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ABSTRACT

The purpose of this thesis is to formulate a technically sound approach to designing Infinite Impulse
Response (IIR) digital filters using high-level modeling tools. High-level modeling tools provide the ability
to build and simulate ideal models. Once proper validation is complete on these ideal models, the user
can then migrate to lower levels of abstraction until an actual real world model is designed. High-level
modeling tools are the epitome of the top-down design concept in which design first takes place with the
basic functional knowledge of a system. With each level of abstraction, validation is performed. High-level
modeling tools are used throughout industry and their application is continually growing especially in the
DSP area where many modes of communications are expanding. High-level modeling tools and validation
significantly address this complex expansion by utilizing an ideal representation of a complicated network.



iii

TABLE OF CONTENTS

Abstract............................................................................................................................................. ii
Table of Contents ............................................................................................................................ iii

Chapter 1: Introduction .....................................................................................................................1

Chapter 2: Quantization....................................................................................................................3
2.1: Quantization ..............................................................................................................................3
2.2: Quantization Noise ....................................................................................................................3
2.3: Two’s Complement Representation ..........................................................................................3
2.4: Two’s Complement Truncation..................................................................................................3
2.5: Two’s Complement Rounding ...................................................................................................4
2.6: Finite-Precision Effects..............................................................................................................4
2.7: Limit-Cycle Oscillations .............................................................................................................5

Chapter 3: IIR Digital Filter Structures..............................................................................................7
3.1: Linear Time-Invariant Systems..................................................................................................7
3.2: Difference equations and Recursive Systems ..........................................................................7
3.3: Infinite Impulse Response (IIR) Digital Filters ...........................................................................8
3.4: Hardware Consideration..........................................................................................................10
3.4.1: Parallel-Form Structure ........................................................................................................10
3.4.2: Cascade-Form Structure ......................................................................................................12

Chapter 4: Digital Filter Designs.....................................................................................................14

Chapter 5: COSSAP Saturation Modes for Fixed-point Binary Adders .........................................16
5.1: Overflow in Binary Addition .....................................................................................................16
5.2: COSSAP Saturation Modes ....................................................................................................16

Chapter 6: COSSAP Round-off Modes for Fixed-point Binary Multipliers .....................................20

Chapter 7: Editing VHDL-dumped Code Produced from COSSAP ...............................................25
7.1: Designing IIR Filters in COSSAP Block Diagram Editor .........................................................25
7.2: Deficiencies in the VHDL code generated by xvcg ................................................................27
7.2.1: Fixed-point Multiplier Sub-blocks .........................................................................................27
7.2.2: Fixed-point Adder Sub-blocks ..............................................................................................27
7.2.3: Fixed-point Delay Sub-blocks...............................................................................................29
7.3: Designing IIR Filters in VHDL..................................................................................................29

Chapter 8: Digital Filter Design Procedures Using High-level Tools..............................................31
8.1: IIR Digital Filter Design Flowchart ...........................................................................................31
8.2: Description of Flowchart Steps................................................................................................33

Chapter 9: Results of IIR Digital Filter Design Methodology..........................................................40
9.1: 16-bit Butterworth Lowpass Filter Design................................................................................40
9.1.1: Parallel Structure Implementation of Butterworth Lowpass Filter ........................................43
9.1.1.1: Results of Validation Test #1.............................................................................................57
9.1.1.2: Results of Validation Test #2.............................................................................................61
9.1.2: Cascade Structure Implementation of Butterworth Lowpass Filter ......................................66
9.1.2.1: Results of Validation Test #1.............................................................................................73
9.1.2.2: Results of Validation Test #2.............................................................................................74
9.1.3: VHDL Synthesis of Parallel Structure...................................................................................78
9.1.4: VHDL Synthesis of Cascade Structure ................................................................................79

Chapter 10: Results of Design Methodology for DSP Applications ...............................................80



iv

10.1: Voice Communication Bandwidth Results ............................................................................80
10.1.1: Parallel Structure of Butterworth Bandpass Filter Results .................................................84
10.1.1.1: Results of Validation Test #1...........................................................................................92
10.1.1.2: Results of Validation Test #2...........................................................................................93
10.1.2: Cascade Structure of Butterworth Bandpass Filter Results...............................................97
10.1.2.1: Results of Validation Test #1.........................................................................................105
10.1.2.2: Results of Validation Test #2.........................................................................................106
10.2: Digital Video Bandwidth Results .........................................................................................109
10.2.1: Parallel Structure of Chebyshev Type II Lowpass Filter Results .....................................112
10.2.1.1: Results of Validation Test #1.........................................................................................119
10.2.1.2: Results of Validation Test #2.........................................................................................120
10.2.2: Cascade Structure of Chebyshev Type II Lowpass Filter Results ...................................124
10.2.2.1: Results of Validation Test #1.........................................................................................132
10.2.2.2: Results of Validation Test #2.........................................................................................133
10.3: Data Communication and Imaging Bandwidth Results .......................................................136
10.3.1: Parallel Structure of Elliptic Bandpass Filter Results .......................................................139
10.3.2: Cascade Structure of Elliptic Bandpass Filter Results .....................................................142
10.3.2.1: Results of Validation Test #1.........................................................................................150
10.3.2.2: Results of Validation Test #2.........................................................................................151

Chapter 11: Research Summary and Future Work......................................................................156

Bibliography..................................................................................................................................157

Appendix A: Generic VHDL Library..............................................................................................158
Appendix B: Additional Results of 3rd order 16-bit Lowpass Butterworth Filter............................166
Appendix C: Pole/Zero Plots of 3rd order 16-bit Lowpass Chebyshev Type I Filter .....................181
Appendix D: Pole/Zero Plots of 3rd order 16-bit Lowpass Chebyshev Type II Filter ....................184
Appendix E: Pole/Zero Plots of 3rd order 16-bit Lowpass Elliptic Filter ........................................187
Appendix F: Synthesis-ready VHDL Library (8-bit and 16-bit examples).....................................190
Appendix G: Synthesis Script Files for Sub-blocks (16-bit example)...........................................193

Acknowledgements ......................................................................................................................196

Vita................................................................................................................................................197



1

CHAPTER 1: Introduction

The purpose of this thesis research is to formulate a technically sound approach to designing Infinite
Impulse Response (IIR) digital filters using high-level modeling tools. The basic functional need for
filtering is to pass a range of frequencies while rejecting others. This need for filtering has many technical
uses in the digital signal processing (DSP) areas of data communications, imaging, digital video, and
voice communications. Digital signal processing techniques are being used to handle these demanding
challenges in digital communications system design.

Analog filters are continuous-time systems for which both the input and output are continuous-time
signals. Digital filters are discrete-time systems whose input and output are discrete-time signals. Digital
filters are implemented using electronic digital circuits that perform the operations of delay, multiplication,
and addition. Analog filters are implemented using resistors, inductors, capacitors, and, possibly,
amplifiers [Chirlian]. The values of these analog components can drift over time and their precision is
limited. In addition, especially when filtering takes place at low frequencies, inductors are often large and
heavy. The multiplier coefficients of digital filters are established by the circuitry and do not drift. The
precision of the multiplier values can be made as large as desired by increasing the complexity of the
circuitry. Digital filters can be implemented using integrated circuits so that the per unit cost of digital filter
construction is less than a comparable analog filter [Chirlian]. Tolerances and accuracy considerations
are important factors for both analog and digital signal processing. Digital signal processing provides
better control of accuracy requirements. Wide tolerances in analog filters make it extremely difficult for a
system designer to control the accuracy of an analog signal processing system. A system designer has
much better control of accuracy of digital systems in terms of word length, floating-point versus fixed-point
arithmetic, and other similar factors [Manolakis]. These are the major advantages of digital filters.

High-level modeling tools provide the ability to build and simulate ideal models. Once proper validation is
complete on these ideal models, the user can then migrate to lower levels of abstraction until an actual
real world model is designed. High-level modeling tools are the epitome of the top-down design concept
in which design first takes place with the basic functional knowledge of a system. With each level of
abstraction, validation is performed. High-level modeling tools are just beginning to be used throughout
industry and their application is continually growing especially in the DSP area where many modes of
communications are expanding. High-level modeling tools and validation significantly address this
complex expansion by introducing an ideal representation of a complicated network.

A high-productivity environment is needed to support development from system definition and algorithm
development to implementation and verification. An important key element deals with high-level modeling
and analysis tool sets. Two prominent DSP tool sets of this nature are COSSAP and SPW. These tools
allow fast, natural expression of single clock, multi-rate, and asynchronous systems; provide extremely
fast high-level simulations; and provide full support for hardware and software implementation and
verification at any abstract level. Another important DSP tool used for computation and visualization is the
software package called MATLAB. This DSP tool is a prominent problem-solving application used in both
universities and industry.

Another important key element in the aforementioned high-productivity environment deals with the
already-established, industrial move to use hardware description languages to document, simulate, and
synthesize an electronic system. The two prominent hardware description languages (HDLs) are VHDL
and Verilog. Both languages have the necessary constructs to support the modeling, simulation, and
synthesis of complicated digital systems. In addition, the benefits of making design specifications more
technology-independent, automating low-level details, and improving design quality make VHDL and
Verilog important tools for design.

Interfacing the two aforementioned key elements (HDLs and high-level tools) has significant technical
rewards in industry. Specifically, two key elements that have established, feasible interface-capabilities
are COSSAP and VHDL. Both these tools are heavily used in both universities and industry. COSSAP
and VHDL are linked in that COSSAP contains an extensive DSP library written in VHDL. For high-level
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design, VHDL makes verification at any abstract level significantly easier especially when it comes to
synthesis.

Accuracy of results when comparing an ideal digital filter to an n-bit quantized digital filter is a major
concern of validation. For quantized digital filters, binary multiplication is the main source of round-off
errors. Therefore, quantized digital filters can never achieve 100% ideal accuracy due to fixed, binary
word sizes. Effective round-off procedures are needed to produce accuracy results that are close to the
100% accuracy rating of an ideal digital filter

Broad background knowledge of VHDL and synthesis, DSP digital filter techniques, the high-level tool
COSSAP, the software package MATLAB, and a UNIX workstation environment are paramount for a
successful realization of a digital filter design. Understanding of Synopsys synthesis tools is also equally
important. Synthesis tools provide the ability to map VHDL code to technology libraries at the structural
gate level. Suitable training time on the part of the designer must be attained to ensure an efficient and
optimized digital filter design.

This thesis will seek to address all of the aforementioned issues related to interfacing the high-level
modeling tool COSSAP and VHDL. The following chapters will attempt to provide a broad understanding
and methodology to IIR fixed-point digital filter design. Chapter 2 discusses quantization formats and
quantization noise. This chapter also discusses finite-precision effects that are inherent in designing
quantized digital filters. Chapter 3 discusses the different digital filter structures associated with Infinite
Impulse Response (IIR) filter design. Special attention is paid to hardware considerations in terms of
binary adders and multipliers. Chapter 4 describes the different types of IIR digital filter design.
Characteristics of each filter design are discussed in terms of magnitude frequency response and other
frequency-related attributes. Chapter 5 addresses the saturation modes associated with the n-bit adder
sub-blocks when using the high-level modeling tool COSSAP. This chapter also discusses the reasoning
behind choosing the best saturation mode for the adder sub-blocks to be used for all future quantized
digital filter designs. Chapter 6 addresses the round-off modes associated with the n-bit multiplier sub-
blocks when using the high-level modeling tool COSSAP. Chapter 7 investigates ways to compensate for
the aforementioned tool deficiencies that are inherent in COSSAP when the tool produces VHDL-
generated code. Chapter 8 outlines the flowchart of the digital filter design procedures utilizing COSSAP
and VHDL. This extensive chapter is comprehensive and detailed to ensure a step-by-step approach to
designing an optimum digital filter. Chapter 9 shows results of the outlined design methodology, in
Chapter 8, for the various IIR digital filter structure types. Chapter 10 shows results of the design
methodology for designing digital filters in the DSP areas of data communications, imaging, digital video,
and voice communications. Nominal numbers for bandwidths are used. The same cut-off frequency and
stopband frequency points used in Chapter 9 are also used in this chapter. Chapter 11 summarizes this
research with remarks and analytical conclusions. Future work is also discussed in regards to upgrading
the design process with other features.
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CHAPTER 2: Quantization

2.1: Quantization

Quantization is the process in which a binary number with a finite number of bits represents a real
number. In the case of this research, the numbers are multiplier coefficients and I/O signals of a specified
digital filter. Because of quantization, any arbitrarily specified multiplier coefficient will not be realized
100% accurately [Chirlian]. This is due to finite-precision effects. In digital filters, arithmetic operations are
performed with finite precision due to the use of fixed-size memory words or registers. Finite precision
dictates that multiplier coefficients exceeding their bit length limit must be truncated or rounded within the
number of significant bits allowed. An illustrative example would be trying to realize a multiplier coefficient
using only two bits to represent the magnitude. The only possible binary numbers would be as follows:

0.002 = 0.0010

0.012 = 0.2510

0.102 = 0.5010

0.112 = 0.7510

Thus, many decimal numbers lying in the range 0 to 1 cannot be represented 100% accurately. The
equation used to represent the quantization process is as follows:

xq(n) = Q[x(n)] (Eqn. 2.1)

The function Q[*] represents a b-bit quantizer, the variable x(n) represents the nth ideal sample of infinite
precision, and the variable xq(n) represents the b-bit quantized result of the ideal sample x(n).

2.2: Quantization Noise

Because all decimal numbers within a specified range cannot be represented 100% accurately, inherent
errors occur. Even though increasing a word size directly increases the accuracy of the actual decimal-to-
bit representation, that error will always exist. In short, the error introduced in representing a decimal
number by a set of discrete value levels is called quantization error or quantization noise. The resulting
quantization noise is represented as a sequence Eq(n) defined as the difference between the quantized
value and the actual decimal value. The equation for this description is as follows:

Eq(n) = xq(n) – x(n) (Eqn. 2.2)

2.3: Two’s Complement Representation

Because of its unique representation of all numbers including zero, its wide use in a majority of computer
systems including digital filters, and its ease of implementation, the two’s complement notation is the
binary representation of choice for this thesis research. Using this form of binary representation, the most
significant bit (MSB) is the designated sign bit with binary zero denoting a positive number and binary one
denoting a negative number. Using a four-bit number, a brief illustrative example is as follows:

00112 = 310

11012 = -310

2.4: Two’s Complement Truncation

Using Equation 2.2 as reference, quantization error when truncating a two’s complement number yields
the equations as follows:
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Et(n) = xt(n) – x(n) (Eqn. 2.3)
-2-b <= Et <= 0 (Eqn. 2.4)

The variables Et, b, and xt(n) represent the truncated error, the number of bits expressing the fractional
value, and the truncated b-bit quantized result of the ideal sample x(n), respectively. For binary truncation
of a b-bit quantity, the resulting quantized magnitude will be smaller than the ideal sample. Figure 2.1
provides a statistical viewpoint of a probability density function (pdf) for truncation error. The x-axis, e, is
the error or noise. The y-axis, p(e), is the pdf of the error or noise [Oppenheim2].

2.5: Two’s Complement Rounding

Considering the quantization noise due to the rounding of a number, the resulting error is noticeably
smaller than truncation. Again using Equation 2.2 as reference, quantization error when rounding a two’s
complement number yields the equations as follows:

Er(n) = xr(n) – x(n) (Eqn. 2.5)
-0.5*2-b <= Er <= 0.5*2-b (Eqn. 2.6)

The variables Er, b, and xr(n) represent the rounded error, the number of bits expressing the fractional
value, and the rounded b-bit quantized result of the ideal sample x(n), respectively. Binary rounding
requires that for a b-bit quantization, the b+1th bit is needed to mathematically decide whether or not to
add binary one to the preceding b-bits. If the b+1th bit is binary zero, then binary one will not be added to
the preceding b-bits. If the b+1th bit is binary one, then binary one will be added to the preceding b-bits.
As a consequence, the quantization error range of rounding is mathematically smaller than its truncation
counterpart. Figure 2.1 provides a statistical viewpoint of a probability density function (pdf) for rounded
error. Notice the error mean, me, is different in both quantization methods. On the other hand, error
variance, σe

2, of both quantization methods are identical. It is stated here again that the term error and
noise are used interchangeably throughout this thesis. The x-axis, e, is the error or noise. The y-axis,
p(e), is the pdf of the error or noise [Oppenheim2].

2.6: Finite-Precision Effects

In DSP hardware, implementations are either in fixed-point or floating-point format. In fixed-point
representation, a decimal number is represented as a string of digits with an implied decimal point. In this
format, the digits to the left of the decimal point represent the integer part of the number, and the digits to
the right of the decimal point represent the fractional part of the number. Fixed-point representation allows
a user to cover a range of numbers xmax - xmin with a resolution as follows:

Fig. 2.1. Probability density function for quantization error.

e

p(e)

-2-b

1/2-b

Truncation

me = -0.5*2-b

σe
2 = 2-2b/12

Rounding

me = 0
σe

2 = 2-2b/12

e

p(e)

-2-b/2

1/2-b

2-b/2
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 = (xmax - xmin) / (2
b – 1) (Eqn. 2.7)

In Equation 2.7, the term 2b is the number of levels, b is the number of bits representing both the integer
and fractional values, and is the resolution. The variables xmax and xmin can either be a positive or
negative decimal value represented by b bits. Figure 2.1 is an illustrative example of a 3-bit two’s
complement implementation of a counting wheel. For this example, xmax and xmin are represented by the
integers 3 and –4, respectively, and the number of levels is 8. The resolution, , is 1. To demonstrate the
flexibility of Equation 2.7, Figure 2.2 is another example of a 3-bit two’s complement implementation of a
counting wheel with the exception that this is a fixed-point fractional example. For this example, xmin and
xmax are represented by the decimals -1.00 and 0.75, respectively, and the number of levels is 8. The
resolution, , is 0.25 for this case. A basic characteristic of fixed-point representation is that the resolution
is fixed [Manolakis].

Quantization stepsize is defined by the equation as follows:

q = 2-b (Eqn. 2.8)

For this equation, the variables q and b represent the quantization stepsize and the number of bits
expressing the fractional value, respectively. For Figure 2.1, the quantization stepsize is 1 because b is
equal to zero. For Figure 2.2, the quantization stepsize is 0.25 because b is equal to 2.

011

100

101

3

1-1

2-2

-4

0

111 001

000

010110

-3

Fig. 2.1. Integer counting wheel for 3-bit two’s complement numbers.

-1.00

011

100

101

0.75

0.25-0.25

0.50-0.50

0.00

111 001

000

010110

-0.75

Fig. 2.2. Fractional counting wheel for 3-bit two’s complement numbers.
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In floating-point representation, in order to cover a larger dynamic range, the resolution varies across the
range. For DSP hardware implementation, fixed-point representation requires less complicated circuitry
and is more common in terms of use. Fixed-point representation will be investigated for this research.

2.7: Limit-Cycle Oscillations

Because of coefficient quantization and rounding (or truncation) of multiplier sub-block outputs, recursive
systems like IIR digital filters experience nonlinear effects at the filter output in response to an input
impulse. Ideally, a digital filter of infinite precision will exponentially decay to zero at the filter output when
the input is an impulse. Because of the aforementioned quantization, the output of an n-bit quantized
digital filter will either oscillate and be confined to a range of values or remain at a fixed value. In the case
of the former, the range of values is called the dead band. An illustrative example of limit-cycle
oscillations is the difference equation as follows:

y(n) = x(n)  - 0.7y(n-1) (Eqn. 2.9)

Assuming an input impulse, x(0) = 15 and x(n) = 0 for all other values of n, Table 2-1 shows the filter
response for an ideal and quantized output. The first column is the sample number, the second column is
the ideal input impulse, the third column the ideal output, and the fourth column the quantized output
rounded to the nearest integer. The ideal output continues to decay while the quantized output oscillates
between –1 and 1. If the minus sign in Equation 2.9 were replaced with a plus sign, a similar result would
occur with the exception that the quantized output would remain fixed at +1 and would not decay
[Chirlian].

n x(n) y(n) rounded y(n)
0 15 15 15
1 0 -10.5 -11
2 0 7.35 8
3 0 -5.145 -6
4 0 3.6015 4
5 0 -2.52105 -3
6 0 1.764735 2
7 0 -1.2353145 -1
8 0 0.86472015 1
9 0 -0.605304105 -1
10 0 0.4237128735 1

Limit-cycle oscillations are caused by quantization. This type of non-linear effect becomes more
significant when designing  filters of high order. The solution to this predicament is to decompose the
high-order filter into 1st and 2nd order sub-blocks with the 2nd order sub-blocks having the higher design
priority. Such a design format significantly reduces limit-cycle oscillations [Rabiner].

Table 2-1. Response to digital filter of Equation 2.9 for ideal and quantized outputs.
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CHAPTER 3: IIR Digital Filter Structures

3.1: Linear Time-Invariant Systems

Digital filters are discrete-time systems. A discrete-time system is essentially an algorithm for converting
an input sequence into an output sequence. The input signal x(n) is transformed by the system into a
signal y(n), and is expressed by the general relationship between x(n) and y(n) as follows:

y(n) ≡ H[x(n)] (Eqn. 3.1)

The symbol H denotes the transformation performed by the system on x(n) to produce y(n). Figure 3.1
graphically illustrates the mathematical relationship of Equation 3.1.

The type of discrete-time system focused upon by this research is linear, time-invariant (LTI). A linear
system is defined in the following manner. If x1(n) and x2(n) are specific inputs to a linear system and y1(n)
and y2(n) are the respective outputs, then if the sequence ax1(n)+bx2(n) is applied to the input, the
sequence ay1(n)+by2(n) is obtained at the output, where a and b are arbitrary constants. In a time-
invariant system, if the input sequence x(n) produces an output sequence y(n), then the input sequence
x(n-n0) produces the output sequence y(n-n0) for all n0 [Gold].

3.2: Difference Equations and Recursive Systems

A linear, time-invariant system can have its input-output relationship mathematically described by a
difference equation containing constant coefficients. Difference equations are a subset of the class of LTI
systems. These equations are extremely important because they offer insights into efficient ways of
designing LTI systems. Linear difference equations with constant coefficients are also known as recursive
systems. A recursive system is defined as a system whose output y(n) at time n depends on any number
of past output values [Manolakis]. To generally understand the input-output relationship, consider the
simple difference equation (first-order recursive system) with the constant a as follows:

y(n) = ay(n-1) + x(n)

Figure 3.2 shows the block diagram and successive values of y(n) for all n≥0 beginning with y(0).
Assuming the initial condition y(-1) is zero, the computed steps of y(n) illustrates the recursive nature of
difference equations in that present values are strongly dependent on past values. Another example of a
recursive system is Equation 2.9.

outputinput

Discrete-Time System
H

x(n) y(n)

Fig. 3.1. Block diagram representation of a discrete-time system.
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y(0) = ay(-1) + x(0)
y(1) = ay(0) + x(1) = a2y(-1) + ax(0) + x(1)
y(2) = ay(1) + x(2) = a3y(-1) + a2x(0) +ax(1) + x(2)

y(n) = ay(n-1) + x(n)
y(2) = an+1y(-1) + anx(0) + an-1x (1) +…+ ax(n-1) + x(n)

3.3: Infinite Impulse Response (IIR) Digital Filters

IIR digital filters are recursive systems that involve fewer design parameters, less memory requirements,
and lower computational complexity than finite impulse response (FIR) digital filters. These are primary
advantages of implementing IIR digital filters. If there is no requirement for a linear-phase characteristic
within the passband of a digital filter, the aforementioned advantages make IIR filters more attractive to a
system designer [Manolakis]. This type of recursive system belongs to an important class of linear time-
invariant discrete-time systems characterized by the general linear constant-coefficient difference
equation as follows:

y(n) = -    aky(n-k) +     bkx(n-k) (Eqn. 3.2)

Transforming this difference equation into the z-domain by means of the z-transform, such a class of
linear time-invariant discrete-time systems is also characterized by the transfer function as follows:

Different structures of IIR filters are described by the difference equation in Equation 3.2. These
structures are referred to as direct-form realizations. It should be noted that although these structures are
different from one another by design, they are all functionally equivalent. Three prominent direct-form
realizations are the Direct-Form I, the Direct-Form II, and the Transposed Direct-Form II structures. In
terms of hardware implementation, the Direct-Form I structure requires M+N+1 multiplications, M+N
additions, and M+N+1 memory locations. Figure 3.3 depicts this structure as implemented from Equation
3.3.

y(n)x(n)

a

z-1

Fig. 3.2. Block diagram of a simple first-order recursive system.

Σ
N

k=1
Σ
M

k=0

bkz
-kΣ

M

k=0

akz
-kΣ

N

k=1

1 +

H(z) = (Eqn. 3.3)
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The Direct-Form II structures require M+N+1 multiplications, M+N additions, and the maximum of {M,N}
memory locations. Because the Direct-Form II structure requires less memory locations than the Direct-
Form I structure, it is referred to as being canonic. Figure 3.4 shows an IIR digital filter in Direct-Form II
format.

Fig. 3.3. Direct-Form I Realization.

y(n)b0x(n)

bM

bM-1

b3

b2

b1

z-1

z-1z-1

z-1

z-1

-aN

-aN-1

-a3

-a2

-a1

z-1

z-1z-1

z-1

z-1

y(n)b0x(n)

bM

bM-1

b3

b2

b1

-aN

-aN-1

-a3

-a2

-a1

z-1

z-1z-1

z-1

z-1

Fig. 3.4. Direct-Form II Realization.
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Mathematical manipulation of Equation 3.2 based on Figure 3.4 yields the Transposed Direct-Form II
structure. This structure requires the same number of multiplications, additions, and memory locations as
the original Direct-Form II structure. Both Direct-Form II structures are more design-preferable compared
to the Direct-Form I structure. This is because of the smaller number of memory locations required in their
implementation. Figure 3.5 shows an example of the Transposed Direct-Form II structure. Because of this
fact, for hardware considerations of this research, the Transposed Direct-Form II structure is the structure
of choice for designing quantized, fixed-point IIR digital filters.

