


PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2008 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or 
by any means without the written permission of the publisher.

Library of Congress Control Number: 2007940505

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9   QWT 3 2 1 0 9 8

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor-
mation about international editions, contact your local Microsoft Corporation office or contact Microsoft 
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. 
Send comments to mspinput@microsoft.com.

Microsoft, Active Directory, DirectX, Excel, Internet Explorer, Microsoft Press, MS-DOS, Outlook, 
PowerPoint, Windows, Windows NT, Windows Server, and Windows Vista are either registered 
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Other 
product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, 
and events depicted herein are fictitious. No association with any real company, organization, product, 
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its 
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly 
or indirectly by this book.

Acquisitions Editor: Martin DelRe
Developmental Editor: Karen Szall
Project Editor: Maureen Zimmerman
Editorial Production: Abshier House
Technical Reviewer: Jim Johnson; Technical Review services provided by Content Master, a member 
of CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X14-31160



For Joe and Helga: 

For setting an example and showing me the way.





Contents at a Glance

Part I The Network Interface Layer
1 Local Area Network (LAN) Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2 Wide Area Network (WAN) Technologies . . . . . . . . . . . . . . . . . . . . . . . . 31
3 Address Resolution Protocol (ARP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4 Point-to-Point Protocol (PPP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Part II Internet Layer Protocols 
5 Internet Protocol (IP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6 Internet Control Message Protocol (ICMP) . . . . . . . . . . . . . . . . . . . . . . 125
7 Internet Group Management Protocol (IGMP) . . . . . . . . . . . . . . . . . . . 157
8 Internet Protocol Version 6 (IPv6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Part III Transport Layer Protocols 
9 User Datagram Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

10 Transmission Control Protocol (TCP) Basics. . . . . . . . . . . . . . . . . . . . . . 199
11 Transmission Control Protocol (TCP) Connections . . . . . . . . . . . . . . . . 223
12 Transmission Control Protocol (TCP) Data Flow . . . . . . . . . . . . . . . . . . 245
13 Transmission Control Protocol (TCP) Retransmission 

and Time-Out  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Part IV Application Layer Protocols and Services 
14 Dynamic Host Configuration Protocol (DHCP) . . . . . . . . . . . . . . . . . . . 293
15 Domain Name System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
16 Windows Internet Name Service  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
17 Remote Authentication Dial-In User Service (RADIUS) . . . . . . . . . . . . 353
18 Internet Protocol Security (IPsec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
19 Virtual Private Networks (VPNs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

  
Appendix A: Internet Protocol (IP) Addressing. . . . . . . . . . . . . . . . . . . . . . . . . . 421
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
vii





Table of Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xv

Part I The Network Interface Layer
1 Local Area Network (LAN) Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . .3

LAN Encapsulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Ethernet II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

IEEE 802.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

IEEE 802.3 SNAP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Special Bits on Ethernet MAC Addresses  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Token Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

IEEE 802.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

IEEE 802.5 SNAP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Special Bits on Token Ring MAC Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

FDDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

FDDI Frame Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

FDDI SNAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Special Bits on FDDI MAC Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

IEEE 802.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

IEEE 802.11 Frame Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

IEEE 802.11 SNAP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Wide Area Network (WAN) Technologies . . . . . . . . . . . . . . . . . . . . . . . . 31
WAN Encapsulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Point-to-Point Protocol  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

PPP on Asynchronous Links  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

PPP on Synchronous Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

PPP Maximum Receive Unit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

PPP Multilink Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Frame Relay  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Frame Relay Encapsulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
ix



x Table of Contents
3 Address Resolution Protocol (ARP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Overview of ARP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

The ARP or Neighbor Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

ARP Frame Structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

ARP in Windows Server 2008 and Windows Vista . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Address Resolution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Duplicate Address Detection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Neighbor Unreachability Detection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

ARP Registry Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Inverse ARP (InARP)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Proxy ARP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Point-to-Point Protocol (PPP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
PPP Connection Process  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Phase 1: PPP Configuration Using LCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Phase 2: Authentication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Phase 3: Callback  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Phase 4: Protocol Configuration Using NCPs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

PPP Connection Termination  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Link Control Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

LCP Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

LCP Negotiation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

PPP Authentication Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

PAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

CHAP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

MS-CHAP v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

EAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Callback and the Callback Control Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Network Control Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

IPCP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Compression Control Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Encryption Control Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Network Monitor Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

PPP over Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

PPPoE Discovery Stage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

PPPoE Session Stage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



Table of Contents xi
Part II Internet Layer Protocols 
5 Internet Protocol (IP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Introduction to IP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

IP Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

IP MTU  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

The IP Datagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

The IP Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Version  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Internet Header Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Type Of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Total Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Flags  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Fragment Offset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Time-To-Live . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Protocol  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Header Checksum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Source Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Destination Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Options and Padding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Fragmentation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Fragmentation Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Fragmentation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Reassembly Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Fragmenting a Fragment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Avoiding Fragmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Fragmentation and TCP/IP for Windows Server 2008 and Windows Vista  . . . 112

IP Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Copy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Option Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Option Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Strict and Loose Source Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

IP Router Alert  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Internet Timestamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6 Internet Control Message Protocol (ICMP) . . . . . . . . . . . . . . . . . . . . . . 125
ICMP Message Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



xii Table of Contents
ICMP Messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

ICMP Echo and Echo Reply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

ICMP Destination Unreachable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

PMTU Discovery  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

ICMP Source Quench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

ICMP Redirect  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

ICMP Router Discovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

ICMP Time Exceeded  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

ICMP Parameter Problem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

ICMP Address Mask Request and Address Mask Reply. . . . . . . . . . . . . . . . . . . . 146

Ping.exe Tool  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Ping Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Tracert.exe Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Tracert Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Pathping.exe Tool  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Pathping Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7 Internet Group Management Protocol (IGMP) . . . . . . . . . . . . . . . . . . . 157
Introduction to IP Multicast and IGMP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

IP Multicasting Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Host Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Router Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

The Multicast-Enabled IP Internetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

The Internet’s Multicast-Enabled Backbone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

IGMP Message Structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

IGMP Version 1 (IGMPv1)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

IGMP Version 2 (IGMPv2)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

IGMP Version 3 (IGMPv3)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

IGMP in Windows Server 2008 and Windows Vista . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

TCP/IP Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Routing And Remote Access Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

8 Internet Protocol Version 6 (IPv6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
The Disadvantages of IPv4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

IPv6 Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Basics of IPv6 Address Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Types of Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182



Table of Contents xiii
Types of Unicast Addresses  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

IPv6 Interface Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

DNS Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Core Protocols of IPv6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

IPv6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

ICMPv6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Neighbor Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Multicast Listener Discovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Differences Between IPv4 and IPv6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Part III Transport Layer Protocols 
9 User Datagram Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Introduction to UDP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Uses for UDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

The UDP Message. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

The UDP Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

UDP Ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

The UDP Pseudo Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

10 Transmission Control Protocol (TCP) Basics. . . . . . . . . . . . . . . . . . . . . . 199
Introduction to TCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

The TCP Segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

The TCP Header  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

TCP Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

TCP Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

The TCP Pseudo Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

TCP Urgent Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

TCP Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

End Of Option List and No Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Maximum Segment Size Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

TCP Window Scale Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Selective Acknowledgment Option. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

TCP Timestamps Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

11 Transmission Control Protocol (TCP) Connections . . . . . . . . . . . . . . . . 223
The TCP Connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223



xiv Table of Contents
TCP Connection Establishment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Segment 1: The Synchronize (SYN) Segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Segment 2: The SYN-ACK Segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Segment 3: The ACK Segment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Results of the TCP Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

TCP Half-Open Connections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

TCP Connection Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

TCP Connection Termination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Segment 1: The FIN-ACK from TCP Peer 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Segment 2: The ACK from TCP Peer 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Segment 3: The FIN-ACK from TCP Peer 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Segment 4: The ACK from TCP Peer 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

TCP Connection Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

TCP Connection States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

Controlling the TIME WAIT state in Windows Server 2008 and
Windows Vista  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

12 Transmission Control Protocol (TCP) Data Flow . . . . . . . . . . . . . . . . . . 245
Basic TCP Data Flow Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

TCP Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Delayed Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Cumulative for Contiguous Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Selective for Noncontiguous Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

TCP Sliding Windows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Send Window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Receive Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Receive Window Auto-Tuning  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Small Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

The Nagle Algorithm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Silly Window Syndrome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Sender-Side Flow Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Slow Start Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

Congestion Avoidance Algorithm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Compound TCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Explicit Congestion Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Limited Transmit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268



Table of Contents xv
13 Transmission Control Protocol (TCP) Retransmission and Time-Out 271
Retransmission Time-Out and Round-Trip Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Congestion Collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Retransmission Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Retransmission Behavior for New Connections  . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Dead Gateway Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Forward RTO-Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Using the Selective Acknowledgment (SACK) TCP Option . . . . . . . . . . . . . . . . . 278

Calculating the RTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Using the TCP Timestamps Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

Karn’s Algorithm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

Karn’s Algorithm and the Timestamps Option . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Fast Retransmit and Fast Recovery  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Fast Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Part IV Application Layer Protocols and Services 
14 Dynamic Host Configuration Protocol (DHCP) . . . . . . . . . . . . . . . . . . . 293

DHCP Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

DHCP Message Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

DHCP Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

DHCP Message Exchanges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Obtaining an Initial Lease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Renewing a Lease. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

Changing Subnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

Detecting Unauthorized DHCP Servers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

Updating DNS Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

15 Domain Name System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Sample of an AA (section1, H1, heading1) Heading Entry  . . . . . . . . . . . . . . . . . . . . . 000

DNS Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

DNS Name Query Request and Name Query Response Messages . . . . . . . . . . 314

DNS Update and Update Response Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

DNS Message Exchanges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Resolving Names to Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Resolving Addresses to Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Resolving Aliases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326



xvi Table of Contents
Dynamically Updating DNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Transferring Zone Information Between DNS Servers. . . . . . . . . . . . . . . . . . . . . 330

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

16 Windows Internet Name Service  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
NetBT Name Service Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

NetBIOS Name Service Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

NetBIOS Name Representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

Question RR Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

WINS Client and Server Message Exchanges  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Resolving NetBIOS Names to IPv4 Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Registering NetBIOS Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

Refreshing NetBIOS Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

Releasing NetBIOS Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

17 Remote Authentication Dial-In User Service (RADIUS) . . . . . . . . . . . . 353
RADIUS Messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

RADIUS Message Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

RADIUS Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

Vendor-Specific Attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

RADIUS Message Exchanges  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

Authentication of Network Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

Accounting of Network Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

RADIUS Proxy Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

18 Internet Protocol Security (IPsec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
IPsec Headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

Authentication Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

Encapsulating Security Payload (ESP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

IPsec and Security Associations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

Internet Key Exchange  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

ISAKMP Message Structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

ISAKMP Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

SA Payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

Proposal Payload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Transform Payload  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

Vendor ID Payload  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

Nonce Payload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393



Table of Contents xvii
Key Exchange Payload  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

Notification Payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

Delete Payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

Identification Payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

Hash Payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

Certificate Request Payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Certificate Payload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

Signature Payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

Main Mode Negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

Quick Mode Negotiation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

Authenticated Internet Protocol (AuthIP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

AuthIP Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

AuthIP and IKE Coexistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

IPsec NAT Traversal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

19 Virtual Private Networks (VPNs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
PPTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

PPTP Data Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

PPTP Control Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

L2TP/IPsec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

L2TP/IPsec Data Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

L2TP Control Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

SSTP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

SSTP-based VPN Connection Creation Process  . . . . . . . . . . . . . . . . . . . . . . . . . . 419

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

 
Appendix A: Internet Protocol (IP) Addressing. . . . . . . . . . . . . . . . . . . 421

Types of IP Addresses  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  421

Expressing IP Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

Converting from Binary to Decimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

Converting from Decimal to Binary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  423

IP Addresses in the IP Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

Unicast IP Addresses  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  423

A History Lesson: IP Address Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  424

Rules for Enumerating Address Prefixes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

Rules for Enumerating Usable Host IDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426



xviii Table of Contents
Subnets and the Subnet Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

How to Subnet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Variable-Length Subnetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

Supernetting and CIDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

Public and Private Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

Automatic Private IP Addressing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

IP Broadcast Addresses  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

Network Broadcast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

Subnet Broadcast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

All-Subnets-Directed Broadcast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

Limited Broadcast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

IP Multicast Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

Mapping IP Multicast Addresses to MAC Addresses . . . . . . . . . . . . . . . . . . . . . . 453

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463



Table of Contents xix
List of Figures
Figure 1-1: The Ethernet II frame format showing the Ethernet II header and trailer  . . . . 5

Figure 1-2: The maximum-extent Ethernet network and the slot time. . . . . . . . . . . . . . . . . 8

Figure 1-3: The IEEE 802.3 frame format showing the IEEE 802.3 header 
and trailer and the IEEE 802.2 LLC header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 1-4: IEEE 802.3 SNAP frame format showing the SNAP header and 
an IP datagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 1-5: The special bits defined for Ethernet source and destination 
MAC addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 1-6: The IEEE 802.5 frame format showing the IEEE 802.5 header and 
trailer and the IEEE 802.2 LLC header. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 1-7: The IEEE 802.5 SNAP frame format showing the SNAP header and 
an IP datagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 1-8: The special bits defined on Token Ring source and destination 
MAC addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 1-9: The FDDI frame format showing the FDDI header and trailer and 
IEEE 802.2 LLC header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 1-10: The FDDI SNAP frame format showing the SNAP header and an 
IP datagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 1-11: The IEEE 802.11 frame format showing the IEEE 802.11 header and 
trailer and the IEEE 802.2 LLC header. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 1-12: The Frame Control field in the IEEE 802.11 header . . . . . . . . . . . . . . . . . . . . . 29

Figure 1-13: The IEEE 802.11 SNAP frame format showing the SNAP header and 
an IP datagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 2-1: PPP encapsulation using HDLC framing for an IP datagram . . . . . . . . . . . . . . 33

Figure 2-2: Typical PPP encapsulation for an IP datagram . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 2-3: The Multilink Protocol header, using the long sequence number format  . . 37

Figure 2-4: The Multilink Protocol header, using the short sequence number format  . . 38

Figure 2-5: Frame Relay encapsulation for IP datagrams, showing the Frame 
Relay header and trailer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 2-6: A 2-byte Frame Relay Address field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 3-1: The structure of an ARP frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 3-2: An example of address resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 3-3: A single subnet configuration, using a proxy ARP device . . . . . . . . . . . . . . . . . 59

Figure 3-4: A remote access server running Windows Server 2008 and configured 
with an on-subnet address range using Proxy ARP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 4-1: The structure of an LCP frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 4-2: The structure of an LCP frame containing LCP options. . . . . . . . . . . . . . . . . . . 65

Figure 4-3: The structure of the PAP Authenticate-Request message  . . . . . . . . . . . . . . . . 69



xx Table of Contents
Figure 4-4: The structure of the PAP Authenticate-Ack and Authenticate-Nak 
messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 4-5: The structure of the CHAP Challenge and CHAP Response messages. . . . . . 70

Figure 4-6: The CHAP Success and CHAP Failure message structure . . . . . . . . . . . . . . . . . 71

Figure 4-7: The MS-CHAP v2 Response message structure . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 4-8: EAP-Request and EAP-Response message structure  . . . . . . . . . . . . . . . . . . . . 74

Figure 4-9: EAP-Success and EAP-Failure message structure. . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 4-10: The structure of a PPPoE frame  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 4-11: The structure of a PPPoE frame that contains a PPP frame . . . . . . . . . . . . . . 85

Figure 5-1: The structure of the IP datagram at the Network Interface layer . . . . . . . . . . 93

Figure 5-2: The structure of the IP header  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 5-3: The structure of the RFC 791 IP Type Of Service field. . . . . . . . . . . . . . . . . . . . 94

Figure 5-4: The structure of the RFC 2474 IP TOS field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 5-5: The structure of the RFC 3168 IP TOS field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 5-6: The fields in the IP header used for fragmentation. . . . . . . . . . . . . . . . . . . . . 103

Figure 5-7: An example of a network where IP fragmentation can occur . . . . . . . . . . . . 105

Figure 5-8: The IP fragmentation process when fragmenting from a 4482-byte 
IP MTU link to a 1500-byte IP MTU link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 5-9: The IP reassembly process for the four fragments of the original IP 
datagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 5-10: An MTU problem in a translational bridging environment caused 
by two FDDI hosts connected to two Ethernet switches. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Figure 5-11: The structure of the first byte in an IP option  . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 6-1: ICMP message encapsulation showing the IP header and Network 
Interface Layer header and trailer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Figure 6-2: The structure of an ICMP message showing the fields common to 
all types of ICMP messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Figure 6-3: The structure of the ICMP Echo message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Figure 6-4: The structure of the ICMP Echo Reply message . . . . . . . . . . . . . . . . . . . . . . . 128

Figure 6-5: The structure of the ICMP Destination Unreachable message  . . . . . . . . . . . 129

Figure 6-6: A PMTU-compliant ICMP Destination Unreachable-Fragmentation 
Needed And DF Set message showing the Next Hop MTU field  . . . . . . . . . . . . . . . . . . . 134

Figure 6-7: The structure of the ICMP Source Quench message . . . . . . . . . . . . . . . . . . . . 137

Figure 6-8: An ICMP Redirect scenario in which a host with a configured 
default gateway must forward an IP datagram using another router . . . . . . . . . . . . . . . 138

Figure 6-9: The structure of the ICMP Redirect message . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Figure 6-10: The structure of the ICMP Router Advertisement message . . . . . . . . . . . . . 142

Figure 6-11: The structure of the ICMP Router Solicitation message . . . . . . . . . . . . . . . . 143



Table of Contents xxi
Figure 6-12: The structure of the ICMP Time Exceeded message . . . . . . . . . . . . . . . . . . . 145

Figure 6-13: The structure of the ICMP Parameter Problem message  . . . . . . . . . . . . . . . 145

Figure 6-14: The structure of the ICMP Address Mask Request and Reply messages. . . 147

Figure 7-1: A multicast-enabled intranet showing multicast-enabled hosts 
and routers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Figure 7-2: IGMP message structure showing the IP header and Network 
Interface Layer header and trailer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Figure 7-3: The structure of an IGMPv1 message. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Figure 7-4: The structure of an IGMPv2 message. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Figure 7-5: The structure of the IGMPv3 Host Membership Query message. . . . . . . . . . 171

Figure 7-6: The structure of the IGMPv3 Host Membership Report message . . . . . . . . . 171

Figure 7-7: The structure of the IGMPv3 Host Membership Report message 
group record. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Figure 7-8: The use of IGMP router mode and proxy mode. . . . . . . . . . . . . . . . . . . . . . . . 175

Figure 9-1: UDP message encapsulation showing the IP header and Network 
Interface Layer header and trailer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Figure 9-2: The structure of the UDP header  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Figure 9-3: The demultiplexing of a UDP message to the appropriate 
Application Layer protocol using the IP Protocol field and the UDP Destination 
Port field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Figure 9-4: The structure of the UDP pseudo header  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Figure 9-5: The resulting quantity used for the UDP checksum calculation  . . . . . . . . . . 197

Figure 10-1: TCP segment encapsulation showing the IP header and 
Network Interface Layer header and trailer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Figure 10-2: The structure of the TCP header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Figure 10-3: The demultiplexing of a TCP segment to the appropriate 
Application Layer protocol using the IP Protocol field and the TCP Destination 
Port field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Figure 10-4: The eight TCP flags in the Flags field of the TCP header  . . . . . . . . . . . . . . . 206

Figure 10-5: The structure of the TCP pseudo header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Figure 10-6: The resulting quantity used for the TCP checksum calculation . . . . . . . . . . 208

Figure 10-7: The location of TCP urgent data within a TCP segment . . . . . . . . . . . . . . . . 209

Figure 10-8: The structure of multiple-byte TCP options  . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Figure 10-9: The TCP MSS defined in terms of the IP MTU and the TCP and IP 
header sizes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Figure 10-10: The structure of the TCP MSS option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Figure 10-11: Hosts connected to two wireless APs that are connected by 
an Ethernet backbone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Figure 10-12: The structure of the TCP Window Scale option . . . . . . . . . . . . . . . . . . . . . . 214



xxii Table of Contents
Figure 10-13: The structure of the TCP SACK-Permitted option . . . . . . . . . . . . . . . . . . . . 216

Figure 10-14: The structure of the TCP SACK option. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Figure 10-15: The structure of the TCP Timestamps option. . . . . . . . . . . . . . . . . . . . . . . . 219

Figure 10-16: An example of the use of the TCP Timestamps option. . . . . . . . . . . . . . . . 219

Figure 11-1: A TCP connection showing both inbound and outbound logical pipes . . 224

Figure 11-2: The TCP connection establishment process, showing the exchange 
of three TCP segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Figure 11-3: A TCP half-open connection showing the SYN segment and 
retransmissions of the SYN-ACK segment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Figure 11-4: A TCP keepalive showing the sending of an exchange of ACK 
segments to confirm both ends of the connection are still present . . . . . . . . . . . . . . . . . 233

Figure 11-5: A TCP connection termination showing the exchange of four 
TCP segments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Figure 11-6: A TCP connection reset showing the SYN and RST segments . . . . . . . . . . . 239

Figure 11-7: The states of a TCP connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Figure 11-8: The states of a TCP connection during TCP connection establishment . . . 242

Figure 11-9: The states of a TCP connection during TCP connection termination. . . . . 242

Figure 12-1: The cumulative acknowledgment scheme of TCP . . . . . . . . . . . . . . . . . . . . . 247

Figure 12-2: The selective acknowledgment scheme of TCP . . . . . . . . . . . . . . . . . . . . . . . 248

Figure 12-3: The types of data for the TCP send window. . . . . . . . . . . . . . . . . . . . . . . . . . 249

Figure 12-4: The sliding of the send window showing window closing and opening . . 251

Figure 12-5: The types of data for the TCP receive window. . . . . . . . . . . . . . . . . . . . . . . . 253

Figure 12-6: Sliding the receive window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Figure 12-7: An example of ECN for a TCP connection  . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Figure 13-1: The behavior of TCP timestamps with pauses in data  . . . . . . . . . . . . . . . . . 281

Figure 13-2: The behavior of TCP timestamps for delayed acknowledgments . . . . . . . . 282

Figure 13-3: The behavior of TCP timestamps for out-of-order segments . . . . . . . . . . . 283

Figure 13-4: The behavior of TCP timestamps for retransmitted segments  . . . . . . . . . . 283

Figure 13-5: Fast retransmit behavior when the first of five segments is dropped. . . . . 287

Figure 13-6: Fast retransmit behavior when combined with limited transmit. . . . . . . . . 287

Figure 14-1: DHCP message format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Figure 14-2: DHCP option format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

Figure 14-3: DHCP messages exchanged during initial lease acquisition  . . . . . . . . . . . . 301

Figure 14-4: DHCP message exchange when a DHCP client moves to a 
different subnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

Figure 14-5: A DHCP server performing rogue server detection. . . . . . . . . . . . . . . . . . . . 310

Figure 15-1: DNS Name Query Request and Name Query Response 
message structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314



Table of Contents xxiii
Figure 15-2: DNS Name Query Request and Name Query Response message header . 315

Figure 15-3: The Flags field  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Figure 15-4: Question entry format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Figure 15-5: DNS RR format in a DNS name query response . . . . . . . . . . . . . . . . . . . . . . . 317

Figure 15-6: The RR Name as a pointer to a name stored elsewhere in the 
DNS message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

Figure 15-7: Example of a pointer value in the RR Name field in Network 
Monitor 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

Figure 15-8: DNS Update and Update Response message structure. . . . . . . . . . . . . . . . . 320

Figure 15-9: DNS Update and Update Response message header . . . . . . . . . . . . . . . . . . 320

Figure 15-10: The Flags field for DNS Update and Update Response messages . . . . . . . 320

Figure 15-11: Zone entry format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Figure 16-1: NetBIOS name service message structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Figure 16-2: Name Service header  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Figure 16-3: The Flags field in the Name Service header  . . . . . . . . . . . . . . . . . . . . . . . . . . 336

Figure 16-4: Example of a NetBIOS name in Network Monitor 3.1 . . . . . . . . . . . . . . . . . . 340

Figure 16-5: Question entry format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

Figure 16-6: RR format in NetBIOS name service messages . . . . . . . . . . . . . . . . . . . . . . . . 341

Figure 16-7: Format for General Name Service RRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

Figure 16-8: Format of the RDATA flags field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

Figure 16-9: The RR Name as a pointer to a name stored elsewhere in the message . . 343

Figure 16-10: Example of a pointer value in the RR Name field in Network 
Monitor 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

Figure 17-1: RADIUS message structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Figure 17-2: RADIUS attribute structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

Figure 17-3: General VSA structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Figure 17-4: Recommended VSA structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Figure 18-1: The IPsec Authentication header  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

Figure 18-2: AH Transport mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

Figure 18-3: AH Tunnel mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

Figure 18-4: The IPsec Encapsulating Security Payload header and trailer  . . . . . . . . . . . 378

Figure 18-5: ESP Transport mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

Figure 18-6: Using both AH and ESP to protect an IP packet . . . . . . . . . . . . . . . . . . . . . . 381

Figure 18-7: ESP Tunnel mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

Figure 18-8: An ISAKMP message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

Figure 18-9: The ISAKMP header. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

Figure 18-10: The SA payload  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388



xxiv Table of Contents
Figure 18-11: The Proposal payload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Figure 18-12: The Transform payload  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

Figure 18-13: The Vendor ID payload  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

Figure 18-14: The Nonce payload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

Figure 18-15: The Key Exchange payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

Figure 18-16: The Notification payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

Figure 18-17: The Delete payload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

Figure 18-18: The Identification payload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

Figure 18-19: The Hash payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Figure 18-20: The Certificate Request payload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Figure 18-21: The Certificate payload  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

Figure 18-22: The Signature payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

Figure 18-23: AuthIP messages containing the Crypto payload . . . . . . . . . . . . . . . . . . . . 401

Figure 19-1: PPTP data packet structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

Figure 19-2: GRE header for PPTP data encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

Figure 19-3: L2TP encapsulation without IPsec encryption . . . . . . . . . . . . . . . . . . . . . . . . 414

Figure 19-4: L2TP encapsulation with IPsec encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

Figure 19-5: The L2TP header for encapsulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

Figure 19-6: The structure of SSTP packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

Figure A-1: The generalized IP address consisting of 32 bits expressed in 
dotted decimal notation.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

Figure A-2: An 8-bit number showing bit positions and their decimal equivalents.  . . . 422

Figure A-3: The structure of an example IP address showing the subnet 
prefix and host ID.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

Figure A-4: The class A address showing the address prefix and the host ID. . . . . . . . . 425

Figure A-5: The class B address showing the address prefix and the host ID.  . . . . . . . . 425

Figure A-6: The class C address showing the address prefix and the host ID.  . . . . . . . . 425

Figure A-7: The class B address prefix 131.107.0.0 before subnetting.  . . . . . . . . . . . . . . 427

Figure A-8: The class B network 131.107.0.0 after subnetting. . . . . . . . . . . . . . . . . . . . . . 428

Figure A-9: The relationship between the number of subnets and hosts per 
subnet when subnetting the class B address prefix 131.107.0.0.  . . . . . . . . . . . . . . . . . . . 433

Figure A-10: The variable-length subnetting of 131.107.0.0/16 into address 
prefixes of different sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

Figure A-11: The mapping of IP multicast addresses to Ethernet MAC addresses. . . . . 454



Table of Contents xxv
List of Tables
Table 2-1: Defined Values for the Frame Relay DLCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Table 3-1: ARP Hardware Type Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Table 3-2: ARP Operation Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Table 4-1: LCP Frame Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Table 4-2: LCP Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Table 4-3: EAP Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Table 4-4: CBCP Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Table 4-5: IPCP Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Table 4-6: CCP Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Table 5-1: IP MTUs for Common Network Interface Layer Technologies. . . . . . . . . . . . . . 91

Table 5-2: Values of the IP Precedence Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Table 5-3: Values of the IP Protocol Field  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Table 5-4: Original IP Datagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Table 5-5: Fragments of the Original IP Datagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Table 5-6: Option Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Table 5-7: Option Classes and Numbers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Table 6-1: Common ICMP Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Table 6-2: Code Values for ICMP Destination Unreachable Messages . . . . . . . . . . . . . . . 130

Table 6-3: Plateau Values for PMTU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Table 6-4: Values of the Code Field in an ICMP Redirect Message . . . . . . . . . . . . . . . . . . 140

Table 6-5: ICMP Parameter Problem Code Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Table 6-6: Ping Tool Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Table 6-7: Tracert Tool Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Table 6-8: Pathping Tool Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Table 7-1: Recommended Values of the TTL for IP Multicast Traffic. . . . . . . . . . . . . . . . . 159

Table 7-2: Addresses Used in IGMPv1 Messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Table 7-3: Values of the IGMPv2 Type Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Table 7-4: Addresses Used in IGMPv2 Messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Table 8-1: Differences Between IPv4 and IPv6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Table 9-1: Well-Known UDP Port Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Table 10-1: Well-Known TCP Port Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Table 11-1: TCP Connection States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

Table 14-4: DHCP Options for Windows-based DHCP Clients and Servers . . . . . . . . . . . 298

Table 15-1: The Most Common Values of the Question Type Field  . . . . . . . . . . . . . . . . . 317

Table 15-2: Return Code Values for Update Response Messages . . . . . . . . . . . . . . . . . . . 321

Table 16-1: NetBIOS Name Service Operation Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337



xxvi Table of Contents
Table 16-2: Converting the Hexadecimal Digit to an ASCII Character . . . . . . . . . . . . . . . 338

Table 16-3: Values for the Record Type Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

Table 16-4: Return Code Values for Name Registration Errors  . . . . . . . . . . . . . . . . . . . . . 348

Table 17-1: Values for the RADIUS Code Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

Table 17-2: Common RADIUS Attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

Table 17-3: Common Vendor-Specific Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Table 18-1: Values of the Next Payload Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

Table 18-2: Values of the Exchange Type Field  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

Table 18-3: Notification Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

Table 18-4: Notification Status Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

Table 18-5: Certificate Type Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Table 19-1: PPTP Control Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

Table 19-2: L2TP Control Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

Table A-1: Address Class Ranges of Address Prefixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

Table A-2: Address Class Ranges of Host IDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

Table A-3: Dotted Decimal Notation for Default Subnet Masks . . . . . . . . . . . . . . . . . . . . 429

Table A-4: Prefix Length Notation for Default Subnet Masks  . . . . . . . . . . . . . . . . . . . . . . 430

Table A-5: Subnetting of a Class A Address Prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

Table A-6: Subnetting of a Class B Address Prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

Table A-7: Subnetting of a Class C Address Prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

Table A-8: A 3-Bit Subnetting of 131.107.0.0 (Binary). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

Table A-9: Enumeration of IP Addresses for the 3-Bit Subnetting of 131.107.0.0 
(Binary) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

Table A-10: A 3-Bit Subnetting of 131.107.0.0 (Decimal) . . . . . . . . . . . . . . . . . . . . . . . . . . 438

Table A-11: Enumeration of IP Addresses for the 3-Bit Subnetting of 131.107.0.0 
(Decimal). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

Table A-12: The Eight Subnets for the 3-Bit Subnetting of 131.107.0.0/16 . . . . . . . . . . . 441

Table A-13: A Block of Eight Class C Address Prefixes Starting with 223.1.184.0 . . . . . . 444

Table A-14: The Aggregated Block of Class C Address Prefixes. . . . . . . . . . . . . . . . . . . . . 444

Table A-15: Supernetting and Class C Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

Table A-16: Reserved Local Subnet IP Multicast Addresses . . . . . . . . . . . . . . . . . . . . . . . . 453



xxvii

Acknowledgments

I would like to the thank the following people at Microsoft for participating in the technical 
reviews of the chapters and appendices of this book: Boyd Benson, Lee Gibson, Philippe 
Joubert, Jason Popp, Katarzyna Puchala, Aaron Schrader, Ben Schultz, Murari Sridharan, 
Brian Swander, Mark Swift, and Jeff Westhead. I would like to give honorable mention to 
Dmitry Anipko, a Software Development Engineer on the Windows Networking Core 
development team, who gave me very detailed feedback on multiple chapters for both 
standards-based IPv4 and the implementation details of IPv4 in Windows Server 2008 
and Windows Vista.

I would also like to thank Maureen Zimmerman (content project manager at Microsoft Press), 
Kelly D. Henthorne (project manager for Abshier House), Jim Johnson (technical reviewer), 
Kim Heusel (copy editor), Debbie Berman (compositor), and Johnna VanHoose Dinse 
(indexer).

And lastly, I would like to express my thanks and appreciation to my wife, Kara, and daughter, 
Katie, for their patience and tolerance for the preoccupation and time away.





Introduction

This book is a straightforward discussion of the concepts, principles, and processes of many 
protocols in the TCP/IP protocol suite and how they are supported by Windows Server 2008 
and Windows Vista. The focus of this book is on Internet Protocol version 4 (IPv4), referred 
to as Internet Protocol (IP), and associated transport and network infrastructure support pro-
tocols. This book provides an overview of Internet Protocol version 6 (IPv6), but not in-depth 
technical details. For more information about IPv6 and its implementation in Windows Server 
2008 and Windows Vista, see Understanding IPv6, Second Edition by Joseph Davies (Redmond, 
Wash.: Microsoft Press, 2008; ISBN 978-0735624467).

This book is primarily a discussion of protocols (what you might see on the wire during com-
munication) and processes (how things work under the covers), rather than a discussion of 
planning, configuration, deployment, management, or application development. For a discus-
sion of TCP/IP planning, configuration, deployment, and management, see Windows Server® 
2008 Networking and Network Access Protection (NAP) (Redmond, Wash.: Microsoft Press, 
2008; ISBN 978-0735624221), Help And Support for Windows Server 2008, and the Win-
dows Server 2008 TechCenter at http://technet.microsoft.com/windowsserver/2008. For a 
discussion of TCP/IP application development using Windows Sockets, see the Microsoft 
Developer Network at http://msdn.microsoft.com.

This book does not contain code-level details of the Microsoft implementation of TCP/IP in 
Windows Server 2008 and Windows Vista, such as internal structures, tables, buffers and 
their use, or coding logic. These details are only of interest to a relative handful of readers and 
are not published for security reasons and to protect Microsoft intellectual property. However, 
this book does contain details of how the Microsoft implementation of TCP/IP in Windows 
Server 2008 and Windows Vista works for described TCP/IP processes and how to modify 
default behaviors with registry values and Netsh.exe tool commands.

Note Except where noted, changes to registry values require a system restart to become 
effective.

The purpose of this book is to both provide an educational vehicle to learn TCP/IP to a fair 
amount of technical depth and serve as a detailed technical reference. This book is not 
intended to be a TCP/IP or networking technology primer.
xxix



xxx Introduction
Who Should Read This Book
This book is intended for the following audiences:

■ Windows networking consultants and planners This includes anyone planning for or 
deploying a network containing computers running Windows Server 2008 or Windows 
Vista.

■ Windows network administrators This includes anyone who is currently managing a 
Windows network and wants to gain additional technical knowledge about TCP/IP and 
its implementation for Windows Server 2008 and Windows Vista.

■ Microsoft Certified Systems Engineers (MCSEs) and Microsoft Certified Trainers (MCTs)
This book can be a standard reference for MCSEs and MCTs for the TCP/IP protocol suite.

■ General technical staff Because this book is mostly about TCP/IP protocols and pro-
cesses, independent of its implementation in Windows Server 2008 or Windows Vista, 
general technical staff can use this book as an in-depth reference on TCP/IP protocols.

■ Information technology (IT) students This book, using the training slides included on 
the companion CD-ROM, can serve as an excellent textbook for a comprehensive inter-
mediate or advanced-level TCP/IP course taught at an educational institution or inside 
your organization.

What You Should Know Before Reading This Book
This book assumes a foundation of networking knowledge that includes basic networking 
concepts and widely used networking technologies. For example, although the book explains 
in detail how IP packets are encapsulated when sent over an Ethernet network segment, it 
does not explain the history of Ethernet or its technical details, such as signal encoding, 
cabling, topologies, or configuration options. This knowledge is assumed.

This book also assumes a basic understanding of the TCP/IP protocol suite and its set of sup-
port protocols for Windows-based network. This includes an understanding of the architec-
ture of the TCP/IP protocol suite, IP addressing, IP routing, name resolution, and the role of 
network infrastructure protocols such as Dynamic Host Configuration Protocol (DHCP) and 
Internet Protocol security (IPsec). To obtain a basic understanding of TCP/IP for Windows, 
see the TCP/IP Fundamentals for Microsoft Windows book in the \Fundamentals folder on the 
companion CD-ROM.

Note The TCP/IP Fundamentals for Microsoft Windows online book on the companion 
CD-ROM is the version that was available in November 2007, which is focused on TCP/IP 
in Windows Server 2003 and Windows XP. This online book will be updated to include 
information about Windows Server 2008 and Windows Vista in 2008. The most current 
version of the TCP/IP Fundamentals for Microsoft Windows online book is available at 
http://technet.microsoft.com/en-us/library/bb726983.aspx.
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Organization of This Book
This book is divided into four parts, corresponding to the four layers of the Department of 
Defense (DoD) Advanced Research Projects Agency (DARPA) model:

■ The Network Interface Layer This part contains two chapters describing the local area 
network (LAN) and wide area network (WAN) technologies supported by Windows 
Server 2008 and Windows Vista, and, in particular, how they encapsulate IP datagrams. 
This section also includes a chapter describing Address Resolution Protocol (ARP), a 
simple protocol that resolves the hardware address (typically a media access control 
[MAC] address) for a specific next-hop IP address. This section also includes a chapter 
describing the Point-to-Point Protocol (PPP) suite of protocols, which provides encapsu-
lation, link negotiation, and protocol configuration services for point-to-point links.

■ Internet Layer Protocols This part includes chapters describing IP, Internet Control 
Message Protocol (ICMP), and Internet Group Management Protocol (IGMP). A chapter 
on IPv6 is also included to provide an overview and to describe how it compares with 
IPv4, the current version of IP used on the Internet.

■ Transport Layer Protocols This part contains chapters describing User Datagram Proto-
col (UDP), a simple Transport Layer protocol for sending unreliable messages, and 
Transmission Control Protocol (TCP), a complex Transport Layer protocol for sending 
reliable data.

■ Application Layer Protocols and Services This part contains chapters describing key 
TCP/IP-related infrastructure protocols and network infrastructure services, including 
DHCP, the Domain Name System (DNS), the Windows Internet Name Service (WINS), 
Remote Authentication Dial-In User Service (RADIUS), IPsec, and virtual private net-
works (VPNs).

Network Monitor Traces
Throughout this book, packet structure and protocol processes are illustrated with packet 
captures as displayed with Network Monitor 3.1. These show the actual behavior of a protocol 
or service as seen on the wire. All of the traces referenced in this book are included in the 
\Captures folder on the companion CD-ROM. 

Note Different versions of Network Monitor can display packet structure differently. You 
might not be able to open all of the capture files in the \Captures folder on the companion 
CD-ROM with a version of Network Monitor prior to Network Monitor 3.1. 
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About the Companion CD-ROM
The companion CD-ROM included with this book contains the following:

■ Electronic version of this book (eBook) An Adobe Portable Document Format (PDF) 
version of the book allows you to view it online and perform text searches. If you do not 
already have the Adobe Reader installed, you can install it from http://www.adobe.com. 
You can get the latest version of this online book at http://technet.microsoft.com/en-us
/library/bb726983.aspx.

■ Network Monitor 3.1 A link to the installation site for Network Monitor 3.1. The 
Network Monitor allows you to capture and view network traffic and view capture 
files. You can also install Network Monitor 3.1 from http://go.microsoft.com/fwlink
/?LinkID=92844. For the latest information about Network Monitor, see the Network 
Monitor blog at http://blogs.technet.com/netmon/.

■ Network Monitor captures The Network Monitor capture files for all the captures 
displayed or mentioned in the book are included.

■ Internet Engineering Task Force (IETF) standards The set of IETF RFCs and Internet 
drafts that are either mentioned or relevant for each chapter of the book are stored in 
separate folders based on the chapter number.

■ TCP/IP Fundamentals for Microsoft Windows The TCP/IP Fundamentals for Microsoft 
Windows online book published on Microsoft TechNet in November of 2007, in PDF 
format. 

■ Microsoft PowerPoint Viewer A link to the installation site for the Microsoft PowerPoint 
Viewer 2003, which enables you to read the training slides on the CD-ROM.  If you 
already have PowerPoint installed, you do not need to install this viewer. You can also 
install the PowerPoint Viewer 2003 from http://go.microsoft.com/fwlink/?LinkID=59771.

■ Training slides The \TrainingSlides folder contains a set of Microsoft PowerPoint files 
that can be used to teach TCP/IP with this book. For more information, see “A Special 
Note to Teachers and Instructors” in this Introduction.

Note Digital Content for Digital Book Readers  
If you bought a digital-only edition of this book, you can enjoy select content from the print 
edition's companion CD. Visit http://go.microsoft.com/fwlink/?LinkId=104977 to get your 
downloadable content. This content is always up to date and available to all readers.

Disclaimer: Third-Party Sites

For the user’s convenience, this CD-ROM includes links to third-party sites. Please note that 
these products and links are not under the control of Microsoft Corporation and Microsoft is 
therefore not responsible for their content, nor should their inclusion on the CD-ROM be 
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construed as an endorsement of the products or the sites. Please check third-party Web sites 
for the latest version of their software.

System Requirements
For detailed system requirements for the contents of the companion CD-ROM, see “System 
Requirements” at the back of this book.

A Special Note to Teachers and Instructors
If you are a teacher or instructor whose task it is to inculcate an advanced understanding of 
the TCP/IP protocol suite in others, it is strongly urged that you consider using this book and 
its slides as a basis for your own TCP/IP course. Obviously, it can be used for courses that 
supplement TCP/IP knowledge for Windows network administrators and systems engineers. 
However, because the content is mostly about the details of TCP/IP protocol suite packet 
structure and protocol processes, this book can also be used for an implementation-
independent TCP/IP course.

The slides are included to provide a foundation for your own slide presentation and contain 
either bulleted text or drawings that are synchronized with their chapter content. Because the 
slides are based on my original figures and were completed after the final book pages were 
done, there are some minor differences between the slides and the chapter content. Some 
changes were made to enhance the ability to teach a TCP/IP course based on this book.

The template that I chose for the included slides is intentionally simple so that there are min-
imal issues with text and drawing color translations when you switch to a different template. 
Please feel free to customize the slides as you see fit.

As a fellow instructor, I wish you success in your efforts to teach this interesting and important 
technology to others.

What Is New in This Edition

This book is an update of Microsoft® Windows® Server 2003 TCP/IP Protocols and Services Tech-
nical Reference by Joseph Davies and Thomas Lee. The changes and updates are the following:

■ Chapter 2: Wide Area Network (WAN) Technologies Coverage of the Serial Line Internet 
Protocol (SLIP), X.25, and Asynchronous Transfer Mode (ATM) has been removed

■ Chapter 3: Address Resolution Protocol (ARP) Includes coverage of new duplicate 
address detection and neighbor unreachability detection behavior in Windows Server 
2008 and Windows Vista

■ Chapter 4: Point-to-Point Protocol (PPP) Coverage of the Shiva Password Authentica-
tion Protocol (SPAP), Microsoft Challenge Handshake Authentication Protocol 
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(MS-CHAP) (also known as MS-CHAP v1), and Extensible Authentication Protocol-
Message Digest 5 (EAP-MD5) authentication protocols has been removed and coverage 
of the Protected EAP (PEAP) authentication protocol has been added

■ Chapter 5: Internet Protocol (IP) Now includes a discussion of the Explicit Congestion 
Notification (ECN) field in the IP Type of Service (TOS) field defined in RFC 3168

■ Chapter 10 (formerly Chapter 12): Transmission Control Protocol (TCP) Basics Now 
includes a discussion of the ECN flags in the TCP header defined in RFC 3168

■ Chapter 12 (formerly Chapter 14): Transmission Control Protocol (TCP) Data Flow Now 
includes discussion of receive window auto-tuning, compound TCP, ECN, and limited 
transmit

■ Chapter 13 (formerly Chapter 15): Transmission Control Protocol (TCP) Retransmission and 
Time-Out Now includes discussion of the new dead gateway detection algorithm, 
Forward RTO-Recovery, and new loss recovery methods

■ Chapter 14 (formerly Chapter 16): Dynamic Host Configuration Protocol (DHCP)
Restructured and rewritten to focus on DHCP protocol details and message exchanges

■ Chapter 15 (formerly Chapter 17): Domain Name System (DNS) Restructured and 
rewritten to focus on DNS protocol details and message exchanges

■ Chapter 16 (formerly Chapter 18): Windows Internet Name Service (WINS) Restruc-
tured and rewritten to focus on network basic input/output system (NetBIOS) over 
TCP/IP protocol details and WINS message exchanges

■ Chapter 17 (formerly Chapter 20): Remote Authentication Dial-In User Service (RADIUS)
Restructured and rewritten to focus on RADIUS protocol details and message exchanges

■ Chapter 18 (formerly Chapter 22): Internet Protocol Security (IPsec) Updated to include 
information about Authenticated IP (Auth IP)

■ Chapter 19 (formerly Chapter 23): Virtual Private Networks (VPNs) Restructured and 
rewritten to focus on Point-to-Point Tunneling Protocol (PPTP), Layer Two Tunneling 
Protocol (L2TP) details and message exchanges, and updated to include information 
about the Secure Socket Tunneling Protocol (SSTP)

■ Appendix A (formerly Chapter 6): IP Internet Protocol (IP) Addressing Updated for new 
terminology and for Windows Server 2008 and Windows Vista

The chapters not listed were updated for new features, behaviors, and settings in Windows 
Server 2008 and Windows Vista.

The following chapters were removed:

■ Chapter 7: Internet Protocol (IP) Routing The information in this chapter can be found 
in Chapter 5 of the TCP/IP Fundamentals for Microsoft Windows book in the \Fundamen-
tals folder on the companion CD-ROM.
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■ Chapter 19: File and Printer Sharing For information about the Internet Printing 
Protocol (IPP), see RFCs 2567, 2568, 2569, 2910, and 2911; for information about 
the Common Internet File System (CIFS), see the “Common Internet File System 
(CIFS) File Access Protocol” document at http://www.microsoft.com/downloads
/details.aspx?FamilyID=c4adb584-7ff0-4acf-bd91-5f7708adb23c&displaylang=en.

■ Chapter 21: Internet Information Services (IIS) and the Internet Protocols For informa-
tion about the Hypertext Transfer Protocol (HTTP), see RFC 2616; for information 
about the File Transfer Protocol (FTP), see RFC 959; for information about the Network 
News Transfer Protocol (NNTP), see RFCs 977 and 2980; for information about the 
Simple Mail Transfer Protocol (SMTP), see RFC 821.

Find Additional Content Online
As new or updated material becomes available that complements your book, it will be posted 
online on the Microsoft Press Online Windows Server And Client Web site. Based on the final 
build of Windows Server 2008, the type of material you might find includes updates to book 
content, articles, links to companion content, errata, sample chapters, and more. This Web 
site will be available soon at www.microsoft.com/learning/books/online/serverclient and will be 
updated periodically.

Support
This book represents a best-effort snapshot of information at the time of its publication for the 
implementation of many protocols in the TCP/IP suite provided in Windows Server 2008 and 
Windows Vista, as of the Release Candidate 0 version of Windows Server 2008 and the Beta 
1 release version of Windows Vista Service Pack 1. Changes to Windows Server 2008 and 
Windows Vista with Service Pack 1 that were made after these versions or to IETF standards 
after November 15, 2007, are not reflected in this book.

To obtain the latest information about IETF standards for TCP/IP, see the IETF Web site at 
http://www.ietf.org/.

Every effort has been made to ensure the accuracy of this book and the contents of the com-
panion CD-ROM. Microsoft Press provides corrections for books in the Microsoft Knowledge 
Base. To connect directly to the Microsoft Knowledge Base and enter a query regarding a ques-
tion or issue that you might have concerning this book, visit http://support.microsoft.com/
search/?adv=1, type 978-0735624474 in the search box, and then click Search.

If you have comments, questions, or ideas regarding this book or the companion CD-ROM, 
please send them to Microsoft Press using either postal mail or e-mail. The postal mail address is:
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Microsoft Press
Attn: Windows Server 2008 TCP/IP Protocols and Services Editor
One Microsoft Way
Redmond, WA 98052-6399

The e-mail address is:

MSPInput@microsoft.com.

Please note that product support is not offered through these addresses. For Windows 
product support information, please visit the Microsoft Support Web site at 
http://support.microsoft.com/default.aspx.
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Chapter 1

Local Area Network (LAN) 
Technologies

In this chapter:

LAN Encapsulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Ethernet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Token Ring  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

FDDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

IEEE 802.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

To successfully troubleshoot Transmission Control Protocol/Internet Protocol (TCP/IP) prob-
lems on a local area network (LAN), it is important to understand how IP datagrams and 
Address Resolution Protocol (ARP) messages are encapsulated when sent by a computer run-
ning Windows Server 2008 or Windows Vista on LAN technology links such as Ethernet, 
Token Ring, Fiber Distributed Data Interface (FDDI), and Institute of Electrical and Electron-
ics Engineers (IEEE) 802.11. For example, IP datagrams sent over an Ethernet network 
segment can be encapsulated two different ways. If two hosts are not using the same encapsu-
lation, communication cannot occur. It is also important to understand LAN technology 
encapsulations to correctly interpret the Ethernet, Token Ring, FDDI, and IEEE 802.11 
portions of the frame when using Microsoft Network Monitor.

LAN Encapsulations
Because IP datagrams are an Open Systems Interconnection (OSI) Network Layer entity, IP 
datagrams must be encapsulated with a Data Link Layer header and trailer before being sent 
on the physical medium. The Data Link Layer header and trailer provide the following 
services:

■ Delimitation Frames at the Data Link Layer must be distinguished from each other. For 
each frame, the start and end of the frame are indicated, and the frame’s payload is dis-
tinguished from the Data Link Layer header and trailer.

■ Protocol identification Because many organizations use multiple protocol suites such 
as TCP/IP or AppleTalk, the protocols must be distinguished from each other.
3



4 Part I: The Network Interface Layer
■ Addressing For shared-access LAN technologies such as Ethernet, the source node and 
destination node must be identified.

■ Bit-level integrity To detect bit-level errors in the entire frame received by the hard-
ware, a bit-level integrity check in the form of a checksum is needed. The checksum is 
computed by the source node and included in the frame header or trailer. The destina-
tion recalculates the checksum and checks it against the included checksum. If the 
checksums match, the frame is considered free of bit-level errors. If the checksums do 
not match, the frame is silently discarded. This frame checksum is in addition to the 
checksums provided by upper layer protocols such as IP or TCP.

The particular way a network type (such as Ethernet or Token Ring) encapsulates data to be 
transmitted is called a frame format. The frame format corresponds to the information placed 
on the frame at the Logical Link Control (LLC) and Media Access Control (MAC) sublayers of 
the OSI Data Link Layer, and the frame format manifests itself as a header and trailer. If mul-
tiple frame formats exist for a given network type (such as Ethernet), the frame formats repre-
sent different header and trailer structures and are, therefore, incompatible with each other. In 
other words, all the nodes on the same network segment (bounded by routers) must use the 
same frame format to communicate.

This chapter is a discussion of Ethernet, Token Ring, FDDI, and IEEE 802.11 LAN technolo-
gies and their frame formats for IP datagrams and ARP messages. Attached Resources Com-
puter Network (ARCnet) is not discussed, as it is not a widely used networking technology.

Ethernet
Ethernet evolved from a 9.6 kilobit-per-second (Kbps) radio transmission system developed 
at the University of Hawaii called ALOHA. A key feature of ALOHA was that all transmitters 
shared the same channel and contended for access to the channel to transmit. This became 
the basis for the contention-based Ethernet that we know today.

In 1972, the Xerox Corporation created a 2.94-megabit-per-second (Mbps) network based on 
the principles of the ALOHA system. This new network, called Ethernet, featured carrier 
sense, in which the transmitter listens before attempting to transmit. In 1979, Digital, Intel, 
and Xerox (DIX) created an industry standard 10-Mbps Ethernet known as Ethernet II. In 
1981, the IEEE Project 802 formed the 802.3 subcommittee to make 10-Mbps Ethernet an 
international standard. In 1995, the IEEE approved a 100-Mbps version of Ethernet called 
Fast Ethernet. Additional standards define even higher speeds for Ethernet including 1 Giga-
bit per second (Gbps), 10 Gbps, and 100 Gbps. 

Ethernet existed before the IEEE 802.3 specification and, because there are multiple Ethernet 
standards, there are multiple ways of encapsulating data to be transmitted on an Ethernet 
network. This can be very confusing when two hosts on an Ethernet network segment 
cannot communicate, even though they are using the correct communication protocol 
(such as TCP/IP) and Application Layer protocol (such as File Transfer Protocol [FTP]).
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IP datagrams and ARP messages sent on an Ethernet network segment use either Ethernet II 
encapsulation (described in RFC 894) or IEEE 802.3 Sub-Network Access Protocol (SNAP) 
encapsulation (described in RFC 1042).

More Info All of the RFCs referenced in this chapter can be found in the 
\Standards\Chap01_LAN folder on the companion CD-ROM.

Ethernet II

The Ethernet II frame format was defined by the Ethernet specification created by Digital, 
Intel, and Xerox before the IEEE 802.3 specification. The Ethernet II frame format is also 
known as the DIX frame format. Figure 1-1 shows Ethernet II encapsulation for an IP 
datagram.

Figure 1-1 The Ethernet II frame format showing the Ethernet II header and trailer

Ethernet II Header and Trailer

The fields in the Ethernet II header and trailer are defined as follows:

■ Preamble The Preamble field is 8 bytes long and consists of 7 bytes of alternating 1s 
and 0s (each byte is the bit sequence 10101010) to synchronize a receiving station and a 
1-byte 10101011 sequence that indicates the start of a frame. The Preamble provides 
receiver synchronization and frame delimitation services.

Note The Preamble field is not visible with Network Monitor.

■ Destination Address The Destination Address field is 6 bytes long and indicates the 
destination’s address. The destination can be a unicast, a multicast, or the Ethernet 

Destination Address

Source Address

Payload ...

EtherType

Frame Check Sequence 

Preamble

. . .    46 - 1500 bytes
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broadcast address. The unicast address is also known as an individual, physical, hard-
ware, or MAC address. For the Ethernet broadcast address, all 48 bits are set to 1 to 
create the address 0xFF-FF-FF-FF-FF-FF.

■ Source Address The Source Address field is 6 bytes long and indicates the sending 
node’s unicast address.

■ EtherType The EtherType field is 2 bytes long and indicates the upper layer protocol 
contained within the Ethernet frame. After the network adapter passes the frame to the 
host’s network operating system, the EtherType field’s value is used to pass the Ethernet 
payload to the appropriate upper layer protocol. If no upper layer protocols have regis-
tered interest in receiving the payload at the frame’s EtherType field value, it is silently 
discarded.

The EtherType field acts as the protocol identifier for the Ethernet II frame format. 
For an IP datagram, the field is set to 0x0800. For an ARP message, the EtherType 
field is set to 0x0806. The current list of defined EtherType field values can be found 
at http://standards.ieee.org/regauth/ethertype/eth.txt.

■ Payload The Payload field for an Ethernet II frame consists of a protocol data unit 
(PDU) of an upper layer protocol. Ethernet II can send a maximum-sized payload of 
1500 bytes. Because of Ethernet’s collision detection facility, Ethernet II frames must 
send a minimum payload size of 46 bytes. If an upper layer PDU is less than 46 bytes 
long, it must be padded so that it is at least 46 bytes long. The Ethernet minimum frame 
size is discussed in greater detail in the section titled “Ethernet Minimum Frame Size,” 
later in this chapter.

■ Frame Check Sequence The Frame Check Sequence (FCS) field is 4 bytes long and pro-
vides bit-level integrity verification on the bits in the Ethernet II frame. The FCS is also 
called a cyclical redundancy check (CRC). The source node calculates the FCS and 
places the result in this field. When the destination receives the FCS, it runs the same 
CRC algorithm and compares its own value with the one placed in the FCS field by the 
source node. If the two values match, the frame is considered valid, and the destination 
node processes it. If the two values do not match, the frame is silently discarded.

The FCS calculation consists of dividing a 33-bit prime number into the number consist-
ing of the bits in the frame (not including the Preamble and FCS fields). The result of the 
division is a quotient and a remainder. The 4-byte FCS field is set to the remainder, 
which is always a 32-bit value. The FCS can detect 100 percent of all single-bit errors. 
Although it is mathematically possible to selectively change multiple bits in the frame 
without invalidating the value of the FCS field, it is highly improbable that the type of 
random noise and damage that occurs on networks will result in a frame with bits that 
are changed but retains a valid FCS.

The FCS calculation provides only a bit-level integrity service, not a data integrity or 
authentication service. A valid FCS does not imply that only the node with the unicast 
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address stored in the Source Address field could have sent it and that it was not modi-
fied in transit. The FCS calculation is well known, and an intermediate node could easily 
intercept the frame, alter its contents, perform the FCS calculation, and place the new 
value in the FCS field before forwarding the frame. The receiver of the frame could not 
detect that the frame contents were altered using just the FCS field. For data integrity 
and authentication services, use Internet Protocol Security (IPsec). For more informa-
tion on IPsec, see Chapter 18, “Internet Protocol Security (IPsec).”

The FCS field provides only bit-level error detection, not error recovery. When the 
receiver-calculated FCS value does not match the value of the FCS stored in the frame, 
the only conclusion that can be reached is that, somewhere in the frame, a bit or bits 
were changed. The FCS calculation does not produce any information on where the 
error occurred or how to correct it, but other types of CRC calculations do provide this 
information. An example of such a CRC calculation is the 1-byte Header Checksum field 
in the Asynchronous Transfer Mode (ATM) cell header, which provides error detection 
and limited error recovery services for the bits in the ATM header.

Note The FCS field is not visible with Network Monitor.

The following is an example of the Ethernet II frame format for an IP datagram from Capture 
01-01, included in the \Captures folder on the companion CD-ROM, as displayed with Net-
work Monitor 3.1:

Frame:  

- Ethernet: Etype = Internet IP (IPv4) 

- DestinationAddress: 001054 CAE140 

IG: (0.......) Individual address 

UL: (.0......) Universally Administered Address 

Rsv: (..000000) 

- SourceAddress: 006008 52F9D8 

UL: .0...... Universally Administered Address 

EthernetType: Internet IP (IPv4), 2048(0x800) 

+ Ipv4: Next Protocol = ICMP, Packet ID = 44553, Total IP Length = 60 

+ Icmp: Echo Request Message, From 192.168.160.186 To 192.168.160.1

The Ethernet Interframe Gap

Unlike Token Ring and FDDI, Ethernet frame formats do not have a way to explicitly indicate 
the end of the frame. Rather, Ethernet frames use an implied postamble by leaving a gap 
between each Ethernet frame. This gap, known as the Ethernet interframe gap, is used to 
space Ethernet frames. The Ethernet interframe gap is a specific measure of the time required 
to send 96 bits of data (9.6 μs on a 10-Mbps Ethernet network segment).

The Ethernet interframe gap is used as a postamble; after receiving bits of a frame, if the wire 
falls silent for 96 bit times, the last bit in the received frame occurred 96 bit-times ago.
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Ethernet Minimum Frame Size

All Ethernet frames must carry a minimum payload of 46 bytes. The Ethernet minimum frame 
size is a result of the Ethernet collision detection scheme applied to a maximum-extent Ether-
net network. To detect a collision, Ethernet nodes must be transmitting long enough for the 
signal indicating the collision to be propagated back to the sending node. The maximum-
extent Ethernet network consists of Ethernet segments configured using 10Base5 cabling and 
the IEEE 802.3 Baseband 5-4-3 rule.

The IEEE 802.3 Baseband 5-4-3 rule states that there can be a maximum of five physical seg-
ments between any two nodes, with four repeaters between the nodes. However, only three of 
these physical segments can have connected nodes (populated physical segments). The other 
two physical segments can be used only to link physical segments to extend the network 
length. Repeaters count as a node on the physical segment. When using 10Base5 cabling, each 
physical segment can be up to 500 meters long. Therefore, an Ethernet network’s maximum 
linear length is 2500 meters.

Figure 1-2 shows Ethernet Node A and Ethernet Node B at the farthest ends of a 5-4-3 net-
work using 10Base5 cabling.

Figure 1-2 The maximum-extent Ethernet network and the slot time

When Node A begins transmitting, the signal must propagate the network length. In the 
worst-case collision scenario, Node B begins to transmit just before the signal for Node A’s 
frame reaches it. The collision signal of Node A and Node B’s frame must travel back to Node 
A for Node A to detect that a collision has occurred.

The time it takes for a signal to propagate from one end of the network to the other is known 
as the propagation delay. In this worst-case collision scenario, the time that it takes for Node A 
to detect that its frame has been collided with is twice the propagation delay. Node A’s frame 
must travel all the way to Node B, and then the collision signal must travel all the way from 
Node B back to Node A. This time is known as the slot time. An Ethernet node must be 

Repeater

A B 

Slot time = 57.6 ms

2500 meters
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transmitting a frame for the slot time for a collision with that frame to be detected. This is the 
reason for the minimum Ethernet frame size.

The propagation delay for this maximum-extent Ethernet network is 28.8 μs. Therefore, the 
slot time is 57.6 μs. To transmit for 57.6 μs with a 10 Mbps bit rate, an Ethernet node must 
transmit 576 bits. Therefore, the entire Ethernet frame, including the Preamble field, must be 
a minimum size of 576 bits, or 72 bytes long. Subtracting the Preamble (8 bytes), Source 
Address (6 bytes), Destination Address (6 bytes), EtherType (2 bytes), and FCS (4 bytes) 
fields, the minimum Ethernet payload size is 46 bytes.

Upper-layer PDUs smaller than 46 bytes are padded to 46 bytes, ensuring the minimum 
Ethernet frame size. This padding is not part of the IP datagram or the ARP message and is not 
included in any length indicator fields within the IP datagram or ARP message. For example, 
this padding is not included in the IP header’s Total Length field, which indicates only the size 
of the IP datagram, and is used to discard the padding bytes.

IEEE 802.3

The IEEE 802.3 frame format is the result of the IEEE 802.2 and 802.3 specifications and con-
sists of an IEEE 802.3 header and trailer and an IEEE 802.2 LLC header. Figure 1-3 shows the 
IEEE 802.3 frame format.

Figure 1-3 The IEEE 802.3 frame format showing the IEEE 802.3 header and trailer and the 
IEEE 802.2 LLC header

. .  . 
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IEEE 802.3 Header and Trailer

The fields in the IEEE 802.3 header and trailer are defined as follows:

■ Preamble The Preamble field is 7 bytes long and consists of alternating 1s and 0s that 
synchronize a receiving station. Each byte is the bit sequence 10101010.

■ Start Delimiter The Start Delimiter field is the 1-byte bit sequence 10101011, which 
indicates the start of a frame. The combination of the IEEE 802.3 Preamble and Start 
Delimiter fields is the exact same bit sequence as the Ethernet II Preamble field.

Note The Preamble and Start Delimiter fields are not visible with Network Monitor.

■ Destination Address The Destination Address field is the same as the Ethernet II Desti-
nation Address field except that IEEE 802.3 allows both 6-byte and 2-byte addresses. 
IEEE 802.3 2-byte addresses are not commonly used.

■ Source Address The Source Address field is the same as the Ethernet II Source Address 
field except that IEEE 802.3 allows both 6-byte and 2-byte addresses.

■ Length The Length field is 2 bytes long and indicates the number of bytes from the 
LLC header’s first byte to the payload’s last byte. The Length field does not include the 
IEEE 802.3 header or the FCS field. This field’s minimum value is 46 (0x002E), and its 
maximum value is 1500 (0x05DC).

■ Frame Check Sequence The FCS field is 4 bytes long and is identical to the Ethernet II 
FCS field.

IEEE 802.2 LLC Header

The fields in the IEEE 802.2 LLC header are defined as follows:

■ DSAP The Destination Service Access Point (DSAP) field is 1 byte long and indicates 
the destination upper layer protocol for the frame.

■ SSAP The Source Service Access Point (SSAP) field is 1 byte long and indicates the 
source upper layer protocol for the frame.

The DSAP and SSAP fields act as protocol identifiers for the IEEE 802.3 frame format. 
The defined value for the DSAP and SSAP fields for IP is 0x06. However, it is not used 
in the industry. Instead, the SNAP header is used to encapsulate IP datagrams with an 
IEEE 802.3 header. The SNAP header is discussed in greater detail in the section titled 
“IEEE 802.3 SNAP,” later in this chapter. The current list of defined link service access 
point values, which are used for the values of the DSAP and SSAP fields, can be found at 
http://www.iana.org/assignments/ieee-802-numbers.
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■ Control The Control field can be 1 or 2 bytes long depending on whether the LLC-
encapsulated data is an LLC datagram, known as a Type 1 LLC operation, or part of an 
LLC session, known as a Type 2 LLC operation.

A Type 1 LLC operation (a 1-byte Control field) is a connectionless, unreliable LLC 
datagram. With an LLC datagram, LLC is not providing reliable delivery service on 
behalf of the upper layer protocol. A Type 1 LLC datagram is known as an Unnumbered 
Information (UI) frame and is indicated by setting the Control field to the value 0x03.

A Type 2 LLC operation (a 2-byte Control field) is a connection-oriented, reliable LLC 
session. Type 2 LLC frames are used when LLC is providing reliable delivery service for 
the upper layer protocol.

For IP datagrams and ARP messages, reliable LLC services are never used. Therefore, IP 
datagrams and ARP messages are always sent as a Type 1 LLC datagram with the Con-
trol field set to 0x03 to indicate a UI frame.

Differentiating an Ethernet II Frame from an IEEE 802.3 Frame

It is common for a network operating system to support multiple frame formats simulta-
neously. TCP/IP for Windows Server 2008 and Windows Vista supports both Ethernet II and 
IEEE 802.3 frame formats for IP datagrams and ARP messages. There are many similarities 
between the Ethernet II and IEEE 802.3 frame formats, such as the following:

■ The Ethernet II Preamble field is identical to the IEEE 802.3 Preamble and Start Delim-
iter fields.

■ With the exception of the 2-byte address allowed by IEEE 802.3, the Source Address 
and Destination Address fields are identical.

■ The FCS is identical.

The ability to differentiate between the Ethernet II and the IEEE 802.3 frame formats lies in 
the first 2 bytes past the Source Address field. For the Ethernet II frame format, these 2 bytes 
are the EtherType field. For the IEEE 802.3 frame format, these 2 bytes are the Length field. 
The following algorithm is used to determine whether these 2 bytes are an EtherType field or 
a Length field:

■ If the value of these 2 bytes is greater than 1500 (0x05DC), it is an EtherType field and 
an Ethernet II frame format.

■ If the value of these 2 bytes is less than or equal to 1500 (0x05DC), it is a Length field 
and an IEEE 802.3 frame.

This comparison can be made because there are no defined EtherType values less than 
0x05DC. The lowest EtherType value is 0x0600, used to indicate the Xerox Network Systems 
(XNS) protocol.
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IEEE 802.3 SNAP

Although there is a defined value of 0x06 for the Service Access Point (SAP) for IP, it is not 
used in the industry. RFC 1042 states that IP datagrams and ARP frames sent over IEEE 802.3, 
802.4, and 802.5 networks must use the SNAP encapsulation.

The IEEE 802.3 SNAP was created as an extension to the IEEE 802.3 specification to allow 
protocols that were designed to operate with an Ethernet II header to be used in an IEEE 
802.3–compliant environment. Figure 1-4 shows the IEEE 802.3 SNAP frame format.

Figure 1-4 The IEEE 802.3 SNAP frame format showing the SNAP header and an IP datagram

To denote a SNAP frame, the DSAP and SSAP fields are set to the SNAP-defined value of 0xAA 
within the LLC header. Because all SNAP-encapsulated payloads are not using reliable LLC 
services, every SNAP frame is an LLC datagram. Therefore, the Control field is set to 0x03 to 
indicate a UI frame. The SNAP header consists of the following two fields:

■ The Organization Code field is 3 bytes long and is used to indicate the organization that 
maintains the meaning of the 2 bytes that follow. For IP datagrams and ARP messages, 
the Organization Code field is set to 0x00-00-00.

■ For the Organization Code field set to 0x00-00-00, the next 2 bytes of the SNAP header are 
the 2-byte EtherType field. The same values for IP (0x0800) and ARP (0x0806) are used.
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Because of the increased overhead of the LLC header (3 bytes total) and the SNAP header 
(5 bytes), the payload for an IEEE 802.3 SNAP frame has a maximum size of 1492 bytes and 
a minimum size of 38 bytes. Padding is added when needed to ensure that the payload is at 
least 38 bytes long.

The following is an example of the IEEE 802.3 SNAP frame format for an ARP Request from 
Capture 01-02, included in the \Captures folder on the companion CD-ROM , as displayed 
with Network Monitor 3.1:

Frame:  

- Ethernet: 802.3, DataLength = 36 bytes 

- DestinationAddress: *BROADCAST 

IG: (1.......) Group address 

UL: (.1......) Locally Administered Address 

Rsv: (..111111) 

- SourceAddress: 00AA00 4BB147 

UL: .0...... Universally Administered Address 

DataLength: 36 (0x24) 

- Llc: Unnumbered(U) Frame, Command Frame, SSAP = SNAP(Sub-

Network Access Protocol), DSAP = SNAP(Sub-Network Access Protocol) 

+ DSAP: SNAP(Sub-Network Access Protocol), Individual DSAP 

+ SSAP: SNAP(Sub-Network Access Protocol), Command 

+ Unnumbered: UI - Unnumbered Information 

+ Snap: EtherType = ARP, OrgCode = XEROX CORPORATION 

+ Arp: Request, 192.168.50.1 asks for 192.168.50.2

By default, TCP/IP for Windows Server 2008 and Windows Vista uses Ethernet II encapsula-
tion when sending and receiving frames on an Ethernet network. TCP/IP for Windows Server 
2008 and Windows Vista receives both types of frame formats but, by default, only responds 
with Ethernet II encapsulated frames. To send IEEE 802.3 SNAP encapsulated IP and ARP 
messages, use the following registry value:

ArpUseEtherSNAP
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\ 

Tcpip\Parameters 

Data type: REG_DWORD 

Valid range: 0–1 

Default value: 0 

Present by default: No

ArpUseEtherSNAP either enables (when set to 1) or disables (when set to 0) the use of the 
IEEE 802.3 SNAP frame format when sending IP and ARP frames. ArpUseEtherSNAP is dis-
abled by default, meaning that IP and ARP frames are sent with Ethernet II encapsulation. 
Regardless of the ArpUseEtherSNAP setting, both types of frame formats are received.

With ArpUseEtherSNAP disabled, TCP/IP for Windows Server 2008 and Windows Vista 
recognizes a SNAP-encapsulated ARP Request message and responds with an Ethernet II–
encapsulated ARP Reply frame. The assumption is that the node sending the ARP Request 
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message will recognize the Ethernet II encapsulation on the ARP Reply and use Ethernet II 
encapsulation for subsequent communications. If the node sending the ARP Request does not 
switch, IP communication between the node sending the ARP Request and the node sending 
the ARP Reply is impossible.

With ArpUseEtherSNAP enabled, TCP/IP for Windows Server 2008 and Windows Vista 
switches to Ethernet II encapsulation if one of the following two scenarios occurs: a SNAP-
encapsulated ARP Request frame is responded to with an Ethernet II–encapsulated ARP Reply 
frame, or an Ethernet II–encapsulated ARP Request is received.

Special Bits on Ethernet MAC Addresses

Within the Source Address and Destination Address fields of the Ethernet II and IEEE 802.3 
frame formats, special bits are defined, as Figure 1-5 shows.

Figure 1-5 The special bits defined for Ethernet source and destination MAC addresses

The Individual/Group Bit

The Individual/Group (I/G) bit is used to indicate whether the destination address is a uni-
cast (individual) or multicast (group) address. For a unicast address, the I/G bit is set to 0. For 
a multicast address, the I/G bit is set to 1. The broadcast address is a special case of multicast, 
and its I/G bit is set to 1. The I/G bit is also known as the multicast bit.

The Universal/Locally Administered Bit

The Universal/Locally (U/L) Administered bit is used to indicate whether the IEEE allocated 
the address. For a universal address allocated by the IEEE, the U/L bit is set to 0. Universal 
addresses are guaranteed to be universally unique because network adapter manufacturers 
obtain universally unique vendor identifiers from the IEEE and assign unique 3-byte serial 
numbers to each network adapter. The 6-byte physical address of a network adapter, as pro-
grammed into the adapter during the manufacturing process, is a universally administered 
address.
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For a locally administered address, the U/L bit is set to 1. Some network adapters allow you to 
override the network adapter’s physical address and specify a new physical address. In this 
case, the new address must have the U/L bit set to 1 to indicate that it is locally administered.

The U/L bit is significant only for unicast addresses (the I/G bit is set to 0). When the I/G bit is 
set to 1, this bit does not imply either a locally or a universally administered address. The U/L bit 
is relevant for both the Source Address and Destination Address.

Routing Information Indicator Bit

The Routing Information Indicator bit, the low-order bit of the first byte of the source address, 
indicates whether MAC-level routing information is present. This bit is meaningful only for 
Token Ring addresses. Token Ring has a MAC-level routing mechanism known as Token Ring 
source routing. Even though this bit is meaningless for Ethernet addresses, it is still reserved 
and set to 0 to prevent problems when employing a translating bridge or Layer 2 switch 
between an Ethernet segment and a Token Ring ring.

For example, suppose the Routing Information Indicator bit is not reserved at the value of 0 
for Ethernet addresses, and this bit is set to 1 through a universal or locally administered 
address. Then, when the address is translated to a Token Ring address, the Routing Informa-
tion Indicator bit remains set to 1 even though there is no source routing information present, 
which can cause the Token Ring node to drop the frame.

The following is an example of the special bits for Ethernet MAC addresses from Capture 01-03, 
included in the \Captures folder on the companion CD-ROM, as displayed with Network 
Monitor 3.1:

Frame:  

- Ethernet: Etype = Internet IP (IPv4) 

- DestinationAddress: 01005E 400009 

IG: (0.......) Individual address 

UL: (.0......) Universally Administered Address 

Rsv: (..000001) 

- SourceAddress: 00E034 C0A060 

UL: .0...... Universally Administered Address 

EthernetType: Internet IP (IPv4), 2048(0x800) 

+ Ipv4: Next Protocol = UDP, Packet ID = 56274, Total IP Length = 577 

+ Udp: SrcPort = 3985, DstPort = 20441, Length = 557

Note Network Monitor 3.1 does not display the Routing Information Indicator bit.

Token Ring
Token Ring is a ring access network technology originally proposed by Olaf Soderblum in 
1969. IBM purchased the rights to the original design and created and released its Token Ring 
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product in 1984. Key elements of the original IBM design were the use of proprietary connec-
tors, twisted-pair cable out to the network node, and structured wiring systems using central-
ized active hubs.

In 1985, the IEEE Project 802 created the 802.5 subcommittee and Token Ring became an 
international standard. IBM created Token Ring to replace Ethernet as the most popular LAN 
technology. Although Token Ring is in many ways a superior technology to Ethernet, a com-
bination of cost issues and marketing has made it less popular than Ethernet.

The original specification was for a 4 Mbps transmission rate, but that was followed by an 
additional specification at 16 Mbps. On the same ring, all nodes must operate at the same 
speed. Common implementations use 4-Mbps rings connected together, using 16-Mbps rings 
as a high-speed backbone.

IP and ARP encapsulation over Token Ring networks are described in RFC 1042.

IEEE 802.5

The IEEE 802.5 frame format is the result of the IEEE 802.2 and 802.5 specifications and 
consists of an IEEE 802.5 header and trailer and an IEEE 802.2 LLC header. The IEEE 802.5 
frame format is shown in Figure 1-6.

Figure 1-6 The IEEE 802.5 frame format showing the IEEE 802.5 header and trailer and the 
IEEE 802.2 LLC header
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IEEE 802.5 Header and Trailer

The fields in the IEEE 802.5 header and trailer are defined as follows:

■ Start Delimiter The Start Delimiter field is 1 byte long and identifies the start of the 
frame. The Start Delimiter field contains nondata symbols known as J and K symbols 
that are deliberate violations of the Token Ring signal encoding scheme. The J symbol is 
an encoding violation of a 1 and the K symbol is an encoding violation of a 0. The Start 
Delimiter field provides a very explicit preamble. Unlike Ethernet, Token Ring frames 
do not have an interframe gap to separate frames on the wire. The Start Delimiter field 
also provides synchronization for the receiver.

Note The Start Delimiter field is not visible with Network Monitor.

■ Access Control The Access Control field is 1 byte long and contains bits for the following:

❑ Setting the current priority of the token (3 bits). An interesting facility of Token 
Ring is its ability to prioritize access to the token and, therefore, the right to trans-
mit data based on seven priority levels.

❑ Setting the token reservation level (3 bits). The token reservation bits set the 
priority of the token once the station that is currently transmitting releases it.

❑ Indicating whether the frame has passed the ring monitor station (1 bit). As the 
frame passes the ring monitor station, this Monitor bit is set to 1. If the ring mon-
itor station sees a frame with the Monitor bit set to 1, the frame has already been 
sent on the ring. The ring monitor station removes the frame from the ring and 
then purges the ring.

❑ Indicating whether the frame that follows is a token or a frame (1 bit). If set to 0, 
what follows is a token. If set to 1, what follows is a frame.

■ Frame Control The Frame Control field is 1 byte long and contains bits for the following:

❑ Indicating whether the frame that follows is a Token Ring MAC management 
frame or an LLC frame (2 bits).

❑ Indicating the type of Token Ring MAC management frame such as Purge, Claim 
Token, or Beacon (4 bits).

❑ Two bits within the Frame Control field are reserved.

■ Destination Address The Destination Address field is 6 bytes long and indicates the 
address of the destination. For Token Ring, the Destination Address field can be 
the following:

❑ A universal or locally administered unicast address.

❑ The universal broadcast address (0xFF-FF-FF-FF-FF-FF).
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❑ The Token Ring broadcast address (0xC0-00-FF-FF-FF-FF). A frame using the 
Token Ring broadcast address is designed to remain on a single ring and is not 
forwarded by Token Ring source-route bridges.

❑ A multicast address.

❑ A Token Ring functional address. A functional address is a type of multicast 
address that is specific to Token Ring and is typically used by Token Ring MAC 
management frames.

■ Source Address The Source Address field is 6 bytes long and indicates the sending 
node’s unicast address.

■ Payload The Payload field for a Token Ring frame consists of a PDU of an upper layer 
protocol. Unlike Ethernet, there is no minimum frame size and the maximum transmis-
sion unit (MTU) for Token Ring is not a defined number, but dependent on factors such 
as the bit rate and the token holding time. Token Ring MTUs are further complicated by 
the presence of Token Ring source-routing bridges. More information on Token Ring 
MTUs for IP datagrams can be found in the section titled “IEEE 802.5 SNAP,” later in 
this chapter.

■ Frame Check Sequence The FCS field is a 4-byte CRC that uses the same algorithm as 
Ethernet to provide a bit-level integrity check of all fields in the Token Ring frame, from 
the Frame Control field to the Payload field. The FCS does not provide bit-level integrity 
for the Access Control or Frame Status fields. This allows bits in these fields, such as the 
Monitor bit, to be set without forcing a recalculation of the FCS.

The FCS is checked as it passes each node on the ring. If the FCS fails at any node, the 
Error Detected indicator in the End Delimiter field is set to 1 and the receiving node 
does not copy the frame.

■ End Delimiter The End Delimiter is a 1-byte field that identifies the end of the frame. 
Like the Start Delimiter, the End Delimiter contains J and K nondata symbols to provide 
an explicit postamble. The End Delimiter field also contains the following:

❑ An Intermediate Frame indicator (1 bit), used to indicate whether this frame is the 
last frame in the sequence (when set to 0) or more frames are to follow (when set 
to 1).

❑ An Error Detected indicator (1 bit), used to indicate whether this frame has failed 
the FCS calculation.

❑ Because there is no Length field in the IEEE 802.5 frame, the End Delimiter is 
used to locate the end of the payload and the position of the FCS and Frame 
Status fields.
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■ Frame Status The Frame Status field is a 1-byte field that contains the following:

Two copies of the Address Recognized indicator. The destination node sets the Address 
Recognized indicators to indicate that the address in the Destination Address field was 
recognized.

Two copies of the Frame Copied indicator. The destination node sets the Frame Copied 
indicators to indicate that the frame was successfully copied into a buffer on the net-
work adapter.

❑ Two copies of each indicator are needed because the FCS field does not protect the 
Frame Status field.

❑ The Address Recognized and Frame Copied indicators are not used as acknowl-
edgments for reliable data delivery. The sending Token Ring network adapter uses 
these indicators to retransmit the frame, if necessary.

Note The FCS, End Delimiter, and Frame Status fields are not visible with 
Network Monitor.

IEEE 802.2 LLC Header

The fields in the IEEE 802.2 LLC header are defined and used in the same way as the IEEE 
802.2 LLC header for the IEEE 802.3 frame format, as discussed in the section titled “IEEE 
802.3,” earlier in this chapter.

IEEE 802.5 SNAP

As described earlier in this chapter, the value of 0x06 is defined as the DSAP and SSAP for IP. 
However, it is not defined for use in RFC 1042 and not used in the industry. Therefore, similar 
to the case of IEEE 802.3 frames, to send an IP datagram over an IEEE 802.5 network, the IP 
datagram must be encapsulated using SNAP, as Figure 1-7 shows.

For a 10-millisecond (ms) token-holding time, the maximum sizes for IP datagrams are 4464 
bytes for 4-Mbps Token Ring network adapters and 17,914 bytes for 16-Mbps Token Ring net-
work adapters. If Token Ring source-routing bridges are present, the maximum size of IP 
datagrams can be 508, 1020, 2044, 4092, and 8188 bytes. For more information on Token 
Ring MTUs, see RFC 1042.



20 Part I: The Network Interface Layer
Figure 1-7 The IEEE 802.5 SNAP frame format showing the SNAP header and an IP datagram

Special Bits on Token Ring MAC Addresses

Within the Source Address and Destination Address fields of the IEEE 802.5 frame format, 
special bits are defined, as Figure 1-8 shows.

The Individual/Group Bit

Identical to Ethernet, the I/G bit for Token Ring addresses is used to indicate whether the 
address is a unicast (individual) or multicast (group) address. For unicast addresses, the I/G 
bit is set to 0. For multicast addresses, the I/G bit is set to 1.

The Universal/Locally Administered Bit

Identical to Ethernet, the U/L Administered bit for Token Ring addresses is used to indicate 
whether the IEEE has allocated the address. For universal addresses allocated by the IEEE, the 
U/L bit is set to 0. For locally administered addresses, the U/L bit is set to 1. The U/L bit is 
relevant for both the Source Address and Destination Address fields.
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Figure 1-8 The special bits defined on Token Ring source and destination MAC addresses

Functional Address Bit

The Functional Address bit indicates whether the destination address is a functional address 
(when set to 0) or a nonfunctional address (when set to 1). Token Ring defines the following 
two types of multicast addresses:

■ Functional addresses Multicast addresses that are specific to Token Ring. There are spe-
cific functional addresses for identifying the ring monitor, the ring-parameter server, and 
a source-routing bridge.

■ Nonfunctional addresses General multicast addresses that are not specific to Token Ring.

The Functional Address bit is significant only if the I/G bit is set to 1.

Routing Information Indicator Bit

The Routing Information Indicator bit indicates whether MAC-level routing information is 
present. In the case of Token Ring, the Routing Information Indicator bit indicates the pres-
ence of a source-routing header between the IEEE 802.5 header and the IEEE 802.2 LLC 
header. Token Ring source routing is not OSI Network Layer routing, but rather a MAC sub-
layer routing scheme that allows a sending node to discover and specify a route through a 
defined series of rings and bridges within a Token Ring network segment.

FDDI
FDDI is a network technology developed by the American National Standards Institute 
(ANSI). FDDI is an optical fiber-based token passing ring with a bit rate of 100 Mbps. It was 
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designed to span long distances and, in most implementations, it acts as a campus-wide high-
speed backbone. FDDI offers advanced features beyond Token Ring, such as the ability to self-
heal a break in the ring and the use of guaranteed bandwidth.

Although not developed by the IEEE as part of the 802 standards, the FDDI specification is 
quite similar to the IEEE 802.3 and 802.5 specifications; it defines the MAC sublayer of the 
OSI Data Link Layer and the Physical Layer, and it uses the IEEE 802.2 LLC sublayer. Copper 
Data Distributed Interface (CDDI) is a version of FDDI that operates over twisted-pair copper 
wire.

RFC 1188 describes IP encapsulation over FDDI networks.

FDDI Frame Format

The FDDI frame format is the result of the IEEE 802.2 and ANSI FDDI specifications, and con-
sists of an FDDI header and trailer and an IEEE 802.2 LLC header. Figure 1-9 shows the FDDI 
frame format.

Figure 1-9 The FDDI frame format showing the FDDI header and trailer and IEEE 802.2 LLC header

FDDI Header and Trailer

The fields in the FDDI header and trailer are defined as follows:

■ Preamble The Preamble field is 2 bytes long and provides receiver synchronization.

■ Start Delimiter The Start Delimiter field is 1 byte long and identifies the start of the 
frame. Like Token Ring, the Start Delimiter field contains nondata symbols known as J 
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and K symbols that are deliberate violations of the FDDI signal encoding scheme. The J 
symbol is an encoding violation of a 1 and the K symbol is an encoding violation of a 0.

Note The Preamble and Start Delimiter fields are not visible with Network Monitor.

■ Frame Control The Frame Control field is 1 byte long and contains bits for the 
following:

❑ Setting the class of the frame (1 bit). FDDI frames can be sent as synchronous or 
asynchronous frames. Synchronous frames are used for guaranteed bandwidth 
and response time. Asynchronous frames are used for dynamic bandwidth shar-
ing. This Class bit is set to 1 for synchronous frames and 0 for asynchronous 
frames.

❑ Setting the length of the Destination Address and the Source Address fields (1 bit). 
Like IEEE 802.3, FDDI supports 2-byte and 6-byte addresses. The Address bit is 
set to 1 for 6-byte addresses and 0 for 2-byte addresses.

❑ Indicating that what follows is a token (either nonrestricted or restricted), a 
station management frame, a MAC frame, an LLC frame, or an LLC frame with 
a specific priority (6 bits).

■ Destination Address The Destination Address field is either 2 bytes or 6 bytes long and 
indicates the address of the destination (2-byte addresses are seldom used). For 6-byte 
addresses, FDDI Destination Address fields are defined the same as Ethernet Destina-
tion Address fields to provide easy interoperability between bridged or Layer 2 switched 
Ethernet and FDDI segments. The destination address is a unicast, multicast, or broad-
cast address.

■ Source Address The Source Address field is either 2 bytes or 6 bytes long and indicates 
the unicast address of the sending node (2-byte addresses are seldom used).

■ Frame Check Sequence The FCS field is a 4-byte CRC that uses the same algorithm as 
Ethernet to provide a bit-level integrity check of all fields in the FDDI frame, from the 
Frame Control field to the Payload field. The FCS is checked as it passes each node on 
the ring. If the FCS fails at any node, the Error bit in the Frame Status field is set to 1 
and the receiving node does not copy the frame.

■ End Delimiter The End Delimiter field is 1 byte long and identifies the end of the frame. 
Like the Start Delimiter field, the End Delimiter field contains J and K nondata symbols 
to provide an explicit postamble. Because there is no Length field in the FDDI frame, the 
End Delimiter field is also used to locate the end of the payload, and the position of the 
FCS and Frame Status fields.
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■ Frame Status The Frame Status field is typically 2 bytes long and contains bits for the 
following:

The Address Recognized indicator

❑ The destination node sets the Address Recognized indicator to show that the 
address in the Destination Address field was recognized.

The Frame Copied indicator

❑ The destination node sets the Frame Copied indicator to show that the frame 
was successfully copied into a buffer on the network adapter.

The Error indicator

❑ Any FDDI station sets the Error indicator to 1 when the FCS field is invalid.

❑ Similar to Token Ring, the Address Recognized and Frame Copied indicators 
are not used as acknowledgments for reliable data delivery. Rather, the 
sending FDDI network adapter uses these indicators to retransmit the frame 
if necessary.

IEEE 802.2 LLC Header

The fields in the IEEE 802.2 LLC header are defined and used in the same way as the IEEE 
802.2 LLC header for the IEEE 802.3 and IEEE 802.5 frame format discussed earlier in this 
chapter.

Payload

The payload for an FDDI frame consists of a PDU of an upper layer protocol. The entire FDDI 
frame from the Preamble field to the Frame Status field can be a maximum size of 4500 bytes. 
Once you subtract the FDDI and IEEE 802.2 LLC headers, the maximum payload size is 4474 
bytes with a 3-byte LLC header, and 4473 bytes with a 4-byte LLC header.

FDDI SNAP

As described earlier in this chapter, the value of 0x06 is defined as the SAP for IP. However, 
it is not defined for use in RFC 1188 and not used in the industry. Therefore, similar to 
the case of IEEE 802.3 frames and IEEE 802.5 frames, to send an IP datagram over an FDDI 
network, the IP datagram must be encapsulated using the SNAP header, as shown in 
Figure 1-10.

The maximum-sized IP datagram that can be sent on an FDDI network is 4352 bytes. This 
number of bytes is the result of taking the maximum FDDI frame size of 4500 bytes and sub-
tracting the FDDI header and trailer (23 bytes), the LLC header (3 bytes), and the SNAP 
header (5 bytes) and reserving 117 bytes for future purposes.
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Figure 1-10 The FDDI SNAP frame format showing the SNAP header and an IP datagram

IP datagrams and ARP messages sent over FDDI networks also have the following constraints:

■ Only 6-byte FDDI source and destination addresses can be used.

■ All IP and ARP frames are transmitted as asynchronous class LLC frames using unre-
stricted tokens.

RFC 1188 does not define how frame priorities are used or how the FDDI node deals with the 
values of the Address Recognized and Frame Copied indicators.

FDDI nodes send ARP Requests using the Ethernet ARP Hardware Type value of 0x00-01, but 
can receive ARP Requests using the ARP Hardware Types of 0x00-01 and 0x00-06 (IEEE net-
works). The use of the Ethernet ARP Hardware Type value is designed to allow FDDI hosts and 
Ethernet hosts in a bridged or Layer 2 switched environment to send and receive ARP messages.

Special Bits on FDDI MAC Addresses

Because FDDI MAC addresses are defined in the same way as Ethernet MAC addresses, the 
special bits on FDDI MAC addresses are the same as those defined for Ethernet MAC addresses.
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IEEE 802.11
IEEE 802.11 is a set of standards for wireless LAN technologies. The original 802.11 standard 
defines wireless networking using either 1-Mbps or 2-Mbps bit rates in the Industrial, Scien-
tific, and Medical (ISM) 2.54-gigahertz (GHz) frequency band. IEEE 802.11b defines a maxi-
mum bit rate of 11 Mbps in the 2.54-GHz ISM band. IEEE 802.11a defines a maximum bit rate 
of 54 Mbps in the 5.8-GHz band. 802.11g defines a maximum bit rate of 54 Mbps in the 2.54-
GHz band. IEEE 802.11b is the most widely deployed of the IEEE 802.11 standards.

At the MAC sublayer, IEEE 802.11 (all versions) uses a combination of congestion avoidance 
and Request to Send (RTS), Clear to Send (CTS), and Acknowledgment (ACK) frames to 
ensure that only one wireless node is transmitting at a time and that the sent frame is success-
fully received.

IEEE 802.11 wireless nodes can communicate in the following ways:

■ Directly with each other using an operating mode known as ad hoc mode.

■ With a wireless access point (AP) using an operating mode known as infrastructure 
mode. In infrastructure mode, the wireless AP acts as a transparent bridge connecting 
wireless nodes to a wired network.

To identify a wireless network in either operating mode, IEEE 802.11 uses a Service Set Iden-
tifier (SSID), also known as a wireless network name.

Because wireless networking uses broadcast radio waves, a wireless node within range of a 
transmitting wireless node can capture IEEE 802.11 frames and interpret the data. To provide 
data confidentiality (encryption) for IEEE 802.11 payloads, IEEE 802.11 networks can use 
Wi-Fi Protected Access 2 (WPA2), Wi-Fi Protected Access (WPA), or Wired Equivalent 
Privacy (WEP).

IEEE 802.11 Frame Format

The IEEE 802.11 frame format consists of an IEEE 802.11 header and trailer and an IEEE 
802.2 LLC header. Figure 1-11 shows the IEEE 802.11 frame format.

IEEE 802.11 Header and Trailer

The fields in the IEEE 802.11 header and trailer for a data frame sent by wireless nodes or by 
a wireless AP to a wireless node are defined as follows:

■ Frame Control A 2-byte field that contains control information that defines the type of 
frame and how to process the frame. For more information, see the section titled “Frame 
Control Field,” later in this chapter.

■ Duration/ID Field A 2-byte field that is used to indicate the duration of time in micro-
seconds needed to transmit the frame and the acknowledgment.
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Figure 1-11 The IEEE 802.11 frame format showing the IEEE 802.11 header and trailer and 
the IEEE 802.2 LLC header

■ Address 1 A 6-byte field that contains either the destination MAC address of a wireless 
node (when sent by a wireless node to another wireless node in ad hoc mode or sent by 
the wireless AP to the wireless node) or the SSID (when sent by a wireless node to a 
wireless AP).

■ Address 2 A 6-byte field that contains either the MAC address of the sending node 
(when sent to another wireless node in ad hoc mode or sent to the wireless AP) or the 
SSID (when sent by the wireless AP to a wireless node).

■ Address 3 A 6-byte field that contains the SSID for frames sent to another wireless node 
in ad hoc mode, the source address for frames sent from the wireless AP to a wireless 
node, or the destination address for frames sent from a wireless node to a wireless AP.

■ Sequence Control A 2-byte field that contains a 4-bit Fragment Number field and a 12-bit 
Sequence Number field that, when used together, allow the receiver to discard duplicate 
frames. When a frame is fragmented, the Fragment Number field is used to indicate the 
number of the fragment. Otherwise, the Fragment Number field is set to 0. The Sequence 
Number field indicates the number of the frame starting at 0, incrementing to 4095, and 
then starting again at 0. All fragments of a frame have the same sequence number.
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■ Address 4 A 6-byte field that contains the MAC address of the originating wireless 
node. This field is typically present only in frames in which both the To DS and From DS 
flags in the Frame Control field are set to 1, indicating inter-wireless AP communication.

■ Frame Check Sequence A 4-byte CRC that uses the same algorithm as Ethernet to pro-
vide a bit-level integrity check of all fields in the IEEE 802.11 frame, from the Frame 
Control field to the Payload field.

IEEE 802.2 LLC Header

The fields in the IEEE 802.2 LLC header are defined and used in the same way as the IEEE 
802.2 LLC header for the IEEE 802.3, IEEE 802.5, and FDDI frame formats discussed earlier 
in this chapter.

Payload

The payload for an IEEE 802.11 frame can be a maximum size of 2312 bytes. IEEE 802.11 pay-
loads can be MAC management frames (such as beacon frames sent by wireless APs), control 
fames (such as RTS, CTS, and ACK frames), or data frames containing the PDU of an upper 
layer protocol (such as an IP datagram). 

If the payload of a data frame is encrypted with WEP, the upper layer PDU is preceded by 
a plain-text 4-byte field containing an Initialization Vector (IV) field and followed with an 
encrypted 4-byte Integrity Check Value (ICV) field, lowering the maximum upper layer PDU 
size to 2304 bytes. 

If the payload of a data frame is encrypted with WPA and the Temporal Key Integrity Protocol 
(TKIP), the upper layer PDU is preceded by a plain-text 8-byte field containing the IV and fol-
lowed with an encrypted 8-byte Message Integrity Code (MIC) and 4-byte ICV field, lowering 
the maximum upper layer PDU size to 2292 bytes.

If the payload of a data frame is encrypted with WPA2 and the Advanced Encryption Standard 
(AES), the upper layer PDU is preceded by a plaintext 8-byte field containing the Packet Num-
ber field and followed with an encrypted 8-byte Message Integrity Code (MIC), lowering the 
maximum upper layer PDU size to 2296 bytes.

The header and trailer fields for the various encryption methods are not shown in Figure 1-11.

Frame Control Field

Figure 1-12 shows the Frame Control field.

The Frame Control field contains the following subfields:

■ Protocol Version A 2-bit field that indicates the version of the 802.11 protocol used to 
construct the frame. This field is set to 0 for the current version of IEEE 802.11. If the 
Protocol Version field is set to a value that is not supported by the receiving wireless 
node, the frame is silently discarded.
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Figure 1-12 The Frame Control field in the IEEE 802.11 header

■ Type A 2-bit field that indicates the type of IEEE 802.11 frame. There are three defined 
values: 00 for management frames, 01 for control frames, and 10 for data frames. The 
value of 11 is currently reserved.

■ Subtype A 4-bit field that indicates the specific type of management, control, or 
data frame.

■ To DS A 1-bit flag that indicates (when set to 1) that the frame is destined for the distri-
bution system (DS), the wired network that connects wireless APs and provides access 
to wired network nodes. Only wireless nodes that are operating in infrastructure mode 
set this flag.

■ From DS A 1-bit flag that indicates (when set to 1) that the frame is originating from the 
wired network. This flag is only set by the wireless AP when forwarding a frame to a 
wireless node operating in infrastructure mode.

■ More Fragments A 1-bit flag that indicates (when set to 1) that there are more frag-
ments of the frame for which this frame is also a fragment. If the frame is not fragmented 
or is the last fragment of a fragmented frame, the More Fragments flag is set to 0.

■ Retry A 1-bit flag that indicates (when set to 1) that this frame is a retransmission of a 
previously transmitted frame.

■ Power Management A 1-bit flag that indicates (when set to 1) that the transmitting 
wireless node is operating in a power-saving mode.

■ More Data A 1-bit flag that indicates (when set to 1) that the wireless AP has at least 
one frame buffered to send to the wireless node.

■ WEP A 1-bit flag that indicates (when set to 1) that the payload is encrypted.

■ Order A 1-bit flag that indicates (when set to 1) that the frames must be processed 
in order.
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IEEE 802.11 SNAP

An IP datagram sent over an IEEE 802.11 network must be encapsulated with a SNAP header. 
Figure 1-13 shows SNAP encapsulation for IP datagrams sent over an IEEE 802.11 link (rather 
than between wireless APs).

Figure 1-13 The IEEE 802.11 SNAP frame format showing the SNAP header and an IP datagram

Summary
LAN technology encapsulations provide delimitation, addressing, protocol identification, and 
bit-level integrity services. IP datagrams and ARP messages sent over Ethernet links are encap-
sulated using either the Ethernet II or IEEE 802.3 SNAP frame formats. IP datagrams and ARP 
messages sent over Token Ring links are encapsulated using the IEEE 802.5 SNAP frame for-
mat. IP datagrams and ARP messages sent over FDDI links are encapsulated using the FDDI 
SNAP frame format. IP datagrams and ARP messages sent over IEEE 802.11 links are encap-
sulated using the IEEE 802.11 SNAP frame format.
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To successfully troubleshoot TCP/IP problems on a wide area network (WAN), it is important 
to understand how IP datagrams and Address Resolution Protocol (ARP) messages are encap-
sulated by a computer running Windows Server 2008 or Windows Vista that uses a WAN 
technology such as T-carrier, Public Switched Telephone Network (PSTN), Integrated Services 
Digital Network (ISDN), or Frame Relay. It is also important to understand WAN technology 
encapsulations to interpret the WAN encapsulation portions of a frame when using Microsoft 
Network Monitor or other types of WAN frame capture programs or facilities.

Note Support for Serial Line Internet Protocol (SLIP), X.25, and Asynchronous Transfer Mode 
(ATM) has been removed from Windows Server 2008 and Windows Vista.

WAN Encapsulations
As discussed in Chapter 1, “Local Area Network (LAN) Technologies,” IP datagrams are an 
Open Systems Interconnection (OSI) Network Layer entity that require a Data Link Layer 
encapsulation before being sent on a physical medium. For WAN technologies, the Data Link 
Layer encapsulation provides the following services:

■ Delimitation Frames at the Data Link Layer must be distinguished from each other, 
and the frame’s payload must be distinguished from the Data Link Layer header and 
trailer.

■ Protocol identification On a multiprotocol WAN link, protocols such as TCP/IP or 
AppleTalk must be distinguished from each other.

■ Addressing For WAN technologies that support multiple possible destinations using 
the same physical link, the destination must be identified.
31
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■ Bit-level integrity check A checksum provides a bit-level integrity check between either 
the peer nodes on the link or forwarding nodes on a packet-switching network.

This chapter discusses WAN technologies and their encapsulations for IP datagrams and ARP 
messages. WAN encapsulations are divided into two categories based on the types of IP net-
works of the WAN link:

■ Point-to-point links support an IP network segment with a maximum of two nodes. 
These links include analog phone lines, ISDN lines, Digital Subscriber Line (DSL) lines, 
and T-carrier links such as T-1, T-3, Fractional T-1, E-1, and E-3. Point-to-point links do 
not require Data Link Layer addressing.

■ Non-broadcast multiple access (NBMA) links support an IP network segment with more 
than two nodes; however, there is no facility to broadcast a single IP datagram to multi-
ple locations. NBMA links include packet-switching WAN technologies such as Frame 
Relay. NBMA links require Data Link Layer addressing.

Point-to-Point Protocol
The Point-to-Point Protocol (PPP) is a standardized point-to-point network encapsulation 
method that provides Data Link Layer functionality comparable to LAN encapsulations. PPP 
provides frame delimitation, protocol identification, and bit-level integrity services. PPP is 
defined in RFC 1661.

More Info All of the RFCs referenced in this chapter can be found in the 
\Standards\Chap02_WAN folder on the companion CD-ROM.

RFC 1661 describes PPP as a suite of protocols that provide the following:

■ A Data Link Layer encapsulation method that supports multiple protocols simulta-
neously on the same link.

■ A protocol for negotiating the Data Link Layer characteristics of the point-to-point 
connection named the Link Control Protocol (LCP).

■ A series of protocols for negotiating the Network Layer properties of Network Layer pro-
tocols over the point-to-point connection named Network Control Protocols (NCPs). 
For example, RFCs 1332 and 1877 describe the NCP for IP called Internet Protocol 
Control Protocol (IPCP). IPCP is used to negotiate an IP address, the addresses of name 
servers, and the use of the Van Jacobsen TCP compression protocol.

This chapter discusses only the Data Link Layer encapsulation. Chapter 4, “Point-to-Point Pro-
tocol (PPP),” describes LCP and the NCPs needed for IP connectivity.
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PPP encapsulation and framing is based on the International Organization for Standardiza-
tion (ISO) High-Level Data Link Control (HDLC) protocol. HDLC was derived from the 
Synchronous Data Link Control (SDLC) protocol developed by IBM for the Systems Network 
Architecture (SNA) protocol suite. HDLC encapsulation for PPP frames is described in RFC 
1662. Figure 2-1 shows HDLC encapsulation for PPP frames.

Figure 2-1 PPP encapsulation using HDLC framing for an IP datagram

The fields in the PPP header and trailer are defined as follows:

■ Flag A 1-byte field set to the FLAG character, 0x7E (bit sequence 01111110), that indi-
cates the start and end of a PPP frame. 

■ Address A 1-byte field that is a by-product of HDLC. In HDLC environments, the 
Address field is used as a destination address on a multipoint network. PPP links are 
point-to-point, and the destination node is always the other node on the point-to-point 
link. Therefore, the Address field for PPP encapsulation is set to 0xFF—the broadcast 
address.

■ Control A 1-byte field that is also an HDLC by-product. In HDLC environments, the 
Control field is used to implement sequencing and acknowledgments to provide Data 
Link Layer reliability services. For session-based traffic, the Control field is more than 1 
byte long. For datagram traffic, the Control field is 1 byte long and set to 0x03 to indi-
cate an unnumbered information (UI) frame. Because PPP does not provide reliable 
Data Link Layer services, PPP frames are always UI frames. Therefore, PPP frames always 
use a 1-byte Control field set to 0x03.

■ Protocol A 2-byte field used to identify the upper layer protocol of the PPP payload. For 
example, 0x00-21 indicates an IP datagram and 0x00-29 indicates an AppleTalk datagram.

For the current list of PPP protocol numbers, see 
.

■ Frame Check Sequence (FCS) A 2-byte field used to provide bit-level integrity services for 
the PPP frame. The sender calculates the FCS, which is then placed in the FCS field. The 
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receiver performs the same FCS calculation and compares its result with the result stored 
in this field. If the two FCS values match, the PPP frame is considered valid and is pro-
cessed further. If the two FCS values do not match, the PPP frame is silently discarded.

The HDLC encapsulation for PPP frames is also used for Asymmetric Digital Subscriber Line 
(ADSL) broadband Internet connections.

Figure 2-2 shows a typical PPP encapsulation for an IP datagram when using Address and 
Control field suppression and Protocol field compression.

Figure 2-2 Typical PPP encapsulation for an IP datagram

This abbreviated form of PPP encapsulation is a result of the following:

■ Because the Address field is irrelevant for point-to-point links, in most cases the PPP 
peers agree during LCP negotiation to not include the Address field. This is done 
through the Address and Control Field Compression LCP option.

■ Because the Control is always set to 0x03 and provides no other service, in most cases 
the PPP peers agree during LCP negotiation to not include the Control field. This, too, is 
done through the Address and Control Field Compression LCP option.

■ Because the high-order byte of the PPP Protocol field for Network Layer protocols such 
as IP or AppleTalk is always set to 0x00, in most cases the PPP peers agree during LCP 
negotiation to use a 1-byte Control field. This is done through the Protocol Compression 
LCP option.

Note PPP frames captured with Network Monitor do not display the HDLC structure, as 
shown in Figures 2-1 and 2-2. PPP control frames contain simulated source and destination 
media access control (MAC) addresses and only the PPP Protocol field. PPP data frames con-
tain a simulated Ethernet II header.

PPP on Asynchronous Links

PPP on asynchronous links such as analog phone lines uses character stuffing to prevent the 
occurrence of the FLAG (0x7E) character within the PPP payload. The FLAG character is 
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escaped, or replaced, with a sequence beginning with another special character called the ESC 
(0x7D) character. The PPP ESC character has no relation to the ASCII ESC character.

If the FLAG character occurs within the original IP datagram, it is replaced with the sequence 
0x7D-5E. To prevent the misinterpretation of the ESC character by the receiving node, if the 
ESC (0x7D) character occurs within the original IP datagram, it is replaced with the sequence 
0x7D-5D. Therefore:

■ FLAG characters can occur only at the beginning and end of the PPP frame.

■ On the sending node, PPP replaces the FLAG character within the IP datagram with 
the sequence 0x7D-5E. On the receiving node, the 0x7D-5E sequence is translated back 
to 0x7E.

■ On the sending node, PPP replaces the ESC character within the PPP frame with the 
sequence 0x7D-5D. On the receiving node, the 0x7D-5D sequence is translated back to 
0x7D. If the IP datagram contains the sequence 0x7D-5E, the escaping of the ESC char-
acter turns this sequence into 0x7D-5D-5E to prevent the receiver from misinterpreting 
the 0x7D-5E sequence as 0x7E.

Additionally, character stuffing is used to stuff characters with values less than 0x20 (32 in 
decimal notation) to prevent these characters from being misinterpreted as control characters 
when software flow control is used over asynchronous links. The escape sequence for these 
characters is 0x7D-x, where x is the original character with the fifth bit set to 1. The fifth bit is 
defined as the third bit from the high-order bit using the bit position designation of 7-6-5-4-3-
2-1-0. Therefore, the character 0x11 (bit sequence 0-0-0-1-0-0-0-1) would be escaped to the 
sequence 0x7D-31 (bit sequence 0-0-1-1-0-0-0-1).

The use of character stuffing for characters less than 0x20 is negotiated using the Asynchro-
nous Control Character Map (ACCM) LCP option. This LCP option uses a 32-bit bitmap to 
indicate exactly which character values need to be escaped.

For more information on the ACCM LCP option, see RFCs 1661 and 1662.

PPP on Synchronous Links

Character stuffing is an inefficient method of escaping the FLAG character. If the PPP payload 
consists of a stream of 0x7E characters, character stuffing roughly doubles the size of the PPP 
frame as it is sent on the medium. For asynchronous, byte-boundary media such as analog 
phone lines, character stuffing is the only alternative.

On synchronous links such as T-carrier, ISDN, and Synchronous Optical Network (SONET), 
a technique called  is used to mark the location of the FLAG character. Recall that 
the FLAG character is 0x7E, or the bit sequence 01111110. With bit stuffing, the only time six 
1 bits in a row are allowed is for the FLAG character as it is used to mark the start and end of 
a PPP frame. Throughout the rest of the PPP frame, if there are five 1 bits in a row, a 0 bit is 
inserted into the bit stream by the synchronous link hardware. Therefore, the bit sequence 
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111110 is stuffed to produce 1111100 and the bit sequence 111111 is stuffed to become 
1111101. Therefore, six 1 bits in a row cannot occur except for the FLAG character when it is 
used to mark the start and end of a PPP frame. If the FLAG character does occur within the 
PPP frame, it is bit stuffed to produce the bit sequence 011111010. Bit stuffing is much more 
efficient than character stuffing. If stuffed, a single byte becomes 9 bits, not 16 bits, as is the 
case with character stuffing. With synchronous links and bit stuffing, data sent no longer falls 
along bit boundaries. A single byte sent can be encoded as either 8 or 9 bits, depending on the 
presence of a 11111 bit sequence within the byte.

PPP Maximum Receive Unit

The maximum-sized PPP frame, the maximum transmission unit (MTU) for a PPP link, is 
known as the Maximum Receive Unit (MRU). The default value for the PPP MRU is 1500 
bytes. The MRU for a PPP connection can be negotiated to a lower or higher value using the 
Maximum Receive Unit LCP option. If an MRU is negotiated to a value lower than 1500 bytes, 
a 1500-byte MRU must still be supported in case the link has to be resynchronized.

PPP Multilink Protocol

The PPP Multilink Protocol (MP) is an extension to PPP defined in RFC 1991 that allows you 
to bundle or aggregate the bandwidth of multiple physical connections. It is supported by 
Windows Server 2008 and Windows Vista Network Connections and the Windows Server 
2008 Routing and Remote Access service. MP takes multiple physical connections and makes 
them appear as a single logical link. For example, with MP, two analog phone lines operating 
at 28.8 Kbps appear as a single connection operating at 57.6 Kbps. Another example is the 
aggregation of multiple channels of an ISDN Basic Rate Interface (BRI) or Primary Rate Inter-
face (PRI) line. In the case of a BRI line, MP makes the two 64-Kbps BRI B-channels appear as 
a single connection operating at 128 Kbps. 

MP is an extra layer of encapsulation that operates within a PPP payload. To identify an MP 
packet, the PPP Protocol field is set to 0x00-3D. The payload of an MP packet is a PPP frame 
or the fragment of a PPP frame. If the size of the PPP payload that would be sent on a single-
link PPP connection, plus the additional MP header, is greater than the MRU for the specific 
physical link over which the MP packet is sent, MP fragments the PPP payload.

MP fragmentation divides the PPP payload along boundaries that will fit within the link’s 
MRU. The fragments are sent in sequence using an incrementing sequence number, and flags 
are used to indicate the first and last fragments of an original PPP payload. A lost MP fragment 
causes the entire original PPP payload to be silently discarded.

MP encapsulation has two different forms: the long sequence number format (shown in Fig-
ure 2-3) and the short sequence number format. The long sequence number format adds 
4 bytes of overhead to the PPP payload.



Chapter 2: Wide Area Network (WAN) Technologies 37
Figure 2-3 The Multilink Protocol header, using the long sequence number format 

The fields in the MP long sequence number format header are defined as follows:

■ Beginning Fragment Bit Set to 1 on the first fragment of a PPP payload and to 0 on all 
other PPP payload fragments.

■ Ending Fragment Bit Set to 1 on the last fragment of a PPP payload and to 0 on all other 
PPP payload fragments. If a PPP payload is not fragmented, both the Beginning Frag-
ment Bit and Ending Fragment Bit are set to 1.

■ Reserved Set to 0.

■ Sequence Number Set to an incrementally increasing number for each MP payload 
sent. For the long sequence number format, the Sequence Number field is 3 bytes long. 
The Sequence Number field is used to number successive PPP payloads that would nor-
mally be sent over a single-link PPP connection and is used by MP to preserve the packet 
sequence as sent by the PPP peer. Additionally, the Sequence Number field is used to 
number individual fragments of a PPP payload so that the receiving node can detect a 
fragment loss.

Figure 2-4 shows the short sequence number format, which adds 2 bytes of overhead to the 
PPP payload.

The short sequence format has only 2 reserved bits, and its Sequence Number field is only 
12 bits long. The long sequence number format is used by default unless the Short Sequence 
Number Header Format LCP option is used during the LCP negotiation.
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Figure 2-4 The Multilink Protocol header, using the short sequence number format

Frame Relay
When packet-switching networks were first introduced, they were based on existing analog 
copper lines that experienced a high number of errors. The X.25 packet-switched technology 
was designed to compensate for these errors and provide connection-oriented reliable data 
transfer. In these days of high-grade digital fiber-optic lines, there is no need for the overhead 
associated with X.25. Frame Relay is a packet-switched technology similar to X.25, but with-
out the added framing and processing overhead to provide guaranteed data transfer. Unlike 
X.25, Frame Relay does not provide link-to-link reliability. If a frame in the Frame Relay net-
work is corrupted in any way, it is silently discarded. Upper layer communication protocols 
such as TCP must detect and recover discarded frames.

A key advantage Frame Relay has over private-line facilities, such as T-Carrier, is that Frame 
Relay customers can be charged based on the amount of data transferred, instead of the dis-
tance between the endpoints. It is common, however, for the Frame Relay vendor to charge a 
fixed monthly cost. In either case Frame Relay is distance-insensitive. A local connection, such 
as a T-1 line, to the Frame Relay vendor’s network is required. Frame Relay allows widely sep-
arated sites to exchange data without incurring long-haul telecommunications costs.

Frame Relay is a packet-switching technology defined in terms of a standardized interface 
between user devices (typically routers) and the switching equipment in the vendor’s network 
(Frame Relay switches). 

Typical Frame Relay service providers currently only offer permanent virtual circuits (PVCs). 
A PVC is a path through a packet-switching network that is statically programmed into the 
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switches. The Frame Relay service provider establishes the PVC when the service is ordered. A 
new standard for a switched virtual circuit (SVC) version of Frame Relay uses the ISDN signal-
ing protocol as the mechanism for establishing the virtual circuit. An SVC is a path through a 
packet-switching network that is negotiated using a signaling protocol each time a connection 
is initiated. This new standard is not widely used in production networks.

Frame Relay speeds range from 56 Kbps to 1.544 Mbps. The required throughput for a given 
link determines the committed information rate (CIR). The CIR is the throughput guaranteed 
by the Frame Relay service provider. Most Frame Relay service providers allow a customer to 
transmit bursts above the CIR for short periods of time. Depending on congestion, the 
bursted traffic can be delivered by the Frame Relay network. However, traffic that exceeds the 
CIR is delivered on a best-effort basis only. This flexibility allows for network traffic spikes 
without dropping frames.

