleaseIntArrayElements(imageRGB, elements, 0);
116
117 if (warningCount != 0)
118
119 // return any warnings
120 return warningArray;

Fig. G.24Fig. G.24Fig. G.24Fig. G.24 JNITintImages.cpp tints an array of sRGB color values to
demonstrate exception handling (part 3 of 4).

Appendix G Java Native Interface (JNI) 1727

After tinting the values it is possible for a color value to be larger than 255. In this
example, we wish to record all pixels that could not be fully tinted. Thus for each value over
255 we throw an exception, and reset the value to 255 (lines 68–84). These exceptions are
used as warnings. We do not want the program to terminate when it returns to Java code,
to avoid this we clear the exception. To determine if an exception has been thrown, we call
JNI function ExceptionOccurred. This function returns a jthrowable instance of
the exception or JNI_NULL if an exception was not thrown. We check for the exception
(line 87) and then determine the type of the exception using JNI function IsInstan-
ceOf, which returns JNI_TRUE if the first argument is an instance of the second argu-
ment. After determining the type of exception (lines 91–92), we store the current index and
make a call to JNI function ExceptionClear which clears any thrown exceptions. If
possible, you should clear the exception before making JNI calls. Many JNI function calls
will crash the JVM if an exception has been thrown.

If the exception does not match our defined exception types, the native function is
exited and control returns to Java, where the exception will be handled (lines 99–100).
After setting the colors we rebuild the color value by using the or operator (lines 104–105).
Then, we determine if any of arrays that we have been manipulating are copies, if so we
release them back to the Java memory space (lines 109–115). Finally, we return the
warning array if it is not empty (lines 117–124).

Class JNIPanel extends JPanel to provide a display surface for our images
(Fig. G.25). The constructor initializes the panels, buttons and sliders in lines 26–91. It
loads the image with the Toolkit method getImage, then uses a MediaTracker
object to ensure the image is completely loaded before continuing (lines 93–106). We then
create a BufferedImage with the same dimensions as the loaded image, and assign it a
ARGB color format (lines 110–112). We then obtain the graphics context of the Buff-
eredImage and write the image’s contents onto it (lines 115–118). Lines 124–126 obtain
the array of pixels in the sRGB format and store them in imageRGB. Lines 129–131 create
a new BufferedImage that contains the tinted color values. Finally, the constructor calls
method updateTint—to processes the image. Method updateTint (lines 148–181)
retrieves the values of the slider and calls the native tinting method. First, a copy is made
of the array of colors, this copy allows us to maintain an unmodified copy of the original
color values. It calls the native method, then prints a warning if any pixels could not be
fully tinted, and catches the ImageSizeException (lines 154–171). Method
actionPerformed simply calls updateTint when the button is pressed (lines 183–
189). Finally, we override the paintComponent method of JPanel to display our
images (lines 138–145).

121 else
122
123 // no warnings
124 return NULL;
125 }

Fig. G.24Fig. G.24Fig. G.24Fig. G.24 JNITintImages.cpp tints an array of sRGB color values to
demonstrate exception handling (part 4 of 4).

1728 Java Native Interface (JNI) Appendix G

1 // Fig. I.25 JNIPanel.java
2 // Loads an image, creates a copy and uses JNI to tint the image.
3
4 // Java headers
5 import javax.swing.*;
6 import java.awt.*;
7 import java.awt.image.*;
8 import java.awt.event.*;
9

10 public class JNIPanel extends JPanel implements ActionListener {
11 BufferedImage loadedImage;
12 BufferedImage tintedImage;
13 int[] imageRGB;
14 int[] tintedRGB;
15 JSlider tintRed, tintGreen, tintBlue;
16 JButton tintButton;
17 JNITintWrapper imageProcess;
18
19 // obtains image, processes it and displays warnings
20 public JNIPanel(String file, LayoutManager layout)
21 {
22 super(layout);
23 setPreferredSize(new Dimension(640, 425));
24
25 // create image manipulation components
26 tintRed = new JSlider(0, 255, 0);
27 tintBlue = new JSlider(0, 255, 0);
28 tintGreen = new JSlider(0, 255, 0);
29 tintButton = new JButton("Tint Image");
30
31 JLabel redLabel = new JLabel("Red");
32 JLabel greenLabel = new JLabel("Green");
33 JLabel blueLabel = new JLabel("Blue");
34
35 // set properties for red slider
36 tintRed.setMajorTickSpacing(50);
37 tintRed.setMinorTickSpacing(10);
38 tintRed.setPaintTicks(true);
39 tintRed.setPaintLabels(true);
40
41 // set properties for green slider
42 tintGreen.setMajorTickSpacing(50);
43 tintGreen.setMinorTickSpacing(10);
44 tintGreen.setPaintTicks(true);
45 tintGreen.setPaintLabels(true);
46
47 // set properties for blue slider
48 tintBlue.setMajorTickSpacing(50);
49 tintBlue.setMinorTickSpacing(10);
50 tintBlue.setPaintTicks(true);
51 tintBlue.setPaintLabels(true);
52

Fig. G.25Fig. G.25Fig. G.25Fig. G.25 JNIPanel creates the application GUI and calls the native method
(part 1 of 4).

Appendix G Java Native Interface (JNI) 1729

53 tintButton.setActionCommand("tint");
54
55 // use this class to process action
56 tintButton.addActionListener(this);
57
58 // create new panels
59 JPanel sliderPanel =
60 new JPanel(new FlowLayout(FlowLayout.LEFT));
61
62 JPanel redPanel = new JPanel(new FlowLayout());
63 redPanel.setPreferredSize(new Dimension(200, 250));
64
65 JPanel greenPanel = new JPanel(new FlowLayout());
66 greenPanel.setPreferredSize(new Dimension(200, 250));
67
68 JPanel bluePanel = new JPanel(new FlowLayout());
69 bluePanel.setPreferredSize(new Dimension(200, 250));
70
71 // add the components
72 redPanel.add(tintRed);
73 redPanel.add(redLabel);
74
75 greenPanel.add(tintGreen);
76 greenPanel.add(greenLabel);
77
78 bluePanel.add(tintBlue);
79 bluePanel.add(blueLabel);
80
81 sliderPanel.add(redPanel);
82 sliderPanel.add(greenPanel);
83 sliderPanel.add(bluePanel);
84
85 // set panel size
86 sliderPanel.setPreferredSize(new Dimension(650, 75));
87
88 add(sliderPanel);
89
90 // add components to JNIPanel
91 add(tintButton);
92
93 MediaTracker tracker = new MediaTracker(this);
94
95 // load image
96 Image image = Toolkit.getDefaultToolkit().getImage(file);
97
98 // add image to tracker
99 tracker.addImage(image, 0);
100
101 try{
102
103 // wait until image is loaded
104 tracker.waitForID(0);

Fig. G.25Fig. G.25Fig. G.25Fig. G.25 JNIPanel creates the application GUI and calls the native method
(part 2 of 4).

1730 Java Native Interface (JNI) Appendix G

105 } catch (InterruptedException e) {
106 e.printStackTrace();
107 }
108
109 // create new buffered image
110 loadedImage = new BufferedImage(
111 image.getWidth(this), image.getHeight(this),
112 BufferedImage.TYPE_INT_ARGB);
113
114 // get graphics context of BufferedImage
115 Graphics2D graphics = (Graphics2D)loadedImage.getGraphics();
116
117 // draw Image on BufferedImage
118 graphics.drawImage(image , 0, 0, this);
119
120 // create new native wrapper
121 imageProcess = new JNITintWrapper();
122
123 // obtains array of RGB integer values
124 imageRGB = loadedImage.getRGB(0 , 0 , loadedImage.getWidth(),
125 loadedImage.getHeight(), imageRGB,
126 0, loadedImage.getWidth());
127
128 // create new buffered image for new RGB values
129 tintedImage = new BufferedImage(
130 loadedImage.getWidth(), loadedImage.getHeight(),
131 BufferedImage.TYPE_INT_ARGB);
132
133 // proccess image and print any warnings
134 updateTint();
135 }
136
137 // draw our two BufferedImages
138 public void paintComponent(Graphics g)
139 {
140 super.paintComponent(g);
141 Graphics2D graphics = (Graphics2D)g;
142 graphics.drawImage(loadedImage, null, 150, 150);
143 graphics.drawImage(
144 tintedImage, null, loadedImage.getWidth() + 160, 150);
145 }
146
147 // tints image and displays warnings
148 public void updateTint()
149 {
150 // get copy of original RGB values
151 tintedRGB = (int[])imageRGB.clone();
152
153 // try to tint image
154 try {
155

Fig. G.25Fig. G.25Fig. G.25Fig. G.25 JNIPanel creates the application GUI and calls the native method
(part 3 of 4).

Appendix G Java Native Interface (JNI) 1731

Class JNIImageFrame extends JFrame to allow us to add JNIPanel object and
serves as an entry point for the application (Fig. G.26). The constructor creates a new
JNIPanel and adds it to the frame inside a JScrollPane.

156 // call to native code for image processing tint 20 green
157 int[] warnings =
158 imageProcess.tintImage(
159 tintedRGB, tintedRGB.length, tintRed.getValue(),
160 tintGreen.getValue(), tintBlue.getValue());
161
162 if (warnings != null)
163 System.out.println(
164 "Not all pixels could be fully tinted");
165
166 // if image is too large catch exception and end program
167 } catch (ImageSizeException sizeException) {
168 System.out.println(
169 "Image is too large, error was:");
170 sizeException.printStackTrace();
171 }
172
173 // set RGB values
174 tintedImage.setRGB(0, 0, tintedImage.getWidth(),
175 tintedImage.getHeight(), tintedRGB, 0,
176 tintedImage.getWidth());
177
178 // repaint image
179 repaint();
180 }
181
182 // handles button events
183 public void actionPerformed(ActionEvent e)
184 {
185 // if button pressed then update image
186 if (e.getActionCommand().equals("tint"))
187 updateTint();
188
189 }
190 }

1 // Fig. G.26 JNIImageFrame.java
2 // extends JFrame, adds a scroll pane and
3 // serves as an entry point for the application.
4
5 // Java headers
6 import javax.swing.*;
7 import java.awt.*;
8 import java.awt.event.*;

Fig. G.26Fig. G.26Fig. G.26Fig. G.26 JNIImageFrame serves as an entry point for the application (part 1 of 2).

Fig. G.25Fig. G.25Fig. G.25Fig. G.25 JNIPanel creates the application GUI and calls the native method
(part 4 of 4).

1732 Java Native Interface (JNI) Appendix G

9
10 public class JNIImageFrame extends JFrame
11 {
12 // serves as entry point, creates new JNIImageFrame
13 public static void main(String[] args)
14 {
15 JNIImageFrame imageFrame = new JNIImageFrame();
16 }
17
18 // constructs new JNIImageFrame containing JNIPanel
19 public JNIImageFrame()
20 {
21 super("Deitel Image Processing");
22
23 getContentPane().setLayout(new FlowLayout());
24
25 // adds new JNIPanel and defines image to process
26 getContentPane().add(
27 new JScrollPane(new JNIPanel(
28 "advjhtp1_small.jpg" , new BorderLayout())));
29
30 addWindowListener(new WindowAdapter() {
31 public void windowClosing(WindowEvent event) {
32 dispose();
33 System.exit(0);
34 }
35 }
36);
37 setSize(670, 500);
38 setVisible(true);
39 }
40 }

Fig. G.26Fig. G.26Fig. G.26Fig. G.26 JNIImageFrame serves as an entry point for the application (part 2 of 2).

Appendix G Java Native Interface (JNI) 1733

In this appendix, we presented the most common JNI techniques and functions. We
have covered the fundamentals of interaction between Java and C++, including objects,
arrays and exceptions. For additional JNI resources consult Section G.6.

G.6 Internet and World Wide Web Resources
www.java.sun.com/docs/books/tutorial/native1.1/index.html
This tutorial covers the fundamentals of JNI.

www.jguru.com/faq/subtopic.jsp?topicID=472
This site contains well over 100 frequently asked questions (FAQs) and answers.

www.acm.org/crossroads/xrds4-2/jni.html
This site is a JNI reference.

www.symbolstone.org/technology/java/index.html
A JNI book available for download. It includes detailed JNI information and tips on using JNI with
applets.

SUMMARY
• The Java Native Interface (JNI) allows programmers to access existing applications written in oth-

er languages.

• JNI can be useful in time-critical applications—programmers can write a piece of the application
in native code for performance reasons.

• Communication between Java and native code is slow, large amounts of communication will sig-
nificantly degrade performance.

• Enabling a Java program to access native code requires a compiled wrapper class, a javah gen-
erated header and a library.

• The native keyword indicates that the method is implemented in a native library, not in Java.

• You must run javah on each Java class that contains a native method. Do not edit these head-
ers—if you make a change to the wrapper class, run javah to generate appropriate header files
again.

• jni.h is the header that contains all the JNI helper functions required for C++ to interact with
Java.

• A signature is the argument and the return types of the function.

• #defines JNIEXPORT and JNICALL each help handle system specific JNI interactions with
C++.

• JNIEnv is a pointer to a table of functions that assist the native code’s interaction with Java; it is
always passed as the first argument to a JNI function.

• A JNIEnv* pointer named env would be accessed as env->functionName(args) in C++.
In C, it would be accessed as (*env)->functionName(env, args).

• The second argument sent to a native function is a reference to the Java object that called it.

• The third through the final arguments sent to a native function are the arguments as they would be
sent from Java code.

• Java Primitives and objects do not directly map to those used in C/C++.

• Java objects are passed as jobjects.

• Strings are passed as jstring.

1734 Java Native Interface (JNI) Appendix G

• Primitives are passed as jtype.

• Conversion between C/C++ and JNI primitive types is transparent to the programmer and may be
done with simple assignment.

• Java uses Unicode to represent its characters, however C++ can only read the subset UTF-8 format.

• GetStringUTFChars converts a Unicode string to UTF-8 string.

• Releasing the string requires a call to ReleaseStringUTFChars, and must be done to avoid
memory leaks.

• System.loadLibrary searches your library paths for a library with the given name and loads
it into the Java JVM.

• Generally the library should be loaded in a static block. This ensures that the library is loaded
before any native methods are called.

• If a native call is made before the library is loaded, the program will exit with an Unsatis-
fiedLinkError.

• GetObjectClass returns the jclass of the given object.

• A method ID is a unique ID associated with each method of a class, it may be obtained through
the GetMethodID JNI function.

• Method signatures must be in the format: (argument types) return type.

• Primitive signatures are usually specified by their uppercase first letter e.g., D for double, I for
int and V for void. Exceptions to this rule are J for long and Z for boolean.

• Object signatures must be prefixed by L followed by the class, including packages, and terminated
by a semicolon, e.g., Ljava/lang/String; specifies the String type.

• Including a open bracket ([) before a signature indicates an array, ([D)V represents a method that
requires an array of doubles and returns void.

• Methods can be called with CalltypeMethod, where type represents the return type.

• JNI method FindClass returns a jclass reference to any fully qualified class name. If you
have no instance of an object, FindClass must be called to retrieve the jclass.

• <init> is the method name used in JNI to signify a constructor.

• JNI function NewObject creates a new object of the given class.

• The standard JNI procedure to get a method or field is to obtain the jclass, get an ID for the
member and access the member.

• GetFieldID obtains the field ID of the variable you wish to access.

• GettypeField returns the member contained within the given object at the jfieldID as type
jtype.

• GetStaticFieldID obtains the jfieldID of a static member variable.

• Retrieving the field uses GetStatictypeField, and uses a jclass as the first argument, not
the jobject used for non-static members.

• Converting arrays from Java to native code is complex because, as opposed to native languages,
elements in a Java array are not always placed together in contiguous memory.

• The JNI function NewObjectArray creates a new array of the given object. NewtypeArray
creates a new array of the specified primitive type.

• To obtain access to individual elements of a primitive array within native code requires a call to
GetPrimitiveTypeArrayElements.

• ReleasetypeArrayElements causes JNI to release the memory and update the original array.
The argument JNI_ABORT frees the memory, but will not update the changes for Java, and argu-
ment JNI_COMMIT will update Java, but not free the array.

Appendix G Java Native Interface (JNI) 1735

• SetObjectArrayElements and GetObjectArrayElements each provide simple ac-
cess to an object array.

• There is no need to release object arrays. They are never copied from Java, thus Java’s built-in gar-
bage collector will destroy them if they are unused.

• Handling exceptions natively can be essential to integrating native code with Java. JNI allows na-
tive methods to catch exceptions themselves, or to throw exceptions back to Java.

• JNI function ThrowNew signals Java to create a new exception of that type, with the given string
as a message.

• Function ExceptionOccurred returns JNI_NULL if an exception was not thrown.

• JNI function IsInstanceOf takes an object and a class and returns JNI_TRUE if the object is
an instance of the class. Accordingly, you may use IsSameObject to determine if two referenc-
es are actually the same object.

• Call JNI function Clear to remove the error flag from JNI.

TERMINOLOGY
ANSI JNI helper function
C jni.h
C++ JNI_ABORT
C++ library JNI_COMMIT
CallStatictypeMethod JNI function JNI_FALSE
CalltypeMethod JNI function JNI_TRUE
char * JNICALL
ExceptionOccurred JNI function JNIEnv variable
FatalError JNI function JNIEXPORT
field ID JNI-style header file
FindClass JNI function jobject
GetPrimitiveTypeArrayElement jstring
GetFieldID JNI function jthrowable
GetMethodID JNI function library
GetObjectArrayElements JNI function method ID
GetStaticFieldID JNI function native
GetStaticMethodID JNI function native keyword
GetStatictypeField JNI function native library
GetStatictypeMethod JNI function NewObject JNI function
GetStringUTFChars JNI function NewObjectArray JNI function
GettypeMethod JNI function NewtypeArray JNI function
IsInstanceOf JNI function OutOfMemoryError
IsSameObject JNI function ReleaseStringUTFChars JNI function
Java Native Interface SetObjectArrayElement JNI function
javah signature
jboolean System.loadLibrary
jclass ThrowNew JNI function
jdouble Unicode
jint UnsatisfiedLinkError
jintArray UTF-8
JNI wrapper class

1736 Java Native Interface (JNI) Appendix G

SELF-REVIEW EXERCISES
G.1 Fill in the blanks for each of the following:

a) Code that can be compiled to a binary format is also known as code.
b) is the tool used to create C headers for JNI.
c) To convert Unicode strings to UTF-8 strings the function of the JNIEnv

pointer may be used.
d) Accessing a non-static method from native code requires three steps: ,

 and .
e) The CallStatictypeMethod differs from the CalltypeMethod because it requires

an argument of type while CalltypeMethod uses an argument of type
.

G.2 State whether each of the following is true or false. If false explain your answers.
a) Java is a native language.
b) Type JNIEnv does not refer to an object.
c) Java primitives can be converted to C++ primitives through assignment.
d) JNI always increases program performance.
e) Java objects may only be created from a Java program and passed to the native function.

ANSWERS TO SELF-REVIEW EXERCISES
G.1 a) native. b) javah. c) GetStringUTFChars. d) obtain jclass, obtain method ID, call
the method. e) jclass, jobject.

G.2 a) False, Java is not compiled to a binary format. b) True. c) True. d) False, JNI often reduces
performance due to the overhead associated with JNI calls. e) False, native code can create new Java
objects.

EXERCISES
G.3 Explain why Java arrays do not directly map to C++ arrays. Explain how JNI deals with this
complication, and contrast between primitive and object arrays.

G.4 Define the term “method signatures” and explain why JNI needs them.

G.5 What should you be careful with after throwing an exception in native code? Why?

G.6 Write native code to obtain the method ID of the constructor for class Integer that takes
an int as an argument. Assume you already have the class stored in jclass integerClass.

G.7 Write the native code required to call the Java method isEmpty of class Vector. Assume
you have an instance of a Vector assigned to jobject myVector.

G.8 Create a wrapper class MathWrapper that contains three native functions cSin, cCos,
and cLN, each taking a double for an argument and returning a double. The wrapper class should
explicitly declare that the cLN function throws an Exception. Create library MathLibrary. It
should implement the header created from running javah on MathWrapper and contain three JNI-
style functions that encapsulate the use of sin, cos, and ln of C++ header math.h. If the argu-
ment to ln is less than or equal to zero, throw an exception, and have Java handle the exception. Fi-
nally, write a Java class MathMain that calls native methods for the math operations in class
MathWrapper. It should load the native library, MathLibrary, and test each function with argu-
ments entered by the user. cLN must catch an Exception and print its message.

Appendix G Java Native Interface (JNI) 1737

BIBLIOGRAPHY
1. Descartes, A. "Java Native Methods," <http://www.symbolstone.org/technol-
ogy/java/nmbook/index.html>

2. Gordon, R. Essential JNI. Upper Saddle River, New Jersey: Prentice Hall PTR, 1998.

3. Stearns, B. "Trail: Java Native Interface," <www.java.sun.com/docs/books/tuto-
rial/native1.1/index.html>

H
Career Opportunities

Objectives
• To explore the various online career services.
• To examine the advantages and disadvantages of

posting and finding jobs online.
• To review the major online career services Web sites

available to job seekers.
• To explore the various online services available to

employers seeking to build their workforces.
What is the city but the people?
William Shakespeare

A great city is that which has the greatest men and women,
If it be a few ragged huts it is still the greatest city in the
whole world.
Walt Whitman

To understand the true quality of people, you must look into
their minds, and examine their pursuits and aversions.
Marcus Aurelius

The soul is made for action, and cannot rest till it be
employed. Idleness is its rust. Unless it will up and think and
taste and see, all is in vain.
Thomas Traherne

Appendix H Career Opportunities 1739

H.1 Introduction
There are approximately 40,000 career-advancement services on the Internet today.1 These
services include large, comprehensive job sites, such as Monster.com (see the upcoming
Monster.com feature), as well as interest-specific job sites such as JustJava-
Jobs.com. Companies can reduce the amount of time spent searching for qualified em-
ployees by building a recruiting feature on their sites or establishing an account with a
career site. This results in a larger pool of qualified applicants, as online services can auto-
matically select and reject resumes based on user-designated criteria. Online interviews,
testing services and other resources also expedite the recruiting process.

Applying for a position online is a relatively new method of exploring career opportu-
nities. Online recruiting services streamline the process and allow job seekers to concen-
trate their energies in careers that are of interest to them. Job seekers can explore
opportunities according to geographic location, position, salary or benefits packages.

Job seekers can learn how to write a resume and cover letter, post them online and
search through job listings to find the jobs that best suit their needs. Entry-level positions,
or positions commonly sought by individuals who are entering a specific field or the job
market for the first time; contracting positions; executive-level positions and middle-man-
agement-level positions are all available on the Web.

Outline

H.1 Introduction
H.2 Resources for the Job Seeker
H.3 Online Opportunities for Employers

H.3.1 Posting Jobs Online
H.3.2 Problems with Recruiting on the Web
H.3.3 Diversity in the Workplace

H.4 Recruiting Services
H.4.1 Testing Potential Employees Online

H.5 Career Sites
H.5.1 Comprehensive Career Sites
H.5.2 Technical Positions
H.5.3 Wireless Positions
H.5.4 Contracting Online
H.5.5 Executive Positions
H.5.6 Students and Young Professionals
H.5.7 Other Online Career Services

H.6 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises •
Works Cited

1740 Career Opportunities Appendix H

 Job seekers will find a number of time-saving features when searching for a job online.
These include storing and distributing resumes digitally, e-mail notification of possible
positions, salary and relocation calculators, job coaches, self-assessment tools and informa-
tion on continuing education.

In this appendix, we explore online career services from the employer and employee’s
perspective. We suggest sites on which applications can be submitted, jobs can be searched
for and applicants can be reviewed. We also review services that build recruiting pages
directly into an e-business.

H.2 Resources for the Job Seeker
Finding a job online can greatly reduce the amount of time spent applying for a position.
Instead of searching through newspapers and mailing resumes, job seekers can request a
specific position in a specific industry through a search engine. Some sites allow job seek-
ers to setup intelligent agents to find jobs that meet their requirements. Intelligent agents
are programs that search and arrange large amounts of data, and report answers based on
that data. When the agent finds a potential match, it sends it to the job seeker’s inbox. Re-
sumes can be stored digitally, customized quickly to meet job requirements and e-mailed
instantaneously. Potential candidates can also learn more about a company by visiting its
Web site. Most employment sites are free to job seekers. These sites typically generate their
revenues by charging employers for posting job opportunities and by selling advertising
space on their Web pages (see the Monster.com feature).

Career services, such as FlipDog.com, search a list of employer job sites to find
positions. By searching links to employer Web sites, FlipDog.com is able to identify
positions from companies of all sizes. This feature enables job seekers to find jobs that
employers may not have posted outside the corporation’s Web site.

Monster.com

Super Bowl ads and effective marketing have made Monster.com one of the most
recognizable online brands (see Fig. B.1). In fact, in the 24 hours following Super Bowl
XXXIV, 5 million job searches occurred on Monster.com.2 The site allows people
looking for jobs to post their resumes, search job listings, read advice and information
about the job-search process and take proactive steps to improve their careers. These
services are free to job seekers. Employers can post job listings, search resume databas-
es and become featured employers.

Posting a resume at Monster.com is simple and free. Monster.com has a
resume builder that allows users to post a resume to its site in 15–30 minutes. Each user
can store up to 5 resumes and cover letters on the Monster.com server. Some com-
panies offer their employment applications directly through the Monster.com site.
Monster.com has job postings in every state and all major categories. Users can
limit access to their personal identification information. As one of the leading
recruiting sites on the Web, Monster.com is a good place to begin a job search or to
find out more about the search process.

Appendix H Career Opportunities 1741

Job seekers can visit FlipDog.com and choose, by state, the area in which they are
looking for a position. Applicants can also conduct worldwide searches. After a user selects
a region, FlipDog.com requests the user to specify a job category containing several spe-
cific positions. The user’s choice causes a list of local employers to appear. The user can
choose a specific employer or request that FlipDog.com search the employment data-
bases for jobs offered by all employers (see Fig. B.2).

Other services, such as employment networks, also help job seekers in their search.
Sites such as Vault.com (see the Vault.com feature) and WetFeet.com allow job
seekers to post questions about employers and positions in designated chat rooms and on
bulletin boards.

H.3 Online Opportunities for Employers
Recruiting on the Internet provides several benefits over traditional recruiting. For exam-
ple, Web recruiting reaches a much larger audience than posting an advertisement in a local
newspaper. Given the breadth of the services provided by most online career services Web
sites, the cost of posting online can be considerably less expensive than posting positions
through traditional means. Even newspapers, which depend greatly on career opportunity
advertising, are starting online career sites.3

Fig. H.1Fig. H.1Fig. H.1Fig. H.1 The Monster.com home page. (Courtesy of Monster.com.)

Monster.com (Cont.)

1742 Career Opportunities Appendix H

Fig. H.2Fig. H.2Fig. H.2Fig. H.2 FlipDog.com job search. (Courtesy of Flipdog.com.)

Vault.com: Finding the Right Job on the Web4

Vault.com allows potential employees to seek out additional, third-party informa-
tion for over 3000 companies. By visiting the Insider Research page, Web users have
access to a profile on the company of their choice, as long as it exists in Vault.com’s
database. In addition to Vault.com’s profile, there is a link to additional commentary
by company employees. Most often anonymous, these messages can provide prospec-
tive employees with potentially valuable decision-making information. However, users
must consider the integrity of the source. For example, a disgruntled employee may
leave a posting that is not an accurate representation of the corporate culture of his or
her company.

The Vault.com Electronic Watercooler™ is a message board that allows visi-
tors to post stories, questions and concerns and to advise employees and job seekers. In
addition, the site provides e-newsletters and feature stories designed to help job seekers
in their search. Individuals seeking information on business, law and graduate schools
can also find information on Vault.com.

Job-posting and career-advancement services for the job seeker are featured on
Vault.com. These services include VaultMatch, a career service that e-mails job
postings as requested, and Salary Wizard™, which helps job seekers determine the
salary they are worth. Online guides with advice for fulfilling career ambitions are also
available.

Appendix H Career Opportunities 1743

e-Fact H.1
According to Forrester Research, 33 percent of today’s average company’s hiring budget
goes toward online career services, while the remaining 66 percent is used toward tradition-
al recruiting mechanisms. Online use is expected to increase to 42 percent by 2004, while
traditional mechanisms may be reduced to 10 percent.5 0.0

Generally, jobs posted online are viewed by a larger number of job seekers than jobs
posted through traditional means. However, it is important not to overlook the benefits of
combining online efforts with human-to-human interaction. There are many job seekers
who are not yet comfortable with the process of finding a job online. Often, online
recruiting is used as a means of freeing up a recruiter’s time for the interviewing process
and final selection.

e-Fact H.2
Cisco Systems cites a 39 percent reduction in cost-per-hire expenses, and a 60 percent re-
duction in the time spent hiring.6 0.0

H.3.1 Posting Jobs Online

When searching for job candidates online, there are many things employers need to consid-
er. The Internet is a valuable tool for recruiting, but one that takes careful planning to ac-
quire the best results. It provides a good supplementary tool, but should not be considered
the complete solution for filling positions. Web sites, such as WebHire (www.web-
hire.com), enhance a company’s online employment search (see the WebHire feature).

