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Course Description

Title:        Data Structures and Algorithms
Lecturer: Dr. Coral Yan Huang
Email:     Yan.Huang@cs.cf.ac.uk
Room:     T2.07
Time:       11:10-13:00 Thursday
Handouts: Lecture notes, 

Exercise sheets (available only at lectures)
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Coursework and  Exams

80% weight Final Exam

8% weightWeek 6Mid-term 
Class Test

12% weightGiven out: week 6
Due in: Week 10

Coursework
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Books

The recommended text book for the module is:
“Data structures and algorithms in Java”
3rd edition, Goodrich and Tamassia
Wiley, 2003

Check reading list for course at
http://www.readinglists.co.uk/

Student view password is: CMT502YH
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And more books…

More recommendations are:
“Data Structures and Algorithms in Java” by 
Robert Lafore, published by SAMS Second 
Education, 2003
“Data Structures and Other Objects Using 

Java” by Michael Main, published by Addison 
Wesley Publishing Company, 2002 
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Scheduling (to be continued)

Chapter 7. Trees5
Half-term Test
Coursework given out

6

Chapter 7. Trees4

Chapter 5. LinkedLists
Chapter 6. Lists

3

Chapter 3. Stacks
Chapter 4. Queues

2

Chapter 1. Introduction
Chapter 2. Analysis Tools

1
TopicWeek
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Scheduling 

Chapter 13. Greedy Algorithms11
Revision 12

Chapter 12. Graphs
Coursework due

10

Chapter 10. Searching and selection
Chapter 11. Maps, dictionaries and sets

9
Chapter 9. Sorting8

Chapter 8. Balanced search trees
Chapter 9. Sorting

7
TopicWeek
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Chapter 1: Introduction

1.1 Algorithms
1.1.1 Definition and Properties
1.1.2 An Example
1.1.3 Analysis of Algorithms
1.1.4 Pseudocode for Algorithms

1.2 Data Structures
1.2.1 Definition
1.2.2 Relation to Algorithms
1.2.3 Data Structure Types
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1.1 Algorithms

Computer
Science

Study of
Algorithms

Machines for executing algorithms

Language for describing algorithms

Foundations of  algorithms

Analysis of algorithms

=

+

+

+
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1.1.1 Definition and Properties

Definition: An algorithm is a finite set of 
instructions which accomplish a particular 
task.
Properties: 

Input
Output
Definiteness
Finiteness
Effectiveness

DSA CMT502 11

1.1.2 An Example

Example 1.1. Finding the maximum of three 
numbers a, b and c.

Input: a, b, c
Output: x

Max(a, b, c){
x=a;
if ( b > x )

x = b
if (c > x )

x = c
return x

}
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1.1.3 Analysis of algorithms

Correctness
Termination
Time analysis: How many instructions 
does the algorithm execute?
Space analysis: How much memory does 
the algorithm need to execute?
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1.1.4 Pseudo code for Algorithms

An algorithm contains
Declaration of input and output.
Functions

Pseudocode syntax
If statements

if (condition)
action

if (condition)
action1

then
action2
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1.1.4 Pseudo code for Algorithms

While statement

For statement

Return statement

Operators

While (condition)
action

for (var=init; var<=limit; var++)
action

return x

=Assignment operator:
&&, ||, !Logical  operators:
==, !=, >, <, >=, <=Relational operators:
+, -, *, /Arithmetic operators:
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1.1.4 Pseudocode for Algorithms

Example 1.2: Finding the maximum value in an 
Array.

Input: s
Output: x

ArrayMax(s){
x=s[0]
for(i=1; i<s.length; i++)
if (s[i] > x )

x = s[i]
return x

}
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1.2 Data Structures

We might also say computer science is the 
study of data

Input data Algorithm
(transformation of data)

Output data

Raw data Refined data

DSA CMT502 17

1.2 Data Structure

Computer
Science

Study of
data

Machines that hold data

Language for describing data 
manipulation

Foundations which describe how 
refined data can be produced from 
raw data

Structures for representing data

=

+

+

+
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1.2.1 Definition

A data structure is an organization of 
information, usually in memory, for better 
algorithm efficiency.
A data structure may include redundant 
information, such as length of the list or 
number of nodes in a tree.
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1.2.2 Relation to Algorithms

Most data structures have associated 
algorithms to perform operations, such as 
search, insert, or balance, that maintain 
the properties of the data structure
Algorithms and data structures should be 
thought of as a unit, neither one making 
sense without the other.
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1.2.3 Data Structure Types

Queue
Stack
Linked List
Heap
Dictionary
Tree
Conceptual unity
……
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Chapter 2. Analysis Tools

2.1 Mathematical review
2.1.1 Exponents
2.1.2 Logarithms
2.1.3 Summations

2.2 Running time
2.3 Analysis of algorithms

2.3.1 Primitive operations
2.3.2 Average case and worst case analysis

2.4 Big-O notation
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2.1 A Quick Mathematical Review

2.1.1 Exponents
The number being multiplied is called the base, 
and the exponent tells how many times the 
base is multiplied by itself.
4 ×4 ×4 ×4 ×4 ×4 = 46

Propositions
(ba)c=bac

babc=ba+c

ba/bc=ba-c
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2.1 A Quick Mathematical Review

2.1.2 Logarithms
A logarithmic function is the inverse of an 
exponential function

logba = c   if   a=bc

Propositions
logb(ac) = logba + logbc
logb(a/c) = logba - logbc
logbac = clogba
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2.1 A Quick Mathematical Review

2.1.3 Summations
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2.2 Running Time

Running time — the actual time spent in 
execution of an algorithm.
It depends on a number of factors 

Input
The hardware and software environment.
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2.2 Running Time

running time of an algorithm 
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2.2 Running Time

General methodology required
Take into account all possible inputs
Independent from the hardware and software 
environment.

We conclude
Experimental analysis has its limitations
It is better to analyse a particular algorithm 
without performing experiments on its running 
time.
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2.3 Analysis of Algorithms

Instead of trying to determine the specific 
execution time of a particular algorithm, 
we simply count the number of primitive 
operations that are executed 
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2.3.1 Primitive Operations

Includes
Assigning a value to a variable
Calling a method
Performing an arithmetic operation
Comparing two values
Indexing into an array
Following an object reference
Returning from a method
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2.3.1 Primitive Operations

Example 2.1: Given an algorithm which finds the 
maximum value in an array, count the number of 
primitive operations executed in this algorithm.

Input: s
Output: x

ArrayMax(s){
x=s[0]
for(i=1; i<s.length; i++)

if (s[i] > x )
x = s[i]

return x
}
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ArrayMax(s){

x=s[0]

for(i=1; i<s.length; i++)

if (s[i] > x )

x = s[i]

return x

}

2.3.1 Primitive Operations
2 operations (indexing and assignment)

1 operation (returning)

Loop

•Beginning of loop: 1 assignment

•On entering each iteration (n): 1 comparison

•Each iteration (n-1):

2 operations( indexing and comparison)

0/2 operations( indexing and assignment) 

•End of each iteration (n-1): 2 operations     
(summing and assignment)

(n is the size of the input array)
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The number of primitive operations t(n) executed 
by algorithm arrayMax is (n is the size of the 
input array):

At least
t(n) = 2+1+n+(2+2)*(n-1)+1 = 5n

At most
t(n) = 2+1+n+(2+2+2)*(n-1)+1 = 7n-2

2.3.1 Primitive Operations

Best case

Worst case
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2.3.2 Average-Case and Worst-Case 
Analysis

Average-Case Analysis—expresses the 
running time of an algorithm as an 
average taken over all possible inputs.

Difficult — depends  on the input distribution, 
and requires heavy mathematics on probability 
theory.
Not required.
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2.3.2 Average-Case and Worst-Case 
Analysis

Best-Case Analysis — the shortest 
running time of an algorithm.

Worst-Case Analysis — the longest 
running time of an algorithm.
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2.4 “Big-O” Notation

Definition of “Big-O” Notation( a very 
mathematical one)

Let f(n) and g(n) be functions mapping 
nonnegative integers to real numbers. We say 
that f(n) is O(g(n)) if there is a real constant c>0 
and an integer constant n0 >= 1 such that 
f(n)<=cg(n) for every integer n>= n0.

“f(n) is O(g(n))” is pronounced as 

“f(n) is big-O of g(n)” or “f(n) is order g(n)”.
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2.4  “Big-O” Notation

f(n) is O(g(n))

Input size
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2.4 “Big-O” Notation

Example 2.2: Justify 7n-2 is O(n).
Justification: we need to find a real constant c>0 and 

an integer n0>=1 such that 7n-2<=cn for every n>=n0.
We chose  c=7, n0=1 and then we have

7n-2<7n when n>=1
Thus 7n-2 is O(n)
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2.4 “Big-O” Notation

Example 2.3: Justify                        is         .
Justification:

We chose  c=31, n0=1 and then we have
when n>=1

Thus                              is              .

6520 23 ++ nn )( 3nO

6520 23 ++ nn )( 3nO

323 316520 nnn ≤++
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2.4 “Big-O” Notation

A practical method in finding the “big-O”
notation of a function.

We can use the notion of the largest term in a 
function. 
The largest term is  

the term with the largest exponent of n 
the term that grows the fastest.
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2.4 “Big-O” Notation

Example 2.4: 5n+logn+7 is O(n)

Example 2.5: 100 is O(1)
Example 2.6: 5/n  is O(1/n)

……

31000

2100

110

01
Log nn

DSA CMT502 41

2.4 “Big-O” Notation

Special terms to classify functions
Logarithmic functions: O(logn)
Linear functions:         O(n)
Quadratic  functions:   O(n )
Polynomial functions:  O(n ) where k>=1
Exponential functions: O(a ) where a>1

2

κ

n
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Chapter 3  Stacks

3.1 The stack Abstract Data Type
3.2 Array-Based Implementation of Stack
3.3 Stack Applications
3.4 Stacks in the Java Virtual Machine

3.4.1 Java Method Stack
3.4.2 Recursion
3.4.3 Operand Stacks
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Chapter 3. Stacks

Definition — A stack is a container of 
objects that are inserted and removed 
according to the last-in-first-out principle.
Operations:

Pushing
Popping

Examples
“back” in a web browser
“undo” in Text editors

pushing popping
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3.1 The stack Abstract Data Type

Two fundamental operations
push (o): insert object o at the top of the stack
pop(o): return and remove the top object from 

the stack. 
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3.2 Array-Based Implementation of Stack
public class ArrayStack{

public static int capacity;
public Object s[]; //Array used to implement the stack
private int top=-1; //Index of the top element

public ArrayStack(int n){
capacity = n;
s = new Object[n];

}

public void push(Object obj) { … } 

public Object pop() { … } 
} 
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3.2 Array-Based Implementation of Stack
public class ArrayStack{

….
public void push(Object obj) {

if (top==capacity-1){
//stack is full , do nothing

} else {
top++;
s[top]=obj;

}
return;

} 
….

} 

2

2

2

1
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3.2 Array-Based Implementation of Stack
public class ArrayStack{

….
public Object pop() {

Object ret=null;
if (top<0){

//stack is empty, do nothing
} else {

ret = s[top];
s[top]=null;
top--;

}
return ret;

} 
….

} 

1

2

2
1

2
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3.2 Array-Based Implementation of Stack

Running time analysis

Both methods run in constant time O(1)

Space usage:  O(n)

O(1)8pop

O(1)7Push
TimeNumber of primitive operationsmethod
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3.2 Array-Based Implementation of Stack

Pros
Simple and Efficient

Cons
May waste memory if the actually used space is 
smaller than the ultimate size of the stack. 
May “crash” the applications which need a large 
size of stack.
Difficult to delete or insert an element.
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3.3 Stack Applications

Example 3.1: Show how to use a stack to reverse 
a word BIG.

Β Β Β Β Β
ΙΙ

G
ΙΙ

Push B Push I Push G Pop G Pop I Pop B
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3.4 Stack in Java Virtual Machine

High-level languages 
(C, C++)

Machine language of specific CPU 
(machine-dependent,
not transportable)

compile

Java language

compile

Byte code for JVM 

PC UNIX LINUX
(emulating the JVM)

Typical Case Java Virtual Machine 
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3.4.1 Java Method Stack

Is a private stack for each running Java 
Program.
Is used to keep track of important information on 
methods which includes

Local variables
Program counter
Parameters

Its element is called frame which is a descriptor 
of one of active invocations of methods.
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3.4.1 Java Method Stack
0 main(){
1 int i=5;

…
14 func1(i)

…
}

204 func1(int j){
int k=7;
…

216 func2(k);
…

} 

320 func2( int m){
…

}

main:
pc=14
i=5

func1:
pc=216
j=5
k=7

func2:
pc=320
m=7

Java Program

Java Method Stack

suspended
methods

running
method
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3.4.2 Recursion

Allows a method to call itself as a subroutine.
Example: Compute the factorial function

n!=n(n-1)(n-2)…..*2*1

Public static long factorial(long n){
if(n<=1)  

return 1;
else{ 

int m=factorial(n-1);
return n*m;

}
}
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3.4.2 Recursion
main(){

int i=10;
…..