3.4: Hardware Considerations

Due to finite-precision arithmetic in the realization of n-bit quantized digital filters, nonlinear effects make it
extremely difficult to both analyze precisely and predict with 100% accuracy filter performance. Fixed-
point realization of digital filters makes quantization effects very important. An example of an unwanted
nonlinear effect is limit-cycle oscillations as described in section 2.7 of this thesis. Nonlinear effects at the
filter output become a greater problem with high-order filters. As again stated in section 2.7, the solution
to significantly minimize nonlinear effects is to decompose digital filters with orders greater than 2 into 2nd

order sub-blocks. There are two methods in which decomposing high-order digital filters into 2nd order
sub-blocks can achieve the goal of minimization of nonlinear effects. These methods are the parallel-form
structure and cascade-form structure. All 2nd order sub-blocks are in Transposed Direct-Form II format for
this research.

3.4.1: Parallel-Form Structure

Parallel-form realization of an IIR digital filter can be obtained by performing a partial-fraction expansion
on the transfer function H(z). Performing this mathematical function produces the resulting transfer
function in the form as follows:

y(n)x(n)

-aN

-aN-1

-a1

bM

bM-1

b1

b0

z-1

z-1

z-1

H(z) =
b0 + b1z

-1 + … + bM-1z
M-1 + bMz-M

1 + a1z
-1 + … + aN-1z

N-1 + aNz-N

Fig. 3.5. Transposed Direct-Form II Structure and Transfer Function H(z).
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H(z) = C +    Hk(z) (Eqn. 3.4)

The function Hk(z) is in 2nd order form as follows:

(Eqn. 3.5)

It should be noted that the transfer functions in Equation 3.4 and Equation 3.3 are functionally equivalent
in that both are ideal representations of an infinite-precision filter. In Equation 3.4, the constant K is
defined as the integer part of (N+1)/2. The constant N is the same constant N in Equation 3.3. Transfer
function H(z) is generally composed of poles and coefficients (residues) of the partial-fraction expansion.
A more direct result of the partial-fraction expansion of H(z) (Eqn. 3.4) yields the functional equivalent as
follows:

H(z) = C + (Eqn. 3.6)

The variables pk and Ak stand for the poles and residues, respectively, in the partial-fraction expansion.
The constant C is the same as the variable used in Equation 3.4. If N is odd then C = 0. If N is even then
C = bN/aN. Figure 3.6 graphically illustrates a parallel-form structure of an IIR digital filter. The Transposed
Direct-Form II realization of each 2nd order sub-block is illustrated in Figure 3.7 [Manolakis].

Σ
K

k=1

Hk(z) =
bk0 + bk1z

-1

1 + ak1z
-1 + ak2z

-2

1 - pkz
 -1

AkΣ
N

k=1

C

y(n)

x(n)

HK(z)

H2(z)

H1(z)

Fig. 3.6. Parallel-Form Structure of an IIR Digital Filter.
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3.4.2: Cascade-Form Structure

Cascade-form realization of an IIR digital filter can be obtained by performing mathematical factoring on
the transfer function H(z) into a cascade of 2nd order sub-blocks. The resulting transfer function can then
be expressed as

H(z) =     Hk(z) (Eqn. 3.7)

where K is the integer part of (N+1)/2 and Hk(z) has the 2nd order form as follows:

Since this is a cascade system, the matter of grouping together a pair of complex-conjugate poles and a
pair of complex-conjugate zeros becomes extremely critical. The output of a quantized digital filter is
strongly dependent on the sequential ordering of the K sub-blocks as well as the exact way in which
numerator and denominator sections are paired together. Arbitrarily grouping these terms can be
performed on the part of the system designer but at the cost of a potentially high output noise variance.
To produce an optimum quantized digital filter, a methodology must be applied in terms of grouping the
terms. An established methodology used by this research is as follows:

i. Calculate the poles and zeros of the overall transfer function H(z).
ii. Pick the pole with the largest magnitude and the nearest zero. Choose them

and their complex conjugate values for the first 2nd order sub-block (section).
iii. Proceed similarly for the next sub-block (section) with the remaining poles and

zeros. Repeat accordingly with the remaining sections.

The above 3-step methodology ensures minimization of quantized round-off noise produced by the n-bit
multiplier sub-blocks [Gold]. Figure 3.8 portray the general form of the cascade structure. The Transposed
Direct-Form II realization of each 2nd order sub-block is illustrated in Figure 3.9 [Manolakis].

Π
K

k=1

Hk(z) =
bk0 + bk1z

-1+ bk2z
-2

1 + ak1z
-1 + ak2z

-2
(Eqn. 3.8)

y(n)

x(n)=x1(n)

y1(n)

x2(n)
H1(z)

y2(n)

xK(n)
H2(z) HK(z)

Fig. 3.7. Structure of 2nd order section of parallel-form structure.

Fig. 3.8. Cascade-Form Structure of an IIR Digital Filter.
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-ak2bk2

yk(n)=xk+1(n)xk(n)

-ak1bk1

bk0

z-1

z-1

Fig. 3.9. Structure of 2nd order section of cascade-form structure.
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CHAPTER 4: Digital Filter Designs

This thesis investigates four different digital designs that each have unique properties in terms of
magnitude responses in the pass band, stop band, and transition band regions. These four designs are
called Butterworth, Chebyshev I, Chebyshev II, and Elliptic filters [Jackson1]. For this research, the cutoff
and stop band frequencies on the magnitude response for these filter designs are defined to be the -3dB
point and the -40dB point, respectively.

Butterworth filters have magnitude responses that are “maximally flat” in both the pass and stop bands.
The rolloff rate for these designs are typically low and not steep. For this research, rolloff rate is defined in
the transition band region, and is described as the rate in which the transition is made from the cutoff
frequency to the stop band frequency or vice-versa depending on the type of filter being designed (i.e.:
lowpass, highpass, bandpass). If the type of filter being designed is lowpass, the rolloff is from the cutoff
frequency to the stop band frequency. If the type of filter being designed is highpass, the rolloff is from the
stop band frequency to the cutoff frequency. If the type of filter being designed is bandpass, the rolloff is
both from the first stop band frequency to the first cutoff frequency and from the second cutoff frequency
to the second stop band frequency. For an ideal filter, the rolloff rate is infinite and has an infinite slope. In
addition, because there is an inverse relation between rolloff rate and width of transition band, a transition
band does not exist for an ideal filter. In other words, the width of the transition band is zero.

Chebyshev filters have shorter transition bands than Butterworth filters. Hence, the rolloff rate is greater
and the width of the transition band is significantly smaller. There are two different types of Chebyshev
filters. Chebyshev Type I filters have ripple in the pass band region and “flatness” in the stop band region.
Chebyshev Type II filters have ripple in the stop band region and “flatness” in the pass band region.
Designing Type I provides better attenuation in the stop band region while designing Type II provides less
signal distortion at the filter output. The system designer selects which type to use based on which band
region is more important.

Elliptic filters have the narrowest transition band compared to both the Butterworth and Chebyshev
designs. The cost of such a narrow band is ripple in both the pass and stop band regions.

Figure 4.1 illustrates the frequency magnitude response of three of the four digital filter designs. The
results are based on 32768 samples. Each filter is 5th order and Table 4-1 shows the relative frequency
bandwidth of each design. A relative frequency of 0.5 is equal to half the digital filter sampling frequency.
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From the above figure, three important observations should be noted. First, in the stop band region,
attenuation using the Chebyshev Type I filter is better than both the Elliptic and Butterworth filters.
Second, the Butterworth filter introduces the least pass band distortion because the signal is flat in the
pass band. Thirdly, the Butterworth filter has the largest transition band while the Elliptic filter has the
smallest transition band.

Design Type Cut-off
(Rel. Frequency)

Stopband
(Rel. Frequency)

Transition Width
(Rel. Frequency)

Butterworth 0.16666666666667 0.30800000000000 0.14133333333333
Chebyshev Type I 0.18466666666667 0.28900000000000 0.10433333333333

Elliptic 0.17866666666667 0.21833333333333 0.03966666666667

Fig. 4.1. Frequency magnitude response of Butterworth, Chebyshev Type I, and Elliptic Filters.

Table 4-1. Relative frequency bandwidth results.

-3dB point

-40dB point
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CHAPTER 5: COSSAP Saturation Modes for Fixed-point Binary Adders

5.1: Overflow in Binary Addition

When performing two’s complement, fixed-point addition, there is always the possibility of binary overflow.
Overflow is a consequence of using a finite number of bits. An illustrative example would be to use 4 bits
in two’s complement notation. Assuming integer calculations, the resulting decimal numbers are in the
range of –8 through +7. When adding two 4-bit numbers, the chance of overflow exists. For example,
adding 00012 = 110 to 01112 = 710 yields 10002 = -810. This is clearly an error and a simple example of
binary overflow using addition. Figure 5.1 illustrates a curve of output versus input of a 4-bit digital system
using two’s complement arithmetic. This figure shows the output for normal binary addition and binary
overflow. The x-axis represents the ideal decimal value (infinite-bit value) while the y-axis represents the
corresponding 4-bit two’s complement value. Both axes are shown in base 10 for better illustration.
Ideally, for an infinite-bit adder, there is no overflow and Figure 5.1 would have a one-to-one ratio (i.e.: a
slope of 1) going to infinity in both directions from the origin.

5.2: COSSAP Saturation Modes

The DSP library in COSSAP contains overflow-correcting algorithms for n-bit fixed-point adders. These
algorithms generally handle overflow by putting the output of an n-bit adder into a saturation mode.
Depending on the values of the n-bit fixed-point inputs, the saturation mode will put the output of the
adder to either its binary maximum or binary minimum two’s complement n-bit representation. For the
above case where 00012 = 110 was added to 01112 = 710, the resulting n-bit output, depending on the
COSSAP saturation mode, would be 01112 = 710. The output is clipped to the maximum two’s
complement 4-bit representation. The output is saturated. This is analogous to saturation in analog
systems. COSSAP contains 3 saturation modes designed specifically for their n-bit fixed-point adders.
The saturation modes available in the COSSAP DSP library are as follows:

SaturationMode = 0 : truncation of upper (most significant) bits

Fig. 5.1. Overflow in a 4-bit two’s complement digital system.
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SaturationMode = 1 : truncation of upper (most significant) bits and clipping to
minimum or maximum value

SaturationMode = 2 : truncation of upper (most significant) bits and
symmetrical clipping (to minimum+1 or maximum value)

Figures 5.2 through 5.4 show curves of output versus input of 4-bit two’s complement numbers in integer
format. Each figure shows what the output would be for a specific saturation mode. The x-axis represents
the ideal decimal value (infinite-bit value) in the range of –10 to +10 in unit increments. The y-axis
represents the corresponding 4-bit two’s complement value. Both axes are shown in base 10 for better
illustration.
Fig. 5.2. Two’s complement output of 4-bit fixed-point adder in the mode as follows:
SaturationMode = 0
17



Fig. 5.3. Two’s complement output of 4-bit fixed-point adder in the mode as follows:
SaturationMode = 1
18
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Fig. 5.4. Two’s complement output of 4-bit fixed-point adder in the mode as follows:
SaturationMode = 2
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erformance criterion used to determine which of the 3 saturation modes is the best is the equation
ows:

Pe = σe
2 + me

2 (Eqn. 5.1)

quation defines the error sequence between the ideal and quantized results. The variables Pe, σe
2,

e
2 stand for the round-off noise power, the error variance, and the error mean, respectively [Bailey].

 5-1 shows the round-off noise power results for each of the three COSSAP saturation modes.
tion Mode 1 was chosen for this research to minimize the round-off noise power. This mode puts
bit fixed-point adder into either its binary minimum or binary maximum when an n-bit fixed-point
w is computed.

Saturation Mode Round-off Noise Power (Pe)
0 4.018932970521540e+03
1 0.88265306122449
2 1.81834467120181

Table 5-1. Round-off power results of COSSAP saturation modes.



20

CHAPTER 6: COSSAP Round-off Modes for Fixed-point Binary Multipliers

Quantized multiplier sub-blocks are the source of noise in digital filters [Chirlian]. The DSP library in
COSSAP contains multiplier sub-blocks that can be programmed to one of four round-off modes. These
modes specify the type of arithmetic n-bit rounding at the multiplier output. These round-off modes are
listed as follows:

RoundMode = 0 : truncation of lower (least significant) bits
RoundMode = 1 : mathematical rounding
RoundMode = 2 : symmetrical rounding
RoundMode = 3 : truncation to zero (symmetrical truncation)

truncation of absolute value and correction of the sign

Figures 6.1 through 6.4 show an illustrative example of the output of an 8-bit fixed-point multiplier in the
various COSSAP round-off modes. The 8-bit input into the four different multipliers are the same. The
input is an arbitrary sinusoid within the magnitude range of the 8 bits. The implied binary point is between
the second and third bits. Using two’s complement representation, the range of the 8 bits is [-2, 2-2-6]. The
output of the multiplier is 8 bits wide and has the same fixed-point format as the input. The 8-bit constant
in the multiplier is 00.1011102 = 0.7187510. Each of the four multiplier sub-blocks is in stand-alone mode,
and each figure shows the MATLAB output and the COSSAP output for the corresponding COSSAP
round-off mode. Because of its floating-point precision, the software package MATLAB will be used as a
source of ideal comparison. MATLAB multiplies the 8-bit input and the 8-bit constant to produce a
floating-point number. COSSAP multiplies the 8-bit input and the 8-bit constant to produce an 8-bit output.
The aforementioned arithmetic error sequence is in reference to the error between MATLAB’s floating-
point precision (ideal case) and COSSAP’s 8-bit finite-precision (quantized case). Throughout this thesis,
the terms ideal and unquantized will be used interchangeably. The DSP library in COSSAP provides the
designer the unique ability to define the binary word length of the input and the output. This programming
property of COSSAP is true for both n-bit adder and n-bit multiplier sub-blocks. This is extremely
important when designing recursive systems like IIR digital filters where feedback loops play critical
computational roles.



21

Fig. 6.1. Two’s complement output of 8-bit fixed-point multiplier with RoundMode = 0.
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Fig. 6.2. Two’s complement output of 8-bit fixed-point multiplier with RoundMode = 1.
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Fig. 6.3. Two’s complement output of 8-bit fixed-point multiplier with RoundMode = 2.



24

Table 6-1 shows the round-off noise power results for the 4 different COSSAP modes. Results are based
on 4096 samples. Based on Table 6-1, RoundMode = 2 is the best mode for designing an n-bit IIR digital
filter. However, in practice, this is not necessarily true. The above multiplier sub-blocks are set in stand-
alone mode for the purpose of analyzing the four COSSAP round-off modes. Because this research deals
with IIR digital filter design, which are recursive systems, nonlinear effects due to the multipliers make it
extremely difficult to predict how the multiplier will behave. The level of difficulty substantially increases
when designing high-order filters with many multiplier sub-blocks. The only guaranteed solution is to
simulate the overall design and measure its performance in all 4 different round-off modes. This is an
effective approach.

Round-off Mode Round-off Noise Power (Pe)
0 6.113431873741523e-05
1 4.998328439872081e-08
2 4.827878486051140e-09
3 6.568585265585772e-07

Fig. 6.4. Two’s complement output of 8-bit fixed-point multiplier with RoundMode = 3.

Table 6-1. Round-off power results of COSSAP round-off modes.



25

CHAPTER 7: Editing VHDL-generated Code Produced from COSSAP

7.1: Designing IIR filters in COSSAP Block Diagram Editor

The designated DSP libraries used to produce VHDL code are the bittrue and radix_fxp libraries. As
stated in the introduction to this thesis, a broad background knowledge of the high-level tool COSSAP is
required. Figure 7.1 is an example of a 20-bit first-order lowpass digital filter designed using COSSAP’s
Block Diagram Editor. The design is a Transposed Direct-Form II Structure. The sampling frequency and
cut-off frequency (-3dB point) are 2kHz and 200Hz, respectively. Based on this frequency information, the
quantized transfer function is as follows:

As a point of reference to the reader, each sub-block in Figure 7.1 has an instance name. The instance
name is the letter M followed by a number. Instance names M5, M7, and M10 are 20-bit multiplier sub-
blocks. Instance names M22 and M23 are 20-bit adder sub-blocks. Instance name M20 is a delay sub-
block. This sub-block is basically an n-bit parallel shift register that stores past values to be used for
future computations. The adder and multiplier sub-blocks are located in the radix_fxp library. The delay
sub-block is located in the bittrue library. The adder and multiplier sub-blocks are combinational circuits
while the delay sub-block is a synchronous sequential circuit.

To produce VHDL code, the utility program xvcg in COSSAP must be run after the appropriate
compilation steps have been executed. The utility program xvcg generates code using the COSSAP HDL
Code Generator (VCG). Figure 7.2 shows the command window for this utility program.

H(z) =
0.2452373504638671875 + 0.2452373504638671875 z-1

1 - 0.509525299072265625 z-1

Fig. 7.1. 20-bit first-order lowpass digital filter.
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The online tutorial of the utility program xvcg in COSSAP is available to the reader for a detailed
understanding on how to use this program. It is strongly suggested that the reader read this COSSAP
tutorial. Table 7-1 shows what options need to be followed to produce VHDL code.

Step # Action
1 Settings -> Set target -> Synopsys VHDL BC
2 Settings -> Set file structure -> File structure -> single file (excl. COSSAP packages)
3 Settings -> Set BC options -> Handshake signals -> no handshake

Settings -> Set BC options -> Pipeline options -> No pipeline
4 Code -> Create

These steps will generate a VHDL behavioral description of the digital filter in Figure 7.1. Step 1 produces
a VHDL behavioral architecture of the digital filter. Even though the final design is to be a structural
architecture, this initial behavioral architecture is extremely important. Step 2 excludes a copy of the
COSSAP VHDL packages in the resulting VHDL-generated code. These packages are required for
COSSAP binary arithmetic and should have already been analyzed using the current VHDL Synopsys
compiler. The resulting VHDL-generated code has use clauses that reference these packages. The use
clauses access these compiled packages from the designated COSSAP library and make their contents
visible. At the time of this writing, the designated library in COSSAP is called BITTRUE_VHDLSNPS. The
designer should know where the COSSAP packages are located for the bittrue and radix_fxp libraries.
Step 3 eliminates both handshaking and pipeline hardware aspects of this digital filter in Figure 7.1.
These two aspects were eliminated because the goal is to produce VHDL code that resembles the
Transposed Direct-Form II Structure.

Fig. 7.2. Graphical window of the utility program xvcg.

Table 7-1. Steps to produce VHDL code for a digital filter.
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7.2: Deficiencies in the VHDL code generated by xvcg

The VHDL code generated by xvcg has two undesirable features. The first undesirable feature is that the
generated code produces registered inputs. The second undesirable feature is that it produces a design
that has an active-high reset. In the IIR digital filter shown in Figure 7.1, the only memory element is the
delay unit (parallel shift register). The input x(n) is not registered. In actuality, the input x(n) is the output
of an A/D converter. The outputs of A/D converters are typically registered (or latched). The values of x(n)
are strongly dependent on the A/D converter’s sampling frequency, fs. The delay unit in Figure 7.1 must
operate at the same sampling frequency as the A/D converter. The registered input produced by xvcg
delays the computed output to y(n) by one clock cycle (period). To compensate for the first undesirable
feature, the designer must convert the code to resemble the Transposed Direct-Form II Structure. The
first step in this technical endeavor is to design the sub-blocks individually using both the COSSAP Block
Diagram Editor (BDE) and xvcg. In VHDL, it is an established industry practice to start with behavioral
architectures (behavioral domain) and end with a single structural architecture (structural domain). This
practice employs the concept of modularity in which partitioning a top-level design allows the system
designer the ability to minimize design complexity and ensure that low-level components are correctly
functioning.

7.2.1: Fixed-point Multiplier Sub-blocks

Figure 7.3 illustrates a block diagram of instance M5 of Figure 7.1.

Instance M5 is a 20-bit fixed-point multiplier sub-block. Executing xvcg produces VHDL code for both a
combinational and sequential implementation. Notice that instance M5 in Figure 7.1 is a purely
combinational circuit. The VHDL-generated code, excluding the comments, can be found in Appendix A.

The designer should convert this VHDL-generated code to resemble a combinational circuit by creating
another copy of the code and performing specific editing steps. This new copy is to be converted to a
VHDL code with generic parameters and be used as a VHDL library component. This conversion consists
of 5 editing steps the results of which can be found in Appendix A of this research. These editing steps
are a one-time procedure that covers future multiplier sub-block design and VHDL instantiation. For the
example in Figure 7.1, instances M7 and M10 are covered. Lastly, these edits remove the two
undesirable features stated earlier in section 7.2.

7.2.2: Fixed-point Adder Sub-blocks

Figure 7.4 illustrates a block diagram of instance M22 of Figure 7.1. Instance M22 is a 20-bit fixed-point
adder sub-block.

Fig. 7.3. COSSAP BDE of instance M5 of Figure 7.1.
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The same 5-step editing methodology with minor changes is applied to this component. This generic
VHDL code is used as a library component. Step by step results can be found in Appendix A. The generic
code covers instance M22 as well. Functional verification is left to the designer. In Appendix A of the
resulting generic multiplier and generic adder fixed-point conversions, the reader should notice the
difference between the COSSAP function fxp_round(). For the adder, one of the parameters is the integer
0. Since the adder sub-blocks do not produce additional quantization noise [Chirlian], the default round-off
mode of 0 is sufficient. Changing this parameter value to any other COSSAP round-off mode (1, 2, or 3)
will not produce a difference at the adder output. It is noted here that this sub-section (7.2.2) deals with a
2-input fixed-point adder. For digital filters with orders greater than and equal to 2, adders with 3 inputs
are required. Figure 7.5 is a block diagram of a 20-bit 3-input fixed-point adder.

Fig. 7.4. COSSAP BDE of instance M22 of Figure 7.1.

Fig. 7.5. COSSAP BDE of a 3-input fixed-point adder.
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Following the aforementioned editing steps, the generic VHDL code can be found in Appendix A.

It is lastly stated here that the fixed-point adders used in this research (2 inputs and 3 inputs) have the
same integer/fraction bit allocations when it comes to fixed-point representation at the adder input. In
other words, the number of bits used to represent the integer value for one input is used for the second
input for a 2-input adder. Likewise, for a 3-input adder, the number of bits used to represent the integer
value for one input is used for the second and third inputs.

7.2.3: Fixed-point Delay Sub-blocks

Figure 7.6 illustrates a block diagram for instance M20 of Figure 7.1. This is a clock-dependent delay sub-
block.

The VHDL-generated code after executing xvcg is left for the reader to produce. Through more efficient
editing techniques, the resulting generic VHDL code used for this research can be found in Appendix A.

As for the second feature mentioned in section 7.2 (active-high reset), the designer has the ability to
choose between designing either an active-high or active-low sub-block depending on design
specifications. In short, the designer is not confined to designing filters with active-high resets. As with the
multiplier and adder sub-blocks, functional verification of the delay sub-block is left to the designer. For
this research, all digital filter designs have an active-high reset.

7.3: Designing IIR Filters in VHDL

As stated in section 7.1, the design goal is to build a digital filter in the Transposed Direct-Form II
Structure. Section 7.2 dealt with how to convert specific VHDL-generated code for the sub-blocks into
general (generic) VHDL code. The designer now has the basic building blocks needed to design the
required digital filter as shown in Figure 7.1. This VHDL design is a generic structural architecture. An
example of a generic VHDL structural code is found in Appendix A.

Functional verification is left to the designer to ensure that the generic VHDL structural architecture
produces the same results as the initial VHDL-generated code. Because the multiplier sub-blocks are
almost always different from one another in the same structure in terms of multiplier coefficients, different
architectures of the same multiplier are required. Basically, the different architectures are based on the
constants with RoundProdWidth_ prefixes. These constants, which are produced by COSSAP’s utility
program xvcg, are crucial for the arithmetic functions used in the VHDL DSP library.

The designer must know which architecture is to be bound (configured) to which sub-block in the top-level
structural architecture. The designer can find this information from the initial VHDL-generated code of the
digital filter. Recall that this initial VHDL-generated code contains a behavioral architecture. The designer
simply has to search for that part of the code where these constants are declared. The section that has

Fig. 7.6. COSSAP BDE of a 20-bit delay sub-block.
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the RoundProdWidth_ prefixes contains this information. These prefixes are directly linked to the
schematic of the digital filter in COSSAP’s Block Diagram Editor. For example, if a constant is named
RoundProdWidth_M_M12_1_3, the designer knows that instance M12 is a multiplier sub-block and the
constant value declared there is associated with that particular sub-block. The manner in which to read
this information is simple. Sum the integers not including the n-bit length of the designed filter. For
example, if the design is a 20-bit digital filter and the constant is 1 + 5 + 20 – 1, the designer should sum
together the integers 1, 5, and –1 to compute the value 5. The designer would then know which generic
architecture needs to be bound (configured) to which multiplier sub-block in the top-level architecture.
Specifically, the generic declaration of this constant in the architecture to be bound for this particular
example is as follows:

constant RoundProdWidth_M_M12_1_3 : INTEGER := BIN_LENGTH + 5 ;

The variable BIN_LENGTH is obviously equal to 20 for this example. The same methodology is applied to
the adder sub-blocks. In this case, the constant that has the required information contains the
RoundWidth_ prefix.

This section demonstrates the benefit of choosing the Synopsys VHDL BC option in Step 1 of Table 7-1.
Although the other option, Synopsys VHDL RTL, contains the same necessary bounding information, the
actual gathering of the information requires a painstaking search of the VHDL-generated code on the part
of the designer.



CHAPTER 8: Digital Filter Design Procedures Using High-level Tools

8.1: IIR Digital Filter Design Flowchart

The following flowchart shows how to design n-bit fixed-point IIR digital filters using the high-level
modeling tools COSSAP and VHDL. As stated earlier in Chapter 6, the software package MATLAB is the
DSP tool used to compute high-precision results. The version of MATLAB used in this research was
version 5.3.0.10183 (R11). All computations in MATLAB were done in 64-bit double precision.
Performance and analysis are also measured using MATLAB.
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8.2: Description of Flowchart Steps

This section provides a full description of each step outlined in the flowchart of the previous section. The
digital input signals used to test the performance of all the constructed digital filters throughout this
research are quantized to the amplitude range [-1,1). Performance and analysis are done on a total of
4096 samples.

