
CMT502 Data Structures and Algorith February 05

1

DSA CMT502 1

Data Structures and
Algorithms

Dr. Yan Huang

DSA CMT502 2

Course Description

Title: Data Structures and Algorithms
Lecturer: Dr. Coral Yan Huang
Email: Yan.Huang@cs.cf.ac.uk
Room: T2.07
Time: 11:10-13:00 Thursday
Handouts: Lecture notes,

Exercise sheets (available only at lectures)

DSA CMT502 3

Coursework and Exams

80% weight Final Exam

8% weightWeek 6Mid-term
Class Test

12% weightGiven out: week 6
Due in: Week 10

Coursework

DSA CMT502 4

Books

The recommended text book for the module is:
“Data structures and algorithms in Java”
3rd edition, Goodrich and Tamassia
Wiley, 2003

Check reading list for course at
http://www.readinglists.co.uk/

Student view password is: CMT502YH

DSA CMT502 5

And more books…

More recommendations are:
“Data Structures and Algorithms in Java” by
Robert Lafore, published by SAMS Second
Education, 2003
“Data Structures and Other Objects Using

Java” by Michael Main, published by Addison
Wesley Publishing Company, 2002

DSA CMT502 6

Scheduling (to be continued)

Chapter 7. Trees5
Half-term Test
Coursework given out

6

Chapter 7. Trees4

Chapter 5. LinkedLists
Chapter 6. Lists

3

Chapter 3. Stacks
Chapter 4. Queues

2

Chapter 1. Introduction
Chapter 2. Analysis Tools

1
TopicWeek

CMT502 Data Structures and Algorith February 05

2

DSA CMT502 7

Scheduling

Chapter 13. Greedy Algorithms11
Revision 12

Chapter 12. Graphs
Coursework due

10

Chapter 10. Searching and selection
Chapter 11. Maps, dictionaries and sets

9
Chapter 9. Sorting8

Chapter 8. Balanced search trees
Chapter 9. Sorting

7
TopicWeek

DSA CMT502 8

Chapter 1: Introduction

1.1 Algorithms
1.1.1 Definition and Properties
1.1.2 An Example
1.1.3 Analysis of Algorithms
1.1.4 Pseudocode for Algorithms

1.2 Data Structures
1.2.1 Definition
1.2.2 Relation to Algorithms
1.2.3 Data Structure Types

DSA CMT502 9

1.1 Algorithms

Computer
Science

Study of
Algorithms

Machines for executing algorithms

Language for describing algorithms

Foundations of algorithms

Analysis of algorithms

=

+

+

+

DSA CMT502 10

1.1.1 Definition and Properties

Definition: An algorithm is a finite set of
instructions which accomplish a particular
task.
Properties:

Input
Output
Definiteness
Finiteness
Effectiveness

DSA CMT502 11

1.1.2 An Example

Example 1.1. Finding the maximum of three
numbers a, b and c.

Input: a, b, c
Output: x

Max(a, b, c){
x=a;
if (b > x)

x = b
if (c > x)

x = c
return x

}
DSA CMT502 12

1.1.3 Analysis of algorithms

Correctness
Termination
Time analysis: How many instructions
does the algorithm execute?
Space analysis: How much memory does
the algorithm need to execute?

CMT502 Data Structures and Algorith February 05

3

DSA CMT502 13

1.1.4 Pseudo code for Algorithms

An algorithm contains
Declaration of input and output.
Functions

Pseudocode syntax
If statements

if (condition)
action

if (condition)
action1

then
action2

DSA CMT502 14

1.1.4 Pseudo code for Algorithms

While statement

For statement

Return statement

Operators

While (condition)
action

for (var=init; var<=limit; var++)
action

return x

=Assignment operator:
&&, ||, !Logical operators:
==, !=, >, <, >=, <=Relational operators:
+, -, *, /Arithmetic operators:

DSA CMT502 15

1.1.4 Pseudocode for Algorithms

Example 1.2: Finding the maximum value in an
Array.

Input: s
Output: x

ArrayMax(s){
x=s[0]
for(i=1; i<s.length; i++)
if (s[i] > x)

x = s[i]
return x

}
DSA CMT502 16

1.2 Data Structures

We might also say computer science is the
study of data

Input data Algorithm
(transformation of data)

Output data

Raw data Refined data

DSA CMT502 17

1.2 Data Structure

Computer
Science

Study of
data

Machines that hold data

Language for describing data
manipulation

Foundations which describe how
refined data can be produced from
raw data

Structures for representing data

=

+

+

+

DSA CMT502 18

1.2.1 Definition

A data structure is an organization of
information, usually in memory, for better
algorithm efficiency.
A data structure may include redundant
information, such as length of the list or
number of nodes in a tree.

CMT502 Data Structures and Algorith February 05

4

DSA CMT502 19

1.2.2 Relation to Algorithms

Most data structures have associated
algorithms to perform operations, such as
search, insert, or balance, that maintain
the properties of the data structure
Algorithms and data structures should be
thought of as a unit, neither one making
sense without the other.

DSA CMT502 20

1.2.3 Data Structure Types

Queue
Stack
Linked List
Heap
Dictionary
Tree
Conceptual unity
……

DSA CMT502 21

Chapter 2. Analysis Tools

2.1 Mathematical review
2.1.1 Exponents
2.1.2 Logarithms
2.1.3 Summations

2.2 Running time
2.3 Analysis of algorithms

2.3.1 Primitive operations
2.3.2 Average case and worst case analysis

2.4 Big-O notation
DSA CMT502 22

2.1 A Quick Mathematical Review

2.1.1 Exponents
The number being multiplied is called the base,
and the exponent tells how many times the
base is multiplied by itself.
4 ×4 ×4 ×4 ×4 ×4 = 46

Propositions
(ba)c=bac

babc=ba+c

ba/bc=ba-c

DSA CMT502 23

2.1 A Quick Mathematical Review

2.1.2 Logarithms
A logarithmic function is the inverse of an
exponential function

logba = c if a=bc

Propositions
logb(ac) = logba + logbc
logb(a/c) = logba - logbc
logbac = clogba

DSA CMT502 24

2.1 A Quick Mathematical Review

2.1.3 Summations

∑

∑

=

=

+

+
=++++=

−
−

=++++=

n

i

n

i

n
ni

nnni

a
aaaaa

0

0

1
2

2
)1(321)2(

1
11)1(

L

L

CMT502 Data Structures and Algorith February 05

5

DSA CMT502 25

2.2 Running Time

Running time — the actual time spent in
execution of an algorithm.
It depends on a number of factors

Input
The hardware and software environment.

DSA CMT502 26

2.2 Running Time

running time of an algorithm

0
20
40
60
80

100

0 50 100 150

Size of input

Ti
m

e
(m

s)

faster computer
slower computer

DSA CMT502 27

2.2 Running Time

General methodology required
Take into account all possible inputs
Independent from the hardware and software
environment.

We conclude
Experimental analysis has its limitations
It is better to analyse a particular algorithm
without performing experiments on its running
time.

DSA CMT502 28

2.3 Analysis of Algorithms

Instead of trying to determine the specific
execution time of a particular algorithm,
we simply count the number of primitive
operations that are executed

DSA CMT502 29

2.3.1 Primitive Operations

Includes
Assigning a value to a variable
Calling a method
Performing an arithmetic operation
Comparing two values
Indexing into an array
Following an object reference
Returning from a method

DSA CMT502 30

2.3.1 Primitive Operations

Example 2.1: Given an algorithm which finds the
maximum value in an array, count the number of
primitive operations executed in this algorithm.

Input: s
Output: x

ArrayMax(s){
x=s[0]
for(i=1; i<s.length; i++)

if (s[i] > x)
x = s[i]

return x
}

CMT502 Data Structures and Algorith February 05

6

DSA CMT502 31

ArrayMax(s){

x=s[0]

for(i=1; i<s.length; i++)

if (s[i] > x)

x = s[i]

return x

}

2.3.1 Primitive Operations
2 operations (indexing and assignment)

1 operation (returning)

Loop

•Beginning of loop: 1 assignment

•On entering each iteration (n): 1 comparison

•Each iteration (n-1):

2 operations(indexing and comparison)

0/2 operations(indexing and assignment)

•End of each iteration (n-1): 2 operations
(summing and assignment)

(n is the size of the input array)
DSA CMT502 32

The number of primitive operations t(n) executed
by algorithm arrayMax is (n is the size of the
input array):

At least
t(n) = 2+1+n+(2+2)*(n-1)+1 = 5n

At most
t(n) = 2+1+n+(2+2+2)*(n-1)+1 = 7n-2

2.3.1 Primitive Operations

Best case

Worst case

DSA CMT502 33

2.3.2 Average-Case and Worst-Case
Analysis

Average-Case Analysis—expresses the
running time of an algorithm as an
average taken over all possible inputs.

Difficult — depends on the input distribution,
and requires heavy mathematics on probability
theory.
Not required.

DSA CMT502 34

2.3.2 Average-Case and Worst-Case
Analysis

Best-Case Analysis — the shortest
running time of an algorithm.

Worst-Case Analysis — the longest
running time of an algorithm.

DSA CMT502 35

2.4 “Big-O” Notation

Definition of “Big-O” Notation(a very
mathematical one)

Let f(n) and g(n) be functions mapping
nonnegative integers to real numbers. We say
that f(n) is O(g(n)) if there is a real constant c>0
and an integer constant n0 >= 1 such that
f(n)<=cg(n) for every integer n>= n0.

“f(n) is O(g(n))” is pronounced as

“f(n) is big-O of g(n)” or “f(n) is order g(n)”.

DSA CMT502 36

2.4 “Big-O” Notation

f(n) is O(g(n))

Input size

R
un

ni
ng

 ti
m

e

n0

cg(n)

f(n)

CMT502 Data Structures and Algorith February 05

7

DSA CMT502 37

2.4 “Big-O” Notation

Example 2.2: Justify 7n-2 is O(n).
Justification: we need to find a real constant c>0 and

an integer n0>=1 such that 7n-2<=cn for every n>=n0.
We chose c=7, n0=1 and then we have

7n-2<7n when n>=1
Thus 7n-2 is O(n)

DSA CMT502 38

2.4 “Big-O” Notation

Example 2.3: Justify is .
Justification:

We chose c=31, n0=1 and then we have
when n>=1

Thus is .

6520 23 ++ nn)(3nO

6520 23 ++ nn)(3nO

323 316520 nnn ≤++

DSA CMT502 39

2.4 “Big-O” Notation

A practical method in finding the “big-O”
notation of a function.

We can use the notion of the largest term in a
function.
The largest term is

the term with the largest exponent of n
the term that grows the fastest.

DSA CMT502 40

2.4 “Big-O” Notation

Example 2.4: 5n+logn+7 is O(n)

Example 2.5: 100 is O(1)
Example 2.6: 5/n is O(1/n)

……

31000

2100

110

01
Log nn

DSA CMT502 41

2.4 “Big-O” Notation

Special terms to classify functions
Logarithmic functions: O(logn)
Linear functions: O(n)
Quadratic functions: O(n)
Polynomial functions: O(n) where k>=1
Exponential functions: O(a) where a>1

2

κ

n

DSA CMT502 42

Chapter 3 Stacks

3.1 The stack Abstract Data Type
3.2 Array-Based Implementation of Stack
3.3 Stack Applications
3.4 Stacks in the Java Virtual Machine

3.4.1 Java Method Stack
3.4.2 Recursion
3.4.3 Operand Stacks

CMT502 Data Structures and Algorith February 05

8

DSA CMT502 43

Chapter 3. Stacks

Definition — A stack is a container of
objects that are inserted and removed
according to the last-in-first-out principle.
Operations:

Pushing
Popping

Examples
“back” in a web browser
“undo” in Text editors

pushing popping

DSA CMT502 44

3.1 The stack Abstract Data Type

Two fundamental operations
push (o): insert object o at the top of the stack
pop(o): return and remove the top object from

the stack.

DSA CMT502 45

3.2 Array-Based Implementation of Stack
public class ArrayStack{

public static int capacity;
public Object s[]; //Array used to implement the stack
private int top=-1; //Index of the top element

public ArrayStack(int n){
capacity = n;
s = new Object[n];

}

public void push(Object obj) { … }

public Object pop() { … }
}

DSA CMT502 46

3.2 Array-Based Implementation of Stack
public class ArrayStack{

….
public void push(Object obj) {

if (top==capacity-1){
//stack is full , do nothing

} else {
top++;
s[top]=obj;

}
return;

}
….

}

2

2

2

1

DSA CMT502 47

3.2 Array-Based Implementation of Stack
public class ArrayStack{

….
public Object pop() {

Object ret=null;
if (top<0){

//stack is empty, do nothing
} else {

ret = s[top];
s[top]=null;
top--;

}
return ret;

}
….

}

1

2

2
1

2

DSA CMT502 48

3.2 Array-Based Implementation of Stack

Running time analysis

Both methods run in constant time O(1)

Space usage: O(n)

O(1)8pop

O(1)7Push
TimeNumber of primitive operationsmethod

CMT502 Data Structures and Algorith February 05

9

DSA CMT502 49

3.2 Array-Based Implementation of Stack

Pros
Simple and Efficient

Cons
May waste memory if the actually used space is
smaller than the ultimate size of the stack.
May “crash” the applications which need a large
size of stack.
Difficult to delete or insert an element.

DSA CMT502 50

3.3 Stack Applications

Example 3.1: Show how to use a stack to reverse
a word BIG.

Β Β Β Β Β
ΙΙ

G
ΙΙ

Push B Push I Push G Pop G Pop I Pop B

DSA CMT502 51

3.4 Stack in Java Virtual Machine

High-level languages
(C, C++)

Machine language of specific CPU
(machine-dependent,
not transportable)

compile

Java language

compile

Byte code for JVM

PC UNIX LINUX
(emulating the JVM)

Typical Case Java Virtual Machine
DSA CMT502 52

3.4.1 Java Method Stack

Is a private stack for each running Java
Program.
Is used to keep track of important information on
methods which includes

Local variables
Program counter
Parameters

Its element is called frame which is a descriptor
of one of active invocations of methods.