12 factorial(i);
…..

}

215 Public static long 
factorial(long n)
{

if(n<=1)  
return 1;

else { 
221 int m=factorial(n-1);

return n*m;
}

}

main:
pc=12
i=10

factorial:
pc=215
n=1

factorial:
pc=221
n=10

factorial:
pc=221
n=9

…

factorial:
pc=221
n=2

Java Method StackJava Program
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3.4.3 Operand Stacks

are used to evaluate arithmetic 
expressions.
Two kind of stacks work together for the 
purpose.

Number stack 
Operation stack
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3.4.3 Operand Stacks

Example 3.2 ((7+8)*(6-4))/5

((7+8)

7
8

+

15

(15 ∗(6−4)

15

∗
−

6
4

15
2

∗

(15 ∗2)(15

30

30 30/5

30
5

/

6

6
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Chapter 4  Queues

4.1 The Queue Abstract Data Type
4.2 Array-Based Implementation of Queue
4.3 Priority Queues
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Chapter 4 Queues 

Queue is a container of objects that are 
inserted and removed according to the 
first-in-first-out (FIFO) principle.

X X X X X X X X X X X X X X

rear front

Queue
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4.1  The Queue Abstract Data Type

Two fundamental operations
enqueue (o): insert object o at the rear of the 

queue
dequeue(o): return and remove from the queue 

the object at the front. 
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4.2 Array-Based Implementation of 
Queue

public class ArrayQueue{
public static int capacity;
public Object s[];         //Array used to implement the queue
private int front = 0;     //Index of the front element
private int rear = 0;      //index of the rear element

public ArrayQueue(int n){
capacity = n;
s = new Object[n];

}

public void enqueue(Object obj) { … } 

public Object dequeue() { … } 
} 
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4.2 Array-Based Implementation of 
Queue

public class ArrayQueue{
….

public void enqueue(Object obj) {
if( (rear+1)%capacity == front  )

// the queue is full, do nothing
} else {

s[rear]=obj;
rear=(rear+1) % capacity;

}
return;

} 

…..
} 

3

3
2

1

x
rear front

x x x x x x x x x x x x
The queue is full
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4.2 Array-Based Implementation of 
Queue

public class ArrayQueue{
….
public Object dequeue() {

Object retObj=null;
if( rear == front)

// the queue is empty, do nothing
} else {

retObj = s[front];
s[front]=null;
front=(front+1)%capacity;

} 
return retObj;

} 
…..

} 

1

2
2

1

rear front

The queue is empty

3

1
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4.2 Array-Based Implementation of 
Queue

Running time analysis

Both methods run in constant time O(1)

Space usage:  O(n)

O(1)10dequeue

O(1)9enqueue
TimeNumber of primitive operationsmethod
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4.2 Array-Based Implementation of 
Queue

Pros
Simple and Efficient

Cons
Not very adaptive. The size must be fixed in 
advance. 
Difficult to delete or insert an element.
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4.3 Priority Queues

A priority queue, in general, is a collection 
of prioritized elements, in which the next 
element to be removed in the queue is the 
element that

Has the highest priority of all elements
Has been in the queue the longest among 
elements with equal priority
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4.3 Priority Queues

Removal order: B, E, A, D, F, C, G

Oldest time Recent time

A B C D E F G2 3 1 2 3 2 1Elements
Inserted 

priority
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4.3 Priority Queues

Representing priority queues
A linked list representation

B
3

E
3

A
2

D
2

F
2

C
1

G 
1
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4.3 Priority Queues

A array of queues representation

0

2

3

4

1 GC

A D F

B E
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Chapter 5 Linked Lists

5.1 Singly Linked Lists
5.1.1 Why Linked Lists
5.1.2 Linked List ADT
5.1.3 Implementing a singly Linked List
5.1.4 Implementing a Stack with a Singly Linked 
List

5.2Doubly Linked List
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5.1 Singly Linked Lists

Is a collection of nodes that together form 
a linear ordering. Each node is a 
compound object that stores an element 
and a reference, called next, to another 
node.

Α Β C X

head tail

….. null
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5.1.1 Why Linked Lists

Why?
No predetermined fixed size. 
Easily insert or delete an element.

Insert an element

Α Β C X

tail
….. null

head
F

insert

Α Β C X

tail
….. null

head
F
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5.1.1 Why Linked Lists

Delete an element

Α Β C X

tail
….. null

head

Α Β C X

tail
….. null

head

delete
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5.1.2 Linked List ADT
(Based on java.util.LinkedList)

Fundamental methods
Add an element 

add(int index, Object element) 
addFirst(Object element) 
addLast(Object element) 

Remove an element
Object remove(int index)
boolean remove(Object element)
Object removeFirst() 
Object removeLast() 
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5.1.2 Linked List ADT
(Based on java.util.LinkedList)

Get an element
Object get(int index)
Object getFirst ()
Object getLast() 

Set an element
set(int index, Object element)

Find the index of an element
int indexOf(Object element)
Int lastIndexOf (Object element)
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5.1.2 Linked List ADT
(Based on java.util.LinkedList)

Other methods
clear()
boolean contains(Object element)
int size() 
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5.1.3 Implementing a singly Linked List

5.1.3.1 Declaring a Node Class
public class Node{

Public Object element = null;
public Node next = null;

public Node(Object o, Node n){
element = o;
next = n;

}
}
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5.1.3.2 Declaring the singly Linked List 

public class SinglyLinkedList{
private Node head=null;
private Node tail=null;
private int size=0;

public SinglyLinkedList(){ }

public void add(int index, Object element){..} 
public void addFirst(Object element){..} 

…

}
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public void add(int index, Object element){
Node newNode = new Node(element, null);
if (index==0) {

addFirst(element);   return;
} else if (index >= size) {

addLast(element);   return;
}
int k=0;
Node node = this.head;
while(k<index-1){

node=node.next;
k++;

}
newNode.next=node.next;
node.next=newNode;
size++;
return;

}

5.1.3.3 Declaring add methods 
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public void addFirst(Object element){
Node newNode = new Node(element, head);
head = newNode;
if(size==0) tail=newNode;
size++;

}
public void addLast(Object element){

Node newNode = new Node(element, null);
if(tail!=null){

tail.next=newNode;
tail = tail.next;

}else {
tail=newNode;
head=newNode;

}
size++;

}

5.1.3.3 Declaring add methods 
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public Object remove (int index){
int k=0;
Node node1 = this.head;
Node node2 = null;

while(k<index && node1!=null){
node2=node1;
node1=node1.next;
k++;

}
if(k==index) {

node2.next = node1.next;
size--;
if(node2.next==null)

this.tail = node2;
return node1.element;

}
return null;

}

5.1.3.4 Declaring remove methods 
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5.1.3.4 Declaring remove methods

public Object removeFirst(){
if(size==0) return null;
Object retE = head.element;
head=head.next;
size--;
if(size==0) tail = null;
return retE;

}
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public Object removeLast(){
if(size==0) return null;
Object retE = tail.element;
Node node1 = head;
Node node2 = null;
while(node1.next!=null){

node2 = node1;
node1=node1.next;

}
if(node2 == null)

head=tail=null;
else {

node2.next=null;
tail = node2;

}
size--;
return retE;

}

5.1.3.4 Declaring remove methods 
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5.1.3.4 Algorithm Analysis

O(n)removeLast()

O(1)removeFirst()

O(n)remove(int index)

O(1)addLast(Object O)

O(1)addFirst(Object O)

O(n)add(int index, Object O)

TimeMethod
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5.1.4 Implementing a Stack with a Singly 
Linked List—method 1
Public class LinkedStack{

private Node top = null;
public LinkedStack(){}

public void push(Object element){
Node node = new Node(element, top);
top = node;

}

public Object pop(){
if(top==null) return null;
Object retObj = top.element;
top = top.next;
return retObj;

}
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5.1.4 Implementing a Stack with a Singly 
Linked List—method 2

Public class LinkedStack{
private SinglyLinkedList linkedList = null;

public LinkedStack(){
this.linkedList = new SinglyLinkedList();

}

public void push(Object element){
this.linkedList.addFirst(element);

}

public Object pop(){
return this.linkedList.removeFirst();

}
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5.2 Doubly Linked List

header …..Α Β C X

A node stores two references: next and prev.
Two sentinel nodes

Header — null element, null prev.
Trailer — null element, null next.

Why — insertion and removal at both ends run 
in O(1) time.

trailer
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5.2 Doubly Linked List

Implementation of a node

public class DLNode{
Public object element=null;
Public DLNode prev=null;
Public DLNode next=null;

Public DLNode(Object e, DLNode p, DLnode n){
Element=e;
Prev=p;
Next=n;

}
}
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Chapter 6 Lists

6.1 Collections
6.2 List ADT
6.3 A simple array-based implementation 

of a list
6.4 A node-based implementation of a list 
— doubly linked list
6.5 Java list classes
6.6 Iterators
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6.1 Collections

A collection represents a group of objects 
(elements). 

Allows or does not allow duplicate elements
Is ordered or unordered.

Collection hierarchy
Collection

List/sequence Set
Ordered and duplicate 
Elements allowed 

Unordered and no duplicate 
Elements allowed 
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6.2 List ADT

List, also known as sequence, is an 
ordered collection. Normally, it can index 
into the middle of a sequence and it also 
provides update methods for adding and 
removing elements by their positions.
Stacks and queues are special kinds of 
Lists.
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6.2 List ADT

Fundamental methods
Add an element 

add(int index, Object element) 
addFirst(Object element) 
addLast(Object element) 

Remove an element
Object remove(int index)
boolean remove(Object element)
Object removeFirst() 
Object removeLast() 
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Get an element
Object get(int index)
Object getFirst ()
Object getLast() 

Set an element
set(int index, Object element)

Find the index of an element
int indexOf(Object element)
Int lastIndexOf (Object element)

6.2 List ADT
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6.2 List ADT

Other methods
clear()
boolean contains(Object element)
int size() 
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6.3 A Simple Array-Based Implementation 
of a List

public class ArrayBasedList{
private  capacity;
public Object s[];         //Array used to implement the List
private int num = 0;     //number of the elements stored

public ArrayBasedList(int N){
capacity = N;
s = new Object[N];

}

//declaration of methods
….

} 
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6.3 A Simple Array-Based Implementation 
of a List

Insert an element

public void add(int index, Object element){
if(index>=this.capacity)

return;
for(int i=num; i>index; i--)

S[i]=S[i-1];
S[i-1] = element;
num++;
return;

} 
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6.3 A Simple Array-Based Implementation 
of a List

Remove an element at a specified position

public void removeElementAt(int index){
if(index>=this.capacity)

return;
for(int i=index; i<num; i++)

S[i]=S[i+1];
S[num-1] = null;
num--;
return;

} 
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6.3 A Simple Array-Based Implementation of a List
Running time analysis

O(1)get(int index)
O(1)getFirst()
O(1)getLast()
O(1)set(int index, Object O)

O(1)removeLast()

O(n)remove(int index)

O(n)indexOf(Object O)

O(n)removeFirst()
O(n)remove(Object O)

O(1)addLast(Object O)
O(n)addFirst(Object O)
O(n)add(int index, Object O)
TimeMethod

DSA CMT502 99

6.4 A Node-based Implementation of a List —
Doubly Linked List

O(n)
O(1)
O(1)
O(1)
O(1)
O(1)
O(n)
O(n)
O(n)
O(1)
O(n)
O(n)

Time(Array-based)

O(n)get(int index)
O(1)getFirst()
O(1)getLast()
O(n)set(int index, Object O)

O(1)removeLast()

O(n)remove(int index)

O(n)indexOf(Object O)

O(1)removeFirst()
O(n)remove(Object O)

O(1)addLast(Object O)
O(1)addFirst(Object O)
O(n)add(int index, Object O)

Time(Doubly Linked List)Method
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6.5 Java List Classes

List

AbstractList ArrayList Vector LinkedList
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6.5 Java List Classes

java.util.Vector class
Implements a growable array of objects. 
It has an integer CapacityIncrement parameter to 
determine how the underlying extendable array 
grows

If CapacityIncrement =0 (defalut), the array doubles 
when it grows.
If CapacityIncrement =k (k>0), the array adds k cells 
when it grows.
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6.5 Java List Classes

Capacity related constructor and methods
Vector(int initialCapacity);
Vector(int initialCapacity, int capacityIncrement)
void ensureCapacity(int minCapacity)
void setSize(int newSize)

Is Synchronized.
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6.5 Java List Classes

java.util.ArrayList class
This class is roughly equivalent to Vector, except 
that it is unsynchronized.
If multiple threads access an ArrayList instance 
concurrently, and at least one of the threads 
modifies the list structurally, it must be 
synchronized externally. 
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6.6 Iterators

A typical computation on collections is to 
march through its elements in order, one 
at a time, to look for a specific element.
A class that implements Java’s Iterator
interface provides three methods:

public boolean hasNext();
public Object next();
public void remove();
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6.6 Iterators

Java.util.Iterator provides a generic 
mechanism for scanning through a 
container, ADTs storing collections of 
objects in Java support a method iterator() 
that returns an iterator of the elements in 
the collection.
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6.6 Iterators

Example
public static void printVector(java.util.Vector, V){

java.util.Iterator iter = V.iterator();
while(iter.hasNext())

System.out.println(iter.next());
}

}
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Chapter 7 Trees

7.1 Tree Terminology and Basic Properties
7.2 Tree ADT
7.3 Data Structures for Representing Trees

7.3.1 A Vector-Based Structure for Binary Trees
7.3.2 A Linked Structure for Binary Trees

7.4 Traversals of binary trees
7.4.1 Pre-order traversal
7.4.2 In-order traversal
7.4.2 Post-order traversal

7.5 Binary Search Trees
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Chapter 7 Trees

7.6 Heaps
7.6.1 The heap implementation of a priority tree
7.6.2 Creating a heap
7.6.3 Running time analysis
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Chapter 7  Trees
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Chapter 7 Trees

Jane

Mat Jennifer Brian

Susan Jerry Jack

Jane’s children and grandchildren

mystuff

home work

games teaching research

DAS.ppt OS.ppt

File organization in a computer
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Chapter 7  Trees

Tree is one of the most important 
nonlinear data structures in computing.
It allows us to implement faster algorithms( 
compared with algorithms using linear 
data structures). 
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7.1 Tree Terminology and Basic 
Properties

Definition: A Tree is a set of nodes 
storing elements in a parent-child 
relationship with the following properties:

It has a special node called root.
Each node different from the root has a parent 
node.