Step 1
As stated numerously throughout this research, for the purpose of having a point of reference for the ideal
digital filter, the software package MATLAB is used as an ideal tool for comparison. The MATLAB digital
filter will represent the unquantized digital filter while the COSSAP digital filter will represent the quantized
digital filter. The former represents the ideal case while the latter is the two’s complement, fixed-point
case. From a digital filter specification, an IIR digital filter is ideally designed using MATLAB. This step
produces the ideal digital filter transfer function, H(z). The ideal filter is in the form of Transposed Direct-
Form II Structure of order n [Manolakis]. Figure 3.5 provides a graphical illustration of such a network
along with its transfer function. This step is not limited to the four following designs but the digital filter
could be derived from one of the designs as follows:

- Butterworth
- Chebyshev Type I
- Chebyshev Type II
- Elliptic

The designer should verify if the desired specifications are met for parameters such as cut-off frequency
and stopband frequency. For the purposes of analysis, the cut-off and stopband frequency points used
throughout this research are -3dB and -40dB, respectively. Within the unit circle, pole/zero placement of
the ideal transfer function must also be observed by the designer for the purposes of filter stability.
Specifically, all poles must be inside the unit circle for the digital filter to be considered stable [Manolakis].

Step 2
With the availability of the ideal digital filter coefficients from the ideal transfer function, quantization is
required to produce an n-bit digital filter. As stated earlier, the coefficients of this n-bit digital filter are
represented in fixed-point two’s complement format. For the purposes of optimization and round-off noise
minimization, if the digital filter order is greater than 2, the ideal digital filter will be broken down into 2nd

Order Transposed Direct-Form II sub-blocks [Manolakis]. The coefficients of each respective sub-block
will be quantized according to the required n-bit length. Initially, all coefficients will have a truncated
quantized format. At the designer’s discretion, if the digital filter order is greater than 2, either the parallel
or cascade structural realization of the 2nd Order Transposed Direct-Form II sub-blocks described in
Chapter 3 is chosen.

To achieve optimum accuracy, the methodology in Table 8-1 is used to obtain an appropriate n-bit
representation. Note that the optimum n-bit representation depends on the magnitude of the ideal transfer
function coefficients.



Step # Action
1 Calculate the absolute value of each coefficient (if designing a parallel

structure, include the constant C if necessary)
2 Find the largest absolute value
3 Calculate the mathematical ceiling of that absolute value
4 Negate that value
5 Calculate the minimum number of bits required to represent that

negative integer
6 Calculate the remaining number of bits to be used to represent the

fraction

To illustrate the a
two’s complement
results of each ste

Step #
1
2
3
4
5
6
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8-1 ensures that t
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Table 8-1. Methodology to optimally represent n-bits in two’s
complement fixed-point format.
34

bove methodology, assume that the four coefficients to be represented using 8 bits in
 fixed-point format are -0.31871, 2.17328, 1.7014, and -3.19353. Table 8-2 shows the
p in the methodology of Table 8-1.

Action
0.31871, 2.17328, 1.7014, 3.19353

3.19353
4
-4

3 bits (1002)
8 – 3 = 5 bits

d input into the digital filter is in the range of [-1,1), the methodology outlined in Table
he output of the multiplier sub-blocks containing fixed-point coefficients do not overflow
especially critical for the sub-block with the largest multiplier coefficient.

ecord and save in a file the impulse response of the ideal transfer function H(z). The
 is the time domain description of a filter. It provides information in regards to filter
mation is compared to the quantized impulse responses of Step 19.

arisons of frequency responses between ideal and quantized transfer functions, H(z)
puted. Basically, these are error calculations. Error calculations are computed for the

ows:
Magnitude
Phase (in radians)
Group Delay:
- The time delay (in samples) that a signal component of frequency ω undergoes

as it passes from the input to the output of the system.

mance criterion is the magnitude error calculation.

able 8-2. Tabular results of methodology outlined in Table 8-1.



Steps 6, 7, and 8
Steps 2 through 5 are repeated with the exception that rounded coefficients will be used instead of
truncated coefficients. The type that produces the smaller error magnitudes is selected for the design.

Step 9
Using COSSAP’s Block Diagram Editor, build the quantized, fixed-point digital filter. Set all adder and
multiplier sub-blocks with the correct saturation mode and an initial round-off mode of zero. The optimum
saturation mode was found in Chapter 5. The adder and multiplier sub-blocks are in COSSAP’s
radix_fxp library while the delay sub-block is found in the bittrue library. From the COSSAP tutorial on
the properties of the adder and multiplier sub-blocks in the radix_fxp library, the designer knows that
fractional coefficients are represented in decimal integer format. To briefly state the COSSAP algorithm
for the unique representation, the following example will illustrate. The binary fixed-point representation of
the quantized transfer function, Hq(z), is converted to its decimal counterpart. This decimal counterpart
consists of decimal coefficients. The fractional parts of these coefficients are then multiplied by 2x. The
variable x is the number of bits calculated in Step 6 in Table 8-1. Table 8-3 illustrates this procedure
through example. This example assumes 8 bits are used for quantization; 6 of the 8 bits are used to
represent the fractional part of the coefficient; the remaining 2 of the 8 bits are used to represent the
integer part of the coefficient; and the quantization type is rounding. This procedure is performed using
MATLAB.

Action Result
Ideal (unquantized) coefficients 1.41704

-0.46091
Fixed-point (quantized)

coefficients: binary fraction part
011011
100011

Fixed-point (quantized)
coefficients: decimal fraction part

0.421875
-0.453125

COSSAP fractional
representation

27
-29

Step 9.1: Dig
If the digital f
n bits must b
rule of thumb
as an examp
serves as in
used for inte
output. The
representatio
because the 
signal of am
expected. Th
adder sub-bl
quantized ra
COSSAP tut

Step 9.2: Pa
If the design
choose a su
rule of thumb
Table 8-3. Tabular results of COSSAP’s n-bit fixed-point representation
of coefficients for multiplier sub-blocks.
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ital filters of order 2 or less
ilter being designed is no greater than order 2, the designer has to choose how many of the
e allocated to represent the integer portion of the outputs of the multiplier sub-blocks. The
 used throughout this research stems from Steps 1 through 5 of Table 8-1. Using Figure 3.7
le, with the exception of the top-most adder sub-block, in which the output both is y(n) and

put to the right-hand multiplier sub-blocks, the number calculated in Step 5 is the number
ger representation for the other adder sub-blocks. This number is used for both input and
 aforementioned top-most adder sub-block contains the same number for integer
n but only for the inputs. The output is assigned 1 bit to represent the integer portion. This is
input signal into the digital filter is quantized to the amplitude range of [-1,1). If a passband
plitude range [-1,1) is input into the system, an output of amplitude range of [-1,1) is
is is the fundamental reason behind assigning 1 bit to the integer portion of the particular

ock. Assigning 1 bit to the output of the top-most adder sub-block mathematically covers the
nge of [-1,1). It is repeated here at this point that it is assumed that the designer has read the
orial on the properties of the adder and multiplier sub-blocks in COSSAP radix_fxp library.

rallel-structure for high-order filters
er opts for a parallel structure for a digital filter greater than order 2, the designer must
itable number of bits to optimally represent the integer portion of the adder sub-blocks. The
 in this case is to calculate the peak magnitude response of each transfer function. Include
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the constant C if necessary. Next, calculate the mathematical ceiling of each peak magnitude number.
Finally, the designer must find the largest mathematical ceiling, negate that value, and calculate the
number of bits required to represent that number. This calculated number is now used for the adder sub-
blocks of all the transfer function sections for both input and output. The final summation adder sub-block
is assigned 1 bit to represent the integer portion at the output for reasons previously outlined in Step 9.1.

Step 9.3: Cascade-structure for high-order filters
If the designer opts for a cascade realization for a high-order filter greater than order 2, the designer must
apply the same procedure outlined in Step 9.2 except that special consideration must be paid to the
transfer function sections after the first stage. For the parallel structure in Step 9.2, the input into all the
transfer function sections is in the amplitude range of [-1,1). This is true only for the first stage in a
cascade structure, and not necessarily true for the succeeding stages. To remedy this situation, the
designer could choose one of two methodologies as follows:

Step 9.3.1: Cascade-structure Methodology #1
The designer should follow Steps 1 through 5 of Table 8-1 for each transfer function section. The number
calculated from Step 5 for each section is used for the integer representation for all the adder sub-blocks
of that particular cascade section. For the top-most adder sub-block in the last cascade stage, the output
is assigned 1 bit for reasons previously outlined in Step 9.1. Results of Chapter 10 will provide a better
illustration of this concept in terms of application.

Step 9.3.2: Cascade-structure Methodology #2
The designer should input a passband signal into the overall digital filter transfer function, H(z). Calculate
the resulting minimum and maximum values out of each cascade stage. Of these values, calculate the
absolute values; calculate the mathematical ceiling of each value; calculate the greatest of the
mathematical ceiling computations; negate this value; and calculate the number of bits needed to
represent this negated value. The first part of this methodology is complete. The next part entails all of the
coefficients of each cascade section. For each cascade section, follow Steps 1 through 5 of Table 8-1. At
this point, if there are n cascade stages, there should be n answers based on Step 5. Including the result
from the first part of this methodology, there are now n+1 answers. The designer should calculate the
largest number of these answers. This number calculated is to be used for the integer representation for
all the adder sub-blocks in the cascade structure. As always, for the top-most adder sub-block in the last
cascade stage, the output is assigned 1 bit for reasons previously outlined in Step 9.1. Results of Chapter
10 will provide a better illustration of this concept in terms of application.

Step 10
An n-bit input sinusoid will serve as a performance test for the quantized digital filter designed in
COSSAP. The sinusoid is required to have a passband frequency. This passband frequency serves as a
means to verify whether or not the fixed-point adder and multiplier sub-blocks are functioning optimally.
The passband frequency also tests to see if the filter can handle an input signal of quantized amplitude
range [-1,1) without any clipping at the positive or negative output peaks. The designer should use the
instance SIN_GEN_TBL in the DSP library in the Block Diagram Editor. Configuring the signal generator
sub-block requires that the designer do the following:

NumberOfItems = sampling frequency (Eqn. 8.1)
NumberOfPeriods = signal frequency (Eqn. 8.2)

Amplitude = 1 (Eqn. 8.3)

The variables NumberOfItems and NumberOfPeriods must have values. These variables are equivalent
to the sampling frequency and input signal frequency, respectively. Reading the COSSAP online
documentation of the signal generator SIN_GEN_TBL, this sub-block produces an output according to the
equation as follows:

Output = sin (2π * NumberOfPeriods / NumberOfItems * k) (Eqn. 8.4)
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The variable k is a non-negative integer starting from 0. Through careful mathematical manipulation, the
term 2π*NumberOfPeriods/NumberOfItems*k is mathematically equivalent to the term 2π*f/Fs*k. This is
the basis for equations 8.1 and 8.2. It is noted here that the value of π differs slightly in COSSAP and
MATLAB. Calculating to 20 significant places, the values of π are as follows:

COSSAP: π = 3.14159265358979433846
MATLAB: π = 3.14159265358979311600

As stated earlier, analysis is performed on a total of 4096 samples.

On an extremely important note, it is stated here that, regardless if the passband signal input into the filter
built in COSSAP’s BDE meets the designer’s requirements, digital signals in both the transition and
stopband regions must be inputted into the filter. As always, MATLAB is used as the tool of comparison
for its research. These signals test to see how nonlinear effects are handled within the adder and
multiplier sub-blocks. If the filter output is not what is expected, the designer can apply the following
remedies depending on whether a parallel or cascade structure was designed.

Step 10.1: Parallel-structure Remedy
The designer can try assigning more bits to represent the integers in the adder sub-blocks. These integer
assignments should be done for both input and output sections of the fixed-point adders. The only integer
fixed-point section that should not be changed is the output integer section of the final summation adder
sub-block. This part of the adder sub-block keeps its 1 bit output integer assignment for reasons outlined
in Step 9.1.

If this measure does not fix the problem, the designer should consider re-designing the filter using more
bits. For example, the designer should consider going from a 20-bit design to a 24-bit design. If the filter
still cannot be realized using the measure prescribed, the designer could try other ad-hoc methods or
implementing the digital filter as a cascade structure. If nothing works, do not go to Step 11.

Step 10.2: Cascade-structure Remedy
Because of the ordering methodology of this cascade structure outlined in section 3.4.2, the designer
should first attempt increasing the number of bits by 1 for integer representation in the adder sub-blocks
of the last 2 cascade stages. If the output results still do not meet the designer’s requirements, the
designer is still allowed to increase the integer bit representation by another bit. At the designer’s
discretion, if the output results still do not meet design specifications, the designer should continue the
incremental bit increase to a point where a loss of quantized fractional accuracy is not drastic.

As with the parallel structure, if the problem is not fixed, the designer should consider re-designing the
filter using more bits. If the digital filter cannot be realized using the measures prescribed, the designer
could try other ad-hoc methods. If nothing works, do not go to Step 11.

Step 11
Run the utility program xvcg to produce a VHDL-generated code for the n-bit fixed-point digital filter. This
is found in COSSAP’s Block Diagram Editor (BDE) under Tools -> xvcg option.
Steps 12 through 14
Input the same digital input signal from Step 10 into the VHDL-generated code of Step 11 and verify that
both outputs are 100% identical. If outputs are dissimilar, the designer must perform debugging. Although
both models should be rechecked (COSSAP BDE and VHDL-generated code), the designer should first
look at the VHDL-generated code and verify that the VHDL testbench file used is correct.

Step 15
Convert the VHDL-generated code into a generic VHDL structural architecture model. This structural
code must resemble the Transposed Direct-Form II structure. Include generic parameters for the
purposes of providing the designer the ability to pass round-off mode settings from the VHDL testbench
file. This style of coding using generics saves the designer considerable time from having to go into the
VHDL-generated code itself and manually finding the multiplier sub-blocks and changing their round-off
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mode settings. This is especially true when it comes to very high-order digital filters. Chapter seven
provides a more detailed discussion.

Steps 16 through 18
The same input signal from Step 10 serves as input into the generic VHDL structural architecture. The
output from this generic structural code is compared to the output of Step 10. As before, the designer
should verify that both outputs are 100% identical. If dissimilar, debugging is in order. At this point, if
debugging is necessary, the error is more likely to be in the generic VHDL structural architecture. The
reason why debugging is not initially performed on the original VHDL-generated code is because it has
already been debugged and rechecked in Step 14 of the flowchart in section 8.1. The designer would
check to see if certain multiplier and adder sub-blocks were configured correctly.

Step 19
With the VHDL structural architecture with generics, four different impulse responses from four different
COSSAP round-off modes available in the multiplier sub-blocks are recorded and observed. Using the
ideal impulse response of the digital filter designed in MATLAB, each quantized impulse response will
have its round-off noise power calculated using Equation 5.1 and the COSSAP round-off mode that
produces the smallest round-off noise power will be performance criterion for the designed digital filter.
Other factors to be observed by the designer are the dead-band range (due to limit-cycle oscillations) and
the power spectral density of the error and filter output. Power spectral density is the distribution of signal
power as a function of frequency. The signal is assumed to be periodic.

Step 20
Calculate the best COSSAP round-off mode based on comparisons to the ideal impulse response from
Step 3. As stated in Step 19, the smallest round-off noise power is the performance criterion.

Step 21
Perform validation tests on the generic VHDL structural architecture using the ideal digital filter as a
source of comparison. These tests consist of output responses to input signals in the passband, transition
band, and stopband regions of the frequency spectrum of the digital filter. The performance criterion is the
round-off noise power. These tests are performed to confirm the legitimacy of the best round-off mode
calculated in Step 20. These tests are to be performed on all four COSSAP round-off modes for the
multiplier sub-blocks. Depending on the round-off noise power results, the designer could choose to
either use the established round-off mode calculated in Step 20 or another round-off mode that has
potentially better round-off noise power results.

Step 21.1: Validation Test #1
- Input digital signal in the passband region.
- Input digital signal in the transition band region.
- Input digital signal in the stopband region.

Step 21.2: Validation Test #2
Input a digital signal containing 2 frequencies. This signal is composed as follows:

- One low-power frequency in the passband region.
- One high-power frequency in the stopband region.

The high-power digital signal has an amplitude strength 10 times that of the low-power digital signal. This
test establishes how efficiently the quantized filter removes strong signals (noise) in the stopband region.

Step 22
Transform the generic VHDL structural architecture to make it synthesis-ready. This step requires the
designer to remove all generic declarations in both the top-level and low-level components. Removing
generics require the designer to “hardwire” necessary integer values into the multiplier and adder sub-
blocks. Results from Chapter 9 will provide a better demonstration through example.
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Steps 23 through 25
The same input signal from Step 10 will serve as input into the new generic-free VHDL structural
architecture. The output of this structural code will be compared to the output of Step 10. As before, the
designer should verify that both outputs are 100% identical. If dissimilar, debugging is in order. At this
point, if debugging is necessary, the error is more likely to be in the generic-free VHDL structural
architecture. The reason why debugging is not initially performed on the original VHDL-generated code is
because it has already been debugged and rechecked in Step 14 of the flowchart.

Step 26
Perform VHDL synthesis. The designer should use script files to impose certain parameters and
constraints where applicable. Timing constraints are the most important parameters.

Step 27
Test the synthesized digital filter using validation test #2 from Step 21.2. The synthesized output is then to
be compared to the generic VHDL structural architecture result. These two results must have the same
round-off mode established in Step 21. The two results are expected to be exactly the same. If there are
any errors, the designer should first look at the script files used for synthesis as the primary source.
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CHAPTER 9: Results of IIR Digital Filter Design Methodology

This chapter deals with the implementation of the flowchart methodology of Chapter 8. These results are
based on a 16-bit 3rd order Butterworth fixed-point digital filter with a sampling frequency of 10kHz, a cut-
off frequency of 1.5kHz (-3dB point), and a stopband frequency point of -40dB. Results are based on
4096 samples. Because the filter order is greater than 2, both parallel and cascade structures were
investigated.

9.1: 16-bit Butterworth Lowpass Filter Design

The ideal overall transfer function of this filter is the following:

The MATLAB floating-point representation of the coefficients, taken to 14 significant places, are as
follows:

b0 = 0.04953299635725
b1 = 0.14859898907176
b2 = 0.14859898907176
b3 = 0.04953299635725
a1 = -1.16191748367173
a2 = 0.69594275578965
a3 = -0.13776130125989

Figures 9.1 through 9.4 show the frequency response of the above ideal transfer function. The frequency
response data consists of magnitude, phase, and group delay. As stated in section 8.2, group delay is
defined as the time delay (in samples) that a signal component of frequency ω undergoes as it passes
from the input to the output of the system. It is the derivative of the phase with respect to the frequency.
This is not to be confused with the phase delay which is defined as the phase divided by the frequency
[Gold]. Group delay is a convenient measure of the linearity of the phase. Because this design is a
Butterworth filter, the passband and stopband regions are maximally flat. Due to the frequency points
mentioned in the beginning of this chapter, the resulting stopband frequency (-40dB point) is 3.726kHz.
The figures show the frequency response from 0Hz to the Nyquist frequency. The Nyquist frequency is
typically defined as half the sampling frequency, fs. The Nyquist frequency, in this case, is 5kHz. The
mentioning of Nyquist frequency introduces the concept of aliasing. If a bandlimited signal of frequency f0
is sampled at less than half the sampling frequency, a sampled high-frequency component could take the
identity of a low-frequency component [Oppenheim3]. All figures in this research are plotted from 0Hz to
the Nyquist frequency.

H(z) =
b0 + b1z

-1+ b2z
-2+ b3z

-3

1 + a1z
-1 + a2z

-2 + a3z
-3
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Fig. 9.1. MATLAB magnitude response of lowpass Butterworth filter.
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g. 9.2. MATLAB magnitude response of lowpass Butterworth filter (dB).



Fig. 9.3. MATLAB phase response of lowpass Butterworth filter (radians).
Fig. 9.4. MATLAB group delay response of lowpass Butterworth filter.
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9.1.1: Parallel Structure Implementation of Butterworth Lowpass Filter

Based on Equation 3.4 from Chapter 3, the ideal transfer function sections of a parallel structure
representation of the ideal overall transfer function are as follows:

H(z) = H1(z) + H2(z) (Eqn. 9.1)

H1(z): (Eqn. 9.2)
b0 = -0.96729224234444
b1 =  0.56856011470698
b2 =  0.00000000000000
a1 = -0.83699778743883
a2 =  0.42398568894741

H2(z): (Eqn. 9.3)
b0 =  1.01682523870169
b1 =  0.11682704781905
a1 = -0.32491969623291

The constant C, in this case, is zero. The above transfer function sections are represented in MATLAB’s
floating-point precision. These sections will next be transformed to fixed-point notation using the
methodology outlined in Table 8-1 in section 8.2. Using the truncation method, quantizing these sections
to the prescribed 16 bits with 2 bits for integer representation and 14 bits for fractional representation
yields the following:

H1qt(z): (Eqn. 9.4)
b0 = -0.9672851562500000
b1 =  0.5685424804687500
b2 =  0.0000000000000000
a1 = -0.8369750976562500
a2 =  0.4239501953125000

H2qt(z): (Eqn. 9.5)
b0 =  1.0167846679687500
b1 =  0.1168212890625000
a1 = -0.3248901367187500

Figures 9.5 and 9.6 show the magnitude responses of both the unquantized and quantized transfer
function sections using the truncation method. These figures graphically show no discernible difference of
both transfer function sections.
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Equations 9.6 and 9.7 show the quantized transfer function sections using the rounding method.

H1qr(z): (Eqn. 9.6)
b0 = -0.9672851562500000
b1 =  0.5685424804687500
b2 =  0.0000000000000000
a1 = -0.8369750976562500
a2 =  0.4240112304687500

Fig. 9.5. MATLAB plot of magnitude response of transfer function section H1(z).

Fig. 9.6. MATLAB plot of magnitude response of transfer function section H2(z).
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H2qr(z): (Eqn. 9.7)
b0 =  1.0168457031250000
b1 =  0.1168212890625000
a1 = -0.3248901367187500

Table 9-1 illustrates the magnitude response error between both the truncated and rounding methods
when compared to the ideal. Equation 9.8 is the formula used for magnitude error calculation [Bailey].
Error calculations are performed up to the Nyquist frequency.

He(z) = H(z)  –  Hq(z) (Eqn. 9.8)

Quantization Type H1e(z) H2e(z)
Truncated 0.00011580424293 0.00014215218294
Rounded 0.00008192099318 0.00005174444403

Based on the results of Table 9-1, the rounding method is the better of the two quantization types. Using
the rounded coefficients, the transformation to COSSAP coefficient representation is the next step in the
design methodology cycle. These coefficients are the multiplier coefficients used in the multiplier sub-
blocks. Table 9-2 illustrates the results of this transformation.

H1qr(z) H2qr(z)
b0_COSSAP = 0 -15848
b1_COSSAP = 0 9315
b2_COSSAP = 0 0
a1_COSSAP = 0 13713
a2_COSSAP = 0 -6947

b0_COSSAP = 1 276
b1_COSSAP = 0 1914
a1_COSSAP = 0 5323

Figure 9.7 shows the schematic of the parallel structure using COSSAP’s Block Diagram Editor (BDE).
Instances M5, M7, M8, M9, M10, M11, and M12 are the multiplier sub-blocks. Instances M16, M17, M22,
M23, M24, and M27 are the adder sub-blocks. Instances M14, M20, and M25 are the delay sub-blocks.
Figure 9.8 shows that according to Step 9.2 in Chapter 8, the adder sub-blocks with the exception of the
final summation sub-block, instance M23, are configured in COSSAP for a 16-bit fixed-point
representation of 2 bits for integer representation and 14 bits for fractional representation.

Table 9-1. Magnitude error calculation.

Table 9-2. COSSAP results of multiplier coefficient transformation.
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Fig. 9.7. COSSAP schematic of parallel structure.

Fig. 9.8. COSSAP configuration of adder sub-blocks (excluding final summation sub-block)
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The final summation adder sub-block, instance M23, is configured differently in terms of its 16-bit fixed-
point output. The fixed-point output is assigned 1 bit for integer representation for reasons expressed in
Step 9.1 in section 8.2. Figure 9.9 shows the COSSAP configured format of this particular adder sub-
block.

Figure 9.10 shows an example of how the coefficients in the multiplier sub-blocks are configured. This
figure shows the COSSAP configuration of the multiplier coefficient b0 of the transfer function section
H1qr(z) (instance M5).

Fig. 9.9. COSSAP configuration of final summation adder sub-block.
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Instances M0, M6, and M21 in Figure 9.7 are the required components for signal generator and storage
to be used for future analysis. Instance M0 is the sinusoid generator. Instances M21 and M6 record the
16-bit fixed-point input and output, respectively. Instance M1 quantizes the real number input into a 16-bit
fixed-point format. The amplitude range is [-1,1). Figure 9.11 shows how this instance is configured in
COSSAP. The following statements are based on Equation 8.1 and 8.2. A passband signal of 100Hz is
input into this fixed-point design. Using the prescribed sampling frequency of 10kHz, Figure 9.12 shows
the COSSAP configuration of instance M0.

Fig. 9.10. COSSAP configuration of multiplier coefficient b0.

Fig. 9.11. COSSAP configuration of 16-bit quantizer.
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Figures 9.13 and 9.14 show the input/output waveforms of MATLAB and COSSAP, respectively. These
results are as expected in that they are nearly identical considering an ideal-to-quantized comparison.
The quantized input signal has the correct passband frequency of 100Hz. Using this input, the MATLAB
waveform is the ideal output while the COSSAP waveform is the quantized output. Comparison is
performed against the ideal transfer function H(z). Transition band and stopband input signals are next
input into the COSSAP filter and produce the expected results at the output.

Fig. 9.12. COSSAP configuration of signal generator.
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Fig. 9.13. MATLAB response of digital passband input signal.
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Figure 9.15 shows the schematic conversion of Figure 9.7 required to generate VHDL code. The only
instances remaining in this block diagram are multiplier, adder, and delay sub-blocks.

Fig. 9.14. COSSAP response of digital passband input signal.
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Figure 9.16 shows the impulse response of the ideal overall transfer function H(z) and the quantized
impulse response of the transfer function of the parallel structure. This result is based on COSSAP’s
RoundMode = 0 for the multiplier sub-blocks. There is no exponential decay to zero in the
COSSAP/VHDL model. The 16-bit fixed-point output of the COSSAP/VHDL digital filter remains at a fixed
value. Table 9.3 shows the round-off noise power results for the four COSSAP round-off modes used for
the multiplier sub-blocks. This table also shows the dead-band range (or resulting fixed value at the
output), due to quantization, associated with each round-off mode as well as power spectral density
information. This information provides the frequency at which the peak power spectral density is reached.
In the MATLAB ideal model, the peak power spectral density is -130.405917dB at 1311.035156Hz.