Frame Relay Encapsulation

Frame Relay encapsulation of IP datagrams is based on HDLC, as RFC 2427 describes. Because 
Frame Relay was designed for multiple protocols, Frame Relay encapsulation uses a Network 
Layer Protocol Identifier (NLPID) field to identify the payload. IP datagrams are encapsulated 
with a NLPID field set to 0xCC and a Frame Relay header and trailer. Figure 2-5 shows the 
Frame Relay encapsulation for IP datagrams.

Figure 2-5 Frame Relay encapsulation for IP datagrams, showing the Frame Relay header and trailer

The fields in the Frame Relay header and trailer are defined as follows:

■ Flag As in PPP frames, the Flag field is 1 byte long and is set to 0x7E to mark the begin-
ning and end of the Frame Relay frame. Bit stuffing is used on synchronous links to pre-
vent the occurrence of the Flag character within the Frame Relay payload.

■ Address The Address field is multiple bytes long (typically 2 bytes) and contains the 
Frame Relay virtual circuit identifier called the Data Link Connection Identifier (DLCI) 
and congestion indicators. The Address field’s structure is discussed in the section titled 
“Frame Relay Address Field,” later in this chapter.
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■ Control A 1-byte field set to 0x03 to indicate a UI frame.

■ NLPID A 1-byte field set to 0xCC to indicate an IP datagram.

■ Frame Check Sequence A 2-byte CRC used for bit-level integrity verification in the 
Frame Relay frame. If a Frame Relay frame fails integrity verification, it is silently 
discarded.

Frame Relay Address Field

The Frame Relay Address field can be 1, 2, 3, or 4 bytes long. Typical Frame Relay implemen-
tations use a 2-byte Address field, as shown in Figure 2-6.

Figure 2-6 A 2-byte Frame Relay Address field

The fields within the 2-byte Address field are defined as follows:

■ DLCI The first 6 bits of the first byte and the first 4 bits of the second byte comprise the 
10-bit DLCI. The DLCI is used to identify the Frame Relay virtual circuit over which the 
Frame Relay frame is traveling. The DLCI is only locally significant. Each Frame Relay 
switch changes the DLCI value as it forwards the Frame Relay frame. The devices at each 
end of a virtual circuit use a different DLCI value to identify the same virtual circuit. 
Table 2-1 lists the defined values for the DLCI.

Table 2-1 Defined Values for the Frame Relay DLCI
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0 In-channel signaling

1–15 Reserved

16–991 Assigned to user connections

992–1022 Reserved

1023 In-channel signaling
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■ Command/Response (C/R) The seventh bit in the first byte of the Address field is the 
C/R bit. It currently is not used for Frame Relay operations and is set to 0.

■ Extended Address (EA) The last bit in each byte of the Address field is the EA bit. If this 
bit is set to 1, the current byte is the last byte in the Address field. For the 2-byte Address 
field, the value of the EA bit in the first byte of the Address field is 0, and the value of the 
EA bit in the second byte of the Address field is 1.

■ Forward Explicit Congestion Notification (FECN) The fifth bit in the second byte of the 
Address field is the FECN bit. It is used to inform the destination Frame Relay node that 
congestion exists in the path from the source to the destination. The FECN bit is set to 
0 by the source Frame Relay node and set to 1 by a Frame Relay switch if it is experienc-
ing congestion in the forward path. If the destination Frame Relay node receives a Frame 
Relay frame with the FECN bit set, the node can indicate the congestion condition to 
upper layer protocols that can implement receiver-side flow control. The interpretation 
of the FECN bit for IP traffic is not defined.

■ Backward Explicit Congestion Notification (BECN) The sixth bit in the second byte of 
the Address field is the BECN bit. The BECN bit is used to inform the destination Frame 
Relay node that congestion exists in the path from the destination to the source (in the 
opposite direction in which the frame was traveling). The BECN bit is set to 0 by the 
source Frame Relay node and set to 1 by a Frame Relay switch if it is experiencing con-
gestion in the reverse path. If the destination Frame Relay node receives a Frame Relay 
frame with the BECN bit set, the node can indicate the congestion condition to upper 
layer protocols that can implement sender-side flow control. The interpretation of the 
BECN bit for IP traffic is not defined.

■ Discard Eligibility (DE) The seventh bit in the second byte of the Address field is the 
DE bit. Frame Relay switches use the DE bit to decide which frames to discard during a 
period of congestion. Frame Relay switches consider the frames with the DE bit set to be 
a lower priority and discards them first. The initial Frame Relay switch sets the DE bit to 
1 on a frame when a customer has exceeded the CIR for the virtual circuit.

The maximum-sized frame that can be sent across a Frame Relay network varies according to 
the Frame Relay provider. RFC 2427 requires all Frame Relay networks to support a mini-
mum frame size of 262 bytes, and a maximum frame size of 1600 bytes, although maximum 
frame sizes of up to 4500 bytes are common. Using a maximum frame size of 1600 bytes and 
a 2-byte address field, the IP MTU for Frame Relay is 1592.

Summary
Typical WAN technology encapsulations used by Windows Server 2008 and Windows Vista 
provide delimitation, addressing, protocol identification, and bit-level integrity services. IP 
datagrams sent over point-to-point WAN links can be encapsulated using PPP or MP. IP 
datagrams and ARP messages sent over Frame Relay use an HDLC-based multiprotocol 
encapsulation.
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To successfully troubleshoot problems forwarding IP datagrams on a local area network 
(LAN) link, it is important to understand how TCP/IP uses Address Resolution Protocol 
(ARP) to resolve a next-hop IP address to its corresponding Network Interface Layer address. 
TCP/IP for Windows Server 2008 and Windows Vista uses ARP for address resolution, dupli-
cate address detection, and neighbor unreachability detection. The Network Bridge for 
Windows Server 2008 and Windows Vista and the Routing and Remote Access service for 
Windows Server 2008 uses a variation of ARP called proxy ARP to forward IP datagrams 
between nodes on separate segments of a subdivided subnet.

Note This chapter assumes prior knowledge of the route determination process for IP hosts 
and routers in Microsoft Windows. For more information, see Chapter 5, “IP Routing,” of the 
“TCP/IP Fundamentals for Microsoft Windows” book, located in the \Fundamentals folder on 
the companion CD-ROM.

Overview of ARP
ARP is used by TCP/IP nodes on shared access, broadcast-based networking technologies 
such as Ethernet and Token Ring. ARP is used to resolve the next-hop IP address of a node to 
its corresponding media access control (MAC) address. The MAC address also is known as 
the physical, hardware, or network adapter address. The resolved MAC address becomes the 
destination MAC address in the Ethernet or Token Ring header to which an IP datagram is 
addressed when it is sent on the medium. ARP resolves an Internet Layer address (an IP 
address) to a Network Interface Layer address (a MAC address). ARP is defined in RFC 826.
43
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More Info The RFCs referenced in this chapter can be found in the \Standards\Chap03_ARP 
folder on the companion CD-ROM.

The next-hop IP address is not necessarily the same as the destination IP address of the IP dat-
agram. The result of the route determination process for every outgoing IP datagram is a next-
hop interface and a next-hop IP address. For direct deliveries to destinations on the same sub-
net, the next-hop IP address is the datagram’s destination IP address. For indirect deliveries to 
remote destinations, the next-hop IP address is the IP address of a neighboring router on the 
same subnet as the forwarding host.

IP was designed to be independent of any specific Network Interface Layer technology. There-
fore, there is no way to determine the destination Network Interface Layer address from the 
next-hop IP address. For example, Ethernet and Token Ring MAC addresses are 6 bytes long, 
and IP addresses are 4 bytes long. During the manufacturing process, the MAC address is 
assigned to the adapter. A network administrator assigns the IP address (either directly 
through manual configuration or indirectly through the administration of a Dynamic Host 
Configuration Protocol [DHCP] server). Because there is no correlation between the assign-
ments of these two addresses for a given IP node, it is impossible to derive one address from 
the other. ARP is a request-reply protocol that provides a dynamic address resolution facility 
to map next-hop IP addresses to their corresponding MAC addresses.

As defined in RFC 826, ARP consists of the following messages:

■ ARP Request The forwarding node uses the ARP Request message to request the MAC 
address for a specific next-hop IP address. The ARP Request is a MAC-level broadcast 
frame intended to reach all the nodes on the physical subnet to which the interface 
sending the ARP Request is attached. The node sending the ARP Request is known as 
the ARP requester.

■ ARP Reply The ARP Reply message is used to reply to the ARP requester. The node 
whose IP address matches the requested IP address in the ARP Request message sends 
the ARP Reply. The ARP Reply is a unicast MAC frame sent to the destination MAC 
address of the ARP requester. The node sending the ARP Reply is known as the ARP 
responder.

Because the ARP Request message is a MAC-level broadcast, all next-hop IP addresses to be 
resolved must be directly reachable (on the same subnet) from the interface used to send the 
ARP Request. For proper routing table entries, this is always the case. If a routing table entry 
contains an invalid next-hop IP address and the address is not directly reachable for the inter-
face, ARP will fail to resolve the next-hop IP address.

All nodes within the same broadcast domain receive the ARP Request. A broadcast domain is 
a portion of a network over which a broadcast frame is propagated. Hubs, bridges, and Layer 
2 switches propagate the ARP Request. However, IP routers do not propagate ARP frames.
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ARP for Windows Server 2008 and Windows Vista supports the broadcast ARP Request and 
unicast ARP Reply exchange described in RFC 826 to perform address resolution. As 
described in the “Duplicate Address Detection” and “Neighbor Unreachability Detection” 
sections of this chapter, Windows Server 2008 and Windows Vista also support a unicast ARP 
Request and unicast ARP Reply exchange and a broadcast ARP Reply. 

The ARP or Neighbor Cache

As is common in many TCP/IP implementations, TCP/IP for Windows Server 2008 and Win-
dows Vista maintains a RAM-based table of IP and MAC address mappings. Historically known 
as the ARP cache, in Windows Server 2008 and Windows Vista, it is also known as the neighbor 
cache. When an ARP exchange for address resolution is complete, both the ARP requester and 
the ARP responder have each other’s IP address-to-MAC address mappings in their ARP caches. 
Subsequent packets forwarded to the previously resolved IP addresses use the ARP cache 
entry’s MAC address. The ARP cache is always checked before an ARP Request is sent.

After the MAC address for a next-hop IP address is determined using an ARP Request–ARP 
Reply exchange, the resolved MAC address is used as the destination MAC address for subse-
quent packets. If the node whose IP address has already been resolved becomes unavailable 
on the subnet, the ARP requester node continues to use its ARP cache entry and send packets 
on the medium to the resolved MAC address. Because the next-hop IP address was mapped to 
a MAC address with the ARP cache entry, and the frame was sent on the medium, IP and ARP 
on the sending node consider the IP datagram to be successfully delivered.

This condition is known as a network black hole; packets sent on the subnet are dropped, and 
the sender or forwarder is unaware of the condition. The user at the ARP requester computer 
does not notice this condition until TCP connections or other types of session-oriented traffic 
begin to time out. This particular type of network black hole persists as long as the entry for 
the mapping remains in the ARP cache. After the entry is removed, an ARP Request–ARP 
Reply exchange is attempted again. Because the failed node does not respond to the ARP 
Request, the lack of an ARP Reply can be used to indicate an unsuccessful delivery of IP 
packets using the next-hop IP address.

To reduce the impact of a network black hole due to an incorrect entry in the ARP cache, ARP 
in Windows Server 2008 and Windows Vista uses neighbor unreachability detection to track 
the reachability of neighboring nodes on a subnet and remove or update entries in the ARP 
cache. For more information, see “Neighbor Unreachability Detection” in this chapter.

ARP Frame Structure
ARP frames use the EtherType of 0x0806. ARP is not a client protocol of IP, and ARP frames 
do not contain an IP header. Thus, ARP is useful only for resolving MAC addresses for IP 
addresses that are on the same physical subnet, the boundaries of which are defined by IP 
routers. IP routers never forward an ARP Request or ARP Reply frame.
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As RFC 826 describes, an ARP frame’s structure suggests that ARP could be used for MAC 
address resolution for protocols other than IP. However, in practice, IP is the only protocol 
that uses the ARP frame format. Figure 3-1 shows the structure of the ARP frame for the IP 
protocol and for LAN technologies that use a 6-byte MAC address.

Figure 3-1 The structure of an ARP frame

More Info ARP as a potential MAC address resolution method for non-IP protocols is 
discussed in RFC 826.

The fields in the ARP header are defined as follows:

■ Hardware Type A 2-byte field that indicates the type of hardware being used at the Net-
work Interface Layer. Table 3-1 lists some commonly used ARP Hardware Type values. 
After receipt of an ARP frame, an IP node verifies that the Hardware Type value of the 
ARP frame matches the Hardware Type value of the interface on which the ARP frame 
was received. If it does not match, the frame is silently discarded. For a complete list of 
ARP Hardware Type values, see http://www.iana.org/assignments/arp-parameters.

Table 3-1 ARP Hardware Type Values

Hardware Type Value Data Link Layer Technology

1 (0x00-01) Ethernet

6 (0x00-06) IEEE 802.5 Networks (Token Ring)

15 (0x00-0F) Frame Relay

16 (0x00-10) Asynchronous Transfer Mode (ATM)
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■ Protocol Type A 2-byte field that indicates the protocol for which ARP is providing 
address resolution. This field uses the same values as the Ethernet II EtherType field. 
For IP address resolution, the Protocol Type field is set to the EtherType for IP, 0x0800. 
After receipt of an ARP frame, an IP node verifies that the ARP Protocol Type is set to 
0x0800. If it is not set to 0x0800, the frame is silently discarded.

■ Hardware Address Length A 1-byte field that indicates the length in bytes of the hard-
ware address in the Sender Hardware Address and Target Hardware Address fields. For 
Ethernet and Token Ring, the Hardware Address Length field is set to 6. For frame relay, 
the Hardware Address Length typically is set to 2 (for the commonly used 2-byte Frame 
Relay Address field).

■ Protocol Address Length A 1-byte field that indicates the length in bytes of the protocol 
address in the Sender Protocol Address and Target Protocol Address fields. For the IP 
protocol, the length of IP addresses is 4 bytes.

■ Operation (Opcode) A 2-byte field that indicates the type of ARP frame. Table 3-2 lists 
the commonly used ARP Operation values. For a complete list of ARP Operation values, 
see http://www.iana.org/assignments/arp-parameters.

■ Sender Hardware Address (SHA) A field that is the length of the value of the Hardware 
Address Length field and contains the hardware or Data Link Layer address of the ARP 
frame’s sender. For Ethernet and Token Ring, the SHA field contains the MAC address 
of the node sending the ARP frame.

■ Sender Protocol Address (SPA) A field that is the length of the value of the Protocol 
Address Length field and contains the protocol address of the ARP frame’s sender. For 
IP, the SPA field contains the IP address of the node sending the ARP frame.

■ Target Hardware Address (THA) A field that is the length of the value of the Hardware 
Address Length field and contains the hardware or Data Link Layer address of the ARP 
frame’s target (destination). For Ethernet and Token Ring, the THA field is set to 0x00-
00-00-00-00-00 for ARP Request frames, and it is set to the MAC address of the ARP 
requester for ARP Reply frames.

■ Target Protocol Address (TPA) A field that is the length of the value of the Protocol 
Address Length field and contains the protocol address of the ARP frame’s target (desti-
nation). For IP, the TPA field is set to the IP address being resolved in the ARP Request 
frame, and it is set to the IP address of the ARP requester in the ARP Reply frame.

Table 3-2 ARP Operation Values

Operation Value Type of ARP Frame

1   (0x00-01) ARP Request

2   (0x00-02) ARP Reply

8   (0x00-08) Inverse ARP Request

9   (0x00-09) Inverse ARP Reply
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ARP in Windows Server 2008 and Windows Vista
Unlike ARP in previous versions of Windows, ARP in Windows Server 2008 and Windows 
Vista is designed to work in the same way as Neighbor Discovery in IP version 6 (IPv6), as 
described in RFC 4861. Neighbor Discovery in IPv6 is the replacement for ARP, router discov-
ery, and the redirect function in IP version 4 (IPv4). IPv6 nodes use a neighbor cache to store 
the MAC addresses of recently resolved IPv6 addresses, rather than an ARP cache. Neighbor 
Discovery in IPv6 also provides additional capabilities that are not present in IPv4, such as 
neighbor unreachability detection.

The following sections describe how ARP in Windows Server 2008 and Windows Vista works 
for the following processes:

■ Address resolution

■ Duplicate address detection

■ Neighbor unreachability detection

Address Resolution

ARP in Windows Server 2008 and Windows Vista supports the broadcast ARP Request and 
unicast ARP Reply exchange to perform address resolution, as described in RFC 826. The ARP 
Request and ARP Reply exchange contains all the information for the ARP requester to deter-
mine the IP address and MAC address of the ARP responder, and for the ARP responder to 
determine the IP address and MAC address of the ARP requester. Figure 3-2 shows an ARP 
Request and ARP Reply exchange.

Figure 3-2 An example of address resolution

Node 1
IP Address: 10.0.0.99

MAC Address: 00-60-08-52-F9-D8

Node 2
IP Address: 10.0.0.1

MAC Address: 00-10-54-CA-E1-40

ARP Request
SHA: 00-60-08-52-F9-D8
SPA: 10.0.0.99
THA: 00-00-00-00-00-00
TPA: 10.0.0.1

ARP Reply
SHA: 00-10-54-CA-F1-40
SPA: 10.0.0.1
THA: 00-60-08-52-F9-D8
TPA: 10.0.0.99
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Node 1, with the IP address of 10.0.0.99 and the MAC address of 0x00-60-08-52-F9-D8, needs 
to forward an IP datagram to Node 2 at the IP address of 10.0.0.1. Based on information in 
Node 1’s routing table, the next-hop IP address to reach Node 2 is 10.0.0.1, using the Ethernet 
interface. Node 1 constructs an ARP Request frame and sends it as a MAC-level broadcast 
using the Ethernet interface.

The following Network Monitor 3.1 trace (Frame 1 of Capture 03-01 in the \Captures folder 
on the companion CD-ROM) is for the ARP Request frame sent by Node 1:

Frame:  

- Ethernet: Etype = ARP 

+ DestinationAddress: *BROADCAST 

+ SourceAddress: 006008 52F9D8 

EthernetType: ARP, 2054(0x806) 

- Arp: Request, 10.0.0.99 asks for 10.0.0.1 

HardwareType: Ethernet 

ProtocolType: Internet IP (IPv4) 

HardwareAddressLen: 6 (0x6) 

ProtocolAddressLen: 4 (0x4) 

OpCode: Request, 1(0x1) 

SendersMacAddress: 00-60-08-52-F9-D8 

SendersIp4Address: 10.0.0.99 

TargetMacAddress: 00-00-00-00-00-00 

TargetIp4Address: 10.0.0.1

The known quantity—the IP address of Node 2 (10.0.0.1)—is set to the TPA field. The 
unknown quantity—the hardware address of Node 2—is the THA field in the ARP Request 
frame, which is set to 00-00-00-00-00-00. Included in the ARP Request are the IP and MAC 
addresses of Node 1 so that Node 2 can add an entry for Node 1 to its own neighbor cache.

After receipt of the ARP Request frame at Node 2, the node checks the values of the ARP Hard-
ware Type and Protocol Type fields. Node 2 then examines the value of the TPA. Because the 
TPA is the same as Node 2’s IP address, Node 2 adds a neighbor cache entry consisting of 
[SPA, SHA, Interface] to its neighbor cache. It then checks the ARP Operation field. Because 
the received ARP frame is an ARP Request, Node 2 constructs an ARP Reply to send back to 
Node 1.

The following Network Monitor 3.1 trace (Frame 2 of Capture 03-01 in the \Captures folder 
on the companion CD-ROM) is for the ARP Reply frame sent by Node 2:

Frame:  

- Ethernet: Etype = ARP 

+ DestinationAddress: 006008 52F9D8 

+ SourceAddress: 001054 CAE140 

EthernetType: ARP, 2054(0x806) 

UnkownData: Binary Large Object (18 Bytes) 

- Arp: Response, 10.0.0.1 at 00-10-54-CA-E1-40 

HardwareType: Ethernet 

ProtocolType: Internet IP (IPv4) 
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HardwareAddressLen: 6 (0x6) 

ProtocolAddressLen: 4 (0x4) 

OpCode: Response, 2(0x2) 

SendersMacAddress: 00-10-54-CA-E1-40 

SendersIp4Address: 10.0.0.1 

TargetMacAddress: 00-60-08-52-F9-D8 

TargetIp4Address: 10.0.0.99

In the ARP Reply, all quantities are known and the frame is addressed at the MAC level using 
Node 1’s unicast MAC address. The quantity that Node 1 needs—Node 2’s MAC address—is 
the value of the SHA field (SendersMacAddress).

Upon receipt of the ARP Reply frame, Node 1 checks the values of the ARP Hardware Type 
and Protocol Type fields. Node 1 then examines the value of the TPA field. Because the TPA is 
the same as Node 1’s IP address, Node 1 adds a neighbor cache entry consisting of [SPA, SHA, 
Interface] to its neighbor cache. 

Frame Padding and Ethernet

ARP frames can contain padding bytes. This is not an ARP field, but the consequence of send-
ing an ARP frame on an Ethernet network. As discussed in Chapter 1, Ethernet payloads using 
the Ethernet II encapsulation must be a minimum length of 46 bytes to adhere to the mini-
mum Ethernet frame size. The ARP frame is only 28 bytes long. Therefore, to send the ARP 
frame on an Ethernet network, it must be padded with 18 padding bytes.

Note When using Network Monitor, you might notice that sometimes the padding 
bytes do not appear on either the ARP Request or the ARP Reply frames. Does this mean 
that the ARP frame was sent as a runt—an Ethernet frame with a length below the minimum 
frame size? No. This is due to the implementation of Network Monitor within Windows. 
Network Monitor receives frames by acting as a Network Driver Interface Specification (NDIS) 
protocol. When any frame is sent or received, Network Monitor receives a copy. However, 
when frames are sent, Network Monitor receives a copy of the frame before the frame padding 
is added. When the frame is received, Network Monitor receives a full copy of the frame. 
Therefore, you do not see a frame padding bytes on an ARP frame if it was captured on the 
node sending the ARP frame. The example Network Monitor trace Capture 03-01 displayed 
in this chapter was taken on Node 1. Therefore, the frame padding is only seen on the ARP 
Reply frame.

The Neighbor Cache

Similar to IPv6 nodes, ARP in Windows Server 2008 and Windows Vista use a neighbor cache 
to store recently resolved IP address-to-MAC address mappings. This was known as an ARP 
cache in previous versions of Windows. You can view the neighbor cache in Windows Server 
2008 and Windows Vista with the following commands:
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■ netsh interface ipv4 show neighbors Shows the contents of the neighbor cache for 
each interface, including the loopback interface. For each entry, the command displays the 
IP address, the resolved MAC address, and the neighbor unreachability detection state of 
the entry. For more information, see “Neighbor Unreachability Detection” in this chapter.

■ arp –a Shows the contents of the neighbor cache for each LAN or PPP interface that 
has an IP address assigned, but does not include the loopback interface. For each entry, 
the command displays the IP address, the resolved MAC address, and the state of the 
entry (which is either “static” for a permanent cache entry or “dynamic” for an entry 
obtained through an ARP message exchange).

You can add permanent neighbor cache entries (also known as static entries) to the neighbor 
cache with the following commands:

■ netsh interface ipv4 add neighbors InterfaceNameorIndex IPAddress MACAddress 

store=active|persistent Creates a permanent neighbor cache entry for an interface 
(InterfaceNameorIndex) that maps an IP address (IPAddress) to a MAC address 
(MACAddress). The store= option allows you to specify that the permanent entry is main-
tained (persistent, the default) or removed (active) when the computer is restarted.

■ arp –s IPAddress MACAddress InterfaceAddress Creates a permanent neighbor cache 
entry for an interface identified by an IP address (InterfaceAddress) that maps an IP 
address to a MAC address. Entries added with arp –s are removed when the computer is 
restarted.

You can flush the neighbor cache of nonpermanent entries with the following commands:

■ netsh interface ipv4 delete neighbors

■ arp –d *

Updating the Neighbor Cache

Unlike previous versions of Windows, ARP in Windows Server 2008 and Windows Vista does 
not update a neighbor cache entry with a different MAC address when it receives an ARP 
Request with the SPA field that matches a neighbor cache entry’s IP address. This new behav-
ior is consistent with Neighbor Discovery for IPv6 and prevents the neighbor cache from 
being updated with incorrect information. 

If a node on a subnet changes its MAC address, the corresponding entry in the neighbor cache 
of its neighbors is not changed until there is a new exchange of broadcast ARP Request and 
unicast ARP Reply messages.

Duplicate Address Detection

ARP also is used to perform duplicate address detection by sending an ARP Request in which 
the TPA is set to the IP address for which duplication is being detected. In other words, to 
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detect whether other nodes on the subnet are using the same address, a node sends an ARP 
Request for its own IP address. For example, when a node is assigned the IP address 
10.0.23.89, it sends an ARP Request with the TPA set 10.0.23.89.

If a node sends an ARP Request for its own IP address and no ARP Reply frames are received, 
the IP address is unique on the subnet and is not a duplicate. If a node sends an ARP Request 
for its own IP address and receives an ARP Reply, the IP address is a duplicate. In an IP address 
conflict, the node that sends the ARP Request is the offending node. The node that has already 
verified the uniqueness of its address and sends the ARP Reply is the defending node.

In Windows Server 2008 and Windows Vista, the number of broadcast ARP Requests sent 
during duplicate address detection by default is 3. You can change the number with the netsh 
interface ipv4 set interface InterfaceNameOrIndex dadtransmits=Number.

In previous versions of Windows, the ARP Request for duplicate address detection sent by the 
offending node set both the SPA and TPA to the IP address for which duplication is being 
detected. This type of ARP Request caused the receivers with an entry for the conflicted IP 
address in the SPA field to update their ARP caches with the MAC address of the offending 
node. To correct the ARP caches with the MAC address of the defending node, the offending 
node sent an additional broadcast ARP Request with the MAC address of the defending node. 

To prevent incorrect entries in neighbor caches during duplicate address detection, the behavior 
of ARP in Windows Server 2008 and Windows Vista has been changed in the following ways:

■ The initial ARP Request just has the TPA set to the address for which uniqueness is being 
verified. The SPA field is set to 0.0.0.0. This new ARP Request message does not update 
the ARP or neighbor caches of neighboring nodes and, therefore, does not have to be 
corrected with an additional broadcast ARP Request. 

■ If ARP receives an ARP Request with both the SPA and TPA set to an existing entry in the 
neighbor cache (as sent by previous versions of Windows), ARP does not update the 
entry with the offending node’s MAC address.

With Windows Server 2008 and Windows Vista, there are two different exchanges when there 
is an IP address conflict, depending on the version of Windows running on the offending node.

Offending Node Runs Windows Server 2008 or Windows Vista

If the offending node is running Windows Server 2008 or Windows Vista, it sends the ARP 
Request with the SPA field to 0.0.0.0, which does not modify the neighbor or ARP caches of 
the receiving nodes. The defending node sends a unicast ARP Reply to the offending node, 
informing it of the address conflict. Therefore, this ARP exchange consists of the following:

1. A broadcast ARP Request sent by the offending node

2. A unicast ARP Reply sent by the defending node
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For an example of this exchange, see the Network Monitor trace in Capture 03-02 in the 
\Captures folder on the companion CD-ROM.

Offending Node Runs a Previous Version of Windows

If the offending node is running a previous version of Windows, it sends the ARP Request 
with both the TPA and SPA fields set to the duplicate address, which can modify the ARP 
caches of the neighboring nodes that are running a previous version of Windows. If the 
defending node is running a previous version of Windows, it sends a unicast ARP Reply to the 
offending node, informing it of the address conflict. If the defending node is running a Win-
dows Server 2008 or Windows Vista, it sends a broadcast ARP Reply, informing all nodes on 
the subnet of the address conflict. The offending node then sends an additional broadcast 
ARP Request message with the MAC address of the defending node to correct the ARP caches 
of the neighboring nodes that are running a previous version of Windows. 

Therefore, this ARP exchange consists of the following:

1. A broadcast ARP Request sent by the offending node

2. A unicast ARP Reply (previous versions of Windows) or a broadcast ARP Reply 
(Windows Server 2008 or Windows Vista) sent by the defending node

3. A broadcast ARP Request sent by the offending node with the MAC address of the 
defending node

For an example of this exchange with a broadcast ARP Reply, see the Network Monitor trace 
in Capture 03-03 in the \Captures folder on the companion CD-ROM.

Note Duplicate address detection attempts to detect the use of a duplicate IP address on the 
same subnet. Because routers do not propagate ARP frames, duplicate address detection does 
not detect an IP address conflict between two nodes that are located on different subnets.

Duplicate Address Detection and DHCP

If the offending node is a computer running Windows Server 2008 or Windows Vista that is 
manually configured with a conflicting IP address, the receipt of an ARP Reply during dupli-
cate address detection causes TCP/IP to select an IPv4 link-local address, also known as an 
Automatic Private IP Addressing (APIPA) address, from the 169.254.0.0/16 address range. 
Windows displays an error message and logs an event in the system event log.

A computer running Windows Server 2008 or Windows Vista and using automatic configura-
tion with DHCP performs duplicate address detection for the IP address received in the 
DHCPOFFER message. If there is an IP address conflict, the DHCP client sends a DHCPDE-
CLINE message to the DHCP server. If the DHCP server is running Windows Server 2008, the 
IP address sent in the DHCPOFFER is flagged as a bad IP address and is not allocated to any 
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other DHCP clients. The DHCP client starts the DHCP lease allocation process by sending a 
new DHCPDISCOVER message. For more information about DHCP messages, see Chapter 
14, “Dynamic Host Configuration Protocol (DHCP).”

Duplicate Address Detection and the Defending Node

The defending node detects an address conflict whenever the SPA of the incoming ARP 
Request is the same as an IP address configured on the interface receiving the ARP Request. 
For ARP Requests sent by an offending node running a previous version of Windows, both 
the SPA and TPA are set to the conflicting address. However, ARP Requests sent during dupli-
cate address detection are not the only ARP Requests that can have the SPA set to a conflicting 
address.

For example, if a node using a conflicting address is started without being connected to its 
subnet, no replies to the initial ARP Requests are received, and the node initializes TCP/IP 
using the conflicting address. If the node is then placed on the same subnet as the defending 
node, no additional ARP Requests for duplicate address detection are sent. However, each 
time either node using the conflicting address sends an ARP Request to perform address res-
olution, the SPA is set to the conflicting address. In this case, an error message is displayed 
and an event is logged in the system event log. Both nodes continue to use the conflicting IP 
address, but each displays an error message and logs an event every time the other node sends 
an ARP Request.

Neighbor Unreachability Detection

ARP in previous versions of Windows added entries to the ARP cache and refreshed their life-
time when they were used without regard to whether the neighboring node was actually 
reachable, was receiving the packets sent to it, and was able to respond. Neighbor unreach-
ability detection in Windows Server 2008 and Windows Vista is the process by which a node 
determines that the IP layer of a neighbor is no longer receiving packets.

A neighboring node is reachable if there has been a recent confirmation that IP packets sent 
to the neighboring node were received and processed by the neighboring node. Neighbor 
unreachability does not necessarily verify the end-to-end reachability of the destination. 
Because a neighboring node can be a host or router, the neighboring node might not be the 
final destination of the packet. Neighbor unreachability verifies only the reachability of the 
first hop to the destination.

One of the ways that reachability is confirmed after the initial address resolution exchange of 
messages is through the sending of a unicast ARP Request and the receipt of a unicast ARP 
Reply message. The exchange of ARP Request and ARP Reply messages confirms only the 
reachability of the node that sent the ARP Reply from the node that sent the ARP Request. It 
does not confirm the reachability of the node that sent the ARP Request from the node that 
sent the ARP Reply.
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For example, if Host A sends a unicast ARP Request to Host B and Host B sends a unicast ARP 
Reply to Host A, Host A considers Host B reachable. Because there is no confirmation in this 
exchange that Host A actually received the ARP Reply, Host B does not consider Host A reach-
able. To confirm reachability of Host A from Host B, Host B must send its own unicast ARP 
Request to Host A and receive a unicast ARP Reply from Host A.

Another method of determining reachability is when upper-layer protocols indicate that the 
communication using the next-hop address is making forward progress. For TCP traffic, for-
ward progress is determined when acknowledgment segments for sent data are received. The 
end-to-end reachability confirmed by the receipt of TCP acknowledgments implies the reach-
ability of the first hop to the destination. The TCP component of the TCP/IP stack provides 
these indications to the IP component on an ongoing basis. 

Other protocols, such as UDP, might not have a method of determining or indicating the for-
ward progress of communication. In this case, the exchange of unicast ARP Request and ARP 
Reply messages is used to confirm reachability.

Neighbor unreachability detection for IPv4 is enabled by default for TCP/IP in Windows 
Server 2008 and Windows Vista. To disable neighbor unreachability detection for IPv4 on 
an interface, use the netsh interface ipv4 set interface InterfaceNameOrIndex 
nud=disabled command.

Neighbor Cache Entry States

The reachability of a neighboring node is determined by monitoring the state of the neighbor-
ing node’s entry in the neighbor cache. RFC 4861 defines the following states for a neighbor 
cache entry:

■ INCOMPLETE Address resolution is in progress. The INCOMPLETE state is entered 
when a new neighbor cache entry is created but does not yet have the node’s corre-
sponding MAC address. By default, ARP in Windows Server 2008 and Windows Vista 
sends up to three ARP Requests before abandoning address resolution. The number of 
ARP Requests that are sent is controlled by the ArpRetryCount registry value, which is 
described later in this chapter.

■ REACHABLE Reachability has been confirmed by receipt of an ARP Reply. The neighbor 
cache entry stays in the REACHABLE state until the number of milliseconds of the 
Reachable Time for the interface. The Reachable Time is randomly calculated based on 
the Base Reachable Time, which is 30 seconds by default. You can view the Base Reach-
able Time and calculated Reachable Time from the display of the netsh interface ipv4 
show interface InterfaceNameOrIndex command. You can specify the value of the 
Base Reachable Time with the netsh interface ipv4 set interface 
InterfaceNameOrIndex basereachabletime=Milliseconds command. As long as upper 
layer protocols such as TCP indicate that communication is making forward progress, 
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the entry stays in the REACHABLE state. Each time an indication of forward progress is 
made, the reachable time for the entry is refreshed.

■ STALE Reachable time (the duration since the last reachability confirmation was 
received) has elapsed. The neighbor cache entry goes into the STALE state after the 
reachable time elapses and remains in this state until a packet is sent to the neighbor. 

■ DELAY To allow time for upper-layer protocols to provide reachability confirmation 
before sending ARP Request messages, the state of the neighbor cache entry enters the 
DELAY state and waits 5 seconds. If no reachability confirmation is received by the 
delay time, then the entry enters the PROBE state and a unicast ARP Request message is 
sent. ARP in Windows Server 2008 and Windows Vista does not use this state, but goes 
from the STALE state to either the UNREACHABLE or PROBE state directly.

■ PROBE Reachability confirmation is in progress for a neighbor cache entry that was in 
either the STALE state or the DELAY state. Unicast ARP Request messages are sent at inter-
vals corresponding to the Retransmission Interval, which is 1000 milliseconds, or 
1 second. You can specify the value of the Retransmission Interval with the netsh 
interface ipv4 set interface InterfaceNameOrIndex retransmittime=Milliseconds 
command. ARP in Windows Server 2008 and Windows Vista probes for up to 5 seconds.

If an incoming ARP Request message is for duplicate address detection and it matches an 
entry in the neighbor cache that is in the REACHABLE state, ARP in Windows Server 2008 
and Windows Vista changes the state of the entry to STALE. This will allow the host to con-
firm the MAC address through a unicast ARP Request and ARP Reply exchange more quickly 
for better failover when communicating with clustered servers.

ARP Registry Values

By default, TCP/IP for Windows Server 2008 and Windows Vista use the Ethernet II encapsu-
lation described in Chapter 1, “Local Area Network (LAN) Technologies,” when sending both 
IP and ARP frames. The TCP/IP protocol for Windows Server 2008 and Windows Vista 
receives both Ethernet II and IEEE 802.3 Sub-Network Access Protocol (SNAP)–encapsulated 
frames, but, by default, they respond only with Ethernet II–encapsulated frames. To send 
IEEE 802.3 SNAP-encapsulated IP and ARP frames, use the ArpUseEtherSNAP registry value.

ArpUseEtherSNAP
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 

Data type: REG_DWORD 

Valid range: 0–1 

Default value: 0 

Present by default: No

ArpUseEtherSNAP either enables (when set to 1) or disables (when set to 0) the use of the 
IEEE 802.3 SNAP frame format when sending IP and ARP frames. ArpUseEtherSNAP is 
disabled by default, meaning that IP and ARP frames are sent with Ethernet II encapsulation. 
Regardless of the ArpUseEtherSNAP setting, both types of frame formats are received.
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To enable communication with a Network Load Balancing (NLB) cluster that is operating in 
multicast mode, use the EnableBcastArpReply registry value.

EnableBcastArpReply
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 

Data type: REG_DWORD 

Valid range: 0–1 

Default value: 1 

Present by default: No

EnableBcastArpReply either enables (when set to 1) or disables (when set to 0) the use of a 
multicast MAC address in the Sender Hardware Address (SHA) field in an ARP Reply message. 
NLB clusters that are operating in multicast mode use a multicast MAC address for their hard-
ware address. This multicast address is the value of the SHA field in an ARP Reply sent by a 
cluster member when responding to an ARP Request for the IP address of the cluster. If a host 
on the same subnet as the NLB cluster does not support the use of a multicast MAC address 
in the SHA field of an ARP Reply, communication with the cluster is not possible. Enable-
BcastArpReply is enabled by default.

To set the number of ARP Requests that are sent during name resolution, use the ArpRetry-
Count registry value.

ArpRetryCount
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 

Data type: REG_DWORD 

Valid range: 0–3 

Default value: 3 

Present by default: No

Note The ArpCacheLife and ArpCacheMinReferencedLife registry values used by TCP/IP in 
Windows XP and Windows Server 2003 are no longer supported by TCP/IP in Windows Server 
2008 and Windows Vista.

Inverse ARP (InARP)
For non-broadcast multiple access (NBMA)–based WAN technologies such as X.25, frame 
relay, and ATM, the Network Interface Layer address is not a MAC address but a virtual circuit 
identifier. For example, for frame relay, the virtual circuit identifier is the Frame Relay Data 
Link Connection Identifier (DLCI). To address frames for a given destination, the Frame Relay 
header’s DLCI is set to the value that corresponds to the virtual circuit over which the frame 
is traveling. With NMBA technologies, the virtual circuit identifier is known but the IP address 
of the interface on the other end of the virtual circuit is not.

InARP is used to resolve the IP address on the other end of a virtual circuit based on a known 
Frame Relay DLCI. As RFC 2390 describes, InARP was designed specifically for frame relay 
virtual circuits. Frame relay link management protocols such as Local Management Interface 
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(LMI) determine which virtual circuits are in use over the physical connection to the frame 
relay service provider. Once the DLCIs are determined, InARP is used to query each virtual cir-
cuit to determine the IP address of the interface on the other end. The responses are used to 
build a table of entries consisting of [DLCI, next-hop IP address].

Because the DLCI values are only locally significant, the SHA and THA are irrelevant. In both the 
InARP Request and InARP Reply, the SHA field is typically set to 0 and the TPA field is set to the 
local DLCI value. The relevant information is the value of the SPA field in the InARP Request and 
the InARP Reply. The InARP responder uses the InARP Request’s SPA to add an entry to its table 
consisting of [local DLCI, SPA of InARP Request]. The InARP requester uses the InARP Reply’s 
SPA to add an entry to its table consisting of [local DLCI, SPA of InARP Reply].

The InARP Request and Reply have the same structure as the ARP Request and Reply, except 
2-byte hardware addresses are used. The ARP Operation field is set to 0x0008 for an InARP 
Request and 0x0009 for an InARP Reply.

Proxy ARP
Proxy ARP is the answering of ARP Requests on behalf of another node. As RFC 925 
describes, Proxy ARP is used in situations in which a subnet is divided without the use of 
a router. A proxy ARP device is placed between nodes on the same subnet. The proxy ARP 
device is aware of which nodes are available on which segment. The proxy ARP device also 
answers ARP Requests and facilitates the forwarding of unicast IP packets for communication 
between nodes on separate segments. The existence of the proxy ARP device is transparent to 
the nodes on the subnet. A proxy ARP device is often physically a router device; however, it is 
not acting as an IP router, forwarding IP datagrams between two IP subnets. Figure 3-3 shows 
an example of a proxy ARP configuration.

When Node 1 wants to send an IP datagram to Node 2 on the other side of the proxy ARP 
device, because Node 1 and Node 2 are on the same logical IP subnet, Node 1 sends an ARP 
Request with Node 2’s IP address as the TPA. The proxy ARP device receives the ARP Request 
and, even though the TPA is not its own address, the proxy ARP device sends an ARP Reply to 
Node 1 with the proxy ARP device’s MAC address as the SHA. Node 1 then sends the IP dat-
agram to the proxy ARP device’s MAC address. As far as Node 1 is concerned, it has resolved 
Node 2’s MAC address and delivered the IP datagram to Node 2. The proxy ARP device next 
delivers the IP datagram to Node 2, using ARP if necessary to resolve Node 2’s MAC address.

The Network Bridge feature of the Network Connections folder in Windows Server 2008 and 
Windows Vista acts as a proxy ARP device when performing Layer 3 bridging between seg-
ments for which the Network Bridge cannot perform Layer 2 transparent bridging.
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Figure 3-3 A single subnet configuration, using a proxy ARP device

For Windows Server 2008, the Routing and Remote Access service also uses proxy ARP to 
facilitate communications between remote access clients and nodes on the subnet to which 
the remote access server is attached. When IP-based remote access clients connect, the remote 
access server assigns them an IP address. The IP address assigned can either be from the 
address range of a subnet to which the remote access server is attached (an on-subnet 
address) or from the address range of a separate subnet (an off-subnet address). Proxy ARP 
is used when the remote access server assigns an on-subnet address. An on-subnet address 
range is used when either the Routing and Remote Access service is configured to use DHCP 
to obtain addresses, or a range of addresses from a directly attached subnet is manually con-
figured. Figure 3-4 shows an example of a remote access server manually configured with an 
on-subnet address range.

The subnet to which the remote access server is attached is 10.1.1.0/24, implying a range of 
usable addresses from 10.1.1.1 through 10.1.1.254. In this case, the network administrator is 
using the high end of the range (10.1.1.200 through 10.1.1.254) for assignment to remote 
access clients.

When an IP-based remote access client successfully connects and is assigned an IP address, 
the Routing and Remote Access service tracks the assigned address in a connection table. 
When a host on the network to which the remote access server is attached sends an ARP 
Request for the remote access client’s assigned on-subnet IP address, the remote access server 
answers with an ARP Reply and receives the IP datagram. The Routing and Remote Access ser-
vice then forwards the IP datagram addressed to the remote access client over the appropriate 
remote access connection.

If the remote access server is manually configured with a range of addresses that represents a 
different subnet (an off-subnet address range), the remote access server acts as an IP router 
forwarding IP datagrams between separate subnets and proxy ARP is not used.

Proxy ARP Device

Node 1

Node 2

Single
Subnet
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Figure 3-4 A remote access server running Windows Server 2008 and configured with an 
on-subnet address range using Proxy ARP

Summary
ARP is used as a translation layer between Internet Layer addresses and Network Interface 
Layer addresses. ARP on LAN links is used to resolve the next-hop IP address of a node to its 
corresponding MAC address, to detect IP address conflicts, and to determine neighbor reach-
ability. InARP on Frame Relay links is used to map a DLCI value to the IP address of the node 
on the other end of the virtual circuit. Proxy ARP is used to subdivide an IP subnet and pro-
vide transparent communication without using an IP router.
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Remote Access Server
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As first introduced in Chapter 2, “Wide Area Network (WAN) Technologies,” PPP is a stan-
dard for using point-to-point network links that provides the following:

■ A Data Link Layer encapsulation method that supports multiple protocols simulta-
neously on the same link.

■ A protocol for negotiating the Data Link Layer characteristics of the point-to-point 
connection named the Link Control Protocol (LCP).

■ A series of protocols for negotiating the Network Layer properties of Network Layer pro-
tocols over the point-to-point connection named Network Control Protocols (NCPs). 
For example, RFCs 1332 and 1877 describe the Internet Protocol Control Protocol 
(IPCP), the NCP for IP. IPCP is used to negotiate an IP address, the addresses of name 
servers, and the use of the Van Jacobsen TCP compression protocol.

Chapter 2 discusses only the Data Link Layer encapsulation. This chapter describes LCP and 
the set of NCPs needed for PPP and IP connectivity.

More Info All of the RFCs and Internet drafts referenced in this chapter can be found in the 
\Standards\Chap04_PPP folder on the companion CD-ROM.
61
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PPP Connection Process
There are four phases to a PPP connection, all of which must be completed before data can be 
sent on the connection. The four phases are the following:

1. PPP configuration using LCP

2. Authentication using a PPP authentication protocol (optional)

3. Callback

4. Protocol configuration using NCPs

Phase 1: PPP Configuration Using LCP

In the first phase of the PPP connection process, PPP connection parameters are configured 
using LCP. With LCP, the PPP peers negotiate a common set of parameters that are used for all 
subsequent phases of the PPP connection and for sending data. Some of the communication 
parameters that are negotiated are the following:

■ The maximum receive unit (MRU), the largest PPP frame that can be sent on the 
connection

■ Whether the Address and Control fields in the PPP header are used (for links that use 
the High-Level Data Link Control [HDLC] encapsulation that is described in RFC 1662)

■ Whether the Protocol field in the PPP header can be compressed from 2 bytes to 1 byte

■ The PPP authentication protocol to be used during the authentication phase

■ Whether Multilink PPP (MP) is used

For more information, see the section titled “Link Control Protocol,” later in this chapter.

Phase 2: Authentication

After LCP negotiation, the authentication process using the PPP authentication protocol nego-
tiated during phase 1 is performed. This process is specific to the PPP authentication protocol 
used. For more information, see the section titled “PPP Authentication Protocols” later in 
this chapter.

Phase 3: Callback

If the authentication process succeeds and callback behavior is configured, the answering PPP 
peer terminates the connection and initiates a connection to the original calling PPP peer, a 
feature of PPP implementations known as callback. The PPP implementation in Windows 
Server 2008 and Windows Vista uses the Callback Control Protocol (CBCP) to complete the 
callback phase. For more information, see the section titled “Callback and the Callback 
Control Protocol,” later in this chapter.
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Phase 4: Protocol Configuration Using NCPs

After PPP is configured, the original initiating PPP peer is authenticated, and callback is done 
(optional and only if configured), individual data protocols and ancillary PPP services such 
as encryption and compression are configured using NCPs. For more information, see the 
section titled “Network Control Protocols,” later in this chapter.

PPP Connection Termination
After a PPP connection is established, it can be terminated at any time by either the connec-
tion-initiating or connection-receiving PPP peer. PPP connections can be terminated by user 
action, connection policy action (such as terminating the connection after a specific amount 
of idle time), or link failure. When the PPP connection terminates, PPP informs the data pro-
tocols that were operating over it that the point-to-point interface is no longer available.

Link Control Protocol
LCP, described in RFC 1661, is a simple protocol to configure a common set of PPP connec-
tion parameters (for phase 1 of the PPP connection). It is also used by NCPs to configure 
specific data protocol configuration parameters (for phase 2 of the PPP connection). LCP 
uses the PPP Protocol ID 0xC0-21. Figure 4-1 shows an LCP frame.

Figure 4-1 The structure of an LCP frame

The fields in the LCP frame are defined as follows:

■ Code A 1-byte field that identifies the type of LCP message

■ Identifier A 1-byte field that identifies a specific pair of LCP messages: the request and 
the response
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■ Length A 2-byte length field that indicates the size of the LCP message in bytes

■ Data A variable-sized field that contains the LCP frame type-specific data

Table 4-1 lists the LCP frame types described in RFC 1661.

Note The LCP Echo-Request and Echo-Reply messages are not related to the Internet Con-
trol Message Protocol (ICMP) Echo and Echo Reply messages.

LCP Options

The data portion of an LCP message consists of one or more LCP options for the Configure-
Request, Configure-Ack, Configure-Nak, and Configure-Reject LCP frames. An LCP option 
is formatted in type-length-value (TLV) format. A 1-byte Type field indicates the option type, 
a 1-byte Length field indicates the length in bytes of the entire option, and the Option 
Data field contains the data of the option. Figure 4-2 shows an LCP message that contains 
LCP options.

Table 4-1 LCP Frame Types

Code Frame Type Description

1 Configure-Request Sent to open or reset a PPP connection.

2 Configure-Ack Sent to indicate when the last Configure-Request 
frame contains options with acceptable values. 
The LCP negotiation is complete when each PPP 
peer both sends and receives Configure-Ack 
frames.

3 Configure-Nak Sent to indicate that the LCP options in the 
Configure- Request are recognized, but some 
option values are not acceptable.

4 Configure-Reject Sent to indicate that the LCP options in the 
Configure- Request frame are either not 
recognized or not acceptable.

5 Terminate-Request Sent to close the PPP connection.

6 Terminate-Ack Sent to respond to the Terminate-Request 
message.

7 Code-Reject Sent when the LCP Code field of a received LCP 
frame is unknown.

8 Protocol-Reject Sent when the PPP Protocol field of a received PPP 
frame is unknown.

9 Echo-Request Sent to test the PPP connection.

10 Echo-Reply Sent in response to an Echo-Request frame. 

11 Discard-Request Sent to test outbound data on the link.
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Figure 4-2 The structure of an LCP frame containing LCP options

Table 4-2 lists common LCP options used by PPP peers that run Windows.

Additional LCP options are defined in RFC 1661.

Table 4-2 LCP Options

Option Name Type Length Description

Maximum 
Receive Unit 
(MRU)

1 4 Used to indicate the maximum size of the PPP frame that 
can be supported on the connection. The maximum size is 
65,535. The default MRU is 1500.

Asynchronous 
Control 
Character Map 
(ACCM)

2 6 Contains a 4-byte bitmap indicating which ASCII control 
characters from 0x0 to 0x20 use character escapes for asyn-
chronous links. Character escapes are used to distinguish 
data from control characters sent on the connection. By 
default, character escapes are used for all 32 control 
characters.

Authentication 
Protocol

3 5 or 6 Used to indicate the PPP authentication protocol for the 
authentication phase to verify the identity. For Windows 
Server 2008-based or Windows Vista-based PPP peers, the 
values are 0xC2-27 for Extensible Authentication Protocol 
(EAP), 0xC2-23-81 for MS-CHAP version 2, 0xC2-23-05 for 
Message Digest version 5 Challenge Handshake Authentica-
tion Protocol (MD5-CHAP), and 0xC0-23 for Password 
Authentication Protocol (PAP).

Magic Number 5 6 Contains a random number to distinguish a PPP peer and 
detect looped back lines.

Protocol 
Compression

7 2 A flag option that indicates that the sender wants to use a 
1-byte Protocol field for PPP data frames. PPP control 
frames using LCP or NCPs still use a 2-byte Protocol field.

Address and 
Control Field 
Compression

8 2 A flag option that indicates that the sender wants to remove 
the Address and Control fields from the HDLC-based PPP 
header.

Callback 13 3 Used to determine the callback behavior for the connection. 
For PPP clients and servers running a modern 32-bit or 
64-bit Windows operating system, CBCP is used to deter-
mine callback behavior.
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LCP Negotiation Process

LCP is used to negotiate the parameters of PPP when sending data in a single direction on the 
PPP connection. Different PPP parameters could be negotiated in the two different directions 
of data travel on a PPP connection. Therefore, each PPP peer must perform a separate LCP 
negotiation. An LCP negotiation is used by a PPP peer to establish how the other PPP peer 
should send data to it. Each LCP negotiation is a series of LCP frames to negotiate the use of 
a common set of parameters for data sent by the PPP peer on the other side of the PPP con-
nection from the LCP negotiation initiator. For two PPP peers, Peer A and Peer B, Peer A ini-
tiates an LCP negotiation for the data to be sent by Peer B and Peer B initiates a separate LCP 
negotiation for the data to be sent by Peer A.

An individual LCP negotiation consists of an initial set of LCP options using the LCP Config-
ure-Request message. The specific set of LCP options is negotiated using Configure-Nak and 
Configure-Reject messages and finally confirmed with a Configure-Ack message. Both negoti-
ations occur simultaneously, making it more difficult to read the captures of PPP connection 
establishments.

When a PPP peer sends a Configure-Request message, the response is one of the following:

■ Configure-Nak message Sent because one or more options in the Configure-Request 
message have unacceptable values 

■ Configure-Reject message Sent because one or more of the options are either unknown 
or non-negotiable

■ Configure-Ack message Sent because all of the options have acceptable values

When the Configure-Reject message is received, the unknown or non-negotiable options are 
removed from the list of LCP options being configured by the initiating PPP peer and a new 
Configure-Request message is sent. When the Configure-Nak message is received, the 
included options are set to their indicated values and a new Configure-Request message is 
sent. When the Configure-Ack message is received, the LCP negotiation is complete. For each 
new Configure-Request message, the Identifier field in the LCP header is changed to a new 
value to match a sent Configure-Request message with its response.

For example, the following is a sample LCP negotiation using fictional options:

1. Peer 1 sends a Configure-Request message requesting that options A and B (both flag 
options) be used, that option C be set to 5000, and that option D be set to 1.

2. Because Peer 2 does not understand option B, it sends a Configure-Reject message con-
taining option B.

3. Peer 1 sends a new Configure-Request message requesting that option A be used, that 
option C be set to 5000, and that option D be set to 1.

4. Because Peer 2 prefers that option C be set to 1500 and option D be set to 3, it sends a 
Configure-Nak message containing option C set to 1500 and option D set to 3.
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5. Peer 1 sends a new Configure-Request message requesting that option A be used, that 
option C be set to 1500, and that option D be set to 3.

6. Because all the options in the Configure-Request message contain known options with 
preferred values, Peer 2 sends a Configure-Ack message.

The following is a summary of frames 1 through 8 of Capture 04-01 in the \Captures folder on 
the companion CD-ROM, which show an LCP negotiation between a remote access client and 
a remote access server.

Frame Source Dest Description 

1 RECV RECV Configure-Request, ID = 0  

2 SEND SEND Configure-Request, ID = 0 

3 SEND SEND Configure-Ack, ID = 0 

4 RECV RECV Configure-Reject, ID = 0 

5 SEND SEND Configure-Request, ID = 1 

6 RECV RECV Configure-Nak, ID = 1 

7 SEND SEND Configure-Request, ID = 2 

8 RECV RECV Configure-Ack, ID = 2

Due to the architecture of PPP in Windows Vista and the Windows Server 2008, PPP frames 
captured by Network Monitor are displayed as an Ethernet frame with the PPP Protocol ID 
field taking the place of the EtherType field. The source and destination media access control 
(MAC) addresses are set to either SEND or RECV, depending on whether the frame was sent 
to (set to SEND) or received from (set to RECV) the computer on which the Network Monitor 
capture was taken. In this instance, the Network Monitor capture was taken on the remote 
access server. Therefore, the RECV frames were sent by the remote access client and the SEND 
frames were sent by the remote access server.

For this trace, Frames 1 and 3 correspond to the LCP negotiation initiated by the remote 
access client for the frames sent by the remote access server. Frame 2 and frames 4 through 8 
correspond to the LCP negotiation initiated by the remote access server for the frames sent by 
the remote access client.

PPP Authentication Protocols
After LCP negotiation is complete, the authentication protocol agreed on during LCP negotia-
tion using LCP option 3 is used to establish the identity and credentials of the PPP peer that is 
requesting the PPP connection, typically a remote access client (for remote access dial-up or vir-
tual private network [VPN] connections) or a calling router (for router-to-router dial-up or VPN 
connections). The authentication process is phase 2 of the PPP connection establishment.

Windows Server 2008 and Windows Vista support the following PPP authentication protocols:

■ Password Authentication Protocol (PAP)

■ Challenge Handshake Authentication Protocol (CHAP)
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■ Microsoft Challenge Handshake Authentication Protocol version 2 (MS-CHAP v2)

■ Extensible Authentication Protocol (EAP)

Note Windows Server 2008 and Windows Vista no longer support the Shiva Password 
Authentication Protocol (SPAP) or Microsoft Challenge Handshake Authentication Protocol 
(MS-CHAP) (also known as MS-CHAP v1) authentication protocols.

PAP

PAP is a very simple, plain-text authentication protocol described in RFC 1334. The entire PAP 
negotiation consists of the following messages:

1. The connection-initiating PPP peer (the calling peer) sends a PAP Authenticate-Request 
message to the authenticating PPP peer (the answering peer), which contains the calling 
peer’s user name and password in plain-text.

2. The answering peer validates the user name and password. If the user name and pass-
word are correct, the answering peer sends a PAP Authenticate-Ack message. If not, the 
answering peer sends a PAP Authenticate-Nak message.

Obviously, PAP is not a secure authentication protocol. A malicious user that can capture the 
PAP frames sent between the calling peer and answering peer can view the contents of the PAP 
Authenticate-Request message to determine the user name and password of a valid user 
account. The use of PAP is highly discouraged and is only included in Windows Server 2008 
and Windows Vista for troubleshooting and compatibility with PPP peers that do not support 
more secure authentication protocols.

PPP peers negotiate the use of PAP during phase 1 by specifying LCP option 3 (authentication 
protocol) and the authentication protocol 0xC0-23. After phase 1 negotiation is complete, 
PAP messages use the PPP protocol ID 0xC0-23.

Figure 4-3 shows the PAP Authenticate-Request message.

The following are the fields in the PAP Authenticate-Request message:

■ Code A 1-byte field that identifies the type of PAP message. For Authenticate-Request 
messages, the value of the Code field is set to 1.

■ Identifier A 1-byte field that is used to identify a pair of PAP messages: the request and 
the response. The calling peer sets the value of the Identifier field.

■ Length A 2-byte field that indicates the size of the PAP message in bytes.

■ Peer ID Length A 1-byte field that indicates the size of the Peer ID field in bytes.

■ Peer ID A variable-sized field that contains the user name of the calling peer.
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Figure 4-3 The structure of the PAP Authenticate-Request message

■ Password Length A 1-byte field that indicates the size of the Password field in bytes.

■ Password A variable-sized field that contains the password of the calling peer.

Figure 4-4 shows the PAP Authenticate-Ack and Authenticate-Nak messages.

Figure 4-4 The structure of the PAP Authenticate-Ack and Authenticate-Nak messages

The following are the fields in the Authenticate-Ack and Authenticate-Nak messages:

■ Code For an Authenticate-Ack message, the value of the Code field is set to 2. For an 
Authenticate-Nak message, the value of the Code field is set to 3.

■ Identifier A 1-byte field that is set to the value of the Identifier field in the correspond-
ing Authenticate-Request message.

■ Length A 2-byte field that indicates the size of the PAP message in bytes.

■ Message Length A 1-byte field that indicates the size of the Message field in bytes.

■ Message A variable-sized field that contains a message for the calling peer. The Mes-
sage field is not used by Windows. Some PPP implementations display the message text 
to the user who is connecting.
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Capture 04-02 in the \Captures folder on the companion CD-ROM contains an example of a 
PAP authentication.

CHAP

CHAP is a more secure authentication protocol, described in RFC 1994, which uses a 
challenge–response exchange of messages to validate that the calling peer has knowledge of 
the user’s password. The password itself is never sent. Although more secure than PAP, CHAP 
does not provide mutual authentication. The calling peer authenticates to the answering peer 
but the answering peer does not authenticate to the calling peer. Without mutual authentica-
tion, a calling peer is unable to determine whether it is calling a valid answering peer.

When the use of CHAP is negotiated during phase 1, an algorithm that is used to provide 
proof of knowledge of the user password is also specified. For the Message Digest-5 (MD5) 
algorithm, the LCP option data for the authentication protocol contains the CHAP authenti-
cation protocol (0xC2-23) and the MD-5 algorithm (0x05). CHAP messages use the PPP 
Protocol ID 0xC2-23.

CHAP authentication using MD5 consists of the following three messages:

1. The answering peer sends a CHAP Challenge message that contains a CHAP session ID 
(the value of the Identifier field), a challenge string, and the name of the answering peer.

2. The calling peer sends a CHAP Response message that contains the user name of the 
calling peer and an MD5 hash of the CHAP session ID, the challenge string, and the 
user’s password.

3. The answering peer calculates its own MD5 hash of the CHAP session ID, the challenge 
string, and user password and compares the result with the MD5 hash in the CHAP 
Response message. If the two hashes are identical, the answering peer sends a CHAP 
Success message. If not, the answering peer sends a CHAP Failure message and the 
connection is terminated.

Figure 4-5 shows the CHAP Challenge and CHAP Response messages.

Figure 4-5 The structure of the CHAP Challenge and CHAP Response messages.
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The following are the fields in the CHAP Challenge and CHAP Response messages:

■ Code A 1-byte field that identifies the type of CHAP message. For a CHAP Challenge 
message, the value of the Code field is set to 1. For a CHAP Response message, the value 
of the Code field is set to 2.

■ Identifier A 1-byte field that is used to identify a pair or sequence of CHAP messages 
(the CHAP session ID). The calling peer sets the value of the Identifier field.

■ Length A 2-byte field that indicates the size of the CHAP message in bytes.

■ Value Size A 1-byte field that indicates the size of the Value field.

■ Value A variable-sized field that contains either the challenge string for the CHAP Chal-
lenge message or the MD5 hash for the CHAP Response message.

■ Name A variable-sized field that contains the name of either the answering peer for the 
CHAP Challenge message or the calling peer for the CHAP Response message.

Figure 4-6 shows the structure of the CHAP Success and CHAP Failure messages.

Figure 4-6 The CHAP Success and CHAP Failure message structure

The following are the fields in the CHAP Success and CHAP Failure messages:

■ Code For a CHAP Success message, the value of the Code field is set to 3. For a CHAP 
Failure message, the value of the Code field is set to 4.

■ Identifier A 1-byte field that is used to indicate the CHAP session ID.

■ Length A 2-byte field that indicates the size of the CHAP message in bytes.

■ Message A variable-sized field that contains a message for the calling peer. The Mes-
sage field is optional and is not used by Windows.

Capture 04-03 in the \Captures folder on the companion CD-ROM contains an example of an 
MD5-CHAP authentication.

MS-CHAP v2

MS-CHAP v2 is a CHAP-based authentication protocol described in RFC 2759 that, unlike 
CHAP, provides mutual authentication. With MS-CHAP v2, the answering peer receives 
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confirmation that the calling peer has knowledge of the user account’s password and the call-
ing peer receives confirmation that the answering peer has knowledge of the user account’s 
password. To provide for this mutual authentication, both peers issue a challenge and must 
receive a valid response or the connection is terminated.

When MS-CHAP v2 is negotiated during phase 1, the LCP option data for the authentication 
protocol contains the CHAP authentication protocol (0xC2-23) and the MS-CHAP v2 algo-
rithm (0x81). MS-CHAP v2 messages use the PPP Protocol ID 0xC2-23.

MS-CHAP v2 authentication consists of the following four steps:

1. The answering peer sends a CHAP Challenge message that contains a challenge string 
and the name of the answering peer.

2. The calling peer sends an MS-CHAP v2 Response message that contains the user name 
of the calling peer, a challenge string for the answering peer, and an encrypted response 
based on the answering peer’s challenge string and the MD4 hash of the user’s 
password.

3. The answering peer calculates its own encrypted result based on its challenge string and 
the MD4 hash of the user’s password and compares it to the version in the MS-CHAP v2 
Response message. If the two results are identical, the answering peer sends a CHAP 
Success message with a Message field that contains an encrypted response based on the 
calling peer’s challenge string, the answering peer’s challenge string, the calling peer’s 
response, the calling peer’s user name, and the calling peer’s password. If the two results 
are not identical, the answering peer sends a CHAP Failure message.

4. The calling peer calculates its own encrypted result to validate the answering peer’s 
encrypted response. If the results match, the calling peer continues with the next phase 
of the PPP connection. If not, the calling peer terminates the connection.

Figure 4-7 shows the structure of the MS-CHAP v2 Response message.

The following are the fields in the MS-CHAP v2 Response message:

■ Code For an MS-CHAP v2 Response message, the value of the Code field is set to 2.

■ Identifier A 1-byte field that is set to the value of the Identifier field in the original 
CHAP Challenge message.

■ Length A 2-byte field that indicates the size of the MS-CHAP v2 Response message 
in bytes.

■ Value Size A 1-byte field that indicates the size of the CHAP Value field. For the MS-
CHAP v2 Response message, the CHAP Value field consists of the Peer Challenge, 
Reserved, Windows NT Response, and Flags fields and is a fixed size of 49 bytes.

■ Peer Challenge A 16-byte field that contains the challenge string for the answering peer 
as set by the calling peer.
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Figure 4-7 The MS-CHAP v2 Response message structure 

■ Reserved An 8-byte field that should be set to 0.

■ Windows NT Response A 24-byte field that contains the Windows NT–encoded 
response.

■ Flags A 1-byte field that is reserved for future use and should be set to 0.

■ Name A variable-sized field that contains the name of the calling peer.

Capture 04-04 in the \Captures folder on the companion CD-ROM contains an example of an 
MS-CHAP v2 authentication.

MS-CHAP v2 allows the answering peer to indicate specific error conditions in the Message 
field of the CHAP Failure message. One of the errors is ERROR_PASSWD_EXPIRED. When 
the calling peer receives this error indication, it can submit an MS-CHAP v2 Change Password 
message to submit a new password for the account corresponding to the user name. For more 
information about the MS-CHAP v2 Change Password message, see RFC 2759.

EAP

EAP was designed as an extension to PPP to allow for more extensibility and flexibility in the 
implementation of authentication methods for PPP connections. For PAP, CHAP, and MS-
CHAP v2, the authentication process is a fixed exchange of messages. With EAP, the authenti-
cation process can consist of an open-ended conversation, in which messages are sent by 
either PPP peer on an as-needed basis. In addition, unlike the PPP authentication protocols 
discussed so far in this chapter, EAP does not select a specific authentication method during 
phase 1 of the connection. Rather, the selection of a specific EAP authentication method, 
known as an EAP type, is done during phase 3 of the connection. EAP is described in 
RFC 3748.
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When EAP is negotiated during phase 1, the LCP option data for the authentication protocol 
indicates EAP (0xC2-27). EAP messages use the PPP Protocol ID 0xC2-27.

Because EAP is architecturally designed to support multiple EAP types, additional types can 
be added by creating an EAP type dynamic-link library (DLL) file using the EAP Software 
Development Kit (SDK), which is part of the Windows Server Platform SDK, and installing 
the DLL file on the calling peer and the authenticating server (the server requiring authenti-
cation of the calling peer). The authenticating server is the computer that actually performs 
the validation of the calling peer’s credentials and is typically either the answering peer or a 
central authentication server, such as a Remote Authentication Dial-In User Service (RADIUS) 
server.

Note Windows Server 2008 and Windows Vista no longer support the EAP-MD5-CHAP 
authentication protocol.

EAP defines four types of messages:

1. An EAP-Request message is sent by the authentication server to request information 
from the calling peer. There can be multiple EAP-Request messages for an EAP authenti-
cation session.

2. An EAP-Response message is sent by the calling peer to indicate information requested 
by the authentication server in an EAP-Request message.

3. An EAP-Success message is sent by the authentication server when the calling peer has 
successfully responded to all of the EAP-Request messages for the EAP session.

4. An EAP-Failure message is sent by the authentication server when the calling peer has 
not successfully responded to all of the EAP-Request messages for the EAP session.

Figure 4-8 shows the structure of EAP-Request and EAP-Response messages.

Figure 4-8 EAP-Request and EAP-Response message structure 
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The following are the fields in an EAP-Request or EAP-Response message:

■ Code A 1-byte field that identifies the type of EAP message. For an EAP-Request mes-
sage, the value of the Code field is set to 1. For an EAP-Response message, the value of 
the Code field is set to 2.

■ Identifier A 1-byte field that is used to match an EAP-Request message with an EAP-
Response message.

■ Length A 2-byte field that indicates the size of the EAP message in bytes.

■ Type A 1-byte field that indicates the EAP type. For EAP-MS-CHAP v2, the value of the 
Type field is 29.

■ Type-Specific Data A variable-sized field that contains data for the specific EAP mes-
sage. For example, in the EAP-Response/Identity message, the type-specific data is a 
string that identifies the calling PPP peer.

Table 4-3 lists EAP types.

For a current listing of the defined EAP types, see http://www.iana.org/assignments
/eap-numbers.

Windows Server 2008 and Windows Vista provide the following EAP types:

■ EAP-TLS (displayed as Smart Card Or Other Certificate when selecting an EAP type)

■ PEAP (displayed as Protected EAP (PEAP) when selecting an EAP type)

Figure 4-9 shows the structure of EAP-Success and EAP-Failure messages.

Table 4-3 EAP Types

Type Value Type Description

1 Identity Used by the authenticating server to request the identity of the call-
ing client (in the EAP-Request/Identity message) and used by the 
calling client to indicate its identity to the authenticating server (in 
the EAP-Response/Identity message).

2 Notification Used by the authentication server to indicate a displayable message 
to the calling peer.

3 Nak Used by a calling peer in a response message to indicate that the 
calling peer does not support the authentication type proposed by 
the authenticating server. The Nak message also includes a pro-
posed authentication type that is supported by the calling peer.

13 EAP-TLS Used for the messages of the TLS authentication method.

25 PEAP Used for the messages of the PEAP method.

29 EAP-MS-
CHAP-V2

Used for the messages of the MS-CHAP v2 method.
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Figure 4-9 EAP-Success and EAP-Failure message structure

The following are the fields in an EAP-Success and EAP-Failure message:

■ Code For an EAP-Success message, the value of the Code field is set to 3. For an EAP-
Failure message, the value of the Code field is set to 4.

■ Identifier Set to the value of the last EAP-Response message.

■ Length For the EAP-Success and EAP-Failure messages, the Length field is set to 4.

EAP-MS-CHAP v2

The EAP-MS-CHAP v2 type is the MS-CHAP v2 authentication protocol performed using EAP 
messages, rather than a set of MS-CHAP v2 messages. In Windows Server 2008 and Windows 
Vista, EAP-MS-CHAP v2 is available as an authentication method for PEAP, rather than as an 
EAP type like EAP-TLS.

EAP-MS-CHAP v2 authentication consists of the following process:

1. The authenticating server sends an EAP-Request/Identity message to the calling peer.

2. The calling peer sends an EAP-Response/Identity message to the authenticating server.

3. The authenticating server sends an EAP-Request/MS-CHAP v2 Challenge message to the 
calling peer that contains a challenge string and the name of the authenticating server.

4. The calling peer sends an EAP-Response/MS-CHAP v2 Response message that contains 
the user name of the calling peer, a challenge string for the authenticating server, and an 
encrypted response based on the authenticating server’s challenge string and the MD4 
hash of the user’s password.

5. The authenticating server calculates its own encrypted result based on its challenge 
string and the MD4 hash of the user’s password and compares it to the version in the 
MS-CHAP v2 Response message. If the two results are identical, the authenticating 
server sends an EAP-Response/MS-CHAP v2 Success message with a Message field that 
contains an encrypted response based on the calling peer’s challenge string, the authen-
ticating server’s challenge string, the calling peer’s response, the calling peer’s user 
name, and the calling peer’s password. If the two results are not identical, the authenti-
cating server sends an EAP-Response/MS-CHAP v2 Failure message. 
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6. The calling peer calculates its own encrypted result to validate the authenticating 
server’s encrypted response. If the results match, the calling peer continues with the 
next phase of the PPP connection. If not, the calling peer terminates the connection.

More Info EAP-MS-CHAP v2 is described in the Internet draft named draft-kamath-
pppext-eap-mschapv2-01.txt.

EAP-TLS

EAP-TLS is the use of TLS to provide authentication for the establishment of a PPP connec-
tion. TLS is described in RFC 2246 and EAP-TLS is described in RFC 2716. EAP-TLS can pro-
vide mutual authentication (the calling PPP peer authenticates to the authenticating server 
and the authenticating server answers to the calling PPP peer), protected negotiation of the set 
of cryptographic services used for the connection, and mutual determination of encryption 
and signing key material. EAP-TLS uses digital certificates rather than passwords for authenti-
cation, resulting in a highly protected authentication method. 

By default in Windows Server 2008 and Windows Vista, EAP-TLS provides two-way, or 
mutual authentication. The authenticating server verifies the PPP peer’s certificate and the 
PPP peer verifies the certificate of the authenticating server. It is possible to configure the call-
ing peer to not verify the certificate of the authenticating server, but this is not recommended 
for security reasons.

The details of EAP-TLS negotiation are beyond the scope of this book. For more details, see 
RFCs 2716 and 2246.

PEAP

Although EAP provides authentication flexibility through the use of EAP types, the entire EAP 
conversation might be sent as clear text (unencrypted). A malicious user with access to the 
path between the negotiating PPP peers can inject packets into the conversation or capture 
the EAP messages from a successful authentication for later analysis. For example, an attacker 
can capture a successful password-based authentication exchange with MS-CHAP v2, and 
then begin attacking the user’s password with an offline dictionary attack.

Protected EAP (PEAP) is an EAP type that addresses this security issue by first creating a 
session that is both encrypted and integrity-protected with TLS. Then a new EAP negotiation 
with another EAP type occurs, authenticating the user credentials of the PPP client. Because 
the TLS session protects EAP negotiation and authentication for the network access attempt, 
password-based authentication protocols that are normally susceptible to an offline dictio-
nary attack can be used for authentication even in environments where the path between the 
PPP peers might be subject to eavesdropping. 
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Therefore, PEAP is not an EAP type for authenticating the credentials of PPP peers. PEAP is an 
EAP type to create a protected TLS session so that another EAP type can be used to authenti-
cate the credentials of PPP peers.

More Info The PEAP implementation in Windows is described in the Internet draft named 
draft-kamath-pppext-peapv0-00.txt.

By default in Windows Server 2008 and Windows Vista, PEAP provides one-way authentica-
tion for the TLS session. The PPP peer verifies the certificate of the authenticating server. It is 
possible to configure the calling peer to not verify the certificate of the authenticating server, 
but this is not recommended for security reasons.

Windows Server 2008 and Windows Vista provide the following authentication methods 
when you select the PEAP EAP type:

■ EAP-MS-CHAP v2 (displayed as Secured Password (EAP-MSCHAP v2) when selecting 
a PEAP authentication method)

■ EAP-TLS (displayed as Smart Card Or Other Certificate when selecting a PEAP authen-
tication method)

Callback and the Callback Control Protocol
After the authentication phase of the PPP connection process, CBCP negotiates the use of call-
back. If callback is negotiated, the answering PPP peer terminates the PPP connection, and 
then calls the original calling PPP peer at a specified phone number. CBCP messages use the 
PPP Protocol ID 0xC0-29 and have the same structure as LCP messages. However, only the 
first seven LCP message types are used, corresponding to LCP Codes 1 through 3. For the 
Callback-Request (Code set to 1), Callback-Response (Code set to 2), and Callback-Ack (Code 
set to 3) messages, the data portion of the CBCP message contains one or more CBCP options.

Table 4-4 lists the CBCP options used by Windows-based PPP peers.

Table 4-4 CBCP Options

Option Name Type Length Description

No Callback 1 2 Used to specify that callback is not used

Callback to a User- Specified 
Number

2 Variable Used to specify that the calling PPP peer 
determines the callback number

Callback to an Administrator- 
Defined Number

3 Variable Used to specify that the answering PPP peer 
determines the callback number

Callback to Any of a List of 
Numbers

4 Variable Used to specify that the answering PPP peer 
calls the calling PPP peer back at one of a 
list of phone numbers
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Network Control Protocols
After the callback phase of the PPP connection process, individual NCPs are used to negotiate 
the configuration of networking protocols, such as TCP/IP, and the additional PPP facilities of 
compression and encryption.

IPCP

IPCP is used to automatically configure TCP/IP configuration for a calling PPP peer. IPCP as 
used by Windows-based PPP peers is described in RFCs 1332 and 1877. RFC 1332 defines 
the original set of IPCP options and RFC 1877 defines an additional set of options to automat-
ically configure the IP address of name servers such as Domain Name System (DNS) and Win-
dows Internet Name Service (WINS) servers.

IPCP messages use the PPP Protocol ID 0x80-21 and have the same structure as LCP mes-
sages. However, only the first seven LCP message types are used, corresponding to LCP Codes 
1 through 7. For the Configure-Request (Code set to 1), Configure-Ack (Code set to 2), Con-
figure-Nak (Code set to 3), and Configure-Reject (Code set to 4) IPCP messages, the data por-
tion of the IPCP message contains one or more IPCP options.

Table 4-5 lists the IPCP options defined in RFCs 1332 and 1877 that are used by Windows-
based PPP peers.

A typical TCP/IP configuration for a local area network (LAN) interface includes an IP 
address, a subnet mask, and a default gateway. A PPP interface configured with IPCP does not 
include a subnet mask or a default gateway. Computers running Windows Server 2008 or 
Windows Vista automatically configure the subnet mask of 255.255.255.255.

Table 4-5 IPCP Options

Option Name Type Length Description

IP Compression 
Protocol

2 4 Negotiates the use of Van Jacobsen compression

IP Address 3 6 Used to assign an IP address to the point-to- point in-
terface of the calling PPP peer

Primary DNS Server 
Address

129 6 Used to assign a primary DNS server to the point-to-
point interface of the calling PPP peer

Primary NBNS Server 
Address

130 6 Used to assign a primary NetBIOS Name Server 
(NBNS) server, a WINS server, to the point-to-point 
interface of the calling PPP peer

Secondary DNS 
Server Address

131 6 Used to assign a secondary DNS server to the point-
to-point interface of the calling PPP peer

Secondary NBNS 
Server Address

132 6 Used to assign a secondary NBNS server, a WINS 
server, to the point-to-point interface of the calling 
PPP peer
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By default, a new default route is added to the routing table. This new default route has the 
gateway and interface addresses set to the IP address of the PPP interface and has the lowest 
routing metric of all the default routes. The routing metric of the existing default route is 
increased for the duration of the PPP connection. To prevent this behavior, you can clear the 
Use Default Gateway On Remote Network check box on the IP Settings tab in the advanced 
TCP/IP settings for the Internet Protocol Version 4 (TCP/IPv4) component for a dial-up or 
VPN connection in the Network Connections folder. You can also disable this behavior with 
the Connection Manager Administration Kit, provided with Windows Server 2008.

Although DNS server IP addresses are assigned, a DNS domain name is not. To automatically 
configure a DNS domain name, PPP calling peers running Windows Server 2008 or Windows 
Vista send a Dynamic Host Configuration Protocol (DHCP) DHCPINFORM message on the 
PPP link after the PPP connection is established. If the answering peer supports the relaying of 
DHCP messages, the answering peer relays the DHCPINFORM message to a DHCP server 
and relays the response back to the PPP calling peer. Based on the DNS domain name DHCP 
option (Option 15) in the response, the PPP peer automatically configures a DNS domain 
name on the point-to-point interface.

Compression Control Protocol

Compression Control Protocol (CCP), described in RFC 1962, allows PPP peers to negotiate 
the use of a data compression algorithm. CCP messages use the PPP Protocol 0x80-FD and 
have the same structure as LCP messages. However, only the first seven LCP message types 
are used, corresponding to LCP Codes 1 through 7. For the Configure-Request (Code set 
to 1), Configure-Ack (Code set to 2), Configure-Nak (Code set to 3), and Configure-Reject 
(Code set to 4) CCP messages, the data portion of the CCP message contains one or more 
CCP options. Table 4-6 lists these CCP options.

MPPE and MPPC

CCP option 18 for MPPC is used to negotiate the use of both MPPC and MPPE, as described 
in RFC 3078. The data for CCP option is a 4-byte (32-bit) Supported Bits field that contains 
bits to indicate the use of CCP and the use of MPPE and MPPE encryption options. Within the 
32-bit Supported Bits field, the following bits are defined:

■ The low-order bit enables (when set to 1) or disables (when set to 0) the use of MPPC.

Table 4-6 CCP Options

Option Name Type Length Description

Organization Unique 
Identifier

0 6 or larger Used to identify a proprietary compression 
protocol

Microsoft Point-to-Point 
Compression (MPPC)

18 6 Used to indicate the use of MPPC, Microsoft 
Point-to-Point Encryption (MPPE), and MPPE 
encryption options
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■ The fifth low-order bit (starting from 1) enables (when set to 1) or disables (when set to 
0) the use of 40-bit encryption keys for MPPE that are derived from the LAN Manager 
encoding of the user’s password. This bit is obsolete and its use should be rejected.

■ The sixth low-order bit (starting from 1) enables (when set to 1) or disables (when set 
to 0) the use of 40-bit encryption keys for MPPE that are derived from the Windows NT 
encoding of the user’s password.

■ The seventh low-order bit (starting from 1) enables (when set to 1) or disables (when 
set to 0) the use of 128-bit encryption keys for MPPE that are derived from the Windows 
NT encoding of the user’s password.

■ The eighth low-order bit (starting from 1) enables (when set to 1) or disables (when set 
to 0) the use of 56-bit encryption keys that are derived from the Windows NT encoding 
of the user’s password.

■ The 25th low-order bit (starting from 1) enables (when set to 1) or disables (when set to 
0) the use of stateless encryption mode, in which the MPPE encryption key is changed 
with every message sent or received.

When negotiating MPPC and MPPE, the PPP peers determine a common setting for MPPC 
(enabled or disabled), a common highest MPPE encryption strength (the use of 40-bit, 56-bit, 
or 128-bit encryption keys), and whether to use stateless MPPE.

MPPE is only possible if the authentication protocol used during the authentication phase is 
MS-CHAP v2, EAP-MS-CHAP v2, or EAP-TLS. Only these authentication methods provide 
mutually determined keying material that is used as the initial MPPE encryption key.

Both MPPC and MPPE use the same PPP Protocol ID, 0x00-FD. However, each PPP peer 
knows whether MPPC, MPPE, or both are being used for frames sent on the PPP connection. 
Therefore, for the following cases:

■ If MPPC is used and MPPE is not, the PPP Protocol ID is 0x00-FD and the PPP payload 
is decompressed using the MPPC decompression algorithm.

■ If MPPE is used and MPPC is not, the PPP Protocol ID is 0x00-FD and the PPP payload 
is decrypted using the MPPE decryption algorithm.

■ If both MPPC and MPPE are used, the PPP payload is always compressed before it is 
encrypted. Therefore, the PPP Protocol ID 0x00-FD identifies an MPPE-encrypted pay-
load. The payload is first decrypted using MPPE. The resulting MPPE payload consists 
of a PPP header with the PPP Protocol ID set to 0x00-FD and a payload compressed with 
MPPC. MPPC decompresses the payload. The resulting MPPC payload consists of a PPP 
header with the PPP Protocol ID set to 0x00-21 (assuming an IP datagram).

If the PPP payload is compressed with MPPC or encrypted with MPPE, the PPP payload is not 
parsed by Network Monitor. To view PPP payloads with Network Monitor after the PPP con-
nection is created, disable compression and encryption for the PPP connection.
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Encryption Control Protocol

Encryption Control Protocol (ECP), described in RFC 1968, allows PPP peers to negotiate the 
use of a data encryption algorithm. ECP messages use the PPP Protocol IDs 0x80-53 or 0x80-
55 and have the same structure as LCP messages. However, because Windows-based PPP 
peers only support the use of MPPE for encryption of PPP payloads, ECP is not supported or 
used. For more information, see RFC 1968.

Network Monitor Example
The following summary of Capture 04-01 in the \Captures folder on the companion CD-ROM 
is an example of a successful PPP connection using the MS-CHAP v2 authentication protocol:

Frame Source Dest Protocol Description 

1 RECV RECV LCP Configure-Request, ID = 0 

2 SEND SEND LCP Configure-Request, ID = 0 

3 SEND SEND LCP Configure-Ack, ID = 0 

4 RECV RECV LCP Configure-Reject, ID = 0 

5 SEND SEND LCP Configure-Request, ID = 1 

6 RECV RECV LCP Configure-Nak, ID = 1 

7 SEND SEND LCP Configure-Request, ID = 2 

8 RECV RECV LCP Configure-Ack, ID = 2 

9 SEND SEND CHAP    Challenge, ID =0  

10 RECV RECV LCP Identification, ID = 1 

11 RECV RECV LCP Identification, ID = 2 

12 RECV RECV CHAP    Response, ID = 0 

13 SEND SEND CHAP    Success, ID = 0 

14 SEND SEND CBCP Callback Request, ID = 1  

15 RECV RECV CBCP Callback Response, ID = 1  

16 SEND SEND CBCP Callback Ack, ID = 1  

17 SEND SEND CCP Configure-Request, ID = 4  

18 SEND SEND IPCP Configure-Request, ID = 5  

19 RECV RECV CCP Configure-Request, ID = 3  

20 SEND SEND CCP Configure-Ack, ID = 3  

21 RECV RECV IPCP Configure-Request, ID = 4  

22 SEND SEND IPCP Configure-Reject, ID = 4  

23 RECV RECV CCP Configure-Ack, ID = 4  

24 RECV RECV IPCP Configure-Ack, ID = 5  

25 RECV RECV IPCP Configure-Request, ID = 5  

26 SEND SEND IPCP Configure-Nak, ID = 5  

27 RECV RECV IPCP Configure-Request, ID = 6  

28 SEND SEND IPCP Configure-Ack, ID = 6

In this example, the following frames show the four phases of the PPP connection:

■ Frames 1 through 8 and frames 10 and 11 are for phase 1, the LCP negotiation.

■ Frames 9, 12, and 13 are for phase 2, authentication.

■ Frames 14 through 16 are for phase 3, callback.
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■ Frames 16, 19, 20, and 23 are for CCP negotiation (in phase 4). 

■ Frames 18, 21, 22, and 24 through 28 are for IPCP negotiation (in phase 4).

PPP over Ethernet
PPP over Ethernet (PPPoE) is a method of encapsulating PPP frames so that they can be sent 
over an Ethernet network. PPPoE was created so that Internet service providers (ISPs) that 
deploy a broadband Internet access technology in a bridged Ethernet topology, such as cable 
modems or Digital Subscriber Line (DSL), can use the per-user authentication and connec-
tion identification facilities of PPP to identify individual customer connections for accounting 
and billing purposes. PPPoE is described in RFC 2516.

PPPoE connections have the following two phases:

1. A discovery phase in which a client computer uses PPPoE frames to discover the pres-
ence of an access concentrator (AC), a device that terminates the cable modem or DSL 
connection and provides access to the Internet, and to determine a PPPoE session ID

2. A PPP session phase, in which a PPP connection is established and used for data transfer 
in the same way as a dial-up or VPN-based PPP connection

Figure 4-10 shows a PPPoE frame.

Figure 4-10 The structure of a PPPoE frame
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The following are the fields in the PPPoE frame:

■ Version A 4-bit field that is set to the value of 1.

■ Type A 4-bit field that is set to the value of 1.

■ Code A 1-byte field that is used to identify the type of PPPoE message. There are 
defined values for the PPPoE frames exchanged during the discovery phase. For PPP 
frames, the Code field is set to 0.

■ Session_ID A 2-byte field that identifies the PPPoE session ID. This field is set to 0 
until a session ID is negotiated with the AC during the discovery phase of the PPPoE 
connection.

■ Length A 2-byte field that is used to indicate the size in bytes of the PPPoE payload.

■ PPPoE Payload A variable-sized payload that can contain either one or more PPPoE tags 
for PPPoE frames sent during the discovery phase or PPP frames for the PPP session 
phase. PPPoE tags are information elements in TLV format. Typical PPPoE tags used dur-
ing the discovery phase are Service-Name (the name of the ISP or service offered by the 
AC) and AC-Name (the name of the AC). For a complete list of PPPoE tags and their 
structure, see RFC 2516. The EtherType value in the Ethernet II header for PPPoE 
frames is set to 0x88-63 for PPPoE discovery frames and 0x88-64 for PPP session 
frames. For more information about the Ethernet II header, see Chapter 1, “Local Area 
Network (LAN) Technologies.”

PPPoE Discovery Stage

The PPPoE discovery process consists of the following four PPPoE frames:

1. The PPPoE Active Discovery Initiation (PADI) frame is sent by the PPPoE client to the 
Ethernet broadcast address (0xFF-FF-FF-FF-FF-FF). Within the Ethernet payload, the 
Code field is set to 9, the Session ID is set to 0, and there is a single Service-Name PPPoE 
tag, as well as other tags as needed. If the network connection in the Network Connec-
tions folder corresponding to the broadband Internet adapter has been configured with 
a service name, that service name is sent. Otherwise, the PADI frame is sent with a null 
service name.

2. The PPPoE Active Discovery Offer (PADO) frame is sent by the AC to the unicast MAC 
address of the PPPoE client. Within the Ethernet payload, the Code field is set to 7, the 
Session ID is set to 0, there are the AC-Name and Service-Name tags, and other tags as 
needed. If the network connection in the Network Connections folder corresponding to 
the broadband Internet adapter has not been configured with a service name, it is auto-
matically set to the value of the Service-Name tag in the PADO frame.

3. The PPPoE Active Discovery Request (PADR) frame is sent by the PPPoE client to the 
unicast MAC address of the AC. Within the Ethernet payload, the Code field is set to 25, 
the Session ID is set to 0, and there is a Service-Name tag and other tags as needed.
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4. The PPPoE Active Discovery Session-confirmation (PADS) frame is sent by the AC to the 
unicast MAC address of the PPPoE client. Within the Ethernet payload, the Code field is 
set to 101, the Session ID field is set to the session ID for the PPP session of the PPPoE 
client, and there is a Service-Name tag, as well as other tags as needed.

To terminate the PPPoE session, either the PPPoE client or the AC can send a PPPoE Active 
Discovery Terminate (PADT) frame, which contains the Code field set to 167 and the session 
ID set to the session being terminated.

PPPoE Session Stage

After the PPPoE discovery process is complete, a PPP connection is negotiated and network 
protocol data such as IP datagrams are sent over the PPPoE connection. Figure 4-11 shows a 
PPPoE frame that contains a PPP frame.

Figure 4-11 The structure of a PPPoE frame that contains a PPP frame

Because of the additional PPPoE overhead, the maximum size of PPP frames that can be sent 
over a PPPoE connection is 1494 bytes.

Summary
PPP is used for encapsulation, link negotiation, and network protocol negotiation for network 
protocol packets that are sent over a point-to-point link. The PPP connection process has four 
phases: link negotiation, authentication, callback negotiation, and network protocol negotiation. 
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During link negotiation, each PPP peer determines how it will send PPP frames. During 
authentication, PPP authentication protocols such as MS-CHAP v2 or EAP-TLS are used to ver-
ify the credentials of the calling or answering PPP peer. During callback negotiation, the call-
ing and answering PPP peers determine whether the answering PPP peer will call the calling 
peer back and at which phone number. During network protocol negotiation, NCPs such as 
IPCP, CCP, and ECP are used to determine the use and configuration of TCP/IP, compression, 
and encryption. 

PPPoE is a method of encapsulating PPP frames so that they can be sent over an Ethernet link. 
A PPPoE connection consists of two phases: a PPPoE discovery phase and a PPPoE session 
phase. After a PPPoE connection is negotiated during the discovery phase, PPP is used to 
negotiate a connection and send network protocol frames during the PPPoE session phase.
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Chapter 5

Internet Protocol (IP)
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IP is the internetworking building block of all the other protocols at the Internet Layer and 
above. IP is a datagram protocol primarily responsible for addressing and routing packets 
between hosts. This chapter describes the details of the fields in the IP header and their role 
in IP packet delivery.

Note This chapter uses the term  to refer to version 4 of IP (IPv4), which is in widespread 
use today. IP version 6 is denoted as IPv6.

Introduction to IP
IP is the primary protocol for the Internet Layer of the Department of Defense (DoD) 
Advanced Research Projects Agency (DARPA) model and provides the internetworking func-
tionality that makes large-scale internetworks such as the Internet possible. IP has lasted since 
it was formalized in 1981 with RFC 791 and will continue to be used on the Internet for years 
to come. Only relatively recently have IP’s shortcomings been addressed in a new version 
known as IPv6. For more information about IPv6, see Chapter 8, “Internet Protocol Version 6 
(IPv6).” IP’s amazing longevity is a tribute to its original design.

More Info All of the RFCs referenced in this chapter can be found in the 
\Standards\Chap05_IP folder on the companion CD-ROM.
89
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IP Services

IP offers the following services to upper layer protocols:

■ Internetworking protocol IP is an internetworking protocol, also known as a routable 
protocol. The IP header contains information necessary for routing the packet, includ-
ing source and destination IP addresses. An IP address is composed of two components: 
a network address and a node address. Internetwork delivery, or routing, is possible 
because of the existence of a destination network address. IP allows the creation of an IP 
internetwork, which consists of two or more networks interconnected by IP router(s). 
The IP header also contains a link count, which is used to limit the number of links on 
which the packet can travel before being discarded.

■ Multiple client protocols IP is an internetwork carrier for upper layer protocols. IP can 
carry several different upper layer protocols, but each IP packet can contain data from 
only one upper layer protocol at a time. Because each packet can carry one of several 
protocols, there must be a way to indicate the upper layer protocol of the packet payload 
so that it can be forwarded to the appropriate upper layer protocol at the destination. 
Both the client and the server always use the same protocol for a given exchange of data. 
Therefore, the packet does not need to indicate separate source and destination protocols.

Examples of upper-layer protocols include other Internet Layer protocols such as Inter-
net Control Message Protocol (ICMP) and Internet Group Management Protocol 
(IGMP) and Transport Layer protocols such as Transmission Control Protocol (TCP) 
and User Datagram Protocol (UDP).

■ Datagram delivery IP is a datagram protocol that provides a connectionless, unreliable 
delivery service for upper layer protocols. Connectionless means that no handshaking 
occurs between IP nodes prior to sending data, and no logical connection is created or 
maintained at the Internet Layer. Unreliable means that IP sends a packet without 
sequencing and without an acknowledgment that the destination was reached. IP 
makes a best effort to deliver packets to the next hop or the final destination. End-to-end 
reliability is the responsibility of upper-layer protocols such as TCP.

■ Independence from Network Interface Layer At the Internet Layer, IP is designed to be 
independent of the network technology present at the Network Interface Layer of the 
DARPA model, which encompasses the Open Systems Interconnection (OSI) Physical and 
Data Link Layers. IP is independent of OSI Physical Layer attributes such as cabling, signal-
ing, and bit rate. It also is independent of OSI Data Link Layer attributes such as media 
access control (MAC) scheme, addressing, and maximum frame size. IP uses a 32-bit 
address that is independent of the addressing scheme used at the Network Interface Layer.

■ Fragmentation and reassembly To support the maximum frame sizes of different Net-
work Interface Layer technologies, IP allows for the fragmentation of a payload when 
forwarding onto a link that has a lower maximum transmission unit (MTU) than the IP 
datagram size. Routers or sending hosts fragment an IP payload, and fragmentation can 
occur multiple times. The destination host then reassembles the fragments into the 
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originally sent IP payload. More information on fragmentation and reassembly are pro-
vided later in this chapter in the section titled “Fragmentation.”

■ Extensible through IP options When features are required that are not available using 
the standard IP header, IP options can be used. IP options are appended to the standard 
IP header and provide custom functionality, such as the ability to specify a path that an 
IP datagram follows through the IP internetwork.

■ Datagram packet-switching technology IP is an example of a datagram packet-switching 
technology: Each packet is a datagram, an unacknowledged and nonsequenced message 
that is forwarded by the switches of the switching network using a globally significant 
address. In the case of IP, each switch in the switching network is an IP router, and the glo-
bally significant address is the destination IP address. This address is examined at each 
router, which makes an independent routing decision and forwards the packet. Because 
each router decides independently where to forward a packet, a packet’s path from Node 
1 to Node 2 is not necessarily a packet’s path from Node 2 to Node 1. Because each packet 
is separately switched, each can take a different path between the source and destination. 
Because of various transit delays, each packet can arrive in a different order from which it 
was sent. Additionally, packets can be duplicated by intermediate routers.

Note The term  is used here for a generalized forwarding device and is not meant to imply 
a Layer 2 switch. A Layer 2 switch is typically used in Ethernet environments to segment traffic.

IP MTU

Each Network Interface Layer technology imposes a maximum-sized frame that can be sent. 
This frame typically consists of the framing header and trailer and a payload. The maximum 
size of a frame for a given Network Interface Layer technology is called the MTU. For an IP 
packet, the Network Interface Layer payload is an IP datagram. Therefore, the maximum-sized 
payload becomes the maximum-sized IP datagram. This is known as the IP MTU.

Table 5-1 lists the IP MTUs for the various Network Interface Layer technologies that are 
described in Chapter 1, “Local Area Network (LAN) Technologies,” and Chapter 2, “Wide 
Area Network (WAN) Technologies.”

In an environment with mixed Network Interface Layer protocols, fragmentation can occur when 
crossing a router from a link with a higher IP MTU to a link with a lower IP MTU. IP fragmenta-
tion is discussed in more detail later in this chapter in the section titled “Fragmentation.”

Table 5-1 IP MTUs for Common Network Interface Layer Technologies

Network Interface Layer Technology IP MTU

Ethernet (Ethernet II encapsulation) 1500

Ethernet (IEEE 802.3 Sub-Network Access Protocol 
[SNAP] encapsulation) 

1492  
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In Windows Server 2008 and Windows Vista, it is possible to override the MTU as reported to 
the Network Driver Interface Specification (NDIS) interface by the network adapter driver 
with the following command:

netsh interface ipv4 set interface InterfaceNameOrIndex mtu=MtuSize

InterfaceNameOrIndex is the name of the interface from the Network Connections folder or 
its interface index. MtuSize is the IP MTU.

You can also use the following registry value:

MTU
Key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\ 

Parameters\Interfaces\InterfaceGUID 

Data type: REG_DWORD 

Valid range: 576 - <the MTU reported by the network adapter> 

Default: 0xFFFFFFFF (the MTU reported by the network adapter) 

Present by default: No

When TCP/IP initializes, it queries its bound NDIS network adapter driver and receives the 
MTU. The MTU registry value is used to set an MTU that is lower than the default MTU, as 
reported by the NDIS driver, and greater than the minimum value of 576. Values in the MTU 
registry value that are greater than the default MTU are ignored. If the MTU registry value is 
set to a value less than 576, 576 is used.

It is useful to change the default MTU size for testing or for solving MTU issues in transla-
tional bridge environments.

The IP Datagram
Figure 5-1 shows the structure of an IP datagram.

The IP datagram consists of the following:

■ IP header The IP header is of variable size, between 20 and 60 bytes, in 4-byte incre-
ments. It provides routing support, payload identification, IP header and datagram size 
indication, fragmentation support, and options.

Token Ring (4 and 16 Mbps) Varies based on token holding time

Fiber Distributed Data Interface (FDDI) 4352

Frame relay 1592 (with a 2-byte Address field in the 
Frame Relay header)

Table 5-1 IP MTUs for Common Network Interface Layer Technologies

Network Interface Layer Technology IP MTU
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Figure 5-1 The structure of the IP datagram at the Network Interface layer

■ IP payload The IP payload is of variable size, ranging from 0 bytes (a 20-byte IP data-
gram with a 20-byte IP header) to 65,515 bytes (a 65,535-byte IP datagram with a 
20-byte header).

As sent on a link, the IP datagram is wrapped with a Network Interface Layer header and 
trailer to create a Network Interface Layer frame.

The IP Header
Figure 5-2 shows the IP header’s structure. The following sections discuss the fields of the 
IP header.

Figure 5-2 The structure of the IP header
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The Version field is 4 bits long and is used to indicate the IP header version. A 4-bit field can have 
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and the Internet is version 4, sometimes referred to as IPv4. The next version of IP is IPv6. All 
other values for the Version field are either undefined or not in use. For the latest list of the 
defined values of the IP Version field, see http://www.iana.org/assignments/version-numbers.

Internet Header Length

The Internet Header Length (IHL) field is 4 bits long and is used to indicate the IP header 
size. The maximum number that can be represented with 4 bits is 15. Therefore, the IHL field 
cannot possibly be a byte counter. Rather, the IHL field indicates the number of 32-bit words 
(4-byte blocks) in the IP header. The typical IP header does not contain any options and is 20 
bytes long. The smallest possible IHL value is 5 (0x5). With the maximum amount of IP 
options, the largest IP header can be 60 bytes long, indicated with a IHL value of 15 (0xF).

Using a 4-byte block counter to indicate the IP header size means that the IP header size must 
always be a multiple of 4. If a set of IP options extend the IP header, they must do so in 4-byte 
increments. If the set of IP options is not a multiple of 4 bytes long, option padding bytes must 
be used so that the IP header an each option is always on a 4-byte boundary.

Type Of Service

The Type Of Service (TOS) field is 8 bits long and is used to indicate the quality of service with 
which this datagram is to be delivered by the internetwork routers. The TOS field has two def-
initions: the original RFC 791 definition and the newer definition based on RFCs 2474 and 
3168. The RFC 791 definition has been deprecated by RFCs 2474 and 3168.

RFC 791 Definition of the TOS Field

As defined in RFC 791, the TOS field contains subfields and flags to indicate desired prece-
dence, delay, throughput, reliability, and cost characteristics.

Within the 8 bits of the TOS field, there are five fields that indicate a different quality of the 
datagram delivery, as shown in Figure 5-3. The TOS field is set by the sending host and is not 
modified by routers. All IP fragments contain the same TOS setting as the original IP datagram.

Figure 5-3 The structure of the RFC 791 IP Type Of Service field
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Normally, a sending host sends an IP datagram with the TOS field set to the value of 0x00: 
routine precedence, normal delay, normal throughput, normal reliability, and normal cost. 
Routers normally ignore the values in the TOS field and forward all datagrams as if the fields 
are not set. This is known as TOS0 routing. However, modern routing protocols such as Open 
Shortest Path First (OSPF) and Integrated Intermediate System-Intermediate System (Inte-
grated IS-IS) now support the calculation of routes for each value of the TOS field.

The routers and the routing protocol determine how the various values in the TOS field are 
interpreted. In a properly configured network, packets with specific TOS values are forwarded 
over different paths. This can improve routing and delivery efficiency in a multipath IP inter-
network. For example, an IP internetwork could have one path for general traffic, one for low-
delay traffic, and another path for high-reliability traffic. When sending hosts set various com-
binations of TOS values, routers can choose among those paths. The TOS field is used for 
prioritized delivery, sometimes referred to as quality of service (QoS), in IP internetworks.

Precedence

The Precedence field is 3 bits long and is used to indicate the importance of the datagram. 
Table 5-2 lists the defined values of the Precedence field.

The Precedence field is set to 000 (Routine) by default.

Delay

The Delay field is a flag indicating either Normal Delay (when set to 0) or Low Delay (when 
set to 1). If Delay is set to 1, the IP router forwards the IP datagram along the path that has the 
lowest delay characteristics. An application can request the low delay path when sending 
either time-sensitive data, such as digitized voice or video, or interactive traffic, such as Telnet 
sessions. Based on the Delay flag, the router might choose the lower delay terrestrial wide area 
network (WAN) link over the higher delay satellite link, even if the satellite link has a higher 
bandwidth.

Table 5-2 Values of the IP Precedence Field

Precedence Value Precedence

000 Routine

001 Priority

010 Immediate

011 Flash

100 Flash Override

101 CRITIC/ECP

110 Internetwork Control

111 Network Control
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Throughput

The Throughput field is a flag indicating either Normal Throughput (when set to 0) or High 
Throughput (when set to 1). If the Throughput field is set to 1, the IP router forwards the IP 
datagram along the path that has the highest throughput characteristics. An application can 
request the high throughput path when sending bulk data. Based on the Throughput flag, the 
router can choose the higher throughput satellite link over the lower throughput terrestrial 
WAN link, even if the terrestrial link has a lower delay.

Reliability

The Reliability field is a flag indicating either Normal Reliability (when set to 0) or High Reli-
ability (when set to 1). During periods of congestion at an IP router, the Reliability field is used 
to decide which IP datagrams to discard first. If the Reliability field is set to 1, the IP router 
discards these datagrams last. An application can request the high reliability path when send-
ing time-sensitive data, so that it cannot be discarded. For example, with some methods of 
sending digital video, the digitized video is sent as two types of packets: The primary type is 
used to reconstruct the basic video image, and a secondary type is used to provide a higher 
resolution image. In this case, the primary packets are sent with the Reliability field set to 1 
and the secondary packets are sent with the Reliability field set to 0. If congestion occurs at 
the router, the router discards the secondary packets first.

Cost

The Cost field is a flag indicating either Normal Cost (when set to 0) or Low Cost (when set 
to 1), where cost indicates monetary cost. If the Cost field is set to 1, the IP router forwards the 
IP datagram along the path that has the lowest cost characteristics. An application can request 
the low cost path when sending noncritical data. Based on the Cost flag, the router can choose 
a lower cost terrestrial link over a higher cost satellite link, even if the terrestrial link has a 
lower bandwidth.

Reserved

The Reserved field is the last bit and must be set to 0. Routers ignore this field when forward-
ing IP datagrams.

RFC 2474 Definition of the TOS Field

To accommodate prioritized delivery of IP packets over an IP internetwork, RFC 2474 rede-
fines the 8 bits in the TOS field in terms of a 6-bit Differentiated Services Code Point (DSCP) 
field and 2 unused bits. The DSCP value identifies the per-hop behavior that the receiving 
routers use to determine the special delivery handling for the packet. DSCP values are defined 
by network policy.

The RFC 2474–defined TOS field is shown in Figure 5-4.
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Figure 5-4 The structure of the RFC 2474 IP TOS field

Differentiated services are an alternative to prioritized delivery mechanisms that use the 
Resource ReSerVation Protocol (RSVP). RSVP requires that communicating nodes use an ini-
tial signaling process and that intermediate routers maintain a flow state. With differentiated 
services, network policy determines the DSCP values and their corresponding delivery and 
queuing parameters. The network policy is propagated to both the routers and the communi-
cating hosts. When a host needs prioritized delivery for a packet, it selects the appropriate 
DSCP value and places it in the TOS field in the IP header. The intermediate routers note the 
DSCP value and provide the corresponding prioritized delivery service.

TCP/IP for Windows Server 2008 and Windows Vista uses the RFC 2474 definition of the 
TOS field by default. Because the IP_TOS Winsock option has been removed, you can set 
its value with the QoS components of Windows Server 2008 and Windows Vista. You can 
use Group Policy-based QoS settings to set DSCP values and control application sending 
rates without having to use application programming interfaces (APIs) or modify existing 
applications. You can use the Generic QoS (GQoS) and Traffic Control (TC) APIs to set 
the DSCP value or the new QoS2 API, also known as Quality Windows Audio-Video 
Experience (qWAVE).

Note IP for Windows Server 2008 and Windows Vista does not support the 
DisableUserTOSSetting registry value.

Explicit Congestion Notification and the TOS Field

To prevent the problems associated with dropped packets due to congested routers, the 
designers of TCP/IP created a new set of standards for both hosts and routers. These stan-
dards describe active queue management (AQM) on IP routers (RFC 2309) to allow the router 
to monitor that state of its forwarding queues and provide a mechanism to enable routers to 
report to sending hosts that congestion is occurring, allowing the sending hosts to lower their 
transmission rate before the router begins dropping packets. The router reporting and host 
response mechanism is known as Explicit Congestion Notification (ECN) and is defined in 
RFC 3168.
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ECN support in IP uses the two unused bits of the RFC 2474-defined TOS field. Figure 5-5 
shows the new definition of the TOS field with ECN.

Figure 5-5 The structure of the RFC 3168 IP TOS field

The two unused bits in the RFC 2474-defined TOS field are defined in RFC 3168 as the ECN 
field, which has the following values:

■ 00 The sending host does not support ECN.

■ 01 or 10 The sending host supports ECN.

■ 11 Congestion has been experienced by a router.

An ECN-capable host sends its packets with the ECN field set to 01 or 10. For packets sent by 
ECN-capable hosts, if a router in the path is ECN-capable and is experiencing congestion, it 
sets the ECN field to 11. If the ECN field has been set to 11, downstream routers in the path 
to the destination do not modify its value.

TCP/IP in Windows Server 2008 and Window Vista supports ECN but it is disabled by default. 
To enable ECN support, use the netsh interface tcp set global ecncapability=enabled 
command. Because ECN is using bits in the IP and TCP headers that were previously defined 
as unused or reserved, intermediate network devices such as routers and firewalls might 
silently discard packets when the ECN fields are set to nonzero values. To ensure that ECN-
marked TCP/IP traffic will not be dropped from your network, survey your networking equip-
ment and perform the appropriate configuration or upgrades to ensure that ECN-marked 
packets are not discarded.

Total Length

As Figure 5-2 shows, the Total Length field is 2 bytes long and is used to indicate the size of 
the IP datagram (IP header and IP payload) in bytes. With 16 bits, the maximum total length 
that can be indicated is 65,535 bytes. For typical maximum-sized IP datagrams, the total 
length is the same as the IP MTU for that Network Interface Layer technology.

Between the header length and the total length, the IP payload length can be determined from 
the following formula:

ECN 
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IP payload length (bytes) = Total Length value (bytes) – (4 × IHL value (32-bit words))

Identification

The Identification field is 2 bytes long and is used to identify a specific IP packet sent between 
a source and destination node. The sending host sets the field’s value, and the field is incre-
mented for successive IP datagrams. The Identification field is used to identify the fragments 
of an original IP datagram.

Flags

The Flags field is 3 bits long and contains two flags for fragmentation. One flag is used to indi-
cate whether the IP payload is eligible for fragmentation, and the other indicates whether or 
not there are more fragments to follow for this fragmented IP datagram.

More information on these flags and their uses can be found in the section titled “Fragmenta-
tion,” later in this chapter.

Fragment Offset

The Fragment Offset field is 13 bits long and is used to indicate the offset of where this frag-
ment begins relative to the original unfragmented IP payload.

More information on the Fragment Offset field can be found in the section titled “Fragmenta-
tion,” later in this chapter.

Time-To-Live

The Time-To-Live (TTL) field is 1 byte long and is used to indicate how many links on which 
this IP datagram can travel before an IP router discards it. The TTL field was originally 
intended for use as a time counter, to indicate the number of seconds that the IP datagram 
could exist on the Internet. An IP router was intended to keep track of the time that it received 
the IP datagram and the time that it forwarded the IP datagram. The TTL was then decreased 
by the number of seconds that the packet resided at the router.

However, the latest modern standard (RFC 1812) specifies that IP routers decrement the TTL 
by 1 when forwarding an IP datagram. Therefore, the TTL is an inverse link count. The send-
ing host sets the initial TTL, which acts as a maximum link count. The maximum value limits 
the number of links on which the datagram can travel and prevents a datagram from indefi-
nitely looping.

Some additional aspects of the TTL field include the following:

■ Routers decrement the TTL in received packets to be routed before consulting the rout-
ing table. If the TTL is less than 1, the packet is discarded and an ICMP Time Expired-
TTL Expired In Transit message is sent back to the sending host.
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■ Unicast destination hosts do not check the TTL field.

■ Sending hosts must send IP datagrams with a TTL greater than 0. The exact value of the 
TTL for sent IP datagrams is either an operating system default or is specified by the 
application. The maximum value of the TTL is 255.

■ A recommended value of the TTL is twice the diameter of your internetwork. The diam-
eter is the number of links between the farthest two nodes on the IP internetwork.

■ The TTL is independent of routing protocol metrics such as the Routing Information 
Protocol (RIP) hop count and the OSPF cost.

Note The TTL can be mistakenly referred to as a hop count when in fact it is a link count. The 
difference is subtle but important. The hop count is the number of routers to cross to reach a 
given destination. Link count is the number of Network Interface Layer links to cross to reach 
a given destination. The difference between hop count and link count is 1. For example, if Host 
A and Host B are separated by five routers, the hop count is 5, but the link count is 6. An IP 
datagram sent from Host A to Host B with a TTL of 5 is discarded by the fifth router. An IP 
datagram sent from Host A to Host B with a TTL of 6 will arrive at Host B.

The default TTL for Windows Server 2008 and Windows Vista is 128. You can change the 
default value of the TTL field for sent packets with the following command:

netsh interface ipv4 set global defaultcurhoplimit=TTL

You can also use the following registry value:

DefaultTTL
Key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 

Value type: REG_DWORD 

Valid range: 0 - 255 

Default: 128 

Present by default: No

The default value of DefaultTTL is set to 128 so that IP packets sent by a Windows Server 
2008 or Windows Vista–based computer can reach locations on the Internet that might need 
to traverse many links. Changing the value of DefaultTTL is necessary only when the diameter 
of your network changes. Windows Sockets applications can override this default value.

Setting the TTL with Ping

The Windows Server 2008 and Windows Vista Ping.exe tool with the -i option can be used 
to set the TTL value in ICMP Echo messages. The syntax is:

ping -i TTLValue Destination

For example, to ping 10.0.0.1 with a TTL field that is set to 7, use the following command:
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ping -i 7 10.0.0.1

The default TTL for ICMP Echo messages sent by the Ping.exe tool is 128.

Protocol

The Protocol field is 1 byte long and is used to indicate the upper layer protocol contained 
within the IP payload. Some common values of the IP Protocol field are 1 for ICMP, 6 for TCP, 
and 17 (0x11) for UDP. The Protocol field acts as a multiplex identifier so that the payload can 
be passed to the proper upper layer protocol on receipt at the destination node.

Windows Sockets applications can refer to protocols by name. Protocol names are  resolved to 
protocol numbers through the Protocol file stored in the %SystemRoot%\System32
\Drivers\Etc directory.

Table 5-3 lists some of the values of the IP Protocol field for protocols that Windows Server 
2008 and Windows Vista support.

For a complete list of IP Protocol field values, see http://www.iana.org/assignments
/protocol-numbers.

Header Checksum

The Header Checksum field is 2 bytes long and performs a bit-level integrity check on the IP 
header only. The IP payload is not included, and IP payloads must include their own check-
sums to check for bit-level integrity. The sending host performs an initial checksum in the sent 
IP datagram. Each router in the path between the source and destination verifies the Header 
Checksum field before processing the packet. If the verification fails, the router silently 
discards the IP datagram.

Because each router in the path between the source and destination decrements the TTL, the 
header checksum changes at each router.

Table 5-3 Values of the IP Protocol Field

Value Protocol

1 ICMP

2 IGMP

6 TCP

17 UDP

41 IPv6

47 Generic Routing Encapsulation  (GRE)

50 IP security Encapsulating Security Payload (ESP)

51 IP security Authentication Header (AH)
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To compute the header checksum, each 16-bit quantity in the IP header is ones-
complemented; bits within the 16-bit quantity that are set to 0 are changed to 1, bits within 
the 16-bit quantity that are set to 1 are changed to 0. The ones-complemented 16-bit quantities 
are added together and the sum is ones-complemented. The result is placed in the Header 
Checksum field.

For the purposes of computing the header checksum over all the fields in the IP header, the 
value of the Header Checksum field is set to 0.

Source Address

The Source Address field is 4 bytes long and contains the IP address of the source host, unless 
a network address translator (NAT) is translating the IP datagram. A NAT is used to translate 
between public and private addresses when connecting to the Internet. NAT is defined in 
RFC 1631.