There are a variety of sites that allow employers to post jobs online. Some of these sites
require a fee, which generally runs between $100–200. Postings typically remain on the
Web site for 30–60 days. Employers should be careful to post to sites that are most likely
to be visited by eligible candidates. As we discovered in the previous section, there are a
variety of online career services focused on specific industries, and many of the larger,
more comprehensive sites have categorized their databases by job category.

When designing a posting, the recruiter should consider the vast number of postings
already on the Web. Defining what makes the job position unique, including information
such as benefits and salary, might convince a qualified candidate to further investigate the
position (see Fig. B.3).7

HotJobs.com career postings are cross-listed on a variety of other sites, thus
increasing the number of potential employees who see the job listings. Like Mon-
ster.com and jobfind.com, hotjobs.com requires a fee per listing. Employers
also have the option of becoming HotJob.com members. Employers can gain access to
HotJob’s Private Label Job Boards (private corporate employment sites), online recruiting
technology and online career fairs.

Employers can also use the site. HR Vault, a feature of Vault.com, provides
employers with a free job-posting site. It offers career-management advice, employer-
to-employee relationship management and recruiting resources.

Vault.com: Finding the Right Job on the Web4 (Cont.)

1744 Career Opportunities Appendix H

Boston Herald Job Find (www.jobfind.com) also charges employers to post on its
site. The initial fee entitles the employer to post up to three listings. Employers have no lim-
itations on the length of their postings.

Other Web sites providing employers with employee recruitment services include
CareerPath.com, America’s Job Bank (www.ajb.dni.us/employer),
CareerWeb (www.cweb.com), Jobs.com and Career.com.

WebHire™8

Designed specifically for recruiters and employers, WebHire is a multifaceted service
that provides employers with end-to-end recruiting solutions. The service offers job-
posting services as well as candidate searches. The most comprehensive of the services,
WebHire™ Enterprise, locates and ranks candidates found through resume-scanning
mechanisms. Clients will also receive a report indicating the best resources for their
search. Other services available through the WebHire™ Employment Services Network
include preemployment screening, tools for assessing employees’ skill levels and in-
formation on compensation packages. An employment law advisor helps organizations
design interview questions.

WebHire™ Agent is an intelligent agent that searches for qualified applicants
based on job specifications. When WebHire Agent identifies a potential candidate, an
e-mail is automatically sent to the candidate to generate interest. WebHire Agent then
ranks applicants according to the skills information it gains from the Web search; the
information is stored so that new applicants are distinguished from those who have
already received an e-mail from the site.

Yahoo!® Resumes, a feature of WebHire, allows recruiters to find potential
employees by typing in keywords on the Yahoo! Resumes search engine. Employers
can purchase a year’s membership to the recruiting solution for a flat fee; there are no
per-use charges.

Job Seeker’s Criteria

Position (responsibilities)

Salary

Location

Benefits (health, dental, stock options)

Advancement

Time Commitment

Training Opportunities

Tuition Reimbursement

Corporate Culture

Fig. H.3Fig. H.3Fig. H.3Fig. H.3 List of a job seeker’s criteria.

Appendix H Career Opportunities 1745

H.3.2 Problems with Recruiting on the Web
The large number of applicants presents a challenge to both job seekers and employers. On
many recruitment sites, matching resumes to positions is conducted by resume-filtering
software. The software scans a pool of resumes for keywords that match the job description.
While this software increases the number of resumes that receive attention, it is not a fool-
proof system. For example, the resume-filtering software might overlook someone with
similar skills to those listed in the job description, or someone whose abilities would enable
them to learn the skills required for the position. Digital transmissions can also create prob-
lems because certain software platforms are not always acceptable by the recruiting soft-
ware. This sometimes results in an unformatted transmission, or a failed transmission.

A lack of confidentiality is another disadvantage of online career services. In many
cases, a job candidate will want to search for job opportunities anonymously. This reduces
the possibility of offending the candidate’s current employer. Posting a resume on the Web
increases the likelihood that the candidate’s employer might come across it when recruiting
new employees. The traditional method of mailing resumes and cover letters to potential
employers does not impose the same risk.

According to recent studies, the number of individuals researching employment posi-
tions through traditional means, such as referrals, newspapers and temporary agencies, far
outweighs the number of job seekers researching positions through the Internet.9 Optimists
feel, however, that this disparity is largely due to the early stages of e-business develop-
ment. Given time, online career services will become more refined in their posting and
searching capabilities, decreasing the amount of time it takes for a job seeker to find jobs
and employers to fill positions.

H.3.3 Diversity in the Workplace

Every workplace inevitably develops its own culture. Responsibilities, schedules, dead-
lines and projects all contribute to a working environment. Perhaps the most defining ele-
ments of a corporate culture are the employees. For example, if all employees were to have
the same skills and the same ideas, the workplace would lack diversity. It might also lack
creativity and enthusiasm. One way to increase the dynamics of an organization is to em-
ploy people of all backgrounds and cultures.

The Internet hosts demographic-specific sites for employers seeking to increase diver-
sity in the workplace. By recruiting people from different backgrounds, new ideas and per-
spectives are brought forth, helping businesses meet the needs of a larger, more diverse
target audience.10

Blackvoices.com and hirediversity.com are demographic-specific Web
sites. BlackVoices™, which functions primarily as a portal (a site offering news, sports and
weather information, as well as the ability to search the Web), features job searching capa-
bilities and the ability for prospective employees to post resumes. HireDiversity is divided
into several categories, including opportunities for African Americans, Hispanics and
women. Other online recruiting services place banner advertisements on ethnic Web sites
for companies seeking diverse workforces.

The Diversity Directory (www.mindexchange.com) offers international career-
searching capabilities. Users selecting the Diversity site can find job opportunities, infor-
mation and additional resources to help them in their career search. The site can be searched

1746 Career Opportunities Appendix H

according to demographics (African American, Hispanic, alternative lifestyle, etc.) or by
subject (employer, position, etc.) via hundreds of links. Featured sites include Bilin-
gualJobs.com, Latin World and American Society for Female Entrepreneurs.

Many sites have sections dedicated to job seekers with disabilities. In addition to pro-
viding job-searching capabilities, these sites include additional resources, such as equal
opportunity documents and message boards. The National Business and Disability Council
(NBDC) provides employers with integration and accessibility information for employing
people with disabilities, and the site also lists opportunities for job seekers.

H.4 Recruiting Services
There are many services on the Internet that help employers match individuals to positions.
The time saved by conducting preliminary searches on the Internet can be dedicated to in-
terviewing qualified candidates and making the best matches possible.

Advantage Hiring, Inc. (www.advantagehiring.com) provides employers with
a resume-screening service. When a prospective employee submits a resume for a partic-
ular position, Advantage Hiring, Inc. presents Net-Interview™, a small questionnaire to
supplement the information presented on the resume. The site also offers SiteBuilder, a ser-
vice that helps employers build an employee recruitment site. An online demonstration can
be found at www.advantagehiring.com. The demonstration walks the user through
the Net-Interview software, as well as a number of other services offered by Advantage
Hiring (see Fig. B.4).

Recruitsoft.com is an application service provider (ASP) that offers companies
recruiting software on a pay-per-hire basis (Recruitsoft receives a commission on hires
made via its service). Recruiter WebTop™ is the company’s online recruiting software. It
includes features such as Web-site hosting, an employee-referral program, skill-based
resume screening, applicant-tracking capabilities and job-board posting capabilities. A
demonstration of Recruiter WebTop’s Corporate Recruiting Solutions can be found at
www.recruitsoft.com/process. The demonstration shows how recruiting solu-
tions find and rank potential candidates. More information about Recruitsoft’s solution can
be viewed in a QuickTime media player demonstration, found at www.recruit-
soft.com/corpoVideo.

Peoplescape.com is an online service that helps employers recruit employees and
maintain a positive work environment once the employee has been hired. In addition to
searches for potential candidates, Peoplescape offers PayCheck™, LegalCheck™ and Peo-
pleCheck™. These services help to ensure that compensation offers are adequate, legal
guidelines are met and candidates have provided accurate information on their resumes and
during the hiring process. For job seekers, Peoplescape offers searching capabilities,
insights to career transitions, a job compensation calculator that takes benefits and bonuses
into consideration when exploring a new job possibility and a series of regularly posted arti-
cles relevant to the job search.11

To further assist companies in their recruiting process, Web sites such as Refer.com
reward visitors for successful job referrals. Highly sought-after positions can earn thou-
sands of dollars. If a user refers a friend or a family member and he or she is hired, the user
receives a commission.

Other online recruiting services include SkillsVillage.com, Hire.com, Mor-
ganWorks.com and Futurestep.com™.

Appendix H Career Opportunities 1747

H.4.1 Testing Potential Employees Online

The Internet also provides employers with a cost-effective means of testing their prospec-
tive employees in such categories as decision making, problem solving and personality.
Services such eTest help to reduce the cost of in-house testing and to make the interview
process more effective. Test results, given in paragraph form, present employers with the
interested individual’s strengths and weaknesses. Based on these results, the report sug-
gests interview methods, such as asking open-ended questions, which are questions that re-
quire more than a “yes” or “no” response. Sample reports and a free-trial test can be found
at www.etest.net.

Employers and job seekers can also find career placement exercises at www.advi-
sorteam.net/AT/User/kcs.asp. Some of these services require a fee. The tests
ask several questions regarding the individual’s interests and working style. Results help
candidates determine the best career for their skills and interests.

Fig. H.4Fig. H.4Fig. H.4Fig. H.4 Advantage Hiring, Inc.’s Net-Interview™ service. (Courtesy of
Advantage Hiring, Inc.)

1748 Career Opportunities Appendix H

H.5 Career Sites
Online career sites can be comprehensive or industry specific. In this section, we explore a
variety of sites on the Web that accommodate the needs of both the job seeker and the em-
ployer. We review sites offering technical positions, free-lancing opportunities and con-
tracting positions.

H.5.1 Comprehensive Career Sites

As mentioned previously, there are many sites on the Web that provide job seekers with ca-
reer opportunities in multiple fields. Monster.com is the largest of these sites, attracting
the greatest number of unique visitors per month. Other popular online recruiting sites include
JobsOnline.com, HotJobs.com, www.jobtrak.com and Headhunter.net.

Searching for a job online can be a conducted in a few steps. For example, during an
initial visit to JobsOnline.com, a user is required to fill out a registration form. The
form requests basic information, such as name, address and area of interest. After regis-
tering, members can search through job postings according to such criteria as job category,
location and the number of days the job has been posted. Contact information is provided
for additional communication. Registered members are offered access to XDrive™
(www.xdrive.com), which provides 25 MB of storage space for resumes, cover letters
and additional communication. Stored files can be shared through any Web browser or
Wireless Application Protocol (WAP)-enabled device. Driveway.com offers a similar
service, allowing individuals to store, share and organize job search files online. An online
demonstration of the service can be found at www.driveway.com. The animated demo
walks the user through the features offered by the service. Driveway.com offers 100 MB
of space, and the service is free.12 Other sites, such as Cruel World (see the Cruel World
feature), allow users to store and send their resumes directly to employers.

Cruel World13

Cruel World is a free, online career advancement service for job seekers. After becom-
ing a registered member, your information is matched with available positions in the
Cruel World database. When an available job matches your criteria, JobCast®, a fea-
ture of Cruel World, sends an e-mail alerting you of the available position. If you are
interested, you can send your resume to the employer that posted the position, custom-
ized to the job’s requirements. If you do not wish to continue your search, you can sim-
ply send a negative response via e-mail.

The client list, or the list of companies seeking new employees through Cruel
World, can be viewed at www.cruelworld.com/corporate/aboutus.asp
(Fig. B.5). Additional features on the site include hints for salary negotiation; a self-
assessment link to CareerLeader.com, where, for a small fee, members can reas-
sess their career goals under the advisement of career counselors and a relocation cal-
culator for job seekers who are considering changing location.

Employers seeking to hire new talent can post opportunities through Cruel World.
posting positions requires a fee. A demonstration of the service can be viewed at
www.cruelworld.com/clients/quicktour1.asp. The demonstration is a
three-step slide of JobCast.

Appendix H Career Opportunities 1749

H.5.2 Technical Positions
Technical positions are becoming widely available as the Internet grows more pervasive.
Limited job loyalty and high turnover rates in technical positions allow job seekers to find
jobs that best suit their needs and skills. Employers are required to rehire continuously to
keep positions filled and productivity levels high. The amount of time for an employer to
fill a technical position can be greatly reduced by using an industry-specific site. Career
sites designed for individuals seeking technical positions are among the most popular on-
line career sites. In this section, we review several sites that offer recruiting and hiring op-
portunities for technical positions.

e-Fact H.3
It costs a company 25 percent more to hire a new technical employee than it does to pay an
already employed individual’s salary.14

0.0

Dice.com (www.dice.com) is a recruiting Web site that focuses on technical
fields. Company fees are based on the number of jobs the company posts and the frequency

Fig. H.5Fig. H.5Fig. H.5Fig. H.5 Cruel World online career services. (Courtesy of Cruel World.)

Cruel World13 (Cont.)

1750 Career Opportunities Appendix H

with which the postings are updated. Job seekers can post their resumes and search the job
database for free. JustComputerJobs.com directs job seekers toward 39 specific
computer technologies for their job search. Language-specific sites include JustJava-
Jobs.com, JustCJobs.com and JustPerlJobs.com. Hardware, software and
communications technology sites are also available. Other technology recruiting sites
include HireAbility.com, Bid4Geeks.com, HotDispatch.com and
www.cmpnet.com/careerdirect.

H.5.3 Wireless Positions

The wireless industry is developing rapidly. According to WirelessResumes.com, the
number of wireless professionals is 328,000. This number is expected to increase 40 percent
each year for the next five years. To accommodate this growth, and the parallel demand for
professionals, WirelessResumes.com has created an online career site specifically for
the purpose of filling wireless jobs (see the WirelessResumes.com feature).

The Caradyne Group (www.pcsjobs.com), an executive search firm, connects job
seekers to employers in the wireless technology field. Interested job seekers must first fill
out a “Profile Questionnaire.” This information is then entered into The Caradyne Group’s
database and is automatically matched to an open position in the job seeker’s field of exper-
tise. If there are no open positions, a qualified consultant from The Caradyne Group will
contact the job seeker for further a interview and discussion. Jobs4wireless.com also
provides job seekers with employment opportunities in the wireless industry.

H.5.4 Contracting Online

The Internet also serves as a forum for job seekers to find employment on a project-by-
project basis. Online contracting services allow businesses to post positions for which they
wish to hire outside resources, and individuals can identify projects that best suit their in-
terests, schedules and skills.

e-Fact H.4
Approximately six percent of America’s workforce falls into the category of independent con-
tractor.15

0.0

WirelessResumes.com: Filling Wireless Positions

WirelessResumes.com is an online career site focused specifically on matching
wireless professionals with careers in the industry. This narrow focus enables business-
es to locate new employees quickly—reducing the time and expense attached to tradi-
tional recruiting methods. Similarly, candidates can limit their searches to precisely the
job category of interest. Wireless carriers, device manufacturers, WAP and Bluetooth
developers, e-commerce companies and application service providers (ASPs) are
among those represented on the site.

In addition to searching for jobs and posting a resume, WirelessRe-
sumes.com provides job seekers with resume writing tips, interviewing techniques,
relocation tools and assistance in obtaining a Visa or the completion of other necessary
paperwork. Employers can use the site to search candidates and post job opportunities.

Appendix H Career Opportunities 1751

Guru.com (www.guru.com) is a recruiting site for contract employees. Independent
contractors, private consultants and trainers use guru.com to find short-term and long-term
contract assignments. Tips, articles and advice are available for contractors who wish to learn
more about their industry. Other sections of the site teach users how to manage their busi-
nesses, buy the best equipment and deal with legal issues. Guru.com includes an online
store where contractors can buy products associated with small-business management, such
as printing services and office supplies. Companies wishing to hire contractors must register
with guru.com, but individuals seeking contract assignments do not.

Monster.com’s Talent Market™ offers online auction-style career services to free
agents. Interested users design a profile, listing their qualifications. After establishing a
profile, free agents “Go Live” to start the bidding on their services. The bidding lasts for
five days during which users can view the incoming bids. At the close of five days, the user
can choose the job of his or her choice. The service is free for users, and bidding employers
pay a commission on completed transactions.

eLance.com is another site where individuals can find contracting work. Interested
applicants can search eLance’s database by category, including business, finance and mar-
keting (see Fig. B.6). These projects, or requests for proposals (RFPs), are posted by com-
panies worldwide. When users find projects for which they feel qualified, they submit bids
on the projects. Bids must contain a user’s required payment, a statement detailing the
user’s skills and a feedback rating drawn from other projects on which the user has worked.
If a user’s bid is accepted, the user is given the project, and the work is conducted over
eLance’s file-sharing system, enabling both the contractor and the employer to contact one
another quickly and easily. For an online demonstration, visit www.elance.com and
click on the demonstration icon.

FreeAgent (www.freeagent.com) is another site designed for contracting
projects. Candidates create an e.portfolio that provides an introductory “snapshot” of their
skills, a biography, a list of their experience and references. The interview section of the
portfolio lists questions and the applicant’s answers. Examples of e.portfolios can be found
at www.freeagent.com/splash/models.asp. Free Agent’s e.office offers a ben-
efits package to outside contractors, including health insurance, a retirement plan and reim-
bursement for business-related expenses.

Other Web sites that provide contractors with projects and information include
eWork® Exchange (www.ework.com), MBAFreeAgent.com, Aquent.com and
WorkingSolo.com.

H.5.5 Executive Positions

Next, we discuss the advantages and disadvantages of finding an executive position online.
Executive career advancement sites usually include many of the features found on compre-
hensive job-search sites. Searching for an executive position online differs from finding an
entry-level position online. The Internet allows individuals to continually survey the job mar-
ket. However, candidates for executive-level positions must exercise a higher level of caution
when determining who is able to view their resume. Applying for an executive position online
is an extensive process. As a result of the high level of scrutiny passed on a candidate during
the hiring process, the initial criteria presented by an executive level candidate often are more
specific than the criteria presented by the first-time job seeker. Executive positions often are
difficult to fill, due to the high demands and large amount of experience required for the jobs.

1752 Career Opportunities Appendix H

SixFigureJobs (www.sixfigurejobs.com) is a recruitment site designed for
experienced executives. Resume posting and job searching is free to job seekers. Other
sites, including www.execunet.com, Monster.com’s ChiefMonster™
(www.chiefmonster.com) and www.nationjob.com are designed for helping
executives find positions.

H.5.6 Students and Young Professionals
The Internet provides students and young professionals with tools to get them started in the
job market. Individuals still in school and seeking internships, individuals who are just
graduating and individuals who have been in the workforce for a few years make up the
target market. Additional tools specifically designed for this demographic (a population de-
fined by a specific characteristic) are available. For example, journals kept by previous in-
terns provide prospective interns with information regarding what to look for in an
internship, what to expect and what to avoid. Many sites will provide information to lead
young professionals in the right direction, such as matching positions to their college or
university major.

Experience.com is a career services Web site geared toward the younger popu-
lation. Members can search for positions according to specific criteria, such as geo-

Fig. H.6Fig. H.6Fig. H.6Fig. H.6 eLance.com request for proposal (RFP) example. (Courtesy of
eLance, Inc.]

Appendix H Career Opportunities 1753

graphic location, job category, keywords, commitment (i.e. full time, part time,
internship), amount of vacation and amount of travel time. After applicants register, they
can send their resumes directly to the companies posted on the site. In addition to the
resume, candidates provide a personal statement, a list of applicable skills and their lan-
guage proficiency. Registered members also receive access to the site’s Job Agent. Up to
three Job Agents can be used by each member. The agents search for available positions,
based on the criteria posted by the member. If a match is made, the site contacts the can-
didate via e-mail.16,17

Internshipprograms.com helps students find internships. In addition to posting
a resume and searching for an internship, students can use the relocation calculator to com-
pare the cost of living in different regions. Tips on building resumes and writing essays are
provided. The City Intern program provides travel, housing and entertainment guides to
interns interviewing or accepting a position in an unfamiliar city, making them feel more
at home in a new location.

In addition to its internship locators, undergraduate, graduate, law school, medical
school and business school services, the Princeton Review’s Web site
(www.review.com) offers career services to graduating students. While searching for a
job, students and young professionals can also read through the site’s news reports or even
increase their vocabulary by visiting the “word for the day.” Other career sites geared
toward the younger population include campuscareercenter.com, brassring-
campus.com and collegegrads.com.

H.5.7 Other Online Career Services
In addition to Web sites that help users find and post jobs online, there are a number of Web
sites that offer features that will enhance searches, prepare users to search online, help ap-
plicants design resumes or help users calculate the cost of relocating.

Salary.com helps job seekers gauge their expected income, based on position, level
of responsibility and years of experience. The search requires job category, ZIP code and
specific job title. Based on this information, the site will return an estimated salary for an
individual living in the specified area and employed in the position described. Estimates are
returned based on the average level of income for the position.

In addition to helping applicants find employment, www.careerpower.com pro-
vides individuals with tests that will help them realize their strengths, weaknesses, values,
skills and personality traits. Based on the results, which can be up to 10–12 pages per test,
users can best decide what job categories they are qualified for and what career choice will
be best suited to their personal ambitions. The service is available for a fee.

InterviewSmart™ is another service offered through CareerPower that prepares job
seekers of all levels for the interviewing process. The service can be downloaded for a min-
imal fee or can be used on the Web for free. Both versions are available at www.career-
power.com/CareerPerfect/interviewing.htm#is.start.anchor.

Additional services will help applicants find positions that meet their unique needs, or
design their resumes to attract the attention of specific employers. Dogfriendly.com,
organized by geographic location, helps job seekers find opportunities that allow them to
bring their pets to work, and cooljobs.com is a searchable database of unique job
opportunities.

1754 Career Opportunities Appendix H

H.6 Internet and World Wide Web Resources

Information Technology (IT) Career Sites

www.dice.com
This is a recruiting Web site that focuses on the computer industry.
www.guru.com
This is a recruiting site for contract employees. Independent contractors, private consultants and train-
ers can use guru.com to find short-term and long-term work.

www.hallkinion.com
This is a Web recruiting service for individuals seeking IT positions.

www.techrepublic.com
This site provides employers and job seekers with recruiting capabilities and information regarding
developing technology.

www.justcomputerjobs.com
This site serves as a portal with access to language-specific sites, including Java, Perl, C and C++.

www.bid4geeks.com
This career services site is geared toward the technical professional.

www.hotdispatch.com
This forum provides software developers with the opportunity to share projects, discuss code and ask
questions.

www.techjobs.bizhosting.com/jobs.htm
This site directs job seekers to links of numerous technological careers listed by location, internet,
type of field, etc.

Career Sites

www.careerbuilder.com
A network of career sites, including IT Careers, USA Today and MSN, CareerBuilder attracts 3 mil-
lion unique job seekers per month. The site provides resume-builder and job-searching agents.

www.recruitek.com
This free site caters to jobs seekers, employers and contractors.

www.monster.com
This site, the largest of the online career sites, allows people looking for jobs to post their resumes,
search job listings and read advice and information about the job-search process. It also provides a
variety of recruitment services for employers.

www.jobsonline.com
Similar to Monster.com, this site provides opportunities for job seekers and employers.

www.hotjobs.com
This online recruiting site offers cross-listing possibilities on additional sites.

www.jobfind.com
This job site is an example of locally targeted job-search resources. JobFind.com targets the Bos-
ton area.

www.flipdog.com
This site allows online job candidates to search for career opportunities. It employs intelligent agents
to scour the Web and return jobs matching the candidate’s request.

Appendix H Career Opportunities 1755

www.cooljobs.com
This site highlights unique job opportunities.

www.careerhighway.com
This site presents an opportunity for job seekers and employers to match up and register the career-
specific information for which they are searching.

www.inetsupermall.com
This site aids job searchers in creating professional resumes and connecting with employers.

www.wirelessnetworksonline.com
This site helps connect job searchers to careers for which they are qualified.

www.careerweb.com
This site highlights featured employers and jobs and allows job seekers and employers to post and
view resumes, respectively.

Executive Positions

www.sixfigurejobs.com
This is a recruitment site designed for experienced executives.

www.leadersonline.com
This career services Web site offers confidential job searches for mid-level professionals. Potential
job matches are e-mailed to job candidates.

www.ecruitinginc.com
This site is designed to search for employees for executive positions.

Diversity

www.latpro.com
This site is designed for Spanish-speaking and Portuguese-speaking job seekers. In addition to pro-
viding resume-posting services, the site enables job seekers to receive matching positions via e-mail.
Advice and information services are available.

www.blackvoices.com
This portal site hosts a career center designed to match African American job seekers with job oppor-
tunities.

www.hirediversity.com
In addition to services for searching for and posting positions, resume-building and updating services
are also available on this site. The site targets a variety of demographics including African Americans,
Asian Americans, people with disabilities, women and Latin Americans.

People with Disabilities

www.halftheplanet.com
This site represents people with disabilities. The site is large and includes many different resources
and information services. A special section is dedicated to job seekers and employers.

www.wemedia.com
This site is designed to meet the needs of people with disabilities. It includes a section for job seekers
and employers.

www.disabilities.com
This site provides users with a host of links to information resources on career opportunities.

1756 Career Opportunities Appendix H

www.rileyguide.com
This site includes a section with opportunities for people with disabilities, which can be viewed at
www.dbm.com/jobguide/vets.html#abled.

www.mindexchange.com
The diversity section of this site provides users with several links to additional resources regarding
people with disabilities and employment.

www.usdoj.gov/crt/ada/adahom1.htm
This is the Americans with Disabilities Act home page.

www.abanet.org/disability/home.html
This is the Web site for The Commission on Mental and Physical Disability Law.

janweb.icdi.wvu.edu
The Job Accommodation Web site offers consulting services to employers regarding integration of
people with disabilities into the workplace.

General Resources

www.vault.com
This site provides potential employees with “insider information” on over 3000 companies. In addi-
tion, job seekers can search through available positions and post and answer questions on the message
board.

www.wetfeet.com
Similar to vault.com, this site allows visitors to ask questions and receive “insider information”
on companies that are hiring.

Free Services

www.sleuth.com
On this site job seekers can fill out a form that indicates their desired field of employment. Job
Sleuth™ searches the Internet and returns potential matches to the user’s inbox. The service is free.

www.ajb.org
America’s Job Bank is an online recruiting service provided through the Department of Labor and the
state employment service. Searching for and posting positions on the site are free.

www.xdrive.com
This free site provides members with 25 MB of storage space for housing documents related to a us-
er’s job search. XDrive is able to communicate with all browser types and has wireless capabilities.

www.driveway.com
Similar to XDrive.com, this Web site provides users with 100 MB of storage space. Users can back
up, share and organize information about various job searches. Driveway.com works on all plat-
forms.

Special Interest

www.eharvest.com/careers/index.cfm
This Web site provides job seekers interested in agricultural positions with online career services.

www.opportunitynocs.org
This career services site is for both employers and job seekers interested in non-profit opportunities.

www.experience.com
This Web site is designed specifically for young professionals and students seeking full-time, part-
time and internship positions.

Appendix H Career Opportunities 1757

www.internshipprograms.com
Students seeking internships can search job listings on this site. It also features City Intern, to help
interns become acquainted with a new location.

www.brassringcampus.com
This site provides college grads and young professionals with less than five years of experience with
job opportunities. Additional features help users buy cars or find apartments.

Online Contracting

www.ework.com
This online recruiting site matches outside contractors with companies needing project specialists.
Other services provided through eWork include links to online training sites, benefits packages and
payment services and online meeting and management resources.

www.elance.com
Similar to eWork.com, eLance matches outside contractors with projects.

www.freeagent.com
FreeAgent matches contractors with projects.

www.MBAFreeAgent.com
This site is designed to match MBAs with contracting opportunities.

www.aquent.com
This site provides access to technical contracting positions.

www.WorkingSolo.com
This site helps contractors begin their own projects.

Recruiting Services

www.advantagehiring.com
This site helps employers screen resumes.

www.etest.net
This site provides employers with testing services to assess the strengths and weaknesses of prospec-
tive employees. This information can be used for better hiring strategies.

www.hire.com
Hire.com’s eRecruiter is an application service provider that helps organizations streamline their
Web-recruiting process.

www.futurestep.com
Executives can register confidentially at Futurestep.com to be considered for senior executive
positions. The site connects registered individuals to positions. It also offers career management ser-
vices.

www.webhire.com
This site provides employers with end-to-end recruiting solutions.

Wireless Career Resources

www.wirelessresumes.com
This site connects employers and job seekers with resumes that focus on jobs revolving around wire-
less technology.

www.msua.org/job.htm
This site contains links to numerous wireless job-seeking Web sites.