Fig. 9.15. COSSAP schematic setup to generate behavioral VHDL model.
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COSSAP
RoundMode

Pe Dead Band Range
(Fixed Value Output)

COSSAP/VHDL
Peak PSD

0 3.76450121076x10-9 -6.103515625x10-5 -49.925002 dB at
0.000000 Hz

1 5.551x10-17 0.00 -130.404258 dB at
1303.710938 Hz

2 5.551x10-17 0.00 -130.404258 dB at
1303.710938 Hz

3 2.448042x10-14 0.00 -130.479798 dB at
1298.828125 Hz

Based on Table 9-3, RoundMode = 1 and RoundMode = 2 produce the best results in terms of smallest
error. Figures 9.17 through 9.20 show the power spectral density of the impulse response of COSSAP
round-off modes.

Table 9-3. Round-off noise power results for impulse response of COSSAP multiplier
round-off modes.

Fig. 9.16. Impulse response of ideal transfer function and quantized transfer
function for RoundMode = 0.



Fig. 9.17. Power spectral density results of impulse response of COSSAP
RoundMode = 0.
54
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Fig. 9.18. Power spectral density results of impulse response of COSSAP
RoundMode = 1.
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Fig. 9.19. Power spectral density results of impulse response of COSSAP
RoundMode = 2.
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9.1.1.1: Results of Validation Test #1

Figures 9.21 through 9.24 show the power spectral density of a passband digital signal (Step 21.1 of
section 8.2) for the four COSSAP round-off modes. Results are based on the ideal 3rd order transfer
function when compared to the fixed-point quantized parallel structure. For this validation test, the
passband, transition band, and stopband input signals are 100Hz, 2.5kHz, and 4kHz, respectively. Table
9-4 illustrates the round-off noise power results for the four COSSAP multiplier round-off modes. Results
are based on the error between the ideal (unquantized) and quantized outputs.

Fig. 9.20. Power spectral density results of impulse response of COSSAP
RoundMode = 3.
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Fig. 9.21. Passband signal (100Hz) results of COSSAP RoundMode = 0.
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Fig. 9.22. Passband signal (100Hz) results of COSSAP RoundMode = 1.
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Fig. 9.23. Passband signal (100Hz) results of COSSAP RoundMode = 2.
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Round-off Noise Power (Pe)
COSSAP

RoundMode
Passband Signal Transition Band Signal Stopband Signal

0 1.0882758913112x10-7 4.241848572125x10-8 8.577157750184x10-8

1 4.7110330x10-13 5.743103286x10-11 1.4820192510x10-10

2 4.7110330x10-13 5.743103286x10-11 1.4820192510x10-10

3 3.12153790x10-12 4.70576538624x10-9 1.4892842154x10-10

9.1.1.2: Results of Validation Test #2

Figure 9.25 shows the digital input/output response of the ideal lowpass Butterworth filter. The low-power
passband input signal is at 100Hz. The high-power stopband input signal is at 4kHz. For the purposes of
analysis, the high-power signal is 10 times greater in amplitude than the low-power signal. All figures of
this validation test shown throughout this research will consist of 4 plots. The format of these plots is as
follows:

Fig. 9.24. Passband signal (100Hz) results of COSSAP RoundMode = 3.

Table 9-4. Tabulated results of validation test #1.
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- The top-most plot represents the low-power passband input frequency.
- The plot second from the top represents the high-power stopband input frequency.
- The plot third from the top represents the input signal of the two input frequencies

added together.
- The bottom-most plot represents the ideal output of the MATLAB filter.

As can be seen from the figure, excluding the initial transient response at the output, the ideal Butterworth
filter effectively removes the high-power stopband signal. Comparing the quantized filter, Figures 9.26
through 9.29 show the power spectral density plots for the four COSSAP round-off modes. Table 9-5
shows the tabulated results of the round-off noise power based on the COSSAP multiplier sub-blocks.
Results are based on the error between the ideal (unquantized) and quantized outputs.

Fig. 9.25. Digital I/O response of validation test #2 for ideal Butterworth filter.
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Fig. 9.26. Power spectral density plot of COSSAP RoundMode = 0.
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Fig. 9.27. Power spectral density plot of COSSAP RoundMode = 1.
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Fig. 9.28. Power spectral density plot of COSSAP RoundMode = 2.
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COSSAP RoundMode Pe

0 1.1922878511401x10-7

1 1.58058513x10-12

2 1.58058513x10-12

3 2.7487940146x10-10

Based on the results of Table 9-5, the best COSSAP round-off modes are RoundMode = 1 and
RoundMode = 2.

9.1.2: Cascade Structure Implementation of Butterworth Lowpass Filter

Based on Equation 3.7 from Chapter 3, the ideal transfer function sections of a cascade structure
realization of the overall transfer function is the following:

Fig. 9.29. Power spectral density plot of COSSAP RoundMode = 3.

Table 9-5. Tabulated results of 4 COSSAP round-off modes.
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H(z) = H1(z)H2(z) (Eqn. 9.9)

H1(z): (Eqn. 9.10)
b0 =  0.17002047747261
b1 =  0.34004011886191
b2 =  0.17001964139341
a1 = -0.83699778743883
a2 =  0.42398568894741

H2(z): (Eqn. 9.11)
b0 =  0.29133547378275
b1 =  0.29133690643799
a1 = -0.32491969623291

Based on the outlined methodology of Chapter 8, the following data is straightforward. Using Table 8-1 in
section 8.2, the number of bits assigned for integer and fractional fixed-point representation are 1 and 15,
respectively.

Fig. 9.30. MATLAB plot of magnitude response of ideal transfer function
section H1(z).

Fig. 9.31. MATLAB plot of magnitude response of ideal transfer function
section H2(z).
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H1qt(z): (Eqn. 9.12)
b0 =  0.1700134277343750
b1 =  0.3400268554687500
b2 =  0.1700134277343750
a1 = -0.8369750976562500
a2 =  0.4239807128906250

H2qt(z): (Eqn. 9.13)
b0 =  0.2913208007812500
b1 =  0.2913208007812500
a1 = -0.3248901367187500

H1qr(z): (Eqn. 9.14)
b0 =  0.1700134277343750
b1 =  0.3400268554687500
b2 =  0.1700134277343750
a1 = -0.8370056152343750
a2 =  0.4239807128906250

H2qr(z): (Eqn. 9.15)
b0 =  0.2913208007812500
b1 =  0.2913513183593750
a1 = -0.3249206542968750

Quantization Type H1e(z) H2e(z)
Truncated 0.00009483550988 0.00008338189205
Rounded 0.00005520336985 0.00000156157308

Based on the results of Table 9-6, the rounding method produces the better of the two quantization
results in terms of smallest magnitude error. Based on Step 9.3.1 of section 8.2 the adder sub-blocks of
cascade section H1q(z) have 2 bits assigned for both the input and output integer representation. Based
on this same step, cascade section H2q(z) has 1 bit assigned for both the input and output integer
representation.

H1qr(z) H2qr(z)
b0_COSSAP = 0 5571
b1_COSSAP = 0 11142
b2_COSSAP = 0 5571
a1_COSSAP = 0 27427
a2_COSSAP = 0 -13893

b0_COSSAP = 0 9546
b1_COSSAP = 0 9547
a1_COSSAP = 0 10647

Table 9-6. Magnitude error calculation.

Table 9-7. COSSAP results of multiplier coefficient transformation.
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COSSAP
RoundMode

Pe Dead Band Range
(Fixed Value Output)

COSSAP/VHDL
Peak PSD

0 1.492845852491x10-8 -1.220703125x10-4 -43.904228 dB at
0.000000 Hz

1 8.28396551356x10-9 9.1552734375x10-5 -46.402601 dB at
0.000000 Hz

2 8.28396551356x10-9 9.1552734375x10-5 -46.402601 dB at
0.000000 Hz

3 1.99840x10-15 0.00 -130.496210 dB at
1301.269531 Hz

In MATLAB, the peak power spectral density (PSD) is -130.405917 dB at 1311.035156 Hz for the ideal
impulse response.

Fig. 9.32. COSSAP Block Diagram Editor of cascade structure.

Table 9-8. Round-off noise power results of impulse response of
COSSAP multiplier round-off modes.
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Fig. 9.33. Power spectral density of impulse response of COSSAP
RoundMode = 0.
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Fig. 9.34. Power spectral density of impulse response of COSSAP
RoundMode = 1.
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Fig. 9.35. Power spectral density of impulse response of COSSAP
RoundMode = 2.
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9.1.2.1: Results of Validation Test #1

The passband, transition band, and stopband signals used in section 9.1.1.1 are the same signals used
here for comparison. Table 9-9 shows these results.

Round-off Noise Power (Pe)
COSSAP

RoundMode
Passband Signal Transition Band Signal Stopband Signal

0 8.134425152775x10-8 4.558753381259x10-8 7.705438106169x10-8

1 7.145560x10-14 2.06750340680x10-9 9.2630103108x10-10

2 2.21773234x10-12 1.65072390827x10-9 9.2630103108x10-10

3 3.31123023x10-12 1.3150422857x10-10 1.4765820674x10-10

Fig. 9.36. Power spectral density of impulse response of COSSAP
RoundMode = 3.

Table 9-9. Tabulated results of validation test #1.
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9.1.2.2: Results of Validation Test #2

The low-power passband input signal and high-power stopband input signal used in section 9.1.1.2 are
used here for the purposes of comparison.

Fig. 9.37. Power spectral density of COSSAP RoundMode = 0.
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Fig. 9.38. Power spectral density of COSSAP RoundMode = 1.
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Fig. 9.39. Power spectral density of COSSAP RoundMode = 2.
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COSSAP RoundMode Round-off Noise Power (Pe)
0 8.322332829021x10-8

1 6.193306856x10-11

2 6.193306856x10-11

3 3.96516653x10-12

Based on the results of Table 9-10, the best COSSAP multiplier sub-block round-off mode is RoundMode
= 3.

Fig. 9.40. Power spectral density of COSSAP RoundMode = 3.

Table 9-10. Tabulated results of 4 COSSAP round-off modes.
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9.1.3: VHDL Synthesis of Parallel Structure

The first step in synthesizing the parallel structure requires the designer to start with the multiplier, adder,
and delay sub-blocks. Figure 9.15 is used as a visual reference for the designer. Instances M17, M22,
M23, and M27 are considered 2-input adders. The script file that was used in this research for synthesis
can be found in Appendix G. As stated in the introduction in Chapter 1, a broad background of VHDL
synthesis is required on the part of the reader. The script file sets constraints on which technology library
to use, defines timing parameters in terms of maximum allowable combinational propagation delay, and
records synthesis results via report files. It is important to note that, after synthesis is complete, the
synthesized circuit is saved in database format (.db extension). The reason for this brief mentioning will
later on be explained. All sub-blocks will be saved in database format as well as in VHDL format.
Instances M16 and M24 are considered to be a 3-input adder. The script file used by this research for
synthesis can also be found Appendix G. The numerical values used in the script files for this research
are all in nanoseconds units.

Instances M5, M7, M8, M9, M10, M11, and M12 are the multiplier sub-blocks with coefficients. An
example script file for the multiplier sub-blocks for this structure is found in Appendix G. The only
difference between synthesizing these sub-blocks and the adder sub-blocks is that the multipliers are
unique. They are unique because they each are configured to a specific coefficient. In the top-level VHDL
file, the adder and delay sub-blocks can have a single component declaration and be instantiated multiple
times in the structural architecture body. For the multiplier sub-blocks, there is usually a one-to-one
component declaration/instantiation ratio due to the specificity of each sub-block. Although there may be
occasions where a multiplier sub-block could be instantiated more than once depending on the transfer
function section, multiple instantiations are less likely to occur. The same goes for cascade structure
realizations.

Instances M14, M20, and M25 are delay sub-blocks. Since these are clock-dependent components,
timing requirements are particularly important. The script file used for these sub-blocks have timing
constraints configured for a clock frequency (sampling frequency ) of 10kHz. The script file can be found
in Appendix G.

After synthesis is complete for the multiplier, adder, and delay sub-blocks, a top-level script file is the next
and final step required for synthesizing this parallel structure. The top-level script file for this parallel
structure can be found in Appendix B. The script file reads in the saved database files of the sub-blocks
and connects them accordingly. The use of the set_dont_touch option is a useful and time-saving
command. This style of efficient synthesis drastically reduces synthesis time. For example, if re-synthesis
is required on one of the multiplier sub-blocks, the designer need only re-synthesize that particular sub-
block. Next, the designer re-runs the top-level script file and re-synthesizes the top-level structure. The
set_dont_touch option guarantees that re-synthesis does not occur on all the sub-blocks. This is the main
importance of using the database formats of the saved sub-blocks. The script file also takes into account
the propagation delay of the assumed A/D converter connected to the input of this digital filter, x(n). For
this research, a 10-nanosecond assumption is the propagation delay. The synthesis command for this is
set_input_delay.

Lastly, it is noted here that for the synthesized model, parallel registers are incorporated at the filter
output. These component additions ensure that the filter output is virtually glitch-free when clocked. The
tradeoff is that the output is delayed by 1 clock cycle. Parallel registers are included for all the
synthesized parallel structures in this research. The VHDL synthesis-ready top-level code can be found in
Appendix B as well as the synthesis timing report.

Performing Step 27 of section 8.2 shows that the synthesized circuit and generic structural circuit produce
the same output results.
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9.1.4: VHDL Synthesis of Cascade Structure

The steps stated in the previous section (9.1.3) are also applied to designing the cascade structure of the
lowpass Butterworth filter. The top-level script file can be found in Appendix B. Because the cascade
structure by design incurs large propagation delay from input to  output, at high sampling frequencies, the
expected output data may not have ample processing time to be correctly computed. This is due to the
effective combinational path from one cascade section to the next. This research remedies this situation
by incorporating 16-bit parallel registers between each section and at the final output, y(n). Specifically,
because there are 2 cascade sections, there are 2 parallel shift registers incorporated into the cascade
structure. Generally, if there are n cascade sections, there will be n parallel registers incorporated into the
cascade structure. The tradeoff is that it will take an additional n clock cycles to compute the expected
quantized data at the output y(n). This method for incorporating parallel registers into the synthesized
cascade structures is followed throughout this research. The VHDL synthesis-ready top-level code for this
structure can be found in Appendix B. The top-level script file and timing report produced by  synthesis
can also be found there.
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CHAPTER 10: Results of Design Methodology for DSP Applications

This chapter deals with the implementation of the outlined design methodology of Chapter 8 for DSP
areas of data communications, imaging, digital video, and voice communication. Both parallel and
cascade structures were explored. All digital filter designs in this chapter are 12th order. Table 10.1
illustrates the bandwidths of each DSP application. Nominal numbers are used for each bandwidth. All
the results of this chapter were based on 4096 samples. All input signals used for analysis were in the
range of [-1,1).

DSP Application Nominal Bandwidth
Data Communications and Imaging 30kHz – 5MHz

Digital Video 0Hz – 2MHz
Voice Communications 4kHz – 32kHz

10.1: Voice Communication Bandwidth Results

The sampling frequency used for this design was 200kHz. This design is a 20-bit bandpass digital
Butterworth filter. The first and second cut-off frequencies (-3dB points) are 4005Hz and 31990Hz,
respectively. The first and second stopband frequencies (-40dB points) are 2051Hz and 52454Hz,
respectively. The ideal transfer function is in the format as follows:

The MATLAB floating-point representations of the coefficients, taken to 14 significant places, are as
follows:

b0 = 0.00184349359688
b1 = 0.00000000000000
b2 = -0.01106096158128
b3 = 0.00000000000000
b4 = 0.02765240395320
b5 = 0.00000000000000
b6 = -0.03686987193761
b7 = 0.00000000000000
b8 = 0.02765240395320
b9 = 0.00000000000000

b10 = -0.01106096158128
b11 = 0.00000000000000
b12 = 0.00184349359688
a1 = -8.04270971990645
a2 = 30.01337319862856
a3 = -68.99003418531834
a4 = 109.13542229944890
a5 = -125.41290790524731
a6 = 107.44019947612287
a7 = -69.14327117309267
a8 = 33.16794617528626
a9 = -11.56329960387100
a10 = 2.78021661742503

Table 10-1. Table of DSP bandwidths for digital communications.

H(z) =
b0 + b1z

-1+ b2z
-2+ b3z

-3+ b4z
-4+ b5z

-5+ b6z
-6+ b7z

-7+ b8z
-8+ b9z

-9+ b10z
-10+ b11z

-11+ b12z
-12

1 + a1z
-1+ a2z

-2+ a3z
-3+ a4z

-4+ a5z
-5+ a6z

-6+ a7z
-7+ a8z

-8+ a9z
-9+ a10z

-10+ a11z
-11+ a12z

-12



81

a11 = -0.41376834540838
a12 = 0.02883413690976

Following the outlined design methodology, the results are straightforward. As stated earlier in its
research, all frequency plots are from 0Hz to the Nyquist frequency. For this section, the Nyquist
frequency is 100kHz.

Fig. 10.1. MATLAB magnitude response of bandpass Butterworth filter.
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Fig. 10.2. MATLAB magnitude response of bandpass Butterworth filter (dB).
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Fig. 10.3. MATLAB phase response of bandpass Butterworth filter (radians).

Fig. 10.4. MATLAB group delay response of bandpass Butterworth filter.
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For Figure 10.4, vertical markers were placed at the cut-off frequencies. This was done to graphically
illustrate the bandwidth region.

10.1.1: Parallel Structure of Butterworth Bandpass Filter Results

The unquantized transfer function sections are as follows:

H(z) = H1(z)+H2(z)+H3(z )+H4(z)+H5(z)+H6(z) (Eqn. 10.1)

H1(z): (Eqn. 10.2)
b0 = 0.06523998068243
b1 = -0.05677217409622
b2 =  0.00000000000000
a1 = -1.93317570078060
a2 = 0.94885440559193

H2(z): (Eqn. 10.3)
b0 = -0.15413571172704
b1 = 0.17726428571135
b2 =  0.00000000000000
a1 = -1.82919846105757
a2 = 0.84672134723855

H3(z): (Eqn. 10.4)
b0 = -1.13070864967498
b1 = 0.97778688899106
b2 =  0.00000000000000
a1 = -1.71517028232064
a2 = 0.73813390470860

H4(z): (Eqn. 10.5)
b0 = 0.30582385316763
b1 = -0.47156149221871
b2 =  0.00000000000000
a1 = -0.92491572696505
a2 = 0.70344589982355

H5(z): (Eqn. 10.6)
b0 = -2.57963641586232
b1 = 0.93499040211112
b2 =  0.00000000000000
a1 = -0.80713143885592
a2 = 0.34797343307832

H6(z): (Eqn. 10.7)
b0 = 3.43132602728197
b1 = -0.51115438289390
b2 =  0.00000000000000
a1 = -0.83311810992667
a2 = 0.19863461087104

C = 0.06393441227839 (Eqn. 10.8)
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The quantized transfer function sections are as follows:

H1qt(z): (Eqn. 10.9)
b0 = 0.06523895263671875000
b1 = -0.05677032470703125000
b2 =  0.00000000000000000000
a1 = -1.93317413330078125000
a2 = 0.94885253906250000000

H2qt(z): (Eqn. 10.10)
b0 = -0.15412902832031250000
b1 = 0.17726135253906250000
b2 =  0.00000000000000000000
a1 = -1.82919311523437500000
a2 = 0.84671783447265625000

H3qt(z): (Eqn. 10.11)
b0 = -1.13070678710937500000
b1 = 0.97778320312500000000
b2 =  0.00000000000000000000
a1 = -1.71516418457031250000
a2 = 0.73812866210937500000

H4qt(z): (Eqn. 10.12)
b0 = 0.30581665039062500000
b1 = -0.47155761718750000000
b2 =  0.00000000000000000000
a1 = -0.92491149902343750000
a2 = 0.70344543457031250000

H5qt(z): (Eqn. 10.13)
b0 = -2.57963562011718750000
b1 = 0.93498992919921875000
b2 =  0.00000000000000000000
a1 = -0.80712890625000000000
a2 = 0.34796905517578125000

H6qt(z): (Eqn. 10.14)
b0 = 3.43132019042968750000
b1 = -0.51115417480468750000
b2 =  0.00000000000000000000
a1 = -0.83311462402343750000
a2 = 0.19863128662109375000

Cqt = 0.06393432617187500000 (Eqn. 10.15)

H1qr(z): (Eqn. 10.16)
b0 = 0.06523895263671875000
b1 = -0.05677032470703125000
b2 =  0.00000000000000000000
a1 = -1.93317413330078125000
a2 = 0.94885253906250000000
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H2qr(z): (Eqn. 10.17)
b0 = -0.15413665771484375000
b1 = 0.17726135253906250000
b2 =  0.00000000000000000000
a1 = -1.82920074462890625000
a2 = 0.84671783447265625000

H3qr(z): (Eqn. 10.18)
b0 = -1.13070678710937500000
b1 = 0.97778320312500000000
b2 =  0.00000000000000000000
a1 = -1.71517181396484375000
a2 = 0.73813629150390625000

H4qr(z): (Eqn. 10.19)
b0 = 0.30582427978515625000
b1 = -0.47156524658203125000
b2 =  0.00000000000000000000
a1 = -0.92491912841796875000
a2 = 0.70344543457031250000

H5qr(z): (Eqn. 10.20)
b0 = -2.57963562011718750000
b1 = 0.93498992919921875000
b2 =  0.00000000000000000000
a1 = -0.80712890625000000000
a2 = 0.34797668457031250000

H6qr(z): (Eqn. 10.21)
b0 = 3.43132781982421875000
b1 = -0.51115417480468750000
b2 =  0.00000000000000000000
a1 = -0.83311462402343750000
a2 = 0.19863128662109375000

Cqr = 0.06393432617187500000 (Eqn. 10.22)

Quantization Type
Truncated Rounded

H1e(z) 0.00009114382776 0.00009114382776
H2e(z) 0.00007593673320 0.00021975926777
H3e(z) 0.00016858260082 0.00016858260082
H4e(z) 0.00002390748391 0.00001879255585
H5e(z) 0.00002893581776 0.00003311780680
H6e(z) 0.00003868085915 0.00002255275345

Cq 0.00000008610651 0.00000008610651

From the results of Table 10-2 in terms of majority count, both quantization types are even. The following
results of this section are based on the rounding quantization type.

Table 10-2. Magnitude error calculation.
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COSSAP Coefficients
H1qr(z) b0_COSSAP = 0 8551

b1_COSSAP = 0 -7441
b2_COSSAP = 0 0
a1_COSSAP = 1 122313
a2_COSSAP = 0 -124368

H2qr(z) b0_COSSAP = 0 -20203
b1_COSSAP = 0 23234
b2_COSSAP = 0 0
a1_COSSAP = 1 108685
a2_COSSAP = 0 -110981

H3qr(z) b0_COSSAP = -1 -17132
b1_COSSAP = 0 128160
b2_COSSAP = 0 0
a1_COSSAP = 1 93739
a2_COSSAP = 0 -96749

H4qr(z) b0_COSSAP = 0 40085
b1_COSSAP = 0 -61809
b2_COSSAP = 0 0
a1_COSSAP = 0 121231
a2_COSSAP = 0 -92202

H5qr(z) b0_COSSAP = -2 -75974
b1_COSSAP = 0 122551
b2_COSSAP = 0 0
a1_COSSAP = 0 105792
a2_COSSAP = 0 -45610

H6qr(z) b0_COSSAP = 3 56535
b1_COSSAP = 0 -66998
b2_COSSAP = 0 0
a1_COSSAP = 0 109198
a2_COSSAP = 0 -26035

Cqr C = 0 33520

It is noted here that based on Step 9.2 of section 8.2, the number of bits assigned for integer
representation was 3. But when inputting passband, transition band, and stopband signals into the
COSSAP model, the respective output responses were not as expected when compared to MATLAB
results. Using Step 10.1 (section 8.2) remedied this predicament. The number of bits assigned for integer
representation is now 5.

Table 10-3. COSSAP results of multiplier coefficient transformation.
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COSSAP
RoundMode

Pe Dead Band Range
(Fixed Value Output)

COSSAP/VHDL Peak
PSD

0 2.629023240369581x10-5 -5.126953125x10-3 -11.438693 dB at
0.000000 Hz

1 8.6072701675673x10-7 6.40869140625x10-4 to
1.251220703125x10-3

-26.119458 dB at
0.000000 Hz

2 8.6072701675673x10-7 6.40869140625x10-4 to
1.251220703125x10-3

-26.119458 dB at
0.000000 Hz

3 5.93578718x10-12 0.00 -85.582945 dB at
4150.390625 Hz

Based on Table 10-4, RoundMode = 3 produces the best results in terms of smallest error. Figures 10.6
through 10.9 show the power spectral density (PSD) of the impulse response of the COSSAP round-off
modes. The power spectral density of an impulse response gives the frequency response on a power

Table 10-4. Round-off noise power results of impulse response of COSSAP multiplier
round-off modes.

Fig. 10.5. Impulse response of ideal transfer function and quantized transfer
function for RoundMode = 0.
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scale. It is primarily a concept issue that links frequency and time domain responses. In MATLAB, the
peak PSD of the ideal impulse response is -83.507698 dB at 4003.906250 Hz.

Fig. 10.6. Power spectral density results of impulse response of COSSAP
RoundMode = 0.
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Fig. 10.7. Power spectral density results of impulse response of COSSAP
RoundMode = 1.
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Fig. 10.8. Power spectral density results of impulse response of COSSAP
RoundMode = 2.
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Fig. 10.9. Power spectral density results of impulse response of COSSAP
RoundMode = 3.
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ults of Validation Test #1

d digital input signal used is at 18kHz. The transition band input signal used is at 3kHz. The
ital input signal used is at 60kHz. Table 10-5 shows the tabulated results of these 3 signals.

