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Course Content

. Introduction to Complexity of Algorithms
— Performance of algorithms
— Time and space tradeoff
— Worst case and average case performance
— The big O notation
— Example calculations of complexity

. Complexity and Intractability

— NP Completeness and Approximation
Algorithms
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Course Content

. Simple Searching Algorithms
— Linear Search
— Binary Search
. Simple Sorting Algorithms
— Bubblesort
— Quicksort
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Course Content

- Abstract Data Types (ADTS)

. Lists, Stacks, and Queues
— ADT specification
— Array implementation
— Linked-list implementation
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Course Content

. Trees
— Binary Trees
— Binary Search Trees
— Traversals

— Applications of Trees
» Huffman Coding

— Height-balanced Trees
» AVL Trees
» Red-Black Trees
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&
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Complexity

. Analysis of complexity of programs
— Time complexity
— Space complexity
— Big-Oh Notation

. Introduction to complexity theory

— P, NP, and NP-Complete classes of
algorithm
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Complexity

- Suppose there is an assignment
statement
X =X+1
IN your program.
- We'd like to determine:
— The time a single execution would take

— The number of times it iIs executed
Frequency Count
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Complexity

- Product of time and frequency Is the
total time taken

- Frequency count will vary from data set
to data set
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Complexity

. Since the execution time will be very
machine dependent (and compiler
dependent), we neglect it and
concentrate on the frequency count

. Consider the following three examples:
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Complexity

Program 1 Program 2 Program 3

= X + 1 FOR 1 =1 to n FOR i = 1 to n
DO DO
X 1=x +1 FOR J = 1 to n
=\|D, DO

END
END
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Complexity

- Program 1.
— statement Is not contained in a loop
(implicitly or explicitly)
— Frequency count is 1
- Program 2
— statement Is executed n times

- Program 3
— statement is executed n? times
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Complexity

- 1, n, and n? are said to be different and
Increasing orders of magnitude
(e.g. let n = 10)

- We are chiefly interested in determining
the order of magnitude of an algorithm
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Complexity

- Let’s look at an algorithm to print the n*
term of the Fibonnaci sequence

-« 0112358132134 ...
* tn :tn—1+tn—2

.’[O:O

.’[1:1
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Complexity

procedure fibonacci
read(n)
1T n<O
then print(error)
else 1Tt n=0
then print(0)
else 1f n=1
then print(l)
else
fnm2 -= 0O;

fnml -= 1;

FOR 1 = 2 to n DO
fn := fnml + fnm2;
fnm2 -= fnml;
fnml = fn

end

print(fn);
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Complexity

procedure fibonacci {print nth term}
read(n)
1T n<O
then print(error)
else 1Tt n=0
then print(0)
else 1f n=1
then print(l)
else
fnm2 = 0;

fnml -= 1;

FOR 1 = 2 to n DO
fn := fnml + fnm2;
fnm2 -= fnml;
fnml = fn

end

print(fn);
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Complexity

procedure fibonacci
read(n)
1T n<O
then print(error)
else 1Tt n=0
then print(0)
else 1f n=1
then print(l)
else
fnm2 -= 0O;

fnml -= 1;

FOR 1 = 2 to n DO
fn := fnml + fnm2;
fnm2 -= fnml;
fnml = fn

end

print(fn);
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Complexity

procedure fibonacci
read(n)
1T n<O
then print(error)
else 1Tt n=0
then print(0)
else 1f n=1
then print(l)
else
fnm2 -= 0O;

fnml -= 1;

FOR 1 = 2 to n DO
fn := fnml + fnm2;
fnm2 -= fnml;
fnml = fn

end

print(fn);
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Complexity
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Complexity

. The cases where n<0, n=0, n=1 are not
particularly instructive or interesting

. In the case where n>1, we have the total
statement frequency of:

9+n+4(n-1)=5n+5
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Complexity

« 9+n+4(n-1)=5n+5

- We write this as O(n), ignoring the
constants

. It means that the order of magnitude Is
proportional to n
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Complexity

- The notation f(n) = O(g(n)) has a
precise mathematical definition

- Read f(n) = O(g(n)) as
f of n equals big-oh of g of n

- Definition:
f(n) = O(g(n)) Iff there exist two

constants ¢ and n, such that [f(n)| <
c|lg(n)| for all n > n,




Complexity

. f(n) will normally represent the
computing time of some algorithm

— Time complexity T(n)
. f(n) can also represent the amount of
memory an algorithm will need to run

— Space complexity S(n)
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Complexity

. If an algorithm has a time complexity of
O(g(n)) it means that its execution will
take no longer than a constant times
g(n)

. nIs typically the size of the data set
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Complexity

- O(1) Constant (computing time)

- O(n) Linear (computing time)

- O(n?) Quadratic (computing time)

. O(n3) Cubic (computing time)

- O(2") Exponential (computing time)
- O(log n) Is faster than O(n)

for sufficient

- O(nlog n) Is fastert
for sufficient
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Complexity

- Let’s look at the way these functions
grow with n ...
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Complexity

Double click to activate spreadsheet and graph complexity function
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Complexity

. Arithmetic of Big Oh notation
o If

T,(n) = O(f(n)) and T,(n) = O(g(n))
then

T1(n) + T,(n) = O(max(i(n),g(n))




Complexity

. if f(n) <= g(n)

then

O(t(n) + g(n))= O(g(n))




Complexity

. |If
T,(n) = O(f(n)) and T,(n) = O(g(n))
then

T,(n) T,(n) = O(i(n)g(n))




Complexity

- Rules for computing the time complexity

— the complexity of each read, write, and
assignment statement can be take as O(1)

— the complexity of a sequence of
statements is determined by the
summation rule

— the complexity of an if statement is the
complexity of the executed statements,
plus the time for evaluating the condition
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Complexity

- Rules for computing the time complexity

— the complexity of an if-then-else statement
IS the time for evaluating the condition plus
the larger of the complexities of the then
and else clauses

— the complexity of a loop is the sum, over
all the times around the loop, of the
complexity of the body and the complexity
of the termination condition
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Complexity

- Given an algorithm, we analyse the
frequency count of each statement and
total the sum.

- This may give a polynomial P(n):
P(n)=c, nk+c,_, Nkt + ...+ c, n+c,

where the c; are constants, c, are non-
zero, and n Is a parameter
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Complexity

. Using big-oh notation, we have:
P(n) = O(n¥)

- On the other hand, If any step Is
executed 2" times or more we have:

c 2"+ P(n) = O(2")
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Complexity

- What about computing the complexity
of a recursive algorithm?

- In general, this is more difficult
- The basic technique

— Identify a recurrence relation implicit in the
recursion T(n) = f(T(k)), k € {1, 2, ... , n-1}

— solve the recurrence relation by finding an

expression for T(n) in term which do not
iInvolve T(k)
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Complexity

Example: compute factorial n (n!)

int factorial(int n)

1

int factorial value;
factorial value = 0O;
/* compute factorial value recursively */

iT (n<=1) {
factorial value 1;

}

else {
factorial _value n * factorial(n-1);

}

return (factorial value);
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Complexity

. Let the time complexity of the function
be T(n)

. which i1s what we want!

- Now, let’s try to analyse the algorithm
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Complexity

int factorial(int n)

{

int factorial value;
factorial value = 0O;

1T (n<=1) {
factorial value 1;

}

else {
factorial value n * factorial(n-1);

}

return (factorial value);

}
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Complexity

« T(N) =5+

(n-1)

-« T(N)=c+]

(n-1)

- T(n-1) =c + T(n-2)

- T(n)=c+c+ T(n-2)
=2c + T(n-2)

- T(n-2) =c + T(n-3)

- T(n)=2c +

c + T(n-3)

= 3c + T(n-3)

- T(n) =1c + T(n-1)
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Complexity

- T(n) =1I1c+ T(n-I)

. Finally, when i =n-1

- T(n) =(n-1)c + T(n-(n-1) )
= (n-1)c + T(1)
=(n-1)c +d

- Hence, T(n) = O(n)




Complexity

. Space Complexity

— Compute the space complexity of an
algorithm by analysing the storage
requirements (as a function on the input
size) in the same way
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Complexity

. Space Complexity

— For example
» If you read a stream of n characters
» and only ever store a constant number of them,
» then it has space complexity O(1)
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Complexity

. Space Complexity

— For example
» If you read a stream of n records
» and store all of them,
» then it has space complexity O(n)
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Complexity

. Space Complexity

— For example
» If you read a stream of n records
» and store all of them,

» and each record causes the creation of (a
constant number) of other records,

» then it still has space complexity O(n)
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Complexity

. Space Complexity

— For example
» If you read a stream of n records
» and store all of them,

» and each record causes the creation of a
number of other records (and the number is
proportional to the size of the data set n)

» then it has space complexity O(n?)
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Complexity

- Time vs Space Complexity

— In general, we can often decrease the time
complexity but this will involve an increase
In the space complexity

—and vice versa (decrease space, increase
time)
— This Is the time-space tradeoff
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Complexity

- Time vs Space Complexity

— For example, the average time complexity
of an iterative sort (e.g. bubble sort) Is
O(n?)

— but we can do better: the average time
complexity of the Quicksort is O(n log n)

— But the Quicksort is recursive and the
recursion causes a increase in memory
requirements (I.e. an increase In space
complexity)
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Complexity

- Time vs Space Complexity

— For example, the space complexity of 2-D
matrix is O(n?)

— but If the matrix Is sparse we can do better:
we can represent the matrix as a 2-D
linked list and often reduce the space
complexity to O(n)

— But the time taken to access each element
will rise (1.e. the time complexity will rise)
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Complexity

nxn matrix:

O(n?) space complexity OX(2 + 4+ 4) + (N-2)X(2 + 4 + 4 + 4)
=20+ 14n-28=14n - 8:
O(n) space complexity
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Complexity

- Order of space complexity for the matrix
representation of the banded matrix Is
O(n?) >>
Order of space complexity for the linked
list representation O(n)

- However, the matrix implementation will
sometimes be more effective:
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Complexity

. N2<=14n-8
nZ-14n+8<=0

n = £+ 13 Is the cutoff at which the list
representation is more efficient in terms
of storage space.

Typically, in real engineering problems,
n can be much greater than 100 and
the saving Is very significant
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Complexity

Double click to activate spreadsheet and graph complexity function
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Complexity

- Worst-case complexity and Average-
case complexity

— so far we have looked only at worst-case
complexity (i.e. we have developed an
upper-bound on complexity)

— however, there are times when we are
more interested In the average-case
complexity (especially it differs
significantly)
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Complexity

- Worst-case complexity and Average-
case complexity

— for example, the Quicksort algorithm has
T(n) = O(n?), worst case
(for inversely sorted data)

— T(n) = O(n log, n), average case
(for randomly ordered data)
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Complexity

Double click to activate spreadsheet and graph complexity function
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Complexity and Intractabllity

- The complexity of some algorithms Is
such that, in effect, they become
Intractable

- Consider the monkey puzzle problem:

— given nine square cards whose sides are

Imprinted with the upper and lower halves
of coloured figures

— the objective Is to arrange the cards in a
5x5 square such that halves match and
colours are identical wherever edges meet
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Complexity and Intractabllity

- Assume n, the number of cards, Is 25
- The size of the final square Is 5x5




Complexity and Intractabllity

. Brute force solution:

— Go through all possible arrangements of
the cards

— pick a card and place it - there are 25
possibilities for the first placement

— pick the next card and place it - there are
24 possibllities,

— Pick the next card, there are 23
possibilities ...
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Complexity and Intractabllity

. there are 25x24x23x22x......x2x1 possible
arrangements

- That Is, there are factorial 25 possible
arrangements (25!)

. 25! contains 26 digits

. If we make 1000000 arrangements per
second, the algorithm will take
490 000 000 000 years to complete
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Complexity and Intractabllity

- The order of complexity of this
algorithm is O(n!)

- n! grows at a rate which is orders of
magnitude larger than the growth rate

of the other functions we mentioned
before




Complexity and Intractabllity

. Other functions exist that grow even
faster, e.g. n"

. Even functions like 2" exhibit

unacceptable sizes even for modest
values of n
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Complexity and Intractabllity

- We classify functions as ‘good’ and
‘bad’
- Polynomial functions are good

- Super-polynomial (or exponential)
functions are bad




Complexity and Intractabllity

- A polynomial function is one that is
bounded from above by some function
n for some fixed value of k
(l.e. k #f(n))

- An exponential function is one that Is
bounded from above by some function
kM for some fixed value of k
(l.e. k #f(n))

. (Strictly speaking n" is not exponential
but super-exponential).......




Complexity and Intractabllity

- Polynomial-time algorithm

— Order-of-magnitude time performance
bounded from above by a polynomial
function of n

— Reasonable algorithm
- Super-polynomial, exponential, time
algorithm

— Order-of-magnitude time performance
bounded from above by a super-
polynomial, exponential, function of n

— Unreasonable-algorithymeno-




Complexity and Intractabllity

. Tractable problem
— admits a polynomial-time or reasonable solution

. Intractable problem
— admits only an exponential or unreasonable solution

Problems not admitting

ireicicio)e :
reasonable algorithms

Proglamms

Treleielo)e ~ Problems admitting
Proglanms reasonable (polynomial-
time) algorithms
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Complexity and Intractabllity

- There are many (approx. 1000)
important and diverse problems which
exhibit the same properties as the
monkey puzzle problem (e.g. TSP)

.- All admit unreasonable, exponential-
time, solutions

. None are known to admit reasonable
ones




Complexity and Intractability

- But no-one has been able to prove that
any of then REQUIRE super-polynomial
time

- Best known lower-bounds are O(n)




Complexity and Intractabllity

- This class of problems are known as
NP-Complete

- Lower bounds are linear and upper
bounds are exponential

Intractable )\ __— Problems not admitting

Srahlame reasonable algorithms
NP-Complete _~ Progigs

Problems? s - -
[relgrelg]e ~ Problems admitting
Proglanms reasonable (polynomial-
time) algorithms
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Complexity and Intractabllity

- Examples of NP-Complete Problems
— 2-D arrangments

— Path-finding (e.g. travelling salesman TSP;
Hamiltonian)

— Scheduling and matching (e.g. time-
tabling)

— Determining logical truth in the
propositional calculus

— Colouring maps and graphs
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Complexity and Intractabllity

. All NP-Complete problems seem to require
construction of partial solutions (and then
backtracking when we find they are wrong) in
the development of the final solution

However, if we could ‘guess’ at each point in
the construction which partial solutions were
to lead to the ‘right’ answer then we could
avoid the construction of these partial
solutions and construct only the correct
solution
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Complexity and Intractabllity

. This approac
— a polynomia

N woulc
-time so

— but it would

allow
ution

D€ NoN-0C

eterminisitic

— since It requires some guessing
- NP - Nondeterministic Polynomial

- NP-Complete problems admit
— Unreasonable exponential time solution

— Reasonable non-deterministic polynomial
time solutions
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Complexity and Intractabllity

- Important property of NP-Compete
problems

— Either all NP-Complete problems are
tractable or none of them are!