1758 Career Opportunities Appendix H

www.jobs4wireless.com
This site searches for jobs in the wireless telecommunications field.

www.staffing.net
This site allows job seekers to discover openings in the world of wireless technology and communi-
cations.

www.wiwc.org
This site’s focus is wireless communication job searching for women.

www.firstsearch.com
At this site a job seeker is able to discover part-time, full-time and salary-based opportunities in the
wireless industry.

www.pcsjobs.com
This is the site for The Caradyne Group, which is an executive search firm that focuses on finding job
seekers wireless job positions.

www.cnijoblink.com
CNI Career Networks offers confidential, no-charge job placement in the wireless and telecommuni-
cations industries.

SUMMARY
• The Internet can improve an employer’s ability to recruit employees and help users find career op-

portunities worldwide.

• Job seekers can learn how to write a resume and cover letter, post them online and search through
job listings to find the jobs that best suit their needs.

• Employers can post jobs that can be searched by an enormous pool of applicants.

• Job seekers can store and distribute resumes digitally, receive e-mail notification of possible posi-
tions, use salary and relocation calculators, consult job coaches and use self-assessment tools when
searching for a job on the Web.

• There are approximately 40,000 career-advancement services on the Internet today.

• Finding a job online can greatly reduce the amount of time spent applying for a position. Potential
candidates can also learn more about a company by visiting its Web site.

• Most sites are free to job seekers. These sites typically generate their revenues by charging em-
ployers who post their job opportunities, and by selling advertising space on their Web pages.

• Sites such as Vault.com and WetFeet.com allow job seekers to post questions about employ-
ers and positions in chat rooms and on bulletin boards.

• On many recruitment sites, the match of a resume to a position is conducted with resume-filtering
software.

• A lack of confidentiality is a disadvantage of online career services.

• According to recent studies, the number of individuals researching employment positions through
means other than the Internet, such as referrals, newspapers and temporary agencies, far outweighs
the number of Internet job seekers.

• Career sites designed for individuals seeking technical positions are among the most popular on-
line career sites.

• Online contracting services allow businesses to post positions for which they wish to hire outside re-
sources, and allow individuals to identify projects that best suit their interests, schedules and skills.

• The Internet provides students and young professionals with some of the necessary tools to get
them started in the job market. The target market is made up of individuals still in school and seek-

Appendix H Career Opportunities 1759

ing internships, individuals who are just graduating and individuals who have been in the work-
force for a few years.

• There are a number of Web sites that offer features that enhance job searches, prepare users to
search online, help design applicants’ resumes or help users calculate the cost of relocating.

• Web recruiting reaches a much larger audience than posting an advertisement in the local news-
paper.

• There are a variety of sites that allow employers to post jobs online. Some of these sites require a
fee, which generally runs between $100–200. Postings remain on the Web site for approximately
30–60 days.

• Employers should try to post to sites that are most likely to be visited by eligible candidates.

• When designing a job posting, defining what makes a job position unique and including information
such as benefits and salary might convince a qualified candidate to further investigate the position.

• The Internet hosts demographic-specific sites for employers seeking to increase diversity in the
workplace.

• The Internet has provided employers with a cost-effective means of testing their prospective em-
ployees in such categories as decision making, problem solving and personality.

TERMINOLOGY

SELF-REVIEW EXERCISES
H.1 State whether each of the following is true or false. If false, explain why.

a) Online contracting services allow businesses to post job listings for specific projects that
can be viewed by job seekers over the Web.

b) Employment networks are Web sites designed to provide information on a selected com-
pany to better inform job seekers of the corporate environment.

c) The large number of applications received over the Internet is considered an advantage
by most online recruiters.

d) There is a greater number of individuals searching for work on the Web than through all
other mediums combined.

e) Sixteen percent of America’s workforce is categorized as independent contractors.

H.2 Fill in the blanks in each of the following statements:
a) There are approximately online career services Web sites on the Internet to-

day.
b) The Internet hosts demographic-specific sites for employers seeking to increase

 in the workplace.
c) In the 24 hours following the Super Bowl, job searches occurred on Mon-

ster.com.
d) Many recruitment sites use to filter through received resumes.
e) Employers should try to post to sites that are most likely to be visited by can-

didates.

corporate culture open-ended question
demographic pay-per-hire
end-to-end recruiting solutions
entry-level position request for proposal (RFP)
online contracting service resume-filtering software

1760 Career Opportunities Appendix H

ANSWERS TO SELF-REVIEW EXERCISES
H.1 a) True. b) True. c) False. The large number of applicants reduces the amount of time a re-
cruiter can spend interviewing and making decisions. Despite screening processes, many highly qual-
ified applicants can be overlooked. d) False. The number of individuals researching employment
positions through other means, such as referrals, newspapers and temporary agencies, far outweighs
the number of Internet job seekers. e) False. Six percent of America’s workforce is categorized as in-
dependent consultants.

H.2 a) 40,000. b) diversity. c) 5 million. d) resume-filtering software. e) eligible.

EXERCISES
H.3 State whether each of the following is true or false. If false, explain why.

a) RFP is the acronym for request for proposal.
b) The Internet has provided employers with a cost-effective means of testing their prospec-

tive employees in such categories as decision making, problem solving and personality.
c) Online job recruiting can completely replace other means of hiring employees.
d) Posting a job online is less expensive than placing ads in more traditional media.
e) A lack of confidentiality is a disadvantage of online career services.

H.4 Fill in the blanks in each of the following statements:
a) Finding a job online can greatly the amount of time spent applying for a po-

sition.
b) is an example of a Web site in which contractors can bid on projects.
c) When designing a job posting, defining what makes the position unique and including

information such as and might convince a qualified candidate
to further investigate the position.

d) The Internet hosts for employers seeking to increase diversity in the work-
place.

e) The Internet provides employers with a cost-effective means of testing their prospective
employees in such categories as , and .

H.5 Define the following
a) corporate culture
b) pay-per-hire
c) request for proposal (RFP)
d) resume-filtering software

H.6 (Class discussion). In this appendix, we discuss the shortcomings and advantages of recruit-
ing on the Internet. Using the text, additional reading material and personal accounts answer the fol-
lowing questions. Be prepared to discuss your answers.

a) Do you think finding a job is easier on the Web? Why or why not?
b) What disadvantages can you identify?
c) What are some of the advantages?
d) Which online recruiting services do you think will be most successful? Why?

H.7 Many of the career services Web sites we have discussed in this appendix offer resume-
building capabilities. Begin building your resume, choosing an objective that is of interest to you.
Think of your primary concerns. Are you searching for a paid internship or a volunteer opportunity?
Do you have a specific location in mind? Do you have an opportunity for future employment? Are
stock options important to you? Find several entry-level jobs that meet your requirements. Write a
short summary of your results. Include any obstacles and opportunities.

Appendix H Career Opportunities 1761

H.8 In this appendix, we have discussed online contracting opportunities. Visit FreeAgent
(www.freeagent.com) and create your own e.portfolio, or visit eLance (www.elance.com)
and search the requests for proposals for contracting opportunities that interest you.

H.9 In this appendix, we have discussed many career services Web sites. Choose three sites. Ex-
plore the opportunities and resources offered by the sites. Visit any demonstrations, conduct a job
search, build your resume and calculate your salary or relocation expenses. Answer the following
questions.

a) Which site provides the best service? Why?
b) What did you like? Dislike?
c) Write a brief summary of your findings, including descriptions of any features that you

would add.

WORKS CITED
The notation <www.domain-name.com> indicates that the citation is for information found at the
Web site.

1. J. Gaskin, “Web Job Sites Face Tough Tasks,” Inter@ctive Week 14 August 2000: 50.

2. J. Gaskin, 50.

3. M. Berger, “Jobs Supermarket,” Upside November 2000: 224.

4. <www.vault.com>

5. M. Berger, 224.

6. Cisco Advertisement, The Wall Street Journal 19 October 2000: B13.

7. M. Feffer, “Posting Jobs on the Internet,” <www.webhire.com/hr/spotlight.asp>
18 August 2000.

8. <www.webhire.com>

9. J. Gaskin, 51.

10. C. Wilde, “Recruiters Discover Diverse Value in Web Sites,” Information Week 7 February
2000: 144.

11. <www.jobsonline.com>

12. <www.driveway.com>

13. <www.cruelworld.com>

14. A.K. Smith, “Charting Your Own Course,” U.S. News and World Report 6 November 2000: 58.

15. D. Lewis, “Hired! By the Highest Bidder,” The Boston Globe 9 July 2000: G1.

16. <www.experience.com>

17. M. French, “Experience Inc., E-Recruiting for Jobs for College Students,” Mass High Tech 7
February–13 February 2000: 29.

I
Unicode®

Objectives
• To become familiar with Unicode.
• To discuss the mission of the Unicode Consortium.
• To discuss the design basis of Unicode.
• To understand the three Unicode encoding forms:

UTF-8, UTF-16 and UTF-32.
• To introduce characters and glyphs.
• To discuss the advantages and disadvantages of using

Unicode.
• To provide a brief tour of the Unicode Consortium’s

Web site.

Appendix I Unicode® 1763

I.1 Introduction
The use of inconsistent character encodings (i.e., numeric values associated with charac-
ters) when developing global software products causes serious problems because comput-
ers process information using numbers. For instance, the character “a” is converted to a
numeric value so that a computer can manipulate that piece of data. Many countries and
corporations have developed their own encoding systems that are incompatible with the en-
coding systems of other countries and corporations. For example, the Microsoft Windows
operating system assigns the value 0xC0 to the character “A with a grave accent” while the
Apple Macintosh operating system assigns that same value to an upside-down question
mark. This results in the misrepresentation and possible corruption of data because data is
not processed as intended.

In the absence of a widely-implemented universal character encoding standard, global
software developers had to localize their products extensively before distribution. Local-
ization includes the language translation and cultural adaptation of content. The process of
localization usually includes significant modifications to the source code (such as the con-
version of numeric values and the underlying assumptions made by programmers), which
results in increased costs and delays releasing the software. For example, some English-
speaking programmers might design global software products assuming that a single char-
acter can be represented by one byte. However, when those products are localized in Asian
markets, the programmer’s assumptions are no longer valid, thus the majority, if not the
entirety, of the code needs to be rewritten. Localization is necessary with each release of a
version. By the time a software product is localized for a particular market, a newer version,
which needs to be localized as well, is ready for distribution. As a result, it is cumbersome
and costly to produce and distribute global software products in a market where there is no
universal character encoding standard.

In response to this situation, the Unicode Standard, an encoding standard that facili-
tates the production and distribution of software, was created. The Unicode Standard out-
lines a specification to produce consistent encoding of the world’s characters and symbols.
Software products which handle text encoded in the Unicode Standard need to be localized,
but the localization process is simpler and more efficient because the numeric values need
not be converted and the assumptions made by programmers about the character encoding
are universal. The Unicode Standard is maintained by a non-profit organization called the

Outline

I.1 Introduction
I.2 Unicode Transformation Formats
I.3 Characters and Glyphs
I.4 Advantages/Disadvantages of Unicode
I.5 Unicode Consortium’s Web Site
I.6 Using Unicode
I.7 Character Ranges

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1764 Unicode® Appendix I

Unicode Consortium, whose members include Apple, IBM, Microsoft, Oracle, Sun Micro-
systems, Sybase and many others.

When the Consortium envisioned and developed the Unicode Standard, they wanted
an encoding system that was universal, efficient, uniform and unambiguous. A universal
encoding system encompasses all commonly used characters. An efficient encoding system
allows text files to be parsed easily. A uniform encoding system assigns fixed values to all
characters. An unambiguous encoding system represents a given character in a consistent
manner. These four terms are referred to as the Unicode Standard design basis.

I.2 Unicode Transformation Formats
Although Unicode incorporates the limited ASCII character set (i.e., a collection of char-
acters), it encompasses a more comprehensive character set. In ASCII each character is rep-
resented by a byte containing 0s and 1s. One byte is capable of storing the binary numbers
from 0 to 255. Each character is assigned a number between 0 and 255, thus ASCII-based
systems can support only 256 characters, a tiny fraction of world’s characters. Unicode ex-
tends the ASCII character set by encoding the vast majority of the world’s characters. The
Unicode Standard encodes all of those characters in a uniform numerical space from 0 to
10FFFF hexadecimal. An implementation will express these numbers in one of several
transformation formats, choosing the one that best fits the particular application at hand.

Three such formats are in use, called UTF-8, UTF-16 and UTF-32, depending on the
size of the units—in bits—being used. UTF-8, a variable width encoding form, requires one
to four bytes to express each Unicode character. UTF-8 data consists of 8-bit bytes
(sequences of one, two, three or four bytes depending on the character being encoded) and
is well suited for ASCII-based systems when there is a predominance of one-byte charac-
ters (ASCII represents characters as one-byte). Currently, UTF-8 is widely implemented in
UNIX systems and in databases.

The variable width UTF-16 encoding form expresses Unicode characters in units of
16-bits (i.e., as two adjacent bytes, or a short integer in many machines). Most characters
of Unicode are expressed in a single 16-bit unit. However, characters with values above
FFFF hexadecimal are expressed with an ordered pair of 16-bit units called surrogates. Sur-
rogates are 16-bit integers in the range D800 through DFFF, which are used solely for the
purpose of “escaping” into higher numbered characters. Approximately one million char-
acters can be expressed in this manner. Although a surrogate pair requires 32-bits to repre-
sent characters, it is space-efficient to use these 16-bit units. Surrogates are rare characters
in current implementations. Many string-handling implementations are written in terms of
UTF-16. [Note: Details and sample-code for UTF-16 handling are available on the Unicode
Consortium Web site at www.unicode.org.]

Implementations that require significant use of rare characters or entire scripts encoded
above FFFF hexadecimal, should use UTF-32, a 32-bit fixed-width encoding form that usu-
ally requires twice as much memory as UTF-16 encoded characters. The major advantage
of the fixed-width UTF-32 encoding form is that it uniformly expresses all characters, so it
is easy to handle in arrays.

There are few guidelines that state when to use a particular encoding form. The best
encoding form to use depends on computer systems and business protocols, not on the data
itself. Typically, the UTF-8 encoding form should be used where computer systems and
business protocols require data to be handled in 8-bit units, particularly in legacy systems

Appendix I Unicode® 1765

being upgraded because it often simplifies changes to existing programs. For this reason,
UTF-8 has become the encoding form of choice on the Internet. Likewise, UTF-16 is the
encoding form of choice on Microsoft Windows applications. UTF-32 is likely to become
more widely used in the future as more characters are encoded with values above FFFF
hexadecimal. Also, UTF-32 requires less sophisticated handling than UTF-16 in the pres-
ence of surrogate pairs.

Figure K.1 shows the different ways in which the three encoding forms handle char-
acter encoding.

I.3 Characters and Glyphs
The Unicode Standard consists of characters, written components (i.e., alphabets, num-
bers, punctuation marks, accent marks, etc.) that can be represented by numeric values. Ex-
amples of characters include: U+0041 LATIN CAPITAL LETTER A. In the first character
representation, U+yyyy is a code value, in which U+ refers to Unicode code values, as op-
posed to other hexadecimal values. The yyyy represents a four-digit hexadecimal number
of an encoded character. Code values are bit combinations that represent encoded charac-
ters. Characters are represented using glyphs, various shapes, fonts and sizes for displaying
characters. There are no code values for glyphs in the Unicode Standard. Examples of
glyphs are shown in Fig. K.2.

The Unicode Standard encompasses the alphabets, ideographs, syllabaries, punctua-
tion marks, diacritics, mathematical operators, etc. that comprise the written languages and
scripts of the world. A diacritic is a special mark added to a character to distinguish it from
another letter or to indicate an accent (e.g., in Spanish, the tilde “~” above the character
“n”). Currently, Unicode provides code values for 94,140 character representations, with
more than 880,000 code values reserved for future expansion.

Character UTF-8 UTF-16 UTF-32

LATIN CAPITAL LETTER A 0x41 0x0041 0x00000041

GREEK CAPITAL LETTER
ALPHA

0xCD 0x91 0x0391 0x00000391

CJK UNIFIED IDEOGRAPH-
4E95

0xE4 0xBA 0x95 0x4E95 0x00004E95

OLD ITALIC LETTER A 0xF0 0x80 0x83 0x80 0xDC00 0xDF00 0x00010300

Fig. I.1Fig. I.1Fig. I.1Fig. I.1 Correlation between the three encoding forms.

Fig. I.2Fig. I.2Fig. I.2Fig. I.2 Various glyphs of the character A.

1766 Unicode® Appendix I

I.4 Advantages/Disadvantages of Unicode
The Unicode Standard has several significant advantages that promote its use. One is the
impact it has on the performance of the international economy. Unicode standardizes the
characters for the world’s writing systems to a uniform model that promotes transferring
and sharing data. Programs developed using such a schema maintain their accuracy because
each character has a single definition (i.e., a is always U+0061, % is always U+0025). This
enables corporations to manage the high demands of international markets by processing
different writing systems at the same time. Also, all characters can be managed in an iden-
tical manner, thus avoiding any confusion caused by different character code architectures.
Moreover, managing data in a consistent manner eliminates data corruption, because data
can be sorted, searched and manipulated using a consistent process.

Another advantage of the Unicode Standard is portability (i.e., software that can exe-
cute on disparate computers or with disparate operating systems). Most operating systems,
databases, programming languages and Web browsers currently support, or are planning to
support, Unicode.

A disadvantage of the Unicode Standard is the amount of memory required by UTF-
16 and UTF-32. ASCII character sets are 8-bits in length, so they require less storage than
the default 16-bit Unicode character set. However, the double-byte character set (DBCS)
and the multi-byte character set (MBCS) that encode Asian characters (ideographs) require
two to four bytes, respectively. In such instances, the UTF-16 or the UTF-32 encoding
forms may be used with little hindrance on memory and performance.

Another disadvantage of Unicode is that although it includes more characters than any
other character set in common use, it does not yet encode all of the world’s written characters.

Another disadvantage of the Unicode Standard is that UTF-8 and UTF-16 are variable
width encoding forms, so characters occupy different amounts of memory.

I.5 Unicode Consortium’s Web Site
If you would like to learn more about the Unicode Standard, visit www.unicode.org.
This site provides a wealth of information about the Unicode Standard that is insightful to
those new to Unicode. Currently, the home page is organized into various sections—New
to Unicode, General Information, The Consortium, The Unicode Standard, Work in
Progress and For Members.

The New to Unicode section consists of two subsections: What is Unicode and How
to Use this Site. The first subsection provides a technical introduction to Unicode by
describing design principles, character interpretations and assignments, text processing and
Unicode conformance. This subsection is recommended reading for anyone new to Uni-
code. Also, this subsection provides a list of related links that provide the reader with addi-
tional information about Unicode. The How to Use this Site subsection contains
information about using and navigating the site as well hyperlinks to additional resources.

The General Information section contains six subsections: Where is my Character,
Display Problems, Useful Resources, Enabled Products, Mail Lists and Con-
ferences. The main areas covered in this section include a link to the Unicode code charts
(a complete listing of code values) assembled by the Unicode Consortium as well as a
detailed outline on how to locate an encoded character in the code chart. Also, the section
contains advice on how to configure different operating systems and Web browsers so that

Appendix I Unicode® 1767

the Unicode characters can be viewed properly. Moreover, from this section, the user can
navigate to other sites that provide information on various topics such as, fonts, linguistics
and other standards such as the Armenian Standards Page and the Chinese GB 18030
Encoding Standard.

The Consortium section consists of five subsections: Who we are, Our Members,
How to Join, Press Info and Contact Us. This section provides a list of the current
Unicode Consortium members as well as information on how to become a member. Privi-
leges for each member type—full, associate, specialist and individual—and the fees
assessed to each member are listed here.

The Unicode Standard section consists of nine subsections: Start Here, Latest Ver-
sion, Technical Reports, Code Charts, Unicode Data, Update & Errata, Uni-
code Policies, Glossary and Technical FAQ. This section describes the updates
applied to the latest version of the Unicode Standard as well as categorizing all defined
encoding. The user can learn how the latest version has been modified to encompass more
features and capabilities. For instance, one enhancement of Version 3.1 is that it contains
additional encoded characters. Also, if users are unfamiliar with vocabulary terms used by
the Unicode Consortium, then they can navigate to the Glossary subsection.

The Work in Progress section consists of three subsections: Calendar of Meetings,
Proposed Characters and Submitting Proposals. This section presents the user with
a catalog of the recent characters included into the Unicode Standard scheme as well as
those characters being considered for inclusion. If users determine that a character has been
overlooked, then they can submit a written proposal for the inclusion of that character. The
Submitting Proposals subsection contains strict guidelines that must be adhered to
when submitting written proposals.

The For Members section consists of two subsections: Member Resources and
Working Documents. These subsections are password protected; only consortium mem-
bers can access these links.

I.6 Using Unicode
Numerous programming languages (e.g., C, Java, JavaScript, Perl, Visual Basic, etc.) pro-
vide some level of support for the Unicode Standard. Figure K.3 shows a Java program that
prints the text “Welcome to Unicode!” in eight different languages: English, Russian,
French, German, Japanese, Portuguese, Spanish and Traditional Chinese. [Note: The Uni-
code Consortium’s Web site contains a link to code charts that lists the 16-bit Unicode code
values.]

1 // Fig. K.3: Unicode.java
2 // Demonstrating how to use Unicode in Java programs.
3
4 // Java core packages
5 import java.awt.*;
6
7 // Java extension packages
8 import javax.swing.*;
9

Fig. I.3Fig. I.3Fig. I.3Fig. I.3 Java program that uses Unicode encoding (part 1 of 3).

1768 Unicode® Appendix I

10 public class Unicode extends JFrame {
11 private JLabel english, chinese, cyrillic, french, german,
12 japanese, portuguese, spanish;
13
14 // Unicode constructor
15 public Unicode()
16 {
17 super("Demonstrating Unicode");
18
19 // get content pane and set its layout
20 Container container = getContentPane();
21 container.setLayout(new GridLayout(8, 1));
22
23 // JLabel constructor with a string argument
24 english = new JLabel("\u0057\u0065\u006C\u0063\u006F" +
25 "\u006D\u0065\u0020\u0074\u006F\u0020Unicode\u0021");
26 english.setToolTipText("This is English");
27 container.add(english);
28
29 chinese = new JLabel("\u6B22\u8FCE\u4F7F\u7528\u0020" +
30 "\u0020Unicode\u0021");
31 chinese.setToolTipText("This is Traditional Chinese");
32 container.add(chinese);
33
34 cyrillic = new JLabel("\u0414\u043E\u0431\u0440\u043E" +
35 "\u0020\u043F\u043E\u0436\u0430\u043B\u043E\u0432" +
36 "\u0430\u0422\u044A\u0020\u0432\u0020Unicode\u0021");
37 cyrillic.setToolTipText("This is Russian");
38 container.add(cyrillic);
39
40 french = new JLabel("\u0042\u0069\u0065\u006E\u0076" +
41 "\u0065\u006E\u0075\u0065\u0020\u0061\u0075\u0020" +
42 "Unicode\u0021");
43 french.setToolTipText("This is French");
44 container.add(french);
45
46 german = new JLabel("\u0057\u0069\u006C\u006B\u006F" +
47 "\u006D\u006D\u0065\u006E\u0020\u007A\u0075\u0020" +
48 "Unicode\u0021");
49 german.setToolTipText("This is German");
50 container.add(german);
51
52 japanese = new JLabel("Unicode\u3078\u3087\u3045\u3053" +
53 "\u305D\u0021");
54 japanese.setToolTipText("This is Japanese");
55 container.add(hiragana);
56
57 portuguese = new JLabel("\u0053\u00E9\u006A\u0061\u0020" +
58 "\u0042\u0065\u006D\u0076\u0069\u006E\u0064" +
59 "\u006F\u0020Unicode\u0021");
60 portuguese.setToolTipText("This is Portuguese");
61 container.add(portuguese);
62

Fig. I.3Fig. I.3Fig. I.3Fig. I.3 Java program that uses Unicode encoding (part 2 of 3).

Appendix I Unicode® 1769

The Unicode.java program uses escape sequences to represent characters. An
escape sequence is in the form \uyyyy, where yyyy represents the four-digit hexadecimal code
value. Lines 24 and 25 contain the series of escape sequences necessary to print “Welcome to
Unicode!” in English. The first escape sequence (\u0057) equates to the character “W,” the
second escape sequence (\u0065) equates to the character “e,” and so on. The \u0020
escape sequence (line 25) is the encoding for the space character. The \u0074 and \u006F
escape sequences equate to the word “to.” Note that “Unicode” is not encoded because it is a
registered trademark and has no equivalent translation in most languages. Line 25 also con-
tains the \u0021 escape sequence for the exclamation mark (!).

Lines 29–65 contain the escape sequences for the other seven languages. The English,
French, German, Portuguese and Spanish characters are located in the Basic Latin block,
the Japanese characters are located in the Hiragana block, the Russian characters are
located in the Cyrillic block and the Traditional Chinese characters are located in the CJK
Unified Ideographs block.

[Note: To display the output of Unicode.java properly, copy the font.proper-
ties.zh file to the font.properties files (located in the C:\Program Files\Jav-
aSoft\JRE\1.3.1\lib and in the C:\jdk1.3.1\jre\lib directories). Save the contents of
font.properties prior to overwriting them with the contents from font.proper-
ties.zh.

63 spanish = new JLabel("\u0042\u0069\u0065\u006E\u0076" +
64 "\u0065\u006E\u0069\u0064\u0061\u0020\u0061\u0020" +
65 "Unicode\u0021");
66 spanish.setToolTipText("This is Spanish");
67 container.add(spanish);
68
69 } // end Unicode constructor
70
71 // execute application
72 public static void main(String args[])
73 {
74 Unicode application = new Unicode();
75 application.setDefaultCloseOperation(
76 JFrame.EXIT_ON_CLOSE);
77 application.pack();
78 application.setVisible(true);
79
80 } // end method main
81
82 } // end class Unicode

Fig. I.3Fig. I.3Fig. I.3Fig. I.3 Java program that uses Unicode encoding (part 3 of 3).

1770 Unicode® Appendix I

I.7 Character Ranges
The Unicode Standard assigns code values, which range from 0000 (Basic Latin) to
E007F (Tags), to the written characters of the world. Currently, there are code values for
94,140 characters. To simplify the search for a character and its associated code value, the
Unicode Standard generally groups code values by script and function (i.e., Latin charac-
ters are grouped in a block, mathematical operators are grouped in another block, etc.). As
a rule, a script is a single writing system that is used for multiple languages (e.g., the Latin
script is used for English, French, Spanish, etc.). The Code Charts page on the Unicode
Consortium Web site lists all the defined blocks and their respective code values. Figure
K.4 lists some blocks (scripts) from the Web site and their range of code values.

SUMMARY
• Before Unicode, software developers were plagued by the use of inconsistent character encoding

(i.e., numeric values for characters). Most countries and organizations had their own encoding sys-
tems, which were incompatible. A good example is the individual encoding systems on the Win-
dows and Macintosh platforms.

Script Range of Code Values

Arabic U+0600–U+06FF

Basic Latin U+0000–U+007F

Bengali (India) U+0980–U+09FF

Cherokee (Native America) U+13A0–U+13FF

CJK Unified Ideographs (East Asia) U+4E00–U+9FAF

Cyrillic (Russia and Eastern Europe) U+0400–U+04FF

Ethiopic U+1200–U+137F

Greek U+0370–U+03FF

Hangul Jamo (Korea) U+1100–U+11FF

Hebrew U+0590–U+05FF

Hiragana (Japan) U+3040–U+309F

Khmer (Cambodia) U+1780–U+17FF

Lao (Laos) U+0E80–U+0EFF

Mongolian U+1800–U+18AF

Myanmar U+1000–U+109F

Ogham (Ireland) U+1680–U+169F

Runic (Germany and Scandinavia) U+16A0–U+16FF

Sinhala (Sri Lanka) U+0D80–U+0DFF

Telugu (India) U+0C00–U+0C7F

Thai U+0E00–U+0E7F

Fig. I.4Fig. I.4Fig. I.4Fig. I.4 Some character ranges.

Appendix I Unicode® 1771

• Computers process data by converting characters to numeric values. For instance, the character “a”
is converted to a numeric value so that a computer can manipulate that piece of data.

• Localization of global software requires significant modifications to the source code, which results
in the increased cost and delays releasing the product.

• Localization is necessary with each release of a version. By the time a software product is localized
for a particular market, a newer version, which needs to be localized as well, is ready for distribu-
tion. As a result, it is cumbersome and costly to produce and distribute global software products
in a market where there is no universal character encoding standard.

• The Unicode Consortium developed the Unicode Standard in response to the serious problems cre-
ated by multiple character encodings and the use of those encodings.

• The Unicode Standard facilitates the production and distribution of localized software. It outlines
a specification for the consistent encoding of the world’s characters and symbols.