Round-off Noise Power (Pe)
Passband Signal Transition Band Signal Stopband Signal

1.0063049989508636x10-4 1.0458186318219129x10-4 8.5058544051341x10-5

8.5544061745x10-10 2.51160144764x10-9 1.455644011608x10-8

6.24598906837x10-9 1.58560072563x10-9 1.455644011608x10-8

1.990957065873x10-8 4.76757901169x10-9 2.26142987468x10-9

Table 10-5. Tabulated results of validation test #1.
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10.1.1.2: Results of Validation Test #2

Figure 10.10 shows the digital input/output response of the unquantized bandpass Butterworth filter. The
low-power passband input signal is at 18kHz. The high-power stopband input signal is at 60kHz. For the
purposes of analysis, the high-power signal is 10 times greater in amplitude than the low-power signal. As
can be seen from the figure, excluding the initial transient response at the output, the ideal Butterworth
filter effectively removes the high-power stopband signal. Comparing the quantized filter, Figures 10.11
through 10.14 show the power spectral density plots for the four COSSAP round-off modes. Table 10-6
shows the tabulated results of the round-off noise power based on the COSSAP multiplier sub-blocks.

Fig. 10.10. Digital I/O response of validation test #2 for ideal Butterworth filter.
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Fig. 10.11. Power spectral density plot of COSSAP RoundMode = 0.
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Fig. 10.12. Power spectral density plot of COSSAP RoundMode = 1.
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Fig. 10.13. Power spectral density plot of COSSAP RoundMode = 2.
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COSSAP RoundMode Pe

0 1.0947356406282245x10-4

1 3.7505982301x10-10

2 3.7505982301x10-10

3 1.2669903207x10-10

Based on Table 10-6, RoundMode = 3 produces the best results in terms of smallest error.

10.1.2: Cascade Structure of Butterworth Bandpass Filter Results

The unquantized transfer function sections are as follows:

H(z) = H1(z)H2(z)H3(z)H4(z)H5(z)H6(z) (Eqn. 10.23)

Fig. 10.14. Power spectral density plot of COSSAP RoundMode = 3.

Table 10-6. Tabulated results of 4 COSSAP round-off modes.
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H1(z): (Eqn. 10.24)
b0 = 0.05553049275961
b1 = -0.11106109747729
b2 = 0.05553078292203
a1 = -1.93317570078060
a2 = 0.94885440559193

H2(z): (Eqn. 10.25)
b0 = 1.81457724155634
b1 = -3.62352244923983
b2 = 1.80895103635644
a1 = -1.82919846105757
a2 = 0.84672134723855

H3(z): (Eqn. 10.26)
b0 = 4.61316718780215
b1 = -9.24064329348397
b2 = 4.62749089495188
a1 = -1.71517028232064
a2 = 0.73813390470860

H4(z): (Eqn. 10.27)
b0 = 0.17090301137699
b1 = 0.34127557971965
b2 = 0.17037311730489
a1 = -0.92491572696505
a2 = 0.70344589982355

H5(z): (Eqn. 10.28)
b0 = 0.15679633173001
b1 = 0.31359297968004
b2 = 0.15679715112736
a1 = -0.80713143885592
a2 = 0.34797343307832

H6(z): (Eqn. 10.29)
b0 = 0.14799595274850
b1 = 0.29645095189930
b2 = 0.14845547360649
a1 = -0.83311810992667
a2 = 0.19863461087104

The quantized transfer function sections are as follows:

H1qt(z): (Eqn. 10.30)
b0 = 0.05551147460937500000
b1 = -0.11105346679687500000
b2 = 0.05551147460937500000
a1 = -1.93316650390625000000
a2 = 0.94885253906250000000
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H2qt(z): (Eqn. 10.31)
b0 = 1.81457519531250000000
b1 = -3.62350463867187500000
b2 = 1.80892944335937500000
a1 = -1.82919311523437500000
a2 = 0.84671020507812500000

H3qt(z): (Eqn. 10.32)
b0 = 4.61315917968750000000
b1 = -9.24063110351562500000
b2 = 4.62747192382812500000
a1 = -1.71514892578125000000
a2 = 0.73812866210937500000

H4qt(z): (Eqn. 10.33)
b0 = 0.17089843750000000000
b1 = 0.34124755859375000000
b2 = 0.17034912109375000000
a1 = -0.92489624023437500000
a2 = 0.70343017578125000000

H5qt(z): (Eqn. 10.34)
b0 = 0.15676879882812500000
b1 = 0.31356811523437500000
b2 = 0.15676879882812500000
a1 = -0.80712890625000000000
a2 = 0.34796142578125000000

H6qt(z): (Eqn. 10.35)
b0 = 0.14797973632812500000
b1 = 0.29644775390625000000
b2 = 0.14843750000000000000
a1 = -0.83309936523437500000
a2 = 0.19860839843750000000

H1qr(z): (Eqn. 10.36)
b0 = 0.05554199218750000000
b1 = -0.11105346679687500000
b2 = 0.05554199218750000000
a1 = -1.93316650390625000000
a2 = 0.94885253906250000000

H2qr(z): (Eqn. 10.37)
b0 =  1.81457519531250000000
b1 = -3.62353515625000000000
b2 =  1.80895996093750000000
a1 = -1.82919311523437500000
a2 =  0.84671020507812500000
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H3qr(z): (Eqn. 10.38)
b0 =  4.61315917968750000000
b1 = -9.24063110351562500000
b2 =  4.62750244140625000000
a1 = -1.71517944335937500000
a2 =  0.73812866210937500000

H4qr(z): (Eqn. 10.39)
b0 =  0.17089843750000000000
b1 =  0.34127807617187500000
b2 =  0.17037963867187500000
a1 = -0.92492675781250000000
a2 =  0.70346069335937500000

H5qr(z): (Eqn. 10.40)
b0 =  0.15679931640625000000
b1 =  0.31359863281250000000
b2 =  0.15679931640625000000
a1 = -0.80712890625000000000
a2 =  0.34796142578125000000

H6qr(z): (Eqn. 10.41)
b0 =  0.14801025390625000000
b1 =  0.29644775390625000000
b2 =  0.14846801757812500000
a1 = -0.83312988281250000000
a2 =  0.19863891601562500000

Quantization Type
Truncated Rounded

H1e(z) 0.00476283586785 0.00479749621261
H2e(z) 0.00047914253420 0.00047950739909
H3e(z) 0.00064403036298 0.00068575687106
H4e(z) 0.00030847232951 0.00012322898054
H5e(z) 0.00015119586304 0.00004029047005
H6e(z) 0.00010023502175 0.00009783758146

From the results of Table 10-7 in terms of majority count, both quantization types are even. The following
results of this section are based on the rounding quantization type.

Table 10-7. Magnitude error calculation.
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COSSAP Coefficients
H1qr(z) b0_COSSAP = 0 1820

b1_COSSAP = 0 -3639
b2_COSSAP = 0 1820
a1_COSSAP = 1 30578
a2_COSSAP = 0 -31092

H2qr(z) b0_COSSAP = 1 26692
b1_COSSAP = -3 -20432
b2_COSSAP = 1 26508
a1_COSSAP = 1 27171
a2_COSSAP = 0 -27745

H3qr(z) b0_COSSAP = 4 20092
b1_COSSAP = -9 -7885
b2_COSSAP = 4 20562
a1_COSSAP = 1 23435
a2_COSSAP = 0 -24187

H4qr(z) b0_COSSAP = 0 5600
b1_COSSAP = 0 11183
b2_COSSAP = 0 5583
a1_COSSAP = 0 30308
a2_COSSAP = 0 -23051

H5qr(z) b0_COSSAP = 0 5138
b1_COSSAP = 0 10276
b2_COSSAP = 0 5138
a1_COSSAP = 0 26448
a2_COSSAP = 0 -11402

H6qr(z) b0_COSSAP = 0 4850
b1_COSSAP = 0 9714
b2_COSSAP = 0 4865
a1_COSSAP = 0 27300
a2_COSSAP = 0 -6509

Step 9.3.1 of section 8.2 was used for the number of integer bits configured to the adder sub-blocks of
each cascade stage. Because there are 6 cascade stages, the number of integer bits configured to the
adder sub-blocks of each stage was 1, 3, 4, 3, 2, and 1.

Table 10-8. COSSAP results of multiplier coefficient transformation.
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COSSAP
RoundMode

Pe Dead Band Range
(Fixed Value Output)

COSSAP/VHDL Peak
PSD

0 9.87823501268909x10-6 -3.1795501708984x10-3

to
-3.171920776367x10-3

-15.603663 dB at
0.000000 Hz

1 1.167917120788x10-8 -4.8446655273438x10-4

to
1.2016296386719x10-4

-44.072141 dB at
0.000000 Hz

2 1.167917120788x10-8 -4.8446655273438x10-4

to
1.2016296386719x10-4

-44.072141 dB at
0.000000 Hz

3 1.82561562047x10-9 4.3869018554688x10-5

to
4.57763671875x10-5

-52.518877 dB at
0.000000 Hz

Based on Table 10-9, RoundMode = 3 produces the best results in terms of smallest error. Figures 10.15
through 10.18 show the power spectral density of the impulse response of the COSSAP round-off modes.
Using MATLAB as the ideal model, the peak PSD of the impulse response is -83.507698 dB at
4003.906250 Hz.

Table 10-9. Round-off noise power results of impulse response of COSSAP multiplier
round-off modes.

Fig. 10.15. Power spectral density results of impulse response of COSSAP
RoundMode = 0.



Fig. 10.16. Power spectral density results of impulse response of COSSAP
RoundMode = 1.
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Fig. 10.17. Power spectral density results of impulse response of COSSAP
RoundMode = 2.
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10.1.2.1: Results of Validation Test #1

The digital input signals used in section 10.1.1.1 were also used in this section. Table 10-10 shows these
results.

Round-off Noise Power (Pe)
COSSAP

RoundMode
Passband Signal Transition Band Signal Stopband Signal

0 8.55073884480357x10-6 8.26422700098962x10-6 8.286744428225x10-6

1 3.93673678660x10-9 4.26600835706x10-9 2.3708123255x10-10

2 3.93713730783x10-9 4.26842773179x10-9 2.3708123255x10-10

3 2.98706502689x10-9 3.76628415968x10-9 2.88406919x10-12

Fig. 10.18. Power spectral density results of impulse response of COSSAP
RoundMode = 3.

Table 10-10. Tabulated results of validation test #1.
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10.1.2.2: Results of Validation Test #2

The digital input signals used in section 10.1.1.2 were also used in this section.

Fig. 10.19. Power spectral density of COSSAP RoundMode = 0.



107

Fig. 10.20. Power spectral density of COSSAP RoundMode = 1.
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Fig. 10.21. Power spectral density of COSSAP RoundMode = 2.
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COSSAP RoundMode Pe

0 8.49324543927961x10-6

1 2.8491824904x10-10

2 2.8491824904x10-10

3 2.692591290x10-12

Based on the results of Table 10-11, the best COSSAP multiplier sub-block round-off mode is
RoundMode = 3.

10.2: Digital Video Bandwidth Results

The sampling frequency used for this design was 10MHz. The cut-off frequency (-3dB point) is 2MHz. The
stopband frequency (-40dB point) is 2.144078MHz. This design is a 20-bit bandpass digital filter design
and the design type is Chebyshev Type II. The MATLAB floating-point representations of the multiplier
coefficients, taken to 14 significant places, are as follows:

Fig. 10.22. Power spectral density of COSSAP RoundMode = 3.

Table 10-11. Tabulated results of 4 COSSAP round-off modes.
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b0  = 0.04588208205408
b1  = 0.13656264939956
b2  = 0.34751449611781
b3  = 0.62954494594627
b4  = 0.95796852137520
b5  = 1.21270173589814
b6  = 1.31276566337727
b7  = 1.21270173589814
b8  = 0.95796852137519
b9  = 0.62954494594627
b10 = 0.34751449611781
b11 = 0.13656264939956
b12 = 0.04588208205408
a1  =-0.28455481395673
a2  = 2.35933880696702
a3  = 0.10701461849930
a4  = 2.11227062100930
a5  = 0.65506585946252
a6  = 1.04098525446599
a7  = 0.47035521092297
a8  = 0.31587427927210
a9  = 0.13173314200725
a10 = 0.04984113806814
a11 = 0.01308324636888
a12 = 0.00210716187263

Fig. 10.23. MATLAB magnitude response of lowpass Chebyshev Type II filter.



111

Fig. 10.24. MATLAB magnitude response of lowpass Chebyshev Type II filter (dB).

Fig. 10.25. MATLAB phase response of lowpass Chebyshev Type II filter (radians).
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10.2.1: Parallel Structure of Chebyshev Type II Lowpass Filter Results

The unquantized transfer function sections are as follows:

H1(z): (Eqn. 10.42)
b0 =  0.08824283594937
b1 =  0.08910645252623
b2 =  0.00000000000000
a1 = -0.57512824697051
a2 =  0.90116474888622

H2(z): (Eqn. 10.43)
b0 =  0.69626630834828
b1 = -0.16110151137575
b2 =  0.00000000000000
a1 = -0.42850343365581
a2 =  0.71817606931620

H3(z): (Eqn. 10.44)
b0 =  1.08718759187966
b1 = -1.28141857040708
b2 =  0.00000000000000
a1 = -0.20811850838971
a2 =  0.53778141515093

Fig. 10.26. MATLAB group delay response of lowpass Chebyshev Type II filter.
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H4(z): (Eqn. 10.45)
b0 = -1.23732501568752
b1 = -2.48414125820985
b2 =  0.00000000000000
a1 =  0.06598033080641
a2 =  0.35586414751661

H5(z): (Eqn. 10.46)
b0 = -7.36231407277814
b1 = -2.95116120788696
b2 =  0.00000000000000
a1 =  0.34033872061873
a2 =  0.19173505082426

H6(z): (Eqn. 10.47)
b0 =-15.00052648289581
b1 = -4.03777135245981
b2 =  0.00000000000000
a1 =  0.52087632363417
a2 =  0.08873015419028

C = 21.77435091723825 (Eqn. 10.48)

The quantized transfer function sections are as follows:

H1qt(z): (Eqn. 10.49)
b0 =  0.08822631835937500000
b1 =  0.08908081054687500000
b2 =  0.00000000000000000000
a1 = -0.57510375976562500000
a2 =  0.90115356445312500000

H2qt(z): (Eqn. 10.50)
b0 =  0.69625854492187500000
b1 = -0.16107177734375000000
b2 =  0.00000000000000000000
a1 = -0.42849731445312500000
a2 =  0.71817016601562500000

H3qt(z): (Eqn. 10.51)
b0 =  1.08715820312500000000
b1 = -1.28140258789062500000
b2 =  0.00000000000000000000
a1 = -0.20809936523437500000
a2 =  0.53778076171875000000

H4qt(z): (Eqn. 10.52)
b0 = -1.23730468750000000000
b1 = -2.48413085937500000000
b2 =  0.00000000000000000000
a1 =  0.06597900390625000000
a2 =  0.35583496093750000000
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H5qt(z): (Eqn. 10.53)
b0 = -7.36230468750000000000
b1 = -2.95114135742187500000
b2 =  0.00000000000000000000
a1 =  0.34033203125000000000
a2 =  0.19171142578125000000

H6qt(z): (Eqn. 10.54)
b0 =-15.00051879882812500000
b1 = -4.03775024414062500000
b2 =  0.00000000000000000000
a1 =  0.52087402343750000000
a2 =  0.08871459960937500000

Cqt = 21.77429199218750000000 (Eqn. 10.55)

H1qr(z): (Eqn. 10.56)
b0 =  0.08825683593750000000
b1 =  0.08911132812500000000
b2 =  0.00000000000000000000
a1 = -0.57513427734375000000
a2 =  0.90115356445312500000

H2qr(z): (Eqn. 10.57)
b0 =  0.69625854492187500000
b1 = -0.16110229492187500000
b2 =  0.00000000000000000000
a1 = -0.42849731445312500000
a2 =  0.71817016601562500000

H3qr(z): (Eqn. 10.58)
b0 =  1.08718872070312500000
b1 = -1.28143310546875000000
b2 =  0.00000000000000000000
a1 = -0.20812988281250000000
a2 =  0.53778076171875000000

H4qr(z): (Eqn. 10.59)
b0 = -1.23733520507812500000
b1 = -2.48413085937500000000
b2 =  0.00000000000000000000
a1 =  0.06597900390625000000
a2 =  0.35586547851562500000

H5qr(z): (Eqn. 10.60)
b0 = -7.36230468750000000000
b1 = -2.95117187500000000000
b2 =  0.00000000000000000000
a1 =  0.34033203125000000000
a2 =  0.19174194335937500000
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H6qr(z): (Eqn. 10.61)
b0 =-15.00051879882812500000
b1 = -4.03778076171875000000
b2 =  0.00000000000000000000
a1 =  0.52087402343750000000
a2 =  0.08874511718750000000

Cqr = 21.77435302734375000000 (Eqn. 10.62)

Quantization Type
Truncated Rounded

H1e(z) 0.00059309268750 0.00011597182782
H2e(z) 0.00007898914417 0.00008408559463
H3e(z) 0.00010478704520 0.00004926607068
H4e(z) 0.00022032804086 0.00001795303147
H5e(z) 0.00028290654429 0.00010620185850
H6e(z) 0.00047426579551 0.00061698655317

Cq 0.00005892505075 -0.00000211010550

Based on the results of Table 10-12, the rounding quantization method produces the best results in terms
of smallest error.

COSSAP
RoundMode

Pe Dead Band Range
(Fixed Value Output)

COSSAP/VHDL Peak
PSD

0 1.488649920033x10-8 -1.220703125x10-4 -43.904695 dB at
0.000000 Hz

1 2.051274x10-14 -3.0517578125x10-4 -41.814991 dB at
1999511.718750 Hz

2 2.051274x10-14 -3.0517578125x10-4 -41.814991 dB at
1999511.718750 Hz

3 5.62515x10-15 0.00 -97.203554 dB at
1999511.718750 Hz

Based on Table 10-13, RoundMode = 3 produces the best results in terms of smallest error. Figures
10.27 through 10.30 show the power spectral density of the impulse response of the COSSAP round-off
modes. Using MATLAB as the ideal model, the peak PSD of the impulse response is -95.847452 dB at
2004394.531250 Hz. The number of bits assigned for fixed-point integer representation in the adder sub-
blocks is 6 based on Steps 1 through 5 of section 8.2.

Table 10-12. Magnitude error calculation.

Table 10-13. Round-off noise power results of impulse response of COSSAP multiplier
round-off modes.
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Fig. 10.27. Power spectral density results of impulse response of COSSAP
RoundMode = 0.
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Fig. 10.28. Power spectral density results of impulse response of COSSAP
RoundMode = 1.
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Fig. 10.29. Power spectral density results of impulse response of COSSAP
RoundMode = 2.
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Fig. 10.30. Power spectral density results of impulse response of COSSAP
RoundMode = 3.
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esults of Validation Test #1

and digital input signal used is at 500kHz. The transition band input signal used is at 2.1MHz.
nd digital input signal used is at 3MHz. Table 10-14 shows the tabulated results of these 3

Round-off Noise Power (Pe)
AP
ode

Passband Signal Transition Band Signal Stopband Signal

2.7593046651912x10-7 2.9615807101575x10-7 2.269853469814x10-7

4.792357585x10-11 1.25242013x10-12 3.541640570x10-11

9.976336315x10-11 2.7389096x10-13 3.541640570x10-11

1.6735581939x10-10 3.64642492x10-12 3.744875743x10-10

Table 10-14. Tabulated results of validation test #1.
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10.2.1.2: Results of Validation Test #2

Figure 10.31 shows the digital input/output response of the unquantized lowpass Chebyshev Type II filter.
The low-power passband input signal is at 500kHz. The high-power stopband input signal is at 2.1MHz.
For the purposes of analysis, the high-power signal is 10 times greater in amplitude than the low-power
signal. As can be seen from the figure, excluding the initial transient response at the output, the ideal
Chebyshev Type II filter effectively removes the high-power stopband signal. Comparing the quantized
filter, Figures 10.32 through 10.35 show the power spectral density plots of the four COSSAP round-off
modes. Table 10-15 shows the tabulated results of the power spectral density and round-off noise power
based on the COSSAP multiplier sub-blocks. As can be seen from this table, RoundMode = 1 and
RoundMode = 2 produce the smallest round-off noise power.

Fig. 10.31. Digital I/O response of validation test #2 for ideal Chebyshev Type II filter.
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Fig. 10.32. Power spectral density plot of COSSAP RoundMode = 0.
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Fig. 10.33. Power spectral density plot of COSSAP RoundMode = 1.
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Fig. 10.34. Power spectral density plot of COSSAP RoundMode = 2.
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COSSAP RoundMode Pe

0 2.6607173257207x10-7

1 9.90852667x10-12

2 9.90852667x10-12

3 8.294560197x10-11

10.2.2: Cascade Structure of Chebyshev Type II Lowpass Filter Results

The unquantized transfer function sections are as follows:

H1(z): (Eqn. 10.63)
b0 =  0.54299498930682
b1 = -0.23133891024656
b2 =  0.54299498930680
a1 = -0.57512824697051
a2 =  0.90116474888622

Fig. 10.35. Power spectral density plot of COSSAP RoundMode = 3.

Table 10-15. Tabulated results of 4 COSSAP round-off modes.
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H2(z): (Eqn. 10.64)
b0 =  1.12793419825532
b1 = -0.32648956929317
b2 =  1.12793419825543
a1 = -0.42850343365581
a2 =  0.71817606931620

H3(z): (Eqn. 10.65)
b0 =  0.91891728465592
b1 =  0.01205708702461
b2 =  0.91891728465583
a1 = -0.20811850838971
a2 =  0.53778141515093

H4(z): (Eqn. 10.66)
b0 =  0.73208063339366
b1 =  0.38789978416300
b2 =  0.73208063339369
a1 =  0.06598033080641
a2 =  0.35586414751661

H5(z): (Eqn. 10.67)
b0 =  0.57606567135222
b1 =  0.72180140098196
b2 =  0.57606567135222
a1 =  0.34033872061873
a2 =  0.19173505082426

H6(z): (Eqn. 10.68)
b0 =  0.19331083487109
b1 =  0.36650159251432
b2 =  0.19331083487109
a1 =  0.52087632363417
a2 =  0.08873015419028

The quantized transfer function sections are as follows:

H1qt(z): (Eqn. 10.69)
b0 =  0.54299163818359375000
b1 = -0.23133850097656250000
b2 =  0.54299163818359375000
a1 = -0.57512664794921875000
a2 =  0.90116119384765625000

H2qt(z): (Eqn. 10.70)
b0 =  1.12793350219726562500
b1 = -0.32648849487304687500
b2 =  1.12793350219726562500
a1 = -0.42850112915039062500
a2 =  0.71817398071289062500
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H3qt(z): (Eqn. 10.71)
b0 =  0.91891479492187500000
b1 =  0.01205444335937500000
b2 =  0.91891479492187500000
a1 = -0.20811843872070312500
a2 =  0.53778076171875000000

H4qt(z): (Eqn. 10.72)
b0 =  0.73207855224609375000
b1 =  0.38789749145507812500
b2 =  0.73207855224609375000
a1 =  0.06597900390625000000
a2 =  0.35586166381835937500

H5qt(z): (Eqn. 10.73)
b0 =  0.57606506347656250000
b1 =  0.72179794311523437500
b2 =  0.57606506347656250000
a1 =  0.34033584594726562500
a2 =  0.19173431396484375000

H6qt(z): (Eqn. 10.74)
b0 =  0.19330978393554687500
b1 =  0.36650085449218750000
b2 =  0.19330978393554687500
a1 =  0.52087402343750000000
a2 =  0.08872985839843750000

H1qr(z): (Eqn. 10.75)
b0 =  0.54299545288085937500
b1 = -0.23133850097656250000
b2 =  0.54299545288085937500
a1 = -0.57512664794921875000
a2 =  0.90116500854492187500

H2qr(z): (Eqn. 10.76)
b0 =  1.12793350219726562500
b1 = -0.32648849487304687500
b2 =  1.12793350219726562500
a1 = -0.42850494384765625000
a2 =  0.71817779541015625000

H3qr(z): (Eqn. 10.77)
b0 =  0.91891860961914062500
b1 =  0.01205825805664062500
b2 =  0.91891860961914062500
a1 = -0.20811843872070312500
a2 =  0.53778076171875000000
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H4qr(z): (Eqn. 10.78)
b0 =  0.73208236694335937500
b1 =  0.38790130615234375000
b2 =  0.73208236694335937500
a1 =  0.06597900390625000000
a2 =  0.35586547851562500000

H5qr(z): (Eqn. 10.79)
b0 =  0.57606506347656250000
b1 =  0.72180175781250000000
b2 =  0.57606506347656250000
a1 =  0.34033966064453125000
a2 =  0.19173431396484375000

H6qr(z): (Eqn. 10.80)
b0 =  0.19330978393554687500
b1 =  0.36650085449218750000
b2 =  0.19330978393554687500
a1 =  0.52087783813476562500
a2 =  0.08872985839843750000

Quantization Type
Truncated Rounded

H1e(z) 0.00005773164965 0.00001283204844
H2e(z) 0.00000975928717 0.00001081330912
H3e(z) 0.00000923307641 0.00000355582764
H4e(z) 0.00000627982856 0.00000546820036
H5e(z) 0.00000450898430 0.00000151385948
H6e(z) 0.00000252681606 0.00000228881216

Based on Table 10-16, the rounding method produces the best results in terms of smallest error.

Table 10-16. Magnitude error calculation.
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COSSAP Coefficients
H1qr(z) b0_COSSAP = 0 142343

b1_COSSAP = 0 -60644
b2_COSSAP = 0 142343
a1_COSSAP = 0 150766
a2_COSSAP = 0 -236235

H2qr(z) b0_COSSAP = 1 33537
b1_COSSAP = 0 -85587
b2_COSSAP = 1 33537
a1_COSSAP = 0 112330
a2_COSSAP = 0 -188266

H3qr(z) b0_COSSAP = 0 240889
b1_COSSAP = 0 3161
b2_COSSAP = 0 240889
a1_COSSAP = 0 54557
a2_COSSAP = 0 -140976

H4qr(z) b0_COSSAP = 0 191911
b1_COSSAP = 0 101686
b2_COSSAP = 0 191911
a1_COSSAP = 0 -17296
a2_COSSAP = 0 -93288

H5qr(z) b0_COSSAP = 0 151012
b1_COSSAP = 0 189216
b2_COSSAP = 0 151012
a1_COSSAP = 0 -89218
a2_COSSAP = 0 -50262

H6qr(z) b0_COSSAP = 0 50675
b1_COSSAP = 0 96076
b2_COSSAP = 0 50675
a1_COSSAP = 0 -136545
a2_COSSAP = 0 -23260

It is noted here that based on Step 9.3.1 of section 8.2, the number of integer bits configured to the adder
sub-blocks of each cascade stage was 2, 2, 2, 2, 2, and 1. But when inputting passband, transition band,
and stopband signals into the COSSAP model, the respective output responses were not as expected
when compared to MATLAB results. Using Step 10.2 (section 8.2) remedied this predicament. The
number of bits now used for integer bit representation is 2, 2, 2, 2, 3, and 2.

