DIGITAL FILTER DESIGN AND SYNTHESIS USING HIGH-LEVEL MODELING TOOLS

by

Brian A. Jackson

Thesis submitted to the Faculty of
Virginia Polytechnic Institute and State University
in partial fulfilment of the requirements for the degree of

Masters of Science
in
Electrical Engineering

Dr. James R. Armstrong, Thesis Advisor
Dr. F. Gail Gray
Dr. Dong S. Ha

Wednesday, December 1, 1999
Blacksburg, Virginia

Keywords: VHDL, COSSAP, MATLAB, digital filters

DIGITAL FILTER DESIGN AND SYNTHESIS USING HIGH-LEVEL MODELING TOOLS

by
Brian A. Jackson

Dr. James R. Armstrong, Thesis Advisor
Virginia Polytechnic Institute and State University
The Bradley Department of Electrical and Computer Engineering

ABSTRACT

The purpose of this thesis is to formulate a technically sound approach to designing Infinite Impulse
Response (IIR) digital filters using high-level modeling tools. High-level modeling tools provide the ability
to build and simulate ideal models. Once proper validation is complete on these ideal models, the user
can then migrate to lower levels of abstraction until an actual real world model is designed. High-level
modeling tools are the epitome of the top-down design concept in which design first takes place with the
basic functional knowledge of a system. With each level of abstraction, validation is performed. High-level
modeling tools are used throughout industry and their application is continually growing especially in the
DSP area where many modes of communications are expanding. High-level modeling tools and validation
significantly address this complex expansion by utilizing an ideal representation of a complicated network.

TABLE OF CONTENTS

F Y 0153 = Lo PSP UPUPPPRPT ii
TaDIE Of CONLENTS ...ttt e e e e e e bbbt e e e e e e e e e aaabb e e e e e e e e e s e anneeaaaeeaaaanes iii
L gF=T o (=] g I [g 1o T [V T 1o o PR 1
Chapter 2: QUANTIZALION.oii ettt e e e e ettt e e e e e e s e aaaa e e e e e e e e e e nbsaeeeeaaeeannnbeeeeeas 3
2.1 QUANLIZALION ..o 3
2.2: QUANLIZAtION NOISE ... 3
2.3: Two's Complement REPrESENTALIONuuviiiieeiiiiiiieie e e e s e crterer e e e e e s s r e e e e e s s e e e e e e e e snnrnreees 3
2.4: TWO's CoMPIEMENT TIUNCALION.......cciiiiiiieiie e e e e et e e e e e s s e e e e e e s e e e e e e s s rrn e e e e e e e e snnrnees 3
2.5: Two's Complement ROUNGING ...ooceoiiiiiiiiieiie e ceie e s sttt e e e e e s st e e e e e e e s st ae e e e e e e e e nnnnrnnees 4
2.6: FiNite-Precision EffECES.........ciiii it 4
2.7 LIMIt-CyYCle OSCIIAtIONSttt e e e e e e st e e e e e e e ennnbeaeeeas 5
Chapter 3: IIR Digital Filter STHUCLUIES.ueiiiiieee it e e e e e e e nne e e s 7
3.1: Linear Time-INVariant SYSTEMIS......oiiuuiiiiieie ettt ettt e e e e e e e e ae e e e e e e s e sannbeeaeas 7
3.2: Difference equations and RECUISIVE SYSIEMSciiiiiiiiiiiiiiiiaae et e e e 7
3.3: Infinite Impulse Response (IIR) Digital Filters ... 8
3.4: Hardware CONSIAEIALION..........cuuiiireeirieer ettt e e nnaeneas 10
3.4.1: Parallel-FOrm SHUCTUIcoiiiiiiie ettt 10
3.4.2: CaSCAUE-FOIMM SIIUCKUIEeiiiiiiiiet ettt ettt e e nne e nreas 12
Chapter 4: Digital Filter DESIGNS....uuuiiieeeiiiciieeieeee e se sttt e e e e e s ss e e e e e s assa e e e aeeesaasnranereaeeannnees 14
Chapter 5: COSSAP Saturation Modes for Fixed-point Binary Adderscccccoeviiiiieeeeeiiiiinnnen. 16
5.1: Overflow in BiNary AQGItIONcooooiiiiiiiiiiie ettt e e e e e e e saneees 16
5.2: COSSAP SAtUration IMOUEScooiiiiiiiiieiie ettt e e e e e et e e e e e e e e s anbe e e eeaaeeeanneee 16
Chapter 6: COSSAP Round-off Modes for Fixed-point Binary Multiplierscccocciiiiiiinnen. 20
Chapter 7: Editing VHDL-dumped Code Produced from COSSAPccocvvveeiiiiiiieeeeee e 25
7.1: Designing IR Filters in COSSAP Block Diagram EditOrccoovvciiiiieeeeiiiiciieeee e 25
7.2: Deficiencies in the VHDL code generated DY XVCQ ...ovveiriiiieiiiiiieiiiceeee e 27
7.2.1: Fixed-point Multiplier SUB-DIOCKScooiiiiiii e 27
7.2.2: Fixed-point Adder SUD-DIOCKSc.uuiiiiiiie e e 27
7.2.3: Fixed-point Delay SUD-DIOCKS. ... 29
7.3: Designing R FIlters iN VHDL........oo ittt e e e e 29
Chapter 8: Digital Filter Design Procedures Using High-level TOOIS..........cccccciiiiiiiiiiice 31
8.1: IR Digital Filter Design FIOWCNAITcoiiiiiiiiiiiiiiie e a e 31
8.2: Description Of FIOWCHAI StEPS......cciiiiiiiiiiiii st e e e s e e e e e s s e e e e e e e anees 33
Chapter 9: Results of 1IR Digital Filter Design Methodologycuvvveiiiiiiiiiiie e 40
9.1: 16-bit Butterworth LOwpass Filter DESIQN........c..uvuiiiieeeii e e e e e e 40
9.1.1: Parallel Structure Implementation of Butterworth Lowpass Filtercccccccovvcvvvveeeeeeinnnnee, 43
9.1.1.1: Results of Validation TESE H#1........cvviiieiiiierie e 57
9.1.1.2: Results of Validation TeSE H#2......ooeeiiiieiie et a e 61
9.1.2: Cascade Structure Implementation of Butterworth Lowpass Filter...........ccooocoiiieieiiinnnnne. 66
9.1.2.1: Results of Validation TeSE H#1......coiueieiieiie et a e 73
9.1.2.2: Results of Validation TeSE H#2......ooeiiiiieiie et a e 74
9.1.3: VHDL Synthesis of Parallel StrUCTUIe...........cuuuiiiiie e 78
9.1.4: VHDL Synthesis of Cascade SrUCIUEuuuiiiiiiiiiiiie e 79
Chapter 10: Results of Design Methodology for DSP Applicationscccccccveevviiciiiieeee e 80

10.1: Voice Communication Bandwidth RESUILSueeiiiiiiiiieiiiiee e 80

10.1.1: Parallel Structure of Butterworth Bandpass Filter RESUItSccccveeviviiiiienee e, 84
10.1.1.1: Results of Validation TeSt #L........ceiiii it a e b e 92
10.1.1.2: Results of Validation TeSt H2........eeiiii it a e 93
10.1.2: Cascade Structure of Butterworth Bandpass Filter Results.............cccccooiiiiiiiiiiiie, 97
10.1.2.1: Results of Validation TeSt #1........ooiii it 105
10.1.2.2: Results of Validation TeSt H#2........eoiiiiiiiiieiie e 106
10.2: Digital Video Bandwidth RESUILScooiiiiiiiiiiiiae e 109
10.2.1: Parallel Structure of Chebyshev Type Il Lowpass Filter Resultscccccceevvicvvnienn.n. 112
10.2.1.1: Results of Validation TeSE #L.......ccciiiiiiieieriie e 119
10.2.1.2: Results of Validation TESE #2........cccviiiiiieieiiee e 120
10.2.2: Cascade Structure of Chebyshev Type Il Lowpass Filter Results...........ccccceveevviiiviennn.n. 124
10.2.2.1: Results of Validation TSt #L........coiiiiiiiiieriee e 132
10.2.2.2: Results of Validation TESE #2........cccviiiiieiecie e 133
10.3: Data Communication and Imaging Bandwidth RESUIS ..., 136
10.3.1: Parallel Structure of Elliptic Bandpass Filter RESUILScooiiiiiiiiiiiiiieeeei, 139
10.3.2: Cascade Structure of Elliptic Bandpass Filter RESUISoooiiiieiiiiiiiiiiiiieee e 142
10.3.2.1: Results of Validation TeSt #L........ooiii i a e aneee e 150
10.3.2.2: Results of Validation TeSt #2........eiiii e 151
Chapter 11: Research Summary and FULUIE WOIK..........ceeeiiiiiiiiiiiiee e ssciiieeee e s ssciveee e e e e e 156
2T o] [T |- o] 0)Y/ 157
Appendix A: Generic VHDL L|brary .. 158
Appendix B: Additional Results of 3" order 16-bit Lowpass Butterworth Filter.............cccccccooei. 166
Appendix C: Pole/Zero Plots of 3 order 16-bit Lowpass Chebyshev Type | Filter..................... 181
Appendix D: Pole/Zero Plots of 3 order 16-bit Lowpass Chebyshev Type Il Filter.................... 184
Appendix E: Pole/Zero Plots of 3" order 16-bit Lowpass Elliptic Filter..........oooiiiiiiiiieeee, 187
Appendix F: Synthesis-ready VHDL Library (8-bit and 16-bit examples)..........ccccoceieiiiiiiiiennnn. 190
Appendix G: Synthesis Script Files for Sub-blocks (16-bit example)cccoiiiiiiiiiiiiiiiiiiiiennn. 193
ACKNOWIEAGEMENLSeeeieiiee e e e e s e e e e e e e s s ae e e e e e e s s snntaaeeeeeesesansrnneeeeeeans 196
LY TP O R PSPPSR 197

CHAPTER 1: Introduction

The purpose of this thesis research is to formulate a technically sound approach to designing Infinite
Impulse Response (lIR) digital filters using high-level modeling tools. The basic functional need for
filtering is to pass a range of frequencies while rejecting others. This need for filtering has many technical
uses in the digital signal processing (DSP) areas of data communications, imaging, digital video, and
voice communications. Digital signal processing techniques are being used to handle these demanding
challenges in digital communications system design.

Analog filters are continuous-time systems for which both the input and output are continuous-time
signals. Digital filters are discrete-time systems whose input and output are discrete-time signals. Digital
filters are implemented using electronic digital circuits that perform the operations of delay, multiplication,
and addition. Analog filters are implemented using resistors, inductors, capacitors, and, possibly,
amplifiers [Chirlian]. The values of these analog components can drift over time and their precision is
limited. In addition, especially when filtering takes place at low frequencies, inductors are often large and
heavy. The multiplier coefficients of digital filters are established by the circuitry and do not drift. The
precision of the multiplier values can be made as large as desired by increasing the complexity of the
circuitry. Digital filters can be implemented using integrated circuits so that the per unit cost of digital filter
construction is less than a comparable analog filter [Chirlian]. Tolerances and accuracy considerations
are important factors for both analog and digital signal processing. Digital signal processing provides
better control of accuracy requirements. Wide tolerances in analog filters make it extremely difficult for a
system designer to control the accuracy of an analog signal processing system. A system designer has
much better control of accuracy of digital systems in terms of word length, floating-point versus fixed-point
arithmetic, and other similar factors [Manolakis]. These are the major advantages of digital filters.

High-level modeling tools provide the ability to build and simulate ideal models. Once proper validation is
complete on these ideal models, the user can then migrate to lower levels of abstraction until an actual
real world model is designed. High-level modeling tools are the epitome of the top-down design concept
in which design first takes place with the basic functional knowledge of a system. With each level of
abstraction, validation is performed. High-level modeling tools are just beginning to be used throughout
industry and their application is continually growing especially in the DSP area where many modes of
communications are expanding. High-level modeling tools and validation significantly address this
complex expansion by introducing an ideal representation of a complicated network.

A high-productivity environment is needed to support development from system definition and algorithm
development to implementation and verification. An important key element deals with high-level modeling
and analysis tool sets. Two prominent DSP tool sets of this nature are COSSAP and SPW. These tools
allow fast, natural expression of single clock, multi-rate, and asynchronous systems; provide extremely
fast high-level simulations; and provide full support for hardware and software implementation and
verification at any abstract level. Another important DSP tool used for computation and visualization is the
software package called MATLAB. This DSP tool is a prominent problem-solving application used in both
universities and industry.

Another important key element in the aforementioned high-productivity environment deals with the
already-established, industrial move to use hardware description languages to document, simulate, and
synthesize an electronic system. The two prominent hardware description languages (HDLs) are VHDL
and Verilog. Both languages have the necessary constructs to support the modeling, simulation, and
synthesis of complicated digital systems. In addition, the benefits of making design specifications more
technology-independent, automating low-level details, and improving design quality make VHDL and
Verilog important tools for design.

Interfacing the two aforementioned key elements (HDLs and high-level tools) has significant technical
rewards in industry. Specifically, two key elements that have established, feasible interface-capabilities
are COSSAP and VHDL. Both these tools are heavily used in both universities and industry. COSSAP
and VHDL are linked in that COSSAP contains an extensive DSP library written in VHDL. For high-level

design, VHDL makes verification at any abstract level significantly easier especially when it comes to
synthesis.

Accuracy of results when comparing an ideal digital filter to an n-bit quantized digital filter is a major
concern of validation. For quantized digital filters, binary multiplication is the main source of round-off
errors. Therefore, quantized digital filters can never achieve 100% ideal accuracy due to fixed, binary
word sizes. Effective round-off procedures are needed to produce accuracy results that are close to the
100% accuracy rating of an ideal digital filter

Broad background knowledge of VHDL and synthesis, DSP digital filter techniques, the high-level tool
COSSAP, the software package MATLAB, and a UNIX workstation environment are paramount for a
successful realization of a digital filter design. Understanding of Synopsys synthesis tools is also equally
important. Synthesis tools provide the ability to map VHDL code to technology libraries at the structural
gate level. Suitable training time on the part of the designer must be attained to ensure an efficient and
optimized digital filter design.

This thesis will seek to address all of the aforementioned issues related to interfacing the high-level
modeling tool COSSAP and VHDL. The following chapters will attempt to provide a broad understanding
and methodology to IR fixed-point digital filter design. Chapter 2 discusses quantization formats and
guantization noise. This chapter also discusses finite-precision effects that are inherent in designing
guantized digital filters. Chapter 3 discusses the different digital filter structures associated with Infinite
Impulse Response (IIR) filter design. Special attention is paid to hardware considerations in terms of
binary adders and multipliers. Chapter 4 describes the different types of IIR digital filter design.
Characteristics of each filter design are discussed in terms of magnitude frequency response and other
frequency-related attributes. Chapter 5 addresses the saturation modes associated with the n-bit adder
sub-blocks when using the high-level modeling tool COSSAP. This chapter also discusses the reasoning
behind choosing the best saturation mode for the adder sub-blocks to be used for all future quantized
digital filter designs. Chapter 6 addresses the round-off modes associated with the n-bit multiplier sub-
blocks when using the high-level modeling tool COSSAP. Chapter 7 investigates ways to compensate for
the aforementioned tool deficiencies that are inherent in COSSAP when the tool produces VHDL-
generated code. Chapter 8 outlines the flowchart of the digital filter design procedures utilizing COSSAP
and VHDL. This extensive chapter is comprehensive and detailed to ensure a step-by-step approach to
designing an optimum digital filter. Chapter 9 shows results of the outlined design methodology, in
Chapter 8, for the various IR digital filter structure types. Chapter 10 shows results of the design
methodology for designing digital filters in the DSP areas of data communications, imaging, digital video,
and voice communications. Nominal nhumbers for bandwidths are used. The same cut-off frequency and
stopband frequency points used in Chapter 9 are also used in this chapter. Chapter 11 summarizes this
research with remarks and analytical conclusions. Future work is also discussed in regards to upgrading
the design process with other features.

CHAPTER 2: Quantization
2.1: Quantization

Quantization is the process in which a binary number with a finite number of bits represents a real
number. In the case of this research, the numbers are multiplier coefficients and 1/O signals of a specified
digital filter. Because of quantization, any arbitrarily specified multiplier coefficient will not be realized
100% accurately [Chirlian]. This is due to finite-precision effects. In digital filters, arithmetic operations are
performed with finite precision due to the use of fixed-size memory words or registers. Finite precision
dictates that multiplier coefficients exceeding their bit length limit must be truncated or rounded within the
number of significant bits allowed. An illustrative example would be trying to realize a multiplier coefficient
using only two bits to represent the magnitude. The only possible binary numbers would be as follows:

0002 = 0.0010
0012 = 0.2510
0102 = 0.5010
0112 = 0.7510

Thus, many decimal numbers lying in the range 0 to 1 cannot be represented 100% accurately. The
equation used to represent the quantization process is as follows:

Xq(n) = Q[x(n)] (Eqgn. 2.1)

The function Q[*] represents a b-bit quantizer, the variable x(n) represents the n™ ideal sample of infinite
precision, and the variable xq(n) represents the b-bit quantized result of the ideal sample x(n).

2.2: Quantization Noise

Because all decimal numbers within a specified range cannot be represented 100% accurately, inherent
errors occur. Even though increasing a word size directly increases the accuracy of the actual decimal-to-
bit representation, that error will always exist. In short, the error introduced in representing a decimal
number by a set of discrete value levels is called quantization error or quantization noise. The resulting
guantization noise is represented as a sequence Ey(n) defined as the difference between the quantized
value and the actual decimal value. The equation for this description is as follows:

Eq(n) = Xq(n) — x(n) (Egn. 2.2)

2.3: Two’s Complement Representation

Because of its unique representation of all numbers including zero, its wide use in a majority of computer
systems including digital filters, and its ease of implementation, the two’s complement notation is the
binary representation of choice for this thesis research. Using this form of binary representation, the most
significant bit (MSB) is the designated sign bit with binary zero denoting a positive number and binary one
denoting a negative number. Using a four-bit number, a brief illustrative example is as follows:

00112 = 310
11012 = -310

2.4: Two’s Complement Truncation

Using Equation 2.2 as reference, quantization error when truncating a two’'s complement number yields
the equations as follows:

Ei(n) = x¢(n) — x(n) (Eqgn. 2.3)
2P <=EF<=0 (Egn. 2.4)

The variables E;, b, and x(n) represent the truncated error, the number of bits expressing the fractional
value, and the truncated b-bit quantized result of the ideal sample x(n), respectively. For binary truncation
of a b-bit quantity, the resulting quantized magnitude will be smaller than the ideal sample. Figure 2.1
provides a statistical viewpoint of a probability density function (pdf) for truncation error. The x-axis, €, is
the error or noise. The y-axis, p(e), is the pdf of the error or noise [Oppenheim2].

2.5: Two’s Complement Rounding

Considering the quantization noise due to the rounding of a number, the resulting error is noticeably
smaller than truncation. Again using Equation 2.2 as reference, quantization error when rounding a two’s
complement number yields the equations as follows:

E/(n) =bxr(n) —Xx(n)) (Eqgn. 2.5)
-0.5%27 <= E, <= 0.5*2 (Eqgn. 2.6)

The variables E,, b, and x,(n) represent the rounded error, the number of bits expressing the fractional
value, and the rounded b-bit quantized result of the ideal sample x(n), respectively. Binary rounding
requires that for a b-bit quantization, the b+1"™ bit is needed to mathematically decide whether or not to
add binary one to the precedinq1 b-bits. If the b+1™ bit is binary zero, then binary one will not be added to
the preceding b-bits. If the b+1" bit is binary one, then binary one will be added to the preceding b-bits.
As a consequence, the quantization error range of rounding is mathematically smaller than its truncation
counterpart. Figure 2.1 provides a statistical viewpoint of a probability density function (pdf) for rounded
error. Notice the error mean, me, is different in both quantization methods. On the other hand, error
variance, o.°, of both guantization methods are identical. It is stated here again that the term error and
noise are used interchangeably throughout this thesis. The x-axis, e, is the error or noise. The y-axis,
p(e), is the pdf of the error or noise [Oppenheim2].

A pE) p(e)a
1/2°
1/2°
e e
< g _ > < s) » >
- Truncation : Rounding 2772
Me = -0.5%2 Me=0
o2 =2%/12 ol =2%/12

Fig. 2.1. Probability density function for quantization error.

2.6: Finite-Precision Effects

In DSP hardware, implementations are either in fixed-point or floating-point format. In fixed-point
representation, a decimal number is represented as a string of digits with an implied decimal point. In this
format, the digits to the left of the decimal point represent the integer part of the number, and the digits to
the right of the decimal point represent the fractional part of the number. Fixed-point representation allows
a user to cover a range of numbers Xmax - Xmin With a resolution as follows:

5 = (Xmax - Xmin) / (2° = 1) (Eqn. 2.7)

In Equation 2.7, the term 2" is the number of levels, b is the number of bits representing both the integer
and fractional values, and >0k the resolution. The variables Xmax and X, can either be a positive or
negative decimal value represented by b bits. Figure 2.1 is an illustrative example of a 3-bit two’s
complement implementation of a counting wheel. For this example, Xnax and X, are represented by the
integers 3 and —4, respectively, and the number of levels is 8. The resolution, 3, is 1. To demonstrate the
flexibility of Equation 2.7, Figure 2.2 is another example of a 3-bit two’s complement implementation of a
counting wheel with the exception that this is a fixed-point fractional example. For this example, Xuin and
Xmax are represented by the decimals -1.00 and 0.75, respectively, and the number of levels is 8. The
resolution, 3, is 0.25 for this case. A basic characteristic of fixed-point representation is that the resolution
is fixed [Manolakis].

Fig. 2.1. Integer counting wheel for 3-bit two’s complement numbers.

0.00

-0.25

-0.50 0.50

-1.00

Fig. 2.2. Fractional counting wheel for 3-bit two’s complement numbers.

Quantization stepsize is defined by the equation as follows:
g=2" (Eqgn. 2.8)

For this equation, the variables q and b represent the quantization stepsize and the number of bits
expressing the fractional value, respectively. For Figure 2.1, the quantization stepsize is 1 because b is
equal to zero. For Figure 2.2, the quantization stepsize is 0.25 because b is equal to 2.

In floating-point representation, in order to cover a larger dynamic range, the resolution varies across the
range. For DSP hardware implementation, fixed-point representation requires less complicated circuitry
and is more common in terms of use. Fixed-point representation will be investigated for this research.

2.7: Limit-Cycle Oscillations

Because of coefficient quantization and rounding (or truncation) of multiplier sub-block outputs, recursive
systems like IIR digital filters experience nonlinear effects at the filter output in response to an input
impulse. Ideally, a digital filter of infinite precision will exponentially decay to zero at the filter output when
the input is an impulse. Because of the aforementioned quantization, the output of an n-bit quantized
digital filter will either oscillate and be confined to a range of values or remain at a fixed value. In the case
of the former, the range of values is called the dead band. An illustrative example of limit-cycle
oscillations is the difference equation as follows:

y(n) = x(n) - 0.7y(n-1) (Egn. 2.9)

Assuming an input impulse, x(0) = 15 and x(n) = 0 for all other values of n, Table 2-1 shows the filter
response for an ideal and quantized output. The first column is the sample number, the second column is
the ideal input impulse, the third column the ideal output, and the fourth column the quantized output
rounded to the nearest integer. The ideal output continues to decay while the quantized output oscillates
between —1 and 1. If the minus sign in Equation 2.9 were replaced with a plus sign, a similar result would
occur with the exception that the quantized output would remain fixed at +1 and would not decay
[Chirlian].

n x(n) y(n) rounded y(n)
0 15 15 15
1 0 -10.5 -11
2 0 7.35 8
3 0 -5.145 -6
4 0 3.6015 4
5 0 -2.52105 -3
6 0 1.764735 2
7 0 -1.2353145 -1
8 0 0.86472015 1
9 0 -0.605304105 -1
10 0 0.4237128735 1

Table 2-1. Response to digital filter of Equation 2.9 for ideal and quantized outputs.

Limit-cycle oscillations are caused by quantization. This type of non-linear effect becomes more
significant when designing filters of high order. The solution to this predicament is to decompose the
high-order filter into 1% and 2" order sub-blocks with the 2™ order sub-blocks having the higher design
priority. Such a design format significantly reduces limit-cycle oscillations [Rabiner].

CHAPTER 3: lIR Digital Filter Structures
3.1: Linear Time-Invariant Systems

Digital filters are discrete-time systems. A discrete-time system is essentially an algorithm for converting
an input sequence into an output sequence. The input signal x(n) is transformed by the system into a
signal y(n), and is expressed by the general relationship between x(n) and y(n) as follows:

y(n) = H[x(n)] (Egn. 3.1)

The symbol H denotes the transformation performed by the system on x(n) to produce y(n). Figure 3.1
graphically illustrates the mathematical relationship of Equation 3.1.

vvvvvvvvvvvvvvvvvvvvvvvvv (Tl tlel

x(n) Discrete-Time System y(n)
input H

output

Fig. 3.1. Block diagram representation of a discrete-time system.

The type of discrete-time system focused upon by this research is linear, time-invariant (LTI). A linear
system is defined in the following manner. If x;(n) and x,(n) are specific inputs to a linear system and y;(n)
and y,(n) are the respective outputs, then if the sequence ax;(n)+bx,(n) is applied to the input, the
sequence ay;(n)+by,(n) is obtained at the output, where a and b are arbitrary constants. In a time-
invariant system, if the input sequence x(n) produces an output sequence y(n), then the input sequence
x(n-ng) produces the output sequence y(n-no) for all ng [Gold].

3.2: Difference Equations and Recursive Systems

A linear, time-invariant system can have its input-output relationship mathematically described by a
difference equation containing constant coefficients. Difference equations are a subset of the class of LTI
systems. These equations are extremely important because they offer insights into efficient ways of
designing LTI systems. Linear difference equations with constant coefficients are also known as recursive
systems. A recursive system is defined as a system whose output y(n) at time n depends on any number
of past output values [Manolakis]. To generally understand the input-output relationship, consider the
simple difference equation (first-order recursive system) with the constant a as follows:

y(n) = ay(n-1) + x(n)

Figure 3.2 shows the block diagram and successive values of y(n) for all n=0 beginning with y(0).
Assuming the initial condition y(-1) is zero, the computed steps of y(n) illustrates the recursive nature of
difference equations in that present values are strongly dependent on past values. Another example of a
recursive system is Equation 2.9.

y(0) =ay(-1) + x(0)
y(1) = ay(0) + x(1) = a’y(-1) + ax(0) + x(1)
y(2) = ay(1) + x(2) = a’y(-1) + a’(0) +ax(1) + x(2)

y(n) = ay(n-l) + x(n)
=a"y(-1) + a'%(0) + a™x (1) +.+ ax(n-1) + x(n)

X(n) >D p Y(n)

"

a

Fig. 3.2. Block diagram of a simple first-order recursive system.

3.3: Infinite Impulse Response (IIR) Digital Filters

IIR digital filters are recursive systems that involve fewer design parameters, less memory requirements,
and lower computational complexity than finite impulse response (FIR) digital filters. These are primary
advantages of implementing IIR digital filters. If there is no requirement for a linear-phase characteristic
within the passband of a digital filter, the aforementioned advantages make IIR filters more attractive to a
system designer [Manolakis]. This type of recursive system belongs to an important class of linear time-
invariant discrete-time systems characterized by the general linear constant-coefficient difference
equation as follows:

N M
y(n) = 2 ay(n-k) +§ bix(n-k) (Egn. 3.2)
k=1 k=0

Transforming this difference equation into the z-domain by means of the z-transform, such a class of
linear time-invariant discrete-time systems is also characterized by the transfer function as follows:

M
2 bz ™®
k=0
N
1+ 2 az™
k=1

H(z) = (Egn. 3.3)

Different structures of IIR filters are described by the difference equation in Equation 3.2. These
structures are referred to as direct-form realizations. It should be noted that although these structures are
different from one another by design, they are all functionally equivalent. Three prominent direct-form
realizations are the Direct-Form I, the Direct-Form Il, and the Transposed Direct-Form Il structures. In
terms of hardware implementation, the Direct-Form | structure requires M+N+1 multiplications, M+N
additions, and M+N+1 memory locations. Figure 3.3 depicts this structure as implemented from Equation
3.3.

x(n)

>y(n)

| bM -an |
> <

Fig. 3.3. Direct-Form | Realization.

The Direct-Form Il structures require M+N+1 multiplications, M+N additions, and the maximum of {M,N}
memory locations. Because the Direct-Form Il structure requires less memory locations than the Direct-
Form | structure, it is referred to as being canonic. Figure 3.4 shows an IIR digital filter in Direct-Form II
format.

x(n b n
(n) > " g & >Y()
z* o
-a
—— >
Z-l
- b2
< —>
Z-l
-as b3
< P
QL(-an-1 b1 *L
,1
-an | bwm

<

Fig. 3.4. Direct-Form Il Realization.

Mathematical manipulation of Equation 3.2 based on Figure 3.4 yields the Transposed Direct-Form I
structure. This structure requires the same number of multiplications, additions, and memory locations as
the original Direct-Form Il structure. Both Direct-Form |l structures are more design-preferable compared
to the Direct-Form | structure. This is because of the smaller number of memory locations required in their
implementation. Figure 3.5 shows an example of the Transposed Direct-Form Il structure. Because of this
fact, for hardware considerations of this research, the Transposed Direct-Form Il structure is the structure
of choice for designing quantized, fixed-point IIR digital filters.

x(n) > ’i >y(n)

_al

4
bm-1 -aN-1
> Pi{ <
21
Y e @

-1 M-1 -M
bo + b]_Z + ...+ bM.lZ + bMZ

T+azt+ .. +ag "Vt +ayz”

Fig. 3.5. Transposed Direct-Form Il Structure and Transfer Function H(z).

3.4: Hardware Considerations

Due to finite-precision arithmetic in the realization of n-bit quantized digital filters, nonlinear effects make it
extremely difficult to both analyze precisely and predict with 100% accuracy filter performance. Fixed-
point realization of digital filters makes quantization effects very important. An example of an unwanted
nonlinear effect is limit-cycle oscillations as described in section 2.7 of this thesis. Nonlinear effects at the
filter output become a greater problem with high-order filters. As again stated in section 2.7, the solutlon
to significantly minimize nonlinear effects is to decompose digital filters with orders greater than 2 |nto 2"
order sub-blocks. There are two methods in which decomposing high-order digital filters into 2" order
sub-blocks can achieve the goal of m|n|m|zat|on of nonlinear effects. These methods are the parallel-form
structure and cascade-form structure. All 2" order sub-blocks are in Transposed Direct-Form Il format for
this research.

3.4.1: Parallel-Form Structure
Parallel-form realization of an IR digital filter can be obtained by performing a partial-fraction expansion

on the transfer function H(z). Performing this mathematical function produces the resulting transfer
function in the form as follows:

10

K
H(z) = C + D Hi(2) (Eqn. 3.4)
k=1

The function Hy(z) is in 2" order form as follows:

bio + biaz™
H(z) = ——0 ™ Da? (Eqn. 3.5)

1+ aklz'l + akzz'z

It should be noted that the transfer functions in Equation 3.4 and Equation 3.3 are functionally equivalent
in that both are ideal representations of an infinite-precision filter. In Equation 3.4, the constant K is
defined as the integer part of (N+1)/2. The constant N is the same constant N in Equation 3.3. Transfer
function H(z) is generally composed of poles and coefficients (residues) of the partial-fraction expansion.
A more direct result of the partial-fraction expansion of H(z) (Eqn. 3.4) yields the functional equivalent as
follows:

N
H@z) =C+)
k=1

L_l (Eqn. 3.6)

1-pz

The variables px and Ay stand for the poles and residues, respectively, in the partial-fraction expansion.
The constant C is the same as the variable used in Equation 3.4. If N is odd then C = 0. If N is even then
C = by/ay. Figure 3.6 graphically illustrates a parallel-form structure of an IIR digital filter. The Transposed
Direct-Form Il realization of each 2" order sub-block is illustrated in Figure 3.7 [Manolakis].

C
>

——» Hiu(2)

——» HA2) —»0

——» H(@) Pi » y(n)

Fig. 3.6. Parallel-Form Structure of an IIR Digital Filter.

11

x(n) > ’i ».(n)

b f -A

T -Ak2
<

Fig. 3.7. Structure of 2" order section of parallel-form structure.

3.4.2: Cascade-Form Structure

Cascade-form realization of an IR digital f||ter can be obtained by performing mathematical factoring on
the transfer function H(z) into a cascade of 2" ¢ order sub-blocks. The resulting transfer function can then

be expressed as
K

HE@) = [TH@) (Eqn. 3.7)
k=1
where K is the integer part of (N+1)/2 and Hy(z) has the 2" order form as follows:

+ bz t+ bz®
Mz = Dot bz +beZ (Eqn. 3.8)

1+ aklz'l + akzz_Z

Since this is a cascade system, the matter of grouping together a pair of complex-conjugate poles and a
pair of complex-conjugate zeros becomes extremely critical. The output of a quantized digital filter is
strongly dependent on the sequential ordering of the K sub-blocks as well as the exact way in which
numerator and denominator sections are paired together. Arbitrarily grouping these terms can be
performed on the part of the system designer but at the cost of a potentially high output noise variance.
To produce an optimum quantized digital filter, a methodology must be applied in terms of grouping the
terms. An established methodology used by this research is as follows:

i. Calculate the poles and zeros of the overall transfer function H(z).

ii. Pick the pole with the largest magnitude and the nearest zero. Choose them
and their complex conjugate values for the first 2" ? order sub-block (section).

iii. Proceed similarly for the next sub-block (section) with the remaining poles and
zeros. Repeat accordingly with the remaining sections.