Destination Address

The Destination Address field is 4 bytes long and contains the IP address of the destination 
host, unless the IP datagram is being translated by a NAT or being loose-or strict-source 
routed. More information on IP source routing can be found in the section titled “IP Options,” 
later in this chapter.

Options and Padding

Options and padding can be added to the IP header, but must be done in 4-byte increments so 
that the size of the IP header can be indicated using the Header Length field.

For an example of the structure of the IP header, the following is frame 1 of Capture 05-01, a 
Network Monitor trace that is included in the \Captures folder on the companion CD-ROM, 
as displayed with Network Monitor 3.1:

Frame: 

+ Ethernet: Etype = Internet IP (IPv4) 

- Ipv4: Next Protocol = ICMP, Packet ID = 13517, Total IP Length = 60 

- Versions: IPv4, Internet Protocol; Header Length = 20 

Version: (0100....) IPv4, Internet Protocol 

HeaderLength: (....0101) 20 bytes (0x5) - DifferentiatedServicesField: DSCP: 0, ECN: 0 

DSCP: (000000..) Differentiated services codepoint 0 

ECT: (......0.) ECN-Capable Transport not set 

CE: (.......0) ECN-CE not set 

TotalLength: 60 (0x3C) 

Identification: 13517 (0x34CD) 

- FragmentFlags: 0 (0x0) 

Reserved: (0...............) 

DF: (.0..............) Fragment if necessary 

MF: (..0.............) This is the last fragment 

Offset: (...0000000000000) 0 
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TimeToLive: 128 (0x80) 

NextProtocol: ICMP, 1(0x1) 

Checksum: 47209 (0xB869) 

SourceAddress: 157.59.11.19 

DestinationAddress: 157.59.8.1 

+ Icmp: Echo Request Message, From 157.59.11.19 To 157.59.8.1

Fragmentation
When a source host or a router must transmit an IP datagram on a link and the MTU of the link 
is less than the IP datagram’s size, the IP datagram must be fragmented. When IP fragmentation 
occurs, the IP payload is segmented and each segment is sent with its own IP header.

The IP header contains information required to reassemble the original IP payload at the des-
tination host. Because IP is a datagram packet-switching technology and the fragments can 
arrive in a different order from which they were sent, the fragments must be grouped (using 
the Identification field), sequenced (using the Fragment Offset field), and delimited (using 
the More Fragments flag).

Fragmentation Fields

Figure 5-6 shows the fragmentation fields in the IP header, which are described in the follow-
ing sections.

Figure 5-6 The fields in the IP header used for fragmentation

Identification

The IP Identification field is used to group all the fragments of the payload of an original IP 
datagram together. The sending host sets the value of the Identification field, and this value is 
not changed during the fragmentation process. The Identification field is set even when frag-
mentation of the IP payload is not allowed by setting the Don’t Fragment (DF) flag.

Don’t Fragment Flag

The DF flag is set to 0 to allow fragmentation and set to 1 to prohibit fragmentation, so frag-
mentation occurs only if the DF flag is set to 0. If fragmentation is needed to forward the IP 

0 

Don’t Fragment 

More Fragments  Reserved

Identification

Fragmentation Flags 

Fragment Offset 
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datagram and the DF flag is set to 1, the router should send an ICMP Destination 
Unreachable-Fragmentation Needed And DF Set message back to the source host and 
discards the IP datagram.

Fragmentation and reassembly is an expensive process at the routers and the destination 
host. The DF flag and the ICMP Destination Unreachable-Fragmentation Needed And DF Set 
message are the mechanisms by which a sending host discovers the MTU of the path between 
the source and the destination, or Path MTU Discovery. For more information, see Chapter 6, 
“Internet Control Message Protocol (ICMP).”

More Fragments Flag

The More Fragments (MF) flag is set to 0 if there are no more fragments that follow this 
fragment (this is the last fragment), and set to 1 if there are more fragments that follow this 
fragment (this is not the last fragment).

Fragment Offset

The Fragment Offset field is set to indicate the position of the fragment relative to the original 
IP payload. The Fragment Offset is an offset used for sequencing during reassembly, putting 
the incoming fragments in proper order to reconstruct the original payload. The Fragment 
Offset field is 13 bits long. With a maximum IP payload size of 65,515 bytes (the maximum IP 
MTU of 65,535 minus a minimum-sized IP header of 20 bytes), the Fragment Offset field can-
not possibly indicate a byte offset. At 13 bits, the maximum value is 8191. The fragment offset 
must be 16 bits long to be a byte offset.

Because 16 bits are required to indicate a maximum-sized IP payload and only 13 bits are 
available in the Fragment Offset field, each value of the fragment offset must represent 
3 bits. Therefore, the Fragment Offset field is defined in terms of 8-byte blocks, called 
fragment blocks.

During fragmentation, the payload is fragmented along 8-byte boundaries and the maximum 
number of 8-byte fragment blocks is placed in each fragment. The Fragment Offset field is set 
to indicate the starting fragment block for the fragment relative to the original IP payload.

For each fragment being fragmented by a router, the original IP header is copied and the 
following fields are changed:

■ Header Length Might or might not change depending on whether IP options are 
present and whether the options are copied to all fragments or just the first fragment. IP 
options are discussed in the section titled “IP Options,” later in this chapter.

■ TTL Decremented by 1.

■ Total Length Changed to reflect the new IP header and payload size.

■ MF Set to 1 for the first or middle fragments. Set to 0 for the last fragment.
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■ Fragment Offset Set to indicate the position of the fragment in fragment blocks relative 
to the start of the original unfragmented payload.

■ Header Checksum Recalculated based on the changed fields in the IP header.

The Identification field does not change for any fragment.

Fragmentation Example

As an example of the fragmentation process, a node on a Token Ring network sends a frag-
mentable IP datagram with the IP Identification field set to 9999 to a node on an Ethernet 
network, as shown in Figure 5-7.

Figure 5-7 An example of a network where IP fragmentation can occur

Assuming a 9-ms token holding time, a 4-Mbps ring, and no Token Ring source routing 
header, the IP MTU for the Token Ring network is 4482 bytes. The Ethernet IP MTU is 1500 
bytes using Ethernet II encapsulation. Table 5-4 shows the fields relevant to fragmentation in 
the IP header and their values for the original IP datagram.

The IP router connecting the two networks receives the IP datagram, checks its routing table, 
and notes that the interface on which to forward the datagram has a lower IP MTU than the 
datagram’s size. The router then checks the DF flag. If set to 1, the router discards the IP dat-
agram and then might send an ICMP Destination Unreachable-Fragmentation Needed And 
DF Set message back to the source host. If set to 0, the IP router fragments the 4462-byte IP 

Table 5-4 Original IP Datagram

IP Header Field Value

Total Length 4482

Identification 9999

DF 0

MF 0

Fragment Offset 0

4 Mbps ring 
IP MTU = 4482 10 Mbps Ethernet

IP MTU = 1500 
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payload (assuming no IP options are present) into four fragments, each of which can be sent 
on the 1500-byte Ethernet network.

IP payloads on an Ethernet network can be 1480 bytes long, assuming no IP options are present. 
Each 1480-byte payload is 185 fragment blocks (1480  8 = 185). Therefore, the four fragments 
are three fragments each with payloads of 1480 bytes and the last fragment with a payload of 
22 bytes (4462 = 1480 + 1480 + 1480 + 22). Figure 5-8 shows the fragmentation process.

Figure 5-8 The IP fragmentation process when fragmenting from a 4482-byte IP MTU link to 
a 1500-byte IP MTU link

Table 5-5 shows the fields relevant to fragmentation in the IP header of the four fragments.

Table 5-5 Fragments of the Original IP Datagram

IP Header Field Value

Fragment 1

Total Length 1500

Identification 9999

DF 0

MF 1

Fragment Offset 0

Fragment 1 

Fragment 2 

Fragment 3 

Fragment 4 

Total Length: 1500

Total Length: 1500

Total Length: 1500

Total Length: 42

Payload

4462 bytes
4482 bytes

IP 

IP 

IP 

IP 

IP 
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Note Token Ring is an older technology this is not in wide use today. This configuration is 
uncommon on modern networks and serves only as an example of a mixed-media network.

Reassembly Example

The fragments are forwarded by the intermediate IP router(s) to the destination host. Because 
IP is a datagram-based packet-switching technology, the fragments can take different paths to 
the destination and arrive in a different order from which the fragmenting router forwarded 
them. IP uses the Identification and Source IP Address fields to group the arriving fragments 
together.

After receiving a fragment (not necessarily the first fragment of the original IP payload), an IP 
implementation can allocate reassembly resources comprised of the following:

■ A data buffer to contain the IP payload (65,515 bytes)

■ A header buffer to contain the IP header (60 bytes)

Fragment 2

Total Length 1500

Identification 9999

DF 0

MF 1

Fragment Offset 185

Fragment 3

Total Length 1500

Identification 9999

DF 0

MF 1

Fragment Offset 370

Fragment 4

Total Length 42

Identification 9999

DF 0

MF 0

Fragment Offset 555

Table 5-5 Fragments of the Original IP Datagram

IP Header Field Value
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■ A fragment block bit table (1024 bytes or 8192 bits)

■ A total length data variable

■ A timer

IP can determine that a fragment arrived because either the MF flag or the Fragment Offset 
field has a nonzero value. An unfragmented IP datagram has the MF flag set to 0 and the Frag-
ment Offset field set to 0. When the first fragment arrives (the Fragment Offset field is 0), its 
IP header is placed in the header buffer. When the last fragment arrives (the MF flag is 0), the 
total data length is computed.

For each arriving fragment, the IP payload is placed in the data buffer according to the values 
of the Fragment Offset and Total Length fields; the bits corresponding to the arriving frag-
ment blocks are set in the fragment block bit table. When the final fragment arrives (which 
might not be the last fragment), all the bits in the fragment block bit table are set and reassem-
bly of the original IP datagram is complete. IP delivers the IP payload to the appropriate upper 
layer protocol based on the Protocol field’s value.

The reassembly timer is used to abandon the reassembly process within a certain amount of 
time. If all the fragments do not arrive before the reassembly timer expires, the IP datagram is 
discarded and the destination host can send an ICMP Time Exceeded-Fragmentation Time 
Expired message to the source host. RFC 791 recommends a default reassembly timer of 
15 seconds; as fragments arrive, the reassembly timer is set to the maximum of the current 
value and the value of the arriving fragment’s TTL field.

Figure 5-9 shows the reassembly process for our example fragmentation.

Figure 5-9 The IP reassembly process for the four fragments of the original IP datagram

Fragment 1 

Fragment 2 

Fragment 3 

Fragment 4 

Fragment Offset: 0 

Fragment Offset: 185 

Fragment Offset: 370 

Fragment Offset: 555 

IP 

IP 

IP 

IP 

IP Payload
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Fragmenting a Fragment

It is possible for fragments to become further fragmented. In this case, each fragmented pay-
load is fragmented to fit the MTU of the link onto which it is being forwarded. The process of 
fragmenting a fragmented payload is slightly different from fragmenting an original IP pay-
load in how the MF flag is set.

When fragmenting a previously fragmented payload, the MF flag is always set to 1, except 
when the fragment of the fragmented payload is the last fragment of the original payload.

■ If an IP router fragments a previously fragmented first or middle fragment, all of the 
fragments have the MF flag set to 1.

■ If an IP router fragments a previously fragmented last fragment, all of the fragments 
except the last fragment have the MF flag set to 1.

Therefore, regardless of how many times the IP datagram is fragmented, only one fragment 
has the MF flag set to 0, indicating the last fragment of the original IP payload.

Network Monitor Capture 05-02 (in the \Captures folder on the companion CD-ROM) pro-
vides an example of source-based IP fragmentation. The capture is the fragmentation of a 
5008-byte ICMP Echo message so that it fits on an Ethernet network.

Avoiding Fragmentation

Although fragmentation allows IP nodes to communicate regardless of differing MTUs in 
intermediate subnets and without user intervention, IP fragmentation and reassembly is a rel-
atively expensive process—both at the routers (or sending hosts) and at the destination host. 
On the modern Internet, fragmentation is highly discouraged; Internet routers are busy 
enough with the forwarding of IP traffic.

Fragmentation can be avoided by taking the following two measures:

■ Discover the IP MTU that is supported by all of the links in the path between the source 
and the destination (the path MTU).

■ Set the DF flag to 1 on all IP datagrams sent.

For more information on the Path MTU Discovery process, see Chapter 6, “Internet Control 
Message Protocol (ICMP).”

Setting the DF Flag with Ping

The Windows Server 2008 and Windows Vista Ping.exe tool with the -f option can be used 
to set the DF flag to 1 in ICMP Echo messages. The syntax is

ping –f Destination
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For example, to ping 10.0.0.1 and set the DF flag to 1, use the following command:

ping -f 10.0.0.1

By default, ICMP Echo messages sent by the Ping.exe tool have the DF flag set to 0 (fragmen-
tation allowed).

Setting the IP Payload Size with Ping

The Windows Server 2008 and Windows Vista Ping.exe tool with the -l option can be used 
to send IP packets with an arbitrary size by specifying the size of the Optional Data field in an 
ICMP Echo message. The syntax is:

ping -l OptionalDataFieldSize Destination

OptionalDataFieldSize is the size of the Optional Data field in an ICMP Echo message in bytes.

For example, to ping 10.0.0.1 with an Optional Data field size of 5000, use the following 
command:

ping -l 5000 10.0.0.1

The default Optional Data field size for Ping is 32 bytes.

The Optional Data field size is not the same as the IP payload size because ICMP Echo mes-
sages include an 8-byte ICMP header. Therefore, to calculate the IP payload’s size, add 8 to the 
Optional Data field size. To calculate the IP datagram’s size, add 20 to the size of the IP pay-
load (or 28 to the size of the Optional Data field size). To ping with an ICMP Echo message at 
the maximum size allowed by the Network Interface technology, subtract 28 from the IP 
MTU. For example, to ping the address 10.0.0.1 with a maximum-sized ICMP Echo message 
on an Ethernet network (with an IP MTU of 1500), use the following Ping command:

ping -l 1472 10.0.0.1

Using Ping to Do Source Fragmentation

The Windows Server 2008 and Windows Vista Ping.exe tool with the -l option can be used 
to do source fragmentation. Pinging with an Optional Data field size that is greater than (IP 
MTU – 28) bytes produces source-fragmented packets. For example, pinging from an Ether-
net node with an Optional Data field size of 1472 or less does not produce fragmented pack-
ets. Pinging from an Ethernet node with an Optional Data field size greater than 1472 does 
produce fragmented packets.

Fragmentation and Translational Bridging Environments

Translational bridging is the interconnection of two different Network Interface Layer technol-
ogies on the same network by a Layer 2 device such as a bridge or switch. Translational 
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bridges were used to connect an Ethernet segment to a Token Ring segment. In modern net-
works, switches use translational bridging to connect 10-Mbps or 100-Mbps Ethernet nodes 
to servers on high-speed ports. Common high-speed port technologies include FDDI, Gigabit 
Ethernet (GbE), and ATM.

The most serious obstacle to translational bridging is the difference in MTU between various 
Network Interface Layer technologies. Because there is no router involved, we cannot rely on 
either fragmentation or Path MTU Discovery processes to account for the differing MTUs. A 
translational bridge does not have the capability to fragment. Frames larger than the MTU of 
the link onto which they are to be forwarded are silently discarded by the bridge. As discussed 
in Chapter 10, “Transmission Control Protocol (TCP) Basics,” when a TCP connection is 
established, both nodes communicate MTU information in the form of the TCP Maximum 
Segment Size (MSS) option. However, despite this indication, proper communication between 
all nodes in a translational bridging environment might require the modification of the IP 
MTU of specific nodes.

For example, Figure 5-10 shows two Ethernet switches connected on an Ethernet backbone. 
On each Ethernet switch is an FDDI port connected to an FDDI ring containing application 
servers. When the servers on the same FDDI ring communicate with each other, they can 
send packets with the FDDI MTU of 4352 bytes. When an Ethernet node on one of the 
switches uses TCP to connect to an application server on either FDDI ring, the TCP MSS 
option lowers the maximum size of TCP segments for IP datagrams of 1500 bytes.

Figure 5-10 An MTU problem in a translational bridging environment caused by two FDDI hosts 
connected to two Ethernet switches

However, consider the communication between application servers on different FDDI rings. 
In creating the TCP connection, each server indicates an FDDI-based TCP MSS. Therefore, 
Ethernet switches silently discard TCP-based IP datagrams sent between servers on different 
rings that have an IP total length greater than 1500.

The solution to this problem is to manually configure the application servers’ IP MTU for the 
smallest IP MTU of all the links within the translational bridged network.

FDDI ring 

Ethernet switch

FDDI ring 

Ethernet switch

Ethernet 
backbone 
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Using our example, the IP MTU of the application servers on the FDDI rings are set to 1500, 
so translational bridges can forward IP datagrams between FDDI rings. Changing the applica-
tion servers’ MTU means that when sending packets to application servers on the same ring, the 
packets are sent at the lower MTU of 1500, a lower efficiency than the default FDDI MTU of 
4352. However, it is better to have lower efficiency between servers on the same ring than zero 
efficiency between servers on different rings. For nodes running Windows Server 2008 or 
Windows Vista, use the netsh interface ipv4 set interface InterfaceNameOrIndex mtu= MtuSize 
command or the MTU registry value to override the default MTU setting reported by NDIS.

Note FDDI is an older technology whose use has been made obsolete by 100 Mbps Ether-
net. This configuration is unlikely on modern networks and serves only as an example of a 
mixed-media subnet.

Fragmentation and TCP/IP for Windows Server 2008 
and Windows Vista

TCP/IP for Windows Server 2008 and Windows Vista supports IP fragmentation and reas-
sembly with the following additional behaviors:

■ IP can handle irregular fragments, which overlap either fully or partially, with already 
received fragments for the same payload.

■ When forwarding fragments, IP can forward the individual fragments separately or hold 
all of the fragments and then send all of them when the last one arrives. The default 
behavior is to forward individual fragments. You can change this behavior with the 
netsh interface ipv4 set global groupforwardedfragments=enabled command.

■ The maximum amount of memory that can be allocated for reassembly for all 
incoming IP packets is controlled by the netsh interface ipv4 set global 
reassemblylimit=MemorySize command. You can view the current size of the 
reassembly buffer with the netsh interface ipv4 show global command.

IP Options
IP options are additional fields appended to the standard 20-byte IP header. Although IP 
options are not required on each IP header, the ability to process IP option fields is required. 
IP options are used infrequently and mostly for network testing purposes.

The IP options portion size of the IP header varies in length based on the IP options that are 
being used. The individual IP options also vary in length from a single byte to multiple four-
byte quantities. Recall that the maximum-sized IP header that can be indicated with the 
Header Length field is 60 bytes. With a standard IP header size of 20 bytes, 40 bytes are left 
for IP options.
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The first byte of each IP option has the format shown in Figure 5-11.

Figure 5-11 The structure of the first byte in an IP option

Copy

The Copy field is 1 bit long and is used when a router or a sending host must fragment the IP 
datagram. When the Copy field is set to 0, the IP option should be copied only into the first 
fragment. When the Copy field is set to 1, the IP option should be copied into all fragments.

Option Class

The Option Class field is 2 bits long and is used to indicate the general class of the option. 
Table 5-6 lists the defined option classes.

Option Number

The Option Number field is 5 bits long and is used to indicate a specific option within the 
option class. Each option class can have up to 32 different option numbers.

Table 5-7 lists the defined option classes and numbers for nonmilitary computing.

Option Class

Copy
Option Number

Table 5-6 Option Classes

Option Class Description

0 Network control

1 Reserved for future use

2 Debugging and measurement

3 Reserved for future use

Table 5-7 Option Classes and Numbers

Option Class Option Number Description

0 0 End Of Option List A one-byte option used to indicate the 
end of an option list

0 1 No Operation A one-byte option used to align bytes in a list 
of options
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End Of Option List

The End Of Option List option is always a single byte in length and is used at the end of the 
IP options when they do not fall on a 4-byte boundary. This option is used only at the end of 
all the IP options, not at the end of each option.

No Operation

The No Operation option is always a single byte in length and is used between IP options 
when an IP option does not fall on a 4-byte boundary.

Record Route

The Record Route option is a variable-length option that is used to record the IP addresses of 
the far side interfaces of IP routers as it traverses the IP internetwork. The far side interface is 

0 3 Loose Source Routing A variable-length option used to 
route a datagram through a specified path where alternate 
routes can be taken

0 7 Record Route A variable-length option used to trace a route 
through an IP internetwork

0 9 Strict Source Routing A variable-length option used to route 
a datagram through a specified path where alternate routes 
cannot be taken

0 20 IP Router Alert A fixed-length option used to inform the 
router that additional processing of the datagram is required

2 4 Internet Timestamp A variable-length option used to record 
a series of timestamps at each hop

Table 5-7 Option Classes and Numbers

Option Class Option Number Description

Option Code = 0

Option Code = 1

Option Code 

Option Length 

Next Slot Pointer

First IP Address

Second IP Address

. .  . 

= 7 
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the interface on the router on which the IP datagram is forwarded, presumed to be farthest 
from the sending host.

As the IP datagram is forwarded from router to router, each router adds its IP address to the 
list; each router also modifies the Next Slot Pointer field. The route from the source host to the 
destination host is recorded. To get the complete route, there must be enough room in the 
Record Route option. Unlike Token Ring source routing, the number of IP address slots is 
specified by the sending host and is fixed in the IP header.

The Record Route option contains the following fields:

■ Option Code Set to 7 (Copy Bit=0, Option Class=0, Option Number=7).

■ Option Length Set by the sending host to the number of bytes in the Record 
Route option.

■ Next Slot Pointer Set to the byte offset (starting at 1) within the Record Route option of 
the next available IP address. The minimum value of the Next Slot Pointer field is 4.

■ First IP Address, Second IP Address Set to the IP address of the far side interface by rout-
ers. With a maximum of 40 bytes in the IP options portion of the IP header, there is 
enough room for a maximum of nine IP addresses.

Record Route Processing

An IP router receiving an IP datagram with the Record Route option compares the Option 
Length and Next Slot Pointer fields. If the Next Slot Pointer field is less than the Option 
Length field, there are open IP address fields. The router records the IP address of the inter-
face that is forwarding the datagram in the next available IP address field; the router also 
updates the Next Slot Pointer field by adding 4. If the value of the Next Slot Pointer field is 
greater than the Option Length field, routers have used all of the available IP address fields. 
The router then forwards the IP datagram without modifying the Record Route option.

Because the Record Route option size is not a multiple of 4 bytes, either an End Of Options 
option (if there are no more options) or a No Operation option (if there are more options) 
must be added to ensure that the IP header is an integral multiple of 4 bytes.

Setting the Record Route Option with Ping

The Windows Server 2008 and Windows Vista Ping.exe tool with the -r option can be used 
to add the Record Route option and set the number of IP address slots in the Record Route 
option within an ICMP Echo message. The syntax is:

ping -r IPAddressSlots Destination

For example, to ping 10.0.0.1 with seven IP address slots, use the following command:

ping -r 7 10.0.0.1
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When both hosts are computers running Windows Server 2008 or Windows Vista, the 
Record Route option records the IP addresses of the far side interfaces of forwarding routers 
in the ICMP Echo message. When the Echo message is received, the IP addresses recorded are 
maintained and the Echo Reply message is sent with the same Record Route option. The Echo 
Reply message contains the recorded route for the Echo message and the recorded route for 
the Echo Reply message.

Therefore, with the Ping -r option, it is possible to record the far side router interfaces for the 
Echo message (the path from Host A to Host B) and the far side router interfaces for the Echo 
Reply message (the path from Host B to Host A). However, because there is only room for nine 
IP address slots, this is possible only if there are no more than four routers between hosts.

Network Monitor Capture 05-03 (in the \Captures folder on the companion CD-ROM) 
provides an example of Ping.exe tool traffic and the use of the Record Route option.

Note The Tracert.exe tool does not use the Record Route option.

Strict and Loose Source Routing

The IP routing process at IP routers is performed through a comparison of the destination IP 
address with entries in a local routing table. Each router makes a forwarding decision. How-
ever, it is sometimes necessary to specify a path that an IP datagram is to take regardless of the 
router’s routing table entries. The path is specified before the source host sends the datagram; 
this is known as source routing.

For example, in a multipath IP internetwork (where there is more than one path between IP 
networks), routers choose the best path based on a lowest cost metric. Once a router deter-
mines all of the best paths, the higher cost paths are not used unless the topology of the 
internetwork changes. To check that higher cost paths contain valid links, you must do 
source routing.

Source routing in IP is done by specifying the IP addresses of the near side interfaces of the 
desired routers between the source and its destination. At each leg of the journey, the destina-
tion IP address in the IP header is set to the IP address of the next near side router interface. 
IP supports both loose and strict source routing. In loose source routing, the next router’s IP 
address does not have to be a neighboring router; it can be multiple hops away. In strict source 
routing, the next router’s IP address must be a neighboring router (a single hop away).

IP source routing also records the path taken in the same way as the Record Route option. For 
each intermediate destination, the IP address of the interface on the router that forwarded the 
IP datagram is recorded.
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Note To use IP source routing, it must be enabled on all the routers in the path between the 
source and destination hosts. It is a common practice to disable source routing on routers, 
especially those connected to the Internet.

Strict Source Route Option

The Strict Source Route option contains the following fields:

■ Option Code Set to 137 (Copy Bit=1, Option Class=0, Option Number=9).

■ Option Length Set by the sending host to the number of bytes in the Strict Source 
Route option.

■ Next Slot Pointer Set to the byte offset (starting at 1) within the Strict Source Route 
option for the next router. The Next Slot Pointer field’s minimum value is 4. This field is 
used also in the same manner as the Record Route option to determine the location of 
the next IP address slot for recording the route.

■ First IP Address, Second IP Address Set by the sending host for the series of IP addresses 
for successive router destinations in the strict source route; set also by IP routers to the 
IP address of the forwarding interface. With a maximum of 40 bytes in the IP options 
portion of the IP header, there is enough room for a maximum of nine IP addresses.

When a sending host sends an IP datagram with the Strict Source Route option, the sending 
host does the following:

1. Sets the Next Slot Pointer field’s value to 4.

2. Places the first IP address in the strict source route in the IP header’s Destination IP 
Address field.

When an IP router receives an IP datagram as the destination with the Strict Source Route 
option, it compares the Option Length and Next Slot Pointer fields. If the Next Slot Pointer 
field is less than the Option Length field, the router does the following:

1. Adds 4 to the Next Slot Pointer field’s value.

Option Code 

Option Length 

Next Slot Pointer

First IP Address

Second IP Address

. . . 

= 137
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2. Replaces the IP header’s destination IP address with the IP address that is recorded in 
the next slot (based on the Next Slot Pointer field’s new value).

3. Records the IP address of the forwarding interface in the previous slot.

If the next destination IP address is not reachable using a directly attached network (the IP 
address of a neighboring router or host), the IP datagram is discarded and an ICMP Destina-
tion Unreachable-Source Route Failed message is sent back to the source host.

If the Next Slot Pointer field’s value is greater than the Option Length field’s value, the IP 
datagram has reached its final destination.

Because the size of the Strict Source Route option is not a multiple of 4 bytes, either an End Of 
Options option (if there are no more options) or a No Operation option (if there are more 
options after the Strict Source Route option) must be added to ensure that the IP header is an 
integral multiple of 4 bytes. In Windows Server 2008 and Windows Vista, TCP/IP places the 
Strict Source Route option as the last option in the list and uses an End Of Options option to 
specify the end of the list of options.

Setting the Strict Source Route Option with Ping

The Windows Server 2008 and Windows Vista Ping.exe tool with the -k option can be used 
to add the Strict Source Route option. The Ping.exe tool with the –k option also can be used to 
set the IP addresses of successive routers and the final destination in ICMP Echo messages. 
The syntax is:

ping -k FirstHopIPAddress SecondHopIPAddress … Destination

For example, to ping 10.0.0.1 through neighboring router interfaces 192.168.1.1 and 
192.168.2.1, use the following command:

ping -k 192.168.1.1 192.168.2.1 10.0.0.1

Network Monitor Capture 05-04 (in the \Captures folder on the companion CD-ROM) 
provides an example of Ping.exe tool traffic and the use of the Strict Source Route option.

Loose Source Route Option

Option Code 

Option Length 

Next Slot Pointer

First IP Address

Second IP Address

. . . 

= 131 
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The Loose Source Route option contains the following fields:

■ Option Code Set to 131 (Copy Bit=1, Option Class=0, Option Number=3).

■ Option Length Set by the sending host to the number of bytes in the Loose Source 
Route option.

■ Next Slot Pointer Set to the byte offset (starting at 1) within the Loose Source Route 
option for the next router. The Next Slot Pointer field’s minimum value is 4. The Next 
Slot Pointer field also is used in the same manner as the Record Route option to deter-
mine the location of the next IP address slot for recording the route.

■ First IP Address, Second IP Address Set by the sending host for the series of IP addresses 
for successive router destinations in the loose source route, and set by IP routers to the 
forwarding interface’s IP address. With a maximum of 40 bytes in the IP options portion 
of the IP header, there is enough room for a maximum of nine IP addresses.

When a sending host sends an IP datagram with the Loose Source Route option, the sending 
host does the following:

1. Sets the Next Slot Pointer field’s value to 4.

2. Places the first IP address in the loose source route in the IP header’s Destination IP 
Address field.

When an IP router receives an IP datagram as the destination with the Loose Source Route 
option, it compares the Option Length and Next Slot Pointer fields. If the Next Slot Pointer 
field’s value is less than the Option Length field’s value, the router does the following:

1. Adds 4 to the Next Slot Pointer field’s value.

2. Replaces the IP header’s destination IP address with the IP address that is recorded in 
the next slot (based on the Next Slot Pointer field’s new value).

3. Records the IP address of the forwarding interface in the previous slot.

If the Next Slot Pointer field’s value is greater than the Option Length field’s value, the IP 
datagram has reached its final destination.

Because the size of the Loose Source Route option is not a multiple of 4 bytes, either an End 
Of Options option (if there are no more options) or a No Operation option (if there are more 
options) must be added to ensure that the IP header is an integral multiple of 4 bytes.

Setting the Loose Source Route Option with Ping

The Windows Server 2008 and Windows Vista Ping.exe tool with the -j option can be used 
to add the Loose Source Route option. Additionally, it is used to set the IP addresses of suc-
cessive routers and the final destination in ICMP Echo messages. The syntax is:

ping -j FirstHopIPAddress SecondHopIPAddress … Destination
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For example, to ping 10.0.0.1 through neighboring router interfaces 192.168.1.1 and 
192.168.2.1, use the following command:

ping -j 192.168.1.1 192.168.2.1 10.0.0.1

Network Monitor Capture 05-05 (in the \Captures folder on the companion CD-ROM) 
provides an example of Ping.exe tool traffic and the use of the Loose Source Route option.

By default, an IP router running Windows Server 2008 or Windows Vista does not forward 
source-routed IP packets. You can change the behavior of IP for source-routed IP packets with 
the following command:

netsh interface ipv4 set global sourceroutingbehavior=drop|forward|dontforward

You can also use the following registry value:

DisableIPSourceRouting
Key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 

Value type: REG_DWORD 

Valid range: 0 - 2 

Default: 1 

Present by default: No

Set the DisableIPSourceRouting registry value to 0 to forward source-routed packets, to 1 to 
not forward source-routed packets (for packets being forwarded), or to 2 to drop all incoming 
source-routed packets (for packets being forwarded and for packets destined to the node).

IP Router Alert

The IP Router Alert option is used to indicate to IP routers that additional processing of the IP 
datagram is required even when the IP datagram is not addressed to the router. The IP Router 
Alert option is used for the Resource Reservation Protocol (RSVP), IGMP version 2, and IGMP 
version 3. For example, when a router receives an IP datagram with the IP Router Alert option, 
it looks at the IP Protocol field to see if the IP payload requires additional processing before 
making a forwarding decision. RFC 2113 describes the IP Router Alert option.

The IP Router Alert option contains the following fields:

■ Option Code Set to 148 (Copy Bit=1, Option Class=0, Option Number=20).

■ Option Length Set to the fixed length of 4.

■ Value A 2-byte field set to 0. All other values are reserved. The value of 0 indicates that 
the router must examine the packet.

Option Code

Option Length

Value

=148 

=0 
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Internet Timestamp

The Internet Timestamp option is used to record the time that an IP datagram arrived at each 
IP router in the path between the source and destination host. The Internet Timestamp option 
is similar to the Record Route option in that the sending node creates blank entries in the IP 
header that routers fill out as the packet travels through the IP internetwork. Each entry con-
sists of the router’s IP address and a 32-bit integer timestamp that indicates the number of mil-
liseconds since midnight, Universal Time. If Universal Time is not being used, the high-order 
bit of the timestamp field is set to 1.

Note To use Internet timestamps, Internet timestamping must be enabled on all the routers 
in the path between the source and destination hosts. It is common for routers to either not 
support Internet timestamping or have it disabled.

The Internet Timestamp option contains the following fields:

■ Option Code Set to 68 (Copy Bit=0, Option Class=2, Option Number=4).

■ Option Length Set by the sending host to the number of bytes in the Internet Times-
tamp option.

■ Next Slot Pointer Set to the byte offset (starting at 1) within the Internet Timestamp 
option of the next slot for the recording of the IP address and timestamp. The Next Slot 
Pointer field’s minimum value is 5.

■ Overflow Set by routers to indicate the number of routers that were unable to record 
their IP address and timestamp.

■ Flags Set by the sending host to indicate the format of the IP Address/Timestamp slots. 
When Flags is set to 0, the IP address is omitted. This allows up to nine timestamps to 
be recorded. When Flags is set to 1, the IP address is recorded, allowing up to four IP 
address/timestamp pairs to be recorded. The Internet Timestamp option format shown 
assumes Flags is set to 1. When Flags is set to 3, the sending node specifies the IP 

Option Code 

Option Length 

Next Slot Pointer 

Overflow

Flags

First IP Address

First Timestamp

... 

=68 
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addresses of successive routers: A timestamp is recorded only if the IP address in the slot 
matches the router’s IP address.

■ First IP Address/First Timestamp Set by routers to record the IP address and timestamp 
of the routers encountered (when Flags is set to 1) or specified (when Flags is set to 3). 

When a sending host sends an IP datagram with the Internet Timestamp option, the sending 
host does the following: 

1. Sets the Next Slot Pointer field’s value to 5. 

2. For a specified route (when Flags is set to 3), places the series of IP addresses in the 
Internet Timestamp option. 

When an IP router receives an IP datagram with the Internet Timestamp option, it compares 
the Option Length and Next Slot Pointer fields. If the Next Slot Pointer field’s value is less 
than the Option Length field’s value, it does the following: 

■ If Flags is set to 3, the router replaces the IP header’s destination IP address with the IP 
address that is recorded in the next slot (based on the Next Slot Pointer field). 

■ If Flags is set to 1 or 3, the router records the IP address of the interface on which the IP 
datagram was received in the same slot. 

■ If Flags is set to 0, the router records the timestamp and adds 4 to the Next Slot Pointer 
field. If Flags is set to 1, the router records the timestamp after the IP address and adds 
8 to the Next Slot Pointer field. If Flags is set to 3, the router replaces the IP address and 
adds 4 to the Next Slot Pointer field. 

If the Next Slot Pointer field’s value is greater than the Option Length field’s value, the router 
increments the Overflow field. If the Overflow field is 15 before incrementing, an ICMP 
Parameter Problem is sent back to the source host. 

Setting the Internet Timestamp Option with Ping 

The Windows Server 2008 and Windows Vista Ping.exe tool and the -s option can be used to 
send ICMP Echo messages with the Internet timestamp. The syntax is the following: 

ping -s Slots Destination

For example, to ping the IP address of 10.9.1.1 using Internet timestamps with three slots, use 
the following command: 

ping -s 3 10.9.1.1

Network Monitor Capture 05-06 (in the \Captures folder on the companion CD-ROM) 
provides an example of Ping.exe tool traffic and the use of the Internet Timestamp option. 
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Summary
IP provides the internetworking building block for all other Internet Layer and higher proto-
cols in the TCP/IP suite. IP provides a best effort, unreliable, connectionless datagram delivery 
service between networks of an IP internetwork. The IP header provides addressing, type of 
delivery, maximum link count, fragmentation, and checksum services. IP fragmentation pro-
vides a way for IP datagrams to travel over links with a lower IP MTU than the original IP dat-
agram. The basic services of the IP header are extended through IP options, the most common 
of which provide source routing, path recording, router alert, and timestamping functions. 
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IP provides end-to-end datagram delivery capabilities for IP datagrams. However, IP does not 
provide any facilities for reporting routing or delivery errors encountered by an IP datagram in 
its journey from the source to the destination. The Internet Control Message Protocol (ICMP) 
reports error and control conditions on behalf of IP.

When a protocol encounters an error that cannot be recovered in the processing of a packet, 
it can do one of the following:

■ Discard the offending packet without sending an error notification to the sending host. 
This is known as a silent discard. For example, an Ethernet network adapter checks each 
Ethernet frame for bit-level errors by performing a checksum and comparing its own 
result with the Frame Check Sequence value stored in the frame. If the two checksums 
do not match, the adapter considers the frame invalid and silently discards it.

■ Discard the offending packet and send an error notification to the sending host. This is 
known as an informed discard. ICMP provides an informed discard service for specific 
types of IP routing and delivery errors.

ICMP is an extensible protocol that also provides functions to check IP connectivity and aid in 
the automatic configuration of hosts.

ICMP does not make IP reliable. There are no facilities within IP or ICMP to provide sequenc-
ing or retransmission of IP datagrams that encounter errors. ICMP messages are unreliably 
sent as IP datagrams, and although ICMP reports an error, there are no requirements for how 
the sending host treats the error. It is up to the TCP/IP implementation to interpret the error 
and adjust its behavior accordingly.
125
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ICMP messages are sent only for the first fragment of an IP datagram. ICMP messages are not 
sent for problems encountered by ICMP error messages or for problems encountered by 
broadcast or multicast datagrams.

ICMP is defined in RFCs 792, 950, 1812, 1122, 1191, and 1256.

More Info All of the RFCs referenced in this chapter can be found in the 
\Standards\Chap06_ICMP folder on the companion CD-ROM.

ICMP Message Structure
ICMP messages are sent as IP datagrams. Therefore, an ICMP message consisting of an ICMP 
header and ICMP message data is encapsulated with an IP header using IP Protocol number 
1. The resulting IP datagram is then encapsulated with the appropriate Network Interface 
Layer header and trailer. Figure 6-1 shows the resulting frame.

Figure 6-1 ICMP message encapsulation showing the IP header and Network Interface Layer 
header and trailer

In the IP header of ICMP messages, the Source IP Address field is set to the router or host inter-
face that sent the ICMP message. The Destination IP Address field is set to the sending host of 
the offending packet (in the case of ICMP error messages), a specific host, an IP broadcast, or IP 
multicast address. Every ICMP message has the same structure, as Figure 6-2 shows.

Figure 6-2 The structure of an ICMP message showing the fields common to all types of 
ICMP messages

The common fields in the ICMP message are defined as follows:

■ Type A 1-byte field that indicates the type of ICMP message (Echo vs. Echo Reply, and 
so on). Table 6-1 lists the most commonly used ICMP types.

Network 
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■ Code A 1-byte field that indicates a specific ICMP message within an ICMP message 
type. If there is only one ICMP message within an ICMP type, the Code field is set to 0. 
The combination of ICMP Type and Code determines a specific ICMP message.

■ Checksum A 2-byte field for a 16-bit checksum covering the ICMP message. ICMP uses 
the same checksum algorithm as IP for the IP header checksum.

■ Type-Specific Data Optional data for each ICMP type.

ICMP Messages
Table 6-1 lists the most commonly used ICMP types.

For a complete list of ICMP types, see http://www.iana.org/assignments/icmp-parameters.

The following sections discuss the ICMP messages supported by TCP/IP for Windows Server 
2008 and Windows Vista.

ICMP Echo and Echo Reply

One of the most heavily used ICMP facilities is the ability to send a simple message to an IP 
node and have the message echoed back to the sender. This facility is useful for network 
troubleshooting and debugging. The simple message sent is an ICMP Echo, and the message 
echoed back to the sender is an ICMP Echo Reply. For Windows Server 2008 and Windows 
Vista, the Ping.exe, Tracert.exe, and Pathping.exe tools use Echo and Echo Reply messages to 
provide information about reachability and the path taken to reach a destination node. Figure 
6-3 shows the ICMP Echo message structure.

The fields in the ICMP Echo message are defined as follows:

■ Type Set to 8.

■ Code Set to 0.

Table 6-1 Common ICMP Types

ICMP Type Description

0 Echo Reply

3 Destination Unreachable

4 Source Quench

5 Redirect

8 Echo (also known as an Echo Request)

9 Router Advertisement

10 Router Solicitation

11 Time Exceeded

12 Parameter Problem
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Figure 6-3 The structure of the ICMP Echo message

■ Identifier A 2-byte field that stores a number generated by the sender that is used to 
match the ICMP Echo with its corresponding Echo Reply.

■ Sequence Number A 2-byte field that stores an additional number that is used to match 
the ICMP Echo with its corresponding Echo Reply. The combination of the values of the 
Identifier and Sequence Number fields identifies a specific Echo message.

■ Optional Data Optionally, data can be added at the end of the ICMP packet.

For information on how Windows Server 2008 and Windows Vista determine Identifier, 
Sequence Number, and Optional Data fields, see the sections “Ping.exe Tool” and “Tracert.exe 
Tool,” later in this chapter.

Frame 1 of the Network Monitor Capture 06-01 (in the \Captures folder on the companion 
CD-ROM) shows the structure of an ICMP Echo message.

Figure 6-4 shows the ICMP Echo Reply message structure.

Figure 6-4 The structure of the ICMP Echo Reply message 

The fields in the ICMP Echo Reply message are defined as follows:

■ Type Set to 0.

■ Code Set to 0.

■ Identifier Set to the value of the Identifier field of the Echo message being echoed.
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Checksum
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■ Sequence Number Set to the value of the Sequence Number field of the Echo message 
being echoed.

■ Optional Data Set to the value of the Optional Data field of the Echo message 
being echoed.

Echoed in the Echo Reply message are the Identifier, Sequence Number, and Optional Data 
fields. The host that sent the original Echo message can verify these fields on receipt. If the 
fields are not correctly echoed, the Echo Reply message can be ignored.

Frame 2 of the Network Monitor Capture 06-01 (in the \Captures folder on the companion 
CD-ROM) shows the structure of an ICMP Echo Reply message sent in response to an ICMP 
Echo message.

Sending ICMP Echo messages and receiving ICMP Echo Reply messages checks for the 
following:

■ The host sending the Echo message can forward the Echo message to either the destina-
tion (direct delivery) or to a neighboring router (indirect delivery).

■ The routing infrastructure between the host sending the Echo message and the destina-
tion can forward the Echo message to the destination.

■ The host sending the Echo Reply message can forward the Echo Reply message to either 
the destination (the sender of the Echo message) or to a neighboring router.

■ The routing infrastructure between the host sending the Echo Reply message and the 
destination can forward the Echo Reply message to the destination.

ICMP Destination Unreachable

IP attempts a best-effort delivery of datagrams to their destination. Routing or delivery errors 
can occur along the path or at the destination. When a routing or delivery error occurs, a 
router or the destination discards the offending datagram and attempts to report the error by 
sending an ICMP Destination Unreachable message to the source IP address of the offending 
packet. Figure 6-5 shows the ICMP Destination Unreachable message structure.

Figure 6-5 The structure of the ICMP Destination Unreachable message
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The fields in the ICMP Destination Unreachable message are defined as follows:

■ Type Set to 3.

■ Code Set to a value from 0 to 13. Table 6-2 lists and discusses the different ICMP 
Destination Unreachable Code values.

■ Unused A 4-byte field that is set to 0.

■ IP Header + First 8 Bytes Of Offending Datagram To provide meaningful information 
to the sender of the offending datagram, the ICMP Destination Unreachable message 
contains the IP header and the first 8 bytes of the discarded datagram. The IP header 
contains the IP Identification field. For Transmission Control Protocol (TCP) segments, 
the first 8 bytes of the IP payload contain the source and destination port numbers and 
the sequence number. For User Datagram Protocol (UDP) messages, the first 8 bytes 
contain the entire UDP header including the source and destination port numbers.

Table 6-2 Code Values for ICMP Destination Unreachable Messages

Code Value Meaning

0 – Network Unreachable Sent by an IP router when a route for the destination IP address 
cannot be found in the routing table. The source IP address of this 
message identifies the router that could not find a route. This 
message is largely obsolete in today’s classless Internet due to the 
inability of the router to determine the subnet prefix (also known as 
the network ID) of the destination.

1 – Host Unreachable Sent by an IP router when a route to the destination was not found 
in the routing table. In today’s classless Internet, this is the more ap-
propriate message to send when a router cannot determine the next 
hop for an IP datagram. This message’s source IP address identifies 
the router that could not deliver the datagram to the destination 
host.

2 – Protocol Unreachable Sent by the destination host when the Protocol field in the data-
gram’s IP header does not match a client protocol of IP that is being 
used by the destination. For example, if a host is sent an Open 
Shortest Path First (OSPF) packet (IP protocol 89), it sends a Protocol 
Unreachable message back to the sender.

3 – Port Unreachable Sent by the destination host when the destination port in the UDP 
or TCP header does not match an application running on the desti-
nation. In practice, however, when TCP ports cannot be found, TCP 
sends a Connection Reset segment. Therefore, Port Unreachable 
messages are sent only for UDP messages.

4 – Fragmentation Needed 
And DF Set

Sent by an IP router when fragmentation is needed to forward the 
IP datagram but the Don’t Fragment (DF) flag is set in the IP header. 
The Fragmentation Needed And DF Set message is an important 
part of the Path Maximum Transmission Unit (PMTU) Discovery 
process discussed in the “PMTU Discovery” section of this chapter. 
This message’s source IP address identifies the router that could not 
fragment the IP datagram.
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5 – Source Route Failed Sent by an IP router when it cannot forward an IP datagram using 
information stored in the Source Route option in the IP header. For 
example, this ICMP Destination Unreachable message is sent if the 
sending host is using a strict source route and the next router is not 
directly reachable. The Source Route Failed message contains source 
route options of the same type as the offending datagram and 
includes the path back to the sending host. This message’s source IP 
address identifies the router that could not forward the source-
routed IP datagram. For more information on IP source routing, see 
Chapter 5, “Internet Protocol (IP).”

6 – Destination Network 
Unknown 

Sent by an IP router when the destination network for the destina-
tion IP address is indicated in the routing table as an unknown 
network.

In practice, the Destination Network Unknown message is obsolete; 
IP routers send a Host Unreachable message instead.

7 – Destination Host 
Unknown 

Sent by an IP router when the destination host does not exist as 
detected through Network Interface Layer mechanisms. In practice, 
the Destination Host Unknown message is sent only when the router 
cannot deliver to a host that is connected to the router by a point- 
to-point link. This message’s source IP address identifies the router 
that could not deliver the IP datagram.

8 – Source Host Isolated A message sent by an IP router when it can detect that the source 
host is isolated from the rest of the network. This message is 
obsolete.

9 – Communication with 
Destination Network 
Administratively Prohibited

Sent by an IP router when a route to the destination IP address was 
found but the router cannot forward the IP datagram because of a 
prohibitive network policy. This message’s source IP address identi-
fies the router that could not forward the IP datagram.

10 – Communication 
with Destination Host 
Administratively Prohibited

Sent by an IP router when it cannot deliver to the destination host 
because of a prohibitive network policy. This message’s source IP 
address identifies the router that could not deliver the IP datagram.

11 – Network Unreachable 
for the Type Of Service (TOS)

Sent by an IP router when a route to the destination IP address in-
dicated in the IP header of the IP Type of Service datagram was not 
found. Only routers that use the TOS field when forwarding IP dat-
agrams send this message. This message’s source IP address identi-
fies the router that could not forward the IP datagram.

12 – Host Unreachable for 
Type of Service

Sent by an IP router when it cannot deliver to the destination host 
for the TOS indicated in the IP header of the IP datagram. Only rout-
ers that use the TOS field when forwarding IP datagrams send this 
message. This message’s source IP address identifies the router that 
could not forward the IP datagram.

13 – Communication 
Administratively Prohibited

Sent by an IP router when it cannot forward or deliver the IP 
datagram because of administratively configured packet filters on 
the router. This message’s source IP address identifies the router 
that could not forward or deliver the IP datagram.

Table 6-2 Code Values for ICMP Destination Unreachable Messages

Code Value Meaning
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Network Monitor Example

Network Monitor Capture 06-02 (in the \Captures folder on the companion CD-ROM) is an 
example of a Destination Unreachable message. Frame 1 is an ICMP Echo message sent to a 
private address while on the Internet. Because private addresses are not reachable on the 
Internet, Frame 2 is the ICMP Destination Unreachable-Host Unreachable message sent by an 
Internet router.

Frame 1: The ICMP Echo Message
Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

- Ipv4: Next Protocol = ICMP, Packet ID = 35331, Total IP Length = 60 

+ Versions: IPv4, Internet Protocol; Header Length = 20 

+ DifferentiatedServicesField: DSCP: 0, ECN: 0 

TotalLength: 60 (0x3C) 

Identification: 35331 (0x8A03) 

+ FragmentFlags: 0 (0x0) 

TimeToLive: 32 (0x20) 

NextProtocol: ICMP, 1(0x1) 

Checksum: 9898 (0x26AA) 

SourceAddress: 134.39.89.236 

DestinationAddress: 10.0.0.1 

- Icmp: Echo Request Message, From 134.39.89.236 To 10.0.0.1 

Type: Echo Request Message, 8(0x8) 

- EchoReplyRequest:  

Code: 0 (0x0) 

Checksum: 7004 (0x1B5C) 

ID: 256 (0x100) 

SequenceNumber: 12544 (0x3100) 

ImplementationSpecificData: Binary Large Object (32 Bytes)

Frame 2: The ICMP Destination Unreachable-Host Unreachable Message
Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

- Ipv4: Next Protocol = ICMP, Packet ID = 31401, Total IP Length = 56 

+ Versions: IPv4, Internet Protocol; Header Length = 20 

+ DifferentiatedServicesField: DSCP: 0, ECN: 0 

TotalLength: 56 (0x38) 

Identification: 31401 (0x7AA9) 

+ FragmentFlags: 0 (0x0) 

TimeToLive: 252 (0xFC) 

NextProtocol: ICMP, 1(0x1) 

Checksum: 47690 (0xBA4A) 

SourceAddress: 168.156.1.33 

DestinationAddress: 134.39.89.236 

- Icmp: Destination Unreachable Message, 134.39.89.236 

Type: Destination Unreachable Message, 3(0x3) 

- DestinationUnreachable:  

Code: Host Unreachable 1(0x1) 

Checksum: 42914 (0xA7A2) 

Unused: 0 (0x0) 

- Data: Next Protocol = ICMP, Packet ID = 35331, Total IP Length = 60 

+ Versions: IPv4, Internet Protocol; Header Length = 20 

+ DifferentiatedServicesField: DSCP: 0, ECN: 0 
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TotalLength: 60 (0x3C) 

Identification: 35331 (0x8A03) 

+ FragmentFlags: 0 (0x0) 

TimeToLive: 28 (0x1C) 

NextProtocol: ICMP, 1(0x1) 

Checksum: 10922 (0x2AAA) 

SourceAddress: 134.39.89.236 

DestinationAddress: 10.0.0.1 

OriginalIPPayload: Binary Large Object (8 Bytes)

The ICMP Destination Unreachable-Host Unreachable message contains the discarded ver-
sion of the IP header and the first 8 bytes (the ICMP header) of Frame 1.

PMTU Discovery

As discussed in Chapter 5, “Internet Protocol (IP),” IP fragmentation is an expensive process 
for both routers and the destination host and should be avoided. An early solution to avoiding 
fragmentation was the use of a 576-byte IP maximum transmission unit (MTU) to send data 
to a location on another network. However, this solution is inefficient; two Ethernet nodes sep-
arated by routers send each other 576-byte IP datagrams rather than 1500-byte IP datagrams.

The current solution to avoiding fragmentation is known as PMTU Discovery, and is 
described in RFC 1191. With PMTU Discovery, hosts send all IP datagrams with the DF flag 
set to 1. If a router cannot forward an IP datagram onto a link because the datagram’s size 
exceeds the link’s MTU, it sends an ICMP Destination Unreachable-Fragmentation Needed 
And DF Set message (ICMP Type 3, Code 4) back to the sender. Although this has been the 
behavior since the inception of IP and ICMP, PMTU Discovery support on the router modifies 
the ICMP message to include the IP MTU of the link onto which the forwarding of the IP dat-
agram failed.

Figure 6-6 shows the modified ICMP Destination Unreachable message. The previous 4-byte 
Unused field is now a 2-byte Unused field and a 2-byte Next Hop MTU field. The router sets 
the Next Hop MTU field to the next-hop network segment’s IP MTU. After receiving this mes-
sage, the sending host adjusts the size of the IP datagram to the Next Hop MTU size and 
retransmits the IP datagram. Sending hosts and all the IP routers in your internetwork must 
support PMTU.

To discover the initial PMTU, a sending host that supports PMTU sets the initial PMTU to the 
IP MTU of the directly attached network. The host then sends an IP datagram with the DF flag 
set to 1 at the PMTU size.

After receipt of an ICMP Destination Unreachable-Fragmentation Needed And DF Set mes-
sage with the Next Hop MTU indicated, the sending host sets the PMTU to the value of the 
Next Hop MTU and resends the adjusted IP datagram (if needed).

The PMTU is determined when no more ICMP Destination Unreachable-Fragmentation 
Needed And DF Set messages are received and the destination is responding.
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Figure 6-6 A PMTU-compliant ICMP Destination Unreachable-Fragmentation Needed And DF 
Set message showing the Next Hop MTU field

In Network Monitor Capture 06-03 (in the \Captures folder on the companion CD-ROM), 
Frame 1 shows an ICMP Echo message with the DF set to 1 and a 1000-byte Optional Data 
field. This packet is being forwarded across a router interface that supports only a 576-byte 
IP MTU. Frame 2 is an ICMP Destination Unreachable-Fragmentation Needed And DF Set 
message indicating the Next Hop MTU of 576.

Adjusting the PMTU

In a single-path internetwork, the PMTU remains the same once discovered. In a multipath 
internetwork, the PMTU can change based on the paths that the IP datagrams travel because 
of changing conditions in the routing infrastructure. The PMTU can change to be either 
higher or lower than the currently known PMTU.

■ For a lower PMTU, the sending host is immediately informed through a Destination 
Unreachable-Fragmentation Needed And DF Set message.

■ For a higher PMTU, because there is no mechanism on the routers to inform the send-
ing host that larger datagrams can now be sent, it is up to the host to rediscover the new 
larger PMTU. If the host’s PMTU is smaller than the IP MTU of the locally attached net-
work, the sending host attempts to send larger IP datagrams five minutes after receiving 
the last ICMP Destination Unreachable-Fragmentation Needed And DF Set message and 
at one-minute intervals thereafter.

Routers That Do Not Support PMTU

PMTU Discovery relies on PMTU support on the sending host and all of the internetwork’s 
routers. TCP/IP for Windows Server 2008 and Windows Vista supports PMTU Discovery for 
both hosts and routers. However, what happens when an intermediate router does not sup-
port PMTU Discovery?

The lack of support for PMTU Discovery on IP routers can occur on the following two levels:

Type

Code

Checksum

Unused

Next Hop MTU

IP Header and first
8 bytes of datagram

=3 

=4 
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■ The router sends back ICMP Destination Unreachable-Fragmentation Needed And DF 
Set messages without the Next Hop MTU field.

■ The router does not send back ICMP Destination Unreachable-Fragmentation Needed 
And DF Set messages.

In the first case, the router is not RFC 1191–compliant and according to the sending host, the 
Destination Unreachable-Fragmentation Needed And DF Set message contains a 0 Next Hop 
MTU. The sending host assumes that PMTU Discovery is not possible and uses either the 
minimum PMTU of 576 bytes or a series of diminishing plateau values for the PMTU until 
Destination Unreachable-Fragmentation Needed And DF Set messages are no longer received. 
Table 6-3 lists the plateau values, which correspond to the IP MTUs of common Network 
Interface Layer technologies. PMTU behavior for TCP/IP in Windows Server 2008 and Win-
dows Vista is described later in this chapter.

When a router does not send back Destination Unreachable-Fragmentation Needed And DF 
Set messages, it is called a PMTU black hole router. PMTU black hole routers perform silent 
discards for datagrams that cannot be fragmented. Because IP is unreliable, it is the responsi-
bility of an upper layer protocol to recover from the discarded packet. For example, TCP seg-
ments are retransmitted when their retransmission timer expires.

To successfully detect a PMTU black hole router, discarded packets with the DF flag set to 1 
are retransmitted with the DF flag set to 0. If an acknowledgment is received, the TCP maxi-
mum segment size (MSS) is lowered to the next lowest plateau value and the DF flag for sub-
sequent IP datagrams is set to 1. This process repeats until the PMTU is found.

PMTU behavior for TCP/IP in Windows Server 2008 and Windows Vista is controlled by the 
following registry values:

Table 6-3 Plateau Values for PMTU

Plateau Value Representing

65,535 Maximum IP MTU

32,000 Just in case

17,914 16-Mbps IBM Token Ring

8166 IEEE 802.4

4352 IEEE 802.5 (4 Mbps) and Fiber Distributed Data Interface (FDDI)

2002 Wideband Network and IEEE 802.5 (4 Mbps)

1492 Ethernet/IEEE 802.3 (Sub-Network Access Protocol [SNAP])

1006 Serial Line Internet Protocol (SLIP)

508 X.25 and Attached Resource Computer Network (ARCnet)

296 Point-to-Point (low delay)

68 Minimum IP MTU
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EnablePMTUDiscovery
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 

Data type: REG_DWORD 

Valid range: 0-1 

Default: 1 

Present by default: No

When this value is set to 1 (enabled), TCP attempts to discover the PMTU to a remote host. 
Setting this value to 0 (disabled) causes an MTU of 576 bytes to be used for all connections 
that are not to destinations on a locally attached subnet. Disabling path MTU discovery is not 
recommended.

EnablePMTUBHDetect
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 

Data type: REG_DWORD 

Valid range: 0-1 

Default: 1 

Present by default: No

EnablePMTUBHDetect enables (when set to 1) or disables (set to 0) PMTU black hole router 
detection while doing PMTU discovery. When enabled, TCP tries to send segments with the 
Don’t Fragment flag set to 0 when it begins retransmitting full-sized segments with the DF flag 
set to 1. If the segment is then acknowledged, the TCP MSS for the connection is decreased 
and the Don’t Fragment flag is set to 1 for subsequent segments. Enabling PMTU black hole 
detection increases the maximum number of retransmissions that are performed for a given 
segment.

Another problem with PMTU discovery is intermediate routers that drop ICMP messages 
because of configured packet filtering rules. The result is that TCP connections can time out 
and terminate because intermediate routers silently discard large TCP segments, their retrans-
missions, and the ICMP error messages for PMTU discovery. For this reason, PMTU black 
hole router detection is enabled by default for Windows Server 2008 and Windows Vista.

ICMP Source Quench

When a router becomes congested because of a sudden increase in traffic, a slow link, or inad-
equate processor and memory resources, the router begins to discard incoming IP datagrams. 
When a router discards an IP datagram because of congestion, it might send an ICMP Source 
Quench message back to the sending host. The Source IP Address field of the ICMP Source 
Quench message identifies the congested router. The destination host can also send ICMP 
Source Quench messages when IP datagrams are arriving too quickly to be buffered.

RFC 792 does not document the specific implementation details of when a router or destina-
tion host sends ICMP Source Quench messages. A router can begin sending Source Quench 
messages when its memory buffer for storing incoming packets is approaching its maximum 
capacity, rather than waiting for the buffer to fill. A router does not have to send a Source 
Quench message for every packet discarded. In fact, RFC 1812 states that routers should not 
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send ICMP Source Quench messages because creating more traffic on a congested internet-
work only aggravates the congestion.

The ICMP Source Quench message is an Internet Layer notification. However, the Internet 
Layer has no mechanism for flow control. IP is unaware of when to increase or decrease its 
transmission rate. Similarly, UDP has no mechanism for flow control.

TCP is an upper layer protocol that has flow control mechanisms to lower the transmission 
rate. Therefore, after receipt of the ICMP Source Quench message for a discarded TCP seg-
ment, a notification is made to TCP. TCP treats the receipt of the ICMP Source Quench mes-
sage for a specific TCP segment as a lost TCP segment that needs to be retransmitted. TCP 
then adjusts its transmission rate for the connection according to the slow start and conges-
tion avoidance algorithms. The sending host gradually increases its transmission rate, giving 
time for the routers to clear their buffers. For more information, see Chapter 12, “Transmis-
sion Control Protocol (TCP) Data Flow.” Figure 6-7 shows the ICMP Source Quench message 
structure.

Figure 6-7 The structure of the ICMP Source Quench message

The fields in the ICMP Source Quench message are defined as follows:

■ Type Set to 4.

■ Code Set to 0.

■ Unused A 4-byte field that is set to 0.

■ IP Header + First 8 Bytes Of Discarded Datagram The ICMP Source Quench message 
contains the IP header and the first 8 bytes of the discarded datagram.

In Windows Server 2008 and Windows Vista, TCP/IP does not implement TCP flow control 
if an ICMP Source Quench message is received. When acting as a router, TCP/IP for Windows 
Server 2008 and Windows Vista does not send ICMP Source Quench messages when the 
router buffers fill and packets are discarded.

ICMP Redirect

It is common for hosts to have minimal routing tables. A typical host has a route to the locally 
attached network and a default route corresponding to the host’s configured default gateway. 

Type

Code

Checksum

Unused

IP Header and first
8 bytes of datagram

=4 

=0 



138 Part II: Internet Layer Protocols
The routers keep all other knowledge of the internetwork’s topology—the entire list of reach-
able address prefixes and the best next-hop IP addresses to reach them. For network segments 
containing a single router and hosts configured with the IP address of the single router as 
their default gateway, all routing from hosts to remote networks occurs through the optimal 
path—the single router.

However, if there are multiple routers on a network segment with hosts configured with a 
default gateway of a single router, the possibility exists for nonoptimal routing. Consider the 
IP internetwork in Figure 6-8.

Figure 6-8 An ICMP Redirect scenario in which a host with a configured default gateway must 
forward an IP datagram using another router

Host A, 10.0.0.99/24, is configured with the default gateway of 10.0.0.1. Host A sends an IP 
datagram to Host B at 192.168.1.99. Router 1 is attached to network 10.0.0.0/24 and the rest 
of the IP internetwork. Router 2 is attached to network 10.0.0.0/24 and 192.168.1.0/24. 
According to the default route in Host A’s IP routing table, the next-hop address to reach the 
destination 192.168.1.99 is 10.0.0.1. This is not the optimal path, however. For the optimal 
path, the datagram must be forwarded to 10.0.0.2.

To inform Host A of the more optimal route for traffic to Host B at 192.168.1.99, Router 1 uses 
an ICMP Redirect message. Host A uses the contents of the ICMP Redirect message to create 
a host route in its routing table so that subsequent IP datagrams to Host B take the more opti-
mal route through Router 2 at 10.0.0.2.

Host B

Host A Router 1

Router 2

192.168.1.99/24

192.168.1.0/24

10.0.0.1

10.0.0.99/24

10.0.0.2

10.0.0.0/24

Rest of 
IP internetwork
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The following is the ICMP Redirect process in detail:

1. Host A forwards the IP datagram destined for Host B to its default gateway, Router 1, at 
the IP address of 10.0.0.1.

2. Router 1 receives the IP datagram. Because the IP datagram is not destined for an IP 
address assigned to Router 1, Router 1 checks the contents of its routing table for a route 
to Host B. A route is found for 192.168.1.0/24 at the next-hop IP address of 10.0.0.2.

3. Before forwarding the IP datagram to Router 2 at 10.0.0.2, Router 1 notices that the 
sending host’s IP address, the IP address of the interface on which the IP datagram was 
received, and the next-hop IP address are all on the same network, 10.0.0.0/24.

4. Router 1 forwards the IP datagram to Router 2.

5. Router 1 sends an ICMP Redirect message to Host A. The Redirect message contains the 
next-hop IP address for Router 2, 10.0.0.2, and the IP header of the discarded IP 
datagram.

6. Based on the contents of the Redirect message, Host A creates a host route for the IP 
address of Host B, 192.168.1.99, at the next-hop IP address of 10.0.0.2.

7. Subsequent packets from Host A to Host B are forwarded to Router 2 at the IP address 
of 10.0.0.2.

ICMP Redirect messages are never sent for IP datagrams using source route options. The pres-
ence of source route options means that a specific path must be followed without regard to 
whether it is optimal. Source route options are sometimes used to test connectivity along non-
optimal paths.

Figure 6-9 shows the ICMP Redirect message structure.

Figure 6-9 The structure of the ICMP Redirect message

The fields in the ICMP Redirect message are defined as follows:

■ Type Set to 5.

■ Code Set to 0–3 (see Table 6-4).
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IP Header and first
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■ Router IP Address A 4-byte field set to the next-hop IP address for the more optimal 
route to the destination of the offending IP datagram. This IP address becomes the next-
hop address for the host route created in the IP routing table.

■ IP Header + First 8 Bytes Of Forwarded Datagram To identify the forwarded IP data-
gram, the IP header and the first 8 bytes of the IP payload are encapsulated and sent 
back to the sending host. Included in the encapsulated IP header is the destination IP 
address for the host route.

Note ICMP Redirect messages are sent only when the sending host forwards an IP datagram 
using a nonoptimal route. ICMP Redirect messages are never sent when routers forward IP 
datagrams using nonoptimal routes.

Network Monitor Capture 06-04 (in the \Captures folder on the companion CD-ROM) shows 
an ICMP Echo message and the ICMP Redirect message for the example previously discussed.

Rather than adding a host route to the IP routing table, IP in Windows Server 2008 and 
Windows Vista updates the route cache entry (RCE) for the destination with the Router IP 
Address field as the next-hop address. The route cache stores the next-hop IP address for a 
destination address, as determined by an initial routing table lookup. When sending a packet, 
IP checks the route cache first, before performing a routing table lookup.

In Windows Server 2008 and Windows Vista, TCP/IP behavior for ICMP Redirect messages 
can be controlled by the netsh interface ipv4 set global icmpredirects=enabled|disabled 
command. By default, support for ICMP Redirect messages is enabled. When enabled, when 
a host running TCP/IP for Windows Server 2008 and Windows Vista receives an ICMP 
Redirect message, it first checks the source IP address to ensure that it was sent from the 
router indicated by the Gateway column for the route to the destination in the IP routing 
table. TCP/IP for Windows Server 2008 and Windows Vista also ensures that the source IP 
address of the ICMP Redirect is directly reachable. If the ICMP Redirect did not come from 
the directly reachable indicated router, the ICMP Redirect is ignored.

You can also use the following registry value:

EnableICMPRedirect
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 

Data type: REG_DWORD 

Valid range: 0-1 

Table 6-4 Values of the Code Field in an ICMP Redirect Message

Code Value Meaning

0 Redirected datagrams for the network (obsolete)

1 Redirected datagrams for the host

2 Redirected datagrams for the TOS and the network

3 Redirected datagrams for the TOS and the host
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Default: 1 

Present by default: Yes

EnableICMPRedirect enables (when set to 1) and disables (when set to 0) the updating of 
RCEs when an ICMP Redirect message is received. EnableICMPRedirect is enabled by default. 

ICMP Router Discovery

ICMP Router Discovery is a set of ICMP messages documented in RFC 1256 that are used by 
routers to advertise their presence and by hosts to discover their network segment’s routers, 
and choose which router will be the host’s default gateway. ICMP Router Discovery provides 
a fault-tolerance mechanism for downed routers. Hosts eventually realize that their current 
default gateway has become unavailable and switch their default gateway to the next most 
preferred router.

ICMP Router Discovery uses the following two different ICMP messages:

■ ICMP Router Advertisement The ICMP Router Advertisement message is sent pseudo-
periodically (at a random interval between a minimum and maximum value) by a router 
to advertise its continued existence, a preference level, and a time after which it can be 
considered unavailable.

■ ICMP Router Solicitation Hosts send an ICMP Router Solicitation message whenever 
they need to discover the most preferred router to use as their default gateway. ICMP 
Router Discovery–capable hosts that have not been configured with a default gateway 
send an ICMP Router Solicitation message on startup. Additionally, hosts send an ICMP 
Router Solicitation message when the availability time of their current default gateway 
(discovered through ICMP Router Discovery) expires.

ICMP Router Discovery is not a routing protocol; it provides information only on a preferred 
default gateway for hosts on a network segment. ICMP Router Discovery does not provide any 
information on address prefixes or optimal paths.

ICMP Router Advertisement

Routers send the ICMP Router Advertisement message to either the all-hosts multicast IP 
address (224.0.0.1), the subnet (or network) broadcast address, or the limited broadcast 
address. ICMP Router Advertisements are sent pseudo-periodically and in response to an 
ICMP Router Solicitation. The default interval for ICMP Router Advertisements is between 7 
and 10 minutes. The Routing and Remote Access service implementation of ICMP Router 
Discovery sends ICMP Router Advertisements to the all-hosts multicast IP address. 
Figure 6-10 shows the ICMP Router Advertisement message structure.

The fields in the ICMP Router Advertisement message are defined as follows:

■ Type Set to 9.

■ Code Set to 0.
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Figure 6-10 The structure of the ICMP Router Advertisement message

■ Number Of Addresses A 1-byte field that indicates how many IP addresses are being 
advertised. Normally, only a single IP address is advertised. For a router with multiple 
interfaces on the same network segment, multiple IP addresses are advertised.

■ Address Entry Size A 1-byte field that indicates how many 32-bit words (4-byte quanti-
ties) are contained in a Router Advertisement entry. A Router Advertisement entry con-
sists of an IP address (32 bits) and a preference level (32 bits). Therefore, the Address 
Entry Size field is always set to 2.

■ Lifetime A 2-byte field that indicates the time in seconds after the last received Router 
Advertisement that the router can be considered down. This is equivalent to the Dead 
Interval for the OSPF routing protocol. 

■ Router IP Address A 4-byte field that indicates the IP address of the network segment’s 
router interface on which the advertisement was sent.

■ Preference Level A 4-byte field that indicates the level of preference for using the Router 
Address as the IP address of your default gateway. The router advertising the highest 
preference level is the most preferred router. If there are two or more routers with the 
same preference level, the router with the numerically smallest router address becomes 
the default gateway. Router Advertisement behavior for the Routing and Remote Access 
service is configured per interface through the properties of an interface in the 
IPv4\General node in the Routing and Remote Access snap-in.

ICMP Router Solicitation

Hosts send the ICMP Router Solicitation message to the all-routers multicast IP address 
(224.0.0.2), the subnet (or network) broadcast address, or the limited broadcast address.
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TCP/IP for Windows Server 2008 and Windows Vista listens for ICMP Router Advertisements 
that are sent to the all-hosts multicast address of 224.0.0.1 and sends up to three ICMP Router 
Solicitation messages spaced 600 milliseconds apart to the all-routers multicast IP address. 
Figure 6-11 shows the ICMP Router Solicitation message structure.

Figure 6-11 The structure of the ICMP Router Solicitation message

The fields in the ICMP Router Solicitation message are defined as follows:

■ Type Set to 10.

■ Code Set to 0.

■ Reserved A 4-byte field that is set to 0

In Windows Server 2008 and Windows Vista, you can control TCP/IP host Router Discovery 
behavior with the following command:

netsh interface ipv4 set interface InterfaceNameOrIndex 

routerdiscovery=enabled|disabled|dhcp

With the dhcp option (the default), Router Discovery is disabled but can be enabled if the 
computer is a Dynamic Host Configuration Protocol (DHCP) client and the Perform Router 
Discovery option (option code 31) is sent by the DHCP server.

You can also use the following registry value:

PerformRouterDiscovery
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\ Tcpip\Parameters\Interfaces\

InterfaceGUID 

Data type: REG_DWORD 

Valid range: 0-2 

Default: 2 

Present by default: No

Set the PerformRouterDiscovery registry value to 0 to disable Router Discovery, to 1 to enable 
Router Discovery, or to 2 to enable based on the Perform Router Discovery option (option 
code 31) sent by the DHCP server. 

The following registry value controls how TCP/IP in Windows Server 2008 and Windows 
Vista sends ICMP Router Solicitation messages.
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SolicitationAddressBCast
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\

InterfaceGUID 

Data type: REG_DWORD 

Valid range: 0-1 

Default: 0 (disabled) 

Present by default: No

SolicitationAddressBCast enables (when set to 1) or disables (when set to 0) the use of the 
subnet (or network) broadcast address as the destination IP address of ICMP Router Solicita-
tion messages. When disabled (the default), TCP/IP for Windows Server 2008 and Windows 
Vista uses the all-routers IP multicast address (224.0.0.2).

ICMP Time Exceeded

The ICMP Time Exceeded message is sent in the following instances:

■ When a router decrements the IP header’s TTL field to 0 (the ICMP Time Exceeded-TTL 
Exceeded in Transit message)

■ When the reassembly timer for a fragmented IP datagram expires (the ICMP Time 
Exceeded-Fragment Reassembly Time Exceeded message)

When the TTL goes to 0 for an IP datagram, it can mean one of two things:

■ The IP datagram was sent with an inadequate TTL that does not reflect the current 
number of links between the source and destination nodes. In this case, the TTL should 
be increased.

■ A routing loop exists in the internetwork. A routing loop occurs when IP routers have 
incorrect routing information and forward an IP datagram in a loop that never reaches 
the destination. To test for a routing loop, send an IP datagram with a TTL of 255, the 
maximum value. If an ICMP Time Exceeded-TTL Exceeded in Transit message is still 
received, a routing loop exists in your internetwork.

Destination hosts receiving a fragmented IP datagram use a reassembly timer as a maximum 
time to wait before discarding the incomplete IP datagram. If all of an IP datagram’s fragments 
arrive within the time allotted in the reassembly timer, the IP datagram is successfully reas-
sembled. If the reassembly timer expires before all of an IP datagram’s fragments have been 
received, the destination host discards the incomplete payload and can send an ICMP Time 
Exceeded-Fragment Reassembly Time Exceeded message back to the source. Figure 6-12 
shows the ICMP Time Exceeded message structure.

The fields in the ICMP Time Exceeded message are defined as follows:

■ Type Set to 11.
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Figure 6-12 The structure of the ICMP Time Exceeded message

■ Code Set to 0 or 1. Set to 0 by a router to indicate a TTL expiration (the ICMP Time 
Exceeded-TTL Exceeded in Transit message). Set to 1 by a destination host to indicate a 
reassembly expiration (the ICMP Time Exceeded-Fragment Reassembly Time Exceeded 
message).

■ Unused A 4-byte field that is set to 0.

■ IP Header + First 8 Bytes Of Discarded Datagram To identify the discarded IP datagram, 
the ICMP Time Exceeded message contains the IP header and the first 8 bytes of the 
IP payload.

Network Monitor Capture 06-05 (in the \Captures folder on the companion CD-ROM) shows an 
ICMP Echo message from an Internet host sent to an Internet Web site with an insufficient TTL.

ICMP Parameter Problem

A router or a destination host sends an ICMP Parameter Problem message when an error 
occurs in the processing of the IP header that causes the IP datagram to be discarded, and 
there are no other ICMP messages that can be used to indicate the error. ICMP Parameter 
Problem messages can be sent because of errors in TCP/IP implementations causing incorrect 
formatting of IP header fields. Typically, ICMP Parameter Problem messages are sent because 
of incorrect arguments in IP option fields. Figure 6-13 shows the ICMP Parameter Problem 
message structure.

Figure 6-13 The structure of the ICMP Parameter Problem message
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The fields in the ICMP Parameter Problem message are defined as follows:

■ Type Set to 12.

■ Code Set to 0–2. See Table 6-5.

■ Pointer A 1-byte field set to the byte offset (starting at 0) in the encapsulated IP header 
where the error was detected (applies only to Parameter Problem messages with the 
Code field set to 0).

■ Unused A 3-byte field that is set to 0.

■ IP Header + First 8 Bytes Of Discarded Datagram To identify the discarded IP datagram, 
the ICMP Parameter Problem message contains the IP header and the first 8 bytes of the 
IP payload.

Note ICMP Parameter Problem messages are never sent for IP datagrams with an invalid 
checksum. IP datagrams that fail the checksum are silently discarded.

ICMP Address Mask Request and Address Mask Reply

The ICMP Address Mask Request and Address Mask Reply messages were introduced in RFC 
950 as a method for an IP node to discover its subnet mask. When subnetting, a class-based 
subnet mask based on the first three bits of the IP address can no longer be assumed. An IP 
node can send an ICMP Address Mask Request as directed traffic to a known router or as a 
broadcast using either the all-subnets-directed broadcast or the limited broadcast IP address. 
If an IP node does not know its IP address, it can send the ICMP Address Mask Request with 
a source IP address of 0.0.0.0. The subsequent ICMP Address Mask Reply must then be sent 
as a broadcast.

The ICMP Address Mask Reply is sent by a router and contains the 32-bit subnet mask for the 
network segment on which the Address Mask Request was received. If no Address Mask Reply 
is received, the IP node assumes a class-based subnet mask.

The ICMP Address Mask Request and Address Mask Reply messages have the structure 
shown in Figure 6-14.

Table 6-5 ICMP Parameter Problem Code Values

Code Value Meaning

0 Pointer indicates error

1 Missing a required option

2 Bad length
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Figure 6-14 The structure of the ICMP Address Mask Request and Reply messages

The fields in the ICMP Address Mask Request and Address Mask Reply messages are defined 
as follows:

■ Type Set to 17 for the Address Mask Request and 18 for the Address Mask Reply.

■ Code Set to 0.

■ Identifier Optionally used to match an Address Mask Reply with its original Address 
Mask Request.

■ Sequence Number Also optionally used to match an Address Mask Reply with its orig-
inal Address Mask Request.

■ Address Mask The 32-bit subnet mask corresponding to the IP host’s network or 
subnet. The Address Mask field is set to 0.0.0.0 in the Address Mask Request and to the 
32-bit subnet mask of the network segment in the Address Mask Reply.

In TCP/IP for Windows Server 2008 and Windows Vista, you can control ICMP Address Mask 
Reply message behavior with the following command:

netsh interface ipv4 set global addressmaskreply=enabled|disabled

This command enables or disables the sending of an Address Mask Reply message after the 
receipt of an Address Mask Request message. By default, the sending of Address Mask Reply 
messages is disabled.

You can also use the following registry value:

EnableAddrMaskReply
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\ Tcpip\Parameters 

Data type: REG_DWORD 

Valid range: 0-1 

Default: 0 

Present by default: No

Set EnableAddrMaskReply to 1 to enable and to 0 to disable.
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Ping.exe Tool
The Ping.exe command-line tool for Windows Server 2008 and Windows Vista is the primary 
network tool for troubleshooting IP connectivity. The Ping tool tests reachability, name reso-
lution, source routing, network latency, and other issues for both IP version 4 (IPv4) and IP 
version 6 (IPv6). For IPv4, Ping sends an ICMP Echo message to a specified destination and 
records the round-trip time, the number of bytes sent, and the corresponding Echo Reply’s 
TTL. When Ping finishes sending ICMP Echo messages, it displays statistics on the average 
number of replies and round-trip time. For IPv6, Ping works the same way and performs the 
same functions only using Internet Control Message Protocol version 6 (ICMPv6) Echo 
Request messages.

When you ping an IPv4 destination address, the default behavior is to send four fragmentable, 
non-source-routed ICMP Echo messages with an Optional Data field of 32 bytes and wait four 
seconds for the corresponding ICMP Echo Reply. When you ping a name, Windows name 
resolution mechanisms resolve the name to an IPv4 or IPv6 address before the ICMP Echo or 
ICMPv6 Echo Request messages are sent. If TCP/IP for Windows Server 2008 and Windows 
Vista is unable to resolve the name to an address, the Ping tool displays an error message. If a 
corresponding Echo Reply is not received within four seconds (and no other ICMP error mes-
sages are received), Ping displays the error message “Request Timed Out.”

In the ICMP header of Ping-generated ICMP Echo messages in Windows Server 2008 and 
Windows Vista:

■ The Identifier field is set to 1.

■ The Sequence Number field uses an internal counter and is incremented by 1 for 
subsequent Echo messages.

■ The Optional Data field is 32 bytes (by default), consisting of the string 
“abcdefghijklmnopqrstuvwabcdefghi.”

Ping Options

Table 6-6 lists the use and default values of Ping tool options.

Table 6-6 Ping Tool Options

Option Use Default

-t Sends Echo messages until interrupted. Not used

-a Performs a Domain Name System (DNS) reverse query to resolve 
the DNS host name of the specified address.

Not used

-n The number of Echo messages to send. 4

-l size The size of the Optional Data field up to a maximum of 65,500. 32
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Note For more information about the Record Route, Strict Source Route, Loose Source 
Route, and Internet Timestamps IP header options, see Chapter 5.

-f Sets the DF flag to 1. This option is only valid for IPv4 traffic. Not used

-i TTL Sets the value of the TTL field in the IPv4 header or the Hop Limit 
field in the IPv6 header.

128

-v TOS Sets the value of the TOS field in the IPv4 header. The TOS value is 
in decimal notation. This option is only valid for IPv4 traffic.

0

-r count Sends the ICMP Echo messages using the IP Record Route option 
and sets the value of the number of slots. Count has a maximum 
value of 9. This option is only valid for IPv4 traffic.

Not used

-s count Sends the ICMP Echo messages using the IP Internet Timestamp 
option and sets the value of the number of slots. Count has a max-
imum value of 4. In Windows Server 2008 and Windows Vista, Ping 
uses the Internet Timestamp flag set to 1 (records both the IP ad-
dresses of each hop and the timestamp). This option is only valid 
for IPv4 traffic.

Not used 

-j host-list Sends the ICMP Echo messages using the Loose Source Route op-
tion and sets the next-hop addresses to the IP addresses in the host 
list. The host list is made up of IP addresses separated by spaces 
corresponding to the loose source route. There can be up to nine 
IP addresses in the host list. This option is valid only for IPv4 traffic.

Not used 

-k host-list Sends the ICMP Echo messages using the Strict Source Route op-
tion and sets the next-hop addresses to the IP addresses in the host 
list. The host list is made of IP addresses separated by spaces cor-
responding to the strict source route. There can be up to nine IP 
addresses in the host list. This option is only valid for IPv4 traffic

Not used 

-w timeout Waits the specified amount of time, in milliseconds, for the corre-
sponding Echo Reply before displaying a Request Timed Out 
message.

4000

-R Forces Ping to trace the round-trip path by sending the ICMPv6 
Echo Request message to the destination and including an IPv6 
Routing extension header with the next destination of the sending 
node. This option is only valid for IPv6 traffic.

Not used

-S sourceaddr Forces Ping to use a specified source address. This option is only 
valid for IPv6 traffic.

Not used

-4 Forces Ping to use an IPv4 address when the DNS name query for 
a host name returns both IPv4 and IPv6 addresses.

Not used

-6 Forces Ping to use an IPv6 address when the DNS name query for 
a host name returns both IPv4 and IPv6 addresses.

Not used

Table 6-6 Ping Tool Options

Option Use Default
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Network Monitor Example

Network Monitor Capture 06-01 (in the \Captures folder on the companion CD-ROM) is an 
example of a typical use of the Ping tool to ping a destination IPv4 address. Four ICMP Echo 
messages are sent and four ICMP Echo Reply messages are received. The following is a sum-
mary of Capture 06-01.

Frame  Source          Destination    Protocol     Description 

1      157.59.11.19    157.59.8.1     ICMPICMP     Echo Request 

2      157.59.8.1      157.59.11.19   ICMPICMP    Time Reply 

3      157.59.11.19    157.59.8.1     ICMPICMP     Echo Request 

4      157.59.8.1      157.59.11.19   ICMPICMP     Time Reply 

5      157.59.11.19    157.59.8.1     ICMPICMP    Echo Request 

6      157.59.8.1      157.59.11.19   ICMPICMP    Time Reply 

7      157.59.11.19    157.59.8.1     ICMPICMP     Echo Request 

8      157.59.8.1     157.59.11.19   ICMPICMP   Time Reply

Tracert.exe Tool
The Tracert.exe tool uses ICMP Echo or ICMPv6 Echo Request messages to determine the 
path—the series of routers—that unicast IPv4 and IPv6 traffic takes from a source host to a des-
tination host. Tracert tests reachability, name resolution, network latency, routing loops, and 
other issues.

When you tracert a destination IP address, the default behavior is to trace the route and report 
the round-trip time, the near-side router IP address, and the DNS name corresponding to the 
near-side router IP address. When you tracert a name, normal name resolution techniques 
resolve the name to an IP address before the ICMP Echo messages are sent. If TCP/IP for 
Windows Server 2008 and Windows Vista is unable to resolve the name to an IP address, 
the Tracert tool displays an error message.

Tracert for IPv4 destinations works in the following manner:

1. An ICMP Echo message is sent to the destination with the TTL in the IP header set to 1. 
If the destination is on a directly attached network, the destination responds with a 
corresponding Echo Reply message and Tracert is done.

2. If the destination is not in a directly attached network, the ICMP Echo message is 
forwarded to an IP router.

3. The IP router determines that the IP datagram is transit traffic (not destined for the 
router) and decrements the TTL. Because the TTL is now 0, the IP router discards the IP 
datagram and sends back an ICMP Time Exceeded-TTL Exceeded in Transit message to 
the sending host with the source IP address set to the IP address of the interface on 
which the ICMP Echo message was received. The interface on which the ICMP Echo 
message was received is the near-side interface, the interface that is the smallest number 
of hops from the sending host.
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4. After receipt of the ICMP Time Exceeded-TTL Exceeded in Transit message, the Tracert 
tool records the round-trip time and the source IP address.

5. Tracert sends two more ICMP Echo messages and records their round-trip time.

6. An ICMP Echo message is sent to the destination with the IP header’s TTL set to 2. The 
Echo is forwarded to a neighboring IP router.

7. The neighboring IP router determines that the IP datagram is transit traffic, decrements 
the TTL to 1, and forwards it to the next hop or the final destination.

8. If the destination is on a directly attached network, the destination responds with a 
corresponding Echo Reply and Tracert is done.

9. If the destination is not on a directly attached network, the IP router determines that the 
IP datagram is transit traffic and decrements the TTL. Because the TTL is now 0, the IP 
router discards the IP datagram and sends back an ICMP Time Exceeded-TTL Exceeded 
in Transit message to the sending host with the source IP address set to the IP address 
of the interface on which the ICMP Echo was received. The interface on which the ICMP 
Echo was received is the near-side interface, the interface that is the smallest number of 
hops from the sending host.

10. After receipt of the ICMP Time Exceeded-TTL Exceeded in Transit message, the Tracert 
tool records the round-trip time and the source IP address.

11. Tracert sends two more ICMP Echo messages and records their round-trip time.

The process of incrementing the TTL and sending three ICMP Echo messages continues until 
the destination is reached and replies with ICMP Echo Reply messages.

The Tracert tool records the series of near-side router interfaces in the path from the sending 
host to a destination. By default, Tracert also performs a DNS reverse query on each near-side 
router interface and displays the host name corresponding to the IP address. You can prevent 
this behavior and speed up the completion of Tracert by using the -d option.

Note If a router silently discards packets with an expired TTL, Tracert shows a series of * 
characters for that hop. If ICMP packet filtering is occurring on a near-side router interface, that 
router and all subsequent routers show the * character until 30 hops are attempted (the default).

Network Monitor Example

Network Monitor Capture 06-06 (in the \Captures folder on the companion CD-ROM) is an 
example of a typical use of the Tracert tool to trace the route to a destination IP address. In this 
capture, Tracert is used to trace the path across two routers, and the -d option is used to sim-
plify the process and the display. The following is a summary of Capture 06-06.
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Frame  Source            Destination       Protocol     Description 

1      157.59.11.19      157.54.224.33     ICMP         ICMP Echo Request 

2      157.59.8.1        157.59.11.19      ICMP         ICMP Time Exceeded 

3      157.59.11.19      157.54.224.33     ICMP         ICMP Echo Request 

4      157.59.8.1        157.54.11.19      ICMP         ICMP Time Exceeded 

5      157.59.11.19      157.54.224.33     ICMP         ICMP Echo Request 

6      157.59.8.1        157.59.11.19      ICMP         ICMP Time Exceeded 

7      157.59.11.19      157.54.224.33     ICMP         ICMP Echo Request 

8      157.54.231.130    157.59.11.19      ICMP         ICMP Time Exceeded 

9      157.59.11.19      157.54.224.33     ICMP         ICMP Echo Request 

10     157.54.231.130    157.59.11.19      ICMP         ICMP Time Exceeded 

11     157.59.11.19      157.54.224.33     ICMP         ICMP Echo Request 

12     157.54.231.130    157.59.11.19      ICMP         ICMP Time Exceeded 

13     157.59.11.19      157.54.224.33     ICMP         ICMP Echo Request 

14     157.54.224.33     157.59.11.19      ICMP         ICMP Time Reply 

15     157.59.11.19      157.59.224.33     ICMP         ICMP Echo Request 

16     157.54.224.33     157.59.11.19      ICMP         ICMP Time Reply 

17     157.59.11.19      157.54.224.33     ICMP         ICMP Echo Request 

18     157.54.224.33    157.59.11.19     ICMP         ICMP Time Reply

Frames 1 through 6 are the first hop. In Frames 1, 3, and 5, the IP header’s TTL is set to 1. The 
local router decrements the TTL to 0 and sends back ICMP Time Exceeded-TTL Exceeded in 
Transit messages (Frames 2, 4, and 6).

Frames 7 through 12 are the second hop. In Frames 7, 9, and 11, the IP header’s TTL is set to 
2. The second router in the path decrements the TTL to 0 and sends back the ICMP Time 
Exceeded-TTL Exceeded in Transit messages (Frames 8, 10, and 12).

Frames 13 through 18 reach the destination. In Frames 13, 15, and 17, the IP header’s TTL is 
set to 3, which is an adequate TTL to reach a destination two routers away. The destination 
sends back the appropriate Echo Reply messages (Frames 14, 16, and 18).

Note The round-trip times reflected in the Tracert display are not necessarily the same 
round-trip times for normal traffic. Most routers process ICMP errors and messages at a lower 
priority. Therefore, the round-trip times reflected in the Tracert display might be larger than 
the round-trip times for normal traffic. Additionally, it is possible for network conditions and 
the path to change during the route-tracing process, giving misleading results.

Tracert Options

Table 6-7 lists the use and default values of Tracert tool options.

Table 6-7 Tracert Tool Options

Option Use Default

-d Instructs Tracert to not perform a DNS reverse query on every 
router IP address. If the host name of each router is unimportant, 
using the -d option speeds up the Tracert display of the path.

Performs DNS 
reverse queries 
on each router 
IP address
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Pathping.exe Tool
The Pathping command-line tool for Windows Server 2008 and Windows Vista is used to test 
router and link latency and packet losses for both IPv4 and IPv6. For IPv4, Pathping works by 
sending successive ICMP Echo messages to each point in the path and recording the following: 
the average round-trip time, the packet loss when sending ICMP Echo messages to each router, 
and the packet loss when sending ICMP Echo messages across the links between each router.

The following is an example of the display of the Pathping tool:

C:\>pathping 10.10.2.99 

Tracing route to 10.10.2.99 over a maximum of 30 hops 

0 10.0.1.100 

1 10.0.1.1 

2 192.168.1.2 

3 172.16.1.2 

4 10.10.2.99 

Computing statistics for 100 seconds...  

Source to Here This Node/Link 

Hop RTT Lost/Sent = Pct Lost/Sent = Pct Address 

0 10.0.1.100 

0/ 100 = 0% | 

1 0ms 0/ 100 = 0% 0/ 100 = 0% 10.0.1.1 

0/ 100 = 0% | 

2 0ms 0/ 100 = 0% 0/ 100 = 0% 192.168.1.2 

0/ 100 = 0% | 

-h max_hops Instructs Tracert to increment the TTL up to max_hops. 30

-j host-list Sends the ICMP Echo messages using the loose source route 
specified in the host-list. The host list is up to nine IP addresses 
separated by spaces, corresponding to the loose source route to 
the destination. This option is valid only for IPv4 traffic.

Not used 

-w timeout Waits the specified amount of time in milliseconds for the 
response before displaying a *.

4000

-R Forces Tracert to trace the round-trip path by sending the 
ICMPv6 Echo Request message to the destination and including 
an IPv6 Routing extension header with the next destination of 
the sending node. This option is valid only for IPv6 traffic.

Not used

-S sourceaddr Forces Tracert to use a specified source address. This option is 
valid only for IPv6 traffic.

Not used

-4 Forces Tracert to use an IPv4 address when the DNS name query 
for a host name returns both IPv4 and IPv6 addresses.

Not used

-6 Forces Tracert to use an IPv6 address when the DNS name query 
for a host name returns both IPv4 and IPv6 addresses.

Not used

Table 6-7 Tracert Tool Options

Option Use Default
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3 0ms 0/ 100 = 0% 0/ 100 = 0% 172.16.1.2 

0/ 100 = 0% | 

4 1ms 0/ 100 = 0% 0/ 100 = 0% 10.10.2.99 

Trace complete.

In this example, Pathping is sending ICMP Echo messages from a sending host (10.0.1.100) to 
a destination host (10.10.2.99) across three routers (10.0.1.1, 192.168.1.2, and 172.16.1.2). 
Pathping first resolves the path using the same method as Tracert. Next, Pathping sends 
ICMP Echo messages to each near-side router interface and to the destination (in the path 
order), and repeats this process 99 times. In this example, the Tracert tool sends an ICMP 
Echo message to 10.0.1.1, then to 192.168.1.2, then to 172.16.1.2, then to the destination, 
10.10.2.99. This process is repeated 99 times so that 100 ICMP Echo messages are sent to each 
near-side router interface in the path and the destination. From the responses (and lack of 
responses), Pathping accumulates statistics for the following:

■ Packet losses for packets sent on the link between the source host (10.0.1.100) and the 
first router (10.0.1.1)

■ Packet losses and average round-trip times for packets sent from the source host to 
the first router in the path (with the near-side interface of 10.0.1.1)

■ Packet losses for packets sent on the link between the first router (10.0.1.1) and the 
second router in the path (with the near-side interface of 192.168.1.2)

■ Packet losses and average round-trip times for packets sent from the source host to the 
second router in the path (192.168.1.2)

■ Packet losses for packets sent on the link between the second router (192.168.1.2) and 
the third router in the path (with the near-side interface of 172.16.1.2)

■ Packet losses and average round-trip times for packets sent from the source host to 
the third router in the path (172.16.1.2)

■ Packet losses for packets sent on the link between the third router (172.16.1.2) and 
the destination (10.10.2.99)

■ Packet losses and average round-trip times for packets sent to the destination 
(10.10.2.99)

The Source To Here column displays the average round-trip time and packet loss for packets des-
tined to a specific IP address. These packets must be processed by the destination and an ICMP 
Echo Reply message must be constructed and sent. The This Node/Link column displays the 
packet loss for packets that are either traveling across a link (as indicated by | in the Address col-
umn), across a router (as indicated by an intermediate router IP address in the Address column), 
or to the destination (as indicated by the destination IP address in the Address column). Packets 
sent across a router are typically forwarded using an optimized forwarding process that is much 
faster than responding as the destination of an ICMP Echo Reply message.
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Network Monitor Capture 06-07 (in the \Captures folder on the companion CD-ROM) 
contains the traffic of the Pathping tool for this example.

Pathping Options

Table 6-8 lists the use and default values of Pathping tool options.

Summary
ICMP is a set of messages that provides services that are not part of IP. ICMP includes the 
following services: diagnostic (Echo and Echo Reply messages), delivery error reporting 
(Destination Unreachable, Time Exceeded, Source Quench, and Redirect messages), router 
discovery (Router Advertisement and Router Solicitation messages), IP header problems (Param-
eter Problem message), and address mask discovery (Address Mask Request and Address Mask 
Reply messages).The ICMP Destination Unreachable-Fragmentation Needed And DF Set mes-
sage is used for PTMU Discovery. The Ping, Tracert, and Pathping tools provided with Windows 
Server 2008 and Windows Vista use ICMP messages for diagnostic functions.

Table 6-8 Pathping Tool Options

Option Use Default

-n Instructs Pathping to not perform a DNS reverse query 
on every router IP address. If the host name of each 
router is unimportant, the -n option accelerates the 
Pathping display of the path.

Performs DNS reverse 
queries on each 
router IP address

-h max_hops Instructs Pathping to increment the TTL up to 
max_hops.

30

-g host-list Sends the ICMP Echo messages using the loose source 
route specified in the host-list. The host list is up to nine 
IP addresses separated by spaces, corresponding to the 
loose source route to the destination.

Not used

-p period Waits the specified amount of time in milliseconds 
between successive Echo messages.

250

-q num_queries Sends the num_queries number of queries for each hop. 100

-i address Sends the Pathping traffic from a specified address. Not used

-w timeout Waits the specified amount of time in milliseconds for 
the response.

3000

-4 Forces Pathping to use an IPv4 address when the DNS 
name query for a host name returns both IPv4 and IPv6 
addresses.

Not used

-6 Forces Pathping to use an IPv6 address when the DNS 
name query for a host name returns both IPv4 and IPv6 
addresses.

Not used
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Data transfer services typically use one-to-one delivery with unicast addressing and routing 
across an IP internetwork. However, one-to-many delivery with multicast addressing across an 
IP internetwork is a bandwidth-efficient way to deliver audio, video, and other types of con-
tent to multiple destinations. One-to-many delivery service requires hosts to inform local 
routers of their interest in receiving the traffic so that routers can forward the traffic to the 
subnets of the listening hosts. This chapter describes how IP multicast works and the role of 
the Internet Group Management Protocol (IGMP).

Introduction to IP Multicast and IGMP
IP multicast provides an efficient one-to-many delivery service. To achieve one-to-many delivery 
using IP unicast traffic, each datagram needs to be sent multiple times. To achieve one-to-
many delivery using IP broadcast traffic, a single datagram is sent, but all nodes process it, 
even those that are not interested. Broadcast delivery service is unsuitable for internetworks, 
as routers are designed to prevent the spread of broadcast traffic. With IP multicast, a single 
datagram is sent and forwarded across routers only to the subnets containing nodes that are 
interested in receiving it.

Historically, IP multicast traffic has been little utilized. However, recent developments in audio 
and video teleconferencing, distance learning, and data transfer to a large number of hosts 
have made IP multicast traffic more important.

RFCs 1112 and 2236 describe IP multicast and the Internet Group Management Protocol 
(IGMP).

More Info All of the RFCs referenced in this chapter can be found in the 
\Standards\Chap07_IGMP folder on the companion CD-ROM.
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IP Multicasting Overview

The following are the essential facets of IP multicast operation:

■ All multicast traffic is sent to a class D address in the range 224.0.0.0 through 
239.255.255.255 (224.0.0.0/4). All traffic in the range 224.0.0.0 through 224.0.0.255 
(224.0.0.0/24) is for the local subnet and is not forwarded by routers. Multicast-enabled 
routers forward multicast traffic in the range 224.0.1.0 through 239.255.255.255 with 
an appropriate Time to Live (TTL).

■ A specific multicast address is called a group address.

■ The set of hosts that listen for multicast traffic at a specific group address is called a 
multicast group or host group. Multicast group members can receive traffic to their unicast 
address and the group address. Multicast groups can be permanent or transient. A per-
manent group is assigned a well-known group address. An example of a permanent 
group is the all-hosts multicast group, listening for traffic on the well-known multicast 
address of 224.0.0.1. The membership of a permanent group is transient; only the group 
address is permanent.

■ There are no limits on a multicast group’s size.

■ A host can send multicast traffic to the group address without belonging to the 
multicast group.

■ There are no limits to how many multicast groups to which a host can belong.

■ There are no limits on when members of a multicast group can join and leave a multicast 
group.

■ There are no limits on the location of multicast group members.

IP multicast must be supported by the hosts and the routers of an IP internetwork.

Host Support

To support IP multicast, hosts must be able to send and receive IP multicast traffic. RFC 1112 
defines the following three levels of IP multicast support for hosts:

■ Level 0 No support for sending or receiving IP multicast traffic

■ Level 1 Support for sending IP multicast traffic

■ Level 2 Support for sending and receiving IP multicast traffic

In Windows Server 2008 and Windows Vista, the IP multicast level can be controlled by 
the netsh interface ipv4 set global mldlevel=none|sendonly|all command. By default, 
Windows Server 2008 and Windows Vista support both sending and receiving IP multicast 
traffic (the all option).



Chapter 7: Internet Group Management Protocol (IGMP) 159
You can also use the following registry value:

IGMPLevel
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 

Value Type: REG_DWORD 

Valid Range: 0-2 

Default: 2 

Present by Default: No

By default, TCP/IP for Windows Server 2008 and Windows Vista supports Level 2 IP 
multicasting.

Sending IP Multicast Traffic

A host sending an IP multicast packet must first determine the IP multicast address. The IP 
multicast address is determined by either the application or protocol (a well-known or 
reserved IP multicast address), or obtained from a server allocating unique IP multicast 
addresses. Multicast Address Dynamic Client Allocation Protocol (MADCAP) is defined in 
RFC 2730 and used by a multicast host to obtain a unique IP multicast address. Multicast 
scopes configured on the DHCP server define ranges of IP multicast addresses. Similar to 
allocating unicast IP addresses, unique IP multicast addresses are allocated to a single DHCP 
client. If multiple hosts use the same IP multicast address for different applications, the wrong 
traffic could be forwarded to host group members. The DHCP Server service in Windows 
Server 2008 supports MADCAP. For more information, see Help a+nd Support in Windows 
Server 2008.

After determining the destination IP multicast address, the sending host must construct the 
IP datagram with its own IP address as the source IP address, the intended IP multicast 
address as the destination IP address, and an appropriate TTL value. For local subnet IP multi-
cast traffic destined for addresses in the range 224.0.0.0 through 224.0.0.255 (224.0.0.0/24), 
the TTL is set to 1. Routers do not forward IP multicast traffic in this range even if the TTL is 
greater than 1. For nonlocal subnet traffic, the TTL should be set to a value that is high 
enough to reach all host group members. Table 7-1 lists the recommended values of the TTL 
for IP multicast traffic and their scope.

Table 7-1 Recommended Values of the TTL for IP Multicast Traffic

TTL Value Description

0 Restricted to the same host

1 Restricted to the same subnet

15 Restricted to the same site

63 Restricted to the same region

127 Worldwide

191 Worldwide; limited bandwidth

255 Unrestricted
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IP on the sending host constructs the IP multicast packet and uses the IP sending process to 
determine the next-hop address and interface to send the packet. The destination address 
matches the multicast entry in the IP routing table (the route with the destination of 224.0.0.0 
and the network mask of 240.0.0.0). IP determines that the packet must be forwarded to the 
destination IP address using the appropriate network interface. IP then submits the IP data-
gram, the next-hop IP address, and the interface to the Address Resolution Protocol (ARP) 
module.

The ARP module checks the next-hop IP address. Because the forwarding IP address is in the 
range 224.0.0.0 through 239.255.255.255 (224.0.0.0/4), ARP bypasses the process of check-
ing the ARP cache and sending a broadcast ARP Request frame. For Ethernet hosts, the desti-
nation IP address is mapped to the destination media access control (MAC) address by 
combining the fixed high-order 25 bits of 0000001 00000000 01011110 0 and the low-order 
23 bits of the destination IP multicast address to create the MAC-level 48-bit multicast 
address. For example, for the IP multicast address 224.0.0.1, the corresponding MAC-level 
48-bit address is the concatenation of 0000001 00000000 01011110 0 and 0000000 
00000000 00000001, or 0x01-00-5E-00-00-01.

Receiving IP Multicast Traffic

To receive IP multicast traffic, a host informs the IP layer to process incoming traffic for a 
specific group address. To facilitate the request, the IP module does the following:

■ Informs the Network Interface Layer technology to add the MAC-level multicast address 
that corresponds to the group address to the list of interesting destination MAC 
addresses.

■ If the group address is not in the range 224.0.0.1 through 224.0.0.255 (224.0.0.0/24), 
the IP module sends an IGMP Host Membership Report message to inform local routers 
to forward the host group traffic to the subnet of the listening host.

If there are multiple applications on the host using the same group address, IP tracks applica-
tion group membership and passes a copy of the received IP multicast datagram to each lis-
tening application. For a multihomed host, IP tracks group membership for each subnet.

Router Support

To support IP multicast forwarding and routing, a router must be able to do the following:

■ Listen for IGMP Host Membership Report messages sent from hosts on local subnets.

■ Track and maintain group membership for hosts on local subnets. Routers maintain 
host group membership through the receipt of IGMP Host Membership Report mes-
sages and the sending of IGMP Host Membership Query messages.
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■ On a multicast-enabled intranet with more than two routers, a router must be able to 
communicate host group membership information to neighboring routers. IP multicast 
routers use a multicast routing protocol such as Distance Vector Multicast Routing Pro-
tocol (DVMRP), Multicast Extensions to Open Shortest Path First (MOSPF), or Protocol 
Independent Multicast (PIM).

■ Listen for all IP multicast traffic on all attached subnets. To do this, the router must put 
the network interface into either promiscuous listening mode or multicast promiscuous 
listening mode. In promiscuous mode, all incoming frames are considered interesting 
and passed to upper layers for processing. Promiscuous mode is a processor and interrupt-
intensive listening mode typically used only for protocol analysis or network sniffing.

Multicast promiscuous mode is a special listening mode in which all packets with the 
Individual/Group (I/G) bit set in the destination MAC address are considered interest-
ing. The I/G bit is also known as the multicast bit. For Ethernet frames, the multicast bit 
is the last bit of the first byte in the destination MAC address. In multicast promiscuous 
mode, all frames with the multicast bit set and a valid Frame Check Sequence (FCS) 
field are passed up to the operating system for processing. See Chapter 1, “Local Area 
Network (LAN) Technologies,” for more information on the multicast bit. In multicast 
promiscuous mode, an IP multicast router receives a copy of every IP multicast packet 
for processing or forwarding. Not all network adapters support multicast promiscuous 
mode. A network adapter that supports promiscuous mode might not support multicast 
promiscuous mode.

■ Forward IP multicast traffic with a valid TTL on appropriate subnets where there are 
host group members or where there are downstream routers that have host group mem-
bers. The IP multicast forwarding capability is provided by the TCP/IP protocol. Similar 
to unicast forwarding, when IP multicast forwarding is enabled, IP decrements the TTL 
of the packet being forwarded, and then forwards the packet over the appropriate inter-
faces based on the entries in a local multicast forwarding table. IP silently discards mul-
ticast traffic with a TTL of 0.

IP multicast routers forward IP multicast traffic to subnets that have either a listening 
host or a router that has informed the router forwarding the IP multicast traffic that 
there are host group members downstream. The entries in the IP multicast forwarding 
table do not indicate which hosts are listening or how many group members there are 
on a subnet—only that at least one host member is present on the subnet (or a down-
stream subnet).

The Multicast-Enabled IP Internetwork

Figure 7-1 shows a multicast-enabled intranet. 
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Figure 7-1 A multicast-enabled intranet showing multicast-enabled hosts and routers

To support the forwarding of IP multicast traffic from any host to any group member, hosts 
and routers must support the following criteria:

■ Any host receiving IP multicast traffic joins the multicast group by sending IGMP Host 
Membership Report messages on the local subnet.

■ Any host sending IP multicast traffic constructs the IP multicast frame and sends it on 
the local subnet.

■ IP multicast routers forward the IP multicast traffic from the originating subnet to all 
subnets that contain group members. IGMP Host Membership Report messages inform 
the routers about group members on locally attached subnets. For downstream host 
members, IP multicast routers communicate downstream host member information 
using multicast routing protocols. In both cases, IGMP and multicast routing protocols 
update the router’s local TCP/IP multicast forwarding tables.

The Internet’s Multicast-Enabled Backbone

The portion of the Internet that is IP-multicast-enabled is known as the multicast backbone 
(MBONE). The MBONE was originally created to multicast the audio for Internet Engineering 
Task Force (IETF) meetings for members who could not attend. Today, the MBONE is used 
for the audio and video of IETF meetings, launches of the National Aeronautic and Space 
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Administration (NASA) space shuttle, and teleconferences of all kinds. The MBONE is also 
the test bed for the development of IP multicast applications, tools, and routing protocols.

The MBONE is a logical IP multicast topology overlaid on the Internet’s physical unicast 
topology. Not all Internet service providers (ISPs) support the forwarding of IP multicast traf-
fic. To connect two portions of the Internet that support IP multicast traffic, IP multicast traffic 
is tunneled or wrapped with another IP header addressed from one router to another router. 
The typical tunneling is called IP-in-IP tunneling and is described in RFC 1853. The MBONE 
is a series of multicast-enabled islands connected together with IP-in-IP tunnels.

IGMP Message Structure
Hosts and routers use IGMP to maintain local subnet host group membership and it is 
required for hosts that support Level 2 IP multicasting. IGMP messages are sent as IP data-
grams with the IP Protocol field set to 2. The resulting IP datagram is then encapsulated 
with the appropriate Network Interface Layer header and trailer. Figure 7-2 shows the 
resulting frame.

Figure 7-2 IGMP message structure showing the IP header and Network Interface Layer header 
and trailer

In the IP header of IGMP messages, the Source IP Address field is set to the router or host 
interface that sent the IGMP message and the Destination IP Address field depends on the 
type of IGMP message.

IGMP Version 1 (IGMPv1)

IGMPv1 is described in Appendix I of RFC 1112. IGMPv1 defines two types of IGMP messages: 
the Host Membership Report and the Host Membership Query.

Host Membership Report

A host sends a Host Membership Report message to inform local routers that the host wants 
to receive IP multicast traffic at a specified group address. A host also sends a Host Member-
ship Report in response to a Host Membership Query message sent by a router. Hosts send 
Host Membership Report messages to the destination IP address of the multicast group with 
a TTL of 1.
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Host Membership Query

A router sends a Host Membership Query message to poll a subnet and verify that there are 
hosts still listening for IP multicast traffic. Routers send Host Membership Query messages to 
the destination IP address of the all-hosts IP multicast address (224.0.0.1) with a TTL of 1. An 
IGMPv1 Host Membership Query is a general query, attempting to identify all multicast 
groups being listened to by hosts on a subnet.

Hosts that receive the Host Membership Query message send a Host Membership Report 
message for all the host groups in which they are members. To prevent an avalanche of 
response traffic, host group members choose a random report delay time for each host group 
and wait to hear from other host group members on the subnet. If another host group mem-
ber sends a Host Membership Report message, the waiting host does not send a reply.

This behavior is consistent with the information kept by multicast routers. A multicast router 
does not track which hosts on a subnet are members of a host group, only that there is at least 
one host group member.

If no hosts respond with a Host Membership Report to a group address that the multicast router 
is tracking for the subnet, the multicast router can remove that entry from the multicast forward-
ing table and inform other multicast routers through multicast routing protocols. Upstream 
routers no longer forward multicast traffic for the removed group address to the subnet.

IGMPv1 Message Structure

Figure 7-3 shows the structure of an IGMPv1 message.

Figure 7-3 The structure of an IGMPv1 message

The fields in an IGMPv1 message are defined as follows:

■ Version A 4-bit field set to 1 to indicate IGMPv1.

■ Type A 4-bit field that indicates the type of IGMP message. Set to 1 for a Host Member-
ship Query message. Set to 2 for a Host Membership Report message.

■ Unused A 1-byte field zeroed by the sender and ignored by the receiver.

■ Checksum A 2-byte field that stores the checksum on the 8-byte IGMP message.
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■ Group Address A 4-byte field that for a Host Membership Report message stores the 
multicast group address being joined by the listening host. In a Host Membership 
Query message, the Group Address field is 0.0.0.0.

Table 7-2 summarizes the addresses used in IGMPv1 Host Membership Report and Host 
Membership Query messages.

Network Monitor Examples

The following Network Monitor trace (Capture 07-01 in the \Captures folder on the compan-
ion CD-ROM) is an IGMPv1 Host Membership Report message for a host joining the host 
group 224.0.1.41:

Frame:  

- Ethernet: Etype = Internet IP (IPv4) 

- DestinationAddress: 01005E 000129 

IG: (0.......) Individual address 

UL: (.0......) Universally Administered Address 

Rsv: (..000001) 

+ SourceAddress: 00C04F D7BAEC 

EthernetType: Internet IP (IPv4), 2048(0x800) 

UnkownData: Binary Large Object (18 Bytes) 

- Ipv4: Next Protocol = IGMP, Packet ID = 45569, Total IP Length = 28 

+ Versions: IPv4, Internet Protocol; Header Length = 20 

+ DifferentiatedServicesField: DSCP: 0, ECN: 0 

TotalLength: 28 (0x1C) 

Identification: 45569 (0xB201) 

+ FragmentFlags: 0 (0x0) 

TimeToLive: 1 (0x1) 

NextProtocol: IGAP/IGMP/RGMP, 2(0x2) 

Checksum: 4494 (0x118E) 

SourceAddress: 10.0.11.40 

DestinationAddress: 224.0.1.41 

- Igmp: IGMPv1 membership report 

Type: IGMPv1 membership report, 18(0x12) 

- Igmpv1:  

Unused: 0 (0x0) 

CheckSum: 3286 (0xCD6) 

MulticastAddress: 224.0.1.41

Note that the group address of 224.0.1.41 is being mapped to the Ethernet destination 
address of 01-00-5E-00-01-29 (41 in hexadecimal is 0x29). Also note that IGMP messages 
must be padded with 18 padding bytes on Ethernet networks to adhere to the Ethernet 
minimum payload size of 46 bytes (padding bytes not shown).

Table 7-2 Addresses Used in IGMPv1 Messages 

Host Membership Report Host Membership Query

Source IP Address (IP header) Host IP Address Router IP Address

Destination IP Address (IP header) Group IP Address 224.0.0.1

Group Address Group IP Address 0.0.0.0
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The following Network Monitor trace (Capture 07-02 in the \Captures folder on the companion 
CD-ROM) is an IGMPv1 Host Membership Query message:

Frame:  

- Ethernet: Etype = Internet IP (IPv4) 

- DestinationAddress: 01005E 000001 

IG: (0.......) Individual address 

UL: (.0......) Universally Administered Address 

Rsv: (..000001) 

+ SourceAddress: 00E034 C0A060 

EthernetType: Internet IP (IPv4), 2048(0x800) 

UnkownData: Binary Large Object (18 Bytes) 

- Ipv4: Next Protocol = IGMP, Packet ID = 0, Total IP Length = 28 

+ Versions: IPv4, Internet Protocol; Header Length = 20 

+ DifferentiatedServicesField: DSCP: 48, ECN: 0 

TotalLength: 28 (0x1C) 

Identification: 0 (0x0) 

+ FragmentFlags: 0 (0x0) 

TimeToLive: 1 (0x1) 

NextProtocol: IGAP/IGMP/RGMP, 2(0x2) 

Checksum: 50974 (0xC71E) 

SourceAddress: 10.0.8.1 

DestinationAddress: 224.0.0.1 

- Igmp: IGMP Membership query 

Type: IGMP Membership query, 17(0x11) 

- Igmpv2:  

+ MaxResqCode: Max Resp Time is 10.0 seconds 

CheckSum: 61083 (0xEE9B) 

MulticastAddress: 0.0.0.0

Notice that for both traces, the IP header’s TTL field is set to 1.