Terms
Parent — the parent of a node is the node 
linked above it.
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7.1 Tree Terminology and Basic 
Properties

Sibling — Two nodes are siblings if they have the 
same parent.
Ancestor
Descendant
Leaf — a node which has no child.
Subtree — any node and its descendants form a 
subtree of the original tree.
Path of two nodes — a path that begins at the 
starting node and goes from node to node along the 
edges that join them until the ending node.
Length of a path — the number of the edges that 
compose it.
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7.1 Tree Terminology and Basic 
Properties

Depth of a node — the length of the path 
between the root and the node.
Height of a tree — the maximum depth of a 
leaf node.

Tree Types
Binary tree — each node has at most two 
children
n-ary tree — each node has at most n children
General tree — each node can have an 
arbitrary number of children.
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7.1 Tree Terminology and Basic 
Properties

More terms
A binary tree is full if every non-leaf node in the 
tree has exactly two children
A binary tree is complete if every level except the 
deepest contains as many nodes as possible, and 
all the nodes at the deepest level are as far left as 
possible. 

A complete binary tree of depth n has
• Maximum number of leaves: 2n

• Maximum number of total nodes: 2n+1 -1.

DSA CMT502 116

7.1 Tree Terminology and Basic 
Properties

A full binary tree A complete binary tree
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7.1 Tree Terminology and Basic 
Properties

Properties of Binary Trees
Let T be a full binary tree with n nodes, and let h denote 
the height of T, then T has the following properties:

(n-1)/2The height of the tree h

2h+1 The total number of nodes

h The number of non-leaf nodes

h+1The number of leaf nodes

At mostAt least

12 1 −+h

12 −h

h2

1)1log( −+n
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7.1 Tree Terminology and Basic 
Properties

Example 7.1: An arithmetic expression can be 
represented by a tree whose leaf nodes are 
associated with variables or constants, and 
whose non-leaf nodes are associated with one 
of the operators +, -, x and /. 

Such an arithmetic expression tree is 
normally a full binary tree, since each of the 
operators +, -, *, and / take exactly two 
operands. 
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7.1 Tree Terminology and Basic 
Properties
Given a expression (((4+5)*3)/((8-7)+2))-((5*(7-5))-8), Its 

expression tree is as follows:

−

/ -

* *

-

4 5

+ 3

+

8 7

- 2 5

8

7 5
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7.2  Tree ADT

Tree nodes
The tree ADT stores elements  at nodes which are 
defined relative to neighbouring nodes. 
Themselves are ADTs which support the method

Object element(): return the object at this node.

Tree methods
Accessor methods

TNode root()
TNode parent(TNode node)
Iterator children(TNode node)
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7.2  Tree ADT

Query methods
boolean isLeaf(TNode node)
boolean isRoot (TNode node)

Generic methods
Int size();
Iterator elements();
Iterator nodes();
swapElements(TNode node1, TNode node2)
TNode replaceElement(TNode node, Object element)
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7.2 Tree ADT

Binary tree methods. Three additional 
accessor methods are supported

TNode leftChild(TNode node)
TNode rightChild(TNode node)
TNode sibling(TNode node)
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7.3 Data Structures for Representing 
Trees

7.3.1 A Vector-Based Structure for Binary 
Trees

Level numbering function p of nodes in a binary 
tree T is defined as follows:

If v is the root of T, then p(v)=0;
if v is the left child of node u, then p(v)=2p(u)+1
if v is the right child of node u, then p(v)=2p(u)+2

Represent a binary tree T by means of a Vector 
S :  node v of T is associated with the element 
of S at position p(v).
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7.3.1 A Vector-Based Structure for Binary 
Trees

A

B

D

H

GE

I J

F

C

K

0

1 2

3 4 5 6

7 8 10 14

A B C D E F G H I J K
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
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7.3.1 A Vector-Based Structure for Binary 
Trees

Running times of methods of a binary tree 
implemented with a vector

O(1)isLeaf(), isRoot()

O(1)leftChild(), rightChild(), sibling()

O(1)Root(), parent(), children()

O(1)swapElements(), replaceElement()

O(n)Nodes(), elements()
TimeMethods
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7.3.1 A Vector-Based Structure for 
Binary Trees

Running times of methods of a binary tree 
implemented with a vector

O(1)isLeaf(), isRoot()

O(1)leftChild(), rightChild(), sibling()

O(1)Root(), parent(), children()

O(1)swapElements(), replaceElement()

O(n)Nodes(), elements()
TimeMethods
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7.3.1 A Vector-Based Structure for Binary 
Trees

Pros: Fast and easy
Cons: Can be very space inefficient if the 
height of the tree is large
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7.3.1 A Vector-Based Structure for Binary 
Trees

Example 7.1: If the number of 
nodes in a binary tree is 5, what is 
the size of the Vector in the worst 
case?
1+2+4+8+16 =31= 25-1

If the number of nodes in a binary 
tree is n, the size of the Vector in 
the worst case is 2n-1
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7.3.2 A Linked Structure for Binary Trees

We represent each 
node of a binary tree 
by an object which 
stores

Element
References to its parent 
and children nodes 

Β

parent

Left child Right child
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7.3.2 A Linked Structure for Binary Trees

Α

Β

C D

Β
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7.3.2 A Linked Structure for Binary Trees

BTNode class declaration
public class BTNode{

private Object element;
public BTNode left, right, parent;

public BTNode(){}

public BTNode(Object O, BTNode l, BTNode r, BTNode p){
this.element = O; this.left =l;
this.right = r; this.parent =p;

}

public Object element(){ return this.element;}
}
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7.3.2 A Linked Structure for Binary Trees

Running times of methods of a binary tree implemented 
with a linked structure

Space usage is O(n) for an n-node binary tree.

O(1)isLeaf(), isRoot()
O(1)leftChild(), rightChild(), sibling()
O(1)Root(), parent(), children()
O(1)swapElements(), replaceElement()
O(n)Nodes(), elements()
TimeMethods
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7.3.3 A Linked Structure for General 
Trees

A container (for example, a list or vector) 
to store the children of a node in a general 
tree. 

Α

Β

parent

Children Container
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7.4 Traversals of Binary Trees

A traversal of a tree is a systematic way of 
accessing or “visiting” all the nodes in the 
tree.
There are three basic traversal schemes:

Pre-order traversal
In-order traversal
Post-order traversal 
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7.4.1 Pre-Order Traversal

A pre-order traversal has three steps for a 
nonempty tree:

Process the root.
Process the nodes in the left subtree with a 
recursive call.
Process the nodes in the right subtree with a 
recursive call.
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7.4.1 Pre-Order Traversal

Algorithm binaryPreorder(T, v)

Input: binary tree T, node v
Output: none

binaryPreorder(T, v){
Perform the “visit” action for node v
If(!T.isLeaf(V)){

binaryPreorder(T, T.leftChild(v))  
//recursively traverse left subtree

binaryPreorder(T, T.rightChild(v))  
//recursively traverse right  subtree

}
}
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7.4.1 Pre-Order Traversal

Α

Β C

D E F G

H I J K
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7.4.1 Pre-Order Traversal

Using pre-order traversal of a binary tree 
to solve the expression evaluation 
problem.

−

/ -

* *

-

4 5

+ 3

+

8 7

- 2 5

8

7 5
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Input: binary tree T, node v
Output: result of the sub expression

preorderEvaluateExpression(T, v){
if(T.isLeaf(v))  

return v.element()
operator = v.element()
operand1 = preorderEvaluateExpression (T, T.leftChild(v))
operand2 = preorderEvaluateExpression (T, T.rightChild(v))
compute the expression and get the result 
return result

}

7.4.1 Pre-Order Traversal
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7.4.2 In-Order Traversal

An in-order traversal has three steps for a 
nonempty tree:

Process the nodes in the left subtree with a 
recursive call.
Process the root. 
Process the nodes in the right subtree with a 
recursive call.

DSA CMT502 141

7.4.2 In-Order Traversal

Algorithm binaryInorder(T, v)

Input: binary tree T, node v
Output: none

binaryInorder(T, v){
If(!T.isLeaf(v))

binaryInorder(T, T.leftChild(v))  //recursively traverse left 
subtree

Perform the “visit” action for node v
If(!T.isLeaf(v))

binaryInorder(T, T.rightChild(v))  //recursively traverse right 
subtree

}
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7.4.2 In-Order Traversal

Α

Β C

D E F G

H I J K
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7.4.2 In-Order Traversal

Using in-order traversal of a binary tree to 
solve the expression evaluation problem.

−

/ -

* *

-

4 5

+ 3

+

8 7

- 2 5

8
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DSA CMT502 144

Input: binary tree T, node v
Output: result of the sub expression

inorderEvaluateExpression(T, v){
if(T.isLeaf(v))  

return v.element()
operand1 = inorderEvaluateExpression (T, T.leftChild(v))
operator = v.element()
operand2 = inorderEvaluateExpression (T, T.rightChild(v))
compute the expression and get the result 
return result

}

7.4.2 In-Order Traversal
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7.4.3 Post-Order Traversal

A post-order traversal has three steps for 
a nonempty tree:

Process the nodes in the left subtree with a 
recursive call.
Process the nodes in the right subtree with a 
recursive call.
Process the root.
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7.4.3 Post-Order Traversal

Α

Β C

D E F G

H I J K
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7.5 Binary Search Trees

In a binary search tree, each non-leaf 
node v stores an element e such that 

the elements stored in the left subtree of v are 
less than or equal to e.
the elements stored in the right subtree of v are 
greater than e.
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7.5 Binary Search Trees

4

2 8

0 3 6 9

5 7
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7.5 Binary Search Trees

Advantage of using binary search trees —
support fast search.

45

9 67

3 26 53 70

48 64

Find an element
in the binary 
search tree
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7.5 Binary Search Trees
Counting the occurrences of an element in a binary 
search tree.
Input: binary search tree T, node v, element e
Output: the number of the occurrences of element e in a subtree

with v as its root node.
occurrencesCount(T, v, e){

int ret=0;
if(T.isLeaf(v))

if(v.element()==e)  ret=1;
else {

if(v.element()==e)  
ret= 1+occurrenceCount(T, T.leftChild(v), e); 

else if(v.element()>=e) 
ret = occurrenceCount(T, T.leftChild(v), e); 

else   ret=occurrenceCount(T, T.rightChild(v), e); 
}
return ret;

}
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7.5 Binary Search Trees

45

9 67

3 26 53 70

48

651

2

3

3

53

53
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7.5 Binary Search Trees
Adding a new element 
to a binary search tree.

Example: add a new 
element 50 to the binary 
search tree.

9 67

3 26 53 70

48 65

45

50
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7.5 Binary Search Trees
Adding a new element to a binary search tree.

Input: binary search tree T, node v, element e
Output:
add(T, v, e){

if(T.isLeaf(v)){
if(v.element()>=e) 

add element e as v’s left child
else 

add element e as v’s right child
} else {

if(v.element()>=e)  
add(T, T.leftChild(v), e) 

else 
add(T, T.rightChild(v), e) 

}
}

DSA CMT502 154

7.5 Binary Search Trees
Remove an element from a binary search tree.

9 67

3 26 53 70

48 65

45

50

remove

66

9 67

3 26 ? 70

48 65

45

50 66
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7.5 Binary Search Trees
Input: binary search tree, node v, element e
Output: boolean
Algorithm remove(T, v, e):  removes a copy of 
element from a subtree whose root is node v. It 
returns true if a copy of the element has been 
removed, otherwise return false.
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7.5 Binary Search Trees
In algorithm remove(T, v, e),

If node v is a leaf node and v stores element e.
• Delete v node

If node v only has right child and v stores element e.
• Find the smallest element  s in v’s right subtree, replace 

v’s data with s  and remove the node that originally stored 
the element s.

