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PREFACE

nalog filters, that is continuous-time filters, or filters that can be
implemented with resistors, capacitors, inductors, specialized elements or
devices, etc., have enjoyed a long history of use in electrical engineering

applications. In fact, it can be said without fear of contradiction that the modern
technological world, as we know it, would not exist without analog filters. Even
though digital filters, and digital signal processing in general, has experienced great
growth and development in recent years, analog filters are an important topic. At the
university where the author is an associate professor, a course in analog filters, taught
at the first-year graduate / senior level, is one course in the graduate program of signal
processing. Many of the concepts in analog filter theory help establish a foundation
of understanding that assists in more advanced courses on digital filters, modern
filters, adaptive filters, spectral estimation, etc. And, of course, analog filter
concepts, and the ability to design and analyze them, is important in the additional
area of analog circuit design, mixed signal circuit1 design, and in integrated circuit
development.

Therefore, this textbook presents analog filter theory from a signal processing
perspective (i.e., stressing the signals and systems concepts), but also including
analog circuit design and analysis as well. Concepts such as the relationships among
the time domain, frequency domain, and s domain are stressed. Other things stressed
are inherent trade-offs dictated by theory, that have nothing to do with
implementation. For example, attempting to eliminate the time-domain ringing of a
high-order Butterworth bandpass filter is an exercise in futility, as theory clearly
reveals. Chebyshev and elliptic filters will ring even more: s domain analysis, and
the equivalent time-domain analysis clearly reveal this, whereas frequency domain
analysis alone may not suggest it. As an educator, and one who concentrates in the
area of signal processing, the author believes these concepts to be of vital importance.
Almost any book on analog filters will include signal processing / systems concepts

1 Mixed signal circuits are those that include analog signals, and analog circuitry to process and amplify
them, and also digital signals and associated digital circuitry. An example is an integrated circuit with an
analog input signal and an analog output signal, but with some digital signal processing in between, which
requires an A/D with some analog signal conditioning on the input, perhaps including an anti-aliasing filter,
and a D/A with some signal conditioning on the output, perhaps including a reconstruction filter.



as well as implementation, and the present book is no exception. Most books on
analog filter design briefly present the signal processing / systems concepts, and then
concentrate on a variety of filter implementation methods. The present book reverses
the emphasis, stressing signal processing concepts. The present book does not ignore
implementation, as it does present filter implementation topics in Part II: passive
filters, and operational amplifier active filters. However, greater emphasis on signal
processing / systems concepts are included in Part I of the book than is typical. As
suggested above, this emphasis makes the book more appropriate as part of a signal
processing curriculum, but should also be of interest to those in analog circuit design
as well.

The intended audience for this book includes anyone with a standard electrical
engineering background, with a B.S. degree or beyond, or at the senior level. The
most important background subjects are Laplace and Fourier transform theory, and
concepts in basic systems and signals, and, of course, basic circuits as well. A
background in communications systems would be helpful in fully appreciating the
application examples given in Chapter 1, but these examples are given to illustrate
analog filter applications, and a communications background is not a prerequisite for
understanding the developments in the book. While MATLAB2 and SPICE3 are
software packages used, and familiarity with them would be an asset, it is assumed
that the adept student can learn these software tools on his own, or with minimal
guidance, if they are not already known. A brief introduction to MATLAB is given
in Appendix A.

Analog electrical signals are so named because they are analogous to some
other signal from which they are derived: acoustic, electromagnetic, mechanical
motion, etc. Analog filters process analog signals. However, they are also analogous
in another respect. The physically-constructed filter, i.e. the realized filter, responds
in the time-domain and frequency-domain in a manner that is analogous to the
theoretical filter, as defined by, say, as is often done, the magnitude-squared
frequency response. This suggests an important concept. A particular filter response,
as perhaps defined by the magnitude-squared frequency response, such as a
Butterworth response, is mathematically defined. The realization is, at best, an
approximation. Therefore, the “filter” is defined mathematically and abstractly. All
realizations are approximations. A “circle” often refers to a geometrical drawing
representing a circle, as a “filter” often refers to a physical realization of a filter.
Hence, in this textbook, theory is stressed and presented first; implementation (a
schematic drawing) follows, and, in practice, a realization (physical circuit) would
often follow that. It is a fascinating confirmation of the value of theory, that trial and
error, and experimentation, would never come up with a Butterworth filter design, but
theory elegantly and clearly develops it, and states the result in a very simple form.

2MATLAB is a registered trademark of The Math Works, Inc., and is a high-level language for technical
computing.

3SPICE is an abbreviation for Simulation Program with Integrated Circuit Emphasis, and is a powerful
circuit simulation computing program. Many commercially available circuit simulation programs are based
on SPICE.
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The term “approximation” is used in two ways in this book. In Part I it refers
to a filter design H(s) that only approximates an ideal filter. As pointed out in
Chapter 2, the term “ideal filter” is an unfortunate choice of words, as a conventional
“ideal filter” can only be conceived of as being ideal in the frequency domain. A
conventional “ideal filter” has some very non-ideal characteristics, such as being non-
causal, for example. Nevertheless, such “ideal filters” are often a starting point, and
then classical filter designs are referred to as approximations, since their magnitude
frequency response will only approximate that of the ideal response.

The term “approximation” is also used in this book in the sense in which it was
used two paragraphs above. A physical realization will only approximate the filter
design H(s). This is because of physical limitations, such as component value
tolerances, etc. So a realized filter may be thought of as doubly an approximation.
The physical realization only approximates H(s), and H(s) only approximates some
“ideal” response.

A valuable relationship between analog filter theory and analysis and modern
digital signal processing is made by the application of MATLAB to both the design
and analysis of analog filters. MATLAB was used significantly in developing the
material presented in this book, and throughout the textbook computer-oriented
problems are assigned. The disk that accompanies this book contains MATLAB
functions and m-files written specifically for this book. The MATLAB functions on
the disk extend basic MATLAB capabilities in terms of the design and analysis of
analog filters. The m-files are used in a number of examples in the book. They are
included on the disk as an instructional aid. See Appendix B for a description of the
contents of the accompanying disk. These functions and m-files are intended to be
used with MATLAB, version 5, Student Edition, and are not stand-alone. Therefore,
familiarity with MATLAB is essential, or the willingness to study it on one's own, for
maximum benefit from the study of this book.

In Chapter 1, Introduction, basic filtering concepts are presented, such as
how a filter is used to estimate a signal from a noisy version of it, or to separate
signals based on their frequency content. Chapter 1 also gives a number of practical
examples of where a properly designed analog filter can be of significant practical use.
It also gives an overview of the text, and therefore chapters of the book will only be
briefly introduced here.

In PART I, Approximation Design and Analysis, consisting in Chapters 2
through 9, fundamental concepts and the design and analysis all of the common
classical filters are theoretically presented: Butterworth, Chebyshev, elliptic and
Bessel. Some filter designs, such as Gaussian and Legendre, which are not as well
known, are also covered.

In  PART II, Implementation and Analysis, consisting of Chapters 10 and
11, implementation of a filter in a circuit schematic diagram is presented. Chapter
10 introduces passive filter design, and Chapter 11 introduces active filter design.
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Features of this book that may be of interest include the following:

There are over 200 figures in the book. Many of these figures report
basic characteristics of given analog filter design methods: these data
graphs were obtained from MATLAB simulations.

The data graphs mentioned immediately above include the magnitude
frequency response, the phase response, phase delay, group delay, unit
impulse response, and unit step response, for several filter orders.
These data graphs are for filters with a normalized 3 dB cutoff
frequency for ease of comparing different filters.

Not only are all of the classical filter design methods covered
(Butterworth, Chebyshev Type I, Chebyshev Type II, Bessel, and
elliptic), but other methods are also included: Gaussian, Legendre,
ultraspherical, Papoulis, and Halpern.

There are over 100 examples in the book.

There is a total of 345 homework problems in the book, appearing at
the ends of the chapters.

On the accompanying disk (standard 3 1/2 inch PC floppy) there is over
30 MATLAB m-files and functions written specifically for this book.
The functions include filter designs for Gaussian, Legendre, ultra-
spherical, Papoulis, and Halpern filters. See Appendix B for a
complete list of the contents of the disk.

A solutions manual, containing the solutions for selected homework
problems, is available from the publisher for qualified instructors who
have adopted the book for classroom use.

This book has grown out of the author’s experience of teaching a course on
analog filters over the past ten years. The author would like to express his
appreciation to the classes of students at Wichita State University who have taken the
course on analog filters with the author, have suffered through earlier manuscript
versions that preceded this book, and offered comments and suggestions toward
improving the final result. Being their teacher has been a rewarding experience.

Larry D. Paarmann
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I

CHAPTER 1

INTRODUCTION

how an analog filter contrasts with other filter types is given: the topic or filtering is
broad, including modern, or statistical filters, adaptive filters, etc. Also, to strengthen
the basic concept of what a filter is and how it is used, several examples of analog
filter applications are presented: these examples indicate the importance and
pervasiveness of analog filters. A brief historical perspective is presented on analog
filter theory and design. Also, a brief note on the use of MATLAB1 in this book is
given. Finally, to provide a scope of how the material of the book is to be unfolded,
a brief overview of the text is given.

1.1 FILTERING CONCEPTS

The word “filter” is in common use, such as an oil filter used in an automo-
bile. Also used in an automobile is an air filter and a fuel filter. An air filter is also
used in home heating / air conditioning systems. A lint filter is used in a clothes
dryer. Photographers frequently make use of a lens filter. In all of these applications
the filter is a device that removes something: small metal particles, dust, lint, etc.
The photographic filter suppresses a certain band of wavelengths, or is designed to
pass light of a particular polarity, etc.

Electric filters may be thought of in a similar way. An electric analog filter
is typically designed to pass certain things and attenuate if not completely block other
things. Since an analog filter is typically time-invariant, what it passes or blocks is
not time-dependent per se. Rather, similar to the photographic filter, it is typically
designed to pass certain wavelengths, or frequencies, and attenuate or block others.
Therefore, many of the concepts, and specifications, of analog filters are defined or

1MATLAB is a registered trademark of The MathWorks, Inc.

n this chapter very basic concepts of analog filters are presented in order to
provide motivation for the rest of the book, and to give some indication of the
importance of the topic. Therefore, defining what is meant by a “filter,” and



2 DESIGN AND ANALYSIS OF ANALOG FILTERS:

explained in the frequency domain. Just what a given filter accomplishes is much
more readily comprehended in the frequency domain than in the time domain.

A general area of application of analog filters is passing one signal while
suppressing others that are non-overlapping in the frequency domain. These same
signals, generally, are overlapping in the time domain, i.e., they occur at the same
time and are added together. A time-domain plot of such a composite signal would
not suggest any convenient way of separating them. On the other hand, a frequency
domain plot of such a composite signal does suggest a convenient way of separating
them, as shown below.

As an example of signals that overlap in the time domain but not in the
frequency domain, consider Figure 1.1, where x(t) is as follows:

That is, x(t) is the sum of N amplitude-modulated (AM) signals, which will be
recognized by anyone who has studied basic modulation techniques: is the i–th
amplitude coefficient, is the i-th modulation coefficient, is the i–th
information signal (e.g., speech or music), and is the i-th transmitter carrier
frequency (Proakis and Salehi, 1994; Stremler, 1990). Suppose the output signal
y(t) of Figure 1.1 is as follows:

That is, y(t) is just one of the terms (i = 3) in the sum shown in (1.1). The signal
y(t) could then be applied to an AM demodulator to recover and could
then be amplified and listened to on a loudspeaker, assuming is speech or music.
This example, of course, illustrates how an AM broadcast receiver is able to select one
of many AM broadcast signals, all of which are simultaneously impinging upon the
radio receiver antenna. This is illustrated in Figure 1.2. Note that Figure 1.2 clearly
reveals the operation of the filter shown in Figure 1.1: the filter is a bandpass filter;
only certain frequencies are allowed to pass through it. Figure 1.2 is an idealized

Chapter 1 Introduction



A Signal Processing Perspective 3

illustration: (1) Five carrier frequencies are shown, through (2) The
impulses represent those five carrier frequencies; (3) The smooth symmetrical curves
on either side of each impulse represent the upper and lower sidebands of the
transmission; (4) These five carrier frequencies and associated sidebands represent
five AM broadcast transmissions adjacent to one another in the frequency domain,
which would be five adjacent radio stations on a radio receiver tuning dial; (5) The
analog filter of Figure 1.1 has an idealized frequency response illustrated in Figure
1.2 by the rectangular function; (6) In the frequency domain, the output of the analog
filter of Figure 1.1 consists only of the product of the bandpass filter response and the
composite frequency spectrum shown in Figure 1.2, which consists only of the
crosshatched transmission with carrier frequency (7) Therefore, in the time
domain, the output of the filter is as shown in (1.2), assuming the bandpass filter gain
across the passband is unity.

Note that showing the relationship between y(t) and x(t) in the time domain,
y(t) = h(t) * x(t), where h(t) is the unit impulse response of the filter, and *
denotes convolution, would not so readily reveal the operation of the filter. In the
frequency domain, where the magnitudes are illustrated in
Figure 1.2, is much more illustrative.

Another general area of application of analog filters is estimating a desired
signal while suppressing others that are overlapping in the frequency domain. This
is often done to improve the signal-to-noise ratio of a noisy signal. As an example,
consider Figure 1.1 again, but this time let x(t) be as follows:

Section 1.1 Filtering Concepts
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where s(t) is a signal of interest, and n(t) is additive noise. Suppose it is desired
to design the filter in Figure 1.1 to estimate the signal s(t) from the noisy version
of it, x(t). Or, in other words, it is desired that the filter be designed to reduce the
noise in x(t) while having a minimal degradation effect upon the signal s(t). Or put
another way, it is desired that the filter be designed in such a way as to improve the
signal-to-noise ratio.2 In this context, the analog filter is a signal estimator. In the
time domain it may be difficult to visualize what characteristics the filter should have.
Suppose that Figure 1.3 (a) illustrates the power spectral density of x(t),
denoted Suppose, for the purposes of this example, that it is known that the
power spectral density of s ( t ) , denoted is as illustrated in Figure 1.3 (b),
and that n(t) is white noise4 with power spectral density = 1.0 (note that the
level of the line between 10 rad/s and 30 rad/s in Figure 1.3 (a) is unity). In the
frequency domain it is apparent that the signal-to-noise ratio can be improved by
designing the analog filter as a lowpass filter with a cutoff frequency at the maximum
frequency content of s(t). This is illustrated in Figure 1.3 (b). The signal-to-noise
ratio at the output of the filter can be readily determined to be 10.5 If the noise n (t)
on the input of the filter is not truly white, but rather bandlimited white noise with
a bandwidth of 1000 rad/s , then the signal-to-noise ratio on the filter input can be
readily shown to be only 0.1. Therefore, the lowpass filter has significantly increased
the signal-to-noise ratio.

1.2 CLASSES OF FILTERS

There are many ways in which to classify filters. Below are given several
ways in which to do so. Filtering is a broad topic, and classification helps one to gain
an overall perspective, and to appreciate how analog filters fit into this larger scheme
of filtering.

Signal-to-noise ratio is defined as the power of the signal divided by the power of the noise. For this
concept, as well as others in this illustration, refer to an introductory textbook on communications systems,
such as, for example, the one by Stremler (1990).

The power spectral density of a signal indicates how the power in a signal is a function of frequency,
and is a topic generally included in introductory textbooks on communication systems (Proakis and Salehi,
1994; Stremler, 1990), and in books on signal processing (Ambardar, 1995; Oppenheim and Schafer,
1975). The power in a given frequency range, say from to is directly related to the integral of
the PSD across that frequency range, hence power spectral density.

white noise is uncorrelated such that its PSD is constant.
5Given that the level of for frequencies from 4 rad/s to 8 rad/s is 6 2/3, the ratio of the area

under to the area under for frequencies from 0 to 10 rad/s can readily be shown to be 10.

IntroductionChapter 1
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A Signal Processing Perspective 5

Frequency Selective Filters
One class of filters is denoted as frequency selective. What is meant by

frequency selective is that (1) the frequency response of the filter is generally fixed,
and (2) the filter is designed to meet certain frequency specifications that are
determined mostly by engineering judgment. While a frequency selective filter may
have certain parameters adjustable, such as the 3 dB cutoff frequency, by having an
adjustable component or switchable components, generally the frequency response is
taken to be fixed. The filter is designed to meet certain specifications such as the
3 dB cutoff frequency and the stopband edge frequency and attenuation.6 However,
those specifications are dictated by engineering judgment, and are not generally

6Definitions of such terms as passband, transition band, and stopband are given in Chapter 2.

Section 1.2 Classes of Filters



6 DESIGN AND ANALYSIS OF ANALOG FILTERS:

optimal in any sense. That is, an engineer, in designing, say, an anti-aliasing filter,7

may somewhat arbitrarily choose a 3 dB cutoff frequency of 3000 Hz, and a
stopband edge of 4000 Hz with an attenuation of 40 dB . Once the specifications
have been chosen, then the filter is designed to meet those specifications. Not only
are the specifications somewhat arbitrary, but certain filter characteristics are more-or-
less ignored. That is, magnitude frequency response passband and stopband edges
may be specified, while transition band response characteristics are not specified, and
neither are the phase response characteristics nor the time-domain response
characteristics. However, a small set of design parameters leads to a tractable design
procedure, and then analysis of the proposed design will yield other filter characteris-
tics for consideration as to their acceptability. The majority of analog filters are in
this class. However, so are many digital filters.

Statistical Filters
Statistical filters have a fixed frequency response, but the shape of that

frequency response is not chosen a priori, nor using engineering judgment, and they,
in general, do not have flat passband characteristics. In fact, it may even be difficult
to define a passband, a stopband, etc. Rather, these filters are designed to optimize
some statistical design criterion. They are sometimes referred to as modern filters,
however the term modern has come to denote a broader class, often including Kalman
and other filters. Consider the noisy signal represented by (1.3). As was noted in
Section 1.1, a filter with an a priori chosen frequency response can indeed improve
the signal-to-noise ratio, but is the a priori filter optimal? Probably not. Suppose that
statistics of the signal s(t) and of the noise n(t) are known, or can be obtained; then
the filter parameters could be optimized for the largest signal-to-noise ratio at the filter
output, or for the minimum mean-squared error between y(t) and s(t). This is the
statistical filter design approach. The most well-known statistical filter is the Wiener
filter (Davenport and Root, 1987; Gardner, 1986; Haykin, 1989; Therrien, 1992),
but other statistical filters, such as the eigenfilter (Haykin, 1996) are also in this class.

Adaptive Filters
In a sense, statistical filters are adaptive, or data dependent, as the filter

parameters depend upon statistics of the signal data, but since they assume that the
data are stationary they are not referred to as adaptive filters. Adaptive filters operate
in a non-stationary environment and therefore the filter parameters change with time
as the statistics of the data change with time. Otherwise they are similar to statistical
filters, and are designed to optimize some design criterion. Common filters of this
class are the Least-Mean-Square (LMS) and Recursive-Least-Square (RLS) filters
(Alexander, 1986; Haykin, 1996; Honig and Messerschmitt, 1984; Widrow and

An anti-aliasing filter is used just prior to the input of an analog-to-digital converter to limit the
frequency bandwidth of the signal to prevent aliasing. See Example 1.6 below, and, for example,
Oppenheim and Schafer (1989).

IntroductionChapter 1
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A Signal Processing Perspective 7

Stearns, 1985). Kalman filters may be put in this class. Kalman filters differ
somewhat in that they are usually cast as a state estimator rather than a signal
estimator, but are mathematically similar to the RLS filter (Brown and Hwang, 1992;
Candy, 1986; Chui and Chen, 1991). It has been suggested that the RLS filter may
be viewed as the measurement update of the Kalman filter (Haykin, 1996).

Digital Filters
Statistical and adaptive filters are typically digital filters, however the term

digital filters usually refers to digital frequency-selective filters. Digital filters are
implemented in software and execute in microprocessors, personal computers,
mainframe computers, etc. Often, digital filters are used to process analog signals by
first going through an analog-to-digital converter. After processing, the output of the
digital filter may well then be converted back to an analog signal. In such a real-time
filtering situation, usually accomplished with a microprocessor, and commonly with
a microprocessor designed especially for signal processing applications, the filtering
application is analog-in and analog-out. However, digital filtering is also often
accomplished off-line in personal or mainframe computers. Many digital filter design
procedures are based on analog prototypes, and others are also frequency selective
(Cunningham, 1992; Hamming, 1989; Loy, 1988; Oppenheim and Schafer, 1975;
Oppenheim and Schafer, 1989; Parks and Burrus, 1987; Proakis and Manolakis,
1988; Terrell, 1988; Williams, 1986).

Analog Filters
Within the class of frequency-selective analog filters, filters may be further

categorized according to the specific design method and the way they are implement-
ed. Specific design methods that have been developed include Butterworth,
Chebyshev Type I, Chebyshev Type II, Cauer (or elliptic), and Bessel,8 all of which
are presented in Part I of this book, as well as others. Each design method has
advantages and disadvantages, which are discussed and illustrated as the material of
this book unfolds.

Analog filters may be referred to as passive, which indicates that there are no
active elements in the filter implementation, but usually also is further restricted to an
implementation that is made up of R's, L's and C's. Analog filters that are also
passive, but more specialized, would include surface acoustic wave (SAW) filters,
mechanical resonators and quartz crystal filters (Sheahan and Johnson, 1977).

Analog filters may also be referred to as active, which indicates that the
implementation includes active elements, such as operational amplifiers (op amps), or
possibly other active elements such as transistors. The main advantage of op amp
active filters, due to the very low output impedance characteristic of op amps, and also
very high open loop gain, and high input impedance, is that op amp stages have

Filters designed using these methods are sometimes referred to as classical filters.

Classes of FiltersSection 1.2

8



8 DESIGN AND ANALYSIS OF ANALOG FILTERS:

inherent buffering, which means that the overall transfer function of several op amp
stages is the product of the individual stage transfer functions, ignoring loading effects
of subsequent stages. This greatly simplifies the theoretical implementation. That is,
for example, a sixth-order op amp filter can be implemented by cascading three
second-order op amp stages, where each second-order stage is implemented
independently of the other two stages. Passive analog filters do not enjoy this
simplification, and the entire transfer function must be implemented as one non-
separable whole. Passive and active (op amp) filter implementation is presented in
Part II of this book.

1.3 APPLICATIONS OF ANALOG FILTERS

In this section, several examples are given that illustrate the application of
frequency selective analog filters to practical engineering use. Selection of a signal
from others separated in frequency, estimating a signal in noise, frequency selection
decoding, intentionally frequency-limiting a signal, contributing to the demodulation
of signals, rejection of interference signals, and separation of signals according to
frequency bands, are all illustrated.

Examples 1.1 and 1.2
The first two examples were given above in Section 1.1. More specifically,

Example 1.1 illustrates the use of a bandpass filter to extract one desired signal from
the sum of several signals, where the individual signals are separated in the frequency
domain (see Figure 1.2). Example 1.2 illustrates using a lowpass filter to improve
the signal-to-noise ratio of a signal imbedded in noise, but where the noise has a much
wider bandwidth than does the signal (see Figure 1.3).

Example 1.3
Consider a high-gain instrumentation amplifier used to measure electro-

encephalogram (EEG) signals. EEG signals are low-level with an equivalent high
source impedance. Electrodes are applied to the scalp of the subject in order to
measure these signals. The electrodes are very high impedance devices so as to not
present much of a load for the measurement signals. Due to the high impedance, the
low-level EEG signal may well be corrupted by additive 60 Hz and/or 120 Hz,
derived from fluorescent lighting and other electrical appliances and equipment. Since
the additive 60/120 Hz noise tends to be mostly common mode, a differential
instrumentation amplifier may significantly suppress the additive noise, but will not
completely remove it, especially since the EEG signal is likely much lower in
amplitude than the additive noise (sometimes referred to as hum). EEG signals, in the
frequency domain, have most of the signal energy below 60 Hz. Since the noise
(hum) components are above the EEG frequency components, a lowpass filter may be

Chapter 1 Introduction
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used to suppress the 60 Hz and 120 Hz components. Since it would be difficult to
design and implement a lowpass filter that would fall off fast enough to significantly
suppress a strong 60 Hz component while passing all desired signal components,
perhaps a better alternative would be to use notch filters tuned to 60 Hz and 120 Hz.
A notch filter is a special case of a bandstop filter and passes all frequencies accept for
a narrow range. A simple solution is a shunt series LC circuit that shorts out at series
resonance.

Other biomedical instrumentation amplifier applications have similar filtering
needs. The amplifier used in an electrocardiogram (EKG) signal recorder is one such
application, or amplifiers used in electromyogram (EMG) signals, in general.

Example 1.4
Consider the segment of a speech signal shown in part (a) of Figure 1.4. In

part (b) of the figure is shown the same segment of speech with a significant amount
of additive noise. A practical situation, for example, where this may occur, is in the
output signal from the microphone of a pilot in a noisy cockpit such as a jet fighter
plane. Since the additive noise may well be much wider in frequency bandwidth than
the minimum required for intelligible speech, one solution is to filter the noisy speech
to eliminate as much of the additive noise as possible while preserving enough of the
speech spectrum for good intelligibility. This is a practical application of the more
theoretical situation described in Example 1.2. Therefore, if the noisy speech signal,
as shown in part (b) of the figure, is lowpass filtered, the filter output should be
“cleaner,” i.e., have a higher signal-to-noise ratio than does the filter input. The
output of a lowpass filter with the noisy speech signal as the input is shown in part (c)
of Figure 1.4.

Example 1.5
Consider a touch-tone telephone tone decoder. A touch-tone encoder consists,

for each key pressed, of the combination of two tones. There are seven individual
tones, but a total of 12 keys (Bigelow, 1994; Huelsman, 1993; Lindquist, 1977).
Each tone-pair identifies the unique key that has been pressed. See Figure 1.5 for an
illustration of the encoder. As an example, if the 8 key is pressed (also labeled
“TUV”), a signal consisting of the sum of two sinusoids at frequencies 852 Hz and 1336 Hz
would be sent to the telephone switching station. The tone decoder consists of seven
bandpass filters, each one tuned to one of the seven possible tones. The output of each
filter is rectified and filtered, so that the voltage levels indicate which two tones are
present at any given time a key is pressed. This is illustrated in Figure 1.6. The tone
decoder is located in the telephone switching station. If a caller presses the 8 key,
then the decision logic block in Figure 1.6 would so indicate. The highpass and
lowpass filters in Figure 1.6 relax the design constraints on the bandpass filters, and
thereby help in the decoding process. Note that the tone decoder, then, includes a
highpass and a lowpass filter, and seven bandpass filters.

Applications of Analog FiltersSection 1.3
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Example 1.6
The digital signals that are processed by various digital signal processing

methods are often obtained from analog signals by means of an analog-to-digital
converter. To satisfy the Nyquist Theorem, the sample rate must be greater than twice
the highest frequency in the analog signal. Often, to help insure that the Nyquist
Theorem is satisfied, the analog signal is first filtered by an analog lowpass filter, in
order to deliberately limit the signal bandwidth. This is especially necessary when the
bandwidth is limited to less than what the signal naturally has, in order to use a lower
sample rate. In speech processing this is often done, where the sample rate is
8000 samples / s and the lowpass filter has, perhaps, a 3 dB cutoff frequency of
3000 Hz. This type of filter is referred to as an anti-aliasing filter. See, for example,
Oppenheim and Schafer (1989).

Example 1.7
Consider the demodulation of frequency modulated (FM) stereo-multiplexed

signals, as transmitted by commercial, broadcast FM radio stations. After a received
stereo-multiplexed signal is FM demodulated, the frequency spectrum could be
represented as shown in Figure 1.7, where L+R indicates the sum of the left and

Section 1.3 Applications of Analog Filters
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right channels (i.e., monophonic), L-R indicates the left-channel signal minus the
right-channel signal, LSB and USB indicates the lower-sideband and upper-sideband,
respectively, DSB-SC indicates double-sideband suppressed carrier, and the pilot
carrier is a 19 kHz sinusoid (Stremler, 1990). Note that the suppressed carrier has
a frequency of 38 kHz . Note that if this signal (the entire signal illustrated in Figure
1.7) was simply amplified and applied to a loudspeaker, that a monophonic signal
would be heard. The left and right channels would be added together. All frequencies
above 20 kHz would not be audible, and the 19 kHz pilot carrier would also likely
not be heard, or it could be removed with an appropriate filter. This is how
monophonic FM receivers are capable of receiving FM stereo broadcasts and still be
capable of recovering the full monophonic signal. The Federal Communications
Commission (FCC) regulated that FM stereo broadcasts must be capable of being
received by FM monophonic receivers.

In an FM stereo receiver the FM demodulated signal, with spectrum illustrated
in Figure 1.7, is lowpass filtered to recover the L+R signal, and is also applied to the
phase-locked loop stereo demodulator shown in Figure 1.8 (as an example; other
demodulation schemes also exist) (Stremler, 1990). The bandpass filter shown, tuned
to 19 kHz, allows only the pilot carrier to pass (this signal also lights the “stereo”
light on some FM receivers) and phase-locks the 38 kHz voltage controlled oscillator.
The 38 kHz serves as the carrier to demodulate the double-sideband suppressed
carrier modulation for the L-R signal. Note that the 19 kHz pilot is used rather than
transmitting a 38 kHz carrier for several reasons, including the fact it would be much
more difficult to extract for phase synchronization because the L-R LSB and USB are
much closer together than is the upper edge of the L+R signal and the lower edge of
the L-R LSB signal. If the L+R and L-R signals are added, only the left channel
signal remains. If the L+R and L-R signals are subtracted, only the right channel
signal remains. This is how the right and left channel signals are separated. Note that
several analog filters have been used to help accomplish this task.

Example 1.8
Consider the crossover network used in a three-way high-fidelity loudspeaker

illustrated in Figure 1.9. Such a crossover network, as they are usually referred to,
consists of a lowpass, a bandpass, and a highpass filter. The reasons for using such
filters, rather than simply connecting the three speakers (woofer, midrange, and
tweeter) in parallel, are for power efficiency and to avoid exceeding the power
limitations of individual speakers (and also for impedance considerations). High-
powered bass signals are applied only to the woofer, for example, and the midrange
and tweeter speakers need not wastefully dissipate part of this power. Each speaker
receives frequencies in the range in which it is most efficient. Special consideration
is given to the design of such filters, in that in the transitional region between two
speakers, for example frequencies where both the woofer and midrange respond, care

Section 1.3 Applications of Analog Filters
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must be taken that the two speakers are in phase, otherwise their acoustic outputs
could interfere destructively.

Chapter 1 Introduction
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1.4 HISTORICAL PERSPECTIVE

Analog electric filters have been in use since the very early days of electrical
engineering. Simple resonant filters, although perhaps not explicitly called such at the
time, were used in radio communications before the introduction of the first active
devices. For example, an early interference suppression circuit introduced by
Marconi, called the X Stopper, was actually a bandpass filter (Blake, 1974).

However, it appears that the first systematic design approaches date from the
first couple decades of this century when K.W. Wagner in Germany, and George
Ashley Campbell (Campbell, 1911; Campbell, 1922) in the United States, independ-
ently developed such approaches to filter design (Darlington, 1984; Stephenson,
1985; Van Valkenburg, 1982).9 Other methods (such as insertion-loss synthesis)
were introduced by Darlington in the United States and Cauer in Germany in the
1930s (Cauer, 1939; Darlington, 1939) with contributions also by Brune (Brune,
1931; Brune, 1932). Also during the 1930s and 1940s, the beginnings of active filter
design occurred, as introduced by Black, Bode (Bode, 1945), and others.

During this same time period analog filter design procedures were formalized,
such as what is now known as the Butterworth filter (Butterworth, 1930), and elliptic
filters (Cauer, 1931; Norton, 1937; Weinberg, 1962). Bessel filters, based upon
Bessel (lived 1784-1846) polynomials (Krall and Frink, 1949; Grosswald, 1951;
Burchnall, 1951), were introduced by Thomson and Storch (Thomson, 1949;
Thomson, 1959; Storch, 1954). Chebyshev filters, and inverse Chebyshev (also
called Chebyshev type II) filters, based upon Chebyshev polynomials (Chebyshev,
1899), were developed during the 1950s (Cauer, 1958; Henderson and Kautz, 1958;
Stephenson, 1985; Storer, 1957; Weinberg, 1962).10

In more recent years there has been development in analog filter design
primarily along three lines: (1) introducing additional filter transfer function types
exhibiting refinements, in some sense, compared with classical filters, (2) introducing
computer-aided procedures for simulation, optimization, etc., and (3) circuit
implementation. Since (1) is of primary concern with the emphasis of this book, with
a signal processing perspective, only it will be expanded on in this historical review.
Although it would not be useful to attempt an exhaustive list of filter transfer function
types, a few of the more significant ones (in the author's opinion) will serve to
indicate this further development. The author apologizes in advance for any
significant filter transfer function types inadvertently left out. The order of mention
is mostly chronological within two groupings: (1) general, where the primary concern

A brief biographical sketch of Campbell, with some discussion of his early contributions to filter design,
is given by Brittain (1992).

10 A brief biographical sketch of Cauer, with a tribute to his contributions, has been given by Fettweis
(1995).

Section 1.4 Historical Perspective
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is the magnitude response, and (2) where the primary concern is constant time delay
/ linear phase.

General Filter Design
Papoulis introduced filters with a maximum magnitude slope at the passband

edge for a monotonic response falloff for a given order (1958). Halpern extended the
work of Papoulis for optimum monotonic transition band falloff, based on Jacobi
polynomials (1969). Ku and Drubin introduced filters based on Legendre and Hermite
polynomials (1962). Scanlan introduced filters with poles that fall on an ellipse with
equal frequency spacing, and noted the tradeoff between magnitude response
characteristics and time-domain response characteristics as the eccentricity of the
ellipse is varied (1965). Filter transfer functions based on ultraspherical polynomials,
where Chebyshev, Butterworth, and Legendre filters are shown to be special cases,
was introduced by Johnson and Johnson (1966). This was extended by ultraspherical
and modified ultraspherical polynomials where a single parameter determines many
transitional forms (Attikiouzel and Phuc, 1978). Extensions to Cauer filters have
recently been made in two ways: lowering the pole Qs by using quasi-elliptic
functions (Rabrenovic and Lutovac, 1992), and by significantly reducing the
complexity of designing elliptic filters without reference to elliptic functions (Lutovac
and Rabrenovic, 1992).

Constant Time-Delay Design
Whereas Bessel filters are designed for a maximally-flat time delay characteris-

tic, Macnee introduced filters that use a Chebyshev approximation to a constant time
delay (1963). By allowing small amounts of ripple in the group delay or phase
response (based on Chebyshev polynomials), similar to Macnee's objectives, Bunker
made ehancements in delay filters (1970). Ariga and Masamitsu developed a method
to extend the magnitude bandwidth of constant-delay filters (1970). By using
hyperbolic function approximation, Halpern improved on Bessel filters, at least for
low orders (1976). The so-called Hourglass filter design (Bennett, 1988) may be used
to obtain transfer functions that have simultaneously equiripple time-delay and
equiripple magnitude characteristics. Gaussian filters have magnitude and phase
characteristics very similar to Bessel filters, but with less delay for the same order
(Dishal, 1959; Young and van Vliet, 1995).

1.5 A NOTE ON MATLAB

Although a variety of programming languages and high-level software could
be used to design, analyze, and simulate analog filters, MATLAB has been selected
in this book because of its ease of use, wide-range availability, and because it
includes many high-level analog filter functions, and good graphics capabilities.

IntroductionChapter 1
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Many homework problems in this book require the application of MATLAB. The
MATLAB m-files on the disk that accompanies this book, requires as a minimum The
Student Edition of MATLAB. A brief introduction to MATLAB is given in Appendix
A.

1.6 OVERVIEW OF THE TEXT

A brief overview of the book was given in the Preface, however an expanded
overview is given here. The main body of this book is divided into two parts. Part
I, Approximation Design and Analysis is concerned with various design methods
to arrive at the desired filter transfer function H(s). In the design phase, a small
number of design criteria are established, and then a minimum-order transfer function
of specified type is determined. The design criteria are often specified in terms of the
desired magnitude frequency response, such as the 3 dB cutoff frequency, stopband
edge frequency, and the minimum attenuation in the stopband. However, other design
criteria may be used, such as with Bessel filters where a maximally-flat delay
characteristic is desired. The filter type, such as Butterworth, Chebyshev Type I,
etc., is chosen based on engineering judgment (knowledge and experience with the
various filter types). In the analysis phase, the tentative filter design is analyzed to
determine its characteristics not specified by the design criteria, such as the phase
response, group delay, impulse response, etc. Several competing designs may be
compared in terms of analysis results for final selection. The more knowledge and
experience an engineer has with the characteristics of various filter types, the less time
and effort would need to be spent on analysis.

Chapter 2, Analog Filter Design and Analysis Concepts, the first chapter
of Part I, presents basic concepts on filter design and analysis applicable to all filter
types. The attempt is made to present most of the theoretical concepts that are useful
in the following chapters in Part I. These concepts include the existence, or lack
thereof, of a causal impulse response for a given magnitude frequency response, as
expressed by the Paley-Wiener Theorem, and the relationship between the magnitude
frequency response and the corresponding phase response, as expressed by the Hilbert
transform. Since analog filters are usually designed starting with a magnitude
response, this is the approach that is used in Chapter 2, and the Analog Filter Design
Theorem is developed, giving insight as to what magnitude frequency responses can
be designed, and which cannot. Two basic questions are answered: what are
permissible magnitude responses for analog filters, and given a permissible magnitude
response, what is the procedure for determining the transfer function H(s) that will
have that permissible magnitude response? Some filters, such as Bessel filters, are not
specified in terms of the magnitude response, but their design procedures are similar
in concept and will be, where appropriate, considered as a special case.

Section 1.6 Overview of the Text
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Chapter 3, Butterworth Filters, is a presentation of the first specific filter
type presented in the book. It is historically one of the first developed methods, and
is very commonly used in practice. It is designed to yield a maximally-flat magnitude
response in the passband (actually at DC) and is frequently referred to as the
maximally-flat design. The design is based on Butterworth polynomials.

Chapter 4, Chebyshev Type I Filters, is a presentation of the first of two
filter designs based on Chebyshev polynomials. Type I filters have ripple in the
passband of an equal across-the-band magnitude and of a specified amount, with the
response monotonically falling off through the transition band and the stopband.
These filters will usually meet a set of magnitude specifications with a lower order
than will a comparable Butterworth design, but have less desirable phase response and
time-domain characteristics.

Chapter 5, Chebyshev Type II Filters, covers the second filter design based
on Chebyshev polynomials, having a flat magnitude response in the passband, but
having ripple in the stopband of an equal across-the-band magnitude (referred to as
equiripple) and of a specified amount. As with Type I filters, these filters will usually
meet a set of magnitude specifications with a lower order than will a comparable
Butterworth design, in fact, with the identical order as a Chebyshev Type I design.
However, this design requires specified finite-value zeros in the transfer function,
whereas a Chebyshev Type I design has no finite-value zeros for a lowpass filter.
Therefore a Chebyshev Type II design has a somewhat more complex transfer function
than does either a Butterworth or a Chebyshev Type I design. It also has less
desirable phase response and time-domain characteristics than does a Butterworth
design.

Chapter 6, Elliptic Filters, presents filters that have equiripple characteristics
in both the passband and the stopband, but fall off monotonically through the
transition band. This design is based on Chebyshev rational functions, which in turn
are dependent upon Jacobian elliptic functions. Among common filter types, elliptic
filters will meet given magnitude specifications with the lowest order. However, they
have very poor phase response and time-domain characteristics. As will be seen in
Part II (more specifically, Chapter 12), they also can have implementation
components with large sensitivities (very critical component values).

Chapter 7, Bessel Filters, covers filters that are designed for maximally-flat
group delay, and are closely related to Bessel polynomials. While optimized for flat
group delay, the magnitude response is that of a lowpass filter. Since flat group delay
is analogous to a linear phase response, Bessel filters have very good phase
characteristics. They also have very good time-domain characteristics. However, for
a given set of magnitude specifications, a Bessel filter requires the highest order of any
of the common filter types.

Chapter 8, Other Filters, presents a few of the filter design methods that have
been reported, other than the above classical filters, but are less known. These filters
have certain desirable characteristics, but are generally only marginally superior to the

IntroductionChapter 1
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above classical filters. The chapter makes no attempt to give an exhaustive
presentation, but does include a few additional design methods that should be
considered when selecting a filter type.

Chapter 9, Frequency Transformations, presents methods for transforming
a lowpass filter design prototype into another lowpass filter with a different cutoff
frequency, a highpass filter, a bandpass filter, or a bandstop filter. Frequency
transformations significantly simplify filter design, as all filter design can then begin
with a lowpass prototype, and the prototype design alone receives a detailed design
development.

Part II, Implementation and Analysis, consists of two chapters concerned
with determining a circuit schematic diagram that implements a given filter design (the
transfer function H(s)) and with the analysis of that design. These two chapters of
Part II are on passive filter implementation, and active filter implementation. The
chapters also include some analysis, in the form of SPICE (Simulation Program with
Integrated Circuit Emphasis) analysis, but this serves mainly as verification of the
implementation, as the magnitude frequency response, phase response, impulse
response, etc. should all be the same, assuming the implementation is correct, as
found using Part I techniques.

Chapter 10, Passive Filters, presents a ladder implementation method
whereby a desired transfer function may be implemented using passive components.
These filters are of particular importance in high power or very high frequency
applications.

Chapter 11, Active Filters, presents analog filter implementation using
operational amplifiers (op amps). These filter implementations are of particular
importance in small-signal, low-frequency applications. They have the important
advantage, due to the very low output impedance of op amps, of allowing each op amp
stage to be designed independently of the other cascaded stages.

1.7 CHAPTER 1 PROBLEMS

Given that x(t) = s(t) + n(t), as in (1.2), and that is illustrated in
Figure 1.3 (b) (only one side shown), and that such that
is illustrated in Figure 1.3 (a), verify that the signal-to-noise ratio (SNR) at
the output of the lowpass filter shown in Figure 1.3 (b) is 10. Note that the
value of between and 8 rad /s is

1.1

1.2

Section 1.7 Chapter 1 Problems

The signal y( t) in Figure 1.8 is the L-R signal. The frequency spectrum of
x(t) is illustrated in Figure 1.7. Suppose that x(t), in addition to being
processed by that shown in Figure 1.8, is also filtered directly by another
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lowpass filter with identical characteristics as the lower lowpass filter shown
in Figure 1.8, producing a signal denoted as z(t), which is the L+R signal.

(a) Argue that the 38 kHz oscillator waveform in Figure 1.8 must
be in proper phase synchronization in order for y(t) + z(t) to
be equal to the left-channel signal and for z(t) – y(t) to be
equal to the right-channel signal.

(b) If the 38 kHz oscillator waveform is 180° out of phase, what
would y(t) + z(t) and z(t) – y(t) be equal to?

(c) If the 38 kHz oscillator waveform is out of phase somewhere
between 0° and 180°, what would be the effect?

Consider the ideal bandpass filter shown in Figure 1.2. Given that the
center frequency, is and the bandwidth is

and that the magnitude gain across the passband is unity,
determine the envelope of the unit impulse response of this filter: this would
be the demodulated audio signal response to a unit impulse.

1.3

1.4

1.5

Chapter 1 Introduction

Using MATLAB, generate samples of the x(t) of (1.1) for N = 1,
and Generate 1000 points

for 20 ms of x(t). Plot x(t).

Using MATLAB, generate samples of the x(t) of (1.1) for N = 2,

and Generate 1000 points for 20 ms of
x(t). Plot x(t). It is interesting to note that the two amplitude-modulated
signals added together in this problem do not have overlapping frequency
spectra and could easily be separated by appropriate filtering.
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Clearly, Case 2, where is a combination of a first-order and
a second-order transfer function. First-order transfer functions were considered in
Section 2.8. The contribution of G(s) to the magnitude response of is
independent of the polarity of however, the phase response, h(t), and do
depend on the polarity, as well as the magnitude, of

In the case where then the contribution of G(s) to
and will be closely related to that already considered above for

Case 1. Note, however, that since G(s) is in the numerator, it’s effect on the
magnitude response will be the inverse of that considered for Case 1 (the opposite
polarity when the magnitude response in dB is considered). It will also have the
opposite polarity effect on the phase response. Also note that the roots of G(s), in
general, are not restricted to the left-half plane. See the next section for a more-
general consideration of cascaded transfer functions.

2.10 TRANSFER FUNCTIONS WITH ORDERS
GREATER THAN TWO

The transfer function, H(s), expressed in factored form as in (2.40), where
all coefficients are real, consists of the product of first- and second-order terms. This
may be expressed as follows:

where each is either a first-order or second-order transfer function that
conforms to the imposed constraints of Section 2.6.

Therefore,

or

The magnitude frequency response is the product of magnitude responses
(or the sum of responses if in dB). When designing an analog filter, it is
usually the overall magnitude response that is designed, as mentioned in the opening
paragraph of Section 2.7. For convenience, at least when designing active analog
filters as in Chapter 11, individual first- and second-order stages will be designed,
and then the stages will be cascaded as in (2.71). It is interesting to note, as will be

Analog Filter Design and Analysis ConceptsChapter 2

Case 3: in (2.56)
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seen in subsequent chapters, that individual first- and second-order stages of a well-
designed analog filter, such as, for example, a Butterworth filter, will not be
particularly good filters, yet cascaded together they form a well-designed filter. The
magnitude frequency response of one stage will, in part, make up for the deficiencies
of other stages in the filter.

The phase response of (2.71) may be expressed as follows:

The phase response is the sum of the phase responses of the individual
stages. Each of these individual phase responses may be further separated into the
sum of the phase response of the numerator minus the phase response of the
denominator.

The filter unit impulse response may be expressed as

and the filter unit step response may be expressed as

See Section 2.13 below, for more discussion on the time-domain response of analog
filters.

2.11 MINIMUM-PHASE TRANSFER FUNCTIONS

Very simply stated, a minimum-phase transfer function is one where there are
no zeros in the right-half of the s plane. This section demonstrates why such transfer
functions are denoted as minimum-phase.

Since any rational H(s) may be expressed as in (2.40), it is sufficient to
consider first- and second-order minimum-phase transfer functions; H(s) is
minimum-phase only if each is minimum-phase.13

First-Order
Consider (2.50), and refer to (2.54) and (2.55). Note in (2.54) that the

magnitude frequency response is independent of the polarity of Therefore,
where is an arbitrary positive real number, will have identical magnitude

frequency responses.  However, from (2.55), note that the phase response is
dependent on the polarity of If then

13Assuming that each is stable, then no pole in could cancel a right-half plane zero in
Therefore H(s) is minimum-phase only if each is minimum-phase.

Section 2.11 Minimum-Phase Transfer Functions
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whereas if then

Since and are positive real values, as varies from 0 to arctan
and arctan are both positive, and vary from 0 to 90° If
then for (2.74) will be 90°, where as for (2.75) it will be 180°.14

therefore the zero is in the left-half plane.

Consider Case 2 for (2.56), and refer to (2.69) and (2.70). Note in (2.69) that
the magnitude frequency response is independent of the polarity of Therefore,

where is an arbitrary positive real number, will have identical magnitude
frequency responses. However, from (2.70), note that the phase response is
dependent upon the polarity of From (2.59), and the condition of stability, it is
clear that both and must be positive values. Note, from (2.70), that as varies
from 0 to that varies from 0 to 180°. Note that the
real part, becomes negative for and therefore the phase angle
shifts to the second quadrant. Therefore, if is –90° if
is positive (zero is in the left-half plane), and is –270° if is negative (zero is in the
right-half plane). Therefore, again, the zero in the left-half plane corresponds with
the minimum phase.

Consider Case 3 for (2.56), where If the roots of
G(s) are real, then the results will be very similar to Case 2 discussed above.  If the
roots of G(s) are complex, the real parts of those roots are Clearly, the
magnitude frequency response is independent of the polarity of However, the
phase response of is dependent on the polarity of

then as varies from 0 to will vary from 0 to
+180°, whereas if then will vary from 0 to –180°. Therefore,

if is 0 if is positive (zeros in the left-half plane),
and is –360° if is negative (zeros in the right-half plane). Therefore, zeros in the
left-half plane correspond with minimum phase.

2.12 ALL-PASS TRANSFER FUNCTIONS

An all-pass transfer function is one where the magnitude frequency response
is constant for all frequencies but the phase is not. Such filters are used for phase
compensation; they effect the phase response but not the magnitude response. For

l4The actual maximum magnitude phase angle for (2.74) depends upon the values of and but the
maximum possible value is 90°; the maximum value for (2.75) occurs at and is 180°.

Chapter 2 Analog Filter Design and Analysis Concepts

Second-Order

Therefore, (2.74) represents minimum phase, compared to (2.75): is positive, and
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example, a well-designed all-pass filter may, in part, correct for the nonlinear phase
response of a Butterworth filter which has an acceptable magnitude frequency
response.