DSA CMT502 53

3.4.1 Java Method Stack
0 main(){
1 int i=5;

…
14 func1(i)

…
}

204 func1(int j){
int k=7;
…

216 func2(k);
…

}

320 func2(int m){
…

}

main:
pc=14
i=5

func1:
pc=216
j=5
k=7

func2:
pc=320
m=7

Java Program

Java Method Stack

suspended
methods

running
method

DSA CMT502 54

3.4.2 Recursion

Allows a method to call itself as a subroutine.
Example: Compute the factorial function

n!=n(n-1)(n-2)…..*2*1

Public static long factorial(long n){
if(n<=1)

return 1;
else{

int m=factorial(n-1);
return n*m;

}
}

CMT502 Data Structures and Algorith February 05

10

DSA CMT502 55

3.4.2 Recursion
main(){

int i=10;
…..

12 factorial(i);
…..

}

215 Public static long
factorial(long n)
{

if(n<=1)
return 1;

else {
221 int m=factorial(n-1);

return n*m;
}

}

main:
pc=12
i=10

factorial:
pc=215
n=1

factorial:
pc=221
n=10

factorial:
pc=221
n=9

…

factorial:
pc=221
n=2

Java Method StackJava Program
DSA CMT502 56

3.4.3 Operand Stacks

are used to evaluate arithmetic
expressions.
Two kind of stacks work together for the
purpose.

Number stack
Operation stack

DSA CMT502 57

3.4.3 Operand Stacks

Example 3.2 ((7+8)*(6-4))/5

((7+8)

7
8

+

15

(15 ∗(6−4)

15

∗
−

6
4

15
2

∗

(15 ∗2)(15

30

30 30/5

30
5

/

6

6

DSA CMT502 58

Chapter 4 Queues

4.1 The Queue Abstract Data Type
4.2 Array-Based Implementation of Queue
4.3 Priority Queues

DSA CMT502 59

Chapter 4 Queues

Queue is a container of objects that are
inserted and removed according to the
first-in-first-out (FIFO) principle.

X X X X X X X X X X X X X X

rear front

Queue

DSA CMT502 60

4.1 The Queue Abstract Data Type

Two fundamental operations
enqueue (o): insert object o at the rear of the

queue
dequeue(o): return and remove from the queue

the object at the front.

CMT502 Data Structures and Algorith February 05

11

DSA CMT502 61

4.2 Array-Based Implementation of
Queue

public class ArrayQueue{
public static int capacity;
public Object s[]; //Array used to implement the queue
private int front = 0; //Index of the front element
private int rear = 0; //index of the rear element

public ArrayQueue(int n){
capacity = n;
s = new Object[n];

}

public void enqueue(Object obj) { … }

public Object dequeue() { … }
}

DSA CMT502 62

4.2 Array-Based Implementation of
Queue

public class ArrayQueue{
….

public void enqueue(Object obj) {
if((rear+1)%capacity == front)

// the queue is full, do nothing
} else {

s[rear]=obj;
rear=(rear+1) % capacity;

}
return;

}

…..
}

3

3
2

1

x
rear front

x x x x x x x x x x x x
The queue is full

DSA CMT502 63

4.2 Array-Based Implementation of
Queue

public class ArrayQueue{
….
public Object dequeue() {

Object retObj=null;
if(rear == front)

// the queue is empty, do nothing
} else {

retObj = s[front];
s[front]=null;
front=(front+1)%capacity;

}
return retObj;

}
…..

}

1

2
2

1

rear front

The queue is empty

3

1

DSA CMT502 64

4.2 Array-Based Implementation of
Queue

Running time analysis

Both methods run in constant time O(1)

Space usage: O(n)

O(1)10dequeue

O(1)9enqueue
TimeNumber of primitive operationsmethod

DSA CMT502 65

4.2 Array-Based Implementation of
Queue

Pros
Simple and Efficient

Cons
Not very adaptive. The size must be fixed in
advance.
Difficult to delete or insert an element.

DSA CMT502 66

4.3 Priority Queues

A priority queue, in general, is a collection
of prioritized elements, in which the next
element to be removed in the queue is the
element that

Has the highest priority of all elements
Has been in the queue the longest among
elements with equal priority

CMT502 Data Structures and Algorith February 05

12

DSA CMT502 67

4.3 Priority Queues

Removal order: B, E, A, D, F, C, G

Oldest time Recent time

A B C D E F G2 3 1 2 3 2 1Elements
Inserted

priority

DSA CMT502 68

4.3 Priority Queues

Representing priority queues
A linked list representation

B
3

E
3

A
2

D
2

F
2

C
1

G
1

DSA CMT502 69

4.3 Priority Queues

A array of queues representation

0

2

3

4

1 GC

A D F

B E

DSA CMT502 70

Chapter 5 Linked Lists

5.1 Singly Linked Lists
5.1.1 Why Linked Lists
5.1.2 Linked List ADT
5.1.3 Implementing a singly Linked List
5.1.4 Implementing a Stack with a Singly Linked
List

5.2Doubly Linked List

DSA CMT502 71

5.1 Singly Linked Lists

Is a collection of nodes that together form
a linear ordering. Each node is a
compound object that stores an element
and a reference, called next, to another
node.

Α Β C X

head tail

….. null

DSA CMT502 72

5.1.1 Why Linked Lists

Why?
No predetermined fixed size.
Easily insert or delete an element.

Insert an element

Α Β C X

tail
….. null

head
F

insert

Α Β C X

tail
….. null

head
F

CMT502 Data Structures and Algorith February 05

13

DSA CMT502 73

5.1.1 Why Linked Lists

Delete an element

Α Β C X

tail
….. null

head

Α Β C X

tail
….. null

head

delete

DSA CMT502 74

5.1.2 Linked List ADT
(Based on java.util.LinkedList)

Fundamental methods
Add an element

add(int index, Object element)
addFirst(Object element)
addLast(Object element)

Remove an element
Object remove(int index)
boolean remove(Object element)
Object removeFirst()
Object removeLast()

DSA CMT502 75

5.1.2 Linked List ADT
(Based on java.util.LinkedList)

Get an element
Object get(int index)
Object getFirst ()
Object getLast()

Set an element
set(int index, Object element)

Find the index of an element
int indexOf(Object element)
Int lastIndexOf (Object element)

DSA CMT502 76

5.1.2 Linked List ADT
(Based on java.util.LinkedList)

Other methods
clear()
boolean contains(Object element)
int size()

DSA CMT502 77

5.1.3 Implementing a singly Linked List

5.1.3.1 Declaring a Node Class
public class Node{

Public Object element = null;
public Node next = null;

public Node(Object o, Node n){
element = o;
next = n;

}
}

DSA CMT502 78

5.1.3.2 Declaring the singly Linked List

public class SinglyLinkedList{
private Node head=null;
private Node tail=null;
private int size=0;

public SinglyLinkedList(){ }

public void add(int index, Object element){..}
public void addFirst(Object element){..}

…

}

CMT502 Data Structures and Algorith February 05

14

DSA CMT502 79

public void add(int index, Object element){
Node newNode = new Node(element, null);
if (index==0) {

addFirst(element); return;
} else if (index >= size) {

addLast(element); return;
}
int k=0;
Node node = this.head;
while(k<index-1){

node=node.next;
k++;

}
newNode.next=node.next;
node.next=newNode;
size++;
return;

}

5.1.3.3 Declaring add methods

DSA CMT502 80

public void addFirst(Object element){
Node newNode = new Node(element, head);
head = newNode;
if(size==0) tail=newNode;
size++;

}
public void addLast(Object element){

Node newNode = new Node(element, null);
if(tail!=null){

tail.next=newNode;
tail = tail.next;

}else {
tail=newNode;
head=newNode;

}
size++;

}

5.1.3.3 Declaring add methods

DSA CMT502 81

public Object remove (int index){
int k=0;
Node node1 = this.head;
Node node2 = null;

while(k<index && node1!=null){
node2=node1;
node1=node1.next;
k++;

}
if(k==index) {

node2.next = node1.next;
size--;
if(node2.next==null)

this.tail = node2;
return node1.element;

}
return null;

}

5.1.3.4 Declaring remove methods

DSA CMT502 82

5.1.3.4 Declaring remove methods

public Object removeFirst(){
if(size==0) return null;
Object retE = head.element;
head=head.next;
size--;
if(size==0) tail = null;
return retE;

}

DSA CMT502 83

public Object removeLast(){
if(size==0) return null;
Object retE = tail.element;
Node node1 = head;
Node node2 = null;
while(node1.next!=null){

node2 = node1;
node1=node1.next;

}
if(node2 == null)

head=tail=null;
else {

node2.next=null;
tail = node2;

}
size--;
return retE;

}

5.1.3.4 Declaring remove methods

DSA CMT502 84

5.1.3.4 Algorithm Analysis

O(n)removeLast()

O(1)removeFirst()

O(n)remove(int index)

O(1)addLast(Object O)

O(1)addFirst(Object O)

O(n)add(int index, Object O)

TimeMethod

CMT502 Data Structures and Algorith February 05

15

DSA CMT502 85

5.1.4 Implementing a Stack with a Singly
Linked List—method 1
Public class LinkedStack{

private Node top = null;
public LinkedStack(){}

public void push(Object element){
Node node = new Node(element, top);
top = node;

}

public Object pop(){
if(top==null) return null;
Object retObj = top.element;
top = top.next;
return retObj;

}
DSA CMT502 86

5.1.4 Implementing a Stack with a Singly
Linked List—method 2

Public class LinkedStack{
private SinglyLinkedList linkedList = null;

public LinkedStack(){
this.linkedList = new SinglyLinkedList();

}

public void push(Object element){
this.linkedList.addFirst(element);

}

public Object pop(){
return this.linkedList.removeFirst();

}

DSA CMT502 87

5.2 Doubly Linked List

header …..Α Β C X

A node stores two references: next and prev.
Two sentinel nodes

Header — null element, null prev.
Trailer — null element, null next.

Why — insertion and removal at both ends run
in O(1) time.

trailer

DSA CMT502 88

5.2 Doubly Linked List

Implementation of a node

public class DLNode{
Public object element=null;
Public DLNode prev=null;
Public DLNode next=null;

Public DLNode(Object e, DLNode p, DLnode n){
Element=e;
Prev=p;
Next=n;

}
}

DSA CMT502 89

Chapter 6 Lists

6.1 Collections
6.2 List ADT
6.3 A simple array-based implementation

of a list
6.4 A node-based implementation of a list
— doubly linked list
6.5 Java list classes
6.6 Iterators

DSA CMT502 90

6.1 Collections

A collection represents a group of objects
(elements).

Allows or does not allow duplicate elements
Is ordered or unordered.

Collection hierarchy
Collection

List/sequence Set
Ordered and duplicate
Elements allowed

Unordered and no duplicate
Elements allowed

CMT502 Data Structures and Algorith February 05

16

DSA CMT502 91

6.2 List ADT

List, also known as sequence, is an
ordered collection. Normally, it can index
into the middle of a sequence and it also
provides update methods for adding and
removing elements by their positions.
Stacks and queues are special kinds of
Lists.

DSA CMT502 92

6.2 List ADT

Fundamental methods
Add an element

add(int index, Object element)
addFirst(Object element)
addLast(Object element)

Remove an element
Object remove(int index)
boolean remove(Object element)
Object removeFirst()
Object removeLast()

DSA CMT502 93

Get an element
Object get(int index)
Object getFirst ()
Object getLast()

Set an element
set(int index, Object element)

Find the index of an element
int indexOf(Object element)
Int lastIndexOf (Object element)

6.2 List ADT

DSA CMT502 94

6.2 List ADT

Other methods
clear()
boolean contains(Object element)
int size()

DSA CMT502 95

6.3 A Simple Array-Based Implementation
of a List

public class ArrayBasedList{
private capacity;
public Object s[]; //Array used to implement the List
private int num = 0; //number of the elements stored

public ArrayBasedList(int N){
capacity = N;
s = new Object[N];

}

//declaration of methods
….

}

DSA CMT502 96

6.3 A Simple Array-Based Implementation
of a List

Insert an element

public void add(int index, Object element){
if(index>=this.capacity)

return;
for(int i=num; i>index; i--)

S[i]=S[i-1];
S[i-1] = element;
num++;
return;

}

CMT502 Data Structures and Algorith February 05

17

DSA CMT502 97

6.3 A Simple Array-Based Implementation
of a List

Remove an element at a specified position

public void removeElementAt(int index){
if(index>=this.capacity)

return;
for(int i=index; i<num; i++)

S[i]=S[i+1];
S[num-1] = null;
num--;
return;

}

DSA CMT502 98

6.3 A Simple Array-Based Implementation of a List
Running time analysis

O(1)get(int index)
O(1)getFirst()
O(1)getLast()
O(1)set(int index, Object O)

O(1)removeLast()

O(n)remove(int index)

O(n)indexOf(Object O)

O(n)removeFirst()
O(n)remove(Object O)

O(1)addLast(Object O)
O(n)addFirst(Object O)
O(n)add(int index, Object O)
TimeMethod

DSA CMT502 99

6.4 A Node-based Implementation of a List —
Doubly Linked List

O(n)
O(1)
O(1)
O(1)
O(1)
O(1)
O(n)
O(n)
O(n)
O(1)
O(n)
O(n)

Time(Array-based)

O(n)get(int index)
O(1)getFirst()
O(1)getLast()
O(n)set(int index, Object O)

O(1)removeLast()

O(n)remove(int index)

O(n)indexOf(Object O)

O(1)removeFirst()
O(n)remove(Object O)

O(1)addLast(Object O)
O(1)addFirst(Object O)
O(n)add(int index, Object O)

Time(Doubly Linked List)Method

DSA CMT502 100

6.5 Java List Classes

List

AbstractList ArrayList Vector LinkedList

DSA CMT502 101

6.5 Java List Classes

java.util.Vector class
Implements a growable array of objects.
It has an integer CapacityIncrement parameter to
determine how the underlying extendable array
grows

If CapacityIncrement =0 (defalut), the array doubles
when it grows.
If CapacityIncrement =k (k>0), the array adds k cells
when it grows.

DSA CMT502 102

6.5 Java List Classes

Capacity related constructor and methods
Vector(int initialCapacity);
Vector(int initialCapacity, int capacityIncrement)
void ensureCapacity(int minCapacity)
void setSize(int newSize)

Is Synchronized.

CMT502 Data Structures and Algorith February 05

18

DSA CMT502 103

6.5 Java List Classes

java.util.ArrayList class
This class is roughly equivalent to Vector, except
that it is unsynchronized.
If multiple threads access an ArrayList instance
concurrently, and at least one of the threads
modifies the list structurally, it must be
synchronized externally.