53

65

58 66

65

66

58

remove

smallest

58

65

58 66

change

delete
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7.5 Binary Search Trees
If node v has left child and v stores element e.

• Find the largest element  l in v’s left subtree, replace v’s
data with l and remove the node that originally stored the 
element s.

53

45

23 47

45

23

47

remove

largest

47

45

23 47

change

delete
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Input:  Binary search tree T, node v, element e
Output: true if the node storing element e has been removed, otherwise false

remove(T, v, e){
if(v==null) return false;
if(v.element==e){

if(T.isLeaf(v)){
if(T.leftChild(T.parent(v))==v) // v is the left child of its parent

(T.parent(v)).left = null;
else  // v is the right child of its parent

(T.parent(v)).right = null;
} else {

BTNode s = null;
if(T.leftChild(v)!=null)    s=maxNode(T, T.leftChild(v)); 
else   s=minNode(T, T.rightChild(v));
T.replaceElement(v, s.element());
remove(T, s, s.element());

}
return true To be continued
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} else {
if(T.isLeaf(v)) return false
else if (v.element()> =  e)

return remove(T, T.leftChild(v), e)
else 

return remove(T.T.rightChild(v), e)
}

}
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Input: Binary search tree T, node v
Output: return the largest node in the subtree rooted at v
maxNode(T, v){

if(T.rightChild(v)==null) return v
else return maxNode(T, v.rightChild(v))

}

Input: Binary search tree T, node v
Output: return the smallest node in the subtree rooted at v
minNode(T, v){

if(T.leftChild(v)==null) return v
else return minNode(T, v.leftChild(v))

}
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7.6 Heaps

A heap is a binary tree that satisfies two 
additional properties:

The element contained by each non-leaf node 
is greater than or equal to the element stored at 
that node’s children.
The tree is a complete binary tree so that every 
level except the deepest must contain as many 
nodes as possible; at the deepest level, all the 
nodes are as far left as possible.
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7.6 Heaps
25

16

15 9

14 12 7 8

20

18 20

10 17

Example of a heap storing 13 elements



CMT502 Data Structures and Algorith    February 05

28

DSA CMT502 163

7.6.1 The Heap Implementation of a 
Priority Queue

In the heap implementation of a priority 
queue, 

each node of the heap contains one element 
along with the element’s priority
The tree is maintained so that it follows the 
heap storage rules using the element’s priority 
to compare nodes.  
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7.6.1 The Heap Implementation of a 
Priority Queue

Oldest time Recent time

A B C D E F G12 7 9 10 21 15 13Elements
Inserted 

priority
E21

A12

D10B7

F15

C9 G13
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7.6.1 The Heap Implementation of a 
Priority Queue

Adding an element to a heap
Place the new element in the heap in the first 
available location. (This keeps the structure as 
a complete binary tree, but it might no longer be 
a heap)
Swap the new element with its parent if it is 
greater than its parent’s element, until it is less 
than or equal to its parent’s element.
This is called up-heap bubbling
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7.6.1 The Heap Implementation of a 
Priority Queue

45

35 23

27 21 22 4

19 5
42
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Up-heap bubbling
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7.6.1 The Heap Implementation of a 
Priority Queue

Removing the root element from a heap
When an element is remove from a priority 
queue, we must always remove the element 
with the highest priority
1. Remove the root node in the heap
2. Move the last element v in the last level to the root.
3. If any of v’s child elements are larger than or equal 

to v, swap node v with its largest child. Repeat this 
step until all v’s children are smaller than v. This is 
called down-heap bubbling or reheap.
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7.6.1 The Heap Implementation of a 
Priority Queue

45

35 23

27 21 22 4
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7.6.1 The Heap Implementation of a 
Priority Queue

35

27 23

5 21 22 4

19

35

27 23

19 21 22 4

5
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7.6.1 The Heap Implementation of a 
Priority Queue

Upheap algorithm: transform a semiheap, 
in which except for the last leaf, the 
elements are ordered as they are in a 
heap, into a heap.

40

35 23

27 21 22 4

19 70
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7.6.1 The Heap Implementation of a 
Priority Queue

Downheap algorithm: transforms a 
semiheap, in which, except for the root, 
the elements are ordered as they are in a 
heap, into a heap.

5

35 23

27 21 22 4

19
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7.6.1 The Heap Implementation of a 
Priority Queue
upheap Algorithm

Input: Array H, int lastIndex
Output:
upheap(H, lastIndex){

if H[lastIndex] is the root,  return
parentIndex=(lastIndex-1)/2

if (H[lastIndex] >  H[parentIndex]){
temp = H[lastIndex]
H[lastIndex] = H[parentIndex]
H[parentIndex] = temp      
upHeap(H, parentIndex)

}
}
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7.6.1 The Heap Implementation of a 
Priority Queue

Downheap Algorithm
Input: Array H, int rootIndex
Output:
downheap(H, rootIndex){

if H[rootIndex] is a leaf,  return
childIndex=index of the larger of the root’s children.

if (H[rootIndex] <  H[childIndex]){
temp = H[rootIndex]
H[rootIndex] = H[childIndex]
H[childIndex] = temp      
downHeap(H, childIndex)

}
}
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7.6.2 Creating a Heap

Using add: create a heap from a collection 
of objects by using the add method to add 
each object to an initially empty heap.

Example: adding 20, 40, 30, 10, 90, and 70 to a heap

20

20

40

40

20

40

20 30
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7.6.2 Creating a Heap

90

40 30

10 20

90

40 30

10 20 70

90

40 70

10 20 30

40

20 30

10

40

20 30

10 90

40

90 30

10 20
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7.6.2 Creating a Heap

Using downheap:
Place the entries for the heap into an array 
beginning at index 0. This array actually 
represents a complete tree.
Starting at the end of the array, ignoring the 
items which are leaves in the complete tree, 
and moving towards the beginning of the array, 
the next item we encounter is the root of a 
semiheap within the tree. Apply downheap to 
this semiheap. Continue in this manner.  
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7.6.2 Creating a Heap

Example: adding 20, 40, 30, 10, 90, and 70 to a heap
(a) The array of all entries and the complete tree that 

the array represents.

(b) After downheap(A, 3)

20 3040 9010 70
10 32 54

20

40 30

10 90 70

20 7040 9010 30
1 32 54

20

40 70

10 90 30

0
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7.6.2 Creating a Heap

(c) After downheap(A, 2).

(d) After downheap(A, 1)

20 7090 4010 30
20

90 70

10 40 30

90 7040 2010 30
90

40 70

10 20 30

1 32 540

1 32 540

DSA CMT502 179

7.6.2 Creating a Heap
Heap construction using upheap
method

Implementing upheap in Java
In the following algorithm, input array A starts at 
index 0 and A[0…lastIndex-1] represents a heap. 
Now add element A[lastIndex] into the heap. This 
method transforms the semiheap A[0…lastIndex] into 
a heap.
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private static void upheap(int[] A, int lastIndex){
if(lastIndex==0)   

return;

int parentIndex = (lastIndex-1)/2;
if(A[lastIndex]>A[parentIndex]){

int temp=A[lastIndex];
A[lastIndex] = A[parentIndex];
A[parentIndex]=temp;
upheap(A, parentIndex);

}
}
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Implementing heap construction by using the 
upheap method

public static void createHeap(int[] A){
for(int i=1; i<A.length; i++)

upheap(A, i);
}

7.6.2 Creating a Heap
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7.6.2 Creating a Heap
Heap construction using the downheap
method

Implementing downheap in Java
In the following algorithm, sub-array A[rootIndex…end] 

represents a semiheap, in which, except for the root 
element rootIndex, all other elements are ordered as 
they are in a heap. This method transforms the 
semiheap into a heap.
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private static void downheap(int[] A, int rootIndex, int
end){

if(rootIndex > (end-1)/2)  //entry rootIndex is a 
leaf

return;                          
int childIndex = 2*rootIndex+1;
if(A[childIndex] < A[childIndex+1])

childIndex += 1;
if(A[rootIndex]<A[childIndex]){

int temp=A[rootIndex];
A[rootIndex] = A[childIndex];
A[childIndex]=temp;
downheap(A, childIndex,end);

}
}
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7.6.2 Creating a Heap
Implementing Heap construction using the 
downheap method

Public static void createHeap(int[] A){
for(int i=(A.length-1)/2     ; i>0; i--)

downheap(A, A.length-1);
}
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7.6.3 Running time analysis

The adding(upheap) and removing(downheap) 
operators can be performed in O(logn) time, 
where n is the number of elements. This is 
based on the following:

Since T is complete, the height of a heap is O(logn)
In the worst case, the upwards or downwards 
swapping take time proportional to the height of the 
heap.
All other operations takes constant time

Both of heap construction methods (upheap and  
downHeap) can be performed in O(nlogn) time.
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Chapter 8 Balanced Search Trees

8.1  AVL Trees
8.2  2-3 Trees
8.3  B-Trees
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Chapter 8 Balanced Search Trees

The problem of unbalanced trees
the tree are only 
sparsely filled 

Long and deep 
search path 

1
2

3
4

5
6

7
A troublesome 
Search tree

The operations on a 
unbalanced search 
tree  might be as 

bad as O(n)
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8.1 AVL Trees

An AVL tree is a binary search tree that 
rearranges its nodes whenever it becomes 
unbalanced.
A node is balanced if its two subtrees
differ in height by no more than 1.

50

60

80

20

50

60

80

20

50

80

90

20

90

60

balanced unbalanced balanced

Left rotation

DSA CMT502 189

8.1 AVL Trees

Single rotations
Right rotation — when the addition occurs in 
the left subtree of node N’s left child.

C

N

T1 T2

T3

h-1

h

C

N

T1
T2

T3

h-1

h+1

C

N

T1 T2 T3

h

Before addition After addition After right rotation
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8.1 AVL Trees

Left rotation — when the addition occurs in the 
right subtree of node N’s right child.

C

N

T2 T3

T1

h-1

h

C

N

T3T1 T2

h

Before addition After addition After left rotation

C

N

T2
T3

T1

h-1

h+1
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8.1 AVL Trees

Double rotations
Right-left rotation — when the addition occurs 
in the left subtree of node N’s right child.

50

20 80

60 90

50

20 80

60 90

70
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C

N

T1
T4

h-1

h

a. Before 
addition

G

T2 T3

b. After
addition

T3

c. After
right 
rotation

d. After
left 
rotation

Right-left 
Rotation

C

N

T1
T4

h-1

h+1G

T2
T3

C

N

T1

T4

h-1

h+1

G

T2

T3

CN

T1 T4

h-1

h

G

T2
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8.1 AVL Trees

50

20 80

60 90

70

Example of right-left rotation

50

20

80

60

9070

50

20

80

60

9070

Right rotation Left rotation
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8.1 AVL Trees

Left-right rotation — when the addition occurs in 
the right subtree of node N’s left child.

50

20 80

10 40

30

50

20 80

10 40
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C

N

T1
T4

h-1

h

a. Before 
addition

G

T2 T3

C

N

T1
T4

h-1

h+1

b. After
addition

G

T2
T3

C

N

T1

T4

h-1

h+1

c. After
left 
rotation

G

T2

T3

C N

T1 T4

h-1

h

d. After
right 
rotation

G

T2
T3Left-right 

Rotation
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8.1 AVL Trees

Example of left-right rotation

Left rotation Right rotation

50

40 80

20

30

50

20 80

10 40

3010

40

20 50

10 30 80
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8.2  2-3 Trees

A 2-3 tree is a general search tree which 
follows the following rules

All its non-leaf nodes must be either 2-node or 
3-node. 
All its leaf nodes occur on the same level.

2-node and 3-node
A 2-node contains one data element and has 
two children. The data element is greater than 
any data in the node’s left subtree and less than 
any data in the right subtree.
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8.2  2-3 Trees

A 3-node contains two data elements, s and l,  
and has three children. Assume s<l.