The importance of the phase response may be demonstrated by considering the
properties of ideal transmission. Suppose x (t) is the input to an analog filter. While
the filter may be designed to attenuate certain unwanted components in x (t), that part
of x (t) that falls within the passband of the filter is desired to be passed with minimal
effect on the waveshape of the signal. Suppose is that part of x (t) that falls
within the passband of the filter, then the desired filter output would be

where is a gain term (could be unity) and is a time
delay (a time delay of zero is not practical, and a small delay will not effect the
waveshape). From the basic properties of Fourier transforms, it follows that the
required filter frequency response, magnitude and phase, across the passband would
be as follows:

Therefore, the magnitude frequency response should be constant across the passband
and the phase response should be linear Therefore in
applications where preserving the waveshape of signals is important, as in, as
examples, radar, sonar, an oscilloscope amplifier, etc., the phase response is of
special importance.

Since any all-pass transfer function H (s) may be expressed as the product of
first- and second-order transfer functions such as in (2.71), it is sufficient to consider
first- and second-order all-pass transfer functions.15

Consider (2.50) with and, for convenience, K = – 1. From (2.54)
it is easy to see that or , for all . From
(2.55),

0° at

– 90° at
and  – 180° at

15Although it is possible to conceive of an all-pass H (s) where there are that are not all-pass, it
is always possible to order the poles and zeros such that all are all-pass.

Section 2.12 All-Pass Transfer Functions

First-Order

If K = 1,
180° at

90° at

and 0° at
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Therefore, the only design parameter is which determines the frequency
at which the phase will be ±90°. Note that the phase response monotonically
decreases for 0

Note there are two design parameters: and Q (or and The
frequency at which is –180° can be set with and how rapidly
the phase changes on either side of (the phase response slope) can be set with Q

Note that the phase monotonically decreases for

2.13 TIME-DOMAIN RESPONSE

Analog Filter Design and Analysis ConceptsChapter 2

Second-Order
Consider (2.56) with (i.e., Case 3), but with

and For convenience, let K = 1. It is easy to show that
or for all Similar to (2.70) ,

0° at

– 90° at

– 180° at

– 270° at

and – 360° at

If the definitions of (2.60) and (2.61) are used, then

0° at

– 90° at

– 180° at

– 270° at

and – 360° at

The time-domain response of first- and second-order transfer functions was
briefly treated in Sections 2.8 and 2.9, respectively. The time-domain response of
transfer functions with orders greater than two was briefly treated in Section 2.10:
(2.72) and (2.73) are important general equations for the impulse response and the
step response, respectively, of the overall transfer function. It should be noted that:
(1) the effective time width of h(t) will be longer than the longest (2)
whatever ringing there is associated with it will appear in h (t) and in
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(3) the shape of h(t) is as dependent upon (or related to) as it is upon

More generally, the filter response y(t) may always be represented as the
convolution of the filter input x(t) and the filter unit impulse response h(t):

where the lower limit on the integral of 0 is used since h(t) is causal. To evaluate
a particular filter response y(t) requires a specified filter input x(t). However, the
other term in the convolution integral, h(t), is independent of any specific x(t),16

and is commonly evaluated and plotted as an indication of a filter's time-domain
response characteristics. Since the unit step response, is  closely related to the
unit impulse response,

the unit step response is also commonly evaluated and plotted as an indication of a
filter's time-domain response characteristics.

2.14 PHASE DELAY AND GROUP DELAY

Consider the general transfer function of the form expressed in (2.39), which
is repeated here for convenience:

The frequency response of (2.76) may be expressed as follows:

Equation (2.77) may be expressed:

Section 2.14 Phase Delay and Group Delay

16Except, of course,
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where

and

That is, is the real part of the numerator of (2.77), is the imaginary part
of the numerator of (2.77), is the real part of the denominator, is the
imaginary part of the denominator, is the real part of (2.77) and is the
imaginary part. Being careful to maintain the proper quadrant, the phase response,
based on (2.78), is

This equation, (2.79), can be useful in evaluating the phase delay and the group delay
of an analog filter, and is referred to below.

From Section 2.10, recall that

Chapter 2 Analog Filter Design and Analysis Concepts

Phase Delay
The phase delay, for a filter is defined as follows:
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Therefore, phase delay is additive:

Therefore, the phase shift as the signal propagates through the filter is
which corresponds to a time shift of Since it is generally assumed
that will be negative, the time delay would be The
frequency could be any value of therefore (2.80) is defined as it is. Briefly
stated, (2.80) is the time delay of the output relative to the input that a sinusoid with
frequency will have. It is referred to as phase delay because of it’s direct
relationship to the phase.

Group Delay
The group delay, for a filter is defined as follows:

As is the case for phase delay, group delay is additive:

where is the group delay of the k-th stage.

Applying (2.81) to (2.78) and (2.79):

Note that if a filter should have an ideal linear phase response, as indicated in
Section 2.12, i.e., then, according to (2.80) and (2.81) ,

That is, for the ideal linear phase response case, phase delay

Section 2.14 Phase Delay and Group Delay

where is the phase delay of the k-th stage.
For any linear filter, a sinusoid on the input results in a sinusoid on the output.

That is, if (the filter input), then the output, y(t), may be
expressed as
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and group delay would be identical. However, in general, phase delay and group
delay differ, and both definitions are useful. Consider the following illustration.

An Illustration
Consider the following sinusoidally modulated sine wave:

Recall that (2.83) is an amplitude modulated (AM) carrier (see, e.g., Stremler (1990)).
The carrier frequency is the arbitrary carrier phase is the frequency of the
modulating sinusoid is and the arbitrary phase of the modulating sinusoid is
As is usually the case, it is assumed that For convenience, the
modulation factor is unity; x(t) has a percentage modulation of 100%. Recall that
the frequency bandwidth of x(t) is the passband extends from
to In fact, there are only three frequencies (on each side of the double-
sided spectrum) present in x(t), which is clear from the second line of (2.83):

Suppose that x(t) is the input to a filter and is
within the magnitude passband of the filter such that there are no changes in
frequency-component magnitudes. In this illustration, for simplicity in notation,
suppose that and that the phase response is locally linear. That is,
suppose that across the frequency range of through the phase
response may be expressed as:

Therefore,

and

Applying (2.80):

and

Chapter 2 Analog Filter Design and Analysis Concepts
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It is therefore observed that differs, in general, for the three frequency
components.  Applying (2.81):

where it is noted that the group delay is the same for all three frequency components.
To illustrate further, the filter output may be expressed as follows:

Note that the time delay for the carrier is the phase delay evaluated at
(compare (2.84) with (2.83)). Also note that the time delay of the

envelope,17 which also may be observed by comparing (2.84) with (2.83), is
which is identical with the group delay. Recall that the parameter

is the phase shift of the filter frequency response at and the parameter
is the negative of the slope of the phase response at In general, of course,

the group delay could be greater than the phase delay, or vice versa.
The above is illustrated in Figure 2.37, where the carrier at has a

time delay that differs from the group, or envelope, delay. In this illustration the
group delay is greater than the phase delay. If one were to measure the group delay
and the phase delay for an analog filter, in a laboratory situation, with a filter input
similar to (2.83), it can be seen that there would be ambiguity in the measurements.
It is assumed in Figure 2.37 that numerical values of the group delay and the phase
delay are known a priori, and the waveforms in the figure merely illustrate the two
delays. Otherwise the phase delay, could be taken as slightly greater than
instead of less than as illustrated. Therefore, measurements of group delay and
phase delay with an input similar to (2.83) would require some a priori knowledge of
at least approximate values for the two delays.

Briefly, the phase delay at a given is simply the negative of the phase angle
at that divided by The group delay at that same given is the negative of the
phase response slope. In general, these two values are not the same. However, as
mentioned above, they are the same for the ideal linear phase response case.
Therefore, if a filter has a phase response that approximates linear phase over some
range of with a zero intercept, i.e., the phase response may be approximated as

over that range of it should be expected that the phase delay

17Envelope delay is another name for group delay. The term “group” delay is used, since if the
modulating envelope is of short time duration, such as in a transmitted radar modulated pulse, the envelope
delay is indeed the delay of the “group,” or the pulse taken as a whole, whereas the phase delay would be
the delay associated with the carrier “inside” the “group.”

Section 2.14 Phase Delay and Group Delay
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and group delay should be similar for that frequency range. If however, such is not
the case, then significant differences may exist between the phase delay and the group
delay.

Example 2.23
Given that

then, from (2.78) and (2.79),

and
Therefore,

Using (2.79) in (2.82),

Chapter 2 Analog Filter Design and Analysis Concepts
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Suppose that the filter input, x (t), is as expressed in (2.83) with
and then, the phase delay and the group delay may be

computed at from (2.85) and (2.86) to be

and

Note that across the frequency range of through that both the
phase delay and the group delay varies little from the two values indicated above. In
fact,

and Therefore the filter output, y ( t ) , may be
approximately expressed as follows:

Example 2.24
Given that

then, from (2.78) and (2.79),

and

Therefore,

Section 2.14 Phase Delay and Group Delay
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Using (2.79) in (2.82),

Using (2.87) and (2.88), the phase delay and the group delay at are as
follows: and

Summary of Phase Delay and Group Delay

Phase delay is defined by (2.80). It is referred to as phase
delay because of it’s direct relationship to the phase.

Group delay is defined by (2.81). Envelope delay is another
name for group delay. Group delay is the delay of the group,
or the envelope, as opposed to the delay of the carrier, which
is the phase delay.

If a filter or system has an ideal linear phase response, then
group delay and phase delay will be identical.

For filters that have a phase response that approximates linear
phase, plots of the group delay and the phase delay will be
similar. As the phase response deviates further from linear
phase, plots of the group delay and the phase delay will differ
to a greater extent.

2.15 HILBERT TRANSFORM RELATIONS

From the above, primarily from Sections 2.1, 2.6, and 2.7, it should be clear
that the magnitude frequency response and the phase response are not independent;
they both depend upon the poles and the zeros of the transfer function.  In this section

Chapter 2 Analog Filter Design and Analysis Concepts
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Hilbert transform relations, first between the real and imaginary parts of and
then between the magnitude frequency response and the phase response, are
developed.

The impulse response of an analog filter, which is constrained to be causal,
may be expressed as follows:

where will be zero (no impulse) for lowpass and bandpass filters, but will be non-
zero for highpass and bandstop filters,18

and is the unit step function:

Multiplying by in (2.89), while perhaps appearing to add unnecessary
redundancy, is very useful in the development that follows immediately.

Let be expressed in terms of real and imaginary parts:

where is the real part and is the imaginary part of and let
be the Fourier transform of Let where

is the even part, and is the odd part of Note, since is causal, that
for and for Note that if there
is an impulse that it will be included in since it is even, but that it
will not appear in From basic properties of Fourier transforms,

where is the Fourier transform of Making use of the
frequency convolution property of Fourier transforms:

where

18Refer to the unit impulse response graphs in Section 2.1 for ideal filters. In terms of the presence, or
lack thereof, of impulses in the impulse response, the graphs in Section 2.1 accurately reflect practical, as
well as ideal filters. Note that if the magnitude frequency response of the lowpass filter (or the lowpass
prototype for the bandpass case) is not zero at such as may be the case for a Chebyshev Type II
or an elliptic filter, there would theoretically be an impulse in (2.89), but the value of would be very
small and insignificant.

Section 2.15 Hilbert Transform Relations
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Combining (2.89), (2.90) and (2.91) (Papoulis, 1977):

Equating real and imaginary parts on the two sides of (2.92), simplifying, and making
use of results in the following Hilbert transform relations for
real and imaginary parts:

and

It needs to be stressed that (2.93) and (2.94) are valid Hilbert transform relations only
for causal systems, as the development made use of causality. In fact, the converse
is true: any frequency response where the real and imaginary parts are related by
(2.93) and (2.94) must be a causal system (Papoulis, 1962).

Any integral of the form shown in (2.93) and (2.94) is called a Hilbert
transform. That is, if

then g(t) is said to be the Hilbert transform of f(t). An interesting aside is that if
z(t) = f(t) + jg(t), where g(t) is the Hilbert transform of f(t), then the Fourier
transform of z(t) will be one-sided, which is the mathematical basis for the
theoretical study of single side-band radio communications (Stremler, 1990). The one-
sided Fourier transform of z(t) may be shown by noting that g(t) is the convolution
of f(t) and Therefore, where
is the sign function:

Chapter 2 Analog Filter Design and Analysis Concepts
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Therefore, the Fourier transform of z(t) is one-sided:

Example 2.25
Given that then, the integrand of (2.94) may be

expressed as follows:

Using (2.95) in (2.94) results in

Therefore,

From (2.96),

which is recognized as a lowpass filter with a 3 dB cutoff frequency of 10.

Example 2.26
Given that

then, the integrand of (2.94) may be expressed as follows:

Section 2.15 Hilbert Transform Relations
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Using (2.97) in (2.94) results in

Therefore,

From (2.98),

which is recognized as a highpass filter with a 3 dB cutoff frequency of 10. The
inverse Laplace transform of (2.99) includes an impulse with a weight of unity. Note
that could be expressed as follows:

and therefore and

The above Hilbert transform relations for the real and imaginary parts of
place no restrictions on the phase; the phase response need not be minimum

phase; there may be zeros in the right-half plane. However, the Hilbert transform
relations for the magnitude frequency response and the phase response restrict the
phase response to be minimum phase. Mathematical reasons for this restriction are
given below, however, given there are finite-valued complex zeros with non-zero real
parts, it is intuitive that the phase response is not unique for a given magnitude
response. For example, the magnitude response for an H(s) that has an s + 100
term in the numerator is identical if the term is replaced by s – 100, but the phase
response would differ. More generally, H(s) multiplied by any all-pass transfer
function (see Section 2.12) will have the same magnitude frequency response as

itself, but the phase response will differ.
As was done in Section 2.2, on page 33, let the analog filter frequency

response be expressed as follows (Lam, 1979; Papoulis, 1962):

Chapter 2 Analog Filter Design and Analysis Concepts
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and recall that is called the attenuation or loss function, and is called the
phase function. The negative of the natural logarithm of (2.100) is a complex function
of and may be, therefore, expressed as a new frequency response, denoted as

The real and imaginary parts of and respectively, are related
by (2.93) and (2.94): however is constrained to be minimum phase. The
reason why is that every pole and zero in is a pole in
for and for In order for the axis to be in the region of
convergence of and the corresponding impulse response to be causal there can
be no right-half plane poles in is constrained to be minimum phase.
With minimum phase:

Note that the constant in (2.101) is rather than However,
while useful for highpass and bandstop filters, is not in the best form for

lowpass and bandpass filters. Another useful form for the attenuation function may
be obtained as follows. From (2.101),

and

Substituting (2.103) into (2.101) and simplifying results in:

Hilbert Transform RelationsSection 2.15

from which
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Example 2.27
Consider the ideal lowpass filter shown in Figure 2.2, except that, for

computational reasons, the response for is rather than 0.19 That is:

where is a small positive number. The purpose of this example is to compute the
corresponding phase response, given the modified ideal lowpass magnitude response
above, and assuming H(s) is minimum phase. This example is computationally
interesting and relatively easy, but as discussed in Section 2.1, the transfer function
is not realizable.

The attenuation function, is as follows:

and

The phase response is the negative of (2.105):

Note that the phase response has odd symmetry, and that the phase is at
Also note that in the limit as goes to 0, the phase response approaches

for all
The group delay for this filter may be obtained by applying (2.81) to (2.106)

resulting in

19This example is adapted from (Lindquist, 1977) and (Papoulis, 1962).

Analog Filter Design and Analysis ConceptsChapter 2
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Note that the group delay goes to infinity at and reverses polarity for
frequencies beyond that: another indication that the transfer function is not realizable.
Note also that the group delay approaches infinity at DC as approaches zero. The
phase response and the group delay, (2.106) and (2.107), are plotted in Figures 2.38
and 2.39 for and

Example 2.28
Consider the following phase function, which is linear over a given range of

frequencies:20

The corresponding attenuation function may be found using (2.104):

20This example is adapted from (Lam, 1979) and (Papoulis, 1962).

Section 2.15 Hilbert Transform Relations
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The corresponding phase response and magnitude frequency response for (2.108) and
(2.109) with and are shown in Figures 2.40 and 2.41,
respectively. Note that the group delay is a constant for this example,
over the frequency range of and is also a constant of zero outside
that range.

Obtaining the phase response from the magnitude frequency response for
practical filters is very difficult to do using Hilbert transform relations. A more
practical approach for practical filters would be to use the Analog Filter Design

Chapter 2 Analog Filter Design and Analysis Concepts
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Theorem and the method developed in Section 2.7: given the magnitude-squared
frequency response, obtain the minimum-phase transfer function H(s),21 from which

is readily found. For example, the simple one-pole lowpass filter of
Example 2.18, on page 62, beginning with the magnitude-squared frequency response
of readily yields the H(s) of l/(s + 1), from which

However, for this simple problem,
which is difficult to evaluate in (2.102) to find the phase.

Therefore, the Hilbert transform method is of primary value in theoretical
analysis, such as done in the above examples.  In Example 2.27, as indicated in the
example, the results give further evidence that the ideal lowpass response can not be
realized, and can therefore only be approximated. Also, Example 2.28 yields the
magnitude frequency response for a desired linear-phase response over a given
frequency range. The theoretical result suggests that to approximate the linear phase
response, the resulting magnitude frequency response must be approximated. As will
be seen in Chapter 7, Bessel filters, indirectly, do approximate this response.

Section 2.15 Hilbert Transform Relations
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Therefore, the procedure can identify various phase realizations, assuming there are finite-valued transfer
function zeros with non-zero real parts.
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Summary of Hilbert Transform Relations

The most important concepts and results of this section are as follows:

Given the imaginary part of denoted the real
part of is expressed by (2.93).

Given the real part of denoted the imaginary
part of is expressed by (2.94).

The Hilbert transform relations for real and imaginary parts,
as expressed by (2.93) and (2.94), are not restricted to minimum-
phase transfer functions.

Given the attenuation function, the phase
function, is expressed by (2.102).

Given the phase function, the attenuation
function, is expressed by (2.104).

The Hilbert transform relations for the attenuation function and
the phase function, as expressed by (2.102) and (2.104), are
restricted to minimum-phase transfer functions.

If the magnitude-squared frequency response is expressed as a
polynomial in over a polynomial in satisfying the Analog
Filter Design Theorem, the method developed in Section 2.7
may be used to determine the phase response.

2.16 FREQUENCY SCALING

The general form of a rational transfer function has been given in (2.39), and
when s is replaced by by (2.42). Let be a frequency scaling factor, where

is real and positive, and let be a frequency scaled version of

Chapter 2 Analog Filter Design and Analysis Concepts
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Let all variables, functions, and coefficients with a superscript of ( fs) be frequency-
scaled values, and those without the superscript be associated with Making
use of (2.42):

where is the original, non-frequency scaled frequency response. Or, in
general, starting with (2.39), or replacing with s in (2.110):

Therefore, relating the coefficients of in (2.111) to   H(s):

and so

As an alternative, which may be more convenient to apply, the frequency-
scaled transfer function may be expressed as follows:

Therefore, in this case, relating the coefficients of in (2.112) to

and so

Frequency ScalingSection 2.16
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If H(s) is shown in factored form:

where the zeros, and the poles, may be, and in general are, complex,
then the frequency-scaled transfer function may be expressed as follows:

In the form of (2.113), it is apparent that frequency scaling multiplies the poles and
zeros by the frequency-scaling factor, Since is real and positive, the
magnitudes of the poles and zeros are scaled but not the phase angles. A pole/zero
plot of will be identical to that of H(s) except that the axes will be scaled
by

If H(s) is expressed as the product of first-order and second-order terms over
the product of first-order and second-order terms as in (2.40), then the frequency-
scaled transfer function may be expressed as follows:

In (2.114), and all coefficients are real (they are
complex, in general, in (2.113)).

Magnitude Frequency Response and Phase Response
Any critical frequency of interest for denoted such as the

passband edge frequency, or the frequency for some given attenuation, is affected as

Chapter 2 Analog Filter Design and Analysis Concepts
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follows by frequency scaling:

as can be seen from the basic frequency scaling operation. It follows that

That is, will have the same magnitude and phase at as does
at Since could be any frequency, the above may be

generalized as follows:

and

Therefore, plots of the frequency-scaled magnitude frequency response, (2.115), and
phase response, (2.116), are identical to those obtained prior to frequency scaling
except for the scaling of the frequency axes by

Phase Delay and Group Delay
Phase delay is defined by (2.80), and group delay by (2.81). Phase delay for

a frequency-scaled transfer function at some critical frequency may be expressed as
follows:

Group delay for a frequency-scaled transfer function at some critical frequency may
be expressed as follows:

Since could be any frequency, the above may be generalized as follows:

and

Therefore, plots of the frequency-scaled phase delay, (2.117), and group delay,
(2.118), not only have the frequency axes scaled by but the amplitude axes are
scaled by For example, for

Section 2.16 Frequency Scaling
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Time-Domain Response
From the scaling property of Fourier transforms,

It therefore follows that

Note that the frequency-scaled unit impulse response, as shown in (2.119), is a time-
scaled version of the original unit impulse response and is also amplitude scaled by

If then will be greater in amplitude and time-compressed,
compared to h(t).

Recall that the unit step response may be expressed as the integral of the unit
impulse response. Assuming causality,

Note that the frequency-scaled unit step response, as shown in (2.120), is a time-
scaled version of the original unit step response with no corresponding amplitude
scaling.

In the following chapters, there are many graphical plots showing the
magnitude frequency response, phase response, phase delay, group delay, unit impulse
response and unit step response for various filter types. Often a single graph displays
a family of plots, displaying the response for the same filter type with many values of
filter order. Usually these plots are for a normalized frequency axis, that is the
passband edge frequency is normalized to unity. By applying the concepts of
frequency scaling, as presented in this section, the graphs in following chapters give
relevant characteristic information for any desired passband edge frequency, i.e., for
any desired frequency axis by appropriate frequency scaling.

2.17 CHAPTER 2 PROBLEMS

2.1

2.2

Given the ideal magnitude frequency response for a lowpass filter as expressed
in (2.1), and assuming that the phase response is zero, determine an expression
for the unit impulse response. That is, verify (2.2).

Chapter 2 Analog Filter Design and Analysis Concepts

Verify that the area under as expressed in (2.2) and plotted in Figure
2.3, is unity independent of Also, argue that, in the limit as
that
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2.3 Determine an expression for the unit step response of an ideal lowpass filter
with zero phase response and with cutoff frequency Using MATLAB,
plot this unit step response for and for
–2.5ms < t < 2.5ms, and thereby verify the plot shown in Figure 2.4.

Determine the percentage overshoot in the step response.

2.4 Verify that the overshoot of the step response for the ideal lowpass filter,
illustrated in Figure 2.4 and Figure 2.5, is independent of How is
this related to Gibb’s phenomenon?

2.5 Given the unit impulse response of the ideal lowpass filter as expressed by
(2.2), determine the minimum-value to maximum-value rise time for the step
response of this filter.

Given the ideal magnitude frequency response for a highpass filter as
expressed in (2.3), and assuming that the phase response is zero, determine an
expression for the unit impulse response. That is, verify (2.6).

2.6

2.7 Determine an expression for the unit step response of an ideal highpass filter
with zero phase response and cutoff frequency Using MATLAB, plot this
unit step response for for –2.5ms < t < 2.5ms.

2.8 Given the ideal magnitude frequency response for a bandpass filter as
expressed in (2.4), and assuming that the phase response is zero, determine an
expression for the unit impulse response. That is, verify (2.7). Using
MATLAB, plot this unit impulse response for and
for –2.5ms < t < 2.5ms, and thereby verify the plot shown in Figure
2.10.

2.9 Given the ideal magnitude frequency response for a bandstop filter as
expressed in (2.5), and assuming that the phase response is zero, determine an
expression for the unit impulse response. That is, verify (2.8). Using
MATLAB, plot this unit impulse response for
and for –2.5ms < t < 2.5ms, and thereby verify the BW = 800 Hz plot
shown in Figure 2.11.

2.10 Given the family of raised-cosine lowpass filters expressed by (2.9), determine
an expression for the corresponding unit impulse response. That is, verify
(2.10).

Section 2.17 Chapter 2 Problems
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2.11 If the effective time duration of pulses as shown in Figure 2.14 is defined as
the time duration over which the magnitude first becomes 1 % of the peak
value until the magnitude drops below, and stays below, 1% of the peak
value:

(a)

(b)

What is the effective time duration of the pulse shown in
Figure 2.14 when
What is the effective time duration of the pulse shown in
Figure 2.14 when

2.12 Comment 6 on page 39 has relevance to sampling theory and digital signal
processing. It is common in digital signal processing to sample a time-limited
analog signal, such as a segment of speech, and perform filtering or some
other operation in the digital domain. An anti-aliasing filter is frequently used
to band-limit the analog signal prior to sampling. Comment on Nyquist
sampling theory22 and the relevance of the Paley-Wiener Theorem to sampling
of time-limited signals.

2.13 Show that

satisfies the Paley-Wiener Theorem. That is, verify the results of Example
2.1.

For the following magnitude frequency response:2.14

where k is a positive real number,
Show that this function is square-integrable.
Show that there is no with the given magnitude
frequency response that has a corresponding h(t) that is
causal. That is, show that the Paley-Wiener Theorem is not
satisfied.
Determine the half-power frequency, i.e., the frequency where

in terms of k.
Using MATLAB, generate 1000 equally-spaced samples of

with Plot the
results with (i) a linear vertical scale, and, on a second plot, (ii)
also with a dB vertical scale.

(a)
(b)

(c)

(d)

Note, in this problem, that the magnitude frequency response is smooth, and
22

sampling theory, and the sampling theorem. See the interesting historical footnote on page 517 of
Sampling theory is often attributed to Nyquist, or Shannon, or more often simply referred to as

Oppenheim, Willsky and Young (1983).
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there are no frequency bands where the response is zero, and yet the Paley-
Wiener Theorem  is not satisfied.

2.15 For the following magnitude frequency response:

(a)
(b)

(c)

(d)

Show that this function is square-integrable for all real
Show that there is no with the given magnitude
frequency response that has a corresponding h(t) that is
causal. That is, show that the Paley-Wiener Theorem is not
satisfied.
Determine the half-power frequency, i.e., the frequency where

in terms of
Using MATLAB, generate 1000 equally-spaced samples of

with for Plot
the results with (i) a linear vertical scale, and, on a second plot,
(ii) also with a dB vertical scale.

Note, in this problem, that the magnitude frequency response is smooth, and
there are no frequency bands where the response is zero, and yet the Paley-
Wiener Theorem  is not satisfied.

2.16 Given that

determine numerical values for and That is, verify
the results of Example 2.2.

2.17 Given that

determine expressions for and That is, verify
the results of Example 2.3.

2.18 Given that

determine expressions for and That is, verify the
results of Example 2.5.

Section 2.17 Chapter 2 Problems
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2.19 Given that

determine numerical values for and That is, verify
the results of Example 2.7.

2.20 Given the raised-cosine frequency response:

determine expressions for and That is, verify the results of
Example 2.8.

2.21 Given that

determine expressions for and That is, verify the results of
Example 2.9.

2.22 Given that

determine expressions for and That is, verify the results
of Example 2.11.

2.23 Given that

and that determine the Filter Selectivity, and the Shaping
Factor, where a = 3 dB, and b = 60 dB. Using MATLAB, plot

for use (a) linear scales for both the frequency
and magnitude axes, (b) a linear frequency axis and dB for the magnitude axis,
and (c) a logarithmic frequency axis and dB for the magnitude axis. All three
plots are of the same information, but note the difference in the display
formats.

Analog Filter Design and Analysis ConceptsChapter 2
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2.24 Given that

where and determine the Filter Selectivity,
and the Shaping Factor, where a = 3 dB, and b = 60 dB.

Using MATLAB, plot in dB, for

2.25 Given H(s) = 1 / ( s + 1):
(a)
(b)
(c)

(d)

Determine h(t).
Determine h(t), where h ( t ) =
Determine the autocorrelation function of the response of
the filter to a white noise input with unit variance using (2.46).
Show that

2.26 Repeat Problem 2.25 for

2.27 Given

2.28 Repeat Problem 2.27 for

2.29 Repeat Problem 2.27 for

(a)

(b)

Determine whether the Analog Filter Design Theorem is or is
not satisfied for the given function of
If the Theorem is satisfied, determine H(s).

2.30 Repeat Problem 2.27 for

2.31 Using MATLAB, and given that

(a)
(b)
(c)
(d)

Plot the magnitude and phase of
Determine and plot h(t).
Determine and plot (t).
Determine and plot

2.32 Suppose Note that from Problem 2.15 there is no causal
transfer function that has this given magnitude-squared, nor magnitude,

Section 2.17 Chapter 2 Problems
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frequency response. However, as this problem shows, it can be approximated.
Let the following approximation be used (Young and van Vliet, 1995):

where
and This function satisfies the Analog Filter

Design Theorem, and the corresponding H(s), substituting numerical values
for i = 0 , 2 , 4 , 6 , may be expressed as follows:

where Note that this type of filter is referred to as a
Gaussian filter (an approximation to it) since the magnitude frequency response
as well as the impulse response are approximately Gaussian. Using
MATLAB, and given that

Determine and plot Use a linear horizontal
scale from 0 to 5 rad/s.
Determine and plot the phase response over the same
frequency range as in part (a).
Plot the unit impulse response h(t).
Plot the unit step response
Plot the poles of H(s).

(a)

(b)

(c)
(d)
(e)

2.33 Given that

compute the poles of H(s) for the following values of Q: 0, 0.25, 0.5, 0.6,
5, 10, and On an s-plane plot, sketch the locus (the path) of the poles as
Q varies from 0 to infinity, labeling the points on the locus for the computed
values.

2.34 Given that

using MATLAB,
Plot the magnitude and phase frequency response of
Use a logarithmic frequency axis from 1 to for both plots
Plot the magnitude in dB.

Analog Filter Design and Analysis ConceptsChapter 2
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Plot the unit impulse response and the unit step response.
Use a time axis from 0 to 1 second for both plots.

(b)

2.35 Given that

and using MATLAB,
Plot the magnitude and phase response of
Plot and
Plot the magnitude and phase response of
Plot and

(a)
(b)
(c)
(d)

2.36 Given that

using MATLAB,
Plot the magnitude and phase frequency response of
when Also plot the unit impulse response and the
unit step response.
Plot the magnitude and phase frequency response of
when Also plot the unit impulse response and the
unit step response.
Compare the phase responses of parts (a) and (b) and comment.
Comment on the presence of impulses in the time-domain plots
of parts (a) and (b).

(a)

(b)

(c)
(d)

2.37 Given that

using MATLAB,
(a)
(b)
(c)

Plot the magnitude and phase frequency response of
Plot the unit impulse response and the unit step response.
Verify the unit impulse response by computing h(t) by hand,
i.e., using Laplace transform theory.

Note that while the magnitude frequency response is constant (this is an all-
pass filter), the impulse response will significantly affect the filter input signal
x(t), that is, where y(t) is the filter output. This example
stresses the importance of the phase response (if the phase response was

then
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2.38 Determine expressions for the phase delay and the group delay of the transfer
function, H(s), given in Problem 2.32, for and

Using MATLAB, plot and using a frequency
range of 0 to 5 rad / s .

2.39 Determine expressions for the phase delay and the group delay of the transfer
functions, and given in Problem 2.35. Using MATLAB, plot
both phase delay functions and both group delay functions, using a frequency
range of 0 to 1000 rad/s.

2.40 Determine numerical values for and at for the
following transfer function:

That is, verify the results of Example 2.23.

Determine numerical values for and at for the
following transfer function:

2.41

That is, verify the results of Example 2.24.

2.42 Given that the real part of may be expressed as

using Hilbert transform relations, determine the transfer function H ( s ) .

Given that the real part of may be expressed as2.43

using Hilbert transform relations, determine the transfer function H(s).

2.44 Given that

determine the corresponding phase response. HINT: use the Analog Filter
Design Theorem and the method of Section 2.7.

Chapter 2 Analog Filter Design and Analysis Concepts
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Given the phase function expressed in (2.108) with and that
determine the frequency at which the magnitude frequency

response is times the maximum value (the half-power frequency).

Repeat Problem 2.45 for an arbitrary and arbitrary).

2.45

2.46

2.47 Given the phase function expressed in (2.108) with and that
using MATLAB, determine and plot the corresponding unit

impulse response.

Given that2.48

Determine, by hand, expressions for the magnitude frequency
response and the phase response.
Determine, by hand, an expression for the unit impulse
response.
For a frequency scaling factor applied to H(s),
determine expressions for the frequency scaled transfer function,
the frequency scaled magnitude frequency response, the
frequency scaled phase response, and the frequency scaled unit
impulse response.

(a)

(b)

(c)

Section 2.17 Chapter 2 Problems
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CHAPTER 3

BUTTERWORTH FILTERS

classical filter design methods are Chebyshev Type I, Chebyshev Type II, elliptic (or
Cauer), and Bessel; each of these will be studied in following chapters. In this
chapter the Butterworth, or maximally-flat magnitude, response will be defined, and
it will be observed that it satisfies the Analog Filter Design Theorem. Explicit
formulas for the design and analysis of Butterworth filters, such as Filter Selectivity,
Shaping Factor, the minimum required order to meet design specifications, etc., will
be obtained. From the defining the corresponding H(s) will be
determined, and a very simple and convenient means for determining the filter poles
will be found. To complete the study of lowpass, prototype Butterworth filters, the
phase response, phase delay, group delay, and time-domain response characteristics
will be investigated.

3.1 MAXIMALLY-FLAT MAGNITUDE

Consider a general magnitude-squared frequency response for a transfer
function that only has finite poles (all zeros at infinity) with arbitrary coefficients that
satisfies the Analog Filter Design Theorem of Chapter 2, following (2.39), (2.44)
and (2.49):

where the coefficients K, and are to be determined. For convenience, let
(3.1) be expressed as follows:

utterworth (1930) introduced one of the earliest systematic analog filter
design methods, and it is still one of the most widely used. The Butterworth
filter design method is one of the classical filter design procedures. Other
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where Following Lindquist (1977), by long division (3.2) may be
expressed:

Expanding (3.2) by a Maclaurin series, the function may also be expressed:

where

By equating coefficients in (3.3) and (3.4), it can be seen that

and

It is desired to make the magnitude-squared response of (3.2) maximally flat.
One way to accomplish this, at least at DC, is to set as many derivatives evaluated at
DC to zero as possible. If all then (3.2) would not be a
function of Therefore, with only and non-zero, the first N-1
derivatives of (3.2) at will be zero:

This will result in what is denoted as a maximally-flat function. Maximally flat at DC,
since the first N-1 derivatives of (3.2) at DC are zero. Therefore,

Note that the DC value of (3.5) is For convenience let be unity and
be With these simplifications, the Butterworth response may be defined.

Chapter 3 Butterworth Filters
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Definition of the magnitude-squared Butterworth response:

Note that in (3.6) N is the Butterworth filter order,1 and the magnitude-squared
response is 1/2 when independent of N. This is referred to as the 3 dB
frequency.2

Note, again, that by simple inspection, it is observed that (3.6) satisfies the
Analog Filter Design Theorem. Therefore, since the Theorem is satisfied, there
exists a transfer function that is time-invariant, causal, linear, rational with real
coefficients, and is stable3 with the magnitude-squared frequency response of (3.6).

See Figure 3.1 for plots of (3.6) for several values of N. When plotted as
shown, with the vertical scale in dB and a logarithmic frequency scale, the fall-off for

is a straight line, and the slope is -N × 20 dB/decade. This is, of
course, well known from a study of Bode plots (Siebert, 1986)4. Also see Figure 3.2
for detailed plots of (3.6) across the passband; note that larger values of N yield a
closer approximation to the ideal lowpass response.

3.2 FILTER SELECTIVITY AND SHAPING FACTOR

Applying (2.37), the definition of Filter Selectivity, to the square root of (3.6)
results in

Therefore, for a Butterworth filter, Filter Selectivity is directly related to filter order
N, and inversely related to the 3 dB cutoff frequency

1 In Section 3.4 it is shown that N is the number of poles in H(s).
2Actually, the attenuation is slightly greater than 3 dB. It is precisely -10 log(1/2). Throughout this

book, the term “3 dB” precisely means -10 log(1/2).
3See Section 2.6 for a discussion of imposed constraints: the constraints are summarized on page 57.

Satisfaction of the Analog FilterDesign Theorem,summarized on page 61, implies the imposed constraints
are met.

4See Sections 2.8 and 2.9, especially page 67.

Filter Selectivity and Shaping FactorSection 3.2
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Let A be an arbitrary attenuation in dB relative to the DC value. From (3.6):

For a given A, solving (3.8) for would be equivalent to solving for the bandwidth
at that attenuation A:

Using (3.9) and applying (2.38), the definition of Shaping Factor, the Butterworth
filter Shaping Factor may be readily found:

Chapter 3 Butterworth Filters
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where b is the attenuation in dB at the wider bandwidth, a is the attenuation in dB at
the narrower bandwidth, is the wider bandwidth, and is the narrower
bandwidth.

Example 3.1
For this example, let a = 3 dB and b = 80 dB. Then may be computed

for a Butterworth filter using (3.10) for N = 1, 2, · · · , 10. The results are as
follows: 10000.0, 100.0, 21.54, 10.0, 6.31, 4.64, 3.73, 3.16, 2.78, 2.51,
respectively.

3.3 DETERMINATION OF ORDER

In the design of an analog filter, an important step is determining the minimum
required order to meet given specifications. Refer to Figure 2.15 on page 47 in
specifying the desired filter magnitude characteristics. As long as the filter magnitude
frequency response fits within the acceptable corridor indicated in Figure 2.15, it
satisfies the specifications. Note that the permitted magnitude deviation within
the passband and that the minimum attenuation relative to the
passband peak response within the stopband are in dB. The transition band
is the range of frequencies between and Note that, for
convenience, the peak response in the passband is often taken to be 0 dB, however,
it could be any value without effecting the following development. Therefore, Figure
2.15 serves as a convenient definition of several important variables and terms:

passband, transition band, and stopband. Refer to Section 2.4 for more
detail.

Starting with (3.6):

Temporarily let a real variable, assume the role of N, an integer. This will allow
for a solution of the filter order that just meets the filter specifications, even though
that solution will, in general, not be an integer. From (3.11), let

From (3.12), the following is easily obtained:

Section 3.3 Determination of Order
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Similarly,

Note that (3.13) and (3.14) are directly related to (3.9), and could have been obtained
from (3.9) by appropriately defining BW and A. Now note that the ratio of (3.14) to
(3.13) may be expressed as follows:

from which may be solved for. Letting where is the smallest integer
equal to or larger than the minimum order required to meet
the specifications may be determined from the following:

If is not an integer, then and the specifications will be exceeded. Note that
N is independent of

Example 3.2
Suppose the following specifications are given:

and From the right side of (3.15),
If it were possible to have a filter order equal to the filter

specifications would be exactly met, without exceeding them. However, applying
(3.15), N = 9, and the stated filter specifications will be exceeded. There are a
family of possible 9th-order Butterworth filters that exceed the stated specifications.
Two cases are shown in Figure 3.3. One case just meets the specifications at the
passband edge, the other case just meets the specifications at the stopband edge.
There are, theoretically, by adjusting the value of an infinite number of other
cases in between the two cases shown in Figure 3.3.

To make the design solution unique, precisely meeting the design specifications
at the passband edge will be adhered to. As in Example 3.2, the determination of the
order N does not require knowledge of the 3 dB frequency However, as will be
seen, to carry out the design of a Butterworth filter does require knowing
Generally, a Butterworth filter is initially designed for a normalized and then
frequency scaling is performed to obtain the desired 5 Assuming the filter is

The numerical values of the transfer function poles are dependent on a knowledge of the numerical value
of See Section 2.16 for a presentation of frequency scaling.

Chapter 3 Butterworth Filters
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designed to precisely meet the stated magnitude specifications at the passband edge,
(3.12) may be used, substituting Nfor tocompute

3.4 POLE LOCATIONS

Starting with (3.6) and following the procedure used in Section 2.7:

The poles of (3.17) may be found by setting

and solving for the values of Noting that

Suppose N = 1, then by application of (3.18) it is easy to see that If

Section 3.4 Pole Locations
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N = 2, then for k = 1, 2, 3, 4 . For k > 4 the poles repeat.
Equations to find the poles may be generalized as follows:

and

Note that (3.19) and (3.20) give the poles for H(s) H(–s); only those in the left-half
of the s plane are for H(s). Note that the poles, for N odd or N even, are equally
spaced on a circle of radius Note also that there are poles on the real axis only
if N is odd.

See Figure 3.4 for a plot of the poles for N = 3 and See Figure 3.5
for a plot of the poles for N = 4 and As mentioned on page 55, note the
quadrantal symmetry.

If Euler’s relation is made use of, (3.19) and (3.20) may be both expressed as
follows for left-half plane poles:

Chapter 3 Butterworth Filters
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Example 3.3
In this example, the transfer function of a third-order Butterworth filter

normalized for is found. From (3.20) or (3.21), the three poles of H(s) are
as follows: –1, Therefore,

The third-order polynomial in the denominator of (3.22) is denoted as a third-order
Butterworth polynomial.

Example 3.4
In this example, the transfer function of a fourth-order Butterworth filter

normalized for is found. From (3.19) or (3.21), the four poles of H(s) are
as follows: Therefore,

or

Section 3.4 Pole Locations

or



122 DESIGN AND ANALYSIS OF ANALOG FILTERS:

The denominator of (3.23) is a fourth-order Butterworth polynomial.

3.5 PHASE RESPONSE, PHASE DELAY, AND GROUP DELAY

A Butterworth filter, as seen above, is designed to meet given magnitude
response specifications. Once the transfer function is determined, it may be put in the
following form:

which is an all-pole form of (2.76). Given (3.24), the phase response, from (2.79)
may be stated as follows:

where denotes the real part of the denominator of (3.24) evaluated with
and denotes the imaginary part. The phase response of a Butterworth

filter, with a normalized for several values of N, is shown in Figure 3.6.
Taking the initial phase slope as a linear-phase reference, deviations from linear
phase, for several values of N, are shown in Figure 3.7.

Chapter 3 Butterworth Filters
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The phase delay, for a filter is defined in (2.80), which is repeated
here for convenience:

Using (3.25) in (3.26), the phase delay for a lowpass Butterworth filter may be
expressed as

The group delay for a filter, is defined by (2.81) and is repeated here
for convenience:

The phase delay of a Butterworth filter, with a normalized for several
values of N, is shown in Figure 3.8. The group delay of a Butterworth filter, with a
normalized for several values of N, is shown in Figure 3.9. Note that for
values of the phase delay values shown in Figure 3.8 agree very closely
with the group delay values shown in Figure 3.9. This is expected since, as shown
in Figures 3.6 and 3.7, the phase response closely approximates a linear response for
that frequency range.

Section 3.5 Phase Response, Phase Delay, and Group Delay
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Note also that for values of the phase delay values shown in Figure
3.8 differ significantly from the group delay values shown in Figure 3.9. This also
is expected since, as shown in Figures 3.6 and 3.7, the phase response curves are
nonlinear for that frequency range.

Chapter 3 Butterworth Filters
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3.6 TIME-DOMAIN RESPONSE

The unit impulse response of a Butterworth filter,6 with a normalized
for several values of N, is shown in Figure 3.10. Compared to the impulse responses
shown in Figure 2.3 for the ideal lowpass filter, those shown in Figure 3.10 have
similarities and differences. They differ in that they are causal and do not have even
symmetry. However they do bear some similarity in the waveshape, especially for
larger values of N. Also note that the period of the oscillations is approximately equal
to in general), the same as in Figure 2.3. As an interesting
observation, note that the delay, taken as the time at which the maximum value of the
response occurs, agrees very favorably with the phase delay at This is
expected since, referring to (2.2) for the ideal case, the impulse response may be
modeled as a sinusoid at the 3 dB frequency modulated by an envelope. Therefore the
impulse response will be delayed by approximately the phase delay evaluated at

Note that the delay does not correlate well with the group delay, since the
maximum of the impulse response occurs at the peak of the “carrier,” not the peak of
the envelope.

The unit step response of a Butterworth filter, with normalized for
several values of N, is shown in Figure 3.11. Compared to the step responses shown
in Figure 2.5 for the ideal lowpass filter, those shown in Figure 3.11 have similarities

See Section 2.13 for a general introduction to time-domain responses.

Section 3.6 Time-Domain Response
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and differences. They differ in that they are causal. However they are quite similar
in waveshape for amplitudes greater that 0.5 for larger values of N.

3.7 CHAPTER 3 PROBLEMS

3.1 Given that

determine the relationship between and without a pole-zero cancellation,
such that the magnitude frequency response will be maximally flat, as defined
in Section 3.1.

3.2. Given that

determine the relationship among and without a pole-zero
cancellation, such that the magnitude frequency response will be maximally
flat, as defined in Section 3.1.

3.3 Verify that the first N-1 derivatives of (3.6), evaluated at  are zero.

Chapter 3 Butterworth Filters



By referring to Figure 3.1, verify that the transition band slope of a
Butterworth filter, for N = 1 and N = 5, is – N × 20 dB/decade.

By direct application of (2.37) to (3.6), determine Filter Selectivity for a
Butterworth filter of order 1, and also order 5, for an arbitrary Compare
your results with that found from a direct use of (3.7).

Estimate the Shaping Factorfor a Butterworth filter of order 1, a = 3 dB,
and b = 60 dB, from Figure 3.1. Compute the Shaping Factor from (3.10)
and compare the result with your estimated value from the figure.

Estimate the Shaping Factor for a Butterworth filter of order 5, a = 3 dB,
and b = 100 dB, from Figure 3.1. Compute the Shaping Factor from (3.10)
and compare the result with your estimated value from the figure.

Determine the minimum required Butterworth filter order to meet the
following set of specifications:
and

Determine the minimum required Butterworth filter order to meet the
following set of specifications:
and

For the specifications of Problem 3.8 and the determined order, find the
maximum value that may be increased to without increasing the order.

For the specifications of Problem 3.9 and the determined order, find the
maximum value that may be increased to without increasing the order.

For the specifications of Problem 3.8 and the determined order, find the
maximum value that may be increased to without increasing the order.

For the specifications of Problem 3.9 and the determined order, find the
maximum value that may be increased to without increasing the order.

For the specifications of Problem 3.8 and the determined order, determine the
numerical value of

For the specifications of Problem 3.9 and the determined order, determine the
numerical value of
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3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15
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Determine the pole locations of a third-order Butterworth filter with
Determine and state the transfer function, H(s), with (a)

the denominator expressed as a non-factored third-order polynomial, and (b)
the denominator expressed as the product of a first-order and a second-order
polynomial both with real coefficients, and (c) the denominator expressed as
the product of three first-order terms.

Determine the pole locations of a fourth-order Butterworth filter with
Determine and state the transfer function, H(s), with (a) the

denominator expressed as a non-factored fourth-order polynomial, and (b) the
denominator expressed as the product of two second-order polynomials both
with real coefficients, and (c) the denominator expressed as the product of four
first-order terms.

Based on Figure 3.7, which order of Butterworth filter has the most linear
phase response? By using a straight-edge applied to Figure 3.6, do you arrive
at the same conclusion? Do the results shown in Figure 3.8 agree with your
conclusion? Do the results shown in Figure 3.9 agree with your conclusion?

The minimum value of the phase deviation shown in Figure 3.7 for N = 10
is off scale. Compute the numerical value of the minimum value.

Compute the maximum value of the phase delay (do not just read it from the
plot) and the radian frequency at which it occurs, as graphically shown in
Figure 3.8, for N = 10.

Compute the maximum value of the group delay (do not just read it from the
plot) and the radian frequency at which it occurs, as graphically shown in
Figure 3.9, for N = 10.

By making use of the scaling property of Fourier transforms (see Appendix
B), and referring to Figure 3.6, at what approximate radian frequency would
an eighth-order Butterworth filter with have a phase of
–10 radians? What would be the corresponding frequency in Hertz?

By making use of the scaling property of Fourier transforms and Figures 3.8
and 3.9, what are the approximate values of phase delay and group delay at
1000 Hz for a tenth-order Butterworth filter with

Suppose an amplitude-modulated “carrier” of 1000 Hz, with a very narrow
bandwidth, is applied to the filter described in Problem 3.23. Explain the

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24
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significance of the values obtained for phase delay and group delay in Problem
3.23.

3.25 By making use of the scaling property of Fourier transforms and Figure 3.10,
determine, for an eighth-order Butterworth filter with
approximate values for the following:

(a)
(b)
(c)

The time at which the unit impulse response is a maximum.
The amplitude of the unit impulse response maximum.
The width of the unit impulse response, defined as the time
during which

3.26 Repeat Problem 3.25 for

3.27 Note from Problems 3.25 and 3.26 that the time at which the unit impulse
response is a maximum is inversely related to the frequency scaling factor and
the maximum value of the unit impulse response is directly related to the
frequency scaling factor. However, the unit step response, graphically shown
in Figure 3.11, while having a time axis that is inversely related to the
frequency scaling factor, has an amplitude scale that is not effected by
frequency scaling. Explain, mathematically and intuitively, why the unit step
response amplitude is not effected by frequency scaling.