Table 10-17. COSSAP results of multiplier coefficient transformation.
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COSSAP
RoundMode

Pe Dead Band Range
(Fixed Value Output)

COSSAP/VHDL Peak
PSD

0 2.8665804127x10-10 -1.9073486328125x10-5

to
-1.52587890625x10-5

-61.435597 dB at
0.000000 Hz

1 2.12300686x10-12 -1.52587890625x10-5

to
1.1444091796875x10-5

-69.016742 dB at
1999511.718750 Hz

2 2.12300686x10-12 -1.52587890625x10-5

to
1.1444091796875x10-5

-69.016742 dB at
1999511.718750 Hz

3 1.756x10-17 0.00 -96.119385 dB at
2001953.125000 Hz

Based on Table 10-18, RoundMode = 3 produces the best results in terms of smallest error. Figures
10.36 through 10.39 show the power spectral density of the impulse response of the COSSAP round-off
modes. Using MATLAB as the ideal model, the peak PSD of the impulse response is -95.847452 dB at
2004394.531250 Hz.

Table 10-18. Round-off noise power results of impulse response of COSSAP multiplier
round-off modes.

Fig. 10.36. Power spectral density results of impulse response of COSSAP
RoundMode = 0.



Fig. 10.37. Power spectral density results of impulse response of COSSAP
RoundMode = 1.
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Fig. 10.38. Power spectral density results of impulse response of COSSAP
RoundMode = 2.
131
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10.2.2.1: Results of Validation Test #1

The digital input signals used in section 10.2.1.1 were also used in this section. Table 10-19 shows these
results.

Pe

COSSAP
RoundMode

Passband Signal Transition Band Signal Stopband Signal

0 2.27916303782x10-9 1.51829447952x10-9 1.48027757148x10-9

1 5.482129324x10-11 1.549787x10-14 1.3453x10-16

2 5.482129324x10-11 1.549787x10-14 1.3453x10-16

3 2.736200975x10-11 1.94296x10-15 8.0178357x10-13

Fig. 10.39. Power spectral density results of impulse response of COSSAP
RoundMode = 3.

Table 10-19. Tabulated results of validation test #1.
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10.2.2.2: Results of Validation Test #2

The digital input signals used in section 10.2.1.2 were also used in this section.

Fig. 10.40. Power spectral density of COSSAP RoundMode = 0.
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Fig. 10.41. Power spectral density of COSSAP RoundMode = 1.
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Fig. 10.42. Power spectral density of COSSAP RoundMode = 2.
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COSSAP RoundMode Pe

0 1.52536741464x10-9

1 1.4156064x10-13

2 1.4156064x10-13

3 3.33889286x10-12

Based on the results of Table 10-20, the best COSSAP multiplier sub-block round-off modes are
RoundMode = 1 and RoundMode = 2.

10.3: Data Communications and Imaging Bandwidth Results

The sampling frequency used for this design was 20MHz. This design is a 24-bit bandpass digital filter
design and the design type is Elliptic. The first and second cut-off frequencies (-3dB points) are
29.304kHz and 5.001221MHz, respectively. The first and second stopband frequencies (-40dB points)
are 24.42kHz and 5.445665MHz, respectively. The MATLAB floating-point representations of the
coefficients, taken to 14 significant places, are as follows:

Fig. 10.43. Power spectral density of COSSAP RoundMode = 3.

Table 10-20. Tabulated results of 4 COSSAP round-off modes.
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b0 = 0.07987329621409
b1 = -0.26396911739870
b2 = 0.29915964301465
b3 = -0.26454500340110
b4 = 0.41604640068847
b5 = -0.34604558265014
b6 = 0.15896072706548
b7 = -0.34604558265014
b8 = 0.41604640068847
b9 = -0.26454500340110
b10 = 0.29915964301465
b11 = -0.26396911739870
b12 = 0.07987329621409
a1 = -6.62643192221140
a2 = 20.52814661024491
a3 = -40.84768268409439
a4 = 59.97920058345937
a5 = -68.93513855046317
a6 = 62.97666301624375
a7 = -45.87184600775393
a8 = 26.51594785904635
a9 = -11.79494300412995
a10 = 3.78168492675603
a11 = -0.79228595105469
a12 = 0.08668512396083

Fig. 10.44. MATLAB magnitude response of bandpass Elliptic filter.
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Fig. 10.45. MATLAB magnitude response of bandpass Elliptic filter (dB).

Fig. 10.46. MATLAB phase response of bandpass Elliptic filter (radians).
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10.3.1: Parallel Structure of Elliptic Bandpass Filter Results

The unquantized transfer function sections are as follows:

H1(z): (Eqn. 10.81)
b0 =  0.00041754780789
b1 = -0.00041853200266
b2 =  0.00000000000000
a1 = -1.99928810579703
a2 =  0.99937493222654

H2(z): (Eqn. 10.82)
b0 = -0.00153637238075
b1 =  0.00159484444159
b2 =  0.00000000000000
a1 = -1.99442029179693
a2 =  0.99453510743410

H3(z): (Eqn. 10.83)
b0 = -0.02753390048704
b1 =  0.02722912721656
b2 =  0.00000000000000
a1 = -1.97767024097127
a2 =  0.97787185728449

Fig. 10.47. MATLAB group delay response of bandpass Elliptic filter.
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H4(z): (Eqn. 10.84)
b0 =  0.11620735597411
b1 = -0.00877830810331
b2 =  0.00000000000000
a1 = -0.01831558526104
a2 =  0.89972679483240

H5(z): (Eqn. 10.85)
b0 = -0.33117998124798
b1 = -0.34143788679057
b2 =  0.00000000000000
a1 = -0.17586277586059
a2 =  0.60203802158022

H6(z): (Eqn. 10.86)
b0 = -0.59792241472711
b1 =  0.97547798514305
b2 =  0.00000000000000
a1 = -0.46087492252454
a2 =  0.16465672860857

C = 0.92141872289623 (Eqn. 10.87)

The quantized transfer function sections are as follows:

H1qt(z): (Eqn. 10.88)
b0 =  0.000417470932006835937500
b1 = -0.000418424606323242187500
b2 =  0.000000000000000000000000
a1 = -1.999288082122802734375000
a2 =  0.999374866485595703125000

H2qt(z): (Eqn. 10.89)
b0 = -0.001536369323730468750000
b1 =  0.001594781875610351562500
b2 =  0.000000000000000000000000
a1 = -1.994420289993286132812500
a2 =  0.994534969329833984375000

H3qt(z): (Eqn. 10.90)
b0 = -0.027533769607543945312500
b1 =  0.027229070663452148437500
b2 =  0.000000000000000000000000
a1 = -1.977670192718505859375000
a2 =  0.977871656417846679687500

H4qt(z): (Eqn. 10.91)
b0 =  0.116207122802734375000000
b1 = -0.008778095245361328125000
b2 =  0.000000000000000000000000
a1 = -0.018315553665161132812500
a2 =  0.899726629257202148437500
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H5qt(z): (Eqn. 10.92)
b0 = -0.331179857254028320312500
b1 = -0.341437816619873046875000
b2 =  0.000000000000000000000000
a1 = -0.175862550735473632812500
a2 =  0.602037906646728515625000

H6qt(z): (Eqn. 10.93)
b0 = -0.597922325134277343750000
b1 =  0.975477933883666992187500
b2 =  0.000000000000000000000000
a1 = -0.460874795913696289062500
a2 =  0.164656639099121093750000

Cqt = 0.921418666839599609375000 (Eqn. 10.94)

H1qr(z): (Eqn. 10.95)
b0 =  0.000417470932006835937500
b1 = -0.000418424606323242187500
b2 =  0.000000000000000000000000
a1 = -1.999288082122802734375000
a2 =  0.999374866485595703125000

H2qr(z): (Eqn. 10.96)
b0 = -0.001536369323730468750000
b1 =  0.001594781875610351562500
b2 =  0.000000000000000000000000
a1 = -1.994420289993286132812500
a2 =  0.994535207748413085937500

H3qr(z): (Eqn. 10.97)
b0 = -0.027534008026123046875000
b1 =  0.027229070663452148437500
b2 =  0.000000000000000000000000
a1 = -1.977670192718505859375000
a2 =  0.977871894836425781250000

H4qr(z): (Eqn. 10.98)
b0 =  0.116207361221313476562500
b1 = -0.008778333663940429687500
b2 =  0.000000000000000000000000
a1 = -0.018315553665161132812500
a2 =  0.899726867675781250000000

H5qr(z): (Eqn. 10.99)
b0 = -0.331180095672607421875000
b1 = -0.341437816619873046875000
b2 =  0.000000000000000000000000
a1 = -0.175862789154052734375000
a2 =  0.602037906646728515625000
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H6qr(z): (Eqn. 10.100)
b0 = -0.597922325134277343750000
b1 =  0.975477933883666992187500
b2 =  0.000000000000000000000000
a1 = -0.460875034332275390625000
a2 =  0.164656639099121093750000

Cqr = 0.921418666839599609375000 (Eqn. 10.101)

Quantization Type
Truncated Rounded

H1e(z) 0.00047278394141 0.00047278394141
H2e(z) 0.00144342084271 0.00189052058450
H3e(z) 0.00077618133661 0.00032127790090
H4e(z) 0.00000437858494 0.00000094000653
H5e(z) 0.00000089114714 0.00000028762238
H6e(z) 0.00000021411323 0.00000026682198

Cq 0.00000005605663 0.00000005605663

Based on the results of Table 10-21, the rounding quantization method produces the best results in terms
of smallest error.

Designing this quantized filter structure proved to be extremely difficult. Attempts were made to implement
a working filter through Steps 9.2 and 10.1 of section 8.2. The cascade structure is attempted in the next
section to realize this bandpass filter.

10.3.2: Cascade Structure of Elliptic Bandpass Filter Results

The unquantized transfer function sections are as follows:

H1(z): (Eqn. 10.102)
b0 =  0.07987329621409
b1 = -0.15974142191627
b2 =  0.07987324230420
a1 = -1.99928810579703
a2 =  0.99937493222654

H2(z): (Eqn. 10.103)
b0 =  1.00000000000000
b1 = -1.99995845045300
b2 =  1.00000108572615
a1 = -1.99442029179693
a2 =  0.99453510743410

Table 10-21. Magnitude error calculation.
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H3(z): (Eqn. 10.104)
b0 =  1.00000000000000
b1 = -1.99999215766739
b2 =  0.99999958921734
a1 = -1.97767024097127
a2 =  0.97787185728449

H4(z): (Eqn. 10.105)
b0 =  1.00000000000000
b1 =  0.31457928609158
b2 =  1.00000000000000
a1 = -0.01831558526104
a2 =  0.89972679483240

H5(z): (Eqn. 10.106)
b0 =  1.00000000000000
b1 =  0.69054347943834
b2 =  1.00000000000000
a1 = -0.17586277586059
a2 =  0.60203802158022

H6(z): (Eqn. 10.107)
b0 =  1.00000000000000
b1 =  1.68991493148360
b2 =  1.00000000000000
a1 = -0.46087492252454
a2 =  0.16465672860857

The quantized transfer function sections are as follows:

H1qt(z): (Eqn. 10.108)
b0 =  0.079873085021972656250000
b1 = -0.159741401672363281250000
b2 =  0.079873085021972656250000
a1 = -1.999288082122802734375000
a2 =  0.999374866485595703125000

H2qt(z): (Eqn. 10.109)
b0 =  1.000000000000000000000000
b1 = -1.999958276748657226562500
b2 =  1.000000953674316406250000
a1 = -1.994420289993286132812500
a2 =  0.994534969329833984375000

H3qt(z): (Eqn. 10.110)
b0 =  1.000000000000000000000000
b1 = -1.999992132186889648437500
b2 =  0.999999523162841796875000
a1 = -1.977670192718505859375000
a2 =  0.977871656417846679687500
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H4qt(z): (Eqn. 10.111)
b0 =  1.000000000000000000000000
b1 =  0.314579248428344726562500
b2 =  0.999999761581420898437500
a1 = -0.018315553665161132812500
a2 =  0.899726629257202148437500

H5qt(z): (Eqn. 10.112)
b0 =  1.000000000000000000000000
b1 =  0.690543413162231445312500
b2 =  0.999999761581420898437500
a1 = -0.175862550735473632812500
a2 =  0.602037906646728515625000

H6qt(z): (Eqn. 10.113)
b0 =  1.000000000000000000000000
b1 =  1.689914703369140625000000
b2 =  0.999999761581420898437500
a1 = -0.460874795913696289062500
a2 =  0.164656639099121093750000

H1qr(z): (Eqn. 10.114)
b0 =  0.079873323440551757812500
b1 = -0.159741401672363281250000
b2 =  0.079873323440551757812500
a1 = -1.999288082122802734375000
a2 =  0.999374866485595703125000

H2qr(z): (Eqn. 10.115)
b0 =  1.000000000000000000000000
b1 = -1.999958515167236328125000
b2 =  1.000001192092895507812500
a1 = -1.994420289993286132812500
a2 =  0.994535207748413085937500

H3qr(z): (Eqn. 10.116)
b0 =  1.000000000000000000000000
b1 = -1.999992132186889648437500
b2 =  0.999999523162841796875000
a1 = -1.977670192718505859375000
a2 =  0.977871894836425781250000

H4qr(z): (Eqn. 10.117)
b0 =  1.000000000000000000000000
b1 =  0.314579248428344726562500
b2 =  1.000000000000000000000000
a1 = -0.018315553665161132812500
a2 =  0.899726867675781250000000
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H5qr(z): (Eqn. 10.118)
b0 =  1.000000000000000000000000
b1 =  0.690543413162231445312500
b2 =  1.000000000000000000000000
a1 = -0.175862789154052734375000
a2 =  0.602037906646728515625000

H6qr(z): (Eqn. 10.119)
b0 =  1.000000000000000000000000
b1 =  1.689914941787719726562500
b2 =  1.000000000000000000000000
a1 = -0.460875034332275390625000
a2 =  0.164656639099121093750000

Quantization Type
Truncated Rounded

H1e(z) 0.05757750813714 0.02043468379527
H2e(z) 0.00177261661019 0.00134240831291
H3e(z) 0.00028398412879 0.00021683830328
H4e(z) 0.00000612905963 0.00000204911174
H5e(z) 0.00000144949500 0.00000084215994
H6e(z) 0.00000114799856 0.00000151439930

Based on Table 10-22, the rounding method produces the best results in terms of smallest error.

Table 10-22. Magnitude error calculation.
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COSSAP Coefficients
H1qr(z) b0_COSSAP = 0 335013

b1_COSSAP = 0 -670004
b2_COSSAP = 0 335013
a1_COSSAP = 1 4191318
a2_COSSAP = 0 -4191682

H2qr(z) b0_COSSAP = 1 0
b1_COSSAP = -1 -4194130
b2_COSSAP = 1 5
a1_COSSAP = 1 4170901
a2_COSSAP = 0 -4171383

H3qr(z) b0_COSSAP = 1 0
b1_COSSAP = -1 -4194271
b2_COSSAP = 0 4194302
a1_COSSAP = 1 4100646
a2_COSSAP = 0 -4101492

H4qr(z) b0_COSSAP = 1 0
b1_COSSAP = 0 1319441
b2_COSSAP = 1 0
a1_COSSAP = 0 76821
a2_COSSAP = 0 -3773728

H5qr(z) b0_COSSAP = 1 0
b1_COSSAP = 0 2896349
b2_COSSAP = 1 0
a1_COSSAP = 0 737622
a2_COSSAP = 0 -2525130

H6qr(z) b0_COSSAP = 1 0
b1_COSSAP = 1 2893713
b2_COSSAP = 1 0
a1_COSSAP = 0 1933050
a2_COSSAP = 0 -690620

Using Step 9.3.2 of section 8.2, the number of integer bits configured to the adder sub-blocks of each
cascade stage was 2, 2, 2, 2, 2, and 2.

Table 10-23. COSSAP results of multiplier coefficient transformation.
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COSSAP
RoundMode

Pe Dead Band Range
(Fixed Value Output)

COSSAP/VHDL Peak
PSD

0 7.822413942097593x10-4 -4.1267871856689x10-2

to
-1.7266273498535x10-2

3.490241 dB at
0.000000 Hz

1 1.782562338712x10-8 -2.9435157775879x10-3

to
3.1774044036865x10-3

-24.723011 dB at
53710.937500 Hz

2 1.782562338712x10-8 -2.9435157775879x10-3

to
3.1774044036865x10-3

-24.723011 dB at
53710.937500 Hz

3 1.649846435411x10-8 -1.3280391693115x10-2

to
1.0949373245239x10-2

-16.812936 dB at
29296.875000 Hz

Based on Table 10-24, RoundMode = 3 produces the best results in terms of smallest error. Figures
10.48 through 10.51 show the power spectral density of the impulse response of the COSSAP round-off
modes. Using MATLAB as the ideal model, the peak PSD of the impulse response is -38.896013 dB at
29296.875000 Hz.

Table 10-24. Round-off noise power results of impulse response of COSSAP multiplier
round-off modes.

Fig. 10.48. Power spectral density results of impulse response of COSSAP
RoundMode = 0.



Fig. 10.49. Power spectral density results of impulse response of COSSAP
RoundMode = 1.
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Fig. 10.50. Power spectral density results of impulse response of COSSAP
RoundMode = 2.
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10.3.2.1: Results of Validation Test #1

The passband digital input signal used is at 500kHz. The transition band input signal used is at 25kHz.
The stopband digital input signal used is at 6MHz. Table 10-25 shows the tabulated results of these 3
signals.

Round-off Noise Power (Pe)
COSSAP

RoundMode
Passband Signal Transition Band Signal Stopband Signal

0 8.40375276549102x10-4 8.52927357129575x10-4 7.843499903049x10-4

1 3.786735796544x10-8 1.7805977991143x10-7 5.377076997478x10-8

2 3.786735796544x10-8 1.7805977991143x10-7 5.377076997478x10-8

3 8.7527318462x10-9 2.3349065241627x10-7 1.53199655723x10-9

Fig. 10.51. Power spectral density results of impulse response of COSSAP
RoundMode = 3.

Table 10-25. Tabulated results of validation test #1.
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10.3.2.2: Results of Validation Test #2

Figure 10.52 shows the digital input/output response of the unquantized bandpass Elliptic filter. The low-
power passband input signal is at 500kHz. The high-power stopband input signal is at 6MHz. For the
purposes of analysis, the high-power signal is 10 times greater in amplitude than the low-power signal. As
can be seen from the figure, excluding the initial transient response at the output, the ideal Elliptic filter
effectively removes the high-power stopband signal. Comparing the quantized filter, Figures 10.53
through 10.56 show the power spectral density plots of the four COSSAP round-off modes. Table 10-26
shows the tabulated results of the round-off noise power based on the COSSAP multiplier sub-blocks.

Fig. 10.52. Digital I/O response of validation test #2 for ideal Elliptic filter.
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Fig. 10.53. Power spectral density plot of COSSAP RoundMode = 0.
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Fig. 10.54. Power spectral density plot of COSSAP RoundMode = 1.
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Fig. 10.55. Power spectral density plot of COSSAP RoundMode = 2.
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COSSAP RoundMode Pe

0 8.9156947029847685x10-4

1 1.519423402377x10-8

2 1.519423402377x10-8

3 2.238765273714x10-8

Based on Table 10-26, RoundMode = 1 and RoundMode = 2 produce the best results in terms of smallest
error.

Fig. 10.56. Power spectral density plot of COSSAP RoundMode = 3.

Table 10-26. Tabulated results of 4 COSSAP round-off modes.
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CHAPTER 11: Research Summary and Future Work

The objective of this research was to define a methodology for designing fixed-point IIR digital filters using
modeling tools. A significant observation realized during the course of this research dealt with the parallel
structure implementation. Designing more than two  transfer functions sections introduces the problem on
how to go about summing the sections together. Because of the fixed-point representation, the non-linear
aspect of summing could potentially be a setback as was the case with trying to implement the data
communications/imaging bandwidth. Deciding which sections to add together requires future work in
terms of analysis. The cascade structure implementation provides the designer better control in terms of
handling the interface from section to section.

An important question is which COSSAP round-off mode should a designer use for synthesis. No general
conclusion could be drawn from the research examples. In fact, for a given filter, the best round-off mode
depends on which frequency band is analyzed. Therefore, a designer must try all four modes in each
region to determine the best tradeoff. As can be seen from the round-off noise power results throughout
this research, depending on which frequency region is most important to the designer (passband,
transition band, stopband), a specific round-off mode could be chosen for synthesis. This is left to the
designer’s discretion. There was one noticeably consistent result when performing analysis on the 4
round-off modes. RoundMode = 0 produced the greatest round-off noise power when compared to the
other 3 round-off modes.

This research provided a technical bridge between DSP design techniques and digital design. Bridging
the two to go from an ideal representation to real world model required trial-and-error approaches on the
part of this researcher. The trial-and-error approaches produced technical remedies to quantization
problems coming from fixed-point multipliers and adders. For synthesis timing constraints, going from an
ideal, delay-less model to a technology library-based model required the researcher to incorporate
memory elements in the final filter design. Combinational logic delay is a factor a digital designer must
deal with when moving to lower levels of design abstraction. Incorporating a parallel register methodology
significantly reduces the effect of this problem. It reduces this timing problem by eliminating potentially
timing violations at the filter output.

Overall, the methodology outlined in this research is technically sound because it provides an interface
between DSP design techniques and digital design.
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APPENDIX A: Generic VHDL Library

Fixed-point Multipliers

Figure 7.3 is used as reference for this appendix. The initial VHDL-generated code, excluding comments,
is as follows:

**********************************************************************************************************
library IEEE ;
library BITTRUE_VHDLSNPS ;

use IEEE.std_logic_1164.all ;
use IEEE.std_logic_arith.all ;
use BITTRUE_VHDLSNPS.COSSAP_PACKAGE_SYNOPSYS.all ;
Use BITTRUE_VHDLSNPS.fxp_arith.all ;

entity mult is
   generic ( SCHEDULE_LENGTH : in INTEGER := 1 ) ;
   port    ( DIG_IN : in STD_LOGIC_VECTOR((20-1) downto 0) ;
             clock : in STD_LOGIC ;
             reset : in STD_LOGIC ;
             DIG_OUT : out STD_LOGIC_VECTOR((20-1) downto 0) ) ;
end mult ;

architecture behavior of mult is
  constant RoundProdWidth_M_M5_1_1 : INTEGER := 1 + 1 + 20 - 1 ;
  constant Min_Sched_Length : integer := 1;
  constant Sched_Mpy : integer := Schedule_length / Min_Sched_Length;
begin

 main: process
       variable DIG_IN_temp : STD_LOGIC_VECTOR((20-1) downto 0);
       variable DIG_OUT_temp : STD_LOGIC_VECTOR((20-1) downto 0);
       variable Input2_M_M5_1_1 : SIGNED(20 - 1 DOWNTO 0) ;
       variable RoundProd_M_M5_1_1: SIGNED(ROUNDPRODWIDTH_M_M5_1_1-1 DOWNTO
0);
       begin
         reset_loop: loop
      DIG_IN_temp := (others => '0');
      DIG_OUT_temp := (others => '0');
      DIG_OUT <=  (others => '0');
      wait until (clock'event and clock = '1');
      exit reset_loop when reset = '1';
         main_loop: loop

     DIG_IN_temp := DIG_IN ;
     Input2_M_M5_1_1 := const2fxp(0, 128575, 1, 20);
     RoundProd_M_M5_1_1 := fxp_round(SIGNED(DIG_IN_temp) *

Input2_M_M5_1_1, 0, RoundProdWidth_M_M5_1_1);
     DIG_OUT_temp :=
     STD_LOGIC_VECTOR(fxp_saturate(RoundProd_M_M5_1_1, 1, 20));

if (Sched_Mpy > 1) then
    read_wloop_1: for i in 1 to  (Sched_Mpy-1) loop
      wait until (clock'event and clock = '1');
      exit reset_loop when reset = '1';
    end loop;
end if;

     DIG_OUT <= DIG_OUT_temp;
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     wait until (clock'event and clock = '1');
     exit reset_loop when reset = '1';

          end loop main_loop;
         end loop reset_loop;
 end process main;

end behavior ;

**********************************************************************************************************

The first editing step is removing the generic statement, the ‘clock’ input port, and the ‘reset’ input port.
This first edit should be performed in the entity declaration. The second edit entails removing all reset and
edge-triggered clock references and unwanted variables and possible constants in the architecture. The
resulting manually edited VHDL-generated code, at this point, is as follows:

**********************************************************************************************************
library IEEE ;
library BITTRUE_VHDLSNPS ;

use IEEE.std_logic_1164.all ;
use IEEE.std_logic_arith.all ;
use BITTRUE_VHDLSNPS.COSSAP_PACKAGE_SYNOPSYS.all ;
Use BITTRUE_VHDLSNPS.fxp_arith.all ;

entity mult is

   port    ( DIG_IN : in STD_LOGIC_VECTOR((20-1) downto 0) ;
             DIG_OUT : out STD_LOGIC_VECTOR((20-1) downto 0) ) ;
end mult ;

architecture behavior of mult is
  constant RoundProdWidth_M_M5_1_1 : INTEGER := 1 + 1 + 20 - 1 ;
begin

 main: process(DIG_IN)
       variable Input2_M_M5_1_1 : SIGNED(20 - 1 DOWNTO 0) ;
       variable RoundProd_M_M5_1_1: SIGNED(ROUNDPRODWIDTH_M_M5_1_1-1 DOWNTO
0);
       begin
    Input2_M_M5_1_1 := const2fxp(0, 128575, 1, 20);
    RoundProd_M_M5_1_1 := fxp_round(SIGNED(DIG_IN) *