Data elements that are less than s occur in the 
node’s left subtree
Data elements that are larger than s and less than l 
occur in the node’s middle subtree
Data elements that are greater than l occur in the 
node’s right subtree

A 2-3 tree is completely balanced. 
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8.2  2-3 Trees

An example
60

20, 50 80

5510 35, 40 70 90
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8.2  2-3 Trees

Searching a 2-3 tree
Input: 2-3 Tree T, node v element e
Output: boolean

search23Tree(T, v, e){
if (v contains e) return true
else if(v is a leaf node)  return false
Find the index number i by comparing e with the elements stored in v
return search23Tree(T, v’s ith child, e)

}

It runs in O(logn) time
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8.2 2-3 Trees

Adding elements to a 2-3 tree
Example 8.1 Adding the following elements to an 

empty 2-3 tree
60, 50, 20, 80, 90, 70, 55, 10, 40, and 35

60 50, 60 20, 50, 60
50

20 60(1) (2) (3)

split
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50

20 60, 80

(4)

50

20 60,80, 90

(5)

50, 80

20 9060

split

50, 80

20 9060, 70
(6)

50, 80

20 9055,60,70

(7)

50,60, 80

20 9055 70

60

50 80

20 55 9070

split split
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60

50 80

10,20 55 9070

(8)

60

50 80

10,20,40 55 9070

(9)

60

20,50 80

10 55 9070

split

40

60

20,50 80

10,40 55 9070

60

20,50 80

10 55 907035,40

(10)
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8.2 2-3 Trees

Splitting nodes during addition
Split a leaf node to accommodate a new 
element

If the leaf’s parent contains one data element.

p

s, m, l

parent split p, m

l

parent

s
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8.2 2-3 Trees

If the leaf’s parent contains two data elements.

p, q

s, m, l

parent
split

p, q, m

l

parent

s

Parent must split
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8.2 2-3 Trees

Split a non-leaf node to accommodate a 
new element

s, m, l
split

m

s l
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8.2 2-3 Trees

Split a root node to accommodate a new 
element

s, m, l
split

m

s l
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8.3 B-Trees

A B-tree is not a binary tree. It nodes can 
have many more than two children.
Each node in a B-tree might contain more 
than one element.
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8.3  B-Trees

B-tree rules
Rules for the element in a B-Tree Node: There 
is a positive constant integer M which 
determines the number of elements stored in 
a single node. 
1. The root can have as few as one element (or even 

no elements if it also has no children)
2. All nodes other than the root have at least M 

elements and at most 2M elements
3. The elements of each B-tree node are stored in a 

particular container, sorted in an ascending order. 
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8.3  B-Trees

Rules for the subtrees below a B-Tree Node: 
1. The number of subtrees below a non-leaf node is 

always one more than the number of elements in 
the node.

2. The elements in each subtree are organized in 
such a way: 
For any non-leaf node,  an element at index i is greater 

than all the elements in subtree number i of the node, 
and less than all the elements in subtree number i+1 of 
the node

Rule for balancing the tree: Every leaf in a B-
tree has the same depth.
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8.3  B-Trees

6

2,4 9

1 53 7,8 10

A Example of B-Tree

M = 1
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8.3 B-Trees

Search an element in a B-tree
Assume in the B-Tree nodes ADT BaTNode, 
two additional methods provided:

int getElementNum (): returns the number of 
elements stored in the node.
int getIndex(Object e): returns an index number i 
such that 

• i=0,  if  e is less than the first element stored in the node
• 0<i<getElementNum()-1, if e is larger than the (i-1)th 

element  and less than the ith element stored in the node
• i=getElementNum()-1, if e is larger than the last element 

stored in the node
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8.3  B-Trees

boolean inNode (Object e): returns true if the 
element e is one of the elements stored in the node, 
otherwise false. 

Also assume in the B-Tree ADT, the following 
method is provided: 

BaTNode getChild(BaTNode v, int i) returns node v’s
ith child node.
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8.3  B-Trees

Input B-Tree T, BaTNode v and element e
Output: a Boolean value

searchBaTree(T, v, e){
if(v.inNode(e)) return true
else if (T.isLeaf(v)) return false
i = v.getIndex(e);
return searchBaTree(T, T.getChild(v, i), e)

}

Algorithm for searching a B-tree

Running time is O(logn)
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8.3  B-Trees

6

2,4 9

1 53 7,8 10

An Example of a B-Tree Search
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Chapter 9  Sorting

9.1 Selection Sort
9.1.1 Iterative Selection Sort 
9.1.2 Recursive Selection Sort
9.1.3 Running Time Analysis

9.2 Insertion Sort
9.3 Shell Sort
9.4  Divide-and-Conquer Sorts

9.4.1 Mergesort
9.4.2 Quicksort

9.5 Heapsort
9.6 Comparing the algorithms
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Chapter 9  Sorting

Arranging things into ascending or 
descending order is called sorting.
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9.1 Selection Sort

In terms of an array A, the selection sort 
finds the smallest element in the array and 
exchanges it with A[0]. Then, ignoring 
A[0], the sort finds the next smallest and 
swaps it with A[1] and so on.
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9.1 Selection Sort

An example of selection sort
15 6 10 5 3 8

3 6 10 5 15 8

3 5 10 6 15 8

3 5 6 10 15 8

3 5 6 8 15 10

3 5 6 8 10 15

unsorted

sorted
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9.1.1 Iterative Selection Sort

Iterative selection sort algorithm
//Sort the first n elements of an array
Input: array A, int n
Output:
selectionSort1(A, n){

for(index = 0; index<n-1; index++){
indexOfNextSmallest = the index of the smallest value      
among A[index], A[index+1], …A[n-1]
interchange the value of A[index] and A[indexOfNextSmallest]

}
}
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9.1.1 Iterative Selection Sort
Implementing iterative selection sort in Java

public static void selectionSort1(int[] A, int n){
for(int i = 0; i<n-1; i++){

int indexOfNextSmallest = i;
int smallest = A[i];
for(int j=i+1; j<n; j++){

if(smallest>A[j]){
indexOfNextSmallest=j;
smallest=A[j];

}
}
A[indexOfNextSmallest]=A[i]; 
A[i]=smallest;

}
}
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9.1.2 Recursive Selection Sort

Recursive selection sort algorithm
//Sort the array elements A[first] through A[last] recursively
Input: array A, int first, int last
Output:
selectionSort2(A, first, last){

if(first<last){
indexOfNextSmallest = the index of the smallest value among

A[first], A[first+1], …A[last]
interchange the value of A[first] and A[indexOfNextSmallest]
selectionSort2(A, first+1, last);

}
}
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9.1.2 Recursive Selection Sort
Implementing recursive selection sort in Java

public static void selectionSort2(int[] A, int first, int last){
if(first>=last) return;
int indexOfNextSmallest = first;
int smallest = A[first];
for(int i=first+1; i<=last; i++){

if(A[i]<smallest){
smallest=A[i];
indexOfNextSmallest=i;

}
}
A[indexOfNextSmallest]=A[first];
A[first]=smallest;
selectionSort2(A, first+1, last);

}
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9.1.3 Running Time Analysis

Selection sort is O(n2) regardless of the 
initial order of the elements in an array.
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9.2 Insertion Sort

An insertion sort of an array partitions the 
array into two parts. 

One part is sorted and initially contains just the 
first element in the array.
The second part contains the remaining 
elements.

The sort inserts one by one the elements in the 
unsorted part of the array into their proper 
location within the sorted part of the array. 
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9.2 Insertion Sort

An example of selection sort
15 6 10 5 3 8

6 15 10 5 3 8

6 10 15 5 3 8

5 6 10 15 3 8

3 5 6 10 15 8

3 5 6 8 10 15

unsorted

sorted
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9.2 Insertion Sort

Recursive insertion sort
//Sort the array elements A[first] through A[last] recursively
Input: array A, int first, int last
Output:

insertionSort(A, first, last){
if (first<last){

insertionSort(A, first, last-1)
insert the last element A[last] into its correct 

sorted position within the rest of the array
}

}
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9.2 Insertion Sort

Implementing recursive insertion sort in 
Java
public static void insertionSort(int[] A, int first, int last){

if(first<last){
insertionSort(A, first, last-1);
insertInOrder(A[last], A, first, last-1);

}
}
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9.2 Insertion Sort

private static void insertInOrder(int element, int[] A, 
int first, int last){

if(element>=A[last])
A[last+1]=element;

else if(first<last){
A[last+1]=A[last];
insertInOrder(element, A, first, last-1);

} else {
A[last+1]=A[last];
A[last]=element;

}
}
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9.2 Insertion Sort

Running time analysis
Insertion sort is at best O(n) and at worst O(n2 ).
The closer an array is to sorted order, the less 
work an insertion sort does
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9.3 Shell Sort

Shell sort is a variation of insertion sort 
that is faster than O(n2).
Observation: the more sorted an array is, 
the less work the method insertInOrder() 
needs to do.
Shell sort adapts the insertion sort to work 
on a subarray of equally spaced elements.
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9.3 Shell Sort

An example of shell sort.

(1) An array and the subarrays formed by grouping 
elements whose indices are 6 apart.

6 7 3 8 1 9 2 10 11 13 4 12 5
0   1   2    3   4    5   6    7   8    9   10  11  12

6……………………2……………………5

7……………………10

3…………………..11

8…………………..13

1…………………..4

9…………………..12
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9.3 Shell Sort

(2) after the subarrays are sorted.

(3) The subarrays of the array formed by grouping 
elements whose indices are 3 apart.

2 7 3 8 1 9 5 10 11 13 4 12 6
0   1   2    3   4    5   6    7   8    9   10  11  12

2 7 3 8 1 9 5 10 11 13 4 12 6
0   1   2    3   4    5   6    7   8    9   10  11  12

2………...8………..5………..13 ……….6

7………...1………..10……… 4

3………..9………..11……… 12
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9.3 Shell Sort

(4) after the subarrays are sorted.

(5) after insertion sort.

1 2 3 4 5 6 7 8 9 10 11 12 13
0   1   2    3   4    5   6    7   8    9   10  11  12

2 1 3 5 4 9 6 7 11 8 10 12 13
0   1   2    3   4    5   6    7   8    9   10  11  12
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9.3 Shell Sort

Efficiency of shell sort
The shell sort is O(n2 ) in the worst case. If n is 
a power of 2, the average running time of a 
shell sort is O(n1.5 ).
By adding 1 to the space between elements 
any time that it is even, the worst running time 
of a shell sort can be improved to O(n1.5 ) 
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9.4  Divide-and-Conquer Sorts

Divide-and-conquer strategy:
Divide a problem into pieces and conquer each 
piece to reach a solution.

Divide-and-Conquer algorithms
Mergesort
Quick sort
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9.4.1 Mergesort

Mergesort paradigm
Divide the list of elements to be sorted into two 
parts of equal or almost equal size 
Sort each part by recursive calls
Combine the two sorted parts into one large 
sorted list.
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9.4.1 Mergesort

6 7 3 8 1 9 2 10 11 4 12 5

6 7 3 8 1 9 2 10 11 4 12 5

1 3 6 7 8 9 2 4 5 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

divide

conquer

combine
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9.4.1 Mergesort

Implementing Mergesort in Java
// Sort the array elements A[first] through A[first+n-1] recursively
public static void mergesort(int[] A, int first, int n){

if(n<=1) return;
int n1 = n/2;         //size of the first half of the array
int n2 = n-n1;       //size of the second half of the array
mergesort(A, first, n1);
mergesort(A, first+n1, n2);
merge(A, first, n1, n2);

}
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9.4.1 Mergesort

Merge function — Merging two sorted 
arrays into one sorted array.

3 5 7 9 0 2 4 6

3 5 7 9 0 2 4 6

3 5 7 9 0 2 4 6

3 5 7 9 0 2 4 6

3 5 7 9 0 2 4 6

3 5 7 9 0 2 4 6

3 5 7 9 0 2 4 6

3 5 7 9 0 2 4 6
0
2

4
3

6
5

9
7

First Array Second Array

New merged Array
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public static void merge(int[] A, int first, int n1, int n2){
/*merge the adjacent subarrays A[first….(first+n1-1)] and A[(first+n1) …

(first+n1+n2-1)]*/
int[] tempA = new int[n1+n2];
int start1 = first;
int end1 = first+n1-1;
int start2 = first+n1;
int end2 = first+n1+n2-1;
int next=0;
while((start1<=end1) && (start2<=end2)){

if(A[start1] <= A[start2]){
tempA[next]=A[start1];
start1++;  

} else {
tempA[next]=A[start2];
start2++;

}
next++;

}

To be continued DSA CMT502 242

//copy remaining elements from other subarrays to tempA.
if(start1<end1){

for(int i=start1; i<=end1; i++){
tempA[next] = A[i]; next++;
}

} else if(start2<end2){
for(int i=start2; i<=end2; i++){

tempA[next] = A[i]; next++;
}

} 

//Copy elements from tempA to A.
for (int i=0; i<=n1+n2; i++){

A[start+i] = tempA[i] ;
}

}
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9.4.1 Mergesort

Running time analysis
Assuming that kn 2=

2K-1
21K

…………
3
2

21
Merging operationsSize of subarraysRecursive callsSteps

22
32

12 −k

k2

12 −k

22 −k

32 −k

k2
12 −k

22 −k

22
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9.4.1 Mergesort

Running time 

When n is not a power of 2, we can find an integer k so 
that  

Thus the running time is still O(nlogn)
Merge steps perform the same amount of work 
regardless of the initial order of the array.
Mergesort requires additional memory for merging. 

nn
k k

kkkk

2

1221

log
2*

2*2...2*22*22

=
=

++++ −−−

⎡ ⎤nk 2log=
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9.4.1 Mergesort

Mergesort in Java Class Library
java.util.Array class defines several versions of 
a static method sort() to sort an array into 
ascending order

Public static void sort(Object[] A)
Public static void sort(Object[] A, int first, int last)
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9.4.2 Quicksort

Quicksort divides an array into two pieces. 
These pieces are not necessarily halves of 
the array. It chooses one element in the 
array — called the pivot — and rearranges 
the array elements so that

Elements in positions before the pivot are less 
than or equal to the pivot
Elements in positions after the pivot are larger 
than the pivot

The arrangement is called a partition of the array.
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9.4.2 Quicksort

Quicksort Algorithm
//Sort the array elements A[first] throught A[last]
Input: Array A, int first, int last
Output:
quicksort(A, first, last){

if(first < last){
Choose a pivot
Partition the array about the pivot
pivotIndex = index of the pivot
quicksort(A, first, pivotIndex-1)
quicksort(A, pivotIndex+1, last)

}
}
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9.4.2 Quicksort

Creating the partition.
Example: assume we have chosen the last 
element as the pivot.