3.28 The purpose of this problem is to compare a 3rd-order Butterworth filter with
to the 3rd-order Gaussian filter of Problem 2.30. Using MATLAB,

Using a linear frequency scale from 0 to 10 rad/s, and a
magnitude scale in dB, overlay-plot on the same graph the
magnitude frequency response of the Butterworth filter and the
Gaussian filter.
Using a linear frequency scale from 0 to 10 rad/s, and a vertical
scale in radians, overlay-plot on the same graph the phase
response of the Butterworth filter and the Gaussian filter.
Using a linear frequency scale from 0 to 10 rad/s, and a vertical
scale in seconds, overlay-plot on the same graph the phase delay
of the Butterworth filter and the Gaussian filter.
Using a linear frequency scale from 0 to 10 rad/s, and a vertical
scale in seconds, overlay-plot on the same graph the group delay
of the Butterworth filter and the Gaussian filter.
Using a linear time scale from 0 to 10 s, overlay-plot on the
same graph the unit impulse response of the Butterworth filter
and the Gaussian filter.

(a)

(b)

(c)

(d)

(e)
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(f)

(g)

(h)

Using a linear time scale from 0 to 10 s, overlay-plot on the
same graph the unit step response of the Butterworth filter and
the Gaussian filter.
Overlay-plot on the same complex s plane graph the poles of
the Butterworth filter and the Gaussian filter.
Based upon the above graphs:
(h1) In what ways does the Butterworth filter appear to be

superior to the Gaussian filter?
(h2) In what ways does the Gaussian filter appear to be

superior to the Butterworth filter?

Note: for each graph in parts (a) through (g), indicate which plot is for
the Butterworth filter and which is for the Gaussian filter, properly
label the x axis and the y axis for each figure, and include a title for
each graph.
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CHAPTER 4

CHEBYSHEV TYPE I FILTERS

was shown in Section 1.4. In fact, Chebyshev filters were not developed until the
1950s, some twenty years after the development of Butterworth and elliptic filters.
However, the order indicated above is logical, and is followed here, since Butterworth
filters have a maximally-flat passband magnitude and monotonically fall off outside
the passband, Chebyshev Type I filters have a magnitude response that ripples in the
passband and monotonically falls off outside the passband, Chebyshev Type II filters
are flat in the passband and ripple in the stopband, and elliptic filters ripple in both the
passband and the stopband.

In this chapter the Chebyshev Type I, or simply Chebyshev, response is
defined, and it will be observed that it satisfies the Analog Filter Design Theorem.
Explicit formulas for the design and analysis of Chebyshev Type I filters, such as
Filter Selectivity, Shaping Factor, the minimum required order to meet design
specifications, etc., will be obtained. From the defining the corresponding H(s)
will be determined, and means for determining the filter poles are found. To complete
the study of lowpass, prototype Chebyshev filters, the phase response, phase delay,
group delay, and time-domain response characteristics are investigated.

4.1 EQUIRIPPLE PASSBAND MAGNITUDE

The success of the Butterworth response is based on a polynomial in the
denominator of that remains close to unity for small values of and
increases rapidly in value for > Or, stated another way, the denominator is
unity plus a polynomial, that remains very small for small values of
and increases rapidly in value for Using this basic concept, let the
magnitude-squared frequency response for a Chebyshev Type I response be defined
as follows:

lthough a logical presentation of classical analog filters frequently follows
the order of Butterworth, Chebyshev Type I, Chebyshev Type II, and
elliptic, such as is done in this book, this is not a chronological order, asA
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Definition of the magnitude-squared Chebyshev Type I response:

where

and is a frequency scaling constant, and is a constant that adjusts the influence
of in the denominator of

In due course it will be shown that (4.2) can be expressed as a polynomial, in
fact a Chebyshev polynomial (see Section 4.4), and that as such (4.1) will satisfy the
Analog Filter Design Theorem, and therefore the imposed constraints of Section 2.6
will be satisfied. It will be shown that N is the order of the Chebyshev polynomial,
and in Section 4.5 it will be shown that N is the order of the filter, i.e., the number
of poles of the transfer function H(s). The form shown for in (4.2) is
very convenient for analytical investigation purposes, revealing the characteristics of
the Chebyshev Type I response, and also yielding design formulae such as for the
minimum required order to meet design specifications.

Note that for , and , for
Therefore, defines the passband, and mono-

tonically falls off for Within the passband, as can be seen from (4.2), the
magnitude-squared frequency response “ripples,” following the cosine function.
However, the hyperbolic cosine function monotonically increases, causing the
magnitude-squared response to monotonically decrease, beyond the passband.

It is easy to see that

and that

In terms of dB,

and
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When (4.3) is compared with the general magnitude specifications for the design of
a lowpass filter illustrated in Figure 2.15 on page 52, setting equal to the negative
of (4.3) results in

Several values of and corresponding values of are shown in Table 4.1. It is
common practice to restrict to less than 3 dB, since a ripple greater than that
would be excessive. Usually is 2 dB or less, in practice. In the following,
except for the 3 dB entry in Table 4.1, it is assumed that is less than 3 dB.

Note that magnitude-squared response peaks occur in the passband when
The frequencies of the peaks may be found as follows:

from which

Section 4.1 Equiripple Passband Magnitude
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Therefore, the frequencies of the peaks are as follows:

where if N is odd, and if N is even.
Similarly, the magnitude-squared response valleys, i.e., the minimum values,

occur in the passband when The frequencies of the valleys may be
found to be as follows:

where if N is odd, and if N is even. It is noted that
the response is also equal to

when but this is not the frequency of a “valley,” but rather the edge of the
passband, and therefore is not included in (4.6). The passband response is
denoted as “equiripple” since all of the passband peaks are the same magnitude, and
all of the passband valleys are of the same magnitude. It is noted that the frequency
spacing between peaks, as well as between valleys, are not equal: it is the magnitudes
of the peaks that are equal, and the magnitudes of the valleys.

See Figure 4.1 for plots of (4.1) for a normalized of unity,1 a somewhat
arbitrary, but common value of and several values of N.
Also see Figure 4.2 for detailed plots of (4.1) across the passband. In the figures
solid lines are for even orders, and dashed lines are for odd orders. Note that all odd
orders have a DC response of unity (0 dB), and that all even orders have a DC
response given by (4.3). This can be easily seen from (4.1), since
is zero for N odd, and is ± 1 for N even. Note also the number of peaks and valleys
across the passband, including the peak or valley at DC, equals the order.

Assuming that, as stated above, is less than 3 dB, and defining as
is done in Chapter 3, as the 3dB corner frequency, it follows that
Therefore, at the hyperbolic form of (4.2) applies. It follows that

It is common to show plots of the magnitude response, as well as other plots, of Chebyshev filters with
a normalized which indeed is justifiable. However, so that Chebyshev plots may be more easily
compared with those of other filters, such as Butterworth filters, will be normalized to unity here.

Chapter 4 Chebyshev Type I Filters
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from which it follow that

Section 4.1 Equiripple Passband Magnitude
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Example 4.1
Suppose N = 5, and then,

from (4.5), the frequencies of the peaks are 0, 587.79 rad/s, and 951.06 rad/s.
From (4.6) the frequencies of the valleys are 309.02 rad/s and 809.02 rad/s.
From (4.7),

4.2 FILTER SELECTIVITY AND SHAPING FACTOR

Applying (2.37), the definition of Filter Selectivity, to the square root of (4.1)
results in

If (4.7) is used in (4.8) to eliminate any direct reference to then (4.8) may be
expressed as follows:

Let A be an arbitrary attenuation in dB relative to the peak value greater than
From (4.1):

For a given A, solving (4.10) for would be equivalent to solving for the bandwidth
at that attenuation A:

Using (4.11) and applying (2.38), the definition of Shaping Factor, the Chebyshev
Type I filter Shaping Factor may be readily found:

Chapter 4 Chebyshev Type I Filters
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Example 4.2
Suppose a = 3 dB, b = 80 dB, and From (4.9),

for N = 1, 2, · · · , 10, may be computed to be 0.35, 1.07, 2.24, 3.89, 6.00,
8.58, 11.63, 15.15, 19.14 and 23.60 respectively. From (4.12), for N from 1 through
10, may be computed to be 10000.0, 81.41, 15.54, 6.72, 4.07, 2.93, 2.34, 1.98,
1.76 and 1.60 respectively.

4.3 DETERMINATION OF ORDER

An important step in the design of an analog filter is determining the minimum
required order to meet given specifications. Refer to Figure 2.15 on page 52 in
specifying the desired filter magnitude characteristics. As long as the filter magnitude
frequency response fits within the acceptable corridor indicated in Figure 2.15, it
satisfies the specifications. Note that the permitted magnitude deviation within
the passband and that the minimum attenuation relative to the
passband peak response within the stopband are in dB.

Starting with (4.1):

Temporarily let a real variable, assume the role of N, an integer, as is done in
Chapter 3. Therefore, from (4.13):

from which

Letting where is the smallest integer equal to or larger than
the minimum order required to meet the specifications may be

determined from the following:

Section 4.3 Determination of Order
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Example 4.3
Suppose the following specifications are given:

and From the right side
of (4.14), Therefore, N = 6.

4.4 CHEBYSHEV POLYNOMIALS

Observe that

and

Therefore,

But,

Also note that,

From (4.17) it follows that,

Combining (4.15), (4.16) and (4.18),

Similarly,

Chapter 4 Chebyshev Type I Filters
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It is important to note that (4.21) applies equally to the cosine and hyperbolic forms
of

If N = 0, and for convenience is normalized to unity,

and therefore

If N = 1,

and therefore

For N > 1 the recursion (4.21) may be used. For N = 2,

The function expressed as rather than as in (4.2) with N = 2 and
is clearly a polynomial, and is numerically equal: as such it is referred to

as a second-order Chebyshev polynomial. Several Chebyshev polynomials are shown
in Table 4.2. Note that N is the order of the Chebyshev polynomial. Also note that
if is not normalized to unity, the Chebyshev polynomial is as shown in Table 4.2

with replaced by
It can be shown that the square of all Chebyshev polynomials have only even

powers of and that multiplied by and added to unity they have no real roots.
That is, the Analog Filter Design Theorem is satisfied. For example, see Example
4.4.

Example 4.4
Suppose N = 3, and Then

and

A root of the denominator requires that

Section 4.4 Chebyshev Polynomials
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which has no real solution, i.e., no real roots. Therefore, the Analog Filter Design
Theorem is satisfied: there is a corresponding H(s) that meets all of the imposed
constraints of Section 2.6. Therefore a circuit can be implemented with the desired
third-order Chebyshev Type I response.

4.5 POLE LOCATIONS

Starting with (4.1) and following the procedure used in Section 2.7:

The poles of (4.22) may be found by setting

and solving for the values of First, it is noted that

Assuming that as noted above in Section 4.1, then
and the hyperbolic form of is perhaps the more appropriate:

Chapter 4 Chebyshev Type I Filters
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Note that if is used, then the cosine form of would perhaps be the more
appropriate:2 a development similar to that used here will yield the same results, i.e.,
the same equations for finding the poles. That is, even though is used here,
the results are valid for all real

Note that is a complex number. Let

where

and and are both real. Then

Note that

and

Using (4.24) and (4.25) in (4.23),

By observation of (4.26),

and

From (4.27), cos(Nv) = 0, and therefore,

At the values of expressed in (4.29), sin(Nv) = ± 1, and therefore

Section 4.5 Pole Locations
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Using (4.29) and the positive form of (4.30) (to avoid redundancy) in (4.31),

For left-half plane poles:

Example 4.5
Suppose N = 4, and From (4.33),

From the poles, and also noting that the DC gain is

or,

Note that, from (4.33),

and,

Chapter 4 Chebyshev Type I Filters
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Adding (4.34) and (4.35),

If and are considered as continuous variables, then (4.36) describes an
ellipse with axes that are the real and imaginary axes of the s plane. The major
semiaxis of the ellipse has the value of

and the foci are located at Therefore, the poles of a Chebyshev Type
I filter fall on an ellipse described by (4.36).

Example 4.6
Consider the filter described in Example 4.5. The major semiaxis of the

ellipse, obtained from (4.37), is 1065.84. The minor semiaxis of the ellipse, obtained
from (4.38), is 368.8. The foci are located at ±j 1000. The poles and the ellipse
are shown in Figure 4.3. For symmetry, the right-half plane poles of
Y(s) = H(s)H(–s) are also shown.

4.6 PHASE RESPONSE, PHASE DELAY, AND GROUP DELAY

A Chebyshev Type I filter, as seen above, is designed to meet given magnitude
response specifications. Once the transfer function is determined, it may be put in the
following form:

which is an all-pole form of (2.76). Given (4.39), the phase response, from (2.79),
may be stated as follows:

where denotes the real part of the denominator of (4.39) evaluated with

Section 4.6 Phase Response, Phase Delay, and Group Delay
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and denotes the imaginary part. The phase response of a Chebyshev
Type I filter, with a normalized a somewhat arbitrary, but common value
of and several values of N, is shown in Figure 4.4.
Taking the initial phase slope as a linear-phase reference, deviations from linear

3 See Footnote 1.
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phase, for a normalized dB, and for several values of N, are
shown in Figure 4.5. In the figure, solid lines are for even orders, and dashed lines
are for odd orders.

The phase delay, for a filter is defined in (2.80), which is repeated
here for convenience:

Using (4.40) in (4.41), the phase delay for a lowpass Chebyshev Type I filter may be
expressed as

The group delay for a filter, is defined by (2.81) and is repeated here
for convenience:

The phase delay of a Chebyshev Type I filter, with a normalized
and for several values of N, is shown in Figure 4.6. The group delay

is shown in Figure 4.7. In both figures, solid lines are for even orders, and dashed
lines are for odd orders. Note that the phase delay values at DC are very close to the
group delay values at DC, and that for all the phase delay and the group
delay are comparable. However, as approaches the 3 dB corner frequency, in this
case unity, the group delay becomes very large due to the nonlinearity of the phase
response near the corner frequency (see Figures 4.4 and 4.5).

Section 4.6 Phase Response, Phase Delay, and Group Delay
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4.7 TIME-DOMAIN RESPONSE

The unit impulse response of a Chebyshev Type I filter,4 with a normalized
and for several values ofN, is shown in Figure 4.8. The unit

step response of a Chebyshev Type I filter, with normalized

See Section 2.13 for a general introduction to time-domain responses.

Chapter 4 Chebyshev Type I Filters

4



A Signal Processing Perspective 147

and for several values of N, is shown in Figure 4.9. Note that the settled value of the
step response is unity for odd orders, and (0.89125 in this case) for even
orders; these values are, of course, the same as the DC gain of the filter, the input
being unity.

Section 4.7 Time-Domain Response
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4.8 COMPARISON WITH BUTTERWORTH FILTERS

There are several ways in which Chebyshev Type I filters may be compared
with Butterworth filters. The magnitude frequency responses may be compared, the
phase responses, the phase delays, the group delays, the unit impulse responses, and
the unit step responses, for example.

It is noted that, for a given set of filter specifications, the minimum order
required for a Chebyshev Type I response will never be greater than that required for
a Butterworth response: it will frequently be less. It is not always less, since the
orders are restricted to integers.

It can be shown that, for all practical values of that the Shaping Factor of
a Chebyshev Type I filter is always less than that for a Butterworth filter of the same
order. Similarly, Filter Selectivity can be shown to be greater for a Chebyshev Type
I response than for a Butterworth response of the same order. To illustrate this,
compare the results of Example 4.2 to that of Example 3.1; in both cases a = 6dB
and b = 60 dB. For example, for N = 8, for the Butterworth filter is 2.2,
whereas it is only 1.54 for the Chebyshev Type I filter, which indicates that the
attenuation in the transition band increases more rapidly as a function of for the
Chebyshev filter than it does for the Butterworth. This, of course, can readily be
observed by comparing Figures 3.1 and 4.1.

The above may imply that a Chebyshev Type I filter is superior to a
Butterworth filter of the same order. However, the phase response of a Butterworth
filter is more nearly linear than is that of a Chebyshev Type I filter of the same order.
This is, of course, reflected in the phase delay and the group delay. By comparing the
maximum group delay, near the cutoff frequency, of the Chebyshev filter to that of
the Butterworth filter indicates a much greater value for the Chebyshev, due, of
course, to the greater nonlinearity of the phase response for the Chebyshev.

Also, the unit impulse response and the unit step response of a Butterworth
filter are more desirable than that of a Chebyshev Type I filter of the same order. The
Chebyshev filter exhibits ringing that dies out much more slowly than that for the
Butterworth filter.

Therefore, it is not possible to state emphatically that one filter type is superior
to the other, without first stating very clearly the design objectives. Perhaps a
minimum order is of low priority, as long as it is less than some given and
approximating linear phase is of high priority; then a Butterworth response would be
the better choice. On the other hand, if minimum order is of high priority and the
phase response is more-or-less irrelevant, than a Chebyshev Type I response would
likely be the better choice.

Note that by combining (4.7) and (4.37), the major semiaxis of the s-plane
ellipse that the poles fall on may be expressed as follows:
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Note that

and

It is noted that for large x, Therefore, as

Note that by combining (4.7) and (4.38), the minor semiaxis of the s-plane
ellipse that the poles fall on may be expressed as follows:

Note that

and

It is noted that for large x, Therefore, as

Therefore, as , the ellipse approaches a circle of radius Similarly, from
(4.30), in the limit as

and

which are identical to Butterworth poles (see (3.21)).
Therefore, in the limit as the Chebyshev Type I response, and poles,

become identical to the Butterworth. Or, the Butterworth filter is a special case (a
limiting case) of the Chebyshev Type I.

Section 4.8 Comparison with Butterworth Filters



150 DESIGN AND ANALYSIS OF ANALOG FILTERS:

4.9  CHAPTER 4 PROBLEMS

4.1 Given the defining equations for a Chebyshev Type I response, (4.1) and (4.2),
and given that and N = 3 :
(a) Determine the value of .
(b) Determine the value of
(c) Determine the value of
(d) Determine the frequencies of the peaks in the passband.
(e) Determine the frequencies of the valleys in the passband.
(f)  Accurately sketch the magnitude frequency response. Use only a

calculator for the necessary calculation.   Use a vertical scale in dB (0
to -50dB). and a linear radian frequency scale from 0 to 5000 rad/s .

(g) Accurately sketch the magnitude frequency response. Use only a
calculator for the necessary calculations . Use a linear vertical scale
from 0 to 1, and a linear radian frequency scale from 0 to 2000 rad/s .

4.2 Given the defining equations for a Chebyshev Type I response, (4.1) and (4.2),
and given that and N = 6 :
(a) Determine the value of
(b) Determine the value of
(c) Determine the value of
(d) Determine the frequencies of the peaks in the passband.
(e) Determine the frequencies of the valleys in the passband.
(f) Accurately sketch the magnitude frequency response. Use only a

calculator for the necessary calculations. Use a vertical scale in dB (0
to - 100dB), and a linear radian frequency scale from 0 to 5000 rad/s.

(g) Accurately sketch the magnitude frequency response. Use only a
calculator for the necessary calculations. Use a linear vertical scale
from 0 to  1, and a linear radian frequency scale from 0 to 1200 rad/ s.

4.3 In Figure 4.1 it may appear that the response fall-off is greater than
N × 20 dB/decade. However, this is not the case for very high

frequencies. Demonstrate that for very high frequencies the fall-off is indeed
- N × 20 dB/ decade.

4.4 Determine the value of Filter Selectively for the Chebyshev Type I filter
specified in Problem 4.2. Compare this value with the Filter Selectivity for
a Butterworth filter with similar specifications: and
N = 6.
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4.5

4.6

4.7

4.8

4.9

4.10

4.11

Determine the value of the Shaping Factor for the Chebyshev Type I filter
specified in Problem 4.2, for a = 3 dB and b = 80 dB. Compare this value
with the Shaping Factor for a Butterworth filter with similar specifications:

and N = 6.

Estimate the Shaping Factor for a Chebyshev Type I filter with N = 5,
and from Figure 4.1. Compare your results with that

obtained from (4.12).

Suppose filter specifications are stated as follows:
and . Note that (4.14) requires knowledge of

to determine the required order, and when it is that is specified the order
is required to determine from via (4.7). However, it is very practical
to use (4.14), using in place of This is justified since, (1) in practical
problems there is usually not much difference between and especially
for higher order filters, (2) since the orders are restricted to integers it seldom
makes any difference, and (3) since any error will result in
exceeding the specifications rather than failing to meet the specifications.
Making use of (4.14), determine the required filter order to meet the given
specifications:
(a) For a Chebyshev Type I filter with 0.1 dB of ripple.
(b) For a Chebyshev Type I filter with 0.5 dB of ripple.
(c) For a Chebyshev Type I filter with 1.0 dB of ripple.
(d) For a Chebyshev Type I filter with 1.5 dB of ripple.
(e) For a Chebyshev Type I filter with 2.0 dB of ripple.
(f) For a Chebyshev Type I filter with 2.5 dB of ripple.
(g) For comparison purposes, for a Butterworth filter.

Given that N = 4, and express in poly-
nomial form similar to Example 4.4, and demonstrate that it satisfies the
Analog Filter Design Theorem.

Prove that the magnitude-squared frequency response of Problem 4.1 satisfies
the Analog Filter Design Theorem.

Prove that the magnitude-squared frequency response of Problem 4.2 satisfies
the Analog Filter Design Theorem.

Determine the 9-th and 10-th order Chebyshev polynomials.

Section 4.9 Chapter 4 Problems
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4.12 Sketch the square of the 4-th order Chebyshev polynomial given in Table 4.2
for from 0 to 1.1 rad/s. Compute the square of (4.2) over this same
radian frequency range for , and verify that it is numerically the same
as the Chebyshev polynomial.

4.13 Determine the poles of the filter specified in Problem 4.7 (a).

4.14 Determine the poles of the filter specified in Problem 4.7 (f).

4.15 Determine the poles of the filter specified in Problem 4.8.

4.16 Determine the transfer function H(s) for the Chebyshev Type I filter specified
in Problem 4.1. Express the denominator of H(s) in two ways: (1) As a
polynomial in s. (2) As the product of a second-order polynomial in s, the
roots of which being complex conjugates, and a first-order term. State the
numerical values of the three poles. Sketch the six poles of H(–s) H(s) on an
s plane, and include a sketch of the ellipse that the poles fall on. State the
numerical values of the major and minor semiaxes of the ellipse.

4.17 Determine the transfer function H(s) for the Chebyshev Type I filter specified
in Problem 4.2. Express the denominator of H(s) in two ways: (1) As a
polynomial in s. (2) As the product of three second-order polynomials in s,
the roots of each second-order polynomial being complex conjugates. State the
numerical values of the six poles. Sketch the twelve poles of H(–s) H(s) on
an s plane, and include a sketch of the ellipse that the poles fall on. State the
numerical values of the major and minor semiaxes of the ellipse.

4.18 Suppose an anti-aliasing filter is needed prior to an analog-to-digital converter
to be used in a speech processing system. Suppose a sampling rate of 8000
samples/s is to be used, and therefore it is decided that the anti-aliasing filter
should have a minimum attenuation of 60 dB at 4000 Hz. Suppose a
Chebyshev Type I filter is to be used.
(a) If and what is the minimum order

required?
(b) If and N = 10, what is maximum value of
(c) If and N = 10, what is the minimum value of

4.19 Under the conditions of part (c) of Problem 4.18, determine the transfer
function H(s), and give numerical values for all the poles.

4.20 Sketch the step response of a 10-th order Chebyshev Type I filter with
and Refer to Figure 4.9 and make use of the
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scaling property of Fourier transforms. What would the maximum group delay
be for this filter, and at what frequency would it occur? At what time would
the peak of the unit impulse response of this filter be, and what would be the
value of that peak?

4.21 Using the MATLAB functions cheb1ap, impulse and step:
(a) Determine the transfer function in polynomial form, and also factored

to indicate the poles, of a Chebyshev Type I filter with
and N = 6.

(b) Determine the impulse response and the step response for the filter of
part (a).

(c) By multiplying the pole vector found in part (a) by determine
the transfer function of a Chebyshev Type I filter with

and N = 6.
(d) Determine and plot the magnitude frequency response of the filter of

part (c) by using the MATLAB function freqs. Use a vertical scale in
dB and a linear horizontal scale from 0 to 5000 Hz. Also determine and
plot the phase response over this same frequency range. Use the
MATLAB function unwrap to display the smooth phase response rather
than the principle phase.

(e) By appropriately scaling the impulse response and the step response of
part (b), determine and plot the impulse response and the step response
of the filter of part (c). That is, the time axis for the step response
needs to scaled by and the unit impulse response needs
the same time-axis scaling and requires an amplitude scaling of

(f) Determine and plot the phase delay of the filter of part (c). Note that
this is easily obtained from the phase response of part (d).

(g) Determine and plot the group delay of the filter of part (c). Note that
this also is easily obtained from the phase response of part (d):

, where is the phase in radians
at step n, and is the step size in rad/s.

Section 4.9 Chapter 4 Problems
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CHAPTER 5

CHEBYSHEV TYPE II FILTERS

hebyshev Type II filters are closely related to Chebyshev Type I filters, and
are noted for having a flat passband magnitude response, and an equiripple
response in the stopband. As was noted in Chapter 4, the Chebyshev

Type I response is often simply referred to as the Chebyshev response. Similarly, the
Chebyshev Type II response is often referred to as the Inverse Chebyshev response,
for reasons that will become clear as the response is developed below.

In this chapter the Chebyshev Type II response is defined, and it will be
observed that it satisfies the Analog Filter Design Theorem. Explicit formulas for the
design and analysis of Chebyshev Type II filters, such as Filter Selectivity, Shaping
Factor, the minimum required order to meet design specifications, etc., will be
obtained. From the defining the corresponding H(s) will be determined,
and means for determining the filter poles and zeros are found. To complete the study
of lowpass, prototype Chebyshev Type II filters, the phase response, phase delay,
group delay, and time-domain response characteristics are investigated.

5.1 EQUIRIPPLE STOPBAND MAGNITUDE

Suppose that is the magnitude-squared frequency response of a
Chebyshev Type I filter according to (4.1):

Let be obtained from (5.1) as follows:

Finally, the desired magnitude-squared response is obtained by replacing by
in (5.2):
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Definition of the magnitude-squared Chebyshev Type II response:

where

and is a frequency scaling constant, and is a constant that adjusts the influence
of in the denominator of Therefore, it is observed that the
hyperbolic cosine is used in (5.4) for low frequencies, and, from (5.3) that this results
in a response near unity; the trigonometric cosine is used for high frequencies beyond

resulting in a rippling response of small magnitude.
In due course it will be shown that (5.4) can be expressed as a polynomial, in

fact very closely related to the Chebyshev polynomials of Section 4.4, and that as such
(5.3) will satisfy the Analog Filter Design Theorem, and therefore the imposed
constraints of Section 2.6 will be satisfied. It will be shown that N is the order of
the Chebyshev polynomial, and in Section 5.5 it will be shown that N is the order of
the filter, i.e., the number of poles of the transfer function H(s). The form shown
for in (5.4) is very convenient for analytical investigation purposes,
revealing the characteristics of the Chebyshev Type II response, and also yielding
design formulae such as for the minimum required order to meet design specifications.

Note that for and , for
Therefore, defines the stopband, and ripples

within the stopband following the cosine function. Within the passband, as can be
seen from (5.3) and (5.4), the magnitude-squared frequency response follows the
hyperbolic cosine function and falls off monotonically for increasing

It is easy to see that

independent of N, and that

In terms of dB,

Chapter 5 Chebyshev Type II Filters
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and

Note that (5.5) is the minimum attenuation for all When (5.5) is compared
with the general magnitude specifications for the design of a lowpass filter illustrated
in Figure 2.15 on page 52, setting equal to the negative of (5.5) results in

Several values of and corresponding values of are shown in Table 5.1. Note
that is the minimum attenuation in the stopband. At frequencies where the
numerator of (5.3) is zero, the attenuation is infinity.

Note that the magnitude-squared response of (5.3) is zero in the stopband
when The frequencies where the response is zero may be found as
follows:

from which

Section 5.1 Equiripple Stopband Magnitude
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Therefore, the frequencies where the response is zero are as follows:

where

where if N is odd, and if N is even. Note that if N is
even the highest frequency where the attenuation is equal to is infinity.

The stopband response is denoted as “equiripple” since all of the stopband
peaks (the points of minimum attenuation) are the same magnitude. It is noted that the
frequency spacing between peaks are not equal: it is the magnitudes of the peaks that
are equal.

The frequency at which the attenuation is equal to a given may be found
from (5.3):

and then solve for making use of the hyperbolic form of (5.4):

See Figure 5.1 for plots of (5.3) for a normalized of unity
and several values of N. Recall that Butterworth and Chebyshev Type

I filters both have magnitude frequency responses that monotonically decrease with
increasing frequency throughout the transition band and the stopband. However, due
to the rippling in the stopband, this is not the case for Chebyshev Type II filters, as
can be seen in Figure 5.1. Also, as can be seen from (5.3), is zero

Chapter 5 Chebyshev Type II Filters

if N is odd, and if N is even. Note that if N
is odd the highest frequency where the response is zero is infinity: there are only
(N – l)/2 finite frequencies where the response is zero. If N is even there are N/2

finite frequencies where the response is zero.
Similarly, the attenuation equals in the stopband when

The frequencies of these minimum attenuation points may be found as follows:
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if N is odd, and is if N is even. Even though the frequency range
does not go to infinity in Figure 5.1, this phenomenon is observable.

See Figure 5.2 for detailed plots of (5.3) across the passband. Note that the
passband magnitude response is very flat. It is very comparable to the Butterworth
passband magnitude response shown in Figure 3.2. In fact, for a large range of it
is superior: see Sections 5.8 and 5.9. In Figures 5.1 and 5.2, solid lines are for even
orders, and dashed lines are for odd orders.

Section 5.1 Equiripple Stopband Magnitude
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Example 5.1
Suppose N = 5, and then,

from (5.7), the frequencies where the magnitude frequency response is zero are
1051.46 rad/s, 1701.3 rad/s, and infinity. From (5.8) the frequencies where the
attenuation in the stopband ripples to a minimum of are 1236.07 rad/s and
3236.07 rad / s . From (5.9),

5.2 FILTER SELECTIVITY AND SHAPING FACTOR

Applying (2.37), the definition of Filter Selectivity, to the square root of (5.3)
results  in

If (5.9) is used, with and therefore in (5.10) to eliminate any
direct reference to then (5.10) may be expressed as follows:

It is noted that (5.11) is identical to (4.9).
Let A be an arbitrary attenuation in dB relative to the DC value such that

From (5.3):

For a given A, solving (5.12) for would be equivalent to solving for the bandwidth
at that attenuation A:

Using (5.13) and applying (2.38), the definition of Shaping Factor, the Chebyshev
Type II filter Shaping Factor may be readily found:

Chapter 5 Chebyshev Type II Filters
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Example 5.2
Suppose a = 3 dB, b = 80 dB, and

From (5.11), for N = 1, 2, · · ·  , 10, may be computed to be 0.35, 0.71, 1.06,
1.43, 1.84, 2.28, 2.79, 3.35, 3.97 and 4.67 respectively. From (5.14), for N from
1 through 10, may be computed to be 10000.0, 70.71, 13.59, 5.99, 3.69, 2.70,
2.18, 1.87, 1.67 and 1.53 respectively.

5.3 DETERMINATION OF ORDER

An important step in the design of an analog filter is determining the minimum
required order to meet given specifications. Refer to Figure 2.15 on page 52 in
specifying the desired filter magnitude characteristics. As long as the filter magnitude
frequency response fits within the acceptable corridor indicated in Figure 2.15, it
satisfies the specifications.

Starting with (5.3):

Temporarily let a real variable, assume the role of N, an integer, as is done in
Chapters 3 and 4. Therefore, from (5.15):

from which, making use of (5.6),

Letting where is the smallest integer equal to or larger than
the minimum order required to meet the specifications may be

determined from the following:

Note that (5.16) is identical to (4.14): for the same specifications, the minimum order
required for a Chebyshev Type II filter is the same as that for a Chebyshev Type I
filter.

Section 5.3 Determination of Order
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Example 5.3
Suppose the following specifications are given:

and From the right side of (5.16),
Therefore, N = 6.

5.4 INVERSE CHEBYSHEV POLYNOMIALS

A recursion for (5.4) may readily be developed, similar to that which was done
in Section 4.4 for Chebyshev Type I filters. The resultant recursion is similar to
(4.21):

It is important to note that (5.17) applies equally to the cosine and hyperbolic forms
of

If N = 0, and for convenience is normalized to unity,

and therefore

If N = 1,

and therefore

For N > 1 the recursion (5.17) may be used. For N = 2,

Several Chebyshev polynomials are shown in Table 4.2. Inverse Chebyshev
polynomials may be obtained from Table 4.2 by replacing with Note that
if is not normalized to unity, the inverse Chebyshev polynomial is as shown in
Table 4.2 with replaced by

It can be shown that the square of all inverse Chebyshev polynomials have only
even powers of and that multiplied by and added to unity they have no real
roots. If they are not added to unity, as appears in the numerator of (5.3), then they
do have real roots: those roots may be found by (5.7). Therefore, the Analog Filter
Design Theorem is satisfied. For example, see Example 5.4.

Chapter 5 Chebyshev Type II Filters
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Example 5.4
Suppose N = 3, and Then

and

A root of the denominator requires that

which has no real solution, i.e., no real roots. The numerator has one real repeated
root, which is 115.47. Therefore, the Analog Filter Design Theorem is satisfied:
there is a corresponding H(s) that meets all of the imposed constraints of Section 2.6.
Therefore a circuit can be implemented with the desired third-order Chebyshev Type
II response.

5.5 LOCATION OF THE POLES AND ZEROS

Starting with (5.3) and following the procedure used in Section 2.7:

The zeros of (5.18) may be found by setting

and solving for the values of The trigonometric cosine form of (5.4) must be used
since the inverse hyperbolic cosine of zero doesn’t exist:

Solving (5.19) for results in

which, except for the j, is identical with (5.7). Therefore, the zeros of the transfer
function of a Chebyshev Type II filter are as follows:

Section 5.5 Location of the Poles and Zeros
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where is given by (5.7).
The poles of (5.18) may be found by setting

As noted in Chapter 4, since is complex, either form, the cosine or the
hyperbolic, is equally valid. Either approach will yield the same equations for finding
the poles.

Since the approach here is identical to the approach used in Section 4.5, except
that is replaced by it follows that the equivalent to (4.32) would
be as follows:

For left-half plane poles:

where

It is interesting to note that the poles of the Chebyshev Type I filter, for a
normalized may be expressed as follows:

where

Chapter 5 Chebyshev Type II Filters

Since then               and the hyperbolic form of    is perhaps the
more appropriate:
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and the poles of the Chebyshev Type II filter, for a normalized may be
expressed as follows:

and therefore, the poles are the poles reflected about a unit circle
in the plane: the magnitudes are inversely related and the phase angles have
opposite polarity. This inverse relationship between the normalized poles of the
Chebyshev Type I transfer function and those of the Chebyshev Type II is often noted
in the literature, and is implied, as noted above, by contrasting (4.33) and (5.22). It
is possible to find the poles of a Chebyshev Type II transfer function by first finding
the poles of a Chebyshev Type I transfer function and then converting them into
Chebyshev Type II poles. However, this relationship between normalized poles
doesn’t seem to yield any practical advantage. Direct use of (5.22) is quite adequate
for finding the poles of a Chebyshev Type II transfer function. Also note, by
comparing Tables 4.1 and 5.1, that practical values for are very different for the
two transfer functions.

Example 5.5
Suppose N = 4, and From (5.9),

From (5.22), the poles are

From (5.20), the zeros are

From the poles and zeros, and noting that the DC gain is unity:

or,

Section 5.5 Location of the Poles and Zeros
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5.6 PHASE RESPONSE, PHASE DELAY, AND GROUP DELAY

A Chebyshev Type II filter, as seen above, is designed to meet given
magnitude response specifications. Once the transfer function is determined, it may
be put in the following form:

which is of the form of (2.39). Given (5.23), the phase response, from (2.79), may
be stated as follows:

where and denote the real and imaginary parts of the denominator,
respectively, and and denote the real and imaginary parts of the
numerator of (5.23) evaluated with

The phase response of a Chebyshev Type II filter, with a normalized
a somewhat arbitrary, but common value of and several
values of N, is shown in Figure 5.3. The phase response, from until the first
phase discontinuity, which occurs at for the tenth-order response,

Chapter 5 Chebyshev Type II Filters
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is the total phase, in contrast to the principal phase.1 The total phase, as shown for
Butterworth filters in Figure 3.6, and for Chebyshev Type I filters in Figure 4.4, and
and for Chebyshev Type II filters until the first phase discontinuity in Figure 5.3, is
important because phase delay and group delay are directed related to the total phase
response. Each of the phase discontinuities seen in Figure 5.3 are The phase
response in Figure 5.3 for beyond, and including, the first phase discontinuity is
not total phase, but rather pseudo-principal phase. That is, the phase shown is the
total phase plus where m is an integer. This technique allows for a less
congested set of plots that is easier to read. In fact, each of the phase discontinuities,
if total phase was to be preserved, are The phase discontinuities occur at
transmission zeros, which are on the as increases through a zero, the
phase response encounters a discontinuity. It is interesting to note that while
Butterworth and Chebyshev Type I filters each have a phase response in the limit, as
approaches infinity, of this is not true for Chebyshev Type II filters.
Due to the finite transmission zeros, the phase response in the limit, as approaches
infinity, for Chebyshev Type II filters, is zero, for N even, and is for N
odd.

Taking the initial phase slope as a linear-phase reference, deviations
from linear phase, for a normalized and for several
values of N, are shown in Figure 5.4. In the figure, solid lines are for even orders,
and dashed lines are for odd orders. The phase deviation is shown in the figure from
until just before the first phase discontinuity occurs. Each phase discontinuity causes

discontinuity in the phase deviation, but if plotted is somewhat misleading,

1The principal phase is restricted to the range of

Section 5.6 Phase Response, Phase Delay, and Group Delay
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since the magnitude response is zero at the same frequency and is, in general, in the
stopband. Over the frequency range of the figure,                    phase
discontinuities only effect the plots for orders 8, 9, and 10, as can be seen in the
figure.

The phase delay,     for a filter is defined in (2.80), which is repeated
here for convenience:

The group delay for a filter, is defined by (2.81) and is repeated here
for convenience:

The phase delay of a Chebyshev Type II filter, with a normalized
and for several values of N, is shown in Figure 5.5. Note that the

phase delay discontinuities occur at the frequencies where there are phase
discontinuities, that is, at the frequencies of transmission zeros. Since each phase
discontinuity is each phase delay discontinuity is where is the
frequency of the discontinuity. The effect, therefore, of the transmission zeros, is that
the phase delay for frequencies well beyond the passband approaches zero much more
rapidly than it does for either Butterworth or Chebyshev Type I filters (see Figures
3.8 and 4.6).

The group delay is shown in Figure 5.6. Note that the group delay values at
DC are very close to the phase delay values at DC, and that for all the
phase delay and the group delay are comparable. However, as approaches the 3

Chapter 5 Chebyshev Type II Filters
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dB corner frequency, in this case unity, the group delay becomes large due to the
nonlinearity of the phase response near the corner frequency (see Figures 5.3 and
5.4). Note the points of discontinuity in the group delay, for example at

for N = 10. As can be seen from (5.26), at each phase
discontinuity the group delay is theoretically That is, the group delay is
theoretically an infinite time advance, rather than a delay, at the point of a phase
discontinuity; however, since this occurs only at a point along the frequency axis, and
at a point of a transmission zero, the filter magnitude response at that point is zero;
there is nothing to advance. In Figure 5.6, these points of infinite time advance are
plotted with non-zero width; this is a result of the plotting software and from the fact
that the calculation frequency-sample width is non-zero. Also, for convenience, the
minimum delay value of the figure is zero.

5.7 TIME-DOMAIN RESPONSE

The unit impulse response of a Chebyshev Type II filter, with a normalized
and for several values of N, is shown in Figure 5.7. Note

that for even orders there is an impulse at the origin (not shown in the figure), but the
weight of these impulses is ( in this case, since and
therefore these impulses are insignificant. The unit step response of a Chebyshev
Type II filter, with normalized and for several values of N,
is shown in Figure 5.8.

Section 5.7 Time-Domain Response
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5.8 COMPARISON WITH BUTTERWORTH AND CHEBYSHEV
TYPE I FILTERS

There are several ways in which Chebyshev Type II filters may be compared
with Butterworth and Chebyshev Type I filters. The magnitude frequency responses
may be compared, the phase responses, the phase delays, the group delays, the unit
impulse responses, and the unit step responses, for example.

Chapter 5 Chebyshev Type II Filters
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It is noted that, for a given set of filter specifications, the minimum order
required for a Chebyshev Type II response will never be greater than that required for
a Butterworth response: it will frequently be less. It is not always less, since the
orders are restricted to integers. As noted in Section 5.3, the minimum order required
for a Chebyshev Type II filter is identical with that for a Chebyshev Type I filter.

Although the passband of a Chebyshev Type II response was not designed to
be maximally flat in any sense, yet, as can be seen by comparing Figures 5.2 and 3.2,
the passband magnitude response of a Chebyshev Type II filter is comparable with that
of a Butterworth. In fact, over a wide range of filter specifications, the passband
magnitude response of a Chebyshev Type II filter, with the same order and same
3 dB corner frequency, is more flat than that of a Butterworth filter. One way of

demonstrating this is by comparing Filter Selectivity for the two filters. Let (5.11) be

denoted and (3.7) be denoted It can be shown that

for all N, and Equality in (5.27) is achieved only for N = 1 or for very
small values of For example, for N = 10, and then

It can be shown that, for all practical values of that the Shaping Factor of
a Chebyshev Type II filter is always less than that for a Butterworth filter of the same
order. To illustrate this, compare the results of Example 5.2 to that of Example 3.1;
in both cases a = 3 dB and b = 80  dB. For example, for N = 8, for the
Butterworth filter is 3.16, whereas it is only 1.87 for the Chebyshev Type II filter,
which indicates that the attenuation in the transition band increases more rapidly as a
function of for the Chebyshev Type II filter than it does for the Butterworth. This,
of course, can readily be observed by comparing Figures 3.1 and 5.1.

The above may imply that a Chebyshev Type II filter is superior to a
Butterworth filter of the same order. However, the phase response of a Butterworth
filter is more nearly linear than is that of a Chebyshev Type II filter of the same order.
The differences, however, are not great. The phase deviation from linear for a
Chebyshev Type II filter, as shown in Figure 5.4, is greater than it is for a
Butterworth filter, as shown in Figure 3.7. This is, of course, reflected in the phase
delay and the group delay, but comparing Figure 5.5 with 3.8, and 5.6 with 3.9,
shows that the differences are not great. Comparing plots of the unit impulse response
and the unit step response of the two filters also shows that the differences are not
great.

The comparison between Chebyshev Type II filters and Chebyshev Type I
filters is more objective and straight-forward, especially since the minimum required

Section 5.8 Comparison with Butterworth and Chebyshev Type I Filters
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order to meet design specifications is identical for both filters. A Chebyshev Type II
filter, of the same order, has a more constant magnitude response in the passband, a
more nearly linear phase response, a more nearly constant phase delay and group
delay, and less ringing in the impulse and step responses, than does a Chebyshev Type
I filter: compare Figures 5.2 and 4.2, 5.4 and 4.5, 5.5 and 4.6, 5.6 and 4.7, 5.7 and
4.8, and 5.8 and 4.9. However, while (5.11) and (4.9), equations for Filter
Selectivity, are the same, the numerical values for differ significantly for the two
filters. For all practical filters, for the Chebyshev Type II filter will be
significantly smaller than that for the comparable Chebyshev Type I filter. To
illustrate this, compare Table 5.1 to Table 4.1. The result is that, for all practical
filters, for the Chebyshev Type I filter will be significantly larger than for the
comparable Chebyshev Type II filter: compare Figures 5.2 and 4.2. However, the
comparison of Shaping Factor values is not consistent. It is possible for a Chebyshev
Type II filter to have a smaller than a corresponding Chebyshev Type I filter. To
illustrate this, compare 10th-order responses in Figures 5.1 and 4.1 with a = 3 dB
and b = 80 dB.

5.9 CHAPTER 5 PROBLEMS

5.1 Given the defining equations for a Chebyshev Type II response, (5.3) and
(5.4), and given that and N = 3 :
(a) Determine the value of
(b) Determine the value of
(c) Determine the frequencies where the response is zero.
(d) Determine the frequencies in the stopband where the attenuation is
(e) Accurately sketch the magnitude frequency response. Use only a

calculator for the necessary calculations. Use a vertical scale in dB (0
to -60dB), and a linear radian frequency scale from 0 to 5000 rad/s.

(f) Accurately sketch the magnitude frequency response. Use only a
calculator for the necessary calculations. Use a linear vertical scale
from 0 to 1, and a linear radian frequency scale from 0 to 2000 rad/s.

5.2 Given the defining equations for a Chebyshev Type II response, (5.3) and
(5.4), and given that and N = 6 :
(a) Determine the value of
(b) Determine the value of
(c) Determine the frequencies where the response is zero.
(d) Determine the frequencies in the stopband where the attenuation is
(e) Accurately sketch the magnitude frequency response. Use only a

calculator for the necessary calculations. Use a vertical scale in dB (0

Chapter 5 Chebyshev Type II Filters
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(f)
to -80dB), and a linear radian frequency scale from 0 to 5000 rad/s.
Accurately sketch the magnitude frequency response. Use only a
calculator for the necessary calculations. Use a linear vertical scale
from 0 to 1, and a linear radian frequency scale from 0 to 1200 rad/s.

5.3 Starting with (2.37) and the square root of (5.3), derive (5.11).

5.4 On page 159 it is mentioned that for a large range of the passband magnitude
response for a Chebyshev Type II filter is more flat than that of a Butterworth
filter of the same order. On page 171 this concept is expanded upon. Since
both responses are relatively flat in the passband, if they both have the same
then the one with the larger Filter Selectivity implies that the magnitude
frequency response remains closer to unity as approaches then does the
other one. Verify that, for the same order and the same Filter Selectivity
for a Chebyshev Type II filter is greater than or equal to Filter Selectivity for
a Butterworth filter, and that they are equal only for N = 1 or for very small
values of That is, verify (5.27).

5.5 Determine the value of Filter Selectivity for the Chebyshev Type II filter
specified in Problem 5.2. Compare this value with the Filter Selectivity for
a Butterworth filter with similar specifications: and
N = 6. Compare this value with the Filter Selectivity for a Chebyshev Type
I filter with similar specifications: and
N = 6.

5.6 Determine the value of the Shaping Factor for the Chebyshev Type II filter
specified in Problem 5.2, for a = 3 dB and b = 60 dB. Compare this value
with the Shaping Factor for a Butterworth filter with similar specifications:

and N = 6. Compare this value with the Shaping Factor
for a Chebyshev Type I filter with similar specifications:

and N = 6.

5.7 Estimate the Shaping Factor for a Chebyshev Type II filter with N = 5,
and from Figure 5.1. Compare your results with that

obtained from (5.14).

5.8 Suppose filter specifications are stated as follows:
Determine the required filter order to meet the given

specifications:
(a) For a Chebyshev Type II filter with
(b) For a Chebyshev Type II filter with
(c) For a Chebyshev Type II filter with
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For a Chebyshev Type II filter with
For comparison purposes, repeat parts (a) through (d) for a Butterworth
filter.
For comparison purposes, repeat parts (a) through (d) for a Chebyshev
Type I filter with 0.1 dB of ripple.
For comparison purposes, repeat parts (a) through (d) for a Chebyshev
Type I filter with 0.5 dB of ripple.
For comparison purposes, repeat parts (a) through (d) for a Chebyshev
Type I filter with 1.5 dB of ripple.

(d)
(e)

(f)

(g)

(h)

Given that N = 4, and express in poly-
nomial form similar to Example 5.4, and demonstrate that it satisfies the
Analog Filter Design Theorem.

Prove that the magnitude-squared frequency response of Problem 5.1 satisfies
the Analog Filter Design Theorem.

Prove that the magnitude-squared frequency response of Problem 5.2 satisfies
the Analog Filter Design Theorem.

Determine the 9-th and 10-th order inverse Chebyshev polynomials.

Sketch the square of the 4-th order inverse Chebyshev polynomial for
from 0 to 1.1 rad/s. Compute the square of (5.4) over this same radian
frequency range for and verify that it is numerically the same as the
inverse Chebyshev polynomial.

Determine the poles and zeros of the filter specified in Problem 5.8 (a).

Determine the poles and zeros of the filter specified in Problem 5.8 (d).

Determine the poles and zeros of the filter specified in Problem 5.9.

Suppose N = 4, and Determine the transfer
function H(s). That is, verify the results of Example 5.5.

Determine the transfer function H(s) for the Chebyshev Type II filter
specified in Problem 5.1. Express the denominator of H(s) in two ways: (1)
As a polynomial in s. (2) As the product of a second-order polynomial in s,
the roots of which being complex conjugates, and a first-order term. State the
numerical values of the three poles and the finite-value zeros. Sketch the six
poles and the zeros of H(-s)H(s) on an s plane.
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5.19 Determine the transfer function H(s) for the Chebyshev Type II filter
specified in Problem 5.2. Express the denominator of H(s) in two ways: (1)
As a polynomial in s. (2) As the product of three second-order polynomials
in s, the roots of each second-order polynomial being complex conjugates.
Express the numerator of H(s) in two ways: (1) As a polynomial in s. (2) As
the product of three second-order polynomials in s, the roots of each second-
order polynomial being complex conjugates. State the numerical values of the
six poles and six zeros. Sketch the twelve poles and zeros of H(-s) H(s) on
an s plane.