DSA CMT502 104

6.6 Iterators

A typical computation on collections is to
march through its elements in order, one
at a time, to look for a specific element.
A class that implements Java’s Iterator
interface provides three methods:

public boolean hasNext();
public Object next();
public void remove();

DSA CMT502 105

6.6 Iterators

Java.util.Iterator provides a generic
mechanism for scanning through a
container, ADTs storing collections of
objects in Java support a method iterator()
that returns an iterator of the elements in
the collection.

DSA CMT502 106

6.6 Iterators

Example
public static void printVector(java.util.Vector, V){

java.util.Iterator iter = V.iterator();
while(iter.hasNext())

System.out.println(iter.next());
}

}

DSA CMT502 107

Chapter 7 Trees

7.1 Tree Terminology and Basic Properties
7.2 Tree ADT
7.3 Data Structures for Representing Trees

7.3.1 A Vector-Based Structure for Binary Trees
7.3.2 A Linked Structure for Binary Trees

7.4 Traversals of binary trees
7.4.1 Pre-order traversal
7.4.2 In-order traversal
7.4.2 Post-order traversal

7.5 Binary Search Trees
DSA CMT502 108

Chapter 7 Trees

7.6 Heaps
7.6.1 The heap implementation of a priority tree
7.6.2 Creating a heap
7.6.3 Running time analysis

CMT502 Data Structures and Algorith February 05

19

DSA CMT502 109

Chapter 7 Trees

DSA CMT502 110

Chapter 7 Trees

Jane

Mat Jennifer Brian

Susan Jerry Jack

Jane’s children and grandchildren

mystuff

home work

games teaching research

DAS.ppt OS.ppt

File organization in a computer

DSA CMT502 111

Chapter 7 Trees

Tree is one of the most important
nonlinear data structures in computing.
It allows us to implement faster algorithms(
compared with algorithms using linear
data structures).

DSA CMT502 112

7.1 Tree Terminology and Basic
Properties

Definition: A Tree is a set of nodes
storing elements in a parent-child
relationship with the following properties:

It has a special node called root.
Each node different from the root has a parent
node.

Terms
Parent — the parent of a node is the node
linked above it.

DSA CMT502 113

7.1 Tree Terminology and Basic
Properties

Sibling — Two nodes are siblings if they have the
same parent.
Ancestor
Descendant
Leaf — a node which has no child.
Subtree — any node and its descendants form a
subtree of the original tree.
Path of two nodes — a path that begins at the
starting node and goes from node to node along the
edges that join them until the ending node.
Length of a path — the number of the edges that
compose it.

DSA CMT502 114

7.1 Tree Terminology and Basic
Properties

Depth of a node — the length of the path
between the root and the node.
Height of a tree — the maximum depth of a
leaf node.

Tree Types
Binary tree — each node has at most two
children
n-ary tree — each node has at most n children
General tree — each node can have an
arbitrary number of children.

CMT502 Data Structures and Algorith February 05

20

DSA CMT502 115

7.1 Tree Terminology and Basic
Properties

More terms
A binary tree is full if every non-leaf node in the
tree has exactly two children
A binary tree is complete if every level except the
deepest contains as many nodes as possible, and
all the nodes at the deepest level are as far left as
possible.

A complete binary tree of depth n has
• Maximum number of leaves: 2n

• Maximum number of total nodes: 2n+1 -1.

DSA CMT502 116

7.1 Tree Terminology and Basic
Properties

A full binary tree A complete binary tree

DSA CMT502 117

7.1 Tree Terminology and Basic
Properties

Properties of Binary Trees
Let T be a full binary tree with n nodes, and let h denote
the height of T, then T has the following properties:

(n-1)/2The height of the tree h

2h+1 The total number of nodes

h The number of non-leaf nodes

h+1The number of leaf nodes

At mostAt least

12 1 −+h

12 −h

h2

1)1log(−+n

DSA CMT502 118

7.1 Tree Terminology and Basic
Properties

Example 7.1: An arithmetic expression can be
represented by a tree whose leaf nodes are
associated with variables or constants, and
whose non-leaf nodes are associated with one
of the operators +, -, x and /.

Such an arithmetic expression tree is
normally a full binary tree, since each of the
operators +, -, *, and / take exactly two
operands.

DSA CMT502 119

7.1 Tree Terminology and Basic
Properties
Given a expression (((4+5)*3)/((8-7)+2))-((5*(7-5))-8), Its

expression tree is as follows:

−

/ -

* *

-

4 5

+ 3

+

8 7

- 2 5

8

7 5

DSA CMT502 120

7.2 Tree ADT

Tree nodes
The tree ADT stores elements at nodes which are
defined relative to neighbouring nodes.
Themselves are ADTs which support the method

Object element(): return the object at this node.

Tree methods
Accessor methods

TNode root()
TNode parent(TNode node)
Iterator children(TNode node)

CMT502 Data Structures and Algorith February 05

21

DSA CMT502 121

7.2 Tree ADT

Query methods
boolean isLeaf(TNode node)
boolean isRoot (TNode node)

Generic methods
Int size();
Iterator elements();
Iterator nodes();
swapElements(TNode node1, TNode node2)
TNode replaceElement(TNode node, Object element)

DSA CMT502 122

7.2 Tree ADT

Binary tree methods. Three additional
accessor methods are supported

TNode leftChild(TNode node)
TNode rightChild(TNode node)
TNode sibling(TNode node)

DSA CMT502 123

7.3 Data Structures for Representing
Trees

7.3.1 A Vector-Based Structure for Binary
Trees

Level numbering function p of nodes in a binary
tree T is defined as follows:

If v is the root of T, then p(v)=0;
if v is the left child of node u, then p(v)=2p(u)+1
if v is the right child of node u, then p(v)=2p(u)+2

Represent a binary tree T by means of a Vector
S : node v of T is associated with the element
of S at position p(v).

DSA CMT502 124

7.3.1 A Vector-Based Structure for Binary
Trees

A

B

D

H

GE

I J

F

C

K

0

1 2

3 4 5 6

7 8 10 14

A B C D E F G H I J K
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

DSA CMT502 125

7.3.1 A Vector-Based Structure for Binary
Trees

Running times of methods of a binary tree
implemented with a vector

O(1)isLeaf(), isRoot()

O(1)leftChild(), rightChild(), sibling()

O(1)Root(), parent(), children()

O(1)swapElements(), replaceElement()

O(n)Nodes(), elements()
TimeMethods

DSA CMT502 126

7.3.1 A Vector-Based Structure for
Binary Trees

Running times of methods of a binary tree
implemented with a vector

O(1)isLeaf(), isRoot()

O(1)leftChild(), rightChild(), sibling()

O(1)Root(), parent(), children()

O(1)swapElements(), replaceElement()

O(n)Nodes(), elements()
TimeMethods

CMT502 Data Structures and Algorith February 05

22

DSA CMT502 127

7.3.1 A Vector-Based Structure for Binary
Trees

Pros: Fast and easy
Cons: Can be very space inefficient if the
height of the tree is large

DSA CMT502 128

7.3.1 A Vector-Based Structure for Binary
Trees

Example 7.1: If the number of
nodes in a binary tree is 5, what is
the size of the Vector in the worst
case?
1+2+4+8+16 =31= 25-1

If the number of nodes in a binary
tree is n, the size of the Vector in
the worst case is 2n-1

DSA CMT502 129

7.3.2 A Linked Structure for Binary Trees

We represent each
node of a binary tree
by an object which
stores

Element
References to its parent
and children nodes

Β

parent

Left child Right child

DSA CMT502 130

7.3.2 A Linked Structure for Binary Trees

Α

Β

C D

Β

DSA CMT502 131

7.3.2 A Linked Structure for Binary Trees

BTNode class declaration
public class BTNode{

private Object element;
public BTNode left, right, parent;

public BTNode(){}

public BTNode(Object O, BTNode l, BTNode r, BTNode p){
this.element = O; this.left =l;
this.right = r; this.parent =p;

}

public Object element(){ return this.element;}
}

DSA CMT502 132

7.3.2 A Linked Structure for Binary Trees

Running times of methods of a binary tree implemented
with a linked structure

Space usage is O(n) for an n-node binary tree.

O(1)isLeaf(), isRoot()
O(1)leftChild(), rightChild(), sibling()
O(1)Root(), parent(), children()
O(1)swapElements(), replaceElement()
O(n)Nodes(), elements()
TimeMethods

CMT502 Data Structures and Algorith February 05

23

DSA CMT502 133

7.3.3 A Linked Structure for General
Trees

A container (for example, a list or vector)
to store the children of a node in a general
tree.

Α

Β

parent

Children Container

DSA CMT502 134

7.4 Traversals of Binary Trees

A traversal of a tree is a systematic way of
accessing or “visiting” all the nodes in the
tree.
There are three basic traversal schemes:

Pre-order traversal
In-order traversal
Post-order traversal

DSA CMT502 135

7.4.1 Pre-Order Traversal

A pre-order traversal has three steps for a
nonempty tree:

Process the root.
Process the nodes in the left subtree with a
recursive call.
Process the nodes in the right subtree with a
recursive call.

DSA CMT502 136

7.4.1 Pre-Order Traversal

Algorithm binaryPreorder(T, v)

Input: binary tree T, node v
Output: none

binaryPreorder(T, v){
Perform the “visit” action for node v
If(!T.isLeaf(V)){

binaryPreorder(T, T.leftChild(v))
//recursively traverse left subtree

binaryPreorder(T, T.rightChild(v))
//recursively traverse right subtree

}
}

DSA CMT502 137

7.4.1 Pre-Order Traversal

Α

Β C

D E F G

H I J K

DSA CMT502 138

7.4.1 Pre-Order Traversal

Using pre-order traversal of a binary tree
to solve the expression evaluation
problem.

−

/ -

* *

-

4 5

+ 3

+

8 7

- 2 5

8

7 5

CMT502 Data Structures and Algorith February 05

24

DSA CMT502 139

Input: binary tree T, node v
Output: result of the sub expression

preorderEvaluateExpression(T, v){
if(T.isLeaf(v))

return v.element()
operator = v.element()
operand1 = preorderEvaluateExpression (T, T.leftChild(v))
operand2 = preorderEvaluateExpression (T, T.rightChild(v))
compute the expression and get the result
return result

}

7.4.1 Pre-Order Traversal

DSA CMT502 140

7.4.2 In-Order Traversal

An in-order traversal has three steps for a
nonempty tree:

Process the nodes in the left subtree with a
recursive call.
Process the root.
Process the nodes in the right subtree with a
recursive call.

DSA CMT502 141

7.4.2 In-Order Traversal

Algorithm binaryInorder(T, v)

Input: binary tree T, node v
Output: none

binaryInorder(T, v){
If(!T.isLeaf(v))

binaryInorder(T, T.leftChild(v)) //recursively traverse left
subtree

Perform the “visit” action for node v
If(!T.isLeaf(v))

binaryInorder(T, T.rightChild(v)) //recursively traverse right
subtree

}

DSA CMT502 142

7.4.2 In-Order Traversal

Α

Β C

D E F G

H I J K

DSA CMT502 143

7.4.2 In-Order Traversal

Using in-order traversal of a binary tree to
solve the expression evaluation problem.

−

/ -

* *

-

4 5

+ 3

+

8 7

- 2 5

8

7 5

DSA CMT502 144

Input: binary tree T, node v
Output: result of the sub expression

inorderEvaluateExpression(T, v){
if(T.isLeaf(v))

return v.element()
operand1 = inorderEvaluateExpression (T, T.leftChild(v))
operator = v.element()
operand2 = inorderEvaluateExpression (T, T.rightChild(v))
compute the expression and get the result
return result

}

7.4.2 In-Order Traversal

CMT502 Data Structures and Algorith February 05

25

DSA CMT502 145

7.4.3 Post-Order Traversal

A post-order traversal has three steps for
a nonempty tree:

Process the nodes in the left subtree with a
recursive call.
Process the nodes in the right subtree with a
recursive call.
Process the root.

DSA CMT502 146

7.4.3 Post-Order Traversal

Α

Β C

D E F G

H I J K

DSA CMT502 147

7.5 Binary Search Trees

In a binary search tree, each non-leaf
node v stores an element e such that

the elements stored in the left subtree of v are
less than or equal to e.
the elements stored in the right subtree of v are
greater than e.

DSA CMT502 148

7.5 Binary Search Trees

4

2 8

0 3 6 9

5 7

DSA CMT502 149

7.5 Binary Search Trees

Advantage of using binary search trees —
support fast search.

45

9 67

3 26 53 70

48 64

Find an element
in the binary
search tree

DSA CMT502 150

7.5 Binary Search Trees
Counting the occurrences of an element in a binary
search tree.
Input: binary search tree T, node v, element e
Output: the number of the occurrences of element e in a subtree

with v as its root node.
occurrencesCount(T, v, e){

int ret=0;
if(T.isLeaf(v))

if(v.element()==e) ret=1;
else {

if(v.element()==e)
ret= 1+occurrenceCount(T, T.leftChild(v), e);

else if(v.element()>=e)
ret = occurrenceCount(T, T.leftChild(v), e);

else ret=occurrenceCount(T, T.rightChild(v), e);
}
return ret;

}

CMT502 Data Structures and Algorith February 05

26

DSA CMT502 151

7.5 Binary Search Trees

45

9 67

3 26 53 70

48

651

2

3

3

53

53
DSA CMT502 152

7.5 Binary Search Trees
Adding a new element
to a binary search tree.

Example: add a new
element 50 to the binary
search tree.

9 67

3 26 53 70

48 65

45

50

DSA CMT502 153

7.5 Binary Search Trees
Adding a new element to a binary search tree.

Input: binary search tree T, node v, element e
Output:
add(T, v, e){

if(T.isLeaf(v)){
if(v.element()>=e)

add element e as v’s left child
else

add element e as v’s right child
} else {

if(v.element()>=e)
add(T, T.leftChild(v), e)

else
add(T, T.rightChild(v), e)

}
}

DSA CMT502 154

7.5 Binary Search Trees
Remove an element from a binary search tree.

9 67

3 26 53 70

48 65

45

50

remove

66

9 67

3 26 ? 70

48 65

45

50 66

DSA CMT502 155

7.5 Binary Search Trees
Input: binary search tree, node v, element e
Output: boolean
Algorithm remove(T, v, e): removes a copy of
element from a subtree whose root is node v. It
returns true if a copy of the element has been
removed, otherwise return false.