IGMP Version 2 (IGMPv2)

IGMPv2 provides additional capabilities to help multicast routers converge a multicast group 
to the set of hosts listening for traffic. IGMPv2 is described in RFC 2236 and is backward com-
patible with IGMPv1.

The additional features of IGMPv2 are the following:

■ The Leave Group message

■ The Group-Specific Query message

■ The election of a multicast querier

■ The IGMPv2 Host Membership Report message

The Leave Group Message

With IGMPv1, if a host leaves a specific multicast group and it is the last member of the mul-
ticast group for that subnet, the local router is not explicitly informed. The router maintains 
the entry in its multicast forwarding table and continues to forward multicast traffic for the 
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group to the host’s subnet. Only after the router sends a Host Membership Query message 
and receives no response for the multicast group does the router recognize that there are no 
more group members on that subnet for that group address. The router then updates its mul-
ticast forwarding table, discontinues forwarding IP multicast traffic to the subnet, and informs 
neighboring routers of the new state. This can lead to long leave latency times. During the 
leave latency time, multicast routers can forward multicast traffic to subnets that do not con-
tain group members.

During the periodic polling process, when an IGMPv2 host responds to a membership query, 
it assumes that it is potentially the last member in the group for that subnet because no other 
hosts responded before it. If that host leaves the group, it sends an IGMPv2 Leave Group mes-
sage to the all-routers IP multicast address (224.0.0.2). To ensure that the host leaving is truly 
the last host in the group for the subnet, the multicast router sends a series of group-specific 
membership queries. If the multicast router receives a response from another host for that 
group, the router maintains the group membership state for that group on that subnet. If the 
multicast router does not receive any responses, it can prevent the forwarding of traffic to that 
group to the subnet. If there are host members on downstream subnets available across sub-
net routers, multicast traffic for the group is still forwarded to the subnet.

The Group-Specific Query Message

In the case of IGMPv2, two different types of Host Membership Query messages are defined: 
the General Query and the Group-Specific Query. The General Query is the same as the 
IGMPv1 Host Membership Query. The Group-Specific Query is designed to check for host 
membership in a specific group. In the Group-Specific Query, the IP header’s destination IP 
address and the IGMP header’s group address are set to the group address being queried.

The Multicast Querier

IGMPv2 supports the election of a multicast querier, a single router per subnet that sends 
Host Membership Query messages. With IGMPv1, the designation of a single multicast router 
to perform queries is a function of the multicast routing protocol. Because all IGMP traffic is 
sent to multicast addresses, every multicast router on a subnet receives all IGMP messages. 
Therefore, only a single router is needed to send queries.

The IGMPv2 multicast querier election is simple: A router assumes that it is the multicast 
querier until it receives a Host Membership Query message (either General or Group-Specific) 
from another router with a numerically lower IP address. If it is the only router on a subnet 
and it does not receive a query from another router in an interval called the Other Querier 
Present Interval (by default set for 255 seconds), the router becomes the querier for that 
network.

IGMPv2 Message Structure

Figure 7-4 shows the structure of an IGMPv2 message.
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Figure 7-4 The structure of an IGMPv2 message

The fields in an IGMPv2 message are defined as follows:

■ Type IGMPv2 combines the IGMPv1 4-bit Version field and IGMPv1 4-bit Type field 
into a single 8-bit Type field. Table 7-3 lists the Type field values.

■ Maximum Response Time The IGMPv1 Unused field is used in IGMPv2 Membership 
Query messages (either General or Group-Specific) to store a maximum time in tenths 
of a second within which a host must respond to the query. The maximum response 
time becomes the maximum value of the report delay timer for subnet host members.

■ Checksum A 2-byte field that stores a checksum on the 8-byte IGMP message.

■ Group Address Set to 0.0.0.0 for the general Host Membership Query and set to the 
specific group address for all other IGMPv2 message types.

Table 7-4 summarizes the addresses used in IGMPv2 Group-Specific Host Membership Query 
and Group Leave messages.

Table 7-3 Values of the IGMPv2 Type Field

Type Message

17 (0x11) Host Membership Query The previous Version 0x1 and Type 0x1 are combined 
to form 0x11, or 17.

18 (0x12) IGMPv1 Host Membership Report The previous Version 0x1 and Type 0x2 are 
combined to form 0x12, or 18.

22 (0x16) IGMPv2 Host Membership Report The IGMPv2 Host Membership Report has the 
same function as the IGMPv1 Host Membership Report and is intended to be re-
ceived by only IGMPv2-capable multicast routers.

23 (0x17) Leave Group Message

Table 7-4 Addresses Used in IGMPv2 Messages 

Group-Specific Query Group Leave

Source IP Address (IP header) Router IP Address Host IP Address

Destination IP Address (IP header) Group IP Address 224.0.0.2

Group Address (IGMPv2 header) Group IP Address Group IP Address

Type

Maximum Response Time

Checksum

Group Address
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Network Monitor Example

The following Network Monitor trace (Capture 07-03 in the \Captures folder on the compan-
ion CD-ROM) shows an IGMPv2 Host Membership Report message for a host registering the 
group address 239.255.255.252:

Frame:  

- Ethernet: Etype = Internet IP (IPv4) 

+ DestinationAddress: 01005E 7FFFFC 

+ SourceAddress: 006008 3E4607 

EthernetType: Internet IP (IPv4), 2048(0x800) 

UnkownData: Binary Large Object (14 Bytes) 

- Ipv4: Next Protocol = IGMP, Packet ID = 6694, Total IP Length = 32 

+ Versions: IPv4, Internet Protocol; Header Length = 24 

+ DifferentiatedServicesField: DSCP: 0, ECN: 0 

TotalLength: 32 (0x20) 

Identification: 6694 (0x1A26) 

+ FragmentFlags: 0 (0x0) 

TimeToLive: 1 (0x1) 

NextProtocol: IGAP/IGMP/RGMP, 2(0x2) 

Checksum: 2029 (0x7ED) 

SourceAddress: 10.1.8.200 

DestinationAddress: 239.255.255.252 

- routerAlert:  

- option: RTRALT - Router Alert. 

C: (1.......) Copy this option to all fragments 

Class: (.00.....) Datagram or Network Control 

Option: (...10100) RTRALT - Router Alert. 

Length: 4 (0x4) 

RouterAlertValue: Router shall examine packet (0) 

- Igmp: IGMPv2 Membership Report 

Type: IGMPv2 Membership Report, 22(0x16) 

- Igmpv2:  

+ MaxResqCode: Max Resp Time is 0.0 seconds 

CheckSum: 64002 (0xFA02) 

MulticastAddress: 239.255.255.252

Notice the existence of the IP Router Alert option (Option Type 0x94) that is used to inform 
the router that further processing of the IP header is required. For more information about the 
IP Router Alert option, see Chapter 5, “Internet Protocol (IP).”

IGMP Version 3 (IGMPv3)

IGMPv3, described in RFC 3376, supports multicast source-specific reports and queries. With 
IGMPv1 and IGMPv2, multicast group members report membership and routers query for 
membership without regard to the source of the multicast traffic. IGMPv3 allows you to have 
multiple sources for multicast traffic, which can be beneficial when you are multicasting a 
video session across an enterprise organization. Rather than having a single source of the 
multicast packets that comprise the video broadcast, you can have multiple sources distrib-
uted regionally. Multicast hosts can then join the group and specify a multicast source that is 
topologically closest to them (a regional source).
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When an IGMPv3 host sends a Host Membership Report message, it can specify the multicast 
group and either the list of multicast sources from which the host can receive the multicast 
packets (an include list) or a list of the multicast sources from which the host must not receive 
multicast packets (an exclude list). Multicast routers and multicast routing protocols use the 
list of sources to include or exclude in the IGMPv3 Host Membership Report message to pro-
mote the forwarding of multicast packets from included sources and prevent the forwarding 
and delivery of multicast packets from excluded sources.

In IGMPv3, the Host Membership Query message has been modified to allow an IGMPv3 
router to send source- and-group-specific queries. An IGMPv3 host uses a new Host Member-
ship Report message to send source-specific reports.

IGMPv3 Host Membership Query

The IGMPv3 Host Membership Query message is a group- and source-specific query that is sent 
by an IGMPv3 router to determine if there are any group members in the indicated group 
address for traffic from one of the sources in the source list. The IGMPv3 Host Membership 
Query message uses the same IGMP Type number (0x11) and has the same format as the 
IGMPv2 Host Membership Query message. However, there are additional fields after the Group 
Address field that allow the router to specify querying parameters and list the sources of the 
multicast group being queried. These additional fields are only included for an IGMPv3 group- 
and source-specific query. The receiver of a Host Membership Query message can determine the 
version of IGMP from the length of the message. IGMPv2 Host Membership Query messages 
are 8 bytes long. IGMPv3 Host Membership Query messages are at least 12 bytes long. 

Figure 7-5 shows the structure of the IGMPv3 Host Membership Query message.

Beyond the Group Address field, the IGMPv3 Host Membership Query message contains the 
following fields:

■ Reserved A 4-bit field set to 0 by the sender that is ignored by the receiver.

■ Suppress Router-Side Processing A 1-bit field that indicates, when set to 1, that receiv-
ing routers are to suppress normal processing when receiving a query message.

■ Querier’s Robustness Variable A 3-bit field that indicates the robustness variable of the 
sending router. The robustness variable is a measure of how many IGMP packets can be 
lost without recovery. IGMP can recover from Querier’s Robustness Variable - 1 lost 
IGMP packets.

■ Querier’s Query Interval A 1-byte field that indicates the number of seconds between 
query messages of the sending router. 

■ Number Of Sources A 2-byte field that indicates the number of source addresses 
included in the message.

■ Source Address A 4-byte field that indicates the unicast IP address of a multicast source.
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Figure 7-5 The structure of the IGMPv3 Host Membership Query message

For more information about the operation of an IGMPv3 router, see RFC 3376.

IGMPv3 Host Membership Report

The IGMPv3 Host Membership Report message contains one or more group records. Hosts 
send IGMPv3 Host Membership Report messages to the multicast address 224.0.0.22, a 
reserved multicast address for all IGMPv3-capable multicast routers. Each group record con-
tains the group address and the list of sources to either include or exclude.

Figure 7-6 shows the structure of the IGMPv3 Host Membership Report message.

Figure 7-6 The structure of the IGMPv3 Host Membership Report message
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The IGMPv3 Host Membership Report message contains the following fields:

■ Type A 1-byte field set to 0x22 to indicate an IGMPv3 Host Membership Report message.

■ Reserved A 1-byte field set to 0 by the sender and ignored by the receiver.

■ Checksum A 2-byte field that stores a checksum on the IGMPv3 message.

■ Reserved A 2-byte field set to 0 by the sender and ignored by the receiver.

■ Number Of Group Records A 2-byte field that indicates the number of group records 
contained in the message. 

■ Group Record A variable-sized field that contains a multicast address on which the 
sending host is listening and either an include list or exclude list of sources.

Figure 7-7 shows the structure of an IGMPv3 Host Membership Report message group record.

Figure 7-7 The structure of the IGMPv3 Host Membership Report message group record

The IGMPv3 Host Membership Report message group record contains the following fields:

■ Record Type A 1-byte field that indicates the type of group record and whether the list 
of sources is an inclusion or exclusion list.

■ Auxiliary Data Length A 1-byte field that indicates the number of bytes of auxiliary data 
included in the group record.

■ Number Of Sources A 2-byte field that indicates the number of multicast sources con-
tained in the group record. 

■ Multicast Address A 4-byte field that indicates the IP address of the group that the host 
is joining.

■ Source Address A 4-byte field that indicates the unicast IP address of a multicast source.

■ Auxiliary Data A variable-sized field that contains additional data for this group record.
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IGMP in Windows Server 2008 and Windows Vista
Windows Server 2008 and Windows Vista support IP multicast sending, receiving, and 
forwarding through the TCP/IP protocol and, for Windows Server 2008, the Routing and 
Remote Access service.

TCP/IP Protocol

TCP/IP for Windows Server 2008 and Windows Vista supports IP multicast traffic in the 
following ways:

■ To support host reception of IP multicast traffic, TCP/IP for Windows Server 2008 and 
Windows Vista is an IGMPv1, IGMPv2, and IGMPv3-capable host.

■ To support host transmission and reception of IP multicast traffic, TCP/IP for Windows 
Server 2008 and Windows Vista supports the mapping of IP multicast addresses to 
MAC addresses for Ethernet network adapters as described in this chapter. For Token 
Ring network adapters, all IP multicast traffic is mapped to the Token Ring functional 
address of 0x-C0-00-00-04-00-00.

■ To support the forwarding of IP multicast traffic, TCP/IP for Windows Server 2008 and 
Windows Vista supports multicast forwarding based on the setting of the EnableMulti-
castForwarding registry value and the entries in the TCP/IP multicast forwarding table. 
You can view the contents of the TCP/IP multicast forwarding table on a computer run-
ning Windows Server 2008 from the Routing and Remote Access snap-in or from the 
display of the netsh routing ip show mfe command.

In Windows Server 2008 and Windows Vista, IP multicast forwarding is controlled by the 
following registry value:

EnableMulticastForwarding
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 

Data Type: REG_DWORD 

Valid Range: 0-1 

Default: 0  

Present by Default: No

EnableMulticastForwarding enables (when set to 1) or disables (when set to 0) the forward-
ing of IP multicast traffic. By default, multicast forwarding is disabled. 

In Windows Server 2008 and Windows Vista, the maximum version of IGMP can be con-
trolled by the netsh interface ipv4 set global mldversion=version1|version2|version3 
command. By default, Windows Server 2008 and Windows Vista support IGMPv3 as the 
maximum version of IGMP.
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Routing And Remote Access Service

In Windows Server 2008, the Routing and Remote Access service functions as a limited mul-
ticast forwarder using IGMPv1, IGMPv2, or IGMPv3 to track local group membership. 
Because IGMP is not a true multicast routing protocol, routers running Windows Server 2008 
can support only limited multicast configurations.

In the Routing and Remote Access service, IGMP is a routing protocol component that is 
typically added by the Routing and Remote Access Server Setup wizard. Alternatively, you can 
add IGMP as an IPv4 routing protocol from the Routing and Remote Access snap-in. Depend-
ing on your choices in the wizard, you might need to add individual routing interfaces to the 
IGMP routing protocol and configure them for either IGMP router mode or IGMP proxy mode.

Interfaces in IGMP Router Mode

An interface in IGMP router mode acts as an IGMP-capable IP multicast forwarder and per-
forms the following actions:

■ Places the network adapter in multicast promiscuous mode If the network interface is a 
broadcast network type such as Ethernet, the network adapter is placed in multicast 
promiscuous mode. If the network adapter does not support multicast promiscuous 
mode, an event is logged in the system event log.

■ Manages local subnet multicast group membership The routing interface uses IGMP to 
listen for IGMP Host Membership Report and Leave Group messages, to elect an IGMP 
querier, and to send General and Group-Specific Host Membership Query messages.

■ Updates the TCP/IP multicast forwarding table Based on ongoing group membership 
for the interface, IGMP in conjunction with other components of the Routing and 
Remote Access service maintains the TCP/IP multicast forwarding table.

Interfaces in IGMP Proxy Mode

An interface in IGMP proxy mode acts as an IGMP-capable IP multicast proxy host for hosts 
on IGMP router mode interfaces and performs the following functions:

■ Forwards IGMP Host Membership Report messages IGMP Host Membership Report 
messages received on IGMP router mode interfaces are forwarded on the IGMP proxy 
mode interface. The forwarded Host Membership Report messages have a TTL of 1. The 
received Host Membership Report messages are not forwarded using the entries in the 
TCP/IP multicast forwarding table.

■ Adds multicast MAC addresses to the network adapter table For each group address 
registered by proxy, the corresponding multicast MAC address is added to the table of 
interesting MAC addresses on the network adapter (for local area network [LAN] tech-
nologies such as Ethernet). The network adapter is not placed in promiscuous mode 
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unless the network card cannot support listening to all required multicast MAC 
addresses. Nonlocal IP multicast traffic received on the IGMP proxy mode interface is 
passed to the TCP/IP protocol for multicast forwarding.

■ Updates the TCP/IP multicast forwarding table To facilitate the forwarding of multicast 
traffic from a multicast source on an IGMP router mode interface to a group member 
downstream from the IGMP proxy mode interface, the IGMP routing protocol adds 
entries to the TCP/IP multicast forwarding table so that all nonlocal IP multicast traffic 
received on IGMP router mode interfaces is forwarded over the IGMP proxy mode inter-
face. The IGMP proxy mode interface forwards all nonlocal multicast traffic received 
from IGMP router mode interfaces regardless of whether or not there are group mem-
bers present downstream from the IGMP proxy mode interface.

IGMP proxy mode is designed to connect a Windows Server 2008-based router to a fully capa-
ble IP multicast internetwork. As Figure 7-8 shows, IGMP proxy mode is enabled on the inter-
face that is connected to the multicast-enabled internetwork.

Figure 7-8 The use of IGMP router mode and proxy mode

The combination of IGMP router mode interfaces and the IGMP proxy mode interface allows 
the sending and receiving of IP multicast traffic for hosts on a peripheral subnet using a router 
running Windows Server 2008.

Multicast Group Members on IGMP Router Mode Interfaces Host members on IGMP 
router mode interfaces receive host group traffic through the following process:

1. A host sends an IGMP Host Membership Report message on the local subnet.
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2. The router updates its multicast forwarding table with the appropriate entry.

3. The IGMP routing protocol adds the multicast MAC address corresponding to the IP 
multicast address to the table of interesting MAC addresses on the network adapter on 
which IGMP proxy mode is enabled.

4. The router forwards the IGMP Host Membership Report message on the IGMP proxy 
mode interface.

5. The neighboring IP multicast-enabled router receives the IGMP Host Membership 
Report message, makes the appropriate changes to its multicast forwarding table, and 
informs downstream IP multicast-enabled routers using multicast routing protocols that 
a host member exists on the IGMP proxy mode interface subnet.

Routers of the IP multicast-enabled internetwork forward IP multicast traffic sent to the host 
group to the neighboring IP multicast-enabled router, which forwards the traffic on the IGMP 
proxy mode interface subnet. The IGMP proxy mode interface receives the multicast traffic 
and submits it to the TCP/IP multicast forwarding process. Based on the entries in the multi-
cast forwarding table, the IP multicast traffic is forwarded on the IGMP router mode interface 
connected to the subnet containing the host member.

Multicast Sources on IGMP Router Mode Interfaces The multicast traffic of multicast 
sources on IGMP router mode interfaces is forwarded through the following process:

1. A multicast source host sends nonlocal IP multicast traffic to a specific group address.

2. The IGMP router mode interface receives the multicast traffic.

3. For the first multicast packet, the IGMP routing protocol adds an entry to the TCP/IP 
multicast forwarding table, indicating that there are host members present on the IGMP 
proxy mode interface.

4. The multicast traffic is passed to the multicast forwarding process. Based on the entries 
in the multicast forwarding table, the multicast traffic is forwarded on the IGMP proxy 
mode interface.

5. The neighboring IP multicast-enabled router receives the IP multicast traffic and passes 
it to the multicast forwarding process. Based on the entries in the multicast forwarding 
table of the IP multicast-enabled router, the multicast packet is either forwarded to host 
members (local or downstream) or silently discarded.

Summary
IGMP provides a mechanism for hosts to register their interest in receiving IP multicast traffic 
sent to a specific group address (the Host Membership Report message), for hosts to indicate 
that they are no longer interested in receiving IP multicast traffic sent to a specific group 
address (the Leave Group message), and for routers to query the membership of all host 
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groups (the General Host Membership Query) or a single host group (the Group-Specific 
Host Membership Query). TCP/IP for Windows Server 2008 and Windows Vista supports 
IGMPv1, IGMPv2, and IGMPv3, as well as IP multicast forwarding. In Windows Server 2008, 
the Routing and Remote Access service uses the IGMP routing protocol component and inter-
faces in IGMP router and proxy mode to maintain the IP multicast forwarding table and 
provide multicast forwarding in limited configurations. 
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After decades of faithful service, the current version of IP, also known as IP version 4 (IPv4), is 
showing signs of age. The growth of the Internet and the inclusion of a variety of unantici-
pated technologies are putting a strain on the original design. Before we begin to discuss 
IPv4’s pitfalls, we must take a moment to reflect on the design of IPv4. This protocol was 
designed in the late 1970s (roughly the Bronze Age of computing) and has risen above all 
other networking protocols to become the de facto world standard for data communications. 
There are not many computer technologies that were designed in 1978 that are still in use 
today, much less as the cornerstone of a global communications infrastructure.

Note Because this book is primarily about IPv4, the coverage of IPv6 in this chapter is delib-
erately written to provide an overview and how it compares with IPv4. Throughout the rest of 
this book, when IP is used, it denotes IPv4. For more information about IPv6 and its implemen-
tation in Microsoft Windows Server 2008 and Windows Vista, see the book Understanding 
IPv6, 2nd Edition (Redmond, Wash: Microsoft Press, 2008) by Joseph Davies or the resources on 
http://www.microsoft.com/ipv6.

More Info All of the RFCs referenced in this chapter can be found in the 
\Standards\Chap08_IPv6 folder on the companion CD-ROM.

The Disadvantages of IPv4
On today’s Internet, IPv4 has the following disadvantages:

■ Limited address space The most visible and urgent problem with using IPv4 on the 
modern Internet is the rapid depletion of public addresses. Due to the initial address 
179
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class allocation practices of the early Internet, public IPv4 addresses are becoming scarce. 
Organizations in the United States hold most public IPv4 address space worldwide.

This limited address space has forced the wide deployment of network address transla-
tors (NATs), which can share one public IPv4 address among several privately 
addressed computers. NATs have the side effect of acting as a barrier for server, listener, 
and peer-to-peer applications running on computers that are located behind the NAT. 
Although there are workarounds for NAT issues, they only add complexity to what 
should be an end-to-end addressable global network.

■ Flat routing infrastructure In the early Internet, address prefixes were not allocated to 
create a summarizable, hierarchical routing infrastructure. Instead, individual address 
prefixes were assigned and each address prefix became a new route in the routing tables 
of the Internet backbone routers. Today’s Internet is a mixture of flat and hierarchical 
routing, but there are still more than 85,000 routes in the routing tables of Internet 
backbone routers.

■ Configuration IPv4 must be configured, either manually or through the Dynamic Host 
Configuration Protocol (DHCP). DHCP allows IPv4 configuration administration to 
scale to large networks, but you must also configure and manage a DHCP infrastructure.

■ Security Security for IPv4 is specified by the use of Internet Protocol security (IPsec). 
However, IPsec is optional for IPv4 implementations. Because an application cannot rely 
on IPsec being present to secure traffic, an application might resort to other security 
standards or a proprietary security scheme. The need for built-in security is even more 
important today, when we face an increasingly hostile environment on the Internet. 

■ Prioritized delivery Prioritized packet delivery, such as special handling parameters for 
low delay and low variance in delay for voice or video traffic, is possible with IPv4. How-
ever, it relies on a new interpretation of the IPv4 Type Of Service (TOS) field, which is 
not supported for all the devices on the network. Additionally, identification of the 
packet flow must be done using an upper layer protocol identifier such as a TCP or User 
Datagram Protocol (UDP) port. This additional processing of the packet by intermedi-
ate routers makes forwarding less efficient.

■ Mobility Mobility is a new requirement for Internet-connected devices, in which a 
node can change its address as it changes its physical attachment to the Internet and still 
maintain existing connections. Although there is a specification for IPv4 mobility, due to 
a lack of infrastructure, communications with an IPv4 mobile node are inefficient.

All of these issues and others prompted the Internet Engineering Task Force (IETF) to begin 
the development of a replacement protocol for IPv4 that would solve the problems of IPv4 
and be extensible to solve additional problems in the future. The replacement for IPv4 is IPv6.

Note The version number 5 was reserved for a different replacement protocol for IPv4 that 
was never implemented.
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IPv6 solves the problems of IPv4 in the following ways:

■ Huge address space IPv6 addresses are 128 bits long, creating an address space with 
3.4 × 1038 possible addresses. This is plenty of address space for the foreseeable future 
and allows all manner of devices to connect to the Internet without the use of NATs. 
Address space can also be allocated internationally in a more equitable manner.

■ Hierarchical routing infrastructure IPv6 addresses that are reachable on the IPv6 
portion of the Internet, known as global addresses, have enough address space for the 
hierarchy of Internet service providers (ISPs) that typically exist between an organiza-
tion or home and the backbone of the Internet. Global addresses are designed to be 
summarizable and hierarchical, resulting in relatively few routing entries in the routing 
tables of Internet backbone routers.

■ Automatic configuration IPv6 hosts can automatically configure their own IPv6 
addresses and other configuration parameters, even in the absence of an address config-
uration infrastructure such as DHCP.

■ Required support for IPsec headers Unlike IPv4, IPv6 support for IPsec protocol head-
ers is required. Applications can always rely on industry standard security services for 
data sent and received. However, the requirement to process IPsec headers does not 
make IPv6 inherently more secure. IPv6 packets are not required to be protected with 
Authentication Header (AH) or Encapsulating Security Payload (ESP). For more infor-
mation about IPsec, AH, and ESP, see Chapter 18, “Internet Protocol Security (IPsec).”

■ Better support for prioritized delivery IPv6 has an equivalent to the IPv4 TOS field that 
has a single interpretation for nonstandard delivery. Additionally, a Flow Label field in 
the IPv6 header indicates the packet flow, making the determination of forwarding for 
nondefault delivery services more efficient at intermediate routers.

■ Support for mobility Rather than attempting to add mobility to an established protocol 
with an established infrastructure (as with IPv4), IPv6 can support mobility more effi-
ciently.

Note IPv6 is not designed to be a superset of IPv4 functionality and is not backward 
compatible with IPv4.

IPv6 Addressing
The IPv6 address is 128 bits long, creating an address space of almost inconceivable size. 
With 128 bits you can express more than 3.4 × 1038 combinations. Unlike IPv4 unicast 
addresses, the structure of an IPv6 unicast address is very simple: The first 64 bits are for a 
subnet prefix and the last 64 bits are for an interface identifier. Although you can perform vari-
able-length subnetting within the 64 bits of the subnet prefix, the host ID equivalent for IPv6 
is always the same size. The 64 bits of subnet prefix provide enough addressing space to 
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enumerate networks from the Internet backbone to the individual subnets within an organi-
zation’s site. The 64 bits of interface identifier can be used to map 48-bit media access control 
(MAC) addresses used by today’s network adapters and 64-bit MAC addresses used by tomor-
row’s network adapters.

Basics of IPv6 Address Syntax

With such a large address space, expressing an individual IPv6 address became problematic. 
The designers of IPv6 settled on colon-hexadecimal notation, which divides the 128-bit 
address into eight 16-bit blocks separated by colons. Each 16-bit block is expressed in hexa-
decimal format (rather than decimal format for IPv4). The result is the IPv6 address.

The following are some examples of IPv6 unicast addresses:

■ 2001:DB8:2A:41CD:2AA:FF:FE5F:47D1

■ FE80:0:0:0:2AA:FF:FE5F:47D1

■ FD47:2AD1:494E:41CD:2AA:FF:FE5F:47D1

Notice that the leading zeros within each block are suppressed, as long as each block contains 
at least one hexadecimal digit. A fully expressed block is always four hexadecimal digits.

There are many IPv6 addresses that have a sequence of blocks set to 0. To further compress 
IPv6 addresses, a single contiguous set of 0 blocks can be expressed as “::”, a notation known 
as double-colon. For example:

■ FE80:0:0:0:2AA:FF:FE5F:47D1 becomes FE80::2AA:FF:FE5F:47D1

■ FF02:0:0:0:0:0:0:1 (a multicast address) becomes FF02::1

To express a subnet prefix, a route, or an address range, IPv6 uses the network prefix length 
notation (also used for Classless Inter-Domain Routing [CIDR] for IPv4). There are no subnet 
masks in IPv6. For example, 2001:DB8:2A:41CD::/64 is a subnet prefix; 2001:DB8:2A::/48 is 
a summarized route; and FF00::/8 is an address range (the range of all IPv6 multicast 
addresses).

Types of Addresses

IPv6 defines three types of addresses: unicast, multicast, and anycast. Unicast and multicast 
addresses work in the same way as they do for IPv4. An anycast address, however, is a strange 
mixture of unicast and multicast. Whereas a unicast address is used for one-to-one delivery 
and a multicast address is used for one-to-many delivery, an anycast address is used for one-to-
one-of-many delivery. A set of interfaces, known as an anycast group, listens on the anycast 
address. When a sending host sends packets to an anycast address, the packets are delivered 
to the anycast group member that is topologically closest to the sending host. This delivery to 
the closest anycast group member is facilitated by host routes in the routing infrastructure 
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that indicate with routing metrics where the closest group member is located. This new type 
of address allows some types of network resources to be scattered across an organization’s 
network. For example, when a host sends a query to a server using a reserved anycast address, 
the routing infrastructure delivers the query to the server that is closest to the querying host.

Types of Unicast Addresses

Just as there are different types of IPv4 unicast addresses (such as public and private), there 
are different types of IPv6 unicast addresses.

Global

Global addresses are the equivalent of IPv4 public addresses. Global addresses are globally 
reachable on the IPv6 Internet. Unlike public IPv4 address prefixes, which are a combination 
of flat and summarizable address spaces, IPv6 global addresses are easier to aggregate and 
summarize at address space boundaries. This results in fewer routes in the various routing 
domains of the Internet.

Link-Local Addresses

Link-local addresses, which are used on the same link, are equivalent to Automatic Private IP 
Addressing (APIPA) IPv4 addresses used by current Microsoft desktop and server operating 
systems. Link-local addresses are automatically configured and can be used to provide auto-
matic addressing for nodes connected to the same network segment when there is no router 
present. Link-local addresses always begin with “FE80”.

Unique Local Addresses

Unique local addresses are defined to be used within the sites of an organization but not on 
the IPv6 Internet. Unique local addresses are roughly equivalent to private IPv4 addresses 
except that part of a unique local address prefix is randomly generated to prevent address 
duplication between sites of an organization and between organizations. Unique local 
addresses begin with “FD” or “FC”.

IPv6 Interface Identifiers

The interface identifier, the last 64 bits of an IPv6 unicast address, can be determined in the 
following ways:

■ Randomly generated to prevent address scans on a link

■ Derived from the MAC address of the network adapter to which the address is assigned

■ Randomly generated to provide IPv4-equivalent anonymity for client-initiated traffic

■ Assigned during a Point-to-Point Protocol (PPP) connection

■ Assigned during DHCP for IPv6 (DHCPv6) configuration
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DNS Support

To resolve domain names to IPv6 addresses, RFC 1886 defines the use of the AAAA (or 
quad-A) Domain Name System (DNS) resource record to resolve a DNS name to an IPv6 
address. The AAAA record is analogous to the address (A) record that exists for resolving a 
DNS name to an IPv4 address. To obtain an AAAA record in a DNS query response, a query-
ing host must specify either AAAA records or all records in its DNS query.

For reverse name resolution, RFC 1886 also describes the use of pointer (PTR) records to 
determine the name of an IPv6 node from its address. The IP6.ARPA reverse name domain is 
used as the root of the reverse namespace rather than IN-ADDR.ARPA. To create the reverse 
query name, the IPv6 address is fully expressed as a sequence of hexadecimal digits (includ-
ing all 0 digits), and then each hexadecimal digit in reverse order becomes a separate level in 
the reverse domain namespace.

For example, for the IPv6 address 2001:DB8:0:41CD:2AA:FF:FE5F:47D1 (fully expressed as 
2001:0DB8:0000:41CD:02AA:00FF:FE5F:47D1), the name in the reverse domain namespace 
is 1.D.7.4.F.5.E.F.F.F.0.0.A.A.2.0.D.C.1.4.0.0.0.0.8.B.D.0.1.0.0.2.IP6.ARPA.

Core Protocols of IPv6
The core protocols of the IPv6 protocol suite consist of the following:

■ IPv6

■ Internet Control Message Protocol for IPv6 (ICMPv6)

■ Neighbor Discovery (ND)

■ Multicast Listener Discovery (MLD)

IPv6

The IPv6 header is described in RFC 2460. It has a new, streamlined design that removes 
unneeded fields and moves seldom-used fields to extension headers. Even with addresses 
that are four times larger than IPv4 addresses, the size of the IPv6 header is only twice as large 
as the IPv4 header, with a 40-byte fixed size. Although larger, the IPv6 header contains fewer 
fields and is more efficiently processed by routers. Like IPv4, IPv6 is connectionless and pro-
vides a best-effort delivery to the destination.

The IPv6 header is not compatible with the IPv4 header. An IPv4-only node silently discards 
IPv6 packets and an IPv6-only node silently discards IPv4 packets.
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ICMPv6

ICMPv6, defined in RFC 4443, provides error reporting and diagnostic functions for IPv6. 
Additionally, ICMPv6 provides a common packet structure for the messages of ND and MLD. 
Analogous to ICMP for IPv4, ICMPv6 provides the following types of messages:

■ Echo Request

■ Echo Reply

■ Destination Unreachable

■ Time Exceeded

■ Parameter Problem

ICMPv6 also includes a Packet Too Big message that is equivalent to the RFC 1191–defined 
Destination Unreachable-Fragmentation Needed and DF Set message for ICMP. The ICMPv6 
Packet Too Big message is used for IPv6-based path maximum transmission unit (PMTU) 
discovery.

Neighbor Discovery

ND, defined in RFC 4861, consists of a set of ICMPv6 messages, message options, and defined 
processes that allow neighboring nodes to discover each other, discover the routers on the 
link, and provide support for host redirection. ND replaces the following facilities in IPv4:

■ Address Resolution Protocol (ARP)

■ ICMP Router Discovery

■ ICMP Redirect

The five ND messages are as follows:

■ Neighbor Solicitation

■ Neighbor Advertisement

■ Router Solicitation

■ Router Advertisement

■ Redirect

ND defines the following processes:

■ Address resolution Instead of sending a broadcast ARP Request message and receiving 
a unicast ARP Reply message, an IPv6 node sends a multicast Neighbor Solicitation and 
receives a unicast Neighbor Advertisement.
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■ Duplicate address detection Just like the sending of gratuitous ARP frames in IPv4, an 
IPv6 node performs address resolution on addresses it attempts to use before initializing 
them on an interface.

■ Router discovery When nodes start up on a link, they send a multicast Router Solicita-
tion message. Routers on the link send a unicast or multicast Router Advertisement mes-
sage that contains address prefixes and other configuration options so that the host can 
automatically configure global and unique local addresses. With proper configuration of 
routers, a DHCPv6 infrastructure is not required for IPv6 unicast address configuration.

■ Redirect Just as in IPv4, if an IPv6 host sends traffic to the wrong first-hop router, the 
router forwards the packet and sends the sending host a Redirect message, informing 
the host of the better next-hop address of the optimal first-hop router.

■ Neighbor unreachability detection IPv6 tracks whether neighboring nodes are reach-
able. If a neighboring node becomes unreachable, an IPv6 node detects the problem and 
makes adjustments, such as automatically choosing a new default router, or indicating 
the error to upper layer protocols.

Multicast Listener Discovery

MLD, defined in RFC 2710, is the IPv6 equivalent to Internet Group Management Protocol 
(IGMP) version 2 for IPv4. MLD defines ICMPv6 messages that are used by hosts to register 
group membership, by hosts to leave a group, and by routers to query the subnet for group 
membership.

MLD version 2 (MLDv2), defined in RFC 3810, is the IPv6 equivalent of IGMP version 3 
(IGMPv3) for IPv4. MLDv2 performs the same functions as MLD, but allows IPv6 hosts to 
register interest in source-specific multicast traffic with local multicast routers. An MLDv2-
capable host can register interest in receiving IPv6 multicast traffic from only specific source 
addresses (an include list) or from any source except specific source addresses (an 
exclude list).

Differences Between IPv4 and IPv6
Table 8-1 lists some of the differences between IPv4 and IPv6.

Table 8-1 Differences Between IPv4 and IPv6

Category IPv4 IPv6

Address length 32 bits 128 bits

Header size 20–60 bytes 40 bytes

IPsec header support Optional Required

Prioritized delivery support Limited Better

Fragmentation Done by hosts and routers Done by hosts only

Is a header checksum present? Yes No
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Summary
The IPv6 suite of protocols is a revision of the Internet Layer protocols of the current TCP/IP 
protocol suite and replaces IP, ICMP, IGMP, and ARP. IPv6 attempts to solve the problems of 
IPv4 with efficient and plentiful addressing, a streamlined Internet Layer header that is easier 
for routers to process, and more efficient neighboring node interaction.

Does the header include 
options?

Yes No

Link-layer address resolution Broadcast ARP Request frames Multicast Neighbor Solicitation 
messages

Error reporting and diagnostic 
protocol

ICMP (for IPv4) ICMPv6

Multicast group membership 
protocol

IGMPv1, IGMPv2, IGMPv3 MLD, MLDv2

Router discovery support Optional Required

Network layer broadcast 
addresses?

Yes No

Host configuration DHCP or manual Automatic, DHCPv6, or manual

DNS record type for name 
resolution

A record AAAA record

DNS record type and location PTR records in IN-ADDR.ARPA 
domain

PTR records in IP6.ARPA 
domain

Table 8-1 Differences Between IPv4 and IPv6

Category IPv4 IPv6
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There are two protocols at the Transport Layer that TCP/IP applications typically use for trans-
porting data: Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). This 
chapter describes the characteristics of UDP and the fields in the UDP header.

Introduction to UDP
UDP, defined in RFC 768, has the following characteristics:

■ Connectionless Nodes send UDP messages, consisting of a UDP header and a message, 
without having to negotiate a connection between communicating peers.

■ Unreliable Nodes send UDP messages as datagrams without sequencing or acknowl-
edgment. The Application Layer protocol must reorder and recover lost messages. 
Typical UDP-based Application Layer protocols either provide their own reliable service 
or retransmit UDP messages periodically or after a defined time-out value.

■ Provides identification of Application Layer protocols UDP provides a mechanism to 
send messages to a specific Application Layer protocol or process on an internetwork 
host. The UDP header provides both source and destination process identification.

■ Provides checksum of UDP message The UDP header provides a 16-bit checksum of the 
entire UDP message.

More Info All of the RFCs referenced in this chapter can be found in the 
\Standards\Chap09_UDP folder on the companion CD-ROM.
191
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UDP is a direct reflection of the datagram services of IP, except that UDP provides a method 
to pass data to an Application Layer protocol.

UDP does not provide the following delivery services:

■ Buffering UDP does not provide any buffering of incoming or outgoing data. The 
Application Layer protocol must provide all buffering.

■ Segmentation UDP does not provide any segmentation of large blocks of data. There-
fore, the application must send data in small enough blocks so that the IP datagrams for 
the UDP messages are no larger than the Maximum Transmission Unit (MTU) of the 
interface on which they are sent. Otherwise, IP on the sending host fragments the UDP 
message.

■ Flow control UDP does not provide any sender-side or receiver-side flow control. UDP 
message senders can react to the receipt of an Internet Control Message Protocol 
(ICMP) Source Quench message, but it is not required.

Uses for UDP
Although UDP does not provide any services beyond Application Layer protocol identification 
and a checksum, there are uses for sending data using UDP, including the following:

■ Lightweight protocol To conserve memory and processor resources, some Application 
Layer protocols require the use of a lightweight protocol that performs a specific func-
tion using a simple exchange of messages. A good example is Domain Name System 
(DNS) name queries. Typically, a DNS client sends a DNS Name Query Request mes-
sage to a DNS server. The DNS server responds with a DNS Name Query Response 
message. If the DNS server does not respond, the DNS client retransmits the DNS Name 
Query Request message.

If all the DNS clients used TCP rather than UDP, all DNS name queries would be sent 
reliably, but the DNS server would have to support hundreds or, on the Internet, thou-
sands of TCP connections. The low-overhead solution of using UDP is the best choice 
for simple request-reply-based Application Layer protocols.

■ Reliability provided by the Application Layer protocol If the Application Layer protocol 
provides its own reliable data delivery services, there is no need for the Transport Layer 
protocol to provide them. Examples of reliable Application Layer protocols are Trivial 
File Transfer Protocol (TFTP) and Network File System (NFS).

■ Reliability not required due to periodic advertisement process If the Application Layer 
protocol periodically advertises information, reliable delivery is not required. If an 
advertisement is lost, it is announced again at the period interval. An example of an 
Application Layer protocol that uses periodic advertisements is the Routing Information 
Protocol (RIP).
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■ One-to-many delivery UDP can be used as the Transport Layer protocol whenever 
Application Layer data must be sent to multiple destinations using an IP multicast or 
broadcast address. TCP can be used only for one-to-one delivery. For example, a host 
sends a broadcast NetBIOS Name Query Request message using UDP.

The UDP Message
A UDP message, consisting of a UDP header and its payload (a message), is identified in the 
IP header with IP Protocol number 17 (0x11). The message can be a maximum size of 65,507 
bytes: 65,535 minus the minimum-size IP header (20 bytes) and the UDP header (8 bytes). 
The resulting IP datagram is then encapsulated with the appropriate Network Interface Layer 
header and trailer. Figure 9-1 shows the resulting frame.

Figure 9-1 UDP message encapsulation showing the IP header and Network Interface Layer header 
and trailer

In the IP header of UDP messages, the Source IP Address field indicates the host interface that 
sent the UDP message. The Destination IP Address field indicates the unicast address of the 
destination host (or intermediate router if the packet is source routed), an IP broadcast 
address, or an IP multicast address.

The UDP Header
The UDP header is a fixed-length size of 8 bytes consisting of four fields, as Figure 9-2 shows.

Figure 9-2 The structure of the UDP header

The fields in the UDP header are defined as follows:

■ Source Port A 2-byte field that identifies the source Application Layer protocol sending 
the UDP message. The use of a source port is optional and, when not used, is set to 0. IP 
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multicast traffic, such as videocasts sent using UDP, can use 0 because no reply to the 
video traffic is expected. Typical Application Layer protocols use the source port of an 
incoming UDP message as the destination port for replies. The combination of the IP 
header’s source IP address and the UDP header’s source port provides a unique, glo-
bally significant address for the process from which the message was sent.

■ Destination Port A 2-byte field that identifies the destination Application Layer proto-
col. The combination of the IP header’s destination IP address and the UDP header’s 
destination port provides a unique, globally significant address for the process to which 
the message is sent.

■ Length A 2-byte field indicates the length in bytes of the UDP message, including both 
the UDP header and the message. The minimum length is 8 bytes (the UDP header’s 
size), and the maximum is 65,515 bytes (maximum-sized IP datagram of 65,535 bytes 
minus the minimum-sized IP header of 20 bytes). The actual maximum length is con-
fined by the MTU of the link on which the UDP message is sent. In the absence of exten-
sion headers between the IP header and the UDP header, the Length field is redundant. 
The UDP length is the IP payload length, which can always be calculated from the Total 
Length and the IP Header Length fields in the IP header (UDP length = payload length 
= total length – 4 × IP header length [in 32-bit words]).

■ Checksum A 2-byte field that provides a bit-level integrity check for the UDP message. 
The UDP checksum calculation uses the same method as the IP header checksum over 
the UDP pseudo header, the UDP header, the message, and, if needed, a padding byte of 
0x00. The padding byte is used only if the message’s length is an odd number of bytes. 
For more information about the UDP pseudo header, see “The UDP Pseudo Header” 
later in this chapter. The use of the UDP Checksum field is optional. If not used, the 
UDP Checksum field is set to 0.  For more information about the checksum calculation, 
see Chapter 5, “Internet Protocol (IP).”

Note TCP/IP for Windows Server 2008 and Windows Vista always calculates a value for the 
UDP checksum.

The following Network Monitor trace (Capture 9-01 in the \Captures folder on the companion 
CD-ROM) shows the structure of the UDP header for a DNS Name Query Request message:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = UDP, Packet ID = 16385, Total IP Length = 58 

- Udp: SrcPort = DNS(53), DstPort = DNS(53), Length = 38 

SourcePort: DNS(53), 53(0x35) 

DestinationPort: DNS(53), 53(0x35) 

TotalLength: 38 (0x26) 

Checksum: 27297 (0x6AA1) 

+ Dns: QueryId = 0x2, QUERY (Standard query), Query for www.acme.com of type Host Addr on

class Internet
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UDP Ports
A UDP port defines a location or message queue for the delivery of messages for Application 
Layer protocols using UDP services. Included in each UDP message is the source port (the 
message queue from which the message was sent) and a destination port (the message queue 
to which the message was sent). The Internet Assigned Numbers Authority (IANA) assigns 
port numbers, known as well-known port numbers, to specific Application Layer protocols. 
Table 9-1 shows well-known UDP port numbers used by Windows Server 2008 and Windows 
Vista-based components.

See http://www.iana.org/assignments/port-numbers for the most current list of IANA-assigned 
UDP port numbers.

Typically, the server side of an Application Layer protocol listens on the well-known port num-
ber. The client side of an Application Layer protocol uses either the well-known port number or, 
more commonly, a dynamically allocated port number. These dynamically allocated port num-
bers are used for the duration of the process and are also known as ephemeral or short-lived ports.

A UDP port number can be referenced by name by a Microsoft Windows Sockets application 
using the GetServByName() function. The name is resolved to a UDP port number through the 
Services file stored in the %SystemRoot%\System32\Drivers\Etc folder.

A sending node determines the destination port (using either a specified value or the 
GetServByName() function) and the source port (using either a specified value or by obtaining 
a dynamically allocated port through Windows Sockets). The sending node then indicates the 
source IP address, destination IP address, source port, destination port, and the message to be 
sent to TCP/IP. The UDP component calculates the length and the checksum and indicates 
the UDP message with the appropriate source IP address and destination IP address to the IP 
component.

Table 9-1 Well-Known UDP Port Numbers

Port Number Application Layer Protocol

53 DNS

67 BOOTP server (Dynamic Host Configuration Protocol [DHCP])

68 BOOTP client (DHCP)

69 TFTP

137 NetBIOS Name Service

138 NetBIOS Datagram Service

161 Simple Network Management Protocol (SNMP)

445 Direct hosting of Server Message Block (SMB) datagrams over TCP/IP (also 
known as Microsoft-DS)

520 RIP

1812, 1813 Remote Authentication Dial-In User Service (RADIUS)
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When receiving a UDP message at the destination, IP verifies the IP header and, based on the 
value of 17 (0x11) in the Protocol field, passes the UDP message, the source IP address, and 
the destination IP address to the UDP component. After verifying the UDP checksum, the 
UDP component verifies the destination port. If a process is listening on the port, UDP passes 
the message to the application. If no process is listening on the port, UDP uses the ICMP com-
ponent to send an ICMP Destination Unreachable-Port Unreachable message to the sender, 
and then discards the UDP message.

Figure 9-3 shows the process of demultiplexing an incoming UDP message.

Figure 9-3 The demultiplexing of a UDP message to the appropriate Application Layer protocol 
using the IP Protocol field and the UDP Destination Port field

Best Practices UDP ports are separate from TCP ports, even for the same port number. A 
UDP port represents a UDP message queue for an Application Layer protocol. A TCP port rep-
resents one side of a TCP connection for an Application Layer protocol. The Application Layer 
protocol using the UDP port is not necessarily the same Application Layer protocol using the 
TCP port. A good example of the differentiation between TCP and UDP Application Layer pro-
tocols is the Extended Filename Server (EFS) protocol, which uses TCP port 520, and RIP, which 
uses UDP port 520. Clearly these are separate Application Layer protocols. Therefore, it is not 
good practice to refer to a port by just its port number because the port number alone is 
ambiguous. Always refer to either a TCP port number or a UDP port number.

The UDP Pseudo Header
The UDP pseudo header associates the UDP message with its IP header. UDP adds the UDP 
pseudo header to the beginning of the UDP message only for the checksum calculation; it is 
not sent as part of the UDP message. The UDP pseudo header assures the receiver that a rout-
ing or fragmentation process did not improperly modify key fields in the IP header.

Figure 9-4 shows the UDP pseudo header.

The UDP pseudo header consists of the Source IP Address field, the Destination IP Address 
field, an Unused field set to 0, the Protocol field for UDP (17 or 0x11), and the UDP Length 
field. When sending a UDP message, UDP is aware of all of these values. When receiving a 
UDP message, IP indicates all of these values to UDP. 
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Figure 9-4 The structure of the UDP pseudo header

UDP calculates the UDP checksum over the combination of the UDP pseudo header, the UDP 
message, and a 0x00 padding byte if needed. The checksum calculation relies on summing 16-
bit words. Therefore, the checksum quantity must be an even number of  bytes. The padding 
byte is used only if the length of the message is an odd number of bytes. The padding byte is 
not included in the UDP length and is not sent as part of the UDP message. Figure 9-5 shows 
the resulting quantity for the calculation of the UDP Checksum field.

Figure 9-5 The resulting quantity used for the UDP checksum calculation

Note Unlike the IP security (IPsec) Authentication header, the UDP pseudo header and 
Checksum field are not providing data authentication or data integrity for fields in the IP 
header and the UDP message. IP header and UDP port fields can be modified as long as the 
UDP Checksum field is updated. This is how a Network Address Translator (NAT) works. An NAT 
is a router that translates public and private addresses during the forwarding process. For 
example, when translating a source IP address from a private address to a public address, the 
NAT also recalculates the UDP checksum.

Summary
UDP provides a connectionless and unreliable delivery service for applications that do not 
require the guaranteed delivery service of TCP. Application Layer protocols use UDP for light-
weight interaction, for broadcast or multicast traffic, or when the Application Layer protocol 
provides its own reliable delivery service. The UDP header provides a checksum and source 
and destination port numbers to multiplex UDP message data to the proper Application Layer 
protocol.
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There are two protocols at the Transport Layer that TCP/IP applications typically use for trans-
porting data: Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). This 
chapter describes the characteristics of TCP and the fields in the TCP header.

Introduction to TCP
TCP, defined in RFC 793, is the Transport Layer protocol that provides a reliable data-transfer 
service and a method to pass TCP-encapsulated data to an Application Layer protocol. TCP 
has the following characteristics:

■ Connection-oriented Before data can be transferred, two Application Layer processes 
must formally negotiate a TCP connection using the TCP connection establishment 
process. TCP connections are formally closed using the TCP connection termination 
process. For more information about TCP connection processes, see Chapter 11, 
“Transmission Control Protocol (TCP) Connections.”

■ Full duplex For each TCP peer, the TCP connection consists of two logical pipes: an 
outgoing pipe and an incoming pipe. With the appropriate Network Interface Layer 
technology, data can be flowing out of the outgoing pipe and into the incoming pipe 
simultaneously. The TCP header contains both the sequence number of the outgoing 
data and an acknowledgment of the incoming data.
199
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■ Reliable Data sent on a TCP connection is sequenced and a positive acknowledgment 
is expected from the receiver. If no acknowledgment is received, the segment is retrans-
mitted. At the receiver, duplicate segments are discarded and segments arriving out of 
sequence are placed back in the proper sequence. A TCP checksum is always used to 
verify the bit-level integrity of the TCP segment.

■ Byte stream TCP views the data sent over the incoming and outgoing logical pipes as 
a continuous stream of bytes. The sequence number and acknowledgment number in 
each TCP header are defined along byte boundaries. TCP is not aware of record or mes-
sage boundaries within the byte stream. The Application Layer protocol must provide 
the proper parsing of the incoming byte stream.

■ Sender- and receiver-side flow control To avoid sending too much data at one time and 
congesting the routers of the network, TCP implements sender-side flow control that 
gradually scales the amount of data sent at one time. To avoid having the sender send 
data that the receiver cannot buffer, TCP implements receiver-side flow control that indi-
cates the number of bytes that the receiver can receive. For more information on how 
TCP implements sender- and receiver-side flow control, see Chapter 12, “Transmission 
Control Protocol (TCP) Data Flow.”

■ Segmentation of Application Layer data TCP segments data obtained from the Applica-
tion Layer process so that it will fit within an IP datagram sent on the Network Interface 
Layer link. TCP peers inform each other of the maximum-sized segment that they can 
receive and adjust the maximum size using Path Maximum Transmission Unit (PMTU) 
discovery.

■ One-to-one delivery TCP connections are a logical point-to-point circuit between two 
Application Layer protocols. TCP does not provide a one-to-many delivery service.

TCP is typically used when an Application Layer protocol requires a reliable data transfer service.

More Info All of the RFCs referenced in this chapter can be found in the 
\Standards\Chap10_TCP folder on the companion CD-ROM.

The TCP Segment
A TCP segment, consisting of a TCP header and its optional payload (a segment), is identified 
in the IP header with IP Protocol number 6. The segment can be a maximum size of 65,495 
bytes: 65,535 minus the minimum-size IP header (20 bytes) and the minimum-size TCP 
header (20 bytes). The resulting IP datagram is then encapsulated with the appropriate 
Network Interface Layer header and trailer. Figure 10-1 displays the resulting frame.

In the IP header of TCP segments, the Source Address field indicates the unicast address of 
the host interface that sent the TCP segment. The Destination Address field indicates the uni-
cast address of the destination host (or intermediate router if the packet is source routed).
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Figure 10-1 TCP segment encapsulation showing the IP header and Network Interface Layer 
header and trailer

The TCP Header
The TCP header is of variable length, consisting of the fields shown in Figure 10-2. When TCP 
options are not present, the TCP header is 20 bytes long.

Figure 10-2 The structure of the TCP header

The fields in the TCP header are defined as follows:

■ Source Port A 2-byte field that indicates the source Application Layer protocol sending 
the TCP segment. The combination of the source IP address in the IP header and the 
source port in the TCP header indicates a source socket—a unique, globally significant 
address from which the segment was sent.

■ Destination Port A 2-byte field that indicates the destination Application Layer proto-
col. The combination of the destination IP address in the IP header and the destination 
port in the TCP header indicates a destination socket—a unique, globally significant 
address to which the segment is sent.
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■ Sequence Number A 4-byte field that indicates the outgoing byte-stream-based 
sequence number of the segment’s first byte. The Sequence Number field is always set, 
even when there is no data in the segment. In this case, the Sequence Number field is set 
to the number of the outgoing byte stream’s next byte. When establishing a TCP connec-
tion, TCP segments with a SYN (Synchronization) flag value of 1 set the Sequence Num-
ber field to the Initial Sequence Number (ISN). This indicates that the first byte in the 
outgoing byte stream sent on the connection is ISN + 1.

■ Acknowledgment Number A 4-byte field that indicates the sequence number of the 
next byte in the incoming byte stream that the receiver of the incoming byte stream 
expects to receive. The acknowledgment number provides a positive acknowledgment 
that all bytes in the incoming byte stream up to, but not including, the acknowledgment 
number were received. The acknowledgment number is significant in all TCP segments 
with the ACK (Acknowledgment) flag set.

■ Data Offset A 4-bit field that indicates where the TCP segment data begins. The Data 
Offset field is also the TCP header’s size. Just as in the IP header’s Header Length field, 
the Data Offset field is the number of 32-bit words (4-byte blocks) in the TCP header. 
For the smallest TCP header (no options), the Data Offset field is set to 5 (0x5), indicat-
ing that the segment data begins in the twentieth byte offset starting from the beginning 
of the TCP segment (the offset starts its count at 0). With a Data Offset field set to its 
maximum value of 15 (0xF), the largest TCP header, including TCP options, can be 
60 bytes long.

■ Reserved A 4-bit field that is reserved for future use. The sender sets these bits to 0.

■ Flags An 8-bit field that indicates the eight TCP flags defined in RFCs 793 and 3168. 
The eight TCP flags, known as CWR (Congestion Window Reduced), ECE (Explicit 
Congestion Notification [ECN]-Echo), URG (Urgent), ACK, PSH (Push), RST (Reset), 
SYN, and FIN (Finish), are discussed in greater detail in the “TCP Flags” section of 
this chapter.

■ Window A 2-byte field that indicates the number of bytes that the receiver of the 
incoming byte stream allows the other TCP peer to send. By advertising the window size 
with each segment, a TCP receiver is telling the sender how much data can be sent and 
successfully received and stored. The sender should not be sending more data than the 
receiver can receive. If the receiver cannot receive any more data, it advertises a window 
size of 0 bytes. With a window size of 0, the sender cannot send any more data until the 
window size is a nonzero value. The advertisement of the window size is an implemen-
tation of receiver-side flow control. The use of this field is extended to larger window 
sizes with the TCP Window Scale option, discussed in the “TCP Options” section of 
this chapter.

■ Checksum A 2-byte field that provides a bit-level integrity check for the TCP segment 
(TCP header and segment). The Checksum field’s value is calculated in the same way as 
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the IP header checksum, over all the 16-bit words in a TCP pseudo header, the TCP 
header, the segment, and, if needed, a padding byte of 0x00. The padding byte is used 
only if the segment length is an odd number of bytes. The value of the Checksum field 
is set to 0 during the checksum calculation. For more information, see “The TCP Pseudo 
Header” section in this chapter.

■ Urgent Pointer A 2-byte field that indicates the location of urgent data in the segment. 
The Urgent Pointer field and urgent data are discussed in the “TCP Urgent Data” section 
of this chapter.

■ Options One or more TCP options can be added to the TCP header but must be done 
in 4-byte increments so that the TCP header size can be indicated with the Data Offset 
field. TCP options are discussed in the “TCP Options” section of this chapter.

An example of a TCP segment is Capture 10-01, a Network Monitor trace that is included in 
the \Captures folder on the companion CD-ROM. The following is frame 1 from Capture 
10-01, as displayed with Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = TCP, Packet ID = 57288, Total IP Length = 1500 

- Tcp: Flags=....A..., SrcPort=FTP data(20), DstPort=1163, Len=1460, Seq=1038577021 -

1038578481, Ack=3930983524, Win=17520 (scale factor not found) 

SrcPort: FTP data(20) 

DstPort: 1163 

SequenceNumber: 1038577021 (0x3DE76D7D) 

AcknowledgementNumber: 3930983524 (0xEA4E0C64) 

- DataOffset: 80 (0x50) 

DataOffset: (0101....) (20 bytes) 

Reserved: (....000.) 

NS: (.......0) Nonce Sum not significant 

- Flags: ....A... 

CWR: (0.......) CWR not significant 

ECE: (.0......) ECN-Echo not significant 

Urgent: (..0.....) Not Urgent Data 

Ack: (...1....) Acknowledgement field significant 

Push: (....0...) No Push Function 

Reset: (.....0..) No Reset 

Syn: (......0.) Not Synchronize sequence numbers 

Fin: (.......0) Not End of data 

Window: 17520 (scale factor not found) 

Checksum: 46217 (0xB489) 

UrgentPointer: 0 (0x0) 

TCPPayload:  

+ Ftp: Data Transfer To Client,DstPort = 1163,size = 1460 bytes

Note Network Monitor 3.1 parses the last bit of the Reserved field of the TCP header as the 
Nonce Sum field, which is defined in RFC 3540. TCP/IP in Windows Server 2008 and Windows 
Vista does not support RFC 3540.
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TCP Ports
A TCP port defines a location for the delivery of TCP connection data. Included in each TCP 
segment is the source port that indicates the Application Layer process from which the seg-
ment was sent, and a destination port that indicates the Application Layer process to which 
the segment was sent. There are port numbers that are assigned by the Internet Assigned 
Numbers Authority (IANA) to specific Application Layer protocols.

Table 10-1 shows assigned TCP port numbers used by components of Windows Server 2008 
and Windows Vista.

See http://www.iana.org/assignments/port-numbers for the most current list of IANA-assigned 
TCP port numbers.

Typically, the server side of an Application Layer protocol listens on the well-known port num-
ber. The client side of an Application Layer protocol uses either the well-known port number 
or, more commonly, a dynamically allocated port number. These dynamically allocated port 
numbers are used for the duration of the process and are known also as ephemeral or short-
lived ports. 

A Windows Sockets application using the GetServByName() function can refer to a TCP port 
number by name. The name is resolved to a TCP port number through the Services file stored 
in the %SystemRoot%\System32\Drivers\Etc folder.

A sending node determines the destination port (using either a specified value or the 
GetServByName() function) and the source port (using either a specified value, or by obtain-
ing a dynamically allocated port through Windows Sockets). The sending node then passes 
the source IP address, destination IP address, source port, destination port, and the data to be 
sent to TCP/IP. The TCP component segments the data as needed. The TCP component 

Table 10-1 Well-Known TCP Port Numbers

Port Number Application Layer Protocol

20 FTP Server (data channel)

21 FTP Server (control channel)

23 Telnet Server

25 Simple Mail Transfer Protocol (SMTP)

69 Trivial File Transfer Protocol (TFTP)

80 Hypertext Transfer Protocol (HTTP; Web server)

139 NetBIOS Session Service

443 HTTP protocol over Transport Layer Security (TLS)

445 Direct-Hosted Server Message Block (SMB) (also known as Microsoft-DS)



Chapter 10: Transmission Control Protocol (TCP) Basics 205
calculates the Checksum field and indicates the TCP segment with the appropriate source IP 
address and destination IP address to the IP component.

When receiving a TCP segment at the destination, IP verifies the IP header. Then, based on the 
value of 6 in the Protocol field, IP passes the TCP segment, the source IP address, and the des-
tination IP address to the TCP component. After verifying the TCP Checksum field, the TCP 
component verifies the destination port. If a process is listening on the port, the TCP segment 
is passed to the application. If no process is listening on the port, TCP sends a TCP Connec-
tion Reset segment to the sender. For more information about the TCP Connection Reset 
segment, see Chapter 11, “Transmission Control Protocol (TCP) Connections.”

Figure 10-3 shows the demultiplexing of received TCP connection data based on the TCP 
destination port.

Figure 10-3 The demultiplexing of a TCP segment to the appropriate Application Layer protocol 
using the IP Protocol field and the TCP Destination Port field

Best Practices TCP ports are separate from UDP ports, even for the same port number. A 
TCP port represents one side of a TCP connection for an Application Layer protocol. A UDP 
port represents a UDP message queue for an Application Layer protocol. The Application Layer 
protocol using the TCP port is not necessarily the same Application Layer protocol using the 
UDP port. For example, the Extended Filename Server (EFS) protocol uses TCP port 520, and 
the Routing Information Protocol (RIP) uses UDP port 520. Clearly these are separate Applica-
tion Layer protocols. Therefore, it is not good practice to refer to a port by just its port number, 
which is ambiguous. Always refer to either a TCP port number or a UDP port number.

TCP Flags
Figure 10-4 shows the eight TCP flags in the TCP header that are defined in RFCs 793 
and 3168.
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Figure 10-4 The eight TCP flags in the TCP header

The TCP flags are defined as follows:

■ CWR (congestion window has been reduced) Indicates that the sending host has 
received a TCP segment with the ECE flag set. The congestion window is an internal 
variable maintained by TCP to manage the size of the send window. For more informa-
tion, see Chapter 12, “Transmission Control Protocol (TCP) Data Flow.”

■ ECE (TCP peer is ECN-capable) Indicates that a TCP peer is ECN-capable during the 
TCP 3-way handshake and to indicate that a TCP segment was received on the connec-
tion with the ECN field in the IP header set to 11. For more information about ECN, see 
Chapter 12.

■ URG (Urgent Pointer field is significant) Indicates that the segment portion of the TCP 
segment contains urgent data and the Urgent Pointer field should be used to determine 
the location of the urgent data in the segment. Urgent data is discussed in more detail in 
the section “TCP Urgent Data,” later in this chapter.

■ ACK (Acknowledgment field is significant) Indicates that the Acknowledgment field 
contains the next byte expected on the connection. The ACK flag is always set, except 
for the first segment of a TCP connection establishment.

■ PSH (the Push function) Indicates that the contents of the TCP receive buffer should be 
passed to the Application Layer protocol. The data in the receive buffer must consist of 
a contiguous block of data from the left edge of the buffer. In other words, there cannot 
be any missing segments of the byte stream up to the segment containing the PSH flag; 
the data cannot be passed to the Application Layer protocol until missing segments 
arrive. Normally, the TCP receive buffer is flushed (the contents are passed to the Appli-
cation Layer protocol) when the receive buffer fills with contiguous data or during nor-
mal TCP connection maintenance processes. The PSH flag overrides this default 
behavior and immediately flushes the TCP receive buffer. The PSH flag is used also for 
interactive Application Layer protocols such as Telnet, in which each keystroke in the 
virtual terminal session is sent with the PSH flag set. Another example is the setting of 
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the PSH flag on the last segment of a file transferred with FTP. Data sent with the PSH 
flag does not have to be immediately acknowledged.

■ RST (Reset the connection) Indicates that the connection is being aborted. For active 
connections, a node sends a TCP segment with the RST flag in response to a TCP seg-
ment received on the connection that is incorrect, causing the connection to fail. The 
sending of an RST segment for an active connection forcibly terminates the connection, 
causing data stored in send and receive buffers or in transit to be lost. For TCP connec-
tions being established, a node sends an RST segment in response to a connection 
establishment request to deny the connection attempt.

■ SYN (Synchronize sequence number) Indicates that the segment contains an ISN. Dur-
ing the TCP connection establishment process, TCP sends a TCP segment with the SYN 
flag set. Each TCP peer acknowledges the receipt of the SYN flag by treating the SYN flag 
as if it were a single byte of data. The Acknowledgment Number field for the acknowl-
edgment of the SYN segment is set to ISN + 1.

■ FIN (Finish sending data) Indicates that the TCP segment sender is finished sending 
data on the connection. When a TCP connection is gracefully terminated, each TCP peer 
sends a TCP segment with the FIN flag set. A TCP peer does not send a TCP segment 
with the FIN flag set until all outstanding data to the other TCP peer has been sent and 
acknowledged. Each peer acknowledges receipt of the FIN flag by treating it as if it were 
a single byte of data. When both TCP peers have sent segments with the FIN flag set and 
received acknowledgment of their receipt, the TCP connection is terminated.

The TCP Pseudo Header
The TCP pseudo header is used to associate the TCP segment with the IP header. The TCP 
pseudo header is added to the beginning of the TCP segment only during the checksum cal-
culation and is not sent as part of the TCP segment. The use of the TCP pseudo header assures 
the receiver that a routing or fragmentation process did not improperly modify key fields in 
the IP header.

Figure 10-5 illustrates the TCP pseudo header.

Figure 10-5 The structure of the TCP pseudo header
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The TCP pseudo header consists of the Source IP Address field, the Destination IP Address 
field, an Unused field set to 0x00, the Protocol field for TCP (set to 6), and the length of the 
TCP segment. When sending a TCP segment, TCP knows all of these values. When receiving 
a TCP segment, IP indicates all of these values to TCP. 

TCP calculates the TCP checksum over the combination of the TCP pseudo header, the TCP 
segment, and, if needed, a 0x00 padding byte. The checksum calculation relies on summing 
16-bit words. Therefore, the quantity over which the checksum is calculated must be an even 
number of bytes. The padding byte is used only if the segment length is an odd number of 
bytes. The padding byte is not included in the IP length and is not sent as part of the TCP seg-
ment. Figure 10-6 shows the resulting quantity for the calculation of the TCP Checksum field.

Figure 10-6 The resulting quantity used for the TCP checksum calculation

Note Unlike the IP security (IPsec) Authentication header, the TCP pseudo header and 
Checksum field are not providing data authentication or data integrity for the fields in the IP 
header and the TCP segment. IP header and TCP port number fields can be modified as long 
as the TCP checksum is updated. This is how a Network Address Translator (NAT) works. A NAT 
is a router that translates public and private addresses during the forwarding process. For 
example, when translating a source IP address from a private address to a public address, the 
NAT also recalculates the TCP Checksum field.

TCP Urgent Data
Normal data sent on a TCP connection is data corresponding to the incoming and outgoing 
byte stream data. In some data-transfer situations, there must be a method of sending control 
data to interrupt a process or inform the Application Layer protocol of asynchronous events. 
This control data is known as out of band data—data that is not part of the TCP byte stream but 
is needed to control the data flow. Out of band data for TCP connections can be implemented 
in the following ways:

■ Use a separate TCP connection for the out of band data. The separate TCP connection 
sends control commands and status information without being combined on the data 
stream of the data connection. This is the method used by FTP. FTP uses a TCP connec-
tion on port 21 for control commands such as logins, gets (downloading files to the FTP 
client), and puts (uploading files to the FTP server), and a separate TCP connection on 
port 20 for the sending or receiving of file data.
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0 to 65,495 bytes

Segment

12 bytes

TCP 
pseudo header

TCP 
header

Padding
(1 byte)



Chapter 10: Transmission Control Protocol (TCP) Basics 209
■ Use TCP urgent data. TCP urgent data is sent on the same TCP connection as the data. 
TCP urgent data is indicated by setting the URG flag, and the urgent data is distin-
guished from the nonurgent data using the Urgent Pointer field. Urgent data within the 
TCP segment must be processed before the nonurgent data. Urgent data is used by the 
Telnet protocol to send control commands, even though the advertised receive window 
of the Telnet server is 0.

The interpretation of the Urgent Pointer value depends on the TCP implementation’s adher-
ence to either RFC 793, the original TCP RFC, or RFC 1122, which defines requirements for 
Internet hosts. The difference between the two interpretations is the following:

■ RFC 793 defines the value of the Urgent Pointer field as the positive offset from the 
beginning of the TCP segment to the first byte of nonurgent data.

■ RFC 1122 defines the value of the Urgent Pointer field as the positive offset from the 
beginning of the TCP segment to the last byte of urgent data.

These two definitions of the Urgent Pointer field differ by one byte. Both hosts on a TCP con-
nection must use the same interpretation, otherwise data corruption could occur. There is no 
interoperability of these two interpretations, nor is there a mechanism to negotiate the inter-
pretation during the TCP connection establishment process.

The definition of the Urgent Pointer field in RFC 793 was made in error (the correct interpre-
tation is actually given later in the RFC during the discussion of event processing in Section 
3.9). The correct use of the Urgent Pointer field is the RFC 1122 version, but numerous imple-
mentations of TCP use the RFC 793 definition.

Figure 10-7 shows the placement of urgent data within the TCP segment and the RFC 793 and 
RFC 1122 interpretation of the Urgent Pointer field.

Figure 10-7 The location of TCP urgent data within a TCP segment

To configure the interpretation of the TCP Urgent Pointer field for TCP in Windows Server 
2008 and Windows Vista, use the following registry value:

TcpUseRFC1122UrgentPointer
Key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 

Value type: REG_DWORD 

. .  . . . . TCP header

Non-urgent data

RFC 793
Urgent Pointer = n

RFC 1122
Urgent Pointer = n - 1

Urgent data
(n bytes)
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Valid range: 0-1 

Default: 0 

Present by default: No

Set this registry value to 1 to use the RFC 1122 interpretation of the Urgent Pointer field or to 
0 to use the RFC 793 interpretation (the default).

TCP Options
Just like options in the IP header extend IP functionality, TCP options extend TCP functional-
ity. There are a variety of defined TCP options that are used for negotiating maximum segment 
sizes, window scaling factors, performing selective acknowledgments, recording timestamps, 
and providing padding for 4-byte boundaries. A node is not required to support all TCP 
options; however, the support for processing TCP options is required. The presence of TCP 
options is indicated by a Data Offset field with a value greater than 5 (0x5) (the TCP header 
is longer than 20 bytes). 

A TCP option is either a single byte or multiple bytes. For multiple-byte options, the TCP 
option is in type-length-value format, where the length is the length in bytes of the entire 
option. Figure 10-8 shows the structure of multiple-byte TCP options. A TCP option type is 
known as an option kind.

Figure 10-8 The structure of multiple-byte TCP options

End Of Option List and No Operation

To implement 4-byte boundary support for TCP options, RFC 793 defines the following 
single-byte TCP options:

■ The End Of Option List  The option kind set to 0 (0x00), which indicates that no other 
options follow. The End Of Option List option is not used to delimit TCP options. If the 
set of TCP options falls along a 4-byte boundary, this option is not needed.

■ The No Operation The option kind set to 1 (0x01), which is used between TCP options 
for 4-byte alignment. The No Operation option is not required, so TCP implementations 
must be able to correctly interpret TCP options that are not on 4-byte boundaries.

Maximum Segment Size Option

The TCP maximum segment size (MSS) is the largest segment that can be sent on the connec-
tion. To obtain the MSS value, take the IP Maximum Transmission Unit (MTU) and subtract 

. . .
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the IP header size and the TCP header size. Figure 10-9 shows the relationship between the IP 
MTU and the TCP MSS. For a typical IP header (without options) and a typical TCP header 
(without options), the MSS is 40 bytes less than the IP MTU.

Figure 10-9 The TCP MSS defined in terms of the IP MTU and the TCP and IP header sizes

A TCP peer uses the TCP MSS option to indicate the MSS that it can receive. The TCP MSS 
option is included only in TCP segments with the SYN flag set during the TCP connection 
establishment process. Figure 10-10 shows the TCP MSS option structure.

Figure 10-10 The structure of the TCP MSS option

The fields in the TCP MSS option are defined as follows:

■ Option Kind Set to 2 (0x02) to indicate the MSS option kind.

■ Option Length Set to 4 (0x04) to indicate that the size of the entire MSS option is 
4 bytes.

■ Maximum Segment Size Two bytes that indicate the MSS of received segments. For IP 
datagrams sent on an Ethernet network segment using Ethernet II encapsulation, the MSS 
is 1460 (an IP MTU of 1500 minus 40 bytes for minimum-sized IP and TCP headers).

An example of the TCP MSS option is Capture 10-02, a Network Monitor trace that is included 
in the \Captures folder on the companion CD-ROM. The following is the TCP SYN segment 
from Capture 10-02 (frame 1), as displayed with Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = TCP, Packet ID = 10474, Total IP Length = 48 

- Tcp: Flags=.S......, SrcPort=1162, DstPort=FTP control(21), Len=0, Seq=3928116524, Ack=0, 

Win=16384 (scale factor not found) 

SrcPort: 1162 

DstPort: FTP control(21) 

SequenceNumber: 3928116524 (0xEA224D2C) 

AcknowledgementNumber: 0 (0x0) 

- DataOffset: 112 (0x70) 

DataOffset: (0111....) (28 bytes) 

Reserved: (....000.) 

TCP MSS

Segment

IP MTU

TCPIP

= 2 

= 4 

Option Kind

Option Length
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NS: (.......0) Nonce Sum not significant 

- Flags: .S...... 

CWR: (0.......) CWR not significant 

ECE: (.0......) ECN-Echo not significant 

Urgent: (..0.....) Not Urgent Data 

Ack: (...0....) Acknowledgement field not significant 

Push: (....0...) No Push Function 

Reset: (.....0..) No Reset 

Syn: (......1.) Synchronize sequence numbers 

Fin: (.......0) Not End of data 

Window: 16384 (scale factor not found) 

Checksum: 34126 (0x854E) 

UrgentPointer: 0 (0x0) 

- TCPOptions:  

- MaxSegmentSize:  

type: Maximum Segment Size. 2(0x2) 

OptionLength: 4 (0x4) 

MaxSegmentSize: 1460 (0x5B4) 

+ NoOption:  

+ NoOption:  

+ SACKPermitted:

When two TCP peers exchange their MSS during the connection establishment process, both 
peers adjust their initial MSS to the minimum value reported by both. For example, when an 
Ethernet node sends an MSS of 1460 and an 802.11 wireless node sends an MSS of 2272 (the 
802.11 IP MTU of 2312, minus 40 bytes), both nodes agree to send maximum-sized TCP seg-
ments of 1460 bytes. The initial MSS is adjusted on an ongoing basis through PMTU discov-
ery. For example, two 802.11 wireless nodes on two separate network segments—connected 
by routers over Ethernet network segments—exchange a TCP MSS of 2272. However, the wire-
less nodes begin sending 2272-byte TCP segments, and PMTU discovery messages adjust the 
MSS for the connection to 1460. For more information about PMTU, see Chapter 6, “Internet 
Control Message Protocol (ICMP).”

The TCP MSS option does not prevent problems that could occur between two hosts on the 
same network segment (subnet) that are separated by a Network Interface Layer technology 
with a lower IP MTU size. For example, Host A and Host B in Figure 10-11 are 802.11 wireless 
nodes connected to separate wireless access points (APs) that are connected by an Ethernet 
backbone.

Both wireless APs and their connected wireless clients and the Ethernet backbone are on the 
same network segment as the router. Therefore, when Hosts A and B exchange their MSSs, 
both agree to send maximum-sized TCP segments with a size of 2272 bytes. However, when 
they begin to send bulk data with maximum-sized segments, the wireless APs, acting as Layer 
2 translating bridges, have no facilities for translating 2272-byte 802.11 payloads to 1500-byte 
Ethernet payloads. Therefore, the wireless APs silently discard the maximum-sized TCP seg-
ments. The wireless AP is not an IP router and does not send PMTU discovery messages to the 
TCP peers to lower their MSS. Maximum-sized TCP segments cannot be sent between the two 
TCP peers.



Chapter 10: Transmission Control Protocol (TCP) Basics 213
Figure 10-11 Hosts connected to two wireless APs that are connected by an Ethernet backbone

If Host A were an FTP server and Host B were an FTP client, the user at Host B would be able 
to connect and log in to the FTP server. However, when the user issued a get or put instruction 
to send a file, TCP segments at the maximum size would be dropped by the wireless APs.

The only solution to this problem is to adjust the IP MTU on the wireless nodes to the lowest 
value supported by all the Network Interface Layer technologies on the network segment. For 
example, you could use the netsh interface ipv4 set interface mtu command or the MTU 
registry value described in Chapter 5, “Internet Protocol (IP),” to lower the IP MTU of the two 
wireless adapters to 1500.

TCP Window Scale Option

The TCP window size defined in RFC 793 is a 16-bit field for a maximum receive window size 
of 65,535 bytes. This means that a sender can have only 65,535 bytes of data in transit before 
having to wait for an acknowledgment. This is not an issue on typical local area network 
(LAN) and wide area network (WAN) links, but it is possible on newer LAN and WAN tech-
nologies operating at gigabit-per-second speeds with a sizable transit delay to have more than 
65,535 bytes in transit. If TCP cannot fill the logical pipe between the sender and receiver and 
keep it filled, it is operating at lower efficiency.

The TCP Window Scale option described in RFC 1323 allows the receiver to advertise a larger 
window size than 65,535 bytes. The Window Scale option includes a window scaling factor 
that, when exponentially combined with the 16-bit window size in the TCP header, increases 
the receive window size to a maximum of 1,073,741,824 bytes, or 1 gigabyte (GB). The Win-
dow Size option is sent only in a SYN segment during the connection establishment process. 
TCP peers can indicate different window scaling factors used for their receive window sizes. 
The receiver of the TCP connection establishment request (the SYN segment) cannot send a 
Window Scale option unless the initial SYN segment contains it.

Figure 10-12 illustrates the TCP Window Scale option structure.
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Figure 10-12 The structure of the TCP Window Scale option

The fields in the TCP Window Scale option are defined as follows:

■ Option Kind Set to 3 (0x03) to indicate the Window Scale option kind.

■ Option Length Set to 3 (0x03) to indicate that the size of the entire TCP option is 
3 bytes.

■ Shift Count One byte that indicates the scaling factor as the exponent of 2. For exam-
ple, for a Shift Count of 5, the scaling factor is 25, or 32. The exponent is used rather 
than a whole number so that implementations can take advantage of binary shift pro-
gramming techniques to quickly calculate the actual window size. For example, for a 
Shift Count of 5, the actual window size is the binary value of the Window field with five 
zeros added (the Window field is left-shifted by 5). The maximum value of the Shift 
Count is 14 for a window scaling factor of 214, or 16,384. Combined with the original 
window size of 216, the maximum window size is 216×214 = 230, or 1,073,741,824 bytes.

An example of a TCP Window Scale option is Capture 10-03, a Network Monitor trace that is 
included in the \Captures folder on the companion CD-ROM. The following is the TCP SYN 
segment from Capture 10-03 (frame 1), as displayed with Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = TCP, Packet ID = 594, Total IP Length = 52 

- Tcp: Flags=.S......, SrcPort=49786, DstPort=NETBIOS Session Service(139), Len=0, 

Seq=2626199192, Ack=0, Win=8192 (scale factor not found) 

SrcPort: 49786 

DstPort: NETBIOS Session Service(139) 

SequenceNumber: 2626199192 (0x9C889E98) 

AcknowledgementNumber: 0 (0x0) 

+ DataOffset: 128 (0x80) 

+ Flags: .S...... 

Window: 8192 (scale factor not found) 

Checksum: 15591 (0x3CE7) 

UrgentPointer: 0 (0x0) 

- TCPOptions:  

+ MaxSegmentSize:  

+ NoOption:  

- WindowsScaleFactor:  

type: Window scale factor. 3(0x3) 

Length: 3 (0x3) 

ShiftCount: 8 (0x8) 

+ NoOption:  

+ NoOption:  

+ SACKPermitted:

= 3 

= 3 

Option Kind

Option Length

Shift Count
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Notice the use of the TCP No Operation option (NoOption) preceding the Window Scale 
option to align the Window Scale option on a 4-byte boundary.

When the Window Scale option is used, the window size advertised in each TCP segment for 
the connection is scaled by the factor indicated in the peer’s SYN segment. Therefore, the TCP 
header’s Window field is no longer a byte counter of the amount of space left in the receive 
buffer. Rather, the Window field is a block counter in which the block size in bytes is the scaling 
factor. For example, for a TCP peer using a Shift Count of 3, the Window field in outgoing TCP 
segments is actually indicating the number of 8-byte blocks remaining in the receive buffer.

By default, TCP for Windows Server 2008 and Windows Vista always uses window scaling 
with a scaling factor of 8, for a 16-megabyte (MB) receive window. To disable window scaling, 
use the netsh interface tcp set global autotuninglevel=disabled command. When win-
dow scaling is disabled, TCP uses a window size based on the link speed of the sending inter-
face. For more information about how TCP for Windows Server 2008 and Windows Vista uses 
the receive window to maximize incoming data, see Chapter 12, “Transmission Control 
Protocol (TCP) Data Flow.” 

Note When tracing TCP connection data, make sure that you also look at the connection 
establishment process to determine whether window scaling is being used. Otherwise, you 
might misinterpret the Window field value during the connection.

Selective Acknowledgment Option

The acknowledgment scheme for TCP was originally designed as a positive cumulative 
acknowledgment scheme in which the receiver sends a segment with the ACK flag set and 
the Acknowledgment field set to the next byte the receiver expects to receive. This use of the 
Acknowledgment field provides an acknowledgment of all bytes up to, but not including, the 
sequence number in the Acknowledgment field. This scheme provides reliable byte-stream data 
transfer, but can result in lower TCP throughput in environments with high packet losses.

If a segment at the beginning of the current send window is not received and all other seg-
ments are, the data received cannot be acknowledged until the missing segment arrives. The 
sender begins to retransmit the segments of the current send window until the acknowledg-
ment for all the segments received has arrived. The sender needlessly retransmits some 
segments, consequently wasting network bandwidth. This problem is exacerbated in environ-
ments such as satellite links, with high bandwidth and high delay, when TCP has a large win-
dow size. The more segments in the send window, the more segments can be retransmitted 
unnecessarily when segments are lost.

RFC 2018 describes a method of selective acknowledgment using TCP options that selectively 
acknowledges the noncontiguous data blocks that have been received. A sender that receives 
a selective acknowledgment can retransmit just the missing blocks, preventing the sender 
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from waiting for the retransmission time-out for the unacknowledged segments and retrans-
mitting segments that have successfully arrived.

The selective acknowledgment scheme defines the following two different TCP options:

■ The Selective Acknowledgment (SACK)-Permitted option to negotiate the use of selec-
tive acknowledgments during the connection establishment process

■ The SACK option to indicate the noncontiguous data blocks that have been received

The SACK-Permitted Option

The SACK-Permitted option is sent in segments with the SYN flag set and indicates that the 
TCP peer can receive and interpret the TCP SACK option when data is flowing on the connec-
tion. The SACK-Permitted option is 2 bytes consisting of an Option Kind set to 4 (0x04) and 
an Option Length set to 2 (0x02), as shown in Figure 10-13.

Figure 10-13 The structure of the TCP SACK-Permitted option

An example of a TCP SACK-Permitted option is Capture 10-04, a Network Monitor trace that 
is included in the \Captures folder on the companion CD-ROM. The following is the TCP SYN 
segment from Capture 10-04 (frame 1), as displayed with Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = TCP, Packet ID = 10474, Total IP Length = 48 

- Tcp: Flags=.S......, SrcPort=1162, DstPort=FTP control(21), Len=0, Seq=3928116524, Ack=0, 

Win=16384 (scale factor not found) 

SrcPort: 1162 

DstPort: FTP control(21) 

SequenceNumber: 3928116524 (0xEA224D2C) 

AcknowledgementNumber: 0 (0x0) 

+ DataOffset: 112 (0x70) 

+ Flags: .S...... 

Window: 16384 (scale factor not found) 

Checksum: 34126 (0x854E) 

UrgentPointer: 0 (0x0) 

- TCPOptions:  

+ MaxSegmentSize:  

+ NoOption:  

+ NoOption:  

- SACKPermitted:  

type: SACK permitted. 4(0x4) 

OptionLength: 2 (0x2)

Notice the use of the two TCP No Operation option (NoOption) fields preceding the SACK-
Permitted option to align the SACK-Permitted option on a 4-byte boundary.
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The SACK Option

The SACK option is sent as needed in segments of the open connection with the ACK flag set. 
As Figure 10-14 shows, the SACK option is a variable-size option, depending on how many 
contiguous blocks are being acknowledged.

Figure 10-14 The structure of the TCP SACK option

The fields in the TCP SACK option are defined as follows:

■ Option Kind Set to 5 (0x05) to indicate the SACK option kind.

■ Option Length Set to 10 (a single noncontiguous block), 18 (two noncontiguous 
blocks), 26 (three noncontiguous blocks), or 34 (four noncontiguous blocks) bytes to 
indicate the size of the entire TCP option.

■ Left Edge of nth Block A 4-byte field that indicates the sequence number of this block’s 
first byte.

■ Right Edge of nth Block A 4-byte field that indicates the next sequence number 
expected to be received immediately following this block.

An example of a TCP SACK option is Capture 10-05, a Network Monitor trace that is included 
in the \Captures folder on the companion CD-ROM. The following is the TCP segment from 
Capture 10-05 (frame 1), as displayed with Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = TCP, Packet ID = 64013, Total IP Length = 64 

- Tcp: Flags=....A..., SrcPort=1242, DstPort=NETBIOS Session Service(139), Len=0, 

Seq=925293, Ack=55053434, Win=32767 (scale factor not found) 

SrcPort: 1242 

DstPort: NETBIOS Session Service(139) 

SequenceNumber: 925293 (0xE1E6D) 

AcknowledgementNumber: 55053434 (0x3480C7A) 

+ DataOffset: 176 (0xB0) 

+ Flags: ....A... 

Window: 32767 (scale factor not found) 

Checksum: 17262 (0x436E) 

UrgentPointer: 0 (0x0) 

- TCPOptions:  

+ NoOption:  

=5Option Kind

Option Length

Left Edge of 1st Block

Right Edge of 1st Block
 . . .

Left Edge of nth Block

Right Edge of nth Block
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+ NoOption:  

+ TimeStamp:  

+ NoOption:  

+ NoOption:  

- SACK:  

type: SACK. 5(0x5) 

Length: 10 (0xA) 

- Blocks:  

LeftEdge: 55054882 (0x3481222) 

RightEdge: 55059226 (0x348231A)

In the trace, the sender of this segment is acknowledging the receipt of all contiguous bytes in 
the byte stream up to, but not including, byte 55053434, and the receipt of the block of con-
tiguous data from bytes 55054882 through 55059225. There is a missing segment consisting 
of the bytes 55053434 through 55054881. Notice the use of the Nop options (NoOption) to 
align the SACK option on a 4-byte boundary.

TCP in Windows Server 2008 and Windows Vista always uses selective acknowledgments 
and the SACK options.

For more information on the use of selective acknowledgments to retransmit data, see 
Chapter 13, “Transmission Control Protocol (TCP) Retransmission and Time-Out.”

Note TCP in Windows Server 2008 and Windows Vista no longer supports the SackOpts 
registry value.

TCP Timestamps Option

To set the retransmission time-out (RTO) on TCP segments sent, TCP monitors the round-trip 
time (RTT) on an ongoing basis. Normally, TCP calculates the RTT of a TCP segment and its 
acknowledgment once for every full send window of data. Although this works well in many 
environments, for high-bandwidth and high-delay environments such as satellite links with 
large window sizes, the sampling rate of one segment for each window size cannot monitor 
the RTT to determine the current RTO and prevent unnecessary retransmissions.

To calculate the RTT on any TCP segment, the segment is sent with the TCP Timestamps 
option described in RFC 1323. This option places a timestamp value based on a local clock on 
an outgoing TCP segment. The acknowledgment for the data in the TCP segment echoes back 
the timestamp, and the RTT can be calculated from the segment’s echoed timestamp and the 
time (relative to the local clock) that the segment’s acknowledgment arrived.

Including the Timestamps option in the SYN segment during the connection establishment 
process indicates its use for the connection. Both sides of the TCP connection can selectively 
use timestamps. Once indicated during connection establishment, the timestamp can be 
included in TCP segments at the discretion of the sending TCP peer.
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Figure 10-15 shows the TCP Timestamps option structure.

Figure 10-15 The structure of the TCP Timestamps option

The fields in the TCP Timestamps option are defined as follows:

■ Option Kind Set to 8 (0x08) to indicate the Timestamps option kind.

■ Option Length Set to 10 (0x0A) to indicate that the size of the entire TCP option is 
10 bytes.

■ TS Value A 4-byte field that indicates the timestamp value of this TCP segment. The TS 
Value is calculated from an internal clock that is based on real time. The TS Value 
increases over time and wraps around when needed.

■ TS Echo Reply A 4-byte field set on a TCP segment that acknowledges data received 
(with the ACK flag set) that is set to the same value as the TS Value for the received seg-
ment being acknowledged. In other words, the TS Echo Reply is an echo of the TS Value 
of the acknowledged segment.

Figure 10-16 illustrates an example of the values of the TS Value and TS Echo Reply for an 
exchange of data between two hosts.

Figure 10-16 An example of the use of the TCP Timestamps option.

Host A’s internal clock starts its TS Value at 100. Host B’s internal clock starts its TS Value at 
9000. Segments 1 through 4 are for two data blocks sent by Host A. Segments 5 and 6 are for 
a data block sent by Host B. Notice how the TS Echo Reply value for the acknowledgments is 
set to the TS Value of the segments they are acknowledging. To prevent gaps in the sending of 
data from increasing the RTT, the TS Echo Reply is used for RTT measurement only if the seg-
ment is an acknowledgment of new data sent.
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An example of the use of the TCP Timestamps option is Capture 10-06, a Network Monitor 
trace that is included in the \Captures folder on the companion CD-ROM. The following is 
frame 1 containing the TCP Timestamps option and frame 2 containing the corresponding 
acknowledgment, as displayed with Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = TCP, Packet ID = 6677, Total IP Length = 1500 

- Tcp: Flags=....A..., SrcPort=NETBIOS Session Service(139), DstPort=1242, Len=1448, 

Seq=55050538 - 55051986, Ack=925293, Win=16564 (scale factor not found) 

SrcPort: NETBIOS Session Service(139) 

DstPort: 1242 

SequenceNumber: 55050538 (0x348012A) 

AcknowledgementNumber: 925293 (0xE1E6D) 

+ DataOffset: 128 (0x80) 

+ Flags: ....A... 

Window: 16564 (scale factor not found) 

Checksum: 48513 (0xBD81) 

UrgentPointer: 0 (0x0) 

- TCPOptions:  

+ NoOption:  

+ NoOption:  

- TimeStamp:  

type: Timestamp. 8(0x8) 

Length: 10 (0xA) 

TimestampValue: 4677 (0x1245) 

TimestampEchoReply: 7114 (0x1BCA) 

TCPPayload:  

+ Nbtss: NbtSS Continue payload, Length = 1448 

______________________________________________________________________________ 

 

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = TCP, Packet ID = 62989, Total IP Length = 52 

- Tcp: Flags=....A..., SrcPort=1242, DstPort=NETBIOS Session Service(139), Len=0, 

Seq=925293, Ack=55051986, Win=32722 (scale factor not found) 

SrcPort: 1242 

DstPort: NETBIOS Session Service(139) 

SequenceNumber: 925293 (0xE1E6D) 

AcknowledgementNumber: 55051986 (0x34806D2) 

+ DataOffset: 128 (0x80) 

+ Flags: ....A... 

Window: 32722 (scale factor not found) 

Checksum: 47929 (0xBB39) 

UrgentPointer: 0 (0x0) 

- TCPOptions:  

+ NoOption:  

+ NoOption:  

- TimeStamp:  

type: Timestamp. 8(0x8) 

Length: 10 (0xA) 

TimestampValue: 7126 (0x1BD6) 

TimestampEchoReply: 4677 (0x1245)
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Notice that in the second frame the TS Echo Reply field (TimestampEchoReply) is set to 4677, 
echoing the TS Value field (TimestampValue) of the first frame.

In Windows Server 2008 and Windows Vista, the use of TCP timestamps can be controlled 
by the netsh interface tcp set global timestamps=disabled|enabled|default command. 
By default, TCP timestamps are disabled.

You can also use the following registry value:

Tcp1323Opts
Key:HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 

Value type: REG_DWORD 

Valid range: 0 or 2 

Default value: 0 

Present by default: No

Set this value to 0 to disable timestamps. Set this value to 2 to enable timestamps. The default 
behavior of TCP is to not use timestamps. For more information on RTT, RTO, and retransmis-
sion behavior, see Chapter 13, “Transmission Control Protocol (TCP) Retransmission and 
Time-Out.”

Summary
TCP provides connection-oriented and reliable data transfer for applications that require end-
to-end guaranteed delivery service. Application Layer protocols use TCP for one-to-one traffic. 
The TCP header provides sequencing, acknowledgment, a checksum, and the identification of 
source and destination port numbers to multiplex TCP segment data to the proper Applica-
tion Layer protocol. TCP options are used to indicate maximum segment sizes and window 
scaling, indicate and provide selective acknowledgments, and provide timestamps for better 
RTT determination.
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TCP is a connection-based protocol. Before data can flow on a TCP connection, the connec-
tion must be formally established through a handshake process. To gracefully stop the flow of 
data on a TCP connection and release the resources of the connection, it must be terminated 
through a similar handshake process. This chapter describes the details of TCP connection 
establishment and termination and the states of a TCP connection.

The TCP Connection
A TCP connection is a bidirectional, full-duplex logical circuit between two processes (Appli-
cation Layer protocols) in an IP internetwork. The TCP connection’s endpoints are identified 
by an [IP address, TCP port] pair. The connection is uniquely identified by both endpoints: [IP 
address 1, TCP port 1, IP address 2, TCP port 2]. TCP uses those four numbers to demultiplex 
the data portion of the TCP segment to the proper Application Layer process.

A TCP connection can be visualized as a bidirectional data pipe containing two logical pipes 
between the two TCP peers, as Figure 11-1 illustrates. One logical pipe is used for outbound 
data and the other logical pipe is used for inbound data (relative to the TCP peer). The out-
bound data pipe for one TCP peer is the inbound data pipe for the other TCP peer.
223
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Figure 11-1 A TCP connection showing both inbound and outbound logical pipes

TCP connections are:

■ Established through a handshake process in which both TCP peers agree to create a 
TCP connection.

■ Optionally maintained through a periodic keepalive process that ensures that both TCP 
peers are active on the connection.

■ Terminated through a handshake process in which both TCP peers agree to close the 
TCP connection.

TCP connections can also be reset by either TCP peer.

TCP Connection Establishment
To create a TCP connection over which full-duplex data can begin to flow, each TCP peer must 
obtain the following information from the other TCP peer:

■ The starting sequence number for data sent on the inbound pipe

■ The maximum amount of data that can be sent on the outbound pipe before waiting for 
an acknowledgment (the receive window size of the other TCP peer)

■ The maximum segment size (MSS) that can be received

■ The TCP options that are supported

This information is learned through an exchange of three TCP segments called the TCP con-
nection establishment process, or the TCP three-way handshake.

To create a TCP connection, a listening TCP peer must allow a TCP connection, and an initiat-
ing TCP peer must initiate a TCP connection. The listening TCP peer issues a passive OPEN 
function call to permit incoming connection requests on a specific port number. This function 
call does not create any TCP traffic. The initiating TCP peer issues an active OPEN function 
call, which creates and sends the first segment of the TCP three-way handshake.

Figure 11-2 displays the TCP connection establishment process, showing the three TCP seg-
ments that are exchanged and the information in the TCP header that is vital to the connec-
tion establishment. Prior to segment 1, TCP Peer 2 issued a passive OPEN to receive TCP 
connection requests. TCP Peer 1 issues an active OPEN and creates segment 1. Segments 2 
and 3 complete the connection establishment process. The vertical arrows show the passage 
of time during the connection establishment process.
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Figure 11-2 The TCP connection establishment process, showing the exchange of three TCP segments

Segment 1: The Synchronize (SYN) Segment

TCP Peer 1 sends the first TCP segment, known as the SYN segment, to TCP Peer 2. The SYN 
segment establishes TCP connection parameters, such as the Initial Sequence Number (ISN) 
that TCP Peer 1 uses. The SYN segment as sent by a computer running Windows Server 2008 
or Windows Vista contains the following fields in the TCP header:

■ Destination Port Set to the TCP port number of the passive OPEN on TCP Peer 2. For 
typical TCP connections, the destination port in the SYN segment is a well-known TCP 
port in the range of 1 to 1023.

■ Source Port Set to the local TCP port number of the active OPEN on TCP Peer 1. For 
typical TCP connections, the source port is a dynamically allocated port.

■ Sequence Number Set to the ISN for data to be sent by TCP Peer 1 for the outbound 
data pipe (ISN1 in Figure 11-2). A TCP peer running Windows Server 2008 or Windows 
Vista chooses the ISN based on a startup-derived, 2048-bit random key and an RC4-
based random number to reduce the predictability of the next TCP connection’s ISN.

■ Acknowledgment Number Set to 0. Because the Acknowledgment (ACK) flag is not set, 
the Acknowledgment Number field is not significant. Only after a TCP peer learns the 
sequence number for inbound data on the connection can the ACK flag be set and the 
Acknowledgment Number field set to the appropriate value.

■ SYN Flag Indicates that the segment contains the ISN for data sent by TCP Peer 1.
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■ Window Set to an application-specified value or an operating system default value, 
indicating an initial value for the maximum amount of data that TCP Peer 1 can receive.

■ MSS in the MSS TCP Option Set to the maximum-sized TCP segment that TCP Peer 1 
can receive.

■ Window scaling factor in the TCP Window Scale TCP Option Included to indicate that 
TCP Peer 1’s advertised window size has a specified scaling factor.

■ Selective Acknowledgment (SACK)-Permitted TCP Option Included to indicate that TCP 
Peer 1 can receive and interpret the SACK option included in TCP segments that TCP 
Peer 2 sends.

The following Network Monitor 3.1 trace (Frame 1 of Capture 11-01, included in the 
\Captures folder on the companion CD-ROM) shows a SYN segment for a Hypertext Transfer 
Protocol (HTTP) session:

  Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = TCP, Packet ID = 5779, Total IP Length = 52 

- Tcp: Flags=.S......, SrcPort=49160, DstPort=HTTP(80), Len=0, Seq=1173532065, Ack=0, Win=8192 

(scale factor not found) 

    SrcPort: 49160 

    DstPort: HTTP(80) 

    SequenceNumber: 1173532065 (0x45F2ADA1) 

    AcknowledgementNumber: 0 (0x0) 

  + DataOffset: 128 (0x80) 

  - Flags: .S...... 

     CWR:    (0.......) CWR not significant 

     ECE:    (.0......) ECN-Echo not significant 

     Urgent: (..0.....) Not Urgent Data 

     Ack:    (...0....) Acknowledgement field not significant 

     Push:   (....0...) No Push Function 

     Reset:  (.....0..) No Reset 

     Syn:    (......1.) Synchronize sequence numbers 

     Fin:    (.......0) Not End of data 

    Window: 8192 (scale factor not found) 

    Checksum: 34599 (0x8727) 

    UrgentPointer: 0 (0x0) 

- TCPOptions:  

   - MaxSegmentSize:  

      type: Maximum Segment Size. 2(0x2) 

      OptionLength: 4 (0x4) 

      MaxSegmentSize: 1460 (0x5B4) 

   + NoOption:  

   - WindowsScaleFactor:  

      type: Window scale factor. 3(0x3) 

      Length: 3 (0x3) 

      ShiftCount: 2 (0x2) 

   + NoOption:  

   + NoOption:  

   + SACKPermitted: 

     type: SACK permitted. 4(0x4) 

      OptionLength: 2 (0x2) 
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Segment 2: The SYN-ACK Segment

After receipt of the SYN segment, TCP Peer 2 sends the second TCP segment known as the 
SYN-ACK segment to TCP Peer 1. The SYN-ACK segment establishes TCP connection param-
eters that TCP Peer 2 uses, such as the ISN, and acknowledges TCP connection parameters 
used by TCP Peer 1. The SYN-ACK segment as sent by a computer running Windows Server 
2008 or Windows Vista contains the following fields in the TCP header:

■ Destination Port Set to the Source Port of the SYN segment.

■ Source Port Set to the local TCP port number of the passive OPEN on TCP Peer 2 as 
indicated by the Destination Port number of the SYN segment.

■ Sequence Number Set to the ISN for data to be sent by TCP Peer 2 for the outbound 
data pipe (ISN2 in Figure 11-2).

■ Acknowledgment Number Set to the value of the TCP Peer 1’s ISN plus 1 (ISN1 + 1). To 
provide acknowledgement of the receipt of the SYN segment, TCP acts as if the SYN flag 
occupies a single byte of the sequence space of Peer 1. The acknowledgment number is 
the next byte in the byte stream that TCP Peer 2 expects to receive. If the SYN flag acts 
as a single byte of nondata, the next byte that TCP Peer 2 expects to receive is actual 
data, and must therefore begin with ISN1 + 1.

■ SYN Flag Indicates that the segment contains the ISN for data sent by TCP Peer 2.

■ ACK Flag Indicates that the Acknowledgment Number field is significant.

■ Window Set to an application-specified value or an operating system default value, 
indicating an initial value for the maximum amount of data that TCP Peer 2 can receive. 

■ MSS in the MSS TCP Option Set to the maximum-sized TCP segment that TCP Peer 2 
can receive.

■ Window scaling factor in the TCP Window Scale TCP Option Included to indicate that 
TCP Peer 2’s advertised window size has a specified scaling factor.

■ SACK-Permitted TCP Option Indicates that TCP Peer 2 can receive and interpret the 
SACK option included in TCP segments that TCP Peer 1 sends.

The following Network Monitor 3.1 trace (Frame 2 of Capture 11-01, included in the 
\Captures folder on the companion CD-ROM) shows a SYN-ACK segment for an 
HTTP session (continued from the previous SYN segment):

  Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = TCP, Packet ID = 1045, Total IP Length = 52 

- Tcp: Flags=.S..A..., SrcPort=HTTP(80), DstPort=49160, Len=0, Seq=2269857730, 

Ack=1173532066, Win=8192 (scale factor not found) 

    SrcPort: HTTP(80) 

    DstPort: 49160 

    SequenceNumber: 2269857730 (0x874B47C2) 

    AcknowledgementNumber: 1173532066 (0x45F2ADA2) 

  + DataOffset: 128 (0x80) 
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  - Flags: .S..A... 

     CWR:    (0.......) CWR not significant 

     ECE:    (.0......) ECN-Echo not significant 

     Urgent: (..0.....) Not Urgent Data 

     Ack:    (...1....) Acknowledgement field significant 

     Push:   (....0...) No Push Function 

     Reset:  (.....0..) No Reset 

     Syn:    (......1.) Synchronize sequence numbers 

     Fin:    (.......0) Not End of data 

    Window: 8192 (scale factor not found) 

    Checksum: 47106 (0xB802) 

    UrgentPointer: 0 (0x0) 

  - TCPOptions:  

   - MaxSegmentSize:  

      type: Maximum Segment Size. 2(0x2) 

      OptionLength: 4 (0x4) 

      MaxSegmentSize: 1460 (0x5B4) 

   + NoOption:  

   - WindowsScaleFactor:  

      type: Window scale factor. 3(0x3) 

      Length: 3 (0x3) 

      ShiftCount: 8 (0x8) 

   + NoOption:  

   + NoOption:  

   - SACKPermitted:

      type: SACK permitted. 4(0x4)

      OptionLength: 2 (0x2) 

Segment 3: The ACK Segment

After receipt of the SYN-ACK segment, TCP Peer 1 sends the third TCP segment, known as the 
ACK segment, to TCP Peer 2. The ACK segment establishes the final TCP connection param-
eters used by TCP Peer 1 and acknowledges TCP connection parameters that TCP Peer 2 uses. 
The ACK segment, as sent by a computer running Windows Server 2008 or Windows Vista, 
contains the following fields in the TCP header:

■ Destination Port Set to the Source Port of the SYN-ACK segment.

■ Source Port Set to the local TCP port number of the active OPEN on TCP Peer 1 as 
indicated by the Destination Port number of the SYN-ACK segment.

■ Sequence Number Set to ISN1 + 1.

■ Acknowledgment Number Set to the value of the TCP Peer 2’s ISN plus 1 (ISN2 + 1). 
Similar to the SYN-ACK segment, TCP acts as if the SYN flag occupies a single byte of the 
sequence space of TCP Peer 2. The next byte that TCP Peer 1 expects to receive is actual 
data, and must therefore begin with ISN2 + 1.

■ ACK Flag Indicates that the Acknowledgment Number field is significant.

■ Window Set to an application-specified value or an operating system default value. 
This value indicates an initial value for the amount of data that TCP Peer 1 can receive.
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The following Network Monitor 3.1 trace (Frame 3 of Capture 11-01, included in the 
\Captures folder on the companion CD-ROM) shows an ACK segment for an HTTP session 
(continued from the previous SYN-ACK segment):

  Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = TCP, Packet ID = 5780, Total IP Length = 40 

- Tcp: Flags=....A..., SrcPort=49160, DstPort=HTTP(80), Len=0, Seq=1173532066, 

Ack=2269857731, Win=4380 (scale factor not found) 

    SrcPort: 49160 

    DstPort: HTTP(80) 

    SequenceNumber: 1173532066 (0x45F2ADA2) 

    AcknowledgementNumber: 2269857731 (0x874B47C3) 

  + DataOffset: 80 (0x50) 

  - Flags: ....A... 

     CWR:    (0.......) CWR not significant 

     ECE:    (.0......) ECN-Echo not significant 

     Urgent: (..0.....) Not Urgent Data 

     Ack:    (...1....) Acknowledgement field significant 

     Push:   (....0...) No Push Function 

     Reset:  (.....0..) No Reset 

     Syn:    (......0.) Not Synchronize sequence numbers 

     Fin:    (.......0) Not End of data 

    Window: 4380 (scale factor not found) 

    Checksum: 1978 (0x7BA) 

    UrgentPointer: 0 (0x0)

Results of the TCP Connection

The results of the TCP connection establishment process are as follows:

■ Each TCP peer knows the sequence number of the first byte of data to be sent on 
the connection (TCP Peer 1’s Acknowledgment Number field is set to TCP Peer 2’s 
Sequence Number field; TCP Peer 2’s Acknowledgment Number field is set to TCP 
Peer 1’s Sequence Number field).

■ Each TCP peer knows the MSS that can be sent on the connection. The connection’s 
MSS is the minimum of the two MSSs advertised by TCP Peer 1 and TCP Peer 2. Path 
Maximum Transmission Unit (PMTU) Discovery adjusts the initial MSS for the duration 
of connection. For more information on PMTU Discovery, see Chapter 6, “Internet 
Control Message Protocol (ICMP).”

■ Each TCP peer knows the other peer’s window size and scaling factor, indicating the 
maximum amount of data that can be sent without waiting for an ACK and updated 
window size. Although a large amount of data can be initially sent, TCP peers use the 
slow start and congestion avoidance algorithms to slowly scale the amount of data sent 
to avoid congesting the internetwork. For more information, see Chapter 12, “Transmis-
sion Control Protocol (TCP) Data Flow.”
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■ Each TCP peer is aware that the other peer is capable of receiving selective acknowledg-
ments using the SACK TCP option. For more information on selective acknowledgment, 
see Chapter 12.

TCP sends three SYN segment retransmissions when attempting to establish a TCP connec-
tion. The retransmission time-out (RTO) is doubled between each retransmission. With the 
initial RTO of 3 seconds and two retransmissions of the SYN segment, it takes 21 seconds to 
time out a TCP connection attempt (initial SYN, wait 3 seconds, first retransmitted SYN, wait 
6 seconds, second transmitted SYN, wait 12 seconds).

For an example of this behavior, see Network Monitor trace Capture 11-02, included in the 
\Captures folder on the companion CD-ROM.

Note TCP in Windows Server 2008 and Windows Vista no longer supports the 
TcpMaxConnectRetransmissions and TcpNumConnections registry values.

TCP Half-Open Connections
A TCP half-open connection, shown in Figure 11-3, is a TCP connection that has not 
completed the connection establishment process. A SYN segment has been received and a 
SYN-ACK has been sent, but the final ACK has not been received. Until the final ACK is 
received, data cannot be sent on the connection.

Figure 11-3 A TCP half-open connection showing the SYN segment and retransmissions of the 
SYN-ACK segment
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Although the SYN-ACK segment contains no data, TCP acts as if the SYN flag occupies a 
single byte of the sequence space and is treated as data. Therefore, TCP retransmission and 
time-out behaviors used for recovering from lost data are used to recover from a lost SYN-ACK 
segment. In the case of retransmitting a SYN-ACK segment, the default time-out is 3 seconds 
and the SYN-ACK is retransmitted twice, doubling the time-out period for each retransmis-
sion. Therefore, the first SYN-ACK is sent, 3 seconds later the first retransmission is sent, and 
6 seconds later the second retransmission is sent. After waiting 12 seconds for a response to 
the final retransmission, the connection is abandoned and the memory and the connection’s 
internal table entries are released. A total of 21 seconds elapse from the time the first SYN-
ACK is sent until the connection is abandoned.

The SYN Attack
The SYN attack is a denial-of-service attack that exploits the retransmission and time-out 
behavior of the SYN-ACK to create a large number of half-open connections. Depending 
on the TCP/IP protocol implementation, a large number of half-open connections could 
do any of the following:

■ Use all available memory.

■ Use all possible entries in the TCP Transmission Control Block (TCB), an internal 
table used to track TCP connections. Once the half-open connections use all the 
entries, further connection attempts are responded to with a TCP connection 
reset. TCP connection resets are discussed in the section “TCP Connection Reset,” 
later in this chapter.

■ Use all available half-open connections. After all the half-open connections are 
used, further connection attempts are responded to with a TCP connection reset.

To create a large number of TCP half-open connections, malicious users send a large 
number of SYN segments from a spoofed IP address and TCP port number. The spoofed 
IP address and TCP port number are for a process that does not respond to the SYN-
ACKs being sent by the attacked host. SYN attacks typically are used to render Internet 
servers inoperative.

To see a SYN attack in progress on a computer running Windows Server 2008 or 
Windows Vista, use the Netstat.exe tool at a command prompt to display the active TCP 
connections. For example:

c:\>netstat -n -p tcp 

Active Connections 

Proto Local Address Foreign Address State 

TCP 127.0.0.1:1030 127.0.0.1:1032 ESTABLISHED 

TCP 127.0.0.1:1032 127.0.0.1:1030 ESTABLISHED 

TCP 131.107.1.5:21 192.168.0.1:1025 SYN_RECEIVED 

TCP 131.107.1.5:21 192.168.0.1:1026 SYN_RECEIVED 

TCP 131.107.1.5:21 192.168.0.1:1027 SYN_RECEIVED 
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TCP 131.107.1.5:21 192.168.0.1:1028 SYN_RECEIVED 

TCP 131.107.1.5:21 192.168.0.1:1029 SYN_RECEIVED 

TCP 131.107.1.5:21 192.168.0.1:1030 SYN_RECEIVED 

TCP 131.107.1.5:21 192.168.0.1:1031 SYN_RECEIVED 

TCP 131.107.1.5:21 192.168.0.1:1032 SYN_RECEIVED 

TCP 131.107.1.5:21 192.168.0.1:1033 SYN_RECEIVED 

TCP 131.107.1.5:21 192.168.0.1:1034 SYN_RECEIVED 

TCP 131.107.1.5:21 192.168.0.1:1035 SYN_RECEIVED

This is an example of a SYN attack. There are a number of TCP connections in the SYN_ 
RECEIVED state, and the foreign address is a spoofed private address with incrementally 
increasing TCP port numbers. The SYN_RECEIVED is the state of a TCP connection that 
has received a SYN, sent a SYN-ACK, and is waiting for the final ACK. TCP connection 
states are discussed in detail in the “TCP Connection States” section of this chapter.

TCP in Windows Server 2008 and Windows Vista use SYN attack protection to prevent 
a SYN attack from overwhelming the computer.

Note TCP in Windows Server 2008 and Windows Vista no longer supports the 
TcpMaxConnectResponseRetransmissions, SynAttackProtect, TcpMaxHalfOpen, and 
TcpMaxHalfOpenRetried registry values.

TCP Connection Maintenance
A TCP connection can optionally be maintained through the periodic exchange of a TCP 
keepalive segment, which is an ACK segment containing no data. The Sequence Number field 
in the TCP header of the keepalive segment is set to 1 less than the current sequence number 
for the outbound data stream. For example, if a TCP peer’s next byte of data is 18745323, the 
TCP keepalive sent by the TCP peer has the Sequence Number field set to 18745322.

After receiving this ACK segment, the other TCP peer sends back an ACK segment with the 
Acknowledgment Number field set to the next byte that it expects to receive. In this example, 
the TCP peer sends an ACK segment with the Acknowledgment Number field set to 18745323. 
This simple exchange confirms that both TCP peers are still participating in the TCP connection.

Figure 11-4 shows the TCP keepalive.

TCP keepalives for TCP/IP for Windows Server 2008 and Windows Vista are disabled by 
default. If enabled through the use of the setsockopt() Windows Sockets function, a 
keepalive segment is sent every two hours by default, as controlled by the KeepAliveTime 
registry value. Even if enabled, other upper layer protocols such as NetBIOS send their own 
keepalive. If the keepalive interval that the upper layer protocol uses is less than the TCP 
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keepalive interval, TCP keepalives are never sent. For example, NetBIOS sessions over TCP/IP 
send a NetBIOS keepalive every 60 minutes. Therefore, TCP keepalives enabled for a NetBIOS 
session are never used. The following registry values control TCP keepalive behavior:

Figure 11-4 A TCP keepalive showing the sending of an exchange of ACK segments to confirm 
both ends of the connection are still present

KeepAliveTime
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 

Data type: REG_DWORD 

Valid range: 0-0xFFFFFFFF 

Default value: 0x6DDD00 (7,200,000) 

Present by default: No

KeepAliveTime sets the number of milliseconds between each TCP keepalive segment if no 
data has been sent on the connection and if keepalives have been enabled on the connection. 
The default value of 7,200,000 milliseconds corresponds to two hours.