5.20 Suppose a Chebyshev Type II filter is be used that has a minimum attenuation
of 60 dB at 4000 Hz
(a) If and what is the minimum order

required?
(b) If and N = 10, what is the maximum value of ?
(c) If and N = 10, what is the minimum value of ?

5.21 Under the conditions of part (c) of Problem 5.20, determine the transfer
function H(s), and give numerical values for all the poles and zeros.

5.22 Sketch the step response of a 10-th order Chebyshev Type II filter with
and Refer to Figure 5.8 and make use of the

scaling property of Fourier transforms. What would the maximum group delay
be for this filter, and at what frequency would it occur? At what time would
the peak of the unit impulse response of this filter be, and what would be the
value of that peak?

5.23
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Using the MATLAB functions cheb2ap, impulse and step:
(a) Determine the transfer function in polynomial form, and also factored

to indicate the poles and zeros, of a Chebyshev Type II filter with
and N = 6.

Determine the impulse response and the step response for the filter of
part (a).
By multiplying the pole vector and the zero vector found in part (a)
by determine the transfer function of a Chebyshev Type II
filter with and N = 6.
Determine and plot the magnitude frequency response of the filter of
part (c) by using the MATLAB function freqs. Use a vertical scale in
dB and a linear horizontal scale from 0 to 5000 Hz. Also determine and
plot the phase response over this same frequency range. Use the
MATLAB function unwrap rather than plotting the principle phase.
By appropriately scaling the impulse response and the step response of

(b)

(c)

(d)

(e)
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part (b), determine and plot the impulse response and the step response
of the filter of part (c). That is, the time axis for the step response
needs to scaled by and the unit impulse response needs
the same time-axis scaling and requires an amplitude scaling of

Determine and plot the phase delay of the filter of part (c). Note that
this is easily obtained from the phase response of part (d).
Determine and plot the group delay of the filter of part (c). Note that
this also is easily obtained from the phase response of part (d):

where is the phase in radians
at step n, and is the step size in rad/s.

To demonstrate the critical nature of a filter design, this problem experiments
some with the filter of Problem 5.23 (c). Multiply the highest-frequency pole-
pair of the filter of Problem 5.23 (c) by 1.1, leaving all other poles and zeros
unchanged. Determine and plot the magnitude frequency response of the filter
by using the MATLAB function freqs. Use a vertical scale in dB and a linear
horizontal scale from 0 to 5000 Hz. Also determine and plot the phase
response over this same frequency range. Use the MATLAB function unwrap
rather than plotting the principle phase. Compare these results with that
obtained for Problem 5.23 (d).

This problem continues to demonstrate the critical nature of a filter design, and
is a continuation of Problem 5.24. Multiply the lowest-frequency zero-pair
of the filter of Problem 5.23 (c) by 1.1, leaving all other poles and zeros
unchanged. Determine and plot the magnitude frequency response of the filter
by using the MATLAB function freqs. Use a vertical scale in dB and a linear
horizontal scale from 0 to 5000 Hz. Also determine and plot the phase
response over this same frequency range. Use the MATLAB function unwrap
rather than plotting the principle phase. Compare these results with that
obtained for Problem 5.23 (d).

(f)

(g)

5.24

5.25



CHAPTER 6

ELLIPTIC FILTERS

6. 1 INTRODUCTION

The magnitude-squared frequency response of an elliptic filter is defined
below.

Definition of the magnitude-squared elliptic response:

lliptic filters, also known as Cauer filters in recognition of the contributions
of Wilhelm Cauer to elliptic, as well as other filters, are noted for having
an equiripple passband magnitude response similar to Chebyshev Type I

filters, and an equiripple stopband magnitude response similar to Chebyshev Type II
filters. They require the lowest order of all the classical filters to meet given design
specifications. As was noted at the opening to Chapter 4, although a logical
presentation of classical analog filters frequently follows the order of Butterworth,
Chebyshev Type I, Chebyshev Type II, and elliptic, such as is done in this book, this
is not the chronological order, as was shown in Section 1. 4.

In this chapter the elliptic filter magnitude response is defined, and it will be
observed that it satisfies the Analog Filter Design Theorem. Explicit formulas for the
design and analysis of elliptic filters, such as Filter Selectivity, Shaping Factor, the
minimum required order to meet design specifications, etc., will be obtained. From
the defining the corresponding H(s) will be determined, and means for
determining the filter poles and zeros are found. To complete the study of lowpass,
prototype elliptic filters, the phase response, phase delay, group delay, and time-
domain response characteristics are investigated.
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178 DESIGN AND ANALYSIS OF ANALOG FILTERS:

where

- is the Jacobian elliptic sine of with modulus denotes the frequency
of the passband edge, denotes the frequency of the stopband edge, denotes a
parameter that is a function of the filter order N and complete elliptic integral values
to be described below, is a positive real constant that specifies the magnitude of the
ripple in the passband, is a positive real constant that specifies the magnitude of the
ripple in the stopband, q is zero if N is odd and unity if N is even, and is the
complete elliptic integral of to be described below.

The alert reader may observe that (6. 2) is in general impossible, since there
are no degrees of freedom in the equation. That is, (6. 2) is dependent on all four
design parameters1 and on the order N as well. Contrasting (6. 2) with previously-
presented filters, note that the corresponding function for a Butterworth filter is

which is parameter-dependent only on the passband edge frequency
and the order; the corresponding function for a Chebyshev Type I filter is

the corresponding function for a Chebyshev Type II filter is
For a Butterworth filter, for a given and N, and have a one-to-one
correspondance: there is one degree of freedom in the filter design. Similarly for
Chebyshev Type I and Chebyshev Type II filters, there is one degree of freedom.
This degree of freedom is not present in (6. 2). To stress this point: If all design
parameters were arbitrary, the logical thing to do would be to let the order be unity
for any given set of the other four parameters. Hopefully this is recognized as being
absurd. Although (6. 2) may be evaluated for any given set of parameters, it will not
in general yield desirable nor expected results: in general, the results will neither be
real nor meet the stated specifications. Certain requirements must be imposed. It is
necessary that (6. 2) meet the following restrictions for the purpose of elliptic filter
design:

(1)
(2)
(3)
(4)

squared must be real,
squared must have equiripple in the passband,
squared must have equiripple in the stopband,
squared must be such that (6. 1) will satisfy the Analog Filter

Design Theorem. Clearly (1) is redundant and included in (4).
The reason why (6.2) does not in general meet the above restrictions is that

elliptic sine functions are doubly periodic, having a real period and an imaginary
period, and those periods are dependent upon both the argument and the modulus

1See Figure 2. 15 on page 52, and note that is directly related to and is related to
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or, in terms of (6. 2), the periods are dependent upon the argument
and the modulus Therefore, in order to

understand these dependencies it is necessary to consider an overview of those
elements of elliptic function theory relevant to elliptic filter design. Elliptic functions
were intensely studied in the 19th century. A relatively recent and commendable book
on the subject is by Lawden (1989)2. The treatment to follow, beginning in Section
6. 2, is very brief, focusing on the immediate needs of elliptic filter theory. But before
considering elliptic function theory, two examples that illustrate and elaborate on the
above discussion are given.

Example 6. 1
This example illustrates three things: (1) that a Chebyshev filter is a special

case of an elliptic filter, (2) that in this case, the elliptic sine form and the elliptic
cosine form of (6.2) are the same, and (3) that in this case,

Let and N = 3. It can be shown that,
with these specifications,

where is the Jacobian elliptic cosine function of argument and modulus
and is given by (4.2)3. In Figure 6.1 are shown (6.1) with experimentally
obtained from the elliptic sine form, the elliptic cosine form, and from the standard
Chebyshev Type I response expressed by (4. 1). The three plots in Figure 6. 1 are
indistinguishable. The data plotted in Figure 6. 1 were obtained from the MATLAB4

m-file EXAMP6_1. m, as found on the accompanying disk and printed in Appendix C.

Example 6. 2
This example illustrates that when properly set up, (6. 1) yields a real

magnitude-squared frequency response that meets the design specifications, and that

2The last paragraph of the preface to Lawden’s book is rather interesting: “I am now approaching the
termination of a life, one of whose major enjoyments has been the study of mathematics. The three jewels
whose effulgence has most dazzled me are Maxwell’s theory of electromagnetism, Einstein’s theory of
relativity, and the theory of elliptic functions. I have now published textbooks on each of these topics, but
the one from whose preparation and writing I have derived the greatest pleasure is the present work on
elliptic functions. How enviable are Jacobi and Weierstrass to have been the creators of such a work of art!
As a lesser mortal lays down his pen, he salutes them and hopes that his execution of their composition does
not offend any who have ears to hear the music of the spheres. ”

3In (4.2), is expressed as a trigonometric cosine for frequencies up to and as a hyperbolic
cosine for frequencies beyond that. This is correct, convenient, and as usually expressed. However, it is
noted that if would be equally accurate to express in the trigonometric cosine form for all frequencies,
and perhaps make the equivalence with the elliptic cosine form of (6.3)  of greater interest.

4MATLAB is a registered trademark of The Math Works, Inc.

Section 6. 1 Introduction
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when design parameters are arbitrary chosen the result, in general, will not be real,
and even the magnitude of the result does not meet the design specifications. This
example, plus the previous one, serve to illustrate the previous discussion in this
section, and also to motivate the study of elliptic integrals and Jacobian elliptic
functions to follow.

Let (as will
be seen, and As will be seen in following sections, these
critical values will yield a real result, that can be realized with a third-order transfer
function (three poles, and two zeros on the These parameters are denoted
as Set 1 in this example, and are the properly set-up parameters.

For comparison purposes, let
and These parameters yield complex results, and cannot be realized with a
rational transfer function with real coefficients. These parameters are denoted as Set
2 in this example, and are the first set of arbitrary parameters.

Also for comparison purposes, let
and These parameters also yield complex results, and cannot be realized with
a rational transfer function with real coefficients. These parameters are denoted as Set
3 in this example, and are the second set of arbitrary parameters.

Also for comparison purposes, the MATLAB function ellipap is used to design
an elliptic filter with specified parameters of N = 3, and

Chapter 6 Elliptic Filters
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5 The procedure for designing elliptic filters, which is accomplished by the
MATLAB function ellipap, is developed below in this chapter. It is included in this
example to illustrate the identical magnitude-squared frequency response results using
parameter Set 1 in (6.1).

The four frequency responses are shown in Figure 6.2. Since Set 2 and Set
3 each yield complex results for the “magnitude-squared” response of (6. 1), what is
plotted in Figure 6. 2 for those two cases are the magnitude of the result. Note that
the response for Set 1 is identical to the response for the elliptic filter designed by the
MATLAB function ellipap. Not only do Set 2 and Set 3 yield complex results, but,
as can be seen in Figure 6.2, they also do not have equiripple in the stopband.

In Figure 6. 3 are shown the real and imaginary parts of (6. 2) for parameter
Sets 1, 2 and 3. As the magnitude of the real part of (6. 2) for Set 1, near

the transmission zero, is considerably larger than that of either Set 2 or
Set 3, in the figure the real and imaginary parts of (6. 2) for Set 1 are divided by 40.
Ideally, (6. 2) would be infinity at the transmission zero, and the imaginary part would
be zero for all Computationally, for Set 1, the imaginary part of (6. 2) is
insignificant compared with the real part for all However, as can be seen in
Figure 6.3, the real and imaginary parts for both Sets 2 and 3 are comparable, and

5The MATLAB function ellipap requires three inputs: order, passband ripple in dB, and minimum
stopband attenuation in dB.

Section 6. 1 Introduction
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therefore the imaginary parts cannot be ignored. The data plotted in Figures 6.2 and
6. 3 were obtained from the MATLAB m-file EXAMP6_2.m, as found on the
accompanying disk and printed in Appendix D.

6. 2 ELLIPTIC INTEGRALS AND JACOBIAN ELLIPTIC
FUNCTIONS

In order to formalize, and simplify, the design procedure for elliptic filters,
with at least a basic understanding of the underlying theory, some background
information on elliptic integrals and functions is necessary. Details on elliptic
integrals and functions may be found elsewhere (Byrd and Friedman, 1954; Calahan,
1964; Lawden, 1989).

Basic Definitions
The elliptic integral of the first kind is defined as follows:
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where a fixed parameter, generally real and is denoted as the
modulus.6 If the integral is denoted as the complete elliptic integral of the
first kind, and denoted as X:7

for reasons that will be seen below, and if the integral is denoted as an
incomplete elliptic integral of the first kind. As will be seen below, need not be
real, and therefore is in general complex, in which case the integral is a line
integral in the complex plane.

The inverse of the elliptic integral of the first kind is denoted and is
the value of given and The Jacobian elliptic sine of with modulus is
denoted as follows:

and the Jacobian elliptic cosine of with modulus is denoted:

It is also useful to note the inverse Jacobian elliptic sine and cosine, respectively:

and

6Often in the literature, the modulus is denoted by k. In signal processing, k usually denotes an integer:
is used here to denote the modulus. Also, in the literature, since the “modulus, ” as defined here, appears

squared in the integrand, it is not uncommon to see the “modulus” defined as m, also usually denoting an
integer in signal processing, and is equal to the square of the “modulus” as defined here. Therefore,
caution should be used to insure that the definition is used consistently in practice.

In the literature the complete elliptic integral is often denoted as K, but X is used here to be more
suggestive of its relationship to

Section 6.2 Elliptic Integrals and Jacobian Elliptic Functions
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Information on the elliptic cosine is included here because it was mentioned in
Section 6.1. It is not, however, necessary for the presentation in this section relevant
to elliptic filter theory. There are other kinds of elliptic integrals, and many other
Jacobian elliptic functions, but these will suffice for an understanding of the design
and analysis of elliptic filters.

Double Periodicity of Jacobian Elliptic Functions
An important property of Jacobian elliptic functions is that they are periodic

with respect to the argument along the real axis and along the imaginary axis
(Lawden, 1989, sec. 2. 2), and hence the term double periodicity. It can be shown that
the real period for both sn and as well as other Jacobian elliptic functions, is 4X:

where X, as noted above, is the complete elliptic integral of the modulus That
is,

where is an integer. It can also be shown that the imaginary period is

where is the complete elliptic integral of the complementary modulus

That is,

where is an integer.
To illustrate the periodicity of the elliptic sine function with respect to real

plots of the function for several values of with respect to real are shown in
Figure 6.4. Since the period is a function of and it is the shape of the function
that is stressed, the horizontal axis is normalized to X, the complete elliptic integral,
or the quarter-period, as it is also known. As can be seen, two complete periods, or 8X,
are shown for each value of In each plot, the function plotted is As
can be readily seen from (6. 4) and (6. 5),
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this can be observed in the figure. The effect, then, that has on the elliptic sine
function, is that as increases, the period increases and the shape of the function
becomes more “square. ” For the four modulus values in the figure, 0, 0.9, 0.999,
and 0. 99999999, the corresponding values of X are 1. 5708, 2. 2805, 4. 4956, and
10.2501, respectively. The corresponding values of the complete elliptic integral
of the complementary modulus, are 3.6956, 3.0161, 2. 3593, and 1. 9953, respectively.

By reference to (6.2), and noting that and that is typically very
small (e.g., 0. 01), it can be seen is typically very small in elliptic filter
applications. Therefore, for real is close to sinusoidal in shape for
elliptic filters. The larger values of in Figure 6.4 are given for information
purposes, to illustrate the effect of on the shape. This property yields, when
properly set up, the equiripple magnitude frequency response in the passband of
elliptic filters.

To illustrate the periodicity of the elliptic sine function with respect to an
imaginary argument, plots of the function for several values of with respect to
jx, are shown in Figure 6.5. The horizontal axis is normalized to As can
seen, two complete periods, or are shown for each value of the modulus. In
each plot, the function plotted is  It can be shown (e.g., Lawden,
1989) that

where and are integers. Note that this property, in part, is illustrated in Figure
6. 5. The maximum values of the plots, occurring at and are equal to
for each value of It should be stressed, that even though the argument is complex
for each of the plots in Figure 6.5, the elliptic sine function is real.

Elliptic Integrals and Jacobian Elliptic FunctionsSection 6.2
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For the four modulus values in the figure, 0.1, 0.2, 0.4, and 0.6, the
corresponding X values are 1.5747, 1.5869, 1.6400, and 1.7508, respectively. The
corresponding values are 3. 6956, 3. 0161, 2. 3593, and 1. 9953, respectively.

An even more important illustration of periodicity of the elliptic sine function
with respect to real at least in the study of elliptic filters, is shown in Figure 6.6.
It can readily be shown (e. g., Lawden, 1989) that
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where and are integers. Therefore, plotting with respect to
real as is done in Figure 6.6, will exhibit poles as goes through the
points. Note that each plot in the figure goes to infinity at even multiples of X, but
that the minimum-magnitude values, occurring at odd multiples of X, as noted in
(6.7), are dependent on in fact are equal to This property yields, when
properly set up, the equiripple magnitude frequency response in the stopband of
elliptic filters. It should be stressed, that even though the argument is complex for
each of the plots in Figure 6.6 , the elliptic sine function is real.

For the four modulus values in the figure, 0. 005, 0. 01, 0. 02, and 0. 05, the
corresponding X values are 1.5708, 1.5708, 1.5710, and 1. 5718, respectively. The
corresponding values are 6.6846, 5. 9916, 5.2987, and 4. 3841, respectively.

Inverse Elliptic Sine Function with a Real Argument
Since the argument of the elliptic sine function in (6. 2) involves a scaled

inverse elliptic sine with a real argument, it is instructive to graphically consider such
inverse elliptic sine functions. From (6. 6), it is clear that for real that,
since asin(z) is real, will also be real. However, if then
asin(z) will be complex. This is illustrated in Figures 6.7 and 6.8 for several values
of In Figure 6.7, the real part of the amplitude is normalized to X,
whereas in Figure 6.8, the imaginary part of the amplitude is normalized
to Note that the imaginary part is zero for and that the imaginary part
is for large values of Note also that the real part increases from zero to X
as increases from zero to unity, and then remains equal to X until equals the
value where the imaginary part becomes equal to The value of where the

Section 6. 2 Elliptic Integrals and Jacobian Elliptic Functions
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imaginary part just becomes denoted as and is the maximum value of
where the real part is X, is

Note that (6.9) is the same as (6.7) with and that, therefore,

It follows that

By reference to (6.2), and noting that here, is for the inverse elliptic sine,
the values of 0.2, 0. 3, 0. 5 and 0. 7 in Figures 6.7 and 6.8, are realistic values for
elliptic filters. The corresponding X values are 1. 5869, 1. 6080, 1.6858, and 1. 8457
respectively, and the corresponding values are 3.0161, 2. 6278, 2. 1565, and
1. 8626 respectively.

6.3 EQUIRIPPLE PASSBAND AND STOPBAND MAGNITUDE

By comparing (6.5) and (6.6) with (6.2), define elliptic filter moduli as
follows:
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Also, let

With definitions (6.11) and (6.12), (6.2) may be written

Since, in the passband, in (6.1) (see, e. g., Figure 6.4), (see
Figure 2. 15 on page 52) equals Therefore, given the
specification:

Also, in the stopband, the minimum magnitude of is
(see, e. g., Figure 6. 6), and Therefore, given the
specification:

Since it is required that (6. 1) have equiripple in the passband similar to a
Chebyshev Type I response (see, e.g., Figure 6.2), it is clear that (6. 2) squared must
equal unity at in (6. 13)). From (6. 6) and (6. 12) it is clear that

where is the complete elliptic integral of Also, at from (6. 2),
Therefore, where is the complete elliptic

integral of and is an integer (see, e. g., Figure 6. 4). It follows that

or,

Also, from (6. 7),

and it is required, by the specifications, that this equality hold when

Section 6. 3 Equiripple Passband and Stopband Magnitude
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Therefore,

From (6. 17), it follows that

However, from (6. 16),

and therefore (6. 18) may be expressed

However, from (6. 10),

By comparing (6. 19) with (6. 20) it is apparent that

Combining (6. 16) and (6. 21):

Equation (6. 22) is a statement of the critical conditions required by an elliptic
filter design, in terms of the four complete elliptic integrals, that were discussed in
general terms in Section 6. 1. The complete elliptic integrals and are
dependent upon the design parameters and whereas and are dependent
upon and and the equality in (6. 22) is also dependent upon Note that
2m + 1 - q is an odd integer if q is zero, and is an even integer if q is unity; it
is equal, as will be shown, to the filter order N.

The reason why must be added to the elliptic sine argument in (6. 2) when
the order is even, is because the response at DC for even orders must be equal to the
minimum value in the passband. Refer to Figure 4. 2 and note that even order
Chebyshev Type I filters have a magnitude response that starts low, that is, the DC
response is equal to The same is true for even order elliptic filters.
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which is valid for all N.

Example 6. 3
Suppose the following design specifications for an elliptic filter are given:

It can be shown that an of 1. 3461 will yield equality in (6. 23) with
The complete elliptic integral values are:

and A plot of (6. 1) using (6. 23) ( q = 1) is shown in
Figure 6.9.

For the remainder of this section, it is assumed that (6.23) is satisfied. Note
that magnitude-squared response peaks occur in the passband when (6.2) is zero. The
frequencies of the response peaks may be found as follows. Observe from Figure 6. 4
that is zero when                                 or,
substituting (6. 23),

Section 6. 3 Equiripple Passband and Stopband Magnitude
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From (6. 24),

where m = 0, 1, · · ·, (N- 1)/2 for N odd, and m = 1, 2, · · ·, N/2 for N
even.

Note also that magnitude-squared response valleys, i. e., minimum values,
occur in the passband when (6.2) squared is unity. The frequencies of the passband
response valleys may be found as follows. Observe from Figure 6. 4 that
is ±1 when                                                                                              or, substituting
(6. 23),

From (6. 26),

where m = 0, 1, · · ·, (N-3)/2 for N odd, and m = 0, 1, · · ·, (N - 2)/2
for N even.

Assuming that and defining as the 3 dB corner frequency,
it follows that This is the normal case, i. e., If
then, of course, this was the case earlier in this chapter, where a large
amount of passband ripple was desirable so that it was easily visible in the graphs.
From (6. 1) and (6. 2), and noting from Figures 6. 7 and 6. 8 that only slightly
greater than means that the inverse elliptic sine function in (6. 2) will be

where is small (x = 0 if and also noting that

it follows, making use of (6. 23), that
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From (6.29) it follows that

Equation (6.30) may be conveniently computed using the MATLAB function
ELLIPWC, found on the accompanying disk.

The zero-transmission frequencies of (6.1) occur when (6.2) is infinity. By
reference to Figure 6.6 it is noted that the elliptic sine function is infinity every 2X:

By reference to Figures 6.7 and 6.8, and recalling (6.10), where it was noted that the
frequency where the inverse elliptic sine function is                                                it
follows that for frequencies greater than the inverse elliptic sine function will
be where Therefore, for frequencies the argument
of the elliptic sine function will be

and therefore,

Applying (6.23) to (6.31), it follows that

from which

From (6.32) it follows that

where m = 1, 2, · · · , (N - l)/2 for N odd, and m = 1, 2, · · · , N/2 for N
even. Equation (6.33) may be conveniently computed using the MATLAB function
ELLIPWZ, found on the accompanying disk. It should be noted that (6.33) computes
only finite-value zero-transmission frequencies. Odd-order elliptic filters also have
a transmission zero at infinite frequency.

Section 6.3 Equiripple Passband and Stopband Magnitude
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Frequencies between the zero-transmission frequencies where the stopband
attenuation is minimum are also of interest. The difference here, compared to the
zero-transmission analysis above, may be seen by reference to Figure 6. 6, where it
is noted that minimum-attenuation frequencies occur at odd-multiples of X, as
opposed to previous even-multiples. Therefore, the analysis is very similar resulting
in the following:

where m = 1, 2, · · · , (N - 1)/2 for N odd, and m = 1, 2, · · · , (N - 2)/2
for N even. Equation (6. 34) may be conveniently computed using the MATLAB
function ELLIPWM, found on the accompanying disk. It should be noted that (6. 34)
computes only finite-value minimum-attenuation frequencies. Even-order elliptic
filters also have a minimum-attenuation at infinite frequency.

See Figure 6. 10 for plots of (6. 1) for a normalized of unity, a somewhat
arbitrary, but common value of an also somewhat arbitrary
and several values of N. These values are comparable to those used in Figures 4. 1
and 5. 1, for ready comparison. See Figure 6. 11 for detailed plots of (6. 1) across the
passband. In the figures solid lines are for even orders, and dashed lines are for odd
orders.
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6. 4 COMPUTING GIVEN N, AND

Given that (6. 23) is not satisfied for an initial set of design parameters, the
question arises as to how to make adjustments so that (6. 23) is satisfied. Clearly the
possibilities are infinite, as and could all be varied, either in
combination or individually.8 However, here, will be varied to achieve equality
in (6.23), leaving the other design parameters fixed.

The following is obtainable directly from (6. 23):

and it is noted that the ratio is dependent only on given that is
known, and that is dependent on the other design parameters which are also
assumed known. Note that is inversely related to and that is directly
related. Therefore an algorithmic solution can easily be obtained, varying until
(6. 35), and therefore (6. 23), is satisfied. One such algorithm, that enables a
convenient computation of is the MATLAB function ELLIPWS , found on the
accompanying disk.

8The order N, of course, is restricted to the integers, and therefore can not, generally, achieve equality
in (6.23) as an individual variable adjustment.
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Example 6. 4
Suppose the following design specifications for an elliptic filter are given:

Using ELLIPWS and equations (6.25), (6.27), (6.30), (6.33), and (6.34), the following
critical frequencies may be found:

Example 6. 5
Suppose the following design specifications for an elliptic filter are given:

Using ELLIPWS and equations (6.25), (6.27), (6.30), (6.33), and (6.34), the following
critical frequencies may be found: 0. 6156,
0. 8692, 0.9861,
1.4794, 1.6783, 2.3696, 6.4610, and

6. 5 FILTER SELECTIVITY AND SHAPING FACTOR

Applying (2.37), the definition ofFilter Selectivity, to the square root of (6. 1),
and making use of the fact that by definition at results in

where A numerical solution, computing the

Filter Selectivity for an elliptic filter, is available in the MATLAB function ELLIPFS,
found on the accompanying disk.

Let A be an arbitrary attenuation in dB relative to the peak value such that
From (6.1) and (6.2):

For a given A, and making use of (6. 14) and (6. 23), solving (6. 37) for would be
equivalent to solving for the bandwidth at that attenuation A:
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Using (6.38) and applying (2.38), the definition of Shaping Factor, the elliptic filter
Shaping Factor may be readily found:

where is (6.38) evaluated with A = a, and is evaluated with A = b. A
numerical solution, computing the Shaping Factor for an elliptic filter, is available in
the MATLAB function ELLIPSF, found on the accompanying disk.

Example 6. 6
Suppose a = 3 dB, b = 80 dB, and

From (6.36), for N = 3, 4, · · ·  , 0, may be computed to be 2.25, 4.01, 6. 60,
10. 48, 16. 42, 25. 55, 39. 65, and 61. 48 respectively. From (6. 39), for N from 3
through 10, may be computed to be 9. 81, 4. 04, 2. 41, 1. 76, 1. 44, 1. 26, 1. 16 and
1. 10 respectively. The data in this example were obtained from the MATLAB m-file
EXAMP6_6.m, as found on the accompanying disk and printed in Appendix E.

6. 6 DETERMINATION OF ORDER

An important step in the design of an analog filter is determining the minimum
required order to meet given specifications. Refer to Figure 2. 15 on page 52 in
specifying the desired filter magnitude characteristics. As long as the filter magnitude
frequency response fits within the acceptable corridor indicated in Figure 2. 15, it
satisfies the specifications.

In the event that the filter specifications are exceeded, for elliptic filters there
are several ways in which the specifications can be adjusted: allow to be made
smaller (greater attenuation in the stopband than specified), allow to be made
smaller (less ripple in the passband than specified), allow to be made smaller (a
narrower transition band than specified), or some combination of these changes. An
infinite combination exists, as was discussed in Section 6.4. If the initial
specifications are to be exceeded, a smaller value for will be adhered to here, and
all other specifications remaining unchanged. This is consistent with earlier chapters
on Butterworth, Chebyshev Type I, and Chebyshev Type II filters, where a narrower
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transition band was adhered to, keeping the other specifications unchanged.
Therefore, from (6. 35),

or, following earlier chapters,

where is the smallest integer equal to or greater than A
numerical solution of (6.40), computing the minimum order for a lowpass elliptic
filter, is available in the MATLAB function ELLIPOR, found on the accompanying
disk. It should be noted that in using (6. 40) the initial specification values are used.
However, in using any of the analysis equations developed in this chapter, such as,
for example, (6. 30) or (6. 33), the actual value of must be used (see Section 6. 4).

Example 6. 7
Suppose the following specifications are given:

and From (6.40), N = 4. The actual
value of is found to be 6, 733 Hz.

6. 7 CHEBYSHEV RATIONAL FUNCTIONS

In Section 4. 4 a polynomial representation for the trigonometric and
hyperbolic cosine form of as shown in (4. 2), was developed. In this section, it
is desirable to develop a similar representation for the elliptic sine form of as
shown in (6. 2). However, in this case a polynomial will not suffice, since is not
only equal to zero for certain values of those identified as in (6. 25), but
is also equal to infinity for certain values of those identified as in (6. 33).
What is required here is a ratio of polynomials, and that ratio that equals in (6. 2)
is referred to as a Chebyshev Rational Function. Since the roots of the numerator and
denominator are known (as expressed in (6.25) and (6.33)),  may be expressed as
follows:
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where  is the largest integer equal to or lessthan that is,
if N is even, and if N is odd, and K is a scaling

constant such that at each of the frequencies identified as in (6. 27)
and at the passband edge When N is even there is a valley at and
therefore a convenient means of computing K is as follows:

If N is odd the following may be used:

Note in (6. 41) that the order N is the order of the numerator polynomial. If N is odd
the order of the numerator polynomial inside the product is N - 1, and the additional

term is supplied by which is associated with

Example 6. 8
Let and N = 3. These design

parameters are the same as in Example 6. 2, and therefore Using
(6.25), the peak frequencies are found to be zero and 0.8814. Using (6.33), the zero
frequency is found to be 2. 2451. Using (6. 43), K = 18. 1076. Therefore,

and

A plot of (6.44) is identical to the “Ellip & Set 1” graph in Figure 6.2. A MATLAB
computation of this example may be found in the m-file EXAMP6_8. m on the
accompanying disk.

Section 6. 7 Chebyshev Rational Functions
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Example 6. 9
Let and N = 4. These design

parameters are the same as in Example 6. 3, and therefore Using
(6. 25), the peak frequencies are found to be 0. 4491 and 0. 9478. Using (6. 33), the
zero frequencies are found to be 1. 4203 and 2. 9971. Using (6. 43), K = 99. 9952.
Therefore,

and

A plot of (6. 45) is identical to that shown in Figure 6. 9. A MATLAB computation
of this example may be found in the m-file EXAMP6_9. m on the accompanying disk.

Note that (6. 44) and (6. 45) each satisfy the Analog Filter Design Theorem, as
summarized on page 61. Each function is a polynomial in over a polynomial in
with only real coefficients. There are only even powers of in those polynomials.
The order of the numerator is no greater than the order of the denominator. The
denominator has no real roots, and the roots of the numerator occur with even order.
A consideration (6.41) in (6. 1) will show that this is true in general.

6. 8 LOCATION OF THE POLES AND ZEROS

Starting with (6.1) and following the procedure used in Section 2.7:

By rearranging (6. 46) the numerator may be expressed as follows:
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From (6.47) it immediately follows that the transfer function zeros of an elliptic filter
are given by

where is given by (6. 33).
An expression for the transfer function poles could be obtained from (6.46),

however, a more effective approach is to begin with (6.1) and (6.2), and let

where the term reflects the real periodicity of the elliptic sine function. From
(6. 49) an expression for the poles follows:

where m = 1, 2, · · ·, N. A MATLAB function, ELLIPPZ, found on the
accompanying disk, computes the poles and zeros according to (6.48) and (6. 50).

Example 6.10
Let and N = 3. These design

parameters are the same as in Examples 6. 2 and 6. 8. Using the MATLAB function
ELLIPPZ mentioned above, the poles and zeros of the elliptic filter are as follows.

Example 6.11
Let and N = 4. These design

parameters are the same as in Examples 6.3 and 6.9. Using the MATLAB function
ELLIPPZ, the poles and zeros of the elliptic filter are as follows.

Section 6. 8 Location of the Poles and Zeros

poles: -0.3225, -0.1337 ± j 0. 9194 ,

zeros: ± j 2.2451   .
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poles:   -0.0593 ± j 0.9666 ,    -0.2269 ± j 0.4709  ,

zeros: ± j 1.4203 , ± j 2.9971   .

Example 6.12
Suppose it is desired to use a 5th-order elliptic filter with

and Using the MATLAB function ELLIPPZ, the poles and
zeros are found to be as follows.

poles: -5,879 ,  -1,469  ±  j 18,715 , -4,381  ±  j 12,166 ,

zeros: ± j 39,894 , ± j 62,142   .

6.9 PHASE RESPONSE, PHASE DELAY, AND GROUP DELAY

The phase response of an elliptic filter, with a normalized a
somewhat arbitrary, but common value of and several
values of N, is shown in Figure 6. 12. The phase response, from until the
first phase discontinuity, which occurs at for the tenth-order
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response, is the total phase, in contrast to the principal phase. The phase response in
Figure 6. 12 for beyond, and including, the first phase discontinuity is not total
phase, but rather pseudo-principal phase. That is, the phase shown is the total phase
plus where m is an integer. This technique allows for a less congested
set of plots that is easier to read. See Section 5. 6 for further discussion.

Taking the initial phase slope as a linear-phase reference, deviations from
linear phase, for a normalized and for several
values of N, are shown in Figure 6. 13. The phase deviation is shown in the figure
from until just before the first phase discontinuity occurs. Each phase
discontinuity causes discontinuity in the phase deviation, but if plotted is
somewhat misleading, since the magnitude response is zero at the same frequency and
is, in general, in the stopband. Over the frequency range of the figure,

phase discontinuities only effect the plots for orders 6 through 10,
as can be seen in the figure.

The phase delay, for a filter is defined in (2. 80), which is repeated
here for convenience:

The group delay for a filter, is defined by (2. 81) and is repeated here
for convenience:

The phase delay of an elliptic filter, with a normalized
and for several values of N, is shown in Figure 6.14. Note that the

Section 6. 9 Phase Response, Phase Delay, and Group Delay
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phase delay discontinuities occur at the frequencies where there are phase dis-
continuities, that is, at the frequencies of transmission zeros, which are, of course, in
the stopband. Since each phase discontinuity is each phase delay
discontinuity is where is the frequency of the discontinuity.

The group delay is shown in Figure 6.15. The group delay values for lower
radian frequencies are obscured due to the very large group delays for frequencies
near unity for the larger orders. More detail may be seen in the “close-up” view
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shown in Figure 6. 16. Note that the group delay values at DC are very close to the
phase delay values at DC. However, as approaches the 3 dB corner frequency,
in this case unity, the group delay becomes considerably larger than the phase delay
due to the increasingly nonlinear phase response near the corner frequency (see
Figures 6. 12 and 6. 13). Note the points of discontinuity in the group delay, for
example at for N = 10. As can be seen from the definition of
group delay, at each phase discontinuity the group delay is theoretically

That is, the group delay is theoretically an infinite time advance, rather than
a delay, at the point of a phase discontinuity; however, since this occurs only at a
point along the frequency axis, and at a point of a transmission zero, the filter
magnitude response at that point is zero; there is nothing to advance. In Figures 6. 15
and 6. 16, these points of infinite time advance are plotted with non-zero width; this
is a result of the plotting software and from the fact that the calculation frequency-
sample width is non-zero. Also, for convenience, the minimum delay value of the
figure is zero.

6.10 TIME-DOMAIN RESPONSE

The unit impulse response of an elliptic filter, with a normalized
and for several values of N, is shown in Figure 6. 17.

Note that, as was the case for Chebyshev Type II filters, for even orders there is an
impulse at the origin (not shown in the figure), but the weight of these impulses is
insignificant. The unit step response of an elliptic filter, with normalized

and for several values of N, is shown in Figure 6. 18.

Section 6. 10 Time-Domain Response
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Note that the settled value of the step response is unity for odd orders, and
(0. 89125 in this case), the input being unity.

Chapter 6 Elliptic Filters
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6.11 COMPARISON WITH PRECEDING FILTERS

There are several ways in which elliptic filters may be compared with the
previously presented filters: Butterworth, Chebyshev Type I, and Chebyshev Type
II filters. The magnitude frequency responses may be compared, the phase responses,
the phase delays, the group delays, the unit impulse responses, and the unit step
responses, for example.

It is noted that, for a given set of filter specifications, the minimum order
required for an elliptic filter will never be greater than that required for any of the
other classical filters presented in this book: it will usually be less. Consider the
following two examples.

Example 6.13
Suppose the following magnitude frequency response specifications are given:

The minimum required order for a Butterworth filter is 8. The minimum required
order for either a Chebyshev Type I filter or a Chebyshev Type II filter is 6. The
minimum required order for an elliptic filter is 4.

Example 6.14
Suppose the following magnitude frequency response specifications are given:

The minimum required order for a Butterworth filter is 18. The minimum required
order for either a Chebyshev Type I filter or a Chebyshev Type II filter is 9. The
minimum required order for an elliptic filter is 6.

From Examples 6.13 and 6.14, and from the general statement at the top of
the page that “the minimum order required for an elliptic filter will never be greater
than that required for any of the other classical filters presented in this book: it will
usually be less”, it may be concluded that if only the magnitude frequency response
is of interest, then an elliptic filter would always be the one to choose. If only the
minimum order were of interest, this would be true, however there are often other
issues beyond the scope of this book to be considered. One of those issues is that
some components in an elliptic filter realization, due to high Q stages, will have very

Section 6. 11 Comparison with Preceding Filters
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critical and sensitive values compared, for example, to a Butterworth filter, which
means it will be more difficult to implement or may require more expensive
components. These comments serve to suggest than even when only the magnitude
frequency response is of interest, there are other issues besides minimum order that
need to be considered in practical engineering design.

In terms of the phase response, an elliptic filter is the most nonlinear of any
of the classical filter designs. This can be seen by comparing Figure 6. 12 with
Figures 5. 3, 4. 4, and 3. 6, or by comparing Figure 6. 13 with Figures 5. 4, 4. 5, and
3. 7. This nonlinear phase response is reflected in the phase delay and especially in
the group delay. Compare Figure 6. 15 with Figures 5. 6, 4. 7, and 3. 9. Also note
that the amount of ringing in the impulse response and the step response of an elliptic
filter is comparable to that of a Chebyshev Type I, and perhaps slightly worse:
compare Figure 6.17 with 4.8, and Figure 6.18 with 4.9.

In summary, when the primary consideration in selecting a filter type is using
a minimum order to meet the magnitude response specifications, then an elliptic filter
may be the best choice. However, frequently there are other factors to be considered
as well, and this stresses the importance of having the design objectives clearly and
completely stated.

6.12 CHAPTER 6 PROBLEMS

6. 1

6. 2

Confirm the results of Example 6. 1 by executing the MATLAB m-file
EXAMP6_1.m and reviewing the contents of the file. Compare your graphical
results with that shown in Figure 6. 1.

Conduct an experiment similar to Example 6. 1, but for N = 4. That is, let
N = 4, and show that a fourth-order

Chebyshev Type I filter is a special case of an elliptic filter, that in this case
the elliptic sine form and the elliptic cosine form of (6. 2) are the same, and that
in this case To do this problem, modify EXAMP6_1. m. Note that

but that no similar term is required for the cn case.

Conduct an experiment similar to Example 6. 1, but for N = 5. That is, let
N = 5, and show that a fourth-order

Chebyshev Type I filter is a special case of an elliptic filter, that in this case
the elliptic sine form and the elliptic cosine form of (6. 2) are the same, and that
in this case To do this problem, modify EXAMP6_1. m.

6. 3
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6. 4 Confirm the results of Example 6. 2 by executing the MATLAB m-file
EXAMP6_2. m and reviewing the contents of the file. Compare your graphical
results with that shown in Figures 6. 2 and 6. 3.

6. 5 Compute by hand, to five significant places, the numerical value of the
complete elliptic integral for equals 0, 0. 8, 0. 999, and 1.

6. 6 Compute by hand the numerical value of the Jacobian elliptic sine and cosine
functions when x = 1. 8541 and Note that

6. 7 Compute by hand numerical values for the inverse Jacobian elliptic sine and
cosine for and and 1.

6. 8 Determine numerical values for the imaginary period and the real period of
Jacobian elliptic functions if

6. 9 Confirm the results of Example 6. 3, given that That is, given
that N = 4, (actually, 10 log(2) dB), and

show that the complete elliptic integral values are as shown, and
therefore that is as shown, and then use those results to plot (6. 1) and
compare your graphical results to that shown in Figure 6. 9. Use the
MATLAB function ELLIPKE to evaluate the complete elliptic integrals, and
use ELLIPSN and ELLIPINT to evaluate the elliptic sine function and the
inverse elliptic sine.

6. 10 Confirm the results of Example 6. 4. That is, given that N = 5,
and determine, using (6. 25), (6. 27), (6. 30), (6. 33)

and (6. 34), the critical frequencies and
Use the following MATLAB functions on the accompanying disk:

ELLIPWS, ELLIPPV, ELLIPWC, ELLIPWZ, and ELLIPMN,

6. 11 Confirm the results of Example 6. 5. That is, given that N = 8,
and determine, using (6. 25), (6. 27), (6. 30), (6 33)

and (6. 34), the critical frequencies and
Use the following MATLAB functions on the accompanying disk:

ELLIPWS, ELLIPPV, ELLIPWC, ELLIPWZ, and ELLIPMN.

6. 12 Similar to Examples 6. 4 and 6. 5, and Problems 6. 6 and 6. 7, given that
N = 7, and determine the
critical frequencies frequencies and

Section 6. 12 Chapter 6 Problems
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6. 13 Confirm the results of Example 6. 6 using the MATLAB functions ELLIPFS
and ELLIPSF. That is, given that a = 6 dB, b = 60 dB,

and determine the Filter Selectivity and Shaping
Factor for N = 3, 4, · · · , 10.

6. 14

6. 15 Suppose the following specifications are given:
and From (6. 40), determine the

minimum required elliptic filter order to meet these specifications. Also
determine the actual value of that the elliptic filter would have.

6. 16 Similar to Example 6. 8, let  and N = 3.
Using these design parameters determine the rational function form for

similar to (6. 44) but with numerical values. Plot this function,
using a dB vertical scale.

6. 17 Let and N = 3. Using the MATLAB
function ELLIPPZ which implements (6. 48) and (6. 50), determine the poles
and zeros of an elliptic filter with the given specifications. This will confirm
the results of Example 6. 10.

6. 18 Given the poles and zeros indicated in Example 6. 10 and the form of the
transfer function indicated in (2. 40):
(a)

(b)

(c)

Determine K such that the peak magnitude frequency response in the
passband is unity.
Express the transfer function in the form of (2. 40) with numerical
values given for all coefficients.
Frequency scale the transfer function so that and express
the new transfer function in the form of (2. 40) with numerical values
given for all coefficients.

6. 19 Let and N = 4. Using the MATLAB
function ELLIPPZ, determine the poles and zeros of an elliptic filter with the
given specifications. This will confirm the results of Example 6. 11.

Chapter 6 Elliptic Filters
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and From (6. 40), determine the

minimum required elliptic filter order to meet these specifications. Also
determine the actual value of that the elliptic filter would have. That is,
confirm the results of Example 6.7.
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6. 20

(a)

(b)

(c)

Given the poles and zeros indicated in Example 6.11 and the form of the
transfer function indicated in (2.40):

Determine K such that the peak magnitude frequency response in the
passband is unity.
Express the transfer function in the form of (2.40) with numerical
values given for all coefficients.
Frequency scale the transfer function so that and express
the new transfer function in the form of (2.40) with numerical values
given for all coefficients.

6. 21 Suppose it is desired to use a 5th-order elliptic filter with
and Using the MATLAB function ELLIPPZ,

determine the poles and zeros of an elliptic filter with the given specifications.
This will confirm the results of Example 6.12.

6. 22 Given the poles and zeros indicated in Example 6.12 and the form of the
transfer function indicated in (2.40):
(a)

(b)

(c)

Determine K such that the peak magnitude frequency response in the
passband is unity.
Express the transfer function in the form of (2. 40) with numerical
values given for all coefficients.
Frequency scale the transfer function so that and
express the new transfer function in the form of (2. 40) with numerical
values given for all coefficients.

6. 23

6. 24

Suppose it is desired to use a 6th-order elliptic filter with
and Using the MATLAB function ELLIPPZ,

determine the poles and zeros of an elliptic filter with the given specifications.

Suppose the following filter specifications are given:
and N = 6.

(a)

(b)

(c)

(d)

Determine the value of Filter Selectively for a Chebyshev Type II filter
with the given specifications.
Determine the value of Filter Selectivity for a Butterworth filter with
similar specifications: and N = 6.
Compare the above values with the value of the Filter Selectivity for a
Chebyshev Type I filter with similar specifications:

and N = 6.
Compare the above values with the value of the Filter Selectivity for an
elliptic filter with similar specifications:

and N = 6.
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6. 25 Repeat Problem 6.24 for the Shaping Factor with a = 3 dB and b = 60 dB.
That is, suppose the following filter specifications are given:

and N = 6.
(a)

(b)

(c)

Determine the value of the Shaping Factor for a Chebyshev Type II
filter with the given specifications.
Determine the value of the Shaping Factor for a Butterworth filter with
similar specifications: and N = 6.
Compare the above values with the value of the Shaping Factor for a
Chebyshev Type I filter with similar specifications:

and N = 6.
Compare the above values with the value of the Shaping Factor for an
elliptic filter with similar specifications:

and N = 6.

(d)

6. 26 Suppose filter specifications are stated as follows:
Determine the required filter order to meet the given

specifications:
(a)
(b)
(c)
(d)
(e)

(f)

(g)

(h)

(i)

For an elliptic filter with and
For an elliptic filter with and
For an elliptic filter with and
For an elliptic filter with and
For comparison purposes, repeat parts (a) through (d) for a Butterworth
filter
For comparison purposes, repeat parts (a) through (d) for a Chebyshev
Type II filter
For comparison purposes, repeat parts (a) through (d) for an elliptic
filter, but with
For comparison purposes, repeat parts (a) through (d) for an elliptic
filter, but with
For comparison purposes, repeat parts (a) through (d) for an elliptic
filter, but with
For comparison purposes, repeat parts (a) through (d) for a Chebyshev
Type I filter with 0. 1 dB of ripple.
For comparison purposes, repeat parts (a) through (d) for a Chebyshev
Type I filter with 0. 5 dB of ripple.
For comparison purposes, repeat parts (a) through (d) for a Chebyshev
Type I filter with 1. 5 dB of ripple.

6. 27 By making use of the scaling property of Fourier transforms and Figure 6. 17,
determine, for a tenth-order elliptic filter with approximate
values for the following:
(a) The time at which the unit impulse response is a maximum.
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(b)
(c)

(d)

The amplitude of the unit impulse response maximum.
The half-value width of the unit impulse response, defined as the time
during which
The duration, of the unit impulse response, defined as the time
from

6. 28 Repeat Problem 6. 27 for

6. 29 Sketch the step response of a 10th- order elliptic filter with
and Refer to Figure 6. 18 and make use of the

scaling property of Fourier transforms. What would the maximum group delay
be for this filter, and at what frequency would it occur? At what time would
the peak of the unit impulse response of this filter be, and what would be the
value of that peak?

6. 30 Suppose an anti-aliasing filter is needed prior to an analog-to-digital converter
to be used in a speech processing system. Suppose a sampling rate of 8000
samples/s is to be used, and therefore it is decided that the anti-aliasing filter
should have a minimum attenuation of 60 dB at 4000 Hz. Suppose an
elliptic filter is to be used.
(a)

(b)
(c)

If   and what   is   the   minimum   order
required?
If and N = 10, what is maximum value of
If and N = 10, what is the minimum value of

6. 31 Under the conditions of part (c) of Problem 6. 30, determine the transfer
function H(s), and give numerical values for all the poles and zeros.

6. 32 Using the MATLAB functions ellipap, impulse and step:
(a)

(b)

(c)

Determine the transfer function in polynomial form, and also factored
to indicate the poles and zeros, of an elliptic filter with

and N = 6.
Determine the impulse response and the step response for the filter of
part (a).
By multiplying the pole vector and the zero vector found in part (a)
by determine the transfer function of an elliptic filter with

and N = 6.
Determine and plot the magnitude frequency response of the filter of
part (c) by using the MATLAB function freqs. Use a vertical scale in
dB and a linear horizontal scale from 0 to 5000 Hz. Also determine and
plot the phase response over this same frequency range. Use the
MATLAB function unwrap rather than plotting the principle phase.