• Software products which handle text encoded in the Unicode Standard need to be localized, but the
localization process is simpler and more efficient because the numeric values need not be converted.

• The Unicode Standard is designed to be universal, efficient, uniform and unambiguous.

• A universal encoding system encompasses all commonly used characters; an efficient encoding
system parses text files easily; a uniform encoding system assigns fixed values to all characters;
and a unambiguous encoding system represents the same character for any given value.

• Unicode extends the limited ASCII character set to include all the major characters of the world.

• Unicode makes use of three Unicode Transformation Formats (UTF): UTF-8, UTF-16 and UTF-
32, each of which may be appropriate for use in different contexts.

• UTF-8 data consists of 8-bit bytes (sequences of one, two, three or four bytes depending on the
character being encoded) and is well suited for ASCII-based systems when there is a predomi-
nance of one-byte characters (ASCII represents characters as one-byte).

• UTF-8 is a variable width encoding form that is more compact for text involving mostly Latin
characters and ASCII punctuation.

• UTF-16 is the default encoding form of the Unicode Standard. It is a variable width encoding form
that uses 16-bit code units instead of bytes. Most characters are represented by a single 16-bit unit,
but some characters require surrogate pairs.

• Without surrogate pairs, the UTF-16 encoding form can only encompass 65,000 characters, but
with the surrogate pairs, this is expanded to include over a million characters.

• UTF-32 is a 32-bit encoding form. The major advantage of the fixed-width encoding form is that
it uniformly expresses all characters, so that they are easy to handle in arrays and so forth.

• The Unicode Standard consists of characters. A character is any written component that can be rep-
resented by a numeric value.

• Characters are represented using glyphs, which are various shapes, fonts and sizes for displaying
characters.

• Code values are bit combinations that represent encoded characters. The Unicode notation for a
code value is U+yyyy in which U+ refers to the Unicode code values, as opposed to other hexadec-
imal values. The yyyy represents a four-digit hexadecimal number.

• Currently, the Unicode Standard provides code values for 94,140 character representations.

• An advantage of the Unicode Standard is its impact on the overall performance of the international
economy. Applications that conform to an encoding standard can be processed easily by computers.

• Another advantage of the Unicode Standard is its portability. Applications written in Unicode can
be easily transferred to different operating systems, databases, Web browsers, etc. Most compa-
nies currently support, or are planning to support Unicode.

1772 Unicode® Appendix I

• To obtain more information about the Unicode Standard and the Unicode Consortium, visit
www.unicode.org. It contains a link to the code charts, which contain the 16-bit code values
for the currently encoded characters.

• Numerous programming languages provide some level of support for the Unicode Standard.

• In Java programs, the \uyyyy escape sequence represents a character, where yyyy is the four-digit
hexadecimal code value. The \u0020 escape sequence is the universal encoding for the space
character.

TERMINOLOGY

SELF-REVIEW EXERCISES
I.1 Fill in the blanks in each of the following.

a) Global software developers had to their products to a specific market before
distribution.

b) The Unicode Standard is an standard that facilitates the uniform production
and distribution of software products.

c) The four design basis that constitute the Unicode Standard are: ,
, and .

d) A is the smallest written component the can be represented with a numeric
value.

e) Software that can execute on different operating systems is said to be .

I.2 State whether each of the following is true or false. If false, explain why.
a) The Unicode Standard encompasses all the world’s characters.
b) A Unicode code value is represented as U+yyyy, where yyyy represents a number in bi-

nary notation.
c) A diacritic is a character with a special mark that emphasizes an accent.
d) Unicode is portable.
e) When designing Java programs, the escape sequence is denoted by/uyyyy.

SELF-REVIEW ANSWERS
I.1 a) localize. b) encoding. c) universal, efficient, uniform, unambiguous. d) character. e) por-
table.

\uyyyy escape sequence portability
ASCII script
block surrogate
character symbol
character set unambiguous (Unicode design basis)
code value Unicode Consortium
diacritic Unicode design basis
double-byte character set (DBCS) Unicode Standard
efficient (Unicode design basis) Unicode Transformation Format (UTF)
encode uniform (Unicode design basis)
escape sequence universal (Unicode design basis)
glyph UTF-8
hexadecimal notation UTF-16
localization UTF-32
multi-byte character set (MBCS)

Appendix I Unicode® 1773

I.2 a) False. It encompasses the majority of the world’s characters. b) False. The yyyy represents
a hexadecimal number. c) False. A diacritic is a special mark added to a character to distinguish it
from another letter or to indicate an accent. d) True. e) False. The escape sequence is denoted by
\uyyyy.

EXERCISES
I.3 Navigate to the Unicode Consortium Web site (www.unicode.org) and write the hexa-
decimal code values for the following characters. In which block were they located?

a) Latin letter ‘Z.’
b) Latin letter ‘n’ with the ‘tilde (~).’
c) Greek letter ‘delta.’
d) Mathematical operator ‘less than or equal to.’
e) Punctuation symbol ‘open quote (“).’

I.4 Describe the Unicode Standard design basis.

I.5 Define the following terms:
a) code value.
b) surrogates.
c) Unicode Standard.

I.6 Define the following terms:
a) UTF-8.
b) UTF-16.
c) UTF-32.

I.7 Describe a scenario where it is optimal to store your data in UTF-16 format.

I.8 Using the Unicode Standard code values, write a Java program that prints your first and last
name. The program should print your name in all uppercase letters and in all lowercase letters. If you
know other languages, print your first and last name in those languages as well.

Index

Symbols
% SQL wildcard character 455
%\> escape sequence for %> 601
& 1617
& 1617
' 1617
> 1617
< 1617
" 1617
/ 1617
<!-- and --> XHTML comment

delimiter 600
<%-- and --%> JSP comment

delimiter 600
<% and %> scriptlet delimiter 600
<%! and %> declaration delimiter

600
<%= and %> expression delimiter

600
<%= and %> JSP expression

delimiter 597
<%@ and %> directive delimiter

634
<%@ and %> directive delimiter

628
<\% escape sequence for <% 601
<jsp:forward> 610
<jsp:getProperty> 618,

620
<jsp:include> 610
<jsp:param> 610, 610, 611,

616
<jsp:plugin> 610, 616

<jsp:setProperty> 618,
622

<jsp:useBean> 628
_ SQL wildcard character 455,

456
_jspService method 595

Numerics
127.0.0.1 (localhost) 544
128-bit encryption 389
3D computer graphics 160
3D game 180
3D scene 180, 195
3DES 390

A
abandoned shopping cart 995
absolute method of interface

ResultSet 475
abstract 43
abstract class 137
abstract class 91
Abstract Windowing Toolkit

(AWT) 8, 30
AbstractAccount-

View.java 91
AbstractAction class 43, 44,

51, 65
AbstractDrawingAc-

tion.java 306
AbstractEntry class 1243

AbstractTableModel class
470, 476

ACCELERATOR_KEY constant of
interface Action 45

acceptDrag method of class
DropTargetDragEv-
ent 61

acceptDrop method of class
DropTargetDropE-
vent 283

Access control list 1164

accessibility 71

AccessibilityContext
class 72

AccessibleContext class
72, 76

Account.java 89

AccountBarGraph-
View.java 94

AccountController.java
102

AccountManager.java 105

AccountTextView.java 93

ACL 1164

Action interface 30, 39, 40, 43,
44, 51, 52, 56, 65, 306

Action.ACCELERATOR_KEY
constant 45

Ac-
tion.ACTION_COMMAND
_KEY constant 45

Index 1775

Ac-
tion.LONG_DESCRIPTI
ON constant 45

Action.MNEMONIC_KEY
constant 44, 45

Action.NAME constant 43, 45
Ac-

tion.SHORT_DESCRIPT
ION constant 44, 45

Action.SMALL_ICON constant
43, 45

ACTION_COMMAND_KEY
constant of interface Ac-
tion 45

ACTION_COPY constant of class
DndConstants 57

ACTION_LINK constant of class
DndConstants 57

ACTION_MOVE constant of class
DndConstants 57

ActionEvent class 40, 88
ActionListener interface 88,

102, 339
actionListener method of

class JButton 1570
actionPerformed method of

class AbstractAction
43, 56

actionPerformed method of
classAbstractAction
306

actionPerformed method of
interface Action 40

actionPerformed method of
interface ActionListen-
er 333, 339

ActionSample.java 40
ActionSample2.java 72
Activatable class 809, 810,

836
activatable remote object 809, 810
activatable RMI object 816
activation 1525
activation constructor 811, 819
activation daemon 810, 819, 836
activation descriptor 819
activation group descriptor 818
ActivationDesc class 819
ActivationGroup class 816,

819, 837
ActivationGroupDesc class

818
ActivationGroup-

Desc.CommandEnvi-
ronment class 818

ActivationGroupID class
819

ActivationID class 811
ActivationSystem interface

818
acyclic 142
Adapter 803
Adapter design pattern 265, 803
adapter MBeans 1338
add method of class JMenu 44
add method of class JToolBar

37, 44
addBatch method of interface

PreparedStatement
516

addBatch method of interface
Statement 515

addChild 168
addCookie method of interface

HttpServletRe-
sponse 538, 564

addDiscoveryListener
method of class Lookup-
Discovery 1209

addHyperlinkListener
method of class JEditor-
Pane 47

addNotificationListen-
er of class RmiConnec-
torClient 1343

addObserver method of class
Observable 88, 92

Address.java 1134
AddressBook.java 503
AddressBookDataAc-

cess.java 486
AddressBookEntry.java

483
AddressBookEntry-

Frame.java 500
AddressHome.java 1138
AddressModel.java 1139
addRow method of class De-

faultTableModel 112
addTab method of class

JTabbedPane 51
addTableModelListener

method of interface Ta-
bleModel 111, 470

AddToCartServlet.java
664, 685, 1024

addTreeModelListener
method of interface Tree-
Model 128

Adleman, Leonard 392
adrotator.jsp 620

Advanced Encryption Standard
(AES) 390

Advantage Hiring, Inc. 1746
advertisement 1589
advertising 559
advjhtp1-taglib.tld 642,

643
AffineTransform class 257,

260
AffineTransformOp 151
agent level 15, 1321
agents

definition 1320
smart 1321
static 1320

alarmclock1.idl 1468
alarmclock2.idl 1478
AlarmClockClient.java

1474
AlarmClockImpl.java 1469
Alert class 772
align attribute of <jsp:plu-

gin> action 614
AllPermission 1208
Alpha 194, 195
alpha value 155
ambient color 195
AmbientLight 168, 195
America’s Job Bank 1744
American National Standards

Institute (ANSI) 390
American Society for Female

Entrepreneurs 1746
ampersand (&) 1617
AMS 761
ancestor node 116
AND 461, 462, 498
angle bracket 1613
animation 161, 180, 330, 339, 345,

347, 353, 371
animation bean 322
annotation 837
anonymous inner class 861
anonymous port number 796
ANSI 1708
anti-aliasing 221
ANY 1634, 1636
AOL Instant Messenger 16, 1549,

1589
Apache HTTP Server 534, 543
Apache Software Foundation 533,

543
Apache Tomcat 11
Apache Tomcat server 543, 661
Apache’s SOAP implementation

API 1596

1776 Index

API (Application Programming
Interface) 1653

Appeal Ballot 1704
Appearance 162, 168, 169, 195,

196
appendChild method 1658,

1659
appendChild method of

interface Element 672,
673

Apple Computer, Inc. 1764
applet 761
applet’s graphics context 136
application assembler 848
Application Assembly Tool

1192
Application Deployment Tool

662, 694, 696, 865, 1149,
1153, 1160

application descriptor file 761
application implicit object

598
application management software

(AMS) 761, 774, 786
application scope 598, 617, 618
application server 14, 848, 991,

992, 1164, 1166
application service provider (ASP)

1746
application-specific exception

1075
Applications Objects 1457, 1502
apply-templates element

(template) 1682
Aquent.com 1751
Arc2D.CHORD 144
Arc2D.Double 140, 143
Arc2D.OPEN 144
Arc2D.PIE 144
architectural patterns 25
archive attribute of

<jsp:plugin> action
614

armed node 197
array 23
ArrayList class 674, 675, 1084
article.xml 1654
ASC 456, 457, 458
ascending order (ASC) 457
ASCII 1764
AssetPieChartView.java

97
asterisk (*) 453, 1631, 1632
asymmetric key 390
Asynchronous Method Invocation

(AMI) 1518

asynchronous RPC 1596
AT_BEGIN constant 651, 652
AT_END 652
AT_END constant 652
atomic operation 482
AttendeeCounter.java

1265
!ATTLIST 1636, 1637, 1638,

1639, 1641, 1642, 1643,
1644

Attr interface 1658
attribute 139, 447, 1614
attribute declaration 1636
attribute default 1637
attribute element 1683
Attribute interface 234
attribute list 1636
attribute list declaration 1636
attribute-map 1178
attribute of tag library

descriptor 646
AttributedString class 234
audio 532
authentication 10, 388, 389, 392,

406, 407, 417, 418, 423,
1572

authentication server script 417
AuthentiDate.com 407
author.xsl 1693
authorISBN table of books

database 448, 449
authors table of books

database 448
auto commit state 482, 516
autoFlush attribute of page

directive 635
ava Authentication and

Authorization Services
(JAAS) 6

available beans 379
axis 194

B
back-end interface 1214
BackendInterface.java

1216
background property 329
Balking design pattern 25
BandCombineOp 151, 155
banner.html 606
base services 1369
Basic Latin 1769
Basic Object Adapter (BOA)

1456, 1499, 1514, 1516,
1544

BasicStroke 138, 143
batch processing 515
batch update 515
BatchUpdateException

class 516
BEA 1163
bean 9, 322
Bean-Managed Persistence

918
bean-managed persistence 905,

906, 925
bean-managed transaction

demarcation 879, 881
Bean-Managed Transactions

898
Bean Markup Language (BML)

1597
Bean Type 865, 918
Bean type 1151
BeanDescriptor class 369
bean-field 1178
BeanInfo interface 364, 369,

370, 371
bean-managed persistence 12
beanName attribute of

<jsp:useBean> action
618

Beans Development Kit (BDK)
379

Beans in the Palette Category
dialog 323

Beans tab in the Component
Palette 323, 328

Behavior 161, 162, 193, 196,
197

behavior scheduler 196
behavioral design patterns 21
Bid4Geeks.com 1750
BilingualJobs.com 1746
bind a remote object to the registry

798
binding 1437, 1438, 1441, 1448,

1456, 1469, 1477, 1484
bit 389
bit (size of unit) 1764
BitMask 196
Blackvoices.com 1745
block 389
block cipher 390
Bluetooth 1750
blur 136
BlurFilter.java 153
bodycontent element 642,

646, 652
BodyContent interface 651
BodyTag interface 649

Index 1777

BodyTagSupport class 638,
640, 647

book.xsl 664, 1692
BookBean.java 663, 670
books database 447, 662
books database table

relationships 451
books.jsp 663, 674, 674
BookServlet.java 664, 676
bookstore case study 11, 661, 662
bootstrapping 1448, 1551, 1553,

1562
BorderLayout class 361
bottom tier 992, 1366
bound property 347, 352, 353,

355, 364, 370
bound-property event 370
bound-property listener 352
BoundedShapeControl-

ler.java 266
bounding volume 168, 197
BoundingBox 169
BoundingSphere 168, 169,

180
Box 168, 169, 195
branch graph 162, 167
BranchGroup 162, 167, 169,

180
Brassringcampus.com 1753
brick-and-mortar store 995
Bridge design pattern 23
broadcaster MBean 1343, 1356
BrowserLauncher.java 68
brute-force cracking 394
buffer attribute of page

directive 635
BufferedImage 138, 143, 147,

149, 150, 152, 153, 154, 155,
159, 218, 240, 1299

BufferedImageOp 139, 150,
151

BufferedReader class 724,
756, 797

Bug2Bug.com shopping cart
662

builder tool 9, 322, 323, 330, 339,
346, 353, 364, 369, 370, 371,
374, 375

built-in entity 1617
business logic 13, 577, 991, 992,

993, 995, 1010
business logic method 1075, 1119
business method 847, 1095
business rule 993
business-to-business (B2B)

transaction 1628

ButtonGroup class 944
ButtonModel interface 87
bytecode 429
bytecode verifier 410, 430
ByteLookUpTable 151
BytesMessage class 939

C
C 1616, 1706, 1707
C++ 17, 1618, 1706, 1707
C++ libraries 17
cache 552
CachedRowSet class 520
cache-strategy 1168
Caesar Cipher 388
Call class 1601
CallableStatement

interface 515, 517
CallDoubleMethod function

of C table JNIEnv 1713
CallObjectMethod function

of C table JNIEnv 1713
CallStatictypeMethod

function of C table JNIEnv
1716

CalltypeMethod function of C
table JNIEnv 1713

CampusCareerCenter.com
1753

Candidate.java 969
CandidateEJB.java 970
CandidateHome.java 969
Canvas class 772
Canvas3D 163, 167, 180
capability bit 168, 180
Career.com 1744
CareerLeader.com 1748
CareerPath.com 1744
CareerWeb 1744
caretaker object 24
CartItemBean.java 664,

683
cascaded discovery 1590
Cascading Style Sheet (CSS) 663
case study 13, 991
CDATA attribute 1637, 1638
CDATASection interface 1658
cell phone 995
censorship 1550
central server 1549, 1551, 1589
centralization 1552
centralized server 1550
certificate 428
certificate authority (CA) 407, 409
certificate authority hierarchy 407

certificate repository 407
certificate revocation list (CRL)

408
Chain-of-Responsibility design

pattern 1381
changed property of class Ob-

servable 88
ChangeListener 178, 210
chapters.xsl 1693
char * C++ type 1708, 1709
character 1765, 1771
character data 1616
character set 62, 1764
CharacterData interface 1658
Chat.idl 1482, 1496
ChatClient.java 820
ChatMessage.java 821
ChatMessageImpl.java

1497
ChatServer.java 810
ChatServerAdministra-

tor.java 816, 1535
ChatServerImpl.java 811,

1484, 1532
checked exception 793
checked RemoteException

797
checkout method of interface

ShoppingCart 1040
CheckOutServlet.java

1040
ChiefMonster 1752
child element 1614
child node 116
children 1614
ChoiceGroup 776, 778
choose element 1688
cHTML (compact-HTML) 719,

720, 724, 751, 753, 758, 785,
993

CIM (Common Information
Model) 1366

Cipher class 404
CipherInputStream class

404
CipherOutputStream 405
CipherOutputStream class

404
ciphertext 388, 393
CJK Unified Ideographs 1769
class attribute of <jsp:use-

Bean> action 618
Class class 265, 474
class loader 410, 430
class path 342
class server 1366, 1368

1778 Index

ClassNotFoundException
class 466

CLASSPATH (for Jini) 1199
CLDC 758
clearBatch method of

interface Statement 516
client 717, 1549
client connect to server 10, 533
client object 1370
client/server application 533
client-server networking 594
client tier 26, 662, 719, 785, 993,

1366
client/server 532
client/server network 1549, 1550,

1551, 1552, 1560
client/server relationship 532
ClientGUI.java 827
ClientModel.java 1021
ClientNotificationHan-

dler 1343
ClientPrinterManage-

ment.java 1347
clients.dtd 1021
clients.xml 1020
ClientUserAgentHead-

ers.java 723
clipping 139
clock.jsp 596
clock2.jsp 608
ClockClientGUI.java 1472
clone method of interface Clo-

neable 1382
cloneNode method 1659
close method of interface Con-

nection 465
close method of interface

Statement 465
Cloudscape 10, 446, 463, 578,

623, 694, 695, 1192
Cloudscape database 978
Cloudscape DBMS 898
CloudscapeDataAc-

cess.java 488
CNN.com 560
code attribute of <jsp:plu-

gin> action 613
code value 1765, 1769, 1771
codebase 410, 412, 422
codebase attribute of

<jsp:plugin> action
614

Codebase field 1201
Coded Name 898, 1153
Collection 1040

Collection interface 244,
1088, 1101

Collections class 244
Collegegrads.com 1753
Collide.java 198
collision 406
collision detection 161, 179, 180,

196, 197
Color 169
color band 154
Color class 96, 361
color manipulation 136
color scale 147, 155
Color3D 169
Color3f 169, 196
ColorConvertOp 151
ColorFilter.java 154
coloring attributes 162
ColorModel 138, 147, 155
ColorSliderPanel.java

357
column 446, 447, 448
column number 454
column number in a result set 454
COM.cloud-

scape.core.Local-
ConnectionPoolDataS
ource 1192

COM.cloud-
scape.core.RmiJdb-
cDriver 465, 466, 467,
581

com.sun.jdmk.comm package
1343

comma (,) 1631, 1636
Command class 781
Command design pattern 40, 220,

776
command line tool 1392
Command object 773, 774, 780,

786
Command.BACK constant 774,

776
Command.OK constant 774, 776
CommandListener interface

774, 778
comment 600
Comment interface 1658
commit 482, 498, 516
commit a response 541
commit method of interface

Connection 482, 516
Common Gateway Interface

(CGI) 10
Common Information Model

(CIM) 1366

Common Object Request Broker
Architecture (CORBA) 5,
15, 532, 792, 820, 1437,
1438, 1439, 1440, 1441,
1442, 1443, 1444, 1447,
1448, 1449, 1451, 1452,
1453, 1454, 1455, 1456,
1458, 1459, 1462, 1466,
1467, 1474, 1476, 1477,
1480, 1481, 1484, 1489,
1492, 1493, 1495, 1498,
1499, 1500, 1501, 1502,
1503, 1504, 1509, 1510,
1511, 1513, 1514, 1516,
1523, 1524, 1525, 1527,
1528, 1529, 1530, 1531,
1534, 1535, 1543, 1544

communication framework 1596
Community Review 1703
compatible 155
complex curve 144
component 326, 329, 330, 331
component assembler 9, 322, 323,

330
Component class 51, 57
component environment entries

669
Component Inspector 326
Component Inspector 326,

329, 331, 346, 364
Component Interface Definition

Language (CIDL) 1523,
1525

Component Palette 323, 328,
331, 333, 344, 346, 353, 362,
369

ComponentListener
interface 257

compositing 139
compositing rule 139
comprehensive job site 1739
compression filter 146
computer security 387
CONCUR_READ_ONLY static

constant 475
CONCUR_UPDATABLE static

constant 475, 518
concurrency 473
concurrency design patterns 25
concurrency problem 25
conditional section 1644
conditional.dtd 1644
conditional.xml 1645
conditional.xsl 1688
Cone 195
config implicit object 598

Index 1779

configure
lookup service 1201
rmid 1201
Web server 1200

configure a data source 694
connect to a database 464, 670
connect with events 330
Connected Limited Device

Configuration (CLDC) 758,
781, 786

ConnectException class 807
connecting the dots 323
connection between Java program

and database 467
Connection interface 465, 467,

469, 473, 475, 482, 498, 518,
581, 667, 886, 908, 918

Connection Mode 333, 353,
362

connection pool 519
Connection Wizard dialog 333,

353, 362, 364
Connection Wizard idialog 353
ConnectionInfo.lastAu-

toincrementValue
static method 498

ConnectionPoolData-
Source interface 519

connector MBeans 1338
consumer 1521
container 1168
Container class 325
container-managed field 920,

1134, 1152
container-managed persistence

(CMP) 905, 906, 920, 924,
925, 1085, 1152, 1175

Container-Managed Persis-
tence radio button 1152

container-managed transaction
demarcation 879, 886

Container-Managed Transac-
tions 866

container provider 848
Container-Managed 982
container-managed persistence 12
content branch graph 162
content specification 1630
contentType attribute of page

directive 636
context root 545, 547, 557
controller 8, 86, 87, 102, 112, 995
controller (in MVC architecture)

25
Controller logic 13
controller logic 991, 1010

controller service 1368, 1369
ControlPanel.java 175
ControlPanel1.java 210
ConvolveOp 151, 152, 153
cookie 560, 561
Cookie class 538, 564
cookie deleted when it expires 561
cookie domain 568
cookie expiration 561
cookie name 564
cookie protocol 568
cookie value 564
cookies disabled 561
CookieSelectLan-

guage.html 565
CookieServlet.java 561
Cooljobs.com 1753
coordinate system 136, 161, 212
copyright laws 1551
CORBA 820, 860
CORBA Component Model

(CCM) 1516, 1523, 1524,
1525, 1526, 1528, 1543,
1544

CORBA Domains 1457, 1502
CORBA Packages 532
CORBAfacilities 1457, 1502,

1505
CORBAMessageMan-

ager.java 1489
CORBAservices 1456, 1457,

1477, 1499, 1500, 1502,
1509, 1516, 1517, 1518,
1525, 1527, 1529, 1543,
1544

corporate culture 1742, 1745
create a Web component 698
create method 847
create method of an EJB home

interface 851
create method of class Trans-

actionFactory 1289
create methods of Entity EJB

906
Create new EJB in Applica-

tion 978
createAttribute method

1658
createCDATASection

method 1658
createComment method 1658
createCompatibleWrite-

ableRaster 155

createDefaultDragGes-
tureRecognizer
method of class Drag-
Source 302

createElement method 1658
createElement method of

interface Document 672,
673

CreateException class 907,
916, 925, 1023

createProcessingIn-
struction method 1658

createRegistry method of
class LocateRegistry
815, 1575

createStatement method of
interface Connection
465, 468, 473

createStatement method of
interface ResultSet 518

createTextNode method
1658

createTextNode method of
interface Document 672,
673

creational design patterns 20
crimson.jar 679
Cruel World 1748
cryptanalysis 393
cryptographic cipher 388
cryptographic standard 390
cryptography 388, 390
cryptologist 393
cryptosystem 388
CSS attribute 666
CSS file 694
CSS specification 666
Ctrl key 1150
curve 144
custom behavior 193
custom event 355
custom tag 638
custom tag attribute 643
custom tag handler 648
custom tag libraries 11
custom tag library 594, 638
custom tag with attributes 645
Customer.java 1119
CustomerEJB.java 1120
CustomerHome.java 1126
CustomerModel.java 1127
customize in a builder tool 370,

371
Customizer Dialog 378
Customizer interface 375

1780 Index

customTagAttribute.jsp
644

customTagBody.jsp 647
customTagWelcome.jsp 639
cyclic 142
Cylinder 195

D
daemon process 1447, 1454
daemon thread 1577
data attribute 447
data component 86
Data Encryption Standard (DES)

390
data pool 1166, 1178
data source 1166, 1168
Data Sources 1192
data structure 23
data tier 992
DataAccessExcep-

tion.java 487
database 445, 452, 534, 577, 756,

1119
database access 533, 577
database driver 467
Database JNDI Name 981,

1155
database management system

(DBMS) 445
database manipulation application

528
Database Name 1192
database resource 695
Database Settings 981
database table 446
database tier 662
DatabaseException.java

1478
DataBuffer 147
DataFlavor class 61, 283, 284,

287
DataFlavor.javaFileL-

istFlavor constant 61
DatagramPacket class 1576,

1577
DataInputStream class 775
DataOutputStream class 779
DataSource class 918
DataSource interface 519, 667,

669
Date class 62, 1391
DateFormat class 62, 606
DBCS (double byte character set)

1766
dbms-column 1178

DB2 446
deadlock 25
Debug class 1409
debugException method of

class Debug 1409
decipher 389
declaration 596, 600
Decorator design pattern 405, 406
decryption 388, 389, 390, 394
decryption key 391, 392
DEFAULT 606
default event 371
default property 370
default serialization mechanism

793
default servlet 547
default.properties 695
default.properties file

906
DefaultListModel class 107,

1570
DefaultMutableTreeNode

class 117, 122, 123
defaultnamespace.xml

1622
DefaultTableModel class

112, 115
DefaultTreeCellEditor

class 117
DefaultTreeCellRender-

er class 117, 129
DefaultTreeModel class 117,

122
#define 1707, 1708
Deitel Bookstore 13
Deitel Bookstore application

architecture 993
Deitel Messenger 809, 820
DeitelDrawing.java 309
DeitelMessenger.java

836, 1493, 1541
delegate 8, 87
delegate-model architecture 86,

87, 107, 111, 115, 803, 8
DELETE FROM 453, 462
delete request 537
DELETE SQL statement 462, 498,

906, 923
deleteRow method of interface

ResultSet 518
demographic 13, 1118
Dependent Classpath 1193
deploy a Web application 545
deploy an application 694, 709
Deploy Application 868, 1160
deploy session EJB 862

Deployed module location
1193

deployer 848
deploying a service 1597
deploying an EJB 1149
deployment 1393, 1420
deployment descriptor 545, 546,