KeepAliveInterval
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 

Data type: REG_DWORD 

Valid range: 0-0xFFFFFFFF 

Default value: 0x3E8 (1000) 

Present by default: No

KeepAliveInterval sets the number of milliseconds between successive retransmissions of 
the keepalive segment when a response to the initial keepalive is not received. The number of 
TCP keepalive retransmissions is controlled by the TcpMaxDataRetransmissions registry 
value, which has a default value of 5. After sending five TCP keepalive retransmissions, the 
connection is abandoned.

Therefore, with the default values of KeepAliveTime, KeepAliveInterval, and TcpMaxDataRe-
transmissions, a TCP connection on which keepalives have been enabled by the application is 
abandoned after two hours and six seconds.

Notice that for keepalives, the exponential backoff behavior between successive retrans-
missions is not done. For more information on the retransmission behavior of TCP, see 
Chapter 13, “Transmission Control Protocol (TCP) Retransmission and Time-Out.”

2 

1 
ACK, Seq=CSN1-1, Ack=CSN2

ACK, Seq=CSN2, Ack=CSN1

CSN1=Current Sequence Number for TCP Peer 1
CSN2=Current Sequence Number for TCP Peer 2

TCP Peer 1

Seq=CSN1
Ack=CSN2

TCP Peer 2

Seq=CSN2
Ack=CSN1



234 Part III: Transport Layer Protocols
TCP Connection Termination
Just as the TCP connection establishment process requires the sending of a SYN segment and 
its acknowledgment, the TCP connection termination process requires the sending of a FIN 
(Finish) segment, a TCP segment in which the FIN flag is set, and its acknowledgment. The 
FIN segment indicates that the FIN segment sender will send no more data on the connec-
tion. Because a TCP connection is made of two logical pipes (an outbound and inbound pipe 
for each TCP peer), both pipes must be closed and the closure must be acknowledged. 
Figure 11-5 shows a TCP connection termination.

Figure 11-5 A TCP connection termination showing the exchange of four TCP segments

Typical TCP connection termination processes consist of the exchange of four TCP segments.

Segment 1: The FIN-ACK from TCP Peer 1

A TCP peer (TCP Peer 1) that wants to terminate outbound data flow sends a TCP segment 
that contains no data with the following:

■ The Sequence Number field set to the current sequence number for outbound data. 
When closing the connection, the current sequence number is the final sequence num-
ber for outbound data (FSN1 in Figure 11-5).

■ The Acknowledgment Number field set to the next byte of inbound data that the TCP 
peer expects to receive. This number also corresponds to the current sequence number 
of TCP Peer 2 (CSN2 in Figure 11-5).

■ The ACK flag is set, indicating that the Acknowledgment Number field is significant.

■ The FIN flag is set, indicating that no more data will be sent from this TCP peer on the 
connection.

The following Network Monitor 3.1 trace (Frame 1 of Capture 11-03, included in the \Captures 
folder on the companion CD-ROM) shows a FIN-ACK segment for an FTP session being closed 
by an FTP server:
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  Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = TCP, Packet ID = 57337, Total IP Length = 40 

- Tcp: Flags=F...A..., SrcPort=FTP control(21), DstPort=1162, Len=0, Seq=1035689055, 

Ack=3928116597, Win=17448 (scale factor not found) 

    SrcPort: FTP control(21) 

    DstPort: 1162 

    SequenceNumber: 1035689055 (0x3DBB5C5F) 

    AcknowledgementNumber: 3928116597 (0xEA224D75) 

  + DataOffset: 80 (0x50) 

  - Flags: F...A... 

     CWR:    (0.......) CWR not significant 

     ECE:    (.0......) ECN-Echo not significant 

     Urgent: (..0.....) Not Urgent Data 

     Ack:    (...1....) Acknowledgement field significant 

     Push:   (....0...) No Push Function 

     Reset:  (.....0..) No Reset 

     Syn:    (......0.) Not Synchronize sequence numbers 

     Fin:    (.......1) End of data 

    Window: 17448 (scale factor not found) 

    Checksum: 4983 (0x1377) 

    UrgentPointer: 0 (0x0)

Segment 2: The ACK from TCP Peer 2

Similar to the SYN flag, TCP acts as if the FIN flag occupies a byte of the TCP sequence space 
and must be acknowledged as if it were a byte of data. Therefore, the TCP peer receiving the 
FIN-ACK segment (TCP Peer 2) sends an ACK with the following:

■ The Sequence Number field set to the current sequence number for outbound data 
(CSN2 in Figure 11-5).

■ The Acknowledgment Number field set to 1 more than the final sequence number for 
inbound data on the connection (FSN1 + 1).

■ The ACK flag is set, indicating that the Acknowledgment Number field is significant.

The following Network Monitor 3.1 trace (Frame 2 of Capture 11-03, included in the 
\Captures folder on the companion CD-ROM) shows an ACK segment sent from the FTP 
client in response to a FIN-ACK sent by the FTP server:

  Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = TCP, Packet ID = 10526, Total IP Length = 40 

- Tcp: Flags=....A..., SrcPort=1162, DstPort=FTP control(21), Len=0, Seq=3928116597, 

Ack=1035689056, Win=17234 (scale factor not found) 

    SrcPort: 1162 

    DstPort: FTP control(21) 

    SequenceNumber: 3928116597 (0xEA224D75) 

    AcknowledgementNumber: 1035689056 (0x3DBB5C60) 

  + DataOffset: 80 (0x50) 

  - Flags: ....A... 

     CWR:    (0.......) CWR not significant 
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     ECE:    (.0......) ECN-Echo not significant 

     Urgent: (..0.....) Not Urgent Data 

     Ack:    (...1....) Acknowledgement field significant 

     Push:   (....0...) No Push Function 

     Reset:  (.....0..) No Reset 

     Syn:    (......0.) Not Synchronize sequence numbers 

     Fin:    (.......0) Not End of data 

    Window: 17234 (scale factor not found) 

    Checksum: 5197 (0x144D) 

    UrgentPointer: 0 (0x0)

Notice how the acknowledgment number is 1 more (1035689056) than the sequence 
number of the previous FIN-ACK (1035689055), explicitly acknowledging the receipt of the 
FIN-ACK segment.

Once the FIN is acknowledged, the TCP peer that sent the initial FIN-ACK segment cannot 
send data (TCP Peer 1). However, only one logical pipe has been terminated. The inbound 
data pipe for TCP Peer 1 is still open and data can still flow and be acknowledged with ACK 
segments that contain no data.

Segment 3: The FIN-ACK from TCP Peer 2

If the TCP peer with the open outbound data pipe (TCP Peer 2) still has data to send, data can 
be sent and acknowledged by TCP Peer 1. This is known as a TCP half-close. For example, a 
TCP half-close occurs when a client application sends the FIN-ACK segment and the server 
application still has data to send to the client before it can terminate its side of the connection.

Once all outstanding data from TCP Peer 2 is sent and acknowledged, TCP Peer 2 can close its 
outbound logical pipe to TCP Peer 1. TCP Peer 2 sends a segment with the following:

■ The Sequence Number field set to the current sequence number for outbound data. 
When closing the connection, the current sequence number is the final sequence num-
ber for outbound data (FSN2 in Figure 11-5).

■ The Acknowledgment Number field set to the next byte of inbound data that the TCP 
peer expects to receive. In this case, the acknowledgment number is the same as that 
acknowledged in Segment 2 (FSN1 + 1).

■ The ACK flag is set, indicating that the Acknowledgment Number field is significant.

■ The FIN flag is set, indicating that no more data will be sent from this TCP peer on the 
connection.

The following Network Monitor 3.1 trace (Frame 3 of Capture 11-03, included in the 
\Captures folder on the companion CD-ROM) shows a FIN-ACK segment for the FTP client 
closing its outbound pipe:

  Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = TCP, Packet ID = 10527, Total IP Length = 40 
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- Tcp: Flags=F...A..., SrcPort=1162, DstPort=FTP control(21), Len=0, Seq=3928116597, 

Ack=1035689056, Win=17234 (scale factor not found) 

    SrcPort: 1162 

    DstPort: FTP control(21) 

    SequenceNumber: 3928116597 (0xEA224D75) 

    AcknowledgementNumber: 1035689056 (0x3DBB5C60) 

  + DataOffset: 80 (0x50) 

  - Flags: F...A... 

     CWR:    (0.......) CWR not significant 

     ECE:    (.0......) ECN-Echo not significant 

     Urgent: (..0.....) Not Urgent Data 

     Ack:    (...1....) Acknowledgement field significant 

     Push:   (....0...) No Push Function 

     Reset:  (.....0..) No Reset 

     Syn:    (......0.) Not Synchronize sequence numbers 

     Fin:    (.......1) End of data 

    Window: 17234 (scale factor not found) 

    Checksum: 5196 (0x144C) 

    UrgentPointer: 0 (0x0)

Segment 4: The ACK from TCP Peer 1

TCP acts as if the FIN flag of Segment 3 occupies a byte of the TCP sequence space and must 
be acknowledged as a byte of data. Therefore, the TCP peer receiving the FIN-ACK segment 
(TCP Peer 1) sends an ACK with the following:

■ The Sequence Number field set to the current sequence number for outbound data 
(FSN1 + 1).

■ The Acknowledgment Number field set to 1 more than the final sequence number for 
inbound data on the connection (FSN2 + 1).

■ The ACK flag is set, indicating that the Acknowledgment Number field is significant.

The following Network Monitor 3.1 trace (Frame 4 of Capture 11-03, included in the 
\Captures folder on the companion CD-ROM) shows an ACK segment that the FTP server 
sent in response to a FIN-ACK sent by the FTP client:

  Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = TCP, Packet ID = 57338, Total IP Length = 40 

- Tcp: Flags=....A..., SrcPort=FTP control(21), DstPort=1162, Len=0, Seq=1035689056, 

Ack=3928116598, Win=17448 (scale factor not found) 

    SrcPort: FTP control(21) 

    DstPort: 1162 

    SequenceNumber: 1035689056 (0x3DBB5C60) 

    AcknowledgementNumber: 3928116598 (0xEA224D76) 

  + DataOffset: 80 (0x50) 

  - Flags: ....A... 

     CWR:    (0.......) CWR not significant 

     ECE:    (.0......) ECN-Echo not significant 

     Urgent: (..0.....) Not Urgent Data 

     Ack:    (...1....) Acknowledgement field significant 

     Push:   (....0...) No Push Function 
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     Reset:  (.....0..) No Reset 

     Syn:    (......0.) Not Synchronize sequence numbers 

     Fin:    (.......0) Not End of data 

    Window: 17448 (scale factor not found) 

    Checksum: 4982 (0x1376) 

    UrgentPointer: 0 (0x0)

Notice how the acknowledgment number is 1 more (3928116598) than the sequence number 
of the previous FIN-ACK (3928116597), explicitly acknowledging the receipt of the FIN-ACK 
segment.

TCP Peer 2’s outbound pipe is terminated when the ACK segment is received. The TCP con-
nection, with both logical pipes gracefully terminated, is closed.

Note TCP connection terminations do not have to use four segments. In some cases, 
Segments 2 and 3 are combined. The result is a FIN-ACK/FIN-ACK/ACK sequence.

TCP Connection Reset
The TCP connection termination process is for the graceful, mutually agreed closure of both 
pipes of a TCP connection. Both TCP peers exchange FIN segments that are acknowledged 
explicitly, indicating that all data on each outbound pipe has been sent and acknowledged. 
Another way to terminate a TCP connection is through a TCP connection reset—a TCP seg-
ment with the RST (Reset) flag set.

A TCP connection reset is sent when a parameter problem exists in the TCP header of an 
inbound TCP segment that cannot be reconciled. For example, an improper source or desti-
nation IP address or TCP port number could cause an established connection to be aborted.

Aborting an established TCP connection through a TCP reset also can be intentionally done 
through Windows Sockets. However, aborting a TCP connection causes the loss of all TCP 
data that is either in transit or in buffers waiting to be sent.

A TCP connection reset is used also to reject a TCP connection attempt in response to the 
receipt of a SYN segment. The most common reason a TCP peer denies a connection attempt 
with a connection reset is that the destination port in the SYN segment does not correspond 
to an Application Layer process running at the recipient of the SYN segment. Connection 
attempts also can be denied when the maximum number of allowed TCP connections is 
reached. Figure 11-6 shows a TCP connection reset.

Note When a User Datagram Protocol (UDP) message arrives at a destination port that does 
not correspond to an Application Layer process, the receiving node sends an Internet Control 
Message Protocol (ICMP) Destination Unreachable-Port Unreachable message to the sender of 
the UDP message.
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Figure 11-6 A TCP connection reset showing the SYN and RST segments

The following Network Monitor 3.1 trace (Capture 11-04, included in the \Captures folder on 
the companion CD-ROM) shows the sequence of packets sent between a host running an FTP 
client application and a host that is not an FTP server. Frame 1 is a SYN segment to the FTP 
control port; Frame 2 is the connection reset.

Frame 1

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = TCP, Packet ID = 10535, Total IP Length = 48 

- Tcp: Flags=.S......, SrcPort=1164, DstPort=FTP control(21), Len=0, Seq=4065871748, Ack=0,  

Win=16384 (scale factor not found) 

SrcPort: 1164 

DstPort: FTP control(21) 

SequenceNumber: 4065871748 (0xF2584784) 

AcknowledgementNumber: 0 (0x0) 

+ DataOffset: 112 (0x70) 

+ Flags: .S...... 

Window: 16384 (scale factor not found) 

Checksum: 33470 (0x82BE) 

UrgentPointer: 0 (0x0) 

+ TCPOptions:  

______________________________________________________________________________ 

Frame 2 

 

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

1 

2 

SYN, Seq=ISN1, Ack=0, Window=default
MSS, TCP Window Scale, and SACK-Permitted options

RST, Seq=0, ACK=ISN1+1, Window=0

TCP Peer 1

Seq=ISN1

Seq=ISN1+1
Ack=0

TCP Peer 2

Seq=0
Ack=ISN1+1
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+ Ipv4: Next Protocol = TCP, Packet ID = 57738, Total IP Length = 40 

- Tcp: Flags=..R.A..., SrcPort=FTP control(21), DstPort=1164, Len=0, Seq=0, Ack=4065871749, 

Win=0 (scale factor not found) 

SrcPort: FTP control(21) 

DstPort: 1164 

SequenceNumber: 0 (0x0) 

AcknowledgementNumber: 4065871749 (0xF2584785) 

+ DataOffset: 80 (0x50) 

- Flags: ..R.A... 

CWR: (0.......) CWR not significant 

ECE: (.0......) ECN-Echo not significant 

Urgent: (..0.....) Not Urgent Data 

Ack: (...1....) Acknowledgement field significant 

Push: (....0...) No Push Function 

Reset: (.....1..) Reset 

Syn: (......0.) Not Synchronize sequence numbers 

Fin: (.......0) Not End of data 

Window: 0 (scale factor not found) 

Checksum: 61294 (0xEF6E) 

UrgentPointer: 0 (0x0)

In the connection reset segment:

■ The RST and ACK flags are set.

■ The sequence number is 0.

■ The acknowledgment number is 1 more than the sequence number of the SYN segment 
(ISN1 + 1). As in the SYN-ACK segment of a connection establishment process, TCP acts 
as if the SYN flag occupies a byte of sequence space and is explicitly acknowledged

■ The window size is 0.

After receipt of a connection reset, the initiating peer can either try again (in practice, three 
attempts are made) or abandon the connection attempt.

TCP Connection States
A TCP connection exists in one of the states listed in Table 11-1.

Table 11-1 TCP Connection States

State Description

CLOSED No TCP connection exists.

LISTEN An Application Layer protocol has issued a passive open and is willing to accept 
TCP connection attempts.

SYN SENT An Application Layer protocol has issued an active open and a SYN segment is sent.

SYN RCVD A SYN segment is received and a SYN-ACK is sent.
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The connection states that a TCP peer goes through depend on whether the TCP peer is the ini-
tiator of the TCP connection establishment or the initiator of the TCP connection termination.

Figure 11-7 shows the states of a TCP connection.

Figure 11-7 The states of a TCP connection

Figure 11-8 shows the connection states of two TCP peers during the connection establish-
ment process.

ESTABLISHED The final ACK for the TCP connection establishment process is sent and received. 
Data can now be transferred in both directions.

FIN WAIT-1 The initial FIN-ACK segment to close one side of the connection is sent.

FIN WAIT-2 The ACK in response to the initial FIN-ACK is received.

CLOSING A FIN-ACK is received but the ACK is not for the FIN-ACK sent. This is known as a 
simultaneous close, when both TCP peers send FIN-ACKs at the same time.

TIME WAIT FIN-ACKs have been sent and acknowledged by both TCP peers and the TCP con-
nection termination process is completed. Once the TIME WAIT state is reached, 
TCP must wait twice the maximum segment lifetime (MSL) before the connection’s 
TCP port number can be reused. The MSL is the maximum amount of time a TCP 
segment can exist in an internetwork, and its recommended value is 240 seconds. 
This delay prevents a new connection’s TCP segments using the same port num-
bers from being confused with duplicated TCP segments of the old connection.

CLOSE WAIT A FIN-ACK has been received and a FIN-ACK has been sent.

LAST ACK The ACK in response to the FIN-ACK has been received.

Table 11-1 TCP Connection States

State Description
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Figure 11-8 The states of a TCP connection during TCP connection establishment

Figure 11-9 shows the connection states of two TCP peers during the connection termination 
process.

Figure 11-9 The states of a TCP connection during TCP connection termination

Controlling the TIME WAIT state in Windows Server 2008 
and Windows Vista 

The TIME WAIT state is used to delay the reuse of the same parameters for a TCP connection, 
ensuring that duplicates of the old connection’s TCP segments in transit are not confused 
with a new connection’s TCP segments. The RFC 793 recommended value for the MSL is two 
minutes. For Windows Server 2008 and Windows Vista with Service Pack 1, TCP connections 
in the TIME WAIT state are controlled by the following registry value:

TcpTimedWaitDelay
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 

Data type: REG_DWORD 

Valid range: 30-300 

Default value: 120 

Present by default: No

The value of TcpTimedWaitDelay is the number of seconds that a TCP connection remains in 
the TIME WAIT state. The default is 120 seconds (two minutes).
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Summary
TCP connections are created through the TCP connection establishment process, where two 
TCP peers exchange SYN segments and determine starting sequence numbers, window sizes, 
window scaling factors, maximum segment sizes, and other TCP options. TCP connections 
can be maintained through the exchange of periodic keepalive segments, although this is not 
common. To terminate a TCP connection gracefully, each TCP peer must send a FIN segment 
and have it acknowledged. A TCP peer uses a TCP connection reset segment to either abort a 
current connection or refuse a connection attempt.
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TCP provides reliable data transfer through the sequencing of outbound data and the 
acknowledgment of inbound data. Along with reliability, TCP includes behaviors to prevent 
inefficient use of the network and provide flow control for data sent and received. This chapter 
describes the details of the TCP send and receive windows, receiver-side flow control using 
the TCP receive window to prevent the sender overloading the receiver, and sender-side flow 
control using a variety of algorithms to prevent the sender from overloading the network.

Basic TCP Data Flow Behavior
The following mechanisms govern TCP data flow:

■ Acknowledgments TCP acknowledgments are delayed and cumulative for contiguous 
data and selective for noncontiguous data.

■ Sliding send and receive windows A send window for the sender and a receive window 
for the receiver control the amount of data that can be sent. Send and receive windows 
provide receiver-side flow control. As data is sent and acknowledged, the send and 
receive windows slide along the sequence space of the sender’s byte stream.

■ Avoidance of small segments Small segments—TCP segments that are not at the TCP 
maximum segment size (MSS)—are allowed but are governed to avoid inefficient inter-
network use.

■ Sender-side flow control TCP sliding windows provide a way for the receiver to deter-
mine flow control, but the sender also uses flow control algorithms to avoid sending too 
much data and congesting the internetwork.
245
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These mechanisms work for interactive traffic, such as Telnet sessions, and for bulk data trans-
fer, such as the downloading of a large file with the File Transfer Protocol (FTP).

TCP Acknowledgments
Recall that a TCP connection is a bidirectional, full-duplex logical circuit that consists of out-
bound and inbound logical pipes for the inbound and outbound byte streams. To account for 
data sent and received, each byte in the outbound and inbound byte streams is numbered. 
These numbers are used by TCP for reliable data transfer and are independent of the actual 
data in the byte streams.

A TCP acknowledgment (ACK) is a TCP segment with the ACK flag set. In an ACK, the Acknowl-
edgment Number field indicates the number for the next byte in the contiguous byte stream that 
the ACK’s sender expects to receive. Additionally, if the TCP Selective Acknowledgment (SACK) 
option is present, the ACK can indicate up to four blocks of noncontiguous data received.

Delayed Acknowledgments

When a TCP peer receives a segment, the acknowledgment for the segment (either cumulative 
or selective) is not sent immediately. The TCP peer delays the sending of the ACK segment for 
the following reasons:

■ If, during the delay, additional TCP segments are received, a single ACK segment can 
acknowledge the receipt of multiple TCP segments.

■ For full-duplex data flow, delaying the ACK makes it possible for the ACK segment to 
contain data. This is known as piggybacking the data on the ACK, or piggyback ACKs. 
If the incoming TCP segment contains data that requires a response from the receiver, 
the response can be sent along with the ACK. This is common for Telnet traffic, in which 
each keystroke of the Telnet client is sent to the Telnet server process. The received 
Telnet keystroke must be echoed back to the Telnet client. Rather than sending an ACK 
for the keystroke received and then sending the echoed keystroke, a single TCP segment 
containing the ACK and the echoed keystroke is sent.

■ TCP has the time to perform general connection maintenance. The Application Layer 
protocol has additional time to retrieve data from TCP, and an updated window size can 
be sent with ACK.

RFC 1122 specifies that the acknowledgment delay should be no longer than 0.5 seconds. By 
default, TCP/IP for Windows Server 2008 and Windows Vista uses an acknowledgment delay 
of 200 ms (0.2 seconds), which can be configured per interface by the TcpDelAckTicks regis-
try setting.

TcpDelAckTicks
Location:HKEY_LOCAL_MACHINE\SYSTEM

\CurrentControlSet\Services\Tcpip\Parameters
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\Interfaces\InterfaceGUID

Data type: REG_DWORD

Valid range: 0-6

Default value: 2

Present by default: No

TcpDelAckTicks sets the delayed acknowledgment timer (in 100-ms intervals) of an interface. 
If you set this value to 0 or 1, the delayed-ACK time is 200 milliseconds. The default value of 
2 specifies a 200-ms delayed acknowledgment timer.

More Info All of the RFCs referenced in this chapter can be found in the 
\Standards\Chap12_TCPFlow folder on the companion CD-ROM.

Cumulative for Contiguous Data

As originally defined in RFC 793, the TCP acknowledgment scheme is cumulative. The pres-
ence of the ACK flag and the value of the Acknowledgment Number field explicitly acknowl-
edge all bytes in the received byte stream numbered from the Initial Sequence Number (ISN) 
+ 1 (the first byte of data sent on the connection), up to but not including the number in the 
Acknowledgment Number field (Acknowledgment Number – 1). Figure 12-1 illustrates the 
cumulative acknowledgment scheme of TCP.

Figure 12-1 The cumulative acknowledgment scheme of TCP

A TCP peer sends an ACK with a new Acknowledgment Number field when a TCP segment 
is received containing data that is contiguous with previous data received. TCP segments 
received that are not contiguous with the previous segments received are not acknowledged. 
Only when the missing segments are retransmitted and received, creating a contiguous block 
of one or more TCP segments, does the receiver send an ACK segment with the new Acknowl-
edgment Number field.

Although the original cumulative acknowledgment scheme for TCP works well and provides 
reliable data transfer, in high-loss environments this relatively simple acknowledgment 
scheme can slow throughput and use additional network bandwidth.
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For example, a TCP peer sends six TCP segments. If the first of the six segments is dropped 
and the last five segments arrive, no ACK for the five received segments is sent. With normal 
TCP retransmission behavior, after the retransmission time-out (RTO), the sending TCP peer 
begins to retransmit all six segments. When the retransmission of the first TCP segment 
arrives, the receiving TCP peer sends an ACK segment confirming receipt of all six segments. 
Although the dropped first segment was successfully recovered, TCP on the sender needlessly 
sent duplicates of segments that successfully arrived.

Selective for Noncontiguous Data

With selective acknowledgments, the Acknowledgment Number field still indicates the 
number of the last contiguous byte received, but the TCP SACK option can acknowledge 
noncontiguous received segments. With the TCP SACK option, the left and right edges of the 
blocks of noncontiguous data received are explicitly acknowledged, preventing needless 
retransmission. Figure 12-2 illustrates TCP’s selective acknowledgment scheme.

Figure 12-2 The selective acknowledgment scheme of TCP

Using the previous example, if six TCP segments are sent and the first segment is dropped, 
the receiving TCP peer sends an ACK segment with the following settings: the Acknowledg-
ment Number field is set to the first byte of the missing TCP segment, and the TCP SACK 
option is set with the left and right edge of the block consisting of the second through the 
sixth received TCP segments. After receipt of the ACK with the TCP SACK option, the sender 
marks the selectively acknowledged TCP segments and does not retransmit them. The send-
ing TCP peer retransmits the first TCP segment after its RTO. After receipt, the receiving TCP 
peer sends an ACK segment with the Acknowledgment Number field set to the number of the 
first byte past the sixth TCP segment.

Selective acknowledgments are especially important for the recovery of data on a TCP connec-
tion with a large window size. The previous example has a window size of six segments. 
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Imagine a high-bandwidth, high-delay link such as a satellite channel with a window size of 
200 segments. The sender transmits 200 segments at a time. If cumulative acknowledgments 
are used and the first segment is dropped, the sender needlessly retransmits many of the suc-
cessfully received segments before the dropped segment is recovered. Selective acknowledg-
ments eliminate needless retransmissions of successfully received segments.

TCP Sliding Windows
To govern the amount of data that can be sent at any one time and to provide receiver-side 
flow control, data transfer between TCP peers is performed using a window. The window is 
the span of data on the byte stream that the receiver permits the sender to send. The sender 
can send only the bytes of the byte stream that lie within the window. New data can be sent 
only with the receiver’s permission. The window slides along the sender’s outbound byte 
stream and the receiver’s inbound byte stream.

The values of the Acknowledgment Number and Window fields in ACKs that the receiver 
sends determine the actual numbered bytes within the window. The Acknowledgment Num-
ber field indicates the next byte of data that the receiver expects to receive. The Window field 
indicates the maximum amount of TCP data that the receiver can receive on this connection. 
The span of data within the window is from Acknowledgment Number through the value of 
Acknowledgment Number + Window – 1.

For a given logical pipe—one direction of the full-duplex TCP connection—the sender main-
tains a send window and the receiver maintains a receive window. When there are no data or 
ACK segments in transit, a logical pipe’s send window and receive window are matched; the 
span of data that the sender is permitted to send is matched to the span of data that the 
receiver is able to receive.

Send Window

To maintain the send window, the sender must account for the bytes in the outbound byte 
stream that have been

■ Sent and acknowledged (Sent/ACKed)

■ Sent but not acknowledged (Sent/UnACKed)

■ Unsent but fit within the current send window (Unsent/Inside)

■ Unsent but lie beyond the current send window (Unsent/Outside)

Figure 12-3 illustrates the types of data that exist for the send window.

The span of data that lies within the send window is the Sent/UnACKed and Unsent/Inside data.
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Figure 12-3 The types of data for the TCP send window

Sent/ACKed Data

Sent/ACKed data is data that has been sent and acknowledged as received. The first byte 
of Sent/ACKed data is numbered ISN + 1. Recall from the TCP connection establishment pro-
cess that the TCP peer chooses an ISN in its SYN segment. The SYN flag is treated as if it was 
a byte of data and is explicitly acknowledged. Therefore, the first byte of user data sent on the 
connection is numbered ISN + 1. The acknowledgment number is the number of the next 
byte of data the receiver expects to receive, explicitly acknowledging all bytes received up to 
but not including the acknowledgment number. Therefore, the last byte of ACKed data is 
numbered Acknowledgment Number – 1.

Sent/UnACKed Data

Sent/UnACKed data is data that has been sent but for which no acknowledgments have been 
received. The Sent/UnACKed data is either in transit, dropped from the internetwork, has 
arrived at the receiver but no ACK has been sent (because of delayed acknowledgments), or 
the ACK for the Sent/UnACKed data is in transit.

To distinguish Sent/UnACKed data from Unsent/Inside data, TCP maintains a variable 
known as SND.NEXT, which is the number of the next byte to be sent. The value of 
SND.NEXT becomes the value of the Sequence Number field for the next TCP segment sent.

The first byte of Sent/UnACKed data is the Acknowledgment Number field’s value of the last 
ACK segment received from the receiver. The last byte of Sent/UnACKed data is numbered as 
the value of SND.NEXT – 1.

Unsent/Inside Data

Unsent/Inside data is data that has not yet been sent but is within the current send 
window. Unsent/Inside data can be sent because the receiver has permitted it. It is natural 
to assume that if the data has been permitted, the sender will send all data within the send 
window before waiting for an acknowledgment and an updated window size from the 
receiver. In other words, there is no Unsent/Inside data when waiting for an acknowledgment.
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However, as discussed later in this chapter, when starting the initial data flow and when 
encountering congestion, the sender-side flow control mechanisms of slow start and conges-
tion avoidance prevent the sender from sending all the data that falls within the receiver’s 
receive window. In such cases, these mechanisms govern the amount of data sent before wait-
ing for an acknowledgment.

The first byte of Unsent/Inside data is numbered as the value of the SND.NEXT variable. The 
number of the last byte of Unsent/Inside data is the last byte of data within the send window, 
the value of Acknowledgment Number + Window – 1.

Unsent/Outside

Unsent/Outside data is data that is unsent and outside the current send window, represent-
ing future data to be sent. Unsent/Outside data relative to the current send window should 
never be sent because it falls outside the receive window. The receiver’s receive window is a 
direct reflection of buffer space remaining to store incoming data. The receiver discards data 
that cannot be stored in the receive buffer for the connection and sends an ACK segment with 
the current acknowledgment number. The first byte of Unsent/Outside data is numbered as 
the value of Acknowledgment Number + Window.

Sliding the Send Window

The send window has a left edge (defined by the boundary between Sent/ACKed and Sent/
UnACKed data) and a right edge (defined by the boundary between Unsent/Inside and 
Unsent/Outside data). When an ACK is received with a higher acknowledgment number, the 
left edge of the send window advances to the right (closes). When an ACK is received in which 
the value of Acknowledgment Number + Window is greater than the previous value of 
Acknowledgment Number + Window, the right edge of the send window advances to the right 
(opens). The sum of the Acknowledgment Number + Window fields is the value of 
the Acknowledgment Number field in the ACK for the last TCP segment that fits within the 
current send window. Figure 12-4 illustrates the sliding of the send window.

Figure 12-4 The sliding of the send window showing window closing and opening

It is possible for the send window to close but not open—for the left edge of the send 
window to advance while the right edge does not. For example, the sender receives an ACK 
with an increased acknowledgment number but a decreased window, such that the sum of 
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Acknowledgment Number + Window does not change. This can happen when the receiver 
receives the data, which is acknowledged, but the received data has not been passed to the 
Application Layer protocol on the receiver. Therefore, the value of the Acknowledgment 
Number field in the ACK increases because of the contiguous data arriving, but the window 
decreases by the same amount, keeping the value of Acknowledgment Number + Window 
the same.

Zero Send Window

When the receiver advertises a window size of zero, the left and right edges of the send win-
dow are at the same boundary—the boundary between Sent/ACKed data and Unsent/Outside 
data. A zero window size can occur when the receiver has received the maximum amount of 
acknowledged data but the data has not yet been retrieved by the Application Layer protocol. 
This can happen when TCP has not yet indicated the data to the Application Layer protocol or 
when the Application Layer protocol has not explicitly informed TCP that it is ready to receive 
the next block of data.

With a zero send window, no new data can be sent until an ACK with a nonzero window size 
is received. However, because no new data is sent, the receiver is not sending any new ACKs. 
This can produce a deadlock situation in which the sender waits to receive a new window size 
and the receiver does not send a new window size because there are no new ACKs to send. 
Consequently, receiver and sender behaviors are defined to prevent the deadlock.

To prevent the deadlock on the receiver side, when the received data is passed to the Applica-
tion Layer protocol, the receiver sends an ACK segment with the current acknowledgment 
number and new nonzero window size. However, this segment is an ACK containing no data. 
ACK segments without data are not sent reliably; the receiving TCP peer does not acknowl-
edge them, and the sending TCP peer cannot determine whether to retransmit the ACK seg-
ments. Therefore, if the ACK sent by the receiver to update the window size is lost, the sender 
would have no notification that new data can be sent. The TCP connection is indefinitely 
deadlocked; the receiver has informed the sender that new data can be sent, but the sender 
still considers the window size to be zero.

To prevent the deadlock caused by the dropped ACK that the receiver sent, the sender period-
ically sends a TCP segment containing 1 byte of new data for the connection. Because the data 
byte is Unsent/Outside data, the receiver discards the data and sends an ACK with the current 
acknowledgment number and window size. This sender-side mechanism is known as probing 
the window. The first window probe is sent after the current RTO, and the interval for succes-
sive probes is determined by doubling the timeout for the previous probe.

Receive Window

To maintain the receive window, the receiver must account for the bytes in the inbound byte 
stream that have been



Chapter 12: Transmission Control Protocol (TCP) Data Flow 253
■ Received, acknowledged, and retrieved by the Application Layer protocol 
(Rcvd/ACKed/Retr)

■ Received, acknowledged, and not retrieved by the Application Layer protocol 
(Rcvd/ACKed/NotRetr)

■ Received, but not acknowledged (Rcvd/UnACKed)

■ Not received, but inside the current receive window (NotRcvd/Inside)

■ Not received, but outside the current receive window (NotRcvd/Outside)

Figure 12-5 illustrates the types of data that exist for the receive window.

Figure 12-5 The types of data for the TCP receive window

The span of data that lies within the maximum receive window is Rcvd/ACKed/NotRetr, 
Rcvd/UnACKed, and NotRcvd/Inside. The span of data that lies within the current receive 
window is Rcvd/UnACKed and NotRcvd/Inside.

Notice the difference between the maximum receive window and the current receive window. 
The maximum receive window is a fixed size and corresponds to a maximum amount of data 
for inbound TCP segments. The current receive window is of variable size and is the number 
of bytes remaining from the maximum to store inbound TCP segments. The current receive 
window’s size is the value of the Window field advertised in ACKs sent back to the sender 
and is the difference between the maximum receive window size (Rcvd/ACKed/NotRetr + 
Rcvd/UnACKed + NotRcvd/Inside) and the amount of data that has been received and 
acknowledged but not passed to the Application Layer protocol (Rcvd/ACKed/NotRetr).

Rcvd/ACKed/Retr Data

Rcvd/ACKed/Retr data is data that has been received, acknowledged, and retrieved by the Appli-
cation Layer protocol. The first byte of Rcvd/ACKed/Retr data is numbered ISN + 1. To track the 
next byte to be passed to the Application Layer protocol, TCP maintains a variable called 
RCV.USER. Therefore, the last byte of Rcvd/ACKed/Retr data is numbered RCV.USER – 1.
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Rcvd/ACKed/NotRetr Data

Rcvd/ACKed/NotRetr data is data that has been received and acknowledged but has not been 
passed up to the Application Layer protocol. This category of data is the difference between 
the fixed-size maximum receive window and the variable-size current receive window. The 
first byte of Rcvd/ACKed/NotRetr data is numbered RCV.USER. The last byte of Rcvd/
ACKed/NotRetr data is numbered Acknowledgment Number – 1.

Rcvd/UnACKed Data

Rcvd/UnACKed data is data that has been received but not acknowledged. To keep track of 
the next contiguous byte to be received, TCP maintains a variable called RCV.NEXT. When an 
ACK segment is sent, the ACK segment’s Acknowledgment Number field is set to the value of 
RCV.NEXT. The first byte of Rcvd/UnACKed data is the current acknowledgment number. 
The last byte of Rcvd/UnACKed data is numbered RCV.NEXT – 1.

If there are no TCP segments in transit and the receiver has not yet sent the ACK for TCP seg-
ments received, the send window’s Sent/UnACKed data is the same as the receive window’s 
Rcvd/UnACKed data. In this situation, the value of RCV.NEXT kept by the receiver is equal to 
the value of SND.NEXT kept by the sender.

NotRcvd/Inside Data

NotRcvd/Inside data is data that can be received and will fit within the current receive win-
dow. The first byte of NotRcvd/Inside data is numbered RCV.NEXT. The last byte of NotRcvd/
Inside data within the receive window is numbered Acknowledgment Number + Window – 1.

NotRcvd/Outside Data

NotRcvd/Outside data is data that has not been received and is outside the current receive 
window, representing future data to be received. NotRcvd/Outside data relative to the current 
receive window should never be received because it falls outside the current receive window. 
The receiver discards data that cannot be stored in the current receive window and sends an 
ACK with the current acknowledgment number. The first byte of NotRcvd/Outside data is 
numbered Acknowledgment Number + Window.

Sliding the Receive Window

The current receive window has a left edge (defined by the boundary between Rcvd/ACKed/
NotRetr and Rcvd/UnACKed data) and a right edge (defined by the boundary between 
NotRcvd/Inside and NotRcvd/Outside data). When an ACK segment is sent with an acknowl-
edgment number set to RCV.NEXT, the left edge of the current receive window advances to 
the right (closes). When the Rcvd/ACKed/NotRetr data is passed up to the Application Layer 
protocol, the right edge of the maximum receive window advances to the right (opens). When 
this occurs, new data can be received. The maximum receive window slides to the right by the 
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number of bytes passed to the Application Layer protocol. When the maximum receive 
window slides as a result of data being passed to the Application Layer protocol, the current 
receive window slides also, as the right edge of the maximum receive window and the right 
edge of the current receive window are the same. The next ACK that the receiver sends con-
tains an updated window size. The increase in the sum of the acknowledgment number and 
the window size indicates to the sender that more data can be sent.

Figure 12-6 illustrates the sliding of the receive window.

Figure 12-6 Sliding the receive window

If the Application Layer protocol does not receive the data in a timely fashion, the receive win-
dow closes instead of sliding. This is indicated to the sender by increasing the acknowledg-
ment number for new data received and decreasing the value of the Window field by the same 
amount, thereby keeping the value of Acknowledgment Number + Window the same. In an 
extreme situation, the maximum receive window is filled with Rcvd/ACKed/NotRetr data and 
the left and right edges are the same (a zero receive window).

Shrinking the Window

Shrinking the window is the movement of the right edge of the receive window to the left. 
To shrink the receive window, an ACK segment is sent where the value of Acknowledgment 
Number + Window decreases. Normally, the value of Acknowledgment Number + Window 
either increases or remains the same. RFC 1122 discourages shrinking the window. However, 
a sending TCP peer must be prepared to adjust its send window accordingly. The receiver 
discards any data sent that is suddenly outside the shrunken receive window.

Receive Window Auto-Tuning

For optimal throughput, a sender should send enough packets to fill the logical pipe to the 
receiver. The capacity of this logical pipe can be calculated by multiplying the path bandwidth 
in bits per second by the round-trip time (RTT) in seconds. This capacity calculation is known 
as the bandwidth-delay product (BDP). The pipe can be fat (higher bandwidth), thin (lower 
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bandwidth), short (lower RTT), or long (higher RTT). Pipes that are fat and long have the 
highest BDP. Examples of high BDP transmission paths are those across satellites or enter-
prise wide area networks (WANs) that include intercontinental optical fiber links.

To optimize TCP throughput, especially for transmission paths with a high BDP, TCP in 
Windows Server 2008 and Windows Vista supports Receive Window Auto-Tuning. Receive 
Window Auto-Tuning determines the optimal receive window size by measuring the BDP and 
the application retrieve rate and adapting the window size for ongoing transmission path 
and application conditions.

Receive Window Auto-Tuning enables TCP window scaling by default, allowing up to a 
16-megabyte (MB) maximum receive window size. As the data flows over the connection, the 
TCP stack monitors the connection, measures its current BDP and application receive retrieve 
rate, and adjusts the receive window size to optimize throughput. TCP in Windows Server 
2008 and Windows Vista no longer uses the TCPWindowSize registry value.

Receive Window Auto-Tuning automatically determines the optimal receive window size on 
a per-connection basis. In Windows XP, the TCPWindowSize registry value applied to all 
connections. Applications no longer need to specify TCP window sizes through Windows 
Sockets options to obtain optimal throughput. Additionally, IT administrators no longer need 
to determine the best TCP window size and manually configure a TCP receive window size for 
specific computers.

With Receive Window Auto-Tuning, a Windows Server 2008 or Windows Vista-based TCP 
peer will typically advertise much larger receive window sizes than a Windows XP or Win-
dows Server 2003-based TCP peer. This allows the TCP peer sending data to the Windows 
Server 2008 or Windows Vista-based TCP peer to fill the pipe between the TCP peers by send-
ing more TCP data segments without having to wait for an ACK (subject to TCP congestion 
control). For typical client-based networking traffic such as Web pages or e-mail, the Web 
server or e-mail server will be able to send more TCP data more quickly to the Windows Server 
2008 or Windows Vista-based client computer, resulting in an overall increase in network per-
formance. The higher the BDP and application retrieve rate for the connection, the better the 
performance increase.

The impact on the network is that a stream of TCP data packets that would normally be sent 
out at a lower, measured pace—based on a small and nonadaptive TCP receive window size—
are sent much faster, resulting in a larger spike of network utilization during the data transfer. 
For example, for Windows XP and Windows Vista-based computers performing the same 
data transfer over a long, fat pipe, the same amount of data is transferred. However, the data 
transfer to the Windows Vista-based client computer is faster due to the larger receive window 
size and the server’s ability to fill the pipe between the server and client.

Because Receive Window Auto-Tuning increases network utilization of high-BDP transmission 
paths, the use of Quality of Service (QoS) or application send rate throttling might become 
important for transmission paths that are operating at or near capacity. To address this 
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possible need, Windows Server 2008 and Windows Vista support Group Policy-based QoS 
settings that allow you to define throttling rates for sent traffic on an IP address or TCP port 
basis. For more information, see the Quality of Service Web page at http://go.microsoft.com
/fwlink/?LinkID=82892.

To disable window scaling and Receive Window Auto-Tuning, use the netsh interface tcp 
set global autotuninglevel=disabled command. To enable window scaling and Receive 
Window Auto-Tuning, use the netsh interface tcp set global autotuninglevel=normal 
command.

When Receive Window Auto-Tuning is disabled, the default advertised TCP receive window 
size is either specified by the application or is automatically determined based on the bit rate 
of the media as reported by the network adapter, according to the following rules:

■ Below 1 megabits per second (Mbps): 8 kilobytes (KB)

■ 1 Mbps to below 100 Mbps: 17 KB

■ 100 Mbps to below 10 gigabits per second (Gbps): 64 KB

■ 10 Gbps or higher: 128 KB

Note Some firewall and network edge devices either do not properly handle the TCP 
window scaling option or must be configured to handle the TCP window scaling option. 
For information about specific devices, see the Microsoft Knowledge Base article at 
http://support.microsoft.com/kb/934430/en-us.

Small Segments
A small segment is a TCP segment that is smaller than the MSS. To increase the efficiency of 
sending data, TCP avoids sending and receiving small segments by using the Nagle algorithm 
and by avoiding silly window syndrome.

The Nagle Algorithm

For interactive data, such as the data of a Telnet or Rlogin session, much of the traffic is made 
up of individual keystrokes sent by the client and echoed by the server. For each keystroke, a 
single byte of data is sent. This is a network efficiency of 2.5 percent (the number of bytes of 
data [1 byte] divided by the number of bytes of overhead needed to send the data [40 bytes]). 
For interactive sessions, such as Telnet, each typed character must be sent and echoed back to 
the Telnet client application to be displayed on the user’s screen. Therefore, sending small seg-
ments cannot be avoided for interactive sessions. Preventing the sending of a small segment 
would mean that the user would not see the keystroke as entered on the keyboard. In the case 
of Telnet and Rlogin, a single keystroke echoed back to the user generates the following three 
TCP segments:
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1. The client application sends the keystroke byte as a small TCP segment with the Push 
(PSH) flag set.

2. The keystroke TCP segment is passed to the server application, which sends an echo of 
the keystroke back to the client application (along with an ACK of the keystroke byte) as 
a small TCP segment with the PSH flag set.

3. The echoed keystroke TCP segment is passed to the client application, which sends an 
ACK of the echoed keystroke segment.

Typical interactive sessions consist of multiple keystrokes in rapid succession.

To minimize the sending of small TCP segments, TCP is required to use the Nagle algorithm, 
named after John Nagle, the author of RFC 896, which describes the algorithm. The Nagle algo-
rithm’s premise is that a TCP connection can send only a single unacknowledged small seg-
ment. If a small segment is sent and not acknowledged, no other small segments can be sent.

In the case of interactive session traffic, such as Telnet and Rlogin, a keystroke segment is sent. 
Additional keystrokes entered by the user are accumulated in the TCP send buffer until the 
ACK for the outstanding small segment arrives. The next segment sent could contain multiple 
keystrokes. Depending on the average time to receive acknowledgments and the user’s typing 
speed, this simple rule can decrease the number of TCP segments sent in the session by a 
factor of three or more.

The Nagle algorithm adapts itself to the environment in which the TCP segments are being 
sent. In a high-bandwidth, low-delay environment, such as a local area network (LAN), ACKs 
return more quickly and less accumulation occurs. However, in such an environment, lower 
efficiency can be tolerated because of the higher capacity of the LAN. In a low-bandwidth, 
high-delay environment, such as a wide area network (WAN), ACKs return less quickly, pro-
ducing more accumulation. This results in more efficient data transfer for environments with 
less capacity.

TCP/IP for Windows Server 2008 and Windows Vista uses the Nagle algorithm by default. 
The Nagle algorithm is disabled through the TCP_NODELAY Windows Sockets option. 
Developers should disable the Nagle algorithm only when the immediate sending of multiple 
small segments is required. To improve performance of file locking and manipulation, a com-
puter running Windows Server 2008 or Windows Vista disables the Nagle algorithm for Net-
BIOS over TCP/IP (NetBT) and non-NetBIOS–based file sharing traffic.

Silly Window Syndrome

Whenever data is passed to the receiver’s Application Layer protocol, the receive window 
opens and a new window size is advertised. Depending on how much data is retrieved from 
the receive buffer, this mechanism can cause the following behavior:

1. The sender and receiver are in a zero window state. The sender has sent all the data it 
can. The receiver has acknowledged all the data in the receive buffer and is waiting for 
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the Application Layer protocol to retrieve the data before it is free to advertise a nonzero 
window size.

2. The Application Layer protocol retrieves a single byte of data from the receive buffer. The 
receive window advances by one byte.

3. The receiver sends an ACK with the window size set to 1.

4. The sender, realizing that the value of Acknowledgment Number + Window has 
increased, advances its send window by one byte. Because the receiver has permitted the 
sending of a single byte, the sender sends a single byte.

Each time the Application Layer protocol fetches a single byte of data from the buffer, the 
sender sends a single-byte TCP segment. The data sent on the TCP connection consists of a 
steady pattern of small segments. This behavior is known as the silly window syndrome 
(SWS). Both the sender and the receiver avoid SWS.

Receiver-Side SWS Avoidance

The receiver avoids SWS by not advertising a new window size unless it is at least either an 
MSS or half of the maximum receive window size. As data is passed to the application, the 
receive window advances. If the receive window advances n bytes, receiver-side SWS dictates 
that a new window size cannot be advertised unless n is at least MSS bytes or half the maxi-
mum receive window.

Sender-Side SWS Avoidance

The sender avoids SWS by not sending a TCP segment containing data unless the advertised 
receive window size is at least MSS bytes. However, as previously discussed, small segments 
must be allowed for interactive data. Therefore, small segments are allowed if either of the 
following is true:

■ The data is being pushed and adheres to the Nagle algorithm. Interactive data typically 
sets the TCP header’s PSH flag. A single small segment can be sent according to the 
Nagle algorithm.

■ The data is at least half the size of the maximum receive window and adheres to the 
Nagle algorithm.

Sender-Side Flow Control
Receiver-side flow control is implemented through the send and receive windows. The 
receiver can inform the sender to stop sending data by reducing the advertised receive win-
dow to zero. However, once a non-zero receive window size is advertised, there is nothing in 
the TCP sliding window mechanism that prevents the sender from sending all possible seg-
ments in the send window. According to the TCP sliding window mechanism, the sender can 
immediately send all of the segments that fit within the receive window without waiting for 
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any ACKs. Although this behavior is permitted, it also can lead to network congestion, 
especially when sending TCP segments across multiple routers.

To prevent the flooding of segments that fit within the advertised receive window, TCP 
implementations, including Windows Server 2008 and Windows Vista, use the following 
algorithms described in RFCs 2581 and 3465:

■ The slow start algorithm Increases the actual send window—the number of 
segments within the send window that the sender can send before waiting for an 
acknowledgment—when incoming ACKs acknowledge new data.

■ The congestion avoidance algorithm Increases the actual send window for each 
round-trip time.

Although the slow start and congestion avoidance algorithms were developed to solve sepa-
rate problems, they are used together to provide sender-side flow control.

Both the slow start and congestion avoidance algorithms maintain an additional variable 
called the congestion window (cwind) to help define how much data can be sent. For both algo-
rithms, the size of the actual send window is the minimum of the advertised receive window 
and the congestion window (the value of cwind).

Slow Start Algorithm

For the slow start algorithm defined in RFC 2581 and supported by TCP in Windows XP and 
Windows Server 2003, TCP increases the cwind by the MSS (or one segment size) for every 
ACK received that acknowledges new data. For this method, the increase in cwind over time 
depends on whether the receiver sends an ACK for each segment received or uses delayed 
ACKs. The congestion window grows faster if the receiver does not use delayed ACKs and 
sends an ACK segment for each segment received. 

For the slow start algorithm defined in RFC 3465 and supported by TCP in Windows Server 
2008 and Windows Vista, TCP increases the cwind by the number of bytes of previously unac-
knowledged data that are acknowledged with each incoming ACK. This makes the growth of 
cwind independent of whether the receiver is using delayed ACKs. 

Every time cwind is updated, it is compared to the current advertised receive window size, and 
the minimum of both values is used to update the actual send window size.

When TCP data begins to flow on a connection after the connection establishment process or 
after a prolonged idle time, the following example for two Ethernet-based TCP peers running 
Windows Vista with a window size of 12 MSS shows how the slow start process defined in 
RFC 3465 increases the actual send window size:

1. Set cwind’s initial value to 2 MSS (two MSS-sized segments). Compare cwind’s value and the 
currently advertised receive window size (17,520 or 12 MSS). Set the actual send window 
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size to the minimum of cwind and the currently advertised receive window size. Result: 
cwind = 2 MSS, advertised receive window size = 12 MSS, actual send window = 2 MSS.

2. Two TCP segments are sent. The sender waits for ACKs.

3. When the sender receives an ACK for both segments that were received, cwind is set to 
4 MSS. Compare cwind’s value and the currently advertised receive window size. Set the 
actual send window size to the minimum of cwind and the currently advertised receive 
window size. Result: cwind = 4 MSS, advertised receive window size = 12 MSS, actual 
send window = 4 MSS.

4. Four TCP segments are sent. The sender waits for ACKs.

5. When the sender receives an ACK for the four TCP segments that were received, cwind is 
set to 8 MSS. Compare cwind’s value and the currently advertised receive window size. 
Set the actual send window size to the minimum of cwind and the currently advertised 
receive window size. Result: cwind = 8 MSS, advertised receive window size = 12 MSS, 
actual send window = 8 MSS.

6. Eight TCP segments are sent. The sender waits for ACKs.

This process continues until cwind becomes greater than the currently advertised receive win-
dow (12 MSS), at which point the currently advertised receive window governs how much 
data can be sent at a time, and slow start is finished. There is no more sender-side flow control 
unless a TCP segment needs to be retransmitted or after a prolonged idle time.

The following summary of Network Monitor Capture 12-01, included in the \Captures folder 
on the companion CD-ROM, illustrates the slow start behavior for the downloading of a file 
using FTP up to 8 MSS:

Frame  Source    Dest      Description 

1      10.0.0.1  10.0.0.2  Flags=.S......, Seq=2956468642, Ack=0 

2      10.0.0.2  10.0.0.1  Flags=.S..A..., Seq=1990890983, Ack=2956468643 

3      10.0.0.1  10.0.0.2  Flags=....A..., Seq=2956468643, Ack=1990890984 

4      10.0.0.1  10.0.0.2  Flags=....A..., Seq=2956468643 - 2956470103, Ack=1990890984 

5      10.0.0.1  10.0.0.2  Flags=....A..., Seq=2956470103 - 2956471563, Ack=1990890984 

6      10.0.0.2  10.0.0.1  Flags=....A..., Seq=1990890984, Ack=2956471563 

7      10.0.0.1  10.0.0.2  Flags=....A..., Seq=2956471563 - 2956473023, Ack=1990890984 

8      10.0.0.1  10.0.0.2  Flags=....A..., Seq=2956473023 - 2956474483, Ack=1990890984 

9      10.0.0.1  10.0.0.2  Flags=....A..., Seq=2956474483 - 2956475943, Ack=1990890984 

10     10.0.0.1  10.0.0.2  Flags=....A..., Seq=2956475943 - 2956477403, Ack=1990890984 

11     10.0.0.2  10.0.0.1  Flags=....A..., Seq=1990890984, Ack=2956474483 

12     10.0.0.2  10.0.0.1  Flags=....A..., Seq=1990890984, Ack=2956477403 

13     10.0.0.1  10.0.0.2  Flags=....A..., Seq=2956477403 - 2956478863, Ack=1990890984 

14     10.0.0.1  10.0.0.2  Flags=....A..., Seq=2956478863 - 2956480323, Ack=1990890984 

15     10.0.0.1  10.0.0.2  Flags=....A..., Seq=2956480323 - 2956481783, Ack=1990890984 

16     10.0.0.1  10.0.0.2  Flags=....A..., Seq=2956481783 - 2956483243, Ack=1990890984 

17     10.0.0.1  10.0.0.2  Flags=....A..., Seq=2956483243 - 2956484703, Ack=1990890984 

18     10.0.0.1  10.0.0.2  Flags=....A..., Seq=2956484703 - 2956486163, Ack=1990890984 

19     10.0.0.1  10.0.0.2  Flags=....A..., Seq=2956486163 - 2956487623, Ack=1990890984 

20     10.0.0.1  10.0.0.2  Flags=....A..., Seq=2956487623 - 2956489083, Ack=1990890984
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The slow start algorithm for this data transfer is as follows:

1. The TCP connection establishment process is done in Frames 1 through 3. cwind is set 
to 2 MSS.

2. Frames 4 and 5 are the two segments corresponding to the current actual send window 
size of 2 MSS.

3. Frame 6 is an ACK segment for Frames 4 and 5. cwind is set to 4 MSS.

4. Frames 7 through 10 are the four segments corresponding to the current send actual 
window size of 4 MSS.

5. Frame 11 is an ACK segment for Frames 7 and 8. Frame 12 is an ACK segment for 
Frames 9 and 10. cwind is set to 8 MSS.

6. Frames 13 through 20 are the eight segments corresponding to the current actual send 
window size of 8 MSS.

The rate at which the size of the actual send window increases depends on how quickly ACK 
segments are returned. In a high-bandwidth, low-delay environment such as a LAN, the actual 
send window opens quickly. In a low-bandwidth, high-delay environment such as a WAN, the 
actual send window opens more slowly.

Although called the slow start algorithm, the actual send window size can increase at an expo-
nential rate based on the receipt of ACKs for multiple segments sent. In the example in Cap-
ture 12-01, when starting the actual send window at 2 MSS, two segments are sent. If an ACK 
for both segments is sent, the actual send window increases to 4 MSS; four segments are sent. 
If ACKs for all four segments are sent, the actual send window increases to 8 MSS. The actual 
send window has quickly grown from 2 MSS to 4 MSS, and then to 8 MSS.

Congestion Avoidance Algorithm

Once data is flowing on the TCP connection, the actual send window is governed by the cur-
rently advertised receive window, and receiver-side flow control is in effect. When a TCP seg-
ment must be retransmitted, the assumption is that the packet loss is a result of congestion at 
a router, rather than damage to the packet causing a checksum verification to fail. If the packet 
loss is a result of congestion at a router, the sender’s transmission rate must be immediately 
lowered and then gradually increased back to the rate at which data was being sent before the 
congestion occurred. For TCP connections, the transmission rate is the amount of data that 
the sender can send before having to wait for an ACK.

When the congestion occurs, the slow start algorithm is used to increase the size of the actual 
window size to half of the value of the advertised receive window size when the congestion 
occurred. The congestion avoidance algorithm then takes over. To keep track of when to use 
slow start and when to use congestion avoidance, an additional variable called the slow start 
threshold (ssthresh) is used. When a connection is established, ssthresh is set to 65,535. As 
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with slow start, during congestion avoidance, the actual send window is the minimum of 
cwind and the currently advertised receive window.

The premise of the congestion avoidance algorithm is to increase cwind by 1 MSS for each 
round-trip time, which is the time it takes for a TCP segment to be sent and acknowledged. 
The congestion avoidance algorithm provides a smooth, linear increase in cwind, thereby 
increasing the actual send window. There are different ways of implementing the change in 
cwind for congestion avoidance, as follows:

■ One method is to increase cwind by MSSMSS/cwind (integer division) for each ACK seg-
ment that is received. For example, if cwind is set to 7 MSS, for each ACK segment that is 
received, cwind is incremented by MSSMSS/7MSS, or MSS/7. Therefore, after receiving 
seven ACK segments, cwind increases by 1 MSS. When cwind is incremented by a quan-
tity that is not a full MSS, sender-side SWS prevents a small segment from being sent. 
Only after cwind is incremented to another MSS can another full segment be sent. If the 
receiver is using delayed ACKs, it can take more than one round-trip time to open the 
congestion window by one MSS.

■ Another method is to track the current actual send window size in increments of the 
MSS. When the number of segments that correspond to the size of the current actual 
send window size are ACKed, increment cwind by an MSS. Thus, the actual send win-
dow grows by 1 MSS for each full window of data that has been acknowledged, regard-
less of whether the receiver is using delayed ACKs. This is the method described in RFC 
3465 and supported by TCP in Windows Server 2008 and Windows Vista.

With slow start, the actual send window increases by an MSS for each segment acknowledged 
in a round-trip time. With congestion avoidance, the actual send window increases by an MSS 
for a full window of data that has been acknowledged in a round-trip time.

When congestion occurs (indicated when a TCP segment must be retransmitted or when 
a duplicate ACK is received), the combination of slow start and congestion avoidance for 
TCP/IP for Windows Server 2008 and Windows Vista works as follows:

1. Set ssthresh to half the value of the current send window with a minimum value of 
2 MSS. Set cwind to the value of 2 MSS.

2. Set the actual send window to the minimum of the currently advertised receive window 
and cwind.

3. Send the appropriate number of TCP segments.

4. As ACKs are received, increment cwind. If cwind ≤ ssthresh, increment cwind using slow 
start. If cwind > ssthresh, increment cwind using congestion avoidance.

5. Return to step 2.

The result of using the combination of slow start and congestion avoidance is that when 
congestion occurs, the sender uses slow start to quickly increase the size of the actual send 
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window size to half the size of the actual send window when the congestion occurred. Then, 
congestion avoidance is used to more slowly increase the size of the actual send window size 
up to the currently advertised receive window size. This gradual increase in the amount of 
data being sent allows the internetwork to clear its routing buffers and recover from the 
congestion.

Compound TCP

The slow start and congestion avoidance algorithms work well for LAN media speeds and 
smaller TCP window sizes. However, when you have a TCP connection with a large receive 
window size and a large BDP (high bandwidth and high delay), such as replicating data 
between two servers located across a high-speed WAN link with a 100-ms round-trip time, 
these algorithms do not increase the send window fast enough to fully utilize the bandwidth 
of the connection. For example, on a 1-Gbps WAN link with a 100-ms round-trip time (RTT), 
it can take up to an hour for the send window to initially increase to the large window size 
being advertised by the receiver and to recover when there are lost segments.

To better utilize the bandwidth of TCP connections in these situations, TCP in Windows 
Server 2008 and Windows Vista supports Compound TCP (CTCP). CTCP more aggressively 
increases the send window for connections with large receive window sizes and large BDPs. 
CTCP attempts to maximize throughput on these types of connections by monitoring delay 
variations and losses. CTCP also ensures that its behavior does not negatively impact other 
TCP connections. 

To ensure that TCP is using the network fairly, CTCP incorporates a delay-based component 
in its algorithm to increase the actual send window. CTCP detects network utilization by mea-
suring expected and actual RTTs to determine whether the network is experiencing conges-
tion. If the network is underutilized, the delay-based component is aggressive in increasing 
the send window to get to full utilization as quickly as possible. If the network is utilized or 
the potential for congestion exists, the delay-based component scales back the send window 
accordingly.

In testing performed internally at Microsoft, large file backup times were reduced by almost 
half for a 1-Gbps connection with a 50ms RTT. Connections with a larger bandwidth delay 
product can have even better performance. CTCP and Receive Window Auto-Tuning work 
together for increased link utilization and can result in substantial performance gains for large 
BDP connections.

CTCP is enabled by default for computers running Windows Server 2008 and disabled by 
default in computers running Windows Vista. You can disable CTCP and use congestion 
avoidance for all types of links, including those with large BDPs, with the netsh interface 
tcp set global congestionprovider=none command. You can enable CTCP with the netsh 
interface tcp set global congestionprovider=ctcp command. 
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Explicit Congestion Notification

Modern implementations of TCP treat the intermediate network between TCP peers as an 
opaque box. Packets containing TCP segments go into and out of the box. Sometimes the 
packets that go into the box are dropped. Because bit-level errors on today’s digital and optical 
media are relatively rare, modern implementations of TCP assume that a dropped packet is 
due to congestion at a router—a congested router’s buffers for incoming packets have filled to 
capacity and the router is silently discarding incoming packets.

Although TCP detects that the packets containing TCP segments for a connection were dropped 
and retransmits them, recovering from dropped packets is an expensive process in terms of 
sending host TCP processing, retransmission of the dropped packets, and reduced throughput.

Although packet drops due to congested routers are an unfortunate occurrence, they do not 
negatively impact bulk data transfers other than the additional time required to retransmit the 
dropped segments and gradually increase the transmission rate. The slow start and conges-
tion avoidance algorithms work well for time-insensitive, bulk data traffic. However, the TCP 
method for dealing with dropped packets does not work as well for interactive, loss-sensitive, 
or time-sensitive traffic.

Another issue with router congestion is the effect that congestion has on multiple data flows. 
When a router begins dropping incoming packets, it typically does not distinguish one data 
flow from another. When multiple TCP flows have packet drops, the senders of all of those 
flows reduce their transmission rate. Depending on how quickly the router clears its con-
gested buffers, the multiple TCP data flows that had packet drops might still be gradually 
increasing their sending rate. This can result in the router and its links being underutilized 
until all of the TCP data flows are sending at their precongestion transmission rates. The 
router goes from a congested state to an underutilized state.

The issues of lowered throughput through retransmission and lower link utilization after con-
gestion are the consequences of attempting to manage congestion only from the sending host, 
in which the only congestion indicator is dropped packets. To prevent the problems associ-
ated with dropped packets due to congested routers, the designers of TCP/IP have created a 
new set of standards for both hosts and routers. These standards describe active queue man-
agement (AQM) on IP routers (RFC 2309) to allow the router to monitor that state of its 
forwarding queues and provide a mechanism to allow routers to report to sending hosts that 
congestion is occurring, allowing the sending hosts to lower their transmission rate before the 
router begins dropping packets. The router reporting and host response mechanism is known 
as Explicit Congestion Notification (ECN), defined in RFC 3168.

When congestion occurs, sending hosts must still lower their transmission rates. However, 
by avoiding packet losses, sending hosts no longer incur the packet processing required to 
retransmit dropped packets and time, and loss-sensitive packet flows are not impacted as 
severely during congestion.
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For ECN support at the Internet layer (for IP), a sending host must be able to indicate that it 
is capable of performing ECN, and a router must be able to indicate that it is experiencing con-
gestion when forwarding a packet. ECN support in the IP header uses the ECN field, which 
are the two unused bits of the RFC 2474-defined Type of Service (TOS) field. The ECN field 
indicates whether the sending host supports ECN and whether congestion has been experi-
enced by a forwarding router. For more information, see Chapter 5, “Internet Protocol (IP).”

For ECN support at the Transport layer (for TCP), TCP peers must indicate to each other that 
they are ECN-capable. A receiving peer must be able to inform the sending peer that it has 
received a packet from a router experiencing congestion. The sending peer must be able to 
inform the receiving peer that it has received the congestion indicator from the receiving peer 
and has reduced its transmission rate.

When a router sets the ECN field of an IP packet to 11 to indicate that the router is congested, 
the receiver is informed of the congestion in the path, but not the sender. ECN uses the TCP 
header to indicate to the sender that the network is experiencing congestion and to indicate to 
the receiver that the sender has received the congestion indication from the receiver and has 
lowered its transmission rate.

ECN support in TCP uses the ECN-Echo (ECE) and Congestion Window Reduced (CWR) 
flags in the TCP header. The ECE flag is used to indicate that a TCP peer is ECN-capable dur-
ing the TCP 3-way handshake and to indicate that a TCP segment was received on the connec-
tion with the ECN field in the IP header set to 11. When two ECN-capable TCP peers establish 
a TCP connection, the SYN segment has both the ECE and CWR flags set and the SYN-ACK 
segment has the ECE flag set and the CWR flag cleared. The CWR flag is set by the sending 
host to indicate that it received a TCP segment with the ECE flag set.

An ECN-capable host sends TCP segments for an ECN-enabled TCP connection with the ECN 
field in the IP header set to either 10 or 01. An ECN-capable router that is experiencing con-
gestion sets the ECN field in the IP header to 11. When a receiving TCP peer sends an ACK 
that includes the data of a received TCP segment that had the ECN field set to 11, it sets the 
ECE flag in the TCP header and continues setting the ECE flag in subsequent ACKs.

When the sending host receives the ACK with the ECE flag set, it behaves as though a packet 
was dropped and lowers its transmission rate using the slow start and congestion avoidance 
algorithms. For the next segment, the sender sets the CWR flag. Upon receipt of the new seg-
ment with the CWR flag set, the receiver stops setting the ECE flag in subsequent ACKs.

ECN Example

Figure 12-7 shows an example of a TCP connection between ECN-capable TCP peers that 
experiences congestion by an ECN-capable router.
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Figure 12-7 An example of ECN for a TCP connection

In this example, TCP Peer A is sending data to TCP Peer B. TCP Peer A sends Segments 1 
through 5. Segment 2 is forwarded by an ECN-capable router that is experiencing congestion, 
which sets the ECN field in the IP header to 11. When TCP Peer B receives this segment, it 
sends ACKs with the ECE flag set. When TCP Peer A receives the first ACK with the ECE flag 
set, it lowers its transmission rate and sends its next segment (Segment 6) with the CWR flag 
set. Upon receipt of Segment 6 with the CWR flag set, TCP Peer B sends subsequent ACKs 
with the ECE flag cleared.

For information about the behavior of ECN for different variations of TCP data flow, see 
RFC 3168.

ECN Support in Windows

TCP in Windows Server 2008 and Windows Vista supports ECN, but it is disabled by default. 
To enable ECN support, use the netsh interface tcp set global ecncapability=enabled 
command. To disable ECN support, use the netsh interface tcp set global 
ecncapability=disabled command.

Because ECN is using bits in the IP and TCP headers that were previously defined as unused 
or reserved, intermediate network devices such as routers and firewalls might silently discard 
packets when the ECN fields are set to nonzero values. To ensure that ECN-marked TCP/IP 
traffic will not be dropped from your network, survey your networking equipment and per-
form the appropriate configuration or upgrades to ensure that ECN-marked packets are not 
discarded.

TCP Peer BTCP Peer A

Segment 1, Seq#=1000
Segment 2, Seq#=2000, ECN=11

Segment 4, Seq#=4000

Segment 3, Seq#=3000

Segment 5, Seq#=5000

ACK, Ack#=2000, ECE

ACK, Ack#=6000
ACK, Ack#=5000, ECE

Segment 7, Seq#=7000

Segment 6, Seq#=6000, CWR
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Limited Transmit

Chapter 13, “Transmission Control Protocol (TCP) Retransmission and Timeout,” describes 
how TCP typically uses either a retransmission timeout (RTO) or fast retransmit to detect a 
lost TCP segment. With a retransmission timeout, the RTO timer on a sent segment expires, 
and the segment is retransmitted. The RTO is typically on the order of seconds. With fast 
retransmit, when the sender receives three duplicate acknowledgments for a segment, it 
retransmits the segment before the RTO expires. Fast retransmit is a much faster way of 
detecting dropped segments. However, because fast retransmit relies on receiving three 
duplicate ACKs, it might not detect segment losses when the window size is very small or 
when a large number of segments are lost. 

For example, if the window size only accommodates three MSS segments and the first seg-
ment is lost, then only two duplicate ACKs will be received. As another example, if the win-
dow size is 8 segments but only two arrive, then only two duplicate ACKs will be received. The 
lost segments are eventually detected when the RTO timer for the segment expires, but relying 
on the RTO expiration can dramatically decrease performance.

To address this problem, TCP in Windows Server 2008 and Windows Vista supports the Lim-
ited Transmit algorithm defined in RFC 3042. With Limited Transmit, when TCP has addi-
tional data to send on a connection and two consecutive duplicate ACKs have been received, 
TCP can send additional segments on the connection under the following conditions:

■ The receiver’s advertised window allows the transmission of the additional segments.

■ The additional segments contain data that is within two segments beyond cwind.

The ability of TCP to send additional segments helps ensure that fast retransmit can be used 
to detect segment losses, rather than waiting for an RTO timer expiration.

Note The sender cannot send new segments in response to duplicate ACKs that contain no 
additional SACK information.

For the details of the algorithm, see RFC 3042.

Summary
TCP achieves reliable data transfer through the cumulative or selective acknowledgment of 
TCP segments received. Selective acknowledgments improve TCP performance in high-loss 
environments or for TCP connections with large window sizes. To provide receiver-side flow 
control, TCP uses sliding send and receive windows. With each ACK segment, the receiver 
indicates how much more data can be sent and successfully received. To avoid sending small 
segments, TCP uses the Nagle algorithm and SWS avoidance. 
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To provide sender-side flow control, TCP uses the slow start and congestion avoidance algo-
rithms. Slow start increases the size of the actual send window by 1 MSS for each ACK seg-
ment received or each segment acknowledged. Congestion avoidance increases the size of the 
actual send window by 1 MSS for each round-trip time. Slow start and congestion avoidance 
are used to avoid congesting an IP internetwork when sending and retransmitting data. 

CTCP increases the send window size more rapidly than slow start and congestion avoidance 
to optimize use of high-BDP connections. ECN attempts to detect a congested network and 
lower a TCP peer’s transmission rate before a router begins discarding packets. Limited 
Transmit allows a TCP peer to send additional segments on a connection to ensure that fast 
retransmit can successfully detect dropped packets.
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The reliable service of TCP requires that all segments containing data be acknowledged by the 
receiver. When an acknowledgment (ACK) for a segment is not received, the sender must 
retransmit the segment. The method by which the sender detects that a segment was not 
received can have a direct impact on performance. This chapter describes how TCP measures 
the expected time within which to receive an ACK and how it detects and recovers from lost 
segments.

Retransmission Time-Out and Round-Trip Time
For each connection, TCP maintains a variable called the retransmission time-out (RTO), 
which is the amount of time within which an ACK for the segment is expected. If TCP does 
not receive an ACK before the RTO expires, the segment is retransmitted.

The RTO must allow enough time for the following:

1. The initially sent TCP segment to traverse the internetwork (the transit time from source 
to destination).

2. The initially sent TCP segment to be received and processed by the destination node 
(the destination’s inbound packet-processing time).

3. The generation of an ACK for the segment (the ACK generation time). One component 
of the ACK generation time is the delayed acknowledgment time of the destination 
node. Rather than sending an ACK segment for each TCP data segment received, TCP 
271
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delays ACKs. These delayed ACKs can contain data, include updated window sizes, and 
acknowledge multiple segments received.

4. The generated ACK to traverse the internetwork (the transit time from destination 
to source).

5. The generated ACK to be received and processed by the sending node (the source’s 
inbound packet-processing time).

The sum of all these times is known as the round-trip time (RTT). The RTT varies over time 
and must be constantly measured throughout the TCP connection’s life. The RTO is based on 
the currently known RTT and should always be greater than the currently known RTT to pre-
vent unnecessary retransmissions.

The RTO should be neither too large nor too small to prevent the following behaviors:

■ When the RTO is too large, the sending TCP peer must wait too long before retransmitting 
a lost segment. This lowers throughput for connections with some degree of packet loss.

■ When the RTO is too small, segments are retransmitted unnecessarily. Retransmitted 
segments increase the load on the internetwork and waste internetwork capacity.

If the ACK for the initially sent segment does not arrive within the RTO, the ACK is either 
arriving late or not at all. The main causes of ACK segments arriving late are either an increase 
in the transit time from the source to the destination or an increase in the transit time from the 
destination to the source.

The following are reasons why the ACK is not received at all:

■ The initially sent TCP segment is dropped at a router because of congestion.

■ The initially sent TCP segment is dropped at a router or the destination because of 
damage to the packet, which occurs when electronic or optical errors corrupt the 
encoded signal, causing bits within the packet to change values. Damaged packets 
are silently discarded after failing checksum calculations.

■ The ACK for the TCP segment is dropped at a router because of congestion.

■ The ACK for the TCP segment is dropped at a router or the destination because of 
damage to the packet.

It is much more likely that the TCP segment or its ACK was discarded by a congested router 
rather than being damaged and silently discarded.

Note Unlike TCP segments containing data, ACKs that contain no data are not sent reliably. 
The ACK sender does not set an RTO for the ACK and does not retransmit the ACK segment. 
Therefore, a lost ACK is recovered by the sender retransmitting the segment(s) that the lost 
ACK is acknowledging, and not by the sender of the lost ACK retransmitting the ACK.
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Congestion Collapse

The proper measurement of the RTT and determination of the RTO for sent TCP segments are 
important to prevent a phenomenon of routed internetworks known as congestion collapse. 
Congestion collapse occurs when the buffers of the internetwork routers fill to capacity and 
the routers begin to discard packets.

Congestion collapse begins with a steady increase in the load on the internetwork. As hosts 
send more data, more data is queued in the buffers of the internetwork routers. As this occurs, 
the transit time from the source to the destination and from the destination to the source 
increases. Therefore, the actual RTT grows larger than the currently known RTT of sending 
hosts.

The current RTO for sent segments is based on the currently known RTT. When the actual 
RTT increases to the extent that it is greater than the current RTO, sent TCP segments have 
ACKs that arrive late. When the ACKs do not arrive in the time based on the current RTO, the 
segments are retransmitted. There are then two copies of each retransmitted segment, effec-
tively doubling the load on the internetwork at a time when the load needs to be decreased. As 
more TCP segments are retransmitted, eventually the buffers on the internetwork routers fill 
and the routers begin to discard packets.

Congestion collapse can be avoided through the ongoing determination of the current RTT, 
which is monitored on a per window or per segment basis. Changes in the current RTT are 
used to update the RTO.

The recurrence of congestion collapse is avoided through the combination of the slow start 
and congestion avoidance algorithms of the sending host, as discussed in Chapter 12, 
“Transmission Control Protocol (TCP) Data Flow.” When the RTO for a segment expires, TCP 
assumes that RTO expiration is a result of the segment being discarded by a router experienc-
ing congestion. Slow start and congestion avoidance are used to slowly scale the number of 
segments sent before waiting for an ACK up to the number of segments that fit in the 
receiver’s advertised receive window.

Slow start and congestion avoidance are used together to prevent congestion collapse from 
recurring. Without slow start and congestion avoidance, once an internetwork becomes con-
gested, it becomes congested again as the sending hosts begin transmitting new data, and the 
internetwork oscillates between congested and uncongested states.

Retransmission Behavior
TCP uses the following exponential backoff behavior to determine the RTO of successive 
retransmissions of the same segment:

1. When the TCP segment is initially sent, the RTO for the segment is set to the currently 
known RTO for the connection.



274 Part III: Transport Layer Protocols
2. After RTO number of seconds, when the RTO expires, the segment RTO is set to twice 
the RTO for the segment’s previous transmission and retransmitted.

Step 2 is repeated for the maximum number of retransmissions before the TCP connection is 
abandoned. The TcpMaxDataRetransmissions registry value controls the maximum number 
of retransmissions for TCP in Windows Server 2008 and Windows Vista.

TcpMaxDataRetransmissions
Location: HKEY_LOCAL_MACHINE\SYSTEM

\CurrentControlSet\Services\Tcpip\Parameters

Data type: REG_DWORD

Valid range: 0–0xFFFFFFFF

Default value: 5

Present by default: No

TcpMaxDataRetransmissions sets the maximum number of retransmissions of a TCP segment 
containing data before the connection is abandoned.

The following summary of Frames 5–12 of Network Monitor 3.1 Capture 13-01, included in 
the \Captures folder on the companion CD-ROM), shows the maximum number of retrans-
missions and the doubling of the RTO between successive retransmissions:

Frame   Time Offset   Time Delta     Description 

5       3.464982      0.000000       FTP: Data Transfer To Server 

6       3.464982      0.000000       FTP: Data Transfer To Server 

7       3.464982      0.000000       FTP: Data Transfer To Server 

8       3.965702      0.500720       FTP: Data Transfer To Server 

9       4.967142      1.001440       FTP: Data Transfer To Server 

10      6.970022      2.002880       FTP: Data Transfer To Server 

11      10.975782     4.005760       FTP: Data Transfer To Server 

12      18.987302     8.011520      FTP: Data Transfer To Server

This Network Monitor trace was captured from a File Transfer Protocol (FTP) client on which 
the uploading of a file was in progress and the cable connecting the network adapter of the 
FTP server was pulled. Frames 8 through 12 show the retransmission behavior of TCP. Notice 
how the initial RTO is 0.5 seconds, and successive retransmissions have RTOs that are dou-
bled. After the last retransmission, the FTP server waits 16 seconds before abandoning the 
connection and recovering the connection’s resources. It takes a total of 31.5 seconds to aban-
don the connection. The connection abandonment time is 63 times the RTO for the connec-
tion (the sum of RTO for the initial segment sent, 2*RTO for the first retransmission, 4*RTO 
for the second retransmission, 8*RTO for the third retransmission, 16*RTO for the fourth 
retransmission, and 32*RTO for the fifth retransmission).

Note The RTOs are doubled, but the elapsed time for sending the retransmitted segment 
might not be exactly doubled for other Network Monitor traces because of delays in process-
ing, queuing, and the physical transmission of network frames.
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Retransmission Behavior for New Connections

For new connections initiated by a TCP peer running Windows Server 2008 or Windows 
Vista, the maximum number of retransmissions of the synchronize (SYN) segment is two. 
TCP sends two retransmissions of a SYN segment before abandoning the connection attempt. 
Exponential backoff is used between successive retransmissions of the SYN segment. With an 
initial RTO value of 3 seconds, it takes 21 seconds to abandon a connection attempt (the sum 
of 3 seconds for the initial SYN, 6 seconds for the first retransmission, and 12 seconds for the 
second retransmission). The initial RTO’s value is set to 3 seconds.

For new connections initiated with a TCP peer running Windows Server 2008 or Windows 
Vista, the maximum number of retransmissions for the SYN-ACK segment is two. TCP sends 
two retransmissions of a SYN-ACK segment in response to a SYN segment before abandoning 
the connection attempt. Exponential backoff is used between successive retransmissions 
of the SYN-ACK segment. With an initial RTO value of 3 seconds, it takes 21 seconds to 
abandon the connection (the sum of 3 seconds for the first SYN, 6 seconds for the first 
retransmission, and 12 seconds for the second retransmission). 

Note TCP/IP in Windows Server 2008 and Windows Vista no longer supports the 
TcpMaxConnectRetransmissions and TcpMaxConnectResponseRetransmissions registry values.

Dead Gateway Detection

Dead gateway detection is an algorithm that detects the failure of the currently configured 
default gateway. If it detects a failure, dead gateway detection automatically switches to a new 
default gateway, provided there are multiple default gateways configured. Dead gateway detec-
tion uses TCP retransmission behavior to detect and recover from a downed router configured 
as the default gateway.

When an individual TCP connection retransmits a segment multiple times (half of 
TcpMaxDataRetransmissions), its next-hop IP address is changed to the next default gateway. 
When 25 percent of all TCP connections using the failed default gateway have been moved to 
the next default gateway, the default route in the IP routing table is updated with the next 
default gateway as the next-hop IP address.

If the new default gateway is unavailable, dead gateway detection is used to switch to the next 
default gateway in the configured list. When the last default gateway in the list is reached and 
becomes unavailable, the next default gateway is the first default gateway in the list. When the 
computer is restarted, the first default gateway in the list is used.
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For a detailed example of how dead gateway detection works, consider a host with the follow-
ing configuration:

■ The IP address of 10.0.0.99/24.

■ Two default gateways are configured: 10.0.0.1 and 10.0.0.2.

■ The default route 0.0.0.0/0 has 10.0.0.1 as its next-hop IP address.

■ There are currently 10 TCP connections for locations off the 10.0.0.0/24 subnet using 
10.0.0.1 as their next-hop IP address.

■ TcpMaxDataRetransmissions is set at its default value of 5.

When the router at 10.0.0.1 fails, dead gateway detection uses the following process to change 
the default route to use the next-hop IP address of 10.0.0.2:

1. A TCP connection (one of the 10 TCP connections at the host) sends a data segment. 
Because no ACK is received, the segment is retransmitted. After the third retransmission, 
the next-hop IP address for this specific TCP connection is changed to 10.0.0.2. At this 
point, 10 percent of the TCP connections using the next-hop IP address of 10.0.0.1 have 
been switched to 10.0.0.2.

2. Another TCP connection sends a data segment. Because no ACK is received, the seg-
ment is retransmitted. After the third retransmission, the next-hop IP address for this 
specific TCP connection is changed to 10.0.0.2. At this point, 20 percent of the TCP 
connections using the next-hop IP address of 10.0.0.1 have been switched to 10.0.0.2.

3. Another TCP connection sends a data segment. Because no ACK is received, the seg-
ment is retransmitted. After the third retransmission, the next-hop IP address for this 
specific TCP connection is changed to 10.0.0.2. At this point, 30 percent of the TCP 
connections using the next-hop IP address of 10.0.0.1 have been switched to 10.0.0.2.

4. Because more than 25 percent of the TCP connections using 10.0.0.1 as their next-hop 
IP address have had their next-hop IP addresses changed, the default route in the IP 
routing table is updated to use 10.0.0.2 as the next-hop IP address.

When dead gateway detection in Windows Server 2003 and Windows XP changes the default 
gateway, the new default gateway remains the primary gateway for default route traffic until 
dead gateway detection switches to the next one in the list (cycling through the list of default 
gateways) or until the computer is restarted. Therefore, dead gateway detection in TCP for Win-
dows Server 2003 and Windows XP provides a fail-over function, but not a fail-back function.

The lack of fail-back for default gateways can cause throughput problems on a subnet contain-
ing two routers: a high-capacity primary router and a lower-capacity backup router. The hosts 
on the subnet have the high-capacity router as their first default gateway and the backup 
router as their second default gateway. If the high-capacity router has a temporary failure, 
hosts on the subnet switch over to the backup router. When the high-capacity router becomes 
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available again, none of the hosts on the network use it because they have switched to the 
backup router.

TCP/IP in Windows Server 2008 and Windows Vista provides fail-back for default gateway 
changes by periodically attempting to send TCP traffic through the previous gateway. If the 
TCP traffic sent through the previous gateway is successful, TCP/IP in Windows Server 2008 
and Windows Vista switches the default gateway to the previous gateway.

In our example with the high-capacity router and backup router, if the neighboring high-
capacity router becomes unavailable, the hosts on the subnet use neighbor unreachability 
detection to switch their default gateways to the backup router. Neighbor unreachability 
detection for IPv4 is described in Chapter 3, “Address Resolution Protocol (ARP).” The hosts 
then periodically attempt to send TCP traffic through the high-capacity router. When the high-
capacity router becomes available and the hosts determine that TCP traffic sent through the 
high-capacity router is successful, the hosts switch their default gateway back to the high-
capacity router. 

Support for fail-back to primary default gateways can provide faster throughput by sending 
traffic through the primary default gateway on the subnet.

Note Dead gateway detection can change the default gateway configuration even when 
the local default gateway is functioning and a remote router fails. If a remote router in the path 
of traffic for TCP connections fails, TCP retransmissions for multiple TCP connections can cause 
dead gateway detection to switch default gateways.

Note TCP/IP in Windows Server 2008 and Windows Vista no longer supports the 
EnableDeadGWDetect registry value.

Forward RTO-Recovery

Spurious retransmissions of TCP segments can occur when there is a sudden and temporary 
increase in the RTT. When the increase occurs, the RTOs of previously sent segments begin to 
expire and TCP starts retransmitting them. If the increase occurs just before sending a full 
window of data, a sender can retransmit the entire window of data. To prevent spurious 
retransmission of TCP segments, TCP in Windows Server 2008 and Windows Vista supports 
the Forward RTO-Recovery (F-RTO) algorithm defined in RFC 4138. F-RTO prevents spuri-
ous retransmission of TCP segments through the following behavior:

■ When the RTO expires for multiple segments, TCP retransmits just the first segment. 
When the first acknowledgement is received, TCP begins sending new segments (if 
allowed by the advertised window size). If the next acknowledgment acknowledges the 
other segments that have timed out but have not been retransmitted, TCP determines 
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that the time-out was spurious and does not retransmit the other segments that have 
timed out.

The result of this behavior is that for environments that have sudden and temporary increases 
in the RTT, such as when a wireless client roams from one wireless access point (AP) to 
another, F-RTO prevents unnecessary retransmission of segments and more quickly returns 
to its normal sending rate. 

For the details of the F-RTO algorithm, see RFC 4138.

More Info All of the RFCs referenced in this chapter can be found in the 
\Standards\Chap13_TCPRetrans folder on the companion CD-ROM.

Using the Selective Acknowledgment (SACK) TCP Option

The SACK TCP option, defined in RFC 2018, allows the receiver to selectively acknowledge 
noncontiguous blocks of data received. However, the sender should not discard selectively 
acknowledged segments from its transmission queue until the segments are included in a 
cumulative acknowledgment.

RFC 2018 allows the data receiver to discard noncontiguous segments even though they have 
been selectively acknowledged. This is known as reneging on a selective acknowledgment, 
and its practice is discouraged. To keep reneged data from being lost on a connection, the 
sender must retransmit selectively acknowledged data until it is acknowledged by the 
Acknowledgment Number field in an ACK from the receiver. The retransmission behavior 
of selectively acknowledged segments is as follows:

1. For each segment, maintain a selective acknowledgment flag that is enabled when the 
segment is selectively acknowledged.

2. When initial RTO timers begin to expire, only retransmit the segments that have not 
been selectively acknowledged (segments for which the selective acknowledgment flag 
is disabled).

3. If an ACK is received that cumulatively acknowledges the retransmitted segment, the 
send window closes and opens depending on the new Acknowledgment Number + 
Window sum, and new segments can be sent. The selective acknowledgment flags on 
noncumulatively acknowledged segments are maintained.

4. If a retransmitted segment times out, indicating that the receiver might have reneged on 
the selectively acknowledged segments, disable the selective acknowledgment flags of 
all segments in the current window and retransmit them normally.

This mechanism recovers from the possibility that the receiver discarded the noncontiguous 
received segments. If necessary, the entire window of data is resent.
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Using SACKs to Indicate Duplicate Received Packets

TCP in Windows Server 2008 and Windows Vista supports RFC 2883, which defines an addi-
tional use of the fields in the SACK TCP option to acknowledge duplicate packets. This allows 
the sender to determine when it has retransmitted a segment unnecessarily and adjust its 
behavior to prevent future retransmissions. The fewer retransmissions that are sent, the better 
the overall throughput.

Calculating the RTO
The determination of the RTO is an important function of TCP. The RTO must be adjusted to 
the internetwork’s changing conditions. If the determined RTO is less than the RTT, segments 
are unnecessarily retransmitted.

In RFC 793, the suggested method of computing the RTO—known as the smoothed round-
trip time (SRTT)—is based on the following formulas: 

SRTT = (α*SRTT) + ((1-α)*RTT)
RTO = min[UpperBound, max[LowerBound,(β *SRTT)]]

Thus, the new RTO is based on the determination of the current RTT, the previous SRTT, a 
smoothing factor (α), and a variance factor (β) . In practice, this formula was found to be 
inadequate in determining the RTO in an environment in which the RTT changed suddenly. 
Instead, RFC 1122 states that TCP must use the following formulas as documented in 
“Congestion Avoidance and Control,” a paper written by Van Jacobson and Michael J. Karels:

SRTT = RTT + 8*(New_RTT - RTT) 

Dev = Dev + (|New_RTT - RTT| - Dev)/4 

RTO = SRTT + Dev/4

This new way of calculating the RTO is based on the average and variance (Dev) of the RTT. 
The RTO is self-tuning for different environments (the low-delay local area network [LAN] and 
the high-delay wide area network [WAN]) and is sensitive to sudden changes in the RTT for 
environments such as the Internet.

RTO calculation is described in detail in RFCs 793 and 1122.

For TCP in Windows Server 2008 and Windows Vista, the RTO’s initial value for establishing 
connections or sending data on new connections is 3 seconds for SYN segments, SYN-ACK 
segments, and initial data segments sent on a new connection for each interface. 

As data segments are sent, the RTO is adjusted from 3 seconds to a value closer to the connec-
tion’s RTT. By default, the connection’s RTT is not sampled for each segment sent. Rather, the 
RTT is sampled once for every full send window of data sent. If the send window is 12*MSS 
(maximum segment size), the RTT is sampled once every 12 segments. For each sample of the 
RTT, the time that the sampled segment is sent is recorded based on the current value of an 
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internal clock. When the ACK for the segment is received, the RTT is determined from the 
difference between the recorded value of when the segment was sent and the current value of 
the internal clock.

The RTT sampling rate is 1/(window size). For small window sizes, this sampling rate is ade-
quate. However, for large windows, the sampling rate is inadequate and cannot keep up with 
rapid changes in the RTT. The result is increased network bandwidth utilization by unneces-
sary retransmissions when the currently known RTO is less than the current RTT. In these 
situations, the TCP Timestamps option is used to provide a sampling rate that is equal to the 
sending rate.

Note TCP/IP in Windows Server 2008 and Windows Vista no longer supports the 
TcpInitialRTT registry value.

Using the TCP Timestamps Option

As described in Chapter 10, “Transmission Control Protocol (TCP) Basics,” the TCP Time-
stamps option allows TCP peers to place a timestamp value on each segment. The TCP 
Timestamps option contains two 32-bit fields to track timestamps: TS Value and TS Echo 
Reply. The TS Value field stores the current timestamp value. The TS Echo Reply field stores 
the timestamp echo, the value of the TS Value field of the segment being acknowledged.

The use of TCP timestamps allows an RTT to be calculated by subtracting the timestamp echo 
in the ACK from the current time value of the timestamp clock.

As an example, TCP Peer A sends a data segment to TCP Peer B, which sends an ACK back. 
The data segment’s TS Value is 1285458 when it is sent and is echoed in the ACK segment’s 
TS Echo Reply field. When the ACK is received and processed, the current value of TCP Peer 
A’s timestamp clock is 1286506. Therefore, the RTT for this segment is based on the TCP 
timestamp value of 1048, or 1286506 – 1285458.

This basic method of RTT determination is complicated by the following factors:

■ There might be pauses in sending data.

■ ACKs are delayed and can acknowledge multiple TCP segments.

■ Segments can arrive out of sequence.

■ Segments can be dropped and must be retransmitted.

Figure 13-1 illustrates the problem with pauses in sending data. TCP Peer A sends TCP Peer B 
a series of segments and then pauses. Then TCP Peer A sends more segments. The new seg-
ment after the pause has the TS Echo Reply field set to the TS Value field of the last ACK 
received. If TCP Peer B now calculates the RTT for the last ACK sent, the RTT is inflated by the 
time of the pause in sending data.
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Figure 13-1 The behavior of TCP timestamps with pauses in data

From Figure 13-1, the TCP timestamp interval calculated from TCP segment 5 is 1898 (10951 
– 9053), clearly the wrong value, as it includes the pause in sending data. With an RTO 
adjusted to this higher value of the RTT, throughput for data sent by TCP Peer 2 is not optimal 
because the RTO is too high. To prevent this behavior, the RTT is calculated only for TCP seg-
ments that acknowledge new data sent. Therefore, in the example shown in Figure 13-1, the 
RTT is calculated only by TCP Peer A. TCP Peer B does not calculate RTT because the seg-
ments received by TCP Peer B do not acknowledge data sent by TCP Peer B.

For delayed ACKs, segments that arrive out of order, and retransmitted segments, the value of 
TS Echo Reply for ACKs is based on the following algorithm:

1. For correct TCP timestamp behavior, TCP keeps track of two variables for each connec-
tion: tsrecent is the value of the TS Echo Reply that will be sent in the next ACK, and 
lastack is the value of the Acknowledgment Number field from the last ACK sent.

2. After receipt of a new segment, if the segment contains the byte numbered lastack, which 
means that a contiguous segment has arrived, update tsrecent with the value of the TS 
Value field from the arriving segment. If the segment does not contain lastack, ignore the 
value of the TS Value field of the arriving segment.

3. When sending a segment with the TCP Timestamp option, set the value of TS Echo 
Reply to the value of tsrecent.

4. When sending an ACK, set the value of lastack to the value of the Acknowledgment 
Number field in the ACK.

For delayed acknowledgments, the RTT determination must include the acknowledgment 
delay. Therefore, when sending a delayed acknowledgment, the TS Echo Reply of the delayed 
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ACK on Block 1, TS Value=9020, TS Echo Reply=100 
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ACK on Block 3, TS Value=10951, TS Echo Reply=2057 
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ACK is set to the TS Value of the first segment being acknowledged. Figure 13-2 illustrates this 
behavior.

Figure 13-2 The behavior of TCP timestamps for delayed acknowledgments

Prior to receiving any TCP segments, the value of tsrecent is 10 and the value of lastack is 1000. 
When TCP segment 1 arrives, it contains the lastack byte, and therefore, tsrecent is updated 
with the TS Value of 100. When TCP segment 2 arrives, it does not contain the lastack byte, 
and tsrecent remains at the value of 100. When TCP segment 3 arrives, it does not contain the 
lastack byte, and tsrecent remains at the value of 100. When the delayed ACK is sent, the value 
of TS Echo Reply is set to tsrecent, and lastack is set to the value of the Acknowledgment 
Number field.

When segments arrive out of sequence, the value of tsrecent, and therefore the value of TS 
Echo Reply, is not updated. TS Echo Reply and tsrecent are updated only when the missing 
segment(s) arrives. Figure 13-3 illustrates this behavior.

Prior to receiving any TCP segments, the value of tsrecent is 10 and the value of lastack is 1000. 
When TCP segment 1 arrives, it contains the lastack byte, and therefore, tsrecent is updated 
with the TS Value field value of 100. When the ACK on segment 1 is sent, the value of TS Echo 
Reply field is set to tsrecent, and lastack is set to the Acknowledgment Number field’s value.

When TCP segment 3 arrives, it does not contain the lastack byte, and tsrecent remains at the 
value of 100. When TCP segment 2 arrives, it does contain the lastack byte, and the value of 
tsrecent is updated.
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Chapter 13: Transmission Control Protocol (TCP) Retransmission and Time-Out 283
Figure 13-3 The behavior of TCP timestamps for out-of-order segments

When a segment is dropped and must be retransmitted and the segments arrive out of 
sequence, the value of tsrecent, and therefore the value of the TS Echo Reply field, is not 
updated. Because the RTT does not include the RTO for the retransmitted segment, tsrecent 
and TS Echo Reply are updated only when the missing retransmitted segment arrives. 
Figure 13-4 illustrates this behavior.

Figure 13-4 The behavior of TCP timestamps for retransmitted segments
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Prior to receiving any TCP segments, the value of tsrecent is 10 and the value of lastack is 1000. 
When TCP segment 1 arrives, it contains the lastack byte, and therefore, tsrecent is updated 
with the TS Value of 100. When the ACK on segment 1 is sent, the value of TS Echo Reply is 
set to tsrecent, and lastack is set to the value of the Acknowledgment Number field.

When TCP segment 3 arrives, it does not contain the lastack byte, and tsrecent remains at the 
value of 100. When the retransmitted TCP segment 2 arrives, it does contain the lastack byte, 
and the value of tsrecent is updated.

Karn’s Algorithm

When calculating the RTT for a TCP segment being sent, the time at which the segment is sent 
is recorded. If the RTO expires, an exact duplicate is sent and its time is recorded. When the 
ACK is received, how is the RTT computed? When the TCP Timestamps option is not being 
used, the ACK does not distinguish between the original TCP segment and its retransmitted 
copy. TCP has the problem of acknowledgment ambiguity. When multiple copies of a TCP 
segment are sent, the ACK does not identify a specific instance of the TCP segment being 
acknowledged.

If we choose to calculate the RTT based on the first instance of the segment and the first 
instance is lost, the measured RTT is larger than the actual RTT for the connection because it 
includes the RTO for retransmitting the segment. The measured RTT is the difference between 
the time the first segment was sent and the time the ACK for the retransmitted instance was 
received. The new RTO grows larger than it should, resulting in lowered throughput for 
retransmitted segments. As more TCP segments are lost, the RTO based on this method of 
RTT calculation grows larger.

If we choose to calculate the RTT based on the retransmitted instance of the segment, and the 
RTO expired as a result of a sudden increase in the RTT, the ACK for the first instance arrives 
soon after the retransmitted segment is sent. The measured RTT (the difference between the 
time the retransmitted segment was sent and the time the ACK for the first instance was 
received) is now smaller than the connection’s actual RTT. The updated RTO gets smaller 
when it should get larger, eventually resulting in unnecessary retransmissions for subsequent 
segments.

To prevent these conditions from incorrectly changing the RTO, RTT measurements for TCP 
segments that have been retransmitted are ignored. Only the RTT for ACKs that are acknowl-
edging a single instance of a TCP segment are considered. However, ignoring the RTT for 
retransmitted segments introduces a new problem. When the actual RTT increases suddenly, 
the RTO for a TCP segment is too small and results in a retransmission. Because the RTT is not 
calculated for the retransmitted segment, the RTO remains at its inadequate value. Subse-
quent TCP segments sent would also be retransmitted.

To keep subsequent TCP segments from being sent with an inadequate RTO when the actual 
RTT increases suddenly, TCP/IP implementations, including TCP/IP for the Windows Server 



Chapter 13: Transmission Control Protocol (TCP) Retransmission and Time-Out 285
2008 and Windows Vista, use Karn’s algorithm. Karn’s algorithm is named after its creator, 
Phil Karn, in the paper “Improving Routing-Trip Time Estimates in Reliable Transport Proto-
cols,” by Phil Karn and Craig Partridge. Karn’s algorithm states that when an ACK for a 
retransmitted segment arrives, it should not be used to update the RTO. However, the RTO of 
the retransmitted segment (that has been exponentially backed off) should be used as a tem-
porary RTO for subsequent TCP segments. When an ACK for a nonretransmitted TCP seg-
ment arrives, use its RTT to update the RTO. Then, use the updated RTO for subsequent TCP 
segments.

For example, if the RTO for a TCP connection is 300 ms and the actual RTT for the connection 
suddenly rises to 400 ms, Karn’s algorithm causes the following behavior:

1. Segment A is sent, and its RTO is set to 300 ms.

2. Because the RTO for Segment A is lower than the connection’s actual RTT, the RTO for 
Segment A expires. Segment A’s RTO is set to 600 ms and retransmitted (using expo-
nential backoff and a factor of 2).

3. The ACK for Segment A arrives (400 ms after the first instance of Segment A was sent).

4. Because the ACK is for a retransmitted segment, it is not used to update the RTO.

5. TCP temporarily sets the RTO for subsequent segments to 600 ms (the RTO of the 
retransmitted Segment A).

6. Segment B is transmitted and Segment B’s RTO is set to 600 ms.

7. The ACK for Segment B arrives in 400 ms.

8. Because the ACK is for a segment that has not been retransmitted, its RTT is calculated 
and used to update the RTO.

9. Subsequent segments are sent using the updated RTO.

Karn’s Algorithm and the Timestamps Option

Karn’s algorithm applies when the ACKs are ambiguous—when TCP cannot distinguish the 
original TCP segment from a retransmitted instance. However, with the TCP Timestamps 
option, each TCP segment has a steadily increasing timestamp clock value (the TS Value field 
in the TCP Timestamps option header) and is, therefore, unique within the time that seg-
ments are being retransmitted. The ACK for different instances of a TCP segment can be dis-
tinguished from another because the ACK contains the echo of the timestamp value of the 
segment being acknowledged. Therefore, Karn’s algorithm does not apply when TCP times-
tamps are being used.

If a segment is retransmitted because of a segment loss, the ACK for the retransmitted seg-
ment contains the timestamp value for the retransmitted segment, and not the original seg-
ment. Therefore, the RTT is accurately calculated as the difference in the current TCP time 
clock and the ACK’s timestamp echo.
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If a segment is retransmitted because of a sudden increase in RTT, the ACK contains the times-
tamp value of the first instance. Therefore, the RTT is accurately calculated as the difference in 
the current TCP time clock and the timestamp echo in the ACK for the first segment.

Fast Retransmit and Fast Recovery
When a TCP segment arrives and the sequence number is not the next sequence number the 
receiver was expecting (a noncontiguous, out-of-order segment), an immediate ACK is sent 
with the Acknowledgment Number field set to the next sequence number the receiver was 
expecting. This ACK is a duplicate of an ACK that was previously sent and is not subject to the 
delayed acknowledgment behavior for new contiguous data received.

After receipt of this duplicate ACK, the sender cannot determine whether the duplicate ACK 
was sent by the receiver because of a TCP segment that arrived out of order or because a 
segment was lost.

■ If a TCP segment arrived out of order, the TCP segment that contains the next byte the 
receiver expects to receive should arrive at the receiver shortly thereafter, and a cumula-
tive ACK is sent. Therefore, for out-of-order segments, only one or two duplicate ACKs 
are likely to be sent.

■ If a TCP segment is lost, all of the segments beyond the contiguous segment that arrive 
at the receiver generate an immediate duplicate ACK. Therefore, if three or more dupli-
cate ACKs arrive at the sender, the TCP segment containing the next byte the receiver 
expects is most likely lost and must be retransmitted.

Fast retransmit is the retransmission of a TCP segment before the RTO for the segment 
expires, based on the receipt of three duplicate ACKs where the ACK’s acknowledgment num-
ber is the retransmitted segment’s sequence number. The retransmitted segment is the miss-
ing segment. Fast retransmit is defined in RFC 2581.

As Figure 13-5 illustrates, TCP Peer A sends five TCP segments and the first segment is lost. As 
the noncontiguous segments arrive, TCP Peer B sends an immediate ACK with the ACK num-
ber it expects to receive. After the third duplicate ACK for sequence number 1000, TCP Peer A 
retransmits the first segment.

TCP in Windows Server 2008 and Windows Vista supports the Limited Transmit algorithm 
defined in RFC 3042. With Limited Transmit, TCP sends additional segments when two con-
secutive duplicate ACKs have been received to help ensure that fast retransmit will be used to 
detect a lost packet, rather than an RTO. Figure 13-6 shows an example of limited transmit 
behavior for the situation previously described when TCP Peer A is running Windows Server 
2008 or Windows Vista.



Chapter 13: Transmission Control Protocol (TCP) Retransmission and Time-Out 287
Figure 13-5 Fast retransmit behavior when the first of five segments is dropped

Figure 13-6 Fast retransmit behavior when combined with limited transmit

In Figure 13-6, TCP Peer A transmits Segment 6 upon receiving the first two duplicate ACKs 
for Segment 1. In this case, transmitting Segment 6 was not needed to detect and recover Seg-
ment 1. However, if Segment 4 and Segment 5 were lost, then only two duplicate ACKs would 
be received by TCP Peer A. If Segment 6 was successfully received by TCP Peer B, its duplicate 
ACK would allow TCP Peer A to detect that Segment 1 was lost. For more information about 
Limited Transmit, see Chapter 12, “Transmission Control Protocol (TCP) Data Flow.”
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Note TCP/IP in Windows Server 2008 and Windows Vista no longer supports the 
TcpMaxDupAcks registry value.

Fast Recovery

Fast retransmit causes the sender to retransmit the missing TCP segment before its RTO 
expires. If the RTO expires, slow start and congestion avoidance algorithms are used to grad-
ually increase the actual send window up to the advertised receive window. Because the RTO 
did not expire, congestion avoidance is performed, but not slow start. This behavior is known 
as fast recovery and is described in RFC 2581. For more information about slow start and con-
gestion avoidance, see Chapter 12, “Transmission Control Protocol (TCP) Data Flow.”

Fast recovery assumes that the arrival of duplicate ACKs indicates that segments sent before 
the missing TCP segment have already been received and are not adding to the internetwork 
congestion. Therefore, TCP can scale the congestion window faster than when using 
slow start.

The fast recovery algorithm is defined as follows:

1. After receipt of the third duplicate ACK, the value of the slow start threshold (ssthresh) 
is set to one half the value of the congestion window (cwind), with a minimum value 
of 2*MSS.

2. The missing segment is retransmitted and cwind is set to (ssthresh + 3*MSS). This 
increases cwind to a value that reflects the receipt of three TCP segments at the receiver 
(based on the receipt of three duplicate ACKs).

3. For each additional duplicate ACK, cwind is increased by MSS. Once again, cwind is 
being increased because of an additional segment that has arrived at the receiver.

4. If allowed by the values of cwind and the advertised receive window size, the next TCP 
segment(s) is transmitted.

5. When the ACK arrives that acknowledges the receipt of the missing new segment and 
all other contiguous segments, cwind is set to the value of ssthresh. At this value of cwind, 
slow start is avoided and congestion avoidance is performed.

SACK-based Loss Recovery

TCP for Windows Server 2003 and Windows XP uses SACK information only to determine 
which TCP segments have not arrived at the destination. TCP in Windows Server 2008 and 
Windows Vista supports RFC 3517, which defines a method of using SACK information to 
perform loss recovery when duplicate acknowledgments have been received, effectively 
replacing the fast recovery algorithm when SACK is enabled on a connection. TCP in Win-
dows Server 2008 and Windows Vista keeps track of SACK information on a per-connection 
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basis and monitors incoming acknowledgments and duplicate acknowledgments to more 
quickly recover when multiple segments are not received at the destination.

For details of the SACK-based loss recovery algorithm, see RFC 3517.

NewReno Support for Fast Recovery

TCP for Windows Server 2003 and Windows XP supports the Fast Recovery algorithm 
defined in RFC 2581, which defined the Reno algorithm. The Reno algorithm increases the 
amount of data that a sender can send when a segment is retransmitted due to a fast retrans-
mit event. Although the Reno algorithm works well for single lost segments, it does not per-
form as well when there are multiple lost segments. 

TCP for Windows Server 2008 and Windows Visa supports the NewReno algorithm defined 
in RFC 2582. The NewReno algorithm provides faster throughput by changing the way that 
senders can increase their sending rate during fast recovery when multiple segments in a win-
dow of data are lost and the sender receives a partial acknowledgment (an acknowledgment 
for only part of the data that has been successfully received). 

For details of the NewReno algorithm, see RFC 2582.

Summary
To recover from lost TCP segments, TCP connections maintain an RTO for each segment. If 
the RTO expires, the segment is retransmitted, and the RTO is doubled for the retransmitted 
segment. After a maximum number of retransmissions, TCP abandons the connection. The 
RTO is based on calculations from samples of the RTT, using either a single sample per win-
dow of data or TCP timestamps. When TCP segments are sent without timestamps, TCP uses 
Karn’s algorithm to update the RTO when an ACK for a retransmitted segment is received. 
Fast retransmit resends a missing segment before its RTO expires, based on the receipt of mul-
tiple duplicate ACKs. Fast recovery increases the size of the actual send window more quickly 
when fast retransmit occurs.
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DHCP is a simple client/server protocol that simplifies the management of host computer IP 
addresses and other configuration settings. This chapter describes the details of DHCP mes-
sages and common DHCP message exchanges.

Note This chapter assumes prior knowledge of the benefits of DHCP, DHCP operation, the 
components of a DHCP infrastructure (DHCP client, DHCP server, and DHCP relay agent), and 
basic installation and configuration of those components provided with Microsoft Windows. 
For more information, see Chapter 6, “Dynamic Host Configuration Protocol,” of the “TCP/IP 
Fundamentals for Microsoft Windows” book, located in the \Fundamentals folder on the 
companion CD-ROM.

DHCP Messages
DHCP clients and DHCP servers communicate by exchanging DHCP messages. There are 
eight types of DHCP messages, all of which are sent as User Datagram Protocol (UDP) 
messages. DHCP clients in the process of obtaining an IP address configuration use broadcast 
DHCP messages, sent to the limited broadcast IP address 255.255.255.255. DHCP clients 
with an IP address and a valid lease use unicast DHCP messages. DHCP clients listen on UDP 
port 68. DHCP servers and DHCP relay agents listen on UDP port 67.

The eight DHCP message types are the following:

■ DHCPDISCOVER Sent by a DHCP client to locate a DHCP server.

■ DHCPOFFER Sent by a DHCP server to a DHCP client in response to the DHCP-
DISCOVER message, containing an offered IP address and other configuration settings.

■ DHCPREQUEST Sent by the DHCP client to DHCP servers to request an offered IP 
address and other configuration settings from a specified DHCP server while implicitly 
293



294 Part IV: Application Layer Protocols and Services
declining offers from other servers, or to confirm the validity of previously allocated 
addresses (for example, after a restart or to extend an existing DHCP lease).

■ DHCPACK Sent by a DHCP server to a DHCP client in response to a DHCPREQUEST 
message to confirm an IP address and provide the client with those configuration 
parameters that the client has requested and the server has been configured to provide.

■ DHCPNAK Sent by a DHCP server to a DHCP client denying the client’s 
DHCPREQUEST. This might occur if the requested address is incorrect because the 
client has moved to a new subnet or because the DHCP client’s lease has expired and 
cannot be renewed.

■ DHCPDECLINE Sent by a DHCP client to a DHCP server, informing the server that the 
offered IP address is unusable because it is in use by another computer.

■ DHCPRELEASE Sent by a DHCP client to a DHCP server, relinquishing an IP address 
and canceling the remaining lease.

■ DHCPINFORM Sent from a DHCP client to a DHCP server, requesting additional con-
figuration settings; the client already has a configured IP address. This message type is 
also used for rogue DHCP server detection in Windows Server 2008.

DHCP messages, options, and protocol operation are defined in RFCs 2131 and 2132. 

More Info All of the RFCs referenced in this chapter can be found in the 
\Standards\Chap14_DHCP folder on the companion CD-ROM.

DHCP Message Format

Figure 14-1 shows the structure of all DHCP messages.

The fields in the DHCP message are the following:

■ Message Op Code (Op) A 1-byte field that indicates whether the message is a request 
(set to 1) or a reply (set to 2).

■ Hardware Address Type (Htype) A 1-byte field that indicates the type of hardware 
being used by the DHCP client. This field uses the same values as the Hardware Type 
field in the Address Resolution Protocol (ARP) header. For more information, see 
Chapter 3, “Address Resolution Protocol (ARP).” For a complete list of ARP Hardware 
Type values, see http://www.iana.org/assignments/arp-parameters.

■ Hardware Address Length (Hlen) A 1-byte field that indicates the number of high-
order bytes within the fixed-length Client Hardware Address field that contains the 
client’s hardware address. For commonly used IEEE 802-based technologies, such as 
Ethernet and IEEE 802.11, the value of this field is 6.
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Figure 14-1 DHCP message format

■ Hops A 1-byte field that indicates how many DHCP relay agents have forwarded the 
message. The initial value is 0. When a DHCP relay agent forwards a DHCP message on 
behalf of either a DHCP client or a DHCP server, it increments this field. The maximum 
number of hops in a DHCP infrastructure is 16. If the value is greater than 16, the receiv-
ing DHCP relay agent silently discards the message. DHCP relay agents can also discard 
DHCP messages if this field exceeds a configurable value. For example, the DHCP Relay 
Agent component of Routing and Remote Access in Windows Server 2008 uses a default 
maximum of 4 hops.

■ Transaction ID (Xid)  A 4-byte field that contains a random number derived by the 
DHCP client to group all of the DHCP messages of a given message exchange together, 
such as all of the messages for a lease acquisition.

■ Seconds (Secs)  A 2-byte field set by the DHCP client to indicate the number of seconds 
that have elapsed since the client began the address acquisition process. 

■ Flags  A 2-byte field that indicates flags that are set by the DHCP client. RFC 2131 defines 
the high-order bit as the Broadcast flag. A DHCP client uses the broadcast flag to indi-
cate that it can (set to 0) or cannot (set to 1) receive unicast IP datagrams even though 
it has not been configured with an IP address. Windows Server 2008 and Windows 
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Vista-based DHCP clients set the Broadcast flag to 1 (responses must be broadcast). If 
the DHCP server has been configured to process this flag, it will send its response as 
either a unicast (when the Broadcast flag is set to 0) or as a broadcast (when the Broad-
cast flag is set to 1).

■ Client IP Address (Ciaddr) A 4-byte field that indicates a DHCP client’s IP address. This 
field is set by the DHCP client in DHCP messages when it has been successfully configured 
with the IP address and can respond to ARP requests to defend the use of the address.

■ Your IP Address (Yiaddr) A 4-byte field that indicates the IP address that is being 
allocated to the DHCP client by the DHCP server.

■ Server IP Address (Siaddr) A 4-byte field that indicates the IP address of the DHCP 
server that is offering an IP address.

■ Gateway IP Address (Giaddr) A 4-byte field that indicates an IP address that is 
assigned to the interface on the initial DHCP relay agent that received the message from 
the DHCP client. The initial DHCP relay agent is located on the same subnet as the 
DHCP client that broadcast the DHCP request message (either a DHCPDISCOVER or 
DHCPREQUEST message). By recording an IP address for the subnet of the DHCP 
client in this field, the DHCP server can determine the proper scope from which to 
assign an IP address to the requesting DHCP client.

■ Client Hardware Address (Chaddr) A 16-byte field that indicates the hardware address 
of the DHCP client. To determine how many bytes are used for the hardware address, the 
DHCP server and relay agent use the value of the Hardware Address Length field. For 
commonly used IEEE 802-based technologies, this field contains the 6-byte media access 
control (MAC) address of the Ethernet or 802.11 network adapter of the DHCP client and 
10 bytes set to 0.

■ Server Host Name (Sname) A 64-byte field that indicates a name for the DHCP server. 
The DHCP Server service in Windows Server 2008 does not use this field.

■ Boot File Name (File) A 128-byte field that indicates the name of the file containing a 
boot image for a BOOTP client. BOOTP was developed before DHCP to allow a diskless 
host computer to obtain an IP address configuration, the name of a boot file, and the 
location of a Trivial File Transfer Protocol (TFTP) server from which the computer loads 
the boot file. DHCP message exchanges do not use this field.