The above 3-step methodology ensures minimization of quantized round-off noise produced by the n-bit
multiplier sub-blocks [Gold]. Flgure 3 8 portray the general form of the cascade structure. The Transposed
Direct-Form Il realization of each 2" order sub-block is illustrated in Figure 3.9 [Manolakis].

X(n)=x1(n) X2(Nn) Xk(n)
——p Hi(z) ———» HA2) He(z) —»
y1(n) y2(n) y(n)

Fig. 3.8. Cascade-Form Structure of an IIR Digital Filter.

12

xi(N) > K* P (N)=Xice1(N)
ST
b1 f -8y
> P?‘ <
ST
bio $ -ak2
> <

Fig. 3.9. Structure of 2™ order section of cascade-form structure.

13

CHAPTER 4: Digital Filter Designs

This thesis investigates four different digital designs that each have unique properties in terms of
magnitude responses in the pass band, stop band, and transition band regions. These four designs are
called Butterworth, Chebyshev |, Chebyshev II, and Elliptic filters [Jacksonl]. For this research, the cutoff
and stop band frequencies on the magnitude response for these filter designs are defined to be the -3dB
point and the -40dB point, respectively.

Butterworth filters have magnitude responses that are “maximally flat” in both the pass and stop bands.
The rolloff rate for these designs are typically low and not steep. For this research, rolloff rate is defined in
the transition band region, and is described as the rate in which the transition is made from the cutoff
frequency to the stop band frequency or vice-versa depending on the type of filter being designed (i.e.:
lowpass, highpass, bandpass). If the type of filter being designed is lowpass, the rolloff is from the cutoff
frequency to the stop band frequency. If the type of filter being designed is highpass, the rolloff is from the
stop band frequency to the cutoff frequency. If the type of filter being designed is bandpass, the rolloff is
both from the first stop band frequency to the first cutoff frequency and from the second cutoff frequency
to the second stop band frequency. For an ideal filter, the rolloff rate is infinite and has an infinite slope. In
addition, because there is an inverse relation between rolloff rate and width of transition band, a transition
band does not exist for an ideal filter. In other words, the width of the transition band is zero.

Chebyshev filters have shorter transition bands than Butterworth filters. Hence, the rolloff rate is greater
and the width of the transition band is significantly smaller. There are two different types of Chebyshev
filters. Chebyshev Type I filters have ripple in the pass band region and “flatness” in the stop band region.
Chebyshev Type Il filters have ripple in the stop band region and “flatness” in the pass band region.
Designing Type | provides better attenuation in the stop band region while designing Type |l provides less
signal distortion at the filter output. The system designer selects which type to use based on which band
region is more important.

Elliptic filters have the narrowest transition band compared to both the Butterworth and Chebyshev
designs. The cost of such a narrow band is ripple in both the pass and stop band regions.

Figure 4.1 illustrates the frequency magnitude response of three of the four digital filter designs. The

results are based on 32768 samples. Each filter is 5™ order and Table 4-1 shows the relative frequency
bandwidth of each design. A relative frequency of 0.5 is equal to half the digital filter sampling frequency.

14

iagrilude Responsas of Lowpass Diybal Fikers

1 - = g . T T T T -
i Buttaraszrh
* Eliplic
y Chshiicaley Thiga
naE- %
I'III

4 \ -3dB point

or ¢
g 0bF 1 J

1

E i
z 1
i_ DLE- |I B
B '-I
F !
=04l L i

nal i 1

!
b " .
N -40dB point
iR kY LY
i ¢
i i ¥ o j B RE R e —
1} ons n1 013 [] 1]] .35 o4 1]]
Nedates Frdquar: i

Fig. 4.1. Frequency magnitude response of Butterworth, Chebyshev Type I, and Elliptic Filters.

From the above figure, three important observations should be noted. First, in the stop band region,
attenuation using the Chebyshev Type | filter is better than both the Elliptic and Butterworth filters.
Second, the Butterworth filter introduces the least pass band distortion because the signal is flat in the
pass band. Thirdly, the Butterworth filter has the largest transition band while the Elliptic filter has the
smallest transition band.

Designh Type Cut-off Stopband Transition Width
(Rel. Frequency) (Rel. Frequency) (Rel. Frequency)

Butterworth 0.16666666666667 | 0.30800000000000 | 0.14133333333333
Chebyshev Type | | 0.18466666666667 | 0.28900000000000 | 0.10433333333333
Elliptic 0.17866666666667 | 0.21833333333333 | 0.03966666666667

Table 4-1. Relative frequency bandwidth results.

15

CHAPTER 5: COSSAP Saturation Modes for Fixed-point Binary Adders
5.1: Overflow in Binary Addition

When performing two’s complement, fixed-point addition, there is always the possibility of binary overflow.
Overflow is a consequence of using a finite number of bits. An illustrative example would be to use 4 bits
in two’'s complement notation. Assuming integer calculations, the resulting decimal numbers are in the
range of —8 through +7. When adding two 4-bit numbers, the chance of overflow exists. For example,
adding 0001, = 15 to 0111, = 7 yields 1000, = -83,. This is clearly an error and a simple example of
binary overflow using addition. Figure 5.1 illustrates a curve of output versus input of a 4-bit digital system
using two’s complement arithmetic. This figure shows the output for normal binary addition and binary
overflow. The x-axis represents the ideal decimal value (infinite-bit value) while the y-axis represents the
corresponding 4-bit two’'s complement value. Both axes are shown in base 10 for better illustration.
Ideally, for an infinite-bit adder, there is no overflow and Figure 5.1 would have a one-to-one ratio (i.e.: a
slope of 1) going to infinity in both directions from the origin.

y(n)
,,,,,, Y 7 °
6 L
R o
4 ®
3 @
2 @
1
@
937-5-513231 Lz:d"("BX(n)
=1
® =2
o -3
o -4
® =b.
® -6.
' 1.
’ -8. ’ AAAAAAAAAAA

Fig. 5.1. Overflow in a 4-bit two’s complement digital system.

5.2: COSSAP Saturation Modes

The DSP library in COSSAP contains overflow-correcting algorithms for n-bit fixed-point adders. These
algorithms generally handle overflow by putting the output of an n-bit adder into a saturation mode.
Depending on the values of the n-bit fixed-point inputs, the saturation mode will put the output of the
adder to either its binary maximum or binary minimum two’s complement n-bit representation. For the
above case where 0001, = 1,5 was added to 0111, = 7,9, the resulting n-bit output, depending on the
COSSAP saturation mode, would be 0111, = 7;0. The output is clipped to the maximum two’s
complement 4-bit representation. The output is saturated. This is analogous to saturation in analog
systems. COSSAP contains 3 saturation modes designed specifically for their n-bit fixed-point adders.
The saturation modes available in the COSSAP DSP library are as follows:
SaturationMode =0 : truncation of upper (most significant) bits

16

SaturationMode =1 : truncation of upper (most significant) bits and clipping to
minimum or maximum value

SaturationMode =2 : truncation of upper (most significant) bits and
symmetrical clipping (to minimum+1 or maximum value)

Figures 5.2 through 5.4 show curves of output versus input of 4-bit two’s complement numbers in integer
format. Each figure shows what the output would be for a specific saturation mode. The x-axis represents
the ideal decimal value (infinite-bit value) in the range of —10 to +10 in unit increments. The y-axis
represents the corresponding 4-bit two’s complement value. Both axes are shown in base 10 for better
illustration.

Fiod of COSE AP 4-BE Z-ingul Adder Resuls
o T T T T T T T ¥

Saturalionkiade = 0 |

COXSRAP 4-bit Owtput

=4 .

Vg al e

Fig. 5.2. Two's complement output of 4-bit fixed-point adder in the mode as follows:
SaturationMode = 0

17

Selurslion Woos =1 |

"
-

CIRTRTR TR IR TR TN TEVE - RTRTRTRTRT TTR INTRTRTY NTRTRIRT]
H = 4
i
i
i
5

Fig. 5.3. Two's complement output of 4-bit fixed-point adder in the mode as follows:
SaturationMode = 1

18

Fi#l of COESAP 481 2- npll Adsd Resuils

1 T T T I I
& Eaxjursioekdsds « 7
u - =
El #]
i * -
a - -
#
x i . -
-]
L] ®
E (Il S & —
%
% w
o -2
-
A H]
= &
=10 1 1 A L 1 i L 1 1
-1l =0 =B -4 =3 1] L 4 L] a 1a
ioaial Oulpui

Fig. 5.4. Two’s complement output of 4-bit fixed-point adder in the mode as follows:
SaturationMode = 2

The performance criterion used to determine which of the 3 saturation modes is the best is the equation
as follows:

P. = aez + me2 (Egn. 5.1)

This eqzuation defines the error sequence between the ideal and quantized results. The variables Pe, aez,
and m.” stand for the round-off noise power, the error variance, and the error mean, respectively [Bailey].
Table 5-1 shows the round-off noise power results for each of the three COSSAP saturation modes.
Saturation Mode 1 was chosen for this research to minimize the round-off noise power. This mode puts
the n-bit fixed-point adder into either its binary minimum or binary maximum when an n-bit fixed-point
overflow is computed.

Saturation Mode Round-off Noise Power (P,)
0 4.018932970521540e+03
1 0.88265306122449
2 1.81834467120181

Table 5-1. Round-off power results of COSSAP saturation modes.

19

CHAPTER 6: COSSAP Round-off Modes for Fixed-point Binary Multipliers

Quantized multiplier sub-blocks are the source of noise in digital filters [Chirlian]. The DSP library in
COSSAP contains multiplier sub-blocks that can be programmed to one of four round-off modes. These
modes specify the type of arithmetic n-bit rounding at the multiplier output. These round-off modes are
listed as follows:

RoundMode =0 : truncation of lower (least significant) bits
RoundMode =1 : mathematical rounding
RoundMode =2 : symmetrical rounding
RoundMode = 3 : truncation to zero (symmetrical truncation)
truncation of absolute value and correction of the sign

Figures 6.1 through 6.4 show an illustrative example of the output of an 8-bit fixed-point multiplier in the
various COSSAP round-off modes. The 8-bit input into the four different multipliers are the same. The
input is an arbitrary sinusoid within the magnitude range of the 8 bits. The implied binary point is between
the second and third bits. Using two’s complement representation, the range of the 8 bits is [-2, 2-2'6]. The
output of the multiplier is 8 bits wide and has the same fixed-point format as the input. The 8-bit constant
in the multiplier is 00.101110, = 0.718754,. Each of the four multiplier sub-blocks is in stand-alone mode,
and each figure shows the MATLAB output and the COSSAP output for the corresponding COSSAP
round-off mode. Because of its floating-point precision, the software package MATLAB will be used as a
source of ideal comparison. MATLAB multiplies the 8-bit input and the 8-bit constant to produce a
floating-point number. COSSAP multiplies the 8-bit input and the 8-bit constant to produce an 8-bit output.
The aforementioned arithmetic error sequence is in reference to the error between MATLAB's floating-
point precision (ideal case) and COSSAP’s 8-bit finite-precision (quantized case). Throughout this thesis,
the terms ideal and unquantized will be used interchangeably. The DSP library in COSSAP provides the
designer the unique ability to define the binary word length of the input and the output. This programming
property of COSSAP is true for both n-bit adder and n-bit multiplier sub-blocks. This is extremely
important when designing recursive systems like IIR digital filters where feedback loops play critical
computational roles.

20

- :
e, ..-.I.I.l.ul.wﬂ_h.ui..-..!rlu-.l_l.l._.____n._..l.l.-“ltl va s
3 1 -.ll-alr_....r-.-.__....

=0.

Fig. 6.1. Two's complement output of 8-bit fixed-point multiplier with RoundMode

21

Fig. 6.2. Two's complement output of 8-bit fixed-point multiplier with RoundMode = 1.

22

[IR -

— - Digial Muligier Oupd ﬁh
DE3AF)

+ Dl Muighar Oulput

B T T, TP T e PP

Rsireniy g, H

sk A AR

2.

23

Fig. 6.3. Two's complement output of 8-bit fixed-point multiplier with RoundMode

Plaly of QOGSAF aned MATLAR Sulliplen Re B Baundkiads = J)

1 1 T T ﬁ. T — I
it Dy ibal PAuiighsr Duipul FAATLAE}
ﬁ ;i!l, {:—I ﬂ {1|_ # Dgnluzl:;m- ‘:u:un:\;l:"ii.ﬂn
f 3 f 4 iy Ft Es I 1 R :
ST AT TR AL I ek
-1 R fod I : et i ol | 20
!- I 1 -I ¥ -I I ¥ ' | H 4 : 1 " '!
1 3 i P ' H 1 ¥ b 4 4 1 i T
¢ 1' - I f] |: !' l 1 I E & I b !
1] i % ¥ } i 1 i L I 1 i ¢ t
r & r 4 ' b N Lt {1 P
nsH-- 3 [t Loy foccench g oo ety i...} I.gd
H d 1 4] . 4 ¢ 1 _| % | 1 i -
; l I k F L] r] }
E L 1] L t 1 rl : [v 1 4 :] X
- SESEEEIEIE T SN A I R :
¥ 1] 1]] 4 h) L]
i AEIRTRIE IR I AN
$ 0 1 ' t L 1 L | , [1 i : |
E" H H (] _Ir L 1 1 I 5 : : H 1]
E] L 4 ! " i
BB THERIITEEIIEER IR
& i £ 7 . g4 1 1] R ;
A8 i 4 . t: 4 | bt 1i4 H
=05 - 4 o i o ;I 1 i 1 1 1 4] 13 ;
i ; f I: l L 1 1 gy o H
1 ! 1 1 H ‘ + T ¥ T
[:1} 1 1 7 {id 1 ¢ P | ti] I
g £ - g3 b [4 1i2 :
1- 4 4 i] t " I‘ 1 -I i 13 t 1 ¥
$:1 ¥ 1 t 4 i3]] t] i .
-1k 1.0 | ¥ H B R :l N ki I t
Ve b E 1§ i : R i
33 t ! t 4 big Loz 14 : 3
1.] g ki ¥ if ; L
L i1 ' i ¥ A §]
]
v i G I 1"’ | H 1 'H 1 v |
100 20 230 4[] S00 a0 Tan 400 1] oo
cample 8 ni

Fig. 6.4. Two’'s complement output of 8-bit fixed-point multiplier with RoundMode = 3.

Table 6-1 shows the round-off noise power results for the 4 different COSSAP modes. Results are based
on 4096 samples. Based on Table 6-1, RoundMode = 2 is the best mode for designing an n-bit IIR digital
filter. However, in practice, this is not necessarily true. The above multiplier sub-blocks are set in stand-
alone mode for the purpose of analyzing the four COSSAP round-off modes. Because this research deals
with 1IR digital filter design, which are recursive systems, nonlinear effects due to the multipliers make it
extremely difficult to predict how the multiplier will behave. The level of difficulty substantially increases
when designing high-order filters with many multiplier sub-blocks. The only guaranteed solution is to
simulate the overall design and measure its performance in all 4 different round-off modes. This is an
effective approach.

Round-off Mode Round-off Noise Power (Pe)
0 6.113431873741523e-05
1 4.998328439872081e-08
2 4.827878486051140e-09
3 6.568585265585772e-07

Table 6-1. Round-off power results of COSSAP round-off modes.

24

CHAPTER 7: Editing VHDL-generated Code Produced from COSSAP
7.1: Designing IIR filters in COSSAP Block Diagram Editor

The designated DSP libraries used to produce VHDL code are the bittrue and radix_fxp libraries. As
stated in the introduction to this thesis, a broad background knowledge of the high-level tool COSSAP is
required. Figure 7.1 is an example of a 20-bit first-order lowpass digital filter designed using COSSAP’s
Block Diagram Editor. The design is a Transposed Direct-Form Il Structure. The sampling frequency and
cut-off frequency (-3dB point) are 2kHz and 200Hz, respectively. Based on this frequency information, the
guantized transfer function is as follows:

20=bit First-order Fixed=Point Lowpass Filter
sampling Frequency = 2kHz
Cul-olf Frequency = 200Hz

[MZ3
L >+t o b " s

(&L —
OIS M]
=t DIGE_oUT
4 z=1 +
piz0
¥ b1 3 ¥ & F-.-I.E'S.. Ll =al 4
M7 . kA0

0.2452373504638671875 + 0.2452373504638671875 z*
1 - 0.509525299072265625 z*

H(z) =

Fig. 7.1. 20-bit first-order lowpass digital filter.

As a point of reference to the reader, each sub-block in Figure 7.1 has an instance name. The instance
name is the letter M followed by a number. Instance names M5, M7, and M10 are 20-bit multiplier sub-
blocks. Instance names M22 and M23 are 20-bit adder sub-blocks. Instance name M20 is a delay sub-
block. This sub-block is basically an n-bit parallel shift register that stores past values to be used for
future computations. The adder and multiplier sub-blocks are located in the radix_fxp library. The delay
sub-block is located in the bittrue library. The adder and multiplier sub-blocks are combinational circuits
while the delay sub-block is a synchronous sequential circuit.

To produce VHDL code, the utility program xvcg in COSSAP must be run after the appropriate

compilation steps have been executed. The utility program xvcg generates code using the COSSAP HDL
Code Generator (VCG). Figure 7.2 shows the command window for this utility program.

25

File Code Settings Help
Netlist name (.v_ent) |1
Output directory
HDL Design i
Target HIL Code structure (RTL only)

Preserve hierarchy

~ Flatten

£

= %]

Fig. 7.2. Graphical window of the utility program xvcg.

The online tutorial of the utility program xvcg in COSSAP is available to the reader for a detailed
understanding on how to use this program. It is strongly suggested that the reader read this COSSAP
tutorial. Table 7-1 shows what options need to be followed to produce VHDL code.

Step # Action
1 Settings -> Set target -> Synopsys VHDL BC
2 Settings -> Set file structure -> File structure -> single file (excl. COSSAP packages)
3 Settings -> Set BC options -> Handshake signals -> no handshake
Settings -> Set BC options -> Pipeline options -> No pipeline
4 Code -> Create

Table 7-1. Steps to produce VHDL code for a digital filter.

These steps will generate a VHDL behavioral description of the digital filter in Figure 7.1. Step 1 produces
a VHDL behavioral architecture of the digital filter. Even though the final design is to be a structural
architecture, this initial behavioral architecture is extremely important. Step 2 excludes a copy of the
COSSAP VHDL packages in the resulting VHDL-generated code. These packages are required for
COSSAP binary arithmetic and should have already been analyzed using the current VHDL Synopsys
compiler. The resulting VHDL-generated code has use clauses that reference these packages. The use
clauses access these compiled packages from the designated COSSAP library and make their contents
visible. At the time of this writing, the designated library in COSSAP is called BITTRUE_VHDLSNPS. The
designer should know where the COSSAP packages are located for the bittrue and radix_fxp libraries.
Step 3 eliminates both handshaking and pipeline hardware aspects of this digital filter in Figure 7.1.
These two aspects were eliminated because the goal is to produce VHDL code that resembles the
Transposed Direct-Form Il Structure.

26

7.2: Deficiencies in the VHDL code generated by xvcg

The VHDL code generated by xvcg has two undesirable features. The first undesirable feature is that the
generated code produces registered inputs. The second undesirable feature is that it produces a design
that has an active-high reset. In the IIR digital filter shown in Figure 7.1, the only memory element is the
delay unit (parallel shift register). The input x(n) is not registered. In actuality, the input x(n) is the output
of an A/D converter. The outputs of A/D converters are typically registered (or latched). The values of x(n)
are strongly dependent on the A/D converter's sampling frequency, fs. The delay unit in Figure 7.1 must
operate at the same sampling frequency as the A/D converter. The registered input produced by xvcg
delays the computed output to y(n) by one clock cycle (period). To compensate for the first undesirable
feature, the designer must convert the code to resemble the Transposed Direct-Form Il Structure. The
first step in this technical endeavor is to design the sub-blocks individually using both the COSSAP Block
Diagram Editor (BDE) and xvcg. In VHDL, it is an established industry practice to start with behavioral
architectures (behavioral domain) and end with a single structural architecture (structural domain). This
practice employs the concept of modularity in which partitioning a top-level design allows the system
designer the ability to minimize design complexity and ensure that low-level components are correctly
functioning.

7.2.1: Fixed-point Multiplier Sub-blocks

Figure 7.3 illustrates a block diagram of instance M5 of Figure 7.1.

pic_IN [¥ b0 b > pig_ouT

M5

Fig. 7.3. COSSAP BDE of instance M5 of Figure 7.1.

Instance M5 is a 20-bit fixed-point multiplier sub-block. Executing xvcg produces VHDL code for both a
combinational and sequential implementation. Notice that instance M5 in Figure 7.1 is a purely
combinational circuit. The VHDL-generated code, excluding the comments, can be found in Appendix A.

The designer should convert this VHDL-generated code to resemble a combinational circuit by creating
another copy of the code and performing specific editing steps. This new copy is to be converted to a
VHDL code with generic parameters and be used as a VHDL library component. This conversion consists
of 5 editing steps the results of which can be found in Appendix A of this research. These editing steps
are a one-time procedure that covers future multiplier sub-block design and VHDL instantiation. For the
example in Figure 7.1, instances M7 and M10 are covered. Lastly, these edits remove the two
undesirable features stated earlier in section 7.2.

7.2.2: Fixed-point Adder Sub-blocks

Figure 7.4 illustrates a block diagram of instance M22 of Figure 7.1. Instance M22 is a 20-bit fixed-point
adder sub-block.

27

INo [> —

' 22

(B b ——_> outpuT
— ¥

Nt [

Fig. 7.4. COSSAP BDE of instance M22 of Figure 7.1.

The same 5-step editing methodology with minor changes is applied to this component. This generic
VHDL code is used as a library component. Step by step results can be found in Appendix A. The generic
code covers instance M22 as well. Functional verification is left to the designer. In Appendix A of the
resulting generic multiplier and generic adder fixed-point conversions, the reader should notice the
difference between the COSSAP function fxp_round(). For the adder, one of the parameters is the integer
0. Since the adder sub-blocks do not produce additional quantization noise [Chirlian], the default round-off
mode of 0 is sufficient. Changing this parameter value to any other COSSAP round-off mode (1, 2, or 3)
will not produce a difference at the adder output. It is noted here that this sub-section (7.2.2) deals with a
2-input fixed-point adder. For digital filters with orders greater than and equal to 2, adders with 3 inputs
are required. Figure 7.5 is a block diagram of a 20-bit 3-input fixed-point adder.

N [7 m‘_

IN1

bA1E

¥
+
Nz [v ' {_> ourtput

Fig. 7.5. COSSAP BDE of a 3-input fixed-point adder.

28

Following the aforementioned editing steps, the generic VHDL code can be found in Appendix A.

It is lastly stated here that the fixed-point adders used in this research (2 inputs and 3 inputs) have the
same integer/fraction bit allocations when it comes to fixed-point representation at the adder input. In
other words, the number of bits used to represent the integer value for one input is used for the second
input for a 2-input adder. Likewise, for a 3-input adder, the number of bits used to represent the integer
value for one input is used for the second and third inputs.

7.2.3: Fixed-point Delay Sub-blocks

Figure 7.6 illustrates a block diagram for instance M20 of Figure 7.1. This is a clock-dependent delay sub-
block.

o[o———— ¥ 21 > OUTPUT

k20

Fig. 7.6. COSSAP BDE of a 20-bit delay sub-block.

The VHDL-generated code after executing xvcg is left for the reader to produce. Through more efficient
editing techniques, the resulting generic VHDL code used for this research can be found in Appendix A.

As for the second feature mentioned in section 7.2 (active-high reset), the designer has the ability to
choose between designing either an active-high or active-low sub-block depending on design
specifications. In short, the designer is not confined to designing filters with active-high resets. As with the
multiplier and adder sub-blocks, functional verification of the delay sub-block is left to the designer. For
this research, all digital filter designs have an active-high reset.

7.3: Designing IIR Filters in VHDL

As stated in section 7.1, the design goal is to build a digital filter in the Transposed Direct-Form I
Structure. Section 7.2 dealt with how to convert specific VHDL-generated code for the sub-blocks into
general (generic) VHDL code. The designer now has the basic building blocks needed to design the
required digital filter as shown in Figure 7.1. This VHDL design is a generic structural architecture. An
example of a generic VHDL structural code is found in Appendix A.

Functional verification is left to the designer to ensure that the generic VHDL structural architecture
produces the same results as the initial VHDL-generated code. Because the multiplier sub-blocks are
almost always different from one another in the same structure in terms of multiplier coefficients, different
architectures of the same multiplier are required. Basically, the different architectures are based on the
constants with RoundProdWidth_ prefixes. These constants, which are produced by COSSAP’s utility
program xvcg, are crucial for the arithmetic functions used in the VHDL DSP library.

The designer must know which architecture is to be bound (configured) to which sub-block in the top-level
structural architecture. The designer can find this information from the initial VHDL-generated code of the
digital filter. Recall that this initial VHDL-generated code contains a behavioral architecture. The designer
simply has to search for that part of the code where these constants are declared. The section that has

29

the RoundProdWidth_ prefixes contains this information. These prefixes are directly linked to the
schematic of the digital filter in COSSAP’s Block Diagram Editor. For example, if a constant is named
RoundProdWidth_ M_M12_1 3, the designer knows that instance M12 is a multiplier sub-block and the
constant value declared there is associated with that particular sub-block. The manner in which to read
this information is simple. Sum the integers not including the n-bit length of the designed filter. For
example, if the design is a 20-bit digital filter and the constantis 1 + 5 + 20 — 1, the designer should sum
together the integers 1, 5, and —1 to compute the value 5. The designer would then know which generic
architecture needs to be bound (configured) to which multiplier sub-block in the top-level architecture.
Specifically, the generic declaration of this constant in the architecture to be bound for this particular
example is as follows:

constant RoundProdWdth M ML2 1 3 : INTEGER := BIN LENGIH + 5 ;

The variable BIN_LENGTH is obviously equal to 20 for this example. The same methodology is applied to
the adder sub-blocks. In this case, the constant that has the required information contains the
RoundWidth__ prefix.

This section demonstrates the benefit of choosing the Synopsys VHDL BC option in Step 1 of Table 7-1.
Although the other option, Synopsys VHDL RTL, contains the same necessary bounding information, the
actual gathering of the information requires a painstaking search of the VHDL-generated code on the part
of the designer.

30

CHAPTER 8: Digital Filter Design Procedures Using High-level Tools
8.1: IIR Digital Filter Design Flowchart

The following flowchart shows how to design n-bit fixed-point IIR digital filters using the high-level
modeling tools COSSAP and VHDL. As stated earlier in Chapter 6, the software package MATLAB is the
DSP tool used to compute high-precision results. The version of MATLAB used in this research was
version 5.3.0.10183 (R11). All computations in MATLAB were done in 64-bit double precision.
Performance and analysis are also measured using MATLAB.

STEP 1 Design IIR Filter in MATLAB In COSSAP, generate VHDL
+ » code for quantized digital filter STEP 11
Quantize ideal transfer function ¢
STEP 2 coefficients to desired n-bits Input same n-bit sinusoid from Step
using truncation method 10 into VHDL-generated quantized
¥ filter model. Save output response |STEP 12
in file.
Compute impulse response of
STEP 3 ideal transfer function *
- Compare COSSAP output (Step
¢ —p| 10) to VHDL-generated output [STEP 13
Compute frequency response of (Step 12)
STEP 4 | both unquantized and quantized
transfer functions
Compute errors in frequency
STFP 5 | response between unquantized
and quantized transfer functions
Error in
Quantize ideal transfer function r>1/c|>-| dl?all_'>
STEP 6 coefficients to desired n-bits '
using rounding method
+ Modify COSSAP model STEP 14
STEP 7 Repeat Steps 4 and 5 +
+ Convert VHDL-generated
Choose better of 2 quantization code into VHDL structural
STEP 8 _ types _ Ly archlt_ecture format. _Incluqie STEP 15
(truncation vs. rounding) generic parameters in entity
+ description.
STEP 9 In COSSAP, bUlId quantized + —)
digital filter Input same n-bit sinusoid
v from Step 10 into VHDL STEP 16
structural architecture. Save
In COSSAP, input and save in a IS output response in file.
file an n-bit sinusoid with
STEP 10 passband frequency. Save +
output response in file.
I

31

STEP 17

STEP 16

STEP 18

STEP 19

STEP 20

STEP 21

STEP 22

STEP 23

STEP 24

(continued)

Compare COSSAP output
response (Step 10) to VHDL
structural architecture output

response (Step 16)

No

Debug new VHDL structural

Same? Yes
No
Debug VHDL structural
architecture
Using VHDL architecture,
record impulse responses Pl

for all 4 COSSAP round-off
modes in multiplier sub-
blocks

v

Calculate best COSSAP
round-off mode based on
comparisons to ideal
impulse response (Step 3)

v

Perform validation tests on
guantized VHDL structural
architecture digital filter

v

Transform VHDL structural
architecture and entity into
VHDL code without any <

generic references or
declarations

v

Input same n-bit sinusoid
from Step 10 into new VHDL
structural code. Save output

response in file.

v

Compare COSSAP output
response (Step 10) to VHDL
new structural architecture
output response (Step 23)

32

architecture

v

Perform VHDL synthesis

v

Compare synthesized output
(Step 26) to generic
structural output (Step 15)
by performing last validation
test (Step 21)

No

DONE

STEP 25

STEP 26

STEP 27

8.2: Description of Flowchart Steps

This section provides a full description of each step outlined in the flowchart of the previous section. The
digital input signals used to test the performance of all the constructed digital filters throughout this
research are quantized to the amplitude range [-1,1). Performance and analysis are done on a total of
4096 samples.

Step 1
As stated numerously throughout this research, for the purpose of having a point of reference for the ideal

digital filter, the software package MATLAB is used as an ideal tool for comparison. The MATLAB digital
filter will represent the unquantized digital filter while the COSSAP digital filter will represent the quantized
digital filter. The former represents the ideal case while the latter is the two's complement, fixed-point
case. From a digital filter specification, an IIR digital filter is ideally designed using MATLAB. This step
produces the ideal digital filter transfer function, H(z). The ideal filter is in the form of Transposed Direct-
Form Il Structure of order n [Manolakis]. Figure 3.5 provides a graphical illustration of such a network
along with its transfer function. This step is not limited to the four following designs but the digital filter
could be derived from one of the designs as follows:

- Butterworth

- Chebyshev Type |

- Chebyshev Type Il

- Elliptic

The designer should verify if the desired specifications are met for parameters such as cut-off frequency
and stopband frequency. For the purposes of analysis, the cut-off and stopband frequency points used
throughout this research are -3dB and -40dB, respectively. Within the unit circle, pole/zero placement of
the ideal transfer function must also be observed by the designer for the purposes of filter stability.
Specifically, all poles must be inside the unit circle for the digital filter to be considered stable [Manolakis].

Step 2
With the availability of the ideal digital filter coefficients from the ideal transfer function, quantization is

required to produce an n-bit digital filter. As stated earlier, the coefficients of this n-bit digital filter are
represented in fixed-point two’s complement format. For the purposes of optimization and round-off noise
minimization, if the digital filter order is greater than 2, the ideal digital filter will be broken down into 2"
Order Transposed Direct-Form Il sub-blocks [Manolakis]. The coefficients of each respective sub-block
will be quantized according to the required n-bit length. Initially, all coefficients will have a truncated
guantized format. At the designer’s discretion, if the digital filter order is greater than 2, either the parallel
or cascade structural realization of the 2" Order Transposed Direct-Form Il sub-blocks described in
Chapter 3 is chosen.

To achieve optimum accuracy, the methodology in Table 8-1 is used to obtain an appropriate n-bit

representation. Note that the optimum n-bit representation depends on the magnitude of the ideal transfer
function coefficients.

33

Step # Action

1 Calculate the absolute value of each coefficient (if designing a parallel
structure, include the constant C if necessary)

2 Find the largest absolute value

3 Calculate the mathematical ceiling of that absolute value

4 Negate that value

5 Calculate the minimum number of bits required to represent that
negative integer

6 Calculate the remaining number of bits to be used to represent the
fraction

Table 8-1. Methodology to optimally represent n-bits in two’s
complement fixed-point format.

To illustrate the above methodology, assume that the four coefficients to be represented using 8 bits in
two's complement fixed-point format are -0.31871, 2.17328, 1.7014, and -3.19353. Table 8-2 shows the
results of each step in the methodology of Table 8-1.

Step # Action
1 0.31871, 2.17328, 1.7014, 3.19353
2 3.19353
3 4
4 -4
5 3 bits (100,)
6 8 — 3 =5 bits

Table 8-2. Tabular results of methodology outlined in Table 8-1.

Since the quantized input into the digital filter is in the range of [-1,1), the methodology outlined in Table
8-1 ensures that the output of the multiplier sub-blocks containing fixed-point coefficients do not overflow
(saturate). This is especially critical for the sub-block with the largest multiplier coefficient.

Step 3
Using MATLAB, record and save in a file the impulse response of the ideal transfer function H(z). The

impulse response is the time domain description of a filter. It provides information in regards to filter
stability. This information is compared to the quantized impulse responses of Step 19.

Steps 4 and 5
Quantitative comparisons of frequency responses between ideal and quantized transfer functions, H(z)

and Hgy(z), are computed. Basically, these are error calculations. Error calculations are computed for the
parameters as follows:
- Magnitude
- Phase (in radians)
- Group Delay:
- The time delay (in samples) that a signal component of frequency w undergoes
as it passes from the input to the output of the system.

The primary performance criterion is the magnitude error calculation.

34

Steps 6, 7, and 8
Steps 2 through 5 are repeated with the exception that rounded coefficients will be used instead of
truncated coefficients. The type that produces the smaller error magnitudes is selected for the design.