(d)
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(e) By appropriately scaling the impulse response and the step response of
part (b), determine and plot the impulse response and the step response
of the filter of part (c). That is, the time axis for the step response
needs to scaled by and the unit impulse response needs
the same time-axis scaling and requires an amplitude scaling of

(f)

(g)

Determine and plot the phase delay of the filter of part (c). Note that
this is easily obtained from the phase response of part (d).
Determine and plot the group delay of the filter of part (c). Note that
this also is easily obtained from the phase response of part (d):

where is the phase in radians
at step and is the step size in rad/s.

6. 33 To demonstrate the critical nature of a filter design, this problem experiments
some with the filter of Problem 6. 32 (c). Multiply the highest-frequency pole-
pair of the filter of Problem 6. 32 (c) by 1.1, leaving all other poles and zeros
unchanged. Determine and plot the magnitude frequency response of the filter
by using the MATLAB function freqs. Use a vertical scale in dB and a linear
horizontal scale from 0 to 5000 Hz. Also determine and plot the phase
response over this same frequency range. Use the MATLAB function unwrap
rather than plotting the principle phase. Compare these results with that
obtained for Problem 6. 32 (d).

6. 34 This problem continues to demonstrate the critical nature of a filter design, and
is a continuation of Problem 6. 33. Multiply the lowest-frequency zero-pair
of the filter of Problem 6. 33 (c) by 1. 1, leaving all other poles and zeros
unchanged. Determine and plot the magnitude frequency response of the filter
by using the MATLAB function freqs. Use a vertical scale in dB and a linear
horizontal scale from 0 to 5000 Hz. Also determine and plot the phase
response over this same frequency range. Use the MATLAB function unwrap
rather than plotting the principle phase. Compare these results with that
obtained for Problem 6. 32 (d).
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CHAPTER 7

BESSEL FILTERS

lthough all of the classical filters presented up to this point are defined in
terms of the magnitude frequency response, and are designed primarily to
meet given magnitude frequency response specifications, such is not the

case with Bessel filters. Bessel filters are designed to achieve a maximum frequency
bandwidth while maintaining a constant time delay: as initially introduced, a Bessel
filter is a constant time-delay network.

As noted in Section 1.4, Bessel filters are based on Bessel (lived 1784-1846)
polynomials (Krall and Frink, 1949; Grosswald, 1951; Burchnall, 1951), and were
introduced by Thomson and Storch (Thomson, 1949; Thomson, 1959; Storch, 1954).
In fact, because of Thomson’s contributions to the development of Bessel filters they
are sometimes referred to as Thomson filters, or Bessel-Thomson filters.

Although, as mentioned above, Bessel filters are designed for a constant time-
delay independent of frequency, as will be seen below in the development,
nevertheless they result in a lowpass filter. Therefore, the presentation of Bessel
filters below will proceed along two paths: as a constant time-delay circuit, and as a
lowpass filter that can be compared with other classical filter types.

In this chapter, after some introductory material, the Bessel filter response is
developed and defined, and it will be observed that it satisfies the Analog Filter
Design Theorem. Explicit formulas for the design and analysis of Bessel filters, such
as Filter Selectivity, Shaping Factor, the minimum required order to meet design
specifications, etc., will be obtained. The transfer function H(s) will be determined,
and to complete the study of lowpass, prototype Bessel filters, the phase response,
phase delay, and time-domain response characteristics are investigated.

7.1 INTRODUCTION

In Section 2.12 the importance of the phase response was briefly considered.
It was noted that, for ideal transmission from the input to the output of a filter the
phase response must be linear. That is, suppose x(t) is the input to an analog filter.
While the filter may be designed to attenuate certain unwanted components in x(t),
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that part of x(t) that falls within the passband of the filter is desired to be passed with
minimal effect on the waveshape of the signal. Suppose is that part of x(t) that
falls within the passband of the filter, then the desired filter output would be

where is a gain term (could be unity) and is a time
delay (a time delay of zero is not practical, and a small delay will not affect the
waveshape). From the basic properties of Fourier transforms, it follows that the
required filter frequency response, magnitude and phase, across the passband would
be as follows:

Therefore, the magnitude frequency response should be constant across the passband
and the phase response should be linear Therefore in
applications where preserving the waveshape of signals is important, the phase
response is of special importance.

An application where having a linear phase response so as to preserve the
waveshape is of special importance is in radar and sonar receivers. In both radar and
sonar, pulses are transmitted which in turn reflect off objects that may be of interest.
Analysis of the reflected pulses, which are received, can yield a variety of informative
data about the target from which the reflection came, such as distance, bearing and
velocity. To preserve the waveshape of the reflections, it is important that any filters
in the radar and sonar receivers have good (nearly linear) phase characteristics.

Another application is a filter in an oscilloscope amplifier, or any filtering done
prior to the signal being applied to an oscilloscope input. Since the oscilloscope is
being used to electronically display a graph of the signal waveform, it is important to
be able to assume that the displayed graph is accurate, and that any “ringing” or
distortion caused by filtering is minimal.

Another application is in state-of-the-art “high-end” high fidelity audio
systems, such as in a graphics equalizer, which is a bank of filters, allowing the gain
to be adjusted in multiple frequency bands across the audio frequency spectrum. Such
a graphics equalizer is intended to compensate for room acoustics or non-ideal
frequency response characteristics of loudspeakers. If the phase response of the filters
are not linear, or equivalently the group delay characteristics are not constant, then the
equalizer will alter the waveshape of the audio signal even when all filters have the
same gain, resulting in a distorted signal.

In some applications what is desired is a time delay only, without any
magnitude frequency response alterations. This may be desired in order to time-align
a signal with another signal which has experienced an inevitable time delay itself. An
example of such a situation is in the practical production of an analytic signal. The
study of analytic signals often arises in the analysis and production of single side-band
modulation (Proakis and Salehi, 1994; Stremler, 1990). The analytic signal may be
defined as follows:

Chapter 7 Bessel Filters
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where g(t) is the Hilbert transform of f (t), as discussed in Section 2.15, beginning
near the bottom of page 90. An approximation to a Hilbert transform filter can be
designed, which is an all-pass filter (as discussed in Section 2.12) with an ideal phase
response of –90° for all positive frequencies and +90° for all negative frequencies.
However, any analog filter that approximates a Hilbert transform will have some
inevitable time delay, which means that g (t) in (7.2) will approximate the Hilbert
transform of rather than of f ( t ) . Therefore, the analytic signal may better
be represented as follows:

Therefore, in a practical implementation of the analytic signal, it is necessary to delay
f (t) by seconds. One way to accomplish this delay, especially at lower
frequencies, is with a Bessel filter.

7.2 MAXIMALLY-FLAT GROUP DELAY

Consider a general all-pole transfer function with a DC gain of unity, of the
form indicated in (2.39):

where From (7.3) it follows that:

where k even includes k = 0. From (7.4):

Applying the definition of group delay, as given by (2.81), to (7.5):

where u = x/y, and

Section 7.2 Maximally-Flat Group Delay
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From (7.6),

where

It can be shown that

and that

By applying (7.8) and (7.9) to (7.7) it is clear that

Without loss of generality, let i.e., the delay at DC is normalized to unity.
It is desired to make the group delay maximally flat for a given order. One

way to accomplish this is by equating the coefficients of (7.8) and (7.9) that multiply
the same powers of That is, let

Chapter 7 Bessel Filters
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From (7.10) it follows that

Example 7.1
If N = 1, then for all Then

Therefore,

Example 7.2
If N = 2, then for all Then, from (7.11), it follows that

Therefore,

Example 7.3
If N = 3, then for all Then, from (7.11), it follows that

Therefore,
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Example 7.4
If N = 4, then for all Then, from (7.11), it follows that

It follows that

Example 7.5
If N = 5, then for all Then, from (7.11), it follows that

It follows that

Therefore, (7.12), (7.13), (7.14), (7.15), and (7.16) is, respectively, the
transfer function of a 1st-order, 2nd-order, 3rd-order, 4th-order, and 5th-order Bessel
filter with a normalized delay of 1 second. Note that in Example 7.1,
and in Example 7.2, and in Example 7.3, and

and in Example 7.4, and in
Example 7.5, and It
can be observed from the above examples that

where N is the filter order. Therefore, it follows from (7.17) that a Bessel filter with
a normalized delay of unity can readily be designed using the following formula.

Bessel filter design formula:

Chapter 7 Bessel Filters
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It can readily be seen that (7.18) yields the same filter coefficient values as obtained
in the above examples.

Note that H(s), as indicated in (7.3), may be expressed as follows:

Applying (7.17) to (7.19):

The denominator of (7.20) is recognized as being a Bessel polynomial (Krall and
Frink, 1949; Storch, 1954; Van Valkenburg, 1960). Therefore, these filters are
called Bessel filters.

Note that, from (7.17),

Therefore, it follows that

The denominator of (7.21) is recognized as being the Maclaurin series expansion of
Therefore,

It follows that

Note that (7.22) is precisely equal to (7.1) with Therefore, as the order
is made higher and higher, a Bessel filter more and more closely approximates an
ideal delay circuit.

The delay characteristics of Bessel filters with practical values for the order are
shown in Figure 7.1. As can be readily seen, as the order becomes larger the
frequency range over which the delay is relatively constant becomes larger. The
corresponding magnitude frequency response is shown in Figure 7.2.

A delay circuit, assuming that the order is known, is readily designed as
follows. Equation (7.18) may be used to obtain the required transfer function
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coefficients for a normalized delay of 1 second. The required time-scaling parameter
is simply equal to the desired actual time delay, which is inversely related to the
equivalent frequency-scaling parameter. If the actual time delay desired is
then a frequency scaling parameter of is required.

Example 7.6
Suppose a 4th-order Bessel filter is desired with a time delay of 1 ms. The

transfer function with a normalized delay of 1 second is given in Example 7.4. The
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required frequency scaling factor is 1000 rad/s. Replacing each s in (7.15) with
s/1000 results in the following transfer function:

Therefore, (7.23) is the transfer function ofa 4th-order Bessel filter with a delay of 1 ms.

Unlike filters presented in earlier chapters, Bessel filters do not have a
convenient closed-form expression for the magnitude frequency response. Therefore,
such expressions as the 3 dB corner frequency, etc., are not readily available.
However, they are easy to obtain with an algorithm. On the accompanying disk is the
MATLAB function BESSELDE, which will design a Bessel filter for any given order,
passband corner frequency and passband attenuation limit

Using the MATLAB function BESSELDE, the magnitude frequency response
for Bessel filters normalized for a 3 dB corner frequency of unity, for several values
of N have been computed. The results are plotted in Figure 7.3. Also see Figure
7.4 for detailed plots of the magnitude frequency response across the passband.

7.3 FILTER SELECTIVITY AND SHAPING FACTOR

Since a closed-form convenient expression for the magnitude frequency
response for a Bessel filter of arbitrary order is not readily available, neither are
expressions for Filter Selectivity and Shaping Factor. However, these can be readily

Section 7.3 Filter Selectivity and Shaping Factor



224 DESIGN AND ANALYSIS OF ANALOG FILTERS:

computed. The MATLAB functions BESSELFS and BESSELSF on the accompanying
disk may be used to compute these filter measures of performance.

Example 7.7
Suppose a = 3 dB, b = 80 dB, and From BESSELFS, for

N = 1, 2, • • • , 10,   may be computed to be 0.35, 0.49, 0.54, 0.54, 0.52, 0.51,
0.51, 0.51, 0.50 and 0.50 respectively. From BESSELSF, for N from 2 through 10,
may be computed to be 127.19, 30.26, 15.13, 10.21, 8.00, 6.79, 6.08, 5.58 and 5.29
respectively.

7.4 DETERMINATION OF ORDER

Since a closed-form convenient expression for the magnitude frequency
response for a Bessel filter of arbitrary order is not readily available, neither is a
convenient expression for the minimum required order to meet given magnitude
frequency response specifications as indicated in Figure 2.15. However, note that the
Shaping Factor is inversely related to filter order and that parameters a and b could
be the design parameters and With these observations, and making use of the
MATLAB function BESSELSF, the MATLAB function BESSELOR has been written,
and is on the accompanying disk, that will compute the minimum required order to
meet given design specifications.
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Example 7.8
Suppose the following specifications are given:

and From the MATLAB function
BESSELOR, N = 9.

7.5 POLE LOCATIONS

Previous filters presented, Butterworth, Chebyshev Type I, Chebyshev Type
II, and elliptic, all have closed-form convenient expressions for the magnitude
frequency response, from which expressions are found for the poles and zeros. The
design of Bessel filters has been presented above, either as a delay network with some
given desired time delay, or as a lowpass filter with given magnitude frequency
response specifications. As mentioned above, no convenient closed-form expression
exists for the magnitude frequency response of a Bessel filter.

The design of a lowpass Bessel filter using the MATLAB function BESSELDE
yields the poles of the transfer function directly. The design of a Bessel time-delay
filter using (7.18) followed by frequency scaling, as in Example 7.6, yields the
transfer function expressed as a constant over a polynomial is s. The poles may be
found by determining the roots of the transfer function denominator polynomial. This
may be accomplished using the MATLAB function ROOTS. All zeros, of course, are
at infinity.

7.6 PHASE RESPONSE, PHASE DELAY, AND GROUP DELAY

A Bessel filter, as seen above, is designed for a maximally-flat group delay
response. The group delay response, normalized for a unit delay, is shown in Figure
7.1 above. The magnitude frequency response, normalized for a 3 dB corner
frequency of unity, is also shown above in Figures 7.3 and 7.4.

The phase response of a Bessel filter, with a normalized and several
values of N, is shown in Figure 7.5. Taking the initial phase slope as a linear-
phase reference, deviations from linear phase, for a normalized and for
several values of N, are shown in Figure 7.6. In the figure, solid lines are for even
orders, and dashed lines are for odd orders.

The phase delay, for a filter is defined in (2.80), which is repeated
here for convenience:

The group delay for a filter,              is defined by (2.81) and is repeated here
for convenience:
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The phase delay of a Bessel filter, with a normalized for several
values of N, is shown in Figure 7.7. The group delay is shown in Figure 7.8. In
both figures, solid lines are for even orders, and dashed lines are for odd orders.
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Note that the phase delay values at DC are essentially identical to the group delay
values at DC. The comparison between phase delay and group delay for
depends on the order, but note that they are, in general, very comparable. The group
delay, as can be seen in the figures, begins to decrease from its’ low-frequency value
at a lower frequency than does the phase delay, but both are flat for a wide frequency
range. The fact that the group delay begins to differ from the phase delay for higher
frequencies, is an indication of the phase beginning to deviate from linear: this is
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observable in Figures 7.5 and 7.6 and illustrates how sensitive this phenomenon is to
phase nonlinearity. For example, for N = 10, it is observed by comparing Figure
7.8 with 7.7, that the group delay differs from the phase delay slightly at It
is difficult in Figure 7.5 to observe any deviation from linearity at for
N = 10, however that deviation is detectable in Figure 7.6.

7.7 TIME-DOMAIN RESPONSE

The unit impulse response of a Bessel filter, with a normalized and
for several values of N, is shown in Figure 7.9. The unit step response of a Bessel
filter, with normalized and for several values of N, is shown in Figure 7.10.

7.8 COMPARISON WITH PRECEDING FILTERS

As noted in earlier chapters, there are several ways in which filters can be
compared. In terms of the phase response, phase delay, group delay, impulse
response, and step response, Bessel filters are clearly superior to all of the other
classical filters presented in earlier chapters. Therefore, when any of these responses
are of high priority, a Bessel filter should be carefully considered. It should also be
noted that all of these superior response characteristics of Bessel filters are closely
related. The linear phase response across the passband of a Bessel filter is what
results in excellent phase delay and group delay characteristics. It also contributes to
the excellent impulse response and step response characteristics.
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However, in terms of the magnitude frequency response characteristics Bessel
filters are less desirable than any of the previously presented classical filters in this
book. This is so in terms of the minimum required order to meet given magnitude
response specifications, and also in terms of Filter Selectivity, i.e., the sharpness of
the passband edge. As can be seen in Example 7.7, as well as directly in Figure 7.4,
Filter Selectivity, the negative of the slope of the magnitude response at
remains relatively constant for a Bessel filter for orders of two and greater. This
differs from any of the previously studied filters. The filter Shaping Factor of a
Bessel filter is also not as good, for the same order, as any of the previously studied
filters. If Example 7.7 is compared with Examples 3.1, 4.2, 5.2 and 6.6, it is
observed that the Shaping Factor of a tenth-order Bessel filter, with a = 3 dB and
b = 80 dB, can be met or exceeded by a sixth-order Butterworth filter, a fifth-order
Chebyshev Type I or Chebyshev Type II filter, or by a fourth-order elliptic filter.
Therefore, for given magnitude response specifications, a higher order is required
with a Bessel filter: when the superior characteristics, phase response, etc., of a
Bessel filter are of relatively low priority, a Bessel filter is probably not the best
choice among filter types.

It is interesting to note how Bessel filters and elliptic filters are somewhat at
opposite extremes among filter types. Elliptic filters require the lowest order among
all classical filter types to meet given magnitude response specifications. In terms of
Filter Selectivity and Shaping Factor, elliptic filters are clearly superior to all other
classical filter types. However, the phase response and corresponding phase delay and
group delay, as well as time domain responses, for elliptic filters, are the worst of all
classical filter types. Whereas Bessel filters require the largest order among all
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classical filter types presented so far to meet given magnitude response specifications,
and have the worst Filter Selectivity and Shaping Factor, their phase response and
corresponding phase delay and group delay, and the time domain responses as well,
are by far vastly superior to all other filter types considered so far. It is in this sense
that Butterworth and Chebyshev filters are compromises between the two extremes of
Bessel and elliptic filters. The performance of Butterworth filters is closer to that of
Bessel filters than are Chebyshev filters: the phase response is more linear but the
order required to meet given magnitude response specifications is greater.
Conversely, the performance of Chebyshev filters, Types I and II, fall between
Butterworth and elliptic filters: Type II being closer to Butterworth and Type I closer
to elliptic.

7.9 CHAPTER 7 PROBLEMS

Similar to Examples 7.1 through 7.5, determine, using (7.18), the transfer
function of a sixth-order Bessel filter with a normalized delay of unity.

Repeat Problem 7.1 for a seventh-order Bessel filter.

Repeat Problem 7.1 for an eighth-order Bessel filter.

Similar to Example 7.6, determine the transfer function of a third-order Bessel
filter with a time delay of 1 ms.

Determine the transfer function (the order is to be determined) of a Bessel filter
with the following specifications: time delay at low frequencies of 2 ms, and
a minimum time delay of 1.8 ms at 400 Hz.

Determine the transfer function (the order is to be determined) of a Bessel filter
with the following specifications: time delay at low frequencies of and
a minimum time delay of at 80 kHz.

Using the MATLAB function BESSELDE, determine the transfer function of
a second-order Bessel filter with and

Using the MATLAB function BESSELDE, determine the transfer function of
a third-order Bessel filter with and

Using the MATLAB function BESSELDE, determine the transfer function of
a fourth-order Bessel filter with and
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Using MATLAB functions BESSELFS and BESSELSF, determine the Filter
Selectivity and Shaping Factor for the Bessel filter of Problem 7.7.

Using MATLAB functions BESSELFS and BESSELSF, determine the Filter
Selectivity and Shaping Factor for the Bessel filter of Problem 7.8.

Using MATLAB functions BESSELFS and BESSELSF, determine the Filter
Selectivity and Shaping Factor for the Bessel filter of Problem 7.9.

Similar to Example 7.8, using the MATLAB function BESSELOR, determine
the minimum required order to meet the following set of specifications:

Similar to Example 7.8, using the MATLAB function BESSELOR, determine
the minimum required order to meet the following set of specifications:

Using the MATLAB function BESSELDE, determine the transfer function for
the filter of Problem 7.13. Express H(s) as a constant over a polynomial in
s.

Using the MATLAB function BESSELDE, determine the transfer function for
the filter of Problem 7.14. Express H(s) as a constant over a polynomial in
s.

By referring to Figure 7.6, and making use of frequency scaling, what would
be the phase deviation from linear, in degrees, for a 4th-order Bessel filter with
an at f = 2000 Hz? By also making use of Figure 7.7, what
percentage error in the phase response does this phase deviation represent?

By referring to Figure 7.6, and making use of frequency scaling, what would
be the phase deviation from linear, in degrees, for a 6th-order Bessel filter with
an at f = 3000 Hz? By also making use of Figure 7.7, what
percentage error in the phase response does this phase deviation represent?

Refer to the tenth-order impulse response plotted in Figure 7.9. Suppose that
a particular measure for effective time duration yields 4 s for the tenth-order
impulse response. Also suppose that the peak value of the impulse response
is 0.46. Determine the effective time duration and the peak value of the tenth-
order impulse response for the following values of 3 dB cutoff frequency:
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(a)
(b)
(c)

7.20 Using the MATLAB functions BESSELDE, impulse and step:
Determine the transfer function in polynomial form, and also factored
to indicate the poles, of a Bessel filter with
and N = 6.
Determine the impulse response and the step response for the filter of
part (a).
By multiplying the pole vector found in part (a) by determine
the transfer function of a Bessel filter with
and N = 6.
Determine and plot the magnitude frequency response of the filter of
part (c) by using the MATLAB function freqs. Use a vertical scale in
dB and a linear horizontal scale from 0 to 5000 Hz. Also determine and
plot the phase response over this same frequency range. Use the
MATLAB function unwrap to display the smooth phase response rather
than the principle phase.
By appropriately scaling the impulse response and the step response of
part (b), determine and plot the impulse response and the step response
of the filter of part (c). That is, the time axis for the step response
needs to scaled by and the unit impulse response needs
the same time-axis scaling and requires an amplitude scaling of

Determine and plot the phase delay of the filter of part (c). Note that
this is easily obtained from the phase response of part (d).
Determine and plot the group delay of the filter of part (c). Note that
this also is easily obtained from the phase response of part (d):

where is the phase in radians
at step n, and is the step size in rad/s.

(a)

(b)

(c)

(d)

(e)

(f)

(g)



CHAPTER 8

OTHER FILTERS

n this chapter, several other filters are briefly presented, selected from the many
that have been proposed. These filters have not enjoyed the popularity of those
presented in earlier chapters, but are presented here for two reasons: (1) they

are representative of other filter types that have been proposed, and indicate fruitful
research in filter development, and (2) they are interesting and useful filter design
methods. The filter presentations in this chapter are not as detailed as in earlier
chapters, but do, hopefully, include relevant and interesting material that indicate
important characteristics of the various methods presented.

8.1 TRANSITIONAL FILTERS

A transitional filter is a filter that is explicitly designed such that it is, in some
sense, in between two existing filter designs. A number of ways have been proposed
to form a transitional filter (Lindquist, 1977). One particular method will be
presented here, that operates directly on the filter poles (Aiello and Angelo, 1974;
Peless and Murakami, 1957).

Suppose k = 1, 2, · · · , N, are the poles for filter design 1, and
k = 1, 2, · · · , N, are the poles for filter design 2, and the poles are

arranged such that is close to for each k. Let the transitional filter
poles be expressed as follows:

where Note that when m = 0 the transitional filter is identical to
design 1, when m = 1 the transitional filter is identical to design 2, and otherwise the
transitional filter is somewhere in between the two. The term in (8.1) may
be expressed as follows:

and also

I
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Combining (8.1) through (8.3):

and

Except for Bessel filters, Butterworth filters have the best group delay
characteristics of all the filters presented in previous chapters. However, while
Butterworth filters have much better magnitude frequency response characteristics than
do Bessel filters, the group delay characteristics are clearly inferior. Therefore, as an
example of transitional filters, (8.4) and (8.5) are applied to Butterworth and Bessel
filters. Specifically, let design 1 be a 10th-order Butterworth filter with anormalized
of unity, let design 2 be a 10th-order Bessel filter also with a normalized ofunity,
and let m = 0.4.

In Figure 8.1 are shown the magnitude frequency responses for the
Butterworth, Bessel, and transitional filters. The transitional magnitude frequency
response is clearly in between that of the Butterworth and the Bessel. In Figure 8.2
are shown the passband details of the magnitude frequency response for the three
filters. In Figure 8.3 the phase responses are shown. In Figure 8.4 the phase delay
responses are shown, and in Figure 8.5 the group delay responses. As can be seen,
the phase delay and the group delay of the transitional filter is significantly improved
over the Butterworth, however at the expense of a less desirable magnitude frequency
response. In Figure 8.6 the unit impulse responses are shown, and in Figure 8.7 the
unit step responses. Note that the unit impulse response and the unit step response of
the transitional filter is significantly improved over the Butterworth (less ringing).
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8.2 GAUSSIAN FILTERS

The ideal Gaussian filter has a magnitude-squared frequency response defined
as follows:

Section 8.2 Gaussian Filters
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where An approximation to using a Maclaurin series, may
be expressed as follows (Dishal, 1959; Lindquist, 1977):

If the series is truncated at the N-th term, (8.6) may be approximated by the following:
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Following the procedure given in Section 2.7, H(s) may be found from (8.7) 1.

1A convenient method for computing the transfer function is by using MATLAB to find the roots of the
denominator of H(s)H(-s) and then assigning those with negative real parts to H(s) .
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See Figure 8.8 for plots of (8.7) for a normalized of unity, and several
values of N. Also see Figure 8.9 for detailed plots of (8.7) across the passband. The
phase response for a normalized of unity, and several values of N, is shown in
Figure 8.10. The phase delay is shown in Figure 8.11, and the group delay in Figure
8.12. The unit impulse response is shown in Figure 8.13, and the unit step response
in Figure 8.14.

It is noted that the magnitude frequency response, phase response, phase delay,
group delay, unit impulse response, and unit step response for the Gaussian filter are
all very similar to those of the Bessel filter. Close examination shows that the Bessel
filter has slightly better Shaping Factor, flatter phase delay, and flatter group delay
than that of a Gaussian filter of equal order. However, the Gaussian filter has less
time delay, as noted by the unit impulse response peaks occurring sooner than they do
for Bessel filters of equal order. This smaller time delay is also observable in the step
response plots for the Gaussian filter compared with those for the Bessel filter.

On the accompanying disk is the MATLAB function GAUSDE. This function
may be used to design a Gaussian lowpass filter for a given order, passband corner
frequency and passband corner attenuation

8.3 LEGENDRE FILTERS

Legendre filters, and associated Legendre filters, were introduced by Ku and
Drubin (1962), and are noted for having a very good Shaping Factor, ripple in the
passband (but not equiripple), and having less group delay distortion (a flatter
response, for the first and second associated Legendre filters) than Chebyshev Type
I filters. The magnitude-squared frequency response is defined as follows:
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where is the modified m-th associated Legendre polynomial of order N,
(N is also the order of the filter), is the passband edge frequency, and is a
parameter that controls the attenuation at Legendre polynomials
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( m = 0 ) may be readily obtained from the following recursion (Selby, 1970), where
has been normalized to unity:
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For example,

It is noted that for and is equal to one at
in general), but that this is not so for when m > 0.
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Therefore, for consistent use of in adjusting the desired attenuation at the edge of
the passband, it is necessary to adjust the amplitude of most
conveniently accomplished at where it is desired that For
example, as can be seen from above, The modified second-
associated Legendre polynomial of order 3, denoted modified so that the
function is properly bounded is as follows:

Therefore, the modified m-th associated Legendre polynomial of order N is obtained
from the Legendre polynomial of order N as follows:

where K is such that
Under the above conditions, i.e., using Legendre and modified associated

Legendre polynomials, the required value for is the same for Legendre and
associated Legendre filters as it is for Chebyshev Type I filters:

where in (8.9) is the attenuation in dB at the passband edge, i.e., at (at
in general).

While Legendre filters differ from Chebyshev Type I filters, all of the
characteristics considered in this book (magnitude frequency response, phase response,
phase delay, group delay, unit impulse response, unit step response) are very similar.
In fact, with the unmodified Legendre filter differs very little indeed from a
Chebyshev Type I filter with 1 dB ripple in all ways considered in this book except
that the passband ripple is not equiripple and is less ( it varies with order, but is about
0.7 dB). Modified first-associated Legendre filters with have a Shaping
Factor a little less desirable than Chebyshev Type I filters of the same order and with
a ripple of 1 dB. While the ripple in the passband is not equiripple, it is less than
0.2 dB for orders greater than two. The phase response is more linear than the
Chebyshev filter, as can most readily be seen in the group delay response.

While the modified second-associated Legendre filter has a Shaping Factor
that is not as desirable as a Chebyshev Type I filter of the same order, it exceeds that
of a Butterworth filter of the same order, and will be used for more detailed
presentation. See Figure 8.15 for plots (8.8) for the modified second-associated
Legendre filter, with a normalized of unity and for several values
of N. See Figure 8.16 for detailed plots across the passband: the passband ripple is
less than 0.06 dB for orders greater than two. The phase response is shown in
Figure 8.17. The phase delay is shown in Figure 8.18 and the group delay in Figure
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8.19. Note that the group delay is significantly more constant across the passband,
and that the peak delay near the normalized passband edge frequency of unity is
significantly less than that of a Chebyshev Type I filter (see Figure 4.7). The unit
impulse response is shown in Figure 8.20 and the unit step response in Figure 8.21.
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On the accompanying disk is the MATLAB function LEGENDE. This function
may be used to design a Legendre lowpass filter, for a given order, passband corner
frequency passband corner attenuation and coefficient m: 0 for the standard
Legendre filter, 1 for first-associated, and 2 for the second-associated Legendre filter.
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8.4 ULTRASPHERICAL FILTERS

Ultraspherical filters are based on ultraspherical (or Gegenbauer) polynomials
(Johnson and Johnson, 1966; Lindquist, 1977), which are a special case of Jacobi
polynomials. Ultraspherical filters have several design parameters: the order of the
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filter N, the passband corner frequency a parameter that controls the attenuation
at the passband corner frequency and a parameter that controls the response shape
An interesting feature of ultraspherical filters is that they include Butterworth,
Chebyshev Type I, and Legendre filters as special cases, with the appropriate value
of

The magnitude-squared frequency response is defined as follows:

where

and
It can be shown that

and therefore, to have an even function, which is necessary to satisfy the Analog
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Design Theorem, it is necessary that Itcan also be shown that to insure the
zeros of are within and that monotonically
increases for it is necessary that

An explicit formula for the ultraspherical filter polynomials, where, for
convenience, has been normalized to unity, is as follows:

An important property readily follows from (8.11): for all N and
Therefore, the required value for is as follows:

where in (8.12) is the attenuation in dB at the passband edge, i.e., at

A recursion may also be used:

where and It can readily be seen from (8.13) that,
if which would make (8.10) a Butterworth response.

It can also be shown that if that (8.10) is a Chebyshev Type I
response. If where m = 0, 1, · · · , any non-negative integer, then (8.10)
is a Legendre response: if m = 0 the response would be the standard Legendre
response, otherwise the modified m-th associated Legendre response.

Values of other than those mentioned immediately above yield responses
unique to the ultraspherical response. One will be chosen here for display of response
characteristics: let and This value of is selected
because it is an interesting compromise between the Butterworth and the Chebyshev
Type I response. The ultraspherical magnitude response has a Shaping Factor and
Filter Selectivity considerably better than a Butterworth response of the same order,
but not as good as a Chebyshev Type I with 1 dB of ripple, but the ripple in the
passband of the ultraspherical response is much less than in the Chebyshev response.
The other responses are also compromises between that of the Butterworth and the
Chebyshev Type I. See Figure 8.22 for plots of (8.10) for the ultraspherical filter,
for several values of N. See Figure 8.23 for detailed plots across the passband: the
passband ripple is less than 0.2 dB for orders greater than two and becomes less and
less as the order becomes greater. The phase response is shown in Figure 8.24. The
phase delay is shown in Figure 8.25 and the group delay in Figure 8.26. Note that
the group delay is significantly more constant across the passband, and that the peak
delay near the normalized passband edge frequency of unity is significantly less than

Section 8.4 Ultraspherical Filters
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that of a Chebyshev Type I filter (see Figure 4.7). The unit impulse response is
shown in Figure 8.27 and the unit step response in Figure 8.28.

On the accompanying disk is the MATLAB function ULTRADE. This function
may be used to design an ultraspherical lowpass filter, for a given order, passband
corner frequency passband corner attenuation and coefficient

Chapter 8 Other Filters
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8.5 PAPOULIS FILTERS

Papoulis filters (Lindquist, 1977; Papoulis, 1958; Papoulis, 1959) have a
magnitude-squared frequency response defined as follows:

Section 8.5 Papoulis Filters
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where defines the edge of the passband, controls the filter attenuation at
and is a polynomial related to the Legendre polynomials as

described below. This filter has the characteristic of having the maximum negative
response slope at under the conditions of a monotonically nonincreasing
response. That is,
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will be the maximum for all filters with a monotonically nonincreasing frequency
response. Note that this differs from the definition of Filter Selectivity given in
(2.37), which is evaluated at If in (8.14), then and the
Papoulis filter would have the largest Filter Selectivity of all filters of equal order
that have a monotonically nonincreasing magnitude response.

For odd orders, where N = 2 k + 1, explicit expressions for where,
for convenience, has been normalized to unity, may be obtained as follows:

where

Section 8.5 Papoulis Filters

and is the unmodified Legendre polynomial of order k, as defined in Section
8.3.

For example, consider N = 3, and therefore k = 1:
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and applying (8.15),

For even orders, where N = 2 k + 2, explicit expressions for may
be obtained as follows:

where

and K is such as to make
For example, consider N = 4, and therefore k = 1:

and applying (8.16),

and therefore,

It should be noted that the required value for is as follows:

where in (8.17) is the attenuation in dB at the passband edge, i.e., at

While the Papoulis filter has a Shaping Factor that is not as desirable as a
Chebyshev Type I filter of the same order, it exceeds that of a Butterworth filter of
the same order. See Figure 8.29 for plots of (8.14) for the Papoulis filter with

with a normalized of unity, and for several values of
N. See Figure 8.30 for detailed plots across the passband: note the sharp passband
corners for the higher orders, much sharper than that of a Butterworth filter (see
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Figure 3.2). Note also that the ripple, or unevenness, across the passband is less than
0.2 dB, whereas, for comparison, the Chebyshev Type I ripple in Figure 4.2 is 1 dB.
The phase response is shown in Figure 8.31. The phase delay is shown in Figure
8.32 and the group delay in Figure 8.33. Note that the group delay is significantly
more constant across the passband, and that the peak delay near the normalized
passband edge frequency of unity is significantly less than that of a Chebyshev Type

Section 8.5 Papoulis Filters
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I filter (see Figure 4.7), however it is less desirable than that of a Butterworth filter
(see Figure 3.9). The unit impulse response is shown in Figure 8.34 and the unit step
response in Figure 8.35.

On the accompanying disk is the MATLAB function PAPOULDE. This
function may be used to design a Papoulis lowpass filter, for a given order, passband
corner frequency and passband corner attenuation

Chapter 8 Other Filters
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8.6 HALPERN FILTERS

Halpern filters (Halpern, 1969) are closely related to Papoulis filters, but
optimize the Shaping Factor under the conditions of a monotonically nonincreasing
response. The magnitude-squared frequency response is defined as follows:

Section 8.6 Halpern Filters
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where defines the edge of the passband, controls the filter attenuation at
and is a polynomial related to the Jacobi polynomials. This

filter has the characteristic of having the maximum asymptotic negative magnitude
response slope in the transition/stop band under the conditions of a monotonically
nonincreasing response that includes the passband. This will result in the smallest
Shaping Factor for a given order of all filters with a monotonically nonincreasing
frequency response.

Explicit expressions for where, for convenience, has been
normalized to unity, may be obtained as follows:

where,

and,
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For example, consider N = 3, and therefore k = 1 :

and applying (8.19),

While the Halpern filter has a Shaping Factor that is not as desirable as a
Chebyshev Type I filter of the same order, it exceeds that of a Butterworth filter, and
a Papoulis filter of the same order. See Figure 8.36 for plots of (8.18) for the
Halpern filter with with a normalized of unity, and
for several values of N. See Figure 8.37 for detailed plots across the passband: note
the sharp passband corners for the higher orders, but that there is a decreasing
response trend across the passband. The phase response is shown in Figure 8.38.
The phase delay is shown in Figure 8.39 and the group delay in Figure 8.40. Note
that the group delay is significantly more constant across the passband, and that the
peak delay near the normalized passband edge frequency of unity is significantly less
than that of a Chebyshev Type I filter (see Figure 4.7), however it is less desirable
than that of a Butterworth filter (see Figure 3.9), and slightly less desirable than that
of a Papoulis filter. The unit impulse response is shown in Figure 8.41 and the unit
step response in Figure 8.42.

Section 8.6 Halpern Filters
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On the accompanying disk is the MATLAB function HALPDE. This function
may be used to design a Halpern lowpass filter, for a given order, passband corner
frequency and passband corner attenuation

Chapter 8 Other Filters
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8.7 PHASE-COMPENSATED FILTERS

All-pass transfer functions were briefly presented in Section 2.12, and as
indicated there, an important application for all-pass filters is in the phase
compensation of an existing filter that has an acceptable magnitude frequency response
but the phase response is less than desirable. In this section, specific results will be
given, illustrating phase compensation. The disadvantages of phase compensation

Section 8.7 Phase-Compensated Filters
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include the additional design necessary, and the higher overall transfer function order
that results, indicating the required increased complexity of implementation.
However, as seen in this section, the phase response and related responses are
significantly improved, assuming the increased delay is acceptable, and time-domain
responses are also significantly improved.

The specific results illustrated in this section are for phase compensation
applied to a tenth-order Butterworth filter. This particular filter is selected because
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of its relatively good magnitude frequency response combined with a relatively good
phase response. Only a Bessel filter or a Gaussian filter of the same order would have
superior phase characteristics, compared with all other filter types in this book, and
yet the Butterworth magnitude frequency response is significantly superior to either
the Bessel or the Gaussian filter. Since the phase compensation filters are all-pass,
and either implemented in cascade with the Butterworth filter or combined with the
Butterworth transfer function prior to implementation (transfer functions multiplied),
the phase compensation has no effect on the magnitude frequency response.
Therefore, no magnitude frequency response figures are required, since they would
be identical to that given in Chapter 3: here, is also normalized to unity.
However, the phase response, phase delay, group delay, unit impulse response, and
unit step response are all effected by phase compensation.

The results of four compensation filters are illustrated in the figures that
follow. The four compensation filters are all-pass filters of order 1, 2, 3, and 4.
They were each empirically designed (trial and error), to achieve a group delay
response superior to that of the basic Butterworth filter (all-pass of order one), or of
the immediately lower order phase-compensated filter.

The 1st-order phase-compensation filter has the following transfer function:

where The 2nd-order phase-compensation filter has the following transfer
function:

where and The 3rd-order phase-compensation filter is as
follows:

where and as above, and The 4th-order phase-
compensation filter is as follows:

where and
In Figure 8.43 is shown the phase response of the uncompensated Butterworth

filter, and the phase response of the phase-compensated Butterworth filter using the

Section 8.7 Phase-Compensated Filters
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1st-order, 2nd-order, 3rd-order and 4th-order all-pass filters. As can be seen in the
figure, particularly with a straight-edge, the phase response becomes increasingly
linear as the order of the phase-compensation filter is increased.

In Figure 8.44 is shown the phase delay response of the uncompensated
Butterworth filter, and the phase delay response of the phase-compensated Butterworth
filter using the 1st-order, 2nd-order, 3rd-order and 4th-order all-pass filters. As can

Chapter 8 Other Filters
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be seen in the figure, the phase delay response becomes increasingly flat across the
passband as the order of the phase-compensation filter is increased. More precise
comparisons may be achieved by comparing the maximum delay (for a little greater
than unity) to the minimum delay across the passband. The maximum values are
8.1551, 9.7460, 11.9252, 13.1433, and 15.1301 for the uncompensated Butterworth
filter, the Butterworth filter compensated with the 1st-order all-pass, the 2nd-order all-
pass, the 3rd-order all-pass, and the 4th-order all-pass, respectively. The minimum
values are 6.3925, 8.6059, 11.1544, 12.5830, and 14.6632 for the uncompensated
Butterworth filter, the Butterworth filter compensated with the 1st-order all-pass, the
2nd-order all-pass, the 3rd-order all-pass, and the 4th-order all-pass, respectively.
The ratio of the maximum to the minimum values are 1.2757, 1.1325, 1.0691,
1.0445, and 1.0318 for the uncompensated Butterworth filter, the Butterworth filter
compensated with the 1st-order all-pass, the 2nd-order all-pass, the 3rd-order all-pass,
and the 4th-order all-pass, respectively. The difference between the maximum and
minimum values are 1.7626, 1.1401, 0.7708, 0.5603, and 0.4669 for the
uncompensated Butterworth filter, the Butterworth filter compensated with the 1st-
order all-pass, the 2nd-order all-pass, the 3rd-order all-pass, and the 4th-order all-
pass, respectively. The uncompensated Butterworth filter has a phase delay that varies
1.7626 seconds as the radian frequency varies from 0 to about 1.2 (27.6%), whereas
the Butterworth filter compensated by the 4th-order all-pass has a phase delay that
varies only 0.4669 seconds (3.2%).

In Figure 8.45 is shown the group delay of the uncompensated Butterworth
filter, and the group delay of the phase-compensated Butterworth filter using the 1st-
order, 2nd-order, 3rd-order and 4th-order all-pass filters. As can be seen in the

Section 8.7 Phase-Compensated Filters



264 DESIGN AND ANALYSIS OF ANALOG FILTERS:

figure, the group delay becomes increasingly flat across the passband as the order of
the phase-compensation filter is increased. More precise comparisons may be
achieved by comparing the maximum delay to the minimum delay across the passband.
The maximum values are 12.2823, 13.3019, 14.5175, 15.4838, and 16.0075 for the
uncompensated Butterworth filter, the Butterworth filter compensated with the 1st-
order all-pass, the 2nd-order all-pass, the 3rd-order all-pass, and the 4th-order all-
pass, respectively. The minimum values are 6.3925, 8.5989, 11.1544, 12.5616, and
14.6377 for the uncompensated Butterworth filter, the Butterworth filter compensated
with the 1st-order all-pass, the 2nd-order all-pass, the 3rd-order all-pass, and the 4th-
order all-pass, respectively. The ratio of the maximum to the minimum values are
1.9214, 1.5469, 1.3015, 1.2326, and 1.1612 for the uncompensated Butterworth
filter, the Butterworth filter compensated with the 1st-order all-pass, the 2nd-order all-
pass, the 3rd-order all-pass, and the 4th-order all-pass, respectively. The difference
between the maximum and minimum values are 5.8898, 4.7030, 3.3631, 2.9222, and
2.3598 for the uncompensated Butterworth filter, the Butterworth filter compensated
with the 1st-order all-pass, the 2nd-order all-pass, the 3rd-order all-pass, and the 4th-
order all-pass, respectively. The uncompensated Butterworth filter has a group delay
that varies 5.8898 seconds as the radian frequency varies from 0 to 1 (92.1%),
whereas the Butterworth filter compensated by the 4th-order all-pass has a group delay
that varies only 2.3598 seconds (16.1%).

In Figure 8.46 is shown the unit impulse response of the uncompensated
Butterworth filter, and the unit impulse response of the phase-compensated
Butterworth filter using the 1st-order, 2nd-order, 3rd-order and 4th-order all-pass
filters. As can be seen in the figure, as expected, the peak of the unit impulse
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response shifts farther to the right (increased delay) as the order of the phase-
compensation filter is increased. Note that the time at which the impulse response
peak occurs correlates well with the low-frequency delay as indicated in either Figure
8.44 or 8.45. It is interesting to note that the impulse response increasingly exhibits
even symmetry about the time of the response peak as the order of the phase-
compensation filter is increased. Compare the unit impulse response of the
Butterworth filter compensated by the 4th-order all-pass with that shown in Figure 2.3
and expressed in (2.2) for the ideal lowpass filter. The peak value for (2.2) with

is 0.3183, whereas the peak value in Figure 8.46 is 0.3399. From (2.2), the
impulse response first zero-crossings would be at the time of the peak (0 for (2.2))

whereas the first zero-crossings in Figure 8.46 are 11.9 and 17.8,
which are 14.9 (the time of the peak) -3 and +2.9. Therefore, the unit impulse
response of the 10th-order Butterworth filter compensated by the 4th-order all-pass is
beginning to approximate the ideal unit impulse response, with a delay, rather well.

In Figure 8.47 is shown the unit step response of the uncompensated
Butterworth filter, and the unit step response of the phase-compensated Butterworth
filter using the 1st-order, 2nd-order, 3rd-order and 4th-order all-pass filters. Compare
the unit step response of the Butterworth filter compensated by the 4th-order all-pass
with that shown in Figure 2.4 for the ideal lowpass filter. The unit step response of
the 10th-order Butterworth filter compensated by the 4th-order all-pass is beginning
to approximate the ideal unit step response, with a delay, rather well.

Section 8.7 Phase-Compensated Filters
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8.8 CHAPTER 8 PROBLEMS

8.1 Using (8.4) and (8.5), design a transitional filter, where design 1 is a 10th-
order Butterworth filter with design 2 is a 10th-order Bessel filter
with and m = 0.2. Plot figures similar to Figures 8.1 through 8.7.
HINT: use the MATLAB m-files FIG8_1dat.m through FIG8_7dat.m on the
accompanying disk as starting points. Also plot, on one set of axes, the poles
of the Butterworth filter, the Bessel filter, and the transitional filter.

8.2 Repeat Problem 8.1 with m = 0.8.

8.3 Beginning with the transfer function of a 3rd-order Butterworth filter with
(see Chapter 3) denoted as design 1, the transfer function of a

3rd-order Bessel filter normalized for (see Chapter 7) denoted as
design 2, and m = 0.5, using (8.4) and (8.5) manually compute the transfer
function of the transitional filter.

8.4 Compare the 3rd-order Gaussian filter as given in Section 8.2, based on
truncation of the Maclaurin series, with the 3rd-order approximation to a
Gaussian filter as given in Problem 2.30: repeat Problem 2.30 for the filter
coefficients given in Problem 2.30 and also for those obtained from (8.7).

8.5 A convenient feature of a Gaussian filter is the simple expression for the ideal
magnitude-squared frequency response given in (8.6). For the ideal Gaussian
filter:

(a)

(b)

(c)

Determine an expression for the power spectral density (PSD) of the
filter output given that the input is white noise with variance (see
Section 2.7).
Determine an expression for the autocorrelation function of the filter
output given that the input is white noise with variance
Determine an expression, as a function of the filter    for the power
in the filter output signal given that the input is white noise with
variance

8.6 Determine an expression for the unit impulse response for the ideal magnitude-
squared frequency response given in (8.6), under the assumption that the phase
response is a constant of zero. Discuss how your answer would differ if the
phase response was assumed to be linear with a slope of
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8.7 The truncated Maclaurin series approximation to the ideal Gaussian magnitude-
squared frequency response given by (8.6) will approximate the ideal with less
and less error as the order is increased. However, no realizable filter can ever
have a magnitude-squared frequency response that equals (8.6). Show that this
statement is true by showing that (8.6) violates the Paley-Wiener Theorem.

8.8 Determine expressions for the Legendre polynomials ( m = 0) of orders 2, 3,
4, 5 and 6.

Determine expressions for the first-associated Legendre polynomials, unmod-
ified and modified, of orders 1, 2, 3, 4 and 5.

Determine expressions for the second-associated Legendre polynomials, un-
modified and modified, of orders 1, 2, 3, and 4.

8.11 In Section 8.3 it is stated that the unmodified Legendre filter with
differs very little from a Chebyshev Type I filter with 1 dB of ripple except
that the Legendre filter has less ripple. Compare the performance of the two
filters, each of order 6 and normalized for With both filters plotted
on the same graph for easy comparison, compute and plot graphs similar to
Figures 8.15 through 8.21. In your judgment, what are the advantages and
disadvantages of each filter compared with the other?

8.12 Under appropriate conditions, a Legendre filter and a Chebyshev Type I filter
can be very similar in performance. In this problem, perform a detailed
comparison between a 10th-order Chebyshev Type I filter with 0.15 dB of
ripple and a normalized of unity with a 10th-order Modified second-
associated Legendre filter with and a normalized of unity.
With both filters plotted on the same graph for easy comparison, compute and
plot graphs similar to Figures 8.15 through 8.21. In your judgment, what are
the advantages and disadvantages of each filter compared with the other?

8.13 In Section 8.4 it is stated that a Butterworth filter is a special case of an
utraspherical filter. Demonstrate that if the ultraspherical filter is a
Butterworth filter, i.e., show that

8.14 In Section 8.4 it is stated that a Chebyshev Type I filter is a special case of
an utraspherical filter. Demonstrate that if the ultraspherical filter
is a Chebyshev Type I filter. Specifically, show that is equal to
the polynomial entries in Table 4.2 for N = 2, 3, 4.
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8.15

8.16

8.17

8.18

In Problem 8.8 the Legendre polynomials ( m = 0) are found for orders 2,
3,4, 5, and 6. Show that these same polynomials are obtainable as special
cases of

In Problem 8.9 the modified first-associated Legendre polynomials are found
for orders 1, 2, 3, 4, and 5. Show that these same polynomials are obtainable
as special cases of

In Problem 8.10 the modified second-associated Legendre polynomials are
found for orders 1,2, 3, and 4. Show that these same polynomials are
obtainable as special cases of

By making use of special cases of determine the modified third-
associated Legendre polynomials of orders 3 and 4.