■ Options A variable-length set of fields containing DHCP options.

Use of the Broadcast Flag
By default, the DHCP Server service in Windows Server 2008 ignores the Broadcast flag 
in the Flags field of broadcast-based DHCP messages received by DHCP clients. To 
configure the DHCP Server service to process the Broadcast flag, create and set the 
IgnoreBroadcastFlag registry value to 0.
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IgnoreBroadcastFlag
Location: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DhcpServer\Parameters 

Data type: REG_DWORD 

Valid range: 0–1 

Default value: 1 

Present by default: No

As Figure 14-1 shows, DHCP messages consist of a fixed portion 236 bytes long and a 
variable-length portion for DHCP options. Because DHCP messages are transmitted using 
UDP, all DHCP messages must fit into a UDP datagram. This limits the variable-length portion 
of a DHCP message to the IP maximum transmission unit (MTU) minus 264 bytes, which 
allows for 20 bytes for the IP header and 8 bytes for the UDP header. For Ethernet, with an IP 
MTU of 1500 bytes, DHCP messages can contain up to 1236 bytes of DHCP options.

DHCP Options

A DHCP option is an IP address configuration setting that is not already included in the fixed 
DHCP header. For example, there is no DHCP option for the IP address allocated to the 
DHCP client because that is already indicated in the Your IP Address field. There are DHCP 
options for lease management, such as the lease timeout values, and options for configuration 
settings explicitly requested by DHCP clients, such as the default gateway IP address.

The Windows Server 2008 DHCP Server service supports the standard DHCP option types 
defined in RFC 2131 and 2132 and vendor-specific DHCP options that you can use to provide 
Windows-based DHCP clients with additional configuration settings. 

Figure 14-2 shows the format for DHCP options.

Figure 14-2 DHCP option format

The fields in a DHCP option are the following:

■ Option Type A 1-byte field that indicates the type of DHCP option. For a complete list, 
see http://www.iana.org/assignments/bootp-dhcp-parameters. 

■ Option Length A 1-byte field that indicates the number of bytes in the DHCP option 
past the Option Length field.

■ Option Data A variable-length field that contains the data for the DHCP option.

. .  . 

Option Type

Option Length

Option Data
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There are fixed-length options without data, fixed-length options with data, and variable-
length options with data. The only fixed-length options without data are the Pad (Option 
Type 0) and End (Option Type 255) options.

Table 14-1 lists the set of the DHCP options that are most commonly used for Windows-based 
DHCP clients and servers.

Table 14-1 DHCP Options for Windows-based DHCP Clients and Servers

Option Name

Option 
Code 
(Decimal)

Option 
Length Value Option Description

Pad 0 N/A Used to cause subsequent fields to align. Can be 
used in any DHCP message. The Pad option con-
sists of a single byte, the Option Code field set 
to 0.

Subnet Mask 1 4 bytes Indicates the subnet mask for an offered IP 
address. Used in DHCPOFFER and DHCPACK 
messages.

Router 3 Variable; but 
always a multiple 
of 4 bytes

Indicates a list of IP addresses for routers on the 
client’s subnet, which should be listed in order of 
preference. Typically, there is only one router—
the default gateway—but multiple routers can 
be specified.

Domain Name 
Servers

6 Variable; but 
always a multiple 
of 4 bytes

Indicates a list of IP addresses for DNS servers.

Host Name 12 Variable length; 
minimum length 
is 1 byte

Specifies the name of the client. Used in 
DHCPDISCOVER, DHCPREQUEST, and 
DHCPNAK messages.

DNS Domain 
Name

15 Variable-length 
set of ASCII char-
acters; minimum 
length is 1 byte

Specifies the DNS domain name that the DHCP 
client should use when resolving host names 
using DNS.

Perform Router 
Discovery

31 1 byte Indicates whether the client should use Router 
Discovery to discover the routers on its subnet.

Static Route 33 Variable; but 
always a multiple 
of 8

Indicates the Internet address class-based desti-
nation IP address prefix and next-hop IP address 
(a router) for one or multiple static routes that 
the DHCP client adds to their local IP routing 
table.

Vendor-specific 
Information

43 Variable length Used by clients and servers to exchange vendor-
specific information. The definition of this infor-
mation is vendor-specific and is not defined in 
RFC 2132.

WINS/NBNS 
Servers

44 Variable; but 
always a multiple 
of 4

Indicates a list of WINS server IP addresses. This 
is typically a primary and secondary WINS server.
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NetBIOS Over 
TCP/IP Node 
Type

46 1 byte Indicates how NetBIOS names should be 
resolved, as follows:

1 –  B-node (broadcast)

2 –  P-node (point-to-point)

4 – M-node (mixed)

8 –  H-node (hybrid)

NetBIOS Scope 
ID

47 Variable; mini-
mum length is 1

Specifies the NetBIOS over TCP/IP scope.

Requested 
Address

50 4 bytes Indicates whether the DHCP client is requesting 
(or declining) this address. This is used in 
DHCPREQUEST, DHCPDECLINE, and 
DHCPDISCOVER messages.

Lease Time 51 4 bytes Indicates the length of the lease time in seconds.

DHCP Message 
Type

53 1 byte Indicates the DHCP message type. The values are 
as follows:

1 –  DHCPDISCOVER

2 –  DHCPOFFER

3 –  DHCPREQUEST

4 –  DHCPDECLINE

5 –  DHCPACK

6 –  DHCPNAK

7 –  DHCPRELEASE

8 –  DHCPINFORM

Used in all DHCP messages.

Server Identifier 54 4 bytes Indicates the DHCP server’s IP address. This is 
used in DHCOFFER, DHCPREQUEST, DHCPACK, 
DHCPDECLINE, and DHCPRELEASE messages.

Parameter 
Request List

55 Variable length; 
minimum length 
is 1 byte.

Indicates the list of DHCP options that a DHCP 
client needs. Each byte in this option is a DHCP 
option code value. This is used in DHCPDISCOVER, 
DHCPREQUEST, and DHCPINFORM messages.

Renewal Time 
(T1)

58 4 bytes Indicates the length of time, in seconds, until the 
client enters renewal state. This is used in 
DHCPOFFER and DHCPACK messages.

Rebinding Time 
(T2)

59 4 bytes Indicates the length of time, in seconds, until the 
client enters rebinding state. This is used in 
DHCPOFFER and DHCPACK messages.

Table 14-1 DHCP Options for Windows-based DHCP Clients and Servers

Option Name

Option 
Code 
(Decimal)

Option 
Length Value Option Description
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DHCP clients running Windows Server 2008 or Windows Vista include the following DHCP 
options in the Parameter Request List DHCP option (listed in requested order):

■ 1 (0x01) –  Subnet Mask

■ 15 (0x0F) –  DNS Domain Name

■ 3 (0x03) –  Router

■ 6 (0x06) –  DNS Servers

■ 44 (0x2C) –  WINS/NBNS Servers

■ 46 (0x2E) –  NetBIOS Node Type

■ 47 (0x2F) –  NetBIOS Scope ID

■ 31 (0x1F) –  Perform Router Discovery

■ 33 (0x21) –  Static Route

■ 121 (0x79) –  Classless Static Routes

Client Identifier 61 Variable length; 
minimum length 
is 2 bytes; for 
Ethernet, the 
length is 6 bytes

Indicates a value to identify the DHCP client. For 
Windows-based DHCP clients, this is the client’s 
MAC address. This is used in DHCPDISCOVER 
DHCPREQUEST, DHCPDECLINE, DHCPNAK, and 
DHCPRELEASE messages.

Dynamic DNS 
Update

81 Variable length Indicates the fully qualified domain name 
(FQDN) of the host. The DHCP server uses the 
FQDN to register the name and the assigned 
address with a DNS server. This is used in 
DHCPREQUEST messages.

Classless Static 
Route

121 Variable, mini-
mum length is 5 
bytes.

Indicates the destination IP address prefix, sub-
net mask, and next-hop IP address (a router) for 
one or multiple static routes that the DHCP 
client adds to the local IP routing table. For more 
information, see RFC 3442.

Classless Static 
Route

249 Variable; mini-
mum length is 5 
bytes

Indicates the destination IP address prefix, sub-
net mask, and next-hop IP address (a router) for 
one or multiple static routes that the DHCP 
client adds to the local IP routing table. This is 
the same option as 121.

End 255 N/A Indicates the end of the options portion of a 
DHCP message. This is used in all DHCP 
messages. The End option consists of a single 
byte, the Option Code field set to 255.

Table 14-1 DHCP Options for Windows-based DHCP Clients and Servers

Option Name

Option 
Code 
(Decimal)

Option 
Length Value Option Description
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■ 249 (0xF9) –  Classless Static Routes

■ 43 (0x2B) –  Vendor-Specific Information

DHCP Message Exchanges
This section describes the typical DHCP message exchanges for obtaining and renewing a 
DHCP-leased IP address configuration and for detecting unauthorized DHCP servers.

Obtaining an Initial Lease

Figure 14-3 shows the exchange of DHCP messages when a DHCP client and DHCP server are 
on the same subnet and a DHCP client acquires an initial lease.

Figure 14-3 DHCP messages exchanged during initial lease acquisition

An example of this message exchange is Capture 14-01, a Network Monitor trace that is 
included in the \Captures folder on the companion CD-ROM. The following is the DHCPDIS-
COVER message (Frame 1) from Capture 14-01 as displayed with Network Monitor 3.1:

Frame:  

- Ethernet: Etype = Internet IP (IPv4) 

+ DestinationAddress: *BROADCAST 

+ SourceAddress: 00123F17E0CF 

EthernetType: Internet IP (IPv4), 2048(0x800) 

+ Ipv4: Next Protocol = UDP, Packet ID = 10839, Total IP Length = 328 

+ Udp: SrcPort = BOOTP client(68), DstPort = BOOTP server(67), Length = 308 

- Dhcp: Boot Request, MsgType = DISCOVER, TransactionID = 0xBCBCFAE3 

OpCode: Boot Request, 1(0x01) 

Hardwaretype: Ethernet 

HardwareAddressLength: 6 (0x6) 

HopCount: 0 (0x0) 

TransactionID: 3166501603 (0xBCBCFAE3) 

Seconds: 0 (0x0) 

- Flags: 32768 (0x8000) 

Broadcast: (1...............) Broadcast 

Reserved: (.000000000000000) 

ClientIP: 0.0.0.0 

YourIP: 0.0.0.0 

ServerIP: 0.0.0.0 

RelayAgentIP: 0.0.0.0 

- ClientHardwareAddress: 00-12-3F-17-E0-CF 

DHCPREQUEST 

DHCPOFFER 

DHCP Client DHCP ServerDHCPACK 

DHCPDISCOVER 
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EthernetAddress: 00-12-3F-17-E0-CF 

ServerHostName:  

BootFileName:  

MagicCookie: 99.130.83.99 

- MessageType: DISCOVER 

Code: DHCP Message Type, 53(0x35) 

Length: 1 UINT8(s) 

Value: DISCOVER, 1(0x1) 

- AutoConfigure: Auto Configure (1) 

Code: Auto-Configure, 116(0x74) 

Length: 1 UINT8(s) 

Value: Auto Configure (1) 

- clientID: (Type 1) 

Code: Client-identifier, 61(0x3D) 

Length: 7 UINT8(s) 

Type: HardwareAddress(1) 

ClientID: Binary Large Object (6 Bytes) 

- RequestedIPAddress: 10.0.0.3 

Code: Requested IP Address, 50(0x32) 

Length: 4 UINT8(s) 

IpAddress: 10.0.0.3 

- HostName: VistaPC 

Code: Host Name, 12(0x0C) 

Length: 7 UINT8(s) 

Name: VistaPC 

- VendorClassIdentifier: MSFT 5.0 

Code: Class-identifier, 60(0x3C) 

Length: 8 UINT8(s) 

VendorClassIdentifier: MSFT 5.0 

- ParameterRequestList:  

Code: Parameter Request List, 55(0x37) 

Length: 12 UINT8(s) 

Parameter: Subnet Mask, 1(0x01) 

Parameter: Domain Name, 15(0x0F) 

Parameter: Router, 3(0x03) 

Parameter: Domain Name Server, 6(0x06) 

Parameter: NetBIOS over TCP/IP Name Server, 44(0x2C) 

Parameter: NetBIOS over TCP/IP Node Type, 46(0x2E) 

Parameter: NetBIOS over TCP/IP Scope, 47(0x2F) 

Parameter: Perform Router Discovery, 31(0x1F) 

Parameter: Static Route, 33(0x21) 

Parameter: Classless Static Route Option, 121(0x79) 

Parameter: Classless Static Route, 249(0xF9) 

Parameter: Vendor specific information, 43(0x2B) 

- End:  

Code: End of Options, 255(0xFF)

Fields or options to note are the following:

■ The DHCP client is using an Ethernet network adapter. Therefore, the Hardware Type 
field is set to 1; the Hardware Address Length field is set to 6; and the DHCP client’s 
MAC address is stored in the Client Hardware Address field.
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■ The DHCP client has chosen the transaction ID 3166501603, which is used in all of the 
DHCP messages of this DHCP message exchange.

■ The DHCP client has set the Broadcast flag in the Flags field to 1, indicating that it must 
receive a reply to this message as a broadcast.

■ Because this is an initial DHCP lease, all of the IP address fields (Client IP Address, Your 
IP Address, Server IP Address, and Gateway IP Address) are set to 0.0.0.0.

■ The first option is the Magic Cookie option, set to the string 99.130.83.99. This option 
is included in all of these DHCP messages for BOOTP support.

■ The DHCP Message Type option indicates a DHCPDISCOVER message.

■ The previous IP address assigned to this DHCP client is 10.0.0.3.

■ The host name of the DHCP client is VistaPC.

The following is the DHCPOFFER message (Frame 2) from Capture 14-01:

Frame:  

- Ethernet: Etype = Internet IP (IPv4) 

+ DestinationAddress: *BROADCAST 

+ SourceAddress: 00123F2B3407 

EthernetType: Internet IP (IPv4), 2048(0x800) 

+ Ipv4: Next Protocol = UDP, Packet ID = 572, Total IP Length = 328 

+ Udp: SrcPort = BOOTP server(67), DstPort = BOOTP client(68), Length = 308 

- Dhcp: Boot Reply, MsgType = OFFER, TransactionID = 0xBCBCFAE3 

OpCode: Boot Reply, 2(0x02) 

Hardwaretype: Ethernet 

HardwareAddressLength: 6 (0x6) 

HopCount: 0 (0x0) 

TransactionID: 3166501603 (0xBCBCFAE3) 

Seconds: 0 (0x0) 

- Flags: 0 (0x0) 

Broadcast: (0...............) No Broadcast 

Reserved: (.000000000000000) 

ClientIP: 10.0.0.3 

YourIP: 10.0.0.3 

ServerIP: 10.0.0.1 

RelayAgentIP: 0.0.0.0 

- ClientHardwareAddress: 00-12-3F-17-E0-CF 

EthernetAddress: 00-12-3F-17-E0-CF 

ServerHostName:  

BootFileName:  

MagicCookie: 99.130.83.99 

- MessageType: OFFER 

Code: DHCP Message Type, 53(0x35) 

Length: 1 UINT8(s) 

Value: OFFER, 2(0x2) 

- SubnetMask: 255.0.0.0 

Code: Subnet Mask, 1(0x01) 

Length: 4 UINT8(s) 

IpAddress: 255.0.0.0 
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- RenewTimeValue: Subnet Mask: 4 day(s),0 hour(s) 0 minute(s) 0 second(s) 

Code: Renewal (T1) Time Value, 58(0x3A) 

Length: 4 UINT8(s) 

Timeout: 4 day(s),0 hour(s) 0 minute(s) 0 second(s) 

- RebindingTimeValue: Subnet Mask: 7 day(s),0 hour(s) 0 minute(s) 0 second(s) 

Code: Rebinding (T2) Time Value, 59(0x3B) 

Length: 4 UINT8(s) 

Timeout: 7 day(s),0 hour(s) 0 minute(s) 0 second(s) 

- IPAddressLeaseTime: Subnet Mask: 8 day(s),0 hour(s) 0 minute(s) 0 second(s) 

Code: IP Address Lease Time, 51(0x33) 

Length: 4 UINT8(s) 

Timeout: 8 day(s),0 hour(s) 0 minute(s) 0 second(s) 

- ServerIdentifier: 10.0.0.1 

Code: Server Identifier, 54(0x36) 

Length: 4 UINT8(s) 

IpAddress: 10.0.0.1 

- DomainName: contoso.com 

Code: Domain Name, 15(0x0F) 

Length: 12 UINT8(s) 

Name: contoso.com 

- DomainNameServer: 10.0.0.1 

Code: Domain Name Server, 6(0x06) 

Length: 4 UINT8(s) 

IpAddress: 10.0.0.1 

- End:  

Code: End of Options, 255(0xFF)

Fields or configuration items to note are the following:

■ Because the Broadcast flag was set in the DHCPDISCOVER message, this message is 
broadcast.

■ The IP address being offered to the DHCP client is 10.0.0.3.

■ The IP address of the DHCP server is 10.0.0.1.

■ The DHCP Message Type option indicates a DHCPOFFER message.

■ The subnet mask is 255.0.0.0.

■ The T1 renewal time is 4 days.

■ The T2 renewal time is 7 days.

■ The maximum lease time is 8 days.

■ The domain name for the network adapter that is assigned this IP address is 
contoso.com.

■ The DNS server for the network adapter that is assigned this IP address is 10.0.0.1.

The following is the DHCPREQUEST message (Frame 3) from Capture 14-01:

Frame:  

- Ethernet: Etype = Internet IP (IPv4) 

+ DestinationAddress: *BROADCAST 

+ SourceAddress: 00123F17E0CF 
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EthernetType: Internet IP (IPv4), 2048(0x800) 

+ Ipv4: Next Protocol = UDP, Packet ID = 10840, Total IP Length = 350 

+ Udp: SrcPort = BOOTP client(68), DstPort = BOOTP server(67), Length = 330 

- Dhcp: Boot Request, MsgType = REQUEST, TransactionID = 0xBCBCFAE3 

OpCode: Boot Request, 1(0x01) 

Hardwaretype: Ethernet 

HardwareAddressLength: 6 (0x6) 

HopCount: 0 (0x0) 

TransactionID: 3166501603 (0xBCBCFAE3) 

Seconds: 0 (0x0) 

- Flags: 32768 (0x8000) 

Broadcast: (1...............) Broadcast 

Reserved: (.000000000000000) 

ClientIP: 0.0.0.0 

YourIP: 0.0.0.0 

ServerIP: 0.0.0.0 

RelayAgentIP: 0.0.0.0 

- ClientHardwareAddress: 00-12-3F-17-E0-CF 

EthernetAddress: 00-12-3F-17-E0-CF 

ServerHostName:  

BootFileName:  

MagicCookie: 99.130.83.99 

- MessageType: REQUEST 

Code: DHCP Message Type, 53(0x35) 

Length: 1 UINT8(s) 

Value: REQUEST, 3(0x3) 

- clientID: (Type 1) 

Code: Client-identifier, 61(0x3D) 

Length: 7 UINT8(s) 

Type: HardwareAddress(1) 

ClientID: Binary Large Object (6 Bytes) 

- RequestedIPAddress: 10.0.0.3 

Code: Requested IP Address, 50(0x32) 

Length: 4 UINT8(s) 

IpAddress: 10.0.0.3 

- ServerIdentifier: 10.0.0.1 

Code: Server Identifier, 54(0x36) 

Length: 4 UINT8(s) 

IpAddress: 10.0.0.1 

- HostName: VistaPC 

Code: Host Name, 12(0x0C) 

Length: 7 UINT8(s) 

Name: VistaPC 

- FullyQualifiedDomainName:  

Code: Fully Qualified Domain Name, 81(0x51) 

Length: 22 UINT8(s) 

- Flag: 0 (0x0) 

MBZ: (0000....) 0 

N: (....0...) SHOULD NOT perform the A RR (FQDN to address) DNS updates 

E: (.....0..) ASCII encoding of the Domain Name field (deprecated) 

O: (......0.) the server has not overridden the client’s preference for the ’S’ bit 

S: (.......0) SHOULD NOT perform the A RR (FQDN to address) DNS updates 

RCODE1: 0 (0x0) 

RCODE2: 0 (0x0) 

DomainName: VistaPC.contoso.com 

- VendorClassIdentifier: MSFT 5.0 



306 Part IV: Application Layer Protocols and Services
Code: Class-identifier, 60(0x3C) 

Length: 8 UINT8(s) 

VendorClassIdentifier: MSFT 5.0 

- ParameterRequestList:  

Code: Parameter Request List, 55(0x37) 

Length: 12 UINT8(s) 

Parameter: Subnet Mask, 1(0x01) 

Parameter: Domain Name, 15(0x0F) 

Parameter: Router, 3(0x03) 

Parameter: Domain Name Server, 6(0x06) 

Parameter: NetBIOS over TCP/IP Name Server, 44(0x2C) 

Parameter: NetBIOS over TCP/IP Node Type, 46(0x2E) 

Parameter: NetBIOS over TCP/IP Scope, 47(0x2F) 

Parameter: Perform Router Discovery, 31(0x1F) 

Parameter: Static Route, 33(0x21) 

Parameter: Classless Static Route Option, 121(0x79) 

Parameter: Classless Static Route, 249(0xF9) 

Parameter: Vendor specific information, 43(0x2B) 

- End:  

Code: End of Options, 255(0xFF)

Fields or configuration items to note are the following:

■ The DHCP client has set the Broadcast flag in the Flags field, indicating that it must 
receive a reply to this message as a broadcast.

■ The DHCP client is selecting the address offered by the DHCP server at 10.0.0.1.

■ The DHCP Message Type option indicates a DHCPREQUEST message.

■ The DHCP client is requesting its previous IP address of 10.0.0.3.

■ The DHCP client includes its FQDN of vistapc.contoso.com, but indicates that the 
DHCP server not perform DNS dynamic update on its behalf.

The following is the DHCPACK message (Frame 4) from Capture 14-01:

Frame:  

- Ethernet: Etype = Internet IP (IPv4) 

+ DestinationAddress: *BROADCAST 

+ SourceAddress: 00123F2B3407 

EthernetType: Internet IP (IPv4), 2048(0x800) 

+ Ipv4: Next Protocol = UDP, Packet ID = 573, Total IP Length = 328 

+ Udp: SrcPort = BOOTP server(67), DstPort = BOOTP client(68), Length = 308 

- Dhcp: Boot Reply, MsgType = ACK, TransactionID = 0xBCBCFAE3 

OpCode: Boot Reply, 2(0x02) 

Hardwaretype: Ethernet 

HardwareAddressLength: 6 (0x6) 

HopCount: 0 (0x0) 

TransactionID: 3166501603 (0xBCBCFAE3) 

Seconds: 0 (0x0) 

- Flags: 0 (0x0) 

Broadcast: (0...............) No Broadcast 

Reserved: (.000000000000000) 
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ClientIP: 0.0.0.0 

YourIP: 10.0.0.3 

ServerIP: 0.0.0.0 

RelayAgentIP: 0.0.0.0 

- ClientHardwareAddress: 00-12-3F-17-E0-CF 

EthernetAddress: 00-12-3F-17-E0-CF 

ServerHostName:  

BootFileName:  

MagicCookie: 99.130.83.99 

- MessageType: ACK 

Code: DHCP Message Type, 53(0x35) 

Length: 1 UINT8(s) 

Value: ACK, 5(0x5) 

- RenewTimeValue: Subnet Mask: 4 day(s),0 hour(s) 0 minute(s) 0 second(s) 

Code: Renewal (T1) Time Value, 58(0x3A) 

Length: 4 UINT8(s) 

Timeout: 4 day(s),0 hour(s) 0 minute(s) 0 second(s) 

- RebindingTimeValue: Subnet Mask: 7 day(s),0 hour(s) 0 minute(s) 0 second(s) 

Code: Rebinding (T2) Time Value, 59(0x3B) 

Length: 4 UINT8(s) 

Timeout: 7 day(s),0 hour(s) 0 minute(s) 0 second(s) 

- IPAddressLeaseTime: Subnet Mask: 8 day(s),0 hour(s) 0 minute(s) 0 second(s) 

Code: IP Address Lease Time, 51(0x33) 

Length: 4 UINT8(s) 

Timeout: 8 day(s),0 hour(s) 0 minute(s) 0 second(s) 

- ServerIdentifier: 10.0.0.1 

Code: Server Identifier, 54(0x36) 

Length: 4 UINT8(s) 

IpAddress: 10.0.0.1 

- SubnetMask: 255.0.0.0 

Code: Subnet Mask, 1(0x01) 

Length: 4 UINT8(s) 

IpAddress: 255.0.0.0 

- FullyQualifiedDomainName:  

Code: Fully Qualified Domain Name, 81(0x51) 

Length: 3 UINT8(s) 

- Flag: 0 (0x0) 

MBZ: (0000....) 0 

N: (....0...) SHOULD NOT perform the A RR (FQDN to address) DNS updates 

E: (.....0..) ASCII encoding of the Domain Name field (deprecated) 

O: (......0.) the server has not overridden the client’s preference for the ’S’ bit 

S: (.......0) SHOULD NOT perform the A RR (FQDN to address) DNS updates 

RCODE1: 255 (0xFF) 

RCODE2: 255 (0xFF) 

- DomainName: contoso.com 

Code: Domain Name, 15(0x0F) 

Length: 12 UINT8(s) 

Name: contoso.com 

- DomainNameServer: 10.0.0.1 

Code: Domain Name Server, 6(0x06) 

Length: 4 UINT8(s) 

IpAddress: 10.0.0.1 

- End:  

Code: End of Options, 255(0xFF)
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Fields or configuration items to note are the following:

■ Because the Broadcast flag was set in the DHCPREQUEST message, this message 
is broadcast.

■ The IP address being offered to the DHCP client is 10.0.0.3.

■ The DHCP Message Type option indicates a DHCPACK message.

■ The DHCP server is not performing DNS dynamic update on behalf of the DHCP client.

When the DHCP client and DHCP server are separated by a DHCP relay agent, the DHCP 
relay agent receives the broadcast DHCPDISCOVER and DHCPREQUEST messages, incre-
ments the Hops field, records the IP address assigned to the interface on the DHCP relay 
agent that received the messages in the Gateway IP Address field, and then forwards them as 
unicast traffic to its configured DHCP servers. The DHCP servers respond with DHCPOFFER 
and DHCPACK messages to the unicast addresses of the DHCP relay agent. The DHCP relay 
agent then either unicasts (if they support the Broadcast flag and the corresponding request 
message has the Broadcast flag set to 0) or broadcasts these messages to the DHCP client.

Renewing a Lease

Because a typical IP address configuration lease has a finite lifetime, the client must renew the 
lease. A lease renewal when the DHCP client remains on the subnet involves just two DHCP 
messages—DHCPREQUEST and DHCPACK. If the lease renewal is made while the DHCP 
client is continuously on the subnet, the DHCP client and the DHCP server communicate 
using unicast DHCPREQUEST and DHCPACK messages. If the lease renewal is made when 
the DHCP client restarts on the same subnet and that IP address is available for renewal, the 
DHCP client and the DHCP server communicate using broadcast DHCPREQUEST and 
DHCPACK messages. The Network Monitor Capture 14-02, included in the \Captures folder 
on the companion CD-ROM, provides an example of a broadcast-based lease renewal.

Changing Subnets

If the DHCP client requests a lease through a DHCPREQUEST message that the DHCP server 
cannot fulfill, the DHCP server sends a DHCPNAK message to the client.  This message 
informs the client that the requested IP address lease will not be renewed. The client then 
acquires a new lease using the startup DHCP message exchange previously described. A good 
example is when a DHCP client shuts down without releasing its address and starts up on a 
different subnet or when an IEEE 802.11 wireless client roams to a wireless access point that 
is connected to a different subnet. Figure 14-4 shows this exchange of DHCP messages.

Network Monitor Capture 14-03, included in the \Captures folder on the companion 
CD-ROM, provides an example of the exchange of DHCP messages when a DHCP client 
moves to another subnet.
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Figure 14-4 DHCP message exchange when a DHCP client moves to a different subnet

When a Windows-based DHCP client that has previously leased an address starts up, it broad-
casts a DHCPREQUEST message to renew its lease. This ensures that the DHCP renewal 
request is sent to the DHCP server that provides DHCP addresses for the subnet the client is 
currently on. This could be different from the server that provided the initial lease. When the 
DHCP server receives the broadcast, it compares the address the DHCP client is requesting 
with the scopes configured on the server and the subnet the DHCPREQUEST message was 
received from. If it is not possible to satisfy the client request, the DHCP server issues a 
DHCPNAK, and the DHCP client then acquires a new lease.

If the Windows-based DHCP client is unable to locate any DHCP server, to renew its lease, it 
sends a broadcast ARP Request frame for the default gateway that was previously obtained, if 
one was provided. If the IP address of the default gateway is successfully resolved, the DHCP 
client assumes that it is located on the same subnet where it obtained its current lease and 
continues to use this lease.

If the ARP Request frame that the client sent for the default gateway receives no response, the 
client assumes that it has been moved to a subnet that has no DHCP services currently avail-
able (such as a home network), and it automatically configures itself using either Automatic 
Private IP Addressing (APIPA) or the alternate configuration. Afterward, the DHCP client tries 
to locate a DHCP server every 5 minutes.

Detecting Unauthorized DHCP Servers

As part of the initialization of the DHCP Server service, Windows Server 2008-based DHCP 
servers perform rogue server detection. If the DHCP server is a member server and is not 
authorized in Active Directory domain services, the DHCP Server service automatically 
shuts down. 

If the DHCP server is a standalone server, it relies on an exchange of DHCPINFORM and 
DHCPACK messages for rogue server detection, as shown in Figure 14-5.
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Figure 14-5 A DHCP server performing rogue server detection

Rogue server detection begins with the initializing DHCP server sending DHCPINFORM 
messages to determine whether there are other authorized DHCP servers on any attached 
subnet. Authorized servers respond with a DHCPACK message that contains the name of the 
domain in which they have been authorized. If authorized DHCP servers are found, the stan-
dalone DHCP server sends Lightweight Directory Access Protocol (LDAP) queries to an Active 
Directory domain controller to verify whether or not the found servers are authorized. If any 
of the found servers are authorized, the DHCP Server service shuts down.

Network Monitor Capture 14-04 (included in the \Captures folder on the companion 
CD-ROM) provides an example of an unauthorized server performing successful rogue server 
detection.

Updating DNS Entries

When a DHCP lease is allocated to an IP host, the host name and IP address mapping should 
be added to DNS. Traditionally, this was a manual task that involved creating the DNS for-
ward and reverse lookup entries. Windows Server 2008 and Windows Vista support DNS 
dynamic update. This protocol allows computers running Windows Server 2008 or Windows 
Vista to automatically update DNS entries for forward and reverse lookups on the DNS server. 

Each time a DHCP client receives a new lease or renews an existing lease, the client sends its 
FQDN to the DHCP server in the DHCPREQUEST message. The DHCPREQUEST message 
requests that the DHCP server register a reverse lookup mapping in the DNS server on behalf 
of the DHCP client. The DHCP client usually handles the forward lookup registration on its 
own, if it is capable.

You can configure the DHCP Server service in Windows Server 2008 to register both the for-
ward and reverse lookup address mappings in DNS on the DHCP client’s behalf. This is useful 
for DHCP clients that do not support DNS dynamic updates.

The Network Monitor Capture 14-05 (included in the \Captures folder on the companion 
CD-ROM) provides an example of a DHCP server registering both the forward and reverse 
lookup mappings for a new address lease. In the capture, the DHCP server queries for the 
DNS Start of Authority (SOA) record for the forward lookup zone and then updates the for-
ward lookup entry for the DHCP client. The DHCP server then queries the DNS server for the 
reverse lookup zone and performs the update of the DHCP client’s reverse lookup entry. For 
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the dynamic updates to be successful, the DNS server must support DNS dynamic updates 
and have the forward and reverse lookup zones configured to allow dynamic updates.

For more information about DNS dynamic update, see Chapter 15, “Domain Name System.”

Summary
DHCP has a common message format for all DHCP messages consisting of a fixed DHCP 
header and a variable portion that contains DHCP options. A DHCP relay agent modifies and 
forwards DHCP messages between DHCP clients and DHCP servers when they are not 
located on the same subnet. Common DHCP message exchanges allow a DHCP client to 
initially obtain a leased IP address configuration, renew it, and automatically obtain a new IP 
address configuration if it cannot renew the address previously leased. The Windows Server 
2008 DHCP Server service on a standalone computer supports an additional message 
exchange to detect if it is in an Active Directory environment.
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Domain Name System
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Domain Name System (DNS) is a simple client/server protocol that provides name resolution, 
name registration (also known as DNS dynamic update), and zone transfers for the DNS 
namespace. This chapter describes the details of the DNS protocol and common DNS 
message exchanges between DNS clients and servers.

Note This chapter assumes prior knowledge of the history and benefits of DNS, structure of 
the DNS namespace, DNS resource records (RRs), DNS server roles, the components of a DNS 
infrastructure (DNS client and DNS server), and the support, installation, and configuration of 
those components as supplied in Microsoft Windows. For more information, see Chapter 8, 
“Domain Name System Overview,” and Chapter 9, “Windows Support for DNS” of the “TCP/IP 
Fundamentals for Microsoft Windows” book, located in the \Fundamentals folder on the 
companion CD-ROM.

DNS Messages
DNS clients and DNS servers communicate by exchanging DNS messages. During an iterative 
query or a zone transfer, a DNS server acts as a DNS client to another DNS server. There are 
four types of DNS messages, most of which are sent as User Datagram Protocol (UDP) mes-
sages. When a response contains more data than can be sent in a single UDP message, the 
responder (typically a DNS server) initially responds with a UDP message but sets a flag to 
indicate that the response was truncated. The DNS client or server then uses a Transmission 
Control Protocol (TCP) connection to obtain all of the data for the response. DNS servers 
listen on UDP port 53 and TCP port 53.

The different types of DNS messages described in this chapter are the following:

■ DNS Name Query Request Sent by a DNS client or a DNS server to a DNS server to 
perform name resolution.

■ DNS Name Query Response Sent by a DNS server to a DNS client or a DNS server 
to respond to a DNS name query request.
313
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■ DNS Update Sent by a DNS client to a DNS server to perform name registration.

■ DNS Update Response Sent by a DNS server to a DNS client to respond to a 
DNS update.

DNS messages and protocol operation are defined in RFCs 1034, 1035, and 2136. 

More Info All of the RFCs referenced in this chapter can be found in the 
\Standards\Chap15_DNS folder on the companion CD-ROM.

DNS Name Query Request and Name Query Response Messages

DNS Name Query Request and Name Query Response messages share the same structure, 
as Figure 15-1 shows.

Figure 15-1 DNS Name Query Request and Name Query Response message structure

The DNS Name Query Request or Name Query Response messages consist of a fixed-length 
12-byte header and a variable-length section containing question entries, answer RRs, 
authority RRs, and additional RRs.

Figure 15-2 shows the format of the 12-byte fixed DNS header for the DNS Name Query 
Request and Name Query Response messages.

The fields within the 12-byte fixed DNS header are the following:

■ Transaction ID A 2-byte field that is used to identify a specific DNS transaction. The 
sender of the Name Query Request message creates the transaction identifier (ID), and 
the responder copies it into the Name Query Response message. This allows the DNS 
client or server to match the responses that it received from a DNS server with their 
requests and for the DNS server to identify duplicate requests from a DNS client.

■ Flags A 2-byte field containing flags. For more information, see Figure 15-3.
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Figure 15-2 DNS Name Query Request and Name Query Response message header

■ Question Entry Count A 2-byte field indicating the number of entries in the Question 
Entries section of the DNS message.

■ Answer RR Count  A 2-byte field indicating the number of RRs in the Answer RRs 
section of the DNS message.

■ Authority RR Count  A 2-byte field indicating the number of RRs in the Authority RRs 
section of the DNS message.

■ Additional RR Count A 2-byte field indicating the number of RRs in the Additional RRs 
section of the DNS message.

Figure 15-3 shows the format of the Flags field in the DNS header.

Figure 15-3 The Flags field

The fields within the Flags field are the following:

■ Request/Response A 1-bit field that is set to 0 for a name query request and 1 for a 
name query response.

■ Operation Code A 4-bit field that indicates the name service operation of the message. 
The Operation Code field is set to 0 for a query operation. For a complete and current 
list of operation code values, see http://www.iana.org/assignments/dns-parameters.
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■ Authoritative Answer A 1-bit field that indicates, when set to 1 in a name query 
response, that the responder is authoritative for the fully-qualified domain name 
(FQDN) in the Question RRs section of the message.

■ Truncation A 1-bit field that indicates, when set to 1 in a name query response, that  
the total number of responses could not fit into the UDP-based response (for example, 
if the total number exceeds 512 bytes). In this case, only the first 512 bytes of the reply 
are returned. EDNS0 allows longer UDP-based DNS messages. EDNS0 is defined in 
RFC 2671.

■ Recursion Desired A 1-bit field that indicates, when set to 1 in a name query request, 
that the query is recursive. When set to 0, the sender indicates an iterative query; the DNS 
server can return a list of other name servers that can be contacted to resolve the name.

■ Recursion Available A 1-bit field that indicates, when set to 1 in a name query 
response, that the DNS server can perform recursive queries. DNS clients always set this 
value to zero in name query requests.

■ Reserved A 3-bit field that is reserved and set to 0.

■ Return Code A 4-bit field that indicates the return code in a name query response. A 
return code of 0 indicates a successful response; the answer to the name query is in the 
name query response. A return code of 2 indicates a DNS server failure because of an 
invalid configuration, a resource allocation error, or another critical failure. A return 
code of 3 indicates a name error, which is returned from an authoritative DNS server to 
indicate that the FQDN being queried does not exist. For a complete and current list of 
return code values, see http://www.iana.org/assignments/dns-parameters.

In a DNS name query request, the question entry contains the FQDN that is being resolved. 
Figure 15-4 shows the format of a question entry in the Question Entries section of a DNS 
name query request.

Figure 15-4 Question entry format

The fields in a question entry are the following:

■ Question Name A variable-sized field that contains the FQDN being queried. The 
FQDN is expressed as a sequence of labels using a length-value format. The domain 
contoso.com, for example, consists of two labels (contoso and com). In the Question Name 
field, the domain name is encoded as a series of length-value pairs consisting of a 1-byte 
Length field that indicates the length of the value, followed by the value (the label). The 

Question Name

Question Type

Question Class

. . .

=0x00-01
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maximum size of a label is 63 bytes. For example, the FQDN contoso.com is expressed as 
0x07contoso0x03com0x00, in which the hexadecimal digits represent the 1-byte Length 
field of each label, the ASCII characters represent the individual labels, and the final 0x00 
is a 1-byte Length field with value zero indicating the end of the FQDN.

■ Question Type A 2-byte field that indicates the type of RRs to return in the Answer 
RRs section of the successful DNS name query response. Table 15-1 lists the most 
commonly-used record types. For a complete and current list, see http://www.iana.org
/assignments/dns-parameters.

■ Question Class A 2-byte field that indicates the question class. This is always set to 1 to 
indicate the Internet (IN) question class.

The DNS Name Query Response message can contain RRs in the Answer RRs, Authority RRs, 
and Additional RRs sections. These RRs can answer the question in the Question Entries sec-
tion, refer the requestor to another DNS server, or include additional information. Figure 15-5 
shows the format of an RR in a DNS name query response.

Figure 15-5 DNS RR format in a DNS name query response

Table 15-1 The Most Common Values of the Question Type Field

Question Type Value Record

0x01 Host address (A) record

0x02 Name server (NS) record

0x05 Alias (CNAME) record

0x06 Start of Authority (SOA) record

0x0C (12) Reverse-lookup (PTR) record

0x0F (15) Mail exchanger (MX) record 

0x1C (28) IPv6 host (AAAA) record 

0x21 (33) Server selection (SRV) record (also known as a Service record)

0xFB (251) Incremental zone transfer (IXFR) record

0xFC (252) Standard zone transfer (AXFR) record

0xFF (255) All records

RR Name

Record Type

Record Class

Time to Live

Resource Data Length

Resource Data

. . .

=0x00-01

         . . .
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The fields in an RR are the following:

■ RR Name A variable-sized field that indicates an FQDN. This field can use the length-
value encoding previously described, a 2-byte pointer value that indicates where the 
entire name already exists in the DNS message, or a combination of a length-value 
encoded name and 2-byte pointer. 

■ Record Type A 2-byte field that indicates the RR type, using the values listed in 
Table 15-1 (except for the value of 0xFF).

■ Record Class A 2-byte field that indicates the record class. This is always set to 1 in 
current DNS implementations to indicate the Internet (IN) class.

■ Time To Live A 4-byte field that indicates the number of seconds that the information 
in the RR should be considered valid and can be cached by the requestor. A value of 0 
indicates the requestor should not cache the RR.

■ Resource Data Length A 2-byte field that indicates the length of the  resource data. For 
example, for an A record, the Resource Data Length field is set to 4 for the size of an IPv4 
address. For an AAAA record, the Resource Data Length field is set to 16 for the size of 
an IPv6 address.

■ Resource Data A variable-length field containing the data for the RR type. For example, 
for an A record, the Resource Data field contains an IPv4 address. For an AAAA record, 
the Resource Data field contains an IPv6 address.

If the FQDN or a portion of the FQDN is already present elsewhere in the DNS message, the 
RR Name field can be a 2-byte field whose value is a pointer to where the name is already 
present in the message. A pointer value is indicated by setting the two high-order bits in the 
first byte of the RR Name field to 11. If the first byte of the RR Name field is greater than or 
equal to 0xC0 (192), the RR Name field is a 2-byte pointer field. With the first 2 bits fixed at 
11, the last 14 bits are used as a byte offset pointer (starting at 0) indicating the location of the 
name in the DNS message. This technique is known as message compression.

For a simple DNS Name Query Response message, the RR Name for an Answer RR is the same 
as the Resource Name for the Question entry, which begins in the 13th byte position from the 
beginning of the DNS message. But because you start counting the byte position from 0, the 
pointer value is set to 12. Figure 15-6 shows the Answer RR for this example.

For this example, the 2-byte RR Name field consisting of the first two bits set to 11 and the last 
14 bits set to 00 0000 0000 1100 (or 12 in decimal). The resulting 2-byte field is 1100 0000 
0000 1100, or 0xC0-0C. Figure 15-7 shows how this is displayed in Network Monitor 3.1.

When you click the Resource Name field in the Frame Details pane, Network Monitor 3.1 high-
lights the corresponding bytes in the Hex Details pane. In this example, when the Resource 
Name field in the Frame Details pane is selected, it corresponds to the hex digits 0xC0-0C, 
which indicates that the Resource Name field is pointing to the 12th byte offset (starting from 0) 
from the beginning of the DNS message, or the first byte of the Question Name field.
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Figure 15-6 The RR Name as a pointer to a name stored elsewhere in the DNS message

Figure 15-7 Example of a pointer value in the RR Name field in Network Monitor 3.1

DNS Update and Update Response Messages

The format of DNS Update and Update Response messages are very similar to the DNS Name 
Query Request and Name Query Response messages. DNS Update and Update Response 
messages share the same structure, as shown in Figure 15-8.

DNS Update or Update Response messages consist of a fixed-length 12-byte header and a 
variable-length section containing zone entries, prerequisite RRs, update RRs, and additional RRs.

Figure 15-9 shows the format of the 12-byte fixed DNS header for the DNS Update and 
Update Response messages.

The fields within this 12-byte fixed DNS header are the following:

■ Transaction ID A 2-byte field used to identify a specific DNS transaction. The sender of 
the update message creates the identifier and the responder copies it into the update 
response. This field can be used by the DNS client to match replies to outstanding 
updates, or by the DNS server to detect duplicated updates from a DNS client.

■ Flags A 2-byte field containing flags. For more information, see Figure 15-10.

1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0

RR Name

Indicates
Pointer

Indicates 12th Byte Offset (Starting at 0)
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Figure 15-8 DNS Update and Update Response message structure

Figure 15-9 DNS Update and Update Response message header

■ Zone Entry Count A 2-byte field indicating the number of entries in the Zone Entries 
section of the DNS message.

■ Prerequisite RR Count  A 2-byte field indicating the number of RRs in the Prerequisite 
RRs section of the DNS message.

■ Update RR Count  A 2-byte field indicating the number of RRs in the Update RRs sec-
tion of the DNS message.

■ Additional RR Count A 2-byte field indicating the number of RRs in the Additional RRs 
section of the DNS message.

Figure 15-10 shows the format of the Flags field for DNS Update and Update Response messages.

Figure 15-10 The Flags field for DNS Update and Update Response messages

DNS Header
(12 byte fixed length)

Zone Entries
(variable length)

Prerequisite RRs
(variable length)

Update RRs
(variable length)

Additional RRs
(variable length)

Transaction ID

Flags

Zone Entry Count

Prerequisite RR Count

Update RR Count

Additional RR Count

Request/Response

Operation Code

Reserved

Return Code

= 5 

= 0 
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The fields within the Flags field are the following:

■ Request/Response A 1-bit field that is set to 0 for an update and 1 for an update 
response.

■ Operation Code A 4-bit field that indicates the specific name service operation of the 
message, which is always set to 5 for DNS Update and Update Response messages.

■ Reserved A 7-bit field that is reserved and set to 0.

■ Return Code A 4-bit field that indicates the return code in an update response. 
Table 15-2 lists the Return Code values for Update Response messages.

In a DNS update, a zone entry contains the FQDN for zone of the RRs that are being registered. 
Figure 15-11 shows the format of a zone entry in the Zone Entries section of a DNS update.

Figure 15-11 Zone entry format

The fields in the zone entry are the following:

■ Zone Name A variable-sized field that contains the FQDN of the zone, expressed as a 
sequence of labels using the length-value format previously described.

■ Zone Type A 2-byte field that is set to 6 to indicate the SOA type.

Table 15-2 Return Code Values for Update Response Messages

Return Code 
Value Description

0 No error; successful update.

1 Format error; the DNS server could not process the update request.

2 The DNS server encountered an internal error, such as a forwarding timeout.

3 A name that should exist does not exist.

4 The DNS server does not support the specified operation code.

5 The DNS server refuses to perform the update. 

6 A name that should not exist does exist.

7 An RR set that should not exist does exist.

8 An RR set that should exist does not exist.

9 The DNS server is not authoritative for the zone named in the Zone Entries section.

10 A name used in the Prerequisite or Update sections is not within the zone specified 
by the Zone Entries section.

Zone Name

Zone Type

Zone Class

. . .

=0x00-06

=0x00-01
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■ Zone Class A 2-byte field that indicates the zone class. This is always set to 1 in current 
DNS implementations to indicate the Internet (IN) zone class.

Prerequisite RRs contain a set of RR prerequisites that must be satisfied at the time the update 
message is received by the authoritative DNS server. The possible sets of values that can be 
expressed are the following: 

■ Resource record set exists (value independent)

At least one RR with a specified name and type (in the zone and class specified by the 
Zone Entries section) must exist.

■ Resource record set exists (value dependent)

A set of RRs with the same name and type exists and has the same members with the 
same data as the RR set specified in this section.

■ Resource record set does not exist

No RRs with a specified name and type (in the zone and class denoted by the Zone 
Entries section) exist.

■ Name is in use

At least one RR with a specified name (in the zone and class specified by the Zone 
Entries section) exists.

■ Name is not in use

No RR of any type is owned by a specified name.

For more information about prerequisite RRs, see RFC 2136.

Update RRs contain the RRs that are to be added or deleted from the zone. The operations 
that can be performed during the update are the following: 

■ Add RRs to an RRs set.

■ Delete an RRs set.

■ Delete all RRs sets from a name.

■ Delete an RR from an RRs set.

Additional RRs contain RRs that are related to the update or for new RRs being added by 
the update. 

DNS clients running Windows Server 2008 or Windows Vista support secure dynamic 
updates. In a secure dynamic update, the DNS client and DNS server exchange a set of DNS 
messages to establish a security session. The subsequent update message sent by the DNS 
client contains a transaction signature record that validates the DNS client as the computer 
that sent the update. For more information, see RFC 2535. 
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DNS Message Exchanges
This section describes common DNS message exchanges for the following:

■ Resolving names to addresses

■ Resolving addresses to names

■ Resolving aliases

■ Dynamically updating DNS

■ Transferring zone information between DNS servers

Resolving Names to Addresses

Resolving names to addresses, also known as forward name resolution, occurs when a DNS 
client or a DNS server sends a DNS server a DNS Name Query Request message containing an 
FQDN with instructions to return RRs of a specified type or all RRs. This message exchange 
consists of a DNS Name Query Request message and a DNS Name Query Response message.

An example of this message exchange is Capture 15-01, a Network Monitor trace that is 
included in the \Captures folder on the companion CD-ROM. The following is the DNS Name 
Query Request message from Capture 15-01 (Frame 1), as displayed with Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = UDP, Packet ID = 12998, Total IP Length = 65 

- Udp: SrcPort = 53200, DstPort = DNS(53), Length = 45 

SourcePort: 53200, 53200(0xcfd0) 

DestinationPort: DNS(53), 53(0x35) 

TotalLength: 45 (0x2D) 

Checksum: 17716 (0x4534) 

- Dns: QueryId = 0xAC58, QUERY (Standard query), Query for server1.contoso.com of type 

Host Addr on class Internet 

QueryIdentifier: 44120 (0xAC58) 

- Flags: Query, Opcode - QUERY (Standard query), RD, Rcode - Success 

QR: (0...............) Query 

Opcode: (.0000...........) QUERY (Standard query) 0 

AA: (.....0..........) Not authoritative 

TC: (......0.........) Not truncated 

RD: (.......1........) Recursion desired 

RA: (........0.......) Recursive query support not available 

Zero: (.........0......) 0 

AuthenticatedData: (..........0.....) Not AuthenticatedData 

CheckingDisabled: (...........0....) Not CheckingDisabled 

Rcode: (............0000) Success 0 

QuestionCount: 1 (0x1) 

AnswerCount: 0 (0x0) 

NameServerCount: 0 (0x0) 

AdditionalCount: 0 (0x0) 
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- QRecord: server1.contoso.com of type Host Addr on class Internet 

QuestionName: server1.contoso.com 

QuestionType: A, IPv4 address, 1(0x1) 

QuestionClass: Internet, 1(0x1)

In this frame, a DNS client sends a DNS Name Query Request message requesting the DNS 
server to return all A RRs for the FQDN server1.contoso.com. Note how the DNS client is 
using a dynamically allocated source UDP port and the destination UDP port of 53, which 
is the port on which the DNS server is listening for incoming DNS request messages. Also 
note that this is a recursive request (the Recursion Desired flag is set to 1). 

The following is the corresponding DNS Name Query Response message from Capture 15-01 
(Frame 2), as displayed with Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = UDP, Packet ID = 1212, Total IP Length = 81 

- Udp: SrcPort = DNS(53), DstPort = 53200, Length = 61 

SourcePort: DNS(53), 53(0x35) 

DestinationPort: 53200, 53200(0xcfd0) 

TotalLength: 61 (0x3D) 

Checksum: 14778 (0x39BA) 

- Dns: QueryId = 0xAC58, QUERY (Standard query), Response - Success  

QueryIdentifier: 44120 (0xAC58) 

- Flags: Response, Opcode - QUERY (Standard query), AA, RD, RA, Rcode - Success 

QR: (1...............) Response 

Opcode: (.0000...........) QUERY (Standard query) 0 

AA: (.....1..........) Is authoritative 

TC: (......0.........) Not truncated 

RD: (.......1........) Recursion desired 

RA: (........1.......) Recursive query support available 

Zero: (.........0......) 0 

AuthenticatedData: (..........0.....) Not AuthenticatedData 

CheckingDisabled: (...........0....) Not CheckingDisabled 

Rcode: (............0000) Success 0 

QuestionCount: 1 (0x1) 

AnswerCount: 1 (0x1) 

NameServerCount: 0 (0x0) 

AdditionalCount: 0 (0x0) 

- QRecord: server1.contoso.com of type Host Addr on class Internet 

QuestionName: server1.contoso.com 

QuestionType: A, IPv4 address, 1(0x1) 

QuestionClass: Internet, 1(0x1) 

- ARecord: server1.contoso.com of type Host Addr on class Internet 

ResourceName: server1.contoso.com 

ResourceType: A, IPv4 address, 1(0x1) 

ResourceClass: Internet, 1(0x1) 

TimeToLive: 3600 (0xE10) 

ResourceDataLength: 4 (0x4) 

IPAddress: 10.0.0.100

The name query response is sent back to the UDP port of the DNS client and contains the 
same Transaction ID value as the name query request (the QueryIdentifier field in the Network 
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Monitor 3.1 display). Note that the DNS server that sent this message is authoritative for the 
record (the Authoritative flag is set to 1) and the message contains all of the requested records 
(the Truncation flag is set to 0). The Question Entries portion of the message contains the 
original question entry from the Name Query Request message. The Answer RRs section con-
tains a single answer RR for the IPv4 address 10.0.0.100, which the DNS client can cache for 
3600 seconds (60 minutes).

Resolving Addresses to Names

Resolving addresses to names, also known as reverse name resolution, occurs when a DNS 
client or DNS server sends a DNS server a Name Query Request message containing an 
FQDN corresponding to an IPv4 address in the reverse namespace, with instructions to 
return all PTR RRs. For example, the FQDN corresponding to the IPv4 address 131.107.48.28 
in the reverse DNS namespace is 28.48.107.131.in-addr.arpa.

An example of this message exchange is Capture 15-02, a Network Monitor trace that is 
included in the \Captures folder on the companion CD-ROM. The following is the DNS Name 
Query Request message from Capture 15-02 (Frame 1), as displayed with Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = UDP, Packet ID = 13033, Total IP Length = 69 

+ Udp: SrcPort = 53206, DstPort = DNS(53), Length = 49 

- Dns: QueryId = 0xB75C, QUERY (Standard query), Query for 100.0.0.10.in-

addr.arpa of type PTR on class Internet 

QueryIdentifier: 46940 (0xB75C) 

+ Flags: Query, Opcode - QUERY (Standard query), RD, Rcode - Success 

QuestionCount: 1 (0x1) 

AnswerCount: 0 (0x0) 

NameServerCount: 0 (0x0) 

AdditionalCount: 0 (0x0) 

- QRecord: 100.0.0.10.in-addr.arpa of type PTR on class Internet 

QuestionName: 100.0.0.10.in-addr.arpa 

QuestionType: PTR, Domain name pointer, 12(0xc) 

QuestionClass: Internet, 1(0x1)

In this frame, a DNS client is requesting that the DNS server return all PTR RRs for the FQDN 
100.0.0.10.in-addr.arpa.

The following is the corresponding DNS Name Query Response message from Capture 15-02 
(Frame 2), as displayed with Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = UDP, Packet ID = 1225, Total IP Length = 102 

+ Udp: SrcPort = DNS(53), DstPort = 53206, Length = 82 

- Dns: QueryId = 0xB75C, QUERY (Standard query), Response - Success  

QueryIdentifier: 46940 (0xB75C) 

+ Flags: Response, Opcode - QUERY (Standard query), AA, RD, RA, Rcode - Success 

QuestionCount: 1 (0x1) 
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AnswerCount: 1 (0x1) 

NameServerCount: 0 (0x0) 

AdditionalCount: 0 (0x0) 

- QRecord: 100.0.0.10.in-addr.arpa of type PTR on class Internet 

QuestionName: 100.0.0.10.in-addr.arpa 

QuestionType: PTR, Domain name pointer, 12(0xc) 

QuestionClass: Internet, 1(0x1) 

- ARecord: 100.0.0.10.in-addr.arpa of type PTR on class Internet 

ResourceName: 100.0.0.10.in-addr.arpa 

ResourceType: PTR, Domain name pointer, 12(0xc) 

ResourceClass: Internet, 1(0x1) 

TimeToLive: 3600 (0xE10) 

ResourceDataLength: 21 (0x15) 

DomainNamePointer: server1.contoso.com

Note that the Answer RRs section in this case contains a single answer RR for the FQDN 
server1.contoso.com, which the DNS client can cache for 3600 seconds (60 minutes).

Resolving Aliases

The CNAME RR allows you to create an alias for an FQDN. For example, you can create an 
alias s1.contoso.com for the FQDN server1.contoso.com. When a DNS client performs for-
ward name resolution and the name corresponds to a CNAME record on the DNS server, 
the DNS server returns multiple records in the answer section: the CNAME record and the 
records for the aliased name.

An example of this message exchange is Capture 15-03, a Network Monitor trace that is 
included in the \Captures folder on the companion CD-ROM. In Frame 1 of this exchange 
(not shown), a DNS client is requesting all A records for the name s1.contoso.com. On the 
DNS server, the s1.contoso.com FQDN corresponds to a CNAME record for the alias 
server1.contoso.com. The following is the DNS Name Query Response message from 
Capture 15-03 (Frame 2), as displayed with Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = UDP, Packet ID = 1279, Total IP Length = 98 

+ Udp: SrcPort = DNS(53), DstPort = 53223, Length = 78 

- Dns: QueryId = 0xBC54, QUERY (Standard query), Response - Success  

QueryIdentifier: 48212 (0xBC54) 

+ Flags: Response, Opcode - QUERY (Standard query), AA, RD, RA, Rcode - Success 

QuestionCount: 1 (0x1) 

AnswerCount: 2 (0x2) 

NameServerCount: 0 (0x0) 

AdditionalCount: 0 (0x0) 

- QRecord: s1.contoso.com of type Host Addr on class Internet 

QuestionName: s1.contoso.com 

QuestionType: A, IPv4 address, 1(0x1) 

QuestionClass: Internet, 1(0x1) 

- ARecord: s1.contoso.com of type CNAME on class Internet 

ResourceName: s1.contoso.com 

ResourceType: CNAME, Canonical name for an alias, 5(0x5) 

ResourceClass: Internet, 1(0x1) 
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TimeToLive: 3600 (0xE10) 

ResourceDataLength: 10 (0xA) 

CName: server1.contoso.com 

- ARecord: server1.contoso.com of type Host Addr on class Internet 

ResourceName: server1.contoso.com 

ResourceType: A, IPv4 address, 1(0x1) 

ResourceClass: Internet, 1(0x1) 

TimeToLive: 3600 (0xE10) 

ResourceDataLength: 4 (0x4) 

IPAddress: 10.0.0.100

Note that the first answer record is the CNAME record that maps the FQDN s1.contoso.com 
to the FQDN server1.contoso.com. The second answer record is an A record for the IPv4 
address of the FQDN server1.contoso.com.

Dynamically Updating DNS

DNS dynamic updates, described in RFC 2136, are an exchange of DNS Update and Update 
Response messages that allows DNS clients to add or delete a specific RR or sets of RRs, 
known as RRSets, to any zone. Dynamic updates can simplify the process of managing the 
contents of a DNS zone, especially in an environment that uses automated configuration with 
the Dynamic Host Configuration Protocol (DHCP).

Dynamic update requests can also state prerequisites specified separately from update opera-
tions. These can be tested before an update can occur. When prerequisites are used with 
dynamic updates, the updates are said to be atomic; that is, all prerequisites must be satisfied 
for the update operation to occur.

An example of this message exchange is Capture 15-04, a Network Monitor trace that is 
included in the \Captures folder on the companion CD-ROM. The following is the DNS 
Update message from Capture 15-04 (Frame 1), as displayed with Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = UDP, Packet ID = 35, Total IP Length = 156 

+ Udp: SrcPort = 53285, DstPort = DNS(53), Length = 136 

- Dns: QueryId = 0x8EB7, Update, Query for contoso.com of type SOA on class Internet 

QueryIdentifier: 36535 (0x8EB7) 

- Flags: Query, Opcode - Update, Rcode - Success 

QR: (0...............) Query 

Opcode: (.0101...........) Update 5 

AA: (.....0..........) Not authoritative 

TC: (......0.........) Not truncated 

RD: (.......0........) Recursion not desired 

RA: (........0.......) Recursive query support not available 

Zero: (.........0......) 0 

AuthenticatedData: (..........0.....) Not AuthenticatedData 

CheckingDisabled: (...........0....) Not CheckingDisabled 

Rcode: (............0000) Success 0 

QuestionCount: 1 (0x1) 

AnswerCount: 1 (0x1) 
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NameServerCount: 4 (0x4) 

AdditionalCount: 0 (0x0) 

- QRecord: contoso.com of type SOA on class Internet 

QuestionName: contoso.com 

QuestionType: SOA, Marks the start of a zone of authority, 6(0x6) 

QuestionClass: Internet, 1(0x1) 

- ARecord: VistaPC.contoso.com of type CNAME on class None 

ResourceName: VistaPC.contoso.com 

ResourceType: CNAME, Canonical name for an alias, 5(0x5) 

ResourceClass: None, 254(0xfe) 

TimeToLive: 0 (0x0) 

ResourceDataLength: 0 (0x0) 

- AuthorityRecord: VistaPC.contoso.com of type AAAA on class Any 

ResourceName: VistaPC.contoso.com 

ResourceType: AAAA, IPv6 Address, 28(0x1c) 

ResourceClass: Any, 255(0xff) 

TimeToLive: 0 (0x0) 

ResourceDataLength: 0 (0x0) 

- AuthorityRecord: VistaPC.contoso.com of type Host Addr on class Any 

ResourceName: VistaPC.contoso.com 

ResourceType: A, IPv4 address, 1(0x1) 

ResourceClass: Any, 255(0xff) 

TimeToLive: 0 (0x0) 

ResourceDataLength: 0 (0x0) 

- AuthorityRecord: VistaPC.contoso.com of type AAAA on class Internet 

ResourceName: VistaPC.contoso.com 

ResourceType: AAAA, IPv6 Address, 28(0x1c) 

ResourceClass: Internet, 1(0x1) 

TimeToLive: 1200 (0x4B0) 

ResourceDataLength: 16 (0x10) 

IPv6Address: 2001:DB8:0:0:B500:734B:FE5B:3945 

- AuthorityRecord: VistaPC.contoso.com of type Host Addr on class Internet 

ResourceName: VistaPC.contoso.com 

ResourceType: A, IPv4 address, 1(0x1) 

ResourceClass: Internet, 1(0x1) 

TimeToLive: 1200 (0x4B0) 

ResourceDataLength: 4 (0x4) 

IPAddress: 10.0.0.3

In this frame, a DNS client sends a DNS Update message requesting that the DNS server 
register an A record for the name vistapc.contoso.com with the IPv4 address 10.0.0.3 and an 
AAAA record for the name vistapc.contoso.com with the IPv6 address 
2001:db8:0:0:b500:734b:fe5b:3945. This DNS Update message is not being sent securely. 
Secure DNS Update messages include a Transaction Signature record in the Additional RRs 
section of the message.

The following is the corresponding DNS Update Response message from Capture 15-04 
(Frame 2), as displayed with Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = UDP, Packet ID = 1518, Total IP Length = 156 

+ Udp: SrcPort = DNS(53), DstPort = 53285, Length = 136 

- Dns: QueryId = 0x8EB7, Update, Response - Success  
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QueryIdentifier: 36535 (0x8EB7) 

- Flags: Response, Opcode - Update, Rcode - Success 

QR: (1...............) Response 

Opcode: (.0101...........) Update 5 

AA: (.....0..........) Not authoritative 

TC: (......0.........) Not truncated 

RD: (.......0........) Recursion not desired 

RA: (........0.......) Recursive query support not available 

Zero: (.........0......) 0 

AuthenticatedData: (..........0.....) Not AuthenticatedData 

CheckingDisabled: (...........0....) Not CheckingDisabled 

Rcode: (............0000) Success 0 

QuestionCount: 1 (0x1) 

AnswerCount: 1 (0x1) 

NameServerCount: 4 (0x4) 

AdditionalCount: 0 (0x0) 

- QRecord: contoso.com of type SOA on class Internet 

QuestionName: contoso.com 

QuestionType: SOA, Marks the start of a zone of authority, 6(0x6) 

QuestionClass: Internet, 1(0x1) 

- ARecord: VistaPC.contoso.com of type CNAME on class None 

ResourceName: VistaPC.contoso.com 

ResourceType: CNAME, Canonical name for an alias, 5(0x5) 

ResourceClass: None, 254(0xfe) 

TimeToLive: 0 (0x0) 

ResourceDataLength: 0 (0x0) 

- AuthorityRecord: VistaPC.contoso.com of type AAAA on class Any 

ResourceName: VistaPC.contoso.com 

ResourceType: AAAA, IPv6 Address, 28(0x1c) 

ResourceClass: Any, 255(0xff) 

TimeToLive: 0 (0x0) 

ResourceDataLength: 0 (0x0) 

- AuthorityRecord: VistaPC.contoso.com of type Host Addr on class Any 

ResourceName: VistaPC.contoso.com 

ResourceType: A, IPv4 address, 1(0x1) 

ResourceClass: Any, 255(0xff) 

TimeToLive: 0 (0x0) 

ResourceDataLength: 0 (0x0) 

- AuthorityRecord: VistaPC.contoso.com of type AAAA on class Internet 

ResourceName: VistaPC.contoso.com 

ResourceType: AAAA, IPv6 Address, 28(0x1c) 

ResourceClass: Internet, 1(0x1) 

TimeToLive: 1200 (0x4B0) 

ResourceDataLength: 16 (0x10) 

IPv6Address: 2001:DB8:0:0:B500:734B:FE5B:3945 

- AuthorityRecord: VistaPC.contoso.com of type Host Addr on class Internet 

ResourceName: VistaPC.contoso.com 

ResourceType: A, IPv4 address, 1(0x1) 

ResourceClass: Internet, 1(0x1) 

TimeToLive: 1200 (0x4B0) 

ResourceDataLength: 4 (0x4) 

IPAddress: 10.0.0.3

The update response confirms the success of the registration and contains the records that 
were registered.
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Transferring Zone Information Between DNS Servers

There are three methods of performing zone transfer for DNS servers running Windows 
Server 2008:

■ Traditional zone transfer  This method, described in RFC 1034, involves the secondary 
server requesting a full copy of the zone from the primary server.

■ Incremental zone transfer This method, defined in RFC 1995, requires the DNS server 
hosting the primary zone to keep a record of the changes that are made between each 
increment of the zone’s sequence number. The secondary zone can thus request only 
the changes that occurred since the last time the secondary zone was updated.

■ Active Directory zone transfer In this method, Active Directory zones are replicated to 
all domain controllers using Active Directory replication. Active Directory replication 
does not use the DNS protocol.

The traditional zone transfer mechanism can be wasteful of network resources if the change in 
the transferred RRs is small in relation to the overall zone. In such cases, incremental zone 
transfer is more efficient. 

The Network Monitor Capture 15-05 (included in the \Captures folder on the companion 
CD-ROM) provides an example of a traditional zone transfer. In the capture, a secondary DNS 
server for a zone creates a TCP connection with the primary DNS server and requests a zone 
transfer. The secondary DNS server requests the zone transfer over the TCP connection; the 
transfer occurs; and the secondary DNS server terminates the TCP connection.

Incremental zone transfers can be more efficient than traditional zone transfers for both large 
and dynamic zones. However, they place additional processing requirements on the DNS 
server, which needs to keep track of the zone differences and sends only the changed records. 
By default, the DNS Server service for Windows Server 2008 uses incremental transfers 
when possible.

The Network Monitor Capture 15-06 (included in the \Captures folder on the companion 
CD-ROM) provides an example of an incremental zone transfer. In the capture, a secondary 
DNS server for a zone first queries a primary DNS server for the SOA record and then requests 
an incremental zone transfer. For this example capture, the changed records fit within a single 
UDP message. Therefore, the entire incremental zone transfer is done with a single UDP-based 
reply message (frame 4). If the changes did not fit within a single UDP message, the reply mes-
sage would have the Truncated flag set to 1. The secondary server would then create a TCP 
connection to the primary DNS server and request the zone transfer using TCP.

Active Directory replication is a method of zone transfer that can be used only with Windows 
Server 2008 or Windows Server 2003 domain controllers. Normal DNS zone transfers are 
pull in nature—the secondary DNS servers pull the zone or zone changes from the primary 
server. Active Directory replication, on the other hand, is push in nature—the directory 
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changes are pushed from the domain controller on which the change occurred to the other 
domain controllers. For zones that do not change often, Active Directory replication ensures 
that all DNS servers storing the zone are updated quickly. For more dynamic zones this tends 
to smooth the replication traffic. Active Directory replication does not use the DNS protocol 
and is not described in this book.

Summary 
DNS has a common message format for DNS Name Query Request and Name Query 
Response messages and a different common message format for DNS Update and Update 
Response messages. DNS messages have a fixed-size portion and a variable sized portion. 
The variable-sized portion contains entries and records to perform name resolution, registra-
tion, and zone transfers between DNS servers. DNS name resolution, either for a recursive or 
iterative query, consists of an exchange of DNS Name Query Request and Name Query 
Response messages. For successful resolution, the Name Query Response message contains 
the RRs for the FQDN that was requested. DNS name registration consists of an exchange of 
DNS Update and Update Response messages. For successful registration, the DNS Update 
Response message contains the data that was registered. Zone transfers between DNS servers 
can transfer the entire zone in a full or traditional zone transfer, or just the changes to the zone 
in an incremental zone transfer.
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Network Basic Input/Output System (NetBIOS) is a protocol that provides commands and 
support for network name registration and verification, session establishment and termina-
tion, reliable connection-oriented session data transfer, unreliable connectionless datagram 
data transfer, and protocol and adapter monitoring and management. NetBIOS is also a stan-
dard application programming interface (API) so that user applications can utilize the services 
of installed network protocol stacks. The NetBIOS API is not discussed in this chapter.

NetBIOS over TCP/IP (NetBT) is the operation of the NetBIOS protocol over the Transmission 
Control Protocol (TCP) and the User Datagram Protocol (UDP) of the TCP/IP protocol stack. 
Windows Internet Name Service (WINS) is the Windows implementation of a NetBIOS name 
server (NBNS), which provides a distributed database for registering and resolving NetBIOS 
names to IP addresses used on your network. 

This chapter describes the details of NetBT messages for WINS-based name resolution and reg-
istration and common NetBT message exchanges between WINS clients and WINS servers.

Note This chapter assumes prior knowledge of NetBT including NetBIOS names, NetBIOS 
name resolution, NetBIOS node types, the components of a WINS infrastructure (WINS client, 
WINS server, and WINS proxy), and their operation and configuration in Microsoft Windows. 
For more information, see Chapter 11, “NetBIOS over TCP/IP,” and Chapter 12, “Windows Inter-
net Name Service Overview,” of the “TCP/IP Fundamentals for Microsoft Windows” book, 
located in the \Fundamentals folder on the companion CD-ROM.

NetBT Name Service Messages
WINS clients and WINS servers communicate by exchanging NetBT name service messages. 
NetBT messages and protocol operation are defined in RFCs 1001 and 1002. There are many 
types of NetBT name service messages defined in RFC 1002, which are typically sent as UDP 
333
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messages. Both the WINS client and the WINS server listen on UDP port 137. The types of 
NetBT name service messages that are described in this chapter are the following:

■ Name Query Request Sent by a WINS client to a WINS server to perform NetBIOS 
name resolution.

■ Name Query Response Sent by a WINS server to a WINS client to respond to a name 
query request. There is a positive name query response and a negative name query 
response.

■ Name Registration Request Sent by a WINS client to a WINS server to perform name 
registration.

■ Name Registration Response Sent by a WINS server to a WINS client to respond to a 
name registration request. There is a positive name registration response and a negative 
name registration response.

■ Wait Acknowledgment Sent by a WINS server to a WINS client during name registra-
tion when confirming the ownership of an existing name previously registered by 
another client.

■ Name Refresh Request Sent by a WINS client to a WINS server to refresh a name that 
was previously registered. The response to a name refresh request is a name registration 
response.

■ Name Release Request Sent by a WINS client to a WINS server to release the registra-
tion of a name that was previously registered.

■ Name Release Response Sent by a WINS server to a WINS client to respond to a name 
release request. There is a positive name release response and a negative name release 
response.

More Info All of the RFCs referenced in this chapter can be found in the 
\Standards\Chap16_WINS folder on the companion CD-ROM.

NetBIOS Name Service Messages

NetBIOS name service messages share a common structure, as shown in Figure 16-1.

NetBIOS name service messages consist of the following:

■ Name Service header Fixed length (12 bytes long), containing information about the 
type of name service message and the numbers of the other records in the message.

■ Question entries Variable length for NetBIOS Name Registration, Refresh, or Release 
messages. This portion of the message contains the NetBIOS name being acted on by 
the message.
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Figure 16-1 NetBIOS name service message structure

■ Answer RRs Variable length, containing resource records (RRs) returned in response to 
a question entry.

■ Authority RRs Variable length, containing RRs used to indicate the authority for the 
question being asked. These are not used by the WINS Server service in Windows 
Server 2008.

■ Additional RRs Variable length, containing other RRs that are not an answer to a 
question entry.

This is almost the same structure as Domain Name System (DNS) Name Query Request and 
Response messages that are described in Chapter 15, “Domain Name System.”

Figure 16-2 shows the format of the 12-byte Name Service header for the NetBIOS name 
service messages.

Figure 16-2 Name Service header

The fields within the 12-byte fixed Name Service header are the following:

■ Transaction ID A 2-byte field that is used to identify a specific NetBIOS name service 
transaction. The sender of the request message creates the transaction ID and the 
responder copies it into the response message. This allows the WINS client to match 
the responses that it received from a WINS server with their requests. Each separate 

Name Service Header
(12 byte fixed length)

Question Entries
(variable length)

Answer RRs
(variable length)

Authority RRs
(variable length)

Additional RRs
(variable length)

Transaction ID

Flags

Question Entry Count

Answer RR Count

Authority RR Count

Additional RR Count
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NetBIOS name service transaction has a different transaction ID. For example, if a WINS 
client is registering multiple names, each Name Registration Request message has a 
different transaction ID.

■ Flags A 2-byte field containing flags. For more information, see Figure 16-3.

■ Question Entry Count A 2-byte field indicating the number of entries in the Question 
Entries section of the message. The sender of a request message always sets this value to 
1 or more, although typically it is set at 1. The responder always sets this field to 0.

■ Answer RR Count A 2-byte field indicating the number of RRs in the Answer RRs sec-
tion of the message. The sender of a request message sets this count to 0. The responder 
sets this to indicate the number of answers returned. This is typically 1 for unique 
NetBIOS name lookups and a larger number for Internet group name lookups.

■ Authority RR Count A 2-byte field indicating the number of RRs in the Authority RRs 
section of the message. Authority RRs are used for recursive NetBIOS name queries, 
which are not supported by the WINS Server service in Windows Server 2008. There-
fore, this field is always set to 0 in NetBIOS name service messages to indicate that there 
are no authority RRs in the message.

■ Additional RR Count A 2-byte field indicating the number of RRs in the Additional RRs 
section of the NetBIOS name service message. These records are used when an RR needs to 
be included in any name service operation that is not a response to a name query request. 
For example, in a name release, an additional RR includes the name being released.

Figure 16-3 shows the format of the Flags field in the Name Service header.

Figure 16-3 The Flags field in the Name Service header

The fields within the Flags field are the following:

■ Request/Response A 1-bit field that is set to 0 for a request message or 1 for a 
response message.

■ Operation Code A 4-bit field that indicates the specific name service operation of the 
message. See Table 16-1 for a list of Operation Code values.

Request/Response

Operation Code

Authoritative Answer

Truncation

Recursion Desired

Recursion Available

Reserved

Return Code

=0
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■ Authoritative Answer A 1-bit field that indicates, when set to 1 in a name query 
response, that the sender is authoritative for the NetBIOS name. For name service 
requests, this flag is always set to 0. For name service responses, the computer respond-
ing to the request sets it to 1 if it is authoritative for a NetBIOS name.

■ Truncation A 1-bit field that indicates, when set to 1 in a name query response, that the 
message was truncated because the original datagram containing the entire message 
exceeded 576 bytes. Similar to DNS truncation, RFC 1001 describes the use of TCP to 
obtain the original datagram. Windows Server 2008 and Windows Vista do not support 
the use of TCP for NetBIOS name service messages. Therefore, the Truncation bit is 
always set to 0.

■ Recursion Desired A 1-bit field that indicates, when set to 1 in a name query request, 
that the query is recursive. When set to 0, the sender indicates an iterative query; the 
WINS server can return a list of other name servers that can be contacted to resolve the 
name. Windows Server 2008 and Windows Vista-based WINS clients set this flag to 1 
for all name queries. If the flag is set to 1 in a name service message sent to a WINS 
server running Windows Server 2008, the WINS server sets it to 1 in the corresponding 
reply. Windows Server 2008 does not support iterative NetBIOS name queries.

■ Recursion Available A 1-bit field that indicates, when set to 1 in a name query response, 
that the WINS server can perform recursive queries. Set to 0 on all name request mes-
sages. The Windows Server 2008 WINS Server service sets this field to 1 in name service 
responses to indicate that it can perform recursive name query, name registration, and 
name release messages. If set to 0 in a response message, the client must iterate for name 
service queries and perform challenges for any name registrations.

■ Reserved A 2-bit field that is reserved and set to 0.

■ Broadcast A 1-bit field that indicates that the message is being sent as a broadcast (set 
to 1) or unicast (set to 0).

■ Return Code A 4-bit field that indicates the return code in a name query response. All 
name service requests set the value to 0. A return code of 0 in a name service response 
indicates a successful response (the answer is in the name query response message). A 
return code of 0 in name query responses means that the answer to the query is in the 
response message. A return code of 0 in name registrations means that the registration 
was successful.

Table 16-1 NetBIOS Name Service Operation Codes

Operation Code Description

0 Name Query Request

5 Name Registration Request

6 Name Release

7 Wait Acknowledgment

8 Name Refresh
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Note The field names in the NetBIOS name service message header in this chapter use the 
field names from the DNS message header, rather than the field names as defined in RFC 1002. 
Network Monitor 3.1 also uses the field names from the DNS header.

NetBIOS Name Representation

NetBIOS names in NetBIOS name service packets are encoded using a scheme that was 
designed to make them similar to DNS names. This was done because at the time that RFCs 
1001 and 1002 were written, the DNS specifications were more restrictive in the types of char-
acters that were allowed. For NetBIOS name service messages, the DNS form of a NetBIOS 
name is the concatenation of a converted NetBIOS name, the period (.) character, and the 
NetBIOS scope identifier (optional).

Creating the DNS form of a NetBIOS name for NetBIOS name service messages involves the 
following steps:

1. The 16-character NetBIOS name is converted into a 32-byte ASCII representation.

2. The period (.) character and the NetBIOS scope identifier are appended to the 32-byte 
ASCII representation of the NetBIOS name.

3. The resulting name is then encoded using length-value format according to the rules for 
fully qualified domain names (FQDNs) in DNS Name Query Request messages.

The first step involves converting the original 16-byte NetBIOS name into a 32-byte string by 
mapping each hexadecimal digit of the NetBIOS name to an ASCII character, as shown in 
Table 16-2.

Table 16-2 Converting the Hexadecimal Digit to an ASCII Character

Hexadecimal Digit ASCII Character

0 A

1 B

2 C

3 D

4 E

5 F

6 G

7 H

8 I

9 J

A K

B L
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This conversion results in a 32-byte string that contains only the ASCII characters A through P.

For example, consider the name of the Workstation service on the server named SERVER1. 
The full 16-character NetBIOS name of the Workstation service is SERVER1        [00]; that 
is, the name SERVER1 followed by eight spaces (or 0x20 in ASCII) and terminated by the 
hexadecimal value 0x00. When the characters of the NetBIOS name are expressed using their 
ASCII values and converted to hexadecimal format, the NetBIOS name becomes:

53-45-52-56-45-52-31-20-20-20-20-20-20-20-20-00

Converting this name into individual hexadecimal digits, the NetBIOS name becomes:

5-3-4-5-5-2-5-6-4-5-5-2-3-1-2-0-2-0-2-0-2-0-2-0-2-0-2-0-2-0-0-0

Converting this 32-digit hexadecimal representation of the NetBIOS name to a 32-byte ASCII 
string using Table 16-2, the result is the following:

FDEFFCFGEFFCDBCACACACACACACACAAA

The third step involves converting the name into the DNS length-value format. In 
DNS, domain names are expressed as a sequence of labels. For example, the DNS name 
contoso.com consists of two labels (contoso and com). Each label in a DNS message is 
formatted with a 1-byte-length field followed by the label. The DNS name contoso.com would 
be expressed as 0x07contoso0x03com0x00, in which the hexadecimal digits represent the 
length of each label, the ASCII characters represent the individual labels, and the final 0x00 
indicates the end of the name.

To complete the DNS form of the NetBIOS name, the first label is the 32-byte converted Net-
BIOS name, with additional labels for the NetBIOS scope identifier (optional). If there is no 
NetBIOS scope identifier, the DNS form of the NetBIOS name SERVER1        [00] is the 
following:

0x20FDEFFCFGEFFCDBCACACACACACACACAAA0x00

If the NetBIOS scope identifier is contoso.com, the DNS form of the NetBIOS name 
SERVER1        [00] is the following:

0x20FDEFFCFGEFFCDBCACACACACACACACAAA0x07contoso0x03com0x00

C M

D N

E O

F P

Table 16-2 Converting the Hexadecimal Digit to an ASCII Character

Hexadecimal Digit ASCII Character
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Typical network sniffers, such as Microsoft Network Monitor, automatically interpret the DNS 
form of NetBIOS names. Figure 16-4 shows how a NetBIOS name within a NetBIOS name 
service message is displayed in Network Monitor 3.1.

Figure 16-4 Example of a NetBIOS name in Network Monitor 3.1

When you click the Question Name field in the Frame Details pane, Network Monitor 3.1 
highlights the corresponding bytes in the Hex Details pane. In this example, when the Ques-
tion Name field in the Detail Frame is highlighted, it corresponds to the hexadecimal digits for 
the DNS form of the NetBIOS name SERVER1        [00].

Question RR Format

In a NetBIOS name service message, a question entry in the Question RR portion of the 
message contains the NetBIOS name that is being queried, registered, refreshed, or released. 
The format of a NetBIOS name service question entry is based on the DNS question entry 
in DNS Name Query Request and Response messages. Figure 16-5 shows the format of a 
Question entry.

Figure 16-5 Question entry format

The fields in the question entry are the following:

■ Question Name A variable-sized field that contains the NetBIOS name that is being 
queried, registered, refreshed, or released. The name is expressed using the DNS form of 
a NetBIOS name.

■ Question Type A 2-byte field that indicates the type of response to return. For NetBIOS 
name operations, the question type is set to 0x00-20.

Question Name

Question Type

Question Class

. . .

=0x00-01
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■ Question Class A 2-byte field that indicates the question class. This is always set to 1 to 
indicate the Internet (IN) question class.

The NetBIOS name service message can contain RRs in the Answer RRs and Additional RRs 
sections. These RRs can answer the question in the Question Entries section. Figure 16-6 
shows the format of an RR in NetBIOS name service messages.

Figure 16-6 RR format in NetBIOS name service messages

The fields in an RR are the following:

■ RR Name A variable-sized field that indicates either the DNS form of a NetBIOS name or 
a 2-byte pointer value that indicates where the NetBIOS name already exists in the message. 

■ Record Type A 2-byte field that indicates the RR type. See Table 16-3 for a list of record 
types defined in RFC 1002.

■ Record Class A 2-byte field that indicates the record class. This is always set to 1 to 
indicate the Internet (IN) class.

■ Time to Live A 4-byte field that indicates the number of seconds for the Time to Live 
(TTL) of the RR.

■ Resource Data Length A 2-byte field that indicates the length of the resource data. 

■ Resource Data A variable-length field containing the data for the RR type.

For NetBIOS General Name Service RRs (record type 0x20), the Resource Data field of the RR 
contains a 2-byte RDATA flags field and a 4-byte IP address corresponding to the name in the 
RR Name field. Figure 16-7 shows the format of an RR used in General Name Service RRs.

Table 16-3 Values for the Record Type Field

Value Description

0x00 IP Address RR

0x02 Name Server RR

0x0A Null RR

0x20 NetBIOS General Name Service RR

0x21 NetBIOS Node Status RR

RR Name

Record Type

Record Class

Time to Live

Resource Data Length

Resource Data

. . .

=0x00-01

. . . 
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Figure 16-7 Format for General Name Service RRs

Figure 16-8 displays the format of the RDATA flags field.

Figure 16-8 Format of the RDATA flags field

The RDATA field contains the following:

■ Group Flag A 1-bit field that indicates whether the name is a group name (set to 1) or 
a unique name (set to 0).

■ Owner Node Type A 2-bit field that indicates the NetBIOS node type of either the 
requestor or the owner of the NetBIOS name. The values for Windows Server 2008 and 
Windows Vista are 0 for B-Node, 1 for P-Node, 2 for M-Node, and 3 for H-Node.

■ Reserved A 13-bit field that is reserved and set to 0.

If the NetBIOS name is already present elsewhere in the DNS message, the RR Name field can 
be a 2-byte field whose value is a pointer to the NetBIOS name that is already present in the 
message. A pointer value is indicated by setting the two high-order bits in the first byte of the 
RR Name field to 11. If the first byte of the RR Name field is greater than or equal to 0xC0 
(192), the RR Name field is a 2-byte pointer field. With the first 2 bits fixed at 11, the last 
14 bits are used as a byte offset pointer (starting at 0) indicating the location of the NetBIOS 
name in the message.

For a simple Name Registration Request message, the RR Name for the Additional RR is the 
same as the Resource Name for the Question entry, which begins in the 13th byte position 
from the beginning of the message. But because we start counting the byte position from 0, 

RR Name

Record Type

Record Class

Time to Live

Resource Data Length

Data Flags

IP Address

. . .

=0x00-20

=0x00-01

=0x00-06

 

=0

Group Flag
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Reserved
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the pointer value is set to 12. Figure 16-9 shows the RR Name in the Additional RR for 
this example.

Figure 16-9 The RR Name as a pointer to a name stored elsewhere in the message

For this example, the 2-byte RR Name field consists of the first two bits set to 11 and the last 
14 bits set to 00 0000 0000 1100 (or 12 in decimal). The resulting 2-byte field is 1100 0000 
0000 1100, or 0xC0-0C. Figure 16-10 shows how this is displayed in Network Monitor 3.1.

Figure 16-10 Example of a pointer value in the RR Name field in Network Monitor 3.1

When you click the Resource Name field in the Frame Details pane, Network Monitor 3.1 high-
lights the corresponding bytes in the Hex Details pane. In this example, when the RR Name 
field in the Detail Frame is highlighted, it corresponds to the hex digits 0xC0-0C, which indi-
cates that the RR Name field is pointing to the 12th-byte offset (starting from 0) from the 
beginning of the message, or the first byte of the Question Name field.

1 1 1 1 1 1  
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5  

1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0

RR Name 

Indicates 
Pointer

Indicates 12th Byte Offset (Starting at 0)
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WINS Client and Server Message Exchanges
This section describes common message exchanges between WINS clients and servers for 
the following:

■ Resolving NetBIOS names to IP addresses

■ Registering NetBIOS names

■ Renewing NetBIOS names

■ Releasing NetBIOS names

Resolving NetBIOS Names to IP Addresses

Resolving NetBIOS names to IP addresses occurs when a WINS client sends a WINS server a 
Name Query Request message containing a NetBIOS name. This message exchange consists 
of a Name Query Request message and either a Positive Name Query Response or Negative 
Name Query Response message.

An example of this message exchange is Capture 16-01, a Network Monitor trace that is 
included in the \Captures folder on the companion CD-ROM. The following is the Name 
Query Request message from Capture 16-01 (Frame 1), as displayed with Network 
Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = UDP, Packet ID = 73, Total IP Length = 78 

- Udp: SrcPort = NETBIOS Name Service(137), DstPort = NETBIOS Name Service(137), Length = 58 

SourcePort: NETBIOS Name Service(137), 137(0x89) 

DestinationPort: NETBIOS Name Service(137), 137(0x89) 

TotalLength: 58 (0x3A) 

Checksum: 4028 (0xFBC) 

- Nbtns: Query Request for SERVER1 <0x00> Workstation Service 

TransactionId: 36163 (0x8D43) 

- Flag: 256 (0x100) 

R: (0...............) Request 

OPCode: (.0000...........) Query 

AA: (.....0..........) Non-authorized answer 

TC: (......0.........) Datagram not truncated 

RD: (.......1........) Recursion desired 

RA: (........0.......) Recursion not available 

Reserved: (.........00.....) 

B: (...........0....) Not a broadcast packet 

RCode: (............0000) Success 

QuestionCount: 1 (0x1) 

AnswerCount: 0 (0x0) 

NameServiceCount: 0 (0x0) 

AdditionalCount: 0 (0x0) 

- NbtNsQuestionSectionData:  

- QuestionName: SERVER1 <0x00> Workstation Service 
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Name: SERVER1  

QuestionType: NetBIOS General Name Service 

QuestionClass: Internet Class 1(0x1)

In this frame, a WINS client sends a Name Query Request message requesting that the WINS 
server return an IP address for the NetBIOS name “SERVER1        [00]”. Note how the WINS 
client is using the source and destination UDP port of 137. Also note that this is a recursive 
request (the Recursion Desired flag is set to 1). 

The following is the corresponding Positive Name Query Response message from Capture 
16-01 (Frame 2), as displayed with Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = UDP, Packet ID = 1839, Total IP Length = 90 

+ Udp: SrcPort = NETBIOS Name Service(137), DstPort = NETBIOS Name Service(137), Length = 70 

- Nbtns: Query Response, Success for SERVER1 <0x00> Workstation Service, 10.0.0.100 

TransactionId: 36163 (0x8D43) 

- Flag: 34176 (0x8580) 

R: (1...............) Response 

OPCode: (.0000...........) Query 

AA: (.....1..........) Authorized answer 

TC: (......0.........) Datagram not truncated 

RD: (.......1........) Recursion desired 

RA: (........1.......) Recursion available 

Reserved: (.........00.....) 

B: (...........0....) Not a broadcast packet 

RCode: (............0000) Success 

QuestionCount: 0 (0x0) 

AnswerCount: 1 (0x1) 

NameServiceCount: 0 (0x0) 

AdditionalCount: 0 (0x0) 

- AnswerRecord:  

- RRName: SERVER1 <0x00> Workstation Service 

Name: SERVER1  

ResourceType: NetBIOS General Name Service 

ResourceClass: Internet Class 1(0x1) 

TimeToLive: 0 (0x0) 

ResourceDataLength: 6 (0x6) 

- ResouceRecordData:  

- NBFlags: 0 (0x0) 

G: (0...............) Unique NetBIOS Name 

ONT: (.00.............) B node 

Rsv: (...0000000000000) Reserved 

NBAddress: 10.0.0.100

The positive name query response contains the same Transaction ID value as the name query 
request. Note that the WINS server that sent this message is authoritative for the record (the 
Authoritative flag is set to 1), and the message contains all of the requested records (the Trun-
cation flag is set to 0). The Answer RRs section contains a single-answer RR for the IP address 
10.0.0.100.
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The following is an example of a Negative Name Query Response message from Capture 
16-02 (Frame 2), as displayed with Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = UDP, Packet ID = 1893, Total IP Length = 84 

+ Udp: SrcPort = NETBIOS Name Service(137), DstPort = NETBIOS Name Service(137), Length = 64 

- Nbtns: Query Response, Requested name doesn’t exist for SERVER99 <0x00> 

Workstation Service 

TransactionId: 36171 (0x8D4B) 

- Flag: 34179 (0x8583) 

R: (1...............) Response 

OPCode: (.0000...........) Query 

AA: (.....1..........) Authorized answer 

TC: (......0.........) Datagram not truncated 

RD: (.......1........) Recursion desired 

RA: (........1.......) Recursion available 

Reserved: (.........00.....) 

B: (...........0....) Not a broadcast packet 

RCode: (............0011) Requested name doesn’t exist 

QuestionCount: 0 (0x0) 

AnswerCount: 0 (0x0) 

NameServiceCount: 0 (0x0) 

AdditionalCount: 0 (0x0) 

- NegativeNMQueryRecord:  

+ RRName: SERVER99 <0x00> Workstation Service 

ResourceType: Null 

ResourceClass: Internet Class 1(0x1) 

TimeToLive: 0 (0x0) 

ResourceDataLength: 0 (0x0)

Registering NetBIOS Names

An example of a message exchange to register a NetBIOS name with a WINS server is Capture 
16-03, a Network Monitor trace that is included in the \Captures folder on the companion 
CD-ROM. The following is the Name Registration message from Capture 16-03 (Frame 1), as 
displayed with Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = UDP, Packet ID = 1, Total IP Length = 96 

+ Udp: SrcPort = NETBIOS Name Service(137), DstPort = NETBIOS Name Service(137), Length = 76 

- Nbtns: Multi-Homed Name Registration Request for VISTAPC <0x00> 

Workstation Service, 10.0.0.3 

TransactionId: 36154 (0x8D3A) 

- Flag: 30976 (0x7900) 

R: (0...............) Request 

OPCode: (.1111...........) Multi-Homed Name Registration 

AA: (.....0..........) Non-authorized answer 

TC: (......0.........) Datagram not truncated 

RD: (.......1........) Recursion desired 

RA: (........0.......) Recursion not available 

Reserved: (.........00.....) 
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B: (...........0....) Not a broadcast packet 

RCode: (............0000) Success 

QuestionCount: 1 (0x1) 

AnswerCount: 0 (0x0) 

NameServiceCount: 0 (0x0) 

AdditionalCount: 1 (0x1) 

- NbtNsQuestionSectionData:  

+ QuestionName: VISTAPC <0x00> Workstation Service 

QuestionType: NetBIOS General Name Service 

QuestionClass: Internet Class 1(0x1) 

- AdditionalRecord:  

+ RRName: VISTAPC <0x00> Workstation Service 

ResourceType: NetBIOS General Name Service 

ResourceClass: Internet Class 1(0x1) 

TimeToLive: 300000 (0x493E0) 

ResourceDataLength: 6 (0x6) 

- ResouceRecordData:  

- NBFlags: 24576 (0x6000) 

G: (0...............) Unique NetBIOS Name 

ONT: (.11.............) H node 

Rsv: (...0000000000000) Reserved 

NBAddress: 10.0.0.3

In this frame, a WINS client sends a Name Registration message requesting that the WINS 
server register the NetBIOS name VISTAPC        <0x00> with the IP address 10.0.0.3.

The following is the corresponding Positive Name Registration Response message from 
Capture 16-03 (Frame 2), as displayed with Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = UDP, Packet ID = 1741, Total IP Length = 90 

+ Udp: SrcPort = NETBIOS Name Service(137), DstPort = NETBIOS Name Service(137), Length = 70 

- Nbtns: Registration Response, Success for VISTAPC <0x00> 

Workstation Service, 10.0.0.3 

TransactionId: 36154 (0x8D3A) 

- Flag: 44416 (0xAD80) 

R: (1...............) Response 

OPCode: (.0101...........) Registration 

AA: (.....1..........) Authorized answer 

TC: (......0.........) Datagram not truncated 

RD: (.......1........) Recursion desired 

RA: (........1.......) Recursion available 

Reserved: (.........00.....) 

B: (...........0....) Not a broadcast packet 

RCode: (............0000) Success 

QuestionCount: 0 (0x0) 

AnswerCount: 1 (0x1) 

NameServiceCount: 0 (0x0) 

AdditionalCount: 0 (0x0) 

- AnswerRecord:  

+ RRName: VISTAPC <0x00> Workstation Service 

ResourceType: NetBIOS General Name Service 

ResourceClass: Internet Class 1(0x1) 

TimeToLive: 2400 (0x960) 
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ResourceDataLength: 6 (0x6) 

- ResouceRecordData:  

- NBFlags: 24576 (0x6000) 

G: (0...............) Unique NetBIOS Name 

ONT: (.11.............) H node 

Rsv: (...0000000000000) Reserved 

NBAddress: 10.0.0.3

The name registration response confirms the success of the registration and contains the IP 
address that was registered.

If the WINS server successfully registers the NetBIOS name, the return code is 0. Table 16-4 
lists the return code values when the WINS server cannot register a unique name.

When a WINS server receives a request to register a unique NetBIOS name that is already reg-
istered, the WINS server verifies that the owner that originally registered the name still owns 
it. In this case, the WINS server sends a Wait Acknowledgment (WACK) message to the com-
puter attempting to register the duplicate unique name. The WACK message informs the 
WINS client that the WINS server cannot provide a definitive positive or negative name regis-
tration response. The WINS server then sends a name query request to the owner of the reg-
istered name. Based on the response of the owner, the WINS server does one of the following:

■ If the owner responds with a positive name query response, the WINS server sends the 
WINS client that sent the duplicate name registration request a negative name registra-
tion response.

■ If the owner responds with a negative name query response or does not respond at all, 
the WINS server sends the WINS client that sent the duplicate name registration 
request a positive name registration response.

The Network Monitor trace in Capture 16-04 (included in the \Captures folder on the com-
panion CD-ROM) shows this process. 

The following is a summary of Frames 1 through 5 of Capture 16-04 in the \Captures folder 
on the companion CD-ROM.

Table 16-4 Return Code Values for Name Registration Errors

Return Code Value Description

1 Format error: The request was improperly formatted.

2 Server failure: There is a problem with the name server, such that it cannot 
process the name registration request.

4 Unsupported: The request is not supported by the NBNS.

5 Name registration request refused: For policy reasons, the NBNS could not 
register this name from this host. This is not used by the WINS Server ser-
vice in Windows Server 2008.

6 Name active: Another node owns the name.

7 Name conflict: More than one end-node owns a unique NetBIOS name.
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Frame Source Dest Description 

1 10.10.1.52 10.152.236.200 Name Registration Request 

2 10.152.236.200 10.10.1.52 WACK 

3 10.152.236.200 10.152.236.212 Name Query Request 

4 10.152.236.212 10.152.236.200 Positive Name Query Response 

5 10.152.236.200 10.10.1.52 Negative Name Registration Response 

In Frame 1, a WINS client (10.10.1.52) attempts to register the name JASMINE[00] with a 
WINS server (10.152.236.200). However, the WINS server already has a registration for that 
name. In Frame 2, the WINS server sends a WACK to the WINS client. In Frame 3, the WINS 
server queries the registered owner of the NetBIOS name JASMINE[00] (10.152.236.212). In 
Frame 4, the registered owner responds to the request with a positive name query response. 
Because the registered owner still owns the name, the WINS server sends a negative name 
registration response back to the WINS client with an error code set to 6, indicating that the 
unique name is active (Frame 5).

Refreshing NetBIOS Names

An example of a message exchange to refresh the existing registration of a NetBIOS name with 
a WINS server is Capture 16-05, a Network Monitor trace that is included in the \Captures 
folder on the companion CD-ROM. The following is the Name Refresh Request message from 
Capture 16-05 (Frame 1), as displayed with Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = UDP, Packet ID = 196, Total IP Length = 96 

+ Udp: SrcPort = NETBIOS Name Service(137), DstPort = NETBIOS Name Service(137), Length = 76 

- Nbtns: Refresh Request for VISTAPC <0x20> File Server Service, 10.0.0.3 

TransactionId: 36176 (0x8D50) 

- Flag: 16384 (0x4000) 

R: (0...............) Request 

OPCode: (.1000...........) Refresh 

AA: (.....0..........) Non-authorized answer 

TC: (......0.........) Datagram not truncated 

RD: (.......0........) Recursion not desired 

RA: (........0.......) Recursion not available 

Reserved: (.........00.....) 

B: (...........0....) Not a broadcast packet 

RCode: (............0000) Success 

QuestionCount: 1 (0x1) 

AnswerCount: 0 (0x0) 

NameServiceCount: 0 (0x0) 

AdditionalCount: 1 (0x1) 

- NbtNsQuestionSectionData:  

+ QuestionName: VISTAPC <0x20> File Server Service 

QuestionType: NetBIOS General Name Service 

QuestionClass: Internet Class 1(0x1) 

- AdditionalRecord:  

+ RRName: VISTAPC <0x20> File Server Service 

ResourceType: NetBIOS General Name Service 

ResourceClass: Internet Class 1(0x1) 

TimeToLive: 300000 (0x493E0) 
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ResourceDataLength: 6 (0x6) 

- ResouceRecordData:  

- NBFlags: 24576 (0x6000) 

G: (0...............) Unique NetBIOS Name 

ONT: (.11.............) H node 

Rsv: (...0000000000000) Reserved 

NBAddress: 10.0.0.3

In this frame, a WINS client sends a Name Refresh Request message requesting that the 
WINS server refresh the registration of the NetBIOS name VISTAPC        <0x20> with the 
IP address 10.0.0.3.

The following is the corresponding Name Registration Response message from Capture 16-05 
(Frame 2), as displayed with Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = UDP, Packet ID = 1900, Total IP Length = 90 

+ Udp: SrcPort = NETBIOS Name Service(137), DstPort = NETBIOS Name Service(137), Length = 70 

- Nbtns: Registration Response, Success for VISTAPC <0x20> 

File Server Service, 10.0.0.3 

TransactionId: 36176 (0x8D50) 

- Flag: 44416 (0xAD80) 

R: (1...............) Response 

OPCode: (.0101...........) Registration 

AA: (.....1..........) Authorized answer 

TC: (......0.........) Datagram not truncated 

RD: (.......1........) Recursion desired 

RA: (........1.......) Recursion available 

Reserved: (.........00.....) 

B: (...........0....) Not a broadcast packet 

RCode: (............0000) Success 

QuestionCount: 0 (0x0) 

AnswerCount: 1 (0x1) 

NameServiceCount: 0 (0x0) 

AdditionalCount: 0 (0x0) 

- AnswerRecord:  

- RRName: VISTAPC <0x20> File Server Service 

Name: VISTAPC  

ResourceType: NetBIOS General Name Service 

ResourceClass: Internet Class 1(0x1) 

TimeToLive: 2400 (0x960) 

ResourceDataLength: 6 (0x6) 

- ResouceRecordData:  

- NBFlags: 24576 (0x6000) 

G: (0...............) Unique NetBIOS Name 

ONT: (.11.............) H node 

Rsv: (...0000000000000) Reserved 

NBAddress: 10.0.0.3

The name registration response confirms the success of the refresh and contains the IP 
address that was registered.
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Releasing NetBIOS Names

An example of a message exchange to release and remove the registration of a NetBIOS 
name with a WINS server is Capture 16-06, a Network Monitor trace that is included in the 
\Captures folder on the companion CD-ROM. The following is the Name Release Request 
message from Capture 16-06 (Frame 1), as displayed with Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = UDP, Packet ID = 57, Total IP Length = 96 

+ Udp: SrcPort = NETBIOS Name Service(137), DstPort = NETBIOS Name Service(137), Length = 76 

- Nbtns: Release Request for VISTAPC <0x00> Workstation Service, 10.0.0.3 

TransactionId: 36194 (0x8D62) 

- Flag: 12288 (0x3000) 

R: (0...............) Request 

OPCode: (.0110...........) Release 

AA: (.....0..........) Non-authorized answer 

TC: (......0.........) Datagram not truncated 

RD: (.......0........) Recursion not desired 

RA: (........0.......) Recursion not available 

Reserved: (.........00.....) 

B: (...........0....) Not a broadcast packet 

RCode: (............0000) Success 

QuestionCount: 1 (0x1) 

AnswerCount: 0 (0x0) 

NameServiceCount: 0 (0x0) 

AdditionalCount: 1 (0x1) 

- NbtNsQuestionSectionData:  

+ QuestionName: VISTAPC <0x00> Workstation Service 

QuestionType: NetBIOS General Name Service 

QuestionClass: Internet Class 1(0x1) 

- AdditionalRecord:  

+ RRName: VISTAPC <0x00> Workstation Service 

ResourceType: NetBIOS General Name Service 

ResourceClass: Internet Class 1(0x1) 

TimeToLive: 0 (0x0) 

ResourceDataLength: 6 (0x6) 

- ResouceRecordData:  

- NBFlags: 24576 (0x6000) 

G: (0...............) Unique NetBIOS Name 

ONT: (.11.............) H node 

Rsv: (...0000000000000) Reserved 

NBAddress: 10.0.0.3

In this frame, a WINS client sends a Name Release Request message requesting that the WINS 
server release and remove the registration of the NetBIOS name VISTAPC        <0x00> with 
the IP address 10.0.0.3.

The following is the corresponding Name Release Response message from Capture 16-06 
(Frame 2), as displayed with Network Monitor 3.1:
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Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = UDP, Packet ID = 1941, Total IP Length = 90 

+ Udp: SrcPort = NETBIOS Name Service(137), DstPort = NETBIOS Name Service(137), Length = 70 

- Nbtns: Release Response, Success for VISTAPC <0x00> Workstation Service, 10.0.0.3 

TransactionId: 36194 (0x8D62) 

- Flag: 46080 (0xB400) 

R: (1...............) Response 

OPCode: (.0110...........) Release 

AA: (.....1..........) Authorized answer 

TC: (......0.........) Datagram not truncated 

RD: (.......0........) Recursion not desired 

RA: (........0.......) Recursion not available 

Reserved: (.........00.....) 

B: (...........0....) Not a broadcast packet 

RCode: (............0000) Success 

QuestionCount: 0 (0x0) 

AnswerCount: 1 (0x1) 

NameServiceCount: 0 (0x0) 

AdditionalCount: 0 (0x0) 

- AnswerRecord:  

+ RRName: VISTAPC <0x00> Workstation Service 

ResourceType: NetBIOS General Name Service 

ResourceClass: Internet Class 1(0x1) 

TimeToLive: 0 (0x0) 

ResourceDataLength: 6 (0x6) 

- ResouceRecordData:  

- NBFlags: 24576 (0x6000) 

G: (0...............) Unique NetBIOS Name 

ONT: (.11.............) H node 

Rsv: (...0000000000000) Reserved 

NBAddress: 10.0.0.3

The name release response confirms the success of the release and contains the IP address 
that was released.

Summary
NetBT has a common message format for NetBIOS name service  messages, which have a 
fixed-size portion and a variable-sized portion. The variable-sized portion contains entries and 
records to perform name resolution, registration, refresh, and release. WINS-based NetBIOS 
name resolution consists of an exchange of Name Query Request and Name Query Response 
messages. For successful resolution, the Name Query Response message contains an answer 
RR for the NetBIOS name that was requested. NetBIOS name registration consists of an 
exchange of Name Registration Request and Name Registration Response messages. If a 
unique NetBIOS name is already registered, the WINS server responds with a WACK message, 
confirms ownership of the name, and then responds with a Name Registration Response mes-
sage. NetBIOS name refresh consists of an exchange of Name Refresh Request and Name Reg-
istration Response messages. NetBIOS name release consists of an exchange of Name Release 
Request and Name Release Response messages.
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RADIUS is a simple client-server protocol that carries authentication, authorization, and 
accounting information between a network access server (NAS) and a centralized server. 
Examples of NASs include IEEE 802.11 wireless access points and servers that provide remote 
access connectivity to an organization’s network or the Internet.

A RADIUS client is a NAS that initiates RADIUS message exchanges for connection requests 
or accounting of connections. A RADIUS server receives and evaluates connection requests 
for authentication and authorization or stores accounting messages. A RADIUS proxy routes 
RADIUS connection requests and accounting messages between RADIUS clients, RADIUS 
servers, or other RADIUS proxies.

This chapter describes the details of RADIUS messages and common message exchanges 
between RADIUS clients, RADIUS proxies, and RADIUS servers.

Note This chapter assumes prior knowledge of the components of a RADIUS infrastructure 
and their operation and configuration in Microsoft Windows. For more information, see 
Chapter 14, “Virtual Private Networking,” of the “TCP/IP Fundamentals for Microsoft Windows” 
book, located in the \Fundamentals folder on the companion CD-ROM.

RADIUS Messages
RADIUS clients and RADIUS servers communicate by exchanging RADIUS messages. There 
are six types of RADIUS messages, which are sent as User Datagram Protocol (UDP) messages. 
A RADIUS server or RADIUS proxy listens on UDP port 1812 for incoming authentication 
messages and on UDP port 1813 for incoming accounting messages. RADIUS clients use a 
353
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dynamically allocated UDP port for both authentication messages and accounting messages. 
Older versions of RADIUS used UDP port 1645 for authentication and authorization 
messages and UDP port 1646 for accounting messages. RADIUS does not use the Transmis-
sion Control Protocol (TCP). Most RADIUS servers, including the Network Policy Server 
(NPS) service in Windows Server 2008, allow you to configure the UDP ports that the 
RADIUS server listens on for incoming authentication and accounting messages.

The types of RADIUS messages are the following:

■ Access-Request Sent by a RADIUS client to request authentication and authorization 
for a network access connection attempt. The Access-Request also allows the RADIUS 
client to request whether there are any special requirements for the use of that connec-
tion. The Access-Request message contains the information needed to identify the 
RADIUS client, the credentials to perform the authentication, and any special require-
ments for the request. When the RADIUS server receives the Access-Request message, it 
first checks that the message came from a known RADIUS client. The server then per-
forms the requested authentication and authorization processing and responds with an 
appropriate reply.

■ Access-Challenge Sent by a RADIUS server in response to an Access-Request message 
when additional information is needed to perform authentication or authorization. This 
message is a challenge to the RADIUS client that requires a response. The Access-
Challenge message is typically used for challenge-response-based authentication protocols 
to verify the identity of the client. Access-Challenge messages are also used for Extensible 
Authentication Protocol (EAP)-based authentication methods, in which each Access-
Challenge message is an EAP message from the RADIUS server to the access client.

■ Access-Accept Sent by a RADIUS server in response to an Access-Request message, 
informing the RADIUS client that the connection attempt is authenticated and autho-
rized. The Access-Accept can also contain configuration and constraint information for 
the connection.

■ Access-Reject Sent by a RADIUS server in response to an Access-Request message, 
informing the RADIUS client that the connection attempt is rejected. A RADIUS server 
sends this message if the credentials are not authentic or the connection attempt is not 
authorized.

■ Accounting-Request Sent by a RADIUS client to specify accounting information for a 
connection that was accepted.

■ Accounting-Response Sent by the RADIUS server in response to the Accounting-
Request message informing the RADIUS client that the Accounting-Request message 
was successfully received and processed.

RADIUS messages and protocol operation are defined in RFCs 2865 and 2866. 
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More Info All of the RFCs referenced in this chapter can be found in the 
\Standards\Chap17_RADIUS folder on the companion CD-ROM.

RADIUS Message Structure

All RADIUS messages are transmitted using UDP. Each UDP message contains a single 
RADIUS message in its payload. All RADIUS messages have a common structure, as 
Figure 17-1 shows.

Figure 17-1 RADIUS message structure

Each RADIUS message has a common header and a variable number of attributes that com-
prise the data of the message. The common header consists of the following fields:

■ Code A 1-byte field that indicates the RADIUS message type. A packet with an invalid 
Code field is silently discarded. The valid values for the Code field for RADIUS messages 
are listed in Table 17-1. 

■ Identifier A 1-byte field that is used to identify a RADIUS message exchange. The 
sender of the request message creates a transaction identifier value, and the responder 
copies it into the response message. This allows the RADIUS client or proxy to match 
the responses that it receives from a RADIUS server with their requests. When a 
RADIUS proxy sends a message to a RADIUS server, the proxy creates a new value for 
the Identifier field. The RADIUS proxy sends replies back to a RADIUS client with the 
value of the identifier corresponding to the initial request. Each proxied message has a 
different identifier than the initial request.

■ Length A 2-byte field that indicates the length of the entire RADIUS message including 
the Code, Identifier, Length, and Authenticator fields and the RADIUS attributes. If a 
RADIUS message is shorter than the Length field indicates, it is silently discarded. If 
there are additional bytes in the RADIUS message that are beyond that indicated by the 
Length field, they are ignored. The Length field has a minimum value of 20 bytes and 
maximum value of 4096 bytes.

. . .  

Code

Identifier

Length

Authenticator

Attributes
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■ Authenticator A 16-byte field that contains information that the RADIUS client uses to 
authenticate a reply message to ensure that the RADIUS client and server or RADIUS 
client and proxy have been configured with the same shared secret.

The Attributes section of the message is of variable-length and contains zero or more RADIUS 
attributes for the specific authentication, authorization, information, and configuration 
details for the RADIUS messages. For attributes that have multiple instances, the order of the 
attributes must be preserved. Otherwise, attributes do not need to have their order preserved.

RADIUS Attributes

RADIUS attributes carry data values that are used in the authentication, authorization, and 
accounting functions carried out by RADIUS clients, servers, and proxies. These attributes 
can appear in network access and accounting requests and in response messages. An attribute 
represents a specific data item, such as a user name or the tunneling protocol in use, sent 
between the RADIUS client and server. Some attributes can be included more than once, the 
effect of which is dependent on the specific attribute. When used as a RADIUS proxy, NPS 
preserves the order of the attributes received from the client in messages transmitted to a 
RADIUS server.

There are two types of RADIUS attributes: standard attributes and vendor-specific attributes 
(VSAs). Standard attributes are defined in RFCs 2865 through 2869 and are used by all 
RADIUS clients and servers. VSAs are proprietary. Not all RADIUS clients and servers imple-
ment all VSAs. For more information, see the section “Vendor-Specific Attributes” later in this 
chapter.

Figure 17-2 shows the type-length-value structure of RADIUS attributes.

Figure 17-2 RADIUS attribute structure

Table 17-1 Values for the RADIUS Code Field

Code Message

1 Access-Request

2 Access-Accept

3 Access-Reject

4 Accounting-Request

5 Accounting-Response

11 Access-Challenge

. . .  

Type

Length

Value 
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The Type field is a 1-byte field that defines a specific RADIUS attribute. Table 17-2 lists and 
describes the purpose of common RADIUS attributes. For a complete and up-to-date list, see 
http://www.iana.org/assignments/radius-types.

Table 17-2 Common RADIUS Attributes

Attribute Type 
(Decimal) Attribute Name Purpose of Attribute

1 User-Name Sent in Access-Request messages, this attribute indicates the 
name of the user that is to be authenticated.

2 User-Password Sent in Access-Request messages, when authentication is by 
the Password Authentication Protocol (PAP), this field is the 
password to be used to authenticate the user. The password 
is encrypted in Access-Request messages.

3 CHAP-Password This attribute is sent in Access-Request messages to indicate 
the response value provided by a Point-to-Point Protocol 
(PPP) Challenge Handshake Authentication Protocol (CHAP) 
user in response to a CHAP challenge. The value of the CHAP 
challenge is also included in Access-Request messages sent 
by the Routing and Remote Access service in Windows 
Server 2008.

4 NAS-IP-Address This attribute is sent in Access-Request messages to indicate 
the IP address of the RADIUS client that is requesting authen-
tication.

5 NAS-Port This attribute is sent in Access-Request messages to indicate 
the physical port of the RADIUS client that is requesting 
authentication.

6 Service-Type This attribute is sent in Access-Request and Access-Accept 
messages to indicate the type of service the RADIUS client 
has requested, or the type of service to be provided. The 
Value field is 4 bytes long and can have the following values:

1 Login

2 Framed

3 Callback Login

4 Callback Framed

5 Outbound

6 Administrative

7 NAS Prompt

8 Authenticate Only

9 Callback NAS Prompt

10 Call Check

11 Callback Administrative

7 Framed-Protocol This attribute is contained in Access-Request messages to 
indicate the specific framed protocol being requested. 
Possible values for this attribute are as follows:
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1 PPP

2 Serial Line Internet Protocol (SLIP)

3 AppleTalk Remote Access Protocol (ARAP)

4 Gandalf proprietary SingleLink/MultiLink protocol

6 X.75 Synchronous

8 Framed-IP-
Address

This attribute is included in accounting requests and 
indicates the IP address of the access client.