DSA CMT502 156

7.5 Binary Search Trees
In algorithm remove(T, v, e),

If node v is a leaf node and v stores element e.
• Delete v node

If node v only has right child and v stores element e.
• Find the smallest element s in v’s right subtree, replace

v’s data with s and remove the node that originally stored
the element s.

53

65

58 66

65

66

58

remove

smallest

58

65

58 66

change

delete

CMT502 Data Structures and Algorith February 05

27

DSA CMT502 157

7.5 Binary Search Trees
If node v has left child and v stores element e.

• Find the largest element l in v’s left subtree, replace v’s
data with l and remove the node that originally stored the
element s.

53

45

23 47

45

23

47

remove

largest

47

45

23 47

change

delete

DSA CMT502 158

Input: Binary search tree T, node v, element e
Output: true if the node storing element e has been removed, otherwise false

remove(T, v, e){
if(v==null) return false;
if(v.element==e){

if(T.isLeaf(v)){
if(T.leftChild(T.parent(v))==v) // v is the left child of its parent

(T.parent(v)).left = null;
else // v is the right child of its parent

(T.parent(v)).right = null;
} else {

BTNode s = null;
if(T.leftChild(v)!=null) s=maxNode(T, T.leftChild(v));
else s=minNode(T, T.rightChild(v));
T.replaceElement(v, s.element());
remove(T, s, s.element());

}
return true To be continued

DSA CMT502 159

} else {
if(T.isLeaf(v)) return false
else if (v.element()> = e)

return remove(T, T.leftChild(v), e)
else

return remove(T.T.rightChild(v), e)
}

}

DSA CMT502 160

Input: Binary search tree T, node v
Output: return the largest node in the subtree rooted at v
maxNode(T, v){

if(T.rightChild(v)==null) return v
else return maxNode(T, v.rightChild(v))

}

Input: Binary search tree T, node v
Output: return the smallest node in the subtree rooted at v
minNode(T, v){

if(T.leftChild(v)==null) return v
else return minNode(T, v.leftChild(v))

}

DSA CMT502 161

7.6 Heaps

A heap is a binary tree that satisfies two
additional properties:

The element contained by each non-leaf node
is greater than or equal to the element stored at
that node’s children.
The tree is a complete binary tree so that every
level except the deepest must contain as many
nodes as possible; at the deepest level, all the
nodes are as far left as possible.

DSA CMT502 162

7.6 Heaps
25

16

15 9

14 12 7 8

20

18 20

10 17

Example of a heap storing 13 elements

CMT502 Data Structures and Algorith February 05

28

DSA CMT502 163

7.6.1 The Heap Implementation of a
Priority Queue

In the heap implementation of a priority
queue,

each node of the heap contains one element
along with the element’s priority
The tree is maintained so that it follows the
heap storage rules using the element’s priority
to compare nodes.

DSA CMT502 164

7.6.1 The Heap Implementation of a
Priority Queue

Oldest time Recent time

A B C D E F G12 7 9 10 21 15 13Elements
Inserted

priority
E21

A12

D10B7

F15

C9 G13

DSA CMT502 165

7.6.1 The Heap Implementation of a
Priority Queue

Adding an element to a heap
Place the new element in the heap in the first
available location. (This keeps the structure as
a complete binary tree, but it might no longer be
a heap)
Swap the new element with its parent if it is
greater than its parent’s element, until it is less
than or equal to its parent’s element.
This is called up-heap bubbling

DSA CMT502 166

7.6.1 The Heap Implementation of a
Priority Queue

45

35 23

27 21 22 4

19 5
42

45

35 23

27 21 22 4

19 5 42

45

35 23

27 42 22 4

19 5 21

45

42 23

27 35 22 4

19 5 21

Add

Up-heap bubbling

DSA CMT502 167

7.6.1 The Heap Implementation of a
Priority Queue

Removing the root element from a heap
When an element is remove from a priority
queue, we must always remove the element
with the highest priority
1. Remove the root node in the heap
2. Move the last element v in the last level to the root.
3. If any of v’s child elements are larger than or equal

to v, swap node v with its largest child. Repeat this
step until all v’s children are smaller than v. This is
called down-heap bubbling or reheap.

DSA CMT502 168

7.6.1 The Heap Implementation of a
Priority Queue

45

35 23

27 21 22 4

19 5

35 23

27 21 22 4

19 5

5

35 23

27 21 22 4

19

35

5 23

27 21 22 4

19

Remove

Down-heap bubbling
(reheap)

CMT502 Data Structures and Algorith February 05

29

DSA CMT502 169

7.6.1 The Heap Implementation of a
Priority Queue

35

27 23

5 21 22 4

19

35

27 23

19 21 22 4

5

DSA CMT502 170

7.6.1 The Heap Implementation of a
Priority Queue

Upheap algorithm: transform a semiheap,
in which except for the last leaf, the
elements are ordered as they are in a
heap, into a heap.

40

35 23

27 21 22 4

19 70

DSA CMT502 171

7.6.1 The Heap Implementation of a
Priority Queue

Downheap algorithm: transforms a
semiheap, in which, except for the root,
the elements are ordered as they are in a
heap, into a heap.

5

35 23

27 21 22 4

19
DSA CMT502 172

7.6.1 The Heap Implementation of a
Priority Queue
upheap Algorithm

Input: Array H, int lastIndex
Output:
upheap(H, lastIndex){

if H[lastIndex] is the root, return
parentIndex=(lastIndex-1)/2

if (H[lastIndex] > H[parentIndex]){
temp = H[lastIndex]
H[lastIndex] = H[parentIndex]
H[parentIndex] = temp
upHeap(H, parentIndex)

}
}

DSA CMT502 173

7.6.1 The Heap Implementation of a
Priority Queue

Downheap Algorithm
Input: Array H, int rootIndex
Output:
downheap(H, rootIndex){

if H[rootIndex] is a leaf, return
childIndex=index of the larger of the root’s children.

if (H[rootIndex] < H[childIndex]){
temp = H[rootIndex]
H[rootIndex] = H[childIndex]
H[childIndex] = temp
downHeap(H, childIndex)

}
}

DSA CMT502 174

7.6.2 Creating a Heap

Using add: create a heap from a collection
of objects by using the add method to add
each object to an initially empty heap.

Example: adding 20, 40, 30, 10, 90, and 70 to a heap

20

20

40

40

20

40

20 30

CMT502 Data Structures and Algorith February 05

30

DSA CMT502 175

7.6.2 Creating a Heap

90

40 30

10 20

90

40 30

10 20 70

90

40 70

10 20 30

40

20 30

10

40

20 30

10 90

40

90 30

10 20

DSA CMT502 176

7.6.2 Creating a Heap

Using downheap:
Place the entries for the heap into an array
beginning at index 0. This array actually
represents a complete tree.
Starting at the end of the array, ignoring the
items which are leaves in the complete tree,
and moving towards the beginning of the array,
the next item we encounter is the root of a
semiheap within the tree. Apply downheap to
this semiheap. Continue in this manner.

DSA CMT502 177

7.6.2 Creating a Heap

Example: adding 20, 40, 30, 10, 90, and 70 to a heap
(a) The array of all entries and the complete tree that

the array represents.

(b) After downheap(A, 3)

20 3040 9010 70
10 32 54

20

40 30

10 90 70

20 7040 9010 30
1 32 54

20

40 70

10 90 30

0

DSA CMT502 178

7.6.2 Creating a Heap

(c) After downheap(A, 2).

(d) After downheap(A, 1)

20 7090 4010 30
20

90 70

10 40 30

90 7040 2010 30
90

40 70

10 20 30

1 32 540

1 32 540

DSA CMT502 179

7.6.2 Creating a Heap
Heap construction using upheap
method

Implementing upheap in Java
In the following algorithm, input array A starts at
index 0 and A[0…lastIndex-1] represents a heap.
Now add element A[lastIndex] into the heap. This
method transforms the semiheap A[0…lastIndex] into
a heap.

DSA CMT502 180

private static void upheap(int[] A, int lastIndex){
if(lastIndex==0)

return;

int parentIndex = (lastIndex-1)/2;
if(A[lastIndex]>A[parentIndex]){

int temp=A[lastIndex];
A[lastIndex] = A[parentIndex];
A[parentIndex]=temp;
upheap(A, parentIndex);

}
}

CMT502 Data Structures and Algorith February 05

31

DSA CMT502 181

Implementing heap construction by using the
upheap method

public static void createHeap(int[] A){
for(int i=1; i<A.length; i++)

upheap(A, i);
}

7.6.2 Creating a Heap

DSA CMT502 182

7.6.2 Creating a Heap
Heap construction using the downheap
method

Implementing downheap in Java
In the following algorithm, sub-array A[rootIndex…end]

represents a semiheap, in which, except for the root
element rootIndex, all other elements are ordered as
they are in a heap. This method transforms the
semiheap into a heap.

DSA CMT502 183

private static void downheap(int[] A, int rootIndex, int
end){

if(rootIndex > (end-1)/2) //entry rootIndex is a
leaf

return;
int childIndex = 2*rootIndex+1;
if(A[childIndex] < A[childIndex+1])

childIndex += 1;
if(A[rootIndex]<A[childIndex]){

int temp=A[rootIndex];
A[rootIndex] = A[childIndex];
A[childIndex]=temp;
downheap(A, childIndex,end);

}
}

DSA CMT502 184

7.6.2 Creating a Heap
Implementing Heap construction using the
downheap method

Public static void createHeap(int[] A){
for(int i=(A.length-1)/2 ; i>0; i--)

downheap(A, A.length-1);
}

DSA CMT502 185

7.6.3 Running time analysis

The adding(upheap) and removing(downheap)
operators can be performed in O(logn) time,
where n is the number of elements. This is
based on the following:

Since T is complete, the height of a heap is O(logn)
In the worst case, the upwards or downwards
swapping take time proportional to the height of the
heap.
All other operations takes constant time

Both of heap construction methods (upheap and
downHeap) can be performed in O(nlogn) time.

DSA CMT502 186

Chapter 8 Balanced Search Trees

8.1 AVL Trees
8.2 2-3 Trees
8.3 B-Trees

CMT502 Data Structures and Algorith February 05

32

DSA CMT502 187

Chapter 8 Balanced Search Trees

The problem of unbalanced trees
the tree are only
sparsely filled

Long and deep
search path

1
2

3
4

5
6

7
A troublesome
Search tree

The operations on a
unbalanced search
tree might be as

bad as O(n)

DSA CMT502 188

8.1 AVL Trees

An AVL tree is a binary search tree that
rearranges its nodes whenever it becomes
unbalanced.
A node is balanced if its two subtrees
differ in height by no more than 1.

50

60

80

20

50

60

80

20

50

80

90

20

90

60

balanced unbalanced balanced

Left rotation

DSA CMT502 189

8.1 AVL Trees

Single rotations
Right rotation — when the addition occurs in
the left subtree of node N’s left child.

C

N

T1 T2

T3

h-1

h

C

N

T1
T2

T3

h-1

h+1

C

N

T1 T2 T3

h

Before addition After addition After right rotation
DSA CMT502 190

8.1 AVL Trees

Left rotation — when the addition occurs in the
right subtree of node N’s right child.

C

N

T2 T3

T1

h-1

h

C

N

T3T1 T2

h

Before addition After addition After left rotation

C

N

T2
T3

T1

h-1

h+1

DSA CMT502 191

8.1 AVL Trees

Double rotations
Right-left rotation — when the addition occurs
in the left subtree of node N’s right child.

50

20 80

60 90

50

20 80

60 90

70

DSA CMT502 192

C

N

T1
T4

h-1

h

a. Before
addition

G

T2 T3

b. After
addition

T3

c. After
right
rotation

d. After
left
rotation

Right-left
Rotation

C

N

T1
T4

h-1

h+1G

T2
T3

C

N

T1

T4

h-1

h+1

G

T2

T3

CN

T1 T4

h-1

h

G

T2

CMT502 Data Structures and Algorith February 05

33

DSA CMT502 193

8.1 AVL Trees

50

20 80

60 90

70

Example of right-left rotation

50

20

80

60

9070

50

20

80

60

9070

Right rotation Left rotation

DSA CMT502 194

8.1 AVL Trees

Left-right rotation — when the addition occurs in
the right subtree of node N’s left child.

50

20 80

10 40

30

50

20 80

10 40

DSA CMT502 195

C

N

T1
T4

h-1

h

a. Before
addition

G

T2 T3

C

N

T1
T4

h-1

h+1

b. After
addition

G

T2
T3

C

N

T1

T4

h-1

h+1

c. After
left
rotation

G

T2

T3

C N

T1 T4

h-1

h

d. After
right
rotation

G

T2
T3Left-right

Rotation

DSA CMT502 196

8.1 AVL Trees

Example of left-right rotation

Left rotation Right rotation

50

40 80

20

30

50

20 80

10 40

3010

40

20 50

10 30 80

DSA CMT502 197

8.2 2-3 Trees

A 2-3 tree is a general search tree which
follows the following rules

All its non-leaf nodes must be either 2-node or
3-node.
All its leaf nodes occur on the same level.

2-node and 3-node
A 2-node contains one data element and has
two children. The data element is greater than
any data in the node’s left subtree and less than
any data in the right subtree.

DSA CMT502 198

8.2 2-3 Trees

A 3-node contains two data elements, s and l,
and has three children. Assume s<l.

Data elements that are less than s occur in the
node’s left subtree
Data elements that are larger than s and less than l
occur in the node’s middle subtree
Data elements that are greater than l occur in the
node’s right subtree

A 2-3 tree is completely balanced.