Step 9
Using COSSAP’s Block Diagram Editor, build the quantized, fixed-point digital filter. Set all adder and

multiplier sub-blocks with the correct saturation mode and an initial round-off mode of zero. The optimum
saturation mode was found in Chapter 5. The adder and multiplier sub-blocks are in COSSAP’s
radix_fxp library while the delay sub-block is found in the bittrue library. From the COSSAP tutorial on
the properties of the adder and multiplier sub-blocks in the radix_fxp library, the designer knows that
fractional coefficients are represented in decimal integer format. To briefly state the COSSAP algorithm
for the unique representation, the following example will illustrate. The binary fixed-point representation of
the quantized transfer function, Hq(z), is converted to its decimal counterpart. This decimal counterpart
consists of decimal coefficients. The fractional parts of these coefficients are then multiplied by 2*. The
variable x is the number of bits calculated in Step 6 in Table 8-1. Table 8-3 illustrates this procedure
through example. This example assumes 8 bits are used for quantization; 6 of the 8 bits are used to
represent the fractional part of the coefficient; the remaining 2 of the 8 bits are used to represent the
integer part of the coefficient; and the quantization type is rounding. This procedure is performed using
MATLAB.

Action Result
Ideal (unquantized) coefficients 1.41704
-0.46091
Fixed-point (quantized) 011011
coefficients: binary fraction part 100011
Fixed-point (quantized) 0.421875
coefficients: decimal fraction part -0.453125
COSSAP fractional 27
representation -29

Table 8-3. Tabular results of COSSAP’s n-bit fixed-point representation
of coefficients for multiplier sub-blocks.

Step 9.1: Digital filters of order 2 or less

If the digital filter being designed is no greater than order 2, the designer has to choose how many of the
n bits must be allocated to represent the integer portion of the outputs of the multiplier sub-blocks. The
rule of thumb used throughout this research stems from Steps 1 through 5 of Table 8-1. Using Figure 3.7
as an example, with the exception of the top-most adder sub-block, in which the output both is y(n) and
serves as input to the right-hand multiplier sub-blocks, the number calculated in Step 5 is the number
used for integer representation for the other adder sub-blocks. This number is used for both input and
output. The aforementioned top-most adder sub-block contains the same number for integer
representation but only for the inputs. The output is assigned 1 bit to represent the integer portion. This is
because the input signal into the digital filter is quantized to the amplitude range of [-1,1). If a passband
signal of amplitude range [-1,1) is input into the system, an output of amplitude range of [-1,1) is
expected. This is the fundamental reason behind assigning 1 bit to the integer portion of the particular
adder sub-block. Assigning 1 bit to the output of the top-most adder sub-block mathematically covers the
guantized range of [-1,1). It is repeated here at this point that it is assumed that the designer has read the
COSSAP tutorial on the properties of the adder and multiplier sub-blocks in COSSAP radix_fxp library.

Step 9.2: Parallel-structure for high-order filters

If the designer opts for a parallel structure for a digital filter greater than order 2, the designer must
choose a suitable number of bits to optimally represent the integer portion of the adder sub-blocks. The
rule of thumb in this case is to calculate the peak magnitude response of each transfer function. Include

35

the constant C if necessary. Next, calculate the mathematical ceiling of each peak magnitude number.
Finally, the designer must find the largest mathematical ceiling, negate that value, and calculate the
number of bits required to represent that number. This calculated number is now used for the adder sub-
blocks of all the transfer function sections for both input and output. The final summation adder sub-block
is assigned 1 bit to represent the integer portion at the output for reasons previously outlined in Step 9.1.

Step 9.3: Cascade-structure for high-order filters

If the designer opts for a cascade realization for a high-order filter greater than order 2, the designer must
apply the same procedure outlined in Step 9.2 except that special consideration must be paid to the
transfer function sections after the first stage. For the parallel structure in Step 9.2, the input into all the
transfer function sections is in the amplitude range of [-1,1). This is true only for the first stage in a
cascade structure, and not necessarily true for the succeeding stages. To remedy this situation, the
designer could choose one of two methodologies as follows:

Step 9.3.1: Cascade-structure Methodology #1

The designer should follow Steps 1 through 5 of Table 8-1 for each transfer function section. The number
calculated from Step 5 for each section is used for the integer representation for all the adder sub-blocks
of that particular cascade section. For the top-most adder sub-block in the last cascade stage, the output
is assigned 1 bit for reasons previously outlined in Step 9.1. Results of Chapter 10 will provide a better
illustration of this concept in terms of application.

Step 9.3.2: Cascade-structure Methodology #2

The designer should input a passband signal into the overall digital filter transfer function, H(z). Calculate
the resulting minimum and maximum values out of each cascade stage. Of these values, calculate the
absolute values; calculate the mathematical ceiling of each value; calculate the greatest of the
mathematical ceiling computations; negate this value; and calculate the number of bits needed to
represent this negated value. The first part of this methodology is complete. The next part entails all of the
coefficients of each cascade section. For each cascade section, follow Steps 1 through 5 of Table 8-1. At
this point, if there are n cascade stages, there should be n answers based on Step 5. Including the result
from the first part of this methodology, there are now n+1 answers. The designer should calculate the
largest number of these answers. This number calculated is to be used for the integer representation for
all the adder sub-blocks in the cascade structure. As always, for the top-most adder sub-block in the last
cascade stage, the output is assigned 1 bit for reasons previously outlined in Step 9.1. Results of Chapter
10 will provide a better illustration of this concept in terms of application.

Step 10

An n-bit input sinusoid will serve as a performance test for the quantized digital filter designed in
COSSAP. The sinusoid is required to have a passband frequency. This passband frequency serves as a
means to verify whether or not the fixed-point adder and multiplier sub-blocks are functioning optimally.
The passband frequency also tests to see if the filter can handle an input signal of quantized amplitude
range [-1,1) without any clipping at the positive or negative output peaks. The designer should use the
instance SIN_GEN_TBL in the DSP library in the Block Diagram Editor. Configuring the signal generator
sub-block requires that the designer do the following:

NumberOfitems = sampling frequency (Egn. 8.1)
NumberOfPeriods = signal frequency (Egn. 8.2)
Amplitude =1 (Eqgn. 8.3)
The variables NumberOfltems and NumberOfPeriods must have values. These variables are equivalent
to the sampling frequency and input signal frequency, respectively. Reading the COSSAP online
documentation of the signal generator SIN_GEN_TBL, this sub-block produces an output according to the
equation as follows:

Output = sin (21t* NumberOfPeriods / NumberOfltems * k) (Eqgn. 8.4)

36

The variable k is a non-negative integer starting from 0. Through careful mathematical manipulation, the
term 27*NumberOfPeriods/NumberOfitems*k is mathematically equivalent to the term 27#f/Fs*k. This is
the basis for equations 8.1 and 8.2. It is noted here that the value of Tt differs slightly in COSSAP and
MATLAB. Calculating to 20 significant places, the values of mtare as follows:

COSSAP: 1= 3.14159265358979433846
MATLAB: 1= 3.14159265358979311600

As stated earlier, analysis is performed on a total of 4096 samples.

On an extremely important note, it is stated here that, regardless if the passband signal input into the filter
built in COSSAP’s BDE meets the designer’s requirements, digital signals in both the transition and
stopband regions must be inputted into the filter. As always, MATLAB is used as the tool of comparison
for its research. These signals test to see how nonlinear effects are handled within the adder and
multiplier sub-blocks. If the filter output is not what is expected, the designer can apply the following
remedies depending on whether a parallel or cascade structure was designed.

Step 10.1: Parallel-structure Remedy

The designer can try assigning more bits to represent the integers in the adder sub-blocks. These integer
assignments should be done for both input and output sections of the fixed-point adders. The only integer
fixed-point section that should not be changed is the output integer section of the final summation adder
sub-block. This part of the adder sub-block keeps its 1 bit output integer assignment for reasons outlined
in Step 9.1.

If this measure does not fix the problem, the designer should consider re-designing the filter using more
bits. For example, the designer should consider going from a 20-bit design to a 24-bit design. If the filter
still cannot be realized using the measure prescribed, the designer could try other ad-hoc methods or
implementing the digital filter as a cascade structure. If nothing works, do not go to Step 11.

Step 10.2: Cascade-structure Remedy

Because of the ordering methodology of this cascade structure outlined in section 3.4.2, the designer
should first attempt increasing the number of bits by 1 for integer representation in the adder sub-blocks
of the last 2 cascade stages. If the output results still do not meet the designer's requirements, the
designer is still allowed to increase the integer bit representation by another bit. At the designer’'s
discretion, if the output results still do not meet design specifications, the designer should continue the
incremental bit increase to a point where a loss of quantized fractional accuracy is not drastic.

As with the parallel structure, if the problem is not fixed, the designer should consider re-designing the
filter using more bits. If the digital filter cannot be realized using the measures prescribed, the designer
could try other ad-hoc methods. If nothing works, do not go to Step 11.

Step 11
Run the utility program xvcg to produce a VHDL-generated code for the n-bit fixed-point digital filter. This

is found in COSSAP’s Block Diagram Editor (BDE) under Tools -> xvcg option.

Steps 12 through 14

Input the same digital input signal from Step 10 into the VHDL-generated code of Step 11 and verify that
both outputs are 100% identical. If outputs are dissimilar, the designer must perform debugging. Although
both models should be rechecked (COSSAP BDE and VHDL-generated code), the designer should first
look at the VHDL-generated code and verify that the VHDL testbench file used is correct.

Step 15
Convert the VHDL-generated code into a generic VHDL structural architecture model. This structural

code must resemble the Transposed Direct-Form Il structure. Include generic parameters for the
purposes of providing the designer the ability to pass round-off mode settings from the VHDL testbench
file. This style of coding using generics saves the designer considerable time from having to go into the
VHDL-generated code itself and manually finding the multiplier sub-blocks and changing their round-off

37

mode settings. This is especially true when it comes to very high-order digital filters. Chapter seven
provides a more detailed discussion.

Steps 16 through 18

The same input signal from Step 10 serves as input into the generic VHDL structural architecture. The
output from this generic structural code is compared to the output of Step 10. As before, the designer
should verify that both outputs are 100% identical. If dissimilar, debugging is in order. At this point, if
debugging is necessary, the error is more likely to be in the generic VHDL structural architecture. The
reason why debugging is not initially performed on the original VHDL-generated code is because it has
already been debugged and rechecked in Step 14 of the flowchart in section 8.1. The designer would
check to see if certain multiplier and adder sub-blocks were configured correctly.

Step 19
With the VHDL structural architecture with generics, four different impulse responses from four different

COSSAP round-off modes available in the multiplier sub-blocks are recorded and observed. Using the
ideal impulse response of the digital filter designed in MATLAB, each quantized impulse response will
have its round-off noise power calculated using Equation 5.1 and the COSSAP round-off mode that
produces the smallest round-off noise power will be performance criterion for the designed digital filter.
Other factors to be observed by the designer are the dead-band range (due to limit-cycle oscillations) and
the power spectral density of the error and filter output. Power spectral density is the distribution of signal
power as a function of frequency. The signal is assumed to be periodic.

Step 20
Calculate the best COSSAP round-off mode based on comparisons to the ideal impulse response from

Step 3. As stated in Step 19, the smallest round-off noise power is the performance criterion.

Step 21
Perform validation tests on the generic VHDL structural architecture using the ideal digital filter as a

source of comparison. These tests consist of output responses to input signals in the passband, transition
band, and stopband regions of the frequency spectrum of the digital filter. The performance criterion is the
round-off noise power. These tests are performed to confirm the legitimacy of the best round-off mode
calculated in Step 20. These tests are to be performed on all four COSSAP round-off modes for the
multiplier sub-blocks. Depending on the round-off noise power results, the designer could choose to
either use the established round-off mode calculated in Step 20 or another round-off mode that has
potentially better round-off noise power results.

Step 21.1: Validation Test #1
- Input digital signal in the passband region.
- Input digital signal in the transition band region.
- Input digital signal in the stopband region.

Step 21.2: Validation Test #2

Input a digital signal containing 2 frequencies. This signal is composed as follows:
- One low-power frequency in the passbhand region.
- One high-power frequency in the stopband region.

The high-power digital signal has an amplitude strength 10 times that of the low-power digital signal. This
test establishes how efficiently the quantized filter removes strong signals (noise) in the stopband region.

Step 22
Transform the generic VHDL structural architecture to make it synthesis-ready. This step requires the

designer to remove all generic declarations in both the top-level and low-level components. Removing
generics require the designer to “hardwire” necessary integer values into the multiplier and adder sub-
blocks. Results from Chapter 9 will provide a better demonstration through example.

38

Steps 23 through 25

The same input signal from Step 10 will serve as input into the new generic-free VHDL structural
architecture. The output of this structural code will be compared to the output of Step 10. As before, the
designer should verify that both outputs are 100% identical. If dissimilar, debugging is in order. At this
point, if debugging is necessary, the error is more likely to be in the generic-free VHDL structural
architecture. The reason why debugging is not initially performed on the original VHDL-generated code is
because it has already been debugged and rechecked in Step 14 of the flowchart.

Step 26
Perform VHDL synthesis. The designer should use script files to impose certain parameters and

constraints where applicable. Timing constraints are the most important parameters.

Step 27
Test the synthesized digital filter using validation test #2 from Step 21.2. The synthesized output is then to

be compared to the generic VHDL structural architecture result. These two results must have the same
round-off mode established in Step 21. The two results are expected to be exactly the same. If there are
any errors, the designer should first look at the script files used for synthesis as the primary source.

39

CHAPTER 9: Results of IIR Digital Filter Design Methodology

This chapter deals with the implementation of the flowchart methodology of Chapter 8. These results are
based on a 16-bit 3 order Butterworth fixed-point digital filter with a sampling frequency of 10kHz, a cut-
off frequency of 1.5kHz (-3dB point), and a stopband frequency point of -40dB. Results are based on
4096 samples. Because the filter order is greater than 2, both parallel and cascade structures were
investigated.

9.1: 16-bit Butterworth Lowpass Filter Design

The ideal overall transfer function of this filter is the following:

H(Z) — bo + b12'1+ b22_2+ b32_3

1+ a]_Z-l + azz_z + a3Z-3

The MATLAB floating-point representation of the coefficients, taken to 14 significant places, are as
follows:

by = 0.04953299635725

b; = 0.14859898907176

b, = 0.14859898907176

b; = 0.04953299635725

a; =-1.16191748367173

a, = 0.69594275578965

as =-0.13776130125989

Figures 9.1 through 9.4 show the frequency response of the above ideal transfer function. The frequency
response data consists of magnitude, phase, and group delay. As stated in section 8.2, group delay is
defined as the time delay (in samples) that a signal component of frequency w undergoes as it passes
from the input to the output of the system. It is the derivative of the phase with respect to the frequency.
This is not to be confused with the phase delay which is defined as the phase divided by the frequency
[Gold]. Group delay is a convenient measure of the linearity of the phase. Because this design is a
Butterworth filter, the passband and stopband regions are maximally flat. Due to the frequency points
mentioned in the beginning of this chapter, the resulting stopband frequency (-40dB point) is 3.726kHz.
The figures show the frequency response from OHz to the Nyquist frequency. The Nyquist frequency is
typically defined as half the sampling frequency, fs. The Nyquist frequency, in this case, is 5kHz. The
mentioning of Nyquist frequency introduces the concept of aliasing. If a bandlimited signal of frequency f,
is sampled at less than half the sampling frequency, a sampled high-frequency component could take the
identity of a low-frequency component [Oppenheim3]. All figures in this research are plotted from OHz to
the Nyquist frequency.

40

Lowpass Digital Butterwarth Filter

1 — . .
- | — Hiz): Digital Response (Unguantized) |
Y e A e P e A O]
E B cpreion prastinrdincios pod e i S ion past s PSS e o st
S
% B R R R R R e R R T E R E R L R R R R s R EE ey
8 5 | 5 |
L SRR R A R R s A
2 : : : .
=
 POVERPIN, (RYRTE. . (1 TR | TR NSRRI
o
= B e A R R R T R R TR R
1| SRS . UL U S
OO e i o N R e
1] 1000 2000 3000 4000

frequency, Hz

Fig. 9.1. MATLAB magnitude response of lowpass Butterworth filter.

Lowepass Digital Butterwarth Filter
0

-20

-40
-Gl
-&0

-100

-120

-140

-160

kMagnitude Response (dB)

LT S
.

o et e Gasien et st s st
0 1000 2000 3000 4000
frequency, Hz

Fig. 9.2. MATLAB magnitude response of lowpass Butterworth filter (dB).

4

Lowpass Digital Butterworth Filter
1] : . . .
: | — Hiz): Digital Response (Unguantized) |
e R N N Byt e ez e e o e T2, ot o s B e T e St o ol e e e Ba S ek B B

Fhase Response (radians)
o
on

1] 1000 2000 3000 4000
frequency, Hz

Fig. 9.3. MATLAB phase response of lowpass Butterworth filter (radians).

Lowpass Digital Butterwarth Filter

iz): Digital Response (Unguantized) |

Group Delay (samples)

0 1000 2000 3000 4000
frequency, Hz

Fig. 9.4. MATLAB group delay response of lowpass Butterworth filter.

42

9.1.1: Parallel Structure Implementation of Butterworth Lowpass Filter

Based on Equation 3.4 from Chapter 3, the ideal transfer function sections of a parallel structure
representation of the ideal overall transfer function are as follows:

H(2) = Hi(2) + Hz(2) (Eqn. 9.1)

H1(2): (Eqn. 9.2)
by =-0.96729224234444
b, = 0.56856011470698
b, = 0.00000000000000
a; =-0.83699778743883
a, = 0.42398568894741

Ha(2): (Eqn. 9.3)
by = 1.01682523870169
b, = 0.11682704781905
a; =-0.32491969623291

The constant C, in this case, is zero. The above transfer function sections are represented in MATLAB'’s
floating-point precision. These sections will next be transformed to fixed-point notation using the
methodology outlined in Table 8-1 in section 8.2. Using the truncation method, quantizing these sections
to the prescribed 16 bits with 2 bits for integer representation and 14 bits for fractional representation
yields the following:

Hiqi(2): (Eqn. 9.4)
by =-0.9672851562500000
b, = 0.5685424804687500
b, = 0.0000000000000000
a; = -0.8369750976562500
a, = 0.4239501953125000

Hoqi(2): (Eqn. 9.5)
bo = 1.0167846679687500
b; = 0.1168212890625000
a; = -0.3248901367187500

Figures 9.5 and 9.6 show the magnitude responses of both the unquantized and quantized transfer
function sections using the truncation method. These figures graphically show no discernible difference of
both transfer function sections.

43

Lowpass Digital Butterworth Filter

............. e —— H1E) Unguantized
: : — H1(2): Guantized

hMagnitude Response

! ! I
0 1000 2000 3000 4000
frequency, Hz

Fig. 9.5. MATLAB plot of magnitude response of transfer function section H;(z).

Lowpass Digital Butterworth Filter

16 e CA—— — HE(z): Unguantized
: : —— HZ(Z): Quantized

) 4 %
E Saea
o ; ; ! 5
=
o : ; : :
se 0 N R o, o, S) LA, Sy S 0 o A 5]
e o ¥ : : 4
=
=
BRUIII .. A S o B e e 4
i
E
0 | S e e R B L o
! ! ! .
0 1000 2000 3000 4000

frequency, Hz

Fig. 9.6. MATLAB plot of magnitude response of transfer function section H,(z).

Equations 9.6 and 9.7 show the quantized transfer function sections using the rounding method.

Hiqi(2): (Eqn. 9.6)
by =-0.9672851562500000
b, = 0.5685424804687500
b, = 0.0000000000000000
a; = -0.8369750976562500

a; = 0.4240112304687500

44

Hoq(2): (Eqn. 9.7)
bo = 1.0168457031250000
b; = 0.1168212890625000
a; =-0.3248901367187500

Table 9-1 illustrates the magnitude response error between both the truncated and rounding methods
when compared to the ideal. Equation 9.8 is the formula used for magnitude error calculation [Bailey].
Error calculations are performed up to the Nyquist frequency.

He(2) =|H(@)| -|Hy(2) (Eqn. 9.8)
Quantization Type H1e(2) H,e(2)
Truncated 0.00011580424293 0.00014215218294
Rounded 0.00008192099318 0.00005174444403

Table 9-1. Magnitude error calculation.

Based on the results of Table 9-1, the rounding method is the better of the two quantization types. Using
the rounded coefficients, the transformation to COSSAP coefficient representation is the next step in the
design methodology cycle. These coefficients are the multiplier coefficients used in the multiplier sub-
blocks. Table 9-2 illustrates the results of this transformation.

qur(z) qu,(Z)
bO_COSSAP = 0 -15848 bO_COSSAP = 1 276
bl_COSSAP = 0 9315 bl _COSSAP = 0 1914
b2_COSSAP = 0 0 al_COSSAP = 0 5323
al COSSAP = 0 13713
a2_CCSSAP = 0 - 6947

Table 9-2. COSSAP results of multiplier coefficient transformation.

Figure 9.7 shows the schematic of the parallel structure using COSSAP’s Block Diagram Editor (BDE).
Instances M5, M7, M8, M9, M10, M11, and M12 are the multiplier sub-blocks. Instances M16, M17, M22,
M23, M24, and M27 are the adder sub-blocks. Instances M14, M20, and M25 are the delay sub-blocks.
Figure 9.8 shows that according to Step 9.2 in Chapter 8, the adder sub-blocks with the exception of the
final summation sub-block, instance M23, are configured in COSSAP for a 16-bit fixed-point
representation of 2 bits for integer representation and 14 bits for fractional representation.

45

| S|] v ﬂ F L = '.
] | b
| M |
L I: H ; o 4 +

: | l- F ok
- F e ! |)
= F B . 1._ |
Fig. 9.7. COSSAP schematic of parallel structure.
Edit Help

Implementation

M

Set [[<select any cell(s) and edit value here>

Parameter Type [EXpression

o

Fig. 9.8. COSSAP configuration of adder sub-blocks (excluding final summation sub-block)

46

The final summation adder sub-block, instance M23, is configured differently in terms of its 16-bit fixed-
point output. The fixed-point output is assigned 1 bit for integer representation for reasons expressed in
Step 9.1 in section 8.2. Figure 9.9 shows the COSSAP configured format of this particular adder sub-
block.

Edit

Implementation

0] Wiey | Zancel

Fig. 9.9. COSSAP configuration of final summation adder sub-block.

Figure 9.10 shows an example of how the coefficients in the multiplier sub-blocks are configured. This
figure shows the COSSAP configuration of the multiplier coefficient by of the transfer function section
Hiq(2) (instance M5).

Edit

Implementation

&l
<l»
<l>

OutWidth

Roundiode

Fig. 9.10. COSSAP configuration of multiplier coefficient by.

Instances MO, M6, and M21 in Figure 9.7 are the required components for signal generator and storage
to be used for future analysis. Instance MO is the sinusoid generator. Instances M21 and M6 record the
16-bit fixed-point input and output, respectively. Instance M1 quantizes the real number input into a 16-bit
fixed-point format. The amplitude range is [-1,1). Figure 9.11 shows how this instance is configured in
COSSAP. The following statements are based on Equation 8.1 and 8.2. A passband signal of 100Hz is
input into this fixed-point design. Using the prescribed sampling frequency of 10kHz, Figure 9.12 shows
the COSSAP configuration of instance MO.

Edit Help

Implementation
ot Heeplaet any callfey and edifvahue here-
L} 515 e, el | vl B | ':I--'_- '.-'-'1\-\.1-:- dind EQILYaIUE NEre=

Paramet-er Type |[Expression '
CutWidth

OutMumlintBits

Roundkdode <

=}

Fig. 9.11. COSSAP configuration of 16-bit quantizer.

48

Edit Help

Implementation DEFAULT _IMPLEMEMTATIOMN

Set [|<select any cell{s) and edit value here=

|Parameter ITii g |E:~:i ression |
MumberOfltems zl= (10000

MumberOfPeriods |<I> [too |
L

»

Wiy | Zancel

Fig. 9.12. COSSAP configuration of signal generator.

)

Figures 9.13 and 9.14 show the input/output waveforms of MATLAB and COSSAP, respectively. These
results are as expected in that they are nearly identical considering an ideal-to-quantized comparison.
The quantized input signal has the correct passband frequency of 100Hz. Using this input, the MATLAB
waveform is the ideal output while the COSSAP waveform is the quantized output. Comparison is
performed against the ideal transfer function H(z). Transition band and stopband input signals are next
input into the COSSAP filter and produce the expected results at the output.

Fig. 9.13. MATLAB response of digital passband input signal.

50

Fig. 9.14. COSSAP response of digital passband input signal.

Figure 9.15 shows the schematic conversion of Figure 9.7 required to generate VHDL code. The only
instances remaining in this block diagram are multiplier, adder, and delay sub-blocks.

51

HZ_giz)

= | - a -2
i M
H1_glz)
[Ty)
L ol
[*E] 1 T F
| T o4
I
i [F |
= ! RE |—| L I T -

&

KX

D _iouT

Fig. 9.15. COSSAP schematic setup to generate behavioral VHDL model.

Figure 9.16 shows the impulse response of the ideal overall transfer function H(z) and the quantized
impulse response of the transfer function of the parallel structure. This result is based on COSSAP’s
RoundMode = 0 for the multiplier sub-blocks. There is no exponential decay to zero in the
COSSAP/VHDL model. The 16-bit fixed-point output of the COSSAP/VHDL digital filter remains at a fixed
value. Table 9.3 shows the round-off noise power results for the four COSSAP round-off modes used for
the multiplier sub-blocks. This table also shows the dead-band range (or resulting fixed value at the
output), due to quantization, associated with each round-off mode as well as power spectral density
information. This information provides the frequency at which the peak power spectral density is reached.

In the MATLAB ideal model, the peak power spectral density is -130.405917dB at 1311.035156Hz.

52

MATLAE afdl COSEARAHDL Diylal Oulpuls
]

(1] T T T T T
[— T TR]
KaILAE
13
0 -
a2
= |
g
L= 1K | B
= |
-
(=]
2]
e —
0 _ - - —
-0E - | | 1 L | 1
10 al ab] ah &5l
iErEl F, N
Fig. 9.16. Impulse response of ideal transfer function and quantized transfer
function for RoundMode = 0.
COSSAP P. Dead Band Range COSSAP/VHDL
RoundMode (Fixed Value Output) Peak PSD
0 3.76450121076x10”° | -6.103515625x10™ -49.925002 dB at
0.000000 Hz
1 5.551x10™" 0.00 -130.404258 dB at
1303.710938 Hz
2 5.551x10™"" 0.00 -130.404258 dB at
1303.710938 Hz
3 2.448042x10™ 0.00 -130.479798 dB at
1298.828125 Hz

Table 9-3. Round-off noise power results for impulse response of COSSAP multiplier

Based on Table 9-3, RoundMode = 1 and RoundMode = 2 produce the best results in terms of smallest
error. Figures 9.17 through 9.20 show the power spectral density of the impulse response of COSSAP

round-off modes.

round-off modes.

53

[— Cipial Cuips Signal (aATLAR] |

Fig. 9.17. Power spectral density results of impulse response of COSSAP
RoundMode = 0.

54

....-...|._ Cigkal @pawm

Fig. 9.18. Power spectral density results of impulse response of COSSAP
RoundMode = 1.

55

....-...|._ Cigkal @pawm

Fig. 9.19. Power spectral density results of impulse response of COSSAP
RoundMode = 2.

56

Prwvar Speciim Densky Pl

g — =
B -l P i “_hhl—h__ : : [= Ciigia '\;:\.Ipu'. Eina FARTLAT] H
& i S
= -ig0| i e, i
& R
& =180} r— 4
E .
2 ol e
R Y
'g' ~221 :
@ 1 1 1 1 1 1 1

a i} 1200 1500 a1] 500 a0an as1o 4000 4500
E-] E— T —]] ! 1 |
E. [e “‘——-______ [— Digial cutput Signal (#HOL) H
£ -180 T
& “-——.___N_F
5 -180 [i -
E H'\" P

-2 |- i) =l

& \
g a0 -
& 1 1 1 L 1 1 1

] 500 il 1800 Ful 1] Hann 300 3s0 a0 a5
i =171 Y T T T Y i i I

G “'“'H\ [— MATLABWVHDL Digilal Colpis Sine Diteianca
= -
| ‘ i

- L s
= ._." Y P -H"\-\.___ L
8 1m0 . TR : g
o \/
@ - - L .
E 1 1] 1 1 1

1] =i} 130 1810 i |1] 2500 foi] am10 4030 4500

Freguency fHI)

Fig. 9.20. Power spectral density results of impulse response of COSSAP

RoundMode = 3.

9.1.1.1: Results of Validation Test #1

Figures 9.21 through 9.24 show the power spectral density of a passband digital signal (Step 21.1 of
section 8.2) for the four COSSAP round-off modes. Results are based on the ideal 3" order transfer
function when compared to the fixed-point quantized parallel structure. For this validation test, the
passband, transition band, and stopband input signals are 100Hz, 2.5kHz, and 4kHz, respectively. Table
9-4 illustrates the round-off noise power results for the four COSSAP multiplier round-off modes. Results
are based on the error between the ideal (unquantized) and quantized outputs.

57

i [—— Digial Oulpun Signi (MATLAH)

e e e e e e e e s S

Fig. 9.21. Passband signal (100Hz) results of COSSAP RoundMode = 0.

58

| = nwun-_-q:m m.mg.m.qa;.

e e T O R e L mE e

Vi sk

b eeeens | = Digital Custput Bignal (VHDL)

ks s s ra s s S s s R e

Fig. 9.22. Passband signal (100Hz) results of COSSAP RoundMode = 1.

59

| = nwum-_-q:m m.mg.m.qa;.

T R e

e L I N L ST SN ST IR e .

... { — Digital Cutpun Signal (YHOL)

ranEvisrasdy s SR s

Fig. 9.23. Passband signal (100Hz) results of COSSAP RoundMode = 2.

60

Pirered Spsaciium Damily Piots

E ol l : I ; : I : | = Congital el Sagrcal (WATLAEY ||
E =50|| R
E-wu,{ M‘-'JK_LUJ LILI” J i
JMH“LUJHL
: l uiu
fi m mm -uun
E ol ' ! ' ' ' ' '| — Digial Cwigul Sigeal (WHOL) |
2
E -so} -
ol Ly)
=100
:) J i H l
& 1m0 LJ‘ Jk' Y ",,n' I 'I'JI U)] J I'.Jl |||, " - i
EE L
1] EI]III 1I]III IE 4200
E =G0 . ; ! : | — MATLARVHDL Eeor |
E‘ =AD
E =100 '
E -1z |I J i .
E-un 5 I| | |I | | || .Il I / | I.- A
P 111 'Il' ll" l ,.JI ! JI'.I“ 1l||n'lll i} III I|I | "
E =180 1 1 1 1 |
1] S00 100 1500 2000 zﬁm :mm :ﬁm 4000 4500
Fraquancy (Hz)
Fig. 9.24. Passband signal (100Hz) results of COSSAP RoundMode = 3.
Round-off Noise Power (P)
COSSAP Passband Signal Transition Band Signal Stopband Signal
RoundMode
0 1.0882758913112x10°’ 4.241848572125x10° 8.577157750184x10°
1 4.7110330x10™"° 5.743103286x10™" 1.4820192510x10 ™"
2 4.7110330x10™"° 5.743103286x10™" 1.4820192510x10 ™"
3 3.12153790x10™"° 4.70576538624x10" 1.4892842154x10 "

Table 9-4. Tabulated results of validation test #1.

9.1.1.2: Results of Validation Test #2

Figure 9.25 shows the digital input/output response of the ideal lowpass Butterworth filter. The low-power
signal is at 100Hz. The high-power stopband input signal is at 4kHz. For the purposes of
analysis, the high-power signal is 10 times greater in amplitude than the low-power signal. All figures of
this validation test shown throughout this research will consist of 4 plots. The format of these plots is as

passband input

follows:

61

- The top-most plot represents the low-power passband input frequency.

- The plot second from the top represents the high-power stopband input frequency.

- The plot third from the top represents the input signal of the two input frequencies
added together.

- The bottom-most plot represents the ideal output of the MATLAB filter.

As can be seen from the figure, excluding the initial transient response at the output, the ideal Butterworth
filter effectively removes the high-power stopband signal. Comparing the quantized filter, Figures 9.26
through 9.29 show the power spectral density plots for the four COSSAP round-off modes. Table 9-5
shows the tabulated results of the round-off noise power based on the COSSAP multiplier sub-blocks.
Results are based on the error between the ideal (unquantized) and quantized outputs.

. T r. T T T T
! Iy ﬂ'\. Ky & ™y # | —— Gusnlipsd Dagisl npa Sognel & |
ﬁl Lilid -.l,l" L A G "'ul' H F) -

Iy i ! B 1 ! ll". ."?
E. L] "'-. i A] 1", -"Jrl 'I".. ."II 'l". i
% el | ".___ ; J.r’l II"'-,‘_ J.,-"ll -'-__. . JI,.J "'."_ r_-" 1,& ;.__.-'_ |

% P M|I|||| T
: |

e HiMMWMWNHW I a | w. i :,ﬁ il
;E “l |'|||||Tn||||1[| i
;i _as) e LA L

=11 100 150 L1 260 a0 f121] A0 45D B00

T T i T T
| — Cigdal utpul Signal pLaTLAE] |

Cogtal Oueput Sigpal
o)
5
.
..*)
Sy
i
""-\._‘_\.H\>'
..-"'"H'
T,

- : rr'.' Il- | | II.-;I .\._ Ilf lll"-l‘l'l Il I;'fll.
- S AN 074 S A B B4 B A8
50 10da 1E0 bl 1] l::.. ko] 351 Al 460 S00

Fig. 9.25. Digital I/0 response of validation test #2 for ideal Butterworth filter.