— If there exists a polynomial-time algorithm for
any single NP-Complete problem, then there
would be necessarily a polynomial-time
algorithm for all NP-Complete problems

— If there Is an exponential lower bound for any
NP-Complete problem, they all are
i ntraCtab I ep!yright © 2007 David Vernon (www.vernon.eu)




Complexity and Intractabllity

- NP - class of problems which admit non-
deterministic polynomial-time algorithms

- P - class of problems which admit
(deterministic) polynomial-time algorithms

- NP-Complete - the hardest of the NP
problems (every NP problem can be
transformed to an NP-Complete problem in
polynomial time)

. S0, IS NP = P or not?
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Complexity and Intractabllity

. We don't know!

- The NP=P? problem has been open
since it was posed in 1971 and is one of
the most difficult unresolved problems
IN computer science




Searching
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Linear (Sequential) Search

- Linear (Sequential) Search
- Begin at the beginning of the list

- Proceed through the list, sequentially
and element by element,

. Until the key Is encountered
. Or the end of the list Is reached




Linear (Sequential) Search

- Note: we treat a list as a general
concept, decoupled from Its
Implementation

- The order of complexity is O(n)

. The list does not have to be in sorted
order




Binary Search

. This Is exactly the same search
strategy which we met in the section on
binary search trees.

. In this Instance, however, we will be
using arrays.

- The main point to note here is that the
elements of the array must be sorted

— Just as the binary search tree was
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Binary Search

- The essential idea Is to begin in the
beginning of the list

- Check to see whether the key Is
— equal to
— |less than
— greater than

. the middle element
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Binary Search

If key Is equal to the middle element,
then terminate

If key Is less than the middle element,
then search the left half

If key Is greater than the middle
element, then search the right half

Continue until either

— the key is found or
— there are no more elements to search
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Implementation of
Binary Search

Pseudo-code Tfirst

Binary Search(list, key, upper _bound, index, found)

identify sublist to be searched by setting bounds on
search

REPEAT
get middle element of list

iIT middle element < key
then reset bounds to make the right sublist

the list to be searched
else reset bounds to make the left sublist
the list to be searched
UNTIL list is empty oek.key ds..Found. ...,




Implementation of
Binary Search in Modula

CONST n = 100;

TYPE bounds_type 1..n;
key type INTEGER;
list _type ARRAY[bounds_type] OF key type;

PROCEDURE binary _search(list: list type,
key: key type,
bounds: bounds_type,
VAR 1ndex: bounds_type,
VAR found: BOOLEAN);

VAR first, last, mid : bounds type
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Implementation of
Binary Search in Modula

(* assume at least one element In the list *)
BEGIN

first : 1;

last := bounds;

REPEAT
mid = (first + last) DIV 2;
IF list[mid] < key
THEN
first := mid + 1
ELSE
last = mid - 1
END
UNTIL (first > last) OR (list[mid] = key);
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Implementation of
Binary Search in Modula

found := key = list[mid];
index :-= mid
END binary search




Binary Search

A B DF GJ K MO P R

first:

last: T T T
mid: _ _
list[mid]: first mid last
key: P
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Binary Search

A B DF GJ K MO P R

first mid last

first: 1
last: 11
mid: §)
list[mid]: J
key: P

Copyright © 2007 David Vernon (www.vernon.eu)




Binary Search

A B DF GJ K MO P R

mid

first: 1
last: 11 1
mid: 6
list[mid]: J
key: P
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Binary Search

A B DF GJ K MO P R

first last
mid

first: 1 10
last: 11 1 11
mid: §) 10
list[mid]: J P <€ EOUND!
key: P P
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Binary Search

A B DF GJ K MO P R

first:

last: T T T
mid: _ _
list[mid]: first mid last
key: =
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Binary Search

A B DF GJ K MO P R

first mid last

first: 1
last: 11
mid: §)
list[mid]: J
key: =
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Binary Search

A B DF GJ K MO P R

|

first mid

first: 1
last: 11
mid: §)
list[mid]: J
key: =
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Binary Search

D J K M O P R

F G
firstH TIas;t

mid

first: 1
last: 11
mid: 6
list[mid]: J
key: =
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Binary Search

A B D F GJ K MO P R
Ias;tH [first

mid

et o <—— first > last: NOT FOUND!

mid: 6
list[mid]: J
key: E
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Sorting Algorithms




Sorting Algorithms

- Bubble Sort
.« Quick Sort




Bubble Sort

- Assume we are sorting a list

represented by an array A of n integer
elements

- Bubble sort algorithm in pseudo-code

FOR every element In the list,
proceeding for the first to the last
DO
WHILE list element > previous list element
bubble element back (up) the list
by successive swapping with
the element just above/prior it
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Bubble Sort

10 9 8 11 4
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Bubble Sort

iy —

9
8
11
4

Swap
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Bubble Sort

i — e
9 10
8 8

11 11
4 4
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Bubble Sort

i — e
9 i) —
8 8
11 11
4 4
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Bubble Sort

i) — e 9
9 10 pmml 8
8 8 10

11 11 11
4 4 4
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Bubble Sort

] —
Swap
9 10 B
8
11
4
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Bubble Sort

i — e —
9 10 pmml 8
8 8 10
11 11 11
4 4 4
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Bubble Sort

i) — e — B
9 10 el 8 9
8 8 10 10 R
No Swap
11 11 11 11
4 4 4 4
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Bubble Sort
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Bubble Sort
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Bubble Sort
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Bubble Sort

i) — e Ol 8 8 8 8
9 10 pmml 8 9 9 9 9
3 8 10 10 el 10 (0] — s

11 11 11 11 11l 4 10
4 4 4 4 4 11 11
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Bubble Sort

i) — e Ohmml 8 8 8 8
9 10 el 8 9 9 9 —
Swap
8 8 10 10 pumml 10 10 Gl 4
11 11 11 11 11l 4 10
4 4 4 4 4 11 11
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Bubble Sort

i) — e Ol 8 8 8 8 8
9 10 pmml 8 9 9 9 —
8 8 10 10 el 10 (0} — 9

11 11 11 11 11l 4 10 10
4 4 4 4 4 11 11 11
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Bubble Sort

] —
9
8

11
4

Swap

9 ) — R 8 8 8 Sl
(0] — 9 9 9 —

8 10 10 el 10 (0] — It 9
11 11 11 11l 4 10 10

4 4 4 4 11 11 11
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Bubble Sort

i) — e Ol 8 8 8 8 4 o
9 10 pmml 8 9 9 9 — B
8 8 10 10 el 10 (0} — 9
11 11 11 11 11l 4 10 10
4 4 4 4 4 11 11 11
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Implementation of
Bubble Sort()

Int bubble sort(int *a, Int size) {
int 1,jJ, temp;

for (i=0; i < size-1; i++) {
for (g=i; j >= 0; j--) {

it (apyl > app+1D {

/* swap */
temp = a[j+1];
alJ+1] = alil:
aljl = temp;
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Bubble Sort

. A few observations:

— we don’t usually sort numbers; we usually
sort records with keys

» the key can be a number

» or the key could be a string
» the record would be represented with a struct

— The swap should be done with a function
(so that a record can be swapped)

— We can make the preceding algorithm
more efficient. How? (hint: do we always
have to bubble back to the top?)
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Bubble Sort

- Exercise: implement these changes and
write a driver program to test:
— the original bubble sort
— the more efficient bubble sort

— the bubble sort with a swap function
— the bubble sort with structures

— compute the order of time complexity of the
bubble sort
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Quicksort

- The Quicksort algorithm was developed
by C.A.R. Hoare. It has the best
average behaviour in terms of
complexity:

Average case: O(n log,n)
Worst case: O(n?)
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Quicksort

. Given a list of elements,
. take a partitioning element

- and create a (sub)list

— such that all elements to the left of the
partitioning element are less than it,

—and all elements to the right of it are
greater than it.

- Now repeat this partitioning effort on
each of these two sublists
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Quicksort

- And so on In a recursive manner until all
the sublists are empty, at which point the
(total) list Is sorted

Partitioning can be effected
simultaneously, scanning left to right and
right to left, interchanging elements in the
wrong parts of the list

The partitioning element is then placed
between the resultant sublists (which are
then partitioned. in.the.same manner)




Implementation of Quicksort()

In pseudo-code fTirst

IT anything to be partitioned
choose a pivot
DO

scan from left to right until we find an element
> pivot: 1 points to 1t

scan from right to left until we find an element
< pivot: j points to 1t

IF 1 < J
exchange 1th and jth element
WHILE 1 <= ]
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Implementation of Quicksort()

exhange pivot and jt element

partition from 1st to jt elements

partition from 1™ to rt elements
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Implementation of Quicksort()

/* simple quicksort to sort an array of iIntegers */

void quicksort (int A[], int L, int R)
{

int 1, jJ, pivot;

/* assume A[R] contains a number > any element, */
/* 1.e. 1t 1s a sentinel. */

Copyright © 2007 David Vernon (www.vernon.eu)




Implementation of Quicksort()

if (R>1L) {
1 =L; 3 =R;
pivot = A[1];
do {
while (A[i] <= pivot) i1=i+]1;
while ((A[jJ] >= pivot) && g=>01)) j=3-1;

it (<) {
exchange(A[1],.A[)1]); /*between partitions*/
1 = 1+l; jJ = j-1;

+
} while (1 <= });
exchange(A[L]., A[}J]); /7* reposition pivot */
quicksort(A, L, j);
quicksort(A, 1, R); /*includes sentinel*/
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Quicksort

10 9 8 11 4 99

AN

sentinel
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Quicksort

10 9 8 11 4 99
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Quicksort

10 9 8 11 4 99

T
j
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Quicksort

10 9 811 4 99
T

i ]
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Quicksort

10 9 8 411 99
T

i ]
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Quicksort

10 9 8 4 11 99

]
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Quicksort

4 9 8 10 11 99

]
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Quicksort

4 9 8 10 11 99

QS(A,1.,4) QS(A,5,6)
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Quicksort

4 9 8 10 11 99
T
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Quicksort

4 9 8 10 11 99
T

j o
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Quicksort

4 9 8 10 11 99

QS(A,2,4) QS(A,5,6)
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Quicksort

4 9 8 10 11 99
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Quicksort

4 9 8 10 11 99
T

Copyright © 2007 David Vernon (www.vernon.eu)




Quicksort

4 9 8 10 11 99
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Quicksort

4 8 9 10/ 11 99

QS(A,2,4) QS(A,2,3) QS(A.,4,4) QS(A,5,6)

2
3

L
R
i
J
P

8 ivot: 10
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Quicksort

4 8 9 10/ 11 99

QS(A.4.4) QS(A,5,6)

L
R
i
J
P

ivot: 10
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Quicksort

4 8 9 10/ 11 99
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Quicksort

QS(A.4.,4) QS(A,5,6)

Copyright © 2007 David Vernon (www.vernon.eu)




Quicksort

QS(A.4.,4) QS(A,5,6)
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Quicksort

QS(A,5,6) QS(A,5,5) QS(A,6,6)

S
6
S
6
1
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Data Structures




Data Structures

. Lists
. Stacks (special type of list)
- Queues (another type of list)

fees
— General introduction

— Binary Trees
— Binary Search Trees (BST)

- Use Abstract Data Types (ADT)
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Abstract Data Types

- ADTs are an old concept

— Specify the complete set of values which a
variable of this type may assume

— Specify completely the set of all possible
operations which can be applied to values
of this type
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Abstract Data Types

. It’'s worth noting that object-oriented
programming gives us a way of
combining (or encapsulating) both of
these specifications in one logical
definition
— Class definition
— Objects are instantiated classes

. Actually, object-oriented programming
provides much more than this (e.g.
inheritance and polymorphism)
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Lists

- Alist Is an ordered sequence of zero or
more elements of a given type

a,, a,, as, ... A,

— a, Is of type elementtype

— a, precedes a,,,

— a;,, succeeds or follows a,

— If n=0 the list Is empty: a null list
— The position ofa;ds ¢ v e




List element w

(w is of type windowtype:

w could be, but is not necessarily,
the integer sequence position of

the element in the list)

Element of type elementtype
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LIST: An ADT specification of
a list type

- Let L denote all possible values of
type LIST (i.e. lists of elements of type
elementtype)

- Let E denote all possible values of type
elementtype

. Let B denote the set of Boolean values
true and false

- Let W denote the set of values of type
windowtype
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LIST Operations

. Syntax of ADT Definition:

Operation:

What_You Pass It —
What_ It Returns :
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LIST Operations

. Declare: - L :

The function value of Declare(L) Is an
empty list

— alternative syntax: LIST L
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LIST Operations

- End: L > W :

The function End(L) returns the position

after the last element in the list
(.e. the value of the function Is the
window position after the last element in

the list)

EEEEEEEEEEEE |
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LIST Operations
- Empty: L > LXW:

The function Empty causes the list to be
emptied and it returns position End(L)