3 5 0 7 6 1 2 4
0 1 2 3 4 5 6 7

Pivot

3 5 0 7 6 1 2 4
0 1 2 3 4 5 6 7

Pivot
indexFromLeft indexFromRight

(a)

(b)

DSA CMT502 249

3 2 0 7 6 1 5 4
0 1 2 3 4 5 6 7

Pivot
indexFromLeft indexFromRight

(c)

3 2 0 7 6 1 5 4
0 1 2 3 4 5 6 7

Pivot

indexFromLeft

indexFromRight

(d)

3 2 0 1 6 7 5 4
0 1 2 3 4 5 6 7

Pivot

indexFromLeft

indexFromRight

(e)

3 2 0 1 7 54
0 1 2 3 4 5 6 7

Pivot
(f) 6
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9.4.2 Quicksort

Pivot selection
Ideally, the pivot should be the median value in 
the array, so that the two partitions have the 
same size — difficult to find the median value.
Median-of-three pivot selection:

take as pivot the median of three elements in the 
array: the first, the middle and the last element. 
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9.4.2 Quicksort

Median-of-three pivot selection:

8 5 0 7 3 1 2 4

(a) The original array

6

3 5 0 7 6 1 2 4 8

(b) The array with its first, middle and last elements sorted, 
and the middle element 6 is chosen as pivot.

pivot
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9.4.2 Quicksort

Adjusting the partition procedure
Before starting the partition procedure, swap the 
pivot with the next-to-last element at A[last-1]. Then 
the partition procedure can begin its search from the 
right index last-2.

3 5 0 7 6 1 2 4 8
pivot

3 5 0 7 4 1 2 6 8
pivot

indexFromLeft indexFromRight
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9.4.2 Quicksort

Running time analysis
The choice of pivots affects the sort’s efficiency. 
It can lead to the worst-case behaviour if the 
array is already sorted or nearly sorted. The 
worst-case running time is O(n2).
Quicksort is O(nlogn) in the average case.
Compared with mergesort, quicksort doesn’t 
require the additional memory that mergesort
needs for merging.
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9.5 Heapsort

Heapsort uses a heap to sort an array. 
Heapsort uses downheap instead of 
upheap to create a heap in a more 
efficient way.
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9.5 Heapsort

An example of heapsort
(a) The original array

(b) After downheap

20 3040 9010 70
20

40 30

10 90 70

90 7040 2010 30
90

40 70

10 20 30heap
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(c) After swapping

(d) After downheap

(e) After swaping

30

40 70

10 20

30 7040 2010 90

swap

70

40 30

10 20

70 3040 2010 90

heap

sorted

20

40 30

10

20 3040 7010 90

swap

sorted

sorted
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(f) After downheap

(g) After swapping

(h) After downheap

40

20 30

10

40 3020 7010 90

heap

sorted

10

20 3010 3020 7040 90

swap

sorted

30

20 1030 1020 7040 90

heap

sorted

DSA CMT502 258

(i) After swapping

(j) After downheap

(k) After swapping

10

20
10 3020 7040 90

swap

sorted

20

10
20 3010 7040 90

heap

sorted

1010 3020 7040 90

swap

sorted

10 3020 7040 90
(l) Array is sorted
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9.5 Heapsort
Java code for heapsort

public static void heapSort(int[] A){
createHeap(A);         // See slide 184
swap(A, 0, A.length-1);
hsort(A, 0, A.length-2);

}

private static void hsort(int[] A, int first, int last){
if(first>=last) return;
downheap(A, first, last); //See Slide 183
swap(A, first, last);
hsort(A, first, last-1);

}

private static void swap(int[] A, int n1, int n2){
int temp = A[n1];
A[n1]=A[n2];
A[n2]=temp;

}
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9.5 Heapsort

Running time analysis
An O(nlogn) algorithm.
No additional memory required.
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9.6 Comparing the algorithms

noheapsort

noquicksort

yesmergesort

noShell sort

noInsertion sort

noSelection sort

Extra array 
needed

Worst caseBest caseAverage 
case

)( 2nO

)( 2nO )( 2nO )( 2nO

)( 2nO)(nO

)( 5.1nO )(/)( 25.1 nOnO

)(nO

)( 2nO

)log( nnO )log( nnO )log( nnO

)log( nnO )log( nnO

)log( nnO )log( nnO

)(nO

DSA CMT502 262

9.6 Comparing the algorithms

316227773162332

199315691660964132877996666433nlogn

n

5.1n
2n

210 310 410 510 61010

310
210 410 610 810 1010 1210

610 910

A comparison of growth-rate functions as n increases
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Chapter 10 Searching and Selection

10.1 Search an unsorted array
10.2 Search a sorted array
10.3 Selection
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10.1 Search an Unsorted Array

A sequential search of a list compares the 
desired item with the entries in the list in a 
sequential order, until it locates the 
desired item or returns without success.
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10.1 Search an Unsorted Array

An iterative sequential search of an 
unsorted array.

public static boolean contains(Object[] A, Object target){
for(int i=0; i<A.length; i++){

if(A[i].equals(target)) 
return true;

}
return false;

}
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10.1 Search an Unsorted Array

A recursive sequential search of an unsorted array.
public static boolean contains(Object[] A, Object target){

return search(A, target, 0, A.length);

}  
private static boolean search(Object[] A, Object target, int start, int end){

if(start > end) 
return false;

if(A[start].equals(target)) 
return true;

return search(A, target, first+1, end);
}
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10.1 Search an Unsorted Array

Running time of a recursive sequential 
search of an array.

Best case O(1)
Worst case O(n)
Average case O(n)
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10.2 Search a sorted array

A sequential search of a sorted array
It can be more efficient if the data is sorted. 

1 2 4 6 8 9 10 11 14 16 18 21 24 27 30
Search 12

return
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10.2 Search a sorted array

A binary search of a sorted array
Binary search algorithm to search a sorted array for desiredItem

mid = approximate midpoint in array A
if(desiredItem == A[mid])

return  true
else if(desiredItem < A[mid])

return the result of searching A[0] through A[mid-1]
else if(desiredItem > A[mid])

return the result of searching A[mid+1] through A[n-1]
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10.2 Search a sorted array

public static boolean binarysearch(int[] A, int first, int last, int
desiredItem){

boolean found=false;
if(first>last) return false;
int mid = (first+last)/2;
if(desiredItem==A[mid]) 

found = true;
else if(desiredItem<A[mid]) 

found=binarysearch(A, first, mid-1, desiredItem);
else if(desiredItem>A[mid]) 

found=binarysearch(A, mid+1, last, desiredItem);
return found;

}
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10.2 Search a Sorted Array

Running time of a recursive binary search 
of an array.

Best case O(1)
Worst case O(logn)
Average case O(logn)
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10.3 Selection

Selection problem
Given an array A and an integer k, find the kth
smallest element.

Any sorting algorithm can be used to solve 
the selection problem. However, since the 
selection problem does not require that the 
array be sorted, can we solve the problem 
without sorting the entire array?
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10.3 Selection

Recall the partition method used in 
quicksort: 

Suppose we execute the partition procedure 
and the partition element — pivot — happens to 
be placed in the kth cell. The pivot element is 
the desired kth smallest element.
However, in general, the partition procedure 
does not always place the partition element in 
the kth cell.
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10.3 Selection

Observation: if the partition procedure 
places the partition element in the ith cell

If i<k, then the kth smallest element must be 
among the elements that are to the right of the 
partition element.
If i>k, then the kth smallest element must be 
among the elements that are to the left of the 
partition element.
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10.3 Selection

Implementing Random quick-select 
method

Random partition algorithm
private static int randPartition(int[] A, int first, int last )

This algorithm chooses an index m randomly, and 
then partitions the array A[first…last] by inserting 
val=A[m] at an index h where it would be if the array 
was sorted. Then return the index h.
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10.3 Selection
private static int randPartition(int[] A, int first, int last ){

int m = first+Math.random()*(last-first+1);
swap(A, m, last);
int leftIndex = first;
int rightIndex = last-1;
while (leftIndex<rightIndex){

if(A[leftIndex]>A[last]) {
swap(A, leftIndex, rightIndex)
rightIndex--;

} else leftIndex++;
}
int h = (A[leftIndex]<A[last])? (leftIndex+1): leftIndex;
swap(A, h, last);
return h;

}
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10.3 Selection
Select algorithm using random partition

This algorithm searches an unsorted array 
A[first…last], finds the kth smallest element in the 
array and return its value.

public static int quickSelect (int[] A, int first, int last, int k){
int h=randPartition(A, first, last);
int val = 0;

if(h==k) val=A[h];
else if(h<k)

val=quickSelect(A, h+1, last);
else if(h>k)

val=quickSelect(A, first, h-1);
return val;

}
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10.3 Selection

Running time analysis of randomized 
quick-selection

Best case O(n)
Worst case O(n2 )
Average case O(n )  
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Chapter 11. Maps, Dictionaries and Sets

11.1 Maps
11.2 Hash tables

11.2.1 Bucket arrays
11.2.2 Hash fuctions
11.2.3 Hash code
11.2.4 Compression fuctions

11.2 Dictionaries
11.3 Sets

DSA CMT502 280

11.1 Maps

A map stores key-value pairs(k, v), which 
we call entries, where k is the key and v is 
its corresponding value.
Each key in a map must be unique.
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11.1 Maps
The Map ADT(based on java.util.Map)

If the map doesn’t have an entry with key equal to 
k, then add entry(k, v); else, replace with v the 
existing value of the entry with key equal to k and 
return the old value

Object put(Object k, 
Object v)

remove an entry with key equal to k and return its 
value

object remove(Object k)

Returns a set view of the keys contained in this 
map. 

keySet()

Returns a collection view of the values contained in 
this map. 

Values()

Return the value of an entry with key equal to kobject get(Object k)
Test whether the map is emptyboolean isEmpty()
Return the number of entries in the mapint size()
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11.2 Hash Tables

The running time of map operations in an 
n-entry map is O(n).
A hash table usually can perform these 
operations in O(1) expect time.
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11.2.1 Bucket Array

Is an array of size N, where each cell of A is 
thought of as a “bucket” which is a container of 
key-value pairs. 

The keys are integers well distributed in the range of [0, 
N-1].
An entry with key k is inserted into the bucket A[k].

0      1     2      3      4     5     6       7      8      9
(1, D) (4, A)

(4, N)
(7, F)
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11.2.1 Bucket Arrays

Pros and cons
Pros: If the keys are unique integers, then each 
bucket holds at most one entry. Thus, the search, 
remove, insert operations run in O(1) time.
Cons

May be a waste of space. If N is much larger 
than the number of entries n.
The keys are required to be integers in the 
range[0, N-1], which is often not the case

Solution – Use the bucket array in conjunction with 
a “good” mapping from the keys to the integers 
in the range [0,N-1].
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11.2.2 Hash functions

A hash function h maps each key k in the 
map to an integer in the range [0, N-1].

We store the entry (k, v) in the bucket A[h(k)].
Collision: If there are two or more keys 
with the same hash value, then two or 
more different entries will be mapped to 
the same bucket. A “good” hash function 
should minimize collision as much as 
possible. 
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Hash functions

A hash function has two actions
Mapping the key to an integer, called the hash code
Mapping the hash code to an integer within the range 
of indices [0, N-1] of a bucket array – compression 
function

Keys Hash
code

0
1
2
.
.
.

N-1

MapMap

Compression
function
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11.2.3  Hash Codes

Hash codes in Java
Java Object class defines a default hashCode() 
method for mapping each Object instance to an 
32-bit integer of type int

Hash codes for common data types.
Casting to an integer

byte, short, int, char types
Simply cast these types to int to get their hash codes

Float type
• Float.floatToIntBits(x)  //convert a float x to an integer.
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11.2.3  Hash Codes

Summing components
Long and double types that are 64-bit

• 1. Simply cast a long integer down to a 32-bit 
integer by ignoring half of the information 
presented in the original value – may easy lead 
to Collisions.

• 2. Sum an integer representation of the high-
order bits with an integer representation of the 
low-order bits.

Summation hash code: We can view the binary 
representation of any object x as k-tuple(x0, x1, 
x2, …, xk-1) of integers, then the hash code for x 
can be formed as 

i
k
i x1

0
−
=∑
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11.2.3  Hash Codes

Polynomial Hash Codes
The summation hash code is not a good choice for 
strings or other variable-length objects that can be 
viewed as tuples of the form

where the order of the elements are significant.