62

s |.—“Fﬂﬂmaﬂfﬂ hiareog

Fig. 9.26. Power spectral density plot of COSSAP RoundMode = 0.

63

- [=Cigha Outpu Sigeal (MATLAE] |

Fig. 9.27. Power spectral density plot of COSSAP RoundMode = 1.

64

- [=Cigha Outpu Sigeal (MATLAE] |

Fig. 9.28. Power spectral density plot of COSSAP RoundMode = 2.

65

Preavar Epacteus Doy Flots

(1= L I T I T 1

— L&l Qg Sagrel [MATLAB)

! l.
L /N

o

il

=]
T
H

l| — I:Ihalall'iulpul Eigl:.sl [eHbL) |

L, ;MM T

1] ‘EII 1I1[l] 1” IIIJ -l'EII

L

1
-
1

-

Powar Sgacinum Danity (26)
's'
—

a8

M-'-.ru.nn HEL |:u;|:||-:utm| Signal Dierance |

’| Mv I] | ﬁ

[fj i 'l--,J,-. "I'l

Powar Spaciium Dansky (26

[1] ‘E;H] 1I]I[ﬂ 'I;“] IIIII -ll[;]] -l'EIII
U e

Fig. 9.29. Power spectral density plot of COSSAP RoundMode = 3.

COSSAP RoundMode P.
0 1.1922878511401x10™"
1 1.58058513x10™°
2 1.58058513x10™°
3 2.7487940146x10°

Table 9-5. Tabulated results of 4 COSSAP round-off modes.

Based on the results of Table 9-5, the best COSSAP round-off modes are RoundMode = 1 and
RoundMode = 2.

9.1.2: Cascade Structure Implementation of Butterworth Lowpass Filter

Based on Equation 3.7 from Chapter 3, the ideal transfer function sections of a cascade structure
realization of the overall transfer function is the following:

66

H(z) = Hi(2)H2(2) (Egn. 9.9)
Hi(2):

by = 0.17002047747261
b; = 0.34004011886191
b, = 0.17001964139341
a; =-0.83699778743883
a, = 0.42398568894741

(Egn. 9.10)

Ha(2):
bo = 0.29133547378275
b, = 0.29133690643799
a; =-0.32491969623291

(Egn. 9.11)

Based on the outlined methodology of Chapter 8, the following data is straightforward. Using Table 8-1 in
section 8.2, the number of bits assigned for integer and fractional fixed-point representation are 1 and 15,

respectively.

T —T — 1 T T T T X
... T HH"‘-. — M) Digls Responis (Lisgunlise |-
L]
Ll ; '
3 08l n a
0 "\-\\-\
e} 4
g 04 e -y -
£l e
E ozl I -
I I i I I T T
0 S0n 1000 1500 £00n 2500 LI 500 A1) 4500
frequency, Hx
Fig. 9.30. MATLAB plot of magnitude response of ideal transfer function
section Hy(2).
T I 1 1 I 1 1 - . | =
0 P g HE[z) Digial Response (Unquandized) [
—
(TS i - _
£ W
o4 | Rery i 2
: ~—L
e
a - T -
= e
B ——
1 1 A 1 1 A 1 1 A T
0 SO0 1000 1500 20 2500 3000 i 4000 4500
Fequency, Hz

Fig. 9.31. MATLAB plot of magnitude response of ideal transfer function
section Hy(2).

67

Hiq(2): (Egn. 9.12)
bo = 0.1700134277343750
b, = 0.3400268554687500
b, = 0.1700134277343750
=-0.8369750976562500
a, = 0.4239807128906250

Haqi(2): (Egn. 9.13)
bo = 0.2913208007812500
b; = 0.2913208007812500
a; = -0.3248901367187500

Hiq(2): (Egn. 9.14)
bo = 0.1700134277343750
b, = 0.3400268554687500
b, = 0.1700134277343750
a; =-0.8370056152343750
a, = 0.4239807128906250

Hoq(2): (Egn. 9.15)
bo = 0.2913208007812500

b; = 0.2913513183593750
a; = -0.3249206542968750

Quantization Type Hie(2) Hoe(2)
Truncated 0.00009483550988 0.00008338189205
Rounded 0.00005520336985 0.00000156157308

Table 9-6. Magnitude error calculation.

Based on the results of Table 9-6, the rounding method produces the better of the two quantization
results in terms of smallest magnitude error. Based on Step 9.3.1 of section 8.2 the adder sub-blocks of
cascade section Hi4(z) have 2 bits assigned for both the input and output integer representation. Based
on this same step, cascade section Hyy(z) has 1 bit assigned for both the input and output integer
representation.

qur(z) HZQr(Z)
bO_COSSAP = 0 5571 bO_COSSAP = 0 9546
bl COSSAP = 0 11142 bl COSSAP = 0 9547
b2 COSSAP = 0 5571 al COSSAP = 0 10647
al COSSAP = 0 27427
a2 COSSAP = 0 - 13893

Table 9-7. COSSAP results of multiplier coefficient transformation.

68

. AR

s

Fig. 9.32. COSSAP Block Diagram Editor of cascade structure.

COSSAP Pe Dead Band Range COSSAP/VHDL
RoundMode (Fixed Value Output) Peak PSD
0 1.492845852491x10° | -1.220703125x10™ -43.904228 dB at
0.000000 Hz
1 8.28396551356x10~ 9.1552734375x10° -46.402601 dB at
0.000000 Hz
2 8.28396551356x10~ 9.1552734375x10° -46.402601 dB at
0.000000 Hz
3 1.99840x10 ™" 0.00 -130.496210 dB at
1301.269531 Hz

Table 9-8. Round-off noise power results of impulse response of
COSSAP multiplier round-off modes.

In MATLAB, the peak power spectral density (PSD) is -130.405917 dB at 1311.035156 Hz for the ideal

impulse response.

69

Fig. 9.33. Power spectral density of impulse response of COSSAP
RoundMode = 0.

70

EOETEEEIIEN CEOITEERETONN
—— Digial Oupul Signal [Me,

Fig. 9.34. Power spectral density of impulse response of COSSAP
RoundMode = 1.

71

EOETEEEIIEN CEOITEERETONN
—— Digial Oupul Signal [Me,

Fig. 9.35. Power spectral density of impulse response of COSSAP
RoundMode = 2.

72

Fower Specinum Densiy Plots

& —_—
“: -14p '__‘_q"—'-:--q___ : [— THanal |T.-.r.l|'m1 Signa |;ll.-l.=|TL.=|E|| -
H —
£ op et e . 1
g 18 |- T — -
—
B i) |- -
7 i’
‘E -z : E
1 1 1 1 1
o] S0 1000 1500 o] 2500 3000 3500 4000 4500
T f—" iR : s Cnited Sona rron H
= =gy | — Digta Culped Sgnal (vHDOL)
£ -180 B ey — 0 ! a
Q ___---—_
E ~180 |- : ; “__H--;"'-\. .
5 zmo| N
W
‘E -z : -
B i i i i i
1] =] 1000 1500 00 2500 L 3500 An0on AS00
o o fF -“‘x T T 1 T
=3 /_..- [— MATLABYHDL Cagiial Culpul Signal Dfemmnce
E F, \x
E -180 |- A " : : : -
A 5,
: e — i 9 -y
= ——
E 150 _/’ - -HH"""'\—H______ i [=
é -200 | \ i
1 1 1 1 1 ‘_
] S 1000 1500 o i) 2500 3000 3500 2000 4500
Fraquancy [Hz)

Fig. 9.36. Power spectral density of impulse response of COSSAP
RoundMode = 3.

9.1.2.1: Results of Validation Test #1

The passband, transition band, and stopband signals used in section 9.1.1.1 are the same signals used
here for comparison. Table 9-9 shows these results.

Round-off Noise Power (P,)
COSSAP Passband Signal Transition Band Signal Stopband Signal
RoundMode
0 8.134425152775x10° 4.558753381259x10° | 7.705438106169x10°
1 7.145560x10™" 2.06750340680x10™ 9.2630103108x10 ™"
2 2.21773234x10™"° 1.65072390827x10~ 9.2630103108x10 ™"
3 3.31123023x10™° 1.3150422857x10™"° 1.4765820674x10 "

Table 9-9. Tabulated results of validation test #1.

73

9.1.2.2: Results of Validation Test #2

The low-power passband input signal and high-power stopband input signal used in section 9.1.1.2 are
used here for the purposes of comparison.

Fig. 9.37. Power spectral density of COSSAP RoundMode = 0.

74

- [=Tigtsl Oulpul Signal (MATLAE)

Fig. 9.38. Power spectral density of COSSAP RoundMode = 1.

75

- [=Tigtsl Oulpul Signal (MATLAE)

Fig. 9.39. Power spectral density of COSSAP RoundMode = 2.

76

Fower Specinn Densty Flots
- T

| e Cagiial Cutpet Eignal |_I-I:-IATLJ|E|-T

__ JLL Uin i

1000

1500

i
2000

FHUUWUUUN mﬂmm

Eﬂﬂﬂ

i

-

8
-

i
=]
]

Powar Specinis Dansity (o) Fovssr Epactnum Demify (E)

!ﬂﬂ 1ﬂﬂﬂ 1!I:|ﬂ

— HF;TLI’.E-'H"H};. Crizilal DL!IDLE Hignal |:I|I'|'EIIEI'|¢EI |

I

EEH A
Frequency (He)

:

Powsr Spacingm Deraky (dE)
X .
= 2
i
i —
e ——
: o
i ..-':'=__
D e——
____‘Fr_

. e e o
SO0 100 1500 Z0nn

EL 000 4500

Fig. 9.40. Power spectral density of COSSAP RoundMode = 3.

COSSAP RoundMode Round-off Noise Power (P)
0 8.322332829021x10°
1 6.193306856x10™"
2 6.193306856x10™"
3 3.96516653x10™"°

Table 9-10. Tabulated results of 4 COSSAP round-off modes.

Based on the results of Table 9-10, the best COSSAP multiplier sub-block round-off mode is RoundMode
=3.

77

9.1.3: VHDL Synthesis of Parallel Structure

The first step in synthesizing the parallel structure requires the designer to start with the multiplier, adder,
and delay sub-blocks. Figure 9.15 is used as a visual reference for the designer. Instances M17, M22,
M23, and M27 are considered 2-input adders. The script file that was used in this research for synthesis
can be found in Appendix G. As stated in the introduction in Chapter 1, a broad background of VHDL
synthesis is required on the part of the reader. The script file sets constraints on which technology library
to use, defines timing parameters in terms of maximum allowable combinational propagation delay, and
records synthesis results via report files. It is important to note that, after synthesis is complete, the
synthesized circuit is saved in database format (.db extension). The reason for this brief mentioning will
later on be explained. All sub-blocks will be saved in database format as well as in VHDL format.
Instances M16 and M24 are considered to be a 3-input adder. The script file used by this research for
synthesis can also be found Appendix G. The numerical values used in the script files for this research
are all in nanoseconds units.

Instances M5, M7, M8, M9, M10, M11, and M12 are the multiplier sub-blocks with coefficients. An
example script file for the multiplier sub-blocks for this structure is found in Appendix G. The only
difference between synthesizing these sub-blocks and the adder sub-blocks is that the multipliers are
unique. They are unique because they each are configured to a specific coefficient. In the top-level VHDL
file, the adder and delay sub-blocks can have a single component declaration and be instantiated multiple
times in the structural architecture body. For the multiplier sub-blocks, there is usually a one-to-one
component declaration/instantiation ratio due to the specificity of each sub-block. Although there may be
occasions where a multiplier sub-block could be instantiated more than once depending on the transfer
function section, multiple instantiations are less likely to occur. The same goes for cascade structure
realizations.

Instances M14, M20, and M25 are delay sub-blocks. Since these are clock-dependent components,
timing requirements are particularly important. The script file used for these sub-blocks have timing
constraints configured for a clock frequency (sampling frequency) of 10kHz. The script file can be found
in Appendix G.

After synthesis is complete for the multiplier, adder, and delay sub-blocks, a top-level script file is the next
and final step required for synthesizing this parallel structure. The top-level script file for this parallel
structure can be found in Appendix B. The script file reads in the saved database files of the sub-blocks
and connects them accordingly. The use of the set dont_touch option is a useful and time-saving
command. This style of efficient synthesis drastically reduces synthesis time. For example, if re-synthesis
is required on one of the multiplier sub-blocks, the designer need only re-synthesize that particular sub-
block. Next, the designer re-runs the top-level script file and re-synthesizes the top-level structure. The
set_dont_touch option guarantees that re-synthesis does not occur on all the sub-blocks. This is the main
importance of using the database formats of the saved sub-blocks. The script file also takes into account
the propagation delay of the assumed A/D converter connected to the input of this digital filter, x(n). For
this research, a 10-nanosecond assumption is the propagation delay. The synthesis command for this is
set_input_delay.

Lastly, it is noted here that for the synthesized model, parallel registers are incorporated at the filter
output. These component additions ensure that the filter output is virtually glitch-free when clocked. The
tradeoff is that the output is delayed by 1 clock cycle. Parallel registers are included for all the
synthesized parallel structures in this research. The VHDL synthesis-ready top-level code can be found in
Appendix B as well as the synthesis timing report.

Performing Step 27 of section 8.2 shows that the synthesized circuit and generic structural circuit produce
the same output results.

78

9.1.4: VHDL Synthesis of Cascade Structure

The steps stated in the previous section (9.1.3) are also applied to designing the cascade structure of the
lowpass Butterworth filter. The top-level script file can be found in Appendix B. Because the cascade
structure by design incurs large propagation delay from input to output, at high sampling frequencies, the
expected output data may not have ample processing time to be correctly computed. This is due to the
effective combinational path from one cascade section to the next. This research remedies this situation
by incorporating 16-bit parallel registers between each section and at the final output, y(n). Specifically,
because there are 2 cascade sections, there are 2 parallel shift registers incorporated into the cascade
structure. Generally, if there are n cascade sections, there will be n parallel registers incorporated into the
cascade structure. The tradeoff is that it will take an additional n clock cycles to compute the expected
guantized data at the output y(n). This method for incorporating parallel registers into the synthesized
cascade structures is followed throughout this research. The VHDL synthesis-ready top-level code for this
structure can be found in Appendix B. The top-level script file and timing report produced by synthesis
can also be found there.

79

CHAPTER 10: Results of Design Methodology for DSP Applications

This chapter deals with the implementation of the outlined design methodology of Chapter 8 for DSP
areas of data communications, imaging, digital video, and voice communication. Both parallel and
cascade structures were explored. All digital filter designs in this chapter are 12" order. Table 10.1
illustrates the bandwidths of each DSP application. Nominal nhumbers are used for each bandwidth. All

the results of this chapter were based on 4096 samples. All input signals used for analysis were in the
range of [-1,1).

DSP Application Nominal Bandwidth
Data Communications and Imaging 30kHz — 5MHz
Digital Video OHz — 2MHz
Voice Communications 4kHz — 32kHz

Table 10-1. Table of DSP bandwidths for digital communications.

10.1: Voice Communication Bandwidth Results

The sampling frequency used for this design was 200kHz. This design is a 20-bit bandpass digital
Butterworth filter. The first and second cut-off frequencies (-3dB points) are 4005Hz and 31990Hz,
respectively. The first and second stopband frequencies (-40dB points) are 2051Hz and 52454Hz,
respectively. The ideal transfer function is in the format as follows:

H() bo + b]_Z-1+ b22-2+ b3Z-3+ b4Z-4+ b5Z-5+ b52-6+ b7Z-7+ b32-8+ ng_9+ b102'10+ bllz_ll+ blzz-lz
Z) =

-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12
l+az +az°+azz +auz +asz +agZ +asZ +agZ +agZ +aipZ +apZ +apz

The MATLAB floating-point representations of the coefficients, taken to 14 significant places, are as
follows:
bo = 0.00184349359688
b; = 0.00000000000000
b, =-0.01106096158128
b; = 0.00000000000000
b, = 0.02765240395320
bs = 0.00000000000000
bs = -0.03686987193761
b, = 0.00000000000000
bs = 0.02765240395320
by = 0.00000000000000
b0 =-0.01106096158128
b,; = 0.00000000000000
b;, = 0.00184349359688
a; = -8.04270971990645
a, = 30.01337319862856
a; = -68.99003418531834
a, = 109.13542229944890
as =-125.41290790524731
as = 107.44019947612287
a; =-69.14327117309267
ag = 33.16794617528626
a = -11.56329960387100
a0 = 2.78021661742503

80

a1 = -0.41376834540838
a;» = 0.02883413690976

Following the outlined design methodology, the results are straightforward. As stated earlier in its

research, all frequency plots are from OHz to the Nyquist frequency. For this section, the Nyquist
frequency is 100kHz.

Bandpass Digital Butterwvarth Filter

T T T
(| —— Hiz): Digital Response (Unguantized) |

0.3

kagnitude Response

frequency, Hz i

Fig. 10.1. MATLAB magnitude response of bandpass Butterworth filter.

81

Bandpass Digital Butterworth Filter

D T - T T T
| —— Hiz): Digital Response (Unguantized) in decibels
| PP (e PR - : :
E_mu S e e e e e e e S R e)
=
uk}
@ SJE0F e N
o}
G
S CEOD e T T D
Luk}
'g i 4 . ;
2 250k I O . OO : SO .
=] 5 3 .
o : ; : ;
o] > 5 . :
S e s e S
350k PR s . SRR
| | | |
0 e 4 6 g

frequency, Hz " 1|:|+

Fig. 10.2. MATLAB magnitude response of bandpass Butterworth filter (dB).

82

Phase Response (radians)

frequency, Hz +

Fig. 10.3. MATLAB phase response of bandpass Butterworth filter (radians).

BOg-f------ | —— Hiz): Digital Response (Unguantized) |—

Sl -
40

a0

Group Delay (samples)

20 g

10§

; ; ; ; ;
0 i 4 B i
frequency, Hz

%10

Fig. 10.4. MATLAB group delay response of bandpass Butterworth filter.

83

For Figure 10.4, vertical markers were placed at the cut-off frequencies. This was done to graphically
illustrate the bandwidth region.

10.1.1: Parallel Structure of Butterworth Bandpass Filter Results
The unquantized transfer function sections are as follows:
H(z) = Hi(2)+H2(2)+Hs3(z)+Ha(2)+Hs(2)+He(2) (Egn. 10.1)

H.(2): (Egn. 10.2)
by = 0.06523998068243
b; =-0.05677217409622
b, = 0.00000000000000
a; =-1.93317570078060
a, = 0.94885440559193

Ha(2): (Egn. 10.3)
by =-0.15413571172704
b, =0.17726428571135
b, = 0.00000000000000
a; =-1.82919846105757
a, = 0.84672134723855

Hs(2): (Egn. 10.4)
by =-1.13070864967498
=0.97778688899106
b, = 0.00000000000000
a; =-1.71517028232064
a, = 0.73813390470860

(=
=
|

Ha(2): (Egn. 10.5)
by = 0.30582385316763
b; =-0.47156149221871
b, = 0.00000000000000
a; = -0.92491572696505
a, = 0.70344589982355

Hs(2): (Egn. 10.6)
by =-2.57963641586232
b; = 0.93499040211112
b, = 0.00000000000000
a; =-0.80713143885592
a, = 0.34797343307832

He(2): (Egn. 10.7)
by = 3.43132602728197
b; =-0.51115438289390
b, = 0.00000000000000
a; =-0.83311810992667
a, =0.19863461087104

C = 0.06393441227839 (Eqn. 10.8)

84

The quantized transfer function sections are as follows:

Hiqi(2): (Egn. 10.9)
by = 0.06523895263671875000
b; =-0.05677032470703125000
b, = 0.00000000000000000000
a; =-1.93317413330078125000
a, = 0.94885253906250000000

Hoqi(2): (Egn. 10.10)
by =-0.15412902832031250000
b; =0.17726135253906250000
b, = 0.00000000000000000000
a; =-1.82919311523437500000
a, = 0.84671783447265625000

Hazqi(2): (Egn. 10.11)
by =-1.13070678710937500000
b, = 0.97778320312500000000
b, = 0.00000000000000000000
a; =-1.71516418457031250000
a, = 0.73812866210937500000

Haqi(2): (Egn. 10.12)
bo = 0.30581665039062500000
b; =-0.47155761718750000000
b, = 0.00000000000000000000
a; =-0.92491149902343750000
a, = 0.70344543457031250000

Hsqi(2): (Egn. 10.13)
by =-2.57963562011718750000
b; = 0.93498992919921875000
b, = 0.00000000000000000000
a; =-0.80712890625000000000
a, = 0.34796905517578125000

Heqi(2): (Egn. 10.14)
by = 3.43132019042968750000
b; =-0.51115417480468750000
b, = 0.00000000000000000000
a; =-0.83311462402343750000
a, =0.19863128662109375000

Cq = 0.06393432617187500000 (Eqgn. 10.15)

Hiq(2): (Egn. 10.16)
by = 0.06523895263671875000
b; =-0.05677032470703125000
b, = 0.00000000000000000000
a; =-1.93317413330078125000
a, = 0.94885253906250000000

85

Hoq(2): (Egn. 10.17)
by =-0.15413665771484375000
b; =0.17726135253906250000
b, = 0.00000000000000000000
a; =-1.82920074462890625000
a, = 0.84671783447265625000

Hasqr(2): (Egn. 10.18)
by =-1.13070678710937500000
b; =0.97778320312500000000
b, = 0.00000000000000000000
a; =-1.71517181396484375000
a, = 0.73813629150390625000

Haq(2): (Egn. 10.19)
by = 0.30582427978515625000
b; =-0.47156524658203125000
b, = 0.00000000000000000000
a; =-0.92491912841796875000
a, = 0.70344543457031250000

Hsq(2): (Egn. 10.20)
bo =-2.57963562011718750000
b; = 0.93498992919921875000
b, = 0.00000000000000000000
a; =-0.80712890625000000000
a, = 0.34797668457031250000

Heqr(2): (Egn. 10.21)
by = 3.43132781982421875000
b; =-0.51115417480468750000
b, = 0.00000000000000000000
a; =-0.83311462402343750000
a, =0.19863128662109375000

Cq = 0.06393432617187500000 (Egn. 10.22)
Quantization Type

Truncated Rounded
Hie(2) 0.00009114382776 0.00009114382776
Hoe(2) 0.00007593673320 0.00021975926777
Hse(2) 0.00016858260082 0.00016858260082
Hae(2) 0.00002390748391 0.00001879255585
Hse(2) 0.00002893581776 0.00003311780680
Hee(2) 0.00003868085915 0.00002255275345
Cq 0.00000008610651 0.00000008610651

From the results of Table 10-2 in terms of majority count, both quantization types are even. The following

Table 10-2. Magnitude error calculation.

results of this section are based on the rounding quantization type.

86

COSSAP Coefficients

Hiqr(2) bO_COSSAP = 0 8551
b1_COSSAP = 0 - 7441
b2_COSSAP = 0 0
al_COSSAP = 1 122313
a2_COSSAP = 0 - 124368
Haqi(2) bO_COSSAP = 0 20203
bl_COSSAP = 0 23234
b2_COSSAP = 0 0
al_COSSAP = 1 108685
a2_COSSAP = 0 - 110981
Haqr(2) bO_COSSAP = - -17132
bl_COSSAP = 0 128160
b2_COSSAP = 0 0
al_COSSAP = 1 93739
a2_COSSAP = 0 - 96749
Haqi(2) bO_COSSAP = 0 40085
bl_COSSAP = 0 - 61809
b2_COSSAP = 0 0
al_COSSAP = 0 121231
a2_COSSAP = 0 - 92202
Hsqr(2) bO_COSSAP = - -75974
bl_COSSAP = 0 122551
b2_COSSAP = 0 0
al_COSSAP = 0 105792
a2_COSSAP = 0 - 45610
Hegr(2) bO_COSSAP = 3 56535
bl_COSSAP = 0 - 66998
b2_COSSAP = 0 0
al_COSSAP = 0 109198
a2_COSSAP = 0 - 26035
o C = 0 33520

Table 10-3. COSSAP results of multiplier coefficient transformation.

It is noted here that based on Step 9.2 of section 8.2, the number of bits assigned for integer
representation was 3. But when inputting passband, transition band, and stopband signals into the
COSSAP model, the respective output responses were not as expected when compared to MATLAB
results. Using Step 10.1 (section 8.2) remedied this predicament. The number of bits assigned for integer

representation is now 5.

87

MATLAE and COSSARWHDL Dighal Cutpuis

LR

Q05 B

i -
CoSEarAEDL
MATLAR

= -0.05 - -
.E.
L]
|
¥ o) 1
i
=019 H i
L |
-3 -
i
=025 F
1 1 1 1 1 1 1
1} 100 150 =00 250 300 asn 400 450 ="n 1]
sample®, n
Fig. 10.5. Impulse response of ideal transfer function and quantized transfer
function for RoundMode = 0.
COSSAP P. Dead Band Range COSSAP/VHDL Peak
RoundMode (Fixed Value Output) PSD
0 2.629023240369581x10™ -5.126953125x10° -11.438693 dB at
0.000000 Hz
1 8.6072701675673x10"" | 6.40869140625x10™ to -26.119458 dB at
1.251220703125x10°° 0.000000 Hz
2 8.6072701675673x10"" | 6.40869140625x10™ to -26.119458 dB at
1.251220703125x10°° 0.000000 Hz
3 5.93578718x10™* 0.00 -85.582945 dB at
4150.390625 Hz

Table 10-4. Round-off noise power results of impulse response of COSSAP multiplier

Based on Table 10-4, RoundMode = 3 produces the best results in terms of smallest error. Figures 10.6
through 10.9 show the power spectral density (PSD) of the impulse response of the COSSAP round-off
modes. The power spectral density of an impulse response gives the frequency response on a power

round-off modes.

88

scale. It is primarily a concept issue that links frequency and time domain responses. In MATLAB, the
peak PSD of the ideal impulse response is -83.507698 dB at 4003.906250 Hz.

[— Digital Qutput Signal paaTLAR) |

Y x. W o e

—— Digial Culpul Sagnis (vHOL) |

Sy - O

Fig. 10.6. Power spectral density results of impulse response of COSSAP
RoundMode = 0.

89

 onehmr A B HT AN |

[RLTR - IRCTRTIE TTRT] TR T

Fig. 10.7. Power spectral density results of impulse response of COSSAP
RoundMode = 1.

90

 onehmr A B HT AN |

[RLTR - IRCTRTIE TTRT] TR T

Fig. 10.8. Power spectral density results of impulse response of COSSAP
RoundMode = 2.

91

Foeer Specinum Density Plabs

——— —— D

E:

—
Culpad Sigeal (MATLAE) |

_.
2]
..
i

i

i

=200 TP R——

wig'

1
-
]

1 § 1
— [— Digilal Qulpu Signsl (vHDL) |
¥ - . ol T
Y IIIH\.A-H—\—\.—\._.__ "'h.""fﬁ_"" R i T T >

bbb
EEx
| L.
L

g
1

w0t

2
1
=4

. 1 : = i ; = .
it — MATLABAVHDL Digial Sulput Sigral Dffererce |

]

E

w\nllﬂllll-"l"-\.ﬁ_.._-"'-\- s .
i - | vt 5] ‘\\.
) -hl.ll II'

1} 1 Fs a 4 -1 -] T B 3
Fragquancy [Hz)

=
T

Powar Spacinm Dersby (05 Powar Spacirum Densky {dg) Powar Specirun Dansiy [dE)
i i : i i i
=
T
i

Fig. 10.9. Power spectral density results of impulse response of COSSAP
RoundMode = 3.

10.1.1.1: Results of Validation Test #1

The passband digital input signal used is at 18kHz. The transition band input signal used is at 3kHz. The
stopband digital input signal used is at 60kHz. Table 10-5 shows the tabulated results of these 3 signals.

Round-off Noise Power (Pe)
COSSAP Passbhand Signal Transition Band Signal Stopband Signal
RoundMode
0 1.0063049989508636x10™ | 1.0458186318219129x10™ | 8.5058544051341x10
1 8.5544061745x10 2.51160144764x10" 1.455644011608x10°
2 6.24598906837x10™ 1.58560072563x10" 1.455644011608x10°
3 1.990957065873x10° 4.76757901169x10~ 2.26142987468x10~

Table 10-5. Tabulated results of validation test #1.

92

10.1.1.2;: Results of Validation Test #2

Figure 10.10 shows the digital input/output response of the unquantized bandpass Butterworth filter. The
low-power passband input signal is at 18kHz. The high-power stopband input signal is at 60kHz. For the
purposes of analysis, the high-power signal is 10 times greater in amplitude than the low-power signal. As
can be seen from the figure, excluding the initial transient response at the output, the ideal Butterworth
filter effectively removes the high-power stopband signal. Comparing the quantized filter, Figures 10.11
through 10.14 show the power spectral density plots for the four COSSAP round-off modes. Table 10-6
shows the tabulated results of the round-off noise power based on the COSSAP multiplier sub-blocks.

Digial Ingast Eignial
E—1
- -'_—-
—
" <
N
—
. .
e
——
e
—
i
=0
Ty
—
1

% | = - L.} \ | I 'lI I|I
- I".--'III Ill'v'll I'u'l] U I'..|I I 1 II'-.-"I|I III"-.-"I : i lll"q. lll III'n.-"rl "u'll I'!.J'

Fatl 40 B0 Bo 100 1Z0

I I I T
ual'l'lmll Diigital I|'||:|||1 ,_.gual w0 L

e ﬂﬁ T

1) 'H ﬁ|]

E H ' ; F I | Hll'll:l."l:l I:Ilnll A Input Sl..rla]'-ﬂ'& '-I'c'l.ll.ll."lll. E":-IMPTLFIB] |
5 06 f | - T
s]l II-'I}II'| ﬁ ' ||'| HIJ““[\J

|]] E -l 4 |. | F ||
g-lﬂ |L\|I Jlllllll'illl'-'lhlr-'U ||| Il V ¢‘|’|LI ; 1
. n E-;il BO o0 120
Y % I 2 . o[— Dwital Cuipd Signal (MATLA
B gl I.l..-.ll - |;i III__-" II'.I I_,l"-.I ll-"-\1III l: l|III ; II.' "llll I ||I !'. Illq = Jll' ,'IIIQ IIII‘ '|II; Ei I!l_,
g’ WL YAR f\ .ff-*-!'a A
|/ A]
= | L ;

om 40 G 1|J|J 120
sample ¥

Fig. 10.10. Digital I/O response of validation test #2 for ideal Butterworth filter.

93

Fig. 10.11. Power spectral density plot of COSSAP RoundMode = 0.

94

—— DigiRal Duipiut Signal (VHDL)

fiasnisr s A EL s s Soaisnasnas Euesnasna s asnEena CECIEF TR TN Jiassasnizin Erissniznn 1

Fig. 10.12. Power spectral density plot of COSSAP RoundMode = 1.

95

—— DigiRal Duipiut Signal (VHDL)

fiasnisr s A EL s s Soaisnasnas Euesnasna s asnEena CECIEF TR TN Jiassasnizin Erissniznn 1

Fig. 10.13. Power spectral density plot of COSSAP RoundMode = 2.

96

Power Specinm Densky Plots

g 0F T | T : T I
£ J [[— Digtal Outpet Signal (MATLAH) |
- \ .
& i
 VRSES _u_,__k A i
7 — g b
§ | !
i‘ -150 - r 1 Hl_"—‘—-.J_ J__/ ""“'h.] ! 2
it - ~
; Il 1 1 1 Ty, I
(1] | Z 3 4 5 B 7 B k]
w10°
% : : | — migia In:lu1|:|u'. Signal (VHOL}
(=]
£
=
k-]
&
g 1 1 1 1
- o 1 F) 3 4 5 B T]]

win®

Pivissr Spectium Deesiy (65

=] K])
Froquency (HI) w1

Fig. 10.14. Power spectral density plot of COSSAP RoundMode = 3.

COSSAP RoundMode P.
0 1.0947356406282245x10™
1 3.7505982301x10 "
2 3.7505982301x10 ™"
3 1.2669903207x10 "

Table 10-6. Tabulated results of 4 COSSAP round-off modes.

Based on Table 10-6, RoundMode = 3 produces the best results in terms of smallest error.