581, 1168, 1178
Deployment Settings 981
Deployment Settings... button

in the Entity tab 1155
DeploymentException class

1395
DES cracker machines 390
DESC 456, 457
descendent node 116
description 1190
description element 546,

547, 559, 568, 577, 584
design pattern 220, 265, 364, 405,

772, 776, 1323, 1381
design patterns xxiv, 9, 20, 22, 24,

25
Design Patterns, Elements of

Reusable Object-Oriented
Software 20

Destination Type 984
destroy method of interface

Servlet 535, 582
destroyApp method of class

MIDlet 761
developer.ja-

va.sun.com/develop-
er/Books/
JDBCTutorial/
chapter5.html 521

developer.ja-
va.sun.com/develop-
er/earlyAccess/crs
521

developer.ja-
va.sun.com/develop-
er/index.html 521

developer.ja-
va.sun.com/develop-
er/techDocs/hi/
repository 510

diacritic 1765
Dice.com 1749
Diffie, Whitfield 390
diffuse color 195
digital authentication standard 407
digital certificate 407, 409, 423
digital envelope 394
digital signature 10, 406, 407, 413,

415, 1572

Index 1781

Digital Signature Algorithm
(DSA) 407

dimension 195
Dimension class 96
Direct3D 160, 161
DirectionalLight 168, 169,

175, 195
directive 595, 634
discarded method of class

LookupDiscovery 1209
disconnected RowSet 520
DisconnectListener.ja-

va 827
discovered method of class

LookupDiscovery 1209
discovered method of

interface DiscoveryLis-
tener 1399

discovery 1204
multicast discovery 1204,

1209
unicast discovery 1204

discovery process 1397
discovery through invitation 1590
discovery utilities 1232

LookupDiscoveryMan-
ager class 1232
LookupLocatorDiscov-
ery class 1232

DiscoveryEvent class 1209,
1235, 1249

DiscoveryGroupManage-
ment.ALL_GROUPS
constant 1237

DiscoveryListener
interface 1209, 1220, 1232,
1237

DiscoveryManagement
interface 1249

Display class 773, 786
Display Console 1368
display-name element 546,

547
Displayable class 772
DisplayAuthors.java 464
DisplayQueryRe-

sults.java 476
distributed application 807
distributed communication 12
distributed search 1550, 1551,

1591
distributed system 1295, 1436,

1441, 1453
distributed systems 4, 11
distributed transaction 6, 847, 879

distributed Web application 11,
661, 662

diversity 1745
.dll file extension 1709
DndCon-

stants.ACTION_COPY
constant 57, 62

DndCon-
stants.ACTION_LINK
constant 57

DndCon-
stants.ACTION_MOVE
constant 57, 62

DnDWebBrowser.java 57
doAfterBody method of

interface BodyTag 649,
651

!DOCTYPE 1629, 1635, 1636,
1637, 1639, 1641, 1642,
1645

Document 739, 740, 741, 744,
745

Document interface 252, 672,
673, 677, 680, 740, 1019,
1658

Document Object Model (DOM)
680, 1616, 1653

Document Type Declaration 1629
Document Type Definition (DTD)

1628
DocumentBuilder class 677,

680, 740, 1011, 1018, 1657
DocumentBuilderFactory

class 677, 680, 740, 1011,
1018, 1657

documentroot 1700
doDelete method of class Ht-

tpServlet 537
doEndTag method of interface

Tag 641, 651
doGet method 676
doGet method of class HttpS-

ervlet 536, 537, 538, 539,
541, 553, 720, 739

Dogfriendly.com 1753
doInitBody method of

interface BodyTag 648
DOM (Document Object Model)

1616, 1653
DOM API (Application

Programming Interface)
1653

DOM-based parser 1653
domain name 1331, 1367
DOMSource class 680, 741,

1019, 1678, 1679

doOptions method of class Ht-
tpServlet 537

doPost method of class HttpS-
ervlet 536, 537, 538, 553,
564

doPut method of class HttpS-
ervlet 537

doStartTag method of
interface Tag 641, 642, 651

doTrace method of class Ht-
tpServlet 537

double-byte character set (DBCS)
1766

download JAR file 1394
downloading and installing J2EE

17
Draft Specification Approval

Ballot 1703
Draft Specification

Reconsideration Ballot 1703
drag and drop 56
drag-and-drop 221
drag-and-drop data transfer 56
drag-and-drop operation 56, 57
drag gesture 56
drag source 56
Drag-and-Drop API 9
DragAndDropControl-

ler.java 276
dragDropActionChanged

method of interface Drag-
SourceListener 284

dragDropActionChanged
method of interface
DropTargetListener
285

dragDropEnd method of
interface Drag-
SourceListener 284

dragEnter method of interface
DragSourceListener
284

dragEnter method of interface
DropTargetListener
61, 285

dragExit method of interface
DragSourceListener
284

dragExit method of interface
DropTargetListener
62, 285

DragGestureEvent class 283
DragGestureListener

interface 276

1782 Index

dragGestureRecognized
method of interface Drag-
GestureListener 283

DragGestureRecognizer
class 276

dragOver method of interface
DragSourceListener
284

dragOver method of interface
DropTargetListener
62, 285

DragSource class 276, 302
DragSourceDragEvent class

284
DragSourceListener

interface 276
draw 139, 218
drawing application 9
DrawingFileFilter.java

304
DrawingFileReaderWrit-

er.java 245
DrawingInternal-

Frame.java 287
DrawingModel.java 243
DrawingView.java 254
drawString 139
DriverManager class 465, 467
Driveway.com 1748
drop method of interface

DropTargetListener
57, 283, 285

drop target 56
dropActionChanged method

of interface DropTar-
getListener 62

dropComplete method of class
DropTargetDropE-
vent 61, 284

DropTarget class 57, 61, 62,
276

DropTargetDragEvent class
61, 62, 285

DropTargetDropEvent class
57, 61

DropTargetDropEvent
interface 283

DropTargetEvent class 285
DropTargetListener

interface 57, 62, 276, 283
DTD (Document Type Definition)

745, 1628, 1629
.dtd extension 1629
DuplicateKeyException

class 925
durable subscription 951

dynamic class downloading 836,
837

dynamic content 594, 599
dynamic HTML 577
Dynamic Invocation Interface

(DII) 1456, 1502, 1510,
1511, 1514

Dynamic MBeans 1323
dynamic service 1369
Dynamic Skeleton Interface (DSI)

1510
dynamic XHTML document 662
DynamicServiceFind-

er.java 1397

E
EAR file 697
EBNF (Extended Backus-Naur

Form) grammar 1628
e-business application 13, 991
e-commerce model 1022
edge hint 152
Edit menu 39
efficient (Unicode design basis)

1764, 1771
EJB 6, 781, 847
EJB container 847, 848, 849, 939,

1088, 1126, 1145
EJB create method 1155
EJB Display Name 978
EJB finder method 1155
EJB implementation 847
EJB JAR file 1149, 1150
EJB Method 1156
ejb-name 1168
ejb-ref-name 1176, 1190
ejb-reference-descrip-

tion 1190
EJB References 1192
EJB server provider 848
EJB wizard 1152
ejbActivate method of

interface SessionBean,
EntityBean 854

EJBContext interface 853
ejbCreate method 853, 1125
EJBException class 886, 917,

918
ejbFindByPrimaryKey

method 917
EJBHome interface 848
EJBObject interface 848, 906
ejbPassivate method of

interface SessionBean
853

ejbStore 1168
eLance.com 1751
!ELEMENT 1630, 1634, 1635,

1636, 1637, 1639, 1641,
1642, 1644

Element 740, 741, 745, 748, 753
element content 1616, 1630
element element 1683
element group 1632
Element interface 222, 672, 673,

677, 680, 1019, 1658
element type declaration 1630
elements.xsl 1681
Ellipse2D.Double 140, 143,

218
Ellipse2D.Float 140
Ellipse2D.Float class 233
embed HTML element 604, 613
embedded Cloudscape

framework 463
Employee.java 906
EmployeeEJB.java 909, 921
EmployeeEJBClient.java

926
EmployeeHome.java 908
EMPTY 1634, 1644
encipher 389
encoding 1763
encoding declaration 1614
encryption 10, 389, 390, 392
encryption algorithm 393
encryption key 389, 392, 393
end caps 143
enhancement filter 146
Enterprise Application Archive

(EAR) file 696
Enterprise Applications 1193
Enterprise Bean Class 865,

978, 982
Enterprise Bean Display

Name 865
Enterprise Bean Name 978,

982
enterprise bean provider 848
Enterprise Bean References

984
Enterprise JavaBean 6
Enterprise JavaBeans 12, 13, 847,

991, 993, 1022
ENTITIES 1643
ENTITY 1638, 1642, 1644
Entity 1151, 1153, 1155
entity attribute 1640
entity declaration 1639
entity EJB 6, 12, 849, 905, 993,

1011, 1528

Index 1783

entity reference 1617
Entity Settings dialog 918, 978
ENTITY tokenized attribute type

1640
EntityBean interface 908
EntityContext class 917
entityExample.xml 1642
Entry

Name 1261
Entry interface 1220, 1260,

1265, 1266, 1269
entry object 1259
entry point 1379, 1395, 1410,

1428
entry point proxy 1393
Entry utilities 1242

Address 1242
Comment 1242
Location 1242
Name 1242
ServiceInfo 1242
ServiceType 1242
Status 1242

EntryListener.java 1276
enumerated attribute 1638, 1643
Enumeration interface 1034
envelope 1596
environment variable 543, 1392
equals method of class Object

1111
error method

(ErrorHandler) 1664
error page attribute of page

directive 622
errorPage attribute of page

directive 628, 636
Errors panel in Igniter GUI

1368
escape character 461
escape sequence 600, 601, 1769
EVAL_BODY_INCLUDE constant

642
EVAL_BODY_TAG 651
event 1381
Event class 1382
event driven process 137
event-handling 88
event notification 1343
event publisher 1381
event service 1368, 1369, 1378,

1381, 1399, 1409, 1428,
1521

event set 371
event set name 370
event source 370
event subscriber 1381

event topic 1381, 1382, 1383
EventListener class 355
EventNotHandledExcep-

tion class 1381
EventObject class 355
EventSetDescriptor class

370, 371
eWork® Exchange 1751
Examples

AbstractAccount-
View.java 91
AbstractDrawingAc-
tion.java 306
Account.java 89
AccountBarGraph-
View.java 94
AccountControl-
ler.java 102
AccountManager.java

105
AccountTextView.java

93
ActionSample.java 40
ActionSample2.java 72
Address.java 1134
AddressBook.java 503
AddressBookDataAc-
cess.java 486
AddressBookEntry.ja-
va 483
AddressBookEntry-
Frame.java 500
AddressHome.java 1138
AddressModel.java

1139
AddToCartServlet.ja-
va 664, 685, 1024
adrotator.java 620
adrotator.jsp 620
advjhtp1-taglib.tld

643
alarmclock1.idl 1468
alarmclock2.idl 1478
AlarmClockClient.ja-
va 1474
AlarmClockImpl.java

1469
article.xml 1654
AssetPieChart-
View.java 97
AttendeeCounter.java

1265
author.xsl 1693
BackendInterface.ja-
va 1216
banner.html 606

BlurFilter.java 153
book.xsl 664, 1692
BookBean.java 663, 670
books.jsp 663, 674
BookServlet.java 664,

676
BoundedShapeControl-
ler.java 266
BrowserLauncher.java

68
Candidate.java 969
CandidateEJB.java 970
CandidateHome.java

969
CartItemBean.java 664,

683
Changing a pipe character to a

comma in a DTD 1636
chapters.xsl 1693
Chat.idl 1482, 1496
ChatClient.java 820
ChatMessage.java 821
ChatMessageImpl.java

1497
ChatServer.java 810
ChatServerAdminis-
trator.java 816, 1535
ChatServerImpl.java

811, 1484, 1532
CheckOutServlet.java

1040
ClientGUI.java 827
ClientModel.java 1021
ClientPrinterManage-
ment.java 1347
clients.dtd 1021
clients.xml 1020
ClientUserAgentHead-
ers.java 723
clock.jsp 596
clock2.jsp 608
ClockClientGUI.java

1472
CloudscapeDataAc-
cess.java 488
Collide.java 198
ColorFilter.java 154
ColorSliderPanel.ja-
va 357

Conditional sections in a DTD
1644
conditional.dtd 1644
conditional.xml 1645
conditional.xsl 1688
ControlPanel.java 175

1784 Index

ControlPanel1.java
210
CookieSelectLan-
guage.html 565
CookieServlet.java

561
CORBAMessageMan-
ager.java 1489
Customer.java 1119
CustomerEJB.java 1120
CustomerHome.java

1126
CustomerModel.java

1127
customTagAt-
tribute.jsp 644
customTagBody.jsp 647
customTagWelcome.jsp

639
DataAccessExcep-
tion.java 487
DatabaseExcep-
tion.java 1478

Declaring attributes 1637
DeitelDrawing.java

309
DeitelMessenger.java

836, 1493, 1541
DisconnectListen-
er.java 827
DisplayAuthors.java

464
DisplayQueryRe-
sults.java 476
DnDWebBrowser.java 57
DragAndDropControl-
ler.java 276
DrawingFileFil-
ter.java 304
DrawingFileReader-
Writer.java 245
DrawingInternal-
Frame.java 287
DrawingModel.java 243
DrawingView.java 254
DynamicServiceFind-
er.java 1397
elements.xsl 1681
Employee.java 906
EmployeeEJB.java 909,

921
EmployeeEJBCli-
ent.java 926
EmployeeHome.java 908
entityExample.xml

1642

EntryListener.java
1276

Example of a mixed-content
element 1635
FavoritesWebBrows-
er.java 45
FileSystemModel.java

123
FileTreeFrame.java

129
Filters.java 1299
forward1.jsp 611
forward2.jsp 612
games.xml 1681
GeneralDiscovery-
Utility.java 1237
GetAllProductsServ-
let.java 1043
GetMessage.java 1599
GetPasswordHintServ-
let.java 1068
GetProductServ-
let.java 1046
GoalDetector.java 205
GradientIcon.java 307
GuestBean.java 623
guestBookEr-
rorPage.jsp 631
guestBookLogin.jsp

626
GuestBookTag.java 649
GuestBookTagExtraIn-
fo.java 652
guestBookView.jsp 629
GuestDataBean.java

624
IDExample.xml 1639
ImageDisplayer 1310
ImageEntry.java 1295
ImagePanel.java 147
ImageParser.java 1309
ImageProcessor.java

1295
Imageprocessor-
Main.java 1301
ImageSeparator.java

1301
ImageSizeExcep-
tion.java 1722
IMConstants.java 1575
IMODETipAnswer.xsl

754
IMODETipQuestion.xsl
751
IMPeer.java 1553
IMPeerImpl.java 1560

IMPeerListener.java
1557
IMService.java 1553
IMServiceImpl.java

1555
IMServiceManager.ja-
va 1562
include.jsp 608
includeDirective.jsp

637
index.html 663, 665
InterestCalcula-
tor.java 850
InterestCalculator-
Client.java 854
InterestCalculatorE-
JB.java 852
InterestCalculator-
Home.java 851
intro.xml 1664, 1680
intro.xsl 1679
Invalid XML document 1631
invalid-entityExam-
ple.xml 1642
invalid-IDExam-
ple.xml 1641
invalid-mixed.xml

1636
InvertFilter.java 152
Java2DExample.java

156
Java2DImageFilter.ja
va 150
Java3DExample.java

179
Java3DWorld.java 163
Java3DWorld1.java 181
JavaSpaceFinder.java

1262
JNIArrayMain.java

1721
JNIArrayWrapper.h

1718
JNIArrayWrapper.java

1718
JNIArrayWrapperIm-
pl.cpp 1719
JNIImageFrame.java

1731
JNIMethodWrapper.ja-
va 1710
JNIPanel.java 1727
JNIPIMain.java 1714
JNIPIMethodWrapper.h

1711

Index 1785

JNIPIWrapperImpl.ja-
va 1712
JNIPrintMain.java

1709
JNIPrintWrapper.java

1706, 1707
JNIPrintWrapperIm-
pl.cpp 1708
JNIStaticMain.java

1717
JNIStaticWrapper.ja-
va 1714
JNIStaticWrapperIm-
pl.cpp 1716
JNITintWrapper.h 1723
JNITintWrapper.java

1723
LoginServlet.java

1057
LogoAnimator.java 337
LogoAnimator2.java

345
LowTonerPolicy.java

1415
LowTonerPolicyIm-
pl.java 1416
LowTonerPolicyIm-
pl.properties 1420
MathTool.java 870
MathToolClient.java

874
MathToolEJB.java 870
MathToolHome.java 873
MaximumValueEdi-
tor.java 372
MDIWebBrowser.java 52
Message.java 1554
MessageListener.java

827
MessageManager.java

822
MinimumValueEdi-
tor.java 373
mixed.xml 1635
MoneyTransfer.java

880
MoneyTransferEJB.ja-
va 881, 887
MoneyTransferEJBCli-
ent.java 892
MoneyTransfer-
Home.java 880
MulticastDiscov-
ery.java 1209
MulticastReceiv-
ingThread.java 1577

MulticastSendingTh-
read.java 1572
MyAbstractAction.ja-
va 66
MyErrorHandler.java

1663
MyImage.java 240
MyLine.java 230
MyLineController.ja-
va 267
MyOval.java 234
MyRectangle.java 232
MyShape.java 224
MyShapeControl-
ler.java 261
MyShapeController-
Factory.java 273
MyText.java 235
MyTextController.ja-
va 269
Navigator.java 200
NotifyOperation.java

1277
order.html 663, 664, 689
Order.java 1095
OrderEJB.java 1095
OrderHome.java 1101
OrderModel.java 1102
OrderProduct.java

1107
OutofPaperPolicy.ja-
va 1410
OutofPaperPolicyIm-
pl.java 1411
OutofPaperPolicyIm-
pl.properties 1415
PeerDiscoveryListen-
er.java 1582
PeerList.java 1564,

1583
Philoso-
phersJList.java 108
Philoso-
phersJTable.java 112
Philoso-
phersJTree.java 117
PIContainer.java 1711
PixelTintExcep-
tion.java 1722
plugin.jsp 616
PoliciesStarter.java

1424
policy.all 1208
Printer.java 1325, 1383
PrinterClientGUI.ja-
va 1400

PrinterError-
Event.java 1382
PrinterEventBroad-
caster.java 1343
PrinterEventBroad-
casterMBean.java
1342
PrinterEventListener

1325
PrinterEventListen-
er.java 1379
PrinterManage-
ment.java 1370
PrinterManagement-
Agent.java 1339
PrinterManagement-
GUI.java 1348
PrinterManagementIm-
pl.java 1371
PrinterManagementIm-
pl.properties 1391
PrinterManagement-
Starter.java 1396
PrinterMBean.java

1324
PrinterSimulator.ja-
va 1332
process.jsp 663, 664, 693
Product.java 1085
ProductDetails.xsl

996
ProductEJB.java 1086
ProductHome.java 1089
ProductModel.java

1089
ProductSearchServ-
let.java 1050
ReadOperation.java

1272
RedirectServlet.java

556, 558
RegisterServlet.java

1053
RemoveFromCartServ-
let.java 1036
ResultSetTableMod-
el.java 470
RMIIIOPMessageMan-
ager.java 1539
RMIMessageMan-
ager.java 823
Rotator.java 618
Seminar.java 1214
SeminarInfo.java 1218
SeminarInfo.txt 1218

1786 Index

SeminarInfoJoinSer-
vice.java 1249
SeminarInfoLeaseSer-
vice.java 1244
SeminarInfoSer-
vice.java 1220
SeminarInterface.ja-
va 1215
SeminarProvider.java

1243
SeminarProxy.java

1217
SequenceFactory.java

1145
SequenceFactoryE-
JB.java 1145
SequenceFactory-
Home.java 1147
SessionSelectLan-
guage.html 574
SessionServlet.java

569
Shapes.java 140
Shapes2.java 144
ShapesApplet.java 614
SharpenFilter.java

153
ShoppingCart.java

1076
ShoppingCartEJB.java

1077
ShoppingCartHome.ja-
va 1084

Simple XML document
containing a message 1613
simpleContact.xml

1671
SimpleService.java

1597
SliderFieldPanel.ja-
va 348
SliderFieldPanel-
BeanInfo.java 364
SliderFieldPanelCus-
tomizer.java 376
SnapshotUsage.java

1281
SplashScreen.java 317
StoppableChatServ-
er.java 811
styles.css 663, 666
Survey.html 582
SurveyServlet.java

578
systemclock.idl 1443

SystemClockCli-
ent.java 1449, 1511
SystemClockImpl.java

1445
TakeOperation.java

1273
TallyDisplay.java 975
TallyPanel.java 950,

977
TintImage.cpp 1724
TipTestMIDlet Tip Test

answer screen. 780
TipTestMIDlet.java

762
TipTestServlet.java

726
TitlesBean.java 663,

667, 669
toc.html 607
TransactionManager-
Finder.java 1287
Transferable-
Shape.java 285
Transform.java 1677
UnicastDiscovery.ja-
va 1204
UnicastDiscovery-
Utility.java 1232
UnicastSeminarInfo-
Client.java 1223
UpdateCartServ-
let.java 1038
UpdateInputWin-
dow.java 1285
UpdateOperation.java

1289
usage.xsl 1684
usage1.xsl 1691
usage2.xsl 1690
variables.xsl 1695
viewCart.jsp 663, 664,

686
ViewCartServlet.java

1026
ViewOrderHistorySer-
vlet.java 1061
ViewOrderServlet.ja-
va 1065
VoteCollector.java

945
VoteCollectorEJB.ja-
va 972
VoteListener.java 949
Voter.java 941
WAPTipAnswer.xsl 749

WAPTipQuestion.xsl
746
WeatherBean.java 799
WeatherCellRender-
er.java 805
WeatherDisplay.java

965
WeatherItem.java 805
WeatherListener.java

964
WeatherListModel.ja-
va 803
WeatherPublisher.ja-
va 953
WeatherService.java

793, 1602
WeatherServiceCli-
ent.java 801, 1605
WeatherServiceIm-
pl.java 794
WeatherSubscrib-
er.java 958
WebBrowser.java 38, 67
WebBrowserPane.java

31
weblogic.xml 1190
weblogic-cmp-rdbms-
jar-address.xml 1178
weblogic-cmp-rdbms-
jar-Customer.xml
1180
weblogic-cmp-rdbms-
jar-order.xml 1184
weblogic-ejb-jar.xml

1168
WebToolBar.java 35, 63
welcome.jsp 601
welcome2.xml 1637
Welcome2TagHandler.j
ava 645
WelcomeServlet.html
541, 554
WelcomeServlet.java

540, 720
WelcomeServlet2.html
551
WelcomeServlet2.java

549
WelcomeServlet3.java

553
WelcomeTagHan-
dler.java 641

Whitespace characters in an
XML document 1616
whitespace.xml 1616,

1646

Index 1787

WriteOperation.java
1266
XHTMLTipAnswer.xsl

744
XHTMLTipQuestion.xsl

741
XML document declaring its

associated DTD 1630
XML document that conforms

to conditional.dtd
1645

XML document with ID and
IDREF attribute types 1639
XMLGenerator.java

1093
XMLServlet.java 1011
ZoomDialog.java 305
ZoomDrawingView.java

258
exception implicit object 598,

631, 636
ExceptionClear function of

C table JNIEnv 1727
ExceptionOccurred function

of C table JNIEnv 1727
exchanging secret keys 389
Execute 336
execute method of interface

Statement 517
executeBatch method of

interface Statement 516
executeQuery method of

interface Statement 468
executeUpdate method of

interface Prepared-
Statement 916

executeUpdate method of
interface Statement 517

Executive Committee (EC) 1701
Experience.com 1752
Expert 1701, 1702, 1703
Expert Group 1702, 1703
Explorer in Forte 326
Explorer window 331, 336, 343
export an object 797
exporting cryptosystems 389
exportObject method of class

UnicastRemoteOb-
ject 797

expression 596, 600
Extended Backus-Naur Form

(EBNF) grammar 1628
extends attribute of page

directive 635
Extensible Stylesheet Language

(XSL) 1677

extension 161
extension mapping 547
external resource 519, 669
external subset 1629
external unparsed entity 1640

F
Facade design pattern 1369
facade object 1369
factorial 869
Factory Method 273
Factory Method design pattern

273
failover 1164, 1165
fatalError method

(ErrorHandler) 1664
FavoritesWebBrows-

er.java 45
Federated Management

Architecture 15, 1366
Fibonacci series 869
field 446, 447, 448
fieldID JNI type 1716
file attribute of include

directive 636
File class 61
File menu New... item 325
file transfer 1551
FileFilter interface 304
FileInputStream class 242,

404
FileOutputStream 405
FileOutputStream class 404
file-sharing application 1551
FileSystemModel.java 123
FileTreeFrame.java 129
fill 136, 143, 146
fill texture 143
fillArc method of class

Graphics 101
filter 150, 151, 159
filter 150, 151, 153, 155
Filters.java 1299
Final Approval Ballot 1704
Final class 430
Final Draft 1704
final method 430
Final Reconsideration Ballot 1704
FindClass function of C table

JNIEnv 1724
finder-list 1183
finder method 847, 1088
finder methods of Entity EJB 906
finder-query 1183

FinderException class 925,
974, 1046

findMBeanServer method of
class MBeanServerFac-
tory 1331

firePropertyChange
method 352

fireTableStructure-
Changed method of class
AbstractTableModel
476

firewall 1595
first request to a servlet 535
first.xml 1613
five-pointed star 144
#FIXED 1637, 1638
fixed template data 595
fixed template text 595
flag 168
FlipDog.com 1740
flush attribute of <jsp:in-

clude> action 605
flush the output buffer 541
Font class 101, 139
font manipulation 136
Font3D 195
FontExtrusion 195
FontMetrics class 101
for-each element 1686
foreign key 452, 479, 499, 1144
Form class 772, 776, 778, 780
form element of a Web page 534
Form window 326, 328, 329, 331,

333, 346
Form window in Forte 326
format method of class Date-

Fromat 62
forName method of class Class

273
Forte 337, 340
Forte for Java Community Edition

19, 323
forward a client request 679
forward a request 604, 628
forward method of interface

RequestDispatcher
677, 679, 684, 723

forward slash (/) character 1613
forward1.jsp 611
forward2.jsp 612
four-tier application 992
FRANCE constant of class Lo-

cale 68
FreeAgent 1751
Freenet 1550, 1551
FROM 453, 456, 457, 458, 459

1788 Index

FrontEndSpace tab in Start-
Service GUI 1262

FULL date format 606
fully qualified name 459
Futurestep.com 1746

G
games.xml 1681
Gamma, Erich 20
“gang of four” 20, 24
General 918
general entity 1639
General Inter-ORB Protocol

(GIOP) 1440
GeneralDiscoveryUtili-

ty.java 1237
GeneralPath 138, 144, 159,

218
Generate Default SQL 981
Generate SQL Now 1155
generate XHTML 667
generateSecret method from

SecretKeyFactory 404
generic identifier 1630
GenericServlet class 535
Geometry 161, 195
geometry 162, 163, 212
gesture 56
get method 346, 1324
get request 533, 536, 539, 541,

549, 553, 556, 561, 564, 569,
601, 720, 751, 755

getAllFrames method of class
JDesktopPane 316

getAllowsChildren method
of class DefaultTree-
Model 117

GetAllProductsServ-
let.java 1043

GetArrayElements function
of C table JNIEnv 1719

getAttribute method 1659
getAttribute method of

interface HttpSession
573

getAttributeNames method
of interface HttpSession
573

getAttributes method 1659
getAutoCommit method of

interface Connection 482
getBeanDescriptor method

of interface BeanInfo 369
getBundle method of class Re-

sourceBundle 65

getBytes method from
String 404

getChildCount method of
interface TreeModel 127

getChildNodes method 1658,
1659

getColumnClass method of
interface TableModel
111, 470, 474

getColumnClassName
method of interface Re-
sultSetMetaData 474

getColumnCount method of
interface ResultSet-
MetaData 465, 468, 475

getColumnCount method of
interface TableModel
111, 470, 475

getColumnName method of
interface ResultSet-
MetaData 475

getColumnName method of
interface TableModel
111, 470, 475

getColumnType method of
interface ResultSet-
MetaData 468

getComment method of class
Cookie 568

getConnection method of
class DriverManager
465, 467

getConnection method of
interface PooledConnec-
tion 519

getContentPane method of
class JInternalFrame
56

getCookies method of
interface HttpServle-
tRequest 538, 565

getCreationTime method of
interface HttpSession
573

getDateTimeInstance
method of class DateFor-
mat 606

getDefaultDomain method
of interface MBeanServer
1332

getDefaultDragSource
method of class Drag-
Source 276

getDefaultEventIndex
method of interface Bean-
Info 369

getDefaultPropertyIn-
dex method of interface
BeanInfo 369

getDisplay method of class
Display 773

getDocumentElement
method 1658

getDomain method of class
Cookie 568

getEJBHome method of
interface EJBObject 848

getEJBMetaData method of
interface EJBObject 849

getElementsByTagName
method of interface Docu-
ment 252

getEventSetDescriptors
method of interface Bean-
Info 369

getEventType method of class
HyperlinkEvent 37

GetFieldID function of C table
JNIEnv 1716

getGroups method of interface
ServiceRegistrar
1208

getHandle method of interface
getHandle 848

getHomeHandle method of
interface EJBObject 849

getHost method of class Look-
upLocator 1208

getIcon method of interface
BeanInfo 369

getID method of interface Ht-
tpSession 573

getIndexOfChild method of
interface TreeModel 128

getInt method of interface Re-
sultSet 469

getLastAccessedTime
method of interface Ht-
tpSession 573

getLastPathComponent
method of class TreePath
128

getLastSelectedPath-
Component method of
class JTree 123

getLease method of interface
ServiceRegistra-
tion 1247

getLogService method of
interface ServiceFinder
1380, 1389

Index 1789

getLookupEntries method
1378, 1379

getmaxAge method of class
Cookie 568

getMaxAscent method of class
FontMetrics 101

getMaxInactiveInterval
method of interface Ht-
tpSession 573

GetMessage.java 1599
getMetaData method of

interface ResultSet 465
getMethodDescriptors

method of interface Bean-
Info 369

GetMethodID function of C
table JNIEnv 1713

getMoreResults method of
interface Statement 517,
518

getName method of class Cook-
ie 568

getNextSibling method
1659

getNodeName method 1659
getNodeType method 1658,

1659
getNodeValue method 1659
getNotificationInfo 1342
getObject method of interface