. =
[]
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LIST Operations

- ISEmpty: L — B

The function value IsEmpty(L) Is true If
L is empty; otherwise it Is false
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LIST Operations

. First:L > W :

The function value First(L) is the window
position of the first element in the list;

If the list iIs empty, it has the value End(L)
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LIST Operations
« Next:LxW —> W

The function value Next(w,L) Is the
window position of the next successive
element in the list;

If we are already at the end of the list
then the value of Next(w,L) is End(L);

If the value of w Is End(L), then the
operation is-undefined. -




LIST Operations

Next(w,L) l
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LIST Operations

. Previous: L xW —> W :

The function value Previous(w, L) Is the

window position of the previous element
In the list;

If we are already at the beginning of the
list (w=First(L)), then the value Is
undefined
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LIST Operations

Previous(w,L) l
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LIST Operations

« Last: L > W

The function value Last(L) is the

window position of the last element In
the list;

If the list Is empty, it has the value
End(L)
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LIST Operations

e Insert: ExLxW —>LxW :

Insert(e, w, L)

Insert an element e at position w In the list
L, moving elements at w and following
positions to the next higher position

a,, &y, ... &,—> Ay, Ay, ..., A1, €, Ay +.., A,
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LIST Operations

If w=End(L) then

a,, a,, ... a,—>ay a,, ..., a,, €

The window w IS moved over the new
element e

The function value iIs the list with the element
Inserted
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LIST Operations

Insert(e,w,L) l
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LIST Operations

EEEEEEEEEEEE |

Insert(e,w,L) l




LIST Operations

Delete: L xW —> L xW :

Delete(w, L)
Delete the element at position w in the list L

a,, &y, ... &, —> Ay, Ay, ..., Ayq, Ayaqs vy Ay

— If w = End(L) then the operation is undefined

— The function value is the list with the element
deleted
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LIST Operations

Delete(w,L) l
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LIST Operations

. Examine: L xW — E:

The function value Examine(w, L) Is the

value of the element at position w In the
list;

If we are already at the end of the list

(.e. w = End(L)), then the value Is
undefined
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LIST Operations

- Declare(L)
- End(L)
- Empty(L)

. IsEmpty(L)

. First(L)
- Next(w,L)

- Previous(w,L)

. Last(L)

Copyright © 2007 David Ve
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LIST Operations

. Insert(e,w,L) returns listtype
- Delete(w,L) returns listtype
- Examine(w,L) returns elementtype
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LIST Operations

- Example of List manipulation

W = End(L) D empty list
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LIST Operations

- Example of List manipulation

w = End(L) []

Insert(e,w, L) I!I
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LIST Operations

- Example of List manipulation

w = End(L) []

Insert(e,w, L) I!I

Insert(e,w, L) E_
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LIST Operations

- Example of List manipulation

w = End(L) []

Insert(e,w, L) I!I

Insert(e,w, L) E_
Insert(e,Last(L), L) ‘E_
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LIST Operations

- Example of List manipulation

w = Next(Last(L),L) ll‘:|
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LIST Operations

- Example of List manipulation

w = Next(Last(L),L) ll‘:|

Insert(e,w,L) O
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LIST Operations

- Example of List manipulation

w = Next(Last(L),L) ll‘:|

Insert(e,w,L) O

w = Previous(w,L) [ NI}
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LIST Operations

- Example of List manipulation

w = Next(Last(L),L) ll‘:|

Insert(e,w,L) O

w = Previous(w,L)

Delete(w,L)
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ADT Specification

- The key idea Is that we have not
specified how the lists are to be
Implemented, merely their values and
the operations of which they can be
operands

- This ‘old’ Idea of data abstraction Is one
of the key features of object-oriented
programming

- C++ Is a particular implementation of
this object-griented. methodology




ADT Implementation

- Of course, we still have to implement
this ADT specification

- The choice of implementation will
depend on the requirements of the
application
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ADT Implementation

- We will look at two implementations

— Array implementation
» Uses a static data-structure
» reasonable If we know Iin advance the
maximum number of elements in the list
— Pointer implementation
» Also known as a linked-list implementation
» uses dynamic data-structure

» best If we don’t know In advance the number of
elments in the list (or If it varies significantly)

» overhead in space: the pointer fields
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LIST: Array Implementation

- We will do this in two steps:

— the implementation (or representation) of the
four constituents datatypes of the ADT:
» |Ist
» elementtype
» Boolean
» windowtype

— the implementation of each of the ADT
operations
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LIST: Array Implementation

First element
Second element

-\» Last element

Integer index

Max_list_size - 1
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LIST: Array Implementation

De elementtype
oe LIST
0e Boolean

ne windowtype




LIST: Array Implementation

/* array 1mplementation of LIST ADT */

#i1nclude <stdio.h>
#i1nclude <math.h>
#include <string.h>

#define MAX_LIST _SIZE 100
#define FALSE O
#define TRUE 1

typedef struct {
int number;
char *string;
} ELEMENT _TYPE;
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LIST: Array Implementation

typedef struct {
Int last;
ELEMENT_TYPE a[MAX_LIST_SIZE];
} LIST_TYPE;

typedef 1nt WINDOW_TYPE;
/** position following last element 1n a list ***/

WINDOW_TYPE end(LIST_TYPE *list) {
return(list->last+l);

}
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LIST: Array Implementation

/*** empty a list ***/

WINDOW_TYPE empty(LIST_TYPE *list) {
list->last = -1;
return(end(list));

+

/*** test to see 1T a list 1s empty ***/

iInt 1s_empty(LIST _TYPE *list) {
iIf (list->last == -1)
return(TRUE) ;
else
return(FALSE)
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LIST: Array Implementation

/*** position at first element 1n a list ***/

WINDOW_TYPE Ffirst(LIST_TYPE *list) {
1T (1s_empty(list) == FALSE) {
return(0);
else
return(end(list));
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LIST: Array Implementation

/*** position at next element 1n a list ***/

WINDOW_TYPE next(WINDOW_TYPE w, LIST TYPE *list) {
IT (w == last(list)) {
return(end(list));
else 1T (w == end(list)) {
error(““‘can’t find next after end of list”);
+
else {
return(w+1);

}
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LIST: Array Implementation

/*** position at previous element 1n a list ***/

WINDOW_TYPE previous(WINDOW_TYPE w, LIST _TYPE *list) {
IT (w I= first(list)) {
return(w-1);
else {
error(““can’t find previous before first element of
list”);
return(w) ;

}
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LIST: Array Implementation

/*** position at last element 1n a list ***/

WINDOW_TYPE last(LIST _TYPE *list) {
return(list->last);

}
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LIST: Array Implementation

/*** 1nsert an element 1n a list ***/

LIST TYPE *insert(ELEMENT TYPE e, WINDOW_TYPE w,
LIST TYPE *list) {
T 1;

in
iIT (list->last >= MAX_LIST _SIZE-1) {
error(““Can’t 1nsert - list 1s full”);

+
else 1T ((w > list->last + 1)

error(““Position does not ex

y (w<0)) {
st”);

}

else {
/* 1nsert 1t .. shift all after w to the right */
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LIST: Array Implementation

for (i=list->last; i>= w; i--) {
list->a[i+1] = list->a[i];
by

list->afw] e;
list->last list->last + 1;

return(list);
+
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LIST: Array Implementation

/*** delete an element from a list ***/

LIST _TYPE *delete(WINDOW_TYPE w, LIST TYPE *list) {
int 1;
IT ((w > list->last) || (w < 0)) {
error(““Position does not exist”);
+
else {
/* delete 1t .. shift all after w to the left */
list->last = list->last - 1;
for (1=w; 1 <= list->last; 1++) {
list->a[i1] = list->ai1+1];
+
return(list);
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LIST: Array Implementation

/*** retrieve an element from a list ***/

ELEMENT _TYPE retrieve(WINDOW_TYPE w, LIST_TYPE *list) {
iIT ((w<0)) 17 (w> list->last)) {

/* list 1s empty */

error(““Position does not exist”);

}

else {
return(list->a[w]);

}
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LIST: Array Implementation

/*** print all elements 1n a list ***/

int print(LIST_TYPE *list) {
WINDOW_TYPE w;
ELEMENT_TYPE e;
printf(*“Contents of list: \n”);
w = First(list);
whille (w '= end(list)) {
e = retrieve(w, list);
printf(“%d %s\n”, e.number, e.string);
w = next(w, list);
+
printf(““---\n"");
return(0);
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LIST: Array Implementation

/*** error handler: print message passed as argument and
take appropriate action falalal 4
iInt error(char *s); {
printf(“Error: %s\n”, s);
ex1t(0);
+

/*** assign values to an element ***/

int assign_element values(ELEMENT _TYPE *e, int number,

char s[]) {

e->string = (char *) malloc(sizeof(char)* strilen(s+1l));
strcpy(e->string, S);
e->number = number;
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LIST: Array Implementation

/*** main driver routine ***/

WINDOW_TYPE w;
ELEMEN_TYPE e;
LIST TYPE list;
int 1;

empty(&list);
print(&list);

assign_element_values(&e, 1, “String A”);
w = First(&list);

insert(e, w, &list);

print(&list);
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LIST: Array Implementation

assign_element_values(&e, 2, “String B”);
insert(e, w, &list);
print(&list);

assign_element_values(&e, 3, “String C’);
insert(e, last(&list), &list);
print(&list);

assign_element values(&e, 4, “String D”);
w = next(last(&list), &list);

insert(e, w, &list);

print(&list);
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LIST: Array Implementation

w = previous(w, &list);
delete(w, &list);
print(&list);
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LIST: Array Implementation

. Key points:

— we have implemented all list manipulation
operations with dedicated access functions

— we never directly access the data-structure
when using it but we always use the access
functions

— Why?
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LIST: Array Implementation

. Key points:

— greater security: localized control and more
resilient software maintenance

— data hiding: the implementation of the data-
structure Is hidden from the user and so we
can change the implementation and the user
will never know
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LIST: Array Implementation

- Possible problems with the
Implementation:

— have to shift elements when inserting and
deleting (i.e. insert and delete are O(n))

— have to specify the maximum size of the list
at compile time
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LIST: Linked-List Implementation

Header node
r—)%

. E

element

=

pointer NULL pointer



LIST: Linked-List Implementation

CEI Ty

|

window

To place the window at this position
we provide a link to the previous node
(this is why we need a header node)
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LIST: Linked-List Implementation

—ll -

Copyright © 2007 David

—ll —l/

|

window

1

|

To place the window at end of the list
we provide a link to the last node
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LIST: Linked-List Implementation

CEI Ty

|

window

To insert a node at this window position
we create the node and re-arrange the links
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LIST: Linked-List Implementation

—ll —l/

|

window temp

To insert a node at this window position
we create the node and re-arrange the links
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LIST: Linked-List Implementation

W

|

window

To delete a node at this window position
we re-arrange the links and free the node
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LIST: Linked-List Implementation

|

window

To delete a node at this window position
we re-arrange the links and free the node
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LIST: Linked-List Implementation

/]

window

To delete a node at this window position
we re-arrange the links and free the node
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LIST: Linked-List Implementation

De elementtype
oe LIST
0e Boolean

ne windowtype




LIST: Linked-List Implementation

/* linked-li1ist implementation of LIST ADT */

#i1nclude <stdio.h>
#i1nclude <math.h>
#include <string.h>

#define FALSE O
#define TRUE 1

typedef struct {
int number;
char *string;
} ELEMENT _TYPE;
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LIST: Linked-List Implementation

typedef struct node *NODE_TYPE;

typedef struct node{
ELEMENT _TYPE element;
NODE_TYPE next;
} NODE;

typedef NODE TYPE LIST TYPE;
typedef NODE_TYPE WINDOW_TYPE;
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LIST: Linked-List Implementation

/** position following last element 1n a list ***/

WINDOW_TYPE end(LIST_TYPE *list) {
WINDOW_TYPE q;
q = *list;
1T (g == NULL) {
error(““non-existent list”);

+
else {
while (g->next = NULL) {
d = g->hext;
+

by
return(q);
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LIST: Linked-List Implementation

/*** empty a list ***/

WINDOW_TYPE empty(LIST_TYPE *list) {
WINDOW_TYPE p, g;
iIT CClist = NULL) {
/* list exists: delete all nodes 1ncluding header */
q = *list;
while (g->next '= NULL) {
P =4,
q = g->next;
HEE()F
+
free(q)

}
/* now, create a neWw‘enptyone"with™a header node */




LIST: Linked-List Implementation

/* now, create a new empty one with a header node */

i1IT ((g = (NODE_TYPE) malloc(sizeof(NODE))) == NULL)

error(“function empty: unable to allocate memory™);
else {

g->next = NULL;
*list = q;
¥
return(end(list));
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LIST: Linked-List Implementation

/*** test to see 1T a list 1s empty ***/

iInt 1s_empty(LIST _TYPE *list) {
WINDOW_TYPE q;
q = *list;
1T (g == NULL) {
error(““non-existent list”);
+
else {
IT (g->next == NULL) {
return(TRUE) ;
else
return(FALSE) ;
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LIST: Linked-List Implementation

/*** position at first element 1n a list ***/

WINDOW_TYPE Ffirst(LIST_TYPE *list) {
1T (1s_empty(list) == FALSE) {
return(*list);
else
return(end(list));
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LIST: Linked-List Implementation

/*** position at next element 1n a list ***/

WINDOW_TYPE next(WINDOW TYPE w, LIST_TYPE *list) {
IT (w == last(list)) {
return(end(list));
+
else 1T (w == end(list)) {
error(““‘can’t find next after end of list”);

}

else {
return(w->next) ;

}
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LIST: Linked-List Implementation

/*** position at previous element 1n a list ***/

WINDOW_TYPE previous(WINDOW_TYPE w, LIST _TYPE *list) {
WINDOW_TYPE p, g;
IT (w I= first(list)) {
p = First(list);
while (p->next = w) {
p = p->hext;
IT (p == NULL) break; /7* trap this to ensure
} /* we don’t dereference
1T (p '= NULL) /* a null pointer i1n the
return(p); /* while condition
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LIST: Linked-List Implementation

else {

error(““can’t find previous to a non-existent
node’™);