10.1.2: Cascade Structure of Butterworth Bandpass Filter Results
The unquantized transfer function sections are as follows:

H(2) = Hi(2)H2(2)H3(2)Ha(2)Hs(2)He(2) (Ean. 10.23)

97

H(2): (Egn. 10.24)
by = 0.05553049275961
b; =-0.11106109747729
b, = 0.05553078292203
a; =-1.93317570078060
a, = 0.94885440559193

Ha(2): (Egn. 10.25)
by = 1.81457724155634
b; =-3.62352244923983
b, = 1.80895103635644
a; =-1.82919846105757
a, = 0.84672134723855

Hs(2): (Eqn. 10.26)
by = 4.61316718780215
b, =-9.24064329348397
b, = 4.62749089495188
a; =-1.71517028232064
a, = 0.73813390470860

Ha(2): (Egn. 10.27)
bp = 0.17090301137699
b; = 0.34127557971965
b, =0.17037311730489
a; =-0.92491572696505
a, = 0.70344589982355

Hs(2): (Eqn. 10.28)
0.15679633173001
0.31359297968004
0.15679715112736
-0.80713143885592
0.34797343307832

o
N
nononon

He(2): (Egn. 10.29)
0.14799595274850
0.29645095189930
b, = 0.14845547360649
a; =-0.83311810992667
a, = 0.19863461087104

o
S
I

The quantized transfer function sections are as follows:

Hiq(2): (Eqn. 10.30)
by = 0.05551147460937500000
b; =-0.11105346679687500000
b, = 0.05551147460937500000
a; =-1.93316650390625000000
a, = 0.94885253906250000000

98

Hoqi(2): (Eqn.

by = 1.81457519531250000000
b; =-3.62350463867187500000
b, =1.80892944335937500000
a; =-1.82919311523437500000
a, = 0.84671020507812500000

Hazqi(2): (Eqn.

bo = 4.61315917968750000000
b; =-9.24063110351562500000
b, = 4.62747192382812500000
a; =-1.71514892578125000000
a, = 0.73812866210937500000

Haq(2): (Ean.

b, = 0.17089843750000000000
b, = 0.34124755859375000000
b, =0.17034912109375000000
a; = -0.92489624023437500000
a, = 0.70343017578125000000

Hsqi(2): (Eqn.

by = 0.15676879882812500000
b; = 0.31356811523437500000
b, = 0.15676879882812500000
a; =-0.80712890625000000000
a, = 0.34796142578125000000

Heqi(2): (Eqn.

by = 0.14797973632812500000
b, = 0.29644775390625000000
b, = 0.14843750000000000000
a; = -0.83309936523437500000
a, = 0.19860839843750000000

Hiq (2): (Eqn.

by = 0.05554199218750000000
b; =-0.11105346679687500000
b, = 0.05554199218750000000
a; = -1.93316650390625000000
a, = 0.94885253906250000000

Haq (2): (Eqn.
by = 1.81457519531250000000
b; = -3.62353515625000000000
b, = 1.80895996093750000000
a; =-1.82919311523437500000

a, = 0.84671020507812500000

99

10.31)

10.32)

10.33)

10.34)

10.35)

10.36)

10.37)

Hsq(2): (Eqgn. 10.38)
by = 4.61315917968750000000
b; =-9.24063110351562500000
b, = 4.62750244140625000000
a; =-1.71517944335937500000
a, = 0.73812866210937500000

Haq(2): (Eqn. 10.39)
by = 0.17089843750000000000

b; = 0.34127807617187500000
b, = 0.17037963867187500000
a; =-0.92492675781250000000
a, = 0.70346069335937500000
Hsqr(2): (Eqn. 10.40)
bp = 0.15679931640625000000
b; = 0.31359863281250000000
b, = 0.15679931640625000000
a; =-0.80712890625000000000
a, = 0.34796142578125000000
Heqr(2): (Egn. 10.41)
by = 0.14801025390625000000
b; = 0.29644775390625000000
b, = 0.14846801757812500000

a; = -0.83312988281250000000
a, = 0.19863891601562500000

Quantization Type
Truncated Rounded
Hie(2) 0.00476283586785 0.00479749621261
Hoe(2) 0.00047914253420 0.00047950739909
Hse(2) 0.00064403036298 0.00068575687106
Hae(2) 0.00030847232951 0.00012322898054
Hse(2) 0.00015119586304 0.00004029047005
Hee(2) 0.00010023502175 0.00009783758146

From the results of Table 10-7 in terms of majority count, both quantization types are even. The following

Table 10-7. Magnitude error calculation.

results of this section are based on the rounding quantization type.

100

COSSAP Coefficients
Hiqr(2) b0 _COSSAP = 0 1820
bl COSSAP = 0 -3639
b2 COSSAP = 0 1820
al COSSAP =1 30578
a2 COSSAP = 0 -31092
Hzqr(2) b0 COSSAP = 1 26692
bl COSSAP = -3 -20432
b2 COSSAP = 1 26508
al COSSAP =1 27171
a2 COSSAP = 0 - 27745
Hzqr(2) b0 COSSAP = 4 20092
bl COSSAP = -9 - 7885
b2 COSSAP = 4 20562
al COSSAP =1 23435
a2 COSSAP = 0 - 24187
Haqr(2) b0 COSSAP = 0 5600
bl COSSAP = 0 11183
b2 COSSAP = 0 5583
al COSSAP =0 30308
a2 COSSAP =0 - 23051
Hsqr(2) b0 COSSAP = 0 5138
bl COSSAP = 0 10276
b2 COSSAP = 0 5138
al COSSAP =0 26448
a2 COSSAP =0 -11402
Hsqr(2) b0 COSSAP = 0 4850
bl COSSAP = 0 9714
b2 COSSAP = 0 4865
al COSSAP =0 27300
a2 COSSAP =0 - 6509

Table 10-8. COSSAP results of multiplier coefficient transformation.

Step 9.3.1 of section 8.2 was used for the number of integer bits configured to the adder sub-blocks of
each cascade stage. Because there are 6 cascade stages, the number of integer bits configured to the
adder sub-blocks of each stage was 1, 3, 4, 3, 2, and 1.

101

COSSAP Pe Dead Band Range COSSAP/VHDL Peak
RoundMode (Fixed Value Output) PSD
0 9.87823501268909x10° | -3.1795501708984x10° -15.603663 dB at
to 0.000000 Hz
-3.171920776367x10°
1 1.167917120788x10° | -4.8446655273438x10™ -44.072141 dB at
to 0.000000 Hz
1.2016296386719x10™
2 1.167917120788x10° | -4.8446655273438x10™ -44.072141 dB at
to 0.000000 Hz
1.2016296386719x10™
3 1.82561562047x10~ 4.3869018554688x10™ -52.518877 dB at
to 0.000000 Hz
4.57763671875x10°

Table 10-9. Round-off noise power results of impulse response of COSSAP multiplier
round-off modes.

Based on Table 10-9, RoundMode = 3 produces the best results in terms of smallest error. Figures 10.15
through 10.18 show the power spectral density of the impulse response of the COSSAP round-off modes.
Using MATLAB as the ideal model, the peak PSD of the impulse response is -83.507698 dB at
4003.906250 Hz.

P Bpeecinonm Denelty Plals

E‘ I 1 1 1 T I I I
E | — igisl Culpud Sigral (BATLAR)
] I [| -
0 A R e
5 - 260 T .
& -me0p- ~]
E L oL] i i | i L i
] 1 i k] & B L] T a 3
=10
E I 1 1 1 T I I I
= L | — Cagital Culput Eigeal [YHOL) |
160 N g S PP | =y
E — I E "Jﬂﬁ-,f,—\.-'rq-\- ——p 1 i I
=] o T T Zoe e e e]
E - 29l |- —
E-aml .
E | | 1 1 | 1 1 1
i o 1 2 2] 5 & T []
=10
E T T T T T T T
. P MATLABWVHDOL Digksl Caripud Sigral Ceflanancs
= ol [Digkal Cuiput Sig]
&
B =10 . 2
H '-L.I,r-qr—.a- -.h-m..L_T g J
£ Wl !
-1=0 = 1 Eai SPRLTRT X i H H -
. = =l] P Tt
Ig 1 i i b VI - o il il
=] 1 H4 3 & - B r [} 1

Fregquency Hz) =10

Fig. 10.15. Power spectral density results of impulse response of COSSAP
RoundMode = 0.

102

o vases, | DAl DUt Sl {MATLAE) |

Fig. 10.16. Power spectral density results of impulse response of COSSAP
RoundMode = 1.

103

o vases, | DAl DUt Sl {MATLAE) |

Fig. 10.17. Power spectral density results of impulse response of COSSAP
RoundMode = 2.

104

Powesr Spactum Dansily Plols

g
E -1l f-'u__ ; ; ; : - Digital |:|_Il:5.|_| Signal |';'\-'I.I:I.TLAB:| |_
= . - E— 3 = .
: sy i S
S =zoo T] !
ey
E -z50(g
B -300(]
! -350} : 3
[1 1 1 1 1 1
= 0] 1] 2 4 5 B (] B]
w0’
g- L | I T L
g Dipkal Elu1|:||.r Signa {WHLL)
= ::3 L u__f_‘Tﬂ L i | 9 1
E 'iuu ™ Wwﬂ"“”"_ S "'\—\.r_'_"\—\.l'-'\-\.d—\—\._. ﬁ__ﬁ
2 a0t
E -250| .
= -0~ .
§ -350f - .
é 1 1 1 1 1 1 L
(] 1 g 3 F 5] 7 B g
= 10"
g I 1] I I I I
= MATLABVHOL Digtal Cutpet Signad Diference
L]
£ -0 L~ 1
B : |ll .'r ~ —
2 4 S ey fm
8 _1s0 = WY
a e, L i]
A A" ._,.allll..-.v_ . _ﬂ-u.__\l_-' R "*'r"";.;'"""'-'l" s Waa
§ -200 i | | j . . .
a 1 g] d 5] 7 8 5
Fraquency (HI) =90t

Fig. 10.18. Power spectral density results of impulse response of COSSAP
RoundMode = 3.

10.1.2.1: Results of Validation Test #1

The digital input signals used in section 10.1.1.1 were also used in this section. Table 10-10 shows these

results.

Round-off Noise Power (P,)
COSSAP Passband Signal Transition Band Signal Stopband Signal
RoundMode
0 8.55073884480357x10° | 8.26422700098962x10° | 8.286744428225x10°
1 3.93673678660x10™ 4.26600835706x10° 2.3708123255x10 "
2 3.93713730783x10~ 4.26842773179x10” 2.3708123255x10 "
3 2.98706502689x10™ 3.76628415968x10™ 2.88406919x10

Table 10-10. Tabulated results of validation test #1.

105

10.1.2.2: Results of Validation Test #2

The digital input signals used in section 10.1.1.2 were also used in this section.

Fig. 10.19. Power spectral density of COSSAP RoundMode = 0.

106

Fig. 10.20. Power spectral density of COSSAP RoundMode = 1.

107

Fig. 10.21. Power spectral density of COSSAP RoundMode = 2.

108

Power Spectrum Densfy Plols

& 0F T T T 1 T T I 4 T
2] [— Diigital Dulput Sinal (MATLAB)
=
E =50
L] [} | |
I: ! '.,|_'L

=100 - ™, .
'E r'lr -\-____“__\-’V‘) \"'\—_l_'—q—\L_ I1I'l\.
a { '“L—h._]_ ik

i
& 180 —tee oo fo e "
: .
1 1 i i 1 —E—

o] 1 z 2 4 5] T] 3

win®

— |
e Wl

Fowar Spechrum Desviby (o8}

| — Digtal Outpet Gignial (vHDL) |

o i 4 E 4 5

R

T

]]
i
)
= =
I I

Poawar Spechrum Desrsky (o8}

MATLAEHDL Digial Cutput Sigral Dferencs J_

W&\WWWI m WJ[i .

Fregquency (HZ)

qu,qwlp WMW

4
=10

Fig. 10.22. Power spectral density of COSSAP RoundMode = 3.

COSSAP RoundMode P.
0 8.49324543927961x10°
1 2.8491824904x10 "
2 2.8491824904x10 "
3 2.692591290x10*

Table 10-11. Tabulated results of 4 COSSAP round-off modes.

Based on the results of Table 10-11, the best COSSAP multiplier sub-block round-off mode is

RoundMode = 3.

10.2: Digital Video Bandwidth Results

The sampling frequency used for this design was 10MHz. The cut-off frequency (-3dB point) is 2MHz. The
stopband frequency (-40dB point) is 2.144078MHz. This design is a 20-bit bandpass digital filter design
and the design type is Chebyshev Type Il. The MATLAB floating-point representations of the multiplier

coefficients, taken to 14 significant places, are as follows:

109

by = 0.04588208205408
b; =0.13656264939956
b, =0.34751449611781
b; =0.62954494594627
b, =0.95796852137520
bs =1.21270173589814
bs =1.31276566337727
b; =1.21270173589814
bs =0.95796852137519
by = 0.62954494594627
bio = 0.34751449611781
b1; = 0.13656264939956
b, = 0.04588208205408
a; =-0.28455481395673
a, = 2.35933880696702
az =0.10701461849930
as =2.11227062100930
as = 0.65506585946252
as = 1.04098525446599
a; = 0.47035521092297
ag = 0.31587427927210
ay = 0.13173314200725
aip = 0.04984113806814
a;; = 0.01308324636888
a2 = 0.00210716187263

Lovwpass Digital Chebyshey Type |l Filter

1 T oy T T T
0 | — Hiz): Digital Response {Unguantized) |
1= 1| P S S SO i

QI s A A A R o R y

S

% B R A R e R R R e R -

v

R i

=

=

o TERTRRACERL SOUNRRONE - IS SRR SO y

@

L R . e 4
| N R S S i
1 L T O S S SO i

! i 1T g P I
1] 1 & 3 4
frequency, HzZ - 1EIE

Fig. 10.23. MATLAB magnitude response of lowpass Chebyshev Type Il filter.

110

Lowwpass Digital Chebyshey Type |l Filter

I:I T | T T
| —— Hiz): Digital Response (Unguantized) in decibels
DO v 5 0 B e B . B 0 s s 0 0 S =
o
=
1 T [
=
[}
Py
A 1 St [! S TR I
o
ak}
E
E DO . e WA S e b S e s b B i e il v okt
[y}
[
= : ; : :
'||:||:|............€ R ERTE] EE B
Az0k-o | | | L
0 1 e 3 4

frequency, Hz » 1IIIE

Fig. 10.24. MATLAB magnitude response of lowpass Chebyshev Type Il filter (dB).

| SR ot 3t B B | RS Ti 2 i B B 320 B L2 o2 2 e | TR
| — Hiz): Digital Response (Unguantized) |
; - e

FPhase Response (radians)

frequency, Hz

%10

Fig. 10.25. MATLAB phase response of lowpass Chebyshev Type Il filter (radians).

111

L T
iz): Digital Response (Unguantized) |

(o}
=

ra
cn

ra
(]

i
=

Group Delay (samples)
o

frequency, Hz e

Fig. 10.26. MATLAB group delay response of lowpass Chebyshev Type Il filter.

10.2.1: Parallel Structure of Chebyshev Type Il Lowpass Filter Results
The unquantized transfer function sections are as follows:

H1(2): (Eqn. 10.42)
by = 0.08824283594937
b; = 0.08910645252623
b, = 0.00000000000000
a; =-0.57512824697051
a, = 0.90116474888622

Ha(2): (Eqn. 10.43)
by = 0.69626630834828
b; =-0.16110151137575
b, = 0.00000000000000
a; =-0.42850343365581
a, = 0.71817606931620

Hs(2): (Egn. 10.44)
bo = 1.08718759187966
b; =-1.28141857040708
b, = 0.00000000000000
a; =-0.20811850838971
a, = 0.53778141515093

112

Ha(2): (Egn. 10.45)

by =-1.23732501568752
b, =-2.48414125820985
b, = 0.00000000000000
a; = 0.06598033080641
a, = 0.35586414751661

Hs(2): (Egn. 10.46)

by =-7.36231407277814
b, =-2.95116120788696
b, = 0.00000000000000
a; = 0.34033872061873
a, = 0.19173505082426

He(2): (Eqn. 10.47)

by =-15.00052648289581
b, =-4.03777135245981
b, = 0.00000000000000
a; = 0.52087632363417
a, = 0.08873015419028

C =21.77435091723825

The quantized transfer function sections are as follows:

ai

a;

(Eqgn. 10.48)

Hiq(2): (Egn. 10.49)

0.08822631835937500000
0.08908081054687500000
0.00000000000000000000
-0.57510375976562500000
0.90115356445312500000

Hoq(2): (Egn. 10.50)

0.69625854492187500000
-0.16107177734375000000
0.00000000000000000000
-0.42849731445312500000
0.71817016601562500000

Hzqi(2): (Egn. 10.51)

1.08715820312500000000
-1.28140258789062500000
0.00000000000000000000
-0.20809936523437500000
0.53778076171875000000

Haqi(2): (Egn. 10.52)

-1.23730468750000000000
-2.48413085937500000000
0.00000000000000000000
0.06597900390625000000

a, = 0.35583496093750000000

113

Hsqi(2): (Egn. 10.53)
by = -7.36230468750000000000

b; =-2.95114135742187500000
b, = 0.00000000000000000000
a; = 0.34033203125000000000
a, = 0.19171142578125000000
Heqi(2): (Eqn. 10.54)
by =-15.00051879882812500000
b; =-4.03775024414062500000
b, = 0.00000000000000000000
a; = 0.52087402343750000000
a, = 0.08871459960937500000
Cq = 21.77429199218750000000 (Egn. 10.55)

Hiqi(2): (Eqn. 10.56)
by = 0.08825683593750000000
b, = 0.08911132812500000000
b, = 0.00000000000000000000
a; =-0.57513427734375000000
a, = 0.90115356445312500000

Hoqi(2): (Egn. 10.57)
by = 0.69625854492187500000
b; =-0.16110229492187500000
b, = 0.00000000000000000000
a; =-0.42849731445312500000
a, = 0.71817016601562500000

Hsq(2): (Egn. 10.58)
bo = 1.08718872070312500000
b; =-1.28143310546875000000
b, = 0.00000000000000000000
a; =-0.20812988281250000000

a, = 0.53778076171875000000
Haqr(2): (Eqn. 10.59)

by =-1.23733520507812500000

b, =-2.48413085937500000000

b, = 0.00000000000000000000

a; = 0.06597900390625000000

a, = 0.35586547851562500000
Hsq(2): (Egn. 10.60)

b = -7.36230468750000000000

b, =-2.95117187500000000000

b, = 0.00000000000000000000

a; = 0.34033203125000000000

a, = 0.19174194335937500000

114

H6qr(z):

(Egn. 10.61)

by =-15.00051879882812500000

by
b,

-4.03778076171875000000
0.00000000000000000000

a; = 0.52087402343750000000
a, = 0.08874511718750000000

Cqr = 21.77435302734375000000

(Eqgn. 10.62)

Quantization Type
Truncated Rounded
H1e(2) 0.00059309268750 0.00011597182782
Hoe(2) 0.00007898914417 0.00008408559463
Hse(2) 0.00010478704520 0.00004926607068
He(2) 0.00022032804086 0.00001795303147
Hse(2) 0.00028290654429 0.00010620185850
Hee(2) 0.00047426579551 0.00061698655317
Cq 0.00005892505075 -0.00000211010550

Table 10-12. Magnitude error calculation.

Based on the results of Table 10-12, the rounding quantization method produces the best results in terms
of smallest error.

COSSAP P Dead Band Range COSSAP/VHDL Peak
RoundMode (Fixed Value Output) PSD
0 1.488649920033x10° -1.220703125x10™ -43.904695 dB at
0.000000 Hz

1 2.051274x10™ -3.0517578125x10™ -41.814991 dB at
1999511.718750 Hz

2 2.051274x10™ -3.0517578125x10™ -41.814991 dB at
1999511.718750 Hz

3 5.62515x10™" 0.00 -97.203554 dB at
1999511.718750 Hz

Table 10-13. Round-off noise power results of impulse response of COSSAP multiplier
round-off modes.

Based on Table 10-13, RoundMode = 3 produces the best results in terms of smallest error. Figures
10.27 through 10.30 show the power spectral density of the impulse response of the COSSAP round-off
modes. Using MATLAB as the ideal model, the peak PSD of the impulse response is -95.847452 dB at
2004394.531250 Hz. The number of bits assigned for fixed-point integer representation in the adder sub-
blocks is 6 based on Steps 1 through 5 of section 8.2.

115

] = D!ﬂtm’ﬂﬂgnlﬂ.ﬂnﬂ.ﬂ}

verizn] —— MATLABNHDL Digtal Oulput Signal Differencs

s ann s smenfus s rmen e fEr e aE e raE v e ass e

Fig. 10.27. Power spectral density results of impulse response of COSSAP
RoundMode = 0.

116

] = Digtal Dwiput Signal (MATLAE]

Fig. 10.28. Power spectral density results of impulse response of COSSAP
RoundMode = 1.

117

] = Digtal Dwiput Signal (MATLAE]

Fig. 10.29. Power spectral density results of impulse response of COSSAP
RoundMode = 2.

118

Powes Spacinam Deraiy Plots
E. 100 F T T rg T T T T
x ;,-’ Y [= Digilal Qutput Signal (MATLAE)
E ’
-120} | J
O - .
£ R \
140 g g
g T
E -160 I 1 I I j L B e — " .
"" 0 05 1 15 3 25 3 15 a 4.5
0 x10®
E 2l I ! I"-, : : [= Diigitad -I:-.rp.r gignal (vHDL) |
E -/I II
= A |
E -1 Eosl \ : 3 2 i
= T L’
= _,—-_d-h_-'-"'\-\.-"""""'ﬂ"-\"ﬁ-- 10 A
T =140 T =
= I| I’ L] Illllﬁl _..,. i
Lia Wik mm e I'l""‘lr"-"
iyt % WY A
E = - i - 1 1 ll JIJI ¥ ILI-IL! Vo I|I 1L -._-r.u .J lI..""-'| o]
0 05 1 14 il 25 3 15 i 4.5
" x1n"
i T ,i-." T I I I
e 1 Ir ' | — MATLABYHIL Digital Catput Signa Difarence H
E o~ .I‘"H.
140} = |- 4
E Pt -"H_h."‘__-'r r .'-"-.-'| Pt L
— — L} ¥ I s
T -6 :"'. P W y \ 'n.-"-'-“.a-\\ [t P___.-"" A By 2. a
| 'f X LB
Ig’ -160 |- i i i -
1 1 | | | |
. a [1k] 1 1.3 £ o] 3 15 4 4.5
Fraquancy (Hzh =10%

Fig. 10.30. Power spectral density results of impulse response of COSSAP

RoundMode = 3.

10.2.1.1: Results of Validation Test #1

The passband digital input signal used is at 500kHz. The transition band input signal used is at 2.1MHz.
The stopband digital input signal used is at 3MHz. Table 10-14 shows the tabulated results of these 3

signals.
Round-off Noise Power (Pe)
COSSAP Passband Signal Transition Band Signal Stopband Signal
RoundMode

0 2.7593046651912x10" | 2.9615807101575x10" | 2.269853469814x10"
1 4.792357585x10 " 1.25242013x107° 3.541640570x10 ™
2 9.976336315x10 " 2.7389096x10™" 3.541640570x10 ™
3 1.6735581939x10™"° 3.64642492x10° 3.744875743x10™°

Table 10-14. Tabulated results of validation test #1.

119

10.2.1.2: Results of Validation Test #2

Figure 10.31 shows the digital input/output response of the unquantized lowpass Chebyshev Type Il filter.
The low-power passband input signal is at 500kHz. The high-power stopband input signal is at 2.1MHz.
For the purposes of analysis, the high-power signal is 10 times greater in amplitude than the low-power
signal. As can be seen from the figure, excluding the initial transient response at the output, the ideal
Chebyshev Type Il filter effectively removes the high-power stopband signal. Comparing the quantized
filter, Figures 10.32 through 10.35 show the power spectral density plots of the four COSSAP round-off
modes. Table 10-15 shows the tabulated results of the power spectral density and round-off noise power
based on the COSSAP multiplier sub-blocks. As can be seen from this table, RoundMode = 1 and
RoundMode = 2 produce the smallest round-off noise power.

=

Digital Inpt Signat

\

\/

T
b

- - - - -
{ | I."| —— Ceaalized DigRed Inpul Sagnal &1 |
‘I\ i | T]

ave

1
\ _,rf

[1]
Vo

)

LY [

200

I
— Ghi

= 05 : - .|1I|] I:ﬂgl:a Inpud Sgnal &2
3 |
E i | | | \r | l | :"
%-ua I
znu Foli |
; e [— EHH.TI ic'l:l I:Ilnld Irullli IE-lgnal .u."" Freq.lunl.m: Ir.JFITLr:E:: H
%‘ o U | \f vw
g-|u- | \ H
200 50
=
i ol |— l:-um -::qu-ul 3-:nal LMATLnE:- |
c:': o ‘le /"r II' IH' -'II 1' f lll
g J *.b. L-

1m
sanpla #

Fig. 10.31. Digital I/O response of validation test #2 for ideal Chebyshev Type Il filter.

120

T T — Dgnal Quiput Figns (AATLAE) |

Fig. 10.32. Power spectral density plot of COSSAP RoundMode = 0.

121

[==_Digtal Oulpu Signal MATLAE] |

Fig. 10.33. Power spectral density plot of COSSAP RoundMode = 1.

122

[==_Digtal Oulpu Signal MATLAE] |

Fig. 10.34. Power spectral density plot of COSSAP RoundMode = 2.

123

P Spechrum Dangiy Pioks

g " ; : : I : | — Cugilal I}_,llil,.l_ Signal |ll\.l|ATLF.E.:| |
e
Lol I 7
'3 i |
100 |- =
g‘ . _,l_,_ .L-— ﬂx_,_.__,.f“ \‘“-—-—4
E el | — i]
— 0 oS 1 'F.! ! E! !I- s 4 45
10"
E o I T I==- T T | T T T
o | — Digtal Dulpul Sigral (vHDL) |
E -m| . l
(=] I|
5 /) A
IE_ =100 - [I 5 Hl IIII_| '.I"l |
RSl U oo o TR Wi
1] s 1 1.5 £ 25 3 a5
w10’
g =50 : : I : I | — r.1:'=.T|_|=.[| -.-u:-:_ wigilal D,Jl:p,.: Signal Elﬂ'n_::a::m_: |
E -oof
-1}] .I
i-“‘l -""-,_.II -.r = Ill,'il by, ﬁlll L"-'1I II"': H'yil A |
E 160 |- !] i
]] i i
= i} 05 1 1.5 z 1!

Frasguancy Hz)

Fig. 10.35. Power spectral density plot of COSSAP RoundMode = 3.

COSSAP RoundMode P.
0 2.6607173257207x10”"
1 9.90852667x10 "~
2 9.90852667x10 "~
3 8.294560197x10 ™"

Table 10-15. Tabulated results of 4 COSSAP round-off modes.

10.2.2: Cascade Structure of Chebyshev Type Il Lowpass Filter Results

The unquantized transfer function sections are as follows:
Hi(2): (Eqn. 10.63)

by = 0.54299498930682

b; =-0.23133891024656

b, = 0.54299498930680

a; = -0.57512824697051
a, = 0.90116474888622

124

=10

Ha(2):
bo= 1.12793419825532
b, =-0.32648956929317
b, = 1.12793419825543
a; =-0.42850343365581
a, = 0.71817606931620

Hs(2):
by = 0.91891728465592
b; = 0.01205708702461
b, = 0.91891728465583
a; =-0.20811850838971
a, = 0.53778141515093

Ha(2):
by = 0.73208063339366
b, = 0.38789978416300
b, = 0.73208063339369
a; = 0.06598033080641
a, = 0.35586414751661

Hs(2):
by = 0.57606567135222
b, = 0.72180140098196
b, = 0.57606567135222
a; = 0.34033872061873
a, = 0.19173505082426

He(2):
by = 0.19331083487109
b, = 0.36650159251432
b, = 0.19331083487109
a; = 0.52087632363417
a, = 0.08873015419028

The quantized transfer function sections are as follows:

bo
by

Hiq(2):
0.54299163818359375
-0.23133850097656250
0.54299163818359375
-0.57512664794921875
0.90116119384765625

Hoqi(2):
1.12793350219726562
-0.32648849487304687

(Egn. 10.64)

(Eqn. 10.65)

(Eqn. 10.66)

(Egn. 10.67)

(Eqn. 10.68)

(Eqgn. 10.69)
000
000
000
000
000

(Egn. 10.70)
500
500

b, = 1.12793350219726562500
a; =-0.42850112915039062500
a, = 0.71817398071289062500

125

Hzqi(2): (Eqn.

by = 0.91891479492187500000
b, = 0.01205444335937500000
b, = 0.91891479492187500000
a; =-0.20811843872070312500
a, = 0.53778076171875000000

Haq(2): (Ean.

by = 0.73207855224609375000

b, = 0.38789749145507812500
b, = 0.73207855224609375000
a; = 0.06597900390625000000
a, = 0.35586166381835937500

Hsqi(2): (Eqn.

by = 0.57606506347656250000

b, = 0.72179794311523437500
b, = 0.57606506347656250000
a; = 0.34033584594726562500
a, = 0.19173431396484375000

Heqi(2): (Eqn.

by = 0.19330978393554687500

b, = 0.36650085449218750000
b, = 0.19330978393554687500
a; = 0.52087402343750000000
a, = 0.08872985839843750000
Hiq (2): (Ean.
by = 0.54299545288085937500
b, =-0.23133850097656250000

b, = 0.54299545288085937500

a; =-0.57512664794921875000
a, = 0.90116500854492187500
Haq (2): (Eqn.
bg = 1.12793350219726562500
b, =-0.32648849487304687500

b, = 1.12793350219726562500

a; =-0.42850494384765625000
a, = 0.71817779541015625000
Haq(2): (Eqn.
by = 0.91891860961914062500
b; = 0.01205825805664062500
b, = 0.91891860961914062500
a; =-0.20811843872070312500

a, = 0.53778076171875000000

126

10.71)

10.72)

10.73)

10.74)

10.75)

10.76)

10.77)

o
o

H4q,-(Z):
0.73208236694335937500
0.38790130615234375000
0.73208236694335937500
0.06597900390625000000
0.35586547851562500000

Hsqr(2):
0.57606506347656250000
0.72180175781250000000
0.57606506347656250000
0.34033966064453125000
0.19173431396484375000

Hear(2):
0.19330978393554687500
0.36650085449218750000
0.19330978393554687500
0.52087783813476562500
0.08872985839843750000

Quantization Type

(Egn. 10.78)

(Eqgn. 10.79)

(Eqn. 10.80)

Truncated Rounded
H1e(2) 0.00005773164965 0.00001283204844
He(2) 0.00000975928717 0.00001081330912
Hse(2) 0.00000923307641 0.00000355582764
He(2) 0.00000627982856 0.00000546820036
Hse(2) 0.00000450898430 0.00000151385948
Hee(2) 0.00000252681606 0.00000228881216

Based on Table 10-16, the rounding method produces the best results in terms of smallest error.

Table 10-16. Magnitude error calculation.

127

COSSAP Coefficients

Hiqr(2) bO_COSSAP = 0 142343
b1_COSSAP = 0 - 60644
b2_COSSAP = 0 142343
al_COSSAP = 0 150766
a2_COSSAP = 0 - 236235
Haqr(2) bO_COSSAP = 1 33537
bl_COSSAP = 0 - 85587
b2_COSSAP = 1 33537
al_COSSAP = 0 112330
a2_COSSAP = 0 - 188266
Haqr(2) bO_COSSAP = 0 240889
b1_COSSAP = 0 3161
b2_COSSAP = 0 240889
al_COSSAP = 0 54557
a2_COSSAP = 0 - 140976
Haqr(2) bO_COSSAP = 0 191911
bl_COSSAP = 0 101686
b2_COSSAP = 0 191911
al_COSSAP = 0 - 17296
a2_COSSAP = 0 - 93288
Hsqr(2) bO_COSSAP = 0 151012
bl_COSSAP = 0 189216
b2_COSSAP = 0 151012
al_COSSAP = 0 -89218
a2_COSSAP = 0 - 50262
Heqr(2) bO_COSSAP = 0 50675
bl_COSSAP = 0 96076
b2_COSSAP = 0 50675
al_COSSAP = 0 - 136545
a2_COSSAP = 0 - 23260

Table 10-17. COSSAP results of multiplier coefficient transformation.

It is noted here that based on Step 9.3.1 of section 8.2, the number of integer bits configured to the adder
sub-blocks of each cascade stage was 2, 2, 2, 2, 2, and 1. But when inputting passband, transition band,
and stopband signals into the COSSAP model, the respective output responses were not as expected
when compared to MATLAB results. Using Step 10.2 (section 8.2) remedied this predicament. The

number of bits now used for integer bit representation is 2, 2, 2, 2, 3, and 2.

128

COSSAP Pe Dead Band Range COSSAP/VHDL Peak
RoundMode (Fixed Value Output) PSD
0 2.8665804127x10™° -1.9073486328125x10™ -61.435597 dB at
to 0.000000 Hz
-1.52587890625x10°°
1 2.12300686x10* -1.52587890625x10™ -69.016742 dB at
to 1999511.718750 Hz
1.1444091796875x107°
2 2.12300686x10* -1.52587890625x10™ -69.016742 dB at
to 1999511.718750 Hz
1.1444091796875x107°
3 1.756x10™" 0.00 -96.119385 dB at
2001953.125000 Hz

Table 10-18. Round-off noise power results of impulse response of COSSAP multiplier
round-off modes.

Based on Table 10-18, RoundMode = 3 produces the best results in terms of smallest error. Figures
10.36 through 10.39 show the power spectral density of the impulse response of the COSSAP round-off
modes. Using MATLAB as the ideal model, the peak PSD of the impulse response is -95.847452 dB at
2004394.531250 Hz.

Fowar Spectium Dansily Pals

& : . : , . : : :
2.:: —an bk _—— Digtal Ounpun Sagnal (MATLAB) |
=
& -0 - Ay -
B r
E -1znt G et Y g
-} e N
& -0 E R 1 i -
2 ol . - i f oo T T e . .
B 1] 0% 1 15 - £5 a 35 4 a5
[
10
E 1 T T T T T
= —— CagRal Dulpul Sigeesl (vE0L)
= ml | Cagital Crlpul Sigeesl (oL |
3
=100
B ___..--"'Il '
2 - et \ -
G Nt Seh 4
g S LTIy " T TV i o
£ a0 ; : ; . L Py e YV 40 el
o 0 0.5 1 15] T 3 AE F 45
L]
® 10
& 1 1 1 I 1 T
;E —an [— MATLABAHDL Digital Ouipul Sagnal Diferance
E -1 -
= -120 ; J
E =140 e o sy J
& 160 - R AR T W TN PR L s A ERTh s
— i L] W
g a0 ||I { E L B
| 1 1 1 1 1
o 0 05

1 15 2 4} a 35 4 45

Fregquancy Hz) e

Fig. 10.36. Power spectral density results of impulse response of COSSAP
RoundMode = 0.

129

T

Vi

L

-
L

[— MATLABAHDL Diglal Culpul Sigresl Difersncs

Fig. 10.37. Power spectral density results of impulse response of COSSAP
RoundMode = 1.