Example: “temp10” and “temp01” collide
“stop”, “spot”, “tops” and “pots” collide 

),...,,,( 1210 −kxxxx
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11.2.3  Hash Codes

Polynomial hash code:
Alternatively, we use as hash code the value

Where a is a nonzero constant,         .  And                   
are the components of an object.

By Horner’s rule this polynomial can be written as

kk
kkk xaxaxaxax +++++ −

−−−
2

3
2

2
1

1
0 ...

1210 ,...,,, −kxxxx
1≠a

))...))((...(( 012321 axxaxaxaxax kkk ++++++ −−−
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11.2.3  Hash Codes

Experimental results
Experimental studies suggest that 33, 37, 39, and 41 are 
particularly good choices for a when working with 
character strings that are English words. In a list of over 
5000 English words, there are less than 7 cases of 
collision when taking these integers as a.
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11.2.4  Compression Functions

The division method
It maps an integer i to

|i| mod N.
where N is the size of the bucket array.

The MAD method
MAD=Multiply add and divide
It maps an integer i to

|ai+b| mod N.
where N is a prime number and a>=0, b>=0 are integer 

constants randomly chosen at the time the compression 
function is determined so that a!=N
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11.2.5  Collision-Handling Schemes

Separate chaining
The bucket A[i] store a small map Mi  , implemented 
using a list, holding entries (k, v) such that h(k)=i.
Load factor=n/N, where n is the number of entries in 
the map, N is the size of the bucket array.

0      1     2      3      4     5     6       7      8      9

52

82

92

55 18

28

48

98
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11.2.5  Collision-Handling Schemes

Open Addressing Schemes
It requires 

the load factor be always at most 1 
the entries must be stored directly in the cells of the 
bucket array itself

Linear Probing
If we try to insert an entry (k, v) into a bucket A[i] that 
is already occupied, we try next at A[(i+1)modN], and 
so on, until we find an empty bucket.
It saves space, but it causes clustering and slows 
down the search operation
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11.2.5  Collision-Handling Schemes

Quadratic Probing
If we try to insert an entry (k, v) into a bucket A[i] that 
is already occupied, we iteratively trying the bucket 
A[(i+f(j)) mod N), for j=0, 1, 2, 3, …, where f(j)=j2 , 
until we find an empty bucket.
It complicates the removal operation and also causes 
some amount of clustering.
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11.3 Dictionaries

A dictionary stores key-value pairs (k, v), 
which we call entries, where k is the key 
and v is its corresponding value.
It allows for multiple entries to have the 
same key.
There are two types of dictionaries

Unordered dictionary
Ordered dictionary
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11.3 Dictionaries
Dictionary ADT

Return the iterator of all entries with key 
equal to k

Iterator findAll(Object k)

Return an iterator of entries stored in DIterator entries()

Insert an entry with key k and value e into D, 
returning the entry created.

Entry insert(Object k, 
Object v)

remove from D the entry e, returning the 
removed entry.

Entry remove(Entry e)

Return the value of an entry with key equal 
to k

object find(Object k)
Test whether D is emptyboolean isEmpty()
Return the number of entries in Dint size()
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11.4 Set

A set is a container of distinct objects.
No duplicated elements
No explicit keys
No explicit order

Union, intersection and subtraction of two sets 
A and B:

):{
):{

):{

BAandxxxBA
BAandxxxBA

BAorxxxBA

∉∈=−
∈∈=

∈∈=
I

U
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11.4 Set

Set ADT
The fundamental methods

Union(A, B): return the union of A and B.
intersect(A, B): return the intersection of A and B.
subtract(A, B): return the difference of A and B.
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11.4 Set

A simple set implementation
Storing a set into an ordered sequence.
Union, intersection and subtraction operations 
can be implemented by using a generic merging 
algorithm that takes two sorted sequences and 
constructs a sequence representing the output 
set.
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A implementation of union operation.

Input: sequence A and sequence B 
Output: sequence C
union(A, B){

Initiate an empty set C
indexA =0

indexB=0
while(indexA < length of A and indexB < length of B){

a is the element at indexA in sequence A 
b is the element at indexB in sequence B 
if(a==b){ copy a to the end of C , indexA++, indexB++}
else if (a>b){ copy b to the end of C, indexB++}
else { copy a to the end of C, indexA++}     

}
if(indexA < length of A) 

copy the rest of the elements in A to the end of C
else if(indexB < length of B) 

copy the rest of the elements in B to the end of C
return C

}
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• A implementation of intersection operation.

Input: sequence A and sequence B 
Output: sequence C

intersect (A, B){
initiate an empty set C
indexA =0
indexB=0
while(indexA < length of A and indexB < length of B){

a is the element at indexA in sequence A 
b is the element at indexB in sequence B 
if(a==b){ 

copy a to the end of C , indexA++, indexB++
}else if (a>b)   indexB++
else    indexA++

}
return C

}
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• A implementation of subtraction operation.

Input: sequence A and sequence B 
Output: sequence C
subtract (A, B){
initiate an empty set C
indexA =0

indexB=0
while(indexA < length of A and indexB < length of B){

a is the element at indexA in sequence A 
b is the element at indexB in sequence B 
if(a==b){ indexA++, indexB++}
else if (a>b)   indexB++
else  { copy a to the end of C,  indexA++}

}
if(indexA<length of A) 

copy the rest of the elments in A to the end of C.
return C

}
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11.4 Set

Performance of generic merging
Assume na is size of A, nb is the size of B, the total 
running time is O(na+nb).
The set which is implemented with an ordered 
sequence and a generic merging scheme supports 
union, intersection and subtraction in O(n) time.

DSA CMT502 305

Chapter 12 Graphs

12.1 Graph terminology
12.2 Graph representation
12.3 Graph traversals

12.3.1 Depth-first search
12.3.2 Breadth-first search
12.3.3 Topological order
12.3.4 Find a path
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12.1 Graph Terminology

A graph G is a set V of vertices and a 
collection E of pairs of vertices from V, 
called edges.
An edge (u, v) is said to be directed from 
u to v if the pair (u, v) is ordered, with u
proceeding v. 
An edge (u, v) is said to be undirected if 
the pair (u, v) is unordered. 
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12.1 Graph Terminology

A graph is an undirected graph if all its 
edges are undirected.
A graph is an directed graph (or digraph) 
if all its edges are directed.
A graph is an mixed graph if it has both 
undirected and directed edges.
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12.1 Graph Terminology

The two vertices joined by an edge are 
called the end vertices of the edge, and 
they are adjacent.
An edge is said to be incident on a vertex 
if the vertex is one of the edge’s end 
vertices.
The degree of a vertex v, denoted deg(v),
is the number of the incident edges of v.

DSA CMT502 309

12.1 Graph Terminology

The outgoing edges of a vertex are the 
directed edges whose origin is that vertex.
The incoming edges of a vertex are the 
directed edges whose destination is that 
vertex.
The in-degree and out-degree of a vertex 
v are the number of the incoming and 
outgoing edges of v, and are denoted 
indeg(v) and outdeg(v), respectively.
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12.1 Graph Terminology

A path is a sequence of edges that connect two 
vertices in a graph. The length of a path is the 
number of edges it comprises.
If the path does not pass through any vertex 
more than once, it is a simple path.
A cycle is a path that begins and ends at the 
same vertex. A simple cycle passes through 
other vertices only once.
A acyclic graph is a graph without any cycles.

DSA CMT502 311

12.1 Graph Terminology

A directed path is a path such that all the 
edges are directed and are travelled along 
their direction.
A directed cycle is a cycle such that all 
the edges are directed and are travelled 
along their direction.
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12.1 Graph Terminology

A subgraph is a portion of a graph that is itself a graph.
A spanning subgraph of graph G is a subgraph of G 
that contains all the vertices of G.
A connected graph is a graph, in which, for any two 
vertices, there is a path between them. 
A maximal subgraph is a subgraph with the maximum 
possible number of edges (every edge which is in the 
original and has both endpoints in the vertex set of the 
subgraph).
If  a graph is not connected, its maximal connected 
subgraphs are called the connected components of G. 
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12.1 Graph Terminology

A forest is a graph without cycles.
A tree is a connected forest. (The trees we 
have learned about earlier can be called 
rooted trees, and the trees in this chapter 
are called free trees).
A spanning tree of a graph is a spanning 
subgraph that is a tree.
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12.1 Graph Terminology

A weighted graph is a graph that has a 
numeric label w(e) associated with each 
edge e, called the weight of edge e.
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12.1 Graph Terminology

Properties
Let G be an undirected graph with n vertices and 

m edges
If G is connected, then m>=n-1
If G is a tree, then m=n-1
If G is a forest, then m<=n-1
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12.2 Graph ADT

Replace the element stored at v with xreplace(v, x)

Test whether vertices v and w are adjacentareAdjacent(v, w)

Return an array storing the end vertices of edge e.endVertices(e)

Return the end vertex of edge e from vertex v.opposite(v, e)

Return an iterator of the edges incident upon 
vertex v.

incidentEdges(v)

Return an iterator of all the edges of a graphedges()

Return an iterator of all the vertices of a graphvertices()
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12.2 Graph ADT

Remove edge e and return the element stored at 
e.

removeEdge(e)

Remove vertex v and all its incident edges and 
return the element stored in v

removeVertex(v)

Insert and return a new undirected edge with end 
vertices v and w and storing element x.

insertEdge(v, w, x)

Insert and return a new vertex storing element xinsertVertex(x)
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12.2 Graph Representations

The edge list structure
In a graph representation, there are two 
containers V and E. V stores all the vertex 
objects of the graph and E stores all the edge 
objects of the graph.

A vertex object stores an element
A edge object stores an element  and two references 
to the vertex objects representing its end vertices.
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12.2 Graph Representations

Visualize the edge list structure

u

v w z

a

b

c

d

u v w z

a b c d

V

E
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12.2 Graph Representations

Performance of the edge list structure (m is the 
number of edges, n is the number of vertices)

Space usage is O(m+n)

O(m)removeVertex()
O(1)InsertVertex(), insertEdge(), removeEdge()
O(1)Replace()
O(m)incidentEdges(), areAdjacent()
O(1)endVertices(), opposite()
O(m)Edges()
O(n)Vertices()
TimeOperation
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12.2 Graph Representations

The adjacency list structure
In a graph representation, there are two 
containers V and E. V stores all the vertex 
objects of the graph and E stores all the edge 
objects of the graph.

A vertex object stores an element and a reference to 
an adjacency list which stores references to the 
edges incident on the vertex
An edge object stores an element  and two 
references to the vertex objects representing its end 
vertices.
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12.2 Graph Representations

Visualize the Adjacency list structure

u

v w z

a

b

c

d
u v w z

a b c d

V

E
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12.2 Graph Representations
Performance of the adjacency list structure (m is the 
number of edges, n is the number of vertices)

Space usage is O(m+n)

O(deg(v))incidentEdges(v)

O(deg(v))removeVertex()
O(1)InsertVertex(), insertEdge(), removeEdge()
O(1)Replace()
O(min(deg(v), deg(w))areAdjacent(v, w)

O(1)endVertices(), opposite()
O(m)Edges()
O(n)Vertices()
TimeOperation
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12.2 Graph Representations

The adjacency matrix structure
This method uses an adjacency matrix to 
represent a graph

The vertices in the graph needs to be ordered so that 
each vertex is associated with an index number.
In the adjacency matrix representing the graph, the 
entry in row i, column j is 1 if (i, j) is an edge, or 0 if (i, 
j) is not an edge.
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12.2 Graph Representations

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0100110
1000001
0001000
0010000
1000010
1000101
0100010

7
6
5
4
3
2
1

1      2    3      4      5     6     7

e4

1 e1 2
e2

e6
3

4 5

7e76

e5

e3

Graph Adjacency matrix
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12.2 Graph Representations
Performance of the adjacency matrix structure (m is the 
number of edges, n is the number of vertices)

Space usage is O(m+n )

O(n+deg(v))incidentEdges(v)

O(n )InsertVertex(), removeVertex()
O(1)insertEdge(), removeEdge()
O(1)Replace()
O(1)areAdjacent(v, w)

O(1)endVertices(), opposite()
O(m)Edges()
O(n)Vertices()
TimeOperation

2

2
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12.3 Graph Traversals

A traversal is a systematic procedure for 
exploring a connected graph by examining 
all its vertices and/or edges.