8.19 Subjectively compare the performance of a 10th-order ultraspherical filter with
and as shown in Figures 8.22 through 8.28, with

that of a 10th-order Chebyshev Type I filter with 1 dB of ripple and
as shown in the figures in Chapter 4. In your judgment, what are the
advantages and disadvantages of each filter compared with the other? Plot the
poles of each filter, on the same graph for ready comparison.

8.20 Determine the polynomial associated with a 5th-order Papoulis filter.

Determine the polynomial associated with a 6th-order Papoulis filter.

Given that determine the Filter Selectivity of a 4th-order Papoulis filter
when Compare this numerical value with that of a 4th-order
Butterworth filter with Compare this numerical value with that of
a 4th-order Chebyshev Type II filter with and Compare
this numerical value with that of a 4th-order Chebyshev Type I filter with

and Interpret the numerical results of this problem and
discuss the significance of them.

Show that the Papoulis filter becomes identical to the Butterworth filter when
approaches the limit of zero and, simultaneously, is maintained normalized
to unity. It is sufficient to show this for the 4th-order case.

8.23

8.24 Determine the polynomial associated with a 4th-order Halpern filter.

Determine the polynomial associated with a 5th-order Halpern filter.
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8.26 Given that a = 3 dB, and b = 100 dB, determine the Shaping
Factor of a 4th-order Halpern filter when Compare this numerical
value with that of a 4th-order Butterworth filter with Compare this
numerical value with that of a 4th-order Chebyshev Type II filter with
and Compare this numerical value with that of a 4th-order
Chebyshev Type I filter with and Interpret the numerical
results of this problem and discuss the significance of them.

8.27

8.28

Compare the performance of the Halpern filter, as shown in Figures 8.36
through 8.42, with that of the related Papoulis filter, as shown in Figures 8.29
through 8.35. In your judgment, what are the advantages and disadvantages
of each filter compared with the other?

8.29 Extend the work shown in Section 8.7 by designing, by trial an error, a 6th-
order phase-compensation filter to cascade with the 10th-order Butterworth
filter to improve performance over that of the 4th-order phase-compensated
filter. Start with the given 4th-order all-pass filter, i.e., add an additional 2nd-
order all-pass. Select the 2nd-order all-pass filter parameters to yield improved
group delay performance. You may use as a starting point the MATLAB m-
file F8_45dat.m on the accompanying disk. Plot graphs similar to Figures
8.43 through 8.47 that include the results of the 6th-order phase compensation.
Also plot a graph of the poles and zeros of the 6th-order phase-compensated
10th-order Butterworth filter.
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Plot the poles and zeros of the 4th-order phase-compensated 10th-order
Butterworth filter, as presented in Section 8.7.
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CHAPTER 9

FREQUENCY TRANSFORMATIONS

he standard procedure for analog filter design is to first design (i.e., obtain
the transfer function) a lowpass filter with either or normalized to
unity, and then, by means of a frequency transformation (the topic of this

chapter), obtain the transfer function of the desired filter, be that lowpass, highpass,
bandpass or bandstop, with desired critical frequency values. The lowpass filter that
is initially designed, before performing the frequency transformation, is referred to
as the lowpass prototype filter. This procedure greatly simplifies and unifies filter
design, as then technical detail is concentrated in the prototype filter design, as has
been done in earlier chapters of this book.

Since it is usually the case that the desired performance characteristics (the
design specifications) are for the final, or actual, filter, it is necessary to determine
what the corresponding characteristics or specifications need to be for the lowpass
prototype filter. For example, if a Butterworth bandpass filter is specified with a
center frequency of 10 kHz, a 3 dB bandwidth of 1 kHz, and a 60 dB bandwidth
of 5 kHz, it is necessary to determine the minimum order of the lowpass prototype
filter so that the design will satisfy the given specifications after the frequency
transformation is applied. Therefore, this chapter is concerned not only with
frequency transformation methods, but also in the analysis of what the implications of
such a transformation are on the magnitude frequency response, the phase response,
phase delay, group delay, unit impulse response, etc.

9.1 LOWPASS-TO-LOWPASS TRANSFORMATION

Lowpass-to-lowpass transformations have already been presented in Section
2.16 Frequency Scaling. While frequency scaling, as presented in Section 2.16, is
not restricted to lowpass transfer functions, it does, of course, include lowpass transfer
functions. A lowpass-to-lowpass transformation is simply, since the starting point
here is the lowpass prototype filter, frequency scaling. See Section 2.16 for details
on how this frequency transformation affects the magnitude frequency response, the
phase response, phase delay, group delay, the unit impulse response, and the unit step
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response. Also note that the equations for the minimum order required by any of the
classical filters presented in Chapter 3 through Chapter 6 may be applied directly.

Example 9.1
Suppose

where denotes the lowpass prototype transfer function. It is noted that this
is a 3rd-order Butterworth filter with See Example 3.3 on page 121. If it
is desired that the transformed lowpass filter have then the frequency
scaling factor, should be 1000. Then,

Poles and Zeros
Since is real and positive, the magnitudes of the poles and zeros are scaled

but not the phase angles. A pole/zero plot of will be identical to that of
except that the axes will be scaled by

Magnitude Frequency Response and Phase Response
The magnitude frequency response and phase response may be summarized as

follows:

and

Therefore, plots of the transformed (frequency-scaled) magnitude frequency response,
(9.1), and phase response, (9.2), are identical to those obtained from the lowpass
prototype except for the scaling of the frequency axes by

Determination of Minimum Order
Since the equations used to determine the minimum order required to meet

given specifications in earlier chapters depend upon and the ratio
they may be used directly to determine the minimum order required for the frequency-
scaled lowpass filter. For example, (3.15) may be used to determine the minimum

Chapter 9 Frequency Transformations
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order required for a lowpass Butterworth filter, regardless of whether it is a prototype
filter with or the desired lowpass filter after frequency scaling.

Filter Selectivity
Since the Filter Selectivity equations derived in earlier chapters did not start

with an assumption that was normalized to unity, they may be used directly to
determine for the frequency-scaled lowpass filter. For example, (3.7) may be used
to determine for a lowpass Butterworth filter, regardless of whether it is a
prototype filter with or the desired lowpass filter after frequency scaling.

Shaping Factor
Since the Shaping Factor equations derived in earlier chapters did not start

with any assumptions about normalized frequencies, and are the ratio of bandwidths,
they may be used directly to determine for the frequency-scaled lowpass filter.
For example, (4.12) may be used to determine for a lowpass Chebyshev Type I
filter, regardless of whether it is a prototype filter with or the desired
lowpass filter after frequency scaling.

Phase Delay and Group Delay
Phase delay and group delay for a frequency-scaled lowpass filter, as related

to the prototype with generally normalized to unity, may be expressed as follows:

and

Therefore, plots of the transformed (frequency-scaled) phase delay, (9.3), and group
delay, (9.4), not only have the frequency axes scaled by but the amplitude axes
are scaled by

Time-Domain Response
The unit impulse response of a lowpass-to-lowpass transformed filter, as

related to the prototype with generally normalized to unity, may be expressed as
follows:

Note that the transformed (frequency-scaled) unit impulse response, as shown in (9.5),
is a time-scaled version of the prototype unit impulse response and is also amplitude
scaled by If then will be greater in amplitude and time-
compressed, compared to

Section 9.1 Lowpass-to-Lowpass Transformation
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The unit step response may be summarized as follows:

Note that the transformed unit step response, as shown in (9.6), is a time-scaled
version of the prototype unit step response with no corresponding amplitude scaling.

9.2 LOWPASS-TO-HIGHPASS TRANSFORMATION

The lowpass-to-highpass transformation is stated as follows: replace every s
in by where, again, is the frequency scaling factor. Applying this
to the general transfer function expressed in (2.39), treating it as

Equation (9.7), while general, does not readily reveal the effects of this
transformation. Consider the case where the prototype filter is a Butterworth design.
In that case, M = 0 and there is symmetry to the coefficients:

etc. Therefore, for the Butterworth case, (9.7) may be expressed as
follows:

Example 9.2
Suppose

where denotes a 3rd-order Butterworth lowpass prototype transfer function.
If it is desired to transform this into a highpass filter with then,

Chapter 9 Frequency Transformations
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Compare the results of this example with that of Example 9.1, and note the difference.
Note that this example is a direct application of (9.8). Also note that

Therefore,
is clearly a highpass filter with

So

Poles and Zeros
If is shown in factored form:

where the zeros, and the poles, may be, and in general are, complex,
then the lowpass-to-highpass transformed transfer function may be expressed as
follows:

where

In the form of (9.9), it is apparent that lowpass-to-highpass transformation has resulted
in the following:

(a)
(b)

the poles and zeros are inverted and then scaled by
the order of the numerator becomes equal to that of the denominator (N),

Section 9.2 Lowpass-to-Highpass Transformation
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and

Magnitude Frequency Response and Phase Response
The magnitude frequency response and phase response may be summarized as

follows:

and

Note that a plot of the highpass transformed frequency-scaled magnitude frequency
response, as expressed in (9.10), is a highly nonlinear transformation of the frequency
axis. As noted above,

See Figures 5.1 and 6.10 for examples of lowpass prototype filters where
In such cases, K will typically be very small, such as, for

example, 0.0001 (– 80 dB).
Also note that

and

This nonlinear transformation of the frequency axis significantly changes the
appearance of a magnitude frequency response plot. For example, the rippling in the
passband of a Chebyshev Type I lowpass prototype filter will have peaks and valleys
occurring in the frequency range from 0 to unity. After lowpass-to-highpass
transformation, the peaks and valleys in the highpass passband will be greatly
stretched out to occupy the frequency range of the passband from to More
specifically, see the following example.

Example 9.3
Given a 5th-order Chebyshev Type I lowpass prototype filter with 1 dB of

passband ripple and then, from (4.5), the frequencies of the passband peaks
are 0, 0.5878 rad/s, and 0.9511 rad/s. From (4.6) the frequencies of the valleys
are 0.309 rad/s and 0.809 rad/s. Given that a lowpass-to-highpass transformation
is applied to this lowpass prototype, with then, from (9.10), the for
the highpass filter will be 1000 rad/s, the frequencies of the passband peaks for the
highpass filter are 1051.4 rad/s, 1701.3 rad/s, and The frequencies of the
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highpass passband valleys are 1236.1 rad/s and 3236.2 rad/s. Note that the peak
at 0 in the lowpass prototype becomes a peak at infinity for the highpass filter.

Note that a plot of the highpass transformed frequency-scaled phase response,
as expressed in (9.11), is also a highly nonlinear transformation of the frequency axis.
As can readily be seen,

and

It should be noted however, that a plot of the phase response may have an additional
constant phase offset that is an integer multiple of (or 360°) without introducing
any inaccuracies. That is, is equally valid.
The main observation is that phase values that occur at high frequencies for the
lowpass prototype occur at low frequencies for the highpass filter and vice versa.

Determination of Minimum Order
The equations for determination of minimum order for lowpass filters depend

on and Note, however, that under the lowpass-to-highpass
transformation, maps to maps to maps to
and maps to Note that             is the passband edge of the
highpass filter, and that is the stopband edge of the highpass filter.
Therefore,

Therefore, the required minimum order to meet design specifications for the lowpass
prototype may be determined by using the existing equations in previous chapters,
replacing               by                   0   For example, to determine the minimum required
order for the lowpass prototype of a Butterworth highpass filter, (3.15) may be
modified as follows:

Filter Selectivity
The definition of Filter Selectivity is defined for lowpass filters in (2.37). In

order for to be a positive number for a highpass filter, it is defined with the
opposite polarity:
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where is the 3 dB cutoff frequency. Note that (9.12) can be related to the Filter
Selectivity of the lowpass prototype as follows:

By making use of a change of variable, specifically it follows that

where is evaluated at and is the 3 dB frequency for the
highpass filter. If the lowpass prototype filter has an normalized to unity, then
(9.14) simplifies somewhat to

Shaping Factor
Since the passband width of a highpass filter is infinite, the definition of

Shaping Factor, as given in (2.38) for a lowpass filter, is not useful for a highpass
filter. However, from the basic lowpass-to-highpass transformation, it follows that:

and

where and for the lowpass prototype filter. Denoting
and the Shaping Factor for the lowpass prototype filter and the highpass filter,
respectively, it follows that

That is, the highpass Shaping Factor is numerically identical to the lowpass prototype
Shaping Factor, when defined as in (9.15). Note that, as defined in (9.15), the
Shaping Factor for a highpass filter is the ratio of the stopband/transition band
bandwidth for an attenuation of a in dB ( e.g., 3 dB) over the stopband/transition
band bandwidth for an attenuation of b in dB ( e.g., 60 dB).
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Phase Delay and Group Delay
Phase delay is defined by (2.80). Phase delay for a lowpass-to-highpass

transformed transfer function may be expressed as follows:

Therefore, it can be seen that

and may be very large as approaches zero unless approaches
zero as approaches zero, which is often not the case for a highpass filter. Note that
the phase is always zero at due to the odd symmetry of the phase response, but
that the phase may well not be zero as the discontinuity is approached.1 Note also that
the very large phase delay as zero frequency is approached, which is often the case for
highpass filters, occurs when the magnitude response of the filter is very small, and
therefore the large phase delay has no practical significance.

Group delay is defined by (2.81). Group delay for a lowpass-to-highpass
transformed transfer function may be expressed as follows:

Making use of an appropriate change of variable (specifically, and the
even symmetry property of group delay, (9.16) may be expressed as follows:

From (9.17), the following may be observed:

Consider, for example, a simple series R-C circuit, where an input voltage is applied across the series
combination and the output voltage is taken across the resistor. As the frequency is lowered, approaching
zero, the phase approaches (or 90°), but, due to odd symmetry, there is a discontinuity at zero

frequency and the phase at zero may be taken as being zero.
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etc.

Example 9.4
Suppose

where denotes a 3rd-order Butterworth lowpass prototype transfer function.
It follows that

from which

If then may be found by use of fundamental definitions, or, more
conveniently, by application of (9.17):

Therefore, by a change of variable,

If then by application of (9.17):

Time-Domain Response
From (9.9):
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Equation (9.18) may be expressed as follows:

where is the coefficient of the term in the denominator. Note that (9.18) and
(9.19) may be expressed as

That is, the second term on the right side of (9.18) or (9.19) is recognized as a
lowpass transfer function. Note from (9.20), with s replaced by that the high-
frequency gain is and that is a lowpass response that, as its
response becomes increasingly small with increasing that the overall response,

becomes increasingly close to The inverse Laplace transform of
(9.20) may be therefore stated as follows:

Therefore, the unit impulse response of a highpass filter will have an impulse at
t = 0, and also a lowpass impulse response component.

Recall that the unit step response is the integral of the unit impulse response.
Therefore,

Example 9.5
Suppose

where denotes a 3rd-order Butterworth lowpass prototype transfer function.
This transfer function may be expressed as follows:
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From the above,

Also, for

It follows that

Note that whereas Therefore, there is a
discontinuity in the unit impulse response of the highpass filter at t = 0, even if the
impulse is not considered. This is typical for a highpass filter.

Example 9.6
Suppose the lowpass prototype filter is a 10th-order Chebyshev Type I filter

with 1 dB of passband ripple. Suppose a high-pass filter is obtained from this
prototype with Whereas the poles of the lowpass prototype filter are as
follows:

–0.1415 ± j 0.1580,
–0.1277 ± j 0.4586,
–0.1013 ± j 0.7143,
–0.0650 ± j 0.9001,

and –0.0224 ± j 0.9978,
the poles of the highpass filter are:

–3144.7 ± j 3511.7,
–563.3 ± j 2023.6,
–194.6 ± j 1372.3,
–79.9 ± j 1105.2,

and –22.5 ± j 1001.7.
The highpass filter also has 10 zeros at the origin of the s plane. The transfer function
of the highpass filter is as follows:

The magnitude frequency response of the highpass filter is shown in Figure
9.1. Compared with the plot of the lowpass prototype shown in Figure 4.1, it is noted
that Figure 9.1 appears as a mirror image, even though the frequency axis is
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logarithmic. The “mirror image” is somewhat misleading, however, because of the
nonlinear mapping of the lowpass-to-highpass transformation.

It can be shown that for this filter, as defined in (9.12), and measured
from the data plotted in Figure 9.1, adheres to (9.14). Also, it can be shown that
for this filter, as defined in (9.15), and measured from the data plotted in Figure 9.1,
adheres to (9.15), for example, when a = 6 dB and b = 60 dB.

A more detailed plot of the passband response is shown in Figure 9.2. Note
that the peak and valley frequencies in the passband of the highpass filter are related
to (4.5) and (4.6); due to the inverse relationship between the lowpass prototype and
the highpass filter in the s domain:

where

where if N is odd, and if N is even. The relationship
between and forthe Chebyshev Type I highpass filter is related to (4.7):

The phase response is shown in Figure 9.3. Note that the phase asymptotically
approaches zero as the frequency approaches infinity. This can be readily observed
from the transfer function. It should, however, be noted that computer computations
will likely differ from that shown in Figure 9.3 by a multiple of The reason for
this is that the principal-value phase angles are likely computed, and perhaps then
followed by an unwrapping operation in an attempt to obtain the complete phase. The
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unwrapping operation smooths the phase response eliminating discontinuities, but
likely lacks data on any true phase reference.

The phase delay is shown in Figure 9.4. Based on the definition of phase
delay, as given in (2.80), if the phase is positive (the output leading the input) then the
phase delay will be negative. A negative phase delay may suggest a time advance, but
this would be misleading. Phase delay is defined strictly in terms of phase shifts.
Another observation is that an accurate plot of the phase delay requires a complete
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phase response (see comments above on Figure 9.3 and also on page 277). Note in
Figure 9.4 that the phase delay asymptotically approaches zero as frequency
approaches infinity, conforming to the theory briefly described on page 279. Also,
as noted on page 279,

By comparing Figure 4.6 for N = 10 with Figure 9.4 it can be shown that the above
equation is satisfied.

The group delay is shown in Figure 9.5. It can be observed in Figure 9.5,
compared with Figure 4.7, that, as predicted,

The unit impulse response, excluding the impulse at t = 0, is shown in
Figure 9.6. The large negative-value discontinuity at observed in the figure
is suggested by (9.21) and by Example 9.5.

The unit step response is shown in Figure 9.7. Note that in (9.9), for this
example, M = N = 10 and all By comparing (9.9) with the transfer
function for this example it is clear that By referring to (9.22), it is
clear that, in general for a highpass filter, and therefore, in this
example, which is what the data plotted in Figure 9.7 has for
the first data point. Since is the integral of the peaks and minimum-
points of occur at the same time-instants as the zero-crossings of as
can be observed by comparing Figure 9.7 with Figure 9.6. Also note that since this
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is a highpass filter, the DC gain of the filter is zero, and therefore the unit step
response achieves a steady state response of zero, not unity, or near unity, as was the
case with the lowpass filters presented in previous chapters.
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9.3 LOWPASS-TO-BANDPASS TRANSFORMATION

The lowpass-to-bandpass transformation is stated as follows: replace every s
in by where is the “center frequency” of the
bandpass filter frequency response in rad/s and is the passband bandwidth, i.e.,

where is the upper edge of the passband where the attenuation
is and is the lower edge of the passband. Note that must be unity for the
lowpass prototype.

Example9.7
Suppose

where denotes a 3rd-order Butterworth lowpass prototype transfer function.
If it is desired to transform this into a bandpass filter with arbitrary
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Note the following observations: (1) The order of the bandpass transfer function is
twice that of the lowpass prototype and therefore will always be even, (2) The
bandpass transfer function may be factored into the product of a lowpass transfer
function and a highpass transfer function, and (3) For this example,

which is typical for a bandpass filter. If the lowpass
prototype filter has rippling in the stopband, such as a Chebyshev Type II or elliptic
filter, then | may not be zero, but will be very small values.

Poles and Zeros
If is shown in factored form:

where the zeros, and the poles, may be, and in general are, complex,
then consider the results of the lowpass-to-bandpass transformation.

Case I
Consider the case where is real. To determine the corresponding bandpass

filter poles, let

It follows that

or the two poles corresponding to the one lowpass prototype pole, are
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Theoretically, could be real however such will not be the case
for practical bandpass filters. Therefore, consider

Also note that

defines a transfer function zero: a zero is introduced at s = 0. Therefore, each real
pole in will yield a pair of complex conjugate poles in as developed
above, and one zero at the origin. Note that if then the imaginary
part of those complex conjugate poles will be approximately

Example 9.8
Suppose It follows that

will be the resultant poles, and there will one zero at s = 0.

Case II
Consider the case where is imaginary, that is, where there are zeros on the

axis, such as is the case for a Chebyshev Type II or elliptic lowpass prototype. To
make the imaginary property of explicit, let where is real. To
determine the corresponding bandpass filter zeros, let

It follows that

or the two zeros corresponding to the one lowpass prototype zero, are

where it is noted that both zeros are imaginary, but not the same magnitude (not
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conjugates). However, if the lowpass prototype has a zero at there will also
be a zero at Therefore, the four bandpass zeros corresponding to the two
lowpass prototype zeros at are as follows:

Note also that

indicates two poles at s = 0, canceling two of the zeros introduced at the origin by
the lowpass-to-bandpass transformation of two real poles of or of one
complex-conjugate pair of poles.

Therefore, each pair of conjugate imaginary zeros in will yield two
pair of conjugate imaginary zeros in as developed above, and two poles at
the origin. Note that if then the conjugate imaginary zeros will be
approximately and

Example 9.9
Suppose and there are two lowpass prototype zeros located

at ±j 3. It follows that the corresponding bandpass filter zeros will be as follows:
± j 2.83, and ± j 8.83,

and there will also be two poles introduced at s = 0.

Case III
Consider the case where is complex, that is, where To

determine the corresponding bandpass filter poles, let

It follows that

or the two poles corresponding to the one lowpass prototype pole,
are
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where

and

i.e., is the polar magnitude of, and is the angle of, where

Note that may be expressed as follows:

Therefore,

and

If there is a pole in the lowpass prototype at there will also be one at
resulting in the following two poles in the bandpass transfer function:

and

Note that and Therefore, the lowpass-to-bandpass transformation
results in two pair of complex-conjugate poles for every complex-conjugate pair of
poles in the lowpass prototype. It should be noted that two zeros at the origin are also
introduced for every complex-conjugate pair of poles in the lowpass prototype. Note
also that for practical lowpass prototype poles that the corresponding bandpass poles
will have imaginary parts centered around See the following examples for
illustrations of this.
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In summary, one pair of complex-conjugate poles in the lowpass prototype,
results in the following poles in the bandpass transfer function:

and

Example 9.10
Given that

Example 9.11
Given that the lowpass prototype is a 4th-order Butterworth filter,

and the corresponding bandpass filter will have the following poles:

The lowpass-to-bandpass transformation will also introduce four zeros at the origin.

Example 9.12
Given that the lowpass prototype is a fifth-order elliptic filter with

and
and zeros: and the corresponding
bandpass filter will have the following poles:

The bandpass zeros will be as follows:

0 ,
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Magnitude Frequency Response and Phase Response
Given that the bandpass transfer function can be factored into the product of

a lowpass transfer function and a highpass transfer function, as was done in Example
9.7, and given that the for the lowpass response is greater than that for the
highpass response, the magnitude response for a bandpass filter will be very small if
not zero at DC, rise to some maximum, and then fall off again to some small value as
is increased. More precisely, consider the basic lowpass-to-bandpass transformation,
first at DC for the lowpass prototype:

From this, since causes the above equation to be satisfied, it is implied
that when for the bandpass filter the response will be the same as it at DC
for the lowpass prototype. Note that is for the negative side of the two-
sided frequency response. Therefore,

Now consider the lowpass prototype at or, since is
normalized, at or, in terms of s, at s =±j:

From (9.23) it follows that

Considering only positive radian frequencies, (9.24) implies the following for and

That is, From (9.25) it readily follows
that
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Now consider the lowpass prototype at

From (9.26) it follows that

Considering only positive radian frequencies, and introducing and (9.27)
implies the following:

That is, From (9.28) it readily
follows that

It also readily follows from (9.28) that

Summarizing the magnitude frequency response:

Considering the phase response, it can be seen that

Determination of Minimum Order
The equations for determination of minimum order for lowpass filters depend

on and Note, however, that under the lowpass-to-bandpass
transformation, maps to maps to maps to and
maps to Therefore,
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Defining

Therefore, the required minimum order to meet design specifications for the lowpass
prototype may be determined by using the existing equations in previous chapters,
replacing by For example, to determine the minimum required order
for the lowpass prototype of a Butterworth bandpass filter, (3.15) may be modified as
follows:

Example 9.13
Given the following specifications for a Chebyshev Type I bandpass filter:

and making
use of (4.14) it follows that The minimum required order of the bandpass
filter itself is therefore 6.

Filter Selectivity
The definition of Filter Selectivity is defined for lowpass filters in (2.37). For

a bandpass filter, it is defined as follows:

where is either the cutoff frequency on the lower frequency side of the
passband, or the cutoff frequency on the higher frequency side of the passband,
and the outer magnitude signs are used to make both Filter Selectivity values positive.
Note that (9.29) can be related to the Filter Selectivity of the lowpass prototype as
follows:

Section 9.3 Lowpass-to-Bandpass Transformation
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By making use of a change of variable, specifically it follows
that

where is evaluated at and is either or
for the bandpass filter.

Shaping Factor
As was noted above under Determination of Minimum Order, under the

lowpass-to-bandpass transformation, maps to maps to maps
to and maps to Therefore,

and

This reasoning applies for arbitrary attenuations a and b. That is, the ratio of the
bandpass filter bandwidth at attenuation b over the bandwidth at attenuation a is
numerically the same as it is for the lowpass prototype. Denoting and as
the Shaping Factor for the lowpass prototype filter and the bandpass filter,
respectively, it is noted that

Phase Delay and Group Delay
Phase delay is defined by (2.80). Phase delay for a lowpass-to-bandpass

transformed transfer function may be expressed as follows:

Chapter 9 Frequency Transformations



A Signal Processing Perspective 297

Therefore, it can be seen that

Group delay is defined by (2.81). Group delay for a lowpass-to-bandpass
transformed transfer function may be expressed as follows:

Making use of an appropriate change of variable (specifically,
(9.33) may be expressed as follows:

From (9.34), the following may be observed:

Example 9.14
Suppose

where denotes a 3rd-order Butterworth lowpass prototype transfer function.
It follows that
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from which

Therefore, and From (9.34):

If and then, from  (9.25), and
and it follows that and

Time-Domain Response
As noted in Example 9.7, the bandpass transfer function may be represented

as the product of a lowpass transfer function and a highpass transfer function:

It follows that

As was noted in (2.7), and plotted in Figure 2.10, the ideal bandpass filter has a unit
impulse response that is a sinusoid at the bandpass center frequency modulated by a
sinc function at a frequency of the bandwidth over two. As was commented on in
Chapter 2, while the impulse response of the ideal bandpass filter is non-causal, it is
still representative of what is expected from a practical bandpass filter (see Example
9.15 immediately below).

Example 9.15
Suppose the lowpass prototype filter is a 5th-order Chebyshev Type II filter

with at and Suppose a bandpass filter is
obtained from this prototype with and Whereas
the poles of the lowpass filter are as follows:
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–1.0388,
–0.8181 ± j 0.6174,
–0.2996 ± j 0.9578,

and the zeros of the lowpass filter are as follows:
± j 3.8829,
± j 6.2827,and

the poles of the bandpass filter are:
– 103.9 ± j 994.6,
–86.86 ± j 1060.3,
–76.75 ± j 936.8,
–32.81 ± j 1099.9,
–27.10 ± j 908.4,and

and the zeros of the bandpass filter are:
0
± j 552.7,
± j 684.4,
± j 1461.0,
± j 1809.3.and

The magnitude frequency response of the bandpass filter is shown in Figure
9.8, where the logarithmic frequency axis extends from to A
detailed passband magnitude frequency response is shown in Figure 9.9, where the
linear frequency axis extends from 800 rad/s to 1200 rad/s. Note that and

and here since may be determined from (9.25) to be
904.99 rad/s and 1104.99 rad/s, respectively. These values are also observed in
the data plotted in Figure 9.9.

Values for Filter Selectivity may be obtained from (9.31) and (5.11) to be
0.0204 and 0.0167 at and respectively. These values may also be obtained
from the data plotted in Figure 9.9.

The value of the Shaping Factor may be obtained from (9.32) and (5.14), for
a = 3 dB and b = 80 dB, to be 3.69. This value may also be obtained from the data
plotted in Figure 9.8.

For a 5th-order Chebyshev Type II lowpass filter, the frequencies where the
magnitude frequency is zeroare obtained from (5.7) tobe and
The frequencies where the magnitude response equals in the stopband are obtained
from (5.8) to be and From the basic mapping for a lowpass-
to-bandpass frequency transformation,

where is the radian frequency variable for the lowpass prototype, and is
the radian frequency variable for the bandpass filter. Multiplying both sides of (9.35)
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by j it follows that

In this example, obtained from (5.9), is 3.6929 rad/s, and therefore the
frequencies where the response is zero are 3.8831, 6.2827 and and the
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frequencies where the response equals in the stopband are 4.5648 and 11.9506.
Using these frequencies in (9.36), the resultant positive values where the bandpass
response is zero are as follows: 552.7, 684.4, 1461.0 and 1809.3. The resultant
positive values where the bandpass response equals in the stopband are 363.2,
642.8, 1555.7, and 2753.3. These frequencies, where the magnitude response is
either zero or equal to can be observed in the data plotted in Figure 9.8.

The phase response of the bandpass filter is shown in Figure 9.10. Observe
that the phase at the center frequency is zero, the same as the phase at DC for the
lowpass prototype. Also, observe that the bandpass phase at ( 904.99 rad/s) is
equal to the negative of the phase at 1 rad/s for the lowpass prototype (see Figure
5.3). Note the other phase relationships indicated on page 294.

The phase delay of the bandpass filter is shown in Figure 9.11. Observe that
thephase delay at the centerfrequencyis zero, as indicated on page 297. Notethat
is 3.8654s, which is obtainable from the data plotted in Figure 5.5. This value
divided by as indicated on page 297, is – 4.27 ms, the value for
while this value divided by is 3.50 ms, the value for these values
for the bandpass filter can be observed in Figure 9.11.

The group delay of the bandpass filter is shown in Figure 9.12. The value for
is 3.1152 s and for is 5.1127 s. Therefore, using the equations on page
297, it follows that and

These group delay values are observable in Figure 9.12.
The unit impulse response of the bandpass filter is shown in Figure 9.13.

Note that the frequency of the high-frequency component (the modulated sinusoid) is
equal to ( 1000 rad/s), and that the envelope is the same as shown in Figure 5.7
for order five, but amplitude scaled by and frequency scaled by
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The unit step response is shown in Figure 9.14. Recall that the unit step
response is the integral of the unit impulse response. The unit step response shows
the same modulated sinusoid frequency of and the same envelope shape as the
unit impulse response.
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9.4 LOWPASS-TO-BANDSTOP TRANSFORMATION

The lowpass-to-bandstop transformation is stated as follows: replace every s
in by where is the “center frequency”of the
bandstop filter frequency response in rad/s and is the stop bandwidth, i.e.,
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where is the upper edge of the stopband where the attenuation
is and is the lower edge of the stopband. Note that must be unity for the
lowpass prototype.

Example 9.16
Suppose

where denotes a 3rd-order Butterworth lowpass prototype transfer function.
If it is desired to transform this into a bandstop filter with arbitrary and

where it is noted that the denominator is the same here as it is in Example 9.7. Note
that may be expressed as follows:

where, since this is a bandstop filter, the of the lowpass is less than the of the
highpass. Note the following observations: (1) The order of the bandstop transfer
function is twice that of the lowpass prototype and therefore will always be even, (2)
The bandstop transfer function may be separated into the sum of a lowpass transfer
function and a highpass transfer function, and (3) For this example,

which is typical for a bandstop filter. If the lowpass
prototype filter has rippling in either the passband or the stopband, then
and may not be unity.

Poles and Zeros
If is shown in factored form:
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where the zeros, and the poles, may be, and in general are, complex,
then consider the results of the lowpass-to-bandstop transformation.

Case I
Consider the case where is real. To determine the corresponding bandstop

filter poles, let

It follows that

or the two poles corresponding to the one lowpass prototype pole, are

Theoretically, could be real however such will not be the
case for practical bandstop filters. Therefore, consider

Also, note that since the numerator as well as the denominator of the transfer
function is multiplied by in order to form the above quadratic equation, it
follows that two transfer function zeros are introduced at

Therefore, each real pole in will yield a pair of complex conjugate
poles in . as developed above, and two zeros at Note that if

> > then the imaginary part of those complex conjugate poles will be
approximately

Example 9.17
Suppose and It follows that

will be the resultant poles, and there will two zeros at
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Consider the case where is imaginary, that is, where there are zeros on the
axis, such as is the case for a Chebyshev Type II or elliptic lowpass prototype. To
make the imaginary property of explicit, let where is real. To
determine the corresponding bandstop filter zeros, let

Case II

It follows that

or the two zeros corresponding to the one lowpass prototype zero, are

where it is noted that both zeros are imaginary, but not the same magnitude (not
conjugates). However, if the lowpass prototype has a zero at there will also
be a zero at Therefore, the four bandstop zeros corresponding to the two
lowpass prototype zeros at are as follows:

Also, note that since the denominator as well as the numerator is multiplied
by for each zero in the lowpass prototype transfer function in order to form
the above quadratic equations, it follows that four transfer function poles are
introduced at However, it should be noted that these imaginary axis poles
will cancel imaginary axis zeros at introduced by real poles (or complex-
conjugate poles as discussed below) in the lowpass prototype transfer function.

Therefore, each pair of conjugate imaginary zeros in will yield two
pair of conjugate imaginary zeros in as developed above, and two pair of
conjugate imaginary poles at

Example 9.18
Suppose and there are two lowpass prototype zeros located

at ± j 3. It follows that the corresponding bandstop filter zeros will be as follows:
± j 4.68, and ± j 5.34,

and there will also be two conjugate imaginary poles introduced at s = ± j 5.

Chapter 9 Frequency Transformations
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Case III
Consider the case where is complex, that is, where To

determine the corresponding bandstop filter poles, let

It follows that

or the two poles corresponding to the one lowpass prototype pole,
are

where

and

i.e., is the polar magnitude of, and is the angle of, where

Note that may be expressed as follows:

Therefore,

Section 9.4 Lowpass-to-Bandstop Transformation
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and

If there is a pole in the lowpass prototype at there will also be one at
resulting in the following two poles in the bandstop transfer function:

and

Note that and Therefore, the lowpass-to-bandstop transformation
results in two pair of complex-conjugate poles for every complex-conjugate pair of
poles in the lowpass prototype. It should be noted that two pair of conjugate
imaginary zeros at are also introduced for every complex-conjugate pair of
poles in the lowpass prototype. Note also that for practical lowpass prototype poles
that the corresponding bandstop transfer function poles will have imaginary parts
centered around See the following examples for illustrations of this.

In summary, one pair of complex-conjugate poles in the lowpass prototype,
results in the following poles in the bandstop transfer function:

and

Chapter 9 Frequency Transformations
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Example 9.19
Given that and it follows that

and that the bandstop poles are:
–0.4498 ± j 4.500, and –0.5502 ± j 5.500.

Example 9.20
Given that the lowpass prototype is a 4th-order Butterworth filter,

and the corresponding bandstop filter will have the following poles:

–8.884 ± j 103.473 , –9.594 ± j 95.820 ,

–3.475 ± j 109.592 , –4.179 ± j 91.115 .

The lowpass-to-bandstop transformation will also introduce four pair of conjugate
imaginary zeros at ± j 100.

Magnitude Frequency Response and Phase Response
Given that the bandstop transfer function can be factored into the sum of a

lowpass transfer function and a highpass transfer function, as was done in Example
9.16, and given that the for the lowpass response is less than that for the highpass
response, the magnitude response for a bandstop filter will be at or near unity
(assuming the gain is normalized) at DC, fall off in the stopband attenuating a band
of frequencies, and then rise again to near unity as is increased. More precisely,
consider the basic lowpass-to-bandstop transformation, first at DC for the lowpass
prototype:

From this, since s = 0 or causes the above equation to be satisfied, it is
implied that when or for the bandstop filter the response will be the
same as it at DC for the lowpass prototype. Therefore,

and

Now consider the lowpass prototype at or, since is
normalized, at or, in terms of s, at s = ±j :

Section 9.4 Lowpass-to-Bandstop Transformation
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From (9.37) it follows that

Considering only positive radian frequencies, (9.38) implies the following for and

That is, From (9.39) it readily follows
that

Now consider the lowpass prototype at

From (9.40) it follows that

Considering only positive radian frequencies, and introducing and (9.41)
implies the following:

That is, From (9.42) it readily
follows that

It also readily follows from (9.42) that

Chapter 9 Frequency Transformations
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Summarizing the magnitude frequency response:

Considering the phase response, it can be seen that

Determination of Minimum Order
The equations for determination of minimum order for lowpass filters depend

on and Note, however, that under the lowpass-to-bandstop
transformatio B n from  which The value
of here, assumes . I n general, Defining

it follows that

Therefore, the required minimum order to meet design specifications for the lowpass
prototype may be determined by using the existing equations in previous chapters,
replacing by For example, to determine the minimum required order
for the lowpass prototype of a Butterworth bandstop filter, (3.15) may be modified as
follows:

Example 9.21
Given the following specifications for a Chebyshev Type I bandstop filter:

and making
use of (4.14) it follows that The minimum required order of the bandstop
filter itself is therefore 6.

Filter Selectivity
The definition of Filter Selectivity is defined for lowpass filters in (2.37). For

a bandstop filter, it is defined as follows:

Section 9.4 Lowpass-to-Bandstop Transformation
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where is either the cutoff frequency on the lower frequency side of the
stopband, or the cutoff frequency on the higher frequency side of the stopband,
and the outer magnitude signs are used to make both Filter Selectivity values positive.
Note that (9.43) can be related to the Filter Selectivity of the lowpass prototype as
follows:

By making use of a change of variable, specifically it follows
that

where is evaluated at and is either or
for the bandstop filter.

Shaping Factor
As was noted above under Determination of Minimum Order, under the

lowpass-to-bandstop transformation,

This reasoning applies for arbitrary attenuations a and b. That is, the ratio of the
bandstop filter bandwidth at attenuation a over the bandwidth at attenuation b is
numerically the inverse of what it is for the lowpass prototype. Denoting and

as the Shaping Factor for the lowpass prototype filter and the
bandstop filter, respectively, it is noted that

Chapter 9 Frequency Transformations
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Phase Delay and Group Delay
Phase delay is defined by (2.80). Phase delay for a lowpass-to-bandstop

transformed transfer function may be expressed as follows:

Therefore, it can be seen that

Group delay is defined by (2.81). Group delay for a lowpass-to-bandstop
transformed transfer function may be expressed as follows:

Making use of an appropriate change of variable (specifically,
(9.47) may be expressed as follows:

From (9.48), the following may be observed:

Section 9.4 Lowpass-to-Bandstop Transformation
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Example 9.22
Suppose is a 3rd-order Butterworth lowpass prototype transfer

function, as in Example 9.14. As was determined in Example 9.14,
and . From (9.48):

If and then, from (9.39), and
1104.988, and it follows that and

Time-Domain Response
As noted in Example 9.16, the bandstop transfer function may be represented

as the sum of a lowpass transfer function and a highpass transfer function:

It follows that

and

Since includes an impulse, so will . Since converges to unity
as and converges to zero,         converges to unity.

Example 9.23
Suppose the lowpass prototype filter is a 5th-order elliptic filter with

at and This results in
and Suppose a bandstop filter is obtained from this prototype
with and Whereas the poles of the lowpass filter
are as follows:
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and

– 0.3035,
– 0.2332 ± j 0.6331,
– 0.0821 ± j 0.9919,

and the zeros of the lowpass filter are as follows:
± j 2.6055,
± j 4.1150,and

the poles of the bandstop filter are:
– 7.459 ±  j 904.8,
– 9.110  ± j 1105.1,
– 44.17 ± j 869.3,
– 58.30 ±  j 1147.4,
– 329.5 ± j 944.2,and

and the zeros of the bandstop filter are:
± j 962.4,
± j 976.0,
± j 1000.0 ,
± j 1024.6 ,
± j 1039.1 .and

The magnitude frequency response of the bandstop filter is shown in Figure
9.15. A detailed passband magnitude frequency response is shown in Figure 9.16.
Note that and may be determined from (9.39) to be 904.99 rad/s and
1104.99 rad/s , respectively. These values are also observed in the data plotted in
Figure 9.16. Note that and may be determined from (9.42) to be
960.61 rad/s and 1041.0 rad/s , respectively. These values may be observed in
the data plotted in Figure 9.15.
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Values for Filter Selectivity may be obtained from (9.45). Values for and
for use in (9.45) may be obtained from an equation derived similarly as (9.42):

From (9.49), and these values are also
observable in the data plotted in Figure 9.16. Note that It
follows from (9.45) that and 0.0620 for and respectively.
These values may also be obtained from the data plotted in Figure 9.16.

The value of the Shaping Factor may be obtained from (9.46). Note that
, where a = 3 dB and b = 80 dB. Therefore, from (9.46),
where and

These values are also obtainable from the data plotted in Figure 9.15.
For a 5th-order elliptic lowpass filter, the frequencies where the magnitude

frequency is zero are obtained from (5.7) to be and The
frequencies where the magnitude response equals in the stopband are obtained
from (5.8) to be and From the basic mapping for a lowpass-
to-bandstop frequency transformation,

where is the radian frequency variable for the lowpass prototype, and is the
radian frequency variable for the bandstop filter. From (9.50) it follows that

Chapter 9 Frequency Transformations



A Signal Processing Perspective 317

In this example, obtained from the MATLAB function ELLIPWS, is
2.4880 rad/s, and therefore the frequencies where the response is zero, obtained
from (6.33), are 2.6054, 4.1148 and and the frequencies where the response
equals in the stopband, obtained from (6.34), are 3.0301 and 7.7409. Using these
frequencies in (9.51), the resultant positive values where the bandstop response is zero
are as follows: 962.4, 976.0, 1000.0, 1024.6 and 1039.1 The resultant positive
values where the bandstop response equals in the stopband are 967.5, 987.2,
1013.0, and 1033.5. These frequencies, where the magnitude response is either zero
or equal to can be observed in the data plotted in Figure 9.15.

The phase response of the bandstop filter is shown in Figure 9.17. Observe
that the phase at the center frequency is zero, the same as the phase at DC for the
lowpass prototype. Also, observe that the bandstop phase at (904.99 rad/s) is
equal to the phase at 1 rad/s for the lowpass prototype when the lowpass has a
normalized (see Figure 6.12 where is normalized). Note the other phase
relationships indicated on page 311.

The phase delay of the bandstop filter is shown in Figure 9.18. Observe that
the phase delay at the center frequency is zero, the same as the phase delay at infinity
for the lowpass prototype. Note that is 5.3376 s, where is normalized.
This value divided by as indicated on page 313, is 5.90 ms, the value for

while the negative of this value divided by is –4.83ms , the value

for these values for the bandstop filter can be observed in Figure 9.18.

Section 9.4 Lowpass-to-Bandstop Transformation
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The group delay ofthe bandstop filter is shown in Figure 9.19. The value for
is 13.5862 s, which is obtained similarly as the data plotted in Figure 6.15 and
Figure 6.16, but here is unity whereas the data in Chapter 6 was normalized for
an of unity. Therefore, using the equations on page 313, it follows that

and These group delay values are

observable in the data plotted in Figure 9.19.
The unit impulse response of the bandstop filter is shown in Figure 9.20. This

being a bandstop filter, there is an impulse at the origin, but not shown in the figure.
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The unit step response is shown in Figure 9.21. Recall that the unit step response is
the integral of the unit impulse response. The unit step response converges to unity
as the order of the lowpass prototype is odd.

Section 9.4 Lowpass-to-Bandstop Transformation
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9.5 CHAPTER 9 PROBLEMS

Similar to Example 9.1, determine the transfer function of 3rd-order
Butterworth lowpass filter with an of 5000 rad/s .

Determine the transfer function of a 3rd-order Chebyshev Type I lowpass filter
with and

Repeat Problem 9.2 for

Determine the poles for the transfer function of Problem 9.1.

Determine the poles for the transfer function of Problem 9.2.

Determine the poles for the transfer function of Problem 9.3.

Given that the desired specifications of a Butterworth lowpass filter are as
follows: and

determine the minimum required filter order to meet or
exceed these specifications. Repeat the above for

and

Given that the desired specifications of a Chebyshev Type I lowpass filter are
as follows: and

determine the minimum required filter order to meet or
exceed these specifications. Repeat the above for

and

Determine the Filter Selectivity, for each of the two filters in Problem
9.7.

Determine the Filter Selectivity, for each of the two filters in Problem
9.8.

Determine the Shaping Factor, for each of the two filters in Problem
9.7, where a = 3 dB and b = 70 dB.

Determine the Shaping Factor, for each of the two filters in Problem
9.8, where a = 1.2 dB and b = 75 dB.

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

9.10

9.11

9.12
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Indicate how Figure 3.8 could be used to obtain the plot of phase delay for
each of the two filters in Problem 9.7.

Indicate how Figure 3.9 could be used to obtain the plot of group delay for
each of the two filters in Problem 9.7.

Indicate how Figure 3.10 could be used to obtain the plot of the unit impulse
response for each of the two filters in Problem 9.7.

Indicate how Figure 3.11 could be used to obtain the plot of the unit step
response for each of the two filters in Problem 9.7.

Similar to Example 9.2, determine the transfer function of 3rd-order
Butterworth highpass filter with an of 5000 rad/s.

Determine the transfer function of a 3rd-order Chebyshev Type I highpass
filter with and

Repeat Problem 9.18 for

Determine the poles and zeros for the transfer function of Problem 9.17.

Determine the poles and zeros for the transfer function of Problem 9.18.

Determine the poles and zeros for the transfer function of Problem 9.19.

Using MATLAB, plot the magnitude frequency response and the phase
response for the filter of Problem 9.17.

Using MATLAB, plot the magnitude frequency response and the phase
response for the filter of Problem 9.18.

Using MATLAB, plot the magnitude frequency response and the phase
response for the filter of Problem 9.19.

Using MATLAB, plot the magnitude frequency response and the phase
response for the highpass filter of Example 9.3.

Given that the desired specifications of a Butterworth highpass filter are as
follows: and

determine the minimum required filter order to meet

9.13

9.14

9.15

9.16

9.17

9.18

9.19

9.20

9.21

9.22

9.23

9.24

9.25

9.26

9.27
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or exceed these specifications. Repeat the above for
and

Given that the desired specifications of a Chebyshev Type I highpass filter are
as follows: and

determine the minimum required filter order to meet or
exceed these specifications. Repeat the above for

and

Determine the Filter Selectivity of the highpass filter of Problem 9.17 in two
ways: (a) by use of (9.14) and (3.7), and (b) computationally, using
MATLAB.

Determine the Filter Selectivity of the highpass filter of Problem 9.18 in two
ways: (a) by use of (9.14) and (4.9), and (b) computationally, using
MATLAB.

Determine the Filter Selectivity of the highpass filter of Problem 9.19 in two
ways: (a) by use of (9.14) and (4.9), and (b) computationally, using
MATLAB.

Determine the Shaping Factor of the highpass filter of Problem 9.17 in two
ways: (a) by use of (9.15) and (3.10), and (b) computationally, using
MATLAB.

Determine the Shaping Factor of the highpass filter of Problem 9.18 in two
ways: (a) by use of (9.15) and (4.12), and (b) computationally, using
MATLAB.

Determine the Shaping Factor of the highpass filter of Problem 9.19 in two
ways: (a) by use of (9.15) and (4.12), and (b) computationally, using
MATLAB.

For the Butterworth highpass filter of Problem 9.17, determine a closed-form
expression for the group delay, similar to Example 9.4. Using MATLAB, plot
the response of your expression. For comparison, determine and plot the
group delay response as obtained by computational manipulation of the phase
response (the traditional computational approach).

Using MATLAB, plot the magnitude frequency response, phase response,
phase delay response, group delay response, unit impulse response, and unit
step response for a 10th-order Chebyshev Type I highpass filter with

9.28

9.29

9.30

9.31

9.32

9.33

9.34

9.35

9.36
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and That is, confirm the results plotted in
Figure 9.1 through Figure 9.7 (Example 9.6).

Similar to Example 9.11, determine the poles and zeros of an 8th-order
Butterworth bandpass filter, with and

Determine the poles and zeros of a 6th-order Chebyshev Type I bandpass filter,
with 1 dB of ripple, and

Using MATLAB, plot the magnitude frequency response and the phase
response for the filter of Problem 9.37.

Using MATLAB, plot the magnitude frequency response and the phase
response for the filter of Problem 9.38.

Given that the desired specifications of a Butterworth bandpass filter are as
follows: and

determine the minimum required filter order to meet
or exceed these specifications. Repeat the above for

and

Given that the desired specifications of a Chebyshev Type I bandpass filter are
as follows: and

determine the minimum required filter order to meet or
exceed these specifications. Repeat the above for

and

Determine the Filter Selectivity of the bandpass filter in Problem 9.41 with
in two ways: (a) by use of (9.31) and (3.7), and (b)

computationally, using MATLAB.