CMT502 Data Structures and Algorith February 05

34

DSA CMT502 199

8.2 2-3 Trees

An example
60

20, 50 80

5510 35, 40 70 90

DSA CMT502 200

8.2 2-3 Trees

Searching a 2-3 tree
Input: 2-3 Tree T, node v element e
Output: boolean

search23Tree(T, v, e){
if (v contains e) return true
else if(v is a leaf node) return false
Find the index number i by comparing e with the elements stored in v
return search23Tree(T, v’s ith child, e)

}

It runs in O(logn) time

DSA CMT502 201

8.2 2-3 Trees

Adding elements to a 2-3 tree
Example 8.1 Adding the following elements to an

empty 2-3 tree
60, 50, 20, 80, 90, 70, 55, 10, 40, and 35

60 50, 60 20, 50, 60
50

20 60(1) (2) (3)

split

DSA CMT502 202

50

20 60, 80

(4)

50

20 60,80, 90

(5)

50, 80

20 9060

split

50, 80

20 9060, 70
(6)

50, 80

20 9055,60,70

(7)

50,60, 80

20 9055 70

60

50 80

20 55 9070

split split

DSA CMT502 203

60

50 80

10,20 55 9070

(8)

60

50 80

10,20,40 55 9070

(9)

60

20,50 80

10 55 9070

split

40

60

20,50 80

10,40 55 9070

60

20,50 80

10 55 907035,40

(10)

DSA CMT502 204

8.2 2-3 Trees

Splitting nodes during addition
Split a leaf node to accommodate a new
element

If the leaf’s parent contains one data element.

p

s, m, l

parent split p, m

l

parent

s

CMT502 Data Structures and Algorith February 05

35

DSA CMT502 205

8.2 2-3 Trees

If the leaf’s parent contains two data elements.

p, q

s, m, l

parent
split

p, q, m

l

parent

s

Parent must split

DSA CMT502 206

8.2 2-3 Trees

Split a non-leaf node to accommodate a
new element

s, m, l
split

m

s l

DSA CMT502 207

8.2 2-3 Trees

Split a root node to accommodate a new
element

s, m, l
split

m

s l

DSA CMT502 208

8.3 B-Trees

A B-tree is not a binary tree. It nodes can
have many more than two children.
Each node in a B-tree might contain more
than one element.

DSA CMT502 209

8.3 B-Trees

B-tree rules
Rules for the element in a B-Tree Node: There
is a positive constant integer M which
determines the number of elements stored in
a single node.
1. The root can have as few as one element (or even

no elements if it also has no children)
2. All nodes other than the root have at least M

elements and at most 2M elements
3. The elements of each B-tree node are stored in a

particular container, sorted in an ascending order.

DSA CMT502 210

8.3 B-Trees

Rules for the subtrees below a B-Tree Node:
1. The number of subtrees below a non-leaf node is

always one more than the number of elements in
the node.

2. The elements in each subtree are organized in
such a way:
For any non-leaf node, an element at index i is greater

than all the elements in subtree number i of the node,
and less than all the elements in subtree number i+1 of
the node

Rule for balancing the tree: Every leaf in a B-
tree has the same depth.

CMT502 Data Structures and Algorith February 05

36

DSA CMT502 211

8.3 B-Trees

6

2,4 9

1 53 7,8 10

A Example of B-Tree

M = 1

DSA CMT502 212

8.3 B-Trees

Search an element in a B-tree
Assume in the B-Tree nodes ADT BaTNode,
two additional methods provided:

int getElementNum (): returns the number of
elements stored in the node.
int getIndex(Object e): returns an index number i
such that

• i=0, if e is less than the first element stored in the node
• 0<i<getElementNum()-1, if e is larger than the (i-1)th

element and less than the ith element stored in the node
• i=getElementNum()-1, if e is larger than the last element

stored in the node

DSA CMT502 213

8.3 B-Trees

boolean inNode (Object e): returns true if the
element e is one of the elements stored in the node,
otherwise false.

Also assume in the B-Tree ADT, the following
method is provided:

BaTNode getChild(BaTNode v, int i) returns node v’s
ith child node.

DSA CMT502 214

8.3 B-Trees

Input B-Tree T, BaTNode v and element e
Output: a Boolean value

searchBaTree(T, v, e){
if(v.inNode(e)) return true
else if (T.isLeaf(v)) return false
i = v.getIndex(e);
return searchBaTree(T, T.getChild(v, i), e)

}

Algorithm for searching a B-tree

Running time is O(logn)

DSA CMT502 215

8.3 B-Trees

6

2,4 9

1 53 7,8 10

An Example of a B-Tree Search

DSA CMT502 216

Chapter 9 Sorting

9.1 Selection Sort
9.1.1 Iterative Selection Sort
9.1.2 Recursive Selection Sort
9.1.3 Running Time Analysis

9.2 Insertion Sort
9.3 Shell Sort
9.4 Divide-and-Conquer Sorts

9.4.1 Mergesort
9.4.2 Quicksort

9.5 Heapsort
9.6 Comparing the algorithms

CMT502 Data Structures and Algorith February 05

37

DSA CMT502 217

Chapter 9 Sorting

Arranging things into ascending or
descending order is called sorting.

DSA CMT502 218

9.1 Selection Sort

In terms of an array A, the selection sort
finds the smallest element in the array and
exchanges it with A[0]. Then, ignoring
A[0], the sort finds the next smallest and
swaps it with A[1] and so on.

DSA CMT502 219

9.1 Selection Sort

An example of selection sort
15 6 10 5 3 8

3 6 10 5 15 8

3 5 10 6 15 8

3 5 6 10 15 8

3 5 6 8 15 10

3 5 6 8 10 15

unsorted

sorted
DSA CMT502 220

9.1.1 Iterative Selection Sort

Iterative selection sort algorithm
//Sort the first n elements of an array
Input: array A, int n
Output:
selectionSort1(A, n){

for(index = 0; index<n-1; index++){
indexOfNextSmallest = the index of the smallest value
among A[index], A[index+1], …A[n-1]
interchange the value of A[index] and A[indexOfNextSmallest]

}
}

DSA CMT502 221

9.1.1 Iterative Selection Sort
Implementing iterative selection sort in Java

public static void selectionSort1(int[] A, int n){
for(int i = 0; i<n-1; i++){

int indexOfNextSmallest = i;
int smallest = A[i];
for(int j=i+1; j<n; j++){

if(smallest>A[j]){
indexOfNextSmallest=j;
smallest=A[j];

}
}
A[indexOfNextSmallest]=A[i];
A[i]=smallest;

}
}

DSA CMT502 222

9.1.2 Recursive Selection Sort

Recursive selection sort algorithm
//Sort the array elements A[first] through A[last] recursively
Input: array A, int first, int last
Output:
selectionSort2(A, first, last){

if(first<last){
indexOfNextSmallest = the index of the smallest value among

A[first], A[first+1], …A[last]
interchange the value of A[first] and A[indexOfNextSmallest]
selectionSort2(A, first+1, last);

}
}

CMT502 Data Structures and Algorith February 05

38

DSA CMT502 223

9.1.2 Recursive Selection Sort
Implementing recursive selection sort in Java

public static void selectionSort2(int[] A, int first, int last){
if(first>=last) return;
int indexOfNextSmallest = first;
int smallest = A[first];
for(int i=first+1; i<=last; i++){

if(A[i]<smallest){
smallest=A[i];
indexOfNextSmallest=i;

}
}
A[indexOfNextSmallest]=A[first];
A[first]=smallest;
selectionSort2(A, first+1, last);

}
DSA CMT502 224

9.1.3 Running Time Analysis

Selection sort is O(n2) regardless of the
initial order of the elements in an array.

DSA CMT502 225

9.2 Insertion Sort

An insertion sort of an array partitions the
array into two parts.

One part is sorted and initially contains just the
first element in the array.
The second part contains the remaining
elements.

The sort inserts one by one the elements in the
unsorted part of the array into their proper
location within the sorted part of the array.

DSA CMT502 226

9.2 Insertion Sort

An example of selection sort
15 6 10 5 3 8

6 15 10 5 3 8

6 10 15 5 3 8

5 6 10 15 3 8

3 5 6 10 15 8

3 5 6 8 10 15

unsorted

sorted

DSA CMT502 227

9.2 Insertion Sort

Recursive insertion sort
//Sort the array elements A[first] through A[last] recursively
Input: array A, int first, int last
Output:

insertionSort(A, first, last){
if (first<last){

insertionSort(A, first, last-1)
insert the last element A[last] into its correct

sorted position within the rest of the array
}

}

DSA CMT502 228

9.2 Insertion Sort

Implementing recursive insertion sort in
Java
public static void insertionSort(int[] A, int first, int last){

if(first<last){
insertionSort(A, first, last-1);
insertInOrder(A[last], A, first, last-1);

}
}

CMT502 Data Structures and Algorith February 05

39

DSA CMT502 229

9.2 Insertion Sort

private static void insertInOrder(int element, int[] A,
int first, int last){

if(element>=A[last])
A[last+1]=element;

else if(first<last){
A[last+1]=A[last];
insertInOrder(element, A, first, last-1);

} else {
A[last+1]=A[last];
A[last]=element;

}
}

DSA CMT502 230

9.2 Insertion Sort

Running time analysis
Insertion sort is at best O(n) and at worst O(n2).
The closer an array is to sorted order, the less
work an insertion sort does

DSA CMT502 231

9.3 Shell Sort

Shell sort is a variation of insertion sort
that is faster than O(n2).
Observation: the more sorted an array is,
the less work the method insertInOrder()
needs to do.
Shell sort adapts the insertion sort to work
on a subarray of equally spaced elements.

DSA CMT502 232

9.3 Shell Sort

An example of shell sort.

(1) An array and the subarrays formed by grouping
elements whose indices are 6 apart.

6 7 3 8 1 9 2 10 11 13 4 12 5
0 1 2 3 4 5 6 7 8 9 10 11 12

6……………………2……………………5

7……………………10

3…………………..11

8…………………..13

1…………………..4

9…………………..12

DSA CMT502 233

9.3 Shell Sort

(2) after the subarrays are sorted.

(3) The subarrays of the array formed by grouping
elements whose indices are 3 apart.

2 7 3 8 1 9 5 10 11 13 4 12 6
0 1 2 3 4 5 6 7 8 9 10 11 12

2 7 3 8 1 9 5 10 11 13 4 12 6
0 1 2 3 4 5 6 7 8 9 10 11 12

2………...8………..5………..13 ……….6

7………...1………..10……… 4

3………..9………..11……… 12

DSA CMT502 234

9.3 Shell Sort

(4) after the subarrays are sorted.

(5) after insertion sort.

1 2 3 4 5 6 7 8 9 10 11 12 13
0 1 2 3 4 5 6 7 8 9 10 11 12

2 1 3 5 4 9 6 7 11 8 10 12 13
0 1 2 3 4 5 6 7 8 9 10 11 12

CMT502 Data Structures and Algorith February 05

40

DSA CMT502 235

9.3 Shell Sort

Efficiency of shell sort
The shell sort is O(n2) in the worst case. If n is
a power of 2, the average running time of a
shell sort is O(n1.5).
By adding 1 to the space between elements
any time that it is even, the worst running time
of a shell sort can be improved to O(n1.5)

DSA CMT502 236

9.4 Divide-and-Conquer Sorts

Divide-and-conquer strategy:
Divide a problem into pieces and conquer each
piece to reach a solution.

Divide-and-Conquer algorithms
Mergesort
Quick sort

DSA CMT502 237

9.4.1 Mergesort

Mergesort paradigm
Divide the list of elements to be sorted into two
parts of equal or almost equal size
Sort each part by recursive calls
Combine the two sorted parts into one large
sorted list.

DSA CMT502 238

9.4.1 Mergesort

6 7 3 8 1 9 2 10 11 4 12 5

6 7 3 8 1 9 2 10 11 4 12 5

1 3 6 7 8 9 2 4 5 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

divide

conquer

combine

DSA CMT502 239

9.4.1 Mergesort

Implementing Mergesort in Java
// Sort the array elements A[first] through A[first+n-1] recursively
public static void mergesort(int[] A, int first, int n){

if(n<=1) return;
int n1 = n/2; //size of the first half of the array
int n2 = n-n1; //size of the second half of the array
mergesort(A, first, n1);
mergesort(A, first+n1, n2);
merge(A, first, n1, n2);

}

DSA CMT502 240

9.4.1 Mergesort

Merge function — Merging two sorted
arrays into one sorted array.

3 5 7 9 0 2 4 6

3 5 7 9 0 2 4 6

3 5 7 9 0 2 4 6

3 5 7 9 0 2 4 6

3 5 7 9 0 2 4 6

3 5 7 9 0 2 4 6

3 5 7 9 0 2 4 6

3 5 7 9 0 2 4 6
0
2

4
3

6
5

9
7

First Array Second Array

New merged Array

CMT502 Data Structures and Algorith February 05

41

DSA CMT502 241

public static void merge(int[] A, int first, int n1, int n2){
/*merge the adjacent subarrays A[first….(first+n1-1)] and A[(first+n1) …

(first+n1+n2-1)]*/
int[] tempA = new int[n1+n2];
int start1 = first;
int end1 = first+n1-1;
int start2 = first+n1;
int end2 = first+n1+n2-1;
int next=0;
while((start1<=end1) && (start2<=end2)){

if(A[start1] <= A[start2]){
tempA[next]=A[start1];
start1++;

} else {
tempA[next]=A[start2];
start2++;

}
next++;

}

To be continued DSA CMT502 242

//copy remaining elements from other subarrays to tempA.
if(start1<end1){

for(int i=start1; i<=end1; i++){
tempA[next] = A[i]; next++;
}

} else if(start2<end2){
for(int i=start2; i<=end2; i++){

tempA[next] = A[i]; next++;
}

}

//Copy elements from tempA to A.
for (int i=0; i<=n1+n2; i++){

A[start+i] = tempA[i] ;
}

}

DSA CMT502 243

9.4.1 Mergesort

Running time analysis
Assuming that kn 2=

2K-1
21K

…………
3
2

21
Merging operationsSize of subarraysRecursive callsSteps

22
32

12 −k

k2

12 −k

22 −k

32 −k

k2
12 −k

22 −k

22

DSA CMT502 244

9.4.1 Mergesort

Running time

When n is not a power of 2, we can find an integer k so
that

Thus the running time is still O(nlogn)
Merge steps perform the same amount of work
regardless of the initial order of the array.
Mergesort requires additional memory for merging.

nn
k k

kkkk

2

1221

log
2*

2*2...2*22*22

=
=

++++ −−−

⎡ ⎤nk 2log=

DSA CMT502 245

9.4.1 Mergesort

Mergesort in Java Class Library
java.util.Array class defines several versions of
a static method sort() to sort an array into
ascending order

Public static void sort(Object[] A)
Public static void sort(Object[] A, int first, int last)

DSA CMT502 246

9.4.2 Quicksort

Quicksort divides an array into two pieces.
These pieces are not necessarily halves of
the array. It chooses one element in the
array — called the pivot — and rearranges
the array elements so that

Elements in positions before the pivot are less
than or equal to the pivot
Elements in positions after the pivot are larger
than the pivot

The arrangement is called a partition of the array.