It is efficient if it visits all the vertices and edges 
in linear time (which is proportional to the 
number of all the vertices and/or edges).
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12.3.1 Depth-First Search

A depth-first search visits a vertex, then a 
neighbour of the vertex, a neighbour of the 
neighbour, and so on, advancing as far as 
possible from the original vertex. It then 
backs up by one vertex and consider 
another neighbour.
Example
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A B C D

E F G H

I J K L

M N O P

A B C D

E F G H

I J K L

M N O P

A B C D

E F G H

I J K L

M N O P

A B C D

E F G H

I J K L

M N O P

(a)   Stack S:
Queue Q:

(b)   Stack S: BCDHLPOKNMIEA
Queue Q:  AEIMNKOPLHDCB

(c)   Stack S: FBCDHLPOKNMIEA
Queue Q:  AEIMNKOPLHDCBF

(d)   Stack S: JGCDHLPOKNMIEA
Queue Q:  AEIMNKOPLHDCBFGJ DSA CMT502 330

A B C D

E F G H

I J K L

M N O P
(e)   Stack S: CDHLPOKNMIEA

Queue Q:  AEIMNKOPLHDCBFGJ

A B C D

E F G H

I J K L

M N O P
(f)   Stack S:
Queue Q:  AEIMNKOPLHDCBFGJ
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DFS Algorithm
Input: A graph G, vertex v
Output: a new queue Q for the resulting traversal order
DFSTraversal(G,v){

initiate a stack S and a queue Q
mark v as visited
S.push(v)
Q.enqueue(v)
topVertex = v;
while(!S.isEmpty()){

if(topVertex has an unvisited neighbour){
nextNeighbour = next unvisited neighbour of topVertex
mark nextNeighbour as visited
Q.enqueue(nextNeighbour)
S.push(nextNeighbour)

} else 
topVertex = S.pop()

}
return Q

}
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12.3.2 Breadth-First Search

Given an original vertex, a breadth-first 
traversal visits the origin and the origin ‘s 
neighbours. It then considers each of 
these neighbours and visit their 
neighbours.
Example

DSA CMT502 333

A B C D

E F G H

I J K L

M N O P

A B C D

E F G H

I J K L

M N O P

(a)   Queue Q1:
Queue Q2:

(b)   Q1: EFB
Q2:  AEFB

A B C D

E F G H

I J K L

M N O P

(c)   Q1: IC
Q2:  AEFBIC

A B C D

E F G H

I J K L

M N O P

(d)   Q1: MNJGD
Q2:  AEFBICMNJGD DSA CMT502 334

A B C D

E F G H

I J K L

M N O P

(e)   Q1: KLH
Q2:  AEFBICMNJGDKLH

A B C D

E F G H

I J K L

M N O P

(f)   Q1: OP
Q2:  AEFBICMNJGDKLHOP

A B C D

E F G H

I J K L

M N O P

(g)   Q1:
Q2:  AEFBICMNJGDKLHOP
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BFS Algorithm
Input: A graph G, vertex v
Output: a new queue Q for the resulting traversal order
BFSTraversal(G,v){

initiate two queues Q1 and Q2
mark v as visited
Q1.enqueue(v)
Q2.enqueue(v)
while(!Q1.isEmpty()){

topVertex = Q1.dequeue();
while(topVertex has an unvisited neighbour){

nextNeighbour = next unvisited neighbour of topVertex
Q1.enqueue(nextNeighbour)
mark nextNeighbour as visited
Q2.enqueue(nextNeighbour)

} 
}
return Q2

} DSA CMT502 336

12.3.3 Topological Order

In a directed graph without cycles, we can 
arrange the vertices so that vertex a 
precedes vertex b whenever a directed 
edge exists from a to b. The order of the 
vertices in this arrangement is called  a 
topological order.
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12.3.3 Topological Order

In a directed graph without cycles, we can 
arrange the vertices so that vertex a 
precedes vertex b whenever a directed 
edge exists from a to b. The order of the 
vertices in this arrangement is called  a 
topological order.
Topological sort—discovers the 
topological order of a graph.
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12.3.3 Topological Order
Topological sort algorithm
Input: acyclic directed graph G
output: a stack S for the resulting traversal order
getTopologicalOrder(G){

n=number of vertices in G
initiate a new stack S
nextVertex=a vertex that has no successor.

for(i=0; i<n; i++){
mark nextVertex visited
S.push(nextVertex)
nextVertex=a vertex that either has no successor or all his 

successors have been visited 
}
return S

}
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Example of topological sort of a graph

D E F G H I

B C

J

A

Stack:

D E F G H I

B C

J

A

Stack:A

D E F G H I

B C

J

A

Stack:CA

D E F G H I

B C

J

A

Stack:BCA DSA CMT502 340

D E F G H I

B C

J

A

Stack:IBCA

D E F G H I

B C

J

A

Stack:HIBCA

D E F G H I

B C

J

A

Stack:GHIBCA

D E F G H I

B C

J

A

Stack:FGHIBCA

InsertVertex(),
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D E F G H I

B C

J

A

Stack:JFGHIBCA

D E F G H I

B C

J

A

Stack:EJFGHIBCA

D E F G H I

B C

J

A

Stack:DEJFGHIBCA
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12.3.4 Finding a Path

12.3.4.1 The shortest path in an 
unweighted graph

A B C D

E F G H

I J K L

M N O P

A E I M N K
A F J K
A F K
A B F K
A B C G K
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12.3.4.1 The shortest path in an 
unweighted graph

Enhance breadth-first traversal to solve the 
problem

A B C D

E F G H

I J K L

M N O P

0

1

2

A A

A

E F F

B
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algorithm for getting shortest path in an unweighted graph

Input:  graph G, vertices originVertex, endVertex
Output: a stack S for the resulting traversal order
getShortestPath(G, originVertex, endVertex){

done = false
initiate a queue Q to hold neighbours
mark originVertex as visited
Q.enqueue(oringinVertex)
while(!done && !Q.isEmpty()){

frontVertex=Q.dequeue();
while(!done && frontVertex has unvisited neighbours){

nextNeighbour = next unvisited neighbour of frontVertex
mark nextNeighbour as visited
set the predecessor of nextNeighbour to frontVertex
Q.enqueue(nextNeighbour)
if(nextNeighbour==endVertex) done=true

}
}
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S = a new stack of vertices
S.push(endVertex)
while(endVertex has a prodecessor){

endVertex = prodecessor of endVertex
S.push(endVertex)

}
return S

}
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12.3.4.2 The shortest path in a weighted 
graph

The shortest path in a weighted graph is 
not necessarily the one with the fewest 
edges, but the one with the smallest edge-
weight sum.

A B C D

E F G H

I J K L

M N O P

path                 weight
A E I M N K    8
A F J K                11
A F K                     10
A B F K               7
A B C G K         6

1

2

1

6
4

2 3

23

1 2

2 1 2 5

6

8

3

42
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12.3.4.2 The shortest path in a weighted 
graph

Developing the algorithm:
based on a breadth-first traversal
uses a priority queue.

Each entry in the priority queue is an object that 
contains

• A vertex
• The cost of the path to that vertex from the origin vertex
• The previous vertex on that path

The queue uses the cost of the path as priority. The 
less cost has higher priority. 
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1 2
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F 6 A

J

N 7 M

C 3 B

G 4 C

K 6 G

O

D

H

L

P



CMT502 Data Structures and Algorith    February 05

59

DSA CMT502 349

algorithm for getting shortest path in a weighted graph
Input:  graph G, vertices originVertex, endVertex
output: a stack S for the resulting traversal order
getShortestPath(G, originVertex, endVertex){

initiate a priority queue Q
set originVertex as visited
Q.enqueue(new pathEntry(originVertex, 0, null))
while(Q.isEmpty()){

frontEntry = Q.dequeue()
frontVertex = vertex in frontEntry
if(frontVertex equals endVertex)  break
while(frontVertex has an unvisited neighbour){

nextNeighbour = next unvisited neighbour of frontVertex
set the cost of path to nextNeighbour as 

(weight of edge between frontVertex and             
nextNeighbour + cost of path to frontVertex)

set the processor of nextNeighbour as frontVertex
set nextNeighbour as visited
add nextNeighbour to Q

}
}
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S = a new stack of vertices
S.push(endVertex)
while(endVertex has a prodecessor){

endVertex = prodecessor of endVertex
S.push(endVertex)

}
return S

}
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Chapter 13  Greedy Algorithms

13.1 Coin changing
13.2 Kruskal algorithm
13.3 Prim’s algorithm
13.4 Dijkstra’s algorithm
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Chapter 13 Greedy Algorithms

A greedy algorithm builds a solution to a 
problem in steps. In each step, it adds a 
part of the solution which is the best 
available based on a greedy rule.
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13.1 Coin Changing Problem

Suppose we want to make change for an 
amount A using the fewest number of 
coins. Suppose further that the available 
denominations are 1, 5 and 10.
One of the greedy rules: select the largest 
denomination available. 
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13.1 Coin Changing Problem

Example:  A=18.

510 1 1 1
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13.1 Coin Changing Problem
Greedy coin changing algorithm: this algorithm makes change for an 
amount A using coins of denominations

denom[1]>denom[2]>…>denom[n]=1
Input:  amount A, denom
Output: A queue storing the selections in order 
Greedy-coin-changing(A, denom){

i=1;
Initiate a queue Q
while(A>0){

c=A/denom[i]
if(c>0){

for(j=0; j<c; j++) Q.enqueue(denom[i])
A = A-c*denom[i]
i++;

}
}
return Q

}
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13.1 Coin Changing Problem

Running time analysis
The running time for the greedy coin changing 
algorithm is O(n),  where n is the number of the 
denominations of coins.
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13.2 Kruskal Algorithm

A problem: The following graph shows six cities A, B, C, 
D, E and F and the costs (in hundreds of thousands of 
pounds) of rebuilding roads between them. We need to 
find out the cheapest way to rebuild enough roads so 
that each pair of cities will be connected. That is, to find 
a spanning tree with minimum weight (minimal 
spanning tree).

A

E

B

C

D

F
2 4

3

3
2

6
6

5
1
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13.2 Kruskal Algorithm

Kruskal algorithm is a greedy algorithm for 
finding a minimal spanning tree in a 
connected weighted graph G.

It begins with all the vertices of G and no 
edges.
It then applies the greedy rule: Add an edge of 
minimum weight that does not make a cycle.
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A

E

B

C

D

F
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2
6 6

5

1

(e)

The cost of this spanning tree is 12.
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13.2 Kruskal Algorithm

Implementing the Kruskal Algorithm
Represents graph as a list of edges and their 
weights.
Sorts the edges in non-decreasing order by 
weight and examines them in sorted order.
Determines whether adding an edge would 
create a cycle.
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13.2 Kruskal Algorithm

Example: Find the minimal spanning tree in the 
following graph.

The representation of the graph is:
(1,2,4)(1,3,2)(1,5,3)(2,4,5)(3,4,1)(3,5,6)(3,6,3)(4,6,6)(5,6,2)
Where (a, b, w) is interpreted as edge (a, b) of weight w.
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1
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13.2 Kruskal Algorithm
First of all, we sort the edges in non-descendent order by weight
(3,4,1)(1,3,2)(5,6,2)(1,5,3)(3,6,3)(1,2,4)(2,4,5)(3,5,6)(4,6,6)

When the Kruskal algorithm starts, no edges have been selected, 
so we put all the vertices into different sets
{1}  {2}  {3}  {4}  {5}  {6}

The first edge (3,4) is selected, and the sets to which vertices 3 and 
4 belong are merged:
{1}  {2}  {3,4}  {5}  {6}

Next edge (1,3) is selected, and the sets to which vertices 1 and 3 
belong are merged:
{1,3,4}  {2}  {5}  {6}
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13.2 Kruskal Algorithm
Next edge (5,6) is selected, and the sets to which vertices 5 and 6 

belong are merged:
{1,3,4}  {2}  {5,6}

Next edge (1,5) is selected, and the sets to which vertices 1 and 5 
belong are merged:
{1,3,4, 5,6}  {2}

Next edge (3,6) is examined and rejected, because its vertices 3
and 6 belongs to the same set.

Finally edge (1,2) is selected, and the sets to which vertices 1 and 
2 belong are merged:
{1,3,4, 5,6, 2}
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The algorithm
Input: edgelist, n
//edgelist is an array of edges. The members of edge are its end vertices 

and its weight. N is the number of vertices.
Output:
Kruskal(edgelist, n){

sort edgelist in a non-descendent order
make a set for each vertex
i=0
count =n
while( count>1){

(a, b) = the edge represented in edgelist[i]
if (vertices a and b are in different sets){

println (“(”+a+”, “+b+”)”)
merge the two sets
count - -

}
i++

}
}
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13.3 Prim’s Algorithm

Prim’s algorithm is another greedy 
algorithm for finding a minimal spanning 
tree in a connected weighted graph G.

It begins with a start vertex and no edges.
It then applies the greedy rule: Add an edge of 
minimum weight that has one vertex in the 
current tree and the other not in the current 
tree.
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Find the minimum spanning tree
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13.4 Dijkstra’s Algorithm

Dijkstra’s algorithm is a greedy algorithm 
that finds the shortest paths from a 
designed vertex s to all other vertices in 
non-decreasing order of length.

The first path found is from s to s of length 0.
It then applies the greedy rule: Among all of the 
vertices that can extend a shortest path already 
found by one edge, choose the one that results 
in the shortest path.
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13.4 Dijkstra’s Algorithm

Example: finds the shortest paths from 
vertex 5 to all other vertices in non-
decreasing order.
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