Repeat Problem 9.43 for

Determine the Filter Selectivity of the bandpass filter in Problem 9.42 with
in two ways: (a) by use of (9.31) and (4.9), and (b)

computationally, using MATLAB.

Repeat Problem 9.45 for

Determine the Shaping Factor of the bandpass filter in Problem 9.41 with
in two ways: (a) by use of (9.32) and (3.10), and (b)

computationally, using MATLAB.
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9.41
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Repeat Problem 9.47 for

Determine the Shaping Factor of the bandpass filter in Problem 9.42 with
in two ways: (a) by use of (9.32) and (4.12), and (b)

computationally, using MATLAB.

Repeat Problem 9.49 for

Using the closed-form procedure of Example 9.14, compute the group delay
of a 6th-order Butterworth bandpass filter at and where

and

Using MATLAB, plot the magnitude frequency response, phase response,
phase delay response, group delay response, unit impulse response, and unit
step response for a 10th-order Chebyshev Type II bandpass filter with

and That
is, confirm the results plotted in Figure 9.8 through Figure 9.14 (Example
9. 15).

Similar to Example 9.20, determine the poles and zeros of an 8th-order
Butterworth bandstop filter, with and

Determine the poles and zeros of a 6th-order Chebyshev Type I bandstop filter,
with 1 dB of ripple, and

Using MATLAB, plot the magnitude frequency response and the phase
response for the filter of Problem 9.53.

Using MATLAB, plot the magnitude frequency response and the phase
response for the filter of Problem 9.54.

Given that the desired specifications of a Butterworth bandstop filter are as
follows: and

determine the minimum required filter order to meet
or exceed these specifications. Repeat the above for

and

Given that the desired specifications of a Chebyshev Type I bandstop filter are
as follows: and

determine the minimum required filter order to meet or
exceed these specifications. Repeat the above for

and

9.48
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Determine the Filter Selectivity of the bandstop filter in Problem 9.57 with
in two ways: (a) by use of (9.45) and (3.7), and (b)

computationally, using MATLAB.

Repeat Problem 9.59 for

Determine the Filter Selectivity of the bandstop filter in Problem 9.58 with
in two ways: (a) by use of (9.45) and (4.9), and (b)

computationally, using MATLAB.

Repeat Problem 9.61 for

Determine the Shaping Factor of the bandpass filter in Problem 9.57 with
in two ways: (a) by use of (9.46) and (3.10), and (b)

computationally, using MATLAB.

Repeat Problem 9.63 for

Determine the Shaping Factor of the bandpass filter in Problem 9.58 with
in two ways: (a) by use of (9.46) and (4.12), and (b)

computationally, using MATLAB.

Repeat Problem 9.65 for

Using (9.48), and the procedure in Example 9.22, compute the group delay
of a 6th-order Butterworth bandstop filter at and DC, where

and

Using MATLAB, plot the magnitude frequency response, phase response,
phase delay response, group delay response, unit impulse response, and unit
step response for a 10th-order elliptic bandstop filter with

and That is, confirm the
results plotted in Figure 9.15 through Figure 9.21 (Example 9.23).
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CHAPTER 10

PASSIVE FILTERS

n this chapter passive filter implementation is introduced. Passive filters contain
no active elements in the filter implementation. While passive filter
implementation may have many forms, only ladder implementations are

10.1 INTRODUCTION

The procedure to design and realize an analog filter is to first design the filter,
which is to obtain the transfer function, and then determine a desirable
implementation, which when realized in hardware completes the procedure. A
somewhat complete summary of the procedure may be expressed as follows:

Obtain the desired specifications of the filter.
The specifications may be given by a project engineer, or may be obtained by

engineering judgment, based upon the application of the filter. The specifications
generally include and if it is a lowpass or highpass filter, or
similar specifications if it is a bandpass, or bandstop filter. If the filter is not
frequency-selective, but rather, for example, for time delay, such as a Bessel filter,
then the specifications would differ. Other possibilities may include specifications as
to maximum group delay, settling time for the unit impulse response, etc. The
specifications will likely also include the filter type, such as Butterworth, unless the
selection of the filter type is considered part of the design.

Design the filter.
The next step is to design the filter, that is, starting with the specifications

obtain the transfer function. The design may be obtained by use of MATLAB, using

considered here, containing only resistors, capacitors and inductors. In fact, only two
resistors will be included, no matter what the filter order is, or the filter type. The
input resistor is associated with the driving source, and the resistor at the output is the
load that the filter supplies energy to. The filter proper, between the source resistor
and the load resistor, contains only capacitors and inductors in a ladder configuration.

I
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functions that come with MATLAB, and also perhaps special functions on the disk
that accompanies this book. This design procedure would likely also include detailed
analysis of the proposed design1, to reveal as much detail as possible about the
proposed design‘s performance prior to implementation.

Implement the filter.
Implementation may be thought of as arriving at a schematic diagram, or some

other representation, of a hardware realization of the filter. Realization may be
thought of as the actual physical construction of the filter, although implementation
and realization may be terms often used interchangeably. Analog filters may be
implemented in many ways. One way to categorize implementation is in terms of
passive or active. Passive indicates that there are no active elements in the filter
implementation. This implementation may be made up of R's, L's and C's. However,
analog filters that are also passive, but more specialized, would include surface
acoustic wave (SAW) filters, mechanical resonators and quartz crystal filters (Sheahan
and Johnson, 1977). Passive filter implementation, for lossless ladder LC
implementation, is the subject of this chapter. Active indicates that the implementation
includes active elements, such as operational amplifiers (op amps), or possibly other
active elements such as transistors. Active filter implementation is the subject of the
next chapter.

A summary of passive filter implementation, as presented in this chapter, is as
follows:

Obtain the lowpass prototype implementation.
After obtaining the desired specifications of the filter, and designing the filter,

the lowpass prototype implementation may be obtained using, for example, the
procedure given in Section 10.2 below, or from a table. Several such tables are given
in this chapter. Usually, element values in tables are normalized for a critical
frequency of unity, and for either a source resistor or load resistor of
unity.

Frequency transform and impedance scale the implementation.
As will be developed in this chapter, the frequency transformations of Chapter

9 may be applied directly to the element values of the lowpass prototype
implementation. In addition, impedance scaling (reviewed in this chapter) may be
applied for desirable element values.

Implementation is included in this book for the sake of practical completeness.
Whereas it is hoped that the theoretical aspects of analog filter design, which has

1For illustration, see Example 9.6, 9.15, or 9.23.
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occupied the majority of this book to this point, will be judged to be somewhat
thorough, implementation is but briefly presented. Any filter design may be realized
in a wide variety of implementations. The passive and active filter implementation
methods presented in this chapter and the next, while limited, are practical and useful
methods.

10.2 CONTINUED-FRACTION LADDER IMPLEMENTATION

More detail on the implementation developed in this section may be found
elsewhere (Van Valkenburg, 1960; Weinberg, 1962). Refer to Figure 10.1, where
the lossless passive filter includes only capacitors and inductors, and ideally,
therefore, dissipates no energy. Therefore, where is the power
dissipated in and is the input power to the lossless passive filter. The
symbols, with argument may be thought of either as AC steady state phasors, or
as Fourier transforms. Note that implies the following:

But, since

it follows that

Section 10.2 Continued-Fraction Ladder Implementation
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Substituting (10.2) into (10.1), it follows that

Let be defined as follows:

Substituting (10.3) into (10.4), and making use of and
simplifying, results in the following:

Since (10.5) implies that

Equation (10.6), in terms of the Laplace variable s, may be expressed as follows:

From (10.7), it follows that

or

Combining (10.8) and (10.9):

To illustrate how A (s) can be known for a particular filter type, and therefore
can be known, consider a Butterworth response. The Butterworth lowpass response,
in terms of the variables used here, may be expressed as follows:
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For simplicity, consider and and therefore, by reference to
Figure 10.1, K = 1/2 . Substituting (10.11) into (10.4), and using and
K = 1/2 , and simplifying, results in

From Section 2.7, Section 3.4, and (10.12) it follows that

where is an Nth-order Butterworth polynomial. For example, from Example
3.3, Therefore, A(s), for a Butterworth lowpass
filter with and K = 1/2, may be expressed as follows:

Given (10.13), then (10.10) may be used to find two acceptable expressions for
This, in turn, will result in two circuit implementations.

Example 10.1
Suppose the desired filter to be implemented with a passive ladder circuit is a

third-order Butterworth lowpass filter with and
Note that later in this chapter impedance and frequency scaling applied directly to the
circuit will allow for any desired and values. Therefore, from (10.13),

From (10.10),

Case I
Consider the following form for

Continued-Fraction Ladder ImplementationSection 10.2



334 DESIGN AND ANALYSIS OF ANALOG FILTERS:

Note that

and

Therefore, it follows that

This approach is referred to as the continued-fraction method. Equation (10.14)
implies the circuit shown in Figure 10.2.

Case II
Consider the following form for

Equation (10.15) implies the circuit shown in Figure 10.3.

Because of the complexity of this procedure, tables have been generated for
common filter types. Below, in Table 10.1 through Table 10.8, element values are
given for Butterworth lowpass prototype filters, selected Chebyshev Type I filters,
Bessel filters, and selected elliptic filters. Refer to Figure 10.4 through Figure 10.7
for implementation circuit schematic diagrams for the Butterworth, Chebyshev, and
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Bessel filters. Refer to Figure 10.8 and Figure 10.9 for implementation circuit
schematic diagrams for the elliptic filters.

In Table 10.1, since it follows that the DC gain of each of the
filters in the table is 0.5. Therefore, which is unity for the table element values,
is the radian frequency where the gain is times the DC gain, or
Also note that for any order of 2 through 10, there are element values for two
implementations. For example, for N = 3, element values for Figure 10.7 may be
read from the table as and However, element values
for Figure 10.5 may be read from the table as and

In Table 10.2 through Table 10.5, A is the value of the passband ripple, and
it is also the value of the attenuation relative to the peak of the passband response at

All of the equations in Chapter 4 apply to the filters in these
tables. That is, for example, may be computed using (4.7), the value of for
a given value of (and and N), may be computed from (4.14), etc.

Similarly, in Table 10.6, all of the filters are normalized for a group delay at
DC of unity. If it is desired to implement a Bessel filter as a frequency selective filter,

Section 10.2 Continued-Fraction Ladder Implementation
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as opposed to a delay circuit, the MATLAB function BESSELDD may be used to
design a Bessel filter with a normalized time delay, as the filters are in the table.
Then a MATLAB magnitude frequency response may be plotted to obtain the
frequency at some desired attenuation This method may be used to
inform the designer as to what frequency scaling should be applied to achieve a
desired value for the non-normalized circuit.

In Table 10.7 and Table 10.8 only a few selected elliptic filters are shown.
Since passband ripple and minimum attenuation in the stopband are both design
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parameters for elliptic filters, the number and size of elliptic implementation tables
could be large. Those filters selected for inclusion in Table 10.7 and Table 10.8 all
have minimum stopband attenuations around 60 dB. There are two reasons for this.
First, 60 dB is a practical value for filter use, and second, by having all the values
in the two tables similar, the influence of filter order and on becomes clear.
Note that it is not necessary for to be included in the tables, as the values could
be computed using the MATLAB function ELLIPWS (see Section 6.4), but they are
included to illustrate its dependance on the filter order and

Section 10.2 Continued-Fraction Ladder Implementation
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10.3 FREQUENCY TRANSFORMATION CIRCUIT
OPERATIONS

As was the case in Chapter 9, four types of frequency transformation will be
considered here: lowpass-to-lowpass, lowpass-to-highpass, lowpass-to-bandpass, and
lowpass-to-bandstop. It is assumed that the initial lowpass filter implementation is the
prototype, such as obtained from the tables in the previous section. What differs here,
from that presented in Chapter 9, is that the transfer function of the frequency-
transformed filter need not be found, but rather the concepts of frequency
transformation are applied directly to the prototype circuit elements.

Lowpass-to-Lowpass Transformation
As presented in Section 9.1, the lowpass-to-lowpass transformation is

accomplished by replacing every s in the transfer function of the prototype by

Section 10.3 Frequency Transformation Circuit Operations
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where is the frequency scaling factor. Since, in an s domain circuit diagram of
the prototype filter, the complex impedance of an inductor is expressed as sL and that
of a capacitor is expressed as 1 / (s C), it follows that in the s domain circuit diagram
of the frequency scaled filter the impedance of an inductor would be expressed as

and that of a capacitor would be expressed as Clearly the
resistors in the frequency scaled filter circuit diagram would be the same as in the
prototype circuit diagram, as resistor values are not a function of s. Therefore, the
procedure to frequency scale a prototype circuit diagram may be summarized as
follows:

Divide all inductor values by the frequency scaling factor.

Divide all capacitor values by

Leave all resistor values unchanged.

Having applied the above operations to the element values of a lowpass
prototype filter circuit schematic diagram, the transformed circuit will be frequency
scaled by Therefore all of the results and observations in Section 9.1 will apply
to the frequency scaled circuit.

Lowpass-to-Highpass Transformation
As presented in Section 9.2, the lowpass-to-highpass transformation is

accomplished by replacing every s in the transfer function of the prototype by
where is the frequency scaling factor. Since, in an s domain circuit diagram of
the prototype filter, the complex impedance of an inductor is expressed as sL, it
follows that in the s domain circuit diagram of the highpass filter the impedance of
an “inductor” would be expressed as which represents a capacitor
with a value of In the prototype filter, a capacitor would be expressed as 1 / (s C):
in the s domain circuit diagram of the highpass filter the impedance of a “capacitor”
would be expressed as which represents an inductor with a value of

Clearly the resistors in the highpass filter circuit diagram would be the
same as in the prototype circuit diagram, as resistor values are not a function of s.
Therefore, the procedure to transform a lowpass prototype circuit diagram into a
highpass circuit diagram may be summarized as follows:

Replace each inductor in the lowpass prototype circuit by a
capacitor with a value of

Replace each capacitor in the lowpass prototype circuit by an
inductor with a value of
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Leave all resistor values unchanged.

Having applied the above operations to the element values of a lowpass
prototype filter circuit schematic diagram, the transformed circuit will be a highpass
filter frequency scaled by Therefore all of the results and observations in Section
9.2 will apply to the highpass circuit.

Lowpass-to-Bandpass Transformation
As presented in Section 9.3, the lowpass-to-bandpass transformation is

accomplished by replacing every s in the transfer function of the prototype by
where is the “center frequency” and is the bandwidth.

Since, in an s domain circuit diagram of the prototype filter, the complex impedance
of an inductor is expressed as sL, it follows that in the s domain circuit diagram of
the bandpass filter the impedance of an “inductor” would be expressed as

which represents an inductor with a value of in series with
a capacitor with a value of In the prototype filter, a capacitor would be
expressed as 1 /(sC): in the s domain circuit diagram of the bandpass filter the
impedance of a “capacitor” would be expressed as which
represents an inductor with a value of in parallel with a capacitor with a
value of Again, the resistors in the bandpass filter circuit diagram would be
the same as in the prototype circuit diagram, as resistor values are not a function of s.
Therefore, the procedure to transform a lowpass prototype circuit diagram into a
bandpass circuit diagram may be summarized as follows, where it is assumed that

for the lowpass prototype circuit:

Replace each inductor in the lowpass prototype circuit by an
inductor with a value of in series with a capacitor with
a value of

Replace each capacitor in the lowpass prototype circuit by an
inductor with a value of in parallel with a capacitor
with a value of

Leave all resistor values unchanged.

Having applied the above operations to the element values of a lowpass
prototype filter circuit schematic diagram, the transformed circuit will be a bandpass
filter with a center frequency of and have a bandwidth of Therefore all of
the results and observations in Section 9.3 will apply to the bandpass circuit.

Section 10.3 Frequency Transformation Circuit Operations
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Lowpass-to-Bandstop Transformation
As presented in Section 9.4, the lowpass-to-bandstop transformation is

accomplished by replacing every s in the transfer function of the prototype by
where is the “center frequency” and is the bandwidth.

Since, in an s domain circuit diagram of the prototype filter, the complex impedance
of an inductor is expressed as sL, it follows that in the s domain circuit diagram of
the bandstop filter the impedance of an “inductor” would be expressed as

which represents an inductor with a value of in parallel
with a capacitor with a value of In the prototype filter, a capacitor would
be expressed as 1 / (s C): in the s domain circuit diagram of the bandstop filter the
impedance of a “capacitor” would be expressed as

which represents an inductor with a value of in series
with a capacitor with a value of Again, the resistors in the bandstop
filter circuit diagram would be the same as in the prototype circuit diagram, as resistor
values are not a function of s. Therefore, the procedure to transform a lowpass
prototype circuit diagram into a bandstop circuit diagram may be summarized as
follows, where it is assumed that for the lowpass prototype circuit::

Replace each inductor in the lowpass prototype circuit by an
inductor with a value of in parallel with a capacitor
with a value of

Replace each capacitor in the lowpass prototype circuit by an
inductor with a value of in series with a capacitor
with a value of

Leave all resistor values unchanged.

Having applied the above operations to the element values of a lowpass
prototype filter circuit schematic diagram, the transformed circuit will be a bandstop
filter with a center frequency of and have a bandwidth of Therefore all of
the results and observations in Section 9.4 will apply to the bandstop circuit.

10.4 IMPEDANCE SCALING

If the output and input variables for a circuit have the same units, for example
and then if all impedances in the circuit are equally scaled it will have no affect
on the circuit transfer function. Therefore all measures of circuit performance
considered in this book, such as magnitude frequency response, phase response, unit
impulse response, etc., will not be affected.
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If the output and input variables have units that differ, for example and
then some measures of circuit performance will require modification. For example,
if the output is and the input is and all impedances are increased by 10, then
the amplitude of the unit impulse response would also be increased by a factor of 10.
However, the time axis would be unchanged and the shape of the graph of h (t) would
be unchanged. For the remainder of this chapter it will be assumed that the input and
output variables each have units of voltage.

Let the impedance scaling factor2 be denoted as To scale the impedance
of an inductor by the factor is equivalent to multiplying the inductance value by
since the impedance of an inductor is sL. To scale the impedance of a capacitor by
the factor is equivalent to dividing the capacitance value by since the
impedance of a capacitor is 1 / (s C). And, to scale the impedance of a resistor by the
factor is equivalent to multiplying the resistance value by Therefore, the
procedure to impedance scale the elements in a circuit to achieve convenient or desired
values may be summarized as follows:

Multiply the value of each inductor in the circuit by

Divide the value of each capacitor in the circuit by

Multiply the value of each resistor in the circuit by

Having applied the above impedance scaling operations to the element values
of a filter circuit schematic diagram, the impedance-scaled circuit, assuming input and
output variables of and the transfer function will be unaffected and all
performance measures will be unchanged.

10.5 SUMMARY AND EXAMPLES OF PASSIVE FILTER
IMPLEMENTATION

Passive filter implementation, as presented in this chapter, may be summarized
as follows:

Obtain the lowpass prototype circuit schematic diagram. For example
by referring to one of the tables in this chapter. This assumes a starting
point of knowing the desired filter type (Butterworth, etc.), the type of
frequency selection (bandpass, etc.) or time delay, the desired order,
and critical design parameters such as passband ripple, cutoff frequen-
cy, etc. That is, it is assumed that the desired filter has been fully

2Sometimes “impedance scaling” is denoted “magnitude scaling.”
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specified. It should also have been designed and fully analyzed, as
mentioned in Section 10.1.

Perform the desired frequency transformation directly to the circuit
elements of the lowpass prototype circuit diagram, as described in
Section 10.3.

Perform the desired impedance scaling to the circuit element values, as
described in Section 10.4, to obtain convenient values, a specified load
resistance value, etc.

Perform computer simulation analysis on the proposed circuit diagram
to test its accuracy. This step should always be performed prior to
realization. A popular circuit simulation analysis tool is SPICE. If a
full MATLAB analysis had already been conducted as part of the design
procedure, only a brief SPICE analysis may be necessary as a check on
the proposed circuit.

Example 10.2
Suppose it is desired to implement a Chebyshev Type I highpass filter that

meets the following specifications with minimum order: passband ripple = 0.5 dB,
and

From (4.14) and noting comments on page 277, N = 5. From Table 10.4 the
lowpass prototype circuit element values for the circuit schematic diagram shown in
Figure 10.7 are as follows:

and Also from
Table 10.4 the lowpass prototype circuit element values for the circuit schematic
diagram shown in Figure 10.5 are as follows:

and

Since it is desired that it follows that
Applying the lowpass-to-highpass transformation of Section

10.3 to the circuit elements of Figure 10.7, it follows that

and Applying the lowpass-to-highpass transformation
of Section 10.3 to the circuit elements of Figure 10.5, it follows that

and
Applying the desired impedance scaling factor of according to

Section 10.4, to the transformed element values of Figure 10.7 results in
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and This final circuit is
shown in Figure 10.10.

Applying the desired impedance scaling factor of according to
Section 10.4, to the transformed element values of Figure 10.5 results in

and This final circuit is
shown in Figure 10.11.

The magnitude frequency response, as obtained from SPICE analysis applied
to Figure 10.10 is shown in Figure 10.12. Note that the peak of the passband
response is –3.52 dB. This peak passband response is attenuated from 0 dB due to
the source resistance of and the load resistance of
20 log(l,000/1,500) = –3.52. Note also that for all frequencies less than 300 Hz
the attenuation is greater than 63.52 dB (greater than 60 dB below the peak
response). The magnitude frequency response for the circuit shown in Figure 10.11
has the same shape as shown in Figure 10.12; however, the peak passband response
is – 9.54 dB: 20 log( 1,000/3,000) = – 9.54.

Example 10.3
Suppose it is desired to implement a sixth-order elliptic bandpass filter that

meets or exceeds the following specifications: passband ripple =
minimum attenuation in the stopband relative to the peak response =

and It can easily be seen that the
fourth entry in Table 10.7 will provide a filter that slightly exceeds the stated
specifications: the passband ripple will be 0.099 dB, the minimum attenuation in the
stopband will be 62.5 dB, and will be 8,206 Hz for Suppose
it is also desired to use resistors.
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Selecting Figure 10.8 as the prototype circuit (Figure 10.9 could also be
selected, but the results would have a different form), the prototype circuit element
values are:

and Applying the element transformations specified for
lowpass-to-bandpass in Section 10.3, and also applying impedance scaling as specified
in Section 10.4, results in the final bandpass filter implementation as shown in Figure
10.13.

The magnitude frequency response, as obtained from SPICE analysis applied
to Figure 10.13 is shown in Figure 10.14. Note that the peak of the passband
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response is – 6.02 dB. This peak passband response is attenuated from 0 dB due to
the source resistance of and the load resistance of Note also that
for all frequencies in the stopband that the attenuation is no less than 68.5 dB.

Example 10.4
Suppose it is desired to implement a fourth-order Butterworth bandstop filter

that meets the following specifications:
and Selecting Figure 10.4 as the prototype circuit,

the prototype circuit element values, from Table 10.1, are as follows:

Section 10.5 Summary and Examples of Passive Filter implementation
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and Applying the element
transformations specified for lowpass-to-bandstop in Section 10.3, and also applying
impedance scaling as specified in Section 10.4, results in the final bandstop filter
implementation as shown in Figure 10.15.

The magnitude frequency response, as obtained from SPICE analysis applied
to Figure 10.15 is shown in Figure 10.16. Note that the peak of the passband
response is – 6.02 dB, and that between the – 9.03 dB points is 1,000 Hz.

10.6 CHAPTER 10 PROBLEMS

Summarize the procedure for designing and realizing a passive analog filter.

An important step in realizing a passive RLC analog filter is implementing the
filter, that is drawing a circuit schematic diagram of the filter with all element
values given. Summarize the implementation procedure as presented in this
chapter.

Explain why SPICE simulation is an important step in implementation.

Briefly explain how MATLAB and SPICE each play an important part in
analog filter design and implementation. How do the two relate to each other?
That is, how does MATLAB provide analysis of an RLC analog filter
implementation?

Similar to Example 10.1, with and determine
two passive ladder implementations for a 2nd-order lowpass Butterworth filter
using the procedure of Section 10.2. Compare your results with that found in
Table 10.1.
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Similar to Example 10.1, with and determine
two passive ladder implementations for a 4th-order lowpass Butterworth filter
using the procedure of Section 10.2. Compare your results with that found in
Table 10.1.

Similar to Example 10.1, with passband ripple =
and determine two passive ladder imple-

mentations for a 2nd-order lowpass Chebyshev Type I filter using the proced-
ure of Section 10.2. Compare your results with that found in Table 10.4.

Similar to Example 10.1, with passband ripple =
and determine two passive ladder imple-

mentations for a 3rd-order lowpass Chebyshev Type I filter using the proced-
ure of Section 10.2. Compare your results with that found in Table 10.4.

Similar to Example 10.1, with passband ripple =
and determine two passive ladder imple-

mentations for a 4th-order lowpass Chebyshev Type I filter using the proced-
ure of Section 10.2. Compare your results with that found in Table 10.4.

Beginning only with the specifications given in the first paragraph, repeat and
confirm all of the results of Example 10.2 including the SPICE magnitude

10.6

10.7

10.8

10.9

10.10
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frequency plot. Determine and plot the magnitude frequency response for the
circuit of Figure 10.11 as well. Compare the two magnitude responses. In
addition, determine and plot the phase response of both circuits, the group
delay response, the phase delay response, and the unit impulse response.

Repeat and confirm the results of Example 10.3. In addition, determine and
plot the phase response, the group delay response, the phase delay response,
and the unit impulse response.

Repeat and confirm the results of Example 10.4. In addition, determine and
plot the phase response, the group delay response, the phase delay response,
and the unit impulse response.

Suppose it is desired to implement a Chebyshev Type I highpass filter that
meets the following specifications with minimum order: passband ripple
= 0.5 dB, and
Determine two such passive circuit implementations. Using SPICE, determine
and plot the magnitude frequency response of each circuit.

Suppose it is desired to implement a sixth-order elliptic bandpass filter that
meets or exceeds the following specifications: passband ripple =
dB, minimum attenuation in the stopband relative to the peak response =

and Suppose
it is also desired to use resistors. Determine two such passive circuit
implementations. Using SPICE, determine and plot the magnitude frequency
response of each circuit.

Suppose it is desired to implement a fourth-order Butterworth bandstop filter
that meets the following specifications:

and Determine two such passive circuit
implementations. Using SPICE, determine and plot the magnitude frequency
response of each circuit.

Suppose it is desired to design and implement a Butterworth bandpass filter that
meets the following specifications with minimum order:

and Suppose it
is also required that resistors be used. Determine two such passive
circuit implementations. Using SPICE, determine and plot the magnitude
frequency response of each circuit.

10.11

10.12

10.13

10.14

10.15

10.16
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10.17 Suppose it is desired to design and implement a time delay circuit that has a
delay at very low frequencies of and a minimum time delay of
at 80 kHz. Determine two such passive circuit implementations.

Suppose it is desired to design and implement a passive Bessel lowpass filter
that meets the following specifications with minimum order:

and Using MATLAB and
Table 10.6, design and implement two such passive filters with
resistors. Using SPICE, plot the magnitude frequency response of the circuit
implementation. Also plot the phase response.

10.18

10.19 Suppose it is desired to implement a sixth-order passive Bessel bandpass filter
with the following specifications: and

Using Figure 10.7 as the prototype circuit schematic
diagram, and using resistors, determine and draw the circuit
schematic diagram of the bandpass filter. Using SPICE, plot the magnitude
frequency response of the bandpass filter circuit. Also plot the phase response.

Chapter 10 ProblemsSection 10.6



CHAPTER 11

ACTIVE FILTERS

ctive filter implementation has three distinct advantages over passive
implementation. First, as is presented below, active filter implementation
need not make use of any inductors: only resistors, capacitors, and active

elements (active elements are restricted to operational amplifiers (op amps) here). The
reason why this is an advantage is that practical inductors (physical approximations
to inductors) tend to be less ideal than are practical capacitors. Practical inductors are
coils of wire, often fine wire, on some sort of core material. The core material has
losses, the wire has resistance, and there is capacitance between the layers of coil
windings. In addition, the coils radiate electromagnetic energy and can result in
unwanted mutual inductance.

Second, the output resistance of an op amp is very low, especially with the
feedback that is used with common active filter op amp stages. This output resistance
(output impedance) is much lower than is the input impedance to the following active
filter op amp stage. Even though the input impedance to a typical active filter op amp
stage is frequency dependent and non-resistive this is so. Therefore, the individual
active filter op amp stages, perhaps several being cascaded together, operate
independently of each other (note that this is not true for individual ladder stages of
a passive filter). This allows for the implementation of simple first-order and second-
order active op amp stages which are then cascaded to yield the overall desired
transfer function. All that is required is the introduction to a catalog of active filter
op amp stages, and no detailed tables are required.

Third, because of the independence of individual stages the design and
implementation engineer is not restricted to filters that are in a set of tables. Any filter
in this book, that is, any filter transfer function, with any frequency transformation
applied, can, at least in theory, be implemented with an active op amp filter, with
complete flexibility as to such parameters as passband ripple, etc.

However, where high power or very high frequencies are involved, active
filter implementation with op amps is prohibited. Therefore, passive filter
implementation is often desired or required.

Note that what follows in this chapter is somewhat simplistic, in that actual
filter implementation can be highly involved and specialized. There are talented
engineers and engineering firms that specialize in filter implementation in all of its

A
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various forms. The intent of this chapter, as well as the previous one, is to give the
reader an introduction to analog filter implementation, while also presenting methods
that are useful in many situations.

For simplicity, only ideal op amps will be considered. The op amp symbol is
shown on the left side of Figure 11.1, and a more detailed representation of the ideal
op amp is shown on the right side: the ideal op amp has infinite open-loop gain, zero
output resistance, and infinite input resistance.

While amplifiers, per se, are not necessary in the implementation of active
filters, they may be desirable for gain adjustment. The inverting amplifier, on the left
side of Figure 11.2, has the gain The noninverting amplifier, on
the right side of Figure 11.2 has the gain

11.1 FIRST-ORDER STAGES

In Figure 11.3 is shown a first-order op amp stage that implements one real
pole and no finite zero. This circuit and corresponding transfer function may be used
where a pole on the negative real axis of the s plane is required, such as in odd-order
lowpass filters. It is easy to show that the transfer function for the circuit shown in
Figure 11.3, is as follows:

where the pole is at and the DC gain for this first-order lowpass
transfer function is For convenience it is often desirable to normalize at
least one of the component values. Let and
With these substitutions, (11.1) may be expressed as follows:
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where the pole is at and the DC gain is – G. The circuit shown in Figure
11.3 may be used to implement (11.2) directly by using the following component
values:

After obtaining the initial component values indicated in (11.3) for a desired pole
value and desired DC gain, then impedance scaling1 may be applied for more
convenient component values.

In Figure 11.4 is shown a first-order op amp stage that implements one real
pole and a zero at the origin. This circuit and corresponding transfer function may be
used where a pole on the negative real axis of the s plane is required and a zero at the

Section 11.1 First-Order Stages

1See Section 10.4.
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origin, such as in odd-order highpass filters. The transfer function for the circuit
shown in Figure 11.4 is as follows:

where the pole is at and the high-frequency gain for this first-order
highpass transfer f u n c t i o n s For convenience, let

and With these substitutions, (11.4) may be expressed as
follows:

where the pole is at and the high-frequency gain is – G. The circuit shown
in Figure 11.4 may be used to implement (11.5) directly by using the following
component values:

After obtaining the initial component values indicated in (11.6) for a desired pole
value and desired high-frequency gain, then impedance scaling may be applied for
more convenient component values.

In Figure 11.5 is shown a first-order op amp stage that implements one real
pole and one real, finite zero. It allows for the implementation of a first-order all-pass
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transfer function (Van Valkenburg, 1982). The transfer function for the circuit shown
in Figure 11.5 is as follows:

where the pole is at and the zero is at For an
all-pass transfer function it is necessary for the magnitude of the pole and zero to be
the same. For convenience, let and With these
substitutions, (11.7) may be expressed as follows:

where the pole is at the zero is at and the magnitude frequency
response is unity for all frequencies. The circuit shown in Figure 11.5 may be used
to implement (11.8) directly by using the following component values:

After obtaining the initial component values indicated in (11.9) for a desired pole/zero
value, then impedance scaling may be applied for more convenient component values.

The above first-order stages shown in Figure 11.3 through Figure 11.5, allow
for implementation of any first-order transfer function necessary for the filters
considered in this book, including all-pass. Next, second-order stages are considered.

Section 11.1 First-Order Stages
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11.2 SECOND-ORDER STAGES

The second-order stages presented in this section include stages appropriate for
lowpass, highpass, bandpass, bandstop, and all-pass filters. At first thought it may
be supposed that lowpass stages would be sufficient, since frequency transformation
circuit operations, as covered in Chapter 10, could then be applied to transform, for
example, a lowpass stage into a bandpass stage. This is indeed possible, however, it
would introduce inductors, which can be avoided by including appropriate stages
specifically for highpass, bandpass, and bandstop stages in the circuit catalog of active
filter op amp stages. This, in turn, requires a somewhat different procedure for active
filter implementation than used for passive filter implementation in Chapter 10.
Those differences become clear in the summary and examples below. Greater detail
on each of the second-order stages below may be found in Van Valkenburg (1982).

Sallen and Key Lowpass Circuit
In Figure 11.6 is shown the Sallen and Key lowpass circuit, which implements

one complex-conjugate pair of poles with no finite-valued zeros. This circuit may be
used to implement one second-order stage in a lowpass filter that has no zeros on the
axis, such as required with Butterworth, Chebyshev Type I, Bessel, etc. lowpass
filters. The transfer function for the circuit shown in Figure 11.6 is as follows:
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where K, the DC gain, is equal to Assuming a complex-conjugate pair
of poles2 it is easy to show that the magnitude of those poles is
Therefore let where is defined as the magnitude of the
poles. As is often done in the literature, let the transfer function Q be defined as

where is the angle between the pole and the negative real axis
of the s plane, i.e., the poles are as follows: It
is noted that and Q completely specify the pole locations. Note that when
Q = 0.5 the poles are equal on the negative real axis, i.e. When

the poles are as follows: And as Q
approaches infinity the poles approach From the above it is clear that an
alternate expression of Q is as follows: Therefore,
(11.10) may be expressed as follows:

where

For convenience, let all components be normalized to either or 1 F,
except for the feedback resistor which has a value of :

With these substitutions the transfer function for the circuit shown in Figure 11.6, as
represented by either (11.10) or (11.11), is

2For appropriate component values it is possible for both poles to be on the negative real axis. For
example, if and it follows that the denominator of (11.10) would
be and the poles would be However, only complex-conjugate poles
are of interest here.

Section 11.2 Second-Order Stages
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where K = 3 – 1/Q is the DC gain, and Therefore, to implement the
circuit with normalized component values, as represented by (11.14), all that is
required is the value of After obtaining the initial
component values indicated in (11.13) for a desired Q value, then frequency scaling
may be applied for the desired value, and impedance scaling may be applied for
more convenient component values. Note that neither frequency scaling nor
impedance scaling will affect the value of Q as can be observed from (11.12).

Note that for the normalized circuit (component values as shown in (11.13)),
as the feedback resistor, value is made closer and closer to Q would be
approaching infinity, the two poles, still with a magnitude of unity, would be
approaching the axis of the s plane. With the feedback resistor precisely equal
to thestage would oscillate at 1 rad/s. With the feedback resistor greater than
the circuit becomes unstable.

where

Chapter 11 Active Filters

Lowpass Notch Circuit
In Figure 11.7 is shown one form of a second-order lowpass notch circuit, that

is, a circuit with a pair of zeros on the axis (hence, notch) but with a low-
frequency gain that is greater than the high-frequency gain. This circuit may be used
to implement one second-order stage in any lowpass filter that has finite-valued zeros
on the axis, such as Chebyshev Type II and elliptic filters. Notwithstanding the
term lowpass notch, it may also be used to implement one second-order stage of a
bandpass filter or a bandstop filter that has finite-valued zeros on the axis. In
brief, this circuit may be used in the implementation of any second-order stage that
requires a frequency response transmission zero, denoted that is greater than the
magnitude of the poles, denoted

The transfer function for the circuit shown in Figure 11.7 is as follows:
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and

It is recognized that (11.15) has two poles and two zeros, and as for the Sallen
and Key lowpass circuit, is the magnitude of the poles, and

where are the poles. Similarly, is the magnitude
of the zeros. In order for the zeros to be on the axis it is necessary that
Therefore it follows from (11.19) that

For convenience, let It follows, therefore, from (11.16) that

Combining (11.17), and (11.21):

For convenience, and making use of (11.22), let Therefore,

Second-Order StagesSection 11.2
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from (11.21),

Substituting (11.23) into (11.18) results in

Substituting (11.22) - (11.24) into (11.20) results in

It was noted above, that in this circuit must be greater than This is
clearly seen in (11.24), where it is noted that here. Also note that all that is
required for initial circuit component values is the value of Q and the value of
relative to a normalized that is the value of for the initial normalized circuit
must be equal to the ratio of the actual completed circuit (non-normalized
values).

To summarize the design of this stage, what is needed initially is the value of
the desired poles of the actual, non-normalized, circuit and also the corresponding
value of the non-normalized (actual) transmission zero Given that the poles are
denoted as then the non-normalized   value is the magnitude of and

Then, the normalized is the ratio of the actual
non-normalized values, is normalized to unity, and Q remains unchanged. The
component values of the normalized circuit are expressed above and are repeated here
for convenience:

After obtaining the initial component values indicated in (11.25) for a desired Q value
and normalized value, then frequency scaling may be applied for the desired
value (and desired and impedance scaling may be applied for more convenient
component values. Again, note that neither frequency scaling nor impedance scaling
will affect the value of Q.

Sallen and Key Highpass Circuit
The development of the Sallen and Key highpass circuit theory follows that of

the Sallen and Key lowpass. In Figure 11.8 is shown the Sallen and Key highpass
circuit, which implements one complex-conjugate pair of poles with two zeros at the
origin. This circuit may be used to implement one second-order stage in a highpass

Chapter 11 Active Filters
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filter that has no transmission zeros on the axis, other than at the origin, such as
required with Butterworth, Chebyshev Type I, Bessel, etc. highpass filters. The
transfer function for the circuit shown in Figure 11.8 is as follows:

where

where K, the high-frequency gain, is equal to As before, assuming a
complex-conjugate pair of poles, it is easy to show that the magnitude of those poles
is Therefore let where is defined as the
magnitude of the poles. Let the transfer function Q be defined as

where is the angle between the pole and the negative real axis
of the s plane. It is noted that and Q completely specify the pole locations. An
alternate expression of Q is as follows: Therefore,
(11.26) may be expressed as follows:
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For convenience, let all components be normalized to either or 1 F,
except for the feedback resistor which has a value of

With these substitutions the transfer function for the circuit shown in Figure 11.8, as
represented by either (11.26) or (11.27), is

where K = 3 – 1/Q is the high-frequency gain, and Therefore, to
implement the circuit with normalized component values, as represented by (11.30),
all that is required is the value of After obtaining the
initial component values indicated in (11.29) for a desired Q value, then frequency
scaling may be applied for the desired value, and impedance scaling may be
applied for more convenient component values. Note that neither frequency scaling
nor impedance scaling will affect the value of Q as can be observed from (11.28).

In Figure 11.9 is shown one form of a second-order highpass notch circuit,
that is, a circuit with a pair of zeros on the axis (hence, notch) but with a high-
frequency gain that is greater than the low-frequency gain. This circuit may be used
to implement one second-order stage in any highpass filter that has finite-valued zeros
on the axis, such as Chebyshev Type II and elliptic filters. Notwithstanding the
term highpass notch, it may also be used to implement one second-order stage of a
bandpass filter or a bandstop filter that has finite-valued zeros on the axis. In
brief, this circuit may be used in the implementation of any second-order stage that
requires a frequency response transmission zero, denoted that is less than or
equal to the magnitude of the poles, denoted

The transfer function for the circuit shown in Figure 11.9 is as follows:

where K, the high-frequency gain, is

Chapter 11 Active Filters
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and

and

It is recognized that (11.31) has two poles and two zeros, is the magnitude
of the poles, and where are the poles. Similarly,
is the magnitude of the zeros. In order for the zeros to be on the axis it is
necessary that Therefore it follows from (11.35) that

For convenience, let let and let It
follows, therefore, from (11.32) that

Second-Order StagesSection 11.2
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From (11.34) it follows that It therefore follows that

Combining (11.33), and (11.37):

Making use of (11.39), Therefore, from (11.37),

Substituting (11.40) into (11.36) results in

It was noted above, that in this circuit must be less than or equal to
This is clearly seen in (11.38), where it is noted that k cannot be less than zero (since
cannot have a negative value). However, can be zero, in which case
and the circuit becomes a second-order notch where the DC gain and the high-
frequency gain are equal.

Note that all that is required for initial circuit component values is the value
of Q and the value of relative to a normalized That is, the value of for
the initial normalized circuit must be equal to the ratio of the actual completed
circuit (non-normalized values).

To summarize the design of this stage, what is needed initially is the value of
the desired poles of the actual, non-normalized, circuit and also the corresponding
value of the non-normalized (actual) transmission zero Given that the poles are
denoted as then the non-normalized value is the magnitude of and

Then, the normalized is the ratio of the actual
non-normalized values, is normalized to unity, and Q remains unchanged. The
component values of the normalized circuit are expressed above and are repeated here
for convenience:

where After obtaining the initial component values indicated in
(11.42) for a desired Q value and normalized value, then frequency scaling may
be applied for the desired value (and desired and impedance scaling may be

Chapter 11 Active Filters
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applied for more convenient component values. Note that neither frequency scaling
nor impedance scaling will affect the value of Q nor k.

The Friend Bandpass Circuit
In Figure 11.10 is shown one form of a Friend bandpass circuit. This circuit

may be used to implement one second-order stage in a bandpass filter that does not
have finite-valued zeros on the axis, other than at the origin, such as Butterworth
and Chebyshev Type I filters.

The transfer function for the circuit shown in Figure 11.10 is as follows:

where

and

It is recognized that (11.43) has two poles, and a zero at the origin: is the
magnitude of the poles, and where are the poles. It
follows from (11.44) and (11.45) that

Second-Order StagesSection 11.2
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For convenience, let and let It follows, therefore,
from (11.47) that

Substituting (11.48) into (11.44) it follows that

From (11.46) K = – 2Q.
Note that all that is required for initial circuit component values is the value

of Q. That is, and and the capacitor values are given by (11.48) and
(11.49), respectively.

To summarize the design of this stage, what is needed initially is the value of
the desired poles of the actual, non-normalized, circuit. Given that the poles are
denoted as then the non-normalized value is the magnitude of and

Then, is normalized to unity: Q remains unchanged.
The component values of the normalized circuit are expressed above and are repeated
here for convenience:

After obtaining the initial component values indicated in (11.50) for a desired Q value
and a normalized then frequency scaling may be applied for the desired value
of the non-normalized circuit, and impedance scaling may be applied for more
convenient component values. Note that neither frequency scaling nor impedance
scaling will affect the value of Q.

It may be interesting to note an alternative representation for
where B is the 3 dB bandwidth in rad/s.   Note also that the peak gain is

Note that bandpass or bandstop filters that have stopband rippling (zeros on the
axis) may be implemented by cascading lowpass notch and highpass notch stages.

For a bandpass filter the cutoff frequency of the lowpass notch would be greater than
that of the highpass. For a bandstop filter the cutoff frequency of the lowpass notch
would be less than that of the highpass.

Chapter 11 Active Filters
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In Figure 11.11 is shown one form of a Delyiannis second-order all-pass
circuit. The transfer function for the circuit shown in Figure 11.11 is as follows:

where

and

It is recognized that (11.51) has two poles and   is the magnitude of the
poles, and where are the poles. In order for (11.51)
to be a second-order all-pass transfer function, it is necessary that
Equating (11.54) to the negative of (11.53), it follows that

3See Section 2.12.

Section 11.2 Second-Order Stages

The Delyiannis Second-Order All-Pass Circuit
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For convenience, let and let It follows,
therefore, from (11.56) that

Substituting (11.52) into (11.53) it follows that

From (11.57) and (11.58):

From (11.52) it follows that

Note that all that is required for initial circuit component values is the value
of Q. That is, and and are given by (11.59),
(11.58) and (11.60), respectively.

To summarize the design of this stage, what is needed initially are the values
of the non-normalized and Then, is normalized to unity: Q remains
unchanged. The component values of the normalized circuit are expressed above and
are repeated here for convenience:

After obtaining the initial component values indicated in (11.61) for a desired Q value
and a normalized then frequency scaling may be applied for the desired value
of the non-normalized circuit, and impedance scaling may be applied for more
convenient component values. Note that neither frequency scaling nor impedance
scaling will affect the value of Q. Note also, from (11.55), that the magnitude gain
of the circuit is independent of frequency.

The above first- and second-order stages shown in Figure 11.3 through Figure
11.11, combined with attenuators and gain stages (Figure 11.2) for gain adjustment
if required, are sufficient for implementation of any transfer function, including all-
pass, presented in this book. The following section illustrates details as to the
implementation of desired transfer functions.

4See Section 2.12.

Active FiltersChapter 11
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11.3 SUMMARY AND EXAMPLES OF ACTIVE FILTER
IMPLEMENTATION

Active filter implementation may be summarized as follows:

Perform the filter design, as developed and presented in Chapter 3
through Chapter 9, resulting in the complete transfer function of the
filter to be implemented.

Factor the transfer function so that the numerator and denominator each
consist of the product of first-order and second-order terms all with real
coefficients, i.e., put the transfer function in the form of (2.40).
Arrange this transfer function as the product of possibly one first-order
term (there will not be a first-order term if the transfer function order
is even) of the form of that shown in (11.2), (11.5) or (11.8), and
second-order terms of the form of (11.11), (11.15) (with
(11.27), (11.31) (with (11.43), and (11.51) (with

For practical reasons, the terms should be cascaded
with increasing peak gain: the lowest peak gain stage should be first,
and the highest peak gain stage should be last. This will help prevent
saturation of an amplifier in the cascade. High-Q stages may have a
very pronounced resonant gain peak near the corner frequency, as
illustrated in Figure 2.33. If a high-Q stage is early in a cascade of
stages, the resonant gain peak may saturate an amplifier (exceed
maximum allowable levels for linear operation).

For each term in the above-factored transfer function, perform the
appropriate frequency scaling on the corresponding normalized circuit
for the desired pole(s). Impedance scaling may also be applied for
convenient element values.

Perform computer simulation analysis on the cascade of proposed
circuit stages to test its accuracy. This step should always be
performed prior to realization. If a full MATLAB analysis had already
been conducted as part of the design procedure, only a brief SPICE
analysis may be necessary as a check on the proposed circuit.

Section 11.3 Summary and Examples of Active Filter implementation
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Example 11.1
Suppose it is desired to implement a fourth-order Chebyshev Type I lowpass

filter with rad/s and From Example 4.5,

which may be expressed as:

This transfer function may be implemented by cascading two Sallen and Key lowpass
circuits. Note that the Q  of is

Similarly, Therefore,

and

where the norm superscript, in both cases, denotes the normalized of unity) Sallen
and Key lowpass circuit. The difference between the two stages, at this point, is
primarily the value of Q. Note also, however, by use of (2.66), that

and It is also
interesting to note that and

illustrating that not only does the second stage have the larger DC gain but
also has a more pronounced resonant peak.

All that remains is frequency and impedance scaling. The frequency scaling
factor for the first stage is and for the second stage,

For convenience, let the impedance scaling factor,
be the same for each stage, equal to 1,000. The final active filter implementation
schematic diagram is shown in Figure 11.12. Note that the DC gain for this active
filter is the product of the DC gains of the two stages, which are unaffected by
frequency or impedance scaling. If this DC gain is not desirable, it may be adjusted
by including an additional gain stage (see Figure 11.2).

Chapter 11 Active Filters
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Example 11.2
Suppose it is desired to implement a third-order elliptic lowpass filter with

and From Example 6.10, the poles and
zeros for the normalized filter are as follows:

Summary and Examples of Active Filter implementationSection 11.3

The magnitude frequency response, as obtained from SPICE analysis applied
to Figure 11.12 is shown in Figure 11.13. Note that the DC gain, in dB, in Figure
11.13 is 13.38 dB (the product of the two DC gains is 4.666).
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poles:     – 0.3225, – 0.1337 ± j 0.9194 ,

zeros: ± j 2.2451 .

It follows that the normalized prototype transfer function may be expressed as:

Note that the general form for the above transfer function is as follows:

Therefore, and Frequency scaling by
results in the desired transfer function:

If is 347.02 then the DC gain, and since the order is odd this will also
be the peak gain, will be unity. However, the constants and are
somewhat arbitrary since they only affect the gain and not the shape of the frequency
response. In this example it is possible to easily obtain the desired DC gain since a
first-order stage is required with an adjustable gain parameter.