CMT502 Data Structures and Algorith February 05

42

DSA CMT502 247

9.4.2 Quicksort

Quicksort Algorithm
//Sort the array elements A[first] throught A[last]
Input: Array A, int first, int last
Output:
quicksort(A, first, last){

if(first < last){
Choose a pivot
Partition the array about the pivot
pivotIndex = index of the pivot
quicksort(A, first, pivotIndex-1)
quicksort(A, pivotIndex+1, last)

}
}

DSA CMT502 248

9.4.2 Quicksort

Creating the partition.
Example: assume we have chosen the last
element as the pivot.

3 5 0 7 6 1 2 4
0 1 2 3 4 5 6 7

Pivot

3 5 0 7 6 1 2 4
0 1 2 3 4 5 6 7

Pivot
indexFromLeft indexFromRight

(a)

(b)

DSA CMT502 249

3 2 0 7 6 1 5 4
0 1 2 3 4 5 6 7

Pivot
indexFromLeft indexFromRight

(c)

3 2 0 7 6 1 5 4
0 1 2 3 4 5 6 7

Pivot

indexFromLeft

indexFromRight

(d)

3 2 0 1 6 7 5 4
0 1 2 3 4 5 6 7

Pivot

indexFromLeft

indexFromRight

(e)

3 2 0 1 7 54
0 1 2 3 4 5 6 7

Pivot
(f) 6

DSA CMT502 250

9.4.2 Quicksort

Pivot selection
Ideally, the pivot should be the median value in
the array, so that the two partitions have the
same size — difficult to find the median value.
Median-of-three pivot selection:

take as pivot the median of three elements in the
array: the first, the middle and the last element.

DSA CMT502 251

9.4.2 Quicksort

Median-of-three pivot selection:

8 5 0 7 3 1 2 4

(a) The original array

6

3 5 0 7 6 1 2 4 8

(b) The array with its first, middle and last elements sorted,
and the middle element 6 is chosen as pivot.

pivot

DSA CMT502 252

9.4.2 Quicksort

Adjusting the partition procedure
Before starting the partition procedure, swap the
pivot with the next-to-last element at A[last-1]. Then
the partition procedure can begin its search from the
right index last-2.

3 5 0 7 6 1 2 4 8
pivot

3 5 0 7 4 1 2 6 8
pivot

indexFromLeft indexFromRight

CMT502 Data Structures and Algorith February 05

43

DSA CMT502 253

9.4.2 Quicksort

Running time analysis
The choice of pivots affects the sort’s efficiency.
It can lead to the worst-case behaviour if the
array is already sorted or nearly sorted. The
worst-case running time is O(n2).
Quicksort is O(nlogn) in the average case.
Compared with mergesort, quicksort doesn’t
require the additional memory that mergesort
needs for merging.

DSA CMT502 254

9.5 Heapsort

Heapsort uses a heap to sort an array.
Heapsort uses downheap instead of
upheap to create a heap in a more
efficient way.

DSA CMT502 255

9.5 Heapsort

An example of heapsort
(a) The original array

(b) After downheap

20 3040 9010 70
20

40 30

10 90 70

90 7040 2010 30
90

40 70

10 20 30heap
DSA CMT502 256

(c) After swapping

(d) After downheap

(e) After swaping

30

40 70

10 20

30 7040 2010 90

swap

70

40 30

10 20

70 3040 2010 90

heap

sorted

20

40 30

10

20 3040 7010 90

swap

sorted

sorted

DSA CMT502 257

(f) After downheap

(g) After swapping

(h) After downheap

40

20 30

10

40 3020 7010 90

heap

sorted

10

20 3010 3020 7040 90

swap

sorted

30

20 1030 1020 7040 90

heap

sorted

DSA CMT502 258

(i) After swapping

(j) After downheap

(k) After swapping

10

20
10 3020 7040 90

swap

sorted

20

10
20 3010 7040 90

heap

sorted

1010 3020 7040 90

swap

sorted

10 3020 7040 90
(l) Array is sorted

CMT502 Data Structures and Algorith February 05

44

DSA CMT502 259

9.5 Heapsort
Java code for heapsort

public static void heapSort(int[] A){
createHeap(A); // See slide 184
swap(A, 0, A.length-1);
hsort(A, 0, A.length-2);

}

private static void hsort(int[] A, int first, int last){
if(first>=last) return;
downheap(A, first, last); //See Slide 183
swap(A, first, last);
hsort(A, first, last-1);

}

private static void swap(int[] A, int n1, int n2){
int temp = A[n1];
A[n1]=A[n2];
A[n2]=temp;

}

DSA CMT502 260

9.5 Heapsort

Running time analysis
An O(nlogn) algorithm.
No additional memory required.

DSA CMT502 261

9.6 Comparing the algorithms

noheapsort

noquicksort

yesmergesort

noShell sort

noInsertion sort

noSelection sort

Extra array
needed

Worst caseBest caseAverage
case

)(2nO

)(2nO)(2nO)(2nO

)(2nO)(nO

)(5.1nO)(/)(25.1 nOnO

)(nO

)(2nO

)log(nnO)log(nnO)log(nnO

)log(nnO)log(nnO

)log(nnO)log(nnO

)(nO

DSA CMT502 262

9.6 Comparing the algorithms

316227773162332

199315691660964132877996666433nlogn

n

5.1n
2n

210 310 410 510 61010

310
210 410 610 810 1010 1210

610 910

A comparison of growth-rate functions as n increases

DSA CMT502 263

Chapter 10 Searching and Selection

10.1 Search an unsorted array
10.2 Search a sorted array
10.3 Selection

DSA CMT502 264

10.1 Search an Unsorted Array

A sequential search of a list compares the
desired item with the entries in the list in a
sequential order, until it locates the
desired item or returns without success.

CMT502 Data Structures and Algorith February 05

45

DSA CMT502 265

10.1 Search an Unsorted Array

An iterative sequential search of an
unsorted array.

public static boolean contains(Object[] A, Object target){
for(int i=0; i<A.length; i++){

if(A[i].equals(target))
return true;

}
return false;

}

DSA CMT502 266

10.1 Search an Unsorted Array

A recursive sequential search of an unsorted array.
public static boolean contains(Object[] A, Object target){

return search(A, target, 0, A.length);

}
private static boolean search(Object[] A, Object target, int start, int end){

if(start > end)
return false;

if(A[start].equals(target))
return true;

return search(A, target, first+1, end);
}

DSA CMT502 267

10.1 Search an Unsorted Array

Running time of a recursive sequential
search of an array.

Best case O(1)
Worst case O(n)
Average case O(n)

DSA CMT502 268

10.2 Search a sorted array

A sequential search of a sorted array
It can be more efficient if the data is sorted.

1 2 4 6 8 9 10 11 14 16 18 21 24 27 30
Search 12

return

DSA CMT502 269

10.2 Search a sorted array

A binary search of a sorted array
Binary search algorithm to search a sorted array for desiredItem

mid = approximate midpoint in array A
if(desiredItem == A[mid])

return true
else if(desiredItem < A[mid])

return the result of searching A[0] through A[mid-1]
else if(desiredItem > A[mid])

return the result of searching A[mid+1] through A[n-1]

DSA CMT502 270

10.2 Search a sorted array

public static boolean binarysearch(int[] A, int first, int last, int
desiredItem){

boolean found=false;
if(first>last) return false;
int mid = (first+last)/2;
if(desiredItem==A[mid])

found = true;
else if(desiredItem<A[mid])

found=binarysearch(A, first, mid-1, desiredItem);
else if(desiredItem>A[mid])

found=binarysearch(A, mid+1, last, desiredItem);
return found;

}

CMT502 Data Structures and Algorith February 05

46

DSA CMT502 271

10.2 Search a Sorted Array

Running time of a recursive binary search
of an array.

Best case O(1)
Worst case O(logn)
Average case O(logn)

DSA CMT502 272

10.3 Selection

Selection problem
Given an array A and an integer k, find the kth
smallest element.

Any sorting algorithm can be used to solve
the selection problem. However, since the
selection problem does not require that the
array be sorted, can we solve the problem
without sorting the entire array?

DSA CMT502 273

10.3 Selection

Recall the partition method used in
quicksort:

Suppose we execute the partition procedure
and the partition element — pivot — happens to
be placed in the kth cell. The pivot element is
the desired kth smallest element.
However, in general, the partition procedure
does not always place the partition element in
the kth cell.

DSA CMT502 274

10.3 Selection

Observation: if the partition procedure
places the partition element in the ith cell

If i<k, then the kth smallest element must be
among the elements that are to the right of the
partition element.
If i>k, then the kth smallest element must be
among the elements that are to the left of the
partition element.

DSA CMT502 275

10.3 Selection

Implementing Random quick-select
method

Random partition algorithm
private static int randPartition(int[] A, int first, int last)

This algorithm chooses an index m randomly, and
then partitions the array A[first…last] by inserting
val=A[m] at an index h where it would be if the array
was sorted. Then return the index h.

DSA CMT502 276

10.3 Selection
private static int randPartition(int[] A, int first, int last){

int m = first+Math.random()*(last-first+1);
swap(A, m, last);
int leftIndex = first;
int rightIndex = last-1;
while (leftIndex<rightIndex){

if(A[leftIndex]>A[last]) {
swap(A, leftIndex, rightIndex)
rightIndex--;

} else leftIndex++;
}
int h = (A[leftIndex]<A[last])? (leftIndex+1): leftIndex;
swap(A, h, last);
return h;

}

CMT502 Data Structures and Algorith February 05

47

DSA CMT502 277

10.3 Selection
Select algorithm using random partition

This algorithm searches an unsorted array
A[first…last], finds the kth smallest element in the
array and return its value.

public static int quickSelect (int[] A, int first, int last, int k){
int h=randPartition(A, first, last);
int val = 0;

if(h==k) val=A[h];
else if(h<k)

val=quickSelect(A, h+1, last);
else if(h>k)

val=quickSelect(A, first, h-1);
return val;

}

DSA CMT502 278

10.3 Selection

Running time analysis of randomized
quick-selection

Best case O(n)
Worst case O(n2)
Average case O(n)

DSA CMT502 279

Chapter 11. Maps, Dictionaries and Sets

11.1 Maps
11.2 Hash tables

11.2.1 Bucket arrays
11.2.2 Hash fuctions
11.2.3 Hash code
11.2.4 Compression fuctions

11.2 Dictionaries
11.3 Sets

DSA CMT502 280

11.1 Maps

A map stores key-value pairs(k, v), which
we call entries, where k is the key and v is
its corresponding value.
Each key in a map must be unique.

DSA CMT502 281

11.1 Maps
The Map ADT(based on java.util.Map)

If the map doesn’t have an entry with key equal to
k, then add entry(k, v); else, replace with v the
existing value of the entry with key equal to k and
return the old value

Object put(Object k,
Object v)

remove an entry with key equal to k and return its
value

object remove(Object k)

Returns a set view of the keys contained in this
map.

keySet()

Returns a collection view of the values contained in
this map.

Values()

Return the value of an entry with key equal to kobject get(Object k)
Test whether the map is emptyboolean isEmpty()
Return the number of entries in the mapint size()

DSA CMT502 282

11.2 Hash Tables

The running time of map operations in an
n-entry map is O(n).
A hash table usually can perform these
operations in O(1) expect time.

CMT502 Data Structures and Algorith February 05

48

DSA CMT502 283

11.2.1 Bucket Array

Is an array of size N, where each cell of A is
thought of as a “bucket” which is a container of
key-value pairs.

The keys are integers well distributed in the range of [0,
N-1].
An entry with key k is inserted into the bucket A[k].

0 1 2 3 4 5 6 7 8 9
(1, D) (4, A)

(4, N)
(7, F)

DSA CMT502 284

11.2.1 Bucket Arrays

Pros and cons
Pros: If the keys are unique integers, then each
bucket holds at most one entry. Thus, the search,
remove, insert operations run in O(1) time.
Cons

May be a waste of space. If N is much larger
than the number of entries n.
The keys are required to be integers in the
range[0, N-1], which is often not the case

Solution – Use the bucket array in conjunction with
a “good” mapping from the keys to the integers
in the range [0,N-1].

DSA CMT502 285

11.2.2 Hash functions

A hash function h maps each key k in the
map to an integer in the range [0, N-1].

We store the entry (k, v) in the bucket A[h(k)].
Collision: If there are two or more keys
with the same hash value, then two or
more different entries will be mapped to
the same bucket. A “good” hash function
should minimize collision as much as
possible.

DSA CMT502 286

Hash functions

A hash function has two actions
Mapping the key to an integer, called the hash code
Mapping the hash code to an integer within the range
of indices [0, N-1] of a bucket array – compression
function

Keys Hash
code

0
1
2
.
.
.

N-1

MapMap

Compression
function

DSA CMT502 287

11.2.3 Hash Codes

Hash codes in Java
Java Object class defines a default hashCode()
method for mapping each Object instance to an
32-bit integer of type int

Hash codes for common data types.
Casting to an integer

byte, short, int, char types
Simply cast these types to int to get their hash codes

Float type
• Float.floatToIntBits(x) //convert a float x to an integer.

DSA CMT502 288

11.2.3 Hash Codes

Summing components
Long and double types that are 64-bit

• 1. Simply cast a long integer down to a 32-bit
integer by ignoring half of the information
presented in the original value – may easy lead
to Collisions.

• 2. Sum an integer representation of the high-
order bits with an integer representation of the
low-order bits.

Summation hash code: We can view the binary
representation of any object x as k-tuple(x0, x1,
x2, …, xk-1) of integers, then the hash code for x
can be formed as

i
k
i x1

0
−
=∑

CMT502 Data Structures and Algorith February 05

49

DSA CMT502 289

11.2.3 Hash Codes

Polynomial Hash Codes
The summation hash code is not a good choice for
strings or other variable-length objects that can be
viewed as tuples of the form

where the order of the elements are significant.

Example: “temp10” and “temp01” collide
“stop”, “spot”, “tops” and “pots” collide

),...,,,(1210 −kxxxx

DSA CMT502 290

11.2.3 Hash Codes

Polynomial hash code:
Alternatively, we use as hash code the value

Where a is a nonzero constant, . And
are the components of an object.

By Horner’s rule this polynomial can be written as

kk
kkk xaxaxaxax +++++ −

−−−
2

3
2

2
1

1
0 ...

1210 ,...,,, −kxxxx
1≠a

))...))((...((012321 axxaxaxaxax kkk ++++++ −−−

DSA CMT502 291

11.2.3 Hash Codes

Experimental results
Experimental studies suggest that 33, 37, 39, and 41 are
particularly good choices for a when working with
character strings that are English words. In a list of over
5000 English words, there are less than 7 cases of
collision when taking these integers as a.