130

T

Vi

L

-
L

[— MATLABAHDL Diglal Culpul Sigresl Difersncs

Fig. 10.38. Power spectral density results of impulse response of COSSAP
RoundMode = 2.

131

Pornr Sgsotnam Density Photy

E O] : ' J_,.-""1'-._ : ; [— Digial Coatpast Sigreal ._l:..-mn AB) |
1
r
g =120 __a-".-.- I'I I
5 e \
- %
g -1an- i g
"E = ""-\-____
g -160 - d i i | i i o Tl i =
1] 05 1 15 £ 5 3 35 4 45
- x10"
= =100~ 1 ! L} Al . 1 T I I I =
= FiER | Digital Cwiput Signal (WHDL)]
E f{ X g Che - !
a -l 4 | =
—F
5 P lI|
i |
NS T | St _— .
& hw.“ﬂ.ﬁ
W ! fLivn A Pim M <p o]
3 L L i i i i i | _|"||| I aTAT ."‘l.'i-"ll'rl""I a0y]
1] 05 1 15 £ 25 3 35 4 45
w10
g t 1] lllll 1 1 L 1 1
=13 : ; i | MATLAEAHEL Digital Cutpat Signal Diference |
- / "-, . - - - /]
o =150 Fooriurly
E 180 Y .'_.._.-'.-"II ,'I '\III o I.-\-"I - i
5 ey i Pk v‘-"'-_llﬁ") ,_-" | T - l__-_"ll_.-'_"‘-"\l..hll_.—\" ey I|'I "I' fagt ! .—"
& _§70 L W ! LM) I'u I l"| L L= |) i o
- ¥ A 1 y
g -wul- II".' :II i a
|| 1 | | 1 || |
(7 05 1 15] 2% 3 AR 4 4.5
Fréquanty {Hi) i

Fig. 10.39. Power spectral density results of impulse response of COSSAP
RoundMode = 3.
10.2.2.1: Results of Validation Test #1

The digital input signals used in section 10.2.1.1 were also used in this section. Table 10-19 shows these
results.

Pe
COSSAP Passband Signal Transition Band Signal Stopband Signal
RoundMode
0 2.27916303782x10™ 1.51829447952x10™ 1.48027757148x10"
1 5.482129324x10 ™" 1.549787x10™* 1.3453x10™°
2 5.482129324x10 ™" 1.549787x10™* 1.3453x10™°
3 2.736200975x10 ™" 1.94296x10™° 8.0178357x10™"°

Table 10-19. Tabulated results of validation test #1.

132

10.2.2.2: Results of Validation Test #2

The digital input signals used in section 10.2.1.2 were also used in this section.

"= Digtal DuApE Signal (MATLAE] |

Fig. 10.40. Power spectral density of COSSAP RoundMode = 0.

133

T Tl |

Fig. 10.41. Power spectral density of COSSAP RoundMode = 1.

134

T T |

e 1]
o | = MATLAEYHDL Digital E!l]:l.ti!'ﬂ.l Dffererca

Fig. 10.42. Power spectral density of COSSAP RoundMode = 2.

135

Paswar Spacinim Dansiy Piots

i a T T T T T = 1 1 I
P —— Digital Qunput Sgnal (MATLAB)]
3
E =B} | .
E =100 |) I"u i "
- A ", - 0 i
g P B [P P,
g =1ee -.--J i i I | i I Il\h--__._ 2] i i
] 0LE 1 1L.E 2 25 | AS 4 4%
% 10"
g {1]= T T 1] T T T 1
= | Cagital Outpul Sigreal (vHDOL) |
E -m| 4
o i
% 100 .-"II JI J I
—0a - . ey Il i A
T 150 _/-"/-/’ w.'\\-H-"‘‘-'~|-I''--«.-\.-\.l'h\.-'-—'--"""" P 1\“-4\[_ . —"'Ill Il"'-\...hl.,, I J—J"\ "H.-."-.
E . 1 i i i i i |y l|l"'"-"‘1-“""'wlll"'-'_ﬁr T
2] s 1 1.5 2 25 1 as 4 a5
% 107
g B0 T T T T T
= | — MATLAA/VHOL Digks Qulpid Sgnal Dfference |
= =100 -
k4
S -mt 1
g -ual -ml oo aaglio gl T 1 oA
-:-:-I:: —1ED _'|I/ i IU'.IL""'-,' LT o T II||.-"- P mlll._‘k.__ﬂ"l._ .!_-—' e .;..ﬁ.- lﬁ_.".‘-"-.-__- i l."-"- _,l_
: . "l iy ¥
E -6 i i i i Il i j] i]
1 o5 1 1.5 £ L5 3 35 4 a5
Frequercy (Hr| T

Fig. 10.43. Power spectral density of COSSAP RoundMode = 3.

COSSAP RoundMode P.
0 1.52536741464x10°
1 1.4156064x10™"°
2 1.4156064x10™"°
3 3.33889286x10*

Table 10-20. Tabulated results of 4 COSSAP round-off modes.

Based on the results of Table 10-20, the best COSSAP multiplier sub-block round-off modes are
RoundMode = 1 and RoundMode = 2.

10.3: Data Communications and Imaging Bandwidth Results

The sampling frequency used for this design was 20MHz. This design is a 24-bit bandpass digital filter
design and the design type is Elliptic. The first and second cut-off frequencies (-3dB points) are
29.304kHz and 5.001221MHz, respectively. The first and second stopband frequencies (-40dB points)
are 24.42kHz and 5.445665MHz, respectively. The MATLAB floating-point representations of the
coefficients, taken to 14 significant places, are as follows:

136

bo = 0.07987329621409
b; =-0.26396911739870
b, = 0.29915964301465
b; =-0.26454500340110
=0.41604640068847
bs = -0.34604558265014
bs = 0.15896072706548
b; =-0.34604558265014
bs = 0.41604640068847
by = -0.26454500340110
b1o = 0.29915964301465
by; =-0.26396911739870
by, = 0.07987329621409
a; = -6.62643192221140
a, = 20.52814661024491
as = -40.84768268409439
a, = 59.97920058345937
as = -68.93513855046317
as = 62.97666301624375
a; = -45.87184600775393
ag = 26.51594785904635
ag = -11.79494300412995
aip = 3.78168492675603
a;; = -0.79228595105469
a2 = 0.08668512396083

Bandpass Digital Elliptic Filter

|

=T T

| — Hiz): Digital Resp

]
Lo

onse (Unguantized) |

FMagnitude Response
R o s N = e e
Fr ra (ah} = n (m7} | (i}

Fig. 10.44. MATLAB magnitude response of bandpass Elliptic filter.

i,

4
frequen

137

B

cy, Hz - 1EIE

Bandpass Digital EIIiptiu:: Filter

L]

Y

| —= H(z) Drigital Hespnnse (Llnquantlzedj |n dembels

kagnitude Response (dB)
b L
= = = = = (] = =
T T T T T T T T

1
(du
=

T

frequency, Hz &

Fig. 10.45. MATLAB magnitude response of bandpass Elliptic filter (dB).

F——————— T ————
| — H(zj Digital Hespnnse (Unquanhzedj |

Fhase Response (radians)

frequency, Hz = 1IZIE

Fig. 10.46. MATLAB phase response of bandpass Elliptic filter (radians).

138

| — Hiz): Digital Response (Unguantized) |

20k
15

10

Group Delay (samples)

I I
o Z 4 B g8
frequency, Hz

%10

Fig. 10.47. MATLAB group delay response of bandpass Elliptic filter.

10.3.1: Parallel Structure of Elliptic Bandpass Filter Results
The unquantized transfer function sections are as follows:

H1(2): (Egn. 10.81)
by = 0.00041754780789
b; =-0.00041853200266
b, = 0.00000000000000
a; =-1.99928810579703
a, = 0.99937493222654

Hx(2): (Egn. 10.82)
by =-0.00153637238075
b, = 0.00159484444159
b, = 0.00000000000000
a; =-1.99442029179693
a, = 0.99453510743410

Hs(2): (Eqgn. 10.83)
by =-0.02753390048704
b, = 0.02722912721656
b, = 0.00000000000000
a; =-1.97767024097127
a, = 0.97787185728449

139

Ha(2): (Egn. 10.84)
bo = 0.11620735597411
b; =-0.00877830810331
b, = 0.00000000000000
a; =-0.01831558526104
a, = 0.89972679483240

Hs(2): (Eqn. 10.85)
by =-0.33117998124798
b; =-0.34143788679057
b, = 0.00000000000000
a; =-0.17586277586059
a, = 0.60203802158022

He(2): (Eqn. 10.86)
by =-0.59792241472711
b, = 0.97547798514305
b, = 0.00000000000000
a; = -0.46087492252454
a, = 0.16465672860857

C =0.92141872289623 (Eqgn. 10.87)

The quantized transfer function sections are as follows:

Hiqi(2): (Egn. 10.88)
by = 0.000417470932006835937500
b; =-0.000418424606323242187500
b, = 0.000000000000000000000000
a; =-1.999288082122802734375000
a, = 0.999374866485595703125000

Hoqi(2): (Egn. 10.89)
by =-0.001536369323730468750000
b, = 0.001594781875610351562500
b, = 0.000000000000000000000000
a; =-1.994420289993286132812500
a, = 0.994534969329833984375000

Hazqi(2): (Eqn. 10.90)
by =-0.027533769607543945312500
b; = 0.027229070663452148437500
b, = 0.000000000000000000000000
a; =-1.977670192718505859375000
a, = 0.977871656417846679687500

Haqi(2): (Egn. 10.91)
by = 0.116207122802734375000000
b, =-0.008778095245361328125000
b, = 0.000000000000000000000000
a; =-0.018315553665161132812500
a, = 0.899726629257202148437500

140

Cqt = 0.921418666839599609375000

Hsqi(2): (Egn. 10.92)

by =-0.331179857254028320312500
b; =-0.341437816619873046875000
b, = 0.000000000000000000000000
a; =-0.175862550735473632812500
a, = 0.602037906646728515625000

Heqi(2): (Egn. 10.93)

bo =-0.597922325134277343750000
b; = 0.975477933883666992187500
b, = 0.000000000000000000000000
a; =-0.460874795913696289062500
a, = 0.164656639099121093750000

(Eqn. 10.94)

qur(z): (Egn. 10.95)

bo = 0.000417470932006835937500
b; =-0.000418424606323242187500
b, = 0.000000000000000000000000
a; = -1.999288082122802734375000
a, = 0.999374866485595703125000

H2qr(z): (Eqn 1096)

by =-0.001536369323730468750000
b, = 0.001594781875610351562500
b, = 0.000000000000000000000000
a; = -1.994420289993286132812500
a, = 0.994535207748413085937500

Hzq(2): (Egn. 10.97)

bo =-0.027534008026123046875000
b; = 0.027229070663452148437500
b, = 0.000000000000000000000000
a; =-1.977670192718505859375000
a, = 0.977871894836425781250000

Haqr(2): (Eqn. 10.98)

bo = 0.116207361221313476562500
b, =-0.008778333663940429687500
b, = 0.000000000000000000000000
a; = -0.018315553665161132812500
a, = 0.899726867675781250000000

H5qr(z): (Eqn 1099)

by =-0.331180095672607421875000
b; =-0.341437816619873046875000
b, = 0.000000000000000000000000
a; =-0.175862789154052734375000
a, = 0.602037906646728515625000

141

H6qr(z):

(Eqn. 10.100)

bo =-0.597922325134277343750000
b, = 0.975477933883666992187500
b, = 0.000000000000000000000000
a; = -0.460875034332275390625000
a, = 0.164656639099121093750000

Cq = 0.921418666839599609375000

(Egn. 10.101)

Quantization Type
Truncated Rounded
H1e(2) 0.00047278394141 0.00047278394141
Hoe(2) 0.00144342084271 0.00189052058450
Hse(2) 0.00077618133661 0.00032127790090
He(2) 0.00000437858494 0.00000094000653
Hse(2) 0.00000089114714 0.00000028762238
Hee(2) 0.00000021411323 0.00000026682198
Cq 0.00000005605663 0.00000005605663

Table 10-21. Magnitude error calculation.

Based on the results of Table 10-21, the rounding quantization method produces the best results in terms
of smallest error.

Designing this quantized filter structure proved to be extremely difficult. Attempts were made to implement

a working filter through Steps 9.2 and 10.1 of section 8.2. The cascade structure is attempted in the next
section to realize this bandpass filter.

10.3.2: Cascade Structure of Elliptic Bandpass Filter Results

The unquantized transfer function sections are as follows:

H1(2):

(Eqn. 10.102)

bo = 0.07987329621409
b, =-0.15974142191627
b, = 0.07987324230420
a; =-1.99928810579703
a, = 0.99937493222654

Hx(2):

(Eqn. 10.103)

by = 1.00000000000000
b; =-1.99995845045300
b, = 1.00000108572615
a; = -1.99442029179693
a, = 0.99453510743410

142

Hs(2): (Eqn. 10.104)
by = 1.00000000000000
b; =-1.99999215766739
b, = 0.99999958921734
a; =-1.97767024097127
a, = 0.97787185728449

Ha(2): (Eqn. 10.105)
by = 1.00000000000000
b, = 0.31457928609158
b, = 1.00000000000000
a; =-0.01831558526104
a, = 0.89972679483240

Hs(2): (Eqn. 10.106)
b, = 1.00000000000000
b; = 0.69054347943834
b, = 1.00000000000000
a; =-0.17586277586059
a, = 0.60203802158022

He(2): (Eqn. 10.107)
by = 1.00000000000000
b; = 1.68991493148360
b, = 1.00000000000000
a; = -0.46087492252454
a, = 0.16465672860857

The quantized transfer function sections are as follows:

Hiq(2): (Eqn. 10.108)
by = 0.079873085021972656250000
b; =-0.159741401672363281250000
b, = 0.079873085021972656250000
a; =-1.999288082122802734375000
a; = 0.999374866485595703125000

Haqi(2): (Eqn. 10.109)
by = 1.000000000000000000000000
b; =-1.999958276748657226562500
b, = 1.000000953674316406250000
a; =-1.994420289993286132812500
a, = 0.994534969329833984375000

Hzqi(2): (Eqn. 10.110)
by = 1.000000000000000000000000
b; =-1.999992132186889648437500
b, = 0.999999523162841796875000
a; =-1.977670192718505859375000
a, = 0.977871656417846679687500

143

Haqi(2): (Egn. 10.111)

by = 1.000000000000000000000000
b, = 0.314579248428344726562500
b, = 0.999999761581420898437500
a; =-0.018315553665161132812500
a, = 0.899726629257202148437500

Hsqi(2): (Egn. 10.112)

bo = 1.000000000000000000000000
b; = 0.690543413162231445312500
b, = 0.999999761581420898437500
a; =-0.175862550735473632812500
a, = 0.602037906646728515625000

Heqi(2): (Egn. 10.113)

b, = 1.000000000000000000000000
b, = 1.689914703369140625000000
b, = 0.999999761581420898437500
a; =-0.460874795913696289062500
a, = 0.164656639099121093750000

Hiq(2): (Eqn. 10.114)

bo = 0.079873323440551757812500

b; =-0.159741401672363281250000

b, = 0.079873323440551757812500

a; =-1.999288082122802734375000

a, = 0.999374866485595703125000
Hazqr(2): (Egn. 10.115)

by = 1.000000000000000000000000

b; =-1.999958515167236328125000

b, = 1.000001192092895507812500

a; = -1.994420289993286132812500

a, = 0.994535207748413085937500
Hzq(2): (Eqn. 10.116)

by = 1.000000000000000000000000

b; =-1.999992132186889648437500

b, = 0.999999523162841796875000

a; =-1.977670192718505859375000

a, = 0.977871894836425781250000
Haq(2): (Egqn. 10.117)

by = 1.000000000000000000000000

b, = 0.314579248428344726562500
b, = 1.000000000000000000000000
a; = -0.018315553665161132812500
a, = 0.899726867675781250000000

144

H5qr(z):

(Eqn. 10.118)

1.000000000000000000000000
0.690543413162231445312500
1.000000000000000000000000
-0.175862789154052734375000
0.602037906646728515625000

H6qr(z):

(Eqn. 10.119)

1.000000000000000000000000
1.689914941787719726562500
1.000000000000000000000000
a; = -0.460875034332275390625000
a, = 0.164656639099121093750000

Quantization Type

Truncated Rounded
Hie(2) 0.05757750813714 0.02043468379527
Hoe(2) 0.00177261661019 0.00134240831291
Hse(2) 0.00028398412879 0.00021683830328
Hae(2) 0.00000612905963 0.00000204911174
Hse(2) 0.00000144949500 0.00000084215994
Hee(2) 0.00000114799856 0.00000151439930

Based on Table 10-22, the rounding method produces the best results in terms of smallest error.

145

Table 10-22. Magnitude error calculation.

COSSAP Coefficients
Hiqr(2) b0 _COSSAP = 0 335013
bl COSSAP = 0 -670004
b2 COSSAP = 0 335013
al COSSAP =1 4191318
a2 COSSAP = 0 -4191682
Hzqr(2) b0 COSSAP = 1 0
bl COSSAP = -1 -4194130
b2 COSSAP = 1 5
al COSSAP =1 4170901
a2 COSSAP = 0 -4171383
Hzqr(2) b0 COSSAP = 1 0
bl COSSAP = -1 -4194271
b2 COSSAP = 0 4194302
al COSSAP =1 4100646
a2 COSSAP = 0 -4101492
Haqr(2) b0 COSSAP = 1 0
bl COSSAP = 0 1319441
b2 COSSAP = 1 0
al COSSAP =0 76821
a2 COSSAP =0 -3773728
Hsqr(2) b0 COSSAP = 1 0
bl COSSAP = 0 2896349
b2 COSSAP = 1 0
al COSSAP =0 737622
a2 COSSAP =0 -2525130
Hsqr(2) b0 COSSAP = 1 0
bl COSSAP = 1 2893713
b2 COSSAP = 1 0
al COSSAP =0 1933050
a2 COSSAP =0 -690620

Table 10-23. COSSAP results of multiplier coefficient transformation.

Using Step 9.3.2 of section 8.2, the number of integer bits configured to the adder sub-blocks of each
cascade stage was 2, 2, 2, 2, 2, and 2.

146

COSSAP Pe Dead Band Range COSSAP/VHDL Peak
RoundMode (Fixed Value Output) PSD
0 7.822413942097593x10™ | -4.1267871856689x10° 3.490241 dB at
to 0.000000 Hz
-1.7266273498535x10
1 1.782562338712x10° | -2.9435157775879x10"° -24.723011 dB at
to 53710.937500 Hz
3.1774044036865x10°
2 1.782562338712x10° | -2.9435157775879x10"° -24.723011 dB at
to 53710.937500 Hz
3.1774044036865x10°
3 1.649846435411x10° | -1.3280391693115x10° -16.812936 dB at
to 29296.875000 Hz
1.0949373245239x1072

Table 10-24. Round-off noise power results of impulse response of COSSAP multiplier
round-off modes.

Based on Table 10-24, RoundMode = 3 produces the best results in terms of smallest error. Figures
10.48 through 10.51 show the power spectral density of the impulse response of the COSSAP round-off
modes. Using MATLAB as the ideal model, the peak PSD of the impulse response is -38.896013 dB at

29296.875000 Hz.

Powar Spaciium Density Flozs

=

2

g

=130

1 1
Dipial Culpal Sigaal F4ATLAS) |

L] 1
®10

=

g

B

2

| Dighal Duspal Signal (YHOL) |

Piresir Spatinin Doty (i) Power Sgaideem Danaidy [dil)

=100

=
(1]
=

Py Specteun DiEnaidy (0l

8
Fraquancy [Hz)

Fig. 10.48. Power spectral density results of impulse response of COSSAP
RoundMode = 0.

147

Fig. 10.49. Power spectral density results of impulse response of COSSAP
RoundMode = 1.

148

Fig. 10.50. Power spectral density results of impulse response of COSSAP
RoundMode = 2.

149

Fower Gpacinim Dessiy Plls

=
a5 T T T T 1 I 1
Diigital Duipest Sigeal A5 TLAB]

& -sut I = |
e
& \
E -mnl -
£ g
& — = T,
=150 H"\-\,__ 1 .
E 1 I I I i o

1] 1 F 3] 4 B - ¥] 3

et

— LigjEEl Lufgul Sagnal iviHiaL)

1
m
=

=

i

-
=
=

Pravor Specinm Doreiy (08) Fowar Spoctum Dansby (48]

Fraquancy (Hz) w10f

Fig. 10.51. Power spectral density results of impulse response of COSSAP
RoundMode = 3.

10.3.2.1: Results of Validation Test #1

The passband digital input signal used is at 500kHz. The transition band input signal used is at 25kHz.
The stopband digital input signal used is at 6MHz. Table 10-25 shows the tabulated results of these 3
signals.

Round-off Noise Power (P,)
COSSAP Passband Signal Transition Band Signal Stopband Signal
RoundMode
0 8.40375276549102x10™ | 8.52927357129575x10 | 7.843499903049x10™
1 3.786735796544x10° 1.7805977991143x10" | 5.377076997478x10°
2 3.786735796544x10° 1.7805977991143x10" | 5.377076997478x10°
3 8.7527318462x10™ 2.3349065241627x10" | 1.53199655723x10™

Table 10-25. Tabulated results of validation test #1.

150

10.3.2.2: Results of Validation Test #2

Figure 10.52 shows the digital input/output response of the unquantized bandpass Elliptic filter. The low-
power passband input signal is at 500kHz. The high-power stopband input signal is at 6MHz. For the
purposes of analysis, the high-power signal is 10 times greater in amplitude than the low-power signal. As
can be seen from the figure, excluding the initial transient response at the output, the ideal Elliptic filter
effectively removes the high-power stopband signal. Comparing the quantized filter, Figures 10.53
through 10.56 show the power spectral density plots of the four COSSAP round-off modes. Table 10-26
shows the tabulated results of the round-off noise power based on the COSSAP multiplier sub-blocks.

e '::Il.ll;"lll:l:'-? “‘lurlal npul Sunalﬂ

e

Digital Inpet Sigral

=
[

=
in

Digial Ingut Sigral
=

=
in

Digtal Inpet Signal
L=

Digkal Cuiput Signal

]
=
P

/ (VAR

[N

.x/

T o

o

80 100

'I.llh ,r'll
15

240

— =

a0 oo

T

Z0a 250

—
—
e
|
—
—

—

30 100

i Nf'fj@ﬂf“f“ W

L] 240

m

I [nr ;

Y N i
"\\ \ / N

L 1
| — Digilal Culpul Signal [MATLAE |

1ﬂﬂ

130
samgl

Fig. 10.52. Digital I/O response of validation test #2 for ideal Elliptic filter.

151

e i!"ﬂ S

= e L Lo b

—— igial Craiged Signal [YHOL)

Fig. 10.53. Power spectral density plot of COSSAP RoundMode = 0.

152

S it Cdiad igns MMATLAR]

e T el (A}

o | MATLARYHIL Digisl Quipu Signe Cifemnce I

Fig. 10.54. Power spectral density plot of COSSAP RoundMode = 1.

153

S it Cdiad igns MMATLAR]

e T el (A}

o | MATLARYHIL Digisl Quipu Signe Cifemnce I

Fig. 10.55. Power spectral density plot of COSSAP RoundMode = 2.

154

i Powar Spacinin Densify Plois
1=]] 1] T 1 I L
= [= Digtlal Ceepir Sgnal MATLAE)
£ -0] . L = . |
tal/ |
| | s
3 -100 4 ﬂ _|'I . : : 3
E_ \\.‘__h_q__._.___ R 'H,‘H !
a 11| == : e W : - |
E i i i i i i i) i 1 I =]
= i) 1 k4 3 4 L] [¥ b
w0’
(1] = T T T T T T 1 1 I
i | — Cigkal Sulpul Signal (vHDL |
-E0 |1 | s : 4
-100 - | ; : -
-1560 -

Power Specinm Density (dE) Power Spectum Density {d8)

& T &)

B
Frequency (He) - 'lliI.

Fig. 10.56. Power spectral density plot of COSSAP RoundMode = 3.

COSSAP RoundMode

Pe

0 8.9156947029847685x10™
1 1.519423402377x10°
2 1.519423402377x10°
3 2.238765273714x10°

Based on Table 10-26, RoundMode = 1 and RoundMode = 2 produce the best results in terms of smallest

error.

Table 10-26. Tabulated results of 4 COSSAP round-off modes.

155

CHAPTER 11: Research Summary and Future Work

The objective of this research was to define a methodology for designing fixed-point IIR digital filters using
modeling tools. A significant observation realized during the course of this research dealt with the parallel
structure implementation. Designing more than two transfer functions sections introduces the problem on
how to go about summing the sections together. Because of the fixed-point representation, the non-linear
aspect of summing could potentially be a setback as was the case with trying to implement the data
communications/imaging bandwidth. Deciding which sections to add together requires future work in
terms of analysis. The cascade structure implementation provides the designer better control in terms of
handling the interface from section to section.

An important question is which COSSAP round-off mode should a designer use for synthesis. No general
conclusion could be drawn from the research examples. In fact, for a given filter, the best round-off mode
depends on which frequency band is analyzed. Therefore, a designer must try all four modes in each
region to determine the best tradeoff. As can be seen from the round-off noise power results throughout
this research, depending on which frequency region is most important to the designer (passband,
transition band, stopband), a specific round-off mode could be chosen for synthesis. This is left to the
designer’s discretion. There was one noticeably consistent result when performing analysis on the 4
round-off modes. RoundMode = 0 produced the greatest round-off noise power when compared to the
other 3 round-off modes.

This research provided a technical bridge between DSP design techniques and digital design. Bridging
the two to go from an ideal representation to real world model required trial-and-error approaches on the
part of this researcher. The trial-and-error approaches produced technical remedies to quantization
problems coming from fixed-point multipliers and adders. For synthesis timing constraints, going from an
ideal, delay-less model to a technology library-based model required the researcher to incorporate
memory elements in the final filter design. Combinational logic delay is a factor a digital designer must
deal with when moving to lower levels of design abstraction. Incorporating a parallel register methodology
significantly reduces the effect of this problem. It reduces this timing problem by eliminating potentially
timing violations at the filter output.

Overall, the methodology outlined in this research is technically sound because it provides an interface
between DSP design techniques and digital design.

156

[Aggarwal]

[Armstrong]

[Bailey]

[Chirlian]

[Fettweis]

[Gold]

[Higgins]

[Jacksonl]

[Jackson2]

[Karl]

[Manolakis]

[Mullis]

[Oppenheim1]

[Oppenheim2]

[Oppenheim3]

[Rabiner]

BIBLIOGRAPHY
J.K. Aggarwal, “Digital Signal Processing”, Western Periodicals Company, 1979.

James R. Armstrong, F. Gail Gray, “Structured Logic Design with VHDL", Prentice-
Hall, Inc., 1993.

Daniel A. Bailey, “Simulation and implementation of Fixed-Point Digital Filter
Structures”, M.S. Thesis, Virginia Polytechnic Institute and State University,
Blacksburg, Virginia, 1995.

Paul M. Chirlian, “Signals and Filters”, Van Nostrand Reinhold, 1994.

Alfred Fettweis, “Roundoff Noise and Attenuation Sensitivity in Digital Filters with
Fixed-Point Arithmetic,” IEEE Transactions on Circuit Theory, Vol. 20, March 20,
1973, pp. 174-175.

Bernard Gold, Lawrence R. Rabiner, “Theory and Application of Digital Signal
Processing”, Prentice-Hall, Inc., 1975.

Richard J. Higgins, “Digital Signal Processing in VLSI”, Prentice-Hall, Inc., 1990.

Leland B. Jackson, “Digital Filters and Signal Processing”, Kluwer Academic
Publishers, 1996.

Leland B. Jackson, “Roundoff Noise Bounds Derived from Coefficient Sensitivities for
Digital Filters,” IEEE Transactions on Circuit and Systems, Vol. 23, August 1976, pp.
481-484.

John H. Karl, “An Introduction to Digital Signal Processing”, Academic Press, 1989.

Dimitris G. Manolakis, John G. Proakis, “Digital Signal Processing: Principles,
Algorithms, and Applications”, Macmillan Publishing Company, 1992.

Clifford T. Mullis, Richard A. Roberts, “Digital Signal Processing”, Addison-Wesley
Publishing Company, Inc., 1987.

Alan V. Oppenheim, Ronald W. Schafer, “Digital Signal Processing”, Prentice-Hall,
Inc., 1975.

Alan V. Oppenheim, Ronald W. Schafer, “Digital Signal Processing”, Prentice-Hall,
Inc., 1989.

Alan V. Oppenheim, Ronald W. Schafer, “Discrete-Time Signal Processing”, Prentice-
Hall, Inc., 1989.

Lawrence R. Rabiner, Charles M. Rader, “Digital Signal Processing”, IEEE Press,
1972.

157

APPENDIX A: Generic VHDL Library

Fixed-point Multipliers

Figure 7.3 is used as reference for this appendix. The initial VHDL-generated code, excluding comments,
is as follows:

kkkkkkkkkkkkkkkkkkkkhkkkhkkkhkkkkkhhkkhkkkkhkkhkkkkhkkkkhkkkkkkkkkhkkkhhkkkhkkkkkhhkhkhkkkkkhkhkkkhkkhkhkkkkkkhkhkkkkkx

library |EEE ;
l'i brary Bl TTRUE_VHDLSNPS ;

use |EEE. std logic_1164.all ;

use |EEE. std_logic_arith.all ;

use Bl TTRUE_VHDLSNPS. COSSAP_PACKAGE_SYNOPSYS. al | ;
Use BI TTRUE_VHDLSNPS. fxp_arith.all ;

entity nult is
generic (SCHEDULE LENGTH : in INTEGER := 1) ;
port (DGIN: in STD LOd C VECTOR((20-1) downto 0) ;
clock : in STD LOG C ;
reset : in STD LOd C ;
DIG QUT : out STD LOd C VECTOR((20-1) downto 0)) ;
end nmult ;

architecture behavior of nult is
constant RoundProdWdth M Mo 1 1 : INTEGER:=1 + 1 + 20 - 1 ;
constant M n_Sched Length : integer := 1;
constant Sched_Myy : integer := Schedule_length / Mn_Sched_Lengt h;
begi n

mai n: process
variable DIGIN tenmp : STD LOd C VECTOR((20-1) downto 0);
variable DIG OQUT tenp : STD LOG C VECTOR((20-1) downto O);
variable Input2 MMs_1 1 : SIGNED(20 - 1 DOANTO 0) ;
vari abl e RoundProd_M Mb_1 1: S| GNED(ROUNDPRODW DTH M Mb_1_1-1 DOMNTO
0);
begi n
reset | oop: |oop
DG INtemp := (others => '0");
DIG QUT tenp := (others =>"'0");
DIG QUT <= (others =>"'0");
wait until (clock'event and clock ="'1");
exit reset_loop when reset ="'1";
mai n_I oop: | oop
DG IN tenp := DIGIN ;
Input2 M M6_1 1 := const2fxp(0, 128575, 1, 20);
RoundProd M M6 1 1 := fxp_round(SIGNED(DI G IN tenp) *
Input2 MM5_1 1, O, RoundProdWdth MM _1 1);
DG QUT temp : =
STD LOd C_VECTOR(f xp_saturate(RoundProd_ M M5 1 1, 1, 20));
if (Sched_My > 1) then
read Woop_1: for i in 1l to (Sched My-1) |oop

wait until (clock'event and clock ="'1");
exit reset_loop when reset ="'1";
end | oop;
end if;

DI G QUT <= DI G_QUT_tenp;

158

wait until (clock'event and clock ="'1");
exit reset_loop when reset ="'1";
end | oop mai n_| oop;
end | oop reset | oop;
end process nain;

end behavi or ;

The first editing step is removing the generic statement, the ‘clock’ input port, and the ‘reset’ input port.
This first edit should be performed in the entity declaration. The second edit entails removing all reset and
edge-triggered clock references and unwanted variables and possible constants in the architecture. The
resulting manually edited VHDL-generated code, at this point, is as follows:

kkkkkkkkkkkkkkkkkkkkhkkkhkkhhkkkkkhhkkhkkkkkkhkhkkhkkkkkkhkkkhkkkkkkkkkkhhkhhkkkkkkhkhkkkhkkkhkkhkkkhkkkkhkkkkkkkkkx

library | EEE ;
l'i brary Bl TTRUE_VHDLSNPS ;

use | EEE. std_logic_1164.all ;

use |EEE. std_logic_arith.all ;

use Bl TTRUE_VHDLSNPS. COSSAP_PACKAGE_SYNOPSYS. al |
Use BI TTRUE_VHDLSNPS. fxp_arith.all ;

entity nult is

port (DGIN: in STD LOd C VECTOR((20-1) downto 0) ;
DIG QUT : out STD LOd C VECTOR((20-1) downto 0)) ;
end mul't ;

architecture behavior of mult is
constant RoundProdWdth MM 1 1 : INTEGER := 1 + 1 + 20 - 1 ;
begi n

mai n: process(DIG IN)
variable Input2 MMs_1 1 : SIGNED(20 - 1 DOANTO 0) ;
vari abl e RoundProd_M Mb_1 1: S| GNED(ROUNDPRODW DTH M Mb_1_1-1 DOMNTO
0);
begi n
Input2_ M M6_1 1 := const2fxp(0, 128575, 1, 20);
RoundProd M M6 1 1 := fxp_round(SIGNED(DIG IN) *
Input2_ MM6_1 1, O, RoundProdWdth MM _1 1);
DI G QUT <= STD LOG C VECTOR(f xp_saturate(RoundProd M M5 1 1, 1, 20));
end process nain;
end behavior ;

There should only be 2 VHDL variables remaining. These variables should have the Input2_ and
RoundProd__ prefixes. The only VHDL constant remaining should have the RoundProdWidth_ prefix. It is
noted here that this constant is obviously equal to 1. Briefly stated, this number was calculated as the n-
bit length plus the summation of integer bits allocated to represent the input, the constant, and the output.
The third editing step requires the designer to enter the generic statement in the entity as follows:

159

generic (RND_MODE, INT, DEC, INT_LENGTH, BIN_LENGTH: in INTEGER);

The fourth editing step requires the designer to replace the number 20 with the generic variable
BIN_LENGTH throughout the code. Sum the remaining numbers in the constant declaration to get the
number 1. The fifth and final editing step requires the designer to replace the reference const2fxp() with
the reference const2fxp(INT, DEC, INT_LENGTH, BIN_LENGTH). The final VHDL code is as follows:

kkkkkkkkkkkkkkkkkkkkhkkkhkkkhkkhkkhhkkhkkkkhkkhkkkhkkkkkkkkkkhkkkkkkkkkkhhkhkhkkkkkkhhkkkhkkkhkkhkkkhkkkkhkkkkkkkkkx

library | EEE ;
i brary Bl TTRUE_VHDLSNPS ;

use | EEE.std logic_1164.all ;

use |EEE. std_logic_arith.all ;

use Bl TTRUE_VHDLSNPS. COSSAP_PACKAGE_SYNOPSYS. al | ;
Use BI TTRUE_VHDLSNPS. fxp_arith.all ;

entity nult is

generic (RND_MODE, INT, DEC, INT_LENGTH, BIN LENGTH : in INTEGER) ;
port (DDGIN: in STD LOG C VECTOR((BIN_ LENGTH 1) downto 0) ;
DIG QUT : out STD LOd C VECTOR((BI N LENGTH 1) downto 0)) ;
end mult ;

architecture behavior of mult is
constant RoundProdWdth M Mb 1 1 : INTEGER := BIN LENGTH + 1 ;
begi n

mai n: process(DIG IN)
variable Input2 MMs_1 1 : SIGNED(BIN LENGTH - 1 DOANTO 0) ;
vari abl e RoundProd_M Ms_1 1: S| GNED(ROUNDPRODW DTH M Mb_1 1-1 DOANTO
0);
begi n
Input2_ M M5_1 1 := const2fxp(I NT, DEC, |NT_LENGTH, BIN_LENGTH);
RoundProd M M6 1 1 := fxp_round(SIGNEDXDIGIN) * Input2_ MM_1 1,
RND_MODE, RoundProdWdth M M5 1 1);
DI G QUT <= STD LOG C VECTOR(f xp_saturate(RoundProd M M5 1 1, 1,
BI N_LENGTH)) ;
end process nain;
end behavi or ;

kkkkkkkkkkkkkkkkkkkkhkkkhkkkhkkkkkhhkkhkkkhkkhkkhkkkkkkhkkkhkkkkkkkhkkkhhkhkhkkkkkkhkkkhkkkhkkhkkkkhkkkkhkkkkkkkkkx

The VHDL code edit is now purely combinational and is used as a library reference. To ensure that
functionality did not change, it is left to the designer to compare the initial VHDL-generated code to the
final edited code via a VHDL testbench. Using the COSSAP function const2fxp(), an n-bit fixed-point
representation for a multiplier coefficient is realized. The generic variables INT, DEC, INT_LENGTH, and
BIN_LENGTH are parameters passed to this function to represent this multiplier coefficient. The generic
variable RND_MODE, in the COSSAP function fxp_round() in the above code, represent one of four
round-off modes explained in Chapter 6. Notice that in the COSSAP function fxp_saturate() one of the
parameters is the integer 1. This is the set saturation mode that was found to produce the best result of
the three available COSSAP saturation modes. The method by which this mode was found to be the best
is found in Chapter 5. The reason for these 5 editing steps is to design a generic combinational multiplier
sub-block to be used solely for design verification.