12 Framed-MTU This attribute is included in Routing and Remote Access 
accounting requests and indicates the maximum transmis-
sion unit (MTU) configured for the RADIUS client.

25 Class This attribute is available to be sent by the server to the client 
in an Access-Accept message and is then sent, unmodified, 
by the RADIUS client to the RADIUS accounting server as part 
of any accounting records. This attribute contains a string 
identifying the NAS originating the Access-Request message.

31 Calling-Station-Id This attribute is used only in Access-Request messages. The 
NAS (or other device) uses this attribute to send either the 
phone number that the call came from for dial-up connec-
tions, or the IP address of the VPN client for VPN connections.

32 NAS-Identifier This attribute is used only in the Access-Request message to 
contain a string identifying the NAS originating the Access-
Request. The NAS-Identifier is not used to select the shared 
secret used to authenticate the request.

33 Proxy-State This attribute is added to an Access-Request by a RADIUS 
proxy and is returned unmodified in the Access-Accept, 
Access-Reject, or Access-Challenge message. When a 
RADIUS proxy receives a response to its request, it removes 
its own Proxy-State attribute (the last Proxy-State attribute in 
the message) before forwarding the response to the NAS. If 
a Proxy-State attribute is added when forwarding a RADIUS 
message, the Proxy-State attribute is added after any existing 
Proxy-State attributes. This allows for multiple RADIUS prox-
ies in the path between a RADIUS client and RADIUS server.

40 Acct-Status-Type This attribute is sent in an Accounting-Request message 
to indicate the beginning or end of the user session or an 
interim update. Possible values include the following:

1 Start

2 Stop

3 Interim-Update

7 Accounting-On

8 Accounting-Off

9–14 Reserved for Tunnel Accounting

Table 17-2 Common RADIUS Attributes

Attribute Type 
(Decimal) Attribute Name Purpose of Attribute
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15 Failed

41 Acct-Delay-Time This attribute is sent in an Accounting-Request message to 
indicate for how many seconds the RADIUS client has been 
trying to send this request. By subtracting this value from the 
time of arrival on the RADIUS server, the server can approxi-
mate the time of the event generating this Accounting-
Request message.

42 Acct-Input-Octets This attribute is sent in an Accounting-Request message in 
which Acct-Status-Type is set to Stop. It contains the number 
of data bytes that have been received from the port during 
the accounting session.

43 Acct-Output-
Octets

This attribute is sent in an Accounting-Request message 
where Acct-Status-Type is set to Stop. It contains the number 
of data bytes that have been sent to the port during the 
accounting session.

44 Acct-Session-Id This attribute is sent in Accounting Start and Accounting 
Stop messages and contains a unique identifier to identify a 
session. This makes it easier to match start and stop records 
in RADIUS log files, because the start and stop records for a 
given session have the same Acct-Session-Id. A RADIUS client 
can send this attribute in an Access-Request message. If so, 
the NAS must send the same Acct-Session-Id in Accounting-
Request messages for that session.

46 Acct-Session-Time This attribute is contained in Accounting Stop messages to 
indicate how many seconds the NAS has provided the service 
(that is, the time of the connection).

47 Acct-Input-Packets This attribute is contained in Accounting Stop messages to 
indicate how many IP datagrams the NAS has received.

48 Acct-Output-
Packets

This attribute is contained in Accounting Stop messages to 
indicate how many IP datagrams the NAS has sent.

49 Acct-Terminate-
Cause

This attribute is contained in Accounting Stop messages to 
indicate the reason for the session being terminated. Possible 
values are as follows:

1 User Request

2 Lost Carrier

3 Lost Service

4 Idle Timeout

5 Session Timeout

6 Admin Reset

7 Admin Reboot

8 Port Error

9 NAS Error

Table 17-2 Common RADIUS Attributes

Attribute Type 
(Decimal) Attribute Name Purpose of Attribute
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10 NAS Request

11 NAS Reboot

12 Port Unneeded

13 Port Preempted

14 Port Suspended

15 Service Unavailable

16 Callback

17 User Error

18 Host Request

50 Acct-Multi-
Session-Id

This attribute is sent in accounting messages to enable the 
RADIUS accounting server to link together multiple related 
sessions in the RADIUS logs. Each session linked together 
would have a unique Acct-Session-Id but the same Acct-
Multi-Session-Id.

51 Acct-Link-Count This attribute is sent in accounting messages to enable the 
RADIUS accounting server to record the number of links that 
are used in a multilink session at the time the accounting 
record is generated. The NAS might include the Acct-Link-
Count attribute in any Accounting-Request that might have 
multiple links.

55 Event-Timestamp This attribute is included in an Accounting-Request message. 
It records the time that this event occurred on the NAS, in 
seconds since January 1, 1970, 00:00 UTC (Coordinated 
Universal Time).

60 CHAP-Challenge This attribute contains the CHAP Challenge sent by the 
NAS to the access client. It is only used in Access-Request 
messages.

61 NAS-Port-Type This attribute indicates the type of the physical port of the 
NAS that is authenticating the user and is contained in 
Access-Request packets. Possible values include the 
following:

0 Async

1 Sync

2 Integrated Services Digital Network (ISDN) Sync

3 ISDN Async V.120

4 ISDN Async V.110

5 Virtual

6 Personal Handyphone System Internet Access Forum 
Standard (PIAFS)

7 High-Level Data Link (HDLC) Clear Channel

Table 17-2 Common RADIUS Attributes
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8 X.25

9 X.75

10 G.3 Fax

11 Symmetric DSL (SDSL)

12 Asymmetric DSL, Carrierless Amplitude Phase (ADSL-CAP) 
modulation

13 Asymmetric DSL, Discrete Multi-Tone (ADSL-DMT)

14 ISDN Digital Subscriber Line (IDSL)

15 Ethernet

16 Digital Subscriber Line of unknown type (xDSL)

17 Cable

18 Wireless–Other

19 Wireless–IEEE 802.11

64 Tunnel-Type This attribute is used in Access-Request messages to indicate 
the type of VPN tunnel that the NAS is attempting to set up. 
Possible values include the following:

1 Point-to-Point Tunneling Protocol (PPTP) 

2 Layer Two Forwarding (L2F)

3 Layer Two Tunneling Protocol (L2TP) 

4 Ascend Tunnel Management Protocol (ATMP)

5 Virtual Tunneling Protocol (VTP)

6 IP Authentication Header in Tunnel-mode (AH)

7 IP-in-IP encapsulation (IP-IP)

8 Minimal IP-in-IP encapsulation (MIN-IP-IP)

9 IP Encapsulating Security Payload in the Tunnel-mode (ESP)

10 Generic Route Encapsulation (GRE)

11 Bay Dial Virtual Services (DVS)

12 IP-in-IP Tunneling

65 Tunnel-Medium-
Type

This attribute is used when authenticating a VPN connection 
and indicates the transport medium that is being used when 
creating a tunnel for those protocols (such as L2TP) that can 
operate over multiple transports. Possible values are as 
follows:

1 IPv4 (IP version 4)

2 IPv6 (IP version 6)

3 Network Service Access Point (NSAP)

4 High-level Datalink Control (HDLC) (8-bit multidrop)

5 Bolt, Beranek, and Neumann (BBN) 1822

Table 17-2 Common RADIUS Attributes
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Vendor-Specific Attributes

RFC 2865 defines the VSA as a mechanism to enable NAS vendors to extend the list of 
attributes that RADIUS messages can contain. This allows vendors to provide their own 
attributes for use on their hardware. VSAs are identified with the Vendor attribute (Type=26), 
which includes the vendor’s enterprise number and the VSA data. The assigned enterprise 
numbers are specified at http://www.iana.org/assignments/enterprise-numbers. For example, 
Microsoft’s enterprise ID is 0x137 (311 in decimal format). Microsoft-specific vendor exten-
sions are defined in RFC 2548.

RADIUS servers ignore VSAs that they do not support. The RADIUS server can create log 
entries containing the ignored attribute, but this is not required. If a RADIUS client receives 
a VSA that is not supported, the client should attempt to work without the information, 
although doing so could result in degraded service for the connection because the vendor 
feature enabled by the VSA will not be used for the connection.

Vendor-specific attributes are encoded in RADIUS messages as normal attributes with an 
attribute type of 26. There are two formats for VSAs: a general structure and a recommended 
structure. Figure 17-3 shows the general structure for VSAs.

In the general structure, the 4-byte Vendor-ID field identifies the NAS vendor with its enter-
prise number. The variable-length String field contains the data for the VSA. RFC 2865 also 
defines a structure for the String field. Figure 17-4 shows the recommended structure 
for VSAs.

6 802 (includes all 802 media plus Ethernet canonical format)

7 E.163 (Plain Old Telephone Service [POTS])

8 E.164 (Switched Multimegabit Data Service [SMDS], Frame 
Relay, Asynchronous Transfer Mode [ATM])

9 F.69 (Telex)

10 X.121 (X.25, Frame Relay)

11 Internetwork Packet Exchange (IPX)

12 AppleTalk

13 Decnet IV

14 Banyan Vines

15 E.164 with NSAP format subaddress

66 Tunnel-Client-
Endpoint

This attribute contains the address of the VPN client and can 
be included in both Access-Request and Access-Accept 
messages when a VPN tunnel is being set up.

80 Message-
Authenticator

This attribute is used in RADIUS Access-Request messages to 
provide proof of the knowledge of the RADIUS shared secret.

Table 17-2 Common RADIUS Attributes

Attribute Type 
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Figure 17-3 General VSA structure

Figure 17-4 Recommended VSA structure

In the recommended structure, the String field for the general format is redefined with 
the following:

■ A 1-byte Vendor Type field indicating the type of VSA for the vendor

■ A 1-byte Vendor Length field indicating the length of the Vendor Type field, the Vendor 
Length field, and the new Attribute-Specific field

■ An Attribute-Specific field that contains the data for the VSA

The recommended structure allows a vendor to define multiple types of VSAs.

RFC 2548 defines the Microsoft-specific attributes that are supported by the NPS and Routing 
and Remote Access services in Windows Server 2008. NPS and Routing and Remote Access 
set the Vendor-ID field of the Vendor-Specific attribute to 311 (0x0137). Table 17-3 contains 
the most common vendor-specific attributes that NPS and Routing and Remote Access use.

Table 17-3 Common Vendor-Specific Attributes

Vendor 
Type Value Attribute Name Description

1 MS-CHAP-Response This attribute is sent in authentication requests that use 
CHAP to contain the CHAP response received from the 
access client.

9 MS-RAS-Vendor This attribute is sent in authentication requests to identify 
the vendor (Microsoft).
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RADIUS Message Exchanges
This section describes common RADIUS message exchanges for the following:

■ Authentication of network access

■ Accounting of network access

■ RADIUS proxy forwarding

Authentication of Network Access

The sets of authentication messages exchanged between a RADIUS client and a RADIUS 
server are the following:

■ Access-Request followed by Access-Accept This occurs when a RADIUS server success-
fully authenticates and authorizes a connection on behalf of a RADIUS client. The 
RADIUS client can commence service to an access client.

■ Access-Request followed by Access-Reject This occurs when a RADIUS server does not 
successfully authenticate and authorize a connection on behalf of a RADIUS client. The 

10 MS-CHAP-Domain This attribute, which can be in both Access-Accept and 
Accounting-Request messages, indicates the domain in 
which the user has been authenticated.

11 MS-CHAP-Challenge The CHAP challenges used in authentication requests that 
use CHAP, Microsoft CHAP (MS-CHAP), or MS-CHAP v2.

16 MS-MPPE-Send-Key This attribute holds a session key for use by Microsoft 
Point-to-Point Encryption (MPPE). This key is intended for 
encrypting messages sent from the NAS to the access client 
and is sent only in Access-Accept messages. This attribute 
is encrypted using the RADIUS shared secret.

17 MS-MPPE-Recv-Key This attribute contains a session key for use by MPPE. This 
key is intended for encrypting packets received by the NAS 
from the access client and is used only in Access-Accept 
messages.

18 MS-RAS-Version The version of Routing and Remote Access sending the 
RADIUS message. This is sent in Access-Request and 
Accounting-Request messages. This attribute is encrypted 
using the shared secret.

25 MS-CHAP2-Response For authentication requests that use MS-CHAP v2, the 
CHAP response received from the access client.

26 MS-CHAP2-Success For authentication requests that use MS-CHAP v2, the 
indication that the authentication was successful.

Table 17-3 Common Vendor-Specific Attributes

Vendor 
Type Value Attribute Name Description
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RADIUS client can then attempt to get new credentials, which it can resubmit in a new 
Access-Request message.

■ Access-Request followed by Access-Challenge This occurs when a RADIUS server 
needs to obtain additional information. The RADIUS client submits the additional infor-
mation in a new Access-Request message. There can be multiple Access-Challenge mes-
sages sent by the RADIUS server. For example, for EAP-based authentication methods, 
EAP messages from the access client to the RADIUS server are contained in Access-
Request messages and their responses are contained in Access-Challenge messages.

After the RADIUS server receives the Access-Request, it first validates the IP address of the 
RADIUS client. An Access-Request message that is received from a RADIUS client for which 
the server is not configured is silently discarded. If the Access-Request message came from a 
valid RADIUS client, the server can then validate the request and return an Access-Accept or 
Access-Reject message, based on the success or failure of the validation. The validation of a 
request typically includes credential verification, but can also be based on other information 
included in the Access-Request message, such as the NAS port that the connection request 
was received on or the type of connection. There is no cryptographic verification that the 
Access-Request message originated from a RADIUS client with a commonly configured 
RADIUS shared secret unless the Access-Request includes the Message-Authenticator attribute.

When the RADIUS server returns an Access-Accept message, the server can return additional 
configuration information, specified as additional attributes. These can be generic RADIUS 
attributes or VSAs used to configure a particular vendor’s NAS.

If the RADIUS server is unable to authenticate and authorize the connection, it sends an 
Access-Reject message back to the RADIUS client indicating that the connection request has 
failed. The RADIUS client could then request user identity details again or simply fail the ini-
tial service request.

When the RADIUS client receives an Access-Accept message, it matches the Identifier field 
with a pending Access-Request and ensures that the Response Authenticator field contains 
the correct response for this pending Access-Request message. Invalid messages are silently 
discarded.

A RADIUS client that does not support challenge and response treats the Access-Challenge as 
though it had received an Access-Reject message instead. This has the effect of denying the 
requested access. If the RADIUS client supports challenge and response, the receipt of a valid 
Access-Challenge message indicates that a new Access-Request is to be sent, which should 
contain updated request information. The RADIUS client can display a text message to the 
user and then prompt the user for a response. The RADIUS client then sends its original 
Access-Request with a new request ID and Request Authenticator, with the User-Password 
attribute replaced by the user’s response to the challenge, suitably encrypted. If the Access-
Challenge contained a State attribute from the Access-Challenge, this is also returned. Note 
that the Access-Request messages can contain, at most, one instance of the State attribute.
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An example of an Access-Request/Access-Accept message exchange is Capture 17-01, a Net-
work Monitor trace that is included in the \Captures folder on the companion CD-ROM. The 
following is the Access-Request message from Capture 17-01 (Frame 1), as displayed with 
Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = UDP, Packet ID = 30882, Total IP Length = 277 

- Udp: SrcPort = 3065, DstPort = 1812, Length = 257 

SourcePort: 3065, 3065(0xbf9) 

DestinationPort: 1812, 1812(0x714) 

TotalLength: 257 (0x101) 

Checksum: 42833 (0xA751) 

- Radius: Access Request, Id = 12, Length = 249 

MessageType: Access Request, 1(0x01) 

Identifier: 12 (0xC) 

AllLength: 249 (0xF9) 

Authenticator: DB 60 44 6A 2B 19 83 57 FF 75 F1 1D 19 2C 1A 7F 

+ AttributeNasIPAddress: 10.10.1.150 

+ AttributeServiceType: Framed, 2(0x2) 

+ AttributeFramedProtocol: PPP, 1(0x1) 

+ AttributeNasPort: 128 

+ AttributeVendorSpecific:  

+ AttributeVendorSpecific:  

+ AttributeRadiusNASPortType: Virtual, 5(0x5) 

+ AttributeTunnelType: Point-to-Point Tunneling Protocol (PPTP), 1(0x1) 

+ AttributeTunnelMediumType: IPv4, 1(0x1) 

+ AttributeStationID: 10.10.1.62 

+ AttributeTunnelClientEndpoint:  

+ AttributeVendorSpecific:  

+ AttributeVendorSpecific:  

+ AttributeUserName: KAPOHO\tfl 

+ AttributeVendorSpecific:  

+ AttributeVendorSpecific:

In this frame, a RADIUS client sends an Access-Request message requesting authentication 
and authorization for a virtual private network (VPN) connection using PPTP. Note the use of 
a dynamically allocated source UDP port and the destination UDP port of 1812. The attributes 
contain information about the connection and include RADIUS attributes and VSAs.

The following is the corresponding Access-Accept message from Capture 17-01 (Frame 2), as 
displayed with Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = UDP, Packet ID = 39615, Total IP Length = 242 

+ Udp: SrcPort = 1812, DstPort = 3065, Length = 222 

- Radius: Access Accept, Id = 12, Length = 214 

MessageType: Access Accept, 2(0x02) 

Identifier: 12 (0xC) 

AllLength: 214 (0xD6) 

Authenticator: 5F C7 93 40 22 EA 31 7A A3 4F 82 B1 FA DE 15 77 

+ AttributeFramedProtocol: PPP, 1(0x1) 
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+ AttributeServiceType: Framed, 2(0x2) 

+ AttributeClass:  

+ AttributeVendorSpecific:  

+ AttributeVendorSpecific:  

+ AttributeVendorSpecific:  

+ AttributeVendorSpecific:

The Access-Accept contains the same Identifier field value as the Access-Request. The value of 
the Authenticator field allows the RADIUS client to validate that the message was sent from 
a RADIUS server or proxy that has been configured with a common RADIUS shared secret. 
The attributes contain information about the connection and include RADIUS attributes 
and VSAs.

An example of an Access-Request/Access-Reject message exchange is Capture 17-02, a Net-
work Monitor trace that is included in the \Captures folder on the companion CD-ROM. The 
following is the Access-Reject message from Capture 17-02 (Frame 2), as displayed with Net-
work Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = UDP, Packet ID = 746, Total IP Length = 70 

+ Udp: SrcPort = 1812, DstPort = 2938, Length = 50 

- Radius: Access Reject, Id = 7, Length = 42 

MessageType: Access Reject, 3(0x03) 

Identifier: 7 (0x7) 

AllLength: 42 (0x2A) 

Authenticator: 14 BF A3 62 F1 6C 88 42 19 A8 8C 3F 4F 83 7F 4C 

- AttributeVendorSpecific:  

Type: Vendor Specific, 26(0x1a) 

Length: 22 (0x16) 

VendorID: Microsoft, 311(0x137) 

- RadiusMSSpecificPublicTLV: MS-CHAP-Error, 1(0x1) 

VendorType: MS-CHAP-Error, 2(0x2) 

VendorLength: 16 (0x10) 

- MSCHAPError:  

Ident: 0 (0x0) 

ErrorString: E=649 R=0 V=3

Note how in this example the Access-Reject contains a Microsoft VSA indicating an authenti-
cation error.

Accounting of Network Access

There are two RADIUS accounting messages sent between RADIUS clients and RADIUS 
servers: Accounting-Request and Accounting-Response. When a connection request com-
pletes successfully, the RADIUS client sends an Accounting-Request message to a RADIUS 
server. This message indicates that an accounting session has started, describes the type of 
service being delivered, and identifies the user receiving the service. The RADIUS server 
responds with an Accounting-Response message indicating that the accounting start was 
received and recorded.
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When the service being provided by the RADIUS client (for example, remote access) has been 
completed, the RADIUS client generates an additional Accounting-Request message called an 
Accounting Stop message. This describes the type of service that was delivered and statistics 
such as elapsed time, input and output bytes, or input and output packets, which could be 
used for billing or charge-back purposes. The RADIUS server then sends the RADIUS client 
an Accounting-Response message to indicate that the message was received and recorded.

The RADIUS client can send any valid RADIUS attribute in the Accounting-Request message, 
except for User-Password, CHAP-Password, Reply-Message, and State. A RADIUS client always 
includes either the NAS-IP-Address or NAS-Identifier attributes in the Accounting-Request. If 
the Accounting-Request message includes a Framed-IP-Address, this attribute contains the IP 
address assigned to the connection.

The RADIUS server acknowledges receipt of the Accounting Start and Accounting Stop 
messages by sending the RADIUS client an Accounting-Response message, which tells the 
RADIUS client that the Accounting-Request message has been received by the RADIUS server. 
Unlike the Access-Accept message, an Accounting-Response message does not normally contain 
attributes. If the RADIUS server cannot record the accounting information, no Accounting-
Response message is sent.

When the RADIUS client receives the Accounting-Response message, it matches the response 
with a pending Accounting-Request to complete the accounting for this event. If no Accounting-
Response is received, the RADIUS client retransmits the Accounting-Request.

As with other RADIUS messages, the Response Authenticator field in the Accounting-
Response message contains the authenticator that relates to the pending Accounting-Request. 
Additionally, invalid packets, which can include those in which the authenticator cannot be 
validated, are silently discarded.

An example of an Accounting-Request/Accounting-Response message exchange is Capture 
17-03, a Network Monitor trace that is included in the \Captures folder on the companion 
CD-ROM. The following is the Accounting-Request message from Capture 17-03 (Frame 1), as 
displayed with Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = UDP, Packet ID = 30899, Total IP Length = 303 

+ Udp: SrcPort = 3066, DstPort = 1813, Length = 283 

- Radius: Accounting Request, Id = 3, Length = 275 

MessageType: Accounting Request, 4(0x04) 

Identifier: 3 (0x3) 

AllLength: 275 (0x113) 

Authenticator: EA BB 33 E2 85 8D F8 D5 A6 5C 40 76 54 73 49 09 

+ AttributeAcctStatusType: Start, 1(0x1) 

+ AttributeAcctDelayTime: 0 

+ AttributeNasIPAddress: 10.10.1.150 
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+ AttributeServiceType: Framed, 2(0x2) 

+ AttributeFramedProtocol: PPP, 1(0x1) 

+ AttributeNasPort: 128 

+ AttributeVendorSpecific:  

+ AttributeVendorSpecific:  

+ AttributeRadiusNASPortType: Virtual, 5(0x5) 

+ AttributeTunnelType: Point-to-Point Tunneling Protocol (PPTP), 1(0x1) 

+ AttributeTunnelMediumType: IPv4, 1(0x1) 

+ AttributeStationID: 10.10.1.62 

+ AttributeTunnelClientEndpoint:  

+ AttributeVendorSpecific:  

+ AttributeVendorSpecific:  

+ AttributeClass:  

+ AttributeVendorSpecific:  

+ AttributeAcctSessionID: 4 

+ AttributeUserName: KAPOHO\tfl 

+ AttributeFramedIPAddress: 10.10.1.177 

+ AttributeFramedMTU: 1400 

+ AttributeAcctMultiSessionID: 27 

+ AttributeAcctLinkCount: 1 

+ AttributeEventTimestamp: 1010156648 

+ AttributeAcctAuthentic: RADIUS, 1(0x1) 

+ AttributeVendorSpecific:

In this frame, a RADIUS client sends an Accounting-Request message requesting the account-
ing for a VPN connection using PPTP. Note the use of a dynamically allocated source UDP 
port and the destination UDP port of 1813. Note that this message is an Accounting Start 
message (the AttributeAcctStatusType attribute). The additional attributes contain informa-
tion about the connection and include RADIUS attributes and VSAs.

The following is the corresponding Accounting-Response message from Capture 17-03 
(Frame 2), as displayed with Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = UDP, Packet ID = 40023, Total IP Length = 48 

+ Udp: SrcPort = 1813, DstPort = 3066, Length = 28 

- Radius: Accounting Response, Id = 3, Length = 20 

MessageType: Accounting Response, 5(0x05) 

Identifier: 3 (0x3) 

AllLength: 20 (0x14) 

Authenticator: F0 A9 27 34 0D 42 36 4B 7E C7 8A 83 E4 B6 98 41

The Accounting-Response contains the same Identifier field value as the Accounting-Request. 
The value of the Authenticator field allows the RADIUS client to validate that the message was 
sent from a RADIUS server that has been configured with a common RADIUS shared secret. 
Note that there are no attributes present.

Frames 3 and 4 of Capture 17-03 are for the Accounting Stop message exchange for this VPN 
connection.
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RADIUS Proxy Forwarding

A RADIUS proxy relays authentication and accounting messages between RADIUS clients, 
RADIUS servers, or other RADIUS proxies. With a single RADIUS proxy between a RADIUS 
client and a RADIUS server, the RADIUS proxy forwards the authentication message request 
to a RADIUS server, receives the response from the RADIUS server, and sends that response 
to the RADIUS client. A RADIUS proxy can be used to route messages between RADIUS serv-
ers with different account databases or to distribute the load of RADIUS traffic among multi-
ple RADIUS servers.

When a RADIUS proxy sends a message from a RADIUS client to a RADIUS server, it adds the 
Proxy-State attribute into the message, which informs the server that the RADIUS message 
was received from a proxy and not from the RADIUS client. When the server sends a response 
back to the RADIUS proxy, this attribute is copied, unmodified, into the response. The 
RADIUS proxy removes this attribute when sending the response back to the RADIUS client. 
If multiple proxies exist in the path between a RADIUS client and a RADIUS server, each 
RADIUS proxy adds an additional Proxy-State attribute to the RADIUS message when it is 
passed toward the RADIUS server and removes its Proxy-State attribute when responses are 
sent back to the original RADIUS client. From the RADIUS client’s perspective, it sent 
RADIUS messages to its configured RADIUS server, which could be a RADIUS server or a 
RADIUS proxy. Because the Proxy-State attribute is removed in the RADIUS response mes-
sages, the RADIUS client cannot determine whether there are RADIUS proxies in the path to 
the RADIUS server performing the authentication and authorization.

An NPS server can function as both a RADIUS proxy and a RADIUS server; some incoming 
authentication requests or accounting messages are processed locally and others are for-
warded to RADIUS servers. Processing of incoming requests either locally or forwarded to 
a RADIUS server is determined by connection request policies on the NPS server. 

An example of an Access-Request message that is forwarded by a RADIUS proxy is Capture 
17-04, a Network Monitor trace that is included in the \Captures folder on the companion 
CD-ROM. The following is the original Access-Request message from Capture 17-04 
(Frame 1), as displayed with Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

- Ipv4: Next Protocol = UDP, Packet ID = 7567, Total IP Length = 278 

+ Versions: IPv4, Internet Protocol; Header Length = 20 

+ DifferentiatedServicesField: DSCP: 0, ECN: 0 

TotalLength: 278 (0x116) 

Identification: 7567 (0x1D8F) 

+ FragmentFlags: 0 (0x0) 

TimeToLive: 128 (0x80) 

NextProtocol: UDP, 17(0x11) 

Checksum: 1238 (0x4D6) 

SourceAddress: 10.10.1.150 

DestinationAddress: 10.10.1.201 
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+ Udp: SrcPort = 1711, DstPort = 1812, Length = 258 

- Radius: Access Request, Id = 8, Length = 250 

MessageType: Access Request, 1(0x01) 

Identifier: 8 (0x8) 

AllLength: 250 (0xFA) 

Authenticator: B2 3F 8A 21 54 25 F4 14 4C 30 08 4E 34 5A 82 27 

+ AttributeNasIPAddress: 10.10.1.150 

+ AttributeServiceType: Framed, 2(0x2) 

+ AttributeFramedProtocol: PPP, 1(0x1) 

+ AttributeNasPort: 128 

+ AttributeVendorSpecific:  

+ AttributeVendorSpecific:  

+ AttributeRadiusNASPortType: Virtual, 5(0x5) 

+ AttributeTunnelType: Point-to-Point Tunneling Protocol (PPTP), 1(0x1) 

+ AttributeTunnelMediumType: IPv4, 1(0x1) 

+ AttributeStationID: 10.10.1.62 

+ AttributeTunnelClientEndpoint:  

+ AttributeVendorSpecific:  

+ AttributeVendorSpecific:  

+ AttributeUserName: TCP1\rebecca 

+ AttributeVendorSpecific:  

+ AttributeVendorSpecific:

In this frame, a RADIUS client (at the IP address 10.10.1.150) sends an Access-Request 
message to its configured RADIUS server, which is a RADIUS proxy (at the IP address 
10.10.1.201).

 The following is the Access-Request message as forwarded by the RADIUS proxy to a RADIUS 
server (at the IP address 10.10.1.151) from Capture 17-04 (Frame 2), as displayed with Net-
work Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

- Ipv4: Next Protocol = UDP, Packet ID = 2894, Total IP Length = 288 

+ Versions: IPv4, Internet Protocol; Header Length = 20 

+ DifferentiatedServicesField: DSCP: 0, ECN: 0 

TotalLength: 288 (0x120) 

Identification: 2894 (0xB4E) 

+ FragmentFlags: 0 (0x0) 

TimeToLive: 128 (0x80) 

NextProtocol: UDP, 17(0x11) 

Checksum: 0 (0x0) 

SourceAddress: 10.10.1.201 

DestinationAddress: 10.10.1.151 

+ Udp: SrcPort = 2203, DstPort = 1812, Length = 268 

- Radius: Access Request, Id = 2, Length = 260 

MessageType: Access Request, 1(0x01) 

Identifier: 2 (0x2) 

AllLength: 260 (0x104) 

Authenticator: B2 3F 8A 21 54 25 F4 14 4C 30 08 4E 34 5A 82 27 

+ AttributeNasIPAddress: 10.10.1.150 

+ AttributeServiceType: Framed, 2(0x2) 

+ AttributeFramedProtocol: PPP, 1(0x1) 

+ AttributeNasPort: 128 
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+ AttributeRadiusNASPortType: Virtual, 5(0x5) 

+ AttributeTunnelType: Point-to-Point Tunneling Protocol (PPTP), 1(0x1) 

+ AttributeTunnelMediumType: IPv4, 1(0x1) 

+ AttributeStationID: 10.10.1.62 

+ AttributeTunnelClientEndpoint:  

+ AttributeUserName: TCP1\rebecca 

+ AttributeVendorSpecific:  

+ AttributeVendorSpecific:  

+ AttributeVendorSpecific:  

+ AttributeVendorSpecific:  

+ AttributeVendorSpecific:  

+ AttributeVendorSpecific:  

- AttributeProxyState:  

Type: Proxy State, 33(0x21) 

Length: 10 (0xA) 

ProxyState: Binary Large Object (8 Bytes)

Note the presence of the Proxy-State attribute at the end of the message.

The additional frames of Capture 17-03 are for the Access-Accept message (Frames 3 and 4), 
the Accounting Start message exchange for the connection (Frames 5 through 8), and the 
Accounting Stop message exchange for the connection (Frames 9 through 12).

Summary
RADIUS messages have a common structure consisting of a fixed-size portion and a 
variable-size portion. The fixed-size portion contains fields common to all RADIUS 
messages. The variable-size portion contains RADIUS attributes, which can be standard 
attributes or VSAs. RADIUS attributes carry data values that are used in authentication, 
authorization, and accounting of network access. An authentication exchange is one of the 
following: Access-Request/Access-Accept for a successful authentication and authorization, 
Access-Request/Access-Reject for an unsuccessful authentication or authorization, or Access-
Request/Access-Challenge when the RADIUS server needs more information to evaluate 
authentication and authorization. An accounting exchange consists of an Accounting-Request 
and an Accounting-Response. When RADIUS proxies are between RADIUS clients and 
RADIUS servers, they modify RADIUS messages by adding or removing a Proxy-State 
attribute.
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Internet Protocol security (IPsec) is a set of Internet Engineering Task Force (IETF) standards 
that provide protection for IP packets through the use of cryptography, security protocols, 
and dynamic key management. IPsec can protect IP traffic from end to end (when two IPsec 
peers communicate) or on an intermediate part of a network path (when IPsec routers protect 
traffic exchanged over the Internet). This chapter describes the details of IPsec headers and 
the negotiation protocols supported in Windows Server 2008 and Windows Vista.

Note This chapter assumes prior knowledge of the properties of protected communications 
(data origin authentication, data integrity, data confidentiality, nonrepudiation, and replay 
protection) and the basics of IPsec operation including IPsec protocols, modes, and negotia-
tion phases. For more information, see Chapter 13, “Internet Protocol Security and Packet 
Filtering,” of the “TCP/IP Fundamentals for Microsoft Windows” book, located in the 
\Fundamentals folder on the companion CD-ROM.

IPsec Headers
IPsec provides its protection services by wrapping the IP payload with an additional header or 
trailer containing information to provide data origin authentication, data integrity, data confi-
dentiality, and replay protection. IPsec headers consist of the following:

■ Authentication header (AH)
373
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■ Encapsulating Security Payload (ESP) header and trailer

The result of applying the AH or ESP to an IP datagram transforms it to a protected datagram. 
Consequently, AH and ESP are sometimes referred to as transforms.

Authentication Header

The AH is a header defined in RFC 4302 that provides data origin authentication, data integ-
rity, and replay protection for the entire IP datagram. Figure 18-1 shows the structure of the 
AH and its location relative to the IP packet payload.

Figure 18-1 The IPsec Authentication header

The AH consists of the following fields:

■ Next Header A 1-byte field that is used to identify the next header in the payload. This 
field uses the same values as the Protocol field in the IP header.

■ Payload Length A 1-byte field that specifies the number of bytes in the AH past the 
Payload Length field in 32-bit (4-byte) blocks, not counting the first 2 blocks.

■ Reserved A 2-byte field that is reserved and must be set to 0. The Reserved field is 
included in the Authentication Data field calculation, but otherwise ignored.

■ Security Parameters Index A 4-byte field that identifies, when used in combination with 
the Destination Address field in the IP header and transform (AH), the specific security 
association (SA) for this datagram. For more information about SAs, see the section 
“IPsec and Security Associations” later in this chapter.

■ Sequence Number A 4-byte field that contains an incrementing counter value that 
starts at 0 when the SA is established. The first packet for the SA has a sequence number 
of 1. The Sequence Number field provides antireplay protection because its value is 
protected by the Integrity Check Value (ICV) calculation. When the Sequence Number 
counts up to its maximum value (4,294,967,295 or 232 – 1), a new IPsec SA is established 
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to keep the Sequence Number from repeating for an SA. When the new IPsec SA is estab-
lished, the Sequence Number for the new SA starts at 0. If the Sequence Number for an 
incoming packet is too far out of sequence or if it matches a recently received sequence 
number, the packet is discarded.

■ Authentication Data A variable-length field that contains the ICV calculation of the 
sender. In Windows Server 2008 and Windows Vista, this is the hash-based message 
authentication code (HMAC) Message Digest 5 (MD5) or HMAC Secure Hash Algo-
rithm 1 (SHA1) keyed hash value. The Authentication Data field provides data origin 
authentication and data integrity security services. The size of the Authentication Data 
field for both the HMAC MD5 and HMAC SHA1 is 12 bytes (96 bits) long. For an arbi-
trary ICV algorithm, the Authentication Data field size must be an integral number of 
32-bit (4-byte) blocks and will be extended with padding if needed.

More Info All of the RFCs referenced in this chapter can be found in the 
\Standards\Chap18_IPsec folder on the companion CD-ROM.

IPsec has two modes of protection: 

■ Transport mode Typically used for IPsec peers doing end-to-end security. Transport 
mode provides protection for IP packet payloads by adding an extra header or trailer 
between the original IP datagram and its payload. Transport mode is typically used 
within an organization.

■ Tunnel mode Typically used by network routers to protect IP datagrams when forward-
ing traffic over an insecure transit network. Tunnel mode provides protection for entire 
IP datagrams by encapsulating the IP datagram with an IPsec header/trailer and an 
additional IP header. Tunnel mode is typically used outside an organization when con-
necting sites across a public network such as the Internet.

AH Transport Mode

Figure 18-2 shows AH Transport mode for an IP datagram.

The AH is added to the IP datagram just after the IP header. In the IP header, the Protocol 
field is set to 51 (0x33) to indicate that an AH is present. Normal routers forward this traffic 
as any other IP packet. Firewalls, on the other hand, might need to be configured to allow the 
forwarding of IP protocol 51 traffic. The payload is unmodified. Inserting an AH creates 
additional packet overhead, which lowers the effective maximum transmission unit (MTU) 
between the two endpoints. Calculating the ICV for the AH also imposes additional process-
ing overhead for each protected packet. Using network adapters that can perform crypto-
graphic calculations in hardware can minimize this overhead.
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Figure 18-2 AH Transport mode

For AH Transport mode, the ICV calculation is performed over the following:

■ All the fields in the IP header except those that are allowed to change in transit. These 
fields are the Type of Service (TOS), Flags, Fragment Offset, Time to Live (TTL), and 
Header Checksum, all of which are set to 0 for the ICV calculation. For source-routed IP 
traffic, the final destination IP address is predictable, and the appropriate fields within 
the Loose Source Route and Strict Source Route options are allowed to change.

■ All the fields in the AH (the Authentication Data field is set to 0).

■ The IP packet payload.

For AH Transport mode, the AH protects the IP header, except the fields that are allowed to 
change, and the payload of the original IP datagram.

The following is Frame 10 of Capture 18-01 in the \Captures folder on the companion 
CD-ROM, which shows an AH-protected Domain Name System (DNS) Name Query Request 
message, as displayed by Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

- Ipv4: Next Protocol = AH, Packet ID = 1807, Total IP Length = 86 

+ Versions: IPv4, Internet Protocol; Header Length = 20 

+ DifferentiatedServicesField: DSCP: 0, ECN: 0 

TotalLength: 86 (0x56) 

Identification: 1807 (0x70F) 

+ FragmentFlags: 0 (0x0) 

TimeToLive: 128 (0x80) 

NextProtocol: AH, 51(0x33) 

Checksum: 11405 (0x2C8D) 

SourceAddress: 131.107.0.2 

DestinationAddress: 131.107.0.1 

IP payload 

IP payload 

IP header 

IP header AH 
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- Ah: Next Protocol = UDP, SPI = 0x48B7D428, Seq = 0x1  

NextHeader: UDP, 17(0x11) 

PayloadLength: 24 bytes 

Reserved: 0 (0x0) 

SecurityParametersIndex: 1220006952 (0x48B7D428) 

SequenceNumber: 1 (0x1) 

AuthenticationData: 12 UINT8(s) 

+ Udp: SrcPort = 50286, DstPort = DNS(53), Length = 42 

+ Dns: QueryId = 0xDE8D, QUERY (Standard query), Query for test.contoso.com of type Host A

ddr on class Internet

AH Tunnel Mode

Figure 18-3 shows AH Tunnel mode for an IP datagram.

Figure 18-3 AH Tunnel mode

In AH Tunnel mode, the entire original IP datagram is encapsulated with a new (outer) IP 
header and an AH. In the IP header, the Protocol field is set to 51 (0x33) to indicate that an AH 
is present. For Tunnel mode, the original IP header and payload are unmodified.

The outer IP header is constructed from the configuration of the IPsec tunnel. The source IP 
address is the locally assigned IP address that is the best source to reach the tunnel destina-
tion address.

For AH Tunnel mode, the ICV calculation is performed over the following:

■ All the fields in the outer IP header except those that are allowed to change in transit 
(TOS, Flags, Fragment Offset, TTL, Header Checksum), all of which are set to 0 for 
the calculation 

■ All the fields in the AH (the Authentication Data field is set to 0)

■ The original IP packet
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For AH Tunnel mode, the AH protects the entire original IP packet (both the IP header and 
the payload) at the expense of an additional outer IP header that is not used for AH 
Transport mode.

Encapsulating Security Payload (ESP)

Encapsulating Security Payload (ESP) is a header and trailer combination defined in RFC 
4303 that provides data origin authentication, data integrity, replay protection, and data con-
fidentiality for the ESP-encapsulated portion of the packet. Figure 18-4 shows the structure of 
the ESP header and trailer and their location relative to the IP packet payload.

Figure 18-4 The IPsec Encapsulating Security Payload header and trailer

The ESP header consists of the following fields:

■ Security Parameters Index A 4-byte field that identifies, when used in combination with 
the Destination Address field in the IP header and transform (ESP), the specific SA for 
this datagram

■ Sequence Number A 4-byte field that is the same field as the Sequence Number field of 
the AH

The ESP trailer consists of the following fields:

■ Padding A variable-length field (0-255 bytes) that is used to pad the encrypted payload 
to an appropriate length (depending on the encryption algorithm used), align the ESP 
portion of the packet along 4-byte boundaries, or deliberately obscure the encrypted 
payload’s length.

■ Padding Length A 1-byte field that specifies the number of bytes in the Padding field. 
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■ Next Header A 1-byte field used to identify the next header in the payload. This field 
uses the same values as the Protocol field in the IP header.

■ Authentication Data A variable-length field that contains the ICV calculation of the 
sender (the HMAC MD5 or HMAC SHA1 value).

Because the use of a specific ICV algorithm is negotiated before data with an ESP header and 
trailer is sent, each peer knows the size of the Authentication Data portion of the ESP trailer 
and can determine the location of the end of the ESP-encapsulated payload.

IPsec in Windows Server 2008 and Windows Vista can use the following encryption 
algorithms:

■ Advanced Encryption Standard (AES) with a 128-bit key size (AES-128)

■ AES with a 192-bit key size (AES-192)

■ AES with a 256-bit key size (AES-256)

■ Triple Data Encryption Standard (3DES) with three 56-bit keys

■ Data Encryption Standard (DES) with a 56-bit key (not recommended)

The following is Frame 11 of Capture 18-02 in the \Captures folder on the companion 
CD-ROM, which shows an ESP-protected DNS Name Query Request message when using 
ESP and no encryption, as displayed by Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

- Ipv4: Next Protocol = ESP, Packet ID = 1542, Total IP Length = 88 

+ Versions: IPv4, Internet Protocol; Header Length = 20 

+ DifferentiatedServicesField: DSCP: 0, ECN: 0 

TotalLength: 88 (0x58) 

Identification: 1542 (0x606) 

+ FragmentFlags: 0 (0x0) 

TimeToLive: 128 (0x80) 

NextProtocol: ESP, 50(0x32) 

Checksum: 11669 (0x2D95) 

SourceAddress: 131.107.0.2 

DestinationAddress: 131.107.0.1 

- Esp: Next Protocol = UDP, SPI = 0x469021eb, Seq = 0x1 

SecurityParameterIndex: 1183850987 (0x469021EB) 

SequenceNumber: 1 (0x1) 

- Trailer:  

PaddingData: Binary Large Object (2 Bytes) 

PaddingLength: 2 (0x2) 

NextProtocol: UDP, 17(0x11) 

AuthenticationData: Binary Large Object (12 Bytes) 

+ Udp: SrcPort = 50202, DstPort = DNS(53), Length = 44 

+ Dns: QueryId = 0xF341, QUERY (Standard query), Query for test99.contoso.com of type Host A

ddr on class Internet
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Note Network Monitor 3.1 displays the fields of the ESP trailer within the ESP header, rather 
than after the ESP payload.

Network Monitor 3.1 cannot interpret the encrypted portions of an ESP-protected packet.

ESP Transport Mode

Figure 18-5 shows ESP Transport mode for an IP datagram.

Figure 18-5 ESP Transport mode

For ESP Transport mode, the ESP header is added to the IP datagram just after the IP header 
and the ESP trailer is added just after the payload. In the IP header, the Protocol field is set to 
50 (0x32) to indicate that an ESP header is present. Routers forward this traffic as any other 
IP packet. Firewalls, on the other hand, might need to be configured to allow the forwarding 
of IP protocol 50 traffic. The payload is unmodified.

Like AH, inserting an ESP header and trailer creates additional packet overhead, which lowers 
the effective MTU between the two endpoints. Performing the data encryption and calculating 
the ICV for the ESP trailer imposes additional processing overhead for each protected packet. 
Using network adapters that can perform cryptographic calculations in hardware, also known 
as offload adapters, can minimize this overhead.

For ESP Transport mode, the following portions of the packet are encrypted:

■ The payload

■ The Padding, Padding Length, and Next Header fields of the ESP trailer
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For encryption algorithms that use cipher block chaining (CBC), there is an unencrypted 
field between the ESP header and the payload. This field is the initialization vector (IV) for the 
CBC calculation performed at the receiver. This field cannot be encrypted because it is used to 
begin the decryption process.

The inclusion of the IV as plaintext in the packet does not create a security problem. The IV 
does not provide additional cryptographic strength, only a way to ensure that the encryption 
of the same block with different IVs does not produce the same ciphertext. A malicious user 
might be able to view the IV, but without the encryption key, he or she cannot decrypt the 
ciphertext portion of the packet. To prevent a malicious user from modifying the IV and 
causing the receiver to produce garbled deciphered data, the IV is protected by the ICV.

For ESP Transport mode, the ICV calculation is performed over the following:

■ All the fields in the ESP header

■ The payload (including the plaintext IV, if needed)

■ All the fields in the ESP trailer except the Authentication Data field

For ESP Transport mode, the ESP trailer does not provide protection for the IP header and the 
Authentication Data field of the ESP trailer. To obtain protection for these elements, use both 
AH and ESP, as shown in Figure 18-6.

Figure 18-6 Using both AH and ESP to protect an IP packet 

With AH and ESP, the ESP header and trailer wraps the payload, which then becomes the pay-
load that is wrapped with an AH and the original IP header. Now the entire packet is protected 
(except the changeable fields in the IP header).
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The following is Frame 10 of Capture 18-03 in the \Captures folder on the companion 
CD-ROM, which shows an AH- and ESP-protected IP payload with ESP encryption, as 
displayed by Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

- Ipv4: Next Protocol = AH, Packet ID = 1555, Total IP Length = 120 

+ Versions: IPv4, Internet Protocol; Header Length = 20 

+ DifferentiatedServicesField: DSCP: 0, ECN: 0 

TotalLength: 120 (0x78) 

Identification: 1555 (0x613) 

+ FragmentFlags: 0 (0x0) 

TimeToLive: 128 (0x80) 

NextProtocol: AH, 51(0x33) 

Checksum: 11623 (0x2D67) 

SourceAddress: 131.107.0.2 

DestinationAddress: 131.107.0.1 

- Ah: Next Protocol = ESP, SPI = 0x43E235D7, Seq = 0x1  

NextHeader: ESP, 50(0x32) 

PayloadLength: 24 bytes 

Reserved: 0 (0x0) 

SecurityParametersIndex: 1138898391 (0x43E235D7) 

SequenceNumber: 1 (0x1) 

AuthenticationData: 12 UINT8(s) 

- Esp: SPI = 0x1ef5e304, Seq = 0x1 

SecurityParameterIndex: 519430916 (0x1EF5E304) 

SequenceNumber: 1 (0x1) 

EncryptedPayload: Binary Large Object (68 Bytes)

ESP Tunnel Mode

Figure 18-7 shows ESP Tunnel mode for an IP datagram.

Figure 18-7 ESP Tunnel mode
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In ESP Tunnel mode, the entire original IP datagram is encapsulated with a new (outer) IP 
header and an ESP header and trailer. In the outer IP header, the Protocol field is set to 50 
(0x32) to indicate that an ESP header is present. For Tunnel mode, the original IP header and 
payload are unmodified. Like AH Tunnel mode, the outer IP header is constructed from the 
configuration of the IPsec tunnel.

For ESP Tunnel mode, the following portions of the packet are encrypted:

■ The original IP datagram (IP header and payload)

■ The Padding, Padding Length, and Next Header fields of the ESP trailer

For ESP Tunnel mode, the ICV calculation is performed over the following:

■ All the fields in the ESP header

■ The original IP datagram (IP header and payload), including the plaintext IV, if needed

■ All the fields in the ESP header except the Authentication Data field

For ESP Tunnel mode, the ESP trailer provides protection for the original IP header and pay-
load, but does not provide protection for the outer IP header and the Authentication Data 
field of the ESP trailer.

IPsec and Security Associations
A security association (SA) is the combination of security services, protection mechanisms, and 
cryptographic keys mutually agreed to by communicating peers. The SA contains the informa-
tion needed to determine how the traffic is to be secured (the security services and protection 
mechanisms) and with which secret keys (cryptographic keys). There are two types of SAs 
that are created when IPsec peers communicate securely: the Internet Security Association 
and Key Management Protocol (ISAKMP) SA and the IPsec SA.

ISAKMP SA

The ISAKMP SA, also known as the main mode SA, is used to protect IPsec security negotia-
tions. The ISAKMP SA is created by negotiating the ciphersuite used for protecting future 
ISAKMP traffic, exchanging key-generation material, and then identifying and authenticating 
each IPsec peer.

When the ISAKMP SA is complete, all future SA negotiations for IPsec SAs are protected. This 
is an aspect of secure communications known as protected ciphersuite negotiation. Not only is 
the data protected, but the determination of the protection algorithms negotiated by the IPsec 
peers is also protected. To break IPsec protection, a malicious user must first determine the 
ciphersuite protecting the data, which represents another cryptographic barrier. For IPsec, the 
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exceptions to complete protected ciphersuite negotiation are the negotiations of the cipher-
suites of ISAKMP SAs, which begin as plaintext.

IPsec SA

The IPsec SA, also known as the quick mode SA, is used to protect data sent between the IPsec 
peers. The IPsec SA ciphersuite negotiation is protected by the ISAKMP SA. No information 
about the type of traffic or the protection mechanisms is sent as plaintext. For a pair of IPsec 
peers, there are always two IPsec SAs: one is negotiated for inbound traffic and one is for out-
bound traffic. The inbound SA for one IPsec peer is the outbound SA for the other.

Security Parameters Index

For each IPsec session, IPsec peers must track the usage of three different SAs: the ISAKMP SA, 
the inbound IPsec SA, and the outbound IPsec SA. To identify a specific SA, a 32-bit pseudo-
random number known as the Security Parameters Index (SPI) is used. The SPI is used for SA 
management at each IPsec peer and is a field in the IPsec headers protecting IPsec traffic and 
in the messages negotiating or managing SAs.

The node that initiates an IPsec negotiation to perform IPsec protection is known as the 
initiator. The node that responds to a request to perform IPsec protection is known as the 
responder. The initiator chooses the ISAKMP SA SPI, and each IPsec peer chooses the IPsec SA 
SPI for its outbound traffic.

Creating SAs

An IPsec negotiation and determination of both ISAKMP and IPsec SAs occurs in two phases: 
the Main mode phase (also known as Phase I) and the Quick mode phase (also known as 
Phase II).

Main Mode Main mode negotiation creates the ISAKMP SA. The initiator and responder 
exchange a series of ISAKMP messages to negotiate the ciphersuite for the ISAKMP SA (in 
plaintext), exchange key determination material (in plaintext), and identify and authenticate 
each other (in encrypted text). For more information about the details of Main mode negoti-
ation, see the section “Main Mode Negotiation” later in this chapter.

Quick Mode Quick mode negotiation creates the two IPsec SAs. The initiator and 
responder exchange a series of ISAKMP messages to negotiate the ciphersuite for both 
the inbound and outbound IPsec SAs. During Quick mode negotiation, keying material is 
refreshed or, if necessary, new keys are generated. For more information about the details 
of quick mode negotiation, see the section “Quick Mode Negotiation” later in this chapter.

For IPsec for Windows Server 2008 and Windows Vista, a complete IPsec negotiation includ-
ing both Main mode and Quick mode requires either 9 or 10 ISAKMP messages exchanged 
between IPsec peers, depending on security settings.



Chapter 18: Internet Protocol Security (IPsec) 385
Internet Key Exchange
The Internet Key Exchange (IKE) is a standard that defines a mechanism to establish SAs. 
IKE, described in RFC 2409, combines ISAKMP and the Oakley Key Determination Protocol.

IPsec uses the ISAKMP protocol to negotiate SAs. ISAKMP includes facilities to identify and 
authenticate peers, manage SAs, and exchange key material. ISAKMP is a framework for nego-
tiating secure communications independent of specific key exchange protocols, encryption 
and integrity algorithms, and authentication methods.

To generate secret key material for secure communications, IKE uses the Oakley Key Determi-
nation Protocol. Oakley is based on the Diffie-Hellman key exchange algorithm, which allows 
two peers to determine a secret key by exchanging unencrypted values over a public network. 
The mutually determined secret key becomes keying material from which secret keys for 
HMAC or encryption algorithms are derived.

More Info The details of the Diffie-Hellman algorithm and the Oakley protocol are outside 
the scope of this book, but they are described in RFC 2412. 

ISAKMP Message Structure
ISAKMP messages are sent as the payload of UDP messages using UDP port 500. Figure 18-8 
shows the format of an ISAKMP message.

Figure 18-8 An ISAKMP message

The ISAKMP message consists of an ISAKMP header and one or more ISAKMP payloads. The 
ISAKMP payloads contain negotiation information and are encrypted for most ISAKMP mes-
sages. The encryption protects the negotiation from being viewed by malicious users who are 
capturing ISAKMP traffic. The encrypted portions of ISAKMP messages cannot be viewed 
with Network Monitor. ISAKMP is defined in RFC 2408.

ISAKMP Header

The ISAKMP header is a standard header that is present for all ISAKMP messages and con-
tains information about the message, including the type of packet. Figure 18-9 shows the for-
mat of the ISAKMP header.

IP datagram

UDP message

ISAKMP payloadsUDP
header

ISAKMP
header

IP header
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Figure 18-9 The ISAKMP header.

The fields in the ISAKMP header are defined as follows:

■ Initiator Cookie An 8-byte field that is set to a nonzero random number chosen by the 
IPsec peer that initiated the SA, is performing a notification about an existing SA, or is 
deleting the SA.

■ Responder Cookie An 8-byte field that is set to a nonzero random number chosen by 
the IPsec peer responding to the peer that initiated an SA.

■ Next Payload A 1-byte field that indicates the type of the payload that follows the 
ISAKMP header. Table 18-1 lists the payload types defined in RFC 2408.

Table 18-1 Values of the Next Payload Field

Next Payload Value Next Payload Type

0 None

1 SA

2 Proposal

3 Transform

4 Key Exchange

5 Identification

6 Certificate

7 Certificate Request

8 Hash

9 Signature

10 Nonce

11 Notification

12 Delete

13 Vendor ID

Initiator Cookie

Responder Cookie

Next Payload

Major Version

Minor Version

Exchange Type

Flags

Message ID

Length
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■ Major Version A 4-bit field that indicates the major version of the ISAKMP protocol for 
this message. This field must be set to 1 if the implementation complies with RFC 2408. 
ISAKMP messages with a higher supported major version number are discarded.

■ Minor Version A 4-bit field that indicates the minor version of the major version of the 
ISAKMP protocol for this message. This field must be set to 0 if the implementation 
complies with RFC 2408. ISAKMP messages with a higher supported minor version 
number are discarded, within the same supported major version.

■ Exchange Type A 1-byte field that indicates the type of ISAKMP exchange being per-
formed for this ISAKMP message. The type of exchange dictates the structure and the 
order of ISAKMP payloads. Table 18-2 lists the exchange types defined in RFC 2408.

■ Flags A 1-byte field containing ISAKMP flags that are set for this ISAKMP message. 
There are three flags defined in RFC 2408. The low-order bit (bit 0) is the Encryption 
bit, which indicates the ISAKMP payloads are encrypted (when set to 1) or not 
encrypted (when set to 0). Encryption is done using the algorithm negotiated for 
the ISAKMP SA, which is identified by the combination of the Initiator Cookie and 
Responder Cookie fields. The next low-order bit (bit 1) is the Commit bit, which indi-
cates that the key exchange is synchronized (when set to 1) or not synchronized (when 
set to 0). The Commit bit is used to ensure that the SA completes its negotiation before 
encrypted data is sent. The next low-order bit (bit 2) is the Authentication Only bit, 
which is used to indicate that the message either contains (when set to 1) or does not 
contain (when set to 0) the entire Notify payload of the informational exchange type 
and it has been authenticated but not encrypted. For more information, see the section 
“Notification Payload” later in this chapter.

14–127 Reserved 

128–255 Private Use

Table 18-2 Values of the Exchange Type Field

Exchange Type Value Exchange Type

0 None

1 Base

2 Identity Protection

3 Authentication Only

4 Aggressive

5 Informational

6–31 ISAKMP Future Use

32–239 DOI Specific Use

240–255 Private Use

Table 18-1 Values of the Next Payload Field

Next Payload Value Next Payload Type
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■ Message ID A 4-byte field that contains a unique identifier for the message. The 
Message ID is used to prevent collisions due to both IPsec peers attempting to simulta-
neously establish an IPsec SA. The Message ID field is set to 0 for the ISAKMP SA estab-
lishment.

■ Length A 4-byte field that indicates the length of the entire ISAKMP message.

SA Payload

The SA payload is used to indicate the domain of interpretation (DOI) and situation for the SA 
negotiation. The DOI is a set of definitions for payload formats, exchange types, and naming 
conventions for security-related information, such as the naming of policies and crypto-
graphic algorithms. A situation is a set of information that identifies security services in the 
ISAKMP message. Figure 18-10 shows the format of the SA payload.

Figure 18-10 The SA payload

The fields in the SA payload are defined as follows:

■ Next Payload A 1-byte field that indicates the next payload in the message. Next Pay-
load is set to 0 for the last payload in the message. For the SA payload, the Next Payload 
field does not indicate the Proposal or Transform payloads because they are considered 
part of the SA payload.

■ Reserved A 1-byte field set to 0.

■ Payload Length A 2-byte field that indicates the length of the payload. For the SA 
payload, the length includes the Proposal and Transform payloads.

■ Domain of Interpretation A 4-byte field that indicates the DOI. For IPsec and ISAKMP, 
the DOI field is set to 1. RFC 2407 describes the IPsec DOI for ISAKMP.

■ Situation A variable-length field that identifies the situation for the negotiation. For 
IPsec, the values of the Situation field are defined in RFC 2407. For example, the Situa-
tion field is set to 1 for SIT_IDENTITY_ONLY, a situation that specifies that the identity 
of the sending source is contained in an Identification payload. See section 4 of RFC 
2407 for additional situation definitions.

Next Payload

Reserved

Payload Length

Domain of Interpretation

Situation
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Note The Next Payload, Reserved, and Payload Length fields are common to all ISAKMP 
payloads. Therefore, they are not described in the payload sections that follow unless there are 
additional considerations for their use.

Proposal Payload

The Proposal payload contains security parameter information that is used to negotiate the 
security settings for either an ISAKMP or IPsec SA. The Proposal payload contains proposal 
settings and then a series of one or more Transform payloads that contain the specific security 
settings for encryption and authentication algorithms for the SA. Figure 18-11 shows the 
format of the Proposal payload.

Figure 18-11 The Proposal payload

The fields in the Proposal payload are defined as follows:

■ Next Payload For the Proposal payload, the Next Payload field must be set to either 2 
for additional Proposal payloads or 0 for no more Proposal payloads.

■ Payload Length For the Proposal payload, the Payload Length field indicates the length 
of the entire Proposal payload, which includes the Transform payloads for this Proposal 
payload.

■ Proposal Number A 1-byte field that indicates the number of this proposal.

■ Protocol-ID A 1-byte field that specifies the security protocol suite being negotiated, 
such as ISAKMP (Protocol-ID is set to 1). For a current list, see http://www.iana.org
/assignments/isakmp-registry. 

■ SPI Size A 1-byte field that indicates the length in bytes of the optional SPI field. If the 
protocol indicated by the Protocol-ID field does not use a SPI, SPI size is set to 0. For 
example ISAKMP does not use a SPI.

Next Payload

Reserved

Payload Length

Proposal Number

Protocol-ID

SPI Size

Number of Transforms

SPI
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■ Number of Transforms A 1-byte field that indicates the number of Transform payloads 
for this proposal.

■ SPI A variable-size field that contains the SPI. This field is only present if the SPI Size 
field is greater than 0.

Transform Payload

The Transform payload contains information that identifies a specific security mechanism, 
or transform, that is proposed to secure future traffic. The Transform payload also contains 
SA attributes, as defined in RFC 2407 for the IPsec DOI. Figure 18-12 shows the Transform 
payload.

Figure 18-12 The Transform payload

The fields in the Transform payload are defined as follows:

■ Next Payload For the Transform payload, the Next Payload field must be set to either 
3 for additional Transform payloads or 0 for no more Transform payloads for this 
proposal. 

■ Payload Length For the Transform payload, the Payload Length field indicates the 
length of the entire Transform payload, which includes the SA attributes for this 
Transform payload.

■ Transform Number A 1-byte field that indicates the number of this transform.

■ Transform ID A 1-byte field that indicates the Transform identifier for the protocol of 
the proposal. Transform IDs are defined in RFC 2407 for the IPsec DOI.

■ Reserved2 A 2-byte field that is set to 0.

■ SA Attributes Variable-length fields that define the SA attributes for the transform. SA 
attributes are either in type-value or type-length (2 bytes)-value (TLV) format. In both 
cases, the Type field is 2 bytes in length. To distinguish type-value from TLV format, the 
high-order bit of the Attribute Type field is set to 1 for type-value format and 0 for TLV 
format. SA attributes for the IPsec DOI are defined in section 4.5 of RFC 2407.

Next Payload

Reserved

Payload Length

Transform Number

Transform ID

Reserved2

SA Attributes
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The following is Frame 1 of Capture 18-01 in the \Captures folder on the companion 
CD-ROM, which shows the relationship among the SA, Proposal, and Transform payloads, 
and the SA attributes within a Transform payload as displayed by Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = UDP, Packet ID = 1517, Total IP Length = 236 

+ Udp: SrcPort = ISAKMP/IKE(500), DstPort = ISAKMP/IKE(500), Length = 216 

- Ike: version = 1.0, Identity protection (Main Mode), Flags = ..., Length = 208 

InitiatorCookie: D8 22 8F 25 FE 3F DB D8 

ResponderCookie: 47 46 01 F9 67 63 0F 11 

NextPayload: Security Association (SA), 1(0x01) 

+ Version: 1.0 

ExchangeType: Identity protection (Main Mode), 2(0x02) 

+ FlagsVer1: ... 

MessageID: 0 (0x0) 

Length: 208 (0xD0) 

- SecurityAssociation: Next Payload = Vendor ID (VID), Length = 56 

NextPayload: Vendor ID (VID), 13(0x0D) 

Reserved: 0 (0x0) 

PayloadLength: 56 (0x38) 

DOI: IPSEC(1) 

+ Situation: SIT_IDENTITY_ONLY  

- ProposalPayload: Next Payload = None, ProtocolID = ISAKMP, NumberOfTransforms = 1,   

     Length = 44 

NextPayload: None, 0(0x00) 

Reserved: 0 (0x0) 

PayloadLength: 44 (0x2C) 

Proposal: 1 (0x1) 

ProtocolID: ISAKMP, 1(0x01) 

SPISize: 0 (0x0) 

NumberOfTransforms: 1 (0x1) 

- TransformPayload: Next Payload = None, TransformID = KEY_IKE, Length = 36 

NextPayload: None, 0(0x00) 

Reserved: 0 (0x0) 

PayloadLength: 36 (0x24) 

Transform: 1 (0x1) 

TransformId: KEY_IKE 1(0x01) 

RESERVED2: 0 (0x0) 

+ Attribute: TV: basic Encryption algorithm = 3DES-CBC 

+ Attribute: TV: basic Hash algorithm = SHA 

+ Attribute: TV: basic Group description = Alternate 1024-bit MODP group 

+ Attribute: TV: basic Authentication method = Pre-shared key (PSK) 

+ Attribute: TV: basic Life type = seconds 

+ Attribute: TLV: variable Life duration = Binary Large Object (4 Bytes) 

+ VendorID: MS NT5 ISAKMPOAKLEY, Version 6, Next Payload = Vendor ID (VID), Length = 24 

+ VendorID: RFC 3947 (NAT-T supported), Next Payload = Vendor ID (VID), Length = 20 

+ VendorID: draft-ietf-ipsec-nat-t-ike-02, Next Payload = Vendor ID (VID), Length = 20 

+ VendorID: FRAGMENTATION, Next Payload = Vendor ID (VID), Length = 20 

+ VendorID: 0xfb1de3cdf341b7ea16b7e5be0855f120, Next Payload = Vendor ID (VID), Length =

20

+ VendorID: IKE CGA version 1, Next Payload = None, Length = 20
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Vendor ID Payload

The Vendor ID payload contains a string or number that either indicates a specific capability 
or is defined by a vendor so that an IPsec implementation can recognize an IPsec peer running 
the same implementation. IPsec peers are not required to run the same implementation or 
support the same capabilities, so the sending of Vendor ID payloads and the actions taken 
when they are received are optional. If a receiver recognizes the Vendor ID, it can make use of 
the capability or use private payloads, which use the Payload ID numbers 128 through 255. 
For vendor identification, the Vendor ID value must be unique and is typically a hash of well-
known text chosen by the designers of an IPsec implementation. For capability identification, 
the Vendor ID value must be unique and is typically chosen by the designers of the IPsec 
capability.

Figure 18-13 shows the format of the Vendor ID payload.

Figure 18-13 The Vendor ID payload

The only field in the Vendor ID payload (besides the Next Header, Reserved, and Payload 
Length fields) is the Vendor ID field, a variable-length field that contains the Vendor ID value.

IPsec for Windows Server 2008 and Windows Vista uses the following Vendor ID payloads to 
indicate that the IPsec peer: 

■ Is running a Microsoft operating system and the version of that operating system

■ Supports Network Address Translator (NAT) Traversal capability based on RFC 3947

■ Supports Network Address Translator (NAT) Traversal capability based on the 
draft-ietf-ipsec-nat-t-ike-02.txt Internet draft

■ Supports fragmentation

■ Supports network load balancing

■ Supports Authenticated Internet Protocol (AuthIP)

■ Supports Kerberos authentication using the Generic Security Services Application 
Programming Interface (GSSAPI)

■ Supports IKE with IPv6 Cryptographically Generated Addresses (CGA)

■ Supports Negotiation Discovery

Next Payload

Reserved

Payload Length

Vendor ID
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Negotiation Discovery is new behavior for Windows Server 2008 and Windows Vista to 
automatically determine whether a potential peer supports IPsec. The Negotiation Discovery 
Vendor ID payload is shown in Network Monitor 3.1 as Vendor ID 
0xFB1DE3CDF341B7EA16B7E5BE0855F120.

The Network Load Balancing Vendor ID payload is shown in Network Monitor 3.1 as Vendor 
ID Vid-Initial-Contact.

Nonce Payload

The Nonce payload contains a pseudorandom number that is used to ensure a live exchange 
and provide replay protection. Nonces are also used to calculate hashes in other payloads. 
Figure 18-14 shows the format of the Nonce payload.

Figure 18-14 The Nonce payload

The only field in the Nonce payload (besides the Next Header, Reserved, and Payload Length 
fields) is the Nonce Data field, a variable-length field that contains the pseudorandom num-
ber determined by the sender of the ISAKMP message.

Key Exchange Payload

The Key Exchange payload contains information pertaining to the key exchange process. 
The key exchange process supported by IPsec for Windows Server 2008 and Windows Vista 
is Diffie-Hellman. With Diffie-Hellman, two IPsec peers exchange key values that are sent in 
plaintext. From the key values, each IPsec peer calculates the same private key. With the 
Diffie-Hellman exchange, a malicious user between the IPsec peers can view the exchanged 
key values but cannot easily calculate the same result as the IPsec peers. Figure 18-15 shows 
the format of the Key Exchange payload.

Figure 18-15 The Key Exchange payload
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The only field in the Key Exchange payload (besides the Next Header, Reserved, and Payload 
Length fields) is the Key Exchange Data field, a variable-length field that contains the key 
exchange value determined by the sender of the ISAKMP message.

Notification Payload

The Notification payload is used to transmit control information, such as an error condition, 
to an IPsec peer. A single ISAKMP message can contain multiple Notification payloads. For 
Notification payloads within a Main mode message, the initiator and responder cookies iden-
tify the negotiation. Figure 18-16 shows the format of the Notification payload.

Figure 18-16 The Notification payload

The fields in the Notification payload are defined as follows:

■ Domain of Interpretation A 4-byte field that identifies the DOI for the notification. For 
the ISAKMP DOI, the value is 0; for the IPsec DOI, the value is 1.

■ Protocol-ID A 1-byte value that indicates the protocol to which the notification applies.

■ SPI Size A 1-byte field that indicates the length of the SPI field. For ISAKMP, the secu-
rity identifier is the initiator/responder cookie pair. Therefore, the SPI Size field can be 
set to 0. For ISAKMP, if the SPI Size field is set to a non-zero value, the SPI field is 
ignored.

■ Notify Message Type A 2-byte field that specifies the type of notification message.

■ SPI A variable-length field that specifies the SPI for the notification.

■ Notification Data A variable-length field that contains additional information or text 
for the notification message indicated by the Notify Message Type field.
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Table 18-3 lists some of the notification error messages specified in RFC 2408. For a complete 
list, see section 3.14.1 of RFC 2408.

Table 18-4 lists some of the notification status messages specified in RFC 2408.

Delete Payload

The Delete payload is used to inform an IPsec peer that an SA for a specific protocol has been 
deleted. The receiver should remove its corresponding SA. IPsec for Windows Server 2008 
and Windows Vista supports verification of Delete payloads. If an ISAKMP message with a 
Delete payload is received, the receiver acknowledges it. If an acknowledgment is not received, 
the Delete payload is resent. Figure 18-17 shows the format of the Delete payload.

Figure 18-17 The Delete payload

Table 18-3 Notification Error Messages

Notification Message Type Value Notification Message

1 INVALID-PAYLOAD-TYPE

2 DOI-NOT-SUPPORTED

3 SITUATION-NOT-SUPPORTED

4 INVALID-COOKIE

5 INVALID-MAJOR-VERSION

6 INVALID-MINOR-VERSION

Table 18-4 Notification Status Messages

Notification Message Type Value Notification Message

16384 CONNECTED

16385–24575 RESERVED (Future Use)

24576–32767 DOI-specific codes

32768–40959 Private Use

40960–65535 RESERVED (Future Use)

Next Payload

Reserved

Payload Length

Domain of Interpretation

Protocol-ID
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Number of SPIs

SPIs
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The fields in the Delete payload are defined as follows:

■ Domain of Interpretation A 4-byte field that identifies the DOI. The DOI is 0 for 
ISAKMP and 1 for IPsec.

■ Protocol-ID A 1-byte field that identifies the protocol for the SA that was deleted. The 
Protocol-ID field indicates ISAKMP for main mode SA deletions and ESP or AH for 
Quick mode SA deletions.

■ SPI Size A 1-byte field that indicates the length of a SPI in the SPIs field. For the 
ISAKMP protocol, the SPI size is set to 16.

■ Number of SPIs A 2-byte field that indicates the number of SPIs in the SPIs field.

■  SPIs A variable-length field that identifies the SAs to delete. All of the SPIs have the 
same length, as indicated with the SPI Size field.

Identification Payload

The Identification payload is used to convey identification information and authenticate an 
IPsec peer.

Figure 18-18 shows the format of the Identification payload.

Figure 18-18 The Identification payload

The fields in the Identification payload are defined as follows:

■ ID Type A 1-byte field that indicates the type of identification.

■ DOI-Specific ID Data A 3-byte field that contains DOI-specific data. If not used, this is 
set to 0.

■ Identification Data A variable-length field that contains identity information.

Hash Payload

The Hash payload contains a hash value that is a result of a hash function computed over a set 
of fields or other parameters. The Hash payload can be used to provide integrity or authenti-
cation of negotiating peers. Figure 18-19 shows the format of the Hash payload.
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Figure 18-19 The Hash payload

The only field in the Hash payload (besides the Next Header, Reserved, and Payload Length 
fields) is the Hash Data field, a variable-length field that contains the hash value. Both IPsec 
peers must agree to the set of fields or other parameters over which the hash is calculated.

Certificate Request Payload

The Certificate Request payload is used to request certificates from an IPsec peer. After receipt 
of an ISAKMP message with a Certificate Request payload, an IPsec peer must send a certifi-
cate or certificates based on the contents of the Certificate Request payload. Figure 18-20 
shows the format of the Certificate Request payload.

Figure 18-20 The Certificate Request payload

The fields in the Certificate Request payload are defined as follows:

■ Certificate Type A 1-byte field that indicates the type of the certificate requested. 
Table 18-5 lists the certificate types defined in RFC 2408.

Next Payload

Reserved

Payload Length

Hash Data

Table 18-5 Certificate Type Values

Certificate Type Value Certificate Type

0 None

1 Public Key Cryptography Standards (PKCS) #7 wrapped X.509 Certificate

2 Pretty Good Privacy (PGP) Certificate

3 Domain Name System (DNS) Signed Key

4 X.509 Certificate: Signature

5 X.509 Certificate: Key Exchange

6 Kerberos Tokens

7 Certificate Revocation List (CRL)

Next Payload

Reserved

Payload Length

Certificate Type

Certificate Authority
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■ Certificate Authority A variable-length field that contains an acceptable certification 
authority (CA) for the indicated type of certificate. For example, for an X.509 certificate, 
the distinguished name of the issuing CA is used. If there is no specific CA required by 
the sending IPsec peer, this field is not present.

Certificate Payload

The Certificate payload is used by an IPsec peer when sending its certificate. This is typically 
done during the authentication phase of Main mode negotiation. Figure 18-21 shows the for-
mat of the Certificate payload.

Figure 18-21 The Certificate payload

The fields in the Certificate payload are defined as follows:

■ Certificate Encoding A 1-byte field that indicates the method for encoding the certifi-
cate information in the Certificate Data field. Table 18-5 lists the values of the Certificate 
Encoding field defined in RFC 2408. The same values for the Certificate Type field of the 
Certificate Request payload are used for the Certificate Encoding field in the Certificate 
payload.

■ Certificate Data A variable-length field that contains the encoding of the certificate 
using the encoding method indicated in the Certificate Encoding field.

Signature Payload

The Signature payload is used to send digital signatures calculated over a set of fields or 
parameters. The Signature payload provides data integrity and nonrepudiation services dur-
ing the authentication phase of Main mode negotiation. Figure 18-22 shows the format of the 
Signature payload.

8 Authority Revocation List (ARL)

9 Simple Public Key Infrastructure (SPKI) Certificate

10 X.509 Certificate: Attribute

11–255 Reserved

Table 18-5 Certificate Type Values

Certificate Type Value Certificate Type

Next Payload
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Certificate Data
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Figure 18-22 The Signature payload

The only field in the Signature payload (besides the Next Header, Reserved, and Payload 
Length fields) is the Signature Data field, a variable-length field that contains the digital sig-
nature value. Both IPsec peers must agree on the set of fields and parameters over which the 
digital signature is calculated.

Main Mode Negotiation
Main mode negotiation determines encryption key material and security protection for use in 
protecting subsequent Main mode or Quick mode communications. Main mode negotiation 
occurs in the following steps:

1. Negotiation of protection suites

2. A Diffie-Hellman exchange

3. Authentication

Main mode negotiation consists of either five or six ISAKMP messages: three sent by the initi-
ator and two or three sent by the responder. For examples of main mode negotiation, see the 
following:

■ Frames 1–5 of Capture 18-01 in the \Captures folder on the companion CD-ROM 
(Frames 4 and 5 have encrypted ISAKMP payloads)

■ Frames 1–6 of Capture 18-02 (Frames 5 and 6 have encrypted ISAKMP payloads)

■ Frames 1–5 of Capture 18-03 (Frames 4 and 5 have encrypted ISAKMP payloads)

Quick Mode Negotiation
When the Main mode negotiation is complete, each IPsec peer has selected a specific set of 
cryptographic algorithms for securing Main mode and Quick mode messages, exchanged key 
information to derive a shared secret key, and performed authentication. Before secure data is 
sent, a Quick mode negotiation must occur to determine the type of traffic to be secured and 
how it will be secured. A Quick mode negotiation is also done when a Quick mode SA expires. 
Quick mode messages are ISAKMP messages that are encrypted using the ISAKMP SA. The 
result of a Quick mode negotiation is two IPsec SAs: one for inbound traffic and one for out-
bound traffic.
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Quick mode negotiation for IPsec for Windows Server 2008 and Windows Vista consists of 
four ISAKMP messages. The first Quick mode ISAKMP message, sent by the initiator, contains 
the following payloads:

■ SA The SA payload contains a list of proposals and encryption and hashing algorithms 
for how to secure the traffic (AH versus ESP, AES versus 3DES, and MD5 versus SHA1) 
and a description of the traffic that is protected (IP addresses, IP Protocol numbers, TCP 
ports, UDP ports, and so on).

■ Identification The Identification payload contains a description of the traffic to be 
secured.

■ Nonce The Nonce payload contains a pseudorandom number to be used in subse-
quent hash calculations.

The second Quick mode ISAKMP message, sent by the responder, contains the following 
payloads:

■ SA The SA payload contains a Proposal payload, which contains a single Transform 
payload corresponding to the protection suite that was offered by the initiator in the 
first Quick mode message and is acceptable to the responder for the traffic to be 
secured.

■ Identification The Identification payload contains a description of the traffic to be 
secured.

■ Nonce The Nonce payload contains a pseudorandom number to be used in subse-
quent hash calculations.

The second message has the Commit bit in the ISAKMP header set.

The third Quick mode ISAKMP message, sent by the initiator, contains the Hash payload, 
which contains a hash value to provide verification and replay protection.

The fourth Quick mode ISAKMP message, sent by the responder, contains the Notification 
payload, which contains the Notify Message Type set to 16384 (the CONNECTED status 
message), indicating that the SA negotiation is complete.

The setting of the Commit bit in Quick mode message 2 and the sending of the CONNECTED 
status message in Quick mode message 4 are not required by the ISAKMP or IKE standards. 
IPsec for Windows Server 2008 and Windows Vista uses this facility to prevent the initiator 
from sending IPsec-protected packets to the responder before the responder is ready to 
receive them.

For examples of quick mode negotiation, see the following:

■ Frames 6–9 of Capture 18-01 in the \Captures folder on the companion CD-ROM (all of 
these frames have encrypted ISAKMP payloads)
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■ Frames 7–10 of Capture 18-02 (all of these frames have encrypted ISAKMP payloads)

■ Frames 6–9 of Capture 18-03 (all of these frames have encrypted ISAKMP payloads)

Authenticated Internet Protocol (AuthIP)
In addition to IKE, Windows Server 2008 and Windows Vista support Authenticated Internet 
Protocol (AuthIP), an enhanced version of IKE. AuthIP supports additional authentication 
flexibility with support for user-level authentication, authentication with multiple credentials, 
improved authentication method negotiation, and asymmetric authentication. 

Like IKE, AuthIP supports Main mode and Quick mode negotiation. AuthIP also supports 
Extended mode, a part of IPsec peer negotiation during which a second round of authentica-
tion can be performed. Extended mode, which is optional, can be used for multiple authenti-
cations. For example, with Extended mode, you can perform separate computer-level and 
user-level authentications. 

AuthIP Messages

Both IKE and AuthIP use ISAKMP as their key exchange and SA negotiation protocol. AuthIP 
uses ISAKMP messages with the exchange types 243 (Main Mode), 244 (Quick Mode), 245 
(Extended Mode), and 246 (Notify) in the ISAKMP header. An important difference in 
AuthIP-based ISAKMP messages is that they contain only one ISAKMP payload: either the 
Crypto payload or the Notify payload. The Crypto payload contains the embedded payloads 
used for the Main mode, Quick mode, or Extended mode negotiation. The Crypto payload 
can contain a set of plain text or encrypted payloads, depending on the Encryption bit in the 
Flags field of the ISAKMP header. Figure 18-23 shows the structure of AuthIP messages con-
taining the Crypto payload.

Figure 18-23 AuthIP messages containing the Crypto payload

More Info The details of AuthIP payloads and negotiation are available through the 
Microsoft Communication Protocol Program (MCPP) at http://www.microsoft.com/about/legal
/intellectualproperty/protocols/mcpp.mspx. Network Monitor 3.1 by default will not parse the 
payloads of AuthIP messages. To obtain Network Monitor 3.1 components to parse AuthIP 
messages, see http://www.microsoft.com/about/legal/intellectualproperty/protocols/mcpp.mspx.

AuthIP and IKE Coexistence

Windows Server 2008 and Windows Vista support both IKE and AuthIP. Windows XP and 
Windows Server 2003 support only IKE. An initiator that supports both AuthIP and IKE must 

ISAKMP header Crypto payload Payload 1 Payload 2 Payload n
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determine whether the responder supports AuthIP or IKE and use the most appropriate pro-
tocol for negotiating IPsec protection, preferring the use of AuthIP over IKE. 

To determine the negotiation protocol of the responding IPsec peer, an initiator that uses both 
AuthIP and IKE sends the following messages:

■ Message 1: An AuthIP message initiating Main mode negotiation

■ Message 2: An IKE message initiating Main mode negotiation

If the responder supports AuthIP, it must respond to Message 1 with an AuthIP message con-
tinuing the Main mode negotiation and silently discard Message 2. A responder that does not 
support AuthIP silently discards Message 1 because it contains a value of the Exchange Type 
field that the responder does not support and responds to Message 2. 

To prevent IKE-based negotiation between two IPsec peers running Windows Server 2008 or 
Windows Vista when Message 1 is dropped from the network or arrives after Message 2, IPsec 
peers running Windows Server 2008 or Windows Vista send Message 2 with a vendor ID pay-
load that indicates support for AuthIP. If an IPsec peer running Windows Server 2008 or Win-
dows Vista receives Message 2 with the AuthIP-supported vendor ID payload, it waits for the 
initiating IPsec peer to retransmit Message 1 and then responds to Message 1.

The initiator keeps retransmitting both Messages 1 and 2 until it receives a response or times 
out. When the initiator receives a response, it determines the capability of the responder from 
the ISAKMP header of the received response. If the Exchange Type field is set to 243 (the 
exchange type for AuthIP-based Main mode negotiation), the responder is AuthIP-capable. If 
the Exchange Type field is set to 2 (the exchange type for Identity Protection and IKE-based 
Main mode negotiation), the responder is IKE-capable.

Based on the response message, the initiator responds with either the next AuthIP message 
for AuthIP Main mode negotiation or the next IKE message for IKE Main mode negotiation. 
The IPsec peers must use the same protocol that was used to negotiate the ISAKMP SA for the 
lifetime of the SA.

Examples of AuthIP and IKE Negotiation

The following sections describe the negotiation for the following sets of IPsec peers:

■ Two Windows Vista-based IPsec peers in request communication mode (in request 
mode, an IPsec peer requests IPsec protection but does not require it)

■ Windows Vista-based IPsec peer in request mode and a Windows XP-based IPsec peer 
in request mode

■ Windows Vista-based IPsec peer in request mode and a Windows XP-based IPsec peer 
in require communication mode (in require mode, an IPsec peer requires IPsec protec-
tion and silently discards unprotected packets)
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Two Windows Vista-based IPsec Peers in Request Mode Both the initiator (Peer 1) and 
the responder (Peer 2) are running Windows Vista. Both peers are configured with request 
mode for both inbound and outbound communications. The messages exchanged are the 
following:

1. Peer 1 sends a plaintext TCP synchronize (SYN) segment, initiating a TCP connection 
with Peer 2.

2. Peer 2 sends a TCP-SYN-Acknowledgment (ACK) segment. 

3. Peer 1 sends a TCP-ACK segment.

4. Peer 1 sends an AuthIP-based ISAKMP message, initiating AuthIP Main mode 
negotiation.

5. Peer 1 sends an IKE-based ISAKMP message, initiating IKE Main mode negotiation.

6. Peer 2 responds with an AuthIP-based ISAKMP message, continuing AuthIP Main mode 
negotiation.

7. Peers 1 and 2 complete AuthIP Main mode, Quick mode, and Extended mode 
(optional) negotiation.

8. Subsequent segments sent over the TCP connection are protected with IPsec.

The exact order of Messages 1 through 5 depends on network latency. The examples 
described in this article are for a very low latency network, in which the TCP handshake 
(Messages 1 through 3) completes before Peer 1 can send the initial ISAKMP messages 
(Messages 4 and 5). On a higher latency network, you would see Peer 1 send the clear text 
TCP SYN segment, the AuthIP-based ISAKMP message, and then the IKE-based ISAKMP 
message as the first three messages of the message exchange.

Windows Vista-based IPsec Peer in Request Mode and a Windows XP-based IPsec Peer 
in Request Mode In this example, a Windows Vista-based IPsec peer (Peer 1) is the initia-
tor and the responder is running Windows XP (Peer 2). Both peers are configured with 
request mode for both inbound and outbound communications. The messages exchanged 
are the following:

1. Peer 1 sends a plaintext TCP SYN segment, initiating a TCP connection with Peer 2.

2. Peer 2 sends a TCP-SYN-ACK segment. 

3. Peer 1 sends a TCP-ACK segment.

4. Peer 1 sends an AuthIP-based ISAKMP message, initiating AuthIP Main mode negotiation.

5. Peer 1 sends an IKE-based ISAKMP message, initiating IKE Main mode negotiation.

6. Peer 2 responds with an IKE-based ISAKMP message, continuing IKE Main mode 
negotiation.



404 Part IV: Application Layer Protocols and Services
7. Peers 1 and 2 complete IKE Main mode and Quick mode negotiation.

8. Subsequent segments sent over the TCP connection are protected with IPsec.

Windows Vista-based IPsec Peer in Request Mode and a Windows XP-based IPsec Peer 
in Require Mode In this example, a Windows Vista-based IPsec peer (Peer 1) is the initiator 
and the responder is running Windows XP (Peer 2). Peer 1 is configured with request mode 
for outbound communications, and Peer 2 is configured with require mode for inbound com-
munications. The messages exchanged are the following:

1. Peer 1 sends a clear text TCP-SYN segment, initiating a TCP connection with Peer 2. 
Peer 2 silently discards the TCP-SYN segment.

2. Peer 1 sends an AuthIP-based ISAKMP message, initiating AuthIP Main mode negotiation.

3. Peer 1 sends an IKE-based ISAKMP message, initiating IKE Main mode negotiation.

4. Peer 2 responds with an IKE-based ISAKMP message, continuing IKE Main mode 
negotiation.

5. Peer 1 and Peer 2 complete IKE Main mode and Quick mode negotiation.

6. Peer 1 retransmits the TCP-SYN segment (protected with IPsec).

7. Peer 2 sends the TCP-SYN-ACK segment (protected with IPsec).

8. Peer 1 sends the TCP-ACK segment (protected with IPsec).

9. Subsequent segments sent over the TCP connection are protected with IPsec.

IPsec NAT Traversal
IPsec was designed to provide end-to-end security for two computers located in the same 
address domain. If two computers are located in different address domains, such as private 
IP addresses used on a home network and public IP addresses used on the Internet, then the 
addresses must be translated for communication to occur. The translation of addresses and 
TCP or UDP ports for network address translation to connect users to the Internet invalidates 
the security services of IPsec. Specifically, address and port translation causes the following 
problems for ESP-based IPsec traffic:

■ For ESP-protected packets, the TCP and UDP ports are encrypted and, therefore, cannot 
be translated.

■ ISAKMP messages calculate hashes and signatures based on SA information, which 
includes IP addresses. Translating the IP address invalidates the hash or signature.

Network Address Translators (NATs) are very prevalent in today’s public address-starved 
Internet. To allow IKE negotiation and ESP-encapsulated packets to work over NATs, IPsec for 
Windows Server 2008 and Windows Vista supports IPsec NAT traversal (NAT-T) as described 
in RFCs 3947 and 3948. NAT-T is especially useful when making L2TP/IPsec connections 
from a VPN client that is behind a NAT.
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NAT-T consists of the following elements used during Main mode:

■ The sending of a NAT-T capability Vendor ID payload, which indicates that the IPsec 
peer is capable of performing NAT traversal. The NAT-T capability Vendor ID payload is 
sent in Main mode Messages 1 and 2.

■ The sending of a NAT-Discovery (NAT-D) payload that contains a hash of the original 
packet’s address and port number so that the receiving node can determine whether a 
NAT changed the IP address or port. Two separate NAT-D payloads are included in Main 
mode Messages 3 and 4. One NAT-D payload is for the destination address and port and 
the other is for the source address and port.

A receiving IPsec peer validates both NAT-D payloads. If either does not validate correctly, 
then an intermediate NAT is present and NAT-T Quick mode options are used. In addition, a 
new IKE message header format is defined that uses UDP port 4500. The NAT- T IKE header 
contains a new non-ESP Marker field that allows the receiver to distinguish between UDP-
encapsulated ESP-protected traffic and NAT-T IKE messages.

NAT-T consists of the following elements used during Quick mode:

■ The inclusion of either UDP-Encapsulated-Tunnel or UDP-Encapsulated-Transport 
Encapsulation mode in the proposals of the SA payload of Quick mode Message 1.

■ The sending of a NAT-Original Address (NAT-OA) payload to indicate the original 
source address to the IPsec peer. The NAT-Original Address (NAT-OA) payload is 
included in Quick mode Messages 1 and 2.

NAT-T for IKE and ESP consists of the following elements used when sending data:

■ The encapsulation of an ESP-protected payload with a UDP header that uses the same 
UDP ports as ISAKMP. By including a UDP header, the NAT can change the UDP port 
number and it is not part of the ESP-encrypted payload or the ISAKMP Hash or Signa-
ture payload calculation.

■ If the IPsec peer is behind a NAT, it sends a periodic NAT-Keepalive packet, which 
is a single-byte (0xFF) UDP message that uses the ISAKMP UDP ports. The NAT-
Keepalive packet is used to persist the NAT’s UDP port mapping for ISAKMP and 
UDP-encapsulated ESP traffic. Without the use of the NAT-Keepalive packet, the UDP 
port mapping in the NAT eventually times out and packets from the IPsec peer are 
silently discarded. The IKE module on the receiving IPsec peer immediately discards 
the NAT-Keepalive packets.

The combination of these elements and additional processing steps allows the following:

■ ISAKMP to detect a NAT-T-capable IPsec peer and the presence of NATs between 
the peers
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■ ISAKMP to complete Main mode and Quick mode negotiation despite the NAT’s 
presence

■ ESP-protected traffic to traverse a NAT

Note Windows Server 2008 and Windows Vista do not support the UDP-Encapsulated-
Tunnel Encapsulation mode of NAT-T.

Summary
IPsec is the standard method of providing cryptographic protection for IP packets. The two 
protocols used for IP packet protection are AH and ESP. AH provides data origin authentica-
tion, data integrity, and replay protection for the entire IP packet, except for the fields in the IP 
header that are allowed to change in transit. ESP provides data origin authentication, data 
integrity, data confidentiality, and replay protection for the ESP-encapsulated payload. 

To negotiate SAs for sending secure traffic, IPsec uses IKE, a combination of ISAKMP and the 
Oakley Key Determination Protocol. ISAKMP messages contain many types of payloads to 
exchange information during SA negotiation. Main mode negotiation determines the ISAKMP 
SA, which is used to protect all Quick mode negotiations. Quick mode negotiation determines 
the IPsec SAs to protect inbound and outbound data. Windows Server 2008 and Windows 
Vista also support AuthIP, an additional IPsec negotiation protocol that provides additional 
authentication flexibility.

IPsec NAT-T is a set of ISAKMP payloads, changes to the ISAKMP protocol, and a UDP-
Encapsulated-Tunnel Encapsulation or UDP-Encapsulated-Transport Encapsulation mode 
that provides ESP protection for IPsec peers located behind a NAT. 
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A virtual private network (VPN) is the extension of a private network that encompasses links 
across shared or public networks. VPN connections use the connectivity of the Internet and a 
combination of tunneling and data encryption technologies to connect remote clients and 
remote offices.

Windows Server 2008 and Windows Vista with Service Pack 1 support the following 
VPN protocols:

■ Point-to-Point Tunneling Protocol (PPTP)

■ Layer Two Tunneling Protocol with Internet Protocol security (L2TP/IPsec)

■ Secure Socket Tunneling Protocol (SSTP)

This chapter describes the details of the PPTP, L2TP/IPsec, and SSTP VPN protocols.

Note This chapter assumes prior knowledge of the components of a VPN and their opera-
tion and configuration in Microsoft Windows. For more information, see Chapter 14, “Virtual 
Private Networking,” of the “TCP/IP Fundamentals for Microsoft Windows” book located in the 
\Fundamentals folder on the companion CD-ROM.

PPTP
PPTP is a VPN protocol that encapsulates VPN data inside PPP frames, which are then further 
encapsulated in IP datagrams for transmission over a transit IP internetwork such as the Inter-
net. PPTP is defined in RFC 2637.

Creation and maintenance of a PPTP tunnel is done using a Transmission Control Protocol 
(TCP) connection. The VPN client uses a dynamically allocated TCP port and the PPTP server 
listens on TCP port 1723. Data is encapsulated using a modified Generic Routing Encapsula-
tion (GRE) header.
407
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More Info All of the RFCs referenced in this chapter can be found in the 
\Standards\Chap19_VPN folder on the companion CD-ROM.

PPTP Data Encapsulation

PPTP encapsulates the original IP datagram when it is transmitted between the PPTP client 
and PPTP server. Figure 19-1 shows the structure of a PPTP data packet.

Figure 19-1 PPTP data packet structure

In Figure 19-1, the original datagram is first formatted as a PPP frame. Using PPP, this part of 
the datagram can be compressed using Microsoft Point-to-Point Compression (MPPC) and is 
typically encrypted using Microsoft Point-to-Point Encryption (MPPE). The PPP frame is 
encapsulated with a GRE header, which then becomes the payload of an IP packet sent 
between the PPTP client and server. The source and destination IP addresses of this packet 
correspond to the IP addresses of the PPTP client and PPTP server. After the PPTP control 
connection is established, data can be sent between the PPTP client and the PPTP server. The 
first data packets sent over a PPTP connection are used to negotiate a PPP connection. 

For more information about MPPC, MPPE, and PPP negotiation, see Chapter 4, “Point-to-Point 
Protocol (PPP).”

PPTP uses a GRE header that is modified from the original GRE header defined in RFCs 1701 
and 1702. Figure 19-2 shows the structure of the modified GRE header defined in RFC 2637.

The fields in the modified GRE header for PPTP are the following:

■ Checksum Present A 1-bit flag that indicates, when set to 1, that a Checksum field is 
present. This flag is always set to 0.

■ Routing Present A 1-bit flag that indicates, when set to 1, that a Routing field is present. 
This flag is always set to 0.

■ Key Present A 1-bit flag that indicates, when set to 1, that a Key field is present. This flag 
is always set to 1. The Key field is the combination of the Protocol Type, Payload Length, 
and Call ID fields.

PPP frame

IP  
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PPP  
header 

PPP payload 
(IP packet)

Encrypted  
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Figure 19-2 GRE header for PPTP data encapsulation

■ Sequence Number Present A 1-bit flag that indicates, when set to 1, that the Sequence 
Number field is present.

■ Strict Source Route Present A 1-bit flag that indicates, when set to 1, that a strict source 
route is present. This flag is always set to 0.

■ Recursion Control A 3-bit field used for recursion. This field is always set to 0.

■ Acknowledgment Number Present A 1-bit flag that indicates, when set to 1, that the 
Acknowledgment Number field is present.

■ Flags A 4-bit field used for GRE flags. This field is always set to 0.

■ Version A 3-bit field used to indicate the version of the GRE header. This field is always 
set to 1.

■ Protocol Type A 2-byte field used to store the EtherType value for the GRE payload. 
This field is always set to 0x88-0B, the EtherType value for a PPP frame.

■ Payload Length A 2-byte field used to indicate the length of the GRE payload.

■ Call ID A 2-byte field used to indicate the PPTP tunnel for this packet. For a PPTP 
connection, there are two different values of the call ID. One value is used for data 
sent by the PPTP client and one for data sent by the PPTP server.
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■ Sequence Number A 4-byte field used to indicate the sequence number for this packet. 
This field is present only when the Sequence Number Present flag is set to 1.

■ Acknowledgment Number A 4-byte field used to indicate the highest sequence number 
for a GRE-encapsulated packet received for this tunnel. This field is present only when 
the Acknowledgment Number Present flag is set to 1. PPTP uses the Sequence Number 
and Acknowledgment Number fields to detect dropped data packets.

The following is Frame 1 of Capture 19-01 in the \Captures folder on the companion CD-ROM, 
which shows PPTP encapsulation for an unencrypted ICMP Echo message, as displayed by 
Network Monitor 3.1:

Frame:  

+ Ethernet: Etype = Internet IP (IPv4) 

+ Ipv4: Next Protocol = GRE, Packet ID = 2228, Total IP Length = 93 

- Gre: Protocol = PPP, Flags = ..KS............ Version 1 , Length = 0x3d , CallID = 0x752b 

- flags: ..KS............ Version 1 

- GREFlagVersion0AndVersion1:  

C: (0...............) Checksum Absent 

R: (.0..............) Offset Absent 

K: (..1.............) Key Present 

S: (...1............) Sequence Number Present 

ssr: (....0...........) Strict Source Route Absent 

Recur: (.....000........) Recursion Control 

A: (........0.......) Acknowledgment sequence number Absent 

ReservedFlags: (.........0000...) 

Version: (.............001) 1 

NextProtocol: PPP 

PayloadLength: 61 (0x3D) 

CallID: 29995 (0x752B) 

SequenceNumber: 165 (0xA5) 

- Ppp: IP, Internet Protocol 

PacketType: IP, Internet Protocol, 33(0x21) 

+ Ipv4: Next Protocol = ICMP, Packet ID = 2227, Total IP Length = 60 

+ Icmp: Echo Request Message, From 192.168.0.2 To 192.168.0.1

The use of a separate mechanism for PPTP data encapsulation impacts Network Address 
Translators (NATs). Most NATs can translate TCP-based traffic for PPTP tunnel maintenance. 
However, PPTP data packets with the GRE header are not typically translated without using 
either a static address mapping or a PPTP NAT editor.

When a PPTP server is behind a NAT, the NAT must be configured with a static address map-
ping that maps all the traffic for a specific public address to a specific private address. In this 
case, only the addresses in the IP header are modified.

When a PPTP client is behind a NAT, a PPTP NAT editor is typically used. An NAT editor is 
an additional software component on the NAT that performs translation services beyond IP 
addresses, TCP ports, and User Datagram Protocol (UDP) ports. Although it is a simple mat-
ter for the PPTP NAT editor to monitor incoming packets for GRE payloads and translate the 
IP addresses in the IP header, there might be multiple PPTP clients behind the NAT. In this 
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case, the NAT is unable to determine to which private client the incoming PPTP data packet is 
destined, because the same public address is being used for multiple private clients. To deter-
mine the private client to which an incoming packet is destined, the PPTP NAT editor uses the 
Call ID field in the GRE header. However, when two different PPTP clients use the same call 
ID, the NAT is unable to determine to which private client the packet is destined. 

To provide correct multiplexing of GRE-encapsulated traffic to different private clients, the 
PTPP NAT editor monitors the PPTP control connection setup and translates both the PPTP 
client’s Call ID field in the PPTP messages and the GRE-encapsulated data packets in the same 
way that it translates TCP or UDP source ports. By translating the PPTP client Call ID field, the 
NAT ensures that a unique call ID is used for each PPTP tunnel and for each PPTP client.

PPTP Control Connection

The PPTP control connection is a TCP connection between the VPN client and the VPN server 
that is used for PPTP tunnel management. There are processes for the following:

■ PPTP control connection creation

■ PPTP control connection maintenance

■ PPTP control connection termination

PPTP control connections are managed by exchanging a series of PPTP control messages. 
Table 19-1 lists the PPTP control messages defined in RFC 2637, their message code (corre-
sponding to a field in the PPTP control message), and their purpose.

Table 19-1 PPTP Control Messages

Message Name Message Code Purpose

Start-Control-Connection-Request 1 Control connection management

Start-Control-Connection-Reply 2 Control connection management

Stop-Control-Connection-Request 3 Control connection management

Stop-Control-Connection-Reply 4 Control connection management

Echo-Request 5 Control connection management

Echo-Reply 6 Control connection management

Outgoing-Call-Request 7 Call management

Outgoing-Call-Reply 8 Call management

Incoming-Call-Request 9 Call management

Incoming-Call-Reply 10 Call management

Incoming-Call-Connected 11 Call management

Call-Clear-Request 12 Call management

Call-Disconnect-Notify 13 Call management

WAN-Error-Notify 14 Error reporting

Set-Link-Info 15 PPP session control
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Each PPTP message is the payload of a TCP segment and has a different packet structure. For 
the details of the packet structure of each PPTP control message, see RFC 2637.

PPTP Control Connection Creation

The creation of a PPTP control connection between a PPTP client running either Windows 
Server 2008 or Windows Vista and a PPTP server running either Windows Server 2008 or 
Windows Vista consists of the following exchange of messages:

1. The PPTP client establishes a TCP connection from a dynamically allocated port on the 
PPTP client to TCP port 1723 on the PPTP server.

2. The PPTP client sends a PPTP Start-Control-Connection-Request control message to ini-
tiate a PPTP control connection.

3. The PPTP server responds with a PPTP Start-Control-Connection-Reply message.

4. The PPTP client sends a PPTP Outgoing-Call-Request message and selects a call ID to 
identify the PPTP tunnel for data sent from the PPTP client to the PPTP server.

5. The PPTP server responds with a PPTP Outgoing-Call-Reply message and selects its own 
call ID to identify the PPTP tunnel for data sent from the PPTP server to the PPTP client.

6. The PPTP client sends a PPTP Set-Link-Info message to indicate PPP-negotiated options.

After the PPTP control connection is established, the PPTP client and PPTP server use the 
separate call IDs in the GRE header to identify data packets sent in the PPTP tunnel. The next 
PPTP data packets sent on the connection are typically for negotiating the PPP connection 
between the PPTP client and the PPTP server.

Network Monitor Capture 19-02 (in the \Captures folder on the companion CD-ROM) 
provides an example of the creation of a PPTP control connection and the subsequent PPP 
negotiation.

PPTP Control Connection Maintenance

PPTP control connections are maintained by the exchange of PPTP Echo-Request and PPTP 
Echo-Reply messages. Either the PPTP client or the PPTP server can send the initial PPTP 
Echo-Request message.

Network Monitor Capture 19-03 (in the \Captures folder on the companion CD-ROM) pro-
vides an example of PPTP control connection maintenance.

PPTP Control Connection Termination

The termination of a PPTP control connection between a PPTP client running either Windows 
Server 2008 or Windows Vista and a PPTP server running either Windows Server 2008 or 
Windows Vista consists of the following exchange of messages:



Chapter 19: Virtual Private Networks (VPNs) 413
1. The PPP connection between the PPTP client and PPTP server is terminated.

2. The PPTP server sends a PPTP Call-Clear-Request message indicating that the PPTP 
control connection is to be terminated.

3. The PPTP client responds with a PPTP Call-Disconnect-Notify message.

4. The PPTP server sends a PPTP Stop-Control-Connection-Request message to terminate 
the PPTP control connection.

5. The PPTP client responds with a PPTP Stop-Control-Connection-Reply message.

6. The TCP connection is terminated in the normal way.

This example message exchange assumes that the PPTP client terminated the connection.

Network Monitor Capture 19-04 (in the \Captures folder on the companion CD-ROM) 
provides an example of a PPTP control connection termination.

L2TP/IPsec
L2TP is a network protocol that creates a tunnel between an L2TP client and an L2TP server 
and then encapsulates PPP frames to be sent over the tunnel. L2TP is defined in RFC 2661 for 
different types of media, such as Frame Relay, X.25, or IP. When using IP as the transport pro-
tocol, L2TP can be used as a VPN protocol over the Internet. 

L2TP over IP uses UDP encapsulation for both tunnel creation and maintenance and data 
transmission. With L2TP, both the tunneled data and the control messages share a single 
UDP stream, which can simplify the passing of VPN data through corporate firewalls. L2TP 
traffic sent by the VPN client and server in Windows Server 2008 and Windows Vista use 
UDP port 1701 for both the source and destination UDP ports.

L2TP in Windows Server 2008 and Windows Vista relies on Internet Protocol security (IPsec) 
for encryption, and the combination of L2TP and IPsec is known as L2TP/IPsec. Both the 
VPN client and the VPN server must support both L2TP and IPsec. Before the first L2TP 
message is sent, the L2TP client and L2TP server negotiate a set of IPsec security associations 
(SAs) to protect L2TP traffic. By default, L2TP in Windows Server 2008 and Windows Vista 
uses digital certificates for IPsec peer authentication. However, both Windows Server 2008 
and Windows Vista can be configured manually to use preshared keys for IPsec peer 
authentication.

For more information about IPsec, see Chapter 18, “Internet Protocol Security (IPsec).”

L2TP/IPsec Data Encapsulation

As with PPTP, L2TP encapsulates a PPP frame containing an IP datagram when transferred 
across the transit network. Because IPsec provides the encryption facilities, L2TP/IPsec 
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encapsulation takes place in two phases. Figure 19-3 illustrates the L2TP encapsulation using 
UDP without IPsec encryption.

Figure 19-3 L2TP encapsulation without IPsec encryption

As Figure 19-3 illustrates, the L2TP encapsulation involves the original IP packet first being 
wrapped in a PPP frame, as with PPTP. The PPP frame is then inserted into a new IP packet 
with a UDP header and an L2TP header. 

The resulting IP packet is then passed to the IPsec components, which add an IPsec Encapsu-
lating Security Payload (ESP) header and trailers. ESP protection provides data integrity, data 
origin authentication, data confidentiality (encryption), and replay protection for the UDP 
message containing the L2TP frame. Figure 19-4 illustrates the L2TP encapsulation with IPsec 
encryption.

Figure 19-4 L2TP encapsulation with IPsec encryption

The outer IP header contains the source and destination IP addresses that correspond to the 
VPN client and server. Unlike normal IPsec policy, IPsec protection for L2TP traffic is pro-
vided by IPsec settings that are automatically created by the remote access client and the 
Routing and Remote Access service.

To disable the use of IPsec encryption for L2TP traffic for testing or troubleshooting purposes, 
use the ProhibitIPsec registry value.

ProhibitIPsec
Location: HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Rasman\Parameters

Data type: REG_DWORD

Valid range: 0–1

Default value: 0

Present by default: No
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ProhibitIPsec either disables (when set to 1) or enables (when set to 0) the use of IPsec 
protection for L2TP traffic.

Figure 19-5 shows the L2TP header for encapsulated data.

Figure 19-5 The L2TP header for encapsulated data

The fields in the L2TP header are the following:

■ Type A 1-bit flag that indicates the type of L2TP message. The Type flag is set to 0 for a 
control message and 1 for a message containing data.

■ Length A 1-bit flag that indicates, when set to 1, that the Length field is present. The 
Length flag is always set to 1 for control messages.

■ Reserved A 2-bit field that is reserved for future use and set to 0.

■ Sequence A 1-bit flag that indicates, when set to 1, that the Next Sent (Ns) and Next 
Received (Nr) fields are present. The Sequence flag is always set to 1 for control messages.

■ Reserved A 1-bit field that is reserved for future use and set to 0.

■ Offset A 1-bit flag that indicates, when set to 1, that the Offset Size field is present.
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■ Priority A 1-bit flag that indicates, when set to 1, that the data message should be pre-
ferred. The Priority flag is always set to 0 for control messages.

■ Reserved A 4-bit field that is reserved for future use and set to 0.

■ Version A 4-bit field that indicates the version of the L2TP data message. This must be 
set to 2.

■ Length A 2-byte field that indicates the total length of the message in bytes.

■ Tunnel ID A 2-byte field that identifies the control connection for the receiver. Two 
L2TP peers can have different tunnel IDs for the same control connection.

■ Session ID A 2-byte field that identifies a session within a tunnel for the receiver. Two 
L2TP peers can have different session IDs for the same control connection.

■ Ns A 2-byte field that indicates the sequence number for the L2TP message being sent. 
Ns begins at 0 and increments for each new message sent.

■ Nr A 2-byte field that indicates the sequence number for the next L2TP message that is 
expected to be received.

■ Offset Size A 2-byte field that indicates where the payload data is located past the L2TP 
header.

■ Offset Pad Padding or other data between the Offset Size field and the L2TP message 
payload. RFC 2661 does not define the contents of the Offset Pad field

Note Network Monitor 3.1 does not parse the L2TP header or LT2P message contents.

L2TP Control Connection

The L2TP control connection is a logical connection between the VPN client and the VPN 
server that is used to send UDP-encapsulated L2TP messages for L2TP tunnel management. 
There are processes for the following:

■ L2TP control connection creation

■ L2TP control connection maintenance

■ L2TP control connection termination

L2TP control connections are managed by exchanging a series of L2TP messages, each of 
which is the payload of a UDP message. 

L2TP control connections are managed by exchanging a series of L2TP control messages. 
Table 19-2 lists the L2TP control messages defined in RFC 2661, their message code (a field in 
the L2TP control message), and their purpose.
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Each L2TP control message has a different packet structure. For the details of the packet struc-
ture of L2TP control messages, see RFC 2661.

Because the L2TP messages are sent over UDP, an unreliable protocol, L2TP provides its 
own sequencing through the Nr field, which indicates the next message number the sender is 
expecting to receive, and the Ns field, which indicates the message number of the sent mes-
sage. The L2TP header uses a Tunnel ID field that indicates the tunnel and a Session ID field 
that indicates the session within the tunnel. This allows L2TP to support multiple calls, or 
sessions, per tunnel.

Because both L2TP-encapsulated data and L2TP control messages use an L2TP header, all 
L2TP control messages are encrypted with IPsec ESP for L2TP/IPsec.

L2TP Connection Creation

The creation of an L2TP control connection between an L2TP client running either Windows 
Server 2008 or Windows Vista and an L2TP server running either Windows Server 2008 or 
Windows Vista consists of the following exchange of messages:

1. The L2TP client sends an L2TP Start-Control-Connection-Request message to initiate an 
L2TP control connection.

2. The L2TP server responds with an L2TP Start-Control-Connection-Reply message.

3. The L2TP client sends an L2TP Start-Control-Connection-Connected message.

Table 19-2 L2TP Control Messages

Message Name Message Code Purpose

Start-Control-Connection-Request 1 Control connection management

Start-Control-Connection-Reply 2 Control connection management

Start-Control-Connection-Connected 3 Control connection management

Stop-Control-Connection-Notification 4 Control connection management

Hello 6 Control connection management

Outgoing-Call-Request 7 Call management

Outgoing-Call-Reply 8 Call management

Outgoing-Call-Connected 9 Call management

Incoming-Call-Request 10 Call management

Incoming-Call-Reply 11 Call management

Incoming-Call-Connected 12 Call management

Call-Disconnect-Notify 14 Call management

WAN-Error-Notify 15 Error reporting

Set-Link-Info 16 PPP session control
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4. The L2TP server responds with an L2TP Incoming-Call-Request message.

5. The L2TP client sends an L2TP Incoming-Call-Connected message to indicate 
PPP-negotiated options.

After the L2TP control connection is established, the Tunnel ID and Session ID selected by 
the L2TP server in the L2TP Start-Control-Connection-Reply message is used in the L2TP 
header for encapsulated data to identify the L2TP session and tunnel. The next L2TP data 
packets sent on the connection are typically for negotiating the PPP connection between the 
L2TP client and the L2TP server.

L2TP Connection Maintenance

L2TP control connections are maintained by the sending of an L2TP Hello message by either 
the L2TP client or the L2TP server. The recipient of the L2TP Hello message sends an L2TP 
acknowledgment with an incremented Nr field.

L2TP Connection Termination

The termination of an L2TP control connection between an L2TP client running either 
Windows Server 2008 or Windows Vista and an L2TP server running either Windows Server 
2008 or Windows Vista consists of the following exchange of messages:

1. The PPP connection between the L2TP client and L2TP server is terminated.

2. The L2TP client responds with an L2TP Call-Disconnect-Notify message, which con-
tains the Tunnel ID, which identifies the L2TP tunnel, and the Session ID, which identi-
fies the session within the L2TP tunnel.

3. The L2TP server acknowledges the receipt of the L2TP Call-Disconnect-Notify message, 
which includes an incremented Nr field.

4. The L2TP client sends an L2TP Stop-Control-Connection-Notification message to termi-
nate the L2TP control connection.

5. The L2TP server acknowledges the receipt of the L2TP Stop-Control-Connection-
Notification message, which includes an incremented Nr field.

This example message exchange assumes that the VPN client terminated the L2TP connection.

SSTP
VPN connections that use PPTP or L2TP/IPsec can have problems when the VPN client and 
VPN server are separated by firewalls, NATs, or proxy servers. For example, firewalls must 
support the forwarding of GRE-encapsulated PPTP traffic or ESP-protected L2TP traffic. For 
PPTP-based VPN clients, NATs must support a PPTP NAT editor. Proxy servers typically do 
not support the forwarding of PPTP or L2TP/IPsec traffic. 
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To address VPN connectivity issues in the presence of firewalls, NATs, and proxy servers, the 
Secure Socket Tunneling Protocol (SSTP) in Windows Vista with Service Pack 1 and Windows 
Server 2008 uses HTTP over Secure Sockets Layer (SSL) and TCP port 443. SSL is also known 
as Transport Layer Security (TLS). HTTP over SSL is the protocol that is typically used for 
Web sites when transmitting sensitive data, such as passwords and financial information. 
Whenever you connect to a Web address that begins with “https://”, you are using HTTP over 
SSL. Using HTTP over SSL provides better VPN connectivity because firewalls, NATs, and 
Web proxies typically allow TCP port 443 traffic.

A computer running Windows Server 2008 and Routing and Remote Access is an SSTP-based 
VPN server. A computer running Windows Server 2008 or Windows Vista with Service Pack 
1 is an SSTP-based VPN client. 

Figure 19-6 shows the structure of IP packets that are sent over an SSTP-based VPN connection.

Figure 19-6 The structure of SSTP packets

An IP packet is first encapsulated with a PPP header and an SSTP header. The combination of 
the IP packet, the PPP header, and the SSTP header is then encrypted by the SSL session 
between the VPN client and VPN server, and the result is sent as the payload of a TCP segment.

More Info The details of the SSTP header, message types, and negotiation process 
are available through the Microsoft Communication Protocol Program (MCPP) at 
http://www.microsoft.com/about/legal/intellectualproperty/protocols/mcpp.mspx. Network 
Monitor 3.1, by default, will not parse the payloads of SSTP messages. To obtain Network 
Monitor 3.1 components to parse SSTP messages, see http://www.microsoft.com/about
/legal/intellectualproperty/protocols/mcpp.mspx.

SSTP-based VPN Connection Creation Process

The creation of an SSTP-based VPN connection between a Windows Server 2008 or Windows 
Vista with Service Pack 1 SSTP client and a Windows Server 2008 SSTP server consists of the 
following exchange of messages:

1. The SSTP client establishes a TCP connection with the SSTP server between a dynami-
cally allocated TCP port on the SSTP client and TCP port 443 on the SSTP server.

2. The SSTP client sends an SSL Client-Hello message, indicating that the SSTP client 
wants to create an SSL session with the SSTP server.

3. The SSTP server sends its digital certificate to the SSTP client.
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4. The SSTP client validates the certificate, determines the encryption method for the SSL 
session, generates an SSL session key, and then encrypts it with the public key of the 
SSTP server’s certificate.

5. The SSTP client sends the encrypted form of the SSL session key to the SSTP server.

6. The SSTP server decrypts the encrypted SSL session key with the private key of its 
certificate. All future communication between the SSTP client and the SSTP server is 
encrypted with the negotiated encryption method and SSL session key.

7. The SSTP client sends an HTTP over SSL request message to the SSTP server. 

8. The SSTP client negotiates an SSTP tunnel with the SSTP server.

9. The SSTP client negotiates a PPP connection with the SSTP server. This negotiation 
includes authenticating the user’s credentials with a PPP authentication method and 
configuring settings for IP traffic.

10. The SSTP client begins sending IP traffic over the PPP link.

Note SSTP does not support authenticated Web proxy configurations, in which the proxy 
requires some form of authentication during the HTTP Connect request.

Summary
Windows Server 2008 and Windows Vista with Service Pack 1 support the PPTP, L2TP/IPsec, 
and SSTP VPN protocols. PPTP uses a TCP control connection and PPTP control messages 
to maintain the tunnel and GRE encapsulation for data packets. L2TP uses UDP to encap-
sulate both L2TP connection control messages to maintain the tunnel and data packets. 
For L2TP/IPsec, IPsec provides ESP encryption for L2TP connection control messages and 
L2TP-encapsulated data. SSTP uses HTTP over SSL and an SSTP header for SSTP connection 
control messages to maintain the tunnel and data packets. 



Appendix A

Internet Protocol (IP) 
Addressing

To successfully administer and troubleshoot IP internetworks, it is important to understand 
all aspects of IP addressing. One of the most important aspects of TCP/IP network adminis-
tration is the assignment of unique and proper IP addresses to all the nodes of an IP internet-
work. Although the concept of IP address assignment is simple, the actual mechanics of 
efficient IP address allocation using subnetting techniques are somewhat complicated. Addi-
tionally, it is important to understand the role of IP broadcast and multicast traffic, and how 
these addresses map to Network Interface Layer addresses such as Ethernet and Token Ring 
media access control (MAC) addresses.

Types of IP Addresses
An IP address is a 32-bit logical address that can be one of the following types:

■ Unicast A unicast IP address is assigned to a single network interface attached to an IP 
internetwork. Unicast IP addresses are used in one-to-one communications.

■ Broadcast A broadcast IP address is designed to be processed by every IP node on 
the same network segment. Broadcast IP addresses are used in one-to-everyone 
communications.

■ Multicast An IP multicast address is an address on which one or multiple nodes can be 
listening on the same or different network segments. IP multicast addresses are used in 
one-to-many communications.

Expressing IP Addresses
The IP address is a 32-bit value that computers are adept at manipulating. Humans, however, 
do not think in binary mode, 32 bits at a time. Because most humans are trained in the use of 
decimal (base 10 numbering system) rather than binary (base 2 numbering system), it is com-
mon to express IP addresses in a decimal form.

The 32-bit IP address is divided from the high-order bit to the low-order bit into four 8-bit 
quantities called octets. IP addresses are normally written as four separate decimal octets 
delimited by a period (a dot). This is known as dotted decimal notation.
421
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For example, the IP address 00001010000000011111000101000011 is subdivided into four octets:

00001010   00000001   11110001   01000011

Each octet is converted to a base 10 number and separated from the others by periods:

10.1.241.67

A generalized IP address is indicated with w.x.y.z, as Figure A-1 shows.

Figure A-1 The generalized IP address consisting of 32 bits expressed in dotted decimal notation.

Converting from Binary to Decimal

To convert a binary number to its decimal equivalent, add the numbers represented by the bit 
positions that are set to 1. Figure A-2 shows an 8-bit number and the decimal value of each 
position.

Figure A-2 An 8-bit number showing bit positions and their decimal equivalents.

For example, the 8-bit binary number 01000011 is 67 (64 + 2 + 1). The maximum number that can 
be expressed with an 8-bit number (11111111) is 255 (128 + 64 + 32 + 16 + 8 + 4 + 2 + 1).

32 bits

w.x.y.z

7 6 5 4 3 2 1 0

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1
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Converting from Decimal to Binary

To convert from decimal to binary, analyze the decimal number to see whether it contains the 
quantities represented by the bit positions from the high-order bit to the low-order bit. Start-
ing from the high-order bit quantity (128), if each quantity is present, the bit in that bit posi-
tion is set to 1. For example, the decimal number 211 contains 128, 64, 16, 2, and 1. Therefore, 
211 is 11010011 in binary notation.

IP Addresses in the IP Header

IP addresses are used in the IP header’s Source Address and Destination Address fields.

■ The IP header’s Source Address field is always either a unicast address or the special 
address 0.0.0.0. The unspecified IP address, 0.0.0.0, is used only when the IP node is 
not configured with an IP address and the node is attempting to obtain an address 
through a configuration protocol such as Dynamic Host Configuration Protocol 
(DHCP).

■ The IP header’s Destination Address field is a unicast address, multicast address, or 
broadcast address.

Unicast IP Addresses
Each network interface on which TCP/IP is active must be identified by a unique, logical 
unicast IP address. The unicast IP address is a logical address because it is an Internet Layer 
address that has no direct relation to the address being used at the Network Interface Layer. 
For example, the unicast IP address assigned to a host on an Ethernet network has no relation 
to the 48-bit MAC address used by the Ethernet network adapter.

The unicast IP address is an internetwork address for IP nodes that contains a subnet prefix 
and a host ID.

■ The subnet prefix (also known as a network address or network identifier) identifies 
the nodes that are located on the same logical network. In most cases, a logical network 
is the same as a physical network segment with boundaries that are defined by IP rout-
ers. In some cases, multiple logical networks exist on the same physical network using 
a practice called multinetting. All nodes on the same logical network share the same 
subnet prefix. If all nodes on the same logical network are not configured with the same 
subnet prefix, routing or delivery problems occur. The subnet prefix must be unique to 
the internetwork.

■ The host ID, or host address, identifies a node within a network. A node is a router or 
host (a nonrouter interface such as a workstation, server, or other TCP/IP–based sys-
tem). The host ID must be unique within each network segment.

Figure A-3 is an example of a unicast IP address and its subnet prefix and host ID portions.
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Figure A-3 The structure of an example IP address showing the subnet prefix and host ID.

A History Lesson: IP Address Classes

This section is called “A History Lesson” because modern networks are not based on the 
Internet address classes. Because of the Internet’s recent rapid expansion, the Internet author-
ities saw clearly that the original class-based structure did not scale well to the size of a global 
internetwork. For example, if the Internet authorities were still handing out class-based 
addresses, there would be hundreds of thousands of routes in the routing tables of Internet 
backbone routers. To prevent this scaling problem, addressing on the modern Internet is 
classless. However, the understanding of Internet address classes is an important element in 
understanding IP addressing.

RFC 791 defined the unicast IP address in terms of address classes to create well-defined 
address prefixes for networks of various sizes. An address prefix is a generalized range of IP 
addresses. Address prefixes can be used as subnet prefixes when they are assigned to subnets 
or subdivided using subnetting techniques. The design goal was to create the following:

■ A small number of large networks (networks with a large amount of nodes)

■ A moderate number of moderate-sized networks

■ A large number of small networks

The result was the creation of address classes, subdivisions of the 32-bit IP address space 
defined by setting high-order bits and dividing the remaining bits into an address prefix and 
host ID.

More Info All of the RFCs referenced in this appendix can be found in the 
\Standards\APPA_IPAddr folder on the companion CD-ROM.

Class A

Class A addresses are designed for networks with a large number of hosts. The high-order bit 
is set to 0. The first 8 bits (the first octet) are defined as the address prefix; the last 24 bits (the 
last three octets) are defined as the host ID. Figure A-4 illustrates the class A address.

Subnet prefix  Host ID

1 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 1
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Figure A-4 The class A address showing the address prefix and the host ID.

Class B

Class B addresses are designed for moderate-sized networks with a moderate number of 
hosts. The two high-order bits are set to 10. The first 16 bits (the first two octets) are defined 
as the address prefix; the last 16 bits (the last two octets) are defined as the host ID. Figure A-5 
illustrates the class B address.

Figure A-5 The class B address showing the address prefix and the host ID.

Class C

Class C addresses are designed for small networks with a small number of hosts. The three 
high-order bits are set to 110. The first 24 bits (the first three octets) are defined as the address 
prefix; the last 8 bits (the last three octets) are defined as the host ID. Figure A-6 illustrates the 
class C address.

Figure A-6 The class C address showing the address prefix and the host ID.

Additional Address Classes

Class D and E addresses are defined, in addition to unicast address classes A, B, and C.

Class D Class D addresses are for IP multicast addresses. The four high-order bits are set 
to binary 1110. The next 28 bits are used for individual IP multicast addresses. For more 

 Host IDAddress prefix

0

Address prefix  Host ID

1 0

Address prefix  Host ID

1 1 0
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information on IP multicast addresses, see the section “IP Multicast Addresses” later in this 
appendix. Windows Server 2008 and Windows Vista support class D addresses for IP multi-
cast traffic.

Class E Class E addresses are experimental addresses reserved for future use. The five high-
order bits in a class E address are set to 11110. Windows Server 2008 and Windows Vista do 
not support the use of class E addresses.

Rules for Enumerating Address Prefixes

When enumerating IP address prefixes, the following rules apply:

■ The address prefix cannot begin with 127 as the first octet All 127.x.y.z addresses are 
reserved as loopback addresses.

■ All the bits in the address prefix cannot be set to 1 Address prefixes set to all 1s are 
reserved for broadcast addresses.

■ All the bits in the address prefix cannot be set to 0 Address prefixes set to all 0s are 
reserved for indicating a host on the local network.

■ The address prefix must be unique to the IP internetwork.

Table A-1 lists the ranges of address prefixes based on the IP address classes. Class-based 
address prefixes are expressed by setting all host bits to 0 and expressing the result in dotted 
decimal notation.

Note IP address prefixes, even though expressed in dotted decimal notation, are not IP 
addresses assigned to network interfaces.

Rules for Enumerating Usable Host IDs

When enumerating usable IP host IDs, the following rules apply:

■ All bits in the host ID cannot be set to 1 Host IDs set to all 1s are reserved for broadcast 
addresses.

■ All the bits in the host ID cannot be set to 0 Host IDs set to all 0s are reserved for the 
expression of IP address prefixes.

■ The host ID must be unique to the network.

Table A-1 Address Class Ranges of Address Prefixes

Address Class First Address Prefix Last Address Prefix Number of Networks

Class A 1.0.0.0 126.0.0.0 126

Class B 128.0.0.0 191.255.0.0 16,384

Class C 192.0.0.0 223.255.255.0 2,097,152
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Table A-2 lists the ranges of host IDs based on the IP address classes.

Subnets and the Subnet Mask

Subnetting is designed to make more efficient use of a fixed address space, namely an IP 
address prefix. The network bits are fixed and the host bits are variable. Originally, the host 
bits were designed to indicate host IDs within an IP address prefix. With subnetting, host ID 
bits can be used to express a combination of a subnetted address prefix and a new host ID, 
thereby better utilizing the host bits.

Consider a class B network that has 65,534 possible hosts. A network segment of 65,534 
hosts is technically possible but impractical because of the accumulation of broadcast traffic. 
All nodes on the same physical network segment belong to the same broadcast domain and 
share the same broadcast traffic. Because making all 65,534 hosts share the same broadcast 
traffic is not a practical configuration, most of the host IDs are not usable.

To create smaller broadcast domains and make better use of the host bits, RFC 950 defines a 
method of subdividing an address prefix into subnetworks—subsets of the original class-
based network—by using bits in the host ID portion of the original IP address prefix. Each sub-
network, or subnet, is assigned a new subnetted address prefix. Hosts on subnets are assigned 
host IDs from the remaining host bits in the subnetted address prefix.

Although RFC 950 discusses subnetting in terms of class-based address prefixes, subnetting 
is a general technique that can be used on classless address prefixes or used recursively on 
subnetted address prefixes. This is described in the section “Variable-Length Subnetting” later 
in this appendix.

The proper subnetting of an address prefix is transparent to the rest of the IP internetwork. For 
example, consider the class B address prefix of 131.107.0.0 (shown in Figure A-7), which is con-
nected to the Internet. The class-based address prefix is a fixed address space. Because this class 
B address prefix represents an impractical broadcast domain, it is subnetted. However, in sub-
netting 131.107.0.0, you should not require any reconfiguration of the Internet routers.

Figure A-7 The class B address prefix 131.107.0.0 before subnetting.

Table A-2 Address Class Ranges of Host IDs

Address Class First Host ID Last Host ID Number of Hosts

Class A w.0.0.1 w.255.255.254 16,777,214

Class B w.x.0.1 w.x.255.254 65,534

Class C w.x.y.1 w.x.y.254 254

131.107.0.0

Internet
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From an analysis of broadcast traffic, it is determined that there should be no more than 
250 nodes on each broadcast domain. Therefore, the address prefix 131.107.0.0 is subnetted 
to look like a class C address by using the first 8 high-order host bits (the third octet repre-
sented by y) for the subnetted address prefix. Note that before the subnetting, only the first 
two octets are considered the address prefix. After the subnetting, the first three octets are 
considered the address prefix. The new address prefixes are 131.107.1.0, 131.107.2.0, and 
131.107.3.0, as Figure A-8 shows.

Figure A-8 The class B network 131.107.0.0 after subnetting.

The IP router connected to the Internet has an interface on each of the subnets and is aware 
of the new subnetting scheme. The IP router forwards IP datagrams from the Internet to the 
host on the appropriate subnet. The Internet routers are completely unaware of the subnet-
ting of 131.107.0.0. They still consider all possible IP addresses in the range of 131.107.0.0 
through 131.107.255.255 to be reachable through the IP router’s Internet interface.

The Subnet Mask

With subnetting, a host or router can no longer assume the address prefix and host ID desig-
nations of the IP address classes. The node needs additional configuration to distinguish the 
address prefix and host ID portions of an IP address, whether the address prefix is class-
based, classless, or subnetted.

RFC 950 defines the use of a bit mask to identify which bits in the IP address belong to the 
address prefix and which belong to the host ID. This bit mask, called a subnet mask or address 
mask, is defined by the following:

■ If the bit position corresponds to a bit in the address prefix, it is set to 1.

■ If the bit position corresponds to a bit in the host ID, it is set to 0.

Since the publication of RFC 950, TCP/IP nodes require a subnet mask to be configured for 
each IP address, even when class-based addressing is used. A default subnet mask corre-
sponds to a class-based address prefix. A custom subnet mask corresponds to either a 

131.107.1.0

131.107.2.0

131.107.3.0

Internet
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classless address prefix or a subnetted address prefix. The subnet mask is the definitive piece 
of configuration information that allows the node to determine its own subnet prefix.

Subnet Masks in Dotted Decimal Representation

Frequently, the subnet mask is expressed in dotted decimal notation. Although expressed in 
the same form as an IP address, the subnet mask is not an IP address. As an example of subnet 
masks in dotted decimal notation, default subnet masks are based on the IP address classes. 
Table A-3 lists the default subnet masks for class A, B, and C address prefixes in dotted deci-
mal notation.

A custom subnet mask is used whenever you perform nonclassful addressing. In the earlier 
example, the classful address prefix 131.107.0.0 is subnetted by using the third octet for 
subnets. The subnetted address prefix 131.107.1.0 no longer uses the default subnet mask 
255.255.0.0. To express the third octet as part of the address prefix, the custom subnet mask 
255.255.255.0 is used.

The subnetted address prefix and its corresponding subnet mask are expressed in dotted 
decimal notation as 131.107.1.0, 255.255.255.0.

Prefix Length Representation of Subnet Masks

Although it is technically possible to subnet IP address prefixes by choosing host bits in a non-
contiguous fashion, it is impractical and mathematically challenging to enumerate the subnet-
ted address prefixes and the host IDs per subnet. For this reason, you must subnet by 
choosing host bits in a contiguous fashion from the high-order host bit.

Because the address prefix bits are always contiguous starting from the highest order bit, an 
easier and more compact way of expressing the subnet mask is to indicate the number of 
address prefix bits using length prefix notation, or Classless Inter-Domain Routing (CIDR) 
notation. Prefix length notation views the IP address in terms of the prefix and the suffix (the 
host ID). Prefix length notation is:

/# of bits in the address prefix 

Prefix length notation is commonly used with TCP/IP implementations other than Windows 
Server 2008 and Windows Vista, and it is an important notation to understand looking for-
ward to IP version 6 (IPv6).

Table A-3 Dotted Decimal Notation for Default Subnet Masks

Address Class Bits for Subnet Mask Subnet Mask

Class A 11111111 00000000 00000000 00000000 255.0.0.0

Class B 11111111 11111111 00000000 00000000 255.255.0.0

Class C 11111111 11111111 11111111 00000000 255.255.255.0
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Table A-4 lists the equivalent subnet mask in prefix length notation for the IP address classes.

In the earlier example, the classful address prefix 131.107.0.0, with the subnet mask of 
255.255.0.0, is expressed in network prefix notation as 131.107.0.0/16. If 131.107.0.0 were 
subnetted by using the third octet to express subnets, a total of 24 contiguous bits would be 
used for the subnetted address prefix. The subnetted address prefix 131.107.1.0 and its corre-
sponding subnet mask are expressed in network prefix notation as 131.107.1.0/24.

Expressing Address Prefixes

The fixed address prefix bits and the subnet mask define the address prefix. Therefore, 
address prefixes must always be expressed by the combination of the address prefix and a 
subnet mask. Expressing an address prefix without its subnet mask is ambiguous. For exam-
ple, for the address prefix 10.16.0.0, which bits are used for the address prefix? The first 16? 
The first 24? The first 12?

The following are examples of properly expressed address prefixes:

■ 192.168.45.0, 255.255.255.0

■ 10.99.0.0/16

All hosts on the same logical network must be using the same address prefix bits and the 
same subnet mask. For example, 131.107.0.0/16 is not the same as 131.107.0.0/24. For the 
address prefix 131.107.0.0/16, the usable IP addresses range from 131.107.0.1 through 
131.107.255.254. For the address prefix 131.107.0.0/24, the usable IP addresses range from 
131.107.0.1 through 131.107.0.254. Clearly, 131.107.0.0/16 and 131.107.0.0/24 do not repre-
sent the same group of hosts.

Determining the Address Prefix

In earlier examples, classful address prefixes and subnetted address prefixes all fell along 
octet boundaries where it was easy to determine the address prefix and host ID portion of the 
IP address. However, real-world subnetting is not always done along octet boundaries. For 
example, some network administrators might determine that, for their situation, they need 
only three host bits for subnetting. Because subnetting can occur along nonoctet boundaries, 
there must be a method of determining the address prefix from an IP address with an arbi-
trary subnet mask. IP uses a method called a bit-wise logical AND to extract the address prefix.

Recall how the subnet mask is defined: 1 is used to indicate an address prefix bit, and 0 is 
used to indicate a host ID bit. In a logical AND comparison, the result is 1 when the value of 

Table A-4 Prefix Length Notation for Default Subnet Masks

Address Class Bits for Subnet Mask Prefix Length

Class A 11111111 00000000 00000000 00000000 /8

Class B 11111111 11111111 00000000 00000000 /16

Class C 11111111 11111111 11111111 00000000 /24
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each of the two bits being compared is 1. Otherwise, the result is 0. This comparison is done 
for all 32 bits of the IP address and subnet mask. The result of the bit-wise logical AND of the 
IP address and the subnet mask is the address prefix.

For example, what is the address prefix of the IP node 131.107.164.26 with a subnet mask of 
255.255.240.0? To obtain the result in binary notation, convert both the IP address and sub-
net mask to binary. Then perform the logical AND comparison for each bit.

IP address                  10000011 01101011 10100100 00011010

Subnet mask              11111111 11111111 11110000 00000000

Address prefix           10000011 01101011 10100000 00000000

The result of the bit-wise logical AND of the 32 bits of the IP address and the subnet mask is 
the address prefix 131.107.160.0 with the subnet mask of 255.255.240.0.

Notice the following:

■ The bits in the address prefix portion of the IP address are copied directly to the result. 
A value of 1 in the address prefix portion of the IP address becomes a 1 in the result. A 
value of 0 in the address prefix portion of the IP address becomes a 0 in the result.

■ All bits in the host ID portion of the IP address are set to 0. Because the subnet mask 
uses a 0 for host ID bit positions, the logical AND comparison always yields a 0.

Therefore, because the bits in the address prefix are copied and the bits in the host ID are set 
to 0, the result must be the address prefix.

How to Subnet

The act of subnetting an address prefix is a relatively complex procedure; although there are 
numerous subnet calculators available, the ability to subnet is a vital skill for any TCP/IP 
network administrator.

Subnetting is done in two basic steps:

1. Based on your design requirements, decide how many host bits you need for the proper 
balance between number of subnets and number of hosts per subnet.

2. Based on the number of host bits chosen, enumerate the subnetted address prefixes, 
including the ranges of usable IP addresses for each subnetted address prefix. The 
actual mechanics of defining the subnetted address prefixes can be done in binary or 
decimal notation.

There are two methods for the second step of subnetting, the enumeration of the subnetted 
address prefixes:

■ The binary method, in which the individual bits of the subnetted address prefixes are 
manipulated and converted to dotted decimal notation, can be used to subnet. However, 
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this method does not scale well to large numbers of subnets. It is described here prima-
rily to illustrate the subnetting process in its most fundamental form.

■ The decimal method, in which subnetted address prefixes are derived from calculations 
on decimal numbers, scales well to large numbers of subnets and lends itself well to 
spreadsheets and programming code.

Step 1: Determining the Number of Host Bits

To determine the number of host bits required for subnetting, perform an analysis of your 
internetwork. You should determine the following:

■ The number of subnets needed both now and in the future Be sure to plan for expan-
sion. Subnetting an existing network requires reassigning IP addresses to IP interfaces. 
Although DHCP can ease this burden, routers and other fixed-address types of hosts 
might need to be manually reconfigured. Subnetting is not something you want to 
do often.

■ The maximum number of hosts needed on each subnet This number depends on how 
many hosts you want sharing the same broadcast traffic. In most cases, when choosing 
between more subnets and more hosts per subnet, the practical choice is to choose more 
subnets.

There is an inverse relationship between the number of subnets and the number of hosts per 
subnet that can be supported by a given subnetting scheme. As Figure A-9 illustrates, when 
you choose more high-order host bits for subnetting, the number of subnets goes up, but the 
number of hosts per subnet goes down by approximately a factor of 2.

If you choose one host bit when subnetting the class B address prefix 131.107.0.0, two subnets 
can be expressed, with 32,766 hosts per subnet. If you choose eight host bits, 256 subnets can 
be expressed with 254 hosts per subnet.

Determine how many subnets you need now and plan for growth by estimating how many 
you will need in the next five years. Each physical network segment is a subnet. Point-to-point 
wide area network (WAN) connections such as leased lines might need subnetted address 
prefixes, unless your routers support unnumbered connections. Nonbroadcast multiple 
access (NBMA) WAN technologies such as Frame Relay need subnetted address prefixes. Use 
additional bits for subnetting if the remaining host bits can express more hosts per subnet 
than you will need so that you have more subnets for future use.

Subnetting always starts with a fixed address space in the form of an address prefix. The 
address prefix to be subnetted can be a classful address prefix, a classless address prefix (as 
allocated using CIDR), or a previously subnetted classful or classless address prefix. The fixed 
address space contains a sequence of bits that are fixed (the address prefix bits) and a 
sequence of bits that are variable (the host ID bits).
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Figure A-9 The relationship between the number of subnets and hosts per subnet when subnetting 
the class B address prefix 131.107.0.0.

Based on your analysis of the desired number of subnets and number of hosts per subnet, a 
specific number of high-order host bits are converted from host bits into subnet bits, the bits 
used for subnetting. The combination of the original address prefix bits and the subnet bits 
becomes the new subnetted address prefix.

As you determine how many subnet bits you need, you determine the new subnet mask for 
your subnetted address prefixes.

Tables A-5, A-6, and A-7 list the subnetting of classful address prefixes according to the 
requirement of a specific number of subnets. These tables can be useful when determining a 
subnetting scheme for a class-based address prefix based on a required number of subnets 
and a desired number of hosts per subnet.

Table A-5 Subnetting of a Class A Address Prefix

Required Number of 
Subnets

Number of 
Host Bits Subnet Mask

Number of Hosts 
per Subnet

1–2 1 255.128.0.0 or /9 8,388,606

3–4 2 255.192.0.0 or /10 4,194,302

5–8 3 255.224.0.0 or /11 2,097,150

9–16 4 255.240.0.0 or /12 1,048,574

17–32 5 255.248.0.0 or /13 524,286

33–64 6 255.252.0.0 or /14 262,142

Original address prefix Original Host ID

1 0 0 0 0 0 1 1 0 1 1 0 1 0 1 1

131 107. . .0 0

2 subnets
32,766 hosts

256 subnets 
254 hosts
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65–128 7 255.254.0.0 or /15 131,070

129–256 8 255.255.0.0 or /16 65,534

257–512 9 255.255.128.0 or /17 32,766

513–1024 10 255.255.192.0 or /18 16,382

1025–2048 11 255.255.224.0 or /19 8190

2049–4096 12 255.255.240.0 or /20 4094

4097–8192 13 255.255.248.0 or /21 2046

8193–16,384 14 255.255.252.0 or /22 1022

16,385–32,768 15 255.255.254.0 or /23 510

32,769–65,536 16 255.255.255.0 or /24 254

65,537–131,072 17 255.255.255.128 or /25 126

131,073–262,144 18 255.255.255.192 or /26 62

262,145–524,288 19 255.255.255.224 or /27 30

524,289–1,048,576 20 255.255.255.240 or /28 14

1,048,577–2,097,152 21 255.255.255.248 or /29 6

2,097,153–4,194,304 22 255.255.255.252 or /30 2

Table A-6 Subnetting of a Class B Address Prefix

Required Number 
of Subnets

Number of 
Host Bits Subnet Mask

Number of Hosts 
per Subnet

1–2 1 255.255.128.0 or /17 32,766

3–4 2 255.255.192.0 or /18 16,382

5–8 3 255.255.224.0 or /19 8190

9–16 4 255.255.240.0 or /20 4094

17–32 5 255.255.248.0 or /21 2046

33–64 6 255.255.252.0 or /22 1022

65–128 7 255.255.254.0 or /23 510

129–256 8 255.255.255.0 or /24 254

257–512 9 255.255.255.128 or /25 126

513–1024 10 255.255.255.192 or /26 62

1025–2048 11 255.255.255.224 or /27 30

2049–4096 12 255.255.255.240 or /28 14

4097–8192 13 255.255.255.248 or /29 6

8193–16,384 14 255.255.255.252 or /30 2

Table A-5 Subnetting of a Class A Address Prefix

Required Number of 
Subnets

Number of 
Host Bits Subnet Mask

Number of Hosts 
per Subnet
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Step 2: Defining the Subnetted Address Prefixes (Binary Method)

The technique presented here describes how to subnet an arbitrary address prefix into sub-
nets that yield both subnetted address prefixes and their corresponding range of valid IP 
addresses using binary analysis. There are other techniques that might seem easier, but they 
are typically limited in scope. This technique works for any subnetting situation.

Step 2a: Enumerating the Subnetted Address Prefixes (Binary) Create a three-column 
table with 2n rows where n is the number of host bits chosen for the subnetting. The first col-
umn is used for the subnet number, the second column is for the binary representation of the 
subnetted address prefix, and the third column is for the dotted decimal representation of the 
subnetted address prefix.

For the binary representation for each entry in the table, the original address prefix bits are 
fixed at their original values. The host bits chosen for subnetting, hereafter known as the 
subnet bits, are allowed to vary over all of their possible values, and the remaining host bits 
are set to 0.

The table’s first entry is the subnet, defined by setting all the subnet bits to 0 (also called the 
all-zeros subnet). The result is converted to dotted decimal notation. This subnetted address 
prefix does not appear to be different from the original address prefix; but remember that an 
address prefix is a combination of the dotted decimal notation and a subnet mask. With the 
new subnet mask, the subnetted address prefix is clearly different from the original address 
prefix.

In the following entries, treat the subnet bits as though they were distinct binary numbers. 
Increment the value within the subnet bits and convert the result of the entire 32-bit subnet-
ted address prefix to dotted decimal notation.

As an example of this technique, subnet the class B address prefix 131.107.0.0 by using three 
bits of the classful host ID. The new subnet mask for the subnetted address prefixes is 
255.255.224.0, or /19. Based on using three host bits, create a table with eight entries (8 = 23). 

Table A-7 Subnetting of a Class C Address Prefix

Required Number 
of Subnets

Number of 
Host Bits Subnet Mask

Number of Hosts 
per Subnet

1–2 1 255.255.255.128 or /25 126

3–4 2 255.255.255.192 or /26 62

5–8 3 255.255.255.224 or /27 30

9–16 4 255.255.255.240 or /28 14

17–32 5 255.255.255.248 or /29 6

33–64 6 255.255.255.252 or /30 2
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The first entry is the all-zeros subnet. The additional entries are increments of the binary number 
represented by the subnet bits (underlined). Table A-8 lists the subnetted address prefixes.

Step 2b: Enumerating IP Address Ranges for Each Subnetted Address Prefix (Binary)
For each subnetted address prefix, the range of valid IP addresses must be determined as 
follows:

1. Create a three-column table with 2n entries where n is the number of host bits chosen for 
the subnetting. The first column is used for the subnet number, the second column is 
for the binary representation of the first and last IP address in the range, and the third 
column is for the dotted decimal representation of the first and last IP address in the 
range. Alternatively, you can extend the table created for enumerating the subnetted 
address prefixes by adding two columns.

2. Express the first and last IP address in the range in binary notation. The first IP address 
is defined by setting the remaining host bits to 0, except for the last host bit. The last IP 
address is defined by setting the remaining host bits to 1, except for the last host bit.

3. Convert the binary representation of the first and last IP address to dotted decimal 
notation.

4. Repeat steps 2 and 3 until the table is complete.

To continue the example, Table A-9 lists the enumeration of the range of valid IP addresses for 
the 3-bit subnetting of 131.107.0.0. The remaining host bits are underlined.

Table A-8 A 3-Bit Subnetting of 131.107.0.0 (Binary)

Subnet Binary Representation Subnetted Address Prefix

1 10000011.01101011.00000000.00000000 131.107.0.0/19

2 10000011.01101011.00100000.00000000 131.107.32.0/19

3 10000011.01101011.01000000.00000000 131.107.64.0/19

4 10000011.01101011.01100000.00000000 131.107.96.0/19

5 10000011.01101011.10000000.00000000 131.107.128.0/19

6 10000011.01101011.10100000.00000000 131.107.160.0/19

7 10000011.01101011.11000000.00000000 131.107.192.0/19

8 10000011.01101011.11100000.00000000 131.107.224.0/19

Table A-9 Enumeration of IP Addresses for the 3-Bit Subnetting of 131.107.0.0 (Binary)

Subnet Binary Representation Range of IP Addresses

1 10000011.01101011.00000000.00000001 – 
10000011.01101011.00011111.11111110

131.107.0.1 – 
131.107.31.254

2 10000011.01101011.00100000.00000001 – 
10000011.01101011.00111111.11111110

131.107.32.1 – 
131.107.63.254

3 10000011.01101011.01000000.00000001 – 
10000011.01101011.01011111.11111110

131.107.64.1 – 
131.107.95.254
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Step 3: Defining the Subnetted Address Prefixes (Decimal Method)

Although the binary subnetting method works for any valid subnetting scheme, it does not 
scale well. For example, if you are performing a 10-bit subnetting, you would have 1024 
entries in the table. Whereas programmers are adept at binary manipulation and can create 
programs to automate this process, nonprogrammers find it easier to work with decimal num-
bers. Therefore, the following technique treats the 32-bit address prefix and IP address as a 
single decimal number to enumerate the subnetted address prefix and its corresponding 
range of IP addresses. Either technique—binary or decimal—yields the same result.

Step 3a: Enumerating the Subnetted Address Prefixes (Decimal)
1. Create a three-column table with 2n entries where n is the number of host bits chosen for 

the subnetting. The first column is used for the subnet number; the second column is 
for the decimal representation of the subnetted address prefix; and the third column is 
for the dotted decimal representation of the subnetted address prefix.

2. Convert the original address prefix from dotted decimal notation (w.x.y.z) to N, its 
decimal representation:

N = (w × 16777216) +(x × 65536) + (y × 256) + z

3. Compute I, the increment value, based on h, the number of host bits remaining:

I = 2h

4. For the first table entry, the all-zeros subnet, the decimal representation of the subnetted 
address prefix is N, and the subnetted address prefix is w.x.y.z, with its new subnet 
mask.

5. For the decimal representation of the next table entry, add the increment I to the previ-
ous entry.

6. Convert the decimal representation of the subnetted address prefix to dotted decimal 
notation (W.X.Y.Z) using the following formulas (where s is the decimal representation 
of the subnetted address prefix):

4 10000011.01101011.01100000.00000001 – 
10000011.01101011.01111111.11111110

131.107.96.1 – 
131.107.127.254

5 10000011.01101011.10000000.00000001 – 
10000011.01101011.10011111.11111110

131.107.128.1 – 
131.107.159.254

6 10000011.01101011.10100000.00000001 – 
10000011.01101011.10111111.11111110

131.107.160.1 – 
131.107.191.254

7 10000011.01101011.11000000.00000001 – 
10000011.01101011.11011111.11111110

131.107.192.1 – 
131.107.223.254

8 10000011.01101011.11100000.00000001 – 
10000011.01101011.11111111.11111110

131.107.224.1 – 
131.107.255.254

Table A-9 Enumeration of IP Addresses for the 3-Bit Subnetting of 131.107.0.0 (Binary)

Subnet Binary Representation Range of IP Addresses
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W = int (s/16777216)

X = int ((s mod 16777216)/65536)

Y = int ((s mod 65536)/256)

Z = s mod 256

In the formulas, int ( ) denotes integer division and yields the integer multiple, and mod 
denotes the modulus operator and yields the remainder after division.

7. Repeat steps 5 and 6 until the table is complete.

To compare the two techniques and verify that they will both yield the same result, perform a 
decimal 3-bit subnetting of 131.107.0.0.

Based on n = 3, create a table with eight entries. The entry for Subnet 1 is the all-zeros subnet. 
N, the decimal representation of 131.107.0.0, is 2204827648 ((131 × 16777216) + (107 × 
65536)). Because there are 13 remaining host bits, the increment value I is 213, or 8192. 
Entries for Subnets 2 through 8 are incremented by 8192.

Table A-10 lists the subnetted address prefixes of 131.107.0.0.

Step 3b: Enumerating IP Address Ranges for Each Subnetted Address Prefix (Decimal)
For each subnetted address prefix, the range of valid IP addresses must be determined as 
follows:

1. Create a three-column table with 2n entries where n is the number of host bits chosen for 
the subnetting. The first column is used for the subnet number; the second column is 
for the decimal representation of the first and last IP address in the range; and the third 
column is for the dotted decimal representation of the first and last IP address in the 
range. Alternatively, you can extend the table created for enumerating the subnetted 
address prefixes by adding two columns.

2. Compute the increment value J based on h, the number of host bits remaining:

J = 2h - 2

Table A-10 A 3-Bit Subnetting of 131.107.0.0 (Decimal)

Subnet Decimal Representation Subnetted Address Prefix

1 2204827648 131.107.0.0/19

2 2204835840 131.107.32.0/19

3 2204844032 131.107.64.0/19

4 2204852224 131.107.96.0/19

5 2204860416 131.107.128.0/19

6 2204868608 131.107.160.0/19

7 2204876800 131.107.192.0/19

8 2204884992 131.107.224.0/19
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3. The decimal representation of the first IP address is N + 1, where N is the decimal repre-
sentation of the subnetted address prefix. The decimal representation of the last IP 
address is N + J.

4. Convert the decimal representation of the first and last IP address to dotted decimal 
notation (W.X.Y.Z) using the following formulas (where s is the decimal representation 
of the first or last IP address):

W = int (s/16777216)

X = int ((s mod 16777216)/65536)

Y = int ((s mod 65536)/256)

Z = s mod 256

In the formulas, int ( ) denotes integer division and yields the integer multiple, and mod 
denotes the modulus operator and yields the remainder after division.

5. Repeat steps 3 and 4 until the table is complete.

To continue with the example, enumerate the range of valid IP addresses for the 3-bit subnet-
ting of 131.107.0.0. Compute the increment value J = 213– 2 = 8190. Table A-11 lists the ranges 
of IP addresses for the eight subnetted address prefixes.

All-Zeros and All-Ones Subnets

In the previous discussion’s examples, the subnet where all the host bits were set to 0 (the all-
zeros subnet) and the subnet where all the host bits were set to 1 (the all-ones subnet) was 
used. The use of these subnets is controversial.

Originally, RFC 950 forbade the use of these subnets as valid subnets because of the following:

■ The all-zeros subnet caused problems for early routing protocols that did not use a sub-
net mask to distinguish an address prefix. Therefore, 131.107.0.0/16 was the same net-
work to the router as 131.107.0.0/19.

Table A-11 Enumeration of IP Addresses for the 3-Bit Subnetting of 131.107.0.0 
(Decimal)

Subnet Decimal Representation Range of IP Addresses

1 2204827649 – 2204835838 131.107.0.1 – 131.107.31.254

2 2204835841 – 2204844030 131.107.32.1 – 131.107.63.254

3 2204844033 – 2204852222 131.107.64.1 – 131.107.95.254

4 2204852225 – 2204860414 131.107.96.1 – 131.107.127.254

5 2204860417 – 2204868606 131.107.128.1 – 131.107.159.254

6 2204868609 – 2204876798 131.107.160.1 – 131.107.131.107

7 2204876801 – 2204884990 131.107.192.1 – 131.107.223.254

8 2204884993 – 2204893182 131.107.224.1 – 131.107.255.254
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■ The subnet broadcast address for the all-ones subnet uses the same address as a special 
broadcast address, called the all-subnets-directed broadcast address. An IP datagram for 
the all-subnets-directed broadcast was designed to be forwarded by routers to all class-
ful address prefix subnets. For more information on the all-subnets-directed broadcast 
address, see the section “IP Broadcast Addresses” later in this appendix.

The restriction on the use of the all-zeros and all-ones subnets is part of the legacy of classful 
networks. The result of this restriction is that substantial portions of a fixed address space are 
unusable and wasted. For example, when performing a 3-bit subnetting of 131.107.0.0 and 
excluding the all-zeros and all-ones subnets, only six subnets are available. The range of IP 
addresses 131.107.0.1 through 131.107.31.254 for the all-zeros subnet and 131.107.224.1 
through 131.107.255.254 for the all-ones subnet are unusable.

RFC 1812 now allows the use of all-zeros and all-ones subnets for classless environments for 
the following reasons:

■ Classless environments use routing protocols that advertise the subnet mask with the 
address prefix. Therefore, 131.107.0.0/16 is distinguishable from 131.107.0.0/19.

■ The all-subnets-directed broadcast has no meaning in a classless environment.

Even though RFC 1812 now allows the use of these special subnets, there is no guarantee that 
all of your routers and hosts support them. It is a common default configuration for routers 
not to support one or the other special subnet, and they must be instructed to do so. Verify 
that your routers and hosts support the all-zeros and all-ones subnets before using them. 
Hosts and routers running Windows Server 2008 or Windows Vista support the use of the all-
zeros and all-ones subnets without additional configuration.

Variable-Length Subnetting

The preceding discussion illustrates how a fixed address prefix can be subdivided into equally 
sized subnets. The 3-bit subnetting of the classful address prefix 131.107.0.0/16 produced 
eight equally sized subnets, each containing 8190 possible IP addresses. However, in the real 
world, network segments are not of equal sizes. Some network segments require more IP 
addresses than others. For example, a network segment containing hosts requires more IP 
addresses than a backbone network segment containing just a few routers. Point-to-point 
WAN connections require only two IP addresses.

If equally sized subnetting were done, it would have to be done based on the network segment 
that required the largest amount of hosts. All other network segments would have the same 
amount of IP addresses, some of which are unassigned or unusable.

To maximize the use of the fixed address space, subnetting is applied recursively to produce 
subnets of different sizes all derived from the same original address prefix. This is known as 
variable-length subnetting. Differently sized subnets use different subnet masks, or variable-
length subnet masks (VLSM).



Appendix A: Internet Protocol (IP) Addressing 441
Because all of the subnets are derived from the same address prefix, if the subnets are contig-
uous, the routes for all the subnets can be summarized by advertising the original address 
prefix. Contiguous subnets are subnets of the same address prefix that are connected to 
each other.

When performing variable-length subnetting, care must be taken so that each subnet is 
unique, and with its subnet mask, can be distinguished from all other subnets of the original 
address prefix. Variable-length subnetting requires a careful analysis of your network seg-
ments to determine how many of each sized network you require. Then, starting from your 
address prefix, subnetting is performed as many times as needed to express as many subnets 
as desired with the proper sizes.

With variable-length subnetting, the subnetting technique is applied recursively: You subnet a 
previously subnetted address prefix. When subnetting a previously subnetted address prefix, 
the subnetted address prefix bits are fixed and an appropriate number of remaining host bits 
is chosen for subnetting.

Example of Variable-Length Subnetting

To expand on the earlier example, continue subnetting the classful address prefix of 
131.107.0.0/16. After the 3-bit subnetting has been performed, the remaining addresses must 
be divided such that:

■ Half of the addresses are reserved for future use.

■ Three address prefixes are allocated with up to 8190 IP addresses.

■ 31 address prefixes are allocated with up to 254 IP addresses.

■ 64 address prefixes are allocated with only two IP addresses.

Recall that the 3-bit subnetting of 131.107.0.0/16 produced the eight address prefixes listed in 
Table A-12.

Table A-12 The Eight Subnets for the 3-Bit Subnetting of 131.107.0.0/16

Subnet Subnetted Address Prefix

1 131.107.0.0/19

2 131.107.32.0/19

3 131.107.64.0/19

4 131.107.96.0/19

5 131.107.128.0/19

6 131.107.160.0/19

7 131.107.192.0/19

8 131.107.224.0/19
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Reserve Half of the IP Addresses for Future Use To reserve half of the addresses for 
future use, set aside the first four address prefixes (131.107.0.0/19, 131.107.32.0/19, 
131.107.64.0/19, 131.107.96.0/19).

Obtain Three Address Prefixes with up to 8190 IP Addresses To obtain three subnets 
with up to 8190 IP addresses per address prefix, choose the next three address prefixes 
(131.107.128.0/19, 131.107.160.0/19, 131.107.192.0/19). Each address prefix has 13 host 
bits, for a total of 8190 IP addresses per address prefix.

Obtain 31 Address Prefixes with up to 254 IP Addresses To obtain 31 address prefixes, 
each with up to 254 IP addresses, perform a 5-bit subnetting of 131.107.224.0/19. The result 
is 32 address prefixes (131.107.224.0/24, 131.107.225.0/24, 131.107.226.0/24 . . . 
131.107.253.0/24, 131.107.254.0/24, 131.107.255.0/24). To fulfill the requirement, choose 
the first 31 address prefixes (131.107.224.0/24 to 131.107.254.0/24).

Obtain 64 Address Prefixes with only 2 IP Addresses To obtain 64 address prefixes with 
only 2 usable IP addresses, perform a 6-bit subnetting of 131.107.255.0/24. The result is 64 
address prefixes (131.107.255.4/30, 131.107.255.8/30, 131.107.255.12/30 . . . 
131.107.255.244/30, 131.107.255.248/30, 131.107.255.252/30).

Figure A-10 shows the variable-length subnetting of 131.107.0.0/16.

Figure A-10 The variable-length subnetting of 131.107.0.0/16 into address prefixes of different sizes.

Variable-Length Subnetting and Routing

Variable-length subnetting requires routing protocols to advertise the subnet mask with the 
address prefix. Routing Information Protocol (RIP) version 2, Open Shortest Path First 
(OSPF), and Border Gateway Protocol version 4 (BGP-v4) support variable-length subnetting 
environments, but RIP version 1 does not.
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Supernetting and CIDR

As the Internet grew suddenly from a collection of educational institutions and government 
agencies to a business-oriented, pervasive global internetwork, great stress was placed on the 
IP address space. Assigning classful address prefixes to organizations meant a quick, wasteful 
depletion of the Internet address space.

For example, numerous organizations worldwide require more than 254 IP addresses. There-
fore, a single class C address prefix is insufficient. A single class B address prefix, however, pro-
vides sufficient IP addresses and enough host bits to implement subnetting within the 
organization’s internal network. Although this is good for the organization, it is bad for the 
Internet IP address space. Consider the smaller organization that needs only 4000 IP 
addresses. Assigning a class B address prefix with 65,534 possible IP addresses means that 
61,534 IP addresses are unassigned and wasted.

Now, instead of an entire class B address prefix, the Internet Corporation for Assigned Names 
and Numbers (ICANN) assigns a range of class C address prefixes. For example, ICANN 
assigns 16 class C address prefixes to an organization needing 4000 IP addresses. Each class 
C address prefix allows for 254 IP addresses. Therefore, 16 class C address prefixes allow for 
4064 IP addresses. This technique minimizes the wasting of Internet IP addresses, but it intro-
duces a new problem. If a single class B address prefix is assigned, that single class B address 
prefix becomes a single route in the routing tables of the Internet backbone routers. If 16 class 
C address prefixes are assigned, 16 class C address prefixes become 16 routes in the routing 
tables of the Internet backbone routers.

Extending this example to its ultimate limits, there are more than 2 million class C address 
prefixes. After assigning them all, it is possible to have more than 2 million routes in the rout-
ing tables of the Internet backbone routers. Even with today’s technology, it is difficult to 
build an IP router that can have a routing table with millions of entries, and forward IP data-
grams at megabit- or gigabit-per-second speeds.

To prevent this scaling problem from overwhelming Internet routers, a route aggregation tech-
nique called Classless Inter-Domain Routing (CIDR) is used to express a range of class C 
address prefixes as a single route. This is the method of address allocation that the modern 
Internet uses. CIDR solves the scaling problem by minimizing the total number of routes that 
must be stored in the routing tables of Internet routers.

CIDR uses a supernetted subnet mask to express the range of class C address prefixes. A 
supernetted subnet mask is less specific, or contains fewer address prefix bits, than a classful 
subnet mask. In contrast, a subnetted subnet mask is more specific, or contains more address 
prefix bits, than a classful subnet mask.

Views on CIDR Allocation

The CIDR method of address allocation can be viewed in two ways:
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■ A range of class C address prefixes

■ An address space in which multiple classful networks are combined into a single class-
less network

The latter perspective is more appropriate for today’s Internet and for looking forward to IPv6.

A Range of Class C Address prefixes Viewed as a range of class C address prefixes, the 
requirement is based on the number of class C network segments needed in your organiza-
tion. The following requirements are for a range of class C address prefixes to be expressible 
as a single route using an address prefix and a subnet mask:

■ The class C address prefixes must be sequential.

■ The number of allocated class C address prefixes must be expressed as a power of 2.

For example, Table A-13 lists the range (or block) of eight class C address prefixes, starting 
with address prefix 223.1.184.0.

Notice that the first 21 bits (underlined) of the range of class C address prefixes are the same. 
The last 3 bits of the third octet vary over all possible values from 000 through 111. This range 
of class C address prefixes can be aggregated with the address prefix and subnet mask listed 
in Table A-14.

A block of class-based address prefixes, as allocated in this example, is known as a CIDR block.

Table A-15 lists the number of class C address prefixes and the supernetted subnet mask for 
a required number of hosts.

Table A-13 A Block of Eight Class C Address Prefixes Starting with 223.1.184.0

Starting Address prefix 223.1.184.0 11011111  00000001  10111000  00000000

Ending Address prefix 223.1.191.0 11011111  00000001  10111111  00000000

Table A-14 The Aggregated Block of Class C Address Prefixes

Address Prefix 223.1.184.0

Subnet Mask (binary) 11111111  11111111  11111000  00000000

Subnet Mask 255.255.248.0

Prefix Length /21

Table A-15 Supernetting and Class C Addresses

Required Hosts
Number of Class C 
Address Prefixes Supernetted Subnet Mask

2–254 1 255.255.255.0 or /24

255–508 2 255.255.254.0 or /23

509–1016 4 255.255.252.0 or /22

1017–2032 8 255.255.248.0 or /21
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An Address Space From the perspective of an address space, CIDR blocks are no longer 
viewed as a range of class C address prefixes. Even though the CIDR block is obtained from 
the class-defined range of class C address prefixes, it does not necessarily represent a range of 
class C address prefixes. Viewing the CIDR block as a range of class C address prefixes implies 
that you will assign each class C address prefix within the block to each of your networks.

In reality, you typically want to assign address prefixes of various sizes to the networks of your 
intranet in a variable-length subnetting scheme. Now your requirement is based on the num-
ber of IP addresses required, rather than the number of class C subnets in your organization.

For example, to assign 4000 IP addresses to an organization, determine the number of bits 
required to express 4000 IP addresses. Using powers of 2, 12 bits are needed to express 4094 
IP addresses. Therefore, 12 bits are used for the host ID portion, and 20 bits for the address 
prefix portion. The subnet mask indicates 20 bits of address prefix. For example, starting 
from an unassigned portion of the IP address space, ICANN allocates the 223.1.176.0 network 
with the subnet mask of 255.255.240.0 (or 223.1.176.0/20) address space to the organization.

The allocated address space allows the assignment of the range of IP addresses from 
223.1.176.1 through 223.1.191.254. However, it is unlikely that the organization will use all 
4094 IP addresses on the same network segment. Rather, the organization can use variable-
length subnetting and the 12 host bits to create a series of subnetted address prefixes contain-
ing the suitable number of appropriately sized subnets.

With CIDR, IP address prefixes lose their classful heritage and become address spaces where 
certain bits are fixed (the address prefix bits), and certain bits are variable (the host ID bits). 
Using variable-length subnetting techniques, the organization’s needs should determine how 
to best utilize the host bits.

CIDR and Routing

CIDR, like variable-length subnetting, requires routing protocols to advertise the subnet mask 
with the address prefix. RIP version 2, OSPF, and BGP-v4 support CIDR environments, but 
RIP version 1 does not.

2033–4064 16 255.255.240.0 or /20

4065–8128 32 255.255.224.0 or /19

8129–16,256 64 255.255.192.0 or /18

16,257–32,512 128 255.255.128.0 or /17

32,513–65,024 256 255.255.0.0 or /16

Table A-15 Supernetting and Class C Addresses

Required Hosts
Number of Class C 
Address Prefixes Supernetted Subnet Mask
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Public and Private Addresses

When deploying an IP addressing scheme in your organization, one of the main consider-
ations is whether your intranet is connected to the Internet:

■ If your organization is not connected to the Internet, it is technically possible to choose 
any IP address prefixes—classful or classless—without concern for using overlapping 
addresses being used on the Internet. However, it is highly recommended that you 
choose a private address range.

■ If your organization is connected to the Internet, it can be connected in one of two ways. 
If your organization uses a direct-routed connection using a router or firewall, you must 
use ICANN-compliant addresses as allocated by ICANN or an Internet service provider 
(ISP). If your organization uses an indirect connection using a proxy server or a Network 
Address Translator (NAT), you must use addresses that do not overlap with addresses 
that do, or might, exist on the Internet.

Organizations connected to the Internet must choose between the use of public or private 
addresses.

Public Addresses

ICANN assigns public addresses that are within the public address space consisting of all of 
the possible unicast addresses on the Internet worldwide. Historically, ICANN assigned class-
ful address prefixes to organizations connecting to the Internet without regard to geographi-
cal location. Today, ICANN assigns CIDR blocks to ISPs based on geographical location; the 
ISPs then subdivide their assigned CIDR blocks to customers. Subdivision of the remaining 
class C address space based on geographical location was done to provide hierarchical routing 
and to minimize the number of routes in Internet backbone routers. Public addresses are 
guaranteed to be globally unique.

When an organization or an ISP is assigned a block of addresses in the public address space, 
a route exists in the Internet routers’ routing tables so that the assigned public addresses are 
reachable through the ISP. Historically, a classful address prefix was added to all of the Inter-
net routers. Today, a route consisting of the range of assigned addresses is added to the rout-
ing tables of regional and ISP Internet routers.

One or more (address prefix, mask) pairs summarize the range of public IP addresses 
assigned to an organization. These pairs become the routes in the ISP and Internet routers so 
that the IP addresses of the organization can be reached.

Illegal or Overlapping Addresses Organizations that are not connected to the Internet 
either directly or indirectly are free to choose any addressing scheme without regard to 
whether the addresses have been assigned to another ISP or organization. However, if that 
organization later decides to connect to the Internet, a new addressing scheme might be 
required.
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The addresses assigned when the organization was not connected to the Internet might 
include public addresses that have been assigned to other organizations or ISPs by ICANN. If 
that is the case, these addresses are duplicates that conflict with assigned addresses. This is 
known as illegal, or overlapping, addressing. Internet traffic from hosts using illegal addresses 
is forwarded to the routers of the organization that was originally assigned those addresses. 
Therefore, organizations using illegal addressing are unreachable on the Internet.

For example, an organization that is not connected to the Internet decides to use the address 
space 207.46.130.0/24 for its intranet. As long as the organization does not connect to the 
Internet, the use of 207.46.130.0/24 is not an issue. If the organization then connects to the 
Internet using a direct routed connection, the use of 207.46.130.0/24 is illegal and no 
responses from hosts on the 207.46.130.0/24 network segment are received.

In this configuration, when a host sends traffic to an Internet location, it sends the traffic with 
the source IP address within the address space of 207.46.130.0/24. When the Internet host 
sends a response, it sends the response to the destination IP address within the address space of 
207.46.130.0/24. ICANN assigned Microsoft Corporation the address space 207.46.130.0/24, 
and a route exists in Internet routers to forward traffic with the destination IP address in this 
range to Microsoft’s routers. Therefore, the responses to traffic sent by the hosts on the illegal 
address space 207.46.130.0/24 are forwarded to Microsoft’s routers, and not to the routers of 
the organization using the illegal addresses.

Note It is common practice among ISPs to discard IP packets sent from a customer site 
when the source IP address field is not set to a valid public address assigned to the customer. 
This is known as ingress filtering, which attempts to prevent the sending of traffic from hosts 
using illegal addresses and address spoofing (the sending of IP traffic from a source IP address 
that is not assigned to a host).

Private Addresses

As the Internet experienced exponential growth, the demand for public IP addresses 
increased commensurately. Because each node on an organization’s intranet required a glo-
bally unique public IP address, organizations requested enough IP addresses from ICANN to 
assign unique IP addresses to all of the nodes within their organizations.

However, when an analysis of IP addressing within organizations was done, the Internet 
authorities noticed that most organizations actually needed very few public addresses. The 
only hosts that required public IP addresses were those that communicated directly with sys-
tems on the Internet, such as Web servers, File Transfer Protocol (FTP) servers, e-mail servers, 
proxy servers, and firewalls. Most of the hosts within an organization’s intranet obtained 
access to Internet resources through Application Layer gateways such as proxy servers and 
e-mail servers.
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For hosts within the organization’s intranet that do not require direct access to the Internet, a 
legal IP address space must be used. For this purpose, Internet authorities created the private 
address space, a subset of the Internet IP address space that can be used without conflict 
within an organization, for hosts that do not require a direct connection to the Internet.

The private and public address spaces are separate and do not overlap. ICANN never assigns 
private addresses—IP addresses within the private address space—to an organization or ISP. 
This also means that private IP addresses are not reachable on the Internet.

Because private addresses are not reachable on the Internet, hosts on an intranet with private 
addressing cannot be directly connected to the Internet. Rather, they must be indirectly con-
nected to the Internet using an NAT or an Application Layer gateway such as a proxy server.

An NAT is a router that translates between private addresses and public addresses for Internet 
traffic. The proxy server receives a request from a host on the intranet for Internet resources. 
The proxy server then sends the request to the Internet resource and the response traffic is 
forwarded back to the requesting host. When the proxy server sends the request to the Inter-
net resource, it uses public addressing. Both proxy servers and NATs have private addresses 
on their intranet interface and public addresses on their Internet interface.

The following three address blocks define the private address space:

■ 10.0.0.0/8 The 10.0.0.0/8 private network is an address space with 24 host bits that 
can be used for any subnetting scheme within the private organization.

■ 172.16.0.0/12 The 172.16.0.0/12 private network is an address space with 20 host bits 
that can be used for any subnetting scheme within the private organization. From a 
classful perspective, the 172.16.0.0/12 private address prefix is the range of 16 class B 
address prefixes from 172.16.0.0/16 through 172.31.0.0/16.

■ 192.168.0.0/16 The 192.168.0.0/16 private network is an address space with 16 host 
bits that can be used for any subnetting scheme within the private organization. From a 
classful perspective, the 192.168.0.0/16 private address prefix is the range of 256 class 
C address prefixes from 192.168.0.0/24 through 192.168.255.0/24.

Automatic Private IP Addressing

When you configure a computer running Windows Server 2008 or Windows Vista to obtain 
its IP address automatically and a DHCP server does not respond to the DHCPREQUEST and 
DHCPDISCOVER messages and there is no alternate configuration, TCP/IP for Windows 
Server 2008 and Windows Vista configures itself using the Automatic Private IP Addressing 
(APIPA) feature. Using APIPA, TCP/IP for Windows Server 2008 and Windows Vista ran-
domly picks an IP address in the address space of 169.254.0.0/16. This address space has 
been reserved by the Internet Assigned Numbers Authority (IANA) and is not reachable on 
the Internet.
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After choosing an IP address, TCP/IP for Windows Server 2008 and Windows Vista uses 
duplicate address detection to check for IP address uniqueness. If there is no conflict, TCP/IP 
for Windows Server 2008 and Windows Vista is configured for the randomly chosen IP 
address and the subnet mask of 255.255.0.0. If there is a conflict, TCP/IP for Windows Server 
2008 and Windows Vista randomly chooses a new address in the 169.254.0.0/16 address 
space. After APIPA configuration, TCP/IP for Windows Server 2008 and Windows Vista con-
tinues to send DHCPDISCOVER messages every five minutes. If a DHCP server responds, 
TCP/IP for Windows Server 2008 and Windows Vista abandons the APIPA configuration and 
the DHCP-allocated address takes effect. For more information on duplicate address detec-
tion, see Chapter 3, “Address Resolution Protocol (ARP).”

APIPA was designed to simplify the configuration of a single subnet small office/home office 
(SOHO) network that is not connected to the Internet or any other IP internetwork. With 
APIPA, all the computers on a single-subnet SOHO network configure themselves and are able 
to communicate without manually configuring TCP/IP or setting up a DHCP server.

APIPA does not provide automatic configuration of a default gateway, the IP address of a 
Domain Name System (DNS) server, a DNS domain name, the IP address of a Windows Inter-
net Name Service (WINS) server, or NetBIOS node type. A single-subnet SOHO network does 
not need a default gateway, and broadcast NetBIOS name queries resolve names for commu-
nication between computers.

TCP/IP for Windows Server 2008 and Windows Vista APIPA behavior is controlled by the fol-
lowing registry values:

IPAutoconfigurationEnabled
Keys: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 

and 

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces

\InterfaceGUID

Value type: REG_DWORD

Valid range: 0 - 1

Default: 1

Present by default: No

IPAutoconfigurationEnabled either enables (when set to 1) or disables (when set to 0) APIPA-
based IP address configuration either globally or per interface. The default is enabled both 
globally and per interface, and the setting for an interface overrides the global setting.

IPAutoconfigurationSubnet
Keys: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

and

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces

\InterfaceGUID

Value type: REG_SZ (String)

Valid range: A valid IP address prefix expressed in dotted decimal notation.

Default: 169.254.0.0

Present by default: No



450 Windows Server 2008 TCP/IP Protocols and Services
IPAutoconfigurationSubnet specifies the IP address prefix for the network prefix of APIPA-
configured addresses. The default value is 169.254.0.0. IPAutoconfigurationSubnet can be 
specified globally or per interface, and the setting for an interface overrides the global setting.

IPAutoconfigurationMask
Keys: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 

and 

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces

\InterfaceGUID

Value type: REG_SZ (String)

Valid range: A valid subnet mask expressed in dotted decimal notation.

Default: 255.255.0.0

Present by default: No

IPAutoconfigurationMask specifies the subnet mask for the network prefix of APIPA-
configured addresses. The default value is 255.255.0.0. IPAutoconfigurationMask can be 
specified globally or per interface and the setting for an interface overrides the global setting.

Note The address prefix specified for the IPAutoconfigurationSubnet cannot be more 
specific than the subnet mask specified for the IPAutoconfigurationMask. In other words, the 
address prefix cannot contain bits set to 1 when the corresponding bit in the mask is set to 0. 
An example of an incorrect address prefix and subnet mask combination is the address prefix 
169.254.47.0 with the subnet mask of 255.255.0.0. The correct subnet mask for this address 
prefix is 255.255.255.0.

IP Broadcast Addresses
IP broadcast addresses are used for single-packet one-to-everyone delivery. A sending host 
addresses the IP packet using a broadcast address and every node on the sending node’s net-
work segment receives and processes the packet. IP broadcast addresses can be used only as 
the destination IP address.

There are four different types of IP broadcast addresses. For each type, the broadcast IP packet 
is addressed at the Network Interface Layer using the network technology’s broadcast 
address. For example, for Ethernet and Token Ring networks, all IP broadcasts are sent using 
the Ethernet and Token Ring broadcast address 0xFF-FF-FF-FF-FF-FF.

Network Broadcast

The IP network broadcast address is the address formed by setting all the host bits to 1 for a 
classful address. An example of a network broadcast address for the classful address prefix 
131.107.0.0/16 is 131.107.255.255. Network broadcasts are used to send packets to all hosts 
of a classful network, which listen for and process packets addressed to the network broadcast 
address. IP routers do not forward network broadcast packets.
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Subnet Broadcast

The IP subnet broadcast address is the address formed by setting all the host bits to 1 for a 
nonclassful address. An example of a network broadcast address for the nonclassful address 
prefix 131.107.26.0/24 is 131.107.26.255. Subnet broadcasts are used to send packets to all 
hosts of a subnetted, supernetted, or otherwise nonclassful network. All hosts of a nonclassful 
network listen for and process packets addressed to the subnet broadcast address. IP routers 
do not forward subnet broadcast packets.

For a classful network, there is no subnet broadcast address, only a network broadcast 
address. For a nonclassful network, there is no network broadcast address, only a subnet 
broadcast address.

All-Subnets-Directed Broadcast

The IP all-subnets-directed broadcast address is the address formed by setting all the original 
classful address prefix host bits to 1 for a nonclassful network. A packet addressed to the all-
subnets-directed broadcast is intended to reach all hosts on all of the subnets of a subnetted 
class-based address prefix. An example of an all-subnets-directed broadcast address for the 
subnetted address prefix 131.107.26.0/24 is 131.107.255.255. The all-subnets-directed broad-
cast is the network broadcast address of the original classful address prefix.

All hosts of a nonclassful network listen for and process packets addressed to the 
all-subnets-directed broadcast address. RFC 922 required IP routers to forward 
all-subnets-directed broadcast packets to all subnets of the original classful address prefix 
implied in the address. However, this forwarding was not widely implemented.

With the advent of classless address prefixes, the all-subnets-directed broadcast address is no 
longer relevant. According to RFC 1812, the use of the all-subnets-directed broadcast has been 
deprecated.

Notice how the all-subnets-directed address is the same as the subnet broadcast for the all-
ones subnet. For example, the 8-bit subnetting of the class B address prefix 157.54.0.0 pro-
duces the subnets {157.54.0.0/24, 157.54.1.0/24 . . . 157.54.254.0/24, 157.54.255.0/24}. For 
the last subnet, 157.54.255.0/24, the subnet broadcast is 157.54.255.255, which is the same 
as the all-subnets-directed broadcast address of 157.54.255.255. This address conflict is not 
an issue for routers that do not forward all-subnets-directed broadcast traffic.

Limited Broadcast

The limited broadcast address is the address formed by setting all 32 bits of the IP address to 
1 (255.255.255.255). The limited broadcast address is used when an IP node must perform a 
one-to-everyone delivery on the local network but the address prefix is unknown. The limited 
broadcast address is typically used only by nodes during an automated configuration process 
such as Boot Protocol (BOOTP) or DHCP. For example, with DHCP, a DHCP client must use 
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the limited broadcast address for all traffic sent until the DHCP server acknowledges the IP 
address lease.

All hosts, classful or nonclassful, listen for and process packets addressed to the limited 
broadcast address. Although it appears that the limited broadcast address is addressed to all 
nodes on all networks, it appears only on the local network and is never forwarded by routers. 
The limited broadcast packet is limited to the local network segment.

The following registry value controls the address of the limited broadcast address:

UseZeroBroadcast
Key: 

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interface\InterfaceGUID

Value type: REG_DWORD

Valid range: 0 - 1

Default: 0

Present by default: Yes

UseZeroBroadcast determines whether the limited broadcast is 0.0.0.0 (when set to 1) or 
255.255.255.255 (when set to 0). By default, UseZeroBroadcast is set to 0. Some implementa-
tions of TCP/IP, such as those derived from UNIX, use 0.0.0.0 as their limited broadcast 
address. On the same subnet, all nodes should be using the same limited broadcast address.

IP Multicast Addresses
IP multicast addresses are used for single-packet one-to-many delivery. A sending host 
addresses the IP packet using an IP multicast address; every node on the sending node’s inter-
network that is listening for the multicast traffic receives and processes the packet. Unlike 
broadcast packets, routers forward IP multicast packets and only the hosts listening for the IP 
multicast traffic are disturbed. IP multicast addresses can be used only as the destination IP 
address.

As RFC 1112 describes, the set of hosts listening for the traffic of a specific IP multicast 
address is called a host group. Host group members can be located anywhere on the IP inter-
network. They also can join and leave the host group at any time. For routers to forward IP 
multicast traffic to host group members, the routers must be aware of where the members of 
a multicast group are located. For more information on how hosts and routers facilitate the 
forwarding of IP multicast traffic, see Chapter 7, “Internet Group Management Protocol 
(IGMP).”

Multicast IP addresses are in the class D range. Multicast IP addresses range from 224.0.0.0 
through 239.255.255.255 (224.0.0.0/4). Multicast IP addresses in the range 224.0.0.0 
through 224.0.0.255 (224.0.0.0/24) are reserved for local subnet traffic. Table A-16 lists some 
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of the reserved IP addresses in this range used by Windows Server 2008. For a complete list, 
see http://www.iana.org/assignments/multicast-addresses.

Mapping IP Multicast Addresses to MAC Addresses

To fulfill the promise of IP multicast traffic—where a single IP datagram is processed only by 
the host group members—IP multicast traffic must be mapped to a corresponding MAC-level 
multicast address. The corresponding MAC-level multicast becomes an interesting address to 
the network interface card (NIC), and all traffic addressed to that interesting address with a 
valid frame check sequence is passed up through a hardware interrupt to the operating system.

Ethernet and Fiber Distributed Data Interface

To denote a MAC-level multicast address, Ethernet network adapters set the Individual/
Group (I/G) bit, the low-order bit of the first byte of the destination MAC address, to 1. For 
IP multicast addressing, the range of multicast MAC addresses is 0x01-00-5E-00-00-00 to 
0x01-00-5E-7F-FF-FF. The high-order 25 bits are set to 0000001 00000000 01011110 0. The 
low-order 23 bits are available for use by IP multicast addresses.

To map an IP multicast address to an Ethernet MAC-level multicast address, the low-order 
23 bits of the IP multicast address are copied to the low-order 23 bits in the Ethernet multicast 
address, as Figure A-11 shows.

In the high-order 9 bits of the IP multicast address, the first 4 bits are set to 1110; the next 
5 bits are variable. These 5 bits do not map to the corresponding Ethernet multicast address. 
Therefore, up to 32 different IP multicast addresses can map to the same Ethernet MAC-level 
multicast address. IP multicast packets received that do not correspond to a multicast address 
registered by an application or another protocol are silently discarded.

A node registers interest in a specific multicast group by informing the NIC to listen for 
another interesting destination address for incoming frames. In Windows Server  2008 and 
Windows Vista, this is done through the NDISRequest( ) function. For example, by default 
TCP/IP for Windows Server 2008 and Windows Vista listens for all multicast traffic sent to 
the all-hosts multicast address 224.0.0.1. Therefore, TCP/IP informs the NIC through Net-
work Driver Interface Specification (NDIS) to pass up frames with the destination MAC 
address of 0x01-00-5E-00-00-01.

Table A-16 Reserved Local Subnet IP Multicast Addresses

Multicast IP Address Purpose

224.0.0.1 The all-hosts multicast address, designed to reach all hosts on a subnet

224.0.0.2 The all-routers multicast address, designed to reach all routers on a subnet

224.0.0.9 The RIP version 2 multicast address, designed to reach all RIP version 2 
routers on a subnet
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Figure A-11 The mapping of IP multicast addresses to Ethernet MAC addresses.

Token Ring

As RFC 1469 describes, Token Ring can support the same type of multicast IP-address-to-MAC 
mapping as Ethernet. However, because of the hardware limitations of most Token Ring net-
work adapters, typically all IP multicast addresses are mapped to the single Token Ring func-
tional address of 0xC0-00-00-04-00-00. This is the behavior of TCP/IP for Windows Server 
2008 and Windows Vista.

Note TCP/IP for Windows Server 2008 and Windows Vista no longer supports the 
TrFunctionalMcastAddress registry value.

Summary
IP addresses can be unicast, broadcast, or multicast. For unicast addresses, subnetting tech-
niques allow an address prefix to be allocated, in an efficient manner, to the subnets of an IP 
internetwork. Internet authorities have defined public addresses that are reachable on the 
Internet and private addresses that are designed for use on private intranets not directly con-
nected to the Internet. IP broadcast addresses are used to send IP datagrams to all the nodes 
on a physical or logical subnet. IP multicast addresses are used to send IP datagrams to all 
members of a multicast host group. 
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IP Multicast Address

Ethernet Multicast Address

Low Order 23 Bits



Glossary

Address Resolution Protocol (ARP) A proto-
col for resolving Internet Protocol (IP) ad-
dresses into media access control (MAC)
addresses. See also inverse ARP (INARP) and
reverse ARP (RARP)

AH See Authentication Header (AH)

APIPA See Automatic Private IP Addressing
(APIPA)

ARP See Address Resolution Protocol (ARP)

ARP cache A table for each interface of static
or dynamically resolved Internet Protocol
(IP) addresses and their corresponding me-
dia access control (MAC) addresses. Also
known as a neighbor cache.

Authenticated Internet Protocol (AuthIP) 
An enhanced version of the Internet Key Ex-
change (IKE) protocol in Windows Server
2008 and Windows Vista that supports addi-
tional authentication flexibility with support
for user-level authentication, authentication
with multiple credentials, improved authen-
tication method negotiation, and asymmet-
ric authentication.

Authentication Header (AH) An Internet Pro-
tocol security (IPsec) header that provides
data origin authentication, data integrity,
and replay protection for the entire IP data-
gram, excluding fields in the IP header that
are allowed to change in transit.

AuthIP See Authenticated Internet Protocol
(AuthIP)

Automatic Private IP Addressing (APIPA) A
feature of Windows Vista, Windows Server
2008, Windows XP, and Windows Server
2003 that self-configures an Internet Proto-
col (IP) address and subnet mask from the
range 169.254.0.0/16 when the Transmis-
sion Control Protocol/Internet Protocol
(TCP/IP) protocol is configured for automat-
ic configuration, there is no Dynamic Host
Configuration Protocol (DHCP) server, and
there is no alternate configuration.

Compound TCP (CTCP) A Transmission

Control Protocol (TCP) performance en-
hancement in Windows Server 2008 and
Windows Vista that provides better trans-
mission rate recovery for connections with a
large receive window size and connection ca-
pacity.

congestion avoidance A Transmission Con-
trol Protocol (TCP) algorithm that provides a
linear scaling of the actual send window. The
actual send window is increased by one
Maximum Segment Size (MSS) for each full
window of data that is acknowledged.

CTCP See Compound TCP (CTCP)

DHCP See Dynamic Host Configuration
Protocol (DHCP)

DHCP Server A Windows Server 2008 service
that provides Dynamic Host Configuration
Protocol (DHCP)–based Internet Protocol
(IP) addresses and configuration parameters
to DHCP clients.

Diffie-Hellman algorithm An algorithm for
determining a shared secret key by exchang-
ing two numerical values across an insecure
medium. A component of the Oakley key de-
termination protocol.

DNS See Domain Name System (DNS)

Domain Name System (DNS) A set of servic-
es for storing, updating, and resolving com-
puter names and associated Internet
Protocol (IP) addresses for computers and
other resources on the Internet or on private
Transmission Control Protocol/Internet
Protocol (TCP/IP) networks.

Dynamic Host Configuration Protocol (DH-
CP) A protocol for providing computers with

Internet Protocol (IP) addresses and other
host configuration parameters.

duplicate address detection A process to de-
termine whether an address is already being
used on a subnet.

ECN See Explicit Congestion Notification
(ECN)
455
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Encapsulating Security Payload (ESP) An IP
security (IPsec) header and trailer combina-
tion that provides data origin authentication,
data integrity, replay protection, and data
confidentiality for the ESP-encapsulated por-
tion of the packet.

ESP See Encapsulating Security Payload (ESP)

Explicit Congestion Notification (ECN) A set
of standards for both Internet Protocol (IP)
hosts and routers that enables routers to re-
port to sending hosts that congestion is oc-
curring, allowing the sending hosts to lower
their transmission rate before the router be-
gins dropping packets.

fast recovery A Transmission Control Proto-
col (TCP) algorithm that more quickly scales
the TCP send window when a segment is re-
transmitted using fast retransmit.

fast retransmit A Transmission Control Pro-
tocol (TCP) algorithm that retransmits a
segment before the retransmission time-out
(RTO) expires when multiple duplicate ac-
knowledgments of the previously received
contiguous segment are received.

FDDI See Fiber Distributed Data Interface
(FDDI)

Fiber Distributed Data Interface (FDDI) An
optical fiber-based token passing ring local
area network (LAN) technology with a bit
rate of 100 megabits per second (Mbps). 

frame relay A virtual circuit-based wide area
network (WAN) technology designed for the
transmission of data.

gateway A Transmission Control 
Protocol/Internet Protocol (TCP/IP) node
that has routing capability. See also router

hash A one-way cryptographic algorithm that
takes an input message of arbitrary length
and produces a fixed-length digest. Two
hash algorithms used by Windows Server
2008 and Windows Vista are Secure Hash
Algorithm 1 (SHA1) and Message Digest 5
(MD5).

host A Transmission Control 
Protocol/Internet Protocol (TCP/IP) node
that does not have routing capability. 

host group The set of nodes listening for In-
ternet Protocol (IP) multicast traffic on a spe-
cific IP multicast address.

ICMP See Internet Control Message Protocol
(ICMP)

IETF See Internet Engineering Task Force
(IETF)

IGMP See Internet Group Management Proto-
col (IGMP)

IKE See Internet Key Exchange (IKE)

INARP See inverse ARP (INARP)

Internet Control Message Protocol (ICMP) A
protocol that works with Internet Protocol
(IP) to report errors, provide diagnostics
functions, and control the flow of data.

Internet Engineering Task Force (IETF) The
standards body that defines the Internet Pro-
tocol (IP) and oversees the development of
the Internet and the evolution of the Trans-
mission Control Protocol/Internet Protocol
(TCP/IP) protocol suite. The standards de-
veloped by the IETF and IETF working
groups are published as Requests for Com-
ments (RFCs).

Internet Group Management Protocol (IG-
MP) A protocol for managing multicast group

membership on a subnet. There are three
versions of IGMP: IGMP version 1
(IGMPv1), IGMP version 2 (IGMPv2), and
IGMP version 3 (IGMPv3).

Internet Key Exchange (IKE) A standard
method of negotiating security associations
(SAs) used by Internet Protocol security (IP-
sec), based on the Internet Security
Association and Key Management Protocol
(ISAKMP) and the Oakley key determination
protocol.

Internet Protocol (IP) An unreliable data-
gram delivery service that operates at the In-
ternet layer. Also known as Internet Protocol
version 4 (IPv4). 

Internet Protocol version 6 (IPv6) An unreli-
able datagram delivery service that replaces
Internet Protocol version 4 (IPv4) at the In-
ternet layer. 

Internet Security Association and Key Manage-
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ment Protocol (ISAKMP) A framework for
managing keys within Internet Protocol se-
curity (IPsec).

inverse ARP (INARP) Obtains a remote sys-
tem’s Internet Protocol (IP) address, based
on its Network Interface Layer address. Used
mainly in frame relay. See also Address Reso-
lution Protocol (ARP) and reverse ARP
(RARP)

IP See Internet Protocol (IP)

IPsec See IP security (IPsec)

IP security (IPsec) A suite of protocols and
services that provide data origin authentica-
tion, data integrity, data confidentiality, and
replay protection for Internet Protocol (IP)
datagrams.

ISAKMP See Internet Security Association and
Key Management Protocol (ISAKMP)

L2TP See Layer Two Tunneling Protocol
(L2TP)

LAN See local area network (LAN)

Layer Two Tunneling Protocol (L2TP) A vir-
tual private network (VPN) protocol that en-
capsulates VPN data inside Point-to-Point
Protocol (PPP) frames, which are then fur-
ther encapsulated for sending over a link lay-
er, such as frame relay, X.25, or Internet
Protocol (IP). Over IP, IP uses User Data-
gram Protocol (UDP) encapsulation for both
tunnel creation and maintenance messages
and data.

LCP See Link Control Protocol (LCP)

limited transmit A Transmission Control Pro-
tocol (TCP) performance enhancement that
allows a sending TCP peer to send additional
segments during fast retransmit to better de-
tect segment losses, rather than waiting for a
retransmission timeout.

Link Control Protocol (LCP) A protocol for
negotiating the Data Link Layer characteris-
tics of a point-to-point (PPP) connection.

LLC See Logical Link Control (LLC)

local area network (LAN) A network of inter-
connected computers within a relatively
small geographic area that typically does not
use links provided by third-party telecom-

munications providers.

Logical Link Control (LLC) A sublayer of the
OSI Data Link Layer, as defined by the Insti-
tute of Electrical and Electronics Engineers
(IEEE).

MAC See media access control (MAC)

MAC address The 48-bit address assigned to
a network adapter. Also known as a physical
address, an Ethernet address, a hardware ad-
dress, or an Institute of Electrical and Elec-
tronics Engineers (IEEE) 802 address.

main mode The portion of the Internet Proto-
col security (IPsec) negotiation that creates
the Internet Security Association and Key
Management Protocol (ISAKMP) security as-
sociation (SA). The ISAKMP SA is used to
protect future quick mode IPsec negotia-
tions.

Maximum Receive Unit (MRU) The maxi-
mum size of a Point-to-Point Protocol (PPP)
frame.

Maximum Segment Size (MSS) The maxi-
mum size of a Transmission Control Proto-
col (TCP) segment.

Maximum Transmission Unit (MTU) The
largest frame that can be sent in a packet- or
frame-based network (for example, 1526
bytes for Ethernet).

media access control (MAC) A sublayer of
the OSI Data Link Layer, as defined by the
Institute of Electrical and Electronics Engi-
neers (IEEE). See also MAC address

MRU See Maximum Receive Unit (MRU)

MSS See Maximum Segment Size (MSS)

MTU See Maximum Transmission Unit
(MTU)

NCP See Network Control Protocol (NCP)

neighbor cache A table for each interface of
static or dynamically resolved Internet Proto-
col (IP) addresses and their corresponding
media access control (MAC) addresses. Also
known as an ARP cache.

neighbor unreachability detection A pro-
cess by which an Internet Protocol (IP) node
determines that the IP layer of a neighbor is
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no longer receiving packets.

NetBIOS A network interface for applications
and a set of network protocols providing
name services, session services, and data-
gram services for NetBIOS applications.

NetBIOS over TCP/IP (NetBT) The NetBIOS
name, session, and datagram services
operating over the Transmission Control
Protocol/Internet Protocol (TCP/IP)
protocol suite.

NetBT See NetBIOS over TCP/IP (NetBT)

Network Control Protocol (NCP) A protocol
for configuring a Network Layer protocol
over a point-to-point connection. An exam-
ple of an NCP is Internet Protocol Control
Protocol (IPCP), which is used to configure
an IP address and other settings during the
establishment of an IP-based Point-to-Point
Protocol (PPP) connection.

Network Policy Server (NPS) The Microsoft
implementation of a Remote Authentication
Dial-In User Service (RADIUS) server and
proxy in Windows Server 2008. NPS replac-
es Internet Authentication Service (IAS) that
was provided in Windows Server 2003.

node A network device running the Trans-
mission Control Protocol/Internet Protocol
(TCP/IP) protocol.

NPS See Network Policy Server (NPS)

Oakley A protocol used by Internet Protocol
security (IPsec) for exchanging keys secure-
ly, using the Diffie-Hellman algorithm.

Path MTU discovery (PMTU) A method of dy-
namically discovering the highest Internet
Protocol Maximum Transmission Unit (IP
MTU) for all links between two hosts.

PDU See protocol data unit (PDU)

permanent virtual circuit (PVC) A path
through a virtual circuit packet-switching
network (for example, frame relay) that is
statically programmed into the switches of
the network.

PMTU See Path MTU discovery (PMTU)

Point-to-Point Protocol (PPP) A standard set
of protocols that provide a Data Link Layer
encapsulation method that supports multi-

ple protocols simultaneously on the same
link; a protocol for negotiating the Data Link
Layer characteristics of the point-to-point
connection called the Link Control Protocol
(LCP); and a series of protocols called Net-
work Control Protocols (NCPs) for negotiat-
ing the Network Layer properties of
Network Layer protocols over the point-to-
point connection.

Point-to-Point Protocol over Ethernet (PP-
PoE) A standard method of encapsulating

PPP frames so that they can be sent over an
Ethernet network.

Point-to-Point Tunneling Protocol (PPTP) A
virtual private network (VPN) protocol that
encapsulates VPN data inside Point-to-Point
Protocol (PPP) frames, which are then fur-
ther encapsulated in Internet Protocol (IP)
datagrams for transmission over a transit IP
internetwork such as the Internet.

PPP See Point-to-Point Protocol (PPP)

PPPoE See Point-to-Point Protocol over Ether-
net (PPPoE)

PPTP See Point-to-Point Tunneling Protocol
(PPTP)

protocol data unit (PDU) The unit of infor-
mation that exists at any layer of a layered
network architecture. The protocol data unit
of layer n becomes the payload of layer n-1 (a
lower layer).

PVC See permanent virtual circuit (PVC)

quick mode The portion of the Internet Pro-
tocol security (IPsec) negotiation that creates
the two IPsec security associations (SAs),
one for inbound traffic and one for out-
bound traffic. The IPsec SAs are used to pro-
tect data sent between the two IPsec peers.

RADIUS See Remote Authentication Dial-In
User Service (RADIUS)

RARP See reverse ARP (RARP)

Receive Window Auto-Tuning A Transmis-
sion Control Protocol (TCP) performance
enhancement in Windows Server 2008 and
Windows Vista that automatically deter-
mines the optimal receive window size by
measuring the connection capacity and the
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application retrieve rate and changes the
window size for ongoing transmission path
and application conditions.

Remote Authentication Dial-In User Service
(RADIUS) A standard protocol that is used to

provide authentication, authorization, and
accounting services for network access serv-
ers (NAS) or any other similar device that
needs to authenticate, authorize, and ac-
count for the usage of the device. RADIUS
clients (NASs) send RADIUS requests to RA-
DIUS servers. A RADIUS proxy can be used
to route RADIUS messages between RADIUS
clients and RADIUS servers.

reverse ARP (RARP) Obtains an Internet Pro-
tocol (IP) address of a host from an RARP
server, based on a media access control
(MAC) address. See also Address Resolution
Protocol (ARP) and inverse ARP (INARP)

Request for Comments (RFC) A formal docu-
ment or standard, developed by an individu-
al, the Internet Engineering Task Force
(IETF), or an IETF working group that de-
fines some part of the Transmission Control
Protocol/Internet Protocol (TCP/IP) proto-
col suite. Some RFCs are informational in na-
ture and others are Internet standards. RFCs
are never reissued, but they are superceded
by new RFCs.

RFC See Request for Comments (RFC) 

router A Transmission Control Protocol/In-
ternet Protocol (TCP/IP) node that has rout-
ing capability (also called a gateway).

SA See security association (SA)

Secure Socket Tunneling Protocol (SSTP) A
virtual private network (VPN) protocol in
Windows Server 2008 and Windows Vista
with Service Pack 1 that encapsulates VPN
data using a Hypertext Transfer Protocol
(HTTP) over Secure Sockets Layer (SSL)
session.

security association (SA) The combination of
security services, protection mechanisms,
and cryptographic keys mutually agreed to
by communicating peers. The SA contains
the information needed to determine how
the traffic is to be secured (the security ser-

vices and protection mechanisms) and with
what secret keys (cryptographic keys).

slow start A Transmission Control Protocol
(TCP) algorithm that provides a quick scal-
ing of the actual send window. The actual
send window is increased by one Maximum
Segment Size (MSS) for each acknowledg-
ment segment that is received or each
segment that is acknowledged.

SSTP See Secure Socket Tunneling Protocol
(SSTP)

SVC See switched virtual circuit (SVC)

switched virtual circuit (SVC) A path through
a virtual circuit packet-switching network
(for example, frame relay) that is negotiated
using a signaling protocol each time a con-
nection is initiated.

TCP See Transmission Control Protocol
(TCP)

TCP/IP See Transmission Control 
Protocol/Internet Protocol (TCP/IP)

Time-To-Live (TTL) A field in the Internet Pro-
tocol (IP) header of an IP datagram that is
used to determine how many links on which
the datagram can travel before being discard-
ed by an IP router.

Token Ring A ring access network technol-
ogy specified in Institute of Electrical and
Electronics Engineers (IEEE) standard
802.5.

Transmission Control Protocol (TCP) A reli-
able, stream-based, full-duplex Transport
Layer protocol that runs on top of the Inter-
net Protocol (IP).

Transmission Control Protocol/Internet Proto-
col (TCP/IP) An industry-standard suite of

protocols designed for large internetworks.
TCP/IP is the foundation of today’s Internet,
as well as the foundation of many private
computer networks. TCP/IP includes TCP,
IP, and many other protocols, such as Inter-
net Control Message Protocol (ICMP) and
User Datagram Protocol (UDP).

TTL See Time-To-Live (TTL)

UDP See User Datagram Protocol (UDP)

User Datagram Protocol (UDP) An unreliable
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datagram-based Transport Layer protocol
that runs on top of the Internet Protocol (IP).
UDP provides Application Layer process
identification and a checksum.

WAN See wide area network (WAN)

wide area network (WAN) A geographically
dispersed network, under private control,
but which typically uses network connec-
tions from third-party telecommunications
vendors. See also local area network (LAN)

Windows Internet Name Service (WINS) The
Microsoft implementation of a NetBIOS
name server (NBNS), which is used by Net-
BIOS over TCP/IP (NetBT) hosts to register
NetBIOS names to Internet Protocol (IP) ad-
dress mappings and to resolve NetBIOS

names to IP addresses. WINS also refers to
the name of the NBNS service in Windows
Server 2003.

Windows Sockets (Winsock) A commonly
used application programming interface
(API) that Windows applications utilize to
transfer data using Transmission Control
Protocol/Internet Protocol (TCP/IP).

WINS See Windows Internet Name Service
(WINS)

Winsock See Windows Sockets (Winsock)
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Sender Protocol Address (SPA) field, 47
Target Hardware Address (THA) field, 47
Target Protocol Address (TPA) field, 47

inverse, See InARP
MAC address and, 43
neighbor cache, 50

apr -s, 51
arp -a, 51
netsh interface ipv4 show neighbor, 51
netsh interface ipv4 add neighbors, 51
updating, 51

operation values, 47
overview, 43–45
Proxy ARP, 58–59
registry settings, 56

ArpRetryCount, 
ArpUseEtherSNAP, 56–57
EnableBcastArpReply, 57

Reply message, reachability, 54
Request message, reachability, 54
Windows Server 2008, 48
Windows Vista, 48

ARP cache, 455
ArpUseEtherSNAP, 13–14
asynchronous links:PPP on, 34–35
ATM (Asynchronous Transfer Mode), 31
atomic updates, 327
AuthIP (Authenticated Internet Protocol), 455

IKE coexistence, 401–404
Main mode negotiation, 401
messages, 401
Quick mode negotiation, 401

B
BDP (bandwidth-delay product), 255–256
bit stuffing, 35–36
bit-level integrity, 4
BRI (Basic Rate Interface), 36
Building & Managing Virtual Private Networks, 462
Burnett, Steve, 462

C
Carlson, James D., 462
CBCP (Callback Control Protocol):options, 78
CCP (Compression Control Protocol), 80–81
CDDI (Copper Data Distributed Interface), 22
CHAP (Challenge Handshake Authentication Protocol), 

67
authentication:mutual, 70–69
Challenge message:Code field, 71
Challenge message:Identifier field, 71
Challenge message:Length field, 71
Challenge message:Value Size field, 71
Challenge message:Value field, 71
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CHAP (Challenge Handshake Authentication Protocol), 
(continued)

Challenge message:Name field, 71
Failure message:fields, 71
MD5, 70
Response message:Code field, 71
Response message:Identifier field, 71
Response message:Length field, 71
Response message:Value Size field, 71
Response message:Value field, 71
Response message:Name field, 71
Success message:fields, 71

character stuffing, 35
ciphersuite, 383–384
CIR (committed information rate), 39
Comer, Douglas, 462
compound TCP, 264
Computer Networks, 461
Configure-Ack message, LCP, 66
Configure-Nak message, LCP, 66
Configure-Reject message, PPP, 66
Configure-Request message, 66

LCP, 66
responses, 66

congestion avoidance algorithm, 262–264
congestion avoidance, 455
congestion collapse, 273
congestion window (cwind), 260
congestion, explicit congestion notification, 265–267
contiguous data:cumulative for, 247–248
Cryptography and Network Security, Principles and 

Practices, 462
CTCP (Compound TCP), 455
cwind (congestion window), 260
CWR flag, 206

D
DARPA (Department of Defense Advanced Research 

Projects Agency), 89
Data and Computer Communications, 461
Data Link Layer, 3

addressing, 4
bit-level integrity, 4
delimitation, 3
protocol identification, 3

Davies, Joseph, 461, 462
defending node, 52

duplicate address detection, 54
delimitation, 3
Deploying Virtual Private Networks with Microsoft Windows 

Server 2003, 462
DES (Data Encryption Standard) algorithm, 379
DHCP (Dynamic Host Configuration Protocol), 293, 

455
broadcast flag, 296
broadcast flag:options, 297–301
Chaddr (Client Hardware Address) field, 296
Ciaddr (Client IP Address) field, 296
duplicate address detection, 53–54
File (Boot File Name) field, 296

Flags field, 295–296
Giaddr (Gateway IP Address) field, 296
Hlen (Hardware Address Length) field, 294
Hops field, 295
Htype (Hardware Address Type) field, 294
message exchanges

entries, updating, 310–311
initial lease, 301–308
renewing leases, 308
servers, 309–310
subnets, changing, 308–309

messages, 293
DHCPDECLINE, 294
DHCPDISCOVER, 293
DHCPINFORM, 294
DHCPNAK, 294
DHCPOFFER, 293
DHCPPACK, 294
DHCPRELEASE, 294
DHCPREQUEST, 293–294
format, 294–296

Op (Message Op Code) field, 294
Options field, 296
Secs (Seconds) field, 295
server, 455
Siaddr (Server IP Address) field, 296
Sname (Server Host Name) field, 296
Xid (Transaction ID) field, 295
Yiaddr (Your IP Address) field, 296

Diffie-Hellman algorithm, 455
DIX frame formate, 5
DLCI (Data Link Connection Identifier), 57
DNS (Domain Name System), 455

addresses
resolving names to, 323–325
resolving to names, 326–327

aliases, resolving, 326–327
dynamically updating, 327–329
header

Additional RR Count field, 315, 320
Answer RR Count field, 315
Authority RR Count field, 315
Flags field, 314–316, 319
Prerequisite RR Count field, 320
Question Entry Count field, 315
Transaction ID field, 314
Transaction ID field, 319
Update RR Count field, 320
Zone Entry Count field, 320

introduction, 313
message exchanges, 323

resolving addresses to names, 325–326
resolving aliases, 326–327
resolving names to addresses, 323–325

messages, 313
DNS Name Query Request, 313–318
DNS Name Query Response, 313–318
DNS Update Response, 314
DNS Update, 314, 319–322
UDP messages, 313
Update Response, 319–322

CHAP (Challenge Handshake Authentication Protocol)
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DNS (Domain Name System), (continued)
question entry fields, 316–317
RR (resource records)

CNAME RR, 326
Record Class field, 318
Record Type field, 318
Resource Data Length field, 318
RR Name field, 318
Time To Live field, 318

RRSets, 327
servers:transferring zone information between, 330–

331
zone transfers

Active Directory, 330
incremental, 330
traditional, 330

DNS and BIND Cookbook, 461
DNS and BIND, 461
DNS Name Query Request, 313–314

Additional RR Count field, 315
Answer RR Count field, 315
Authoritative Answer field, 316
Authority RR Count field, 315
Flags field, 314
Operation Code field, 315
Question Class field, 317
Question Entry Count field, 315
Question Name field, 316–317
Question Type field, 317
Question Type field:common values, 317
Record Class field, 318
Record Type field, 318
Recursion Available field, 316
Recursion Desired field, 316
Request/Response field, 315
Reserved field, 316
Resource Data field, 318
Resource Data Length field, 318
Return Code field, 316
RR Name field, 318
Time To Live field, 318
Transaction ID field, 314
Truncation field, 316

DNS Name Query Response, 313
Additional RR field, 315
Answer RR field, 315
Authoritative Answer field, 316
Authority RR field, 315
Flags field, 314
Operation Code field, 315
Question Class field, 317
Question Entry Count field, 315
Question Name field, 316–317
Question Type field, 317
Record Class field, 318
Record Type field, 318
Recursion Available field, 316
Recursion Desired field, 316
Request/Response field, 315
Reserved field, 316
Resource Data Length field, 318

Return Code field, 316
RR Name field, 318
Time To Live field, 318
Transaction ID field, 314
Truncation field, 316

DNS on Windows Server, 461
DNS Update Response, 314

Additional RR Count field, 320
Flags field, 319
Operation Code field, 321
Prerequisite RR Count field, 320
Request/Response field, 320
Reserved field, 321
Return Code field, 321
Transaction ID field, 319
Update RR Count field, 320
Zone Class field, 322
Zone Entry Count field, 320
Zone Name field, 321
Zone Type field, 321

DNS Update, 314
Additional RR Count field, 320
Flags field, 319
Operation Code field, 321
Prerequisite RR Count field, 320
Request/Response field, 321
Reserved field, 321
Return Code field, 321
Transaction ID field, 319
Update RR Count field, 320
Zone Class field, 322
Zone Entry Count field, 320
Zone Name field, 321
Zone Type field, 321

DoD (Department of Defense), 89
Doraswamy, Naganand, 461
Droms, Ralph, 461
DSCP (Differentiated Services Code Point), 96
duplicate address detection, 455
DVMRP (Distance Vector Multicast Routing Protocol), 

161

E
EAP, 73–74

EAP-MSCHAP-V2, 75
EAP-TLS, 75
Failure message

Code field, 76
Identifier field, 76
Length field, 76

Identity, 75
Nak, 75
Notification, 75
PEAP, 75
Request message

Code field, 75
Identifier field, 75
Length field, 75
Type field, 75
Type-Specific Data field, 75

EAP
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EAP, (continued)
Response message

Code field, 75
Identifier field, 75
Length field, 75
Type field, 75
Type-Specific field, 75

Success message
Code field, 76
Identifier field, 76
Length field, 76

EAP-MS-CHAP v2, 76–77
EAP-TLS, 77
ECE flag, 206
ECN (Explicit Congestion Notification), 97, 455
ECP (Encryption Control Protocol), 82
encapsulation, 3–4
encryption:Main mode negotiation, 399
ephemeral ports, 195
ESP (Encapsulating Security Payload), IPsec, 456

Authentication Data field, 379
Next Header field, 379
Padding field, 378
Padding Length field, 378
Security Parameters Index field, 378
Sequence Number field, 378
Transport mode, 380–382
Tunnel mode, 382–383

Ethernet II, 4
destination address, 5–6
EtherType, 6
frame check sequence, 6–7
frame:IEEE 802.3 frame, 11
header, 5–7

destination address, 5–6
EtherType, 6
Frame Check Sequence, 6–7
Payload, 6
preamble, 5
source address, 6

payload, 6
preamble, 5
trailer, 5–7

destination address, 5–6
EtherType, 6
Frame Check Sequence, 6–7
Payload, 6
preamble, 5
source address, 6

Ethernet, 4
ALOHA, 4
Fast Ethernet, 4
frame padding, 50
frames, minimum size, 8–9
interframe gap, 7
MAC addresses

Individual/Group bit, 14
Routing Information Indicator bit, 15
Universal/Locally Administered bit, 14–15

Node A, transmitting, 8
explicit congestion notification, 265–267

F
Fast Ethernet, 4
fast recovery, 456
fast retransmit, 456
FCS (Frame Check Sequence), 6–7
FDDI (Fiber Distributed Data Interface), 3, 21–22, 456

frame format, 22–24
header and trailer

Destination Address field, 23
End Delimiter field, 23
Frame Check Sequence field, 23
Frame Control field, 23
Frame Status field, 24
Preamble field, 22
Source Address field, 23
Start Delimiter field, 22–23

IEEE 802.2 LCC header, 24
MAC addresses, 24
payload, 24
SNAP, 24–25

FIN flag, 207
FIN-ACK, 234–237
FLAG character, PPP payload, 34–35
fragmentation, 103
frame format, 4
Frame Padding:Ethernet and, 50

Frame Relay Address field, 2-byte Address field
C/R field, 41
DE field, 41
DLCI field, 40
EA field, 41
FECN field, 41

Frame Relay DLCI, values for, 40
Frame Relay, 38–39, 456

advantages, 38
encapsulation, 39–41
header and trailer

Address field, 39
Control field, 40
Flag field, 39
Frame Check Sequence field, 40
NLPID field, 40

G
gateway, 456
GQoS (Generic QoS), 97

H
Hagen, Silvia, 461
hardware, ARP frames, 46
Harkins, Dan, 461
hash, 456
Hassell, Jonathan, 462

EAP
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HDLC (High-Level Data Link Control), 33
Headers, IPsec, AH (Authentication Header), 374–375
hexadecimal digits, converting to ASCII characters, 338–

339
host groups, 158, 456
host, 456

I
I/G bit, 161
IANA (Internet Assigned Numbers Authority), 195
ICMP (Internet Control Message Protocol), 456

Address Mask Reply message, 146–147
Address Mas field, 147
Code field, 147–151
Identifier field, 147
Sequence Number field, 147
Type field, 147

Address Mask Request message, 146–147
Destination Unreachable message, 129–131

Code field, 130
IP header field, 130
Type field, 130
Unused field, 130

Echo message, 127
Code field, 127
Identifier field, 128
Optional Data field, 128
Sequence Number field, 128
Type field, 127

Echo Reply message, 128
Code field, 128
Identifier field, 128
Optional Data field, 129
Sequence Number field, 129
Type field, 128

introduction, 125
message structure, 126–127
messages, 126

Checksum field, 127
Code field, 127
common types, 127
datagrams, 126
IP header, 126
Type field, 126
Type-Specific Data field, 127

Parameter Problem message, 145–146
Code field, 146
IP Header field, 146
Pointer field, 146
Type field, 146
Unused field, 146

PMTU Discovery, 133–136
Redirect message, 137–141
Router Advertisement message, 141

Address Entry Size field, 142
Code field, 141

Lifetime field, 142
Number Of Addresses field, 142
Preference Level field, 142

Router IP Address field, 142
Type field, 141

Router Discovery, 141–144
Router Advertisement, 141–142
Router Solicitation, 142–144

Router Solicitation message, 141–142
Code field, 143
Reserved field, 143
Type field, 143

Source Quench, 136
Code field, 137

IP Header field, 137
Type field, 137
Unused field, 137

Time Exceeded message, 144–145
Code field, 145
IP header field, 145
Type field, 144
Unused field, 145

ICMPv6, 185
IEEE 802.11, 26

Frame Control field
From DS field, 29
More Data field, 29
More Fragments field, 29
Order field, 29
Power Management field, 29
Protocol Version field, 28
Retry field, 29
Subtype field, 29
To DS field, 29
Type field, 29
WEP field, 29

frame format, 26–29
header and trailer

Address 1 field, 27
Address 2 field, 27
Address 3 field, 27
Address 4 field, 28
Duration/ID field, 26
Frame Check Sequence field, 28
Frame Control field, 26–27
Sequence Control field, 27

IEEE 802.2 LLC header, 28
payload, 28
SNAP, 30

IEEE 802.2 LLC Header
Control, 11
DSAP, 10
SSAP, 10

IEEE 802.3 Frame, Ethernet II Frame and, 11
IEEE 802.3 SNAP, 12–14
IEEE 802.3, 9–10

header and trailer
Destination Address field, 10
Frame Check Sequence field, 10
Length field, 10
Preamble field, 10
Source Address field, 10
Start Delimiter field, 10

IEEE 802.3
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IEEE 802.5
header and trailer

Access Control field, 17
Destination Address field, 17
End Delimiter field, 18
Frame Check Sequence field, 18
Frame Control field, 17
Frame Status field, 19
Payload field, 18
Source Address field, 18
Start Delimiter field, 17
trailer, 17–19

IEEE 802.5 SNAP, 19
IETF (Internet Engineering Task Force), 373, 456
IGMP (Internet Group Management Protocol), 456

Host Membership Query messages, 160
Host Membership Report messages, 160
IGMPv1, 163

Addresses, 165
Checksum field, 164
Group Address field, 165
Type field, 164
Unused field, 164
Version field, 164

IGMPv2
addresses, 168
Checksum field, 168
Group Address field, 168
Group-Specific Query message, 167
Leave Group message, 166–167
Maximum Response Time field, 168
Type field, 168

IGMPv3, 169–172
Host Membership Query, 170
Host Membership Report, 171
Number of Sources field, 170
Querier's Query Interval field, 170
Querier's Robustness Variable field, 170
Reserved field, 170
Source Address field, 170
Suppress Router-Side Processing field, 170

introduction, 157
message structure, 163
proxy mode, 174–176
Windows Server 2008

Remote Access, 174–176
Routing, 174–176
TCPP protocol, 173

Windows Vista
Remote Access, 174–176
Routing, 174–176
TCPP protocol, 173

IKE (Internet Key Exchange), 456
introduction, 385
ISAKMP and, 385
Oakley Key Determination Protocol and, 385

INARP (inverse ARP), 457
InARP, 57–58
informed discards, 125
initiator, 384
Internetworking with TCP/IP, 462

Intranet, multicast and, 161–162
IP (Internet Protocol), 456
IP address

hop IP address, 43
next-hop, 44

IP multicast
host groups, 158
host support, 158–160
multicast groups, 158
overview, 157–158
permanent groups, 158
promiscuous mode, 161
router support, 160–161
traffic, 159
traffic:receiving, 160
traffic:TTL values, 159

IP Router Alert option, 120
IP

datagram delivery, 90
datagram packet-switching, 91
datagram, 92–89

IP header, 92
IP payload, 93

extensibility, 91
fragmentation, 90–91, 103

avoiding, 109–112
DF flag and, 109
example, 105–107
fields, 103–105
fragmenting a fragment, 109
IP payload and, 110
reassembly example, 107–108
source fragmentation, ping and, 110
translational bridging, 110–112
Windows Server 2008, 112
Windows Vista, 112

header, 93
Cost field, 96
Delay field, 95
Destination Address, 102
Flags field, 99
Fragment Offset field, 99
Header Checksum field, 101–102
Header Length field, 94
Indentification field, 99
options, 102
padding, 102
Precedence field, 95
Protocol field, 101
Reliability field, 96
Reserved field, 96
Source Address field, 102
Throughput field, 96
Time-To-Live field, 99–101
Total Length field, 98–99
Type Of Service field, 94–97
Version field, 93–91

Internet Timestamp option, 121–122
internetworking protocol, 90
introduction, 89
IP Router Alert option, 120

IEEE 802.5
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IP (continued)
MTU, 91–92
multiple client protocols, 90
Network Interface Layer and, 90
options, 112

Copy field, 113
End Of Option List, 114
No Operation, 114
Option Class field, 113
Option Number field, 113
Record Route processing, 115
Record Route, 114–115
Record Route, ping and, 115

Precedence field, 95
reassembly, 90–91
services

datagram delivery, 90
datagram packet-switching technology, 91
extensibility through IP options, 91
fragmentation, 90–91
internetworking protocol, 90
multiple client protocols, 90
Network Interface Layer independence, 90
reassembly, 90–91

source routing, 116–120
IPCP (Internet Protocol Control Protocol), 32, 79–80
IPsec (Internet Protocol Security), 457

AH (Authentication Header)
Authentication Data field, 375
Next Header field, 374
Payload Length field, 374
Reserved field, 374
Security Parameters Index field, 374
Sequence Number field, 374–375

ESP Encapsulating Security Payload
Authentication Data field, 379
Next Header field, 379
Padding field, 378

Padding Length field, 378
Security Parameters Index field, 378
Sequence Number field, 378

ESP Transport mode, 380–382
ESP Tunnel mode, 382–383
headers, 373–374
introduction, 373
IP datagrams:AH Transport mode, 375–376
IP datagrams:AH Tunnel mode, 377–378
ISAKAMP:message structure, 385–399
NATs, 404–406
SA (Security Associations), 383

creating, 384
IKE (Internet Key Exchange), 385
IPsec SA, 384
ISAKMP SA, 383–384
SPI (Security Parameters Index), 384
SPI (Security Parameters Index), 384
Transport mode, 375
Tunnel mode, 375
Windows Server 2008:algorithms, 379
Windows Vista:algorithms, 379

IPSec:The New Security Standard for the Internet, Intranets, 
and Virtual Private Networks, 461

IPv4, 179
disadvantages of

address space, 179–180
configuration, 180
mobility, 180
prioritized delivery, 180
routing infrastructure, 180
security, 180

IPv6 comparison, 186–187
IPv6 Essentials, 461
IPv6, 456

address space, 181
addressing, 181–182

syntax, 182
types of addresses, 182–183
Unicast addresses, 183

configuration, 181
DNS support, 184
interface identifiers, 183
IPsec headers, 181
MLD (multicast listener discovery), 186
mobility, 181
prioritized delivery, 181
protocols

ICMPv6, 185
IPv6 header, 184
Neighbor Discovery, 185–186

routing infrastructure, 181
ISAKMP (Internet Security Association and Key 

Management Protocol), 456–457
Certificate Payload, 398

Certificate Data field, 398
Certificate Encoding field, 398

Certificate Request Payload, 397
Certificate Authority field, 398
Certificate Type field, 397
Certificate Type values, 397

Delete Payload, 395–396
Domain of Interpretation field, 396
Number of SPIs field, 396
Protocol-ID field, 396
SPI Size field, 396
SPIs field, 396

Hash Payload, 396
header

Exchange Type field, 387
flags field, 387
Initiator Cookie field, 386
Length field, 388
Major Version field, 387
Message ID field, 388
Minor Version field, 387
Next Payload field, 386
Responder Cookie field, 386

Identification Payload, 396
DOI-Specific ID Data field, 396
ID Type field, 396
Identification Data field, 396

Key Exchange Payload, 393–394

ISAKMP (Internet Security Association and Key Management Protocol)
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ISAKMP (Internet Security Association and Key 
Management Protocol), (continued)

message structure, 385–399
Nonce Payload, 393
Notification Payload, 394

Domain of Interpretation field, 394
Notification Data field, 394
notification error messages, 395
notification status messages, 395
Notify Message Type field, 394
Protocol-ID field, 394
SPI field, 394
SPI Size field, 394

Proposal Payload, 389
Next Payload field, 389
Number of Transforms field, 390
Payload Length field, 389
Proposal Number field, 389
Protocol-ID field, 389
SPI Size field, 389

SA payload
DOI (domain of interpretation), 388
Domain of Interpretation field, 388
Next Payload field, 388
Payload Length field, 388
Reserved field, 388
Situation field, 388

Signature Payload, 398–399
Transform Payload

Next Payload field, 390
Payload Length field, 390
Reserved2 field, 390
SA Attributes field, 390
Transform ID field, 390
Transform Number field, 390

Vendor ID Payload, 392–393
ISAKMP SA, 383–384
ISDN (Integrated Services Digital Network), 31
ISN (Initial Sequence Number), 247

K
Karn's algorithm, 284–285
Kaufman, Charles, 462
Kosiur, Dave, 462

L
L2TP (Layer Two Tunneling Protocol), 457
L2TP:Implementation and Operation, 461
LANs (local area networks), 457
Larson, Matt, 461
LCP (Link Control Protocol), 61, 63, 457
LCP (Link Control Protocol)

Code field, 63
Configure-Ack message, 66
Configure-Nak message, 66
Configure-Request message, 66
Data field, 64
frame types, 64

Identifier field, 63
Length field, 64
negotiation process, 66–67
options, 64–65

Lemon, Ted, 461
Lewis, Elliot, 462
limited transmit, 457
LLC (Logical Link Control), 4
LLC (Logical Link Control), 457
Lloyd, Steve, 461
Lui, Cricket, 461

M
MAC (Media Access Control), 4, 457

addresses
Functional Address Bit, 21
Individual/Group bit, 14
Individual/Group bit, 20
Routing/Information Indicator bit, 15
Universal/Locally Administered bit, 14–15
Universal/Locally Administered bit, 20

MAC address, 457
MADCAP (Multicast Address Dynamic Client Allocation 

Protocol), 159
main mode, 457
main mode negotiation, 399
MBONE (multicast backbone), 162–163
MD5 (Message Digest 5) algorithm, 70

messages, 70
Microsoft Windows Internals, Fourth Edition:Microsoft 

Windows Server 2003, Windows XP, and Windows 
2000, 461

MLD (Multicast Listener Discovery), 186
MOSPF (Multicast Extensions to Open Shortest Path 

First), 161
MP (Multilink Protocol), 36

Beginning Fragment Bit field, 37
Ending Fragment Bit field, 37
Reserved field, 37
Sequence Number field, 37

MPPC, 80
MPPE, 80
MRU (Maximum Receive Unit), 457
MS-CHAP v2 (Microsoft Challenge Handshake 

Authentication Protocol version 2), 67, 71–73
Response message

Code field, 72
Flags field, 73
Identifier field, 72
Length field, 72
Name field, 73
Peer Challenge field, 72
Reserved field, 73
Value Size field, 72
Windows NT Response field, 73

MSS (Maximum Segment Size), 457
MTU (Maximum Transmission Unit), 210–211, 457
multicast groups, 158

ISAKMP (Internet Security Association and Key Management Protocol)

Z04I624474.fm  Page 470  Thursday, December 6, 2007  12:50 PM



471

N
Nagle algorithm, 257–258
name registration errors, return code values, 325
NAS (network access server), 353
NAT-D (NAT-Discovery), 405
NAT-Keepalive packet, 405
NAT-OA (NAT-Original Address), 405
NATs (Network Address Translators), 404–406
NAT-T (NAT traversal), 404–406
NCPs (Network Control Protocols), 32, 61, 458
neighbor cache, 50, 457

arp -a, 51
arp -s, 51
entry states

delay, 56
incomplete, 55
probe, 56
reachable, 55–56
stale, 56

incorrect entries, preventing, 52
netsh interface ipv4 add neighbors, 51
netsh interface ipv4 show neighbors, 51
unreachability detection, 54–56
updating, 51

Neighbor Discovery in IPv6, 48, 185–186
address resolution, 185
duplicate address detection, 186
redirect, 186
router discovery, 186
unreachability detection, 186

neighbor unreachability detection, 457–458
NetBIOS name representation, 338–340
NetBIOS name service messages

Additional RR Count, 336
Additional RRs, 335
Answer RR Count, 336
Answer RRs, 335
Authoritative Answer, 337
Authority RR Count, 336
Authority RRs, 335
Broadcast, 337
Flags, 336
Name Service header, 334
Operation Code, 336
Question entries, 334
Question Entry Count, 336
Question RR:Question Class field, 321
Question RR:Question Name field, 321
Question RR:Question Type field, 321
RDATA field:Group Flag field, 322
RDATA field:Owner Node Type field, 322
RDATA field:Reserved field, 322
Recursion Available, 337
Recursion Desired, 337
Request/Response, 336
Reserved, 337
Return Code, 337
RRs:Record Class field, 321
RRs:Record Type field, 321
RRs:Resource Data field, 321

RRs:Resource Data Length field, 321
RRs:RR Name field, 321
RRs:Time to Live field, 321
Truncation, 337

NetBIOS, 458
names

refreshing, 349–350
registering, 346–349
releasing, 351–352
resolving to IPv4 addresses, 344–346

NetBT (NetBIOS over TCP/IP), 333, 458
messages

Name Query Request, 334
Name Query Response, 334
Name Refresh Request, 334
Name Registration Request, 334
Name Registration Response, 334
Name Release Request, 334
Name Release Response, 334
Wait Acknowledgment, 334

network black hole, 45
network control protocols:IPCP, 79–80
Network Security:Private Communication in a Public World, 

462
network access

accounting, 367–369
authentication message exchanges, 364–367

next-hop IP address, 44
NLPID (Network Layer Protocol Identifier), 39
nodes, 458
noncontiguous data:selective for, 248–249
Northrup, Tony, 461
NPS (Network Policy Server), 458

O
Oakley, 458
offending node, 52

Windows Server 2008, 52
Windows version, 53
Windows Vista, 52

opcodes:ARP frames, 47
Organization Code field, 12
OSI (Open Systems Interconnection), 3

P
packets, discarding, 125
packet-switching technologies

early, 38
frame relay, 38

PADO (PPPoE Active Discovery Offer), 84
PADR (PPPoE Active Discovery Request), 84
PADS (PPPoE Active Discovery Session-confirmation), 

85
PAP (Password Authentication Protocol), 67

Authenticate-Ack message, 68
Authenticate-Ack message

Code field, 69
Identifier field, 69

PAP (Password Authentication Protocol)
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PAP (Password Authentication Protocol), (continued)
Authenticate-Ack message

Length field, 69
Message Length field, 69
Message field, 69

Authenticate-Nak message
Code field, 69
Identifier field, 69
Length field, 69
Message Length field, 69
Message field, 69

Authenticate-Request message, 68
Code field, 68
Identifier field, 68
Length field, 68
Password field, 69
Password Length, 69
Peer ID field, 68
Peer ID Length field, 68

messages, 68
Pathping.exe tool, 153–155
PDU (protocol data unit), 6, 458
PEAP (Protected EAP), 77–78
Perlman, Radia, 462
permanent groups, 158
PIM (Protocol Independent Multicast), 161
Ping.exe, 148–150
PMTU (Path MTU discovery), 458

adjusting, 134
black hole router, 135
plateau values, 135
routers not supporting, 134–136

PPP (Point-to-Point) protocol, 32–33, 458
address, 33
asynchronous links, 34–35
authentication protocols, 67–68
authentication protocols:PAP, 68–70
bit stuffing, 35–36
callback, 78
CBCP, 78
CCP (Compression Control Protocol), 80–81
CHAP, 70
Configure-Reject message, 66
Configure-Request message, 66
connection process, 62

authentication, 62
callback, 62
configuration using LCP, 62
configuration using NCPs, 63

connection termination, 63
control, 33
Data Link Layers and, 61
EAP, 73–74
ECP, 82
encapsulation, IP datagram, 34
FCS (Frame Check Sequence), 33–34
frames, HDLC encapsulation, 34
header and trailer
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