Implementation of (11.62) may be accomplished by cascading one first-order
stage of the form shown in Figure 11.3 with a lowpass notch circuit, as shown in
Figure 11.7. For the second-order stage, it first must be determined what must
be for the normalized circuit. Clearly
Also, For the normalized circuit, the
capacitors are 0.14391 F each, and

Frequency scaling by and impedance
scaling by 1,000 at the same time, results in capacitor values of

and Note
that from (11.15), the DC gain for the second-order stage is

or in this case, 4.703.
Now consider the first-order stage. Clearly from (11.62), the required value

for in (11.2) is 2,026.33. Since the DC gain for the second-order stage is 4.703,

Chapter 11 Active Filters
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and the overall desired DC gain for the cascade of both stages is unity, it is desirable
to have a magnitude DC gain for the first-order stage of 0.2126. This, in turn,
requires a value for G in (11.2) of 0.2126. If an impedance scaling factor of 1,000
is used, the element values for the circuit shown in Figure 11.3 are as follows:

and the capacitor value is The final
active filter implementation schematic diagram is shown in Figure 11.14. Since the
second-order stage has the larger gain, it is connected to the output of the first-order
stage.

The magnitude frequency response, as obtained from SPICE analysis applied
to Figure 11.14 is shown in Figure 11.15. Note that the DC gain, as well as the peak
passband gain, in dB, in Figure 11.15 is 0 dB, as desired. It is also noted that

and as specified.

Example 11.3
Suppose it is desired to design and implement a Chebyshev Type II bandpass

filter with the following specifications:
and From (5.16) (see page 295), the

minimum bandpass filter order to meet the stated specifications is 4, and therefore the
order required for the lowpass prototype is 2. For a normalized of unity for the
lowpass prototype, the corresponding from (5.9) is 8.1163 rad/s. From (5.20)
the zeros are ± j 11.478. From (5.22) the poles are –0.80756 ± j 0.81568.
Therefore the lowpass prototype transfer function is

Section 11.3 Summary and Examples of Active Filter implementation
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From Section 9.3, Case II, the new zeros, after applying the lowpass-to-bandpass
transformation, are ± j 36,384.6 and ± j 108,503.0. From Section 9.3, Case III,
the new poles, after applying the lowpass-to-bandpass transformation, are  – 2,433.6
± j 60,270.5 and – 2,640.5 ± j 65,395.5. Therefore, the bandpass transfer function
to be implemented is as follows:

Note that is a highpass notch transfer function since and that
is a lowpass notch transfer function since
Implementation of (11.63) may be accomplished by cascading a highpass notch

circuit and a lowpass notch circuit. Consider the highpass notch first. It must be
determined what must be for the normalized circuit. Clearly

Also,
For the normalized circuit,

and Frequency

scaling by and impedance scaling by 1,000 at the same
time, results in

and
Now consider the lowpass notch. Again, it must be determined what must

be for the normalized circuit. Clearly
Also, For the normalized circuit,

and

Chapter 11 Active Filters
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Frequency scaling by and
impedance scaling by 10,000 at the same time, results in

and
The final active filter implementation schematic diagram is shown in Figure 11.16.

The magnitude frequency response, as obtained from SPICE analysis applied
to Figure 11.16 is shown in Figure 11.17. Note that the peak gain is 48.7 dB, and
that in the stopband it is 8 .7dB, 40 dB below the peak. Note also that

and is only about
8 kHz, exceeding the initial specifications. The transmission zeros are at 5,790.8 Hz
and 17.27 kHz, outside the frequency range plotted.

11.4 CHAPTER 11 PROBLEMS

11.1

11.2

11.3

11.4

Indicate at least three advantages that active filter implementation has over
passive implementation.

Indicate at least two application areas where passive implementation may be
desired or required, over active implementation.

Using basic circuit analysis techniques, derive gain expressions for both the
inverting and noninverting amplifiers shown in Figure 11.2.

Derive the transfer function for the circuit shown in Figure 11.3, that is,
obtain (11.1).

Section 11.4 Chapter 11 Problems
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11.5

11.10

11.11

Suppose a transfer function such as shown in (11.1) is desired with a pole
value of –5,000 and a DC magnitude gain of 10. Illustrate a least three
circuit implementations as shown in Figure 11.3 (three sets of component
values) that will implement the desired transfer function.

Derive the transfer function for the circuit shown in Figure 11.4, that is,
obtain (11.4).

Suppose a transfer function such as shown in (11.4) is desired with a pole
value of – 5,000 and a high-frequency magnitude gain of 10. Illustrate a least
three circuit implementations as shown in Figure 11.4 (three sets of component
values) that will implement the desired transfer function.

Derive the transfer function for the circuit shown in Figure 11.5, that is,
obtain (11.7).

Suppose a transfer function such as shown in (11.7) and (11.8) is desired (a
first-order all-pass) with a pole value of –5,000. Illustrate a least three
circuit implementations as shown in Figure 11.5 (three sets of component
values) that will implement the desired transfer function.

The Sallen and Key lowpass circuit is shown in Figure 11.6. Using basic
circuit analysis techniques, derive the transfer function, as shown in (11.10).

Given that Q = 3, and beginning with the normalized component values given
in (11.13), frequency scale the circuit shown in Figure 11.6 so that

Chapter 11 Active Filters
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Also impedance scale by a factor of 1,000. Draw the
schematic diagram, indicating all element values. Also give the transfer
function for the scaled circuit. Indicate the values of the poles. If Q was
changed to 2, what would the poles be?

For the circuit implementation obtained in Problem 11.11 (Q = 3), using
SPICE obtain the magnitude frequency response of the circuit.

Using the Sallen and Key lowpass second-order stage shown in Figure 11.6,
design and implement a second-order Butterworth filter that has

Let Draw the complete schematic diagram
with all component values shown. Using SPICE, obtain the magnitude
frequency response of the circuit.

Using the Sallen and Key lowpass second-order stage shown in Figure 11.6,
design and implement a second-order Chebyshev Type I filter that has 2 dB
of ripple and Let Draw the complete
schematic diagram with all component values shown. Using SPICE, obtain the
magnitude frequency response of the circuit.

One form of the second-order lowpass notch circuit is shown in Figure 11.7.
Using basic circuit analysis techniques, derive the transfer function, as shown
in (11.15)-(11.19).

Given that and is normalized to unity for (11.15), and that Q = 3
and frequency scale the circuit shown in Figure 11.7 so that

Also impedance scale using a scale factor of 1,000. Draw the
schematic diagram, indicating all element values. Also give the transfer
function for the scaled circuit. Indicate the values of the poles and zeros. If
Q was changed to 2, what would the poles and zeros be?

Suppose it is desired to implement a second-order lowpass notch circuit such
as shown in Figure 11.7 with Q = 12, and Let

Determine all component values. Using SPICE, obtain the
magnitude frequency response of the circuit. Record the value of the
magnitude gain at 5 kHz, 20 kHz, and at the peak. Record the frequency of
the peak magnitude gain as well.

One form of the Sallen and Key highpass circuit is shown in Figure 11.8.
Using basic circuit analysis techniques, derive the transfer function, as shown
in (11.26).

11.12

11.13

11.14

11.15

11.16

11.17

11.18
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Beginning with the values in (11.29) for the normalized circuit, and given that
Q = 3, frequency scale the circuit shown in Figure 11.8 so that
Also impedance scale by a factor of 1,000. Draw the schematic diagram,
indicating all element values. Also give the transfer function for the scaled
circuit. Indicate the values of the poles. If Q was changed to 2, what would
the poles be?

For the circuit implementation obtained in Problem 11.19 (Q = 3), using
SPICE obtain the magnitude frequency response of the circuit.

Using the Sallen and Key highpass second-order stage shown in Figure 11.8,
design and implement a second-order Butterworth highpass filter that has

Let Draw the complete schematic diagram
with all component values shown. Using SPICE, obtain the magnitude
frequency response of the circuit.

Using the Sallen and Key highpass second-order stage shown in Figure 11.8,
design and implement a second-order Chebyshev Type I highpass filter that
has 2 dB of ripple and Let Draw the
complete schematic diagram with all component values shown. Using SPICE,
obtain the magnitude frequency response of the circuit.

One form of the second-order highpass notch circuit is shown in Figure 11.9.
Using basic circuit analysis techniques, derive the transfer function, as shown
in (11.31)-(11.35).

Given that and is normalized to unity for (11.31), and that Q = 3
and frequency scale the circuit shown in Figure 11.9 so that

Also impedance scale using a scale factor of 1,000. Draw the
schematic diagram, indicating all element values. Also give the transfer
function for the scaled circuit. Indicate the values of the poles and zeros. If
Q was changed to 2, what would the poles and zeros be?

Suppose it is desired to implement a second-order highpass notch circuit such
as shown in Figure 11.9 with Q = 12, and Let

. Determine all component values. Using SPICE, obtain the
magnitude frequency response of the circuit. Record the value of the
magnitude gain at 5 kHz, 20 kHz, and at the peak. Record the frequency of
the peak magnitude gain as well.

11.19

11.20

11.21

11.22

11.23

11.24

11.25
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One form of the Friend bandpass circuit is shown in Figure 11.10. Using
basic circuit analysis techniques, derive the transfer function, as shown in
(11.43)-(11.46).

Beginningwith the values in (11.50) for the normalizedcircuit, and given that Q = 3,
frequency scale the circuit shown in Figure 11.10 so that . Also
impedance scale by a factor of 1,000. Draw the schematic diagram, indicating
all element values. Also give the transfer function for the scaled circuit.
Indicate the values of the poles. If Q was changed to 2, what would the poles
be?

For the circuit implementation obtained in Problem 11.27 (Q = 3), using
SPICE obtain the magnitude frequency response of the circuit.

Using the Friend bandpass second-order stage shown in Figure 11.10, design
and implement a second-order bandpass filter that has and
Q = 10. Let Draw the complete schematic diagram with
all component values shown. Using SPICE, obtain the magnitude frequency
response of the circuit. What is the value of the peak magnitude gain, and
what is the 3 dB bandwidth of the response?

One form of the Delyiannis second-order all-pass circuit is shown in Figure
11.11. Using basic circuit analysis techniques, derive the transfer function,
as shown in (11.51)-(11.55).

Given that and is normalized to unity for (11.51), and that Q = 3,
frequency scale the circuit shown in Figure 11.11 so that Also
impedance scale by a factor of 1,000. Draw the schematic diagram, indicating
all element values. Also give the transfer function for the scaled circuit.
Indicate the values of the poles and zeros. If Q was changed to 2, what would
the poles and zeros be?

For the circuit implementation obtained in Problem 11.31 (Q = 3), using
SPICE obtain the magnitude and phase frequency response of the circuit.

Suppose it is desired to implement a second-order allpass circuit such as shown
in Figure 11.11 with and Q = 5. Let
Determine all component values. Using SPICE, obtain the magnitude and
phase frequency response of the circuit. Record the value of the phase at
9 kHz, 10 kHz, and 11 kHz.

11.26

11.27

11.28

11.29

11.30

11.31

11.32

11.33
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Summarize the procedure for active filter implementation presented in this
chapter.

Go through the details of implementing, using op amp circuits, a fourth-order
Chebyshev Type I lowpass filter with rad/s and (0.969
dB ripple). Draw the final circuit schematic diagram indicating all element
values. Using SPICE, plot the magnitude frequency response of your resultant
circuit. That is, carry out the details of Example 11.1.

Suppose it is desired that the circuit shown in Figure 11.12 be modified such
that the magnitude DC gain be unity. Show how this can be done by including
an additional gain stage (see Figure 11.2).

Suppose it is desired that the circuit shown in Figure 11.12 be modified such
that the magnitude DC gain be unity, but without adding a gain stage such as
in Problem 11.36, but rather by modifying the input resistors of each stage
( in Figure 11.6). For convenience, let the DC gain of each stage be unity.
Let each input resistor be replaced by a horizontal resistor as shown
with an additional resistor, on the right, to ground. In each case, the resistance
looking into the right side of the resistor combination must be , but a
desired signal attenuation from the input to the output of the resistor
combination can be the appropriate value to obtain a DC gain of unity for the
stage. That is, the two input resistor values are to be changed, and
additional resistors are to be added from the right side of the input resistors to
ground. Determine the required values of these four resistors. This method
of gain adjustment only requires two more resistors. Using SPICE, plot the
magnitude frequency response of your resultant circuit.

Implement a fourth-order Butterworth lowpass filter with
Show the details of your calculations. Draw the final op amp circuit schematic
diagram indicating the values of all circuit elements. Using SPICE, plot the
magnitude frequency response of your circuit implementation. Also plot the
magnitude frequency response of each stage in your implementation.

Repeat Problem 11.38 for a fifth-order Butterworth lowpass filter.

11.34

11.35

11.36

11.37

11.38

11.39

11.40

Chapter 11 Active Filters

Go through the details of implementing, using op amp circuits, a third-order
elliptic lowpass filter with , , and
Draw the final circuit schematic diagram indicating all element values. Using
SPICE, plot the magnitude frequency response of your resultant circuit. That
is, carry out the details of Example 11.2.

.
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Implement a fourth-order Butterworth highpass filter with
Show the details of your calculations. Draw the final op amp circuit schematic
diagram indicating the values of all circuit elements. Using SPICE, plot the
magnitude frequency response of your circuit implementation. Also plot the
magnitude frequency response of each stage in your implementation.

Implement, using op amp circuits, a third-order elliptic highpass filter
with , and . Draw the final circuit
schematic diagram indicating all element values. Using SPICE, plot the
magnitude frequency response of your resultant circuit.

Go through the details of implementing, using op amp circuits, a fourth-order
Chebyshev Type II bandpass filter with the following specifications:

, and
. Draw the final circuit schematic diagram indicating all element

values. Using SPICE, plot the magnitude frequency response of your
resultant circuit. That is, carry out the details of Example 11.3.

Perform SPICE analysis on the circuit shown in Figure 11.16, as in Problem
11.43, confirming the results shown in Figure 11.17. In addition, plot the
magnitude frequency response of each of the two stages. For each stage,
record the magnitude of the peak gain and the frequency at which it occurs.
Perform an overlay plot with the overall magnitude gain for the circuit, and the
magnitude gain of each stage, allowing ready comparison of the three
frequency response plots.

11.41

11.42

11.43

11.44

11.45 Suppose it is desired to design and implement a Butterworth bandpass filter
with the following specifications:

and
(a)
(b)

(c)

(d)

Determine the minimum required order for the bandpass filter.
Using the minimum required order determined in part (a), determine
the actual value for that will be obtained, holding all other
specifications constant.
Determine the transfer function, with all values real and specified
except for an arbitrary gain constant, for the bandpass filter.
Draw the final active filter implementation schematic diagram, with the
order of cascaded stages with increasing Q, with all element values
indicated.

Section 11.4 Chapter 11 Problems
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Using SPICE, on the same graph, plot the overall magnitude frequency
response, and the magnitude frequency response of each of the
individual stages. Note how the individual-stage frequency responses
add (in dB) to yield the overall response, and how the individual stages
have differing center frequencies (this is known as stagger tuning).
Plot the overall phase response.
Plot the overall unit impulse response.

(e)

(f)
(g)

Repeat Problem 11.45 with , and  all other specifications
unchanged.

Repeat Problem 11.45 for an elliptic bandpass filter that meets or exceeds the
following specifications: passband ripple , minimum
attenuation in the stopband relative to the peak response

and

Design and implement an elliptic bandstop filter that meets or exceeds the
following specifications: , ,
and . Draw the complete op amp circuit schematic diagram with
all element values shown. Using SPICE, plot the magnitude frequency
response of the circuit.

11.46
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11.47

11.48



APPENDIX A

INTRODUCTION TO MATLAB

ATLAB is a product of The MATH WORKS, Inc., and is a high-
performance numeric computation and visualization software package.
The name “MATLAB” is an abbreviation for “MATrix LABoratory,”

and is noted for the way matrix computations are performed by simple one-line
algebraic code. For example, in MATLAB, the command line A = B*C will multiple
previously-defined matrices B and C. As another simple example, A = B/C is matrix
B times the inverse of matrix C, and is the solution of the equation A*C = B.
Similarly, A = C\B is the solution of C*A = B.

MATLAB, however, has grown far beyond basic matrix algebra. It includes
strong graphics capabilities and many m-file functions; m-file functions are ascii files
of MATLAB commands that perform high-level computation, similar to a subroutine.
Basic MATLAB commands and m-file functions are used without distinction by the
user. For example, buttap is an m-file function that designs an analog Butterworth
filter of a given order and a normalized [z,p,k] = buttap(n), where n is the
order, z is a returned vector1 of transfer function zeros, p is a returned vector of poles,
and k is a returned scalar gain value.

A user may create his own m-files of two types: a simple list of MATLAB
commands and functions, or user-defined functions. A simple m-file list of commands
is simply a time-saving procedure and enables easy editing and de-bugging, similar to
a script file in UNIX or other operating systems. A user-defined function is a new
function written by the user, which then becomes part of the MATLAB library and is
used without distinction between it and functions that come with MATLAB.

The most powerful version of MATLAB is the Professional Version; the
maximum array sizes are very large, limited only by the machine it is run in, the
graphics capabilities include presentation quality fonts, etc. Along with the basic
Professional Version are many Toolboxes, which are specialized application m-files.
The Toolboxes include Signals and Systems, Optimization, Image Processing, Higher-
Order Statistics, Neural Networks, etc. There are more than twenty such Tool Boxes,

1An array is a collection of numbers, whereas a vector is either an N-by-1 or 1-by-N matrix subject to
certain rules of operation. No distinction is made here between an array and a vector.
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with more under development. The Student Edition of MATLAB, Version 5, while
less capable than the Professional Version, and does not include any Toolboxes,
except that some of the Signals and Systems capabilities are included, is nevertheless
a quite powerful software package.

Please note that what is presented below is very basic, and intended primarily
to indicate some of the capabilities of MATLAB applied to the design and analysis of
analog filters. Please refer to The Student Edition of MATLAB, Version 4, User’s
Guide, Prentice Hall, 1995, or The Student Edition of MATLAB, Version 5, User’s
Guide, Prentice Hall, 1997 for details. The version 4 User’s Guide includes a listing
of MATLAB commands with brief instructions on their use, whereas the version 5
User’s Guide does not. Both versions give tutorials, examples, and basic instruction.
Also note that online help is available: within MATLAB, help <Enter> will list the
command names that are available, and help command _name < Enter > will give a
description of the command. Also online are demos and examples.

A.1 BASIC COMMANDS

Matrix operations:

A = B*C Matrices B and C must have been previously defined and the
dimensions must be compatible. The product A will be
displayed on the screen.

A = B*C; As above, but the product A will not be displayed on the
screen.

A = B/C; Solution to A *C = B.

A = C\B; Solution to C*A = B.

A = inv(B); A will be the inverse of the square matrix B.

Vector operations:

a = b’*c; Scalar a is the sum of the products of the elements of vectors b
and c. The symbol ’ denotes conjugate transpose (.’ denotes
transposition without conjugation). This is the vector “dot”
product. The assumption here is that both b and c are column
vectors.
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A = b*c’; Matrix A is the cross, or outer, product of vectors b and c.

d = b.*c; Vector d is the element-by-element product of vectors b and c,
i.e., d(1) = b(1)*c(1),

A.2 SPECIALIZED COMMANDS

etc.

Analog filter design commands:

[z,p,k] = buttap(n); Designs a Butterworth lowpass filter with
normalized for a given order n. Returns
the zeros in vector z, the poles in vector p, and
the gain in scalar k.

[z,p,k] = cheb1ap(n,Rp); Designs a Chebyshev Type I lowpass filter for
given order n and passband ripple Rp.

[z,p,k] = cheb2ap(n,Rs); Designs a Chebyshev Type II lowpass filter for
given order n and stopband ripple Rs.

[z,p,k] = ellipap(n,Rp,Rs); Designs an elliptic lowpass filter for given order
n, passband ripple Rp, and stopband ripple Rs.

Analog filter frequency transformations: lp2bp, lp2bs, lp2hp and lp2lp

These commands transform a normalized lowpass prototype filter design into
a bandpass, bandstop, highpass, or another lowpass with different cutoff
frequency, respectively.

Transfer function form changes:

p = poly(r); If r is a vector of poles or zeros, then p will be a vector
of polynomial coefficients.

r = roots (p); If p is a vector of polynomial coefficients, then r will
be a vector of poles or zeros.

Section A.2 Specialized Commands
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Frequency response:

w = 0:0.02:10;

H = freqs(b,a,w);

Establishes a vector of radian frequencies linearly
spanning the range from 0 to 10 in 0.02 radians/sec
steps.

Given the vector b of transfer function numerator
polynomial coefficients, the vector a of denominator
coefficients, and the vector w of radian frequencies, H
will be a vector of frequency response samples.

HM = abs(H); The vector HM will be the magnitude frequency
response.

HMD = 20*log10(HM); The vector HMD will be the magnitude frequency
response in dB.

HP = angle(H); The vector HP will be the phase response.

Time-domain responses:

[h,x,t] = impulse(b,a); Given the transfer function polynomial vectors,
b for the numerator and a for the denominator,
for a normalized analog filter transfer function,
the impulse response vector h and the
corresponding vector of time values t will be
returned. The vector x is an internal state vector
response.

[r,x,t] = step(b,a); Given the transfer function polynomial vectors,
b for the numerator and a for the denominator,
for a normalized analog filter transfer function,
the step response vector r and the corresponding
vector of time values t will be returned. The
vector x is an internal state vector response.

Graphing: See plot, title, xlabel, ylabel, grid, legend, hold, etc.

Appendix A Introduction to MATLAB
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A.3 SUMMARY OF COMMANDS

Listed below are the MATLAB commands most relevant to the study of this
book, with a very brief description of each. Refer to a MATLAB manual2, or a
MATLAB online help for additional information.

abs
Given a data array of complex values, such as samples of the frequency

response of a transfer function, this command will produce a corresponding array of
absolute values (magnitude) of the complex values. For example, if MFR = abs(FR),
the elements of the array MFR will be the absolute values of the elements of the
complex array FR.

angle
Given a data array of complex values, such as samples of the frequency

response of a transfer function, this command will produce a corresponding array of
values that are the principal-value phase angles, in radians, of the complex values.
For example, if PFR = angle (FR), the elements of the array PFR will be the phase-
angle values of the elements of the complex array FR.

axis
This command allows the user to specify axis ranges for the current plot. This

allows plotting, for example, only part of a data file. For example, axis([xmin xmax
ymin ymax]) will only plot that part of the data file for independent-variable values
from xmin to xmax, and the vertical axis will be from ymin to ymax.

buttap
Given the order of an analog Butterworth lowpass filter, this command will

return arrays of the filter zeros and poles, and also a scalar gain term, for a filter
cutoff frequency of 1 radian/second. There are no finite-value zeros for an analog
Butterworth lowpass filter, but the array of zeros is included to be consistent with the
format of other filter design commands. For example, if [BUTZ,BUTP,BUTK] =
buttap(7), the array BUTZ will be empty, the array BUTP will have the seven complex
pole values in it, and the scalar BUTK will be unity.

2Refer to The Student Edition of MATLAB, Version 4, User's Guide, Prentice Hall, 1995, or an
appropriate manual of the professional version of MATLAB.
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cheb1ap
Given the order of an analog Chebyshev Type I lowpass filter and the passband

ripple in dB, this command will return arrays of the filter zeros and poles, and also
a scalar gain term, for a filter cutoff frequency of 1 radian/second. There are no
finite-value zeros for an analog Chebyshev Type I lowpass filter, but the array of
zeros is included to be consistent with the format of other filter design commands.
For example, if [CZ,CP,CK] = cheb1ap(8,1), the array CZ will be empty, the array
CP will have the eight complex pole values in it, and the scalar CK will be such that
the peak gain of the filter will be unity, for a filter with 1 dB of passband ripple.

cheb2ap
Given the order of an analog Chebyshev Type II lowpass filter and the

minimum stopband attenuation in dB, this command will return arrays of the filter
zeros and poles, and also a scalar gain term, for a filter stopband edge frequency of
1 radian/second. For example, if [C2Z, C2P, C2K] = cheb2ap(8,60), the array C2Z
will have the eight imaginary-axis zeros in it, the array C2P will have the eight
complex pole values in it, and the scalar C2K will be such that the peak gain of the
filter will be unity, for a filter with 60 dB of stopband attenuation.

clc
This command will clear the command window.

close
This command will close (erase) the current figure window and return to the

command window.

demo
This command will execute the MATLAB demonstration.

ellipap
Given the order of an analog elliptic lowpass filter, the ripple in the passband

in dB, and the minimum stopband attenuation in dB, this command will return arrays
of the filter zeros and poles, and also a scalar gain term, for a filter cutoff frequency
of 1 radian/second. For example, if [EZ,EP,EK] = ellipap(9,1.5,75), the array EZ
will have the eight imaginary-axis zeros in it, the array EP will have the nine complex
pole values in it, and the scalar EK will be such that the peak gain of the filter will
be unity, for a filter with 1.5 dB of passband ripple and 75 dB of stopband attenuation.

freqs
Given vectors of filter transfer function numerator and denominator

coefficients and radian frequency values, this command will return a vector of
complex frequency response values. For example, if FR = freqs(NUM,DEN,w),
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where NUM contains the transfer function numerator polynomial coefficients, DEN
contains the denominator coefficients, and w contains the radian frequency sample
values, the array FR will contain samples of the frequency response, real and
imaginary parts, for the frequencies specified in w. Note that there are variations for
this command, e.g., it can chose it's own frequency samples, etc.

grid
This command will provide grid lines for plots.

gtext
This command allows mouse placement of text on the current graph. For

example, if the command gtext('Note the first zero-crossing!') is issued, then a cross
will appear on the figure. Place the cross, by moving the mouse, where the extreme
lower left of the text is to be placed, and click the mouse.

help
The command help, by itself, will list the primary help topics. The command

help topic, will give help on that topic. The command help command, will give help
on that specific command.

hold
This command will hold the current graph. Subsequent plotting will add to the

existing graph without erasing it first. To return to the normal mode, where a new
plot command will erase any existing graphs first, issue the following command: hold
off.

impulse
Given vectors of filter transfer function numerator and denominator

coefficients and time values, this command will return a vector of impulse response
values. For example, if [IMP,x,t] = impulse(NUM,DEN,t), where NUM contains the
transfer function numerator polynomial coefficients, DEN contains the denominator
coefficients, and t contains the time sample values, the array IMP will contain samples
of the impulse response, for the time values specified in t. Note that this command
should only be used with filters that have a cutoff frequency (lowpass and highpass)
or center frequency (bandpass and bandstop) at or near unity. Note also that the
impulse that occurs at t = 0 for highpass and bandstop filters will not appear in the
results; the results, while appearing continuous in a plot, are made up only of samples
of the response; even if t = 0 is specifically in the t vector, it should be taken as
missing the impulse. Note also that there are a number of variations for this
command.

Section A.3 Summary of Commands
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legend
This command will add a legend to the current graph. It is very useful when

several plots have been overlaid: the legend will identify each individual plot.

log10
Given a data array, this command will produce a corresponding array of values

that are the common logarithm, element-by-element, of the input data array values.
For example, if LOGX = log10(X), the elements of the array LOGX will be the
common logarithm of the elements of the array X. Note that the command log is the
natural logarithm.

lp2bp
Given vectors of analog lowpass prototype filter transfer function numerator

and denominator coefficients for a cutoff frequency of 1 radian/second, the radian
center frequency, and the radian frequency bandwidth, this command will return the
filter coefficients of a bandpass filter. For example, if [NUMBP,DENBP] =
lp2bp(NUM,DEN,WO,BW), where NUM contains the lowpass transfer function
numerator polynomial coefficients, DEN contains the denominator coefficients, WO
is the radian center frequency, and BW is the radian bandwidth, the array NUMBP will
contain the bandpass transfer function numerator polynomial coefficients, and DENBP
will contain the bandpass denominator coefficients. Note that there are a number of
variations for this command.

lp2bs
Given vectors of analog lowpass prototype filter transfer function numerator

and denominator coefficients for a cutoff frequency of 1 radian/second, the radian
center frequency, and the radian frequency bandwidth, this command will return the
filter coefficients of a bandstop filter. For example, if [NUMBS,DENBS] =
lp2bs(NUM,DEN,WO,BW), where NUM contains the lowpass transfer function
numerator polynomial coefficients, DEN contains the denominator coefficients, WO
is the radian center frequency, and BWis the radian bandwidth, the array NUMBS will
contain the bandstop transfer function numerator polynomial coefficients, and DENBS
will contain the bandstop denominator coefficients. Note that there are a number
of variations for this command.

lp2hp
Given vectors of analog lowpass prototype filter transfer function numerator

and denominator coefficients for a cutoff frequency of 1 radian/second, and the
desired radian cutoff frequency of a highpass filter, this command will return the filter
coefficients of a highpass filter. For example, if [NUMHP,DENHP] =
lp2hp(NUM,DEN, WO), where NUM contains the lowpass transfer function numerator
polynomial coefficients, DEN contains the denominator coefficients, and WO is the
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desired highpass radian cutoff frequency, the array NUMHP will contain the highpass
transfer function numerator polynomial coefficients, and DENHP will contain the
highpass denominator coefficients. Note that there are a number of variations for this
command.

lp2lp
Given vectors of analog lowpass prototype filter transfer function numerator

and denominator coefficients for a cutoff frequency of 1 radian/second, and the
desired new cutoff frequency, this command will return the filter coefficients of a
lowpass filter with the desired cutoff frequency. For example, if [NUMLP,DENLP]
= lp2lp(NUM,DEN,WO), where NUM contains the prototype lowpass transfer
function numerator polynomial coefficients, DEN contains the prototype denominator
coefficients, and WO is the desired lowpass radian cutoff frequency, the array NUMLP
will contain the new lowpass transfer function numerator polynomial coefficients, and
DENLP will contain the new lowpass denominator coefficients. Note that there are
a number of variations for this command.

pause
This command in an m-file will halt execution until a key is pressed.

plot
This command will produce a two-dimensional plot of one or more arrays of

data. There are many features. See below for some examples.

poly
Given an array of polynomial roots, e.g., poles or zeros, this command will

return corresponding polynomial coefficients. For example, it DEN = poly (POLES),
where POLES is an array of complex transfer function poles, then DEN will be an
array of transfer function denominator polynomial coefficients.

print
This command will plot the current figure on a specified printer. There are

many options with this command, but if the defaults are properly set up, the simple
command print will produce the desired hardcopy graph.

roots
Given an array of polynomial coefficients, this command will return

corresponding polynomial roots. For example, if POLES = roots(DEN), where DEN
is an array of transfer function denominator coefficients, then POLES will be an array
of transfer function complex poles.

Section A.3 Summary of Commands
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step
Given vectors of filter transfer function numerator and denominator

coefficients and time values, this command will return a vector of step response
values. For example, if [STP,x,t] = step(NUM,DEN,t), where NUM contains the
transfer function numerator polynomial coefficients, DEN contains the denominator
coefficients, and t contains the time sample values, the array STP will contain samples
of the step response, for the time values specified in t. Note that this command should
only be used with filters that have a cutoff frequency (lowpass and highpass) or center
frequency (bandpass and bandstop) at or near unity. Note also that the impulse that
occurs at t = 0 for highpass and bandstop filters will not appear in the results; the
results, while appearing continuous in a plot, are made up only of samples of the
response; even if t = 0 is specifically in the t vector, it should be taken as
missing the impulse. Note also that there are a number of variations for this
command.

text
This command is similar to gtext except that it does not involve the mouse, and

is therefore more useful within m-files. It allows placement of text on the current
graph. For example, if the command text(1.2,4.5, 'Note the first zero-crossing!') is
issued, then the extreme lower left of the text will be placed at x = 1 . 2 , y = 4.5, in
units of the current plot data.

title
This commands will print text as a title at the top of the current plot. For

example, title('This is the title of this plot.').

unwrap
A command such as angle will produce only principal-value angles. The

command unwrap will, in most cases, unwrap, or yield the actual, or complete angles.
Given a data array of phase angles, such as samples of the phase response of a transfer
function, this command will produce a corresponding array of unwrapped phase angle
values, in radians. For example, if UPFR = unwrap (PFR), the elements of the array
UPFR will be the unwrapped phase-angle values of the elements of the array PFR.

who, whos
The command who lists the variables currently in memory. The command

whos not only lists the variables, but also their sizes and whether they have real or
complex elements.

xlabel
This command will add text beneath the x-axis of the current two-dimensional

graph. For example, xlabel('Frequency in Hz').
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ylabel
This command will add text beside the y-axis of the current two-dimensional

graph. For example, ylabel ('Magnitude in dB').

A.4 EXAMPLES

Example A.1
The following is an example of an m-file that will generate two periods of a

sinewave and plot the result. The plot is shown in Figure A.1.

TT = 0:1:500;
XX = TT*(4*pi/500);

% Generates an array of integers from 0 to 500.
% Generates an array of real numbers from 0
% to 4*pi.

YY = sin(XX);
plot(XX,YY)
xlabel('Radian Values')
ylabel('Sinusoid Amplitude')
title('Plot of two periods of a sinusoid'), pause, close

Example A.2
The following is an example of an m-file that will design a sixth-order

Butterworth filter, and plot the magnitude frequency response and the phase response.
The resulting plots are shown in Figures A.2 and A.3.

[z,p,k] = buttap(6);
NUM = poly(z);
DEN = poly(p);

w = 0:0.02:10;
H = freqs(NUM,DEN,w);
HM = 20*log10(abs(H));
HP = unwrap(angle(H));
plot(w,HM)
grid
xlabel('Radian Frequency')
ylabel('Magnitude in dB')
title('Magnitude Response of a 6th-Order Butterworth Filter')
pause
plot(w,HP)
grid
xlabel('Radian Frequency')

Section A.4 Examples

% Waits for a keyboard response.
% Erases the magnitude plot and plots the phase.

% Designs the Butterworth filter.

% Converts the poles into polynomial
% coefficients.
% Generates the vector of radian frequencies.
% Computes the complex frequency response.
% Computes the magnitude in dB.
% Computes the unwrapped phase response.
% Plots the magnitude response.
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ylabel('Phase in Radians')
title('Phase Response of a 6th-Order Butterworth Filter')
pause
close % Erases the figure.

Example A.3
The following is an example of an m-file that will design a fourth-order

Butterworth filter and a fourth-order Chebyshev filter with 1 dB of ripple, and
overlay-plot the magnitude frequency response of the two filter designs, both with a
3 dB cutoff frequency of unity. The plot is shown in Figure A.4.

[z,p,k] = buttap(4);
NUMB = poly(z);
DENB = poly(p);

[z,p,k] = cheb1ap(4,l);

% Designs the 4th-order Butterworth filter.

% Converts the poles into polynomial
% coefficients.
% Designs the 4th-order Chebyshev filter with
% 1 dB of ripple.

Section A.4 Examples
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ep = sqrt(l0^0.1 - 1); % Calculates the ripple factor epsilon.
WP = l/cosh(0.25*acosh(l/ep); % Calculates the desired wp frequency

% for a 3 dB frequency of 1.
NUM = poly(z);
DEN = poly(p);
[NUMC,DENC] = lp21p(NUM,DEN,WP); % Frequency scales for a

% 3 dB frequency of 1.
w = 0:0.02:10; % Generates an array of frequencies from 0 to

% 10.
HB = freqs(NUMB,DENB,w); % Obtains the Butterworth frequency

% response.
HC = freqs(NUMC,DENC,w).*k; % Obtains the Chebyshev frequency

% response.
HBM = 20*log10(abs(HB)); % Magnitude response in dB.
HCM = 10*log10(abs(HC); % Magnitude response in dB.
plot(w,HBM,':',w,HCM, '-') % Plot both magnitude responses.
xlabel('Radian Frequency')
ylabel('Magnitude in dB')
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title('Comparison of 4th-Order Butterworth and Chebyshev Filters')
legend('Butterworth', 'Chebyshev')
axis([0 5 -50 5]) % Set the axes ranges for more convenient

% viewing.
pause
close



APPENDIX B

CONTENTS OF THE

ACCOMPANYING DISK

he accompanying disk contains a number of MATLAB functions that extend
basic MATLAB capabilities in terms of the design and analysis of analog
filters. The disk also contents several m-files used in a number of examples

in the book. They are included here as an instructional aid. These functions and m-
files are intended to be used with MATLAB, version 5, Student Edition, and are not
stand-alone. The MATLAB functions and m-files are organized below by the chapter
in which they first appear.

B.1  CHAPTER 6 FUNCTIONS AND m-FILES

EXAMP6_1.m, EXAMP6_2.m, EXAMP6_6.m, EXAMP6_8.m, and EXAMP6_9.m are
m-files that generate the data for Examples 6.1, 6.2, 6.6, 6.8, and 6.9, respectively.

ELLIPFS is a MATLAB function that computes the Filter Selectivity of an elliptic
filter.

ELLIPINT is a MATLAB function that evaluates the elliptic integral of the first kind.
The algorithm is an approximation to equation (6.4).

ELLIPOR is a MATLAB function that computes the minimum required order for a
lowpass elliptic filter. The algorithm implements equation (6.40).

ELLIPPV is a MATLAB function that determines the frequencies of the passband
peaks and valleys in the magnitude frequency response of an elliptic filter.

ELLIPPZ is a MATLAB function that determines the poles and zeros of an elliptic
filter.
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ELLIPSF is a MATLAB function that computes the Shaping Factor of an elliptic
filter.

ELLIPSN is a MATLAB function that returns the value of the Jacobi elliptic sine
function, and is not restricted to a real argument.

ELLIPWC is a MATLAB function that determines the 3 dB cutoff frequency of an
elliptic filter.

ELLIPWM is a MATLAB function that computes the finite-valued frequencies in the
stopband of an elliptic filter where the attenuation is minimum.

ELLIPWS is a MATLAB function that computes for an elliptic filter.

ELLIPWZ is a MATLAB function that computes the finite-valued zero-transmission
frequencies in the stopband of an elliptic filter.

B.2   CHAPTER 7 FUNCTIONS

BESSELDD is a MATLAB function that designs a Bessel filter for a normalized time
delay of unity.

BESSELDE is a MATLAB function that designs a Bessel filter for a specified
and N.

BESSELFS is a MATLAB function that computes the Filter Selectivity for a Bessel
filter.

BESSELOR is a MATLAB function that computes the minimum required order for a
Bessel filter to meet given specifications.

BESSELSF is a MATLAB function that computes the Shaping Factor for a Bessel
filter.

B.3   CHAPTER 8 FUNCTIONS AND m-FILES

FIG8_1dat.m through FIG8_7dat.m are MATLAB m-files that generate the data for
Figures 8.1 through 8.7. They illustrate transitional filters.

Appendix B Contents of the Accompanying Disk
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HALPDE is a MATLAB function that designs a Halpern filter for given

LEGENDE is a MATLAB function that designs a Legendre, 1st-associated Legendre,
or a 2nd-associated Legendre, filter for given and N.

PAPOULDE is a MATLAB function that designs a Papoulis filter for given

ULTRADE is a MATLAB function that designs ultraspherical filters for given

Section B.3 Chapter 8 Functions and m-Files

GAUSDE is a MATLAB function that designs a Gaussian filter for given

N.
and

and N.

and N.

and N.
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THE MATLAB m-FILE EXAMP6_1.m

File Name: EXAMP6_l.m

This MATLAB m-file demonstrates that a Chebyshev filter is a special case of
an elliptic filter, and that in this case, the elliptic sine form and the elliptic
cosine form of (6.2) are identical. All three filter responses, in this example,
are third-order Chebyshev with 3 dB of passband ripple.

This is Example 6.1.

Enter Parameters:
kappa = 3;
AC = 1000;
tau1 = 0;

Note that tau2 = 0 is not necessary, since sin and cos are used in place of sn and
en, respectively.

Generate an array of radian frequency values going from 0 to 5 radians/second:
nn = 0:1:500;
w = nn/100;

Produce the array of values for the upper limit of the elliptic integral of the first
kind for the sn case and the cn case, respectively:

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

%
%

%
%
%
%

%
%
%
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asin1 = asin(w);
acos1 = acos(w);

Evaluate the elliptic integral of the first kind for the sn case and the cn case,
respectively:

invsn = ellipint(asin1,tau1,AC);
invcn = ellipint(acos1,tau1,AC);

Compute the argument for sn and cn, respectively:
argsn = invsn*kappa;
argcn = invcn*kappa;

Compute sn and cn, respectively:
sn = sin(argsn);
cn = cos(argcn);

Compute the squares (real parts are used since sn and cn are, in general, complex,
but it can be shown that the imaginary parts, ideally zero, are insignificantly
small):

snr = real(sn);
cnr = real(cn);
snsq = snr.*snr;
cnsq = cnr.*cnr;

Adjust values, prior to taking the logarithm, to prevent problems with the
logarithm of zero (or near zero):

N1 = 501;
for ii=l:N1

if(snsq(ii) > 10ˆ30)
snsq(ii) = 10ˆ30;

end
if(cnsq(ii) > 10ˆ30)

cnsq(ii) = 10ˆ30;
end

end

Form the magnitude-squared frequency response denominators:
dens = 1 + snsq;
denc = 1 + cnsq;

Form the magnitude-squared frequency responses:
HMmags = 1 ./ dens;

Appendix C The MATLAB m-File EXAMP6_1.m

%

%
%

%

%

%
%

%
%

%
%

%
%
%

%
%

%
%
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HMmagc = 1 ./ denc;
%
% Form the magnitude-squared frequency responses in dB:

HMdBs = 10*log10(HMmags);
HMdBc = 10*log10(HMmagc);

%
%

% Design a third-order Chebyshev filter:
[zz,pp,kk] = cheb1ap(3,10*logl0(2));
NUM = kk*poly(zz);
DEN = poly(pp);

Form the magnitude-squared frequency response of the third-order Chebyshev
filter in dB:

%
%
%

freq = freqs(NUM,DEN,w);
frem = abs(freq);
HMdBf = 20*log10(frem);

%
% Plot and compare the three responses:

plot(w,HMdBs,'g',w,HMdBc,'r',w,HMdBf,'b')
grid
xlabel('Radian Frequency')
ylabel('Magnitude in dB')
title('sn form in green, cn form in red, Chebyshev in blue')
pause
close

%
%

%
%

End of Example 6.1

Appendix C The MATLAB m-File EXAMP6_ 1.m
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%
% File Name: EXAMP6_2.m
%
% This MATLAB m-file demonstrates that setting up the parameters of
% (w/wp,wp/ws),epsp*epss)
% yielding a real result is critical, and that arbitrarily chosen values will yield,

in general, a complex result, and are therefore not realizable. When set up
properly, the result in this example is a third-order elliptic magnitude-
squared response with 3 dB of passband ripple, a stopband minimum atten-
uation of 40 dB, and a stopband frequency edge of 1.9789 radians/sec.

%
%
%
%
%
%
%
% This is Example 6.2.
%
%
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
%

%
% STEP ONE: Setup Proper Parameters and Compute Results
%
% Enter parameters:

ws = 1.9789;
epss = 0.0100005;
kappa = 2.7906;
AC = 10000;
tau1 = epss;
tau2 = 1 / ws;

%

THE MATLAB m-FILE EXAMP6_2.m
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% Generate an array of radian frequency values going from 0 to 5 radians/second:
nn = 0:1:500;
w = nn/100;

%
% Produce the array of values for the upper limit of the elliptic integral of the first
% kind:

asin1 = asin(w);
%
% Evaluate the elliptic integral of the first kind:

invsn = ellipint(asin1,tau2,AC);
%
% Compute the argument for sn:

argsn = invsn*kappa;
%
% Compute sn:

sn = ellipsn(argsn,tau1);
%
% Compute the squares of the magnitudes (real and imaginary parts are computed
% also for analysis):

snr = real(sn);
sni = imag(sn);
snm = abs(sn);
snsq = snm.*snm;

%
% Adjust values, prior to taking the logarithm, to prevent problems with the
% logarithm of zero (or near zero):

N1 = 501;
for ii = 1:N1

if(snsq(ii) > 10^30)
snsq(ii) = 10^30;

end
end

%
% Form the magnitude-squared frequency response denominator:

den = 1 + snsq;
%
% Form the magnitude-squared frequency response:

HMmag = 1 ./den;
%
% Form the magnitude-squared frequency response in dB:

HMdB = 10*logl0(HMmag);
%

Appendix D The MATLAB m-File EXAMP6_2.m
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%
%
%
%
%

STEP TWO: Setup Arbitrary Parameters 1 and Compute Results

Enter parameters:
ws2 = 2.5;
epss2 = 0.01;
kappa2 = 3;
AC2 = 1000;
tau1 = epss2;
tau2 = 1 / ws2;

%
% Evaluate the elliptic integral of the first kind:

invsn2 = ellipint(asin1,tau2,AC2);
%
% Compute the argument for sn:

argsn2 = invsn2*kappa2;
%
% Compute sn:

sn2 = ellipsn(argsn2,tau1);
%
% Compute the squares(real and imaginary parts are computed also for analysis):

snr2 = real(sn2);
sni2 = imag(sn2);
snsq2 = sn2.*sn2;

%
% Form the squared frequency response denominator:

den2 = 1 + snsq2;
%
% Form the magnitude-squared frequency response:

HMmag2 = abs(1 ./ den2);
%
%
%

Adjust values, prior to taking the logarithm, to prevent problems with the
logarithm of zero (or near zero):

N1 = 501;
for ii = 1:N1

if(HMmag2(ii) < 10^(-30))
HMmag2(ii) = 10^(-30);

end
end

% Form the magnitude-squared frequency response in dB:
HMdB2 = 10*logl0(HMmag2);

Appendix D The MATLAB m-File EXAMP6_2.m
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%

%

%

%

%

%

STEP THREE: Setup Arbitrary Parameters 2 and Compute Results

Enter parameters:
ws3 = 1.5;
epss3 = 0.008;
kappa3 = 3;
tau1 = epss3;
tau2 = 1 / ws3;

%
% Evaluate the elliptic integral of the first kind:

invsn3 = ellipint(asin1,tau2,AC2);
%
% Compute the argument for sn:

argsn3 = invsn3*kappa3;
%
% Compute sn:

sn3 = ellipsn(argsn3,tau1);
%
% Compute the squares(real and imaginary parts are computed also for analysis):

snr3 = real(sn3);
sni3 = imag(sn3);
snsq3 = sn3.*sn3;

%
% Form the squared frequency response denominator:

den3 = 1 + snsq3;
%
% Form the magnitude-squared frequency response:

HMmag3 = abs(1 ./ den3);
%
%
%

Adjust values, prior to taking the logarithm, to prevent problems with the
logarithm of zero (or near zero):

N1 = 501;
for ii=l:N1

if(HMmag3(ii) < 10^(-30))
HMmag3(ii) = 10^(-30);

end
end

% Form the magnitude-squared frequency response in dB:
HMdB3 = 10*logl0(HMmag3);

Appendix D The MATLAB m-File EXAMP6_2.m



A Signal Processing Perspective 421

%
%
%
%
%

STEP FOUR: Design a Third-Order Elliptic Filter:

[zz,pp,kk] = ellipap(3,10*logl0(2),40);
NUM = kk*poly(zz);
DEN = poly(pp);

%
%
%

Form the magnitude-squared frequency response of the third-order elliptic filter
in dB:

freq = freqs(NUM, DEN,w);
frem = abs(freq);
HMdBf = 20*logl0(frem);

%
% Plot and compare the four magnitude responses:

plot(w,HMdB,'g',w,HMdB2,'r',w,HMdB3,'y',w,HMdBf,'b')
grid
xlabel('Radian Frequency')
ylabel('Magnitude in dB')
title('proper sn in green, arbitrary 1 in red, arbitrary 2 in yellow, elliptic in

blue')
pause
close

%
% Scale snr and sni for plotting purposes:

snr40 = snr/40;
sni40 = sni/40;

%
% Plot and compare the real and imaginary responses:

plot(w,snr40,'m',w,sni40,'c',w,snr2,'g',w,sni2,'r',w,snr3,'y',w,sni3,'b')
grid
xlabel('Radian Frequency')
ylabel('Amplitude')
title('Prop/40: magenta (r), cyan (i). Arb1: green (r), red (i). Arb2: yellow (r),

blue (i)')
pause
close

%
%
%
%

End of Example 6.2

Appendix D The MATLAB m-File EXAMP6_2.m
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THE MATLAB m-FILE EXAMP6_6.m

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

File Name: EXAMP6_6.m

This MATLAB m-file computes Filter Selectivity and
Shaping Factor for an elliptic lowpass filter for the
following parameters:

N = 3, 4, ..., 10
a = 6 dB
b = 60 dB
Ap = 1 dB
As = 80 dB
wc = 1

This algorithm computes the data for Example 6.6.

%
% Enter Parameters:

a = 6;
b = 60;
Ap = 1;
As = 80;
epsp = sqrt(10^(Ap/10) - 1);
epss = 1/sqrt(10^(As/10) - 1);
tau1 = epsp*epss;
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%
%

mod1 = taul^2;
[X1,E] = ellipke(mod1);

The main processing loop:
for N=3:10
% Initially assume a normalized wp:

ws = ellipws(N,Ap,As,l);
wc = ellipwc(N,Ap,As,l,ws);
tau2 = 1/ws;

q = 0;
if(2*round(N/2) = =N)

q= 1;
end

% Scale for wc = 1:
wp = 1/wc;
ws = ws/wc;
wc = 1;

% Compute Filter Selectivity:
FS(N-2) = ellipfs(N,Ap,As,wp,wc,ws);

% Compute the Shaping Factor:
SF(N-2) = ellipsf(N,a,b,Ap,As,wp,ws);

end
%
%
%
%

End of Example 6.6

Appendix E The MATLAB m-File EXAMP6_6.m
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