}
}

else {

error(““can’t find previous before first element of
list”);

return(w) ;

}
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LIST: Linked-List Implementation

/*** position at last element 1n a list ***/

WINDOW_TYPE last(LIST _TYPE *list) {
WINDOW_TYPE p, g;
iIT (Clist == NULL) {
error(““non-existent list”);
+
else {
/* list exists: find last node */
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LIST: Linked-List Implementation

/* list exists: find last node */

IT (1s_empty(list)) {
p = end(list);
by
else {
P *li1st;
q p=>next;
while (g->next '= NULL) {
P q.
q d->next;
+

by
return(p);
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LIST: Linked-List Implementation

/*** 1nsert an element 1n a list ***/

LIST_TYPE *insert(ELEMENT _TYPE e, WINDOW _TYPE w,
LIST _TYPE *list) {
WINDOW_TYPE temp;
iIT (*list == NULL) {
error(““cannot Insert 1In a non-existent list”);

}
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LIST: Linked-List Implementation

else {
/* 1Insert 1t after w */
temp = w->next;

iIT ((w->next = (NODE_TYPE) malloc(sizeof(NODE))) =
NULL)

error(“function 1nsert: unable to allocate
memory’’) ;

else {
w->next->element = e;
w->next->next = temp;

+
return(list);
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LIST: Linked-List Implementation

/*** delete an element from a list ***/

LIST _TYPE *delete(WINDOW_TYPE w, LIST TYPE *list) {
WINDOW_TYPE p;
iIT (Clist == NULL) {
error(““cannot delete from a non-existent list”);

}

else {
p = w->next; /* node to be deleted */

w->next = w->next->next; /* rearrange the links */
HEE(OF /* delete the node */
return(list);
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LIST: Linked-List Implementation

/*** retrieve an element from a list ***/

ELEMENT TYPE retrieve(WINDOW _TYPE w, LIST TYPE *list) {
WINDOW_TYPE p;

iIT (*list == NULL) {
error(“‘cannot retrieve from a non-existent list”);

}

else {
return(w->next->element) ;

}
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LIST: Linked-List Implementation

/*** print all elements 1n a list ***/

int print(LIST_TYPE *list) {
WINDOW_TYPE w;
ELEMENT TYPE e;

printf(“Contents of list: \n”);

w = First(list);

whille (w = end(list)) {
printf(“%d %s\n”, e.number, e.string);
w = next(w, list);

+

printf(““---\n"");

return(0);

Copyright © 2007 David Vernon (www.vernon.eu)




LIST: Linked-List Implementation

/*** error handler: print message passed as argument and
take appropriate action falalal 4
iInt error(char *s); {
printf(“Error: %s\n”, s);
ex1t(0);
+

/*** assign values to an element ***/

int assign_element values(ELEMENT _TYPE *e, int number,

char s[]) {

e->string = (char *) malloc(sizeof(char) * strlen(s));
strcpy(e->string, S);
e->number = number;
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LIST: Linked-List Implementation

/*** main driver routine ***/

WINDOW_TYPE w;
ELEMEN_TYPE e;
LIST TYPE list;
int 1;

empty(&list);
print(&list);

assign_element_values(&e, 1, “String A”);
w = First(&list);

insert(e, w, &list);

print(&list);
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LIST: Linked-List Implementation

assign_element_values(&e, 2, “String B”);
insert(e, w, &list);
print(&list);

assign_element_values(&e, 3, “String C’);
insert(e, last(&list), &list);
print(&list);

assign_element values(&e, 4, “String D”);
w = next(last(&list), &list);

insert(e, w, &list);

print(&list);
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LIST: Linked-List Implementation

w = previous(w, &list);
delete(w, &list);
print(&list);
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LIST: Linked-List Implementation

. Key points:

— All we changed was the implementation of
the data-structure and the access routines

— But by keeping the interface to the access
routines the same as before, these changes
are transparent to the user

— And we didn’t have to make any changes in
the main function which was actually
manipulating the list
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LIST: Linked-List Implementation

. Key points:

— In a real software system where perhaps
hundreds (or thousands) of people are using
these list primitives, this transparency Is
critical

— We couldn’t have achieved it if we
manipulated the data-structure directly
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LIST: Linked-List Implementation

- Possible problems with the
Implementation:

—we have to run the length of the list in order to
find the end (i.e. end(L) is O(n))

— there is a (small) overhead in using the
pointers

- On the other hand, the list can now grow
as large as necessary, without having to
predefine the maximum size
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LIST: Linked-List Implementation

»

»
P P
< <

»

»
P
<

- B/

We can also have a doubly-linked list;
this removes the need to have a header node
and make finding the previous node more efficient
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LIST: Linked-List Implementation

» » »

» » »
P P <
< < <

Lists can also be circular
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Stacks

- A stack is a special type of list

— all insertions and deletions take place at
one end, called the top

— thus, the last one added is always the first
one available for deletion
— also referred to as
» pushdown stack

» pushdown list
» LIFO list (Last In First Out)
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Stack Operations

. Declare: —» S :

The function value of Declare(S) Is an
empty stack
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Stack Operations

- Empty: —» S

The function Empty causes the stack to
be emptied and it returns position
End(S)




Stack Operations

- ISEmpty: S —» B

The function value ISsEmpty(S) Is true If
S Is empty; otherwise it Is false




Stack Operations

- Top:S > E :

The function value Top(S) Is the first
element in the list;

If the list Is empty, the value is undefined




Stack Operations

. Push:ExS —> L :

Push(e, S)
Insert an element e at the top of the stack




Stack Operations

- Pop:S—> E :
Pop(S)

Remove the top element from the stack: I.e.
return the top element and delete it from the

stack
C!ht © 2007 David Vernon (www.v
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Stack Operations

. All these operations can be directly

Implemented using the LIST ADT operations
on a List S

- Although it may be more efficient to use a
dedicated implementation

. It depends what you want: code efficiency or
software re-use (i.e. utilization efficiency)
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Stack Operations

— Declare(S)
— Empty(S)
— Top(S)
» Retrieve(First(S), S)
— Push(e, S)
» Insert(e, First(S), S)
— Pop(S)
» Retrieve(First(S), S)
» Delete(First(S), S)
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Queues

- A gueue Is another special type of list

— Insertions are made at one end, called the
tail of the queue

— deletions take place at the other end,
called the head

— thus, the last one added is always the last
one avallable for deletion

— also referred to as
» FIFO list (First In First Out)
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Queue Operations

. Declare: —» Q

The function value of Declare(Q) is an
empty queue




Queue Operations

- Empty: — Q

The function Empty causes the queue
to be emptied and it returns position

End(Q)




Queue Operations

- ISEmpty: Q —» B

The function value ISsEmpty(Q) Is true if
Q Is empty; otherwise it Is false




Queue Operations

- Head: Q —» E

The function value Head(Q) Is the first
element in the list;

If the queue Is empty, the value is
undefined




Queue Operations

- Enqueue: ExQ — Q :

Engqueue(e, Q)
Add an element e the the tail of the queue

Cemed ) /Ehll [\l




Queue Operations

- Dequeue: Q > E :

Dequeue(Q)

Remove the element from the head of the
gueue: I.e. return the first element and delete
it from the queue

A = Bl




Queue Operations

. All these operations can be directly
Implemented using the LIST ADT operations
on a queue Q

- Agalin, it may be more efficient to use a
dedicated implementation

- And, again, it depends what you want: code
efficiency or software re-use (i.e. utilization
efficiency)
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Queue Operations

— Declare(Q)

— Empty(Q)
— Head(Q)
» Retrieve(First(Q), Q)

= EVEIENS)
» Insert(e, End(Q), Q)

— Dequeque(Q)
» Retrieve(First(Q), Q)
» Delete(First(Q), Q)
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Trees

- Trees are everywhere
- Hierarchical method of structuring data

- Uses of trees:
— genealogical tree
— organizational tree
— expression tree
— binary search tree
— decision tree
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Uses of Trees

Genealogical Tree

William (Mary)

Harold Bruce George

Philip Andrew

Matthew
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Uses of Trees

Organization Tree

President

I I
VP (Academic) VP (Financial) VP (Research)

Registrar Blue Sky R&D

Optics Architecture
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Uses of Trees

Code Tree
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Uses of Trees

Binary Seach Tree

\Y[e]g ‘ Tue

o e
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Uses of Trees

Decision Tree

No
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Trees

Fundamentals
Traversals
Display

Representation
Abstract Data Type (ADT) approach
Emphasis on binary tree

Also mention multi-way trees, forests,
orchards
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Tree Definitions

- A binary tree T of n nodes, n >0,

— elther Is empty, if n = 0O,

— or consists of a root node u and two binary
trees u(1) and u(2) of n, and n, nodes,
respectively, such that

n=n+n,+n,.
- We say that u(1) is the first or left
subtree of T, and u(2) Is the second or

right subtree of T.
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Binary Tree

Binary Tree of zero nodes
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Binary Tree

o n

Binary Tree of one node
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Binary Tree

O
O\

« n

Binary Tree of two nodes
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Binary Tree

O
%

« n

Binary Tree of two nodes

Copyright © 2007 David Vernon (www.vernon.eu)




Binary Tree

Binary Tree of three nodes
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Binary Tree

. External nodes - have no subtrees

‘ Internal nodes - always have two subtrees
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Binary Tree Terminology

- Let T be a binary tree with root u
- Letv be any node in T

. If v Is the root of either u(1) or u(2), then
we say u Is the parent of v,
and that v is the child of u

. If wis also a child of u, and w Is distinct
from v, we say that v and w are siblings.




Binary Tree




Binary Tree Terminology

. If v is the root of u(i),

. then v is the ith child of u; u(l1) Is the left
child and u(2) is the right child.

. Also have grandparents and
grandchildren




Binary Tree




Binary Tree Terminology

Given a binary tree T of n nodes, n >0,

then v Is a descendent of u If either

—Vis equaltou
or

— Vv Is a child of some node w and w iIs a
descendant of u.

We write v desc- u.

V IS a proper descendent of uifvis a
descendant of u and v = u.
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Binary Tree Terminology

- Given a binary tree T of n nodes, n > 0,

. then v is a left descendent of u If either

—Vis equaltou
or

— Vv IS a left child of some node w and w Is a left
descendant of u.

- We write v Idesc; u.
- Similarly we have v rdesc; u.
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Binary Tree




Binary Tree Terminology

- |desc; relates nodes across a binary tree
rather than up and down a binary tree.

Given two nodes u and v In a binary tree
T, we say that v Is to the left of u If there
IS a new node w In T such that v Is a left
descendant of w and u Is a right
descendant of w.

We denote this relation by left: and
write v left; u.
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Binary Tree




Binary Tree Terminology

. The external nodes of a tree define Its
frontier

- We can count the number of nodes in a
binary tree in three ways:
— Number of internal nodes
— Number of external nodes
— Number of internal and external nodes

. The number of internal nodes Is the size
of the tree
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Binary Tree Terminology

- Let T be a binary tree of sizen, n >0,

. Then, the number of external nodes of T
IS
n+1
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Binary Tree




Binary Tree Terminology

- The height of T Is defined recursively as
Oif Tis empty and

1 + max(height(T,), height(T,)) otherwise,
where T, and T, are the subtrees of the
root.

- The height of a tree Is the length of a
longest chain of descendents

Copyright




Binary Tree




Binary Tree Terminology

- Height Numbering
— Number all external nodes 0O

— Number each internal node to be one more
than the maximum of the numbers of its
children

— Then the number of the root is the height of T

- The height of a node u In T Is the height
of the subtree rooted at u
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Binary Tree




Binary Tree Terminology

. Levels of nodes

— The level of a node In a binary tree is
computed as follows

— Number the root node O

— Number every other node to be 1 more than
Its parent

— Then the number of a node v Is that node’s
level

— The level of v Is the number of branches on
the path from to root to v
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Binary Tree Terminology

. Skinny Trees

— every internal node has at most one internal
child
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Binary Tree Terminology

. Complete Binary Trees (Fat Trees)

— the external nodes appear on at most two
adjacent levels

— Perfect Trees: complete trees having all
their external nodes on one level

— Left-complete Trees: the internal nodes on
the lowest level is in the leftmost possible
position.