ResultSet 469, 475
GetObjectArrayElements

function of C table JNIEnv
1721

GetObjectClass function of
C table JNIEnv 1712

getOutputStream method of
interface HTTPServlet-
Response 539, 541

getParameter method of
interface HttpServle-
tRequest 537, 538, 550,
561

getParameterNames method
of interface HttpServle-
tRequest 538

getParameterValues
method of interface HttpS-
ervletRequest 538, 559

getParameterValues
method of JSP request
object 610

getParent method of class De-
faultTreeModel 117

getParentNode method 1659

GetPasswordHintServ-
let.java 1068

getPath method of class Cook-
ie 568

getPooledConnection
method of interface Con-
nectionPoolData-
Source 519

getPort method of class Look-
upLocator 1208

getPreferredConfigura-
tion 167, 180

getPreferredSize method
of class JPanel 96

GetProductServlet.java
1046

getPropertyDescriptors
method of interface Bean-
Info 369

getQueryString method of
interface HttpServle-
tRequest 584

getRaster 155
getRegistrar method of class

LookupLocator 1208,
1227

getRegistrars method of
class DiscoveryEvent
1209

getRequestDispatcher
method of interface
ServletContext 679

getRequestDispatcher
method of interface Serv-
letRequest 677, 679

getRequestDispatcher
method of interface
ServletRequest 679

getRequestURL method of
class HttpUtils 584

getResource method of
interface ServletCon-
text 1011

getResultSet method of
interface Statement 517,
518

getRow method of interface Re-
sultSet 476

getRowCount method of
interface TableModel
111, 470, 475

getScaleInstance static
method of class Affine-
Transform 260

getSecure method of class
Cookie 568

getSelectedNode method of
class JTree 122

getSelectedValue method
of class JList 111

getServletConfig method
of interface Servlet 535

getServletContext method
of interface ServletCon-
text 678

getServletInfo method of
interface Servlet 535

getSession method of
interface HttpServle-
tRequest 538, 572, 573

GetStaticFieldID function
of C table JNIEnv 1716

GetStaticMethodID function
of C table JNIEnv 1716

GetStatictypeField function
of C table JNIEnv 1716

getString method of class Re-
sourceBoundle 66

GetStringUTFChars function
of C table JNIEnv 1708

getTagName method 1659
getter method 1323, 1324
getTransferable method of

class DropTarget-
DropEvent 57

getTransferData method of
interface Transferable
61, 284, 287

getTransferDataFlavors
method of interface Trans-
ferable 287

GettypeField function of C
table JNIEnv 1716

getUpdateCount method of
interface Statement 517,
518

getUpdateCounts method of
class BatchUpdateEx-
ception 517

getValue method of class
Cookie 565, 568

getValueAt method of
interface TableModel
112, 470, 475

getVariableInfo method of
class TagExtraInfo 651

getVersion method of class
Cookie 568

getWriter method of interface
HTTPServletRe-
sponse 539, 541

1790 Index

getWriter method of interface
HttpServletRe-
sponse 724

glyph 1765
Gnutella 16, 1549, 1550, 1551,

1590
goal detection 196
GoalDetector.java 205
gradient 139, 142, 218
GradientIcon.java 307
GradientPaint 138, 142
GradientPaint class 221
Grand, Mark 25
graphic 136, 138, 159
graphical programming and

design environments 9, 322
Graphics 139, 142, 150
Graphics class 101
graphics context 136, 212
graphics primitive 139
graphics programming 8, 160, 212
Graphics2D 139, 142, 143, 146,

149, 218, 222
GraphicsConfiguration

167, 180
grayscale 147
GridLayout class 361
Group 167, 180
group-based access control

(GBAC) 418
GROUP BY 453
group discovery 1209
GuestBean.java 623
guestBookErrorPage.jsp

631
guestBookLogin.jsp 626
GuestBookTag.java 649
GuestBookTagExtraIn-

fo.java 652
guestBookView.jsp 629
GuestDataBean.java 624
GUI 160
GUI component 339, 347
GUI JavaBean 325

H
hacker 387
Handle interface 849
handleNotification

method of interface Noti-
ficationListener
1343

handshake point 542
hardware 160
hardware independence 160

hasChildNodes method 1659
hash function 406
hash value 406, 407
hashCode method of class Ob-

ject 1111
HashMap class 96, 686, 1582
Hashtable 155
hashtable 23
header 340, 342, 560
header element 1596
header file 1706, 1707
Headhunter.net 1748
height attribute of <jsp:plu-

gin> action 614
Hellman, Martin 390
Helm, Richard 20
helper utilities 1232
heterogeneous network 15, 1366
high-level 160
Hire.com 1746
HireAbility.com 1750
Hirediversity.com 1745
Home Interface 865, 984
home interface 847, 848, 853
"hook up" an event 322
horizontal CORBAfacilities 1457
HORIZONTAL_SPLIT constant

of class JSplitPane 48
host 798
host name 542
hot deployment 1164
HotDispatch.com 1750
HotJobs.com 1743, 1748
hspace attribute of <jsp:plu-

gin> action 614
HTML 534, 539, 552
HTML document 539
HTML scraping 797
HTTP 995
HTTP (HyperText Transfer

Protocol) 534, 536, 560,
1551

http authentication information
536

HTTP header 564
HTTP request 536
HTTP request type 536
HTTP server 837, 838, 1571
http.port 1700
http://www.w3.org/

1999/XSL/Transform
1679

HttpConnection class 774,
775, 778

HttpServlet class 535, 536,
539, 560

HttpServletRequest
(javax.serv-
let.http) 599

HttpServletRequest class
722, 744, 1023

HttpServletRequest
interface 536, 537, 538, 539,
553

HttpServletRequest in-
terface 679

HttpServletRequest
interface from jav-
ax.servlet.http 537,
572

HttpServletResponse
(javax.serv-
let.http) 599

HttpServletResponse class
724, 739, 1019

HttpServletResponse
interface 536, 538, 539, 540,
553

HttpServletResponse in-
terface 679

HttpSession (jav-
ax.servlet.http) 599

HttpSession class 740, 744,
756, 1018, 1023, 1028, 1034

HttpSession interface 538,
569, 573, 676, 679, 684, 693

HttpSession interface from
javax.servlet.http
538

HttpUtils class 584
hyperlink 31
HyperlinkEvent class 37
HyperlinkEvent.Event-

Type.ACTIVATED
ACTIVATED constant of class
Hyper-
linkEvent.EventType
37

HyperlinkListener
interface 37

hyperlinkUpdate method of
interface HyperlinkLis-
tener 37

HyperText Transfer Protocol
(HTTP) 10

I
IBM Corporation 1764
IBM WebSphere 1163, 1165
IBM WebSphere application

server 534

Index 1791

Icon interface 45, 307
iconify 52
ID 1639, 1640, 1641
id 1638, 1640
id attribute of <jsp:useBean>

action 618
IDE 340, 370
IDExample.xml 1639, 1641
IDL (interface definition

language) 791
idlj IDL compiler 1443, 1445,

1452, 1458, 1459, 1493,
1496, 1498

IDREF 1638, 1639, 1641
idref 1638
iepluginurl attribute of

<jsp:plugin> action
614

if element 1687
Igniter GUI 1408, 1409, 1426
Igniter.bat 1367
IGNORE 1644
IllegalArgumentExcep-

tion class 90, 91, 848,
1083, 1390, 1391

IllegalStateException
class 917

illuminate 161
Image class 149, 155, 168, 778
image processing 136, 139, 146,

150, 159, 218
Image Processor case study 1295
ImageDisplayer.java 1310
ImageEntry.java 1295
ImageIcon class 43, 339, 1299
ImagePanel 147
ImagePanel.java 147
ImageParser.java 1309
ImageProcessor.java 1295
ImageProcessorMain.ja-

va 1301
ImageSeparator.java 1301
ImageSizeException.ja-

va 1722
IMConstants.java 1575
i-mode 719, 785
IMODETipAnswer.xsl 754
IMODETipQuestion.xsl

751
IMPeer.java 1553
IMPeerImpl.java 1560
IMPeerListener.java 1557
Implementation Class Name

1192
implementation JAR file 1394

implementation transparency
1437, 1501

implicit object 598
implicit object scope 598
#IMPLIED 1637, 1639, 1641,

1643
import attribute of page

directive 629, 634, 635
import element 1690, 1691
IMService.java 1553
IMServiceImpl.java 1555
IMServiceManager.java

1562
incarnation number 819
!INCLUDE 1644
INCLUDE 1644
include a resource 604
include content from a resource

679
include directive 605, 634, 636
include element 1692
include method of class Re-

questDispatcher 679
include.jsp 608
includeDirective.jsp 637
index.html 663, 665
indexed property 355, 357
Individual Expert Participation

Agreement (IEPA) 1702
industry.java.sun.com/

products/jdbc/driv-
ers 521

infinity symbol 452
info attribute of page directive

635
info element 642, 646, 652
information tier 26, 992, 993
information-tier 717, 905
Informix 446, 695
init method of class Cipher

404
init method of interface Serv-

let 535, 581
init-param element 581
InitialContext class 667,

669, 854
initialization parameter 581
input-processing component 86
InputStream class 778, 1011
INSERT SQL statement 453, 460,

498, 906, 920, 1659
insertNodeInto method of

class DefaultTreeMod-
el 122

insertRow method of interface
ResultSet 518

insignificant whitespace 1617
Install JavaBean dialog 323
InstanceNotFoundExcep-

tion class 1332
Instant Messenger 1550
instantiate 375
Instrumentation 1322
instrumentation level 15, 1321
integrated development

environment 323, 340
integrity 388, 389, 406
intellectual-property law 1551
intelligent agent 1740
InterestCalculator.ja-

va 850
InterestCalculatorCli-

ent.java 854
InterestCalculatorE-

JB.java 852
InterestCalculator-

Home.java 851
Interface Definition Language

(IDL) 1438, 1439, 1440,
1441, 1443, 1444, 1448,
1449, 1452, 1454, 1455,
1457, 1458, 1459, 1460,
1461, 1462, 1463, 1464,
1465, 1467, 1468, 1474,
1476, 1477, 1481, 1483,
1489, 1492, 1493, 1495,
1496, 1497, 1499, 1501,
1503, 1504, 1509, 1510,
1514, 1515, 1516, 1519,
1521, 1522, 1523, 1527,
1528, 1530, 1531, 1543

interface definition language
(IDL) 791

interface JAR file 1394
interface Node 1658
interface Remote 793
internal subset 1629
internalFrameActivated

method of interface Inter-
nalFrameListener 316

internalFrameClosing
method of interface Inter-
nalFrameListener 316

internationalization 62, 68
internationalized 1389
internationalized application 30
Internet 531
Internet Explorer 539
Internet Information Server (IIS)

543

1792 Index

Internet Inter-ORB Protocol
(IIOP) 860, 1438, 1440,
1499, 1501

Internet Policy Registration
Authority (IPRA) 407

Internshipprograms.com
1753

interoperability 16, 1439, 1440,
1500, 1595

Interoperable Object Reference
(IOR) 1440, 1451, 1481,
1484, 1501, 1504

Interpolator 180, 193, 195,
196

InterruptedException
class 1270

InterviewSmart 1753
intro-invalid.xml 1631
intro.xml 1664, 1680
intro.xsl 1679
intro2.xml 1637
introspection 346, 364
IntrospectionException

class 370, 371
InvalidAlgorithmParam-

eterException class
404

invalidate method of
interface HttpSession
573

invalidate method of interface
HttpSession 693

invalidatemethod of interface
HttpSession 573

InvalidKeyException class
404

InvalidKeySpecExcep-
tions class 404

invert 136
InvertFilter.java 152
invocation transparency 1437,

1501
invoke method from MBeanS-

erver 1332
invoke method of class Call

1604
invoke method of class MBean-

Server 1332
invokeLater method of class

SwingUtilities 835,
1209, 1241

IOException class 33, 284
iPlanet Application Server 991,

1163, 1164
isCellEditable method of

interface TableModel 112

isDataFlavorSupported
method of interface Trans-
ferable 61, 287

isErrorPage attribute of page
directive 631, 636

isIdentical method of
interface EJBObject 848

IsInstanceOf function of C
table JNIEnv 1727

isNew method of interface Ht-
tpSession 573

ISO Country Code 71
ISO Language Code 71
isThreadSafe attribute of

page directive 635
ItemListener 156, 178
Iterator class 361, 1583
Iterator design pattern 23
Iterator interface 257, 674,

676, 1100

J
J2EE 17
J2EE 1.2.1 reference

implementation 11
J2EE application server 847, 1153
J2EE-compliant application server

1153
J2EE config directory 695
J2EE specification 1164
J2EE_CLASSPATH 1700
J2EE_HOME environment

variable 1699
J2ME 11, 719, 755, 756, 758, 762,

785, 786
Jakarta project 533
jakarta-tomcat-3.2.1 543
jakarta.apache.org 533
jakarta.apache.org/

builds/jakarta-tom-
cat/release/v3.2.3/
bin/ 543

JAR (Java archive) file 340, 342,
343, 346, 353, 361, 378

JAR Display Name 863, 1149
JAR file 701
JAR file 1392, 1394
JAR Packager dialog 343
jar utility 340, 343
jardeploy 1394
jardeploy parameters

dl 1394
domain 1394
impl 1394
inventory 1394

station 1394
verbose 1394

jardeploy tool 1394, 1424
jarpackw parameters

ifc 1394
impl 1394
pool 1394

jarpackw tool 1394, 1422
Java 1616
Java 2 Enterprise Edition 661
Java 2 Enterprise Edition (J2EE)

13, 991
Java 2 Enterprise Edition 1.2.1

reference implementation
11, 446, 661, 664, 669, 694

Java 2 Enterprise Edition
Reference Implementation
1149, 1155

Java 2 Micro Edition (J2ME) 757,
758, 786

Java 2 Platform, Standard Edition
138, 161

Java 2 Standard Edition 1198
Java 2D 8, 9, 136, 138, 150, 212,

221
Java 2D API 136, 159
Java 2D graphics 220
Java 3D 8, 160, 161, 162, 163,

167, 180, 195, 212
Java 3D API 136, 161, 212
Java Access Bridge 72
Java Accessibility API 72
Java API for XML Processing

(JAXP) 17, 679, 1616
Java Archive (JAR) file 340, 342,

343, 346, 353, 361, 378,
1597

Java Authentication and
Authorization Service
(JAAS) 10, 388, 417, 418,
422

Java-Bean header of manifest
file 342, 344

Java Community Process 533,
1366

Java Community Processes (JCP)
17

Java Cryptography Extension
(JCE) 10, 388, 395

Java Cryptography Extensions
(JCE) 6

Java Database Connectivity
(JDBC) 10

Java Database Connectivity
(JDBC) API 10, 446

Index 1793

Java Dynamic Management Kit
(JDMK) 1322

Java extension mechanism 679
Java Foundation Classes (JFC) 8,

30
Java Interface Definition

Language (JavaIDL) 15
Java Look and Feel Graphics

Repository 510
Java Management Extensions 15
Java Management Extensions

(JMX) 1321, 1322, 1323,
1331, 1338

Java Message Service (JMS) 939,
1259

Java Naming and Directory
Interface (JNDI) 669, 1534,
1535, 1542

Java Naming and Directory
Service 695, 707

Java Native Interface 17
Java Native Interface (JNI) 17,

759, 1706
Java-object-to-Java-object

distributed communication
791

Java Plug-in 604, 613, 616
Java properties file 62
Java Remote Method Protocol

(JRMP) 1530
Java Sandbox 410, 413
Java Secure Socket Extension

(JSSE) 10, 424
Java Secure Sockets Extensions

(JSSE) 6
Java Server Pages (JSP) 11
Java Server Pages 1.1

specification 636
Java servlet 847
Java Servlet API 10
Java Specification Request (JSR)

1702, 1703, 1704
Java Transaction API 879
Java Virtual Machine 429
java.awt package 137, 138
java.awt.color package 138
java.awt.datatransfer

package 56
java.awt.font package 138
java.awt.geom package 138,

140
java.awt.image package 138
java.awt.image.render-

able package 138
java.awt.print package 138
java.beans package 347

java.io package 758
java.lang package 758
java.lang.ClassNot-

FoundException 466
java.lang.Cloneable 22
java.lang.reflect package

364
java.net package 531, 532
java.rmi package 532, 792,

798, 1266, 1276
java.rmi.activation

package 809
java.rmi.server package

796
java.rmi.server.code-

base property 837, 1229
java.serv-

let.jsp.tagext
package 641

java.sql package 464, 466,
468

java.sun.com/beans 323
java.sun.com/docs/

books/tutorial/
jdbc/index.html 521

java.sun.com/j2ee 653
java.sun.com/j2ee/

j2sdkee/techdocs/
api/javax/servlet/
http/HttpServletRe-
quest.html 537

java.sun.com/j2ee/
j2sdkee/techdocs/
api/javax/servlet/
http/HttpServletRe-
sponse.html 538

java.sun.com/j2se/1.3/
docs/guide/jdbc/
getstart/Getting-
StartedTOC.fm.html
469

java.sun.com/j2se/1.3/
docs/guide/jdbc/in-
dex.html 521

java.sun.com/products/
jdbc 467, 520

java.sun.com/products/
jdbc/articles/
package2.html 521

java.sun.com/products/
jdbc/faq.html 521

java.sun.com/products/
jsp 653

java.sun.com/products/
jsp/download.html
594, 653

java.sun.com/products/
servlet 653

java.sun.com/xml/down-
load.htm 679

java.text package 234
java.util package 758, 776
java:comp/env naming

context 918
JAVA_HOME environment

variable 543, 1699
Java2DExample.java 156
Java2DImageFilter.java

150
Java3DExample.java 179
Java3DWorld.java 163
Java3DWorld1.java 181
JavaBean 9, 11, 322, 594, 670, 694
JavaBeans 9, 379
JavaBeans 1321
JavaBeans component 379
JavaBeans component

architecture 9
JavaBeans design pattern 352, 364
JavaBeans documentation 379
JavaBeans home page 379
JavaBeans specification 379
javac 1571
javaFileListFlavor

constant of class DataFla-
vor 61

javah JNI utility 1706, 1707,
1708, 1711, 1714

Java-object-to-Java-
object distributed
communication 12

JavaServer Pages (JSP) 532, 594,
847

JavaServer Pages 1.1 specification
594, 653

JavaSpace implementation
outrigger 1261

JavaSpace interface 1264
JavaSpace operations

read 1264
take 1264
write 1264, 1266

JavaSpace.NO_WAIT constant
1272

JavaSpaceFinder.java
1262

JavaSpaces 14
JavaSpaces service 1259, 1299

persistent JavaSpaces service
1261

transient JavaSpaces service
1261

1794 Index

JavaSpaces service 1260
JavaSpaces service operations

read 1269
take 1269

JavaSpaces service properties
1260

JavaSpaces technolgoy 1198
javax.ejb package 848
javax.fma.service package

1380
javax.fma.service.log

package 1389, 1390
javax.fma.servic-

es.event package 1382
javax.fma.util package

1390
javax.jms package 940, 944
javax.management package

1331
javax.microedition.io

package 759
javax.microedition.lc-

dui package 759
javax.microedi-

tion.midlet package
759, 761

javax.microedition.rms
package 759

javax.naming package 667,
669, 918

javax.servlet package 532,
535, 539, 594

javax.servlet.http
package 532, 535, 539, 564,
594

javax.servlet.jsp package
532, 594, 599

javax.serv-
let.jsp.tagext
package 594, 638, 651

javax.sql package 519, 667,
669

javax.swing.table package
470

javax.xml.parsers package
676, 680, 1656

javax.xml.transform
package 676

javax.xml.trans-
form.dom package 676

javax.xml.trans-
form.stream package
676

JAXP 1677

JAXP API (Application
Programming Interface)
1654

jaxp.jar 679
jboolean JNI type 1708, 1719
JBoss 1163, 1165
JButton class 39, 44, 87, 88,

331
JCheckBox class 272, 944
JChooserPanel class 1301
jclass JNI type 1712, 1713,

1716, 1724
JComboBox class 68, 303
JComponent class 137
JDBC 11, 12, 466, 479, 515, 518,

519, 533, 661, 898, 905
JDBC (Java Database

Connectivity) 10, 446, 464,
533, 577, 578

JDBC 2.0 519
JDBC data source 669
JDBC-database driver 726
JDBC driver 10, 446, 467
JDBC driver type 467
JDBC-Net pure Java driver (Type

3) 466
JDBC-to-ODBC bridge driver

(Type 1) 466, 467
JDBC Web site 467
jdbc.datasources 1700
jdbc.datasources J2EE

configuration property 695
jdbc.datasources property

906
jdbc.drivers 1700
jdbc:cloud-

scape:rmi:books 465,
467

jdbc:cloud-
scape:rmi:books
JDBC URL 695

JdbcOdbcDriver 467
JDBCRowSet class 520
JDesktopPane class 52, 56,

316
JDialog class 304
JDMK (Java Dynamic

Management Kit) 1322
jdmkrt.jar 1357
jdmktk.jar 1357
jdouble JNI type 1708, 1711
JEditorPane class 30, 31, 33,

404
JEditorPanel class 404
jfieldID JNI type 1716
JFileChooser class 303

JFrame class 44, 52, 325, 396
Jigsaw Web server 534
Jini 14, 16, 1549, 1551, 1552,

1572, 1583, 1589
Jini CLASSPATH 1199
Jini core packages

net.jini.core.dis-
covery. package 1204
net.jini.core.entry

1220, 1260, 1270
net.jini.core.event

1276
net.jini.core.lookup

1204, 1220, 1228, 1262
net.jini.core.trans-
action 1266

Jini extension packages
net.jini.discovery

1209
net.jini.lease 1266
net.jini.lookup.en-
try 1220, 1261
net.jini.space 1264

Jini groups 1201
Jini lookup service 1198, 1204,

1369, 1378, 1381, 1395,
1399, 1434, 1552

Jini required services
lookup service 1199
rmid 1199
Web server 1199

Jini service proxy 1552
Jini services

JavaSpaces service 1299
lookup service 1261
transaction service 1261,

1287, 1299
Jini Software Kit 1198
Jini Technology Core Platform

1198
Jini Technology Core Platform

Compatibility Kit 1198
Jini Technology Extended

Platform 1198
Jini Technology Starter Kit 1198
Jini transaction manager 14, 1260,

1284
JINI-1.1-G-CS.zip 1198
jini11_win32.proper-

ties 1200
jini-core.jar 1198, 1269,

1272, 1273, 1280
jini-ext.jar 1198, 1269,

1272, 1273, 1280
jint JNI type 1708
jintArray JNI type 1718, 1719

Index 1795

JInternalFrame class 52, 56,
287, 316

Jiro 15
Jiro installation 1366, 1367
Jiro Runtime 1366
Jiro technology 1366
Jiro Technology SDK

programmer’s Reference
1391

Jiro Technology Software
Development Kit 1366

jiroc tool 1392
jirocw tool 1378, 1392, 1393,

1395, 1421
JLabel class 178
JList class 8, 86, 107, 111, 965,

1570, 1588
JMenu class 40, 44
JMenuItem class 40, 44, 156,

316
jmethodID JNI type 1713
JMS 939, 944
JMX 15
JMX (Java Management

Extensions) 1321, 1322,
1323, 1331, 1338

JMX agent 15
JMX Agent Architecture 1338
JMX management agent 1338
JNDI (Java Naming and Directory

Interface) 519, 669, 708,
944, 948, 957, 958

JNDI directory 854, 1074, 1153
JNDI Name 867, 985, 1153, 1192
JNDI name 669, 695, 707
jndi-name 1176, 1190
JNI 17, 759, 1705, 1706, 1707,

1708, 1710, 1712, 1714,
1716, 1718, 1719, 1721,
1722, 1724, 1733

JNI_ABORT constant 1719
JNI_COMMIT constant 1719
JNI_FALSE constant 1709, 1719
JNI_NULL constant 1727
JNI_TRUE constant 1708, 1719,

1727
jni.h 1707, 1708
JNIArrayMain.java 1721
JNIArrayWrapper.h 1718
JNIArrayWrapper.java

1718
JNIArrayWrapperIm-

pl.cpp 1719
JNICALL 1707
JNIEnv function table 1707
JNIEXPORT 1707

JNIImageFrame.java 1731
JNIMethodWrapper.java

1710
JNIPanel.java 1727
JNIPIMain.java 1714
JNIPIMethodWrapper.h

1711
JNIPIWrapperImpl.java

1712
JNIPrintMain.java 1709
JNIPrintWrapper.java

1706, 1707
JNIPrintWrapperIm-

pl.cpp 1708
JNIStaticMain.java 1717
JNIStaticWrapper.java

1714
JNIStaticWrapperIm-

pl.cpp 1716
JNITintWrapper.h 1723
JNITintWrapper.java 1723
jobfind.com 1743
jobject JNI type 1708, 1712,

1716, 1719
Jobs.com 1744
JobsOnline.com 1748
Johnson, Ralph 20
joining tables 452, 459
JoinManager class 1249, 1562,

1572
JoinManager utility 1248
JOptionPane class 43, 925
JPanel class 44, 92, 96, 102, 178
JPasswordField class 31
JPEG 221
JPEGImageDecoder class 242
jreversion attribute of

<jsp:plugin> action
614

JScrollPane class 48, 115
JSlider class 178, 210
JSP 11, 532, 595, 597, 601, 621,

661, 694
JSP action 595
JSP and servlet container 11
JSP comment 600
JSP container 595, 601
JSP declaration 596, 600
JSP directive 595, 634
JSP error page 622
JSP escape sequence 600, 601
JSP expression 596, 600, 673
JSP expression delimiters <%=

and %> 597
<jsp:forward> action 604

<jsp:getProperty> action
605, 619

JSP implicit object 598
<jsp:include> action 604,

605, 606, 636
JSP life cycle 595
<jsp:param> action 604
<jsp:plugin> action 604, 613
JSP scriptlet 600, 673, 675
<jsp:setProperty> action

605, 621, 628, 629
JSP standard action 604
<jsp:useBean> action 604,

617, 629
<jsp:usebean> action 639
jspDestroy method 595
JspException class 641
jspInit method 595
jspinsider.com 653
JSplitPane class 30, 45, 48
JSplit-

Pane.HORIZONTAL_SPL
IT constant 48

JSplit-
Pane.VERTICAL_SPLIT
constant 48

_jspService method 595, 600
jsptags.com 653
jspversion element 642
JspWriter (package jav-

ax.servlet.jsp) 599
JspWriter class 642, 651
JSR Approval Ballot 1703
JSR Review 1703
jstring JNI type 1708, 1709
JTabbedPane class 30, 45, 48,

49, 51
JTable 8
JTable class 8, 86, 111
JTextArea class 31
JTextComponent class 31
JTextField class 31, 88, 102,

404
JTextPane class 31
jthrowable JNI type 1727
JToggleButton class 303
JToolBar class 33, 34, 37, 40,

44
JTree 8
JTree class 8, 86, 115
jtypeArray JNI type 1719
JustCJobs.com 1750
JustComputerJobs.com

1750
JustJavaJobs.com 1739,

1750

1796 Index

JWindow class 316
JXTA 16, 1549, 1588, 1589

K
K Virtual Machine 11
KaZaA 1550
Kerberos 417
Kernel 138, 152, 153
key 394
key agreement protocol 393
key algorithms 409
key distribution center 389
key exchange 389
key generation 394
key length 389
key management 393, 394
key theft 394
Keymap interface 829
keystore 409, 415, 424, 428
KeyStroke class 829
keytool utility 409, 414, 428
KVM 758, 760

L
LAN-based discovery 1590
language attribute of page

directive 635
last auto-increment value 498
last method of interface Re-

sultSet 476
Latin World 1746
launch Cloudscape database

server 695
launch J2EE server 695
layer 26
layout 326
LayoutManager interface 96
LDAP 1165
Lea, Doug 25
Leaf 167
Lease interface 1247, 1266, 1410
lease utilities 1244