160

2-input Fixed-point Adders

Figure 7.4 is used as visual reference for this appendix. The initial VHDL-generated code after executing
xvcg, excluding comments, is as follows:

kkkkkkkkkkkkkkkkkkkkhhkkhkkkhkkkkkkhhkkhkkkkhkkhkhkkhkkkkkkhkkkhkkkkkkkkkkhhkhhkhkkkkhhkkkhkkkhkkhkkkhkkkkhkkkkkkkkkx

library | EEE ;
l'i brary Bl TTRUE_VHDLSNPS ;

use | EEE. std_logic_1164.all ;

use |EEE. std_logic_arith.all ;

use Bl TTRUE_VHDLSNPS. COSSAP_PACKAGE_SYNOPSYS. al | ;
Use BI TTRUE_VHDLSNPS. fxp_arith.all ;

entity adder2 is

generic (SCHEDULE LENGTH : in INTEGER := 1) ;
port (INO : in STD LOd C VECTOR((20-1) downto 0) ;
INL : in STD LOd C VECTOR((20-1) downto 0) ;
clock : in STD LOG C ;
reset : in STD LOA C ;
QUTPUT : out STD LOG C VECTOR((20-1) downto 0)) ;

end adder?2 ;

architecture behavior of adder2 is
constant RoundWdth M M2 1 1 : |INTEGER := MAXOF2INT(1, 1) + 20 - 1 + 1 ;
constant M n_Sched Length : integer := 1;
constant Sched_Myy : integer := Schedule_length / Mn_Sched_Lengt h;

begi n

mai n: process
variable INO_tenp : STD LOd C VECTOR((20-1) downto 0);
variable INl _tenmp : STD LOd C VECTOR((20-1) downto 0);
variable OQUTPUT tenp : STD LOd C VECTOR((20-1) downto 0);
vari abl e RoundSum M M22_1_1: S| GNED(ROUNDW DTH M M22_1 1 - 1 DOANTO 0)

begi n
reset | oop: |oop
INO_tenp := (others => '0");
INL tenp := (others => '0");
QUTPUT tenp := (others =>"'0");
QUTPUT <= (others => '0');
wait until (clock'event and clock ="'1");
exit reset_loop when reset ="'1";
mai n_l oop : | oop
INO_tenp := INO ;
INl_tenp := IN1 ;

if (20 > 20) then
RoundSum M M22 1 1 : =
fxp_round(SIGNED(I N1 tenp(IN1_tenp' high) & INlL tenp) +
SI GNED(| NO_t enp) ,
0, RoundWdth M M2 1 1);
el se
RoundSum M M22 1 1 : =

161

fxp_round(SI GNED(I NO_tenp(I NO_tenp' high) & INO_tenp) +
SI GNED(| N1_t enp) ,
0, RoundWdth_M M2 1 1);
end if;
QUTPUT _tenp : =
STD LOd C VECTOR(f xp_sat urat e(RoundSum M M22 1 1, 1, 20));
if (Sched_My > 1) then
read_ W oop_1: for i in 1 to (Sched_My-1) |oop
wait until (clock'event and clock ="'1");
exit reset_|oop when reset ="'1";
end | oop;
end if;
QUTPUT <= QOUTPUT_t enp;
wait until (clock'event and clock ="'1");
exit reset_|oop when reset ="'1";
end | oop main_| oop;
end | oop reset | oop;
end process nain;

end behavi or ;

The designer should enter the generic statement in the entity as follows:
generic (BIN_LENGTH: in INTEGER);

The only VHDL constant remaining should have the RoundWidth_ prefix. The only VHDL variable
remaining should have the RoundSum__ prefix. The final VHDL generic code is as follows:

*kkkkkkkkkhhhhkx *kkkkkkkkk *kkkkkkkkk *kkkkk *kkkkkk

library |EEE ;
l'i brary Bl TTRUE_VHDLSNPS ;

use |EEE.std logic_1164.all ;

use |EEE. std logic_ arith.all ;

use Bl TTRUE_VHDLSNPS. COSSAP_PACKAGE_SYNOPSYS. al | ;
Use BI TTRUE_VHDLSNPS. fxp_arith.all ;

entity adder2 is
generic (BIN_LENGTH : in INTEGER) ;
port (INO : in STD LOd C_VECTOR((BI N_LENGTH 1) downto 0) ;
INL : in STD LOG C VECTOR((BIN_LENGTH 1) downto 0) ;
OQUTPUT : out STD LOGE C_VECTOR((BI N_LENGTH 1) downto 0)) ;
end adder?2 ;
architecture behavior of adder2 is
constant RoundWdth M M2 1 1 : |INTEGER := BIN LENGTH + 1 ;
begi n

mai n: process(| NO, I N1)
vari abl e RoundSum M M22_1_1: S| GNED(ROUNDW DTH M M22_1_1 - 1 DOANTO 0)

begi n

162

RoundSum M M2 1 1 := fxp_round(SI GNED(I NO(I NO' hi gh) & I NO) +
SIGNED(I N1), O, RoundWdth_M M2 1 1);
QUTPUT <= STD LOA C VECTOR(f xp_sat urat e(RoundSum M M22 1 1, 1,
BI N_LENGTH)) ;
end process nain;

end behavi or ;

3-input Fixed-point Adders

Figure 7.5 is used as visual reference for this appendix. The final VHDL generic code is as follows:

kkkkkkkkkkkkkkkkkkkkhkkkhkkkhkkkkkhhkkhkkkkkkhkkhkkkkkkhkkkhkkkkkkkkkkhhkhkhkhkkkkhkhkkkhkkkhkkhkkkhkkkkhkkkkkkkkkx

library |EEE ;
l'i brary Bl TTRUE_VHDLSNPS ;

use | EEE. std_logic_1164.all ;

use |EEE. std_logic_arith.all ;

use Bl TTRUE_VHDLSNPS. COSSAP_PACKAGE_SYNOPSYS. al | ;
Use BI TTRUE_VHDLSNPS. fxp_arith.all ;

entity adder3 is

generic (BIN_LENGTH : in INTEGER) ;

port (INO : in STD LOd C VECTOR((BI N_LENGTH 1) downto 0) ;
INL : in STD_LOG C_VECTOR((BI N_LENGTH- 1) downto 0) ;
IN2 : in STD LOG C VECTOR((BI N LENGTH 1) downto 0) ;
QUTPUT : out STD LOG C VECTOR((BI N_LENGTH 1) downto 0)) ;

end adder3 ;

architecture behaviorl of adder3 is
constant RoundWdth M M5 1 1: | NTEGER:
constant RoundWdth M ML6_1 2: | NTEGER
begi n

BI N_LENGTH + 1 ;
BIN_LENGTH + 1 ;

mai n: process(| NO, I N1, | N2)
vari abl e RoundSum M ML5_1_1: S| GNED(ROUNDW DTH M ML5_1 1-1 DOWNTO 0)

variabl e RoundSum M ML6_1 2: S| GNED(ROUNDW DTH_ M ML6_1_2-1 DOWNTO 0)
variable SIG 4M M5 1 1 : STD LOG C VECTOR((BI N_LENGTH 1) downto 0)

begi n
RoundSum M ML5 1 1 := fxp_round(SI GNED(I NO(I NO' hi gh) & I NO) +
SIGNED(I N1), O, RoundWdth_M M5 1 1);
SIGAM M5 1 1 := STD LOd C_VECTOR(f xp_sat urat e(RoundSum M M5 1 1,
1, BIN_LENGTH));
RoundSum M ML6_1 2 : =
fxp_round(SI GNED(SI G 4M ML5_1_1(SIG 4M MLI5_1_1' high) &
SIG4M M5 1 1) + SIGNED(IN2), O,
RoundW dth_M ML6_1 2);

163

OQUTPUT <= STD LOG C_VECTOR(f xp_saturate(RoundSum M ML6_1 2, 1,
BI N_LENGTH)) ;
end process nain;

end behaviorl ;

Fixed-point Delay Sub-blocks

Figure 7.6 is used as visual reference for this appendix. The final VHDL generic code is as follows:

*kkkkkkkkkhkhhkx *kkkkkkkkk *kkkkkkkkk *kkkkk *kkkkkk

library | EEE ;
use | EEE. std_logic_1164.all ;

entity delay is

generic (BIN_LENGTH: in | NTEGER);
port (INPUT : in STD LOG C_VECTOR((BIN_LENGTH 1) downto 0) ;
QUTPUT : out STD LOG C_VECTOR((BI N_LENGTH 1) downto 0);
CLK, RESET : in STD_LOAJC) ;

end del ay;

architecture behavior of delay is
begi n

mai n: process(CLK, RESET)
begi n
if (RESET = '"1') then
for i in O to BINLENGTH 1 | oop
QUTPUT(i) <= "'0";

end | oop;

el sif (CLK EVENT and CLK = '1'") then
QUTPUT <= | NPUT,;

end if;

end process nain;

end behavi or ;

kkkkkkkkkkkkkkkkkkkkhkkkhkkkhkkkkkkhhkkhkkkhkkkhkkhkkkkkkkkkkhkkkkkkkhkkkhhkkkhkhkkkkhkkkkhkkkhkkhkkkkhkkkkhkkkkkkkkkx

Generic VHDL Structural Code of Figure 7.1.

library | EEE ;
l'i brary Bl TTRUE_VHDLSNPS ;

use |EEE.std logic_1164.all ;

use |EEE. std_logic_arith.all ;

use Bl TTRUE_VHDLSNPS. COSSAP_PACKAGE_SYNOPSYS. al | ;
Use BI TTRUE_VHDLSNPS. fxp_arith.all ;

entity LOWPASS FILTER is

164

generic (RND_MODE, |NT_LENGTH, BIN LENGTH : INTEGER) ;
port (DIGIN: in STD LOG C VECTOR((BI N LENGTH 1) downto 0) ;
DIG OUT : out STD LOG C VECTOR((BI N _LENGTH 1) downto 0) ;
CLK, RESET : in STD LOGC) ;
end LOAPASS FILTER ;

architecture STRUCTURE of LOWPASS FILTER is
conmponent ADDER2
generic (BIN LENGTH : | NTEGER) ;
port (INO : in STD LOd C VECTOR((BI N_LENGTH 1) downto 0) ;
INL : in STD_LOG C VECTOR((BI N_LENGTH 1) downto 0) ;
QUTPUT : out STD LOG C VECTOR((BI N _LENGTH 1) downto 0)) ;
end conponent;
conponent MULT
generic (RND_MODE, | NT, DEC, | NT_LENGTH, BI N_LENGTH : | NTEGER) ;
port (INO : in STD LOd C VECTOR((BI N_LENGTH 1) downto 0) ;
QUTPUT : out STD LOG C VECTOR((BIN_LENGTH 1) downto 0)) ;
end conponent;
conponent DELAY
generic (BIN_ LENGTH : | NTEGER) ;
port (INPUT : in STD LOG C VECTOR((BI N LENGTH 1) downto 0) ;
QUTPUT : out STD LOG C VECTOR((BI N _LENGTH 1) downto O) ;
CLK, RESET : in STD LOCAC) ;
end conponent;

signal DLY_IN O, DLY OUT O : STD_LOG C_VECTOR((BI N_LENGTH 1) downto 0) ;
signal BO_OUT, B1_OUT, Al_OUT : STD LOG C VECTOR((BI N LENGTH 1) downto 0) :
signal DI G OUT_I NT : STD_LOG C_VECTOR((BI N_LENGTH 1) downto 0) ;

begi n
DI G OUTPUT: DI G OUT <= DI G_OUT_I NT;

DELAY_DELAY _0: DELAY generic nmap (BI N_LENGTH)
port map (DLY_IN O, DLY QUT_O, CLK, RESET);

BO: MULT generic map (RND_MODE, 0, 128575, | NT_LENGTH, BI N _LENGTH)
port map (DIGIN, BO_QUT);

B1l: MULT generic map (RND_MODE, 0, 128575, | NT_LENGTH, BI N _LENGTH)
port map (DIGIN, Bl _QUT);

Al: MJLT generic map (RND_MODE, 0, 267138, | NT_LENGTH, BI N LENGTH)
port map (DIG OQUT_INT, Al _QUT);

ADDER 0: ADDER2 generic map (Bl N_LENGTH)
port nmap (BO_QUT, DLY OQUT O, DIG QUT_INT);
ADDER_1: ADDER2 generic map (BI N_LENGTH)
port map (B1_QUT, Al1_QUT, DLY_INO);
end STRUCTURE ;

165

APPENDIX B: Additional Results of 3" order 16-bit Lowpass Butterworth Filter

o Hiz): Unguaniized Zeros

1 ¥ H -

: : ' w Hiz): Unguariized Poles
: : o :
SRRVIRRSON . 0 VYU St m— | SENFREETPANS | RSIERTRIIE £ T2 S
¥ I il e T
............... U S S-S N
................. Bavvwnsneannnes i b S s
1 i Mo i
e St E ST = B e SR s ,..-.,E ,....,....E. FE s S - pa T e
: ! <

Pole/Zero Plot of Overall Transfer Function in Section 9.1.

166

Unguantized Filter

i, - o H'll:E:IZ Llnquantized Zeros |1
: ® H1{Z) Unguantized Poles

Imaginary Part
=
:
&
@

Real Fart

Pole/Zero Plot of Parallel Transfer Function Section H,(z) of Equations 9.2.

Unguantized Filter

I T T
. R oo o H2(z) Unguantized Zeros |
0. : s H2(2): Unguantized Poles

AU N SO N W S
]| ;
- I TR e e s oS

Imaginary Fart
]
!
&
X

. o .
| 0 I 1
i | I
i R

Real Fart

Pole/Zero Plot of Parallel Transfer Function Section H,(z) of Equations 9.3.

167

Unguantized Filter

1 [T ._ o H-II:Z:I Unquantized Zeros
oGk e - B B Hagusiticon Frles

i | I
1 i
i R R ; R

Imaginary Part
=
!
i

o .- S —— ____________ .
o __________ B —
o ______ o
B 1 1)

Real Fart

Pole/Zero Plot of Cascade Transfer Function Section H(z) of Equations 9.10.

Unguantized Filter

] T T
| i Sl e H2(2: Unguantized Zeros
0. : w HZ{z): Unguantized Poles

715
galk........ ;
gzbk........ , '

Imaginary Fart
]
:
@
X

. I A S -
i
- OO SRR USRI DURUR . B SO
|

Real Part

Pole/Zero Plot of Cascade Transfer Function Section H,(z) of Equations 9.11.

168

Svynthesis-ready VHDL Code of Parallel Structure

library |EEE ;
l'i brary Bl TTRUE_VHDLSNPS ;

use | EEE. std_logic_1164.all ;

use |EEE. std logic_ arith.all ;

use Bl TTRUE_VHDLSNPS. COSSAP_PACKAGE_SYNOPSYS. al | ;
Use BI TTRUE_VHDLSNPS. fxp_arith.all ;

entity LOM_P1_STRUCT is
port (DGIN: in STD LOd C VECTOR((16-1) downto 0) ;
DIG QUT : out STD LOG C VECTOR((16-1) downto 0) ;
CLK, RESET : in STD LOCAC) ;
end LOM_P1 STRUCT ;

architecture STRUCTURE of LOWM_P1 STRUCT is
conmponent ADDER2_16
port (INO : in STD LOd C VECTOR((16-1) downto 0) ;
INL : in STD LOG C VECTOR((16-1) downto 0) ;
QUTPUT : out STD LOG C VECTOR((16-1) downto 0))
end conponent;
conmponent ADDER3_16
port (INO : in STD LOd C VECTOR((16-1) downto 0) ;
INL : in STD LOG C VECTOR((16-1) downto 0) ;
IN2 : in STD LOG C VECTOR((16-1) downto 0) ;
QUTPUT : out STD LOd C VECTOR((16-1) downto 0))
end conponent;
conmponent MULT_BO_H1
port (INO : in STD LOd C VECTOR((16-1) downto 0) ;
QUTPUT : out STD LOG C VECTOR((16-1) downto 0))
end conponent;
conponent MULT_B1_H1
port (INO : in STD LOd C VECTOR((16-1) downto 0) ;
QUTPUT : out STD LOG C VECTOR((16-1) downto 0))
end conponent;
conponent MULT_Al_H1
port (INO : in STD LOd C VECTOR((16-1) downto 0) ;
QUTPUT : out STD LOd C VECTOR((16-1) downto 0))
end conponent;
conmponent MJULT_A2 H1
port (INO : in STD LOd C VECTOR((16-1) downto 0) ;
QUTPUT : out STD LOd C VECTOR((16-1) downto 0))
end conponent;
conmponent MJULT_BO_H2
port (INO : in STD LOd C VECTOR((16-1) downto 0) ;
QUTPUT : out STD LOd C VECTOR((16-1) downto 0))
end conponent;
conmponent MULT_Bl1 H2
port (INO : in STD LOd C VECTOR((16-1) downto 0) ;
QUTPUT : out STD LOG C VECTOR((16-1) downto 0))
end conponent;
conmponent MULT_Al H2
port (INO : in STD LOd C VECTOR((16-1) downto 0) ;
QUTPUT : out STD LOG C VECTOR((16-1) downto 0))
end conponent;

169

conponent DELAY_16
port (IINPUT : in STD LOG C VECTOR((16-1) downto 0) ;

OUTPUT : out STD LOG C VECTOR((16-1) downto 0) ;
CLK, RESET : in STD LOGC) ;

end conponent;

si gnal
si gnal
si gnal

si gnal
si gnal
si gnal
si gnal

si gnal
si gnal

begi n

DLY IN O _Hl, DLY OUT_O_Hl: STD LOG C_VECTOR((16-1) downto 0) ;
DLY OUT 1_Hl : STD_LOG C_VECTOR((16-1) downto 0) ;
DLY IN O H2, DLY OUT_0_H2: STD LOG C_VECTOR((16-1) downto 0) ;

DI G OUT_| NT : STD_LOG C_VECTOR((16-1) downto 0) ;
BO_OUT_H1, B1_OUT_HL : STD LOG C VECTOR((16-1) downto 0) :
DIG OUT_Hl, AL OUT HlL : STD LOG C_VECTOR((16-1) downto 0) ;
A2_OUT_HL :STD_LOG C_VECTOR((16-1) downto 0) ;

BO_OUT_H2, B1_OUT_H2 : STD LOG C VECTOR((16-1) downto 0) :
DIG OUT_H2, AL OUT_H2 : STD LOG C_VECTOR((16-1) downto 0) :

DI G OUTPUT2: DELAY_16
port map (DI G OUT_INT, DIG OUT, CLK, RESET);

DI G_OUTPUT: ADDER2_16 port map (DIG OUT_Hl, DIG OUT_H2, DI G OUT_INT);

DELAY_16_DELAY_O_H1: DELAY_16

port map (DLY_IN O H1, DLY _QUT_O_Hi, CLK, RESET);
DELAY_16_DELAY_ 1 Hl: DELAY_ 16

port map (A2_QUT_H1, DLY_OUT_1_Hl, CLK, RESET);
DELAY_16_DELAY_O_H2: DELAY_16

port map (DLY_IN O H2, DLY OUT_0 H2, CLK, RESET);

BO_Hl: MULT_BO_Hl port map (DIGIN, BO_OUT HL);
Bl _Hl: MULT B1_Hl port map (DIGIN, Bl_OUT HL);
Al HL: MILT Al _HL port map (DIG OUT_H1, Al_OUT Hl);
A2_H1: MILT A2 _H1 port map (DIG OUT_Hl, A2 OUT Hl);
BO_H2: MULT_BO_H2 port map (DIGIN, BO_OUT H2);
Bl_H2: MULT B1_H2 port map (DIGIN, Bl_OUT H2);
Al_H2: MILT Al _H2 port map (DIG OUT_H2, Al_OUT H2);

H2
ADDER 0_H1: ADDER2_16 port map (BO_OUT_H1, DLY _OUT O _Hl, DI G OUT HL);
ADDER_1_Hl: ADDER3_16
port map (B1_OUT_Hl, DLY_OUT_1 H1, AL OUT_Hl, DLY_INO Hl);
ADDER 0_H2: ADDER2_16 port map (BO_OUT H2, DLY OUT 0 _H2, DIG OUT H2);
)

| G_OUT_
ADDER 1_H2: ADDER2_16 port map (Bl_OUT H2, Al_OUT_H2, DLY_IN O H2

end STRUCTURE ;

170

Svynthesis-ready Top-level VHDL Code with A/D Converter (Parallel Structure)

library |EEE ;
l'i brary Bl TTRUE_VHDLSNPS ;

use | EEE. std_logic_1164.all ;

use |EEE. std logic_ arith.all ;

use Bl TTRUE_VHDLSNPS. COSSAP_PACKAGE_SYNOPSYS. al | ;
Use BI TTRUE_VHDLSNPS. fxp_arith.all ;

entity LOM_P1 TOP is
generic (BIN_LENGTH: in | NTEGER);
port (DGIN: in STD LOd C VECTOR((16-1) downto 0) ;
DIG QUT : out STD LOA C VECTOR((16-1) downto 0) ;
CLK, RESET : in STD LOCAC) ;
end LOM_P1 TOP ;

architecture STRUCTURE of LOM_P1 TOPRP is
conmponent LOWM_P1_ STRUCT
port (DGIN: in STD LOd C VECTOR((16-1) downto 0) ;
DIG OQUT : out STD LOd C VECTOR((16-1) downto 0) ;
CLK, RESET : in STD LOCJC) ;
end conponent;
conmponent AD_CONVRTR
generic (BIN_LENGTH: in | NTEGER);
port (INPUT : in STD LOd C VECTOR((BI N LENGTH 1) downto 0) ;
OQUTPUT : out STD LOG C_VECTOR((BI N_LENGTH 1) downto 0);
CLK, RESET : in STD LOCAC) ;
end conponent;

signal DIG INT: STD LOd C VECTOR((BI N _LENGTH 1) downto 0) ;
begi n
AD 16BI TS: AD _CONVRTR generic map (BI N_LENGTH)

port map (DIGIN, DIG.INT, CLK, RESET);
LOWPASS: LOAL_P1_STRUCT port map (DI G INT, DIG OUT, CLK, RESET);

end STRUCTURE ;

Top-level Script File for Parallel Structure

read -f db ./db/ DFF_16. db
read -f db ./db/ ADDER2_16. db
read -f db ./db/ ADDER3_16. db
read -f db ./db/ MILLT_BO_HL. db
read -f db ./db/MILT_B1_HL.db
read -f db ./db/ MLLT_Al_HL.db
read -f db ./db/ MLLT_A2_HL.db
read -f db ./db/ MLT_BO_H2. db
read -f db ./db/MLT_B1_H2.db
read -f db ./db/ MLLT_Al_H2. db

set _dont _touch DFF_16

171

set _dont touch ADDER2 16
set _dont _touch ADDER3 16
set _dont _touch rmult b0 _hl
set _dont _touch nult_bl hl
set _dont _touch nult_al hl
set _dont _touch nult_a2 hl
set _dont _touch rmult b0 _h2
set _dont _touch rmult bl h2
set _dont _touch nult_al h2

anal yze -f vhdl ../src/Butterworthl6/Parallel/lowl pl struct.vhd
el aborate LOM_P1_STRUCT -arch "STRUCTURE" -lib BI TTRUE_VHDLSNPS - update

i ncl ude
i ncl ude

.Iscripts/lowl pl clk.scr"
.Iscripts/lowl pl reset.scr”

set _input_delay -clock CLK 10.0 all _inputs()
set _output_delay -clock CLK 10.0 all _outputs()

set _prefer { hcells/* }
set _dont _use { Isi_10k/* }

uni qui fy
conpile -map_effort high

wite -f db -hierarchy -out ./db/LOM_P1 STRUCT. db

wite -f vhdl -out ./LOM_P1_STRUCT. vhd

check_desi gn > ./lowl_pl check.rpt

report _timng > . /lowl_pl timng.rpt
report_constraints -max_delay -all _violators -verbose > ./lowl_pl viol.rpt
report _cell > . /lowl_pl cell.rpt

report _area > ./lowl_pl_area.rpt
report_cell all _registers() > ./lowl_pl registers.rpt
report _net > . /lowl_pl net.rpt

report _cl ock > . /lowl_pl_clock.rpt

report _timng -path end -delay nax -nax_paths 600 -nworst 1 -to all_outputs()
>> . /lowl_pl tinng.rpt

qui t

Timing Report of Parallel Structure

I nformation: Updating design information... (U D 85)

khkkhkkhkhkhkhkhhkhkhhhhhhhhhhhhhkhkhhkhkhdkhkrkk krkkx**x

Report : tining
-path short
-del ay nax
-max_paths 1
Design : LOM_P1_STRUCT
Version: 1999. 10
Dat e . Thu Nov 25 21:32:51 1999

172

R R I S I I I I I I S I R I R I R O

Operating Conditions:
Wre Load Mbdel Mode: top

Startpoint: D GIN<14> (input port clocked by CLK)
Endpoi nt: DFF_16_DELAY_0_H2/ QUTPUT_r eg<0>
(rising edge-triggered flip-flop clocked by CLK)
Path G oup: CLK
Path Type: nax

Poi nt I ncr Pat h
clock CLK (rise edge) 0. 00 0. 00
cl ock network delay (ideal) 0. 00 0. 00
i nput external delay 10. 00 10.00 f
DI G I N<14> (in) 0. 00 10.00 f
DFF_16_DELAY_0_H2/ QUTPUT_r eg<0>/ d0 (hdr pq) 42. 42 52.42 f
data arrival tine 52.42
clock CLK (rise edge) 100000. 00 100000. 00
cl ock network delay (ideal) 0. 00 100000. 00
cl ock uncertainty -10. 00 99990. 00
DFF_16_DELAY_0_H2/ QUTPUT_r eg<0>/ ck (hdrpq) 0.00 99990.00 r
library setup tine -0.45 99989. 55
data required tinme 99989. 55
data required tine 99989. 55
data arrival tine -52.42
sl ack (MET) 99937. 12

Perform ng report _timng on port 'DI G OQUT<15>".

Perform ng report _timng on port 'Dl G OUT<14>'.

Perform ng report_timng on port 'Dl G OQUT<13>'.

Perform ng report_timng on port 'Dl G OQUT<12>'.

Perform ng report _timng on port 'DI G OUT<11>'.

Perform ng report _timng on port 'DI G OQUT<10>'.

Perform ng report _timng on port 'Dl G QUT<9>'.

Perform ng report _timng on port 'D G QUT<8>'.

Perform ng report _timng on port 'D G OQUT<7>'.

Perform ng report _timng on port 'D G OQUT<6>'.

Perform ng report _timng on port 'D G QUT<5>'.

Perform ng report _timng on port 'D G QUT<4>',

Perform ng report _timng on port 'D G QUT<3>'.

Perform ng report _timng on port 'D G OQUT<2>'.

Perform ng report _timng on port 'D G QUT<1>'.