— Skinny trees are the highest possible trees
— Complete trees are the lowest possible trees
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Perfect Tree




Left-Complete Tree




Binary Tree Terminology

- A binary tree of height h >0
has size at least h

- A binary tree of height at most h >0
has size at most 2" - 1

- A binary tree of sizen >0
has height at most n

- A binary tree of size n >0
has height at least [ log (n + 1) |
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Multiway Trees

- Multiway trees are defined in a similar
way to binary trees, except that the
degree
(the maximum number of children)

IS no longer restricted to the value 2
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Multiway Trees

- A multiway tree T of n internal nodes, n >
0,
— elther is empty, if n =0,
— or consists of
» a root node u,

» an integer d, > 1, the degree of u,

» and multiway trees u(1) of n; nodes, ..., u(d,) of
ny, nodes suchthatn=1+n, +..+ny
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Multiway Trees

- A multiway tree T Is a d-ary tree,
for some d > 0,
If d, = d, for all internal nodesuin T
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d-ary Tree
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Multiway Trees

- A multiway tree T Is a (a, b)-tree,
f 1<a< d, <b,foralluinT

- Every binary tree is a (2, 2)-tree, and vice
versa
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BINARY TREE & TREE
Specification

. So far, no values associated with the
nodes of a tree

. Now want to introduce an ADT called
BINARY TREE, which

— has value of type intelementtype
associlated with the internal nodes

— has value of type extelementtype
assoclated with the external nodes

- These value don’t have any effect on
BINARY_TREE operations
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BINARY TREE & TREE
Specification

- BINARY_ TREE has explicit windows and
window-manipulation operations

- A window allows us to ‘see’ the value in a
node (and to gain access to It)

- Windows can be positioned over any
Internal or external node

- Windows can be moved from parent to
child

. Windows can be moved from child to
parent
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Window
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BINARY TREE & TREE
Specification

. Let BT denote denote the set of values
of BINARY_TREE of elementtype

- Let E denote the set of values of type

elementtype

- Let W denote the set of values of type
windowtype

. Let B denote the set of Boolean values
true and false
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BINARY TREE Operations

- Empty: BT - BT :
The function Empty(T) is an empty
binary tree; if necessary, the tree Is

deleted

- ISEmpty: BT —» B :
The function value ISsEmpty(T) Is true if
T Is empty; otherwise It Is false
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Example




BINARY TREE Operations

- Root: BT > W
The function value Root(T) Is the
window position of the single external

node If T Is empty; otherwise it is the
window position of the root of T
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Example




BINARY TREE Operations

. IsRoot: W xBT — B :
The function value IsRoot(w, T) Is true If
the window w Is over the root; otherwise

It IS false
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Example




BINARY TREE Operations

. IsExternal: W xBT —» B :
The function value IsExternal(w, T) Is
true If the window w IS over an external

node of T; otherwise It Is false
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Example




BINARY TREE Operations

« Child:N xW xBT > W :
The function value Child(i, w, T) Is
undefined If the node In the window W

IS external or the node Iin w IS internal
and 1 I1s neither 1 nor 2; otherwise it Is
the 1th child of the node In w




Example




BINARY TREE Operations

. Parent: W xBT > W .
The function value Parent(w, T) Is
undefined if T Is empty or w Is over the
root of T, otherwise it is the window
position of the parent of the node In the

window w
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Example




BINARY TREE Operations

. Examine: W x BT — |:
The function value Examine(w, T) Is
undefined If w IS over an external node;:
otherwise It Is element at the internal
node In the window w
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Example




BINARY TREE Operations

- Replace: E xW x BT — BT :
The function value Replace(e, w, T) Is
undefined If w IS over an external node;

otherwise it is T, with the element at the
internal node In w replaced by e
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Example




BINARY TREE Operations

. Insert: E xW xBT > W xBT :
The function value Insert(e, w, T) IS
undefined If w IS over an internal node:

otherwise it i1s T, with the external node
In w replaced by a new Iinternal node
with two external children.

— Furthermore, the new internal node is
given the value e and the window is moved

over the new internal node.
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Example




BINARY TREE Operations

. Delete: W xBT - W xBT :

— The function value Delete(w, T) Is
undefined If w IS over an external node:

— If w Is over a leaf node (both its children
are external nodes), then the function
value is T with the internal node to be
deleted replaced by its left external node
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BINARY TREE Operations

. Delete: W xBT - W xBT :

If w Is over an internal node with just one
Internal node child, then the function value is

T with the internal node to be deleted
replaced by its child
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BINARY TREE Operations

. Delete: W xBT - W xBT :

—1f w IS over an internal node with two
Internal node children, then the function
value Is T with the internal node to be
deleted replaced by the leftmost internal
node descendent in its right sub-tree

— In all cases, the window Is moved over the
replacement node.
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Example




BINARY TREE Operations

. Leftt W xBT > W :

The function value Left(w, T) Is

undefined If w Is over an external node;
otherwise It Is the window position of
the left (or first) child of the node w




Example




BINARY TREE Operations

- Right: W xBT —» W :

The function value Right(w, T) Is

undefined If w Is over an external node;
otherwise It Is the window position of
the right (or second) child of the node w




Example




TREE Operations

- Degree: W xT — |

The function value Degree(w, T) Is the
degree of the node in the window w
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d-ary Tree
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TREE Operations

e Child:N xW xT »> W

The function value Child(i, w, T) Is

undefined If the node In the window w IS
external, or if the node In w Is internal
and I Is outside the range 1..d, where d
IS the degree of the node; otherwise it Is
the ith child of the node In w




d-ary Tree
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BINARY TREE Representation

/* pointer immplementation of BINART _TREE ADT */

#i1nclude <stdio.h>
#i1nclude <math.h>
#include <string.h>

#define FALSE O
#define TRUE 1

typedef struct {
int number;
char *string;
} ELEMENT _TYPE;
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BINARY TREE Representation

typedef struct node *NODE_TYPE;

typedef struct node{
ELEMENT _TYPE element;
NODE_TYPE left, right;
} NODE;

typedef NODE_TYPE BINARY TREE_ TYPE:
typedef NODE_TYPE WINDOW_TYPE;

Copyright © 2007 David Vernon (www.vernon.eu)




BINARY TREE Representation




BINARY TREE Representation

-\

/




BINARY TREE Representations

- This implementation assumes that we are

going to represent external nodes as
NULL links

- For many ADT operations, we need to
know If the window Is over an internal or
an external node

—we are over an external node if the window Is
NULL
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BINARY TREE Representation

WINDOW




BINARY TREE Representations

- Whenever we Insert an internal node
(remember we can only do this if the
window Is over an external node) we
simply make its two children NULL




Binary Search Trees

- A Binary Search Tree (BST) Is a special
type of binary tree
— It represents information is an ordered format

— A binary tree is binary search tree If for every
node w, all keys in the left subtree of | have
values less than the key of w and all keys In
the right subtree have values greater than

key of w.
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Binary Search Trees

. Definition: A binary searchtree T is a
binary tree; either it is empty or each
node In the tree contains an identifier
and:
— all keys in the left subtree of T are less

(numerically or alphabetically) than the
identifier in the root node T;

— all identifers in the right subtree of T are
greater than the identifier in the root node T;

— The left and right subtrees of T are also
binary searchtrees: =




Binary Search Trees

-

\Y[e]g ‘ ‘ Tue

Fri ‘ Sat‘ ‘Thur ‘ Wed




Binary Search Trees

- The main point to notice about such a
tree is that, If traversed inorder, the keys
of the tree (l.e. Its data elements) will be
encountered in a sorted fashion.

- Furthermore, efficient searching is

possible using the binary search
technique

— search time is O(log,n).
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Binary Search Trees

- It should be noted that several binary
search trees are possible for a given data
set, e.g, consider the following tree:




Binary Search Trees

von @
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Binary Search Trees

Tue
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Binary Search Trees

. Let us consider how such a situation
might arise. To do so, we need to
address how a binary search tree Is
constructed.

— Assume we are building a binary search tree
of words.

— Initially, the tree is null, I.e. there are no
nodes in the tree.

— The first word Is inserted as a node In the
tree as the root, with no children.
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Binary Search Trees

— On Iinsertion of the second word, we check to
see If It IS the same as the key In the root,
less than it, or greater than it.

» If it IS the same, no further action is required
(duplicates are not allowed).

» If it IS less than the key Iin the current node, move
to the left subtree and compare again.

» |f the left subtree does not exist, then the word
does not exist and it IS Inserted as a new node on
the left.
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Binary Search Trees

» |f, on the other hand, the word was greater than
the key in the current node, move to the right
subtree and compare again.

» If the right subtree does not exist, then the word
does not exist and it is inserted as a new node on
the right.

— This insertion can most easily be effected in
a recursive manner
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Binary Search Trees

— The point here Is that the structure of the tree
depends on the order in which the data Is
Inserted in the list.

— If the words are entered In sorted order, then
the tree will degenerate to a 1-D list.
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BST Operations

. Insert: E x BST —» BST :

The function value Insert(e,T) Is the

BS with the element e inserted as a
leaf node,; If the element already exists,
no action iIs taken.
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BST Operations

. Delete: E x BST —» BST :

The function value Delete(e,T) Is the

BS with the element e deleted: If the
element is not In the BST exists, no
action Is taken.
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Implementation of Insert(e, T)

- If Tisempty (l.e. Tis NULL)

— create a new node for e
— make T point to it

. If T Is not empty

—If e < element at root of T
» Insert e in left child of T: Insert(e, T(1))

—If e > element at root of T
» Insert e in right child of T: Insert(e, T(2))
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Implementation of Insert(e,T)




Implementation of Delete(e, T)

. First, we must locate the element e to
be deleted in the tree

—If e IS at a leaf node
» Wwe can delete that node and be done

—If e Is at an interior node at w

»we can’'t simply delete the node at w as that
would disconnect its children

— If the node at w has only one child
» We can replace that node with its child
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Implementation of Delete(e, T)

— If the node at w has two children

» we replace the node at w with the lowest-
valued element among the descendents of its
right child

» this is the left-most node of the right tree

» It IS useful to have a function DeleteMin with
removes the smallest element from a non-
empty tree and returns the value of the
element removed
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Implementation of Delete(e, T)

. If T Is not empty

—If e < element at root of T
» Delete e from left child of T: Delete(e, T(1))

—ife > element atrootof T
» Delete e from right child of T: Delete(e, T(2))
—If e = element at root of T and both children
are empty
» Remove T
—If e = element at root of T and left child is
empty
» ReplacesTawithy (29




Implementation of Delete(e, T)

—If e = element at root of T and right child is
empty
» Replace T with T(1)
—If e = element at root of T and neither child
IS empty
» Replace T with left-most node of T(2)
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Implementation of Delete(e, T)

-

\Y[e]g ‘ ‘ Tue

Fri ‘ Sat‘ ‘Thur ‘ Wed




Implementation of Delete(e, T)
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BST Implementation

/* 1mplementation of BST ADT */

#i1nclude <stdio.h>
#i1nclude <math.h>
#include <string.h>

#define FALSE O
#define TRUE 1

typedef struct {
int number;
char *string;
} ELEMENT _TYPE;
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BST Implementation

typedef struct node *NODE_TYPE;

typedef struct node{
ELEMENT _TYPE element;
NODE_TYPE left, right;
} NODE;

typedef NODE TYPE BST TYPE:
typedef NODE_TYPE WINDOW_TYPE;
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BST Implementation

/*** 1nsert an element In a BST ***/

BST _TYPE *insert(ELEMENT_TYPE e, BST _TYPE *tree) {
WINDOW_TYPE temp;
IT (*tree == NULL) {
/* we are at an external node: create a new node */
/* and i1nsert 1t */
iIT ((temp =(NODE_TYPE) malloc(sizeof(NODE))) = NULL)
error(““insert: unable to allocate memory”);
else {
temp->element = e;
temp->left = NULL;
temp->right = NULL;
*tree = temp;
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BST Implementation

}

else 1T (e.number < (*tree)->element.number) {
/* assume number field 1s the key */
insert(e, &((*tree)->left));

}

else 1T (e.number > (*tree)->element.number) {
insert(e, &((*tree)->right));
}

/* 1T e_number == (*tree)->element.number, e 1s */
/* already In the tree so do nothing */

return(tree);
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BST Implementation

/*** return and delete the smallest node 1n a tree ***/
/*** 1.e. return and delete the left-most node *xx/

ELEMENT TYPE delete min(BST_TYPE *tree) {
ELEMENT _TYPE e;
BST TYPE p:
it ((*tree)->left == NULL) {

/* (*tree) points to the smallest element */
e = (*tree)->element;

/* replace the node pointed to by tree */
/* by 1ts right child */
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BST Implementation

p = *tree;
*tree = (*tree)->right;
free(p);

return (e);
+
else {

/* the node pointed to by *tree has a left child */

return(delete min(&((*tree)->left)));
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BST Implementation

/*** delete an element from a BST ***/

BST _TYPE *delete(ELEMENT_TYPE e, BST _TYPE *tree) {
BST TYPE p;;
IT (Ctree 1= NULL) {
IT (e.number < (*tree)->element.number)
delete(e, &((*tree)->left));
else (e.number > (*tree)->element.number)
delete(e, &((*tree)->right));
else 1T (((*tree)->left == NULL) &&
((*tree)->right == NULL)) {

/* leaf node containing e: delete 1t */
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BST Implementation

/* leaf node containing e: delete 1t */

p = *tree;
free(p);
*tree = NULL;

+

else 1T ((*tree)->left == NULL) {
/* 1nternal node containing e and 1t has only */
/* a right child; delete 1t and make tree */
/* point to the right child */

p = *tree;
*tree = (*tree)->right;
HEEE()F
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BST Implementation

else 1T ((*tree)->right == NULL) {

/* 1nternal node containing e and 1t has only */
/* a left child; delete 1t and make tree */
/* point to the left child */

p = *tree;

*tree = (*tree)->left;
free(p);
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BST Implementation

else {
/* 1nternal node containing e and 1t has both */
/* left and right children; replace 1t with */
/* the leftmost node of the right child */

(tree)->element = delete min(&((*tree)->right));
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BST Implementation

/*** 1norder traversal of a tree,
/*** printing node elements
/*** parameter n 1s the current level In the tree

int 1norder(BST_TYPE *tree, Int n) {

int 1;

IT (*tree 1= NULL) {
inorder(tree->left, n+l);
for (1=0; 1<n; 1++) printf(“ “V;
printf(“%d %s\n”’,tree->element.number,

tree->element.string);

inorder(tree->right, n+l);
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BST Implementation

/*** print all elements In a tree by traversing falalal 4
/*** 1norder fakakaV 4

iInt print(BST_TYPE *tree) {
printf(“Contents of tree by iInorder traversal: \n);

inorder(tree, 0);
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BST Implementation

/*** error handler: print message passed as argument and
take appropriate action falalal 4
iInt error(char *s); {
printf(“Error: %s\n”, s);
ex1t(0);
+

/*** assign values to an element ***/

int assign_element values(ELEMENT _TYPE *e, int number,

char s[]) {

e->string = (char *) malloc(sizeof(char) * strlen(s));
strcpy(e->string, S);
e->number = number;
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BST Implementation

/*** main driver routine ***/

ELEMENT_TYPE e;
BST TYPE list;
int 1;

print(tree);

assign_element_values(&e, 3, “...7");
insert(e, &tree);
print(tree);

assign_element_values(&e, 1, “+++7);

insert(e, &tree);
r i nt tree - Copyright © 2007 David Vernon (www.vernon.eu)