LeaseRenewalManager
class 1244

Lease.FOREVER constant
1247, 1266, 1302, 1410

LeaseListener interface 1247
LeaseRenewalManager class

1244, 1247, 1249, 1410
least-recently used policy 853
left angle bracket (<) 1617
legacy system 1436, 1437, 1438,

1439, 1441, 1442, 1454,
1480, 1499

library 1706
library JAR file 694
life cycle 14
Light 161, 162
light 162, 195
light source 136
lighting 169, 212
lightweight component 8, 30
Lightweight Directory Access

Protocal 1165
LIKE 455, 456, 458
Line2D 138
Line2D.Double class 140, 144
Line2D.Float class 222
linked list 23
Linux 1322
List class 96, 651, 772
List class 679
List interface 61
List.EXCLUSIVE constant 774
List.IMPLICIT constant 774
List.MULTIPLE constant 774
ListCellRenderer interface

805
ListDataListener interface

107
ListModel interface 107, 803
live-code approach 2
load balancing 1164
loadLibrary method 1723
Local/Remote Interface 985
Locale 162
locale 62
Locale class 62, 63, 65, 68, 71,

1390
locale-sensitive class 62
Locale.FRANCE constant 68
Locale.US constant 68
localhost (127.0.0.1) 542,

544, 798
localizable message 1390
LocalizableMessage class

1390, 1392
localization 1763
LocalizationError class

1391
locate a naming service 669
locate records in a database 454
LocateRegistry class 1575
location transparency 1437, 1501
locator discovery 1204
log message 1389
log message category 1389
log method of interface

LogService 1389, 1390
log repository 1389

log service 1368, 1369, 1378,
1381, 1389, 1415, 1416

LoginServlet.java 1057
LogMessage class 1389, 1390
LogMessage.AUDIT constant

1390
LogMessage.DEBUG constant

1390
LogMessage.ERROR constant

1390
LogMessage.INFO constant

1390
LogMessage.TRACE constant

1390
LogMessage.WARNING

constant 1390
LogoAnimator.java 337
LogoAnimator2.java 345
LogService interface 1390
LONG date format 606
LONG_DESCRIPTION constant

of interface Action 45
lookup 11
lookup method of interface

Context 669, 854
lookup method of interface

ServiceRegistrar
1228

lookup service 1199, 1214, 1562,
1564, 1572

LookupBrowser panel 1203
LookupCache interface 1253
LookupDiscovery class 1209,

1220, 1232, 1237
LookupDiscoveryManager

class 1237
LookupDiscoveryMan-

ager.FROM_GROUP
constant 1237

LookupDiscoveryManger
class 1249

LookupLocator class 1204,
1207, 1232, 1262, 1571

LookupLocatorDiscovery
1232, 1235

LookupLocatorDiscovery
class 1232, 1237

LookupOp 151
low-level 160
LowTonerPolicy.java 1415
LowTonerPolicyImpl.ja-

va 1416
LowTonerPolicyIm-

pl.properties 1420
Lucifer 390

Index 1797

M
machine vision 147
Macintosh 137
main 156
Main-Class header of manifest

file 342, 344, 353, 362
Maintenance Lead (ML) 1704
Maintenance Period 1704
MalformedURLException

class 1208
manageable resource 1324
manageable resource MBean 1342
managed resource 15, 1322, 1366
management agent 1322
management application 1322
management architecture 1321
Management Beans (MBeans)

1322, 1323, 1338
management domain 1367, 1370,

1380, 1381, 1399
Management Facade 1369
management interface 1322, 1323
management policies 1409, 1415,

1420, 1424, 1427, 1429
management protocol 1321, 1434
management service 1366
management software 1369
management solution 1321, 1365,

1366, 1369, 1370
management system 1429
management tool 1320
manager level 15, 1321
Mandatory transaction type 892
manifest file 340, 341, 342, 343,

344, 353, 362
Manifest tab 343
MANIFEST.MF file 340, 343
many-to-many relationship 452,

1100, 1107
Map interface 101, 686, 948
MapMessage class 939
mappings of SQL types to Java

types 469
marketing JavaBeans 379
markup text 1616
marshaling 1448, 1466, 1482,

1494, 1499
marshaling data 791
MarshalledObject class 811,

819, 1276, 1382, 1392
match attribute 1679, 1682
match request parameters 628
match the selection criteria 454
Material 162, 168, 195, 196
math 160

MathTool.java 870
MathToolClient.java 874
MathToolEJB.java 870
MathToolHome.java 873
max-beans-in-cache 1168
maximize 52
maximum age of a cookie 561
MaximumValueEditor.ja-

va 372
MBAFreeAgent.com 1751
MBCS (multi-byte character set)

1766
MBean 1323, 1324, 1325, 1331,

1332, 1338, 1343, 1356
MBean pattern matching

mechanism 1331
MBean server 1338, 1346
MBeanException class 1332
MBeanNotificationInfo

class 1342
MBeans (Management Beans)

1322, 1323, 1338
MBeanServer interface 1322,

1331, 1338, 1339, 1342,
1346, 1347, 1357

MBeanServerFactory class
1331

m-business 11
MDIWebBrowser.java 52
measurement filter 146
MediaTracker 149
MediaTracker class 1727
MEDIUM 606
Member 1701, 1702, 1703
memento object 24
Merge records from Tables 459
message 938, 951, 957, 963
message body 939
Message class 957, 974
message consumer 938
message digest 406
message-driven bean 939, 968
message element 1662
message header 939
message integrity 406
message key 1390
message listener 948, 949, 963
message-oriented 938
message property 939, 957
message queue 938, 940, 945
message selector 939, 952, 963
message subscriber 958
Message.java 1554
Message-Driven Bean dialog

984

Message-Driven Bean Set-
tings 982

MessageDrivenBean
interface 974

MessageListener interface
949, 963, 974

MessageListener.java 827
MessageManager.java 822
messaging system 938
meta data 468
meta element 598
META-INF directory 340
Method Call radio button 333
method ID 1713, 1714
method-name 1183
method-param 1183
method-params 1183
method rebind of class Naming

798
method signature 1713, 1716
MethodDescriptor class 369
Microsoft 1764
Microsoft Internet Information

Services (IIS) 534
Microsoft SQL Server 446
middle tier 26, 577, 717, 992, 993,

995, 1366
middle-tier business logic 577
MIDlet 758, 759, 760, 761, 772,

773, 774, 781, 786
MIDlet class 761, 762, 781
MIDP 758, 759, 760
MIDP device 719, 724, 759, 760,

762, 772, 776, 786
MIME type (Multipurpose

Internet Mail Extension)
285, 539, 541, 561, 723, 724,
746, 749, 751, 753, 756, 783

minimize 52
MinimumValueEditor.ja-

va 373
mixed content 1634, 1635
mixed.xml 1635, 1636
MNEMONIC_KEY constant of

interface Action 44, 45
mobile business 11
mobile device 1589
Mobile Information Device

Profile (MIDP) 719, 758,
759, 781, 786

model 86, 993, 1075
model (in MVC architecture) 25
Model-View-Controller

architecture 86, 221, 272,
301, 803, 991

modeled 160

1798 Index

Model-View-Controller (MVC) 8,
9

module CORBA keyword 1443,
1458, 1460, 1469, 1482,
1501, 1503

MoneyTransfer.java 880
MoneyTransferEJB.java

881, 887
MoneyTransferEJBCli-

ent.java 892
MoneyTransferHome.java

880
Monster.com 1739, 1743,

1748, 1751
MorganWorks.com 1746
morphing 161
motion 161
mouse gesture 56
MouseAdapter class 265
MouseBehavior 169
MouseEvent class 265
MouseListener interface 265,

302
MouseMotionAdapter class

265
MouseMotionListener

interface 265, 302
MouseRotate 169, 178
MouseScale 169, 178
MouseTranslate 169, 178
moveToCurrentRow method

of interface ResultSet
519

moveToInsertRow method of
interface ResultSet 519

Mozilla 1019
MSN Instant Messenger 1589
MSN.com 560
mulit-byte character set (MBCS)

1766
multi-pooling 1164
multi-tier application 992
multicast announcement protocol

14
multicast discovery 1204, 1209,

1552
multicast group 1582
multicast request protocol 14,

1399
multicast socket 16, 1549, 1572
MulticastDiscovery.ja-

va 1209
MulticastPacket class 1576
MulticastReceivingTh-

read.java 1577

MulticastSendingTh-
read.java 1572

MulticastSocket class 1577
multimedia 531
multiple document interface 52,

287
Multipurpose Internet Mail

Extension (MIME) type 723
multithreading 24, 25, 531
multitier architecture 578
multitier client-server application

533
multitier Web-based survey using

XHTML, servlets and JDBC
578

MutableTreeNode class 117
MVC 13, 86, 87, 104, 991, 1010
MVC architecture 220, 319
MVC design pattern 995, 1075
MyAbstractAction.java

66
MyErrorHandler.java 1663
MyImage.java 240
MyLine.java 230
MyLineController.java

267
MyOval.java 234
MyRectangle.java 232
MyShape.java 224
MyShapeController.java

261
MyShapeControllerFac-

tory.java 273
MySQL 446
MyText.java 235
MyTextController.java

269

N
name attribute 1683
name attribute of <jsp:param>

action 610
name attribute of <jsp:plu-

gin> action 614
name attribute of <jsp:set-

Property> action 622
Name class 1562, 1570
NAME constant of interface Ac-

tion 43, 45
name element 642, 646, 652
Name entry 1228, 1242, 1261
Name header of manifest file 342
name lookup 519, 669
name resolution 519, 669
name token 1643

name/value pair 604
namespace 430, 1620
namespace prefix 1620
Namespace prefix xsl 1679
Naming class 819
naming context 854, 1448
Naming Service 1447, 1448, 1449,

1452, 1456, 1514, 1516,
1525, 1527, 1529, 1534,
1535, 1538, 1539, 1542

naming service 519, 669
NamingException class 669,

670, 861, 918, 925, 1023,
1046

narrow method of class Porta-
bleRemoteObject 860

National Institute of Standards and
Technology (NIST) 390

National Security Agency (NSA)
390

National Weather Service 792,
794, 798

native 17, 1706, 1709, 1710, 1712,
1714, 1716, 1717, 1718,
1719, 1722, 1723, 1736

Native-API, partly Java driver
(Type 2) 466

native function 1706
native library 1706, 1707, 1709,

1710, 1711, 1717
native method 1706, 1707
Native-Protocol pure Java driver

(Type 4) 466
navigate 196
navigation 179, 196, 197
Navigator.java 200
NDATA keyword 1641
NESTED constant 651
net.jini.core.discov-

ery. package 1204
net.jini.core.entry

package 1220, 1260, 1270
net.jini.core.event

package 1276
net.jini.core.lookup

package 1220, 1262
net.jini.core.transac-

tion package 1266
net.jini.lease packages

1266
net.jini.lookup.entry

package 1220, 1261
net.jini.space package

1264
network 160
network administrator 1409

Index 1799

network-based service 1198
network incompatibility 1589
network management 1320, 1321
network management developer

1321
network management solution

1321
network manager 1320
network security 387
network traffic 1551
Never transaction type 892
New Enterprise Bean 863, 978,

1149
New Enterprise Bean Wizard

898, 918
newInstance method of class

Class 265
NewIntArray function of C

table JNIEnv 1719
NewObject function of C table

JNIEnv 1721
NewObjectArray function of

C table JNIEnv 1719
newRepeatedDateSched-

ule method of interface
SchedulingService
1391

newTransformer method of
class TransformerFac-
tory 1019

next method of interface Re-
sultSet 465, 468

NMTOKEN 1638, 1643
no_point_objects 1395
Node 180, 195
Node interface 1658
Node.ATTRIBUTE_NODE

constant 1659
Node.CDATA_SECTION_NOD

E constant 1659
Node.COMMENT_NODE constant

1659
Node.ELEMENT_NODE constant

1659
Node.PROCESSING_INSTRU

CTION_NODE constant
1659

Node.TEXT_NODE constant
1659

NodeComponent 167
NodeList class 1019
NodeList interface 1658
non-modal dialog 304
non-repudiation 388, 406
nondurable subscription 951
non-validating parsar 1628

NoSuchAlgorithmExcep-
tions class 404

NoSuchMethodException
class 369

NoSuchPaddingException
class 404

NOTATION 1644
notation 1641
notification 1343, 1382
notification broadcaster 1342
notification broadcaster MBean

1342
Notification Service 1521, 1522,

1527
notification type 1342
NotificationBroadcast-

er interface 1342
NotificationBroadcast-

erSupport class 1342
NotificationFilter

interface 1343
NotificationListener

interface 1343
notify method of interface

JavaSpace 1265, 1276
notify method of interface Re-

moteEventListener
1381, 1392

notifyAll method of class Ob-
ject 1399

notifyObservers method of
class Observable 88, 89,
91, 93

NotifyOperation.java
1277

NotSupported transaction type
891

nspluginurl attribute of
<jsp:plugin> action
614

n-tier application 992
NullPointerException

class 96
NumberFormat class 62, 672,

1028
NumberFormatException

class 102, 104

O
object adapter 1438, 1440, 1454,

1456, 1502
object HTML element 604, 613
object ID 1440, 1501

Object Management Architecture
(OMA) 1438, 1441, 1454,
1457, 1458, 1499, 1501,
1502

Object Management Group
(OMG) 15, 1437, 1438,
1439, 1440, 1441, 1454,
1456, 1458, 1466, 1495,
1499, 1500, 1501, 1502,
1503, 1509, 1514, 1515,
1517, 1519, 1523, 1524,
1525, 1528, 1529, 1530,
1531, 1543, 1544, 1547

object-oriented language 1437
Object Request Broker (ORB) 15,

1438, 1439, 1440, 1444,
1447, 1449, 1453, 1454,
1455, 1456, 1458, 1459,
1466, 1469, 1473, 1481,
1489, 1492, 1495, 1500,
1501, 1502, 1503, 1504,
1510, 1513, 1514, 1515,
1517, 1518, 1525, 1529,
1531

object serialization 801
Object Transaction Service (OTS)

1518, 1519, 1526
ObjectInputStream class

339
ObjectInstance class 1339
object-link 1178
ObjectMessage class 939,

953, 957, 963
ObjectName class 1331, 1332,

1339, 1343, 1357
ObjectNotFoundExcep-

tion class 917
ObjectOutputStream class

339
Observable class 88, 93, 244
Observer design pattern 8, 86, 88
Observer interface 88, 91, 93,

243, 254
observer listener 1381, 1406, 1428
occurrence indicator 1631
occurrence indicators 1632
ODBC data source 467
one-to-many relationship 452,

479, 1100
Online Certificate Status Protocol

(OCSP) 408
online contracting services 1750
online recruiting 1741
online transactions 11

1800 Index

onMessage method of interface
MessageListener 949,
974

opaque network reference 1440

Open Property File 1200

OpenGL 160, 161

openStream method of class
URL 797

Openwave UP simulator 719, 720,
739, 785

options request 537

Oracle 446

Oracle Corporation 1764

ORDER BY 453, 456, 457, 458,
459

order.html 663, 664, 689

Order.java 1095

ordered 447

OrderEJB.java 1095

OrderHome.java 1101

ordering of records 453

OrderModel.java 1102

OrderProduct.java 1107

org.apache.soap.rpc
package 1601

org.omg 532

org.omg.CORBA.Object
1444, 1448

org.omg.CORBA.porta-
ble.IDLEntity 1444,
1495, 1504

org.omg.CORBA.porta-
ble.ObjectImpl 1444,
1466

org.w3c.dom 1656

org.w3c.dom package 670,
673, 676, 680, 740

org.xml.sax package 676

orientation 162

orientation property of class
JToolBar 37

originator object 24

out implicit object 599

OutofPaperPolicy.java
1410

OutofPaperPolicyIm-
pl.java 1411

OutofPaperPolicyIm-
pl.properties 1415

output parameter for a Call-
ableStatement 515

outrigger 1261

P
P2P (peer-to-peer) 16, 1549, 1550,

1551, 1552, 1572, 1588,
1589, 1590

package directory structure 701
packet-based communication 532
page attribute of <jsp:for-

ward> action 610
page attribute of <jsp:in-

clude> action 605
page directive 622, 628, 629,

634, 635
page implicit object 599
page scope 598, 617, 618, 628
PageContext class 647, 651
pageContext implicit object

599, 642
Paint 138, 144
paint 137, 139
Paint Shop Pro 147
paintComponent 137, 150
paintComponent method of

class JPanel 101
param attribute of <jsp:set-

Property> action 622
Parameter class 1601
parameter entity 1645
parent element 1614
parent node 116
parentheses () 1630
parseDouble method of class

Double 861
parsePostData method of

class HttpUtils 584
parseQueryString method

of class HttpUtils 584
ParserConfigurationEx-

ception class 678
passivate 853
passivation 1525
Password-Based Encryption

(PBE) 395
path mapping 547
pattern matching 455
pauseApp method of class

MIDlet 761
PBE (Password-Based

Encryption) 395
PBEKeySpec class 404
PBEParameterSpec class 404
PCDATA 1629, 1630, 1635, 1636,

1637, 1639, 1641, 1642,
1644, 1645

peer 1589
peer discovery 1551, 1589

peer groups 1589
peer-to-peer (P2P) 1549, 1550,

1551, 1552, 1572, 1588,
1589, 1590

peer-to-peer application 1549,
1550, 1551, 1552, 1572,
1589

peer-to-peer computing 1198
PeerDiscoveryListen-

er.java 1582
PeerList.java 1564, 1583
peer-to-peer (P2P) 16
peer-to-peer application 16
Peoplescape.com 1746
percent (%) SQL wildcard

character 455
percent character 1645
permission 410
persistence 1168, 1175, 1176
persistence-descriptor

1175, 1176
Persistence Management

dialog 924
persistence-type 1175
persistence-use 1175
persistent data source 905
persistent information 560
persistent JavaSpace service 1261
Persistent State Service (PSS)

1519, 1520, 1526
personalization 559, 560
personalized content 1053
PGP 392
phase delay 194
PhilosophersJList.java

108
PhilosophersJTable.ja-

va 112
PhilosophersJTree.java

117
PIContainer.java 1711
pie-chart view 96
pipe 1589
pipe character (|) 1631, 1643
pipeline 139
pixel 147, 151, 155
pixel color value 151
PixelTintException.ja-

va 1722
Pixo i-mode browser 739
plaintext 388, 393
platform incompatibility 1589
Platform-Independent Model

(PIM) 1543
plug-and-play 1198

Index 1801

Pluggable Authentication Module
(PAM) 418

pluggable look and feel 8, 30
plugin.jsp 616
plus sign (+) 1631, 1632, 1636
PNG 339, 340, 344
Point class 284
point object 1379
point-to-point connection 424
point-to-point messaging model

938, 940
Point2D class 233
Point3f 195
PoliciesStarter.java

1424
policy 1208, 1261
policy creation authorities 407
policy file 410, 412, 1426
policy.all 1208
policytool 410
polymorphism 221
PooledConnection interface

519
pooling 849
pool-name 1178
port 543
port 80 542
port 8080 542
port number 542, 797, 798
portability 137, 160, 1766
Portable Object Adapter (POA)

1456, 1481, 1499, 1502,
1514, 1515, 1516, 1519,
1524, 1525, 1529, 1543,
1544

PortableRemoteObject
class 860

position checking 179, 196, 197
position information 168
PositionInterpolator 194
post method from EventSer-

vice 1383
post request 533, 536, 538, 539,

552, 554, 561, 564, 569, 574,
578, 720, 744

predefined software component
322

predefined software components 9
prefix attribute of taglib

directive 640
prepareCall method of

interface ResultSet 518
PreparedStatement class

625, 886, 916

PreparedStatement
interface 480, 481, 488, 498,
499, 500, 515, 517, 581, 667,
670

prepareStatement method
of interface Connection
498

presentation components 86
presentation logic 13, 991, 993,

1010
Pretty Good Privacy 392
primary key 446, 451, 479, 499,

1144
Primary Key Class 918, 980
primary-key class 1111
Primary Key Class field 1152
Primary Key Field 980
Primary Key Field Name 924
Primary Key Field Name drop-

down 1153
Primitive 195, 196
Princeton Review 1753
Printer.java 1325, 1383
PrinterClientGUI.java

1400
PrinterErrorEvent.java

1382
PrinterEventBroadcast-

er.java 1343
PrinterEventBroadcas-

terMBean.java 1342
PrinterEventListen-

er.java 1325, 1379
PrinterManagement.java

1370
PrinterManagement-

Agent.java 1339
PrinterManagement-

GUI.java 1348
PrinterManagementIm-

pl.java 1371
PrinterManagementIm-

pl.properties 1391
PrinterManagement-

Starter.java 1396
PrinterMBean.java 1324
PrinterSimulator.java

1332
println method of class

PrintWriter 541
PrintWriter class 539, 540,

724, 756, 1019
privacy 388, 389, 390, 406
privacy invasion 560
private 908

private key 390, 392, 394, 406,
407, 1572

process.jsp 663, 664, 693
ProcessingInstruction

interface 1658
Product.java 1085
ProductDetails.xsl 996
ProductEJB.java 1086
ProductHome.java 1089
ProductModel.java 1089
ProductNotFoundExcep-

tion 1075
ProductSearchServ-

let.java 1050
Program Management Office

(PMO) 1701
programmer-defined event 355
promotion 559
properties file 68, 71, 1393, 1416
property 329, 330, 333, 346, 347,

355, 364, 369, 370, 371, 375,
378

property attribute of
<jsp:setProperty>
action 622, 628

property file for configuring the
StartService tool 1200

property get method 346
property set method 346
property sheet 371, 375
propertyChange method of

interface Property-
ChangeListener 353,
371

PropertyChangeEvent class
347, 351, 361, 378

PropertyChangeListener
interface 347, 352, 361, 378

PropertyChangeSupport
class 347, 351

PropertyDescriptor class
369, 370

PropertyEditor interface
370, 371, 374

PropertyEditorSupport
class 371

proprietary protocol 1320
protocol 393, 534
protocol adaptor 1338
protocol connector 1338
protocol for communication

(jdbc) 468
Prototype design pattern 22
provider-based architecture 395

1802 Index

proxy 1392, 1395, 1410, 1421,
1439, 1447, 1448, 1453,
1463, 1465, 1492, 1503

PUBLIC 1629
public key 390, 392, 407, 1572
public-key algorithm 390, 393,

394
public-key cryptography 390, 392,

393, 394, 407, 409
Public-key Infrastructure (PKI)

407, 409
publish 938, 951, 957, 958
publish-subscribe event system

1381
publish/subscribe messaging

model 938, 951
publishers table of books

database 448
pull model application 1468, 1521
push model application 1468,

1521
PUSH_MODE 1343
put request 537
putValue method of interface

Action 43, 51, 56, 65, 72
Python 1616

Q
Quality of Service (QoS) 1466,

1481, 1516, 1529, 1530
query 446, 447
query a database 464
query application for the

Books.mdb database 528
question mark (?) 1631, 1632,

1633, 1636
Queue class 944
QueueConnection class 944
QueueConnectionFactory

class 944
QueueReceiver class 944
QueueSender class 944
QueueSession class 944

R
Random object 740
Raster 138, 147, 150, 155
RasterOp 139, 150, 151, 155
RDBMS 1176
read method of interface Jav-

aSpace 1264, 1269, 1272
read-only 155
read operation 1259

Read/Write Lock design pattern
25

read/write property 346, 670
readIfExists method of

interface JavaSpace
1264, 1269

ReadOperation.java 1272
read-timeout-seconds

1168
real-time search 1550, 1551
rebind method of class Naming

798
record 446, 447, 451, 453, 454,

455, 456, 457, 459, 460, 461,
479, 523

record set 447
Recruitsoft.com 1746
Rectangle2D.Double class

140
Rectangle2D.Float class

232, 233, 242
RectangularShape 138
redirect a request 556
redirecting requests to other

resources 556
RedirectServlet.html 558
RedirectServlet.java 556
Refer.com 1746
reference-descriptor

1176, 1190
Reference Implementation (RI)

1703, 1704
ReflectionException class

1332
refresh interval 598
Reggie panel 1201
register a data source with a

naming server 695
register method of interface

ServiceRegistrar
1223

RegisterServlet.java
1053

Registrar menu 1203
registry for remote objects 798
rejectDrag method of class

DropTargetDragEv-
ent 62

rejectDrop method of class
DropTargetDropE-
vent 61, 284

relational database 10, 446
relational database management

system (RDBMS) 992
relational database model 446
relational database table 446

ReleaseStringUTFChars
function of C table JNIEnv
1709

Re-
leasetypeArrayElemen
ts function of C table
JNIEnv 1719

remote client 1369
Remote Home Interface 978
Remote Interface 865
Remote interface 792, 793, 810,

847, 1554
Remote Interfaces 978
remote method 792
remote method call 532, 791, 793
Remote Method Innovation (RMI)

791
Remote Method Invocation (RMI)

11, 16, 532, 1480, 1495,
1498, 1499, 1504, 1528,
1529, 1530, 1549, 1552,
1571, 1575, 1577, 1588

remote object 12, 791, 792, 796
remote object class 807
remote object implementation

792, 793
remote procedure call (RPC) 791,

1596
remote reference 792, 1028, 1552
remote server object name 798
RemoteEventListener

interface 1276, 1379, 1382,
1392

RemoteEventListenerIm-
pl class 1399

RemoteException class 793,
797, 848, 873, 906, 925,
1075, 1266, 1270, 1570

remotely accessible 12, 791
remove method 847
remove method of interface EJ-

BObject 848
remove methods of Entity EJB

906
removeAttribute method

1660
removeChild method 1659
RemoveException class 862
RemoveFromCartServ-

let.java 1036
removeRow method of class De-

faultTableModel 115
removeTableModelLis-

tener method of interface
TableModel 111, 470

render 139, 180, 196

Index 1803

rendering an XHTML document
666

RenderingHints 151
rendezvous discovery 1590
renewUntil method of class

LeaseRenewalMan-
ager 1247

repaint 137, 150
repaint method of class JPan-

el 257
replaceChild method 1659
request for proposal 1751
Request for Proposal (RFP) 1523
request implicit object 599
request method 536
request parameter 559
request scope 598, 617, 618, 628
request-time error 595
request type 536
RequestDispatcher class

684
RequestDispatcher

interface 677, 679, 684
#REQUIRED 1637, 1638, 1639,

1641, 1642, 1643
required element of tag library

descriptor 646
Required transaction type 891
RequiresNew transaction type

891
RescaleOp 151
resolve method of interface

URIResolver 1011
resource file 1390
Resource References dialog

918
resource.properties file

978
ResourceBundle class 62, 63,

65, 66
response 600
Response class 1604
response implicit object 599
responsible listener 1381, 1428
restricted algorithm 389
result set 447, 454
result set concurrency 473
result set type 473
ResultSet column name 469
ResultSet column number 469
ResultSet concurrency

constant 475
ResultSet interface 111, 465,

468, 473, 475, 476, 516, 520,
670, 739, 917

ResultSet method 625

ResultSet type 474
Result-

Set.CONCUR_UPDATABL
E static constant 518

ResultSetMetaData
interface 465, 468, 474, 475

ResultSetTableMod-
el.java 470

resume 1740, 1745, 1748
resume-filtering software 1745
Return Client JAR 986
Return Client Jar 868
revoked certificate 408
RGB 147
Rijndael 390
Rivest, Ron 392
RMI 669, 1198, 1602
RMI activation daemon 809, 816,

836, 1199, 1571
RMI activation mechanism 811
RMI activation system 1366
RMI callback 810, 820
RMI connections 1339
RMI connector 1322, 1339
RMI connector client 1343
RMI connector server 1343
RMI connector service 1357
RMI-IIOP 792, 860, 993, 1075,

1089, 1101
RMI-over-IIOP (RMI-IIOP) 1530,

1531, 1532, 1534, 1538,
1542, 1544

RMI registry 669, 798, 807, 815
RMI remote object 792
RMI used between Java object 532
rmic utility 807, 1393, 1421
RmiConnectorClient class

1346, 1347, 1356
RmiConnectorServer class

1346
RMID panel 1201
rmid utility 809, 836, 1199, 1203,

1261
RMIIIOPMessageMan-

ager.java 1539
RmiJdbc Cloudscape framework

463
RMIMessageManager.java

823
rmiregistry utility 807, 815,

837
RMISecurityManager class

835, 1208
Role-based access control

(RBAC) 418
roll back 482, 498

rollback method of interface
Connection 482, 516

root certification authority 407
Root Directory 863
Root Directory 1149
root element 1614
root key 407
root node 116
rotate 136, 163, 180, 212
rotation 168, 169, 194
rotation angle 194
RotationInterpolator 194
Rotator.java 618
rounded rectangle 143
rows to be retrieved 453
RowSet command string 520
RowSet implementations 520
RowSet interface 519, 520
RowSetEvent class 520
RowSetListener interface