Perform ng report _timng on port 'D G QUT<0>'.

khhkkkhhhkkhkhhkkkhhhkhkhhkkhhkxkhdhdkk hxkrkdhrkkk hkxkk k*x*%
Report : timing

-path end

-del ay nax

- max_pat hs 600
Design : LOM_P1_STRUCT

173

Versi on: 1999. 10
Dat e : Thu Nov 25 21:32:53 1999

khkkhkkhkkhkhkhkhhhkhhhhhhhhhkhhhkhkhdkhkhkkhkrkk krkkx**x

Operating Conditions:
Wre Load Mbdel Mode: top

Endpoi nt Pat h Del ay Pat h Required Sl ack
DI G QUT<0> (out) 0.42 f 99980. 00 99979. 58
DI G QUT<1> (out) 0.42 f 99980. 00 99979. 58
DI G_ QUT<2> (out) 0.42 f 99980. 00 99979. 58
DI G_ QUT<3> (out) 0.42 f 99980. 00 99979. 58
DI G QUT<4> (out) 0.42 f 99980. 00 99979. 58
DI G QUT<5> (out) 0.42 f 99980. 00 99979. 58
DI G QUT<6> (out) 0.42 f 99980. 00 99979. 58
DI G_ QUT<7> (out) 0.42 f 99980. 00 99979. 58
DI G_ QUT<8> (out) 0.42 f 99980. 00 99979. 58
DI G QUT<9> (out) 0.42 f 99980. 00 99979. 58
DI G_QUT<10> (out) 0.42 f 99980. 00 99979. 58
DI G_QUT<11> (out) 0.42 f 99980. 00 99979. 58
DI G QUT<12> (out) 0.42 f 99980. 00 99979. 58
DI G_QUT<13> (out) 0.42 f 99980. 00 99979. 58
DI G_QUT<14> (out) 0.42 f 99980. 00 99979. 58
DI G_QUT<15> (out) 0.42 f 99980. 00 99979. 58

Synthesis-ready VHDL Code of Cascade Structure

library | EEE ;
l'i brary Bl TTRUE_VHDLSNPS ;

use | EEE. std_logic_1164.all ;

use |EEE. std logic_ arith.all ;

use Bl TTRUE_VHDLSNPS. COSSAP_PACKAGE_SYNOPSYS. al | ;
Use BI TTRUE_VHDLSNPS. fxp_arith.all ;

entity LOM_C1_STRUCT is
port (DGIN: in STD LOd C VECTOR((16-1) downto 0) ;
DIG QUT : out STD LOA C VECTOR((16-1) downto 0) ;
CLK, RESET : in STD LOAC) ;
end LOM_Cl1_STRUCT ;

architecture STRUCTURE of LOM_Cl1 _STRUCT is
conponent ADDER2_16
port (INO : in STD LOd C VECTOR((16-1) downto 0) ;
INL : in STD LOG C VECTOR((16-1) downto 0) ;
QUTPUT : out STD LOG C VECTOR((16-1) downto 0)) ;
end conponent;
conmponent ADDER3_16
port (INO : in STD LOd C VECTOR((16-1) downto 0) ;
INL : in STD LOG C VECTOR((16-1) downto 0) ;
IN2 : in STD_LOG C VECTOR((16-1) downto 0) ;
QUTPUT : out STD LOd C VECTOR((16-1) downto 0)) ;
end conponent;
conmponent MJULT_BO_H1

174

port (INO : in STD LOd C VECTOR((16-1) downto 0) ;
QUTPUT : out STD LOG C VECTOR((16-1) downto 0)) ;
end conponent;
conponent MULT_B1_H1
port (INO : in STD LOd C VECTOR((16-1) downto 0) ;
QUTPUT : out STD LOd C VECTOR((16-1) downto 0)) ;
end conponent;
conmponent MJULT_B2 H1
port (INO : in STD LOd C VECTOR((16-1) downto 0) ;
QUTPUT : out STD LOd C VECTOR((16-1) downto 0)) ;
end conponent;
conmponent MJULT_Al1 H1
port (INO : in STD LOd C VECTOR((16-1) downto 0) ;
QUTPUT : out STD LOd C VECTOR((16-1) downto 0)) ;
end conponent;
conmponent MULT_A2 H1
port (INO : in STD LOd C VECTOR((16-1) downto 0) ;
QUTPUT : out STD LOG C VECTOR((16-1) downto 0)) ;
end conponent;
conmponent MULT_BO_H2
port (INO : in STD LOd C VECTOR((16-1) downto 0) ;
QUTPUT : out STD LOG C VECTOR((16-1) downto 0)) ;
end conponent;
conmponent MULT_Bl1 H2
port (INO : in STD LOd C VECTOR((16-1) downto 0) ;
QUTPUT : out STD LOd C VECTOR((16-1) downto 0)) ;
end conponent;
conmponent MJULT_Al1 H2
port (INO : in STD LOd C VECTOR((16-1) downto 0) ;
QUTPUT : out STD LOd C VECTOR((16-1) downto 0)) ;
end conponent;
conmponent DELAY_ 16
port (IINPUT : in STD LOG C VECTOR((16-1) downto 0) ;
QUTPUT : out STD LOd C VECTOR((16-1) downto 0) ;
CLK, RESET : in STD LOCAC) ;
end conponent;

signal BO_OUT_H1, Bl1_OUT _Hl, B2_QUT_H1 . STD LOd C VECTOR((16-1) downto 0)
’si ghal Al OQUT H1l, A2 OUT H1 . STD LOGE C VECTOR((16-1) downto 0) ;
signal BO_OUT_H2, Bl1_OUT_H2 . STD LOd C VECTOR((16-1) downto 0) ;
signal Al_OUT_H2 : STD_LOGE C VECTOR((16-1) downto 0) ;
signal DLY IN O Hl, DLY OQUT_0 H1 . STD LOGE C VECTOR((16-1) downto 0) ;
signal DLY IN 1 Hl, DLY QUT_1 H1 . STD LOGE C VECTOR((16-1) downto 0) ;
signal DLY_IN O H2, DLY OQUT _0_H2 . STD LOd C VECTOR((16-1) downto 0) ;
signal DI G OUT_Hl . STD LOGE C VECTOR((16-1) downto 0) ;
signal DI G OUT_I NT : STD_LOGE C VECTOR((16-1) downto 0) ;
signal DI G OUT_HL_INT . STD LOd C VECTOR((16-1) downto 0) ;
begi n

BO_Hl: MULT_BO_Hl port map (DIGIN, BO_OUT HL);

175

B1_HI:
B2_H1:
Al _H1:
A2 HI:

BO_H2:
Bl _H2:
Al H2:

MULT_B1_H1
MULT_B2_H1
MULT_A1_H1
MULT_A2_H1

MULT_BO_H2
MULT Bl _H2
MULT_Al_H2

port
port
port
port

port
port
port

map
map
map
map

map
map
map

ADDER 0_H1: ADDER2_16 port
ADDER 1_H1: ADDER3_16
port map (Bl1_OUT _Hi,
ADDER 2_Hl: ADDER2_16 port

ADDER 0_H2: ADDER2_16 por't

ADDER 1_H2: ADDER2_16 port

DFF_DELAY_0_H:

DFF_DELAY_1_Hi:

port

port

DELAY_16
map (
DELAY_16
map (DLY_IN 1 _HI,

DLY I N O_HI,

DFF_DELAY_0_H2: DELAY_16

port

STAGE_1: DELAY_16
STAGE_2: DELAY_16 port

end STRUCTURE ;

port

map
map

A~ NS~

(
(DG
(

map (BO_OUT H1,

DLY OUT_ 0 _H1, DI G OUT HL);

DLY OUT_1_H1, Al_OUT_HL, DLY_IN.O_H1);
map (B2_OUT_HL, A2 _OUT_HL, DLY IN 1 _HL);

map (BO_OUT_H2, DLY _OUT_0_H2, DI G OUT_INT

map (Bl_OUT_H2, Al_OUT H2, DLY_INO H2);

(D
(D

map (DLY_IN O H2,

DLY_OUT

DLY OUT_0_H1, CLK, RESET);

1 H1, CLK, RESET);

DLY OUT_0_H2, CLK, RESET);

G QUT_H1, DI G OQUT_HL1_INT, CLK, RESET);
I

QUT, CLK, RESET);

Svynthesis-ready Top-level VHDL Code with A/D Converter (Cascade Structure)

library | EEE ;
l'i brary Bl TTRUE_VHDLSNPS ;

use
use
use
Use

| EEE. std_l ogic_1164. al
| EEE. std_l ogic_arith. al
Bl TTRUE_VHDLSNPS. COSSAP_PACKAGE_SYNOPSYS. al |
Bl TTRUE_VHDLSNPS. f xp_arith. al |

entity LOM_C1_TOP is

generic (
port

(

Bl N_LENGTH:

DI G_OUT :

CLK, RESET :

end LOM_C1 _TOP

in | NTEGER) ;
DIGIN: in STD LOG C_ VECTOR((16-1) downto 0) ;

architecture STRUCTURE of LOM_Cl1 TORP is

conmponent LOM_C1_STRUCT
port (DDG.IN:
DI G _OUT

CLK, RESET :

end conponent;
conmponent AD_CONVRTR

176

out STD LOG C VECTOR((16-1) downto 0) ;
in STD LOAC) ;

in STD_LOG C VECTOR((16-1) downto 0) ;
out STD LOG C VECTOR((16-1) downto 0) ;
in STD_ LOGC) ;

generic (BIN_LENGTH: in | NTEGER);
port (INPUT : in STD LOG C VECTOR((BIN_LENGTH 1) downto 0) ;
QUTPUT : out STD LOG C VECTOR((BI N LENGTH 1) downto 0);
CLK, RESET : in STD_ LOJC) ;
end conponent;

signal DI G INT: STD LOG C VECTOR((BIN_LENGTH 1) downto 0) ;
begi n
AD 16BITS: AD CONVRTR generic map (BI N LENGTH)
I

port map (DIG.IN, DI E;_ NT, CLK, RESET);
LOWPASS: LOM_C1_STRUCT port map (DIG.INT, DI G QUT, CLK, RESET);

end STRUCTURE ;

Top-level Script File for Cascade Structure

read -f db ./db/ DFF_16. db
read -f db ./db/ ADDER2_16. db
read -f db ./db/ ADDER3_16. db
read -f db ./db/MILT_BO_HL.db
read -f db ./db/MILT_B1_HL.db
read -f db ./db/ MLT_B2_HL. db
read -f db ./db/ MLLT_Al HL.db
read -f db ./db/ MLLT_A2_HL.db
read -f db ./db/ MLT_BO_H2. db
read -f db ./db/MILT_B1_H2.db
read -f db ./db/ MLLT_Al_H2. db

set _dont _touch DFF_16

set _dont _touch ADDER2_ 16
set _dont touch ADDER3 16
set _dont touch MIULT _BO Hl
set _dont _touch MJULT Bl Hl
set _dont _touch MJULT B2 Hl
set _dont _touch MULT Al Hl
set _dont _touch MIULT_A2 Hl
set _dont _touch MIULT _BO H2
set _dont _touch MJULT Bl H2
set _dont _touch MULT Al H2

anal yze -f vhdl ../src/Butterworthl6/ Cascade/lowl cl struct.vhd
el aborate LOM_Cl1_STRUCT -arch "STRUCTURE" -lib BI TTRUE_VHDLSNPS - update

i nclude "./scripts/lowl_clk.scr"
include "./scripts/lowl _reset.scr"

set _input_delay -clock CLK 10.0 all _inputs()
set _out put _delay -clock CLK 10.0 all _out puts()

177

set _prefer { hcells/* }
set _dont _use { Isi_10k/* }

uni qui fy
conpile -map_effort high

wite -f db -hierarchy -out ./db/LOM_Cl1_ STRUCT. db

wite -f vhdl -out ./LOM_C1_STRUCT. vhd

check_desi gn > ./lowl_cl check.rpt

report _timng > . /lowl _cl timng.rpt
report_constraints -max_delay -all _violators -verbose > ./lowl_cl1 viol.rpt
report_cell > . /lowl _cl cell.rpt

report _area > . /lowl _cl area.rpt
report_cell all _registers() > ./lowl _cl registers.rpt
report _net > . /lowl_cl net.rpt

report _cl ock > . /lowl_cl_clock.rpt

report _timng -path end -delay nax -nax_paths 600 -nworst 1 -to all_outputs()
>> . /lowl_cl tinmng.rpt

qui t

Timing Report of Cascade Structure

I nformation: Updating design information... (U D 85)

EE R b S R I b I I I S b S b I I I O I
Report : tinming
-path short
-del ay nmax
-max_paths 1
Design : LOM_C1_STRUCT
Version: 1999. 10
Dat e : Thu Nov 25 23:06:51 1999

khkhkkhkhkhkhkhhhkhhhkhhhhhhhhhhkhkhkhkhdhkkrkk krkkx**x

Operating Conditions:
Wre Load Mbdel Mode: top

Startpoint: D G IN<13> (input port clocked by CLK)
Endpoi nt: DFF_DELAY_0_H1/ OUTPUT_r eg<0>
(rising edge-triggered flip-flop clocked by CLK)
Path G oup: CLK
Pat h Type: nmax

Poi nt I ncr Pat h
clock CLK (rise edge) 0. 00 0. 00
cl ock network delay (ideal) 0. 00 0. 00
i nput external delay 10. 00 10.00 f
DI G I N<13> (in) 0. 00 10.00 f
DFF_DELAY_0_HL/ OUTPUT r eg<0>/ dO (hdr pq) 42. 47 52.47
data arrival tine 52. 47

178

clock CLK (rise edge) 100000. 00 100000. 00

cl ock network delay (ideal) 0. 00 100000. 00
cl ock uncertainty -10. 00 99990. 00
DFF_DELAY_0_H1/ QUTPUT_r eg<0>/ ck (hdr pq) 0. 00 99990. 00 r
library setup tine -0.45 99989. 55
data required tine 99989. 55
data required tine 99989. 55
data arrival tine -52.47
sl ack (MET) 99937. 08

Perform ng report_timng on port 'Dl G QUT<15>'

Perform ng report _timng on port 'Dl G QUT<14>'

Perform ng report_timng on port 'Dl G OUT<13>'

Perform ng report_timng on port 'Dl G OUT<12>'

Perform ng report _timng on port 'Dl G QUT<11>'

Perform ng report _timng on port 'Dl G OQUT<10>'

Perform ng report _timng on port 'Dl G OQUT<9>'

Perform ng report_timing on port 'Dl G OUT<8>'

Perform ng report_timing on port 'Dl G OUT<7>'

Perform ng report _timng on port 'Dl G OUT<6>'

Perform ng report _timng on port 'Dl G OQUT<5>'

Perform ng report _timng on port 'Dl G OUT<4>'

Perform ng report _timing on port 'Dl G OUT<3>'

Perform ng report _timing on port 'Dl G OUT<2>'

Perform ng report _timng on port 'D G QUT<1>'.

Perform ng report _timng on port 'Dl G OQUT<0>'

khkkkhkkhkhkhkhkkhkkhkhhhhhkhkhhkhhhdhdhhkhkhkhkkhhd k k khkhkkx**x*%
Report : timing
-path end
-del ay nax
- max_pat hs 600
Design : LOM_C1_STRUCT
Ver sion: 1999. 10
Dat e : Thu Nov 25 23:06:54 1999

R R I R I R I R S I I R R I R O

Operating Conditions:
Wre Load Mddel Mde: top

Endpoi nt Pat h Del ay Pat h Required Sl ack
DI G_QUT<0> (out) 0.42 f 99980. 00 99979. 58
DI G QUT<1> (out) 0.42 f 99980. 00 99979. 58
DI G QUT<2> (out) 0.42 f 99980. 00 99979. 58
DI G_ QUT<3> (out) 0.42 f 99980. 00 99979. 58
DI G QUT<4> (out) 0.42 f 99980. 00 99979. 58
DI G_QUT<5> (out) 0.42 f 99980. 00 99979. 58
DI G_QUT<6> (out) 0.42 f 99980. 00 99979. 58
DI G_ QUT<7> (out) 0.42 f 99980. 00 99979. 58
DI G_ QUT<8> (out) 0.42 f 99980. 00 99979. 58
DI G QUT<9> (out) 0.42 f 99980. 00 99979. 58
DI G_ QUT<10> (out) 0.42 f 99980. 00 99979. 58

179

DI G_OUT<11>
DI G_OUT<12>
DI G_OUT<13>
DI G_OUT<14>
DI G_OUT<15>

(out)
(out)
(out)
(out)
(out)

Coooo
ADADDAD
NRNNNN

180

— —h —h —h —h

99980. 00
99980. 00
99980. 00
99980. 00
99980. 00

99979.
99979.
99979.
99979.
99979.

58
58
58
58
58

APPENDIX C: Pole/Zero Plots of 3" order 16-bit Lowpass Chebyshev Type | Filter

............... . N SRR b - Unquardized Zens

2 J ® thuull:ldl"nlu

5] 3 ® : i
............... ;.. .. i E- .
............. G2k s st s o e oo e e e s e oifilas spcun pn ap st ol g segnocpe seoiids s gnn i a e

é B : e
W . SR . SANPS - S——— - S—— L N——

! ®

.. .:........-.....-...-.:...-.........l-......r.............

:
:
E
i
:
:
;
:
i
:
F
=
i
-
;
]
i
:
;
£ i E R
.
:
;
:
;
;

Pole/Zero Plot of 3" Order Lowpass Chebyshev Type | Lowpass Filter.

181

Unguantized Filter

1] | o3 H'II:Z:IZ Llnquantized —eros |1
: = HI(Z): Unguantized Poles

Imaginary Part
=
:
@
@

Real Fart

Pole/zero Plot of Transfer Function H(z) of Parallel Structure of Chebyshev
Type | Lowpass Filter.

Unguantized Filter

I T T
| e e ool o H2(z) Unguantized Zeros |
0. : s H2(2): Unguantized Poles

| TUENE PN NS Trover SuRwR PON. T e
oalk........]
nzlk........ 1 D . L e sl —

Imaginary Fart
]
:
o
X

7 I . s
| 1 :
“0GL--
i

Pole/zZero Plot of Transfer Function H(z) of Parallel Structure of Chebyshev
Type | Lowpass Filter.

182

Unguantized Filter

11 o3 H'II:E:IZ Llnquantized Ceros 1
: = H1{Z} Unguantized Poles

Imaginary Part

Feal Part

Pole/Zero Plot of Transfer Function H;(z) of Cascade Structure of Chebyshev
Type | Lowpass Filter.

Unguantized Filter

I T T
/| R | @ HZ(E): Unguantized Zeros [
0.8 : s« HZ{z): Unguantized Poles

U . S S —
)| R '
O . e T—— | SRS Ene

Imaginary Fart
(]
:
@
X

. T W
i |
- USUEE BE TS TR DY spes cren mn e
B 2 TR

Real Part

Pole/Zero Plot of Transfer Function Hy(z) of Cascade Structure of Chebyshev
Type | Lowpass Filter.

183

APPENDIX D: Pole/Zero Plots of 3" order 16-bit Lowpass Chebyshev Type Il Filter

: o H[z): Unquantized Zeroa

R T T T L R TN R TR PR E ET R o eT ETER P
: o

J = Hz): Unquantieed Pokes

B T T R T B e - S - e L LT

Pole/Zero Plot of 3™ Order Lowpass Chebyshev Type Il Lowpass Filter.

184

Unguantized Filter

T | e o H1(Z): Unguantized Zeros

e : ® H1{z): Unguantized Poles

i1 |
Oab........ '
gzb........ ;

Imaginary Fart
{3
i
@
@

i I s
ol L
T ______ B N0 N—
~ NEURS PO T R T RN

Real Fart

Pole/zZero Plot of Transfer Function H(z) of Parallel Structure of Chebyshev
Type Il Lowpass Filter.

Unguantized Filter

- R, Deeee| o HEZEY Unguantized Zeros
i % HEZ(E): Unguantized Pales
1| R e R S T e e PR R

i
)| ¢ '

Imaginary Part
=
:
9
%

Feal Far

Pole/Zero Plot of Transfer Function H(z) of Parallel Structure of Chebyshev
Type Il Lowpass Filter.

185

Unguantized Filter

‘| e s X '::' H-I IIZ:IZ Unquantized zErDS .
o : e w H1(2): Unguantized Poles

oL - (SRTDIVE D s .- -
il | TS e

Imaginary Part
=
;

Feal Part

Pole/Zero Plot of Transfer Function H;(z) of Cascade Structure of Chebyshev
Type Il Lowpass Filter.

Ungquantized Filter

- S R RRRREERE . R) HEI{Z:I Unquantized Zeros M
08 E % H2{z): Unguantized Poles

ok - T——— s S - - —
1711 . TR e e ARTRRR B —

Imaginary Part
=
:
2
%

Real Fart

Pole/Zero Plot of Transfer Function Hy(z) of Cascade Structure of Chebyshev
Type Il Lowpass Filter.

186

APPENDIX E: Pole/Zero Plots of 3" order 16-bit Lowpass Elliptic Filter

A e DS A EE & Hiz): Unquantized Zaros
r '3" H g = Hiz): Unquantized Folas
............... g i T A AR g
............... TR TP A AT
T I e e e P e A Sy B A e e P A R e D - R
Y N . S R | S - —
POPRRPRRRNEL JUVHE . WHSUENEREETL . NRMUEPEIE S LSRR s ciavy P [N SRR
............... SRS . NN IR DU TTTDL WU piNn S —
i : ;

Pole/Zero Plot of 3" Order Lowpass Elliptic Lowpass Filter.

187

Unguantized Filter

‘| s e i 'D H-I |:Z:|Z UnquantiZEd EEFDS _
i : x H1(2): Unguantized Poles

15| v I >{ e

| e
" % : : ; 2
BODZ |t S
=
E - -- - O e e e g .
i DN o R e R e e i R R e
E

Real Part

Pole/zero Plot of Transfer Function H,(z) of Parallel Structure of Elliptic
Lowpass Filter.

Unguantized Filter

- o3 HZI:Z:I Unquantized Zeros M
oo : x H2{Z): Unguantized Poles
0EL....... . oz s S— . o S
nalk....... S — SRR SRR ST i .
- s _ : : iy
ET |:|2_
= :
o OF------- R EEEEET PP PREE B LECEEEE E PP TP TERE
= :
EE | D O - S-S
E ;
L R Y
R s SR P R A e
na
B - . s S e i e s o B e e e s R i
| | | | |

Real Part

Pole/zZero Plot of Transfer Function Hy(z) of Parallel Structure of Elliptic
Lowpass Filter.

188

Unguantized Filter

‘| ':' H1|:Z:| Unquantized ZEI’DS .
i : s H1(2): Unguantized Poles

o sl R s Bl S
) ol G S Lo

ozbk....... S

Imaginary Part
=
!

P p— TR —— Se— -
. R S .
S S e o
Tk

Real Part

Pole/Zero Plot of Transfer Function H;(z) of Cascade Structure of Elliptic
Lowpass Filter.

Unguantized Filter

[. s e O HEl:Zj Unquantized Zeros H
08 : ial w H2(z): Unguantized Poles

i I T B ooy — S S
| R g R o R R R B SR
ozb....... —— R T— S— A

Imaginary Fart
=
:
@
%

| o TR AREEEERRRR :
nal....... e I v s s A— i e
T I TRTR. — —

k| I

Real Fart

Pole/Zero Plot of Transfer Function Hy(z) of Cascade Structure of Elliptic
Lowpass Filter.

189

APPENDIX F: Synthesis-ready VHDL Library (8-bit and 16-bit examples)

Svynthesis-ready VHDL Code of 16-bit 2-input Fixed-point Adder

library |EEE ;
l'i brary Bl TTRUE_VHDLSNPS ;

use | EEE. std_logic_1164.all ;

use |EEE. std_logic_arith.all ;

use Bl TTRUE_VHDLSNPS. COSSAP_PACKAGE_SYNOPSYS. al | ;
Use BI TTRUE_VHDLSNPS. f xp_arith.all ;

entity ADDER2 16 is

port (INO : in STD LOd C VECTOR((16-1) downto 0) ;
INL : in STD LOd C VECTOR((16-1) downto 0) ;
OQUTPUT : out STD LOG C VECTOR((16-1) downto 0)) ;

end ADDER2_16 ;

architecture behavi or of ADDER2 16 is
constant RoundWdth M M5 1 1: INTEGER = 16 + 1 ;
begi n
mai n: process(| NO, | N1)
vari abl e RoundSum M ML5_1_1: S| GNED(ROUNDW DTH M ML5_1 1-1 DOANTO 0)

begi n
RoundSum M M5 1 1 : = fxp_round(SI GNED(I NO(I NO' hi gh) & I NO) +
SIGNED(I N1), O, RoundWdth_M M5 1 1);
QUTPUT <= STD LOd C VECTOR(f xp_sat urat e(RoundSum M ML5 1 1, 1, 16));
end process nain;
end behavi or ;

Synthesis-ready VHDL Code of 16-bit 3-input Fixed-point Adder

library | EEE ;
l'i brary Bl TTRUE_VHDLSNPS ;

use | EEE. std logic_1164.all ;

use |EEE. std logic_ arith.all ;

use Bl TTRUE_VHDLSNPS. COSSAP_PACKAGE_SYNOPSYS. al | ;
Use BI TTRUE_VHDLSNPS. fxp_arith.all ;

entity ADDER3 16 is
port (INO : in STD LOd C VECTOR((16-1) downto 0) ;
INL : in STD LOG C VECTOR((16-1) downto 0) ;
IN2 : in STD LOG C VECTOR((16-1) downto 0) ;
QUTPUT : out STD LOd C VECTOR((16-1) downto 0)) ;
end ADDER3_16 ;

architecture behavi or of ADDER3 16 is
constant RoundWdth M M5 1 1: INTEGER = 16 + 1 ;

190

constant RoundWdth M ML6 1 2: INTEGER = 16 + 1 ;
begi n

mai n: process(| NO, I N1, | N2)
vari abl e RoundSum M ML5_1_1: S| GNED(ROUNDW DTH M ML5_1 1-1 DOWNTO 0)

variabl e RoundSum M ML6_1 2: S| GNED{ ROUNDW DTH_ M ML6_1_2-1 DOWNTO 0)

variable SIG4M M5 1 1 : STD LOG C VECTOR((16-1) downto O0) ;
begi n
RoundSum M ML5 1 1 := fxp_round(SI GNED(I NO(I NO' hi gh) & I NO) +
SIGNED(I N1), 0, RoundWdth_M M5 1 1);
SIGAM M5 1 1 := STD LOd C_VECTOR(f xp_sat urat e(RoundSum M M5 1 1,
1, 16));
RoundSum M ML6_1_2 : =
fxp_round(SI GNED(SI G 4M ML5_1_1(SIG 4M ML5_1_1' high) &
SIG4M M5 1 1) + SIGNED(IN2), O,
RoundW dth_M ML6_1 2);
OQUTPUT <= STD LOG C_VECTOR(f xp_saturate(RoundSum M ML6_1 2, 1,
16));
end process nain;

end behavi or ;

Synthesis-ready VHDL Code of 8-bit Fixed-point Multiplier w/coefficient

This VHDL code contains the decimal coefficient 0.6093750. One bit is assigned for integer
representation. The remaining 7 bits are assigned for fractional representation. The COSSAP
representation for this fractional coefficient is 78. The resulting synthesis-ready code is as follows:

library | EEE ;
l'i brary Bl TTRUE_VHDLSNPS ;

use | EEE. std logic_1164.all ;

use |EEE. std logic_ arith.all ;

use Bl TTRUE_VHDLSNPS. COSSAP_PACKAGE_SYNOPSYS. al | ;
Use BI TTRUE_VHDLSNPS. fxp_arith.all ;

entity MIULT SYNis

port (INO : in STD LOd C VECTOR((8-1) downto 0) ;
QUTPUT : out STD LOd C VECTOR((8-1) downto 0)) ;

end MULT_SYN ;

architecture behavior of MIUT SYNis
constant RoundProdWdth M ML 1 1: |
begi n
mai n: process(| NO)
variable Input2 MML_ 1 1: SIGNED(8 - 1 DOMNNTO 0) ;
vari abl e RoundProd M ML_1 1: S| GNED(ROUNDPRODW DTH M ML_1 1-1 DOANTO

NTECER : = 8 ;

0);
begi n
Input2 MML_1 1 := const2fxp(0, 78, 1, 8);

191

RoundProd M ML 1 1 := fxp_round(SIGNED(INO) * Input2 MML_1 1,

0, RoundProdWdth MM _1 1);

QUTPUT <= STD LOA C VECTOR(f xp_saturate(RoundProd_ M M._1 1, 1,

end process nain;
end behavi or ;

Svynthesis-ready VHDL Code of 16-bit Fixed-point Delay Sub-block (Active-high reset)

library | EEE ;
use | EEE. std_logic_1164.all ;

entity delay is

port (INPUT : in STD LOG C VECTOR((16-1) downto 0) ;
QUTPUT : out STD LOG C VECTOR((16-1) downto 0);
CLK, RESET : in STD LOAJC) ;

end del ay;

architecture behavior of delay is
begi n

mai n: process(CLK, RESET)
begi n
if (RESET = '1') then
for i in O to 16-1 |oop
QUTPUT(i) <= "'0";
end | oop;
elsif (CLK EVENT and CLK = '1') then
OUTPUT <= | NPUT;
end if;
end process nain;

end behavi or ;

192

8));

APPENDIX G: : Synthesis Script Files for Sub-blocks (16-bit example)

Svynthesis Script File for 16-bit 2-input Fixed-point Adder

anal yze -format vhdl ../src/adder2.vhd
el aborate ADDER2 -arch "behavior" -lib BI TTRUE_VHDLSNPS - update

set _prefer { hcells/* }
set _dont _use { Isi_10k/* }

set _max_delay 20.0 -fromall _inputs() -to all_outputs()
conpil e -increnmental _mapping -ungroup_all -map_effort high

wite -f db -out ./db/ ADDER2. db
wite -f vhdl -out ./ADDER2.vhd

check_desi gn

report _timng

report _constraints -all_violators -verbose
report_cell ./ adder2_cel |l .rpt

report _area ./report/adder2_area.rpt

> ./ adder 2_check. r pt
>
>
>
>

report_cell all_registers() > . /adder2_registers.rpt
>
>
hs

./ adder2_tining.rpt
./ adder 2_vi ol . rpt

report net ./ adder 2_net. rpt

report _cl ock ./ adder 2_cl ock. r pt

report _timng -path end -delay max -nax_pat 600 -nworst 1 -to all _outputs()
>> . [adder2_tim ng.rpt

qui t

Svynthesis Script File for 16-bit 3-input Fixed-point Adder

anal yze -format vhdl ../src/adder3.vhd
el aborat e ADDER3 -arch "behavior" -lib BI TTRUE_VHDLSNPS - update

set _prefer { hcells/* }
set _dont _use { Isi_10k/* }

set _max_delay 20.0 -fromall __inputs() -to all_outputs()
conpile -ungroup_all -map_effort high

wite -f db -out ./db/ ADDER3. db
wite -f vhdl -out ./ADDER3.vhd

check_desi gn

report _timng

report _constraints -all_violators -verbose
report_cell

report_area

report_cell all_registers()

report_net

report _cl ock

./ adder 3_check. r pt

./ adder 3_tini ng. rpt

./ adder 3_vi ol . rpt

./ adder 3_cel |l . rpt

./ adder 3_area. rpt

./ adder 3_registers.rpt
./ adder 3_net. rpt

./ adder 3_cl ock. r pt

VVVVYVYVVYV

193

report _timng -path end -delay nmax -nmax_paths 600 -nworst 1 -to all_outputs()
>> . [adder3_timng.rpt

qui t

Svynthesis Script File for 16-bit Fixed-point Multiplier w/coefficient

anal yze -f vhdl ../src/mult.vhd
el aborate MJLT -arch "behavior" -lib Bl TTRUE_VHDLSNPS - updat e
set_nmax_delay 20.0 -fromall _inputs() -to all_outputs()

set _prefer { hcells/* }
set _dont _use { Isi_10k/* }

conpile -map_effort high -ungroup_all

wite -f db -out ./db/MILT. db
wite -f vhdl -out ./MJLT. vhd

check_desi gn > ./ nult_check. rpt
report _timng > . /mult_timng.rpt
report_constraints -all_violators -verbose > ./nult_viol.rpt
report _cell > . /mult_cell.rpt
report _area > . /mult_area.rpt
report_cell all _registers() > . /mult_registers.rpt
report net > . /mult_net.rpt
report _cl ock > . /nmult_clock.rpt

report _timng -path end -delay nmax -nmax_paths 600 -nworst 1 -to all_outputs()
>> . /mult_timnmng.rpt

qui t

Svynthesis Script File for 16-bit Delay Sub-block (16-bit Butterworth Lowpass Filter)

anal yze -f vhdl ../src/delay.vhd

el aborate DELAY -arch "behavior" -1ib Bl TTRUE_VHDLSNPS - updat e
create _clock CLK -nane "CLK" -period 500000

set _cl ock_skew -uncertainty 10.0 { CLK }

/* set _fix_hold { CLK } */

set _dont _touch_network { CLK }

set _drive 0 { CLK }

set _drive 0 { RESET }
set _dont _touch find(net,"RESET")

set _input_delay -clock CLK 10.0 all _inputs()

194

set _output_delay -clock CLK 10.0 all _outputs()

set _prefer { hcells/* }
set _dont _use { Isi_10k/* }

conpile -map_effort | ow

wite -f db -out ./ db/DELAY. db
wite -f vhdl -out ./DELAY.vhd

check_desi gn > . /del ay_check. rpt

report _timng > ./delay_tinmng.rpt
report_constraints -max_delay -all _violators -verbose > ./delay_viol.rpt
report_cell > ./delay_cell.rpt

report _area > . /delay_area.rpt
report_cell all _registers() > ./delay_registers.rpt
report _net > . /del ay_net.rpt

report _cl ock > . /del ay_cl ock. r pt

report _timng -path end -delay nax -nax_paths 600 -nworst 1 -to all_outputs()
>> . /delay_timng.rpt

qui t

195

Acknowledgments

First, | would like to thank God for maintaining my personal perseverance of seeing this hard work
through. Next, | would like to thank a plethora of people who helped me along the way in different senses.
In the academic sense, | thank my advisor, Dr. Armstrong, who presented a real challenge to me in terms
of learning, applying my own intuition, and guiding me through the particulars of this research. | thank my
committee members, especially Dr. Gray, for their patience and their valuable input into my research. |
thank my unofficial “committee members”, Dr. Amy E. Bell and Dr. Jeffrey H. Reed, for sparing time to
observe and critique my work. | thank friends at Lucent Technologies for sharing concepts on how to
realize my design methodology. In the non-academic sense, | thank my advisor again, Dr. Armstrong, for
the short random chats we had during office and non-office hours. | thank the friends | made here for their
confidence and support when | felt | was “spinning my wheels” at times. | thank my fraternity brothers who
checked my “sanity” level every now and then as well as provided support. Lastly, | thank my parents,
Aubrey and Annette Jackson, who offered words of encouragement and whose support mentally and
emotionally helped me in ways I’'m unable to convey in words. Their being there for me has put me where
| am today. | dedicate this research to them. | love you. Thank you all.

196

Vita

Brian Aliston Jackson was born on March 28, 1970, in Kingston, Jamaica, West Indies. He is a graduate
of Brooklyn Technical High School located in Brooklyn, New York. He entered the engineering dual
degree program of Johnson C. Smith University and The University of North Carolina at Charlotte and
graduated with baccalaureate degrees in both mathematics and electrical engineering. He was a GEM
Masters of Science Engineering Fellowship Recipient and entered the masters of electrical engineering at
Virginia Polytechnic Institute and State University in the fall semester of 1996. He graduated in the fall
semester of 1999 with a Masters of Science degree in electrical engineering. He is continuing his
academic education by entering the doctorate program of electrical and computer engineering at Virginia
Polytechnic Institute and State University.

197

	Brian A. Jackson
	Masters of Science
	Electrical Engineering
	DIGITAL FILTER DESIGN AND SYNTHESIS USING HIGH-LEVEL MODELING TOOLS
	ABSTRACT
	TABLE OF CONTENTS
	C
	CHAPTER 1: Introduction
	CHAPTER 2: Quantization
	CHAPTER 3: IIR Digital Filter Structures
	CHAPTER 4: Digital Filter Designs
	CHAPTER 5: COSSAP Saturation Modes for Fixed-point Binary Adders
	CHAPTER 6: COSSAP Round-off Modes for Fixed-point Binary Multipliers
	CHAPTER 7: Editing VHDL-generated Code Produced from COSSAP
	CHAPTER 8: Digital Filter Design Procedures Using High-level Tools
	CHAPTER 9: Results of IIR Digital Filter Design Methodology
	CHAPTER 10: Results of Design Methodology for DSP Applications
	CHAPTER 11: Research Summary and Future Work
	Acknowledgments