BST Implementation

assign_element values(&e, 5,
insert(e, &tree);
print(tree);

assign_element values(&e,
insert(e, &tree);
print(tree);

assign_element _values(&e, HEFREXTY S
insert(e, &tree);
print(tree);

assign_element_values(&e, 6, “000’);
insert(e, &tree);
print(tree);
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BST Implementation

assign_element_values(&e, 3, “
insert(e, &tree);
print(tree);
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BINARY TREE Implementation
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BINARY TREE Implementation




Tree Traversals

- To perform a traversal of a data
structure, we use a method of visiting
every node in some predetermined order

. Traversals can be used
— to test data structures for equality
— to display a data structure
— to construct a data structure of a give size
— to copy a data structure
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Depth-First Traversals

- There are 3 depth-first traversals
— Inorder
— postorder
— preorder

- For example, consider the expression
tree:
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Example: Expression Tree




Depth-First Traversals

. Inorder traversal
A-B+CxD+ExF-G

. Postorder traversal
AB-C:DE+FG-—xx

. Preorder traversal
«x+—~ABCx+DE-FG
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Depth-First Traversals

- The parenthesised Inorder traversal
(A-B)+C)x((D+E)x(F-G))

This Is the Infix expression corresponding
to the expression tree

- Postorder traversal gives a postfix
expression

- Preorder traversal gives a prefix
exp reSS i O rlopyright © 2007 David Vernon (www.vernon.eu)




Depth-First Traversals

. Recursive definition of inorder traversal

Given a binary tree T
If T Is empty
visit the external node
otherwise
perform an inorder traversal of Left(T)
visit the root of T
perform an inorder traversal of Right(T)
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Example: Inorder Traversal




Example: Inorder Traversal




Depth-First Traversals

- Recursive definition of postorder traversal

Given a binary tree T
If T Is empty
visit the external node
otherwise
perform an postorder traversal of Left(T)
perform an postorder traversal of Right(T)
visit the root of T

Copyright © 2007 David Vernon (www.vernon.eu)




Example: Postorder Traversal




Example: Postorder Traversal




Depth-First Traversals

- Recursive definition of preorder traversal

Given a binary tree T
If T Is not an external node
visit the root of T
perform an inorder traversal of Left(T)
perform an inorder traversal of Right(T)
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Example: Preorder Traversal




Example: Preorder Traversal




Applications of Trees

. First application: coding and data
compression

- We will define optimal variable-length
binary codes and code trees

- We will study Huffman’s algorithm which
constructs them

- Huffman’s algorithm is an example of a
Greedy Algorithms, an important class of
simple optimization algorithms
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Text, Codes, and
Compression

. Computer systems represent data as bit
strings

- Encoding: transformation of data into bit
strings

- Decoding: transformationof bit strings
Into data

. The code defines the transformation
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Text, Codes, and
Compression

- For example: ASCII, the international
coding standard, uses a 7-bit code

. HEX Code - Character
. 20 - <space>

- 41 -A

- 42 -B

- 61-a




Text, Codes, and
Compression

. Such encodings are called
— fixed-length or
— block codes

- They are attractive because the
encoding and decoding Is extremely
simple
— For coding, we can use a block of integers

or codewords Iindexed by characters

— For decoding, we can use a block of
characters indexed b@/w Codewords
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Text, Codes, and
Compression

- For example: the sentence
The cat sat on the mat

IS encoded in ASCII as

1010100 110100 011001 0101

- Note that the spaces are there simply to
Improve readability ... they don’t appear
In the encoded version.
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Text, Codes, and
Compression

. The following bit string Is an ASCII
encoded message:

1000100110010111000111101111110
0100110100111011101100111010000
0110100111100110100000110010111
0000111100111111001




Text, Codes, and
Compression

- And we can decode it by chopping it
Into smaller strings eachs of 7 bits In
length and by replacing the bit strings
with their corresponding characters:

1000100(D)1100101(e)1100011(c)1101
111(0)1100100(d)1101001(i)1101110(n
)1100111(g)0100000()1101001(i)11100
11(s)0100000()1100101(e)1100001(a)1
110011(s)1111001(y)
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Text, Codes, and
Compression

- Every code can be thought of in terns of
. a finite alphabet of source symbols
. a finite alphabet of code symbols

- Each code maps every finite sequence
or string of source symbols into a string
of code symbols




Text, Codes, and
Compression

- Let A be the source alphabet
- Let B be the code alphabet
- A code f s an injective map

f: S, — Sg

- where S, Is the set of all strings of
symbols from A

- Where S; Is the set of all strings of
Symbols from B ... e




Text, Codes, and
Compression

- Injectivity ensures that each encoded
string can be decoded uniquely (we do
not want two source strings that are
encoded as the same string)

A

Injective Mapping: each element in the range is related to at
most one element in the domain
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Text, Codes, and
Compression

- We are primarily interested in the code
alphabet {0, 1} since we want to code
source symbols strings as bit strings




Text, Codes, and
Compression

- There Is a problem with block codes:
n symbols produce nb bits with a block
code of length b

- For example,

—If n = 100,000 (the number of characters In
a typical 200-page book)

—b =7 (e.qg. 7-bit ASCII code)

— then the characters are encoded as
700,000 hits
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Text, Codes, and
Compression

. While we cannot encode the ASCII
characters with fewer than 7 bits

- We can encode the characters with a
different number of bits, depending on
their frequency of occurence.

- Use fewer bits for the more frequent
naracters

C
- Use more bits for the less frequent
characters

"gh' 00N a0 M WVesE I NQ NpEH "
(1 ) ()& A11E(1 A V/Allanie-ienatin



Text, Codes, and
Compression

. First problem with variable length
codes:

— when scanning an encoded text from left to
right (decoding it)

— How do we know when one codeword
finishes and another starts?
- We require each codeword not be a
prefix of any other codeword

.- S0, for the binary code alphabet, we
should base the codes on binary code

yright © 2007 D




Text, Codes, and
Compression

- Binary code trees:

- binary tree whose external nodes are
labelled uniguely with the source
alphabet symbols

. Left branches are labelled 0O
- Right branches are labelled 1




Text, Codes, and
Compression

A binary code tree and its prefix code




Text, Codes, and
Compression

- The codeword corresponding to a
symbol Is the bit string given by the
path from the root to the external node
labeled with the symbol

- Note that, as required, no codeword Is a
prefix for any other codeword

— This follows directly from the fact that
source symbols are only on external nodes

—and there is only one (unique) path to that
symbol

Copyright © 2007 David Vernon (www.vernon.eu)




Text, Codes, and
Compression

- Codes that satisfy the prefix property
are called prefix codes

. Prefix codes are important because

— we can uniquely decode an encoded text
with a left-to-right scan of the encoded text

— by consideringly only the current bit in the
encoded text

— decoder uses the code tree for this
purpose
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Text, Codes, and
Compression

- Read the encoded message bit by bit
. Start at the root

- If the bit Is a 0, move left

- If the bit Is a 1, move right

- If the node Is external, output the
corresponding symbol and begin again
at the root




Text, Codes, and
Compression

- Encoded message:

0011100

- Decoded message:




Optimal Variable-Length
Codes

- What makes a good variable length
code?

- LetA=a, ..., a,, n>=1, be the alphabet

of source symbols

- LetP =p4, ..., p,,, N>=1, be their
probability of occurrence
- We obtain these probabillities by

analysing are representative sample of
the type of text we wish to encode
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Optimal Variable-Length
Codes

- Any binary tree with n external nodes
labelled with the n symbols defines a
prefix code

- Any prefix code for the n symbols

defines
externa

- Such a
externa
(tree)

a binary tree with at least n
nodes

pinary tree with exactly n

nodes Is a reduced prefix code

. Good prefix-codes-are -always reduced




Non-Reduced Prefix Code
WES)

a 000
b 111
c 110




Optimal Variable-Length
Codes

- Comparison of prefix codes - compare
the number of bits in the encoded text

- LetA=a, ..., a,, n>=1, be the alphabet
of source symbols

- LetP =p,, ..., p, be their probability of
occurrence

- LetW =w,, ..., w, be a prefix code for
A=ay ..., a,

- LetL =1, ..., | be the lengths of
W — Wl’ ..cc,oyIW@;rfom David Vernon (www.vernon.eu)




Optimal Variable-Length
Codes

- Given a source text T with f, ..., f,
occurrences of a,, ..., a, respectively

. The total number of bits when T Is
encoded iIs

n

2=, fil

- The total number of source symbols Is

n

Z =1 1:i
- The average length of the W-encoding Is
n n
Alength(T, W) =2 fL.[ X _.f




Optimal Variable-Length
Codes

- For long enough texts, the probability p; of
a given symbol occurring Is approximately

p; = f / Znizlfi

- SO0 the expected length of the W-
encoding Is

Elength(W, P) = Zni _1 B ;




Optimal Variable-Length
Codes

- To compare two different codes W, and
W, we can compare either
— Alength(T, W, ) and Alength(T, W, ) or
— Elength(W,, P) and Elength(W, , P)

- We say W, Is no worse than W, if
Elength(W,, P) <= Elength(W, , P)

- We say W, Is optimal if
Elength(W,, P) <= Elength(W, , P)
for all possible prefix codes W, of A
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Optimal Variable-Length
Codes

- Huffman’s Algorithm
- We wish to solve the following problem:

- Given n symbols
A=ay ..., a, n>=1
and the probabillity of their occurrence
P=p, .. p,,respectvely,
construct an optimal prefix code for A
and P




Optimal Variable-Length
Codes

. This problem is an example of a global
optimization problem

- Brute force (or exhaustive search)
techniques are too expensive to
compute:

Given Aand P

Compute the set of all reduced prefix
codes

Choose the minimal expected length

Copyright




Optimal Variable-Length
Codes

- This algorithm takes O(n") time, where
n is the size of the alphabet

- Why? because any binary tree of size
n-1 (i.e. with n external nodes) is a valid
reduced prefix tree and there are n!
ways of labelling the external nodes

. Since n! Is approximately n" we see that
there are approximately O(n") steps to
go through when constructing all the
trees to check ... v




Optimal Variable-Length
Codes

. Huffman’s Algorithm is only O(n?)

. This Is significant: if n = 128 (number of
symbols in a 7-bit ASCII code)

. O(n") = 128128 = 5 28 x 10269
. O(n?) = 1282 = 1.6384 x 10*

- There are 31536000 seconds In a year
and If we could compute 1000 000 000
steps a second then the brute force
technique would still take 1.67 x 102°3
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Optimal Variable-Length
Codes

- The age of the universe Is estimated to
be between 7 and 20 billion years, i.e.,

7x10° and 20x10° years

. A long way off 1.67 x 102°3 years!




Optimal Variable-Length
Codes

- Huffman’s Algorithm uses a technique
called Greediness

. It uses local optimization to achieve a

globally optimum solution
— Build the code incrementally

— Reduce the code by one symbol at each
step

— Merge the two symbols that have the
smallest probabilities into one new symbol
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Optimal Variable-Length
Codes

- Before we begin, note that we’'d like a
tree with the symbols which have the
lowest probability to be on the longest

path

- Why?

- Because the length of the codeword Is
equal to the path length and we want

— short codewords for high-probabillity
symbols

— longer codewords for.low-probability




Text, Codes, and
Compression

A binary code tree and its prefix code




Huffman’s Algorithm

- We will treat Huffman’s Algorithm for
just six letters, I.e, n = 6, and there are
six symbols in the source alphabet.

- These are, with their probabillities,
—E-0.1250
— T -0.0925
— A - 0.0805
—0-0.0760
—1-0.0729
— N = 0.7 L0 commranc 2007 st vermon s seronc




Huffman’s Algorithm

. Step 1:
. Create a forest of code trees, one for
each symbol

- Each tree comprises a single external
node (empty tree) labelled with its
symbol and weight (probability)

0.1250 . 0.0925 . 0.0805 . 0.0760 . 0.0729 . 0.0710 .
= T JAN O I N
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Huffman’s Algorithm

. Step 2:

— Choose the two binary trees, B1 and B2,
that have the smallest weights

— Create a new root node with B1 and B2 as
its children and with weight equal to the
sum of these two weights

0.1439‘

0.1250 . 0.0925 . 0.0805 . 0.0760 . / \
= T A O I N
)
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Huffman’s Algorithm

. Step 3.
— Repeat step 2!




Huffman’s Algorithm

0.1565 ‘ 0.1439 ‘

T / \ / \
E T
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Huffman’s Algorithm

0.2175 ‘ 0.1565 ‘ 0.1439 ‘

« w8 ow oW




Huffman’s Algorithm




Huffman’s Algorithm




Huffman’s Algorithm

- The final prefix code Is:
— A 100
—E 00
—| 110
—N 111
— 0O 101
—T 01
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Huffman’s Algorithm

- Three phases in the algorithm

. Initialize the forest of code trees
- Construct an optimal code tree
- Compute the encoding map
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Huffman’s Algorithm

- Phase 1: Initialize the forest of code
trees
— How will we represent the forest of trees?

— Better question: how will we represent our
tree ... have to store both alphanumeric
characters and probabilities?

— Need some kind of composite node

— Opt to represent this composite node as
an INTERNAL node
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Huffman’s Algorithm

— Consequently, the initial tree Iis simply one
Internal node

— That s, it is a root (with two external
nodes)
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Huffman’s Algorithm

. S0, to create such a tree we simply
Invoke the following operations:

— Initialize the tree ... tree()
— Add a node ... addnode(char, weight, T)
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Huffman’s Algorithm

- We must also keep track of our forest

- Could represent it as a linked list of
pointers to Binary trees ...

T k k .

Copyright ©




Huffman’s Algorithm

- Represented as:

l—l—l—l—lm

% 7 4 Ee
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Huffman’s Algorithm

Is there an alternative?

Question: why do we use dynamic
datastructures?

Answer:

— When we don’t know in advance how
many elements are in our data set

— \When the number of elements varies
significantly
Is this the case here?
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Huffman’s Algorithm

- S0, our alternatives are? ......
- An array, indexed by number, of type ...

. binary tree, I.e., each element in the
array can point to a binary code tree
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Huffman’s Algorithm




Huffman’s Algorithm

. What will be the dimension of this
array?