520
RPC (remote procedure call)

security manager 791
RPC (Remote Procedure Calls)

1596
RSA 392, 414, 423
rtexprvalue element 646
Rule of Entity Integrity 451
Rule of Referential Integrity 452
Running tab in Forte 336
runtime package 430
RuntimeException class 370

S
Salary.com 1753
salt 395, 404
sample 147, 151
SampleModel 147
sandbox 10
sandbox security model 10
SAX (Simple API for XML) 1616
scalability 160, 1321
scale 136, 163, 212
scaling 168
scene 161, 162, 167, 169
scene graph 161, 167, 197
SceneGraphObject 162
Schedule interface 1392
scheduled task 1370
scheduleTask method of

interface Scheduling-
Service 1392

scheduling bounds 180
scheduling service 1368, 1369,

1380, 1391, 1392

1804 Index

SchedulingService.ALL
constant 1392

SchedulingService.NONE
constant 1392

SchedulingService.ONE
constant 1392

schema 498
scope attribute of <jsp:use-

Bean> action 618
scope of a bean 604
Screen class 772
screen reader 72
script 1770
scripting 594, 599
scripting element 595
scriptlet 532, 595, 600, 686
scriptlets 11
search engine 553, 1550
search hub 1550
search method of interface

LogService 1389
search time 1551
secret key 389, 390, 394
secret-key cryptography 389
SecretKey class 404
secret-key encryption 10
SecretKeyFactory class 404
secure access to a Web site 532
secure protocol 568
Secure Sockets Layer (SSL) 10
secure sockets layer (SSL) 423,

424
secure transaction 389
securing communication 389
security 10, 387, 1572
security attack 387
security constraint 531
security exception 430
security manager 410, 412, 430
Security Service 1517, 1526
SecurityException class

369
SELECT 447, 453, 454, 455, 456,

457, 458, 459, 498
select 447, 453, 1686
select all fields from a table 454
select attribute (value-of)

1680
SELECT operation 906
SELECT statement 923
selecting data from a table 447
selection criteria 454
Selection Mode 333
self-healing 1244
semicolon (;) 1617
Seminar.java 1214

SeminarInfo.java 1218
SeminarInfo.txt 1218
SeminarInfoJoinSer-

vice.java 1249
SeminarInfoLeaseSer-

vice.java 1244
SeminarInfoService.ja-

va 1220
SeminarInterface.java

1215
SeminarProvider.java

1243
SeminarProxy.java 1217
sendNotification method

from Notification-
BroadcasterSupport
1332, 1342

sendRedirect method of
interface HTTPServle-
tRequest 559

sendRedirect method of
interface HttpServlet-
Response 557, 1023

sequence (,) 1631
SequenceFactory.java

1145
SequenceFactoryEJB.ja-

va 1145
SequenceFactory-

Home.java 1147
Serializable 1075, 1214
Serializable interface 221,

339, 994, 1119, 1390, 1555
serialVersionUID 1214
servant 1438, 1440, 1441, 1454,

1456, 1461, 1462, 1466,
1467, 1481, 1486, 1501,
1502, 1504, 1510, 1515,
1516, 1519, 1524, 1530

server 717, 756, 1549
server host name 542
server-side component 534
server tier 662
service 1197, 1198
service discovery utilities

LookupCache interface
1253
ServiceDiscoveryMan-
ager class 1252

service interface 1553
service method of interface

Servlet 535, 536, 538
service proxy 1214
serviceChanged method of

interface ServiceDis-
coveryListener 1570

ServiceControlled
interface 1243

ServiceDiscoveryEvent
class 1570

ServiceDiscoveryMan-
ager class 1252, 1571,
1572, 1577

ServiceDisoveryListen-
er class 1588

ServiceFinder class 1378,
1380, 1389

ServiceIDListener
interface 1249

ServiceInfo class 1395
ServiceItem class 1220, 1228,

1570
ServiceRegistation

interface 1223
ServiceRegistrar interface

1204, 1209, 1223, 1236,
1262

serviceRemoved method of
interface ServiceDis-
coveryListener 1570

services provided by a component
9, 322

ServiceTemplate class 1228,
1262, 1287

servlet 11, 13, 532, 534, 543, 553,
661, 717, 761, 995

servlet alias 662
servlet-class element 546,

559, 584
servlet container 534, 535
servlet element 546, 559, 568,

577, 584
servlet engine 534
Servlet interface 534, 539
servlet lifecycle 534, 535
servlet mapping 546
servlet-mapping element

546, 547, 559, 568, 577, 584
servlet-name element 559,

584
servlet-name

elementservlet-map-
ping element 546, 547,
568, 577

servlet resource 585
servlet specification 533
servlet termination 535
servlet-class element 568,

577
ServletConfig class 1011
ServletConfig interface 535,

581

Index 1805

ServletConfig interface
(package javax.serv-
let) 598

ServletContext class 1011,
1019

ServletContext interface
535, 679

ServletContext interface
(package javax.serv-
let) 598

ServletException class 536,
539, 553, 581

ServletOutputStream class
539, 541

ServletRequest interface
535, 536, 537, 679

ServletRequest interface
(javax.servlet) 599

ServletResponse interface
536, 538

ServletResponse interface
(javax.servlet) 599

Session 1153
session attribute 686
session attribute of page

directive 635
session EJB 6, 847, 849, 1528
session implicit object 599
session key 389
session scope 598, 617, 618, 619
session tracking 559, 560, 673
SessionBean interface 849,

851
SessionSelectLan-

guage.html 574
SessionServlet.java 569
SET 461
set 1324
set and get methods 1101
Set interface 686
Set Layout menu in Forte 331
set method 346
set/get method pair 222, 346, 364
setAccessibleDescrip-

tion method of class Ac-
cessibilityContext
72

setAccessibleName method
of class Accessibili-
tyContext 72

setAction method of class
JButton 44

setAction method of class
JMenuItem 316

setAttribute method 1660

setAttribute method of class
PageContext 651

setAttribute method of
interface Element 234

setAttribute method of
interface HttpSession
573

setAutoCommit method of
interface Connection 482

setChanged method of class
Observable 88, 89

setColor 169
setComment method of class

Cookie 568
setContentType method of

interface HttpServlet-
Response 539, 541

Set-cookie header 775
setDividerLocation

method of class JSplit-
Pane 48

setDomain method of class
Cookie 569

setDropTarget method of
class Component 57

setEditable method of class
JEditorPane 31

setEnable 168
setEnabled method of

interface Action 43, 44
setEntityContext method

of interface EntityBean
917

setJMenuBar method of class
JFrame 44

setLocation method of class
JInternalFrame 56

setMaxAge method of class
Cookie 569

setMessageDrivenCon-
text method of interface
MessageDrivenBean
974

setName method of class
JToolBar 63

setNodeValue method 1659
setNominalView-

ingTransform 167
SetObjectArrayElements

function of C table JNIEnv
1721

setOneTouchExpandable
method of class JSplit-
Pane 48

setPage method of class JEdi-
torPane 33

setPath method of class Cook-
ie 569

setPort method from RMI-
ConnectorServer 1339

setProductQuantity
method of interface Shop-
pingCart 1034

setSecure method of class
Cookie 569

setSecurityManager
method of class System
835

setSessionContext method
of interface SessionBean
853

setSize method of class JIn-
ternalFrame 56

SetStatictypeField function
of C table JNIEnv 1716

setString method of interface
PreparedStatement
481

setTransform method of class
Graphics2D 260

SettypeField function of C
table JNIEnv 1716

setUserAgentHeader
method of interface Http-
Connection 774

setValidating method 1662
setValue method of class

Cookie 568, 569
setValueAt method of

interface TableModel 112
setVersion method of class

Cookie 569
setVisible method of class

JInternalFrame 56
Shamir, Adi 392
Shape 138
shape 136, 140, 212
Shape3D 162, 195
Shapes.java 140
Shapes2.java 144
ShapesApplet.java 614
shared Jiro station 1368
sharpen 136
SharpenFilter.java 153
shininess 162
shopping cart 560, 662, 683, 992,

995, 1022
ShoppingCart 1176, 1190
ShoppingCart.java 1076
ShoppingCartEJB.java

1077

1806 Index

ShoppingCartHome.java
1084

SHORT 606
SHORT_DESCRIPTION constant

of interface Action 44, 45
showInputDialog method of

JOptionPane 110
shutdown Cloudscape server 696
shutdown J2EE server 696
sibling node 116
signature 1707, 1714
signedBy 410
significant whitespace 1617
Simple API for XML (SAX) 1616
simple custom tag 639
Simple Network Management

Protocol 1366
Simple Network Management

Protocol (SNMP) 1320,
1321, 1338

SimpleBeanInfo class 369
simpleContact.xml 1671
SimpleService.java 1597
SimpleUniverse 167, 180,

197
single-quote character 455
Single sign-on 417
Single-Threaded Execution design

pattern 25
SingleThreadModel

interface 536, 635
Singleton design pattern 275, 772
SixFigureJobs 1752
skeleton 1439, 1452, 1453, 1454,

1458, 1463, 1480, 1481,
1497, 1498, 1499, 1502,
1503, 1504, 1510, 1515

skeleton class 807
SkillsVillage.com 1746
SKIP_BODY constant 642, 651
SliderFieldPanel.java

348
SliderFieldPanelBean-

Info.java 364
SliderFieldPanelCus-

tomizer.java 376
SMALL_ICON constant of

interface Action 43, 45
Smalltalk-80 86
smart agents 1321
smart Web service 1595, 1609
snapshot entry 1281
snapshot method of interface

JavaSpace 1265, 1281
SnapshotUsage.java 1281
SNMP 1366

SNMP (Simple Network
Management Protocol)
1320, 1321, 1338

SOAP 16
SOAP (Simple Object Access

Protocol) 16, 1595, 1602
SOAP message 1596
SOAP package 1601
SOAP request 1598
SOAP-response message 1596
SOAPAction header 1601
SOAPException class 1601
socket 532
socket-based communication 532
soft-button 773
Solaris SPARC 1322
source code Forte generates 327
Source Editor window in Forte

326, 333, 340
source of an event 333
spatial coordinate 168
spatial transformation 180
Specification Lead (Spec Lead)

1703, 1704
specify attributes of a custom tag

643
Sphere 195, 196
SplashScreen.java 317
SQL (Structured Query Language)

446, 453, 460, 479, 480, 481,
1088

SQL keyword 452
SQL query 1088, 1126
SQL script 463
SQL statement 447, 482, 498, 515,

1155
SQLException class 466, 468,

469, 474, 481, 516, 891, 916
square bracket ([]) 1629
square brackets in a query 453
SSLava 424
standalone 1635
standard action 604
standard MBean 1323
standard service 1369
start method from RMICon-

nectorServer 1339
start persistent JavaSpaces service

1261
start the RMI registry 807
startAnimation 322
startApp method of class

MIDlet 761, 774
Starting Directory 978
StartService GUI 1199
StartService tool 1202

stateful session EJB 847, 849, 850,
1075

stateful-session-per-
sistent-store-dir
1176

stateless protocol 560
stateless session EJB 847, 849,

869, 968
Statement interface 465, 468,

469, 475, 480, 515, 516, 517,
739

static agents 1320
Static Invocation Interface (SII)

1456, 1502
static services 1366, 1369, 1380,

1381
static XHTML document 662
station 1369, 1379, 1395, 1424,

1429
StationAddress class 1395,

1424
sticky load balancing 1164
StoppableChatServ-

er.java 811
stored procedure 515
Strategy design pattern 24
StreamMessage class 939
StreamResult class 680
StreamSource class 680, 741,

1011, 1679
String 180
stringified IOR 1481, 1504
StringItem class 780
StringTokenizer class 776
Stroke 138, 139
stroke 139
struct CORBA keyword 1442,

1459, 1461, 1462, 1463,
1480, 1481, 1492, 1493,
1494, 1495, 1503, 1504

structural design patterns 21
Structured Query Language (SQL)

10, 446, 447, 452
stub 1439, 1441, 1452, 1453,

1454, 1456, 1463, 1466,
1474, 1477, 1481, 1488,
1497, 1498, 1499, 1501,
1502, 1503, 1504, 1510,
1542, 1543

stub class 807
style attribute 643
style sheet 665
styles.css 663, 666
subclass 23
subject 88

Index 1807

subprotocol for communication
468

subscribe 938, 951
subscribed listener 1382
subscribeObserver method

of interface EventSer-
vice 1382

subscriber 963
subscribeResponsible-

Before method of interface
EventService 1410

subscription 951
substitution cipher 388
subsystem 1370
sum (SQL) 582
Sun Microsystems, Inc. 1764
Sun Microsystems, Inc. Java Web

site 585
Sun MIDP-device emulator 720,

774
sun-util.jar 1198, 1269,

1272, 1273, 1280
sun.jdbc.odbc 467
supplier 1521
support class 371
Supports transaction type 891
Survey.html 582
SurveyServlet.java 578
Swing 8, 30, 178
Swing Actions 9
Swing component 87
Swing Forms option 325
Swing tab in the Component

Palette 331
Switch 180, 196, 197
Sybase 446
Sybase, Inc. 1764
symbol 18, 1763
symmetric cryptography 389, 390
symmetric key algorithm 393
synchronization 1145
synchronized 25
SYSTEM 1629, 1629, 1629, 1629,

1644, 1645
System.loadLibrary

method 1706
systemclock.idl 1443
SystemClockClient.java

1449, 1511
SystemClockImpl.java

1445
SystemColor 142
SystemException class 886

T
tab 77
table 446, 479
table column 447
table in which record will be

updated 461, 462
table-name 1178
TableModel interface 111, 470
TableModelEvent class 476
tableName.fieldName 459
tag element 642
tag extension mechanism 595
tag handler 639, 640, 641, 645,

647
Tag interface 640, 641, 642
tag library 594, 595, 634, 638
tag library descriptor 639, 642,

646, 652
tagclass element 642, 646, 652
TagExtraInfo class 651
tagging interface 792
taglib directive 634, 639, 640,

646
taglib directive attributes 639
tagPrefix attribute of taglib

directive 639
TagSupport class 638, 640, 641
take method of interface Jav-

aSpace 1264, 1273, 1281
take operation 1259
takeIfExists method of

interface JavaSpace
1264, 1273

TakeOperation.java 1273
TallyDisplay.java 975
TallyPanel.java 950, 977
target of an event 333, 384
Target Server 868
TCK 1704
TCP/IP 423, 424, 542, 1440
Technology Compatibility Kit

(TCK) 1703
teiclass element of tag library

descriptor 652
telephone system 1550
template 17
template 1682
Template Chooser dialog 325
template matching 1260, 1269
Template Method design pattern

272
Text interface 1658
text/html MIME type 539,

541
Text3D 180, 195

TextBox class 772
TextInputPanel class 272
TextMessage 941, 949
TextMessage class 939, 940
Texture 161, 162, 196
texture 162, 196, 212
texturing 180
texture mapping 136, 161, 169,

175
TextureLoader 168
TexturePaint 138, 143
Thawte 409
The Diversity Directory 1745
The National Business and

Disability Council (NBDC)
1746

thin client 10, 533
third tier 578
thomas.loc.gov/cgi-

bin/bdquery/
z?d106:hr.01714: 407

thomas.loc.gov/cgi-
bin/bdquery/
z?d106:s.00761: 407

thread 25
Thread class 319, 1575
three-tier architecture 717, 992,

1366
three-tier distributed application

578
three-tier architecture 15
Throwable class 1389, 1390
ThrowNew function of C table

JNIEnv 1724
Ticket class 1392
Ticket-Granting Ticket (TGT) 417
TIE (Object Adapter in delegation

model) 1516
tier 992
Time To Live (TTL) 1576, 1582,

1583
Timer class 339
timestamping 406
TimeZone class 1391
TintImage.cpp 1724
Tip Test 717, 773, 776, 778, 780,

785
TipTestMidlet 761
TipTestMIDlet Tip Test

answer screen. 780
TipTestMIDlet.java 762
TipTestServlet.java 726
title attribute of <jsp:plu-

gin> action 614
titles table of books database

448, 450

1808 Index

TitlesBean.java 663, 667,
669

tlibversion element of tag
library descriptor 642

tnameserv 1452, 1493, 1502,
1514, 1542

toc.html 607
token 417
tokenized attribute 1638
Tomcat 783
Tomcat documentation home page

544
Tomcat server 533, 539, 542, 559
Tomcat shut down 544
Tomcat start 544
tomcat.bat 544
tomcat.sh 544
TOMCAT_HOME environment

variable 543
toolbar 33
Tools menu Add to JAR item

343
Tools menu Install New Java-

Bean... 323
tooltip 72
top tier 993
topic 938, 951, 957, 963
Topic class 957
TopicConnection class 957
TopicConnectionFactory

class 957
TopicPublisher class 957
TopicSession class 957
TopicSubscriber class 963
trace request 537
trans-timeout-seconds

1176
transaction-descriptor

1175
Transaction interface 1266,

1269
transaction management 1153,

1163
Transaction Management

dialog 866, 982
transaction processing 467, 480,

482
transaction service 1368, 1369
Transaction Type 1084, 1147,

1153
Transaction.Created class

1289
TransactionException

class 1266, 1270
TransactionFactory class

1289

TransactionManager
interface 1287, 1299

TransactionManager-
Finder.java 1287

Transferable interface 57,
61, 276, 283, 284

TransferableShape.java
285

transform 139, 194
transform method of class

Transformer 680, 741
Transform.java 1677
Transform3D 194
transformation 139, 180
Transformer class 678, 680,

739, 741, 1011
TransformerException

class 679, 680
TransformerFactory class

678, 680, 1011
TransformGroup 167, 168,

180, 193, 195, 196
transient 854
transient JavaSpaces service 1261
TransientSpace tab in Start-

Service GUI 1262
translate 136, 163, 180, 196, 212
translation 168
translation-time error 595
translation-time include 634
transmit audio and video 532
transposition cipher 388
Travelers Forecast Web page 792,

794, 844
TreeCellEditor interface

117
TreeCellRenderer interface

117, 123
TreeModel 8
TreeModel interface 115, 117,

123
TreeModelEvent class 128
TreePath class 128
TreeSelectionEvent class

131
TreeSelectionListener

interface 131
triggering node 197
Triple DES (3DES) 390
truststore 424
Two-Phase Termination design

pattern 25
Type 1 (JDBC-to-ODBC bridge)

driver 466
Type 2 (Native-API, partly Java)

driver 466

Type 3 (JDBC-Net pure Java)
driver 466

Type 4 (Native-Protocol pure
Java) driver 466

type attribute of <jsp:plu-
gin> action 613

type attribute of <jsp:use-
Bean> action 618

Type drop-down list 1153
type-storage 1175
type-version 1175
TYPE_FORWARD_ONLY 474
TYPE_INT_RGB 149
TYPE_SCROLL_INSENSITIV

E 474
TYPE_SCROLL_SENSITIVE

475
type-identifier 1175
Types class 468

U
U+yyyy (Unicode notational

convention) 1765, 1771
unambiguous (Unicode design

basis) 1764, 1771
underscore (_) SQL wildcard

character 455, 456
unicast discovery 1204, 1262,

1552
unicast discovery protocol 14
UnicastDiscovery.java

1204, 1232
UnicastDiscoveryUtili-

ty.java 1232
UnicastRemoteObject class

796, 797, 809, 1555, 1561
UnicastSeminarInfoCli-

ent.java 1223
Unicode 62, 1708
Unicode Consortium 18, 1616,

1764, 1771, 1772
Unicode escape sequence 68
Unicode Standard 18, 1763, 1771,

1772
Unicode Standard design basis

1764
Unicode Transformation Format

(UTF) 1771
Unified Modeling Language

(UML) 1543
uniform (Unicode design basis)

1764, 1771
Uniform Resource Identifier

(URI) 1596, 1621
unique ID 14, 1118

Index 1809

Univeral Description, Discovery
and Integration (UDDI)
1595

universal (Unicode design basis)
1771

universal (Unicode design
principle) 1764

Universal Resource Locator
(URL) 1621

UnknownHostException
class 1576

unmodifiableCollection
method of class Collec-
tions 244

UnsatisfiedLinkError
class 1706, 1709

UnsupportedEncodingEx-
ception class 404

UnsupportedFlavorEx-
ception class 284

UnusableEntryException
class 1270

updatable ResultSet 518
UPDATE 453, 461, 462, 498
update method of interface Ob-

server 89, 93
UPDATE statement 923
UpdateCartServlet.java

1038
UpdateInputWindow.java

1285
UpdateOperation.java

1289
updateRow method of interface

ResultSet 518
URI (Uniform Resource

Identifier) 534, 1596
uri attribute of taglib

directive 639, 640
URI path of a resource 605
URIResolver interface 1011,

1028
URL (Uniform Resource Locator)

534
URL (uniform resource locator)

1621
URL (Universal Resource

Locator) 1621
URL class 33, 1011
URL format 534
URL pattern 547
url-pattern element 546,

547, 559, 568, 577, 584
US constant of class Locale 68
usage.xsl 1684
usage1.xsl 1691

usage2.xsl 1690
User-Agent header 722, 739, 775,

786
User-Agent header 1018, 1019
user interface 26, 577, 993
UTF (Unicode Transformation

Format) 1771
UTF-8 1615, 1708, 1764, 1771
UTF-16 1615, 1764, 1771
UTF-32 1764, 1771

V
valid XML document 1628
validating parser 1628
value attribute of

<jsp:param> action 610
value attribute of <jsp:set-

Property> action 622
valueForPathChanged

method of interface Tree-
Model 128

VALUES 460
valuetype CORBA keyword

1442, 1443, 1495, 1496,
1497, 1504

variable element 1695
variables.xsl 1695
Vault.com 1742
Vector class 111, 1309
verbose output 343
VeriSign 407, 408
version 1613
vertical CORBAfacilities 1457
VERTICAL_SPLIT constant of

class JSplitPane 48
video 532
view 8, 86, 87, 88, 91
view (in MVC architecture) 25, 26
viewCart.jsp 663, 664, 686
ViewCartServlet.java

1026
viewdbg tool 1409
viewdbgw tool 1409
viewing distance 167, 180
ViewingPlatform 167
viewlog tool 1391, 1427, 1428
ViewOrderHistoryServ-

let.java 1061
ViewOrderServlet.java

1065
ViewPlatform 162, 197
viewpoint 162
virtual machine 342, 758
VirtualUniverse 161
visualization 160

Vlissides, John 20
VoteCollector.java 945
VoteCollectorEJB.java

972
VoteListener.java 949
Voter.java 941
vspace attribute of <jsp:plu-

gin> action 614

W
wait method of class Object

1399
wake-up condition 197
WakeupCondition 197
WakeupCriterion 197
WakeupOnCollisionEntry

197
WAP 719, 720, 746, 785, 995
WAPTipAnswer.xsl 749
WAPTipQuestion.xsl 746
WAR (Web application archive)

545, 1159
.war file extension 545
warning method

(ErrorHandler) 1664
WeatherBean.java 799
WeatherCellRender-

er.java 805
WeatherDisplay.java 965
WeatherItem.java 805
WeatherListener.java 964
WeatherListModel.java

803
WeatherPublisher.java

953
WeatherService.java 793,

1602
WeatherServiceCli-

ent.java 801, 1605
WeatherServiceImpl.ja-

va 794
WeatherSubscriber.java

958
Web application 545
Web application archive (WAR)

545
Web application deployment

descriptor 545
Web application deployment tool

546
Web component 694, 698
web connector 1164
Web context 694, 706
Web form 536, 541

1810 Index

Web server 532, 543, 595, 992,
1199

Web servers that support servlets
543

Web service 1595, 1596, 1602
web service 16
Web services 5
web.mit.edu/network/

pgp.html 392
web.xml 545, 546, 548, 726,

739, 786
web-app element 546, 547
webapps 545
WebBrowser.java 38, 67
WebBrowserPane.java 31
WebHire 1743
WEB-INF 545, 548
WEB-INF/classes 545
WEB-INF/lib 545
WebLogic 991, 1163, 1165, 1166,

1168, 1176, 1178, 1180,
1183

WebLogic_CMP_RDBMS 1175
weblogic-cmp-rdbms-

jar-address.xml 1178
weblogic-cmp-rdbms-

jar-Customer.xml
1180

weblogic-cmp-rdbms-
jar-order.xml 1184

weblogic-ejb-jar.xml
1168

weblogic-enterprise-
bean 1168

weblogic-rdbms-bean 1178
weblogic.xml 1190
WebRowSet class 520
WebServer panel 1200
WebSphere 991, 1191
WebToolBar.java 35, 63
welcome file 664, 695, 708
welcome-invalid.xml 1631
welcome.dtd 1631
welcome.jsp 601
welcome.xml 1630
Welcome2TagHandler.ja-

va 645
WelcomeServlet.html 541
WelcomeServlet.java 540,

720
WelcomeServlet2.html

551
WelcomeServlet2.java 549
WelcomeServlet3.html 554
WelcomeServlet3.java 553

WelcomeTagHandler.java
641

well-known port number 543
WHERE clause 453, 454, 455, 456,

458, 459, 461, 462, 498,
1156

whitespace 1616
whitespace character 1616
Whitespace characters in an XML

document 1616
whitespace.xml 1616, 1646
width attribute of <jsp:plu-

gin> action 614
wild card 1395
Windows 2000 1322
Windows NT 1322
wireless application development

11
wireless application protocol

(WAP) 1750
wireless Internet 11
Wireless Markup Language

(WML) 993
wireless office 11
wireless phones 1589
WirelessResumes.com 1750
wizard-style interface 1149
WML (Wireless Markup

Language) 720, 724, 748,
749, 783, 991, 993

WML browser 992
workflow 1428
WorkingSolo.com 1751
workstation logon script 417
World Wide Web 531
World Wide Web browser 532
World Wide Web server 532
WQL 1183
wrapper class 1706, 1709, 1710,

1714, 1723
write method of interface Jav-

aSpace 1264, 1266
write operation 1259
WriteableRaster 155
WriteOperation.java 1266
www.advantagehir-

ing.com 1746
www.advisorteam.net/

AT/User/kcs.asp 1747
www.apache.org 533
www.authentidate.com 407
www.careerpower.com 1753
www.chiefmonster.com

1752
www.cloudscape.com 446,

463, 521

www.driveway.com 1748
www.etest.net 1747
www.ework.com 1751
www.execunet.com 1752
www.freeagent.com 1751
www.irvine.com/~mime 541
www.itaa.org/infosec/

407
www.jguru.com/jguru/

faq/
faqpage.jsp?name=JD
BC 521

www.jiro.com/downloads
1366

www.jobfind.com 1744
www.jobtrak.com 1748
www.mindexchange.com

1745
www.nationjob.com 1752
www.netbeans.org 19
www.oasis-open.org/

cover/xml.html#xml-
parsers 1616

www.recruitsoft.com/
corpoVideo 1746

www.recruitsoft.com/
process 1746

www.review.com 1753
www.rsasecurity.com 392
www.sixfigurejobs.com

1752
www.sql.org 521
www.sun.com/software/

java-dynamic/
try.html 1322

www.thawte.com 409
www.unicode.org 1616, 1766
www.verisign.com 408, 409
www.w3.org 534, 653
www.w3.org/Addressing

534
www.w3.org/Protocols/

HTTP 534
www.w3.org/Style/CSS 666
www.webhire.com 1743
www.xdrive.com 1748
www.xml.com/xml/pub/

Guide/XML_Parsers
1616

X
xalan.jar 679
XDrive™ 1748
Xerces parser 1656

Index 1811

XHTML 532, 534, 539, 541, 595,
597, 719, 723, 741, 785, 991,
993, 995

XHTML document 683, 693, 694,
698

XHTML table 686
XHTMLTipAnswer.xsl 744
XHTMLTipQuestion.xsl 741
XML 11, 13, 16, 222, 533, 534,

595, 661, 739, 741, 748, 749,
756, 993, 1010, 1101

XML comment (<!-- -->) 1613
XML declaration 1613
XML deployment descriptor 696
XML descriptor 1153
XML document 1589
XML Document Object Model

1654
XML element 1093, 1113, 1127,

1614
XML end tag 1613
XML namespace 1620
xml namespace 1620
XML parser 1615
XML processor 1615
XML start tag 1613
XML tag 1613
XML4J (XML Parser for Java)

1656
XMLGenerator.java 1093
xmlns attribute 1621
XMLServlet.java 1011
XML-SOAP Admin tool 1597
XSL (Extensible Stylesheet

Language) 1677
XSL file 694
XSL transformation 680, 991,

995, 1010
XSL Transformation Language

(XSLT) 1677
XSL Transformer 995
xsl:stylesheet element

1679
xsl:value-of element 1680
XSLT 741, 748, 753, 756, 993
XSLT (XSL Transformation

Language) 1677, 1680
XSLT processor 1677
XSLT stylesheet 13
XSLT template 1686

Y
Yahoo! 1744

Z
ZoomDialog.java 305
ZoomDrawingView.java 258