Input2_M_M5_1_1, 0, RoundProdWidth_M_M5_1_1);
    DIG_OUT <= STD_LOGIC_VECTOR(fxp_saturate(RoundProd_M_M5_1_1, 1, 20));
       end process main;
end behavior ;

**********************************************************************************************************

There should only be 2 VHDL variables remaining. These variables should have the Input2_ and
RoundProd_ prefixes. The only VHDL constant remaining should have the RoundProdWidth_ prefix. It is
noted here that this constant is obviously equal to 1. Briefly stated, this number was calculated as the n-
bit length plus the summation of integer bits allocated to represent the input, the constant, and the output.
The third editing step requires the designer to enter the generic statement in the entity as follows:
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generic (RND_MODE, INT, DEC, INT_LENGTH, BIN_LENGTH: in INTEGER);

The fourth editing step requires the designer to replace the number 20 with the generic variable
BIN_LENGTH throughout the code. Sum the remaining numbers in the constant declaration to get the
number 1. The fifth and final editing step requires the designer to replace the reference const2fxp() with
the reference const2fxp(INT, DEC, INT_LENGTH, BIN_LENGTH). The final VHDL code is as follows:

**********************************************************************************************************
library IEEE ;
library BITTRUE_VHDLSNPS ;

use IEEE.std_logic_1164.all ;
use IEEE.std_logic_arith.all ;
use BITTRUE_VHDLSNPS.COSSAP_PACKAGE_SYNOPSYS.all ;
Use BITTRUE_VHDLSNPS.fxp_arith.all ;

entity mult is

   generic ( RND_MODE, INT, DEC, INT_LENGTH, BIN_LENGTH : in INTEGER ) ;
   port    ( DIG_IN : in STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0) ;
             DIG_OUT : out STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0) ) ;
end mult ;

architecture behavior of mult is
  constant RoundProdWidth_M_M5_1_1 : INTEGER := BIN_LENGTH + 1 ;
begin

 main: process(DIG_IN)
       variable Input2_M_M5_1_1 : SIGNED(BIN_LENGTH - 1 DOWNTO 0) ;
       variable RoundProd_M_M5_1_1: SIGNED(ROUNDPRODWIDTH_M_M5_1_1-1 DOWNTO
0);
       begin
    Input2_M_M5_1_1 := const2fxp(INT, DEC, INT_LENGTH, BIN_LENGTH);
    RoundProd_M_M5_1_1 := fxp_round(SIGNED(DIG_IN) * Input2_M_M5_1_1,

RND_MODE, RoundProdWidth_M_M5_1_1);
    DIG_OUT <= STD_LOGIC_VECTOR(fxp_saturate(RoundProd_M_M5_1_1, 1,

BIN_LENGTH));
       end process main;
end behavior ;

**********************************************************************************************************

The VHDL code edit is now purely combinational and is used as a library reference. To ensure that
functionality did not change, it is left to the designer to compare the initial VHDL-generated code to the
final edited code via a VHDL testbench. Using the COSSAP function const2fxp(), an n-bit fixed-point
representation for a multiplier coefficient is realized. The generic variables INT, DEC, INT_LENGTH, and
BIN_LENGTH are parameters passed to this function to represent this multiplier coefficient. The generic
variable RND_MODE, in the COSSAP function fxp_round() in the above code, represent one of four
round-off modes explained in Chapter 6. Notice that in the COSSAP function fxp_saturate() one of the
parameters is the integer 1. This is the set saturation mode that was found to produce the best result of
the three available COSSAP saturation modes. The method by which this mode was found to be the best
is found in Chapter 5. The reason for these 5 editing steps is to design a generic combinational multiplier
sub-block to be used solely for design verification.
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2-input Fixed-point Adders

Figure 7.4 is used as visual reference for this appendix. The initial VHDL-generated code after executing
xvcg, excluding comments, is as follows:

**********************************************************************************************************
library IEEE ;
library BITTRUE_VHDLSNPS ;

use IEEE.std_logic_1164.all ;
use IEEE.std_logic_arith.all ;
use BITTRUE_VHDLSNPS.COSSAP_PACKAGE_SYNOPSYS.all ;
Use BITTRUE_VHDLSNPS.fxp_arith.all ;

entity adder2 is

   generic ( SCHEDULE_LENGTH : in INTEGER := 1 ) ;
   port    ( IN0 : in STD_LOGIC_VECTOR((20-1) downto 0) ;
             IN1 : in STD_LOGIC_VECTOR((20-1) downto 0) ;
             clock : in STD_LOGIC ;
             reset : in STD_LOGIC ;
             OUTPUT : out STD_LOGIC_VECTOR((20-1) downto 0) ) ;

end adder2 ;

architecture behavior of adder2 is
  constant RoundWidth_M_M22_1_1 :  INTEGER := MAXOF2INT(1, 1) + 20 - 1 + 1 ;
  constant Min_Sched_Length : integer := 1;
  constant Sched_Mpy : integer := Schedule_length / Min_Sched_Length;
begin

 main: process
       variable IN0_temp : STD_LOGIC_VECTOR((20-1) downto 0);
       variable IN1_temp : STD_LOGIC_VECTOR((20-1) downto 0);
       variable OUTPUT_temp : STD_LOGIC_VECTOR((20-1) downto 0);
       variable RoundSum_M_M22_1_1: SIGNED(ROUNDWIDTH_M_M22_1_1 - 1 DOWNTO 0)
;
       begin

reset_loop: loop
      IN0_temp := (others => '0');
      IN1_temp := (others => '0');
      OUTPUT_temp := (others => '0');
      OUTPUT <=  (others => '0');

wait until (clock'event and clock = '1');
        exit reset_loop when reset = '1';

main_loop : loop
             IN0_temp := IN0 ;
             IN1_temp := IN1 ;
    if (20 > 20) then
        RoundSum_M_M22_1_1 := 

fxp_round(SIGNED(IN1_temp(IN1_temp'high) & IN1_temp) +
SIGNED(IN0_temp),
                   0, RoundWidth_M_M22_1_1);
    else
        RoundSum_M_M22_1_1 :=
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        fxp_round(SIGNED(IN0_temp(IN0_temp'high) & IN0_temp) +
SIGNED(IN1_temp),
                  0, RoundWidth_M_M22_1_1);
    end if;
    OUTPUT_temp :=
      STD_LOGIC_VECTOR(fxp_saturate(RoundSum_M_M22_1_1, 1, 20));
    if (Sched_Mpy > 1) then
      read_wloop_1: for i in 1 to  (Sched_Mpy-1) loop

wait until (clock'event and clock = '1');
exit reset_loop when reset = '1';

      end loop;
    end if;
    OUTPUT <= OUTPUT_temp;
    wait until (clock'event and clock = '1');
    exit reset_loop when reset = '1';

end loop main_loop;
end loop reset_loop;

       end process main;

end behavior ;

**********************************************************************************************************

The designer should enter the generic statement in the entity as follows:

generic (BIN_LENGTH: in INTEGER);

The only VHDL constant remaining should have the RoundWidth_ prefix. The only VHDL variable
remaining should have the RoundSum_ prefix. The final VHDL generic code is as follows:

**********************************************************************************************************
library IEEE ;
library BITTRUE_VHDLSNPS ;

use IEEE.std_logic_1164.all ;
use IEEE.std_logic_arith.all ;
use BITTRUE_VHDLSNPS.COSSAP_PACKAGE_SYNOPSYS.all ;
Use BITTRUE_VHDLSNPS.fxp_arith.all ;

entity adder2 is

   generic ( BIN_LENGTH : in INTEGER ) ;
   port    ( IN0 : in STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0) ;
             IN1 : in STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0) ) ;

end adder2 ;

architecture behavior of adder2 is
  constant RoundWidth_M_M22_1_1 :  INTEGER := BIN_LENGTH + 1 ;
begin

 main: process(IN0,IN1)
       variable RoundSum_M_M22_1_1: SIGNED(ROUNDWIDTH_M_M22_1_1 - 1 DOWNTO 0)
;
       begin
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RoundSum_M_M22_1_1 := fxp_round(SIGNED(IN0(IN0'high) & IN0) +
SIGNED(IN1), 0, RoundWidth_M_M22_1_1);

OUTPUT <= STD_LOGIC_VECTOR(fxp_saturate(RoundSum_M_M22_1_1, 1,
BIN_LENGTH));
       end process main;

end behavior ;

**********************************************************************************************************

3-input Fixed-point Adders

Figure 7.5 is used as visual reference for this appendix. The final VHDL generic code is as follows:

**********************************************************************************************************
library IEEE ;
library BITTRUE_VHDLSNPS ;

use IEEE.std_logic_1164.all ;
use IEEE.std_logic_arith.all ;
use BITTRUE_VHDLSNPS.COSSAP_PACKAGE_SYNOPSYS.all ;
Use BITTRUE_VHDLSNPS.fxp_arith.all ;

entity adder3 is

   generic ( BIN_LENGTH : in INTEGER ) ;
   port    ( IN0 : in STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0) ;
             IN1 : in STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0) ;
             IN2 : in STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0) ) ;

end adder3 ;

architecture behavior1 of adder3 is
 constant RoundWidth_M_M15_1_1: INTEGER:= BIN_LENGTH + 1 ;
 constant RoundWidth_M_M16_1_2: INTEGER:= BIN_LENGTH + 1 ;
begin

  main: process(IN0,IN1,IN2)
        variable RoundSum_M_M15_1_1:  SIGNED(ROUNDWIDTH_M_M15_1_1-1 DOWNTO 0)
;
        variable RoundSum_M_M16_1_2:  SIGNED(ROUNDWIDTH_M_M16_1_2-1 DOWNTO 0)
;
        variable SIG_4M_M15_1_1 : STD_LOGIC_VECTOR((BIN_LENGTH-1) downto  0)
;

begin
          RoundSum_M_M15_1_1 := fxp_round(SIGNED(IN0(IN0'high) & IN0) +

SIGNED(IN1), 0, RoundWidth_M_M15_1_1);
          SIG_4M_M15_1_1 := STD_LOGIC_VECTOR(fxp_saturate(RoundSum_M_M15_1_1,
1, BIN_LENGTH));
          RoundSum_M_M16_1_2 :=
fxp_round(SIGNED(SIG_4M_M15_1_1(SIG_4M_M15_1_1'high) &

SIG_4M_M15_1_1) + SIGNED(IN2), 0,
RoundWidth_M_M16_1_2);
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          OUTPUT <= STD_LOGIC_VECTOR(fxp_saturate(RoundSum_M_M16_1_2, 1,
BIN_LENGTH));

end process main;

end behavior1 ;

**********************************************************************************************************

Fixed-point Delay Sub-blocks

Figure 7.6 is used as visual reference for this appendix. The final VHDL generic code is as follows:

**********************************************************************************************************
library IEEE ;
use IEEE.std_logic_1164.all ;

entity delay is

   generic ( BIN_LENGTH: in INTEGER);
   port    ( INPUT : in STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0) ;

     OUTPUT : out STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0);
             CLK, RESET : in STD_LOGIC ) ;

end delay;

architecture behavior of delay is
begin

  main: process(CLK,RESET)
begin
 if (RESET = '1') then

             for i in 0 to BIN_LENGTH-1 loop
      OUTPUT(i) <= '0';

     end loop;
 elsif (CLK'EVENT and CLK = '1') then

OUTPUT <= INPUT;
 end if;
end process main;

end behavior ;

**********************************************************************************************************

Generic VHDL Structural Code of Figure 7.1.

library IEEE ;
library BITTRUE_VHDLSNPS ;

use IEEE.std_logic_1164.all ;
use IEEE.std_logic_arith.all ;
use BITTRUE_VHDLSNPS.COSSAP_PACKAGE_SYNOPSYS.all ;
Use BITTRUE_VHDLSNPS.fxp_arith.all ;

entity LOWPASS_FILTER is
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   generic ( RND_MODE, INT_LENGTH, BIN_LENGTH : INTEGER ) ;
   port    ( DIG_IN : in STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0) ;
             DIG_OUT : out STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0) ;
             CLK, RESET : in STD_LOGIC ) ;
end LOWPASS_FILTER ;

architecture STRUCTURE of LOWPASS_FILTER is
component ADDER2
   generic ( BIN_LENGTH : INTEGER ) ;
   port    ( IN0 : in STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0) ;
             IN1 : in STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0) ) ;
end component;
component MULT
   generic ( RND_MODE,INT,DEC,INT_LENGTH,BIN_LENGTH : INTEGER ) ;
   port    ( IN0 : in STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0) ) ;
end component;
component DELAY
   generic ( BIN_LENGTH : INTEGER ) ;
   port    ( INPUT : in STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0 ) ;
             CLK, RESET : in STD_LOGIC ) ;
end component;

signal DLY_IN_0, DLY_OUT_0 : STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0) ;

signal B0_OUT, B1_OUT, A1_OUT : STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0) ;

signal DIG_OUT_INT : STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0) ;

begin
DIG_OUTPUT: DIG_OUT <= DIG_OUT_INT;

DELAY_DELAY_0: DELAY generic map ( BIN_LENGTH )
            port map ( DLY_IN_0, DLY_OUT_0, CLK, RESET );

B0: MULT generic map ( RND_MODE, 0, 128575, INT_LENGTH, BIN_LENGTH )
    port map ( DIG_IN, B0_OUT );

B1: MULT generic map ( RND_MODE, 0, 128575, INT_LENGTH, BIN_LENGTH )
    port map ( DIG_IN, B1_OUT );

A1: MULT generic map ( RND_MODE, 0, 267138, INT_LENGTH, BIN_LENGTH )
    port map ( DIG_OUT_INT, A1_OUT );

ADDER_0: ADDER2 generic map ( BIN_LENGTH )
           port map ( B0_OUT, DLY_OUT_0, DIG_OUT_INT );

ADDER_1: ADDER2 generic map ( BIN_LENGTH )
           port map ( B1_OUT, A1_OUT, DLY_IN_0 );
end STRUCTURE ;
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APPENDIX B: Additional Results of 3rd order 16-bit Lowpass Butterworth Filter

Pole/Zero Plot of Overall Transfer Function in Section 9.1.
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Pole/Zero Plot of Parallel Transfer Function Section H1(z) of Equations 9.2.

Pole/Zero Plot of Parallel Transfer Function Section H2(z) of Equations 9.3.
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Pole/Zero Plot of Cascade Transfer Function Section H1(z) of Equations 9.10.

Pole/Zero Plot of Cascade Transfer Function Section H2(z) of Equations 9.11.
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Synthesis-ready VHDL Code of Parallel Structure

library IEEE ;
library BITTRUE_VHDLSNPS ;

use IEEE.std_logic_1164.all ;
use IEEE.std_logic_arith.all ;
use BITTRUE_VHDLSNPS.COSSAP_PACKAGE_SYNOPSYS.all ;
Use BITTRUE_VHDLSNPS.fxp_arith.all ;

entity LOW1_P1_STRUCT is
   port    ( DIG_IN : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             DIG_OUT : out STD_LOGIC_VECTOR((16-1) downto 0) ;
             CLK, RESET : in STD_LOGIC ) ;
end LOW1_P1_STRUCT ;

architecture STRUCTURE of LOW1_P1_STRUCT is
component ADDER2_16
   port    ( IN0 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             IN1 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((16-1) downto 0) ) ;
end component;
component ADDER3_16
   port    ( IN0 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             IN1 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             IN2 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((16-1) downto 0) ) ;
end component;
component MULT_B0_H1
   port    ( IN0 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((16-1) downto 0) ) ;
end component;
component MULT_B1_H1
   port    ( IN0 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((16-1) downto 0) ) ;
end component;
component MULT_A1_H1
   port    ( IN0 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((16-1) downto 0) ) ;
end component;
component MULT_A2_H1
   port    ( IN0 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((16-1) downto 0) ) ;
end component;
component MULT_B0_H2
   port    ( IN0 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((16-1) downto 0) ) ;
end component;
component MULT_B1_H2
   port    ( IN0 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((16-1) downto 0) ) ;
end component;
component MULT_A1_H2
   port    ( IN0 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((16-1) downto 0) ) ;
end component;
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component DELAY_16
   port    ( INPUT : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((16-1) downto 0 ) ;
             CLK, RESET : in STD_LOGIC ) ;
end component;

signal DLY_IN_0_H1, DLY_OUT_0_H1: STD_LOGIC_VECTOR((16-1) downto 0) ;
signal DLY_OUT_1_H1 : STD_LOGIC_VECTOR((16-1) downto 0) ;
signal DLY_IN_0_H2, DLY_OUT_0_H2: STD_LOGIC_VECTOR((16-1) downto 0) ;

signal DIG_OUT_INT : STD_LOGIC_VECTOR((16-1) downto 0) ;

signal B0_OUT_H1, B1_OUT_H1 : STD_LOGIC_VECTOR((16-1) downto 0) ;
signal DIG_OUT_H1, A1_OUT_H1 : STD_LOGIC_VECTOR((16-1) downto 0) ;
signal A2_OUT_H1 : STD_LOGIC_VECTOR((16-1) downto 0) ;

signal B0_OUT_H2, B1_OUT_H2 : STD_LOGIC_VECTOR((16-1) downto 0) ;
signal DIG_OUT_H2, A1_OUT_H2 : STD_LOGIC_VECTOR((16-1) downto 0) ;

begin
DIG_OUTPUT2: DELAY_16

port map ( DIG_OUT_INT, DIG_OUT, CLK, RESET );

DIG_OUTPUT: ADDER2_16 port map ( DIG_OUT_H1, DIG_OUT_H2, DIG_OUT_INT );

DELAY_16_DELAY_0_H1: DELAY_16
port map ( DLY_IN_0_H1, DLY_OUT_0_H1, CLK, RESET );

DELAY_16_DELAY_1_H1: DELAY_16
port map ( A2_OUT_H1, DLY_OUT_1_H1, CLK, RESET );

DELAY_16_DELAY_0_H2: DELAY_16
port map ( DLY_IN_0_H2, DLY_OUT_0_H2, CLK, RESET );

B0_H1: MULT_B0_H1 port map ( DIG_IN, B0_OUT_H1 );
B1_H1: MULT_B1_H1 port map ( DIG_IN, B1_OUT_H1 );
A1_H1: MULT_A1_H1 port map ( DIG_OUT_H1, A1_OUT_H1 );
A2_H1: MULT_A2_H1 port map ( DIG_OUT_H1, A2_OUT_H1 );

B0_H2: MULT_B0_H2 port map ( DIG_IN, B0_OUT_H2 );
B1_H2: MULT_B1_H2 port map ( DIG_IN, B1_OUT_H2 );
A1_H2: MULT_A1_H2 port map ( DIG_OUT_H2, A1_OUT_H2 );

ADDER_0_H1: ADDER2_16 port map ( B0_OUT_H1, DLY_OUT_0_H1, DIG_OUT_H1 );
ADDER_1_H1: ADDER3_16

port map ( B1_OUT_H1, DLY_OUT_1_H1, A1_OUT_H1, DLY_IN_0_H1 );
ADDER_0_H2: ADDER2_16 port map ( B0_OUT_H2, DLY_OUT_0_H2, DIG_OUT_H2 );
ADDER_1_H2: ADDER2_16 port map ( B1_OUT_H2, A1_OUT_H2, DLY_IN_0_H2 );

end STRUCTURE ;
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Synthesis-ready Top-level VHDL Code with A/D Converter (Parallel Structure)

library IEEE ;
library BITTRUE_VHDLSNPS ;

use IEEE.std_logic_1164.all ;
use IEEE.std_logic_arith.all ;
use BITTRUE_VHDLSNPS.COSSAP_PACKAGE_SYNOPSYS.all ;
Use BITTRUE_VHDLSNPS.fxp_arith.all ;

entity LOW1_P1_TOP is
   generic ( BIN_LENGTH: in INTEGER);
   port    ( DIG_IN : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             DIG_OUT : out STD_LOGIC_VECTOR((16-1) downto 0) ;
             CLK, RESET : in STD_LOGIC ) ;
end LOW1_P1_TOP ;

architecture STRUCTURE of LOW1_P1_TOP is
component LOW1_P1_STRUCT
   port    ( DIG_IN : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             DIG_OUT : out STD_LOGIC_VECTOR((16-1) downto 0) ;
             CLK, RESET : in STD_LOGIC ) ;
end component;
component AD_CONVRTR
   generic ( BIN_LENGTH: in INTEGER);
   port    ( INPUT : in STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0) ;

     OUTPUT : out STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0);
             CLK, RESET : in STD_LOGIC ) ;
end component;

signal DIG_INT: STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0) ;

begin

AD_16BITS: AD_CONVRTR generic map ( BIN_LENGTH )
      port map ( DIG_IN, DIG_INT, CLK, RESET );

LOWPASS: LOW1_P1_STRUCT port map ( DIG_INT, DIG_OUT, CLK, RESET );

end STRUCTURE ;

Top-level Script File for Parallel Structure

read -f db ./db/DFF_16.db
read -f db ./db/ADDER2_16.db
read -f db ./db/ADDER3_16.db
read -f db ./db/MULT_B0_H1.db
read -f db ./db/MULT_B1_H1.db
read -f db ./db/MULT_A1_H1.db
read -f db ./db/MULT_A2_H1.db
read -f db ./db/MULT_B0_H2.db
read -f db ./db/MULT_B1_H2.db
read -f db ./db/MULT_A1_H2.db

set_dont_touch DFF_16
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set_dont_touch ADDER2_16
set_dont_touch ADDER3_16
set_dont_touch mult_b0_h1
set_dont_touch mult_b1_h1
set_dont_touch mult_a1_h1
set_dont_touch mult_a2_h1
set_dont_touch mult_b0_h2
set_dont_touch mult_b1_h2
set_dont_touch mult_a1_h2

analyze -f vhdl ../src/Butterworth16/Parallel/low1_p1_struct.vhd

elaborate LOW1_P1_STRUCT -arch "STRUCTURE" -lib BITTRUE_VHDLSNPS -update

include "./scripts/low1_p1_clk.scr"
include "./scripts/low1_p1_reset.scr"

set_input_delay  -clock CLK 10.0 all_inputs()
set_output_delay -clock CLK 10.0 all_outputs()

set_prefer { hcells/* }
set_dont_use { lsi_10k/* }

uniquify

compile -map_effort high

write -f db -hierarchy -out ./db/LOW1_P1_STRUCT.db
write -f vhdl          -out ./LOW1_P1_STRUCT.vhd

check_design                               > ./low1_p1_check.rpt
report_timing                              > ./low1_p1_timing.rpt
report_constraints -max_delay -all_violators -verbose > ./low1_p1_viol.rpt
report_cell                                > ./low1_p1_cell.rpt
report_area                                > ./low1_p1_area.rpt
report_cell all_registers()                > ./low1_p1_registers.rpt
report_net                                 > ./low1_p1_net.rpt
report_clock                               > ./low1_p1_clock.rpt
report_timing -path end -delay max -max_paths 600 -nworst 1 -to all_outputs()
>> ./low1_p1_timing.rpt

quit

Timing Report of Parallel Structure

Information: Updating design information... (UID-85)

****************************************
Report : timing
        -path short
        -delay max
        -max_paths 1
Design : LOW1_P1_STRUCT
Version: 1999.10
Date   : Thu Nov 25 21:32:51 1999
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****************************************

Operating Conditions:
Wire Load Model Mode: top

  Startpoint: DIG_IN<14> (input port clocked by CLK)
  Endpoint: DFF_16_DELAY_0_H2/OUTPUT_reg<0>
            (rising edge-triggered flip-flop clocked by CLK)
  Path Group: CLK
  Path Type: max

  Point                                                   Incr       Path
  --------------------------------------------------------------------------
  clock CLK (rise edge)                                   0.00       0.00
  clock network delay (ideal)                             0.00       0.00
  input external delay                                   10.00      10.00 f
  DIG_IN<14> (in)                                         0.00      10.00 f
  ...
  DFF_16_DELAY_0_H2/OUTPUT_reg<0>/d0 (hdrpq)             42.42      52.42 f
  data arrival time                                                 52.42

  clock CLK (rise edge)                               100000.00  100000.00
  clock network delay (ideal)                             0.00   100000.00
  clock uncertainty                                     -10.00   99990.00
  DFF_16_DELAY_0_H2/OUTPUT_reg<0>/ck (hdrpq)              0.00   99990.00 r
  library setup time                                     -0.45   99989.55
  data required time                                             99989.55
  --------------------------------------------------------------------------
  data required time                                             99989.55
  data arrival time                                                -52.42
  --------------------------------------------------------------------------
  slack (MET)                                                    99937.12

Performing report_timing on port 'DIG_OUT<15>'.
Performing report_timing on port 'DIG_OUT<14>'.
Performing report_timing on port 'DIG_OUT<13>'.
Performing report_timing on port 'DIG_OUT<12>'.
Performing report_timing on port 'DIG_OUT<11>'.
Performing report_timing on port 'DIG_OUT<10>'.
Performing report_timing on port 'DIG_OUT<9>'.
Performing report_timing on port 'DIG_OUT<8>'.
Performing report_timing on port 'DIG_OUT<7>'.
Performing report_timing on port 'DIG_OUT<6>'.
Performing report_timing on port 'DIG_OUT<5>'.
Performing report_timing on port 'DIG_OUT<4>'.
Performing report_timing on port 'DIG_OUT<3>'.
Performing report_timing on port 'DIG_OUT<2>'.
Performing report_timing on port 'DIG_OUT<1>'.
Performing report_timing on port 'DIG_OUT<0>'.