. n, the number of symbols in our source
alphabet since this is the number of

trees we start out with in our forest
initially
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Huffman’s Algorithm

- Phase 2: construct the optimal code
tree
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Huffman’s Algorithm

Pseudo-code algorithm

Find the tree with the smallest weight - A, at
element 1

Find the tree with the next smallest weight - B,
at element j

Construct a tree, with right sub-tree A, left
sub-tree B, with root having weight = sum of
the roots of A and B

Let array element 1 point to the new tree
Delete tree at element ]
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Huffman’s Algorithm

let n be the number of trees initially

Repeat
Find the tree with the smallest weight - A, at

element 1

Find the tree with the next smallest weight - B,
at element j

Construct a tree, with right sub-tree A, left
sub-tree B, with root having weight = sum of
the roots of A and B

Let array element 1 point to the new tree
Delete tree at element ]
Until only one tree left in the array
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Huffman’s Algorithm

- Phase 3: Compute the encoding map

— We need to write out a list of source
symbols together with their prefix code

— We need to write out the contents of each
external node (or each frontier internal
node) together with the path to that node

— We need to traverse the binary code tree
IN some manner
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- But .... we want to print out the symbol
and the prefix code:

l.e. the symbol at the leafnode

and the path by which we got to that
node
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- How will we represent the path?

- As an array of binary values
(representing the left and right links on

the path)
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Huffman’s Algorithm

// new tree definition

struct node

{

char symbol ;
float probability;
node *pleft, *pright;
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Huffman’s Algorithm

class tree // from previous part of the course
{
public:
tree();
~tree();
voild add(int n) {addnode(n,root);}
void print() {pr(root,0);}
node* &search(int n);
int delnode(int x);
private
node *root;
void deltree(node *p);
void addnode(int n, node* &p);
voild pr(const node *p, Int nspace) const;
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Huffman’s Algorithm

class tree // modified for this application
{
public:
tree();
~tree();
vold add(char s, float p) {addnode(s,p,root);}
void print() {pr(root,0);}
node* &search(int n);
int delnode(int x);
private
node *root;
void deltree(node* &p); // NB
voild addnode(char s, float p, node* &p);
voild pr(const node *p, Int nspace) const;

Copyright © 2007 David Vernon (www.vernon.eu)




Huffman’s Algorithm

void tree::deltree(node* &p) {
/[ modified parameter to reference parameter
If (p !=NULL) {
deltree(p->pleft);
deltree(p->pright);
delete p;

p = NULL; // return null pointer

}
}
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Huffman’s Algorithm

class forest {
public:
forest(int size);
~forest();
void initialize_forest();
void add_to_tree(int tree_number,
char symbol, float probability);
void print_forest() const;
void print_tree(int tree_number);,
void join_trees(int tree_1, int tree_2);
int empty_tree(int tree_number);
float root_probability(int tree_number);
private:
tree tree_array[MAXIMUM_NUMBER_OF TREES];
Int forest_size;
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Huffman’s Algorithm

// 1norder traversal from previous part of the course
//

// recursive function to print the contents of the
// binary search tree

vold tree::prorder(const node *p) const

{

if (p!=NULL)
{

prorder(p->pleft);
cout << p->data << “ *;
prorder(p->pright);
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Huffman’s Algorithm

// 1norder traversal to print only leaf nodes

voild tree::leafnode_traversal (const node *p) const
{
IT (p '= NULL) {
iIT (at_leafnode) { // PSEUDO CODE
visit this node

}

else {
leafnode_ traversal(p->pleft);
leafnode_ traversal (p->pright);
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Huffman’s Algorithm

// 1norder traversal to print only leaf nodes

voild tree::leafnode_traversal (const node *p) const
{
IT (p '= NULL) {
IT ((p—>pleft == NULL) &&
(p->right == NULL)) { // leafnode
cout << p->symbol << p->probability <<endl;

}

else {
leafnode_traversal (p->pleft);
leafnode_ traversal (p->pright);
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Huffman’s Algorithm

// pseudocode version of compute map
// to traverse tree and print leaf node and path
// to leaf node

vold tree::traverse leaf nodes(const node *p, path)

{
iIT (at leaf node) {

print out symbol and path
+

else {
add _to path(path, 0); // left
traverse leaf nodes(p->pleft, path);
remove_element_ from_ path(path);
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Huffman’s Algorithm

add_to path(path, 1); // right
traverse_ leaf nodes(p->pright, path);
remove_element from_ path(path);
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Huffman’s Algorithm

// Definition of path

#define MAX PATH LENGTH 20
class path {
public:
path();
~path();
add_to_path(int direction);
remove_from path();
print_path();
private:
int path_components[MAX PATH LENGTH];
int path_length;
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Huffman’s Algorithm

// Definition of path

path: :path()
{
int 1;
for (1=0; i1<MAX_PATH_ LENGTH; 1++) {
path_components|i] = O;

by
path_length = O;
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Huffman’s Algorithm

// Definition of path

path::~path()
{
+
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Huffman’s Algorithm

// Definition of path

path::add_to path(int direction)
{
iIT (path_length < MAX PATH _LENGTH) {
path components|[path_ length] = direction;
path_length++;
by
else {
cout << “Error maximum path length reached”;

}
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Huffman’s Algorithm

// Definition of path

path::remove_ from path()

{
iIT (path_length > 0) {
path_ length--;

}

else {
cout << “Error: no path exists”;

}
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Huffman’s Algorithm

// Definition of path

path: print_path()
{
for (1=0; i<path_length; i1++) {
cout << path_components[i];

}

Cout << [ 41 [ 4 ™
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Huffman’s Algorithm

// Definition of traverse leaf nodes
// to traverse tree and print leaf node and path
// to leaf node

void tree::traverse leaf _nodes(const node *p, path &code)

{
if (p !=NULL) {
if ((p->pleft == NULL) &&
(p->pright == NULL)) { // leaf node
cout << p->symbol << " ";
code.print_path();
cout << endl:

}

else {
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Huffman’s Algorithm

code.add_to_path(0); // left
traverse leaf nodes(p->pleft, code);
code.remove_from_path();

code.add to_path(1); //right

traverse leaf _nodes(p->pright, code);
code.remove_from_path();
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Huffman’s Algorithm

void tree::compute_map() {
// new function to print leaf nodes
path code; // and the path to leaf nodes
traverse leaf nodes(root, code);

}
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Huffman’s Algorithm

void forest::compute_map() {
Int I;

for (i=0; I<KMAXIMUM_NUMBER_OF_TREES; i++) {
iIf (tree_array[i].empty_tree() == FALSE) {

tree_array[i].compute_map();
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Height-Balanced Trees

AVL Trees




AVL Trees

- We know from our study of Binary
Search Trees (BST) that the average
search and insertion time is O(log n)

— If there are n nodes in the binary tree it will
take, on average, log2 n

comparisons/probes to find a particular
node (or find out that it isn’t there)

- However, this is only true If the tree Is
‘balanced’

— Such as occurs when the elements are

n.eu)




AVL Trees

A Balanced Tree for the Months of the Year
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AVL Trees

- However, if the elements are inserted In
lexicographic order (i.e. in sorted order)
then the tree degenerates into a skinny

tree
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AVL Trees
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AVL Trees

. If we are dealing with a dynamic tree

- Nodes are being inserted and deleted
over time

— For example, directory of files
— For example, index of university students

- We may need to restructure - balance -
the tree so that we keep it

— Fat
— Full
—_ CO m 0 Ieteopyright © 2007 David Vernon (www.vernon.eu)




AVL Trees

- Adelson-Velskii and Landis in 1962
iIntroduced a binary tree structure that Is
balanced with respect to the heights of

Its subtrees

. Insertions (and deletions) are made
such that the tree
— starts off

—and remains
- Height-Balanced

Copyright © 2007 David Vernon (www.vernon.eu)




AVL Trees

. Definition of AVL Tree
- An empty tree iIs height-balanced
- If T Is a non-empty binary tree with left

and right sub-trees T, and T,, then

. T Is height-balanced Iff
— T, and T, are height-balanced, and
— |height(T,) - height(T,)| < 1
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AVL Trees

- SO0, every sub-tree Iin a height-balanced
tree Is also height-balanced
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Recall: Binary Tree
Terminology

- The height of T Is defined recursively as
Oif Tis empty and

1 + max(height(T,), height(T,)) otherwise,
where T, and T, are the subtrees of the
root.

- The height of a tree Is the length of a
longest chain of descendents

Copyright




Recall: Binary Tree
Terminology

- Height Numbering
— Number all external nodes 0O

— Number each internal node to be one more
than the maximum of the numbers of its
children

— Then the number of the root is the height of T

- The height of a node u In T Is the height
of the subtree rooted at u
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AVL Trees

MAY X

SEP K¢

OCT Wi

NOVA!
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AVL Trees

NOV
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AVL Trees

A Balanced Tree for the Months of the Year

Copyright © 2007 David Vernon (www.vernon .eu)




AVL Trees

A Balanced Tree for the Months of the Year
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AVL Trees

. Let’s construct a height-balanced tree
. Order of insertions:

March, May, November, August, April,
January, December, July, February,
June, October, September

. Before we do, we need a definition of a
balance factor
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AVL Trees

- Balance Factor BF(T) ofanote T In a
binary tree Is defined to be

height(T,) - height(T.)

where T, and T, are the left and right
subtrees of T

- For any node T In an AVL tree
BF(T)=-1,0, +1

Ll, opyr gh t © 2007 Vernon (www.vernon.eu)




New After After
ldentifier  Insertion Rebalancing

VAR
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New After After
ldentifier  Insertion Rebalancing

@ BF=0 NO REBALANCING NEEDED
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New After After
ldentifier  Insertion Rebalancing

@ BF=0 NO REBALANCING NEEDED

“o
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New
|dentifier

After
Insertion

Cer

BF = -1

BF=0

After
Rebalancing

NO REBALANCING NEEDED

NO REBALANCING NEEDED
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New After After
ldentifier  Insertion Rebalancing

@ BF=0 NO REBALANCING NEEDED

NO REBALANCING NEEDED

NOVEMBER
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New After After
ldentifier  Insertion Rebalancing

@ BF=0 NO REBALANCING NEEDED

NO REBALANCING NEEDED

NOVEMBER
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New After After
ldentifier  Insertion Rebalancing

@ BF=0 NO REBALANCING NEEDED

NO REBALANCING NEEDED

NOVEMBER

RR rebalancing
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New After After
ldentifier  Insertion Rebalancing

AUGUST
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New After After
ldentifier  Insertion Rebalancing

AUGUST
NO REBALANCING NEEDED
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New After After
ldentifier  Insertion Rebalancing

AUGUST
NO REBALANCING NEEDED
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New After After
ldentifier  Insertion Rebalancing

AUGUST
NO REBALANCING NEEDED
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New After After
ldentifier  Insertion Rebalancing

AUGUST
NO REBALANCING NEEDED

LL rebalancing
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New After After
ldentifier  Insertion Rebalancing

JANUARY
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New After After
ldentifier  Insertion Rebalancing

JANUARY

Copyright © 2007 David Vernon (www.vernon.eu




New After After
ldentifier  Insertion Rebalancing

JANUARY
ISR AUG

BF = 0 Qs JAN
BF=0

LR rebalancing
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New After After
ldentifier  Insertion Rebalancing

DECEMBER
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New After After
ldentifier  Insertion Rebalancing

DECEMBER

NO REBALANCING NEEDED
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New After After
ldentifier  Insertion Rebalancing

JULY
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New After After
ldentifier  Insertion Rebalancing

NO REBALANCING NEEDED
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New After After
ldentifier  Insertion Rebalancing

FEBRUARY
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New After After
ldentifier  Insertion Rebalancing

FEBRUARY
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New After After
ldentifier  Insertion Rebalancing

FEBRUARY

RL rebalancing
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New After After
ldentifier  Insertion Rebalancing
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New After After
ldentifier  Insertion Rebalancing
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New After After
ldentifier  Insertion Rebalancing

LR rebalancing
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New After After
ldentifier  Insertion Rebalancing

OCTOBER
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New After After
ldentifier  Insertion Rebalancing

OCTOBER
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New After After
ldentifier  Insertion Rebalancing

OCTOBER RR rebalancing

BF=0 BF=0 BF=0
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New After After
ldentifier  Insertion Rebalancing

SEPTEMBER

N
e %Q@e@@
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New After After
ldentifier  Insertion Rebalancing

SEPTEMBER NO REBALANCING NEEDED

BF— =

eln
BF=0 @BF 1

BF=0 BF=0

BFO
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AVL Trees

- All re-balancing operations are carried
out with respect to the closest ancestor
of the new node having balance factor
+2 or -2

- There are 4 types of re-balancing
operations (called rotations)
RR

_L (symmetric with RR)
RL

- R (Sym m&ﬁtﬂz& Ma\M tmon(Rwlow)mon.eU)




AVL Trees

_et’s refer to the node inserted as Y

_et’s refer to the nearest ancestor
naving balance factor +2 or -2 as A
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AVL Trees

. LL: Y Is Iinserted In the
Left subtree of the Left subtree of A

— LL: the path from Ato Y
— Left subtree then Left subtree

- LR: Y is Inserted in the
Right subtree of the Left subtree of A

— LR: the path from Ato Y
— Left subtree then Right subtree
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AVL Trees

- RR: Y is inserted in the
Right subtree of the Right subtree of A

— RR: the path from Ato Y

— Right subtree then Right subtree
- RL: Y is Inserted in the
Left subtree of the Right subtree of A
— LL: the path from Ato Y
— Right subtree then Left subtree
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AVL Trees

Balanced Subtree

/é !
S
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AVL Trees

Unbalanced following insertion

oy

Height of B, inceases to h+1
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AVL Trees - LL rotation

Unbalanced following insertion Rebalanced subtree

\
|

8 » é\
®
=00

Height of B, inceases to h+1

Copyright © 2007 David Vernon (www.vernon .eu)