DSA CMT502 292

11.2.4 Compression Functions

The division method
It maps an integer i to

|i| mod N.
where N is the size of the bucket array.

The MAD method
MAD=Multiply add and divide
It maps an integer i to

|ai+b| mod N.
where N is a prime number and a>=0, b>=0 are integer

constants randomly chosen at the time the compression
function is determined so that a!=N

DSA CMT502 293

11.2.5 Collision-Handling Schemes

Separate chaining
The bucket A[i] store a small map Mi , implemented
using a list, holding entries (k, v) such that h(k)=i.
Load factor=n/N, where n is the number of entries in
the map, N is the size of the bucket array.

0 1 2 3 4 5 6 7 8 9

52

82

92

55 18

28

48

98
DSA CMT502 294

11.2.5 Collision-Handling Schemes

Open Addressing Schemes
It requires

the load factor be always at most 1
the entries must be stored directly in the cells of the
bucket array itself

Linear Probing
If we try to insert an entry (k, v) into a bucket A[i] that
is already occupied, we try next at A[(i+1)modN], and
so on, until we find an empty bucket.
It saves space, but it causes clustering and slows
down the search operation

CMT502 Data Structures and Algorith February 05

50

DSA CMT502 295

11.2.5 Collision-Handling Schemes

Quadratic Probing
If we try to insert an entry (k, v) into a bucket A[i] that
is already occupied, we iteratively trying the bucket
A[(i+f(j)) mod N), for j=0, 1, 2, 3, …, where f(j)=j2 ,
until we find an empty bucket.
It complicates the removal operation and also causes
some amount of clustering.

DSA CMT502 296

11.3 Dictionaries

A dictionary stores key-value pairs (k, v),
which we call entries, where k is the key
and v is its corresponding value.
It allows for multiple entries to have the
same key.
There are two types of dictionaries

Unordered dictionary
Ordered dictionary

DSA CMT502 297

11.3 Dictionaries
Dictionary ADT

Return the iterator of all entries with key
equal to k

Iterator findAll(Object k)

Return an iterator of entries stored in DIterator entries()

Insert an entry with key k and value e into D,
returning the entry created.

Entry insert(Object k,
Object v)

remove from D the entry e, returning the
removed entry.

Entry remove(Entry e)

Return the value of an entry with key equal
to k

object find(Object k)
Test whether D is emptyboolean isEmpty()
Return the number of entries in Dint size()

DSA CMT502 298

11.4 Set

A set is a container of distinct objects.
No duplicated elements
No explicit keys
No explicit order

Union, intersection and subtraction of two sets
A and B:

):{
):{

):{

BAandxxxBA
BAandxxxBA

BAorxxxBA

∉∈=−
∈∈=

∈∈=
I

U

DSA CMT502 299

11.4 Set

Set ADT
The fundamental methods

Union(A, B): return the union of A and B.
intersect(A, B): return the intersection of A and B.
subtract(A, B): return the difference of A and B.

DSA CMT502 300

11.4 Set

A simple set implementation
Storing a set into an ordered sequence.
Union, intersection and subtraction operations
can be implemented by using a generic merging
algorithm that takes two sorted sequences and
constructs a sequence representing the output
set.

CMT502 Data Structures and Algorith February 05

51

DSA CMT502 301

A implementation of union operation.

Input: sequence A and sequence B
Output: sequence C
union(A, B){

Initiate an empty set C
indexA =0

indexB=0
while(indexA < length of A and indexB < length of B){

a is the element at indexA in sequence A
b is the element at indexB in sequence B
if(a==b){ copy a to the end of C , indexA++, indexB++}
else if (a>b){ copy b to the end of C, indexB++}
else { copy a to the end of C, indexA++}

}
if(indexA < length of A)

copy the rest of the elements in A to the end of C
else if(indexB < length of B)

copy the rest of the elements in B to the end of C
return C

}
DSA CMT502 302

• A implementation of intersection operation.

Input: sequence A and sequence B
Output: sequence C

intersect (A, B){
initiate an empty set C
indexA =0
indexB=0
while(indexA < length of A and indexB < length of B){

a is the element at indexA in sequence A
b is the element at indexB in sequence B
if(a==b){

copy a to the end of C , indexA++, indexB++
}else if (a>b) indexB++
else indexA++

}
return C

}

DSA CMT502 303

• A implementation of subtraction operation.

Input: sequence A and sequence B
Output: sequence C
subtract (A, B){
initiate an empty set C
indexA =0

indexB=0
while(indexA < length of A and indexB < length of B){

a is the element at indexA in sequence A
b is the element at indexB in sequence B
if(a==b){ indexA++, indexB++}
else if (a>b) indexB++
else { copy a to the end of C, indexA++}

}
if(indexA<length of A)

copy the rest of the elments in A to the end of C.
return C

}
DSA CMT502 304

11.4 Set

Performance of generic merging
Assume na is size of A, nb is the size of B, the total
running time is O(na+nb).
The set which is implemented with an ordered
sequence and a generic merging scheme supports
union, intersection and subtraction in O(n) time.

DSA CMT502 305

Chapter 12 Graphs

12.1 Graph terminology
12.2 Graph representation
12.3 Graph traversals

12.3.1 Depth-first search
12.3.2 Breadth-first search
12.3.3 Topological order
12.3.4 Find a path

DSA CMT502 306

12.1 Graph Terminology

A graph G is a set V of vertices and a
collection E of pairs of vertices from V,
called edges.
An edge (u, v) is said to be directed from
u to v if the pair (u, v) is ordered, with u
proceeding v.
An edge (u, v) is said to be undirected if
the pair (u, v) is unordered.

CMT502 Data Structures and Algorith February 05

52

DSA CMT502 307

12.1 Graph Terminology

A graph is an undirected graph if all its
edges are undirected.
A graph is an directed graph (or digraph)
if all its edges are directed.
A graph is an mixed graph if it has both
undirected and directed edges.

DSA CMT502 308

12.1 Graph Terminology

The two vertices joined by an edge are
called the end vertices of the edge, and
they are adjacent.
An edge is said to be incident on a vertex
if the vertex is one of the edge’s end
vertices.
The degree of a vertex v, denoted deg(v),
is the number of the incident edges of v.

DSA CMT502 309

12.1 Graph Terminology

The outgoing edges of a vertex are the
directed edges whose origin is that vertex.
The incoming edges of a vertex are the
directed edges whose destination is that
vertex.
The in-degree and out-degree of a vertex
v are the number of the incoming and
outgoing edges of v, and are denoted
indeg(v) and outdeg(v), respectively.

DSA CMT502 310

12.1 Graph Terminology

A path is a sequence of edges that connect two
vertices in a graph. The length of a path is the
number of edges it comprises.
If the path does not pass through any vertex
more than once, it is a simple path.
A cycle is a path that begins and ends at the
same vertex. A simple cycle passes through
other vertices only once.
A acyclic graph is a graph without any cycles.

DSA CMT502 311

12.1 Graph Terminology

A directed path is a path such that all the
edges are directed and are travelled along
their direction.
A directed cycle is a cycle such that all
the edges are directed and are travelled
along their direction.

DSA CMT502 312

12.1 Graph Terminology

A subgraph is a portion of a graph that is itself a graph.
A spanning subgraph of graph G is a subgraph of G
that contains all the vertices of G.
A connected graph is a graph, in which, for any two
vertices, there is a path between them.
A maximal subgraph is a subgraph with the maximum
possible number of edges (every edge which is in the
original and has both endpoints in the vertex set of the
subgraph).
If a graph is not connected, its maximal connected
subgraphs are called the connected components of G.

CMT502 Data Structures and Algorith February 05

53

DSA CMT502 313

12.1 Graph Terminology

A forest is a graph without cycles.
A tree is a connected forest. (The trees we
have learned about earlier can be called
rooted trees, and the trees in this chapter
are called free trees).
A spanning tree of a graph is a spanning
subgraph that is a tree.

DSA CMT502 314

12.1 Graph Terminology

A weighted graph is a graph that has a
numeric label w(e) associated with each
edge e, called the weight of edge e.

DSA CMT502 315

12.1 Graph Terminology

Properties
Let G be an undirected graph with n vertices and

m edges
If G is connected, then m>=n-1
If G is a tree, then m=n-1
If G is a forest, then m<=n-1

DSA CMT502 316

12.2 Graph ADT

Replace the element stored at v with xreplace(v, x)

Test whether vertices v and w are adjacentareAdjacent(v, w)

Return an array storing the end vertices of edge e.endVertices(e)

Return the end vertex of edge e from vertex v.opposite(v, e)

Return an iterator of the edges incident upon
vertex v.

incidentEdges(v)

Return an iterator of all the edges of a graphedges()

Return an iterator of all the vertices of a graphvertices()

DSA CMT502 317

12.2 Graph ADT

Remove edge e and return the element stored at
e.

removeEdge(e)

Remove vertex v and all its incident edges and
return the element stored in v

removeVertex(v)

Insert and return a new undirected edge with end
vertices v and w and storing element x.

insertEdge(v, w, x)

Insert and return a new vertex storing element xinsertVertex(x)

DSA CMT502 318

12.2 Graph Representations

The edge list structure
In a graph representation, there are two
containers V and E. V stores all the vertex
objects of the graph and E stores all the edge
objects of the graph.

A vertex object stores an element
A edge object stores an element and two references
to the vertex objects representing its end vertices.

CMT502 Data Structures and Algorith February 05

54

DSA CMT502 319

12.2 Graph Representations

Visualize the edge list structure

u

v w z

a

b

c

d

u v w z

a b c d

V

E

DSA CMT502 320

12.2 Graph Representations

Performance of the edge list structure (m is the
number of edges, n is the number of vertices)

Space usage is O(m+n)

O(m)removeVertex()
O(1)InsertVertex(), insertEdge(), removeEdge()
O(1)Replace()
O(m)incidentEdges(), areAdjacent()
O(1)endVertices(), opposite()
O(m)Edges()
O(n)Vertices()
TimeOperation

DSA CMT502 321

12.2 Graph Representations

The adjacency list structure
In a graph representation, there are two
containers V and E. V stores all the vertex
objects of the graph and E stores all the edge
objects of the graph.

A vertex object stores an element and a reference to
an adjacency list which stores references to the
edges incident on the vertex
An edge object stores an element and two
references to the vertex objects representing its end
vertices.

DSA CMT502 322

12.2 Graph Representations

Visualize the Adjacency list structure

u

v w z

a

b

c

d
u v w z

a b c d

V

E

DSA CMT502 323

12.2 Graph Representations
Performance of the adjacency list structure (m is the
number of edges, n is the number of vertices)

Space usage is O(m+n)

O(deg(v))incidentEdges(v)

O(deg(v))removeVertex()
O(1)InsertVertex(), insertEdge(), removeEdge()
O(1)Replace()
O(min(deg(v), deg(w))areAdjacent(v, w)

O(1)endVertices(), opposite()
O(m)Edges()
O(n)Vertices()
TimeOperation

DSA CMT502 324

12.2 Graph Representations

The adjacency matrix structure
This method uses an adjacency matrix to
represent a graph

The vertices in the graph needs to be ordered so that
each vertex is associated with an index number.
In the adjacency matrix representing the graph, the
entry in row i, column j is 1 if (i, j) is an edge, or 0 if (i,
j) is not an edge.

CMT502 Data Structures and Algorith February 05

55

DSA CMT502 325

12.2 Graph Representations

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0100110
1000001
0001000
0010000
1000010
1000101
0100010

7
6
5
4
3
2
1

1 2 3 4 5 6 7

e4

1 e1 2
e2

e6
3

4 5

7e76

e5

e3

Graph Adjacency matrix

DSA CMT502 326

12.2 Graph Representations
Performance of the adjacency matrix structure (m is the
number of edges, n is the number of vertices)

Space usage is O(m+n)

O(n+deg(v))incidentEdges(v)

O(n)InsertVertex(), removeVertex()
O(1)insertEdge(), removeEdge()
O(1)Replace()
O(1)areAdjacent(v, w)

O(1)endVertices(), opposite()
O(m)Edges()
O(n)Vertices()
TimeOperation

2

2

DSA CMT502 327

12.3 Graph Traversals

A traversal is a systematic procedure for
exploring a connected graph by examining
all its vertices and/or edges.

It is efficient if it visits all the vertices and edges
in linear time (which is proportional to the
number of all the vertices and/or edges).

DSA CMT502 328

12.3.1 Depth-First Search

A depth-first search visits a vertex, then a
neighbour of the vertex, a neighbour of the
neighbour, and so on, advancing as far as
possible from the original vertex. It then
backs up by one vertex and consider
another neighbour.
Example

DSA CMT502 329

A B C D

E F G H

I J K L

M N O P

A B C D

E F G H

I J K L

M N O P

A B C D

E F G H

I J K L

M N O P

A B C D

E F G H

I J K L

M N O P

(a) Stack S:
Queue Q:

(b) Stack S: BCDHLPOKNMIEA
Queue Q: AEIMNKOPLHDCB

(c) Stack S: FBCDHLPOKNMIEA
Queue Q: AEIMNKOPLHDCBF

(d) Stack S: JGCDHLPOKNMIEA
Queue Q: AEIMNKOPLHDCBFGJ DSA CMT502 330

A B C D

E F G H

I J K L

M N O P
(e) Stack S: CDHLPOKNMIEA

Queue Q: AEIMNKOPLHDCBFGJ

A B C D

E F G H

I J K L

M N O P
(f) Stack S:
Queue Q: AEIMNKOPLHDCBFGJ

CMT502 Data Structures and Algorith February 05

56

DSA CMT502 331

DFS Algorithm
Input: A graph G, vertex v
Output: a new queue Q for the resulting traversal order
DFSTraversal(G,v){

initiate a stack S and a queue Q
mark v as visited
S.push(v)
Q.enqueue(v)
topVertex = v;
while(!S.isEmpty()){

if(topVertex has an unvisited neighbour){
nextNeighbour = next unvisited neighbour of topVertex
mark nextNeighbour as visited
Q.enqueue(nextNeighbour)
S.push(nextNeighbour)

} else
topVertex = S.pop()

}
return Q

}
DSA CMT502 332

12.3.2 Breadth-First Search

Given an original vertex, a breadth-first
traversal visits the origin and the origin ‘s
neighbours. It then considers each of
these neighbours and visit their
neighbours.
Example

DSA CMT502 333

A B C D

E F G H

I J K L

M N O P

A B C D

E F G H

I J K L

M N O P

(a) Queue Q1:
Queue Q2:

(b) Q1: EFB
Q2: AEFB

A B C D

E F G H

I J K L

M N O P

(c) Q1: IC
Q2: AEFBIC

A B C D

E F G H

I J K L

M N O P

(d) Q1: MNJGD
Q2: AEFBICMNJGD DSA CMT502 334

A B C D

E F G H

I J K L

M N O P

(e) Q1: KLH
Q2: AEFBICMNJGDKLH

A B C D

E F G H

I J K L

M N O P

(f) Q1: OP
Q2: AEFBICMNJGDKLHOP

A B C D

E F G H

I J K L

M N O P

(g) Q1:
Q2: AEFBICMNJGDKLHOP

DSA CMT502 335

BFS Algorithm
Input: A graph G, vertex v
Output: a new queue Q for the resulting traversal order
BFSTraversal(G,v){

initiate two queues Q1 and Q2
mark v as visited
Q1.enqueue(v)
Q2.enqueue(v)
while(!Q1.isEmpty()){

topVertex = Q1.dequeue();
while(topVertex has an unvisited neighbour){

nextNeighbour = next unvisited neighbour of topVertex
Q1.enqueue(nextNeighbour)
mark nextNeighbour as visited
Q2.enqueue(nextNeighbour)

}
}
return Q2

} DSA CMT502 336

12.3.3 Topological Order

In a directed graph without cycles, we can
arrange the vertices so that vertex a
precedes vertex b whenever a directed
edge exists from a to b. The order of the
vertices in this arrangement is called a
topological order.