****************************************
Report : timing
        -path end
        -delay max
        -max_paths 600
Design : LOW1_P1_STRUCT
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Version: 1999.10
Date   : Thu Nov 25 21:32:53 1999
****************************************

Operating Conditions:
Wire Load Model Mode: top

Endpoint                         Path Delay     Path Required     Slack
------------------------------------------------------------------------
DIG_OUT<0> (out)                    0.42 f        99980.00     99979.58
DIG_OUT<1> (out)                    0.42 f        99980.00     99979.58
DIG_OUT<2> (out)                    0.42 f        99980.00     99979.58
DIG_OUT<3> (out)                    0.42 f        99980.00     99979.58
DIG_OUT<4> (out)                    0.42 f        99980.00     99979.58
DIG_OUT<5> (out)                    0.42 f        99980.00     99979.58
DIG_OUT<6> (out)                    0.42 f        99980.00     99979.58
DIG_OUT<7> (out)                    0.42 f        99980.00     99979.58
DIG_OUT<8> (out)                    0.42 f        99980.00     99979.58
DIG_OUT<9> (out)                    0.42 f        99980.00     99979.58
DIG_OUT<10> (out)                   0.42 f        99980.00     99979.58
DIG_OUT<11> (out)                   0.42 f        99980.00     99979.58
DIG_OUT<12> (out)                   0.42 f        99980.00     99979.58
DIG_OUT<13> (out)                   0.42 f        99980.00     99979.58
DIG_OUT<14> (out)                   0.42 f        99980.00     99979.58
DIG_OUT<15> (out)                   0.42 f        99980.00     99979.58

Synthesis-ready VHDL Code of Cascade Structure

library IEEE ;
library BITTRUE_VHDLSNPS ;

use IEEE.std_logic_1164.all ;
use IEEE.std_logic_arith.all ;
use BITTRUE_VHDLSNPS.COSSAP_PACKAGE_SYNOPSYS.all ;
Use BITTRUE_VHDLSNPS.fxp_arith.all ;

entity LOW1_C1_STRUCT is
   port    ( DIG_IN : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             DIG_OUT : out STD_LOGIC_VECTOR((16-1) downto 0) ;
             CLK, RESET : in STD_LOGIC ) ;
end LOW1_C1_STRUCT ;

architecture STRUCTURE of LOW1_C1_STRUCT is
component ADDER2_16
   port    ( IN0 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             IN1 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((16-1) downto 0) ) ;
end component;
component ADDER3_16
   port    ( IN0 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             IN1 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             IN2 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((16-1) downto 0) ) ;
end component;
component MULT_B0_H1
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   port    ( IN0 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((16-1) downto 0) ) ;
end component;
component MULT_B1_H1
   port    ( IN0 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((16-1) downto 0) ) ;
end component;
component MULT_B2_H1
   port    ( IN0 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((16-1) downto 0) ) ;
end component;
component MULT_A1_H1
   port    ( IN0 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((16-1) downto 0) ) ;
end component;
component MULT_A2_H1
   port    ( IN0 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((16-1) downto 0) ) ;
end component;
component MULT_B0_H2
   port    ( IN0 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((16-1) downto 0) ) ;
end component;
component MULT_B1_H2
   port    ( IN0 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((16-1) downto 0) ) ;
end component;
component MULT_A1_H2
   port    ( IN0 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((16-1) downto 0) ) ;
end component;
component DELAY_16
   port    ( INPUT : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((16-1) downto 0 ) ;
             CLK, RESET : in STD_LOGIC ) ;
end component;

signal B0_OUT_H1, B1_OUT_H1, B2_OUT_H1 : STD_LOGIC_VECTOR((16-1) downto 0)
;
signal A1_OUT_H1, A2_OUT_H1 : STD_LOGIC_VECTOR((16-1) downto 0) ;

signal B0_OUT_H2, B1_OUT_H2 : STD_LOGIC_VECTOR((16-1) downto 0) ;
signal A1_OUT_H2 : STD_LOGIC_VECTOR((16-1) downto 0) ;

signal DLY_IN_0_H1, DLY_OUT_0_H1 : STD_LOGIC_VECTOR((16-1) downto 0) ;
signal DLY_IN_1_H1, DLY_OUT_1_H1 : STD_LOGIC_VECTOR((16-1) downto 0) ;

signal DLY_IN_0_H2, DLY_OUT_0_H2 : STD_LOGIC_VECTOR((16-1) downto 0) ;

signal DIG_OUT_H1 : STD_LOGIC_VECTOR((16-1) downto 0) ;

signal DIG_OUT_INT : STD_LOGIC_VECTOR((16-1) downto 0) ;
signal DIG_OUT_H1_INT : STD_LOGIC_VECTOR((16-1) downto 0) ;

begin

B0_H1: MULT_B0_H1 port map ( DIG_IN, B0_OUT_H1 );
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B1_H1: MULT_B1_H1 port map ( DIG_IN, B1_OUT_H1 );
B2_H1: MULT_B2_H1 port map ( DIG_IN, B2_OUT_H1 );
A1_H1: MULT_A1_H1 port map ( DIG_OUT_H1, A1_OUT_H1 );
A2_H1: MULT_A2_H1 port map ( DIG_OUT_H1, A2_OUT_H1 );

B0_H2: MULT_B0_H2 port map ( DIG_OUT_H1_INT, B0_OUT_H2 );
B1_H2: MULT_B1_H2 port map ( DIG_OUT_H1_INT, B1_OUT_H2 );
A1_H2: MULT_A1_H2 port map ( DIG_OUT_INT, A1_OUT_H2 );

ADDER_0_H1: ADDER2_16 port map ( B0_OUT_H1, DLY_OUT_0_H1, DIG_OUT_H1 );
ADDER_1_H1: ADDER3_16

       port map ( B1_OUT_H1, DLY_OUT_1_H1, A1_OUT_H1, DLY_IN_0_H1);
ADDER_2_H1: ADDER2_16 port map ( B2_OUT_H1, A2_OUT_H1, DLY_IN_1_H1 );

ADDER_0_H2: ADDER2_16 port map ( B0_OUT_H2, DLY_OUT_0_H2, DIG_OUT_INT
);

ADDER_1_H2: ADDER2_16 port map ( B1_OUT_H2, A1_OUT_H2, DLY_IN_0_H2 );

DFF_DELAY_0_H1: DELAY_16
port map ( DLY_IN_0_H1, DLY_OUT_0_H1, CLK, RESET );

DFF_DELAY_1_H1: DELAY_16
port map ( DLY_IN_1_H1, DLY_OUT_1_H1, CLK, RESET );

DFF_DELAY_0_H2: DELAY_16
port map ( DLY_IN_0_H2, DLY_OUT_0_H2, CLK, RESET );

STAGE_1: DELAY_16 port map ( DIG_OUT_H1, DIG_OUT_H1_INT, CLK, RESET );
STAGE_2: DELAY_16 port map ( DIG_OUT_INT, DIG_OUT, CLK, RESET );

end STRUCTURE ;

Synthesis-ready Top-level VHDL Code with A/D Converter (Cascade Structure)

library IEEE ;
library BITTRUE_VHDLSNPS ;

use IEEE.std_logic_1164.all ;
use IEEE.std_logic_arith.all ;
use BITTRUE_VHDLSNPS.COSSAP_PACKAGE_SYNOPSYS.all ;
Use BITTRUE_VHDLSNPS.fxp_arith.all ;

entity LOW1_C1_TOP is
   generic ( BIN_LENGTH: in INTEGER);
   port    ( DIG_IN : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             DIG_OUT : out STD_LOGIC_VECTOR((16-1) downto 0) ;
             CLK, RESET : in STD_LOGIC ) ;
end LOW1_C1_TOP ;

architecture STRUCTURE of LOW1_C1_TOP is
component LOW1_C1_STRUCT
   port    ( DIG_IN : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             DIG_OUT : out STD_LOGIC_VECTOR((16-1) downto 0) ;
             CLK, RESET : in STD_LOGIC ) ;
end component;
component AD_CONVRTR
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   generic ( BIN_LENGTH: in INTEGER);
   port    ( INPUT : in STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0) ;

     OUTPUT : out STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0);
             CLK, RESET : in STD_LOGIC ) ;
end component;

signal DIG_INT: STD_LOGIC_VECTOR((BIN_LENGTH-1) downto 0) ;

begin

AD_16BITS: AD_CONVRTR generic map ( BIN_LENGTH )
      port map ( DIG_IN, DIG_INT, CLK, RESET );

LOWPASS: LOW1_C1_STRUCT port map ( DIG_INT, DIG_OUT, CLK, RESET );

end STRUCTURE ;

Top-level Script File for Cascade Structure

read -f db ./db/DFF_16.db
read -f db ./db/ADDER2_16.db
read -f db ./db/ADDER3_16.db
read -f db ./db/MULT_B0_H1.db
read -f db ./db/MULT_B1_H1.db
read -f db ./db/MULT_B2_H1.db
read -f db ./db/MULT_A1_H1.db
read -f db ./db/MULT_A2_H1.db
read -f db ./db/MULT_B0_H2.db
read -f db ./db/MULT_B1_H2.db
read -f db ./db/MULT_A1_H2.db

set_dont_touch DFF_16
set_dont_touch ADDER2_16
set_dont_touch ADDER3_16
set_dont_touch MULT_B0_H1
set_dont_touch MULT_B1_H1
set_dont_touch MULT_B2_H1
set_dont_touch MULT_A1_H1
set_dont_touch MULT_A2_H1
set_dont_touch MULT_B0_H2
set_dont_touch MULT_B1_H2
set_dont_touch MULT_A1_H2

analyze -f vhdl ../src/Butterworth16/Cascade/low1_c1_struct.vhd

elaborate LOW1_C1_STRUCT -arch "STRUCTURE" -lib BITTRUE_VHDLSNPS -update

include "./scripts/low1_clk.scr"
include "./scripts/low1_reset.scr"

set_input_delay  -clock CLK 10.0 all_inputs()
set_output_delay -clock CLK 10.0 all_outputs()
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set_prefer { hcells/* }
set_dont_use { lsi_10k/* }

uniquify

compile -map_effort high

write -f db -hierarchy -out ./db/LOW1_C1_STRUCT.db
write -f vhdl          -out ./LOW1_C1_STRUCT.vhd

check_design                               > ./low1_c1_check.rpt
report_timing                              > ./low1_c1_timing.rpt
report_constraints -max_delay -all_violators -verbose > ./low1_c1_viol.rpt
report_cell                                > ./low1_c1_cell.rpt
report_area                                > ./low1_c1_area.rpt
report_cell all_registers()                > ./low1_c1_registers.rpt
report_net                                 > ./low1_c1_net.rpt
report_clock                               > ./low1_c1_clock.rpt
report_timing -path end -delay max -max_paths 600 -nworst 1 -to all_outputs()
>> ./low1_c1_timing.rpt

quit

Timing Report of Cascade Structure

Information: Updating design information... (UID-85)

****************************************
Report : timing
        -path short
        -delay max
        -max_paths 1
Design : LOW1_C1_STRUCT
Version: 1999.10
Date   : Thu Nov 25 23:06:51 1999
****************************************

Operating Conditions:
Wire Load Model Mode: top

  Startpoint: DIG_IN<13> (input port clocked by CLK)
  Endpoint: DFF_DELAY_0_H1/OUTPUT_reg<0>
            (rising edge-triggered flip-flop clocked by CLK)
  Path Group: CLK
  Path Type: max

  Point                                                   Incr       Path
  --------------------------------------------------------------------------
  clock CLK (rise edge)                                   0.00       0.00
  clock network delay (ideal)                             0.00       0.00
  input external delay                                   10.00      10.00 f
  DIG_IN<13> (in)                                         0.00      10.00 f
  ...
  DFF_DELAY_0_H1/OUTPUT_reg<0>/d0 (hdrpq)                42.47      52.47 r
  data arrival time                                                 52.47
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  clock CLK (rise edge)                               100000.00  100000.00
  clock network delay (ideal)                             0.00   100000.00
  clock uncertainty                                     -10.00   99990.00
  DFF_DELAY_0_H1/OUTPUT_reg<0>/ck (hdrpq)                 0.00   99990.00 r
  library setup time                                     -0.45   99989.55
  data required time                                             99989.55
  --------------------------------------------------------------------------
  data required time                                             99989.55
  data arrival time                                                -52.47
  --------------------------------------------------------------------------
  slack (MET)                                                    99937.08

Performing report_timing on port 'DIG_OUT<15>'.
Performing report_timing on port 'DIG_OUT<14>'.
Performing report_timing on port 'DIG_OUT<13>'.
Performing report_timing on port 'DIG_OUT<12>'.
Performing report_timing on port 'DIG_OUT<11>'.
Performing report_timing on port 'DIG_OUT<10>'.
Performing report_timing on port 'DIG_OUT<9>'.
Performing report_timing on port 'DIG_OUT<8>'.
Performing report_timing on port 'DIG_OUT<7>'.
Performing report_timing on port 'DIG_OUT<6>'.
Performing report_timing on port 'DIG_OUT<5>'.
Performing report_timing on port 'DIG_OUT<4>'.
Performing report_timing on port 'DIG_OUT<3>'.
Performing report_timing on port 'DIG_OUT<2>'.
Performing report_timing on port 'DIG_OUT<1>'.
Performing report_timing on port 'DIG_OUT<0>'.

****************************************
Report : timing
        -path end
        -delay max
        -max_paths 600
Design : LOW1_C1_STRUCT
Version: 1999.10
Date   : Thu Nov 25 23:06:54 1999
****************************************

Operating Conditions:
Wire Load Model Mode: top

Endpoint                         Path Delay     Path Required     Slack
------------------------------------------------------------------------
DIG_OUT<0> (out)                    0.42 f        99980.00     99979.58
DIG_OUT<1> (out)                    0.42 f        99980.00     99979.58
DIG_OUT<2> (out)                    0.42 f        99980.00     99979.58
DIG_OUT<3> (out)                    0.42 f        99980.00     99979.58
DIG_OUT<4> (out)                    0.42 f        99980.00     99979.58
DIG_OUT<5> (out)                    0.42 f        99980.00     99979.58
DIG_OUT<6> (out)                    0.42 f        99980.00     99979.58
DIG_OUT<7> (out)                    0.42 f        99980.00     99979.58
DIG_OUT<8> (out)                    0.42 f        99980.00     99979.58
DIG_OUT<9> (out)                    0.42 f        99980.00     99979.58
DIG_OUT<10> (out)                   0.42 f        99980.00     99979.58
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DIG_OUT<11> (out)                   0.42 f        99980.00     99979.58
DIG_OUT<12> (out)                   0.42 f        99980.00     99979.58
DIG_OUT<13> (out)                   0.42 f        99980.00     99979.58
DIG_OUT<14> (out)                   0.42 f        99980.00     99979.58
DIG_OUT<15> (out)                   0.42 f        99980.00     99979.58
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APPENDIX C: Pole/Zero Plots of 3rd order 16-bit Lowpass Chebyshev Type I Filter

Pole/Zero Plot of 3rd Order Lowpass Chebyshev Type I Lowpass Filter.
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Pole/Zero Plot of Transfer Function H1(z) of Parallel Structure of Chebyshev
Type I Lowpass Filter.

Pole/Zero Plot of Transfer Function H2(z) of Parallel Structure of Chebyshev
Type I Lowpass Filter.
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Pole/Zero Plot of Transfer Function H1(z) of Cascade Structure of Chebyshev
Type I Lowpass Filter.

Pole/Zero Plot of Transfer Function H2(z) of Cascade Structure of Chebyshev
Type I Lowpass Filter.
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APPENDIX D: Pole/Zero Plots of 3rd order 16-bit Lowpass Chebyshev Type II Filter

Pole/Zero Plot of 3rd Order Lowpass Chebyshev Type II Lowpass Filter.
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Pole/Zero Plot of Transfer Function H1(z) of Parallel Structure of Chebyshev
Type II Lowpass Filter.

Pole/Zero Plot of Transfer Function H2(z) of Parallel Structure of Chebyshev
Type II Lowpass Filter.
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Pole/Zero Plot of Transfer Function H1(z) of Cascade Structure of Chebyshev
Type II Lowpass Filter.

Pole/Zero Plot of Transfer Function H2(z) of Cascade Structure of Chebyshev
Type II Lowpass Filter.
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APPENDIX E: Pole/Zero Plots of 3rd order 16-bit Lowpass Elliptic Filter

Pole/Zero Plot of 3rd Order Lowpass Elliptic Lowpass Filter.



Pole/Zero Plot of Transfer Function H1(z) of Parallel Structure of Elliptic
Lowpass Filter.
Pole/Zero Plot of Transfer Function H2(z) of Parallel Structure of Elliptic
Lowpass Filter.
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Pole/Zero Plot of Transfer Function H1(z) of Cascade Structure of Elliptic
Lowpass Filter.
Pole/Zero Plot of Transfer Function H2(z) of Cascade Structure of Elliptic
Lowpass Filter.
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APPENDIX F: Synthesis-ready VHDL Library (8-bit and 16-bit examples)

Synthesis-ready VHDL Code of 16-bit 2-input Fixed-point Adder

library IEEE ;
library BITTRUE_VHDLSNPS ;

use IEEE.std_logic_1164.all ;
use IEEE.std_logic_arith.all ;
use BITTRUE_VHDLSNPS.COSSAP_PACKAGE_SYNOPSYS.all ;
Use BITTRUE_VHDLSNPS.fxp_arith.all ;

entity ADDER2_16 is

   port    ( IN0 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             IN1 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((16-1) downto 0) ) ;

end ADDER2_16 ;

architecture behavior of ADDER2_16 is
 constant RoundWidth_M_M15_1_1: INTEGER:= 16 + 1 ;
begin
  main: process(IN0,IN1)
        variable RoundSum_M_M15_1_1: SIGNED(ROUNDWIDTH_M_M15_1_1-1 DOWNTO 0)
;

begin
        RoundSum_M_M15_1_1 := fxp_round(SIGNED(IN0(IN0'high) & IN0) +

SIGNED(IN1), 0, RoundWidth_M_M15_1_1);
     OUTPUT <= STD_LOGIC_VECTOR(fxp_saturate(RoundSum_M_M15_1_1, 1, 16));

end process main;
end behavior ;

Synthesis-ready VHDL Code of 16-bit 3-input Fixed-point Adder

library IEEE ;
library BITTRUE_VHDLSNPS ;

use IEEE.std_logic_1164.all ;
use IEEE.std_logic_arith.all ;
use BITTRUE_VHDLSNPS.COSSAP_PACKAGE_SYNOPSYS.all ;
Use BITTRUE_VHDLSNPS.fxp_arith.all ;

entity ADDER3_16 is

   port    ( IN0 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             IN1 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             IN2 : in STD_LOGIC_VECTOR((16-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((16-1) downto 0) ) ;

end ADDER3_16 ;

architecture behavior of ADDER3_16 is
 constant RoundWidth_M_M15_1_1: INTEGER:= 16 + 1 ;
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 constant RoundWidth_M_M16_1_2: INTEGER:= 16 + 1 ;
begin

  main: process(IN0,IN1,IN2)
        variable RoundSum_M_M15_1_1:  SIGNED(ROUNDWIDTH_M_M15_1_1-1 DOWNTO 0)
;
        variable RoundSum_M_M16_1_2:  SIGNED(ROUNDWIDTH_M_M16_1_2-1 DOWNTO 0)
;
        variable SIG_4M_M15_1_1 : STD_LOGIC_VECTOR((16-1) downto  0) ;

begin
          RoundSum_M_M15_1_1 := fxp_round(SIGNED(IN0(IN0'high) & IN0) +

SIGNED(IN1), 0, RoundWidth_M_M15_1_1);
          SIG_4M_M15_1_1 := STD_LOGIC_VECTOR(fxp_saturate(RoundSum_M_M15_1_1,
1, 16));
          RoundSum_M_M16_1_2 :=
fxp_round(SIGNED(SIG_4M_M15_1_1(SIG_4M_M15_1_1'high) &

SIG_4M_M15_1_1) + SIGNED(IN2), 0,
RoundWidth_M_M16_1_2);
          OUTPUT <= STD_LOGIC_VECTOR(fxp_saturate(RoundSum_M_M16_1_2, 1,
16));

end process main;

end behavior ;

Synthesis-ready VHDL Code of 8-bit Fixed-point Multiplier w/coefficient

This VHDL code contains the decimal coefficient 0.6093750. One bit is assigned for integer
representation. The remaining 7 bits are assigned for fractional representation. The COSSAP
representation for this fractional coefficient is 78. The resulting synthesis-ready code is as follows:

library IEEE ;
library BITTRUE_VHDLSNPS ;

use IEEE.std_logic_1164.all ;
use IEEE.std_logic_arith.all ;
use BITTRUE_VHDLSNPS.COSSAP_PACKAGE_SYNOPSYS.all ;
Use BITTRUE_VHDLSNPS.fxp_arith.all ;

entity MULT_SYN is

   port    ( IN0 : in STD_LOGIC_VECTOR((8-1) downto 0) ;
             OUTPUT : out STD_LOGIC_VECTOR((8-1) downto 0) ) ;

end MULT_SYN ;

architecture behavior of MULT_SYN is
 constant RoundProdWidth_M_M1_1_1: INTEGER := 8 ;
begin
  main: process(IN0)
        variable Input2_M_M1_1_1: SIGNED(8 - 1 DOWNTO 0) ;
        variable RoundProd_M_M1_1_1: SIGNED(ROUNDPRODWIDTH_M_M1_1_1-1 DOWNTO
0);

begin
    Input2_M_M1_1_1 := const2fxp(0, 78, 1, 8);
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    RoundProd_M_M1_1_1 := fxp_round(SIGNED(IN0) * Input2_M_M1_1_1,
0, RoundProdWidth_M_M1_1_1);

    OUTPUT <= STD_LOGIC_VECTOR(fxp_saturate(RoundProd_M_M1_1_1, 1, 8));
end process main;

end behavior ;

Synthesis-ready VHDL Code of 16-bit Fixed-point Delay Sub-block (Active-high reset)

library IEEE ;
use IEEE.std_logic_1164.all ;

entity delay is

   port    ( INPUT : in STD_LOGIC_VECTOR((16-1) downto 0) ;
       OUTPUT : out STD_LOGIC_VECTOR((16-1) downto 0);

             CLK, RESET : in STD_LOGIC ) ;

end delay;

architecture behavior of delay is
begin

  main: process(CLK,RESET)
begin
 if (RESET = '1') then

             for i in 0 to 16-1 loop
      OUTPUT(i) <= '0';

     end loop;
 elsif (CLK'EVENT and CLK = '1') then

OUTPUT <= INPUT;
 end if;
end process main;

end behavior ;
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APPENDIX G: :Synthesis Script Files for Sub-blocks (16-bit example)

Synthesis Script File for 16-bit 2-input Fixed-point Adder

analyze -format vhdl ../src/adder2.vhd

elaborate ADDER2 -arch "behavior" -lib BITTRUE_VHDLSNPS -update

set_prefer { hcells/* }
set_dont_use { lsi_10k/* }

set_max_delay 20.0 -from all_inputs() -to all_outputs()

compile -incremental_mapping -ungroup_all -map_effort high

write -f db   -out ./db/ADDER2.db
write -f vhdl -out ./ADDER2.vhd

check_design                               > ./adder2_check.rpt
report_timing                              > ./adder2_timing.rpt
report_constraints -all_violators -verbose > ./adder2_viol.rpt
report_cell                                > ./adder2_cell.rpt
report_area                                > ./report/adder2_area.rpt
report_cell all_registers()                > ./adder2_registers.rpt
report_net                                 > ./adder2_net.rpt
report_clock                               > ./adder2_clock.rpt
report_timing -path end -delay max -max_paths 600 -nworst 1 -to all_outputs()
>> ./adder2_timing.rpt

quit

Synthesis Script File for 16-bit 3-input Fixed-point Adder

analyze -format vhdl ../src/adder3.vhd

elaborate ADDER3 -arch "behavior" -lib BITTRUE_VHDLSNPS -update

set_prefer { hcells/* }
set_dont_use { lsi_10k/* }

set_max_delay 20.0 -from all_inputs() -to all_outputs()

compile -ungroup_all -map_effort high

write -f db   -out ./db/ADDER3.db
write -f vhdl -out ./ADDER3.vhd

check_design                               > ./adder3_check.rpt
report_timing                              > ./adder3_timing.rpt
report_constraints -all_violators -verbose > ./adder3_viol.rpt
report_cell                                > ./adder3_cell.rpt
report_area                                > ./adder3_area.rpt
report_cell all_registers()                > ./adder3_registers.rpt
report_net                                 > ./adder3_net.rpt
report_clock                               > ./adder3_clock.rpt
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report_timing -path end -delay max -max_paths 600 -nworst 1 -to all_outputs()
>> ./adder3_timing.rpt

quit

Synthesis Script File for 16-bit Fixed-point Multiplier w/coefficient

analyze -f vhdl ../src/mult.vhd

elaborate MULT -arch "behavior" -lib BITTRUE_VHDLSNPS -update

set_max_delay 20.0 -from all_inputs() -to all_outputs()

set_prefer { hcells/* }
set_dont_use { lsi_10k/* }

compile -map_effort high -ungroup_all

write -f db   -out ./db/MULT.db
write -f vhdl -out ./MULT.vhd

check_design                               > ./mult_check.rpt
report_timing                              > ./mult_timing.rpt
report_constraints -all_violators -verbose > ./mult_viol.rpt
report_cell                                > ./mult_cell.rpt
report_area                                > ./mult_area.rpt
report_cell all_registers()                > ./mult_registers.rpt
report_net                                 > ./mult_net.rpt
report_clock                               > ./mult_clock.rpt
report_timing -path end -delay max -max_paths 600 -nworst 1 -to all_outputs()
>> ./mult_timing.rpt

quit

Synthesis Script File for 16-bit Delay Sub-block (16-bit Butterworth Lowpass Filter)

analyze -f vhdl ../src/delay.vhd

elaborate DELAY -arch "behavior" -lib BITTRUE_VHDLSNPS -update

create_clock CLK -name "CLK" -period 500000

set_clock_skew -uncertainty 10.0 { CLK }

/* set_fix_hold { CLK } */
set_dont_touch_network { CLK }
set_drive 0 { CLK }

set_drive 0 { RESET }
set_dont_touch find(net,"RESET")

set_input_delay  -clock CLK 10.0 all_inputs()
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set_output_delay -clock CLK 10.0 all_outputs()

set_prefer { hcells/* }
set_dont_use { lsi_10k/* }

compile -map_effort low

write -f db   -out ./db/DELAY.db
write -f vhdl -out ./DELAY.vhd

check_design                               > ./delay_check.rpt
report_timing                              > ./delay_timing.rpt
report_constraints -max_delay -all_violators -verbose > ./delay_viol.rpt
report_cell                                > ./delay_cell.rpt
report_area                                > ./delay_area.rpt
report_cell all_registers()                > ./delay_registers.rpt
report_net                                 > ./delay_net.rpt
report_clock                               > ./delay_clock.rpt
report_timing -path end -delay max -max_paths 600 -nworst 1 -to all_outputs()
>> ./delay_timing.rpt

quit
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