AVL Trees

Balanced Subtree

|

o
| &5
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AVL Trees

Unbalanced following insertion

|

Height of B inceases to h+1
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AVL Trees - RR Rotation

Unbalanced following insertion Rebalanced subtree

6

N

. o
A Al

Height of B inceases to h+1
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AVL Trees

Balanced Subtree
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AVL Trees

Unbalanced following insertio
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AVL Trees - LR rotation (a)




AVL Trees

Balanced Subtree
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AVL Trees

Unbalanced following insertio
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AVL Trees - LR rotation (b)




AVL Trees

Balanced Subtree
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AVL Trees

Unbalanced following insertioE

|
{ I
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AVL Trees - LR rotation (c)

6

]




AVL Trees

Balanced Subtree

A

h-1|
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AVL Trees

Unbalanced following insertion

A

h-1|
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AVL Trees - RL rotation




AVL Trees

- To carry out this rebalancing we need
to locate A, I.e. to window A

— A Is the nearest ancestor to Y whose
balance factor becomes +2 or -2 following
Insertion

— Equally, A Is the nearest ancestor to Y
whose balance factor was +1 or -1 before
Insertion

- We also need to locate F, the parent of
A

Copyright © 2007 David Vernon (www.vgrnon.eu)
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AVL Trees

- Note In pasing that, since A Is the
nearest ancestor to Y whose balance
factor was +1 or -1 before insertion, the
balance factor of all other nodes on the
part from A to Y must be O

- When we re-balance the tree, the
balance factors change (see diagrams
z10[0)V/)

— But changes only occur in subtree which Is
being rebalanced
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AVL Trees

- The balance factors also change
following an insertion which requires no
rebalancing

- BF(A) Is +1 or -1 before insertion

- Insertion causes height of one of A’s
subtrees to increase by 1

- Thus, BF(A) must be O after insertion
(since, In this case, it's not +2 or -2)
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Implementation of
AVL_Insert()

PROCEDURE AVL_ 1nsert(e:elementtype; w:windowtype;
T: BINTREE);

(* We assume that variables of element type have two *)
(* data fTields: the iInformation field and a balance

(* factor

(* Assume also existence of two ADT functions to
(* examine these fTields:

G Examine BF(w, T)

G Examine _data(w, T)

(** and one to modify the balance factor field

G Replace BF(bf, w, T)
var newnode: linktype;

begin

Copyright © 2007 David Vernon (www.vernon.eu)
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Implementation of
AVL_Insert()

IF IsEmpty(T) (* special case *)

THEN
Insert(e, w, T); (*iInsert as before *)

Replace BF(0, w, T)

==
(* Phase 1: locate 1nsertion point *)

(* A keeps track of most recent node with *)
(* balance factor +1 or -1 *)
A = w;
WHILE ((NOT IskExternal(w, T)) AND
(NOT (e.data = Examine Data(w, T))) DO
IF Examine BF(w, T) <> 0 (* non-zero BF *)
THEN
A = w;

END I F = Copyright © 2007 David Vernon (www.vernon.eu)




Implementation of
AVL_Insert()

IF (e.data < Examine Data(w, T) )
THEN
Child(0, w, T)
ELSE IF (e.data > Examine_Data(w, T) )
Chald(1, w, T)

ENDIF
ENDIF
ENDWHILE
(* 1T not found, then embark on Phase 2: *)
(* 1Insert & rebalance *)
IF IsExternal(w, T)
THEN
Insert(e, w, T); (*iInsert as before *)
Replace BF(0, w, T)

END I F Copyright © 2007 David Vernon (www.vernon.eu)




Implementation of
AVL_Insert()

(*
(*
(*
(*
(*
(*
(*

IF

adjust balance factors of nodes on path
from A to parent of newly-i1Inserted node
By definition, they will have had BF=0
and so must now change to +1 or -1

Let d = this change,

d =+1 ... 1nsertion In A’s left subtree
d = -1 ... 1nsertion 1In A’s right subtree

(e.data < Examine_Data(A, T) )
THEN

Vi= A;

Child(0, v, T)

E LSE Copyright © 2007 David Vernon (www.vernon.eu)



Implementation of
AVL _Insert()

ELSE
v:=A; Chrld(1, v, T)
B:= v;
d -1
ENDIF
WHILE ((NOT IsEqual(w, Vv))) DO
IF (e.data < Examine_Data(v, T) )
THEN
ReplaceBF(+1, v, T);
Child(0, v, T) (* height of Left ™ *)
ELSE
ReplaceBF(-1, v, T);
Child(1, v, T) (* height of Right ™ *)
ENDIF
ENDWH I LE Copyright © 2007 David Vernon (www.vernon.eu)




Implementation of
AVL_Insert()

(* check to see 1T tree 1s unbalanced *)

IF (ExamineBF(A, T) = 0 )
THEN
ReplaceBF(d, A, T) (* still balanced *)
ELSE
IF ((ExamineBF(A, T) + d) = 0)
THEN
ReplaceBF(0, A, T)(*still balanced*)
ELSE

(* Tree 1s unbalanced *)
(* determine rotation type *)
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Implementation of
AVL_Insert()

(* Tree 1s unbalanced *)
(** determine rotation type *)

IF d = +1
THEN (* left i1mbalance *)
IF ExamineBF(B) = +1
THEN (* LL Rotation *)
(* replace left subtree of A *)
(* with right subtree of B *)
temp = B; Child(1, temp, T);
ReplaceChild(0, A, T, temp);

(* replace right subtree of B with A *)
ReplaceChild(1, B, T, A);
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Implementation of
AVL_Insert()

(* replace right subtree of B with A *)
ReplaceChild(1, B, T, A);

ReplaceBF(0, A, T);
ReplaceBF(0, B, T);

ELSE (* LR Rotation *)

C :=B; Child(1, C, T);

CL :=C; Child(0, C L, T);
CR :=C; Child(1d, CR, T);
ReplaceChild(1, B, T, C L);
ReplaceChild(0, A, T, C R);
ReplaceChild(0, C, T, B);
ReplaceChild(1, C, T, A);
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Implementation of
AVL _Insert()

IF ExamineBF(C) = +1 (* LR(b) *)
THEN
ReplaceBF(-1, A, T);
ReplaceBF(0, B, T);
ELSE

IF ExamineBF(C) = -1 (* LR(c) *)
THEN
ReplaceBF(+1, B, T);
ReplaceBF(0, A, T);
ELSE ' LR(@) *)
ReplaceBF(0, A, T);
ReplaceBF(0, B, T);

ENDIF
ENDIF
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Implementation of
AVL_Insert()

(** B 1s new root *)
ReplaceBF(0, C, T);
B :=C
ENDIF (* LR rotation ¥*)
ELSE (* right imbalance *)

(* this is symmetric to left imbalance *)
(* and 1s left as an exercise! *)

ENDIF (* d = +1 *)
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Implementation of
AVL_Insert()

(* the subtree with root B has been
(* rebalanced and 1t now replaces
(* A as the root of the originally
(* unbalanced tree

ReplaceTree(A, T, B)
(* Replace subtree A with B in T
(* Note: this 1s a trivial operation
(* since we are using a complex
(* window variable
ENDIF
ENDIF
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Red-Black Trees




Red-Black Trees

- The goal of height-balanced trees is to
ensure that the tree Is as complete as
possible and that, consequently, it has
minimal height for the number of nodes
In the tree

As a result, the number of probes it
takes to search the tree (and the time it
takes) is minimized.
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Red-Black Trees

. A perfect or a complete tree with n
nodes has height O(log,n)
— S0 the time It takes to search a perfect or a
complete tree with n nodes is O(log,n)
- A skinny tree could have height O(n)
— S0 the time It takes to search a skinny tree
can be O(n)
- Red-Black trees are similar to AVL

trees In that they allow us to construct
trees which have a guaranteed search
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Red-Black Trees

. A red-black tree is a binary tree whose
nodes can be coloured either red or
black to satisfy the following conditions:

— Black condition: Each root-to-frontier path
contains exactly the same number of black
nodes

— Red condition: Each red node that is not
the root has a black parent

— Each external node iIs black
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Red-Black Trees

- A red-black search tree Is a red-black
tree that Is also a binary search tree

. For all n>= 1, ever red-black tree of size
n has height O(log,n)

— Thus, red-black trees provide a

guaranteed worst-case search time of
O(log,n)
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Red-Black Trees

Red-black tree (condition 3)
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Red-Black Trees

/ Undetermined colour

Red-black tree (condition 3)

O
/N
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Red-Black Trees

Q If root was red, then right child would have to

be black (if it was red, it would have to have a
black parent) but then the black condition would
be violated.

/N
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Red-Black Trees




Red-Black Trees

To satisfy black condition, either

(1) node a Is black and nodes b and
c are red, or
(2) nodes a, b, and c are red.

In both cases, a red condition IS
violated.

Therefore, this 1s not a red-black
tree
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Red-Black Trees

- For all n >=1, every red-black tree of
size n has height O(log,n)

- Thus, red-black trees provide a

guaranteed worst-case search time of
O(log,n)




Red-Black Trees

. |Insertions and deletions can cause red
and black conditions to be violated

. Trees then have to be restructured

. Restructuring called a promotion (or
rotation)
— Single promotion
— 2 promotion
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Red-Black Trees

. Single promotion
. Also referred to as
— single (left) rotation
— single (right) rotation
- Promotes a node one level
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Red-Black Trees

Promote v
(Left Rotation)

Promote u
(Right Rotation)




Red-Black Trees

- A single promotion (Left Rotation or
Right Rotation) preserves the binary-
search condition

. Same manner as an AVL rotation
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Red-Black Trees

Promote v
(Left Rotation)

‘ l Promote u
(Right Rotation)

keys(1) < key(v) < key(u) keys(1) < key(v)
key(v) < keys(2) < key(u) key(v) < keys(2) < key(u)
ORERE) oo 2007 pa vernon (v KEY (V) < KEY(U) < Keys(3)




Red-Black Trees

- 2-Promotion
. Zig-zag promotion
- Composed of two single promotions

- And hence preserves the binary-search
condition

Copyright © 2007 David Vernon (www.vernon.eu)




Red-Black Trees

: ‘ ‘
Zig-zag promote w / \

KV\A ~{ada




Red-Black Trees




Red-Black Trees

0 e

W
/ \ single promote w / \
W‘ L ‘

V

A= /
Zk ‘XA




Red-Black Trees

‘ : ‘
Zig-zag promote w / \

28 L4




Red-Black Trees

Insertions

A red-black tree can be searched in
logarithmic time, worst case

Insertions may violate the red-black
conditions necessitating restructuring

This restructuring can also be effected
In logarithmic time

Thus, an insertion (or a deletion) can be
effected in logarithmic time
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Red-Black Trees

. Just as with AVL trees, we perform the
Insertion by

— first searching the tree until an external

node is reached (if the key is not already In
the tree)

— then inserting the new (internal) node

- We then have to recolour and
restructure, If necessary
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Red-Black Trees

II’]SGI’tIOI’] at v

/

If new node Is red, Is the tree red-black?
If the new node Is black, Is the tree red-black?
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Red-Black Trees

- Recolouring:
— Colour new node red
— This preserves the black condition
— but may violate the red condition

- Red condition can be violated only If the
parent of an internal node Is also red

. Must transform this ‘almost red-black
tree’ Into a red-black tree
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Red-Black Trees

Insertion at v
\ m—




Red-Black Trees

- Recolouring and restructuring algorithm
—The node uisared node ina BST, T
— u Is the only candidate violating node
— Apart from u, the tree T Is red-black
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Red-Black Trees

. Case 1:

— u Is the root
— T Is red-black

Insertion at v
/ )\
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Red-Black Trees

. Case 2:
— U IS not the root
— Its parent v is the root
— Colour v black
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Red-Black Trees

Q/

Y
Recolour
g ’ Q/ \

i

Is there anything unexpected about this figure?
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Red-Black Trees

\QV \OV

= B
AA

S

A R
Is there anything unexpected about this figure?
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Red-Black Trees

. Case 3:
— u Is not the root,
— Its parent v is not the root,
— Vv IS the left child of its parent w
— (X Is the right child of w, i.e. x Is v’s sibling)

Copyright © 2007 David Vernon (www.vernon.eu)




Red-Black Trees

. Case 3.1:

— X IS red
— Colour v and x black and w red

— Repeat the restructuring with u :=w

(since the recolouring of w to red may cause
a red violation)
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Red-Black Trees

<

Jo
o e

/N
AA

Note:

w must be black,
Vv must be red,

u must be red.
Why?

Recolour




Red-Black Trees

- U must be red because we colour new
nodes that way by convention (to
preserve the black condition)

- V must be red because otherwise it
would be black and then we wouldn’t
have violated the red condition and we
wouldn’t be restructuring anything!

- W must be black because every red
node (that isn’t the root) has a black
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Red-Black Trees




Red-Black Trees

. Case 3.2:

— X IS black
— u IS the left child of v

— Promote v
— Colour v black
— Colour w red
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Red-Black Trees

v
/N
AA

Jo
&

/N
AA
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Restructure and recolour

e

Promote v;
colour v black;
colour w red




Red-Black Trees




Red-Black Trees

. Case 3.3:
— X IS red
— u Is the right child of v
— Colour v and x black
— Colour w red

— Repeat the restructuring with u ;= w

(since the recolouring of w to red may cause
a red violation)
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Red-Black Trees

g é\

Recolour

a VA —
“/\AA
'V




Red-Black Trees

e CB\

\ /\
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Red-Black Trees

. Case 3.4:

— X IS black
— u Is the right child of v

— Zig-zag promote u
— Colour u black
— Colour w red
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Red-Black Trees

g é\

Recolour & restructure

\ / \ =

A A Z1g-zag promote u;
/ \ colour u black:;
‘ ‘ colour w red
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Red-Black Trees




Red-Black Trees

. Case 4.
— u Is not the root,
— Its parent v is not the root,
— Vv Is the right child of its parent w
— (X Is the left child of w, I.e. X Is Vv’s sibling)

. This case Is symmetric to case 3.
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