CMT502 Data Structures and Algorith February 05

57

DSA CMT502 337

12.3.3 Topological Order

In a directed graph without cycles, we can
arrange the vertices so that vertex a
precedes vertex b whenever a directed
edge exists from a to b. The order of the
vertices in this arrangement is called a
topological order.
Topological sort—discovers the
topological order of a graph.

DSA CMT502 338

12.3.3 Topological Order
Topological sort algorithm
Input: acyclic directed graph G
output: a stack S for the resulting traversal order
getTopologicalOrder(G){

n=number of vertices in G
initiate a new stack S
nextVertex=a vertex that has no successor.

for(i=0; i<n; i++){
mark nextVertex visited
S.push(nextVertex)
nextVertex=a vertex that either has no successor or all his

successors have been visited
}
return S

}

DSA CMT502 339

Example of topological sort of a graph

D E F G H I

B C

J

A

Stack:

D E F G H I

B C

J

A

Stack:A

D E F G H I

B C

J

A

Stack:CA

D E F G H I

B C

J

A

Stack:BCA DSA CMT502 340

D E F G H I

B C

J

A

Stack:IBCA

D E F G H I

B C

J

A

Stack:HIBCA

D E F G H I

B C

J

A

Stack:GHIBCA

D E F G H I

B C

J

A

Stack:FGHIBCA

InsertVertex(),

DSA CMT502 341

D E F G H I

B C

J

A

Stack:JFGHIBCA

D E F G H I

B C

J

A

Stack:EJFGHIBCA

D E F G H I

B C

J

A

Stack:DEJFGHIBCA

DSA CMT502 342

12.3.4 Finding a Path

12.3.4.1 The shortest path in an
unweighted graph

A B C D

E F G H

I J K L

M N O P

A E I M N K
A F J K
A F K
A B F K
A B C G K

CMT502 Data Structures and Algorith February 05

58

DSA CMT502 343

12.3.4.1 The shortest path in an
unweighted graph

Enhance breadth-first traversal to solve the
problem

A B C D

E F G H

I J K L

M N O P

0

1

2

A A

A

E F F

B

DSA CMT502 344

algorithm for getting shortest path in an unweighted graph

Input: graph G, vertices originVertex, endVertex
Output: a stack S for the resulting traversal order
getShortestPath(G, originVertex, endVertex){

done = false
initiate a queue Q to hold neighbours
mark originVertex as visited
Q.enqueue(oringinVertex)
while(!done && !Q.isEmpty()){

frontVertex=Q.dequeue();
while(!done && frontVertex has unvisited neighbours){

nextNeighbour = next unvisited neighbour of frontVertex
mark nextNeighbour as visited
set the predecessor of nextNeighbour to frontVertex
Q.enqueue(nextNeighbour)
if(nextNeighbour==endVertex) done=true

}
}

DSA CMT502 345

S = a new stack of vertices
S.push(endVertex)
while(endVertex has a prodecessor){

endVertex = prodecessor of endVertex
S.push(endVertex)

}
return S

}

DSA CMT502 346

12.3.4.2 The shortest path in a weighted
graph

The shortest path in a weighted graph is
not necessarily the one with the fewest
edges, but the one with the smallest edge-
weight sum.

A B C D

E F G H

I J K L

M N O P

path weight
A E I M N K 8
A F J K 11
A F K 10
A B F K 7
A B C G K 6

1

2

1

6
4

2 3

23

1 2

2 1 2 5

6

8

3

42

DSA CMT502 347

12.3.4.2 The shortest path in a weighted
graph

Developing the algorithm:
based on a breadth-first traversal
uses a priority queue.

Each entry in the priority queue is an object that
contains

• A vertex
• The cost of the path to that vertex from the origin vertex
• The previous vertex on that path

The queue uses the cost of the path as priority. The
less cost has higher priority.

DSA CMT502 348

1

2

1

6

4
2

3

2
3

1 2

2 1 2 5

6

8

3

42

A 0

E 1 A

I 3 E

M 4 I

B 1 A

F 6 A

J

N 7 M

C 3 B

G 4 C

K 6 G

O

D

H

L

P

CMT502 Data Structures and Algorith February 05

59

DSA CMT502 349

algorithm for getting shortest path in a weighted graph
Input: graph G, vertices originVertex, endVertex
output: a stack S for the resulting traversal order
getShortestPath(G, originVertex, endVertex){

initiate a priority queue Q
set originVertex as visited
Q.enqueue(new pathEntry(originVertex, 0, null))
while(Q.isEmpty()){

frontEntry = Q.dequeue()
frontVertex = vertex in frontEntry
if(frontVertex equals endVertex) break
while(frontVertex has an unvisited neighbour){

nextNeighbour = next unvisited neighbour of frontVertex
set the cost of path to nextNeighbour as

(weight of edge between frontVertex and
nextNeighbour + cost of path to frontVertex)

set the processor of nextNeighbour as frontVertex
set nextNeighbour as visited
add nextNeighbour to Q

}
}

DSA CMT502 350

S = a new stack of vertices
S.push(endVertex)
while(endVertex has a prodecessor){

endVertex = prodecessor of endVertex
S.push(endVertex)

}
return S

}

DSA CMT502 351

Chapter 13 Greedy Algorithms

13.1 Coin changing
13.2 Kruskal algorithm
13.3 Prim’s algorithm
13.4 Dijkstra’s algorithm

DSA CMT502 352

Chapter 13 Greedy Algorithms

A greedy algorithm builds a solution to a
problem in steps. In each step, it adds a
part of the solution which is the best
available based on a greedy rule.

DSA CMT502 353

13.1 Coin Changing Problem

Suppose we want to make change for an
amount A using the fewest number of
coins. Suppose further that the available
denominations are 1, 5 and 10.
One of the greedy rules: select the largest
denomination available.

DSA CMT502 354

13.1 Coin Changing Problem

Example: A=18.

510 1 1 1

CMT502 Data Structures and Algorith February 05

60

DSA CMT502 355

13.1 Coin Changing Problem
Greedy coin changing algorithm: this algorithm makes change for an
amount A using coins of denominations

denom[1]>denom[2]>…>denom[n]=1
Input: amount A, denom
Output: A queue storing the selections in order
Greedy-coin-changing(A, denom){

i=1;
Initiate a queue Q
while(A>0){

c=A/denom[i]
if(c>0){

for(j=0; j<c; j++) Q.enqueue(denom[i])
A = A-c*denom[i]
i++;

}
}
return Q

}
DSA CMT502 356

13.1 Coin Changing Problem

Running time analysis
The running time for the greedy coin changing
algorithm is O(n), where n is the number of the
denominations of coins.

DSA CMT502 357

13.2 Kruskal Algorithm

A problem: The following graph shows six cities A, B, C,
D, E and F and the costs (in hundreds of thousands of
pounds) of rebuilding roads between them. We need to
find out the cheapest way to rebuild enough roads so
that each pair of cities will be connected. That is, to find
a spanning tree with minimum weight (minimal
spanning tree).

A

E

B

C

D

F
2 4

3

3
2

6
6

5
1

DSA CMT502 358

13.2 Kruskal Algorithm

Kruskal algorithm is a greedy algorithm for
finding a minimal spanning tree in a
connected weighted graph G.

It begins with all the vertices of G and no
edges.
It then applies the greedy rule: Add an edge of
minimum weight that does not make a cycle.

DSA CMT502 359

A

E

B

C

D

F
2

4

3
3

2
6 6

5

1

A

E

B

C

D

F
2

4

3
3

2
6 6

5

1

A

E

B

C

D

F
2

4

3
3

2
6 6

5

1

A

E

B

C

D

F
2

4

3
3

2
6 6

5

1

(a) (b)

(c) (d)
DSA CMT502 360

A

E

B

C

D

F
2

4

3
3

2
6 6

5

1

(e)

The cost of this spanning tree is 12.

CMT502 Data Structures and Algorith February 05

61

DSA CMT502 361

13.2 Kruskal Algorithm

Implementing the Kruskal Algorithm
Represents graph as a list of edges and their
weights.
Sorts the edges in non-decreasing order by
weight and examines them in sorted order.
Determines whether adding an edge would
create a cycle.

DSA CMT502 362

13.2 Kruskal Algorithm

Example: Find the minimal spanning tree in the
following graph.

The representation of the graph is:
(1,2,4)(1,3,2)(1,5,3)(2,4,5)(3,4,1)(3,5,6)(3,6,3)(4,6,6)(5,6,2)
Where (a, b, w) is interpreted as edge (a, b) of weight w.

1

5

2

4

6

3
2 4

3

3
2

6
6

5
1

DSA CMT502 363

13.2 Kruskal Algorithm
First of all, we sort the edges in non-descendent order by weight
(3,4,1)(1,3,2)(5,6,2)(1,5,3)(3,6,3)(1,2,4)(2,4,5)(3,5,6)(4,6,6)

When the Kruskal algorithm starts, no edges have been selected,
so we put all the vertices into different sets
{1} {2} {3} {4} {5} {6}

The first edge (3,4) is selected, and the sets to which vertices 3 and
4 belong are merged:
{1} {2} {3,4} {5} {6}

Next edge (1,3) is selected, and the sets to which vertices 1 and 3
belong are merged:
{1,3,4} {2} {5} {6}

DSA CMT502 364

13.2 Kruskal Algorithm
Next edge (5,6) is selected, and the sets to which vertices 5 and 6

belong are merged:
{1,3,4} {2} {5,6}

Next edge (1,5) is selected, and the sets to which vertices 1 and 5
belong are merged:
{1,3,4, 5,6} {2}

Next edge (3,6) is examined and rejected, because its vertices 3
and 6 belongs to the same set.

Finally edge (1,2) is selected, and the sets to which vertices 1 and
2 belong are merged:
{1,3,4, 5,6, 2}

DSA CMT502 365

The algorithm
Input: edgelist, n
//edgelist is an array of edges. The members of edge are its end vertices

and its weight. N is the number of vertices.
Output:
Kruskal(edgelist, n){

sort edgelist in a non-descendent order
make a set for each vertex
i=0
count =n
while(count>1){

(a, b) = the edge represented in edgelist[i]
if (vertices a and b are in different sets){

println (“(”+a+”, “+b+”)”)
merge the two sets
count - -

}
i++

}
}

DSA CMT502 366

13.3 Prim’s Algorithm

Prim’s algorithm is another greedy
algorithm for finding a minimal spanning
tree in a connected weighted graph G.

It begins with a start vertex and no edges.
It then applies the greedy rule: Add an edge of
minimum weight that has one vertex in the
current tree and the other not in the current
tree.

CMT502 Data Structures and Algorith February 05

62

DSA CMT502 367

1

5

2

4

6

3

2
4

3
3

2
6 6

5

1

(a)

1

5

2

4

6

3
2 4

3

3
2

6
6

5
1

Find the minimum spanning tree

Starting vertex
1 2

4

6

3

2
4

3
3

2
6 6

5

1

(b)
5

DSA CMT502 368

1 2

4

6

3

2
4

3
3

2
6 6

5

1

(c)
5

1 2

4

6

3

2
4

3
3

2
6 6

5

1

(d)
5

1 2

4

6

3

2
4

3
3

2
6 6

5

1

(e)
5

DSA CMT502 369

13.4 Dijkstra’s Algorithm

Dijkstra’s algorithm is a greedy algorithm
that finds the shortest paths from a
designed vertex s to all other vertices in
non-decreasing order of length.

The first path found is from s to s of length 0.
It then applies the greedy rule: Among all of the
vertices that can extend a shortest path already
found by one edge, choose the one that results
in the shortest path.

DSA CMT502 370

13.4 Dijkstra’s Algorithm

Example: finds the shortest paths from
vertex 5 to all other vertices in non-
decreasing order.

1 2

3 4

5 6

80

60

40 100
20

40

120 12060

DSA CMT502 371

1 2

3 4

5 6

80

60

40 100
20

40

120 12060

05
Path lengthShortest path

1 2

3 4

80

60

40 100
20

40

120 12060

05
405 6

Path lengthShortest path

5 6
DSA CMT502 372

1 2

3 4

80

60

40 100
20

40

120 12060
405 6
05

605 1

Path lengthShortest path

5 6

1 2

3 4

80

60

40 100
20

40

120 12060 605 1
405 6
05

1005 6 3

Path lengthShortest path

5 6

CMT502 Data Structures and Algorith February 05

63

DSA CMT502 373

1005 6 3
605 1
405 6
05

1205 6 3 4

Path lengthShortest path1 2

3 4

80

60

40 100
20

40

120 12060

5 6

1205 6 3 4
1005 6 3
605 1
405 6
05

1405 1 2

Path lengthShortest path1 2

3 4

80

60

40 100
20

40

120 12060